
An Investigation of Loose
Coupling in Evolutionary

Swarm Robotics

Jennifer Owen

A thesis submitted for the degree of

Doctor of Philosophy

University of York

Computer Science

January 2013

Abstract

In complex systems, it has been observed that the parts within the system
are “loosely coupled”. Loose coupling means that the parts of the system
interact in some way, and as long as this interaction is maintained the parts
can evolve independently. Detrimental evolutionary changes within one part
of the system do not negatively affect other parts. Overall system function-
ality is maintained, leading to faster evolution.

In swarm robotic systems there are multiple robots working together to
achieve a shared goal. However it is not always obvious how to program the
actions of the robots such that the desired aggregate behaviour emerges.
One solution is to use a genetic algorithm to evolve robot controllers, this
approach is called “Evolutionary Swarm Robotics”.

This thesis makes the case that swarm robotic systems are complex sys-
tems, and hypothesises that loose coupling between the robots in a swarm
would lead to faster evolution. Robot swarms are investigated where robots
describe environmental features to each other as part of a foraging task.
Multiple descriptions can be used to describe a feature. The mappings
between feature descriptions, and the signals used to express those descrip-
tions, are manipulated. By doing this, the interactions between robots can
change over time or stay the same.

Results show that loose coupling leads to higher swarm fitnesses because
it makes the communicated information easier to interpret. However there
are some subtleties in its working. We also observe that if some of the
information is not useful for completing the task, this negatively affects
swarm fitness regardless of coupling. This problem can be mitigated by
using loose coupling.

This research has implications for the design of communication within robot
swarms. Before evolution, it is difficult to know what information is relevant.
This research shows that sharing unnecessary information between robots
is detrimental to swarm fitness because the cost of interpreting information
can be greater than the benefit gained from the information. Loose coupling
can reduce, but not eliminate, the evolutionary cost of interpreting multiple
pieces of information in exchange for slower message transmission.

Contents

Contents i

List of Figures v

List of Tables xi

1 Introduction 1
1.1 Background Context . 1
1.2 Aims and Contributions . 2

1.2.1 Contributions . 3
1.3 Thesis Structure . 3

I Background and Literature Review 5

2 Complexity and Emergence 7
2.1 Introduction . 7
2.2 Definitions . 7

2.2.1 Types of Complexity . 8
2.2.2 Unpredictability . 9
2.2.3 Emergence and Hierarchy . 10
2.2.4 A Definition . 11

2.3 Motivations Behind Complexity Research 11
2.3.1 Complexity and Evolution . 12

2.4 Modelling . 13
2.4.1 The Advantages of Modelling . 14
2.4.2 Forms of Modelling . 15
2.4.3 Validation and Verification . 16

2.5 Conclusion . 19

3 Swarm Intelligence 21
3.1 Introduction . 21
3.2 What is Swarm Intelligence? . 21

3.2.1 Motivations Behind Swarm Intelligence Research 23
3.3 Swarm Robotics . 24

3.3.1 Benefits of Swarm Robotics . 25
3.4 Evolutionary Swarm Robotics . 28

3.4.1 Genetic Algorithms . 28

i

CONTENTS

3.4.2 Implementing Evolutionary Swarm Robotics 29
3.5 Conclusion . 30

4 Proposed Solution 31
4.1 Hypothesis . 31

4.1.1 Coupling Strength . 31
4.1.2 Alphabetisation . 32

4.2 Motivations . 33
4.3 Conclusion . 34

5 An Experiment to Test the Hypothesis 35
5.1 Introduction . 35
5.2 The Task . 35
5.3 Creating an Alphabet . 36

5.3.1 Varying the Amount of Coupling 36
5.3.2 Benefits of Audio Communication 39

5.4 Implementing ESR . 39
5.4.1 Collective Evolution . 39
5.4.2 Evolvable Robot Architectures 41

5.5 Conclusion . 46

II Co-Development of Simulation and Hardware 49

6 Basic Simulation 51
6.1 Introduction . 51
6.2 The CoSMoS Process . 52

6.2.1 Benefits of Following the CoSMoS Process 54
6.2.2 The CoSMoS Process for Engineered Systems 54

6.3 Following the CoSMoS Process . 55
6.3.1 Research Context . 55
6.3.2 Biological Domain, Domain Model and Meta-Model 58
6.3.3 Engineering Domain . 58
6.3.4 Domain Model . 58
6.3.5 Platform Model . 63
6.3.6 Simulation Platform . 67
6.3.7 Results Model . 67

6.4 Conclusion . 67
6.4.1 List of Assumptions . 68
6.4.2 List of Calibration Points . 68

7 Developing The Hardware 69
7.1 Introduction . 69

7.1.1 Requirements . 71
7.2 Version 1: Phased Array Beamforming 72

7.2.1 Soundboard Process . 72
7.2.2 Phased Array Beamforming . 73
7.2.3 Design Considerations . 75
7.2.4 Verification Tests . 80
7.2.5 Test Results . 82

ii

CONTENTS

7.3 Version 2: Microphone Amplitude Comparison 82
7.3.1 Creating a Sound . 83
7.3.2 Test Results . 84

7.4 Conclusion . 86

8 Calibrating the Model 89
8.1 Introduction . 89

8.1.1 List of Calibration Points . 89
8.2 Calibration Points Already Answered . 90
8.3 Comparing Soundboards . 91

8.3.1 Experimental Method . 91
8.3.2 Results . 92
8.3.3 Frequency and DOA Estimation From FFT Amplitude and Dif-

ferential . 95
8.3.4 Discussion . 96
8.3.5 Feedback into Simulation . 100

8.4 DOA Measurement Accuracy . 100
8.4.1 Experimental Method . 100
8.4.2 Results and Discussion . 101

8.5 Two or More Simultaneous Tones . 102
8.5.1 Experimental Method . 104
8.5.2 Results . 104
8.5.3 Discussion and Feedback into Simulation 106

8.6 Measuring Audio Range . 106
8.6.1 Experimental Method . 106
8.6.2 Results . 108
8.6.3 Discussion . 108

8.7 Calibrating the Model . 108
8.7.1 Amplitude and Differential with No Tone 109
8.7.2 Amplitude and Differential with One Tone 111

8.8 Conclusion . 117

III Results and Conclusions 119

9 Initial Results From Testing the Hypothesis 121
9.1 Introduction . 121
9.2 Experimental Method . 122

9.2.1 GE Grammar . 122
9.2.2 Genetic Algorithm Parameters 124
9.2.3 Food Distribution Parameters . 126
9.2.4 Communication Parameters . 126
9.2.5 Measuring Results . 127

9.3 Developing Test Benchmarks . 128
9.3.1 Randomly Generated Controllers 128
9.3.2 Designing A Controller . 129

9.4 Results . 131
9.4.1 Discussion . 133

9.5 Elitism and Steady State GA . 133

iii

CONTENTS

9.5.1 Elitism . 134
9.5.2 Steady State GA . 134
9.5.3 Discussion . 139

9.6 With Phonotaxis . 140
9.6.1 Simplifying the Audio and Soundboard Model 141
9.6.2 Re-evaluating Test Benchmarks 142
9.6.3 Results . 142
9.6.4 Discussion . 144

9.7 Conclusion . 147

10 Coupling in Swarms Using Indirect Communication 149
10.1 Introduction . 149
10.2 Experimental Method . 150

10.2.1 Task . 150
10.2.2 Communication . 151
10.2.3 Evolved Controller . 152
10.2.4 Genetic Operators . 153
10.2.5 Implementing Collective Evolution 155
10.2.6 Other Experiment Parameters 157
10.2.7 Measuring the Results . 159

10.3 Developing Test Benchmarks . 159
10.3.1 Randomly Generated Controllers 160
10.3.2 Designing A Controller . 160

10.4 Results . 163
10.5 Testing Additional Couplings . 166

10.5.1 Benchmarks . 166
10.5.2 Results . 168

10.6 Discussion . 172
10.7 Conclusion . 174

10.7.1 Further Work . 175

11 Conclusion 177
11.1 Introduction . 177
11.2 Impact of this Research . 179

11.2.1 Original Contributions . 180
11.3 Further Work . 180

A Supplementary Soundboard Information 183
A.1 Microphone Pre-Amplifier Schematic . 183
A.2 Soundboard Circuit Diagram . 183
A.3 Derivation of Microphone Phased Array Frequency Response 185

Bibliography 189

iv

List of Figures

2.1 The Sargent process for building models [80]. 18

5.1 Example mapping for uncoupled, alphabetised communication. The map-
ping is evolved between signals and meanings within each information type. 38

5.2 Example mapping for uncoupled, alphabetised communication. The map-
ping is evolved between all signals and all meanings. 38

5.3 Example of crossover in GP. A random sub-tree is selected from each
genome (a), these sub-trees are then placed into the other genome at the
vacated position (b). 44
(a) Before crossover . 44
(b) After crossover . 44

5.4 Example robot controller using syntax tree structure. 45

6.1 The basic CoSMoS Process Diagram [5] 52
6.2 The CoSMoS process for bio-inspired engineered systems [6]. 54
6.3 Diagram of control flow from user code through Player to the robot

hardware or to Stage. 58
6.4 A photograph of an e-puck robot. 60
6.5 A photograph of an e-puck robot with the Linux extension board. . . . 60
6.6 Illustration of how the e-puck with soundboard measures the direction a

tone came from. 62
6.7 The quantisation of frequencies. Tone t1 is quantised to f0, t2 and t3 are

quantised to f1 and t4 to f3. 66
6.8 Tones modelled as a polar coordinate with the e-puck at the origin. . . . 67

7.1 The positioning and size of the microphones built into the e-puck . . . 70
7.2 An e-puck with the Linux board extension [55] 70
7.3 The completed soundboard. 71
7.4 The process of measuring the sound information in the environment and

sending the information to the e-puck. 72
7.5 Calculating beamforming delays . 73
7.6 Basic principle of delay and sum beamforming. 74

(a) . 74
(b) . 74

7.7 Example theoretical frequency response of a microphone phased array of
10 microphones spaced 20cm apart. 76

7.8 Phased array frequency response . 78
(a) 3 mics 2cm separation . 78

v

LIST OF FIGURES

(b) 5 mics 2cm separation . 78

(c) 10 mics 2cm separation . 78

(d) 3 mics 3cm separation . 78

(e) 5 mics 3cm separation . 78

(f) 10 mics 3cm separation . 78

(g) 3 mics 5cm separation . 78

(h) 5 mics 5cm separation . 78

(i) 10 mics 5cm separation . 78

(j) 3 mics 10cm separation . 78

(k) 5 mics 10cm separation . 78

(l) 10 mics 10cm separation . 78

(m) 3 mics 20cm separation . 78

(n) 5 mics 20cm separation . 78

(o) 10 mics 20cm separation . 78

7.9 The frequency response of the microphone phased array. There are 3
microphones spaced 5cm apart. 79

7.10 The angles for which delay and sum beamforming will be performed. . . 79

7.11 The relation between the known frequency played f and the unknown
sample rate fs. 81

7.12 Photograph of the measurement accuracy test set up. 81

7.13 The revised process for measuring the sound information in the environ-
ment. Instead of sending the FFT of delay and sum beamforming data,
as in figure 7.4, we now send the FFT of the microphone readings. . . . 83

7.14 Photograph of the measurement accuracy test set up. 84

7.15 Example FFT of the microphone buffers. 85

7.16 Using the microphone difference factor (MicDifference) to estimate the
DOA of a signal. 87

(a) The microphone difference factor (MicDifference) is used to gener-
ate a boundary around the microphone reading M 87

(b) When there is no overlap between boundaries the DOA is estimated
as 90◦ in the direction of the larger microphone reading 87

(c) When there is less than 50% overlap the DOA is estimated at 45◦

in the direction of the larger microphone reading 87

(d) With more than 50% overlap the DOA is estimated at 0◦ 87

7.17 The success rate of the extension board as it changes with test tone
frequency and DOA. 88

(a) Estimation success with respect to test tone frequency. 88

(b) Estimation success with respect to test tone DOA. 88

8.1 Image of the simulated e-pucks with soundboards. 91

8.2 The effects of changing the frequency threshold factor on the frequency
estimation success rate. 93

(a) . 93

(b) . 93

8.3 Success rate of soundboard 1 estimation algorithm with respect to test
tone frequency and DOA. 93

(a) . 93

(b) . 93

vi

LIST OF FIGURES

8.4 Success rate of soundboard 2 estimation algorithm with respect to test
tone frequency and DOA. 94
(a) . 94
(b) . 94

8.5 Wilcoxon rank-sum results between board 1 and board 2 results for fre-
quency estimation and DOA estimation. 95
(a) Comparison of tone frequency estimations. Sample size is 140 for

each board, the Wilcoxon rank-sum µ = 9800 and σ = 677.5. . . . 95
(b) Comparison of tone DOA estimations. Sample size is 252 for each

board, the Wilcoxon rank-sum µ = 31752 and σ = 1635. 95
8.6 The DOA guesses of soundboard 2 expressed as a probability density

function. 96
8.7 Example set of FFT readings from the soundboard, the corresponding

amplitude and differential. 97
(a) Example FFT readings from the soundboard. 97
(b) Amplitude reading of the data from a) 97
(c) Differential reading of the data from a) 97

8.8 Median amplitude readings from soundboard 1 and soundboard 2. . . . 98
(a) . 98
(b) . 98

8.9 The distribution of differential readings with respect to the test tone
DOA for soundboard 1 (a) and soundboard 2 (b). 98
(a) . 98
(b) . 98

8.10 The Wilcoxon rank-sum U value for the comparison of soundboard 1 and
2, for frequency and DOA. 99
(a) . 99
(b) . 99

8.11 Angles measured in section 8.4 to test soundboard noise. 101
8.12 Differential results for each DOA. 102
8.13 Polar plot of differential standard deviation (r axis) as it changes with

DOA (θ axis). 103
8.14 The apparent amplitude and DOA of a tone when the two signals, equal

distances from the receiver, are combined as polar coordinates. 104
(a) Ideal amplitude . 104
(b) Ideal DOA . 104

8.15 The amplitude and differential results with two tones of the same frequency.105
(a) Amplitude 720 Hz . 105
(b) Differential 720 Hz . 105
(c) Amplitude 1470 Hz . 105
(d) Differential 1470 Hz . 105
(e) Amplitude 2220 Hz . 105
(f) Differential 2220 Hz . 105

8.16 Amplitude and differential results per DOA for the ranging test. 107
(a) Amplitude . 107
(b) Differential . 107

8.17 Boxplot showing the distribution of amplitude and differential readings
for FFT bands where a tone was not present. Each box shows the dis-
tribution for the tests described in this chapter. 109

vii

LIST OF FIGURES

(a) Amplitude . 109
(b) Differential . 109

8.18 Histogram showing the distribution of all the amplitude and differential
readings for FFT bands where a tone was not present. 110
(a) Amplitude . 110
(b) Differential . 110

8.19 Amplitude histogram reflected around zero. 111
8.20 The ranging results compared to the soundboard comparison results. . . 112

(a) Amplitude . 112
(b) Differential . 112

8.21 The results from the audio ranging test, for DOA of −90◦, showing the
distribution of the data. 113
(a) Amplitude . 113
(b) Differential . 113

8.22 The mean (a) and standard deviation (b) of the amplitude and differential
readings as the distance to the sound source increases. Each line shows
the mean or standard deviation at a different DOA. 114
(a) Mean . 114
(b) Standard Deviation . 114

8.23 Approximation of curve amplitudes using equation 8.10 116
8.24 Approximation of differentials using equation 8.11. 116
8.25 The idealised differentials compared to the mean measured differential

readings. 116

9.1 Simulation environment showing collector and food source initial posi-
tions. The arena is a 2× 2 metre square. Robots acting as food sources
are coloured in light grey. 125

9.2 The total swarm fitness at each generation from randomly generated
controllers. 130

9.3 The total swarm fitness at each generation from evolved controllers. . . 132
9.4 The total swarm fitness at each generation when using elitism in the GA. 135
9.5 The total swarm fitness at each generation when using a steady state GA.138
9.6 The total swarm fitness at each generation from evolved with phonotaxis

behaviour in the grammar. 143

10.1 Position based crossover. 154
10.2 Demonstration of how position based crossover is implemented. 155
10.3 Example of mutation applied to an action and a priority gene. 156
10.4 How genomes are assigned to robots in the heterogeneous and homoge-

neous swarm experiments. 156
(a) Heterogeneous Swarm . 156
(b) Homogeneous Swarm . 156

10.5 Arena containing 3 food sources and 10 collector robots, food sources are
coloured light grey. 158

10.6 Histogram of homogeneous designed and random controller fitnesses. . . 162
10.7 Mean total population fitness and MBF for the heterogeneous evolved

and random GAs. 164
10.8 Mean total population fitness and MBF for the homogeneous evolved

and random GAs. 165

viii

LIST OF FIGURES

10.9 The mean fitness and MBF for the first 100 generations of the homoge-
neous occupancy coupling designed and random test. 168

10.10Mean population fitness and MBF of the heterogeneous swarm using all
couplings. 169

10.11Mean population fitness and MBF of the homogeneous swarm using all
couplings. 170

A.1 Circuit diagram of microphone pre-amplifier used in the soundboard.
Image reproduced from [28]. 183

A.2 When two waves are out of phase, their amplitudes do not add linearly. In
this example, the combined wave strength is smaller than it is individually.186

A.3 Signal represented as a vector in a complex plane. The length of the
vector is the amplitude of the signal and φ is its phase. 186

A.4 The extra distance a wave must travel to reach each microphone is
L sin(θ), where θ is the DOA and L is the distance between the mi-
crophones. 187

ix

LIST OF FIGURES

x

List of Tables

8.1 The frequency threshold and microphone difference factors for each sound-
board, to give the best success rate. 92

9.1 Quality metrics from the randomly generated robot controllers. 129

9.2 Comparison of the fitnesses from the designed controller against ran-
domly generated controllers. 133

9.3 Quality metrics from the robot controller designed by hand. 133

9.4 Comparison of evolved and randomised robot controllers from the initial
experiment. 133

9.5 Comparison of evolved and randomised robot controllers from the elitism
GA experiment. 134

9.6 Quality benchmark metrics for the steady state GA. 136

9.7 Comparison of evolved and randomised robot controllers from the steady
state GA experiment. 137

9.8 A Wilcoxon rank-sum and A-test comparison of the evolved steady state
results and the designed controller steady state results. 137

9.9 Speed and quality metrics from the steady state GA experiment. Success
threshold is 36. 139

9.10 Wilcoxon rank-sum and normalised A-test results for the steady state GA
experiment, comparing the distribution of the first generation to find a
successful solution from each run. 139

9.11 Quality metrics from the random GA with phonotaxis. 142

9.12 Results of Wilcoxon rank-sum and A-test of the phonotaxis experiment
fitnesses where D = 3 compared against random. 144

9.13 Results of Wilcoxon rank-sum and A-test of the phonotaxis experiment
fitnesses where D = 3 compared against the designed controller. 144

9.14 Wilcoxon rank-sum and normalised A-test results for the phonotaxis ex-
periment where D = 4, comparing the distribution of the first generation
to find a successful solution from each run. 145

9.15 A Wilcoxon rank-sum and A-test comparison of the first generations to
find a successful genome from each run of phonotaxis test. 145

9.16 A Wilcoxon rank-sum and A-test of the first generation to find a suc-
cessful solution in the phonotaxis D = 3 when compared to the steady
state experiment. 145

10.1 An example controller for when D = 3. 152

10.2 Genetic algorithm parameters. 158

xi

LIST OF TABLES

10.3 Quality metrics for the random heterogeneous and random homogeneous
GAs. 160

10.4 Controllers used for the designed loose and tight coupling benchmarks. . 161
(a) Loose coupling controller. 161
(b) Tight coupling controller. 161

10.5 Quality metrics for the designed controllers. 161
10.6 Comparison of evolved and randomised fitnesses for each swarm type and

coupling. 163
10.7 Designed controllers for the size and occupancy couplings. 166

(a) Size only coupling, designed controller. 166
(b) Occupancy only coupling, designed controller. 166

10.8 Quality metrics from the random heterogeneous and homogeneous con-
trollers. Results from table 10.3 are included for reference. 167

10.9 Quality metrics from the designed heterogeneous and homogeneous con-
trollers. Results from table 10.5 are included for reference. 167

10.10Comparison of evolved and randomised fitnesses for each swarm type and
coupling. Results show the Wilcoxon rank-sum and A-test for the last
50 generations of each coupling type. Results from table 10.6 have been
included for comparison. 171

10.11Comparison of evolved and designed controller fitnesses for each swarm
type and coupling. Results show the Wilcoxon rank-sum and A-test for
the last 50 generations of each coupling type. 171

10.12Speed and quality metrics from the evolved heterogeneous and homoge-
neous GAs. 172

10.13Percentage of all runs in which the different food sources was collected
from, and the percentage of available food that was collected. 173

xii

Declaration

The work presented in this thesis is my own, except where explicitly stated.

The hypothesis in chapter 4 and elements of chapters 2 and 3 have been
published in:

• Jennifer Owen, Susan Stepney, Jonathan Timmis, and Alan F. T.
Winfield. “Exploiting loose horizontal coupling in evolutionary swarm
robotics”. In Proceedings of the 7th international conference on Swarm
intelligence, ANTS’10, pages 432–439, Berlin, Heidelberg, 2010. Springer-
Verlag.

Work from chapters 7 and 6 has been published in:

• Jennifer Owen “Developing a Simulation and Hardware for a Robot
Swarm Using Sound to Communicate”. In Proceedings of the Fourth
York Doctoral Symposium on Computer Science, pages 98–99, York
UK, 2011.

Chapter 1

Introduction

In this work we study swarm robots as a complex system. In particular we look at
the link between complexity and evolution in evolutionary swarm robotic systems. Our
main goal is to investigate whether the robot to robot communication can be predefined
and structured to increase the rate of improvement during evolution.

1.1 Background Context

In section 2.2.4 we define complex systems as:

A system which has a hierarchic structure of subsystems, from which we can
observe emergent properties and behaviours which are not apparent from
examining its constituent parts.

The phrase “hierarchic structure of subsystems” means that within each subsystem
there are more subsystems which interact and have emergent properties, and within
each of those there are more subsystems, and within each of those are more subsystems
and so on until some atomic unit is reached. An ant colony is an example of a complex
system. A colony consists of ants (subsystems) interacting with each other and the
environment to produce colony-level behaviour. Within each ant there are cells which
interact with each other and their environment to produce ant-level behaviour, and
within each cell there are proteins and other structures and so on until some atomic
unit is reached.

Complex systems can be studied by making a “model” of them. “A model is an
abstraction that is made to aid understanding or description of something” [72]. Only
an abstraction of the complex system is used because it would be intractable to try
and incorporate entire system into the model. The model would become as complicated
to understand as the original system and nothing could be gained from building it [6].
Using the example of an ant colony, modelling every cell of every ant in the colony would
mean modelling billions of cells, making the model intractably large. The research
question the model is used to answer dictates the level of abstraction required. Aspects
of the complex system which do not affect the research question do not need to be
modelled in detail.

It was observed by Simon [84] that complex systems evolve faster than non-complex
ones, and one of the causes of this is “loose coupling” between subsystems. Subsystems
are coupled if the interactions between them happen in a manner that doesn’t change

1

1. INTRODUCTION

over time, or change very slowly in comparison to the subsystems. It is possible to have
different strengths of coupling [33]. If the coupling between the subsystems is “tight”
then they are co-dependent and have a strong influence on each other. Consequently if
evolution causes one subsystem to be less effective, other subsystems will be adversely
affected, so the whole system may cease to function. If the coupling is “loose” then
the subsystems interact and share information, but are largely independent and do not
have a strong influence over each other. Detrimental changes in one subsystem worsen
the effectiveness of the whole system, but as long as the coupling is maintained it does
not cause other subsystems to break down and the system remains functional.

Swarm robotic systems are artificial complex systems. The subsystems are the
robots within the swarm and when the robots are together they form a swarm, which
displays a collective behaviour not always apparent from the behaviour of the individual
robots.

Swarm robotics research is described by Şahin [78] as:

The study of how large number of relatively simple physically embodied
agents can be designed such that a desired collective behaviour emerges
from the local interactions among agents and between the agents and the
environment.

The advantage of swarm robotics is that the robots are designed to do their task without
a centralised controller. No robot has knowledge of the entire swarm or the state of the
whole environment, they must each perform actions based entirely on their own robot-
level observations. This means that the swarm is scalable, so an arbitrary number of
robots can be added and the swarm should still be able to do its task. Similarly, the
swarm is robust to robot failures. If a robot breaks, it can be removed from the swarm
with no significant loss of swarm functionality [78].

The main challenge of swarm robotics is how to design the robot-level behaviour
such that the desired swarm-level behaviour is displayed, particularly when the envi-
ronment the robots operate in is not fully known. One solution to this problem is to use
evolutionary algorithms to artificially evolve the robots’ controllers and behaviour [89],
this is called Evolutionary Swarm Robotics. The main disadvantage of evolutionary
swarm robotics is that it is very slow. It takes time to execute each controller, so that
the robot has enough time to attempt its task, and it takes many iterations of scoring
old controllers and generating new ones before sufficiently good controllers are created.
This process can take many hours or days of experimentation time.

1.2 Aims and Contributions

Loose coupling is theorised in [84] to benefit the evolution of complex systems. In this
thesis we aim to address the slowness of evolutionary swarm robotics, by hypothesising
that loose coupling can be applied to swarm robots to benefit their evolution. We apply
coupling to a swarm robotic system by predefining and structuring the way information
is communicated between robots. The strength of the coupling can be changed by
altering the structure of that communication. The aim of this work is to test the
hypothesis by applying different strengths of coupling to a robot swarm performing a
foraging task, and observing the fitness of the resulting robot controllers.

The CoSMoS (Complex System Modelling and Simulation) process is a framework
to follow for modelling, so that as the model is built assumptions and abstractions in

2

the model are documented to build trust in the model that its results are reliable [6].
The secondary aim of this work is to provide a case study of the CoSMoS process for
modelling an engineered complex system.

1.2.1 Contributions

• It is found, in chapter 10, that loose coupling leads to fitter robot controllers than
tight coupling, because some of the information communicated between robots is
found not to be useful for completing the task. Loosely coupling the communi-
cation between the robots made it easier to extract only the useful information
from the messages.

• The results also suggest that making more data available to the robots does not
necessarily result in better performance, because there is more information to
interpret. This effect was lessened when loose coupling was used.

• In chapters 6 to 8 we develop a model of the robot swarm following the CoSMoS
process, providing a case study for the application of CoSMoS to modelling an
engineered complex system. In chapter 6 we develop a model of the robots, their
environment, the acoustics of the environment and a hardware extension that the
robots use to send and receive audio signals. The hardware extension does not
exist at the time of the modelling, it is only later in chapter 7 that it is built. In
chapter 8 we are then able to take measurements from the extension and use it
to calibrate the model.

Additional contributions of this work are given in section 11.2.1.

1.3 Thesis Structure

This document is divided into three parts, relating to the research aims.

Part I: Background and Literature Review In this part we explain in detail the
scientific context to the hypothesis, what the hypothesis is and how we test it.

In chapters 2 and 3 we discuss complex systems, swarm intelligence and swarm
robotics in detail. Then in chapter 4 we explain our hypothesis, applying observations
about complex systems to swarm robotics. In chapter 5 we outline an experiment for
testing the hypothesis.

Part II: Co-Development of Simulation and Hardware In this part, we develop
a model of the swarm robots and their environment in order to carry out the experiment
to test the hypothesis.

In chapter 6 we develop a model of the known aspects of the robots and their
environment but note that the robots need additional hardware in order to perform the
experiment. In chapter 7 we build a hardware extension for the robots, and in chapter
8 we perform extensive calibration of model, taking measurements from the hardware
extension and putting the results into the model.

3

1. INTRODUCTION

Part III: Results and Conclusion In the final part we use the model developed in
part II to test the hypothesis from part I.

In chapter 9 we perform the experiment from chapter 5, but find it does not ade-
quately test the hypothesis. Building on these results we run a follow-up experiment
in chapter 10 and find that loose coupled swarms evolved fitter controllers than tightly
coupled swarms. The results also show that if some of the information shared in the
environment is not useful, then the communication structure used by the loosely cou-
pled swarm makes it easier for the robots to extract the useful information. Finally in
conclusion chapter 11, we summarise the findings and contributions of the thesis and
suggest further experiments that follow on from our research.

4

Part I

Background and Literature
Review

5

Chapter 2

Complexity and Emergence

2.1 Introduction

The core focus of this work is in swarm robotics research. As is discussed in chapter 3,
swarm robotics and the swarm intelligent organisms that inspire them, are both types
of complex system. Swarm intelligent organisms are biological complex systems, and
swarm robotic systems are man-made. However, it is important for the understanding
of swarm robotics, and our research into swarm robotics, to understand what constitutes
a complex system and how they are studied.

In section 2.2 we bring together complex systems literature to form a definition of
what the term “complex system” means for our work. In section 2.3 we explain the
motivations for studying complex systems and discuss the effects of complexity on the
evolution of complex systems. Finally in section 2.4 we describe a way of studying
complex systems called “modelling”.

2.2 Definitions

Complexity is often described as being a state between order and randomness [19], and
complex systems sit on the “Edge of Chaos” [53]. This is the boundary between the
two extremes where any movement towards one extreme rapidly results in the system
devolving into randomness, or order on the other extreme [53]. Any system which
dwells on the “Edge of Chaos” will contain both order and randomness, interacting
with each other in unpredictable ways on small or large scales. If there are changes in
its environment then it must be able to adapt to these changes to maintain the balance.
A complex system which achieves this is called a Complex Adaptive System [36]; every
living organism falls into this category.

Despite their prevalence in the world around us, what constitutes a complex systems
still remains hard to define. The best we can do it try to characterise complex systems
by features that they have in common, specifically this is the feature of “complexity”.

First we describe different types of complexity, and then we examine the features
which complex systems have in common. Finally we define what a complex system is
for the purposes of this work.

7

2. COMPLEXITY AND EMERGENCE

2.2.1 Types of Complexity

Complexity theory has been an attempt to generalise all complex systems by mathe-
matically describing their common features and behaviours. Manson [56] argues that
this has been unsuccessful because systems classed as complex often behave in very
different ways. To this end, Manson suggests that there are three categories of complex
systems, each of which have slightly different properties and characteristics.

Algorithmic Complexity There are 2 measures of algorithmic complexity as Man-
son describes it. The first is a measure of the “effort required to solve a problem”.
For instance the travelling salesman problem is complex because for anything other
than the most trivial cases it gets exponentially more difficult to solve. Measuring
the algorithmic complexity of a solution allows us to make comparisons between alter-
native solutions. The second measure, known as Kolmogorov Complexity [44], is to
do with finding the complexity of a sequence of behaviours (represented as a string)
by finding the length in bits of the shortest computer program able to reproduce the
string. For example, the binary sequence 0000 can be reproduced with the program
for(i=0;i<4;i++) print ’0’;, so has a low Kolmogorov complexity.

Deterministic Complexity Systems that display deterministic complexity are de-
terministic in that there are no stochastic elements to their functioning; i.e. if the
system is run twice with the same initial conditions, the state of both systems would
be the same after n time steps (where n is any positive integer). The complexity in
these types of systems comes from their reaction to the initial conditions. Small changes
in the initial conditions could cause huge differences in future states, but they could
easily cause no change at all. The system has a non-linear, but repeatable reaction
to its starting conditions. An example of a deterministic complex system is cellular
automata. A cellular automaton is a grid or line of cells which can be in one of many
states, state is usually represented by the cell’s colour. Their current state and the state
of a cell’s neighbours dictate what the cell’s next state will be. A set of rules is followed
to determine this state change [98].

Aggregate Complexity Aggregate complexity is a complex system formed by many
elements combining together to create a new entity or to achieve some task; the com-
plexity of this kind of system arises from the elements themselves and how they interact
with each other. Without interactions between the elements in the aggregate the system
is not complex: A stamp collection is an aggregate of some stamps, but because they
do not interact with each other the stamp collection is not a complex system. This type
of complexity is the one most relevant to the study of swarm robotics since the field
of swarm robotics aims to find ways of getting many robots to collaborate with one
another to achieve some common goal. If we can understand the workings of aggregate
complex systems and how to manipulate them it would be highly beneficial to swarm
robotics research.

The remainder of section 2.2 explores common features of aggregate complex sys-
tems. Specific cases and applications of this kind of complex system are described in
chapter 3.

8

2.2.2 Unpredictability

As mentioned at the start of this chapter, complex systems exist on the “edge of chaos”.
They can also easily devolve into random or ordered states. Both random and ordered
systems are predictable, statistically or otherwise, it is on the “edge of chaos” that a
system will behave unpredictably.

Beni [12] discusses the nature of what makes a system unpredictable and identifies
five key features which would make a system unpredictable.

1. Statistical unpredictability. This means that the way the system changes
cannot be predicted from one state to the next, but it can be generalised statisti-
cally. An example of a system displaying this type of unpredictability would be a
stochastic system, such as atoms in a gas or the total of two dice rolls. This form
of unpredictability is not as likely to be manifest in complex system as the other
forms, since statistically unpredictable systems are potentially entirely random.

2. Inaccessibility. The system functions as some sort of “black box” in reaction to
its environment. We do not know the contents of the black box so the system is
unpredictable. If we were to find out how it functioned the system may become
predictable or it may continue to display other forms of unpredictability. Biolog-
ical systems such as plants are unpredictable because we do not fully know their
inner functions so cannot accurately predict how the plant will grow. Research
and experimentation may eventually reveal the plant’s inner workings (its genetic
code or cellular structure for instance), at which point it may be possible to pre-
dict how the plant will grow. Or if our predictions prove inaccurate, it would
reveal that some other form of unpredictability is present in the system.

3. Undecidability. This applies to systems where the “infinite time behaviour of
a system [...] is in general unknowable in any finite time” [12]. That is, we can
not predict how the system will behave after infinity time steps.

4. Intractability. This type of unpredictability is linked to undecidability. If a
system is intractable this means that it takes longer to make a prediction about
the system’s future state than it takes for that system to reach that future state.
This is the case for any time step in the system’s lifetime, not just after infinity
steps. In this regard undecidability can be seen as a special case of intractability,
in that undecidable, intractable systems will never be predictable whereas non-
undecidable, intractable systems may gradually become predictable.

5. Non-representability. If a system in unrepresentable it means that it cannot
be described by mathematical equations.

In an swarm robotics system the swarm will behave unpredictably. Their inner func-
tions are mostly known because it has been programmed, but there is still some amount
of inaccessibility because of inconsistencies with a robot’s response to commands. Bat-
tery charge, for instance, affects the motor speed on a robot, and the amount of devices
it can use at once. The robot’s parts will also degrade over time causing changes in its
responses to commands. These factors insert unpredictability into the system due to
their inaccessibility: they are factors we cannot reliably measure or fully characterise,
any attempts we make to do so will become less reliable as the robot degrades. The
swarm is also intractable, in part due to the inaccessibility of the robots, but also due
to the sheer amount of variables present in a real-life situation.

9

2. COMPLEXITY AND EMERGENCE

2.2.3 Emergence and Hierarchy

Simon [83] observes that complex systems have similar “hierarchic structures”. He
defined a hierarchic structure as the following:

A system that is composed of interrelated subsystems, each of the latter
being, in turn, hierarchic in structure until we reach some lowest level of
elementary subsystem.

Take the example of a molecule in a chemical. This molecule is composed of several
atoms, each of which interact to give the chemical its particular properties. These
properties may be different to the properties of each element in isolation. Water for
instance is very different to hydrogen and oxygen from which it is made. Within each
of the atoms are yet more “subsystems” of protons, neutrons and electrons, the only
difference between the atoms being the number of these “subsystems” it contains. An-
other example of a system with this structure is the human body. In the body there
are organs which interact to keep the body alive, each organ is made cells and cells are
made of molecules. In a complex hierarchic structure it can be seen that at each level
each subsystem can be said to be a complex hierarchy in its own right. Therefore each
hierarchic complex system can be seen to really be a system of systems and from the top
down the number of subsystems in the overall complex system grows exponentially. In
a single ant colony there may be millions of ants [38] and in each ant there are billions
of cells, and so the whole colony contains many trillions of cells.

The idea of emergence and complex systems is a reaction to the idea of reductionism
[3]. Reductionism is the theory that if you are able to break something down into its
most fundamental particles you could gain insight into how it functions [24]. With our
ant colony example, analysing trillions of cells is clearly going to be impractical, the
sheer quantity of data required and the variables acting upon each cell is too much
for us to meaningfully analyse, and even a cell is of far higher complexity than the
most fundamental particle. When applied to complex systems the bottom-up approach
of reductionism is not appropriate as a means of analysis. From the bottom up, at
each successive complexity level, we gain some knowledge of behaviour which was not
apparent from observing merely the level below. This is called emergence because
this knowledge or behaviour is said to emerge from the interactions within the lower
complexity level but is not actually due to any individual subsystem. Anderson [3]
summarises this phenomenon thusly:

The behaviour of large and complex aggregates of elementary particles, it
turns out, is not to be understood in terms of a simple extrapolation of the
properties of a few particles. Instead at each level of complexity entirely
new properties appear.

From examining a single cell we do not understand how an ant works, by examining an
ant we do not understand how an ant swarm works. On each hierarchic complexity level
there are interactions between subsystems, cells pass chemicals between each other, ants
leave pheromone trials for each other to follow. It is from the aggregate behaviour of
subsystems that we get the higher level complex system, and the subsystems themselves
are the result of aggregate behaviour of their own subsystems.

Looking at a complex subsystem in isolation from its environment (which includes
the other subsystems it interacts with) tells us nothing about the higher level system:
there needs to be interactions to put the subsystem in context and provide the data

10

necessary for this greater understanding. Furthermore, if subsystems can collaborate
to produce behaviour or properties that are not directly determinable from the origi-
nal subsystems, then how can we engineer systems which reproduce this phenomenon?
What interactions are necessary to generate an emergent behaviour? Aristotle’s sum-
mary of emergence is “the whole is something beside the parts” [9] often quoted as “The
whole is more than the sum of its parts”. So how can we put less into a system and
get out more? Solving this problem is a driving force behind swarm robotics research
because it should be much easier to make a few simple robots with a useful collabora-
tive behaviour than it is to make a single highly intelligent robot with an equivalent
behaviour. Section 3.4 discusses the challenges associated with this goal.

The method that we use in this project to analyse complex systems and their emer-
gent properties and behaviours is called modelling and simulation and is discussed in
section 2.4.

2.2.4 A Definition

In this work we are primarily interested in aggregate complexity, where large numbers
of smaller systems collaborate to form a larger system. From the context of the existing
literature we can define these complex systems for the purpose of our project as:

A system which has a hierarchic structure of subsystems, from which we
can observe emergent properties and behaviours which were not apparent
from examining its constituent parts. It displays both order and randomness
in its behaviour, and consequently will behave unpredictably. Completely
accurate predictions are not possible because the system’s inner functions
are not completely known, and because the act of making predictions about
it is intractable.

This definition is general enough to apply to the types of complex systems that this
work studies, including swarm intelligent systems and swarm robotics.

2.3 Motivations Behind Complexity Research

Complex systems are a rich and worthwhile area of research because they are present
everywhere and in every aspect of our lives. The global economy, for instance, is a very
influential complex system and includes everybody in the world [36]. The global climate
is also a complex system; a better understanding of how our actions affect the climate
would help us to improve the planet and consequently our quality of life. Beneficial
complex system research is not just limited to huge global systems. Physics, sociology,
biology and other sciences are just some of the research areas which could benefit from
this field of research. Understanding complex systems means understanding almost
every aspect of our world; in this respect they are worth studying for knowledge alone.

An aspect of this increased understanding is using our knowledge to make predictions
about the complex system, perhaps to assess the consequences of a course of action or to
test hypotheses about how the system works. In section 2.2.2 we discussed how complex
systems are inherently unpredictable, however the definition of unpredictability used
allows for the system to be approximated. The question remains as to how accurate
the approximation needs to be. It is an intractable problem to try to predict a robot
swarm exactly, but if we only need to approximate its behaviour to prove a hypothesis

11

2. COMPLEXITY AND EMERGENCE

then such level of detail is unnecessary. Making predictions about complex systems is
a useful endeavour but there will always be some degree of error and unreliability in
this prediction. For example, predicting the weather is useful so that we can foresee
disasters like hurricanes and floods. Predicting the stock market is useful so that we
can make informed decisions about which companies to invest in. In neither of these
examples will our predictions ever be wholly accurate, but they are usually accurate
enough to be of use.

2.3.1 Complexity and Evolution

In [57], [83] and [84] the observation is made that if a system is complex, it will evolve
faster than if it is not. It is certainly true that complex systems are everywhere in
nature, take any cellular organism as an example, so there must be some reason that
these organisms have prospered. This relationship between complexity and evolution
is examined in depth in [84], and Simon gives two major reasons as to why complexity
speeds up evolution. The first is an idea shared by the other two publications that
“complex systems will evolve from simple systems much more rapidly if there are stable
intermediate forms than if there are not” [83]. Note that stability in this context means
that a system is able to maintain some internal state which allows the system to continue
functioning, despite external perturbation [70] and that it can do so independently from
within its natural environment.

This point is illustrated in [83] and [84] with an analogy of two watchmakers. These
watchmakers are both making watches out of 10,000 basic parts and they get interrupted
by phone calls, at which point they have to stop what they’re working on and it falls
apart. On average they can put together 150 parts before a phone call interrupts them.
The first watchmaker tries to put all 10,000 pieces together at once and never gets
anything done. The second watchmaker is able to build stable components of 100 pieces
which do not fall apart when left alone; it is this ability that allows them to eventually
finish a watch. Applying this analogy to a real system we could equate watch pieces to
atoms; when these are combined together proteins can be formed. These are, for the
most part, stable substances which can be used to build a cell. The sheer number of
stable, single cell organisms (bacteria for instance) is evidence that a cell on its own
can be a stable system. Cells can then be used to form multicellular organisms.

The overall idea is that stable systems can form the building blocks of new, aggre-
gate, complex systems. This idea is connected to that of autopoiesis, defined as self-
repair and self-regeneration, with reproduction being a by-product of this process [57].
If stable complex systems can self-repair and reproduce then they are likely to be more
prevalent and so are better able to come together to form something new, because there
are more of those building blocks available.

The second theory from [84] as to how complexity speeds up evolution is to do
with functional equivalence and something Simon calls “Loose Horizontal Coupling”.
Within a complex system there is coupling between hierarchic layers in that a higher
level system will contain things in the lower level; this is a “vertical coupling”. Similarly
communication and interactions between systems on the same hierarchic level is called
“horizontal coupling”. In this work, we refer to “loose horizontal coupling” simply as
“loose coupling”.

If two subsystems on the same level interact with each other in a fixed manner then,
as long as they maintain this interaction, each subsystem is able to evolve independently
of the other. These changes may affect the higher level system and this is what would

12

direct the evolution. For example, in the human body there is a digestive system and
a circulatory system; the digestive system breaks down food and puts it somewhere
where it can be absorbed into the bloodstream. If the circulatory system were to route
blood more efficiently then as long as it still absorbs food from the digestive system
these changes would not affect the functionality of the digestive system, however the
whole body would be an improvement upon its predecessor.

The ideas presented in this section are not limited to biology; take the development
of computers. A computer is made of stable subsystems which are used as building
blocks to create an entire computer: Motherboard, RAM, hard drives, processors and
so on. Within each of these subsystems there are yet more stable subsystems: registers,
memory banks, multiplexers; and within each of these are more stable subsystems such
as transistors and logic gates. Each of these systems, on all levels, have a fixed way
of interacting with each other. This means that is has been possible to develop each
part independently from the rest, improving factors like efficiency, speed and cost in
one area and improving the computer as a whole. Following the arguments outlined in
this section, it is therefore not unreasonable to attribute the improvements in computer
hardware at least in part to the fact that modern computers are a complex hierarchic
system, constructed of stable subsystems with loose coupling between subsystems on
each level of complexity. The use of this structure is probably unintentional but comes
about from the simplicity and convenience with which development can be done in this
way.

2.4 Modelling

Modelling is an important tool for studying complex systems, “A model is an abstraction
that is made to aid understanding or description of something” [72]. Replicating an
entire complex system is an intractable problem, so it is necessary to abstract only the
information that is relevant and create from this a model of the system. This leaves
the question of what the relevant information is. If we build a model of an ant colony
to understand ant foraging it would be unnecessary to model every atom in every cell
of every ant; these things would have no discernible effect on the overall behaviour of
the colony. If we were looking at how an ant digests food then modelling the cells in
the ant might be useful. The level of detail needed in a model is heavily dependent on
the system being modelled and the goals of the model.

As well as modelling the complex system itself we must also incorporate into the
model an abstraction of the environment in which it is found, in order to give the model
context. A model of white blood cells in the immune system will need to incorporate
some abstraction of a blood vessel, a model of a swarm of robots will need to include
the environment the swarm will be deployed into. At the very least “modelling the
environment implies identifying its basic features, the resources that can be found in
the environment, and the way via which agents can interact with it” [66]. Again, when
modelling the environment, the level of detail necessary is dependent on the complex
system and the modelling goals. A complex system without context is useless, and a
model of a complex system without its environment is just as useless:

The behaviour of a complex system depends critically on the way that the
(collective) components interact with their environment over time; failure
of models to adequately model the environmental context naturally leads to
non-realistic models of the complex system. [4]

13

2. COMPLEXITY AND EMERGENCE

We now examine two examples of modelling in the scientific literature and look at
the level of abstraction used in each case.

Deneubourg et. al. [22] create a model of ants foraging for food. In their model
the environment is a grid of cells; each cell has a given probability of containing food.
The “ants” all start in the same cell, the nest, and move around the grid collecting
food as they go. When an ant moves into a cell looking for food it deposits one unit of
“pheromone”, as it returns to the nest with food it will deposit ten units of pheromone
in each cell it passes through. The ants are more likely to move into a cell if there is
more pheromone in it. With this very abstract representation of the environment, the
ants, and the ants’ interaction with the environment (the pheromone) Deneubourg et.
al. are able to realistically demonstrate that changing the environment (the probability
of a cell containing food) had a significant effect on the foraging pattern of the ant
colony.

Lerman et. al. [54] model a swarm of robots where each member of the swarm
autonomously switches between collecting red pucks or green pucks depending on how
many pucks it remembers seeing in the environment and how many robots it has seen
doing each task. The aim of this research was to compare a differential equation model
with the real life swarm of robots developed in [42]. The model was used to predict
what proportion of the robots would be assigned to each task as the experiment pro-
gressed, this same metric was used by Jones and Matarić to assess their robots [42].
Lerman et. al. modelled the swarm’s behaviour by approximating the average swarm
robot’s memory, and generalising this over every robot in the swarm. This model used
as a parameter the number of robots and the proportion of red to green pucks in the
environment. By modelling the average memory, the aggregate swarm and the propor-
tion of pucks, they used probabilistic differential equations to approximate the robots’
actions over time they were able to accurately replicate the results from [42].

Both the above examples of modelling show that even very abstract models can be
used to make accurate predictions or representations of the original complex system. In
each case the model contains only the relevant information, thus keeping it as simple
as possible and easier to understand. Deneubourg et. al. used their model to inform
later experiments [30], whilst Lerman et. al. compared their results to the real complex
simulation to argue the validity of their model. The demands for model accuracy were
much greater for Lerman et. al. [54] and there is a corresponding increase in the level
of detail. Consequently, it can be seen that there is a trade-off between abstraction
and model accuracy. Both of these examples go to an appropriate level of detail for the
measurements that are required of the model and so the results of the modelling are
accurate enough for the authors’ needs without being overly complicated or complex.

2.4.1 The Advantages of Modelling

There are several advantages to modelling a complex system. We have already discussed
how models are an abstraction of the real system (the domain). This abstraction has
the advantage of simplifying the domain down to something we can understand, making
it easier to study without irrelevant details obscuring the results. A model can also be
transformed into a simulation, allowing us to view the model as it changes over time
and thus capturing the dynamic aspects of the domain [4]. It is for this reason that
modelling and simulation are a useful and necessary tool in complex systems research.

For this project we use modelling and simulation of robots and robot swarms to test
hypotheses and to inform us as to which control rules or methods work best. Running a

14

simulation of a robot swarm is useful because it is not as costly as using a swarm of real
robots, and a simulation can be extended to include vast numbers of robots, whereas
with an embodied simulation we are limited to the number of robots on hand. The time
taken to set up a real swarm is also considerably longer than the time it takes to run a
simulation, but the simulation itself may take weeks to be perfected whilst robots are
able to run any code as soon as it is written. Robot simulators do exist though, so any
simulation for this project would not need to be written from scratch. For this project
we use a simulation platform called Player/Stage. Vaughan [92] gives a comprehensive
comparison between Player/Stage and its rival robot simulators. Player/Stage has the
advantage that you can run the same code on a simulated robot as you can run on a
real robot, with no modifications. The only extra work involved in simulating a robot
compared to using a real robot is that the environment must be modelled, although
Player/Stage has an API for doing this.

Regardless of which simulation package is used in this project, it must always be
remembered that a simulation is never going to be a completely accurate representation
of the real-life experiment.

2.4.2 Forms of Modelling

The two most common forms of model are Equation Based Model (EBM) and Agent
Based Model (ABM). Correspondingly, there are also two scales of view that a model
can take; macroscopic view or a microscopic view. The macroscopic view is when the
model views the whole system at once, only the overall behaviours and global trends are
modelled. The microscopic view is when the subsystems of the overall complex system
are modelled, including rules that govern their interactions and behaviours [99].

The nature of EBMs is fairly self explanatory: they are models which use equations
to characterise how variables and parameters within the domain change over time.
“EBMs represent the system as a set of equations that relate observables to one another”
[68]. Typically these are differential equations and take the macroscopic view of the
domain. In our previous example of the model built by Lerman et. al. [54], they built a
model of a robot swarm using probabilistic differential equations. These were based on
approximations and generalisations of the swarm’s behaviour and could predict what
the proportion of the swarm would be collecting red pucks at the next time step.

To describe ABMs we must first explain what an agent is. [41] identifies two major
characteristics of an agent, autonomy and situatedness:

• Autonomy An agent is an entity which is distinct from the environment in that
there is a well defined boundary between the agent and its environment.

• Situatedness They function in a particular environment where they have the
ability to monitor and affect aspects of this environment.

Zambonelli [99] also identifies the characteristic of sociality, which only applies
to systems of multiple agents (Multi-Agent Systems). Agents can directly interact
with each other and cooperate to achieve their individual goals, possibly through some
medium of communication. An agent may also be proactive or reactive. A proactive
agent has its own goals and drives which maybe completely separate from the system
and is proactive about achieving these goals. A reactive agent is dormant until it is
stimulated in some way, at which point it will have a reaction which may involve activat-
ing or being activated by other agents in the system. Zambonelli [99] gives a corporate

15

2. COMPLEXITY AND EMERGENCE

marketplace as an example of a system of proactive agents; each corporation may be
seen as an agent because it is a distinct, autonomous entity within the marketplace
which interacts with other corporations (agents) to achieve the goal of earning itself
more money. An example of a system of reactive agents may be a flock of birds. The
birds in the flock are reacting to stimuli from other birds and try to maintain distance
between each other whilst still remaining close enough to be part of the flock.

With an understanding of what an agent is, we can use this to illustrate the difference
between macroscopic and microscopic models. In a microscopic model each subsystem
is modelled as an agent; with a macroscopic model the entire system is one single agent
incorporating both the complex system and the environment it is situated in [97]. An
ABM takes the microscopic view. In these models each agent is programmed with its
own behavioural rules. Multiple agents are placed in a simulated environment, and
they begin to interact with each other and the environment. The overall behaviour
of the swarm is typically measured and evaluated as an output of this kind of model.
In the example model by Deneubourg et. al. [22] each ant is an agent. They created
one ant agent which decides which location cell to move into by assessing the level of
pheromone in the cell, then placed multiple copies of this agent into their environment.
The ants interact with their environment by laying pheromone in a location cell and
by collecting food and returning it to their nest. The ant agents don’t directly interact
with each other: their foraging trails are an emergent property of the pheromone laying
and following behaviours. In this example the overall behaviour of the ant colony was
assessed by looking at pictures of the agent’s “foraging patterns”.

2.4.3 Validation and Verification

The question of validation and verification is an important one. How should we know
when the system is modelled accurately and what do we need to measure to prove this?
These questions apply to both equation and agent based models and unfortunately, the
answers are extremely task dependent. A simple model to generate ant trails requires
much less testing and assurance than, for example, a simulation of a robot swarm for
deployment in space. A higher degree of confidence and trust is needed from the latter
model and as a consequence the model needs to be more detailed. A greater level of
complexity may be required to accommodate this need, and the spatial and temporal
scopes of the model may also be increased. However, there is a distinctly non-linear
relationship in the value of the model when compared to the cost of building it. When
the value of the model is low, small investments in resources yield a large gain in
value, but we get diminishing returns from our investments as the value of the model
increases [80]. It is therefore important to know before building the model how much
confidence you wish to place in the model and at what point the model becomes “good
enough”. Without this precaution resources may well be wasted in giving unnecessary
detail to a model which will never be needed. We would further run the risk of making
our model as intractable as the original domain, since it is the process of abstraction
and simplification which allows models to be studied in preference of the original [4].
In addition to the model’s level of detail we must also decide before building the model
what variables we want to be able to feed into the model and what the outputs that
we are going to measure will be. Choosing how to represent this data in the model,
and what this data will even be, is the most difficult part of the modelling process [62].
The metrics we choose must be relevant and should capture the information we want
from the model. For example, in a model of bird flocking, we can measure the number

16

of bird-bird collisions or the average bird speed but these things do not fully capture
how well the birds are flocking. There are so many variables that can be measured
that a great deal of thought needs to be put into which aspects of the model should
be measured in order to best characterise the output, and the appropriateness of the
chosen measures depends on what the model is to be used for.

To try to address these problems with model building, several model development
processes have been proposed. These are aimed at helping the modeller to create prag-
matic, measurable and reliable models by ensuring that they consider every aspect of
the model before building it so that the final model is fully understood and scientifically
valid1. An influential modelling and verification process is the one developed by Sar-
gent [80], shown in figure 2.1. This process dictates modelling artefacts that should be
produced and the relationships between them. Although it is not specifically designed
as a process for modelling complex systems, Sargent’s process can certainly be applied
to their modelling. There are three major artefacts associated with this process:

1. Problem Entity. This is the system to be modelled. It includes every aspect
of the original system including any agents that may be present and the relevant
aspects of the environment in which the system exists.

2. Conceptual Model. This is a representation of what the modeller thinks is
happening within the Problem Entity. This is built with the goals of the simulation
in mind and should contain information and other aspects which are relevant to
the data being measured and put in.

3. Computerised Model. This is the Conceptual Model which has been imple-
mented as a simulation on a computer.

The most important aspect of Sargent’s process is the validation and verification
steps between the creation of each artefact. The conceptual model is created by a
process of “analysis and modelling”, but it is validated against the problem entity. The
conceptual model validity checks for two things: that the conceptual model is a correct
representation of the problem entity, and that the model is “reasonable for the intended
purpose of the model” [80]. Similarly, the computerised model is validated, during its
construction, against the conceptual model to ensure that it is a correct implementation
and that no errors or differences between the two artefacts have been produced. Finally
through experimentation the computerised model is compared to the problem entity. A
particular scenario is presented to both the simulation and the problem entity and the
reactions of both systems are measured and compared. If the conceptual model and
the computerised model have been validated properly then any differences between the
simulation and the real system are due to incorrectly abstracting the problem entity
into the conceptual model or from some unseen errors introduced in the implementation
of the model.

It can be seen that the Sargent process draws heavily from the software engineering
lifecycle of specification, design, implementation and then testing. The specification
stage is taken from the problem entity, essentially “Create a model that replicates this”.
The design phase is the building of the conceptual model, as this details the features that
the simulation has and what it does. Next the design is implemented into something
that can be executed on a computer and this program is tested against the specification

1“Scientific validity, like engineering validity, means that it must be possible to demonstrate, with
evidence, how models express the scientific realities” [4].

17

2. COMPLEXITY AND EMERGENCE

Figure 2.1: The Sargent process for building models [80].

18

to make sure that it fulfils the requirements i.e. that the computerised model replicates
the problem entity. As with software engineering, errors in the implementation means
that it is necessary to re-do the implementation or design until errors are removed and
the specification is fully met.

DeWolf and Holvoet [21], describe an alternative modelling process specifically for
multi-agent systems, which was similarly inspired by the software engineering lifecycle.
However, instead of abstracting the lifecycle into a series of inter-related artefacts to
produce, they instead leave the lifecycle unchanged, but specify issues that should be
addressed at each stage. For example: making sure that a multi-agent system is the
best solution for the task and developing suitable metrics of success. They stress that
when creating multi-agent systems, the usual goal is to develop a global behaviour,
and consequently the modeller must be able to give guarantees about the macroscopic
behaviour.

In both modelling processes, the need for verification between tasks is emphasised.
Each stage must be thoroughly compared with the last to make sure that all the re-
quirements are fulfilled, which also uncovers any errors in the previous stage. If it is
found, for example, that a particular part of the design is unimplementable then the
design must be rectified; when the design is altered it then needs to be verified that
it still fulfils the requirements of the specification. In both cases the entire process is
iterative: the process may need to be repeated and the model revised many times before
it is deemed sufficiently accurate. Paunovski et. al. [69] makes the point that with these
multiple iterations through the modelling process you gradually build up confidence in
the model, iteratively making it more and more correct a representation of the original
system because of the repeated verification and validation steps applied to the model.
They argue that with complex systems this is the only way to create a true and valued
model, because “it is infeasible to formally verify a complex multi-agent system with
stochastic interactions” [69].

2.5 Conclusion

In this chapter we survey the scientific literature and define complex systems for the
purpose of our work. This definition covers swarm intelligent and swarm robotic systems
discussed in chapter 3. In section 2.3.1 we describe work by Simon [84] which observes
that if a system is complex, then it consists of stable subsystems which are loosely
coupled. It is these two features which allow complex systems to evolve more easily
than non-complex ones, because the subsystems are stable and independent but can
still interact to produce emergent behaviours. In chapter 4 these observations are
extended to swarm robotic systems to create the hypothesis of this work.

Complex systems are studied by “modelling”: a process of abstracting away any
unnecessary parts or detail so that the systems is easier to understand or test. Validation
and verification is important part of the modelling process if the results from the model
are to be extrapolated to also be true for the real system. In chapter 6 we build a
model of a swarm robotic system following the CoSMoS process [6], and in chapter 8
the model is calibrated against robot hardware developed for this work, so that the
model is more accurate.

19

2. COMPLEXITY AND EMERGENCE

20

Chapter 3

Swarm Intelligence

3.1 Introduction

In the previous chapter, we established the idea of complex systems, what they are,
and why and how they are studied. In this chapter we aim to establish that swarm
intelligent systems and swarm robotic systems both fall into the general category of
complex systems, and to give background on why these particular complex systems are
worth studying. From the scientific literature presented in this chapter and chapter 2
we aim to provide the context necessary to understand the hypothesis of this research.

In section 3.2 we define swarm intelligence for our research and describe the motiva-
tions for studying swarm intelligence. Then in section 3.3 we describe swarm robotics,
the challenges associated with swarm robotics research, and what benefits can be gained
from studying swarm robotics. Finally in section 3.4 we discuss evolutionary swarm
robotics as an answer to some of the challenges of swarm robotics.

3.2 What is Swarm Intelligence?

The inspiration for swarm intelligence research comes from biological systems which
display collective behaviour [14]. Examples of such swarm intelligent behaviour include
ants foraging for food, termites building nests or birds flocking together. In each case
a large number of individuals are cooperating to achieve some higher goal; whether
it is food, shelter, safety or something else. Each individual benefits from this group
behaviour and each individual contributes in some way. If we take our definition of
a complex system, from page 11, we can see that swarm intelligent biological systems
fit into this category. There is a hierarchic structure to these systems, with many
individuals interacting to form a larger system. There is emergent behaviour in that we
cannot fully know how the swarm will behave from examining its constituent parts, there
is order in the behaviour such as ants forming lines, thermal regulation in termite nests
or birds keeping together, but there is randomness in that they may appear undirected.

The phrase “swarm intelligence” was first introduced by Beni [11] to describe Cel-
lular Robotic Systems (CRS) [13] [14] [79]. These systems, are heavily influenced by
cellular automata (see section 2.2) but are constructed using embodied robots instead
of cells. A CRS is a conceptual robot swarm that has the ability to “encode information
as patterns of its own structural units” [11], and this leads to self-organising behaviour

21

3. SWARM INTELLIGENCE

because the robots are able to arrange themselves into meaningful patterns without
any centralised means of coordination, only local interactions. The key features of a
CRS are “decentralised control, lack of synchronicity, simple and (quasi) identical mem-
bers” [13]. As mentioned earlier these are also features of natural systems displaying
swarm behaviours, and consequently the concept of cellular robotic systems was later
renamed to “swarm intelligence” to reflect this similarity [13].

It should be noted that the definition of swarm intelligence derived from CRSs ap-
plies only to robotic systems. Bonabeau et. al. later extended this to include “any
attempt to design algorithms or distributed problem-solving devices inspired by the col-
lective behaviour of social insect colonies or other animal societies” [14]. This definition
generalises swarm intelligence to cover any artificial system using decentralised coordi-
nation of many simple agents. However, it noticeably rejects the natural systems from
which the inspiration was originally drawn, despite the fact that the biological systems
fulfil the criteria of decentralisation, asynchrony and near-homogeneity. Furthermore,
it would be hard to imagine any definition for intelligence that would apply to artificial
swarm systems but not natural ones.

To address this shortcoming Dorigo and Birattari present an alternative definition
for swarm intelligence:

Swarm intelligence is the discipline that deals with natural and artificial
systems composed of many individuals that coordinate using decentralised
control and self-organisation. In particular, the discipline focuses on the
collective behaviours that result from the local interactions of the individuals
with each other and with their environment. [25]

It should be noted that this definition now includes heterogeneous systems, as homo-
geneity (or near-homogeneity) is a common feature of a swarm but not essential to
successful group coordination [87]. Another concept introduced in this definition is
that of self-organisation, that is “a process in which patterns at the global level of a
system emerge solely from numerous interactions among the lower level components of
the system” [18]. Which, put another way, is an emergent property of the system which
produces some ordered behaviour. Self-organisation has been shown to be caused by
a balance of positive and negative feedback upon the local interactions of the swarm
agents [14]. An example of this is a predator-prey cycle: if there are large populations
of prey then they will breed to produce more prey, thus there is positive feedback on
the prey population because it is self-reinforcing behaviour. However, higher numbers
of prey means that there is more food available for the predators, causing an increase in
the predator population. This counteracts the positive feedback upon the prey popula-
tion and acts as negative feedback. Consequently the balance of positive and negative
feedback causes cyclical fluctuations in the predator and prey populations.

Additionally, Millonas [60] identifies swarm intelligence systems as having the fol-
lowing characteristics:

• Proximity This means that a swarm should be able to perform “elementary space
and time computations” on local information. This is most often done to measure
energy expenditure and the results of future actions may be assessed in these
terms. This is similar to Beni’s point that a CRS is able “process matter” [11],
the swarm observes an object and acts in consequence to these observations.

• Quality A swarm should be able to assess the quality of items and locations, for
example with respect to safeness or food quantity.

22

• Diverse Response Resources are not just invested in a few potential responses,
they are allocated to prepare for many eventualities. Hence, the swarm has a
diverse response to inputs.

• Stability A swarm should be able to maintain its behaviours despite minor
changes in its environment.

• Adaptability A swarm can adapt to major changes in the environment and will
try to minimise the energy loss when adapting to these changes. The swarm will
need to be able to tell when to stay stable and when to adapt.

Millonas states this is not a definitive list and may well be the result of swarm behaviours
having evolved [60]. For instance, it is highly plausible that robustness to short-term
environmental variations (such as a particularly cold day), and adaption to long-term
variations (such as winter) is desirable and would help that particular group of animals
to survive in preference of less evolutionarily fit groups.

For this work we use the Dorigo and Birattari definition of swarm intelligence [25],
but extend the definition to include the following properties:

• Multiple Agents Each member of the swarm is an agent and can be modelled
as such. This means that each swarm member has the properties of autonomy,
situatedness and sociality, as outlined in section 2.4.2.

• Asynchrony This property is a consequence of decentralised control, as there is
no global controller and hence no global clock. All agents in the system, conse-
quently, are also asynchronous.

• Proximity Each swarm member can observe and potentially analyse items or
other agents in its locality. This will usually prompt some decision making process
as the member decides what the next course of action should be.

• Stability Robustness to minor perturbations, for example losing a small percent-
age of the swarm members.

• Adaptability The ability to withstand large perturbations and to change the
swarm behaviour and goals accordingly.

These characteristics have been chosen as defining swarm intelligence for this work
because they are displayed by both swarm robotic systems and the natural systems
that are used as biological inspiration for swarm robotics.

3.2.1 Motivations Behind Swarm Intelligence Research

There are several aspects that make swarm intelligence a worthwhile subject of research.
The most important of these is the idea of “coordination without control” that is, mass
coordination and cooperation of multiple agents without a centralised control entity
giving commands to each agent. The problem of centrally coordinating a group of
agents is not scalable: as more agents are added to a system the demands on such a
controller for bandwidth and communication of instructions become increasingly large
and cannot be met. Such a controller may easily cope with small numbers of agents, but
for a hundred or a thousand the problem is intractable. This is why natural swarming
systems are of interest; an ant colony manages to coordinate millions of ants [38] using
decentralised methods. Each ant decides its actions based on what it observes and what

23

3. SWARM INTELLIGENCE

it can remember, effectively using local information to create an emergent, collective
global behaviour.

One positive side-effect of this decentralised control is that the natural swarm is
robust to changes and failures within itself and its operating environment. The death
of a single ant does not affect the ant colony, and the depletion of a particular food
source does not prevent the colony from finding new ones. Natural swarm systems
are highly redundant, and this redundancy is, to some extent, build into the control
mechanisms of the swarm. That is, there are many similar (near-homogeneous) agents
doing very similar and repetitive tasks. These tasks may often be quite simple, for
instance when ants cluster dead bodies they simply move them from areas where there
is a low dead body density to where there is a high density [23]. This can be reduced
to a set of simple, unintelligent IF... THEN... ELSE... rules for the ant to follow. The
swarm agent may therefore be seen as being inherently simple, but capable of complex
emergent behaviours that have come from this simplicity. Simon offers an explanation
of how this is possible:

Complex behaviour need not necessarily be a product of an extremely com-
plex system. Rather, complex behaviour may simply be the reflection of a
complex environment [82].

Simon’s idea offers the possibility that natural, swarm intelligent systems have evolved
to take advantage of the complexity in their environment to help them achieve tasks.
Hence, instead of each ant having to invest time in learning how to do the task, it
instead only needs to have a simple set of instructions and the interactions between the
environment and the ant cause the task to be completed.

As a subject of research, swarm intelligence can give us clues as to how to achieve
robust, decentralised control. We can also learn about how to create unintelligent,
simple agents that can exploit their complex, real-world environment to produce useful
behaviours.

3.3 Swarm Robotics

The subject of swarm robotics follows closely on from swarm intelligence. It has been
defined by Şahin as:

The study of how large number of relatively simple physically embodied
agents can be designed such that a desired collective behaviour emerges
from the local interactions among agents and between the agents and the
environment [78]

“Relatively simple” means that an individual robot is incapable of performing a partic-
ular task, but the same task is achievable through the collaboration of multiple robots.
It can be seen from this definition that swarm robotics and swarm intelligence are very
closely related subjects; they both concern the mass collaboration of simple agents to
achieve some global goal and the investigation of how such emergent behaviour is pos-
sible. In actuality, a swarm robotic system is a form of artificial swarm intelligence,
as such a swarm robotic system displays the characteristics of a swarm intelligent sys-
tem: decentralised control, self-organisation, asynchrony, local interactions, stability
and adaptability.

24

In swarm intelligence research the biological system is modelled and simulated to get
a better understanding of the mechanisms behind the swarming behaviour. Compara-
tively, swarm robotics can be seen as the modelling and simulation of swarm intelligence
theories using embodied agents, by designing the agents in the system on a microscopic
level to try to produce macroscopic emergent behaviours. However, the goal of swarm
robotics is not always to accurately copy the inspiration but to achieve the emergent
properties of the inspiration for our own benefit. For example, it would be worthwhile
for us to be able to make robots that can bridge a gap or collectively push heavy items
from one place to another as the Weaver ant does [38, 49]. In both these examples
the biological system is used as inspiration for the programming and behaviour of the
robots. The methodologies evolved by the ants are heavily abstracted to fit the real-
world application which the swarm robots will be used in. The swarm robots may still
be seen to be obeying the same rules as the ants and as such are modelling the ants.
However, unlike conventional modelling as described in section 2.4.2 what is important
is the swarm’s ability to perform the task. As long as the task is adequately performed,
how closely the robots match the biological system is irrelevant.

An engineer with a problem to solve does not have to be concerned with the
biological plausibility: efficiency, flexibility, robustness and cost are possible
criteria that an engineer could use. [14]

In our work, swarm robotics has two purposes: The first is to learn more about emergent
swarm behaviours through attempts to replicate them, the second purpose is to engineer
a multi-robot system that achieves some beneficial task through swarming behaviour.

3.3.1 Benefits of Swarm Robotics

Swarm Robotics as a Modelling Tool

The advantages of modelling have already been discussed in section 2.4.1. As a sim-
ulation tool, swarm robots have the advantage that they are an embodied simulation
platform. The advantage of using an embodied simulation over a computerised one
is that on a computer it is hard to accurately emulate real-world physics. Simulating
something like a ball being knocked across a testing arena would be effortless with an
embodied system, but in a computerised simulation factors such as the ball’s physical
properties, the friction and gradient of the surface and the strength and direction of
the push need to either be measured or approximated. Furthermore the resulting path
of the computerised ball would not be completely accurate or reliable. We can never
fully know all the factors which affect the ball, much like we can never fully know all
the factors affecting the agents in a natural swarm (this is properly discussed in section
2.4), but at least with an embodied simulation we do not need to concern ourselves
with modelling the physics of the environment. By placing our simulation within the
real rather than approximated world, the physics is modelled for us.

Another advantage of embodied simulation is that the real-world is far richer, in
terms of information content, than a computer simulation. In a physically homogeneous
set of robots there will be different imperfections within each individual robot. For
example actuators may not respond in exactly the same way to a command on one
robot when compared to another robot. Similarly there may be noise in the sensor
readings, a proximity sensor could easily give two different range measurements for
the same distance. In computer simulation these differences can be approximated by
adding noise, on the sensors and on the motors. An infra-red proximity, for example,

25

3. SWARM INTELLIGENCE

has a minimum distance, any objects that are closer than this distance will result in
wildly inaccurate readings. Objects within the minimum and maximum ranges will give
more accurate, but still noisy, readings. It is not enough to model these sensors with a
constant noise level, and we cannot assume that items will not get closer to the sensor
than its minimum range. Using embodied robots we already have noisy sensors and
robots, with a computer simulation there needs to be careful consideration and testing
to create a realistic and reliable model.

In addition to the richness of the robot there is richness in the environment which
we place our robots in. We have already discussed this richness in terms of the world’s
physics, but there is also a wealth of information in the real world which the robot needs
to be able to filter out. If a robot with a camera is tested in a messy room, there is
much more information presented to the camera than if the room was empty and painted
completely white. The robot must work harder to extract only the relevant information
from its camera; this can be both good and bad. The benefit is that the robot is much
more robust to sensor noise and consequently can better function in a wider range of
environments; the downside is that this extra functionality is considerably more difficult
to create.

Brooks summarises the advantages of embodiment over simulation in the phrase:

The world is its own best model. [15].

Swarm Robotics as an Application

Beyond the realm of modelling, swarm robotics is an attempt to create robotic systems
that have the advantages of natural swarm intelligent systems (as outlined in section
3.2.1), and are capable of achieving some collective task in a robust, flexible and scalable
way [78].

Robust Robust swarm behaviour is a result of decentralised control: the robot swarm
has no global controller to be a single point of failure for the entire swarm. Additionally
the robot members of the swarm are simple, both mechanically and functionally, so there
is less potential for failure. The robot agents are also performing similar behaviours
with high redundancy and so the loss of one swarm member should not affect the
functionality of the swarm as a whole. Trianni [89] makes the point that decentralisation
and redundancy must both be present for a robust collaborative behaviour. Trianni uses
the example of a factory production chain: there is decentralised control in that each
robot does the same simple task repeatedly, but if one robot were to fail the entire
production chain would fail because their tasks are all different and rely on one another
to be completed. There is no redundancy. Winfield and Nembrini [95] give three more
desirable features of a robust robotic swarm:

• It should be tolerant to noise and uncertainties in the operational environment.

• It should be tolerant to the failure of one or more robots without compromising
the desired overall swarm behaviours.

• It should be tolerant to individual robots who fail in such a way as to thwart the
overall desired swarm behaviour.

These criteria link back to the properties of stability and adaptability that are displayed
by natural swarm intelligence systems. A truly robust swarm of robots should be

26

able to maintain its functionality despite failings within the swarm or changes in the
environment outside the swarm. However, Winfield and Nembrini [95] have shown
that not all robotic swarms are robust to failures. In their paper they show a swarm
performing an aggregation and taxis task, where all the members of the swarm come
together and move away from a beacon. Aggregation is achieved by each robot using
short distance wireless link to broadcast its presence, and trying to maintain the number
of robots within wireless range above some threshold β. To achieve taxis the robots have
a sensor which detects when a beacon is shining upon them. When a beacon is detected
the robot increases β to ∞ so that there is differential movement in the swarm, leading
to taxis behaviour. Then Winfield and Nembrini partially failed a small number of
robots in the swarm, testing the effects of failing the motors, wireless communication,
beacon sensor, proximity sensors, control system and finally the entire robot. They
found that the robot swarm was robust to failure of the beacon sensor and to the entire
robot failing. Losing the wireless connectivity of a robot caused it to become lost but
the swarm was also able to withstand the change. Losing the proximity sensors caused
collisions but was also withstood. A control system failure was simulated by the motors
becoming stuck either moving forwards or turning on the spot. The former caused the
robot to become lost, an effect the swarm was able to adapt to. The robot becoming
stuck turning on the spot caused the same effect as failing the motors. The robot would
become fixed in one spot but it would continue to wirelessly communicate with other
robots and would consequently “anchor” the whole to the spot where the robot was
stuck, thereby causing the entire swarm to fail in its task.

What this study ultimately shows is that a robot swarm can be robust to some major
failures; the loss of an entire robot agent is easily adapted to, and this is a considerable
advantage of swarm robotics. However, for a truly robust swarm it is important to
design the swarm behaviour so that it can withstand partial failures and to thoroughly
test the swarm’s reliability under such circumstances.

Flexible Şahin [78] describes flexibility as another advantage of swarm robotics. He
defines this as being a swarm’s ability to coordinate its behaviour to perform different
tasks [79]. Just as an ant colony is able to distribute agents between the tasks of foraging,
cooperative transport, fighting off attackers and so on, so too must a swarm robotic
system be able to perform different tasks as is required by its environment. Trianni [89]
also describes flexibility as being a characteristic of a swarm robotic system, however,
unlike Şahin, Trianni defines flexibility as being adaptive to environmental changes
instead of a diversity of tasks performed. Both definitions are similar though, in that
they both require an appropriate response to the environment from the robot swarm.
The amount of different behaviours required from the swarm is perhaps therefore a
reflection of the complicatedness of the environment, a more difficult situation requiring
a larger repertoire of responses from the swarm.

Scalable The final major benefit of swarm robotic systems is that they are scalable.
This means that it is possible to add or remove robots from the swarm and it will
still continue function. Natural swarm systems can coordinate millions of different
agents, so it should also be possible for artificial swarm systems to coordinate millions
of robots. This is a beneficial characteristic because a greater number of robot agents
means that the swarm has more resources available to complete its task and it has a
higher redundancy and so is better able to cope with the loss of agents.

A study by Winfield, Liu and Bjerknes [96], which extends the work of Winfield

27

3. SWARM INTELLIGENCE

and Nembrini [95], shows that scalability is not always a guaranteed benefit of swarm
robotics. Winfield and Nembrini [95] show that a swarm can be fragile to partial
faults. The work by Winfield et. al. not only confirmed this result but also found that
increasing the number of robots in the swarm does not fix the problem but, in fact,
makes it less robust: a larger swarm was observed to take longer to recover from a partial
fault, and an increased number of robots were lost during the recovery. Consequently,
scalability may not be as straightforward as adding more robots to the swarm. Careful
consideration needs to be given to the process of increasing the swarm size if the aim
is to create truly scalable systems.

3.4 Evolutionary Swarm Robotics

The “Design Problem” is the question of how to engineer a behaviour at the agent level
that produces an emergent behaviour at the global level.

The challenge is given by the necessity to decompose the global behaviour
that results in the desired organisation in[to] simple mechanisms and inter-
actions among the system components. [89]

In swarm robotics the design problem presents a major hindrance when trying to
engineer useful systems. One solution, proposed by Trianni [89], is Evolutionary Swarm
Robotics. Evolutionary swarm robotics follows on from Nolfi and Floreano’s work [65]
in the area of evolutionary robotics, which itself is based on Genetic Algorithms. In
this section we discuss genetic algorithms, how they are applied to evolving robots and
the challenges associated with ESR.

3.4.1 Genetic Algorithms

A genetic algorithm (GA) is an algorithm that uses the principles of evolution, “sur-
vival of the fittest” to find an answer to a problem. The problem usually will have
many possible solutions, which are scored with a “fitness function”. The fitness func-
tion is some measurement or function that can assess the quality of possible solutions
(genomes), allowing them to be compared against each other. The GA optimises a set
of genomes to satisfy this fitness function as well as possible. Consequently, if we do not
properly set the fitness function the GA will not give us the most appropriate solution.
For simple problems with well defined metrics (such as finding the maximum point
in a mathematical function) generating an appropriate fitness function is easy, but in
robotics it is much harder to define what a good solution would be and which measures
would adequately describe this definition. Often, assessing a robot’s performance re-
quires some evaluation of a behaviour and this can be a very qualitative thing. When
selecting quantitative metrics for evaluating behaviour we must be careful to ensure
that the measures used will adequately capture quality of the behaviour. For example,
we might want a group of robots to flock together and we use the amount of cohesion
in the group as our measure of fitness. However, if the robot flock was to bifurcate into
two separate flocks this may be acceptable behaviour but our measure of fitness (the
whole group’s cohesion) would be much lower than it should be in this situation.

Assuming an appropriate fitness function has been designed, the GA can begin to
generate fit genomes. A basic GA follows these steps:

1. An initial population of genomes are generated randomly.

28

2. Each genome is passed through the fitness function to measure its fitness.

3. The fittest few genomes are combined (crossover) and mutated to create a new
population of genomes. This is called the next generation.

4. The old genomes are discarded and newest generation becomes the current gen-
eration.

5. The current generation is measured for fitness and the process repeats.

The search space of possible solutions to the fitness function may be very large. The
GA creates new solutions that are similar to the previous best ones, increasing the
range of solutions that have been investigated in a directed manner. The hope is
that a solution that is similar to one that is known to be good, will also be good or
better. So the best place to search for new solutions is around existing good ones. This
process is analogous to natural selection or survival of the fittest in evolution. Only the
organisms that are best able to survive in their environment are able to reproduce and
create a new generation, these organisms pass on their genetic code (the genome) to
their predecessors who are then submitted to the same survival process.

3.4.2 Implementing Evolutionary Swarm Robotics

In evolutionary swarm robotics (ESR) the controller for the robot agent is artificially
evolved. To achieve this there needs to be a fitness function and some way for the
GA to generate robot controllers. To do this, a robot controller needs to be in a form
which can be described numerically by a sequence of numbers or a binary string. The
sequence of numbers is the genome in the genetic algorithm, and each number in the
sequence is a “gene”.

At its most fundamental level, all a robot controller does is map between sensor data
and actuator movements: a controller could be nothing more than direct links between
sensors and motors. The designer could help the evolution process by abstracting the
sensor data into a library of environmental cues such as “robot seen” or “item reached
location”, this way the controller does not need to evolve some means of evaluating its
sensors. Similarly an abstraction of the motor movements into a library of different
behaviours can be performed, meaning that the evolved robot controller is reduced to
a simple mapping between sensory cues and a behaviour reaction. The choice of how
to abstract the robot controller is a balance between the level of input the designer can
put in and the amount of work required by the artificial evolution. The less the designer
does the more work is needed during the artificial evolution, however decisions made
by the designer may not be the most appropriate for the task.

The main disadvantage of ESR is the time frame of the evolutionary processes.
Measuring the fitness of a single robot controller requires that the robot is controlled
for some period of time, and that this should be long enough for the robot to build up
a clear picture of how well it is functioning in the world. In a typical genetic algorithm
there may be tens of solutions in the search population and the algorithm is run for
hundreds of generations [61], consequently thousands of fitness function evaluations will
need to be made. If each fitness function takes several minutes to evaluate, a whole
GA will take hours or days to compute; this is likely to be longer than the battery life
of the robot. Hence, the speed of the fitness function evaluation and of swarm robot
evolution in general is another major hurdle for ESR to overcome.

29

3. SWARM INTELLIGENCE

3.5 Conclusion

In this chapter we define what we mean by “swarm intelligence” and argue that swarm
intelligent systems are a subset of complex systems. Swarm intelligent systems, par-
ticularly biological ones, are of interest because they demonstrate that it is possible
to mass coordinate of many thousands of agents without a centralised controller. The
decentralisation gives the advantage of robustness and scalability, because adding or
removing agents does not destroy the swarm behaviour.

Swarm robotics research aims to create engineered systems which display swarm
intelligence, and so have the associated features of robustness and scalability. However,
swarm intelligent systems are complex, so the swarm behaviour is emergent from the
robots’ actions and their reactions to the environment (see section 2.2.3). Consequently,
it is difficult to design robot-level actions which manifest into the desired swarm-level
behaviour.

ESR is one approach to solving this problem, by using a genetic algorithm to evolve
robot controllers. The main disadvantage of ESR is that it is slow to evolve usable
controllers because the robots need time to evaluate each controller. In the next chapter
we propose a hypothesis for helping ESR systems to arrive at viable robot controllers
more quickly by exploiting the “coupling” feature of complex systems described in
section 2.3.1.

30

Chapter 4

Proposed Solution

4.1 Hypothesis

In section 2.3.1 we discuss the link between complex systems and evolution, and present
Simon’s theory that a complex system will evolve much faster than a system that is not
complex [84]. Simon hypothesises that this connection is due to the hierarchic structure
of a complex system having “stable intermediate forms”, and “loose coupling”, which
is when systems on the same complexity level have a fixed way of interacting with
each other and so are free to evolve independently for as long as this interaction is
maintained. We then observe that loose coupling has been beneficial to the development
of computers.

In chapter 3 we examine natural complex systems in which multiple animals coop-
erate in order to survive, and their artificial equivalents, swarm robotic systems. In
swarm robotic systems the aim is to create robust, flexible and scalable systems that
are capable of achieving some goal, however there is the problem of how to design a set
of behaviours at the robot level to create the desired emergent behaviours at the global
level. Finally in section 3.4 we present a solution to this problem: Evolutionary Swarm
Robotics (ESR) [89], but observe that further research still needs to be done in order
to make it faster and scalable.

In this chapter, we bring together these elements from previous chapters to propose
a way of reducing the time required for ESR to find satisfactory robot controllers by
asking:

It is beneficial to evolve a robot swarm in a structured and loosely coupled
way, in order to exploit the speed of evolution in complex systems as a tool
for the development of swarm robotics?

4.1.1 Coupling Strength

This work has so far only mentioned loose coupling, but it is possible to have different
strengths of coupling between systems [33, 94]. Weick [94] states that “coupled events
are responsive, but [...] each event also preserves its own identity and some evidence of
its physical or logical separateness” [94]. Glassman [33] describes coupling strength, or
the degree of coupling as:

The degree of coupling, or interaction, between two systems depends on the

31

4. PROPOSED SOLUTION

activity of the variables which they share. To the extent that two systems
either have few variables in common or if the common variables are weak
compared to other variables which influence the system, they are indepen-
dent of each other.

In both quotes, the authors describe coupling as a measure of the independence or
co-dependence of a subsystem, with a stronger coupling correlating with greater co-
dependence of systems. If a system has a strong influence on another then they are
in some way co-dependent, and the coupling is strong or “tight”. If the systems are
independent and have no influence on each other then they are uncoupled. Glassman
[33] also argues that “In the [tightly coupled] system, a perturbation in any one variable
would require readjustment of all the other variables in the system.” [33], and as such
tightly coupled systems are faster to react to changes in the environment, but they are
less adaptive to changes because the breakdown of one system will propagate to other
systems easily. Conversely, loose coupled systems are more adaptive because of their
independence, but also because they are less homogeneous and so have a wider variety
of solutions to call upon in response to the perturbation. Loose coupled systems are
more varied because of their independence, so they can evolve as an individual within
a group, not as an entire group.

We apply coupling to ESR by defining the robot to robot communication within the
swarm. If we define the way the robots interact with each other, then as long as the
robots are able to maintain that interaction, they can interact with any other robot
interchangeably. Although the robots have different internal controllers and evolve
independently of each other. This is similar to the idea of interfaces in object oriented
programming. As long as a particular class conforms to an interface then the containing
class(es) can use it interchangeably with anything else using the same interface without
having to change their internal code.

We hypothesise that loose coupling makes evolution faster in ESR. To test this we
compare swarm evolution under different coupling strengths. We theorise that without
coupling the robots will evolve useful solutions very slowly or not at all, since they will
either have to evolve communication or learn to do the task without it. This will lead to
slow evolution of solutions with low fitness. With loose coupling the robots will evolve
useful solutions quickly because the robots are able to interact whilst being independent
of each other, so evolutionary changes will not have a large impact on other robots. In a
tightly coupled swarm it may be possible for the robots to evolve better solutions than
loose coupled, because the swarm is more responsive to stimuli, but the tight coupled
swarm is also more influenced by positive or negative evolutionary changes within each
individual robot.

4.1.2 Alphabetisation

Simon introduces the idea of alphabetisation by stating:

The flexibility of coupling among subsystems can be further enhanced by
limiting the variety of different kinds of components that are incorporated
into the larger system [84].

Alphabetisation is the idea that a message of information can be broken down into
atomic, descriptive primitives. These descriptive primitives “are more prolific and less
specific compared to things that are composed of [them]” [67], meaning that each prim-
itive has a single, generalised meaning but only in combination with other primitives

32

can a full message expressing some specific information be created. On their own the
primitives are not particularly meaningful, but it is the combination of primitives that
conveys information. For example, there are 26 letters in the English alphabet, each
representing distinct a sound. Individually a letter has little meaning, but by combining
letters we can create words, and by combining words we can express ideas.

In section 4.1.1 we establish that we can apply coupling to the swarm by defining the
robot-to-robot communication. We do this by giving coupled swarm robots a shared
signal to meaning mapping that each robot conforms to. So, a signal from robot A will
always have the same meaning as the same signal coming from robot B.

Alphabetisation is the method we use to vary the strength of the coupling between
the robots. The messages that the robots want to send are broken down into the
smallest number of primitives that, when combined, can express any message that the
robots need to share. To use an example from later chapters; the robots want to
share information about the size of something and the number of robots near it. The
descriptive primitives used could be “small”, “medium”, “large”, “empty”, “half full”
or “full”. To loosely couple the robots, each primitive maps to a signal, and to send
a complete message the signals are played sequentially. Several signals are required to
express a complete message, but the signal set is small. In the tightly coupled swarm,
each possible combination of primitives maps to a signal, so only one signal is required
to express a complete message, but the signal set is larger. Therefore in the tightly
coupled swarm, if one aspect of the message changes, the whole signal has to change
to express the new message. With loose coupling, only the signal corresponding to
the changed information would be different. The tight coupling is more susceptible to
changes in the environment, and consequently the information expressed, but it is able
to express information more quickly because each message only needs one signal.

4.2 Motivations

We believe our proposal to be a worthwhile subject of research because applying Simon’s
hypothesis about complexity and evolution to ESR will help to advance ESR research.
As mentioned in section 3.4 ESR is hindered by the fact that the evolution is very slow,
if we can show that Simon’s hypothesis is effective in speeding up the evolution process
in robotic systems, then our work will help to present evolution as a viable solution
to the design problem. Practically, this means that it will be easier to create robust,
flexible and scalable swarm robotic systems, and so swarm robotics is more likely to
be developed and used in real-life situations; the benefits of which have already been
discussed in section 3.2.1.

On a broader scientific level this work will benefit swarm intelligence research be-
cause we will be testing whether or not Simon’s theory is correct in the context of
robotic systems. The findings can then be extended to swarm intelligent systems to aid
our understanding of how they came to be, giving us a deeper understanding of how
swarm intelligent systems can achieve coordination without control and how to recreate
this for ourselves.

Our work can also have practical applications outside complex systems research.
If Simon’s theory can be verified, then genetic algorithms could be improved to take
advantage of stable subsystems and loose coupling to make them more efficient. Work
has already been done in the area of using stable subsystems in GAs, such as in [76], [8]
or [45]. However, we have not been able to find publications that demonstrate the

33

4. PROPOSED SOLUTION

effects of loose coupling on evolution in genetic algorithms.

4.3 Conclusion

In this chapter we propose the hypothesis that a system of evolutionary swarm robots
will evolve collaborative behaviours faster if the swarm consists of independent agents
sharing stable information. It is the stability of the shared information which causes
the evolution to arrive more quickly at a useful solution. Information passed between
the robots is stable if the mapping between the intended meaning and the actual signal
does not change over time, or if the mapping changes slowly compared to the rate of
evolution. The robots in the swarm are then coupled if they all share the same signal
to meaning mapping. We theorise that one way of making information loosely coupled
is for it to conform to an alphabet of message primitives. Each item of the alphabet is
a distinct signal expressing a very basic piece of information, and by combining these
primitives a more descriptive message can be created and expressed. We aim to test
whether this alphabetised method of communicating allows swarm behaviour to evolve
more easily than coupling without alphabetisation, or communication without coupling.

In chapter 5 we outline an experiment to test the hypothesis and compare loose
coupling to other strengths of coupling between robots.

34

Chapter 5

An Experiment to Test the
Hypothesis

5.1 Introduction

In this chapter, we describe an experiment to test our hypothesis from chapter 4. In
section 5.2 we propose a foraging task where the robots are able to communicate in-
formation about a food source using sound signals. In each swarm there is a different
mapping between the signal or signals used, and the descriptive primitives the robot is
expressing. In some of the swarms this mapping is evolved by the robots over the course
of the evolutionary run, in the other swarms the mapping is shared between all robots
and never changes throughout the evolutionary run. By using the different mappings
we aim to change the coupling between the robots and test the comparative fitnesses of
the evolved swarms. This is described in section 5.3. Finally in section 5.4 we review
evolutionary swarm robotics in the literature and propose the strategy for the collective
evolution that is used in this work.

5.2 The Task

In our experiment, the robots forage for “food”. In the environment there is a random
distribution of food sources, these can be of several different sizes. The robots must
cooperate to collect from a food source, and at the end of the generation a robot’s
fitness is measured by the amount of “food” it collected.

Each food source has size n, and requires n robots to collect but gives n2 units
of food in return. When collected, these units of food are shared evenly between the
robots that collect them, so that each robot receives n food units. Consequently a robot
receives more units of food if it collects from a large food source, but this requires a
longer investment of time as it will need to wait for help from other robots. The size
of a food source slowly degrades over time, so that large sources does not stay in the
environment forever due to being too large to collect. When the food source size reaches
0, either through degradation or because the food was collected, it is replenished after
some time period.

This task is chosen to test our hypothesis because robot to robot communication
is required to indicate that a robot is waiting for help from another; the robot must

35

5. AN EXPERIMENT TO TEST THE HYPOTHESIS

indicate that they are waiting at a food item so that other robots will come and assist
them. By sharing information about the food the robot is waiting at, the other robots
can make a decision about whether or not to assist it. It is also possible for the robots
to collect food without communicating with each other, by waiting until enough other
robots decide to wait at the same food item or by only collecting small foods. Although
it would not be rewarded as well as if the robots were effectively communicating and
collaborating to collect the larger foods. Another advantage of this task is that an
evolved behaviour can be evaluated using the amount of food the robot was able to
collect. This metric is measurable by the robot, so the swarm does not need an external
monitor to evaluate each robot’s fitness, it can be done by the individual robot.

5.3 Creating an Alphabet

In our experiment, the robots use audio signals of differing frequencies to express in-
formation about the food sources they encounter. There are two pieces of information
a robot can express about a food source: its size, and the amount of robots currently
collecting from it (occupancy). For each piece of information there are a number of
descriptive message primitives the robots can use to describe it. For example, the de-
scriptive primitives for size information might be “small”, “medium” or “large” and for
occupancy information the descriptive primitives might be “unoccupied”, “over 33%
occupancy” or “over 66% occupancy”.

In general, we can express these primitives mathematically as a range, where x is
our observed value and D is the number of descriptive primitives about the piece of
information:

if d0 ≤ x < d1 express d0

if d1 ≤ x < d2 express d1

...
if dD−1 ≤ x < dD express dD−1

We can calculate our range boundaries from the following equations, where we have
Dsize descriptive primitives to describe food source size, and Docc descriptions for food
source occupancy. Both food source size and occupancy are expressed as a percentage
between 0 and 100:

dn,size = 100
n

Dsize
, n ∈ 0, 1, 2, . . . Dsize (5.1)

dn,occ = 100
n

Docc
, n ∈ 0, 1, 2, . . . Docc (5.2)

To vary the coupling in the robot swarm we control how the robots express infor-
mation. If all the robots use the same signal to meaning mapping when expressing
information then the information in the environment is consistent. The interpretation
of how to react to any information must still be evolved, so the signal to meaning
mapping is not required when interpreting information, only when expressing it.

5.3.1 Varying the Amount of Coupling

In our experiment we compare the rate of evolution and quality of solution in swarms
where the communication is tightly coupled, loosely coupled and uncoupled.

36

In the loosely coupled communication there is one signal for each of the descriptive
primitives, these can be combined sequentially to describe a food source’s properties.
With tightly coupled communication the meaning that is conveyed and the signal are
closely tied. Each signal represents a possible combination of descriptive primitives;
so for example, there would be one signal to express a “big and 66% occupied” food
source, a different signal to express a “big and unoccupied” food source. The difference
in the number of signals required is shown in equations 5.3 and 5.4. S is the number of
signals required for the communication, I is the number of pieces of information that
can be described and Di is the number of descriptive primitives for information i:

Sloose =

I∑
i=1

Di (5.3)

Stight =

I∏
i=1

Di (5.4)

We only use two pieces of information to describe a food source (size and occupancy),
so I = 2. We also use only 3 primitives to describe each piece of information, so Dsize =
Docc = 3. Substituting these values into equations 5.3 and 5.4 gives us Sloose = 6 and
Stight = 9. With such small values for I, Dsize and Docc both cases have a similar
number of signals. However, if we slightly increase the expressiveness of the robots,
perhaps changing Dsize and Docc from 3 to 4, Sloose increases by just 2 but Stight
increases from 9 to 16. Both types of communication are equally expressive but as we
increase the expressiveness, by changing I or any value of D, Stight increases far more
rapidly than Sloose.

In our experiment, Sloose and Stight have similar values. This is because the exper-
iment is intended to be able to run on real robots, and there is a limit to the number
of audio signals that the robots can play or accurately interpret. In simulation however
there are no such limitations, so it is possible to test any values of I, Dsize or Docc.

Communications Tested

To test our hypothesis we evolve collective foraging behaviour using five different levels
of communication couplings. In descending order of coupling strength these are:

1. Tightly coupled. Stight signals each expressing a food source’s size and occu-
pancy.

2. Loosely coupled. Sloose signals combined sequentially to express a food source’s
size and occupancy.

3. Uncoupled. Sloose signals, sequentially combined as with (2). Within each piece
of information the mapping between the Di primitives and signals is evolved. An
example of this type of mapping is shown in figure 5.1.

4. Uncoupled. Sloose signals, sequentially combined as with (2). The mapping
between signals and descriptive primitives is evolved, as demonstrated in figure
5.2.

5. Uncoupled. Stight signals, with meanings as with (1). The mapping between
signals and signal meaning is evolved.

37

5. AN EXPERIMENT TO TEST THE HYPOTHESIS

Tone 1
Tone 2
Tone 3

Tone 4
Tone 5
Tone 6

Size: > 66%
Size: 33-66%
Size: < 33%

Occupancy: > 66%
Occupancy: 33-66%
Occupancy: < 33%

Figure 5.1: Example mapping for uncoupled, alphabetised communication. The map-
ping is evolved between signals and meanings within each information type.

Tone 1
Tone 2
Tone 3

Tone 4
Tone 5
Tone 6

Size: > 66%
Size: 33-66%
Size: < 33%

Occupancy: > 66%
Occupancy: 33-66%
Occupancy: < 33%

Figure 5.2: Example mapping for uncoupled, alphabetised communication. The map-
ping is evolved between all signals and all meanings.

In cases where the mapping is evolved, two meanings are prevented from being as-
signed the same signal, and similarly one meaning cannot have two different signals.
In all cases the robot must express information when it observes a food source. Con-
sequently there is the implicit mapping of a tone being heard to mean “a robot has
detected a food source”.

These communication couplings have been chosen because:

• Evaluating (1) and (2) allows us to compare evolution with tight and loose cou-
pling.

• (4) uses alphabetisation without coupling. We can compare the results of case (4)
with (5) to see the effects of alphabetisation on the rate of evolution. There are
Sloose! possible mappings of case (4), which in our experiment gives 720 different
mappings.

• (5) uses no alphabetisation and no coupling. There are Stight! possible mappings,
which gives 362880 different mappings in this experiment. With so many different
mapping possibilities there is very little consistency in the audio information in
the environment, it is possible the robots could evolve to ignore audio information
altogether.

• (3) is a case where we have a very loose coupling between signals and meanings.
The Di signals that a robot uses to express primitives of information i is specified

38

prior to the evolution. This is the same for all the robots. Consequently, there is
coupling between the robots to some small extent, because certain signals always
mean “size” and others always mean “occupancy”. However the signal to meaning
mapping is still evolved, so the audio information in the environment is not entirely
consistent; as it would be in (2) or (1).

Equation 5.5 gives the number of possible mappings for coupling case (3). Using
the values from our experiment this gives only 12 different possible mappings,
which is considerably less than for (4) or (5).

I∑
i=1

Di! (5.5)

5.3.2 Benefits of Audio Communication

We use sound as a communication medium because we can carry several pieces of
information in a single audio tone. There is information implicit in the tone about
where it came from, and this information can be used to signal the location of a food
source. By using more than one microphone we can distinguish the direction that
a sound came from by analysing the phase difference or comparative volume of the
microphone signals. We can estimate the distance from a sound source by how loud
the sound is, and this can be compared to other sounds to estimate which sound source
is closest to the receiver. There is also information in the broadcast tone which is not
implicit. We can control the frequency and duration of a tone, and these can be varied
in order to convey different meanings.

One major benefit that sound gives is that when a sound is made, that information
is broadcast omni-directionally by one robot, but can be received by many different
robots. Furthermore, the receiving robots don’t have to be facing the broadcasting
robot to receive this information. If we were to use visual messages, such as flashing or
coloured LEDs, not only would the receiving robot need to be facing the broadcaster,
but complicated visual processing would be needed to locate the light source in the
camera image and then determine the rate of the flashing. In comparison, sound is
a one dimensional wave, and although it is subject to noise, this is much easier to
minimise.

5.4 Implementing ESR

In this section we review the ways that ESR has been implemented by others. We
look at how collective evolution has been implemented in ESR systems and to what
effect. We then review different architectures that have been used for evolving robot
controllers, and give some advantages and disadvantages of each. These findings are
used to inform the implementation decisions of this experiment.

5.4.1 Collective Evolution

Watson, Ficici and Pollack [93] use a group of robots, running heterogeneous controllers
to evolve a phototaxis behaviour in a distributed, asynchronous way. A lamp is placed
in the middle of the arena, when the robot reaches the light it gains energy and moves
to a random part of the arena, from there it must repeat the task to gain more energy.

39

5. AN EXPERIMENT TO TEST THE HYPOTHESIS

When a robot has enough energy it can reproduce, it does this by broadcasting a
slightly mutated version of its genome over a small local area. Other robots may take
this broadcast genome as their own, completely replacing their existing genome, with
a probability dependent on the receiving robot’s energy level. If it has low energy
there is a higher probability that it will accept the new genome than if the robot has a
high energy. This method of sharing and evolving genomes is a swarm behaviour and
does not require any outside assistance or centralised controller to monitor, evolve or
distribute a robot’s genome; it is all performed collectively by the swarm. It is open-
ended and adaptive, so if the environment changes over time the swarm will also change
in reaction.

Floreano et. al. [29] evolved simple communication in a swarm of 10 foraging robots.
They demonstrated that swarms where the robots all ran the same controller, were
more likely to signal to each other in the presence of food and so in general had higher
fitnesses. The experiment was performed using a high fidelity simulation of the robots
and the winning genome was transferred to the real, embodied robots and were found
to display the same behaviour as in simulation.

Pugh and Martinoli [74] investigated the effects of genome diversity on the fitness
of a simulated robot swarm running heterogeneous genomes. They compare two opti-
misation algorithms. One, a genetic algorithm, used all the genomes in the population
to generate the next population. In the other algorithm1 each genome generates one
offspring for the next generation based on its own fitness and the fitnesses of its nearest
two neighbours in the population array. In the second algorithm there is more genetic
diversity in the population because all genomes are drawn from a different set of “par-
ents”. The authors found that the more diverse algorithm gave higher fitnesses, even
in the presence of sensor and actuator noise. When they investigated why this was the
case they found that “by maintaining high diversity throughout evolution, [the more di-
verse algorithm] is able to continuously discover new and better solutions and continue
improving throughout the entire evolution” [74].

Heterogeneous swarms have the advantage to ESR research that the genomes can
be evaluated in parallel with each other rather than sequentially, but this means that
the evolutionary algorithm’s genome population must be the same as the number of
robots in the swarm; with a homogeneous swarm there is no such limit. Consequently
heterogeneous swarms are faster to advance from generation to generation but because
population size is limited there is less genetic diversity within the genome population.
Additionally, genomes are assessed by a robot’s ability to perform a collaborative task,
therefore using a metric that is partly dependent on the performance of other genomes.
For example, if in this experiment the GA were to somehow generate a genome which
encapsulates the perfect solution but it is one of a heterogeneous population of otherwise
poorly performing genomes. The perfect genome would not collect as much food as it
would in a better performing population, because it still relies on the others to help it
collect. An “average” solution in an “average” population may well collect more food
and so be awarded a higher fitness. In a homogeneous swarm this wouldn’t be a problem
because all the robots would be using the same genome.

The biological counterparts to swarm robotic systems, swarm insects, are not ge-
netically identical but they also have little genetic diversity between insects in a colony.

1This algorithm is called “Particle Swarm Optimisation”. A review of the particle swarm opti-
misation algorithm is outside the scope of this work, however, readers are referred to [43] for more
information. A description of the specific particle swarm optimisation algorithm used in [74] is given
in [73].

40

With ants for example, all the ants in a colony are offspring from a very small number
of queens [37], if two ants share the same parents they will, on average, share 75% of
their genes [50]. Worker ants are sterile and contribute to the evolution of the colony
by foraging for food and defending the ant nest from invaders, so that the colony is
better able to produce the queen and male ants. Evolution and diversification of the
ants occurs through new queens and males leaving the nest to breed and start new
colonies. Thus, it is the ant colonies that evolve, not individual ants.

Swarm Diversity in the Experiment

In our experiment we would ideally like to use the collective evolution strategy from
Watson et. al. [93]. This strategy resembles evolution in natural systems because
each robot has a different genome and measures the its fitness by the robot’s ability
to gather a resource, energy, whilst following the behaviour specified by its genome.
Robots decide between themselves whether to reproduce with each other and create a
new genome based on their comparative fitnesses. Consequently, the genetic functions
of selection, crossover and mutation are all performed locally by the robots, so the
evolution is diverse, asynchronous, decentralised and scalable. These are some of the
properties of swarm intelligence given in section 3.2, making the evolution a swarm
intelligent behaviour. With evolution that is analogous to the evolution of biological
systems, the robot swarm is closer to the complex systems that Simon describes in [84].

Implementing a decentralised evolutionary strategy depends on the robots being able
to pass data to each other without help from an external controller, but unfortunately
the robots we have for this experiment (described later in section 6.3.4) are not able
to reliably pass more than one byte of data between each other. In order to transfer
genomes to and from the robots we must therefore use a computer to manage the
population of genomes by collecting the fitnesses of genomes running on the robots,
generating the next generation, and being responsible for distributing the new genomes
to the robots. Consequently, we are not able to implement decentralised evolution
because updates to the robots’ genomes must be controlled through the computer. In
addition to a being single centralised controller, this also removes localisation because
if the robots control the genome reproduction then a robot can only share its genome
with other robots that are nearby. The external computer does not know which robots
are spatially close so it cannot limit genome mutation to be between robots that are
neighbours. Robots that are near to each other are just as likely to reproduce as ones
which are far apart.

We approximate the evolution of Watson et. al. by using a heterogeneous swarm
with a centralised controller for running the GA. This approach is much quicker to
evaluate a generation than a homogeneous swarm, but if the heterogeneous swarm is
unsuccessful at testing the hypothesis we can easily run the experiment with a homo-
geneous swarm by changing the GA on the computer.

5.4.2 Evolvable Robot Architectures

Neural Networks

The most commonly used evolvable robot controller architecture is a neural network;
for example [10, 29, 65, 74, 89, 93]. Neural networks are a way of mapping a set of
inputs to a set of outputs which is inspired by the way neurons in the brain learn and
process information [58]. To do this a neural network is made of artificial neurons,

41

5. AN EXPERIMENT TO TEST THE HYPOTHESIS

each of these takes a weighted sum of its inputs and thresholds it to give a high or
low output. A neural network is made of any number of artificial neurons which may
take the weighted sum of the neural network’s inputs or the outputs from other artificial
neurons. It is possible to modify a neural network’s input to output mapping by keeping
the connections between artificial neurons constant but changing the weighting of each
neuron’s inputs. It is the weights on the inputs to each artificial neuron which contain
the input to output mapping in a neural network and not the way the network is
connected. Consequently, it is difficult to analyse neural networks to understand how
they work.

For several examples of neural network controllers in ESR, the reader is referred
to [89], for examples of evolved neural network controllers in individual robots see [65].
With few exceptions [34], the most common approach to evolving a neural network is to
keep the structure and connectivity of the neural network constant across all generations
and robots, and evolve the weights on each connection. It is this method of evolving
neural network controllers that is reviewed in this section.

Advantages There is a simple one-to-one mapping between the genome and the con-
troller. One gene maps directly onto one weight in the neural network without any need
for scaling, so small changes in a gene’s value cause small changes in the weight and
large changes in the gene cause large changes. This is good because similar genomes
will produce similar neural network controllers, making it easier for the GA to explore
possible solutions. If a genome with a high fitness is found then the GA can generate
and test similar genomes because they will convert into similar controllers.

Disadvantages Neural networks, inspired by brain cells, are predominantly learning
systems. The weightings in a neural network are normally modified over time so that
the correct mapping between inputs and outputs is learnt over time with training.
With training techniques, every weight can be updated simultaneously upon receiving
feedback about the neural network’s performance, and this update can be directed by
the feedback. However, when using evolution only some of the weights are updated (due
to crossover and random mutations) and the update is not necessarily directed by the
feedback. Another major disadvantage is that, with exception of very small networks,
there are a large number of weights in a neural network. Consequently large genomes
are required to contain all the weightings necessary to describe the controller. This
makes the GA’s task of searching for fit solutions difficult because there are so many
variables to evolve.

Genetic Programming

Genetic programming (GP) is a way of using a genetic algorithm to evolve procedural,
executable code such as an equation or a computer program [46]. The genome represents
the program in a syntax tree structure, each internal node on the tree is a function in
the program, and each terminal is a variable or constant. To execute the program, each
node visited and evaluated in depth-first traversal order. Crossover, the merging of two
genomes to create two new genomes, is performed by swapping sub-trees in a genome
as shown in figure 5.3. Mutation is performed by swapping a terminal for a random
new terminal or randomly generated sub-tree.

To evolve a robot controller the terminal variables are sensor readings, constants or
actuator actions, and the functions are processes, comparisons or decisions to perform

42

on the data from the child nodes [47]. Figure 5.4 shows an example of a robot controller
evolvable with GP.

Advantages GP evolves an executable program that can immediately be run on
robot, and because it is a program its behaviour and functionality can be more easily
understood than a neural network. Another advantage of directly evolving a program
is that we can have functions that incorporate control flow statements, such as if, for
or while. This would be difficult to achieve with a neural network, and is a useful
feature for a robot controller, where actions may need to be performed continuously or
repeatedly.

Disadvantages GP has no restrictions on the size of genome that can be produced, so
large and expressive programs can be evolved. Although this itself is not a bad thing, it
means that the evolved programs often contain redundant code, known as bloat, which
is never executed [52].

The function and terminals used to generate the programs must be predefined be-
fore evolution by the designer, so the function and terminal sets available to the GP
algorithm may not be the most appropriate for the problem being solved. When the
GP algorithm generates a genome syntax tree, all entries in the function set or terminal
set are equally likely to be put into the tree at any point. Therefore all nodes must
satisfy the property of “closure” [20,46]:

Closure requires that every function and terminal return a value of com-
patible type, and that every function accepts arguments of this same type.
This constraint guarantees that any combination of functions and terminals
that comprise a complete tree structure [...] will be a syntactically valid
computer program that can be evaluated. [20]

Consequently all sensor terminal outputs must be in the same range, and all actu-
ator terminals must output some value even if there is no meaningful data to out-
put. Additionally, if all terminals are equally likely to be placed at any point in
a syntax tree, terminals could be placed inappropriately. Using the example pro-
gram from figure 5.4 of if(right proximity reading < 20) {turn left 90◦; move

forwards;}, the GP algorithm is just as likely to have evolved the less meaningful pro-
gram if(move forwards < turn left 90◦) {right proximity reading; 20;}.

Grammatical Evolution

Grammatical Evolution (GE) is a way of evolving something which conforms to some
predefined structure, known as a “grammar” [77]. The grammar is constructed by the
user, so GE is theoretically just as capable of evolving an equation to fit a curve as
evolving an executable series of instructions for a robot.

To illustrate how GE works we use a slightly adapted an example from [77] to
develop an equation. Grammatical evolution starts with a predefined grammar and a
starting point to initialise the grammar, written in Backus-Naur form:

<expr> ::= <expr> <op> <expr> (0)

| <var> (1)

<op> ::= + (0)

43

5. AN EXPERIMENT TO TEST THE HYPOTHESIS

3

7

x

*

+

*

0 6

x

x +

-

(a) Before crossover

3

7

x

*

+

*

0 6

x

x +

-

(b) After crossover

Figure 5.3: Example of crossover in GP. A random sub-tree is selected from each genome
(a), these sub-trees are then placed into the other genome at the vacated position (b).

44

 IF

SEQ

ForwardLeft90

<

ProxR 20

Figure 5.4: Example robot controller using syntax tree structure. The SEQ function
evaluates its two child functions in sequence. The example code converts to the program:
if(right proximity reading < 20) {turn left 90◦; move forwards;}

| - (1)

| / (2)

| * (3)

<var> ::= X (0)

START = <expr>

In GE, the genome is a string of integers which are used to select expressions, operations
and variables from the grammar. For example:

[68, 829, 123, 499, 1024, 1]

The starting point is START = <expr>, so our first gene, 68, must select an option
from the <expr> rule. The <expr> rule contains two options: <expr> <op> <expr> or
<var>. To convert the gene to an option, we modulo the gene by the number of options
available for the rule. The resulting number gives the index of the option to use. With
the gene 68 and 2 possible options, 68 mod 2 is 0, so selecting expression (0) from the
<expr> rule gives us an equation <expr> <op> <expr>. Next we fill in the first part
of the expression: the first <expr>. Again there are 2 options, taking the next number
from the genome 829 (829 mod 2 = 1) gives us a <var> the only option for which is
X. Now our generated equation is X <op> <expr>. The next thing to fill in is an <op>

with four different possibilities, 123 mod 4 = 3, so <op> (3) is ∗ and our equation is
now X * <expr>. Carrying on in the same way we can fill in the equation to get X * X.
There are no more < > clauses to evaluate so the equation is complete, any remaining
numbers in the genome are ignored.

Examples of grammatical evolution for robot control are rare in the scientific litera-
ture. Burbidge, Walker and Wilson [16] successfully use GE to evolve a robot controller
that moves towards a light and avoids collisions with obstacles. GE is used to generate
C code that uses readings from proximity and light sensors to assign speeds to two
differential motors on the robot. This experiment is done in simulation, and only for
an individual robot rather than a swarm.

45

5. AN EXPERIMENT TO TEST THE HYPOTHESIS

Advantages GE, like GP, can be used to evolve an executable robot controller pro-
gram. This means that, like GP, evolved GE programs are easier to understand than
a neural network controller, and the evolved program can include control flow state-
ments. By using grammar to control how functions and variables should fit together,
GE also eliminates some of the problems associated with GP. There is no need for clo-
sure because the inputs to functions can be specified by the grammar. Furthermore,
the grammar specifies when to use sensors readings, actuator control or constants, so it
is not possible to generate controller programs where these are placed inappropriately.

Disadvantages As with GP, the grammar must be defined before evolving a robot
controller, so the functions in the grammar may not be the the most appropriate for
the problem. GE can also cause program bloat, although because of the restrictions
imposed by the grammar this can be less extensive than the bloat with GP.

The main disadvantage of GE is that because of the indirect mapping between the
genome and resultant program, genomes which are similar could represent very different
robot controllers. Although small changes can be made to a genome, there is no fine
control on how much the resulting controller could be mutated. Even a single changed
gene near the beginning of a genome could potentially cause the controller to be entirely
different, but if the changed gene is in an unused part of the genome the controllers
would be identical [17]. This makes it very difficult to improve good solutions, because
if a good controller is found it is hard to generate similar controllers to try and optimise
any part. In this regard, neural network and GP controllers have an advantage over
GE controllers.

Evolvable Architecture in the Experiment

Given the advantages and disadvantages of several different robot architectures we have
decided to use grammatical evolution in this experiment. What we want to evolve in
this experiment is an executable program, which GE or GP allows us to do. Compared
to GP, GE gives us greater control over how functions, variables and constants in the
program should fit together, meaning that there is a greater probability of evolving
meaningful, working programs than with GP.

The problem of GE mutations causing unknowable amounts of controller change can
be reduced slightly by performing a crossover similar to the sub-tree crossover in GP
(figure 5.3). Code within a < > bracketed grammar clause could be swapped for code
under a similar clause in the other genome. If no other genes are changed then this
crossover would not affect the structure or functionality of the rest of the program.

5.5 Conclusion

In this chapter we outline an experiment for testing the hypothesis from chapter 4. We
describe a foraging task where the robots must collect food from different sized food
sources. Larger food sources need more robots present before they dispense food, but
give each collector a larger amount of food as a result, therefore encouraging cooperation
through greater reward. The robots are able to signal to each other to share information
about a food source’s size, occupancy and also it’s location in the arena, which is implicit
information in the sound signal. By signalling to each other, the robots should be able
to recruit help with collecting food and decide which of the food sources to go to for
the largest reward.

46

Section 5.4 contains a review some of the ESR research to date. We look at how
collective evolution has been implemented in the literature and found that homogene-
ity in a swarm encourages collaborative behaviour, whereas heterogeneity allows faster
evaluation of the GA population and more diversity within a swarm. From these find-
ings, and the constraints of the robots available, we decide to use a heterogeneous
swarm of robots in our experiment. We then review different evolvable robot controller
architectures and decide that grammatical evolution is the most appropriate for our
research.

In part II of this thesis we develop a model of the robots using sound signals to
communicate. In chapter 9 we use the model from part II to simulate this experiment,
and present the results.

47

5. AN EXPERIMENT TO TEST THE HYPOTHESIS

48

Part II

Co-Development of Simulation
and Hardware

49

Chapter 6

Basic Simulation

6.1 Introduction

To carry out the experimentation described in chapter 5, we develop a model of the
swarm robots using audio signals to communicate and achieve a collective goal. With
this model we can run experiments on a simulated robot swarm, requiring no human
intervention and consuming less power than experiments with embodied robots. Impor-
tantly, experiments using the simulated robot swarm would be much faster than with
an embodied swarm, significantly reducing experimental time.

The experiment from chapter 5 is intended to be run using embodied robots, adn
to do this we need to design and build a hardware extension board for the robots
capable of sending and receiving audio messages. We call the hardware extension board
the “soundboard”, and it is developed alongside the model. Through co-development
we hope to build confidence in the simulation. In creating the simulation before the
soundboard we can begin to make decisions about what is required of the soundboard
before beginning hardware development. As the soundboard is developed we make
design decisions affecting its abilities and constraints, which can later be fed back into
the model in order to calibrate it and make the model more representative of the real
system.

The co-development of the simulation and robotic hardware is broken down into
three phases:

1. Initial Modelling. Here we develop a model of the experiment from chapter
5, with multiple foraging robots using audio signals to communicate. The model
includes an approximation of the soundboard based on our requirements for it.

2. Developing the Hardware. In this phase (chapter 7) we build the sound-
board for the robots, capable of detecting audio signals, their direction and their
frequency.

3. Feedback of Hardware into the Model. Once the soundboard is completed
we can measure its properties and use it to calibrate our model (chapter 8).

We would ideally also like to validate the model by comparing it to the embodied
robots performing the experiment, but unfortunately time constraints prevent this from
being possible. Repeating our experiment using an embodied robot swarm is therefore

51

6. BASIC SIMULATION

Figure 6.1: The basic CoSMoS Process Diagram [5]

left as future work. Despite this, the hardware development phase of the modelling is
still necessary.

We use the CoSMoS (Complex System Modelling and Simulation) process, de-
scribed in section 6.2, to develop the model, so that each stage of development is docu-
mented and any assumptions made during the modelling process are explicitly stated.
One of the aims of this thesis is to provide a case study of the CoSMoS process for
modelling swarm robots. By building some of the hardware required for the experiment
on embodied robots, we can use it to realistically model sound transmission and recep-
tion. The modelling, hardware development and model calibration phases allow us to
do a full cycle of the CoSMoS process for engineered systems (section 6.2.2), iteratively
improving the model as more is known about the modelled domain.

In this chapter we perform the initial modelling phase, following the CoSMoS pro-
cess. In section 6.2 we describe the CoSMoS process and the motivations for using it.
The rest of the chapter is devoted to each part of the CoSMoS process. Where possible,
measured or known values are used for any model parameters. For aspects of the model
that are unknown, such as the soundboard, we use estimated values but make a note
to calibrate these areas later when more is known, or measurements can be taken.

6.2 The CoSMoS Process

The CoSMoS process (figure 6.1) is a framework for modelling complex systems, and can
be applied to many different types of complex system. Case studies it is being developed
upon include robots, plants and immune systems. It is not limited to modelling these
kinds of system, but aims instead to be a generalised process which can be followed to
model any complex system [31].

The following is an overview of the CoSMoS process shown in figure 6.1 [6]:

Domain This is the thing we wish to make a model of; not just the aspects of it
which are known but also the things we wish to know more about through modelling.
With the CoSMoS process the emphasis is on domains which are complex systems. As

52

an example, the paper [75] models Experimental Autoimmune Encephalomyelitis (an
autoimmune disease in mice) using the CoSMoS process. The domain in this case is
the immune system of a mouse, which the authors wish to learn about to further their
understanding of how a mouse recovers from the disease.

Research Context This part of the process establishes how and why the model
is being created, including the broader scientific context of the work: “The Research
Context defines the fundamental scope and purpose of a CoSMoS project” [5]. The
model is produced in close collaboration with a “domain expert”. A domain expert is an
expert in the domain we wish to model. For the example of [75] the domain expert was
Vipin Kumar, an immunologist studying Experimental Autoimmune Encephalomyelitis.
Through the domain expert we are always considering the research context of the model.
Polack [71] emphasises that collaboration with a domain expert builds trust in the model
for both the developer and the domain expert, and that “the simulation is only useful
to a scientist if the scientist trusts the simulation” [71].

When considering the research context of the model, the following points should be
considered [71]:

• What questions the model will address. What do we want to find out from
the model?

• Motivations for the research. How is the building of the model grounded in
scientific research?

• How will the results of the modelling and simulation be assessed for
validity. How will we know that the information our model gives is accurate?

Domain Model This deliverable is a top-down summary of our current knowledge
of the domain, including any emergent behaviours present in the domain of interest.
The domain model includes things that are not relevant to the final simulation, as we
do not make decisions as to what is and is not relevant until later stages.

Platform Model This is the “design” model. This is an abstraction of the domain
model so that it can be implemented on the platform of choice. Parts of the domain
model which do not relate to our research context are removed, including emergent
properties so that they do not get explicitly implemented. This leads to the modeller
making assumptions about what is and is not relevant. Theses assumptions must be
documented so that we can later decide whether they were erroneous or not.

Simulation Platform This is the implementation of the platform model using the
platform of choice. The simulation is assessed according to the criteria set out in the
research context. First we must “calibrate the simulator by adjusting parameters to
match our knowledge of the real world system” [7], this allows comparisons between the
simulation and the domain of interest. The simulation can then be used for experimen-
tation and to make predictions about the domain. Metrics from the research context
are measured to analyse whether emergent behaviour is achieved and if the model is
valid. From this experimentation a Results Model is made.

53

6. BASIC SIMULATION

Figure 6.2: The CoSMoS process for bio-inspired engineered systems [6].

Results Model This is a model of our simulation. Just as the domain model captures
what we know of the domain, the results model captures what we know of the simulation.
In effect, the simulation is the domain for the results model. The results model is
assessed according to the success criteria set out in the research context, the outcome
of this assessment “highlights deficiencies in the earlier modelling stages” [7].

6.2.1 Benefits of Following the CoSMoS Process

The CoSMoS process draws quite heavily upon the software engineering life cycle. In
constructing the domain model we are building a specification of what needs to be
captured within the simulation. The platform model is a design of how to build the
simulation, which is then implemented to build the simulation. Finally, to build an
analysis model we test the simulation against our specification and the metrics set out
in the research context. Errors uncovered at this stage require previous phases to be
revisited and re-done until the simulation passes all tests.

The strength of the CoSMoS process is that at each stage there is transparency in
the construction of the simulation. As we progress through the process, the domain
of interest is continually modelled and refined so that each phase is more specific than
the last. Any assumptions about the domain incorporated into the model are recorded
along with the reasoning for such assumptions. This ensures that the modeller has a
record of every place that errors could have entered into the model so that it is easier
to diagnose problems later. It also provides anyone who might wish to use the model
with a list of the model’s weaknesses so they can decide whether the model is accurate
enough for their needs.

6.2.2 The CoSMoS Process for Engineered Systems

When engineering a bio-inspired system, we aim to solve some real-world problem by
copying something found in nature. The CoSMoS process can be followed to ensure
that the final product is good by simulating and testing ideas and algorithms before

54

committing to construct the system. This puts the modeller in the situation where
they are modelling something which does not yet exist. For this situation, there is an
extension of the CoSMoS process, shown in figure 6.2. Although this process does not
specifically state that the research context should be considered as with figure 6.1, it
still influences all the decisions taken whilst developing the model. Unlike the original
CoSMoS process however, our research context isn’t “can we learn more about our
domain?” but “does this engineered system adequately solve the problem we have?”.
This modified process acknowledges that there is more than one domain in a bio-inspired
engineered system: the engineered system, and any biological systems that inspired it.
The “engineering domain” from the extended CoSMoS process is the system we’re trying
to model, but the biological domains influences how it will work and the processes it
uses.

The CoSMoS process for engineered systems dictates that we need a domain model
for each domain. The domain model for the biological domains is developed first and
then abstracted into a meta-model. Andrews et. al. [6] describe this meta-model as
“[capturing] the relevant concepts and relationships of the biological model. At this meta-
level, we can abstract away contingent details of the biology that are of no relevance to
an algorithm”. Essentially then, the meta-model encapsulates the core concepts of the
biological domain. These core concepts are what is copied in order to replicate the
inspirational behaviour in the engineered system. The engineering domain model is
initially a specification for the engineered domain. This model is an instantiation of
the meta-model from the biological inspiration, since the meta-models are an abstract
outline of features of the final model. Similarly the engineering platform model is also
an instantiation of the meta-models because the platform model describes how to apply
the contents of the meta-model in the simulation platform.

Once the platform model has been simulated and provided results, the results are
validated against the engineered domain model, because this is the specification for the
final engineered system. The results are also validated against the biological domain
model to ensure that the simulation displays the desired properties of the inspiration.
If the simulation is shown to be valid, then it can be implemented by creating the
engineered system, thereby creating the “engineering domain” section of the process
model. Finally the engineered system is tested and validated. If it is shown to not
adequately solve the problem it is designed for then the whole process iterates again,
this time with a real engineered system to inform the ‘engineering domain model’.
In this way, the model and engineered system are refined until a final system can be
engineered and tested which does fulfil its requirements.

6.3 Following the CoSMoS Process

We follow the CoSMoS process for engineered systems to develop our simulation. This
process gives us the flexibility to bring together multiple systems in order to build a
working, engineered complex system. The process diagram for the CoSMoS process for
engineered systems is given in figure 6.2 on page 54.

6.3.1 Research Context

As stated in sections 6.2 and 6.2.2, the main points the research context must answer
are:

55

6. BASIC SIMULATION

• What questions the model will address

• Motivations for the research

• How will the results of the modelling and simulation be assessed for validity

• Does this engineered system adequately solve the problem we have?

The purpose of creating this model is to answer our experiment’s hypothesis, which
is: Does loose coupling between subsystems of a complex system affect the rate of
evolution as claimed in [84], and can this be applied to evolutionary swarm robotics
by “alphabetising” the information communicated between robots. The motivations
and the scientific context of this hypothesis have already been given in part I. If our
model can be shown to test this hypothesis, then our engineered system does adequately
solve the problem we have. However, it remains to be shown that the model is a valid
representation of the final engineered system, and that the model tests the hypothesis.

Validating the Model Against the Engineered System

Unlike using the CoSMoS process for developing a model of a complex system, we are
trying to model something that does not yet exist. Consequently there is no domain
expert to collaborate with to guide the modelling process. We, as the engineers, must
guide ourselves through the modelling based on what we want the final system to be able
to do and the limitations imposed on it. The process of co-developing the model and
engineered system helps with this, because as we develop the system we can feed back
our knowledge into the model. This lack of a pre-existing domain can be a disadvantage,
as the modelling process is unguided by a domain expert. However, it does award us
the freedom to change the domain to be more like our model if we so choose. For
example, we can control the environment the robot swarm operates in: the amount of
light, background noise, number of obstacles in the environment or the size and shape of
the robot arena. We could also impose constraints on what the robots are able to do, so
that they are easier to model. Whether or not this is appropriate depends on whether
the engineered system is still able to perform its task under these new conditions. In
our case this purpose is to test our experiment’s hypothesis, but in other cases there
may be less flexibility on the restrictions that can be imposed on the final system.

In the introduction to this chapter we stated that the experiment will not be run
on embodied robots, so the model will not be validated against real robots. In this
work, our validation is limited to creating the soundboard and validating the model of
the soundboard against reality. The complete model is not validated in this work, but
nevertheless we can still provide some answers to the question of “How will the results
of the modelling and simulation be assessed for validity”.

Assessing Validity The following is a non-exhaustive list of aspects of the model
that should be validated. For all aspects of the model listed, the results in the model
and the embodied robots should be measured. These results should then be compared
using a Wilcoxon rank-sum test ([64] page 45) to see if there is a statistically significant
difference between the two sets of results. If the data from the real robot and the data
from the simulated robot are not different to a 95% significance level then they are
deemed to be “similar enough” for the model to be valid.

56

• Within the robot. The robots have the ability to detect food sources, and they
have the soundboard to detect sound. The robots also use motors to move itself.
For each kind of sensor or actuator, measure:

– sensor readings at different ranges.

– sensor noise at different ranges.

– Motor speed. When the motors are set to a particular speed, do they move
the same distance. How long does it take the robot to move some fixed
distance.

– variation in these measures when using different robots.

• Robot behaviour. Do robots with the same genome behave in similar ways
when given the same environmental conditions?

– Within a fixed length of time do the robots move, on average, similar dis-
tances and collect similar amounts of food.

– If two embodied robots were given the same genome and environmental con-
ditions would they behave in the same way.

• Swarm behaviour. Do we observe similar results when running the experiment
on embodied robots as we do with the model?

Validating the Model Against our Hypothesis

Assuming that the experiment adequately tests our hypothesis, we would need to show
that the simulation performs the experiment described in chapter 5. To then be able to
claim that we would get similar results using the engineered robotic system, we would
need to show that:

• The simulation adequately models the hardware.

• The code running the simulation is the same or equivalent to the code running
the experiment on the real robots.

We have already discussed how to validate the simulation against the hardware in
this section. To demonstrate that the simulation code and the code for the real robots
are equivalent we use a robot simulator called Player/Stage.

Player/Stage [92] is a combination of a robot controller Player, and a robot simulator
Stage. Player is a Hardware Abstraction Layer between controlling code and robot
drivers which control sensors and actuators. Controlling code is written to use the
Player API. The API makes sensor readings available and allows the code to move
actuators without the person writing the code needing to know anything about how
the drivers work. The Stage simulator is a plugin for Player which acts as a driver
and creates a simulation of the robot and the environment. Interaction with the Stage
simulation is done through the Player API. This means that we can write simulation
code using Player and Stage, together called Player/Stage, and the same code can be
run on a robot using just Player without Stage. Figure 6.3 illustrates the flow of control
from user code to either the simulation or robot hardware.

57

6. BASIC SIMULATION

Controlling code

Player

Stage Hardware

Figure 6.3: Diagram of control flow from user code through Player to the robot hardware
or to Stage. The controlling code interacts with the Player API. Player can be set up
to control a Stage simulation or interact directly with robot drivers and hardware. In
either setting, the controlling code remains unchanged.

6.3.2 Biological Domain, Domain Model and Meta-Model

In the CoSMoS engineering process the system we create aims to mimic the desirable
behaviour or features of the biological domain of inspiration. In this work we are
creating a robot swarm that can be said to forage for food in the same manner as
swarming insects. However, we do not seek to mimic the behaviour of these swarms
or to recreate their emergent properties to complete our task. Just as ants evolved to
collectively forage for food we aim to evolve a robot swarm that collectively forages for
food. As such our biological domain is evolution, rather than swarm insects.

In section 3.4.1 we describe genetic algorithms, and in section 5.4 we described how
collective evolution is implemented in our experiment. In this model we use Grammati-
cal Evolution (GE), which has already been reduced from the domain of evolution down
to a meta-model suitable for evolving a computer model by Ryan, Collins and Neill [77].

6.3.3 Engineering Domain

With our model we aim to simulate the experiment described in chapter 5. This involves
e-puck robots using custom-built audio hardware, a “soundboard”, to communicate with
one another to achieve their shared goal. Consequently, there are several aspects to our
domain which are modelled:

• The e-puck

• The soundboard

• The arena and environment

• Acoustics

6.3.4 Domain Model

For each aspect of the engineering domain we create a domain model, containing what
we currently know about that domain.

58

e-puck

Figure 6.4 shows an e-puck robot. The technical specification for the e-pucks can be
found on the e-puck website www.e-puck.org. We have access to 13 e-pucks in order
to run our experiment.

Properties of the e-puck:

• Physical Dimensions

– Height: 55 mm

– Diameter: 75 mm.

– Weight: 150 g

• Maximum Speed: 12.8 cm/s (0.128 m/s) either forwards or reverse.

• Processor:

– Processes 14 million instructions per second

– 8 kB RAM

• Battery:

– 3.3V

– 5Wh suitable for “2 to 3 hours of intensive use” [1].

• Sensors:

– Colour camera. Image resolution 640 x 480 pixels. However, the RAM is not
large enough to hold an image that size so the image must be sub-sampled,
or only a portion of the image can be used. Frame rate is dependent on the
image size, larger images causing a smaller frame rate than smaller ones.

– Infra-red proximity sensors: range approximately 9 cm. The e-pucks are
able to use their infra-red sensors to communicate with each other, although
they can only send one byte at a time. The success of this communication is
dependent on whether the robots are facing in the correct direction and can
be broken if they moved out of infra-red range.

– Bluetooth communication to a computer.

– Sound. These are the properties of the audio hardware that is built into the
e-pucks as standard, rather than the soundboard extension:

∗ There are 3 microphones on the e-puck with a maximum sampling rate
of 33 kHz.

∗ These microphones are on the left and right outer edge of the e-puck
and the third is central. Each microphone is pointing upwards.

∗ The maximum distance that a microphone can reliably detect a tone is
13 cm.

∗ There is a speaker on the e-puck with a sample rate of 7.2 kHz. This is
also pointing directly upwards.

59

www.e-puck.org

6. BASIC SIMULATION

Figure 6.4: A photograph of an e-puck robot.

Figure 6.5: A photograph of an e-puck robot with the Linux extension board.

60

In addition to the e-puck, we use a Linux extension board [55] which allows the
e-puck to run Linux, and gives them the ability to communicate over a wireless network
using a wifi adaptor which plugs into the board’s USB port. Figure 6.5 shows an e-puck
with the Linux extension board attached. This extension completely covers all of the
e-puck’s microphones, rendering them unable to detect sound. The advantage of using
the Linux extension board is that it allows the e-puck is able to process and store much
more information. Crucially, it also allows the e-puck to run the Player/Stage robot
simulator and controller locally without requiring separate processing elsewhere.

Properties of the Linux extension board:

• Runs an ARM9 AT91SAM9260 processor.

• 210 MHz clock

• 32MB RAM

• Runs emDebian1 off a 2GB microSD card.

• Has a USB port for a wireless network adaptor 2.

The Soundboard

At this stage in development, the soundboard has not been created so we do not yet
know what its properties are and cannot model them. We do however know what
the general requirements are of the soundboard. Consequently we can create a model
knowing what we expect the soundboard to be able to do, and build into our model the
capacity to add noise and other faults later in chapter 8.

This is what we know about the soundboard so far:

• The soundboard is an extension board for the e-puck which sits on top of the
robot.

• It must be capable of sending and receiving at least nine different tones.

• It must be able to monitor the environment for sounds. If a tone is heard it must
be able to calculate its frequency and the direction the sound came from, relative
to the forward direction of the robot. This is known as the “direction of arrival”
(DOA), it is measured relative to the robot as shown in figure 6.6).

• To measure the frequency of a tone, the soundboard should perform a fast Fourier
transform (FFT). This quantises the frequency spectrum into several bands. The
number of FFT bands that will be used is currently unknown, and where these
bands appear in the frequency spectrum is dependent on the microphone sample
rate and the number of FFT bands.

1http://www.emdebian.org
2In section 5.4.1 of the experiment chapter we stated that the robots cannot send data between

each other, and this is why we used centralised evolution. Although the Linux extension boards do
allow the e-pucks to communicate wirelessly this causes a significant drain on the battery, reducing
operating time from three hours to only half an hour. This reduction in battery longevity compromises
the length of experiment we can run, so it is not used in this research.

61

http://www.emdebian.org

6. BASIC SIMULATION

Figure 6.6: Illustration of how the e-puck with soundboard measures the direction a
tone came from. θ is the angle between the robot’s heading and the sound source.

The Arena and Environment

The arena is rectangular and reconfigurable to any size up to 9× 9 metres. The arena
walls are approximately 15cm high and the ground is flat, grey painted concrete.

In the experiment there are food sources. In the embodied robot experiment these
can be implemented using stationary e-pucks. The e-pucks are capable of sending small
1 byte messages to each other using their infra-red proximity sensors. This messaging
system can be used to share a food source’s size and occupancy information and to
signal to a food source that a robot is collecting from it.

In the model we model the food sources as e-pucks. Details about the e-pucks and
the infra-red proximity sensors are given earlier in the domain model.

Acoustics

For our domain model we use chapter 1 of the “Acoustics and Psychoacoustics” textbook
by Howard and Angus [39]. This book chapter contains explanations and equations
describing sound waves, sound intensity and pressure, the combination of sound waves,
sound reflection and frequency filtering.

Although [39] is not as in-depth as other acoustics texts, it does provide an overview
of all the acoustics information we may need for our model. Since the focus of our
model is the study of evolving a swarm of robots and not the study of acoustics, this
simplification is appropriate at this stage to prevent later stages of the modelling process
from becoming intractable. If we later find that the model does not accurately represent
the acoustics of the real experiment this decision may need to be reassessed.

Dissipation Sound gets quieter the further away the source is. If a sound is louder
then the robots may reason that it is closer, if a robot is far enough away from a sound
source it may be too quiet to detect.

Sound energy is the “amount of energy transferred per unit of time [...] the number
of joules per second (watts) that propagate” [39]. Sound intensity is “the flow of energy
through a unit area” [39], which is measured joules per second (watts) per unit area.

When sound spreads from a source it travels in all three dimensions, so the sound
energy is spread across the surface of a sphere. At r metres from the sound source the

62

sound intensity is:

Imeasured =
Wsource

4πr2
(6.1)

where Imeasured is the sound intensity at the receiver, Wsource is the number of watts
the speaker emits and 4πr2 is the surface area of a sphere, of radius r metres.

The sound intensity is usually expressed as a level in decibels:

Sound Intensity Level = 10 log10

Imeasured
Iref

(6.2)

where Iref is a reference intensity of 10−12Wm−2.

Sound Combination There could be several sound sources present in the environ-
ment at the same time. Consequently, we must find out how they combine so it can be
modelled.

Sound waves can be correlated or uncorrelated. Correlated sound waves have the
same sound source but have somehow become slightly separated. For example if one
wave is a reflection off a surface or if the same sound source is using multiple loudspeak-
ers.

Uncorrelated sounds waves have different sources, for example multiple e-pucks mak-
ing a noise. With uncorrelated sources, the sound intensities measured from each source
(in Wm−2) are summed to give their cumulative intensity.

Reflection Sound waves bounce off boundaries such as the floor and walls and cause
the sound to be louder. If there is a boundary where we want to measure the sound
intensity, the sound wave reflects off it and sound is even louder. If several boundaries
meet where we want to measure, then the sound wave reflects even more and causes
the it to be even louder.

Equation 6.3 is a modification of equation 6.1 taking this effect into account.

Iwith reflections =
QWsource

4πr2
(6.3)

Q is a factor of the number of boundaries meeting. With only one boundary, such as
a floor Q = 2, with two boundaries such as where the floor meets a wall Q = 4 and if
there are 3 boundaries like in the corner of a room Q = 8. However, this equation only
holds if the boundaries are orthogonal.

6.3.5 Platform Model

The platform model has been constructed with the knowledge that much of it may need
to be calibrated in later phases of the simulation and hardware co-development. For
each aspect of the platform model we explicitly state what will be calibrated in later
phases and any assumptions that have been made in developing the model.

Several assumptions have already been made whilst constructing the domain model.
These are:

Assumption 1: [39] describes acoustic science in enough depth for
our model.

Assumption 2: Player/Stage adequately models robot movement
physics.

63

6. BASIC SIMULATION

e-puck

The e-puck is modelled as a dark green octagonal prism with a diameter of 7cm and
a height of 5.5cm. The model is given proximity sensors in the same locations as they
would be on a real robot, and a forward facing colour camera with a resolution of 80
by 30 pixels. A picture of the Player/Stage simulated e-puck and soundboard is shown
in chapter 8 on page 91.

Assumption 3: The e-pucks all have the same physical character-
istics.

Assumption 4: No e-pucks have faulty motors or sensors.

Acoustics

The “loudness” of the tones is described in the model by the sound intensity, measured
in Wm−2, as the readings for the loudness of a tone.

To approximate the dissipation of tone loudness over distance from the source we
use equation 6.3, only taking into account the reflections from the floor of the arena so
the Q value from equation 6.3 is 2. We can find Wsource from the domain model of the
e-puck: The battery gives 3.3V, and from measuring the speaker on an e-puck we know
its resistance is 8Ω, giving a maximum Wsource of 1.36W. However, the speaker on the
soundboard may have a different resistance to the speaker on the e-puck.

Consequently, the formula used to calculate sound dissipation is:

Iat robot =
Wsource

2πr2
(6.4)

where r is the distance, in metres, from the sound source. If r = 0 the intensity is set
to Wsource.

Assumption 5: The microphones in the soundboard have perfect
gain across all frequencies of interest.

Assumption 6: The change in sound intensity caused by sound
waves reflecting off arena walls and corners is negligible.

Assumption 7: Obstacles in the environment (including other e-
pucks) do not affect sound propagation.

Calibration 1: The resistance of the speaker on the soundboard.

The Arena

The arena is initially modelled as a 2 metre by 2 metre square, with the walls 15 cm
tall. There are no obstacles in the environment so that our assumption about obstacle
acoustics can be correct.

Calibration 2: The arena size, shape and height.

64

Soundboard

The soundboard is a means for the e-pucks to pass sound information between each
other. We model the soundboard by passing sound information directly between the
robots and approximating how the data will appear after being passed through a noise
medium and the soundboard.

Calibration 3: The shape and size of the soundboard.

Calibration 4: The soundboards all have the same characteristics.

Playing a Tone When a robot makes a sound we record the frequency, volume of
the tone and the robot’s position. This information is made available in a global data
pool. When the robot stops playing the tone, that data is deleted from the pool. The
frequency of the tone played is limited to be between half the microphone sample rate
and some minimum frequency.

Assumption 8: when an e-puck plays a tone it does not move.

Calibration 5: The microphone sample rate.

Calibration 6: The minimum tone frequency.

FFT effects Performing a fast Fourier transform (FFT) on time domain data quan-
tises it into frequency bands. To replicate this, when information is put into the data
pool we perform quantisation so that the frequencies are sorted into the bands as shown
in figure 6.7. The lower bounds of the quantisation bands are given by equation 6.5.
To minimise the risk of the soundboard in the engineered system incorrectly banding a
frequency, the signal tones all fall at the midpoint of a frequency quantisation band.

FFTlower = band index ∗ microphone sample rate

number bands
(6.5)

Where 0 ≤ band index < number bands.

Calibration 7: The number of FFT bands.

Listening to a Single Tone When a robot listens for sounds it reads all the in-
formation from the global data pool. For each tone in the data pool, the distance of
the listening robot to the playing robot is calculated and if the playing robot is further
away than the e-puck’s sound sensing range then the tone is ignored. For each of the
remaining tones, the sound intensity is calculated using equation 6.4, and the direction
of the sound with respect to the robot’s current heading is calculated (see figure 6.6
on page 62). This is the same information that the soundboard measures, but because
we have access to the exact coordinates of the sound playing robot and the listening
robot our information is perfect. To approximate the noise and inaccuracy that will
exist in the real hardware, noise is added to both measurements. The sound intensity
is randomly changed by up to ±10% and the direction is rounded to the nearest 10◦.
These are arbitrary amounts of noise and must be calibrated to the true amount of
noise when the hardware is built.

Assumption 9: The e-puck is stationary whilst it listens for tones.

65

6. BASIC SIMULATION

Figure 6.7: The quantisation of frequencies. Tone t1 is quantised to f0, t2 and t3 are
quantised to f1 and t4 to f3.

Calibration 8: The range the e-puck can detect a tone.

Calibration 9: The amount of noise on the sound intensity mea-
sure.

Calibration 10: The amount of noise on the direction of arrival
measure.

Within each frequency band there might be more than one tone. If this is the case
then all the tones within the frequency band are combined. Tones are represented as
a polar coordinate where the radius is the sound intensity measure, and the coordi-
nate angle is the direction the sound came from after noise has been added to the
measurements. This is illustrated in figure 6.8.

To combine the multiple tones, the mean polar coordinate is calculated. The polar
coordinates are converted to Cartesian coordinates, and the mean x and y difference
between the robot and the sound source coordinates is calculated using equations 6.6
and 6.7, where N is the number of tones we are combining. These are then converted
back into polar coordinates, using equations 6.8 and 6.9, to get the combined sound
intensity rT and direction θT .

x̄ =
1

N

N∑
i=1

ri cos(θi) (6.6)

ȳ =
1

N

N∑
i=1

ri sin(θi) (6.7)

rT =
√
x̄2 + ȳ2 (6.8)

θT = arctan
ȳ

x̄
(6.9)

66

Figure 6.8: Tones modelled as a polar coordinate with the e-puck at the origin.

Assumption 10: Multiple tones of the same frequency combine as
the mean of their polar coordinates.

Assumption 11: Tones from different frequency bands will not
affect each other.

6.3.6 Simulation Platform

In this part of the CoSMoS process the model is calibrated to match real world measure-
ments. This is done in phase 3 of the co-development of the simulation and hardware
in chapter 8.

6.3.7 Results Model

The results of using the model to test the hypothesis are presented in chapters 9 and
10.

The next phase of the CoSMoS process would be to validate the results model against
the engineering domain of the experiment running on an embodied robot swarm, so that
the domain model and platform model can be improved.

6.4 Conclusion

In this chapter we build a model of an embodied robot swarm for simulating the experi-
ment from chapter 5, following the CoSMoS process described in section 6.2. In section
6.3.4 we note down everything we know about the embodied robot swarm. In section
6.3.5 we describe how this knowledge is put in the model, noting down any assumptions
and areas to be calibrated later.

In the next chapter we build the soundboard e-puck extension, and in chapter 8 we
calibrate the model developed in this chapter to have a more accurate representation
of the soundboard.

67

6. BASIC SIMULATION

6.4.1 List of Assumptions

Assumption 1: [39] describes acoustic science in enough depth for
our model.

Assumption 2: Player/Stage adequately models robot movement
physics.

Assumption 3: The e-pucks all have the same physical character-
istics.

Assumption 4: No e-pucks have faulty motors or sensors.

Assumption 5: The microphones in the soundboard have perfect
gain across all frequencies of interest.

Assumption 6: The change in sound intensity caused by sound
waves reflecting off arena walls and corners is negligible.

Assumption 7: Obstacles in the environment (including other e-
pucks) do not affect sound propagation.

Assumption 8: when an e-puck plays a tone it does not move.

Assumption 9: The e-puck is stationary whilst it listens for tones.

Assumption 10: Multiple tones of the same frequency combine as
the mean of their polar coordinates.

Assumption 11: Tones from different frequency bands will not
affect each other.

6.4.2 List of Calibration Points

Calibration 1: The resistance of the speaker on the soundboard.

Calibration 2: The arena size, shape and height.

Calibration 3: The shape and size of the soundboard.

Calibration 4: The soundboards all have the same characteristics.

Calibration 5: The microphone sample rate.

Calibration 6: The minimum tone frequency.

Calibration 7: The number of FFT bands.

Calibration 8: The range the e-puck can detect a tone.

Calibration 9: The amount of noise on the sound intensity mea-
sure.

Calibration 10: The amount of noise on the direction of arrival
measure.

68

Chapter 7

Developing The Hardware

7.1 Introduction

In chapter 5 we describe the experiment we want to perform, and in chapter 6 we
describe how it is modelled. In this chapter we describe the development of the “sound-
board” audio hardware extension that enables the e-puck robots to communicate using
audio tones.

Although our experiment will be carried out in simulation rather than on a real robot
swarm, we develop robot hardware so that we can use it to calibrate the simulation.
This is important because the physics of real world has a very strong influence on the
performance of the audio communication. If we were to simulate how the hardware
extension would work in theory, the simulation would not have a grounding in reality
because the data used to create the simulation hasn’t been subjected to the noise of
the real world. By having a real artefact to simulate, it allows us to measure how the
sensors and hardware react to the environment and gives more strength and confidence
to the simulation as a realistic model of reality.

The e-pucks come with inbuilt microphones and a speaker. The microphones resem-
ble small surface mounted integrated circuits, and they are soldered to the body of the
e-puck pointing directly upwards, as shown in figure 7.1. Similarly, the e-puck’s speaker
is small and points directly upwards. The effect of the microphone positioning is that
an e-puck is well equipped for detecting sounds from above it, but not with things that
are at the same height as it, such as other e-pucks. Consequently the range for e-puck
to e-puck audio communication is very small, at less than 10 cm [35]. The commu-
nication range is further reduced when we add a Linux extension board which allows
us to run Player/Stage locally on the e-pucks [55]. This extension is vital for running
the experiment on the e-pucks, but completely covers the e-puck’s inbuilt microphones
rendering them unable to reliably detect sound, as shown in figure 7.2.

We try two different approaches to developing the soundboard. In the first approach,
in section 7.2, we try phased array beamforming. However, it was found to be unreliable,
and the measurements of a sound’s direction of arrival (DOA) to the nearest 45◦ were
worse than random guessing. In the second approach, in section 7.3, we compare left
and right microphone readings from soundboard to measure the DOA. Test results show
that it correctly estimates the frequency of an audio tone 84% of the time, but it only
correctly estimate the DOA (to the nearest 45 degrees) with 30% success. This does
increase to 93% and 39% respectively if signalling frequencies are chosen to give the

69

7. DEVELOPING THE HARDWARE

Figure 7.1: The positioning and size of the microphones built into the e-puck

Figure 7.2: An e-puck with the Linux board extension [55]

70

Figure 7.3: The completed soundboard.

best soundboard accuracy.

The final version of the soundboard is shown in figure 7.3.

7.1.1 Requirements

In section 6.3.4 we set out the basic requirements of the soundboard based on what we
need the e-pucks to be able to do for our experiment. To summarise these are:

• The soundboard is an extension board for the e-puck which sits on top of the
robot.

• It must be capable of sending and receiving at least nine different tones.

• It must be able to monitor the environment for sounds. If a tone is heard it must
be able to calculate its frequency and the direction the sound came from.

There are also restrictions imposed by the e-puck itself:

• The battery powering the e-pucks is 3.3 volts, so microcontrollers and other com-
ponents must all be able to run off this voltage.

• The soundboard must be small enough to fit on top of the e-puck.

• It must use as little power as possible to reduce battery consumption.

• The soundboard will be prototyped and fabricated by hand. It is possible to
fabricate printed circuit boards but these must be assembled by hand, so all
components must be large enough to be soldered manually.

• It must send data to and from the e-puck along an I2C bus. The design should
try to minimise the amount of data sent this way.

71

7. DEVELOPING THE HARDWARE

Phased
Array

Beamforming

BufferADC

BufferADC

BufferADC

I2C To
E-Puck

Data Acquisition Data Processing

FFT
..

.

..
.

Figure 7.4: The process of measuring the sound information in the environment and
sending the information to the e-puck.

7.2 Version 1: Phased Array Beamforming

In this section we describe our attempt to create a soundboard which uses phased array
beamforming to detect the DOA of an audio tone.

We first give an overview of the process of acquiring audio information and preparing
it for sending to e-puck. Then we describe phased array beamforming, and give some
examples of it being used to measure the direction of a sound source. In section 7.2.3
we show the effect of changing the number of microphones and their positioning on the
idealised frequency response of the beamforming, and use this information to decide on
a microphone layout on the soundboard. Finally in this section we describe some tests
for measuring the microphone sample rate and the soundboard frequency response and
present the results of these tests.

7.2.1 Soundboard Process

Figure 7.4 shows the process that is followed to detect sounds. The data acquisition and
processing in the soundboard will be performed by an 18F26K22 PIC microcontroller
[59]. To acquire sound we use electret microphones with pre-amplifiers using a suitable
circuit found online from Sparkfun Electronics [28]. The circuit diagram is given in
appendix A.1. The output of the amplifiers goes into the PIC, which performs analogue
to digital conversion and stores each microphone’s reading into a memory buffer.

To detect the DOA of a sound and its frequency we will be analysing the recordings
from the microphones using phased array beamforming. This part of the processing is
discussed in section 7.2.2. The output of the phased array beamforming is then put
into a 128 band Fast Fourier Transform algorithm. To perform the FFT we used the
picFFT18 library from Alciom [51]. This library is capable of performing a fast Fourier
transform on real valued data. The power spectral density of the FFT is found by
squaring the real and imaginary FFT components and summing them for each FFT
band. Finally the power FFT data is sent to the e-puck along an I2C bus.

Once the e-puck receives all the FFT data, it will find the peaks in the power
spectrum and compare their relative amplitudes to estimate the DOA. The circuit
diagram for the extension is given in appendix A.2.

72

θ

θ Direction of
sound
movement

L

L sinθ

Figure 7.5: Calculating the distance a sound wave must travel before reaching successive
microphones. L is the distance in metres between microphones and θ is the DOA of the
wave. The source is assumed to be far enough away that the sound can be modelled as
a planar wave.

7.2.2 Phased Array Beamforming

Phased array beamforming is a technique for measuring waves and determining their
DOA. A simple microphone phased array uses several microphones placed along a flat
plane. When sounds arrive at the microphones, depending on the DOA, the phase on
the signal at each microphone is slightly different. This is because the microphones are
in different places and so the sound will reach each microphone at a different time. We
can calculate the time delay between the sound reaching each successive microphone
using equation 7.1.

delay =
L sin θ

c
(7.1)

Figure 7.5 shows how this equation relates to the physical microphone array. The
distance between the microphones is L and measured in metres, c is the speed of sound,
which is 343 m/s, and θ is the DOA of the sound. L sin θ is therefore the distance, in
metres, that the sound wave must travel before it reaches the next microphone, and
dividing this by the speed of sound gives the time delay.

We can effectively steer the direction in which the microphone array “listens” by
applying a delay to the signal from each microphone. These delays are calculated such
that the sound will reach each microphone at the same time only if the sound source is
in the direction we steered the array. The resulting delayed signals are then summed. If
the sound source is in the direction in which the array was steered then the summation
will give a peak, and the summation will be noise if the DOA was from a different angle.
This process is called “delay and sum beamforming” and is illustrated in figure 7.6.

Benefits of Phased Array Beamforming

The principle of phased arrays can be applied to measuring any kind of waveform that
propagates through a medium; including electromagnetic and acoustic waves. Phased
array DOA estimation techniques are a useful area of research because of their potential
applications: for example RADAR, SONAR or ultrasound scanning [48]. By using
delay and sum to “point” the soundboard in any direction we can theoretically achieve

73

7. DEVELOPING THE HARDWARE

Σ

(a)

z-2 z 0z-1

Σ

(b)

Figure 7.6: As a sound wave moves from left to right, it reaches each microphone
in turn. Without delay (a), the sum of the signals is noisy. By delaying the signal
from the microphones (b), the signals can reach the summation module at the same
time, resulting in a peak in the summation. The amount to delay the signals by varies
depending on the DOA of the sound wave.

a high degree of accuracy in DOA estimation, as has been demonstrated in the scientific
literature.

In Valin et. al. [90] the authors create an array of 8 microphones on the corners
of 50 x 40 x 36 cm cuboid. This is mounted onto a robot and is used for navigating
the robot towards a sound source. The robot was tested by playing tones at it with a
speaker, and the results are presented as the mean azimuth prediction error as it varies
with distance from the source. The system gave an error of up to 3◦ over a distance of 3
metres. Dumbacher et. al. [26] compare several DOA estimation techniques, including
delay and sum phased array beamforming, by using them to detect the sound source in
a car wheel moving on a rolling road dynamometer. The results were not statistically
analysed but presented as a image of the car tyre with the measured sound intensities
super-imposed on top. The results correctly located the sound source as the lower front
edge of the tyre. In [100] a four microphone phased array used to locate noise sources
in a car. The equipment is capable of measuring the DOA in a three dimensional space,
so gives not just the DOA azimuth, but its elevation too. The authors claim that “in
general, detection can achieve more than 90% correct rate” [100].

The main disadvantage of delay and sum beamforming is that it requires a high
sample rate on the microphones. The discretisation caused by the sampling means
that we can only apply time delays that are some factor of the sample rate. With a
higher sample rate, the duration of a single sample is shorter, so delays are more able to
closely match the delay needed to steer the phased array. According to [63] “frequently
the inputs sample rate is five to ten times that required for waveform reconstruction”. If
our maximum expected frequency is 10 kHz then we need to sample at at least 20 kHz
to be able to reconstruct the waveform, so for delay and sum beamforming our actual

74

sample rate must be at least 100 kHz to 200 kHz.

Our intended application of phased array beamforming is smaller than any we have
found in the literature. To fit on top of an e-puck the microphones need to be close
together, requiring very short beamforming delays and hence a very high sample rate.
As we are using a PIC to do all our processing, this presents an upper limit on the
capabilities of the hardware.

Delay and sum beamforming is the most basic form of phased array DOA estimation
[63]. Considerable work has gone into developing more advanced signal processing
techniques. Krim and Viberg [48] give a thorough review of these up until 1996, the most
notable of which is the Multiple Signal Classification (MUSIC) algorithm [81]. MUSIC
is capable of detecting multiple signals in the environment, and performs significantly
better at DOA estimation than other popular algorithms [48,81].

Despite MUSIC being a superior DOA estimator to delay and sum beamforming,
we have chosen to use the simpler algorithm in our work. This is because the focus of
our work is not on DOA estimation but the evolution of swarm robotic behaviour. The
aim of this chapter is to develop hardware that is adequate for measuring a sound’s
frequency and DOA, without investing too much time on its development. Advanced
signal processing is outside the scope of this work and investigation into this field is left
as future research.

7.2.3 Design Considerations

Array Size

The frequency response of a phased array of microphones is dependent on both the
number of microphones it contains and the distances between them. At certain combi-
nations of sound frequency and DOA the extra distance the sound wave must travel to
reach each successive microphone is a multiple of the wavelength. When this happens
the signals from the microphones are in phase. The delay and sum beamformer will
interpret this as if the DOA of the wave is the same as the steered angle, even when
that is not the case.

Equation 7.2 gives the normalised summation of the microphone signals as would
be received by a delay and sum beamformer with N microphones equally spaced at
intervals of L metres, as a function of the input wave frequency f and DOA θ. The
derivation of this equation is given in appendix A.3.

1

N

N−1∑
m=0

exp(
j2πfmL sin θ

c
) (7.2)

where c is the speed of sound, which is 343m/s at 20◦C [39].

Figure 7.7 shows an example where there are 10 microphones at 20cm spacing.
Ideally, the response will be at maximum for ±0◦ over all frequencies, and at minimum
at all other angles and frequencies. Meaning that, ideally, the response will be at
maximum only when the steering angle matches the wave’s DOA. Waves from other
directions are completely ignored. What figure 7.7 shows is that the phased array
is not ideal. Even with a large value of N and L there are certain combinations of
frequency and DOA at which the phased array cannot be accurate. Furthermore, at
low frequencies, regardless of the DOA, the response is near maximum. Meaning that
the directionality of a wave cannot be measured this way if it is low frequency.

75

7. DEVELOPING THE HARDWARE

Figure 7.7: Example theoretical frequency response of a microphone phased array of 10
microphones spaced 20cm apart. The y axis is the DOA (in degrees) with respect to the
angle in which the array is steered, the x axis is frequency of the sound wave. Areas of
white indicate that the normalised summation is 1 and the signals are in phase. Areas
of black are where the summation is 0 and the signals are 180◦ out of phase.

76

This lack of directionality at low frequencies is caused by the incoming wave’s wave-
length being larger than the array. The array size in metres is given by (N−1)L, which
corresponds to a frequency of:

f =
c

(N − 1)L
(7.3)

At this wavelength, the microphone signals will cancel each other at ±90◦ to the steering
angle. Frequencies below this will not begin to properly cancel, and consequently the
beamformer lacks directionality.

Figure 7.8 shows how changing the number of microphones and the spacing between
them affects the frequency response of the phased array beamformer. It can be seen
that increasing the number of microphones means that directionality can be measured at
lower frequencies. Increasing the spacing between microphones makes the beamforming
more precise, so DOAs just above or below the steered angle are more likely to be
minimised.

The best design would have a very large number of microphones which are well
spaced apart. However, we are constrained by the requirements of the hardware (given
in section 7.1.1) that it must fit onto an e-puck, so we must pick values for N and L
such that (N − 1)L ≈ 0.07, since the e-pucks have a diameter of 0.07m.

In section 7.2.2 we observed that a high sample rate is needed for the beamforming
delays to be accurate. This imposes a limit on the number of microphones we can
use because the PIC cannot process multiple analogue inputs in parallel. The PIC has
only one analogue to digital converter, which must be multiplexed between different
inputs in order to get readings from different sensors. Consequently the microphones
can’t be sampled at exactly the same time, but must be sampled consecutively so that
corresponding points in the microphone memory buffers are as close together in time as
possible. Therefore using additional microphones reduces the overall sample rate and
this could negatively impact on the performance of the hardware.

The final phased array design uses 3 microphones spaced at 5cm intervals. The
frequency response for a phased array with these parameters is shown in figure 7.9.
These parameters are not ideal, but present the best performance within the given con-
straints. The array size is 10 cm, which gives a minimum frequency to get directionality
of 3430 Hz. To measure a this frequency the array will need a sample rate of 6860 Hz.
However, as stated earlier in section 7.2.2, we need to sample at a rate five to ten times
this. Consequently the minimum sample rate of the microphones must be 34 kHz.

I2C Data Transfer Timings

To reduce power consumption, beamforming will not be performed constantly but only
on request from the e-puck. In order to present requested data to the e-puck in a timely
manner and to limit the amount of data sent to the e-puck along the I2C bus, we cannot
perform delay and sum beamforming for every possible DOA but only for a small subset
of angles. Consequently, we will only be testing angles 90◦, 45◦, 0◦, −45◦ and −90◦,
as illustrated by figure 7.10. By only doing beamforming for five angles we also reduce
the amount of time spent computing Fourier transforms, and there is much less data to
send to the e-puck.

The FFT algorithm uses 128 points, so will return 128 data values. The first 64
are the power spectral density for each frequency, the last 64 are a complex reflection
of the first 64 and can be ignored. To transfer the Fourier transforms of 5 different

77

7. DEVELOPING THE HARDWARE

(a) 3 mics 2cm separation (b) 5 mics 2cm separation (c) 10 mics 2cm separation

(d) 3 mics 3cm separation (e) 5 mics 3cm separation (f) 10 mics 3cm separation

(g) 3 mics 5cm separation (h) 5 mics 5cm separation (i) 10 mics 5cm separation

(j) 3 mics 10cm separation (k) 5 mics 10cm separation (l) 10 mics 10cm separation

(m) 3 mics 20cm separation (n) 5 mics 20cm separation (o) 10 mics 20cm separation

Figure 7.8: The effects of the number of microphones and the distance between them
on the theoretical frequency response of the phased array.

78

Figure 7.9: The frequency response of the microphone phased array. There are 3
microphones spaced 5cm apart.

Figure 7.10: The angles for which delay and sum beamforming will be performed.

79

7. DEVELOPING THE HARDWARE

beamforming values along the I2C bus we must send 640 bytes 1. I2C buses are clocked
at 100 kHz, so it will take 51.2 ms to transfer the data.

This is quite slow, but not unworkable. It would certainly be faster to perform FFT
analysis on the board and send the resulting tone frequency and DOA to the e-puck.
However, there are two factors which influence our decision to not do this. The first
is simply that the time between the e-puck requesting data, to the board having done
5 delay and sum and Fourier transforms, is long enough for the original I2C request
to time out. Secondly, it is far easier to re-program the e-puck than the soundboard.
The analysis code may need to be calibrated to cope with different environments, so
it is much more flexible if we can change parameters within the e-puck code and leave
the board unchanged, rather than reprogramming the soundboard’s PIC each time the
swarm is moved to a new environment.

7.2.4 Verification Tests

There are two different tests we use gather data about the soundboard, so that we can
verify that it measures frequency and DOA. We must measure the sample rate of the
microphones so that we can perform delay and sum beamforming. We must also collect
the FFT data from each of the beamformed angles so that we can analyse the data in
MATLAB to find the best way of reducing it to a set of frequency and DOA estimates.

Sample Rate

To measure the microphone sample rate we played a 1 kHz tone at the soundboard and
recorded the contents of the microphone buffers.

Figure 7.11 shows how the number of samples in the measured 1kHz wave, relates
to the sample rate. If there are x samples per wavelength of the 1 kHz tone and fs is
the sample rate we want to find, then:

x
1

fs
=

1

1000
(7.4)

fs = 1000x (7.5)

To find x, the number of samples in 30 different wavelengths are counted. The mean
value is then taken as a reading for x.

Measurement Accuracy

The aim of this test is to gather examples of FFT data that the e-puck driver must
interpret into tone frequency and DOA information.

Figure 7.12 shows the setup for this test. A speaker connected to a signal generator
is placed 20cm away from an e-puck equipped with the audio extension. The speaker is
placed facing the robot, and a number of test tones are then played at a peak to peak
voltage of 16V. This is repeated with the speaker at 90◦, 45◦, 0◦, −45◦ and −90◦ DOA,
so that for each combination of DOA and test tone frequency we have at least 30 FFT
readings for every beamformed angle.

1each FFT point is stored as an integer, using 2 bytes. So 5 angles × 64 FFT points × 2 bytes per
FFT point = 640 bytes.

80

fs

1

f
11

2

3

x

Figure 7.11: The relation between the known frequency played f and the unknown
sample rate fs. The wave shown is the data stored in the microphone buffer.

Figure 7.12: Photograph of the measurement accuracy test set up.

81

7. DEVELOPING THE HARDWARE

7.2.5 Test Results

The sample rate was found to be 38 kHz. At this rate, the delays for the beamforming
algorithm are:

• 0◦: No delay.

• ±45◦: 103µs, which is 3.917 samples. This is rounded to a 4 sample delay.

• ±90◦: 146µs, which is 5.539 samples. This is rounded to a 6 sample delay.

To measure the accuracy of the beamforming algorithm we used test signals of 500,
1000, 2000, 3000, 4000, 5000, 6000, 7000 and 10000 Hz. The resulting FFT data was
then loaded into MATLAB for analysis.

By simply searching the FFT results for the highest peak and using its correspond-
ing frequency and beamformed angle as the correct answer, we correctly estimated 83
frequencies and 128 DOAs out of a total of 495 FFT sets. This corresponds to a success
rate of 16.7% and 25.9% respectively. By only checking the FFT bands of the test fre-
quencies, and by looking for the band where the sum of the FFT results was largest, we
were able to increase the frequency estimation success to 327 out of 495 which is 66.0%.
However, using the beamformed angle with the highest value at that frequency gave a
success rate of only 17.2% (85 correct out of 495), which is worse than random. Nei-
ther of these methods are reliable, and they make the assumption that there is always
exactly one tone being played, which is not always the case.

The unreliably of the beamforming in accurately estimating the correct audio infor-
mation is most likely due to the compromises made in its design. The array size of 3
microphones spaced 5cm apart is the largest that can be implemented within the size
and processing speed limitations, but it still has poor directionality. Another factor
may be that we only perform delay and sum beamforming for a small number of DOAs,
but there is a non-linear relationship between the beamforming result and the DOA.
Re-examining the frequency response in figure 7.9 we can see that DOAs that are close
to the steered angle tend to have a smaller response, especially at higher frequencies.
This non-linearity makes it difficult to correctly analyse the results from the extension.
However, in our test we placed the sound source along each of the measured DOAs,
so this effect should have been mitigated. If we were to repeat the test using DOAs
different to the ones specifically measured (for example ±30◦ or ±60◦) this problem
would become more pronounced.

7.3 Version 2: Microphone Amplitude Comparison

To try and get better results, the beamforming was removed entirely from the sound-
board. The revised process is shown in figure 7.13. Instead of beamforming, the FFT
of each microphone buffer is sent to the e-puck and no other processing occurs on the
extension. Since we are only removing signal processing, no changes need to be made
to the board’s circuitry or the microphone positioning.

The e-puck determines the frequency and DOA by comparing the power density
FFT measures for each of the microphones. The microphone where the FFT power
density is largest is assumed to be closest to the sound source. This is essentially the
same as comparing the amplitude of the signals measured at each microphone to decide
a sound source’s DOA.

82

BufferADC

BufferADC

BufferADC

FFT

I2C To
E-Puck

Data Acquisition Data
Processing

FFT

FFT

Figure 7.13: The revised process for measuring the sound information in the environ-
ment. Instead of sending the FFT of delay and sum beamforming data, as in figure 7.4,
we now send the FFT of the microphone readings.

This process has the advantage that it does not require a high sample rate to work
and has no lower limit on the frequencies it can detect. Consequently, we can use
the e-puck’s sound synthesis module to play signalling tones. We can also lower the
microphone’s sample rate so that the FFT bands are narrower and the soundboard
can distinguish between tones that are closer together in frequency. However, at short
range the signals may be equally loud and at long range equally quiet; such that the
accuracy of comparing amplitudes to estimate the DOA is dependent on the distance
of the soundboard from the source.

7.3.1 Creating a Sound

The e-pucks already have the hardware for playing a sound that has been pre-recorded
and stored in program memory [1]. The Glowbot project [40] extends this, with drivers
capable of wavetable synthesis. In wavetable synthesis, a single waveform is stored in a
block of memory, N samples wide. When a tone is played, the synthesiser increments
through the wavetable at sample rate fs. However, the synthesiser does not play every
sample from the wavetable but skips several. Depending on the number of stored
samples skipped each time the wavetable is accessed, the frequency that is being played
can be varied. Equation 7.6 gives the formula for the number of samples to skip each
time as a function of the sample rate fs, the wavetable size N , and frequency that the
synthesiser must play f :

skip = N
f

fs
(7.6)

The speaker sample rate is limited to 7200 Hz by the e-puck hardware (section
6.3.4), this means that the maximum frequency that can be produced by the e-puck is
3600 Hz.

83

7. DEVELOPING THE HARDWARE

Figure 7.14: Photograph of the measurement accuracy test set up. Unlike figure 7.12, an
e-puck with a soundboard can be used as the sound source to give results that are more
representative of the measurements that would be taken in am embodied, multi-robot
experiment.

7.3.2 Test Results

The microphone sample rate needs to slightly larger than the speaker sample rate so
that it can detect all the possible playable tones, without being so large that there is un-
necessary processing. Following the procedure described in section 7.2.4 the microphone
sample rate was adjusted to be 8 kHz.

To measure the accuracy of the extension we performed the test described in section
7.2.4. However, instead of using a speaker and signal generator all tones were gener-
ated by another e-puck, so that the data recorded is a realistic example of the data
the extension might receive when it is used in our experiment. Figure 7.14 shows a
photograph of the experimental set up using an e-puck as the sound source.

We used test signals of 530, 720, 900, 1100, 1280, 1470, 1650, 1840, 2030, 2220,
2400, 2600, 2780, 2970 and 3150 Hz. These values were chosen because they are the
mid-points of the FFT bands, and between each band with a test signal there are two
bands with no expected signals. This is to reduce interference between adjacent FFT
bands. Figure 7.15 shows an example of the data sent to the e-puck using the new

84

Figure 7.15: Example FFT of the microphone buffers. Results shown here are for a
frequency of 1650 Hz and DOA 90◦. The line with the highest peak is the FFT of the
microphone closest to the source, and the line with the lowest peak is for the microphone
furthest away.

version of the hardware. It can be seen that the peaks in each FFT response occur
in the same place for each microphone, the size of the peak is greater the closer the
microphone is to the sound source.

To determine whether any tones were heard, and the frequencies of any tones the
following pseudo-code was used:

1. Find the mean of each microphone’s FFT data

2. For all bands in FFT where a test tone would be detected:

• Mark mic1 tone as heard if: mic1 FFT result for this band > freq threshold
factor × mic1 mean.

• Mark mic2 tone as heard if: mic2 FFT result for this band > freq threshold
factor × mic2 mean.

• Mark mic3 tone as heard if: mic3 FFT result for this band > freq threshold
factord × mic3 mean.

• If two of the three microphones heard a tone, then a tone was heard in this
FFT band.

The freq threshold factor parameter controls how sensitive the soundboard is to the
loudness of the tones played. The advantage of this method of analysing the data is
that it doesn’t assume that exactly one tone is played at all times, so it can also detect
if there were none or multiple signals. It also uses a threshold that is relative to the
noise level, so is somewhat robust to changes in the ambient noise environment.

To estimate a tone’s DOA we compared the peaks in the left and right microphone
FFT data at the bands where a tone was detected. If there is a small difference then
the source is estimated to be 45◦ in the direction of the louder microphone reading. If
there is a large difference then the source is assumed to be at 90◦ to the robot. If there

85

7. DEVELOPING THE HARDWARE

is no significant difference then the source is estimated to be in front of the robot. The
DOA estimator is calibrated by finding a “microphone difference factor” (MicDifference)
which is a multiple of the reading from the microphone’s FFT and determines the range
around which the microphone readings can be compared. This process is illustrated in
figure 7.16.

As with the frequency estimation, the DOA estimation uses thresholding which is
relative to the FFT result, so if the FFT reading for all the microphones in that band
were low or high, the algorithm would scale accordingly. The MicDifference parameter
controls how sensitive the estimation algorithm is to differences in the microphone FFT
results. It is the percentage difference that microphone readings must be in order to
qualify as different.

The FreqThreshold and MicDifference parameters were 2.4 and 0.32 respectively,
and these were chosen to give the largest possible correct score for the data set we
tested. When this estimation algorithm was applied to the data from our accuracy test,
it was able to correctly guess the frequency 696 times out of 825 data sets (84%), and
correctly guessed the DOA 249 times out of 825 (30%). These values, particularly the
DOA, are not ideal but are at least better than random. However, the success rate is
not consistent over all test frequencies and DOAs, as shown by figure 7.17. Figure 7.17a
shows that the ±45◦ angles were measured with the least accuracy. This is an artefact
of how we determine the DOA from the FFT data. For ±45◦ to be guessed, the FFT
readings must be within a certain range of each other. For 0◦ the range of differences
can be larger, and for ±90◦ it can be larger still. The lack of accuracy in the ±45◦ tests
is consequently due to noise on the FFT readings pushing the differences outside of the
range where ±45◦ would be guessed, causing an incorrect estimation.

The mid-range frequencies of around 1 kHz to 2 kHz, gave the most accurate es-
timates for both frequency and DOA. This is most likely because the speaker is not
capable of playing frequencies below 200 Hz, and resonates at 400 Hz [2]. Additionally,
the low sample rate causes the wavetable synthesiser to generate the higher frequency
tones with a squarer waveform than lower frequencies. This introduces unwanted har-
monics into the tone which may interfere with the FFT, causing erroneous readings. At
the tone mid-range frequencies, both these effects are lessened and there is less unwanted
noise in the microphone readings. In chapter 5, we establish that we need 9 different
signal frequencies in order to perform our tightly coupled communication. From the
results shown in figure 7.17b, the frequencies 720, 900, 1100, 1280, 1470, 1650, 1840,
2030, and 2220 Hz are chosen for the experiment. These signals give the best combina-
tion of frequency and DOA success rate, for an overall frequency successful estimation
rate of 93% and DOA successful estimation rate of 39%.

7.4 Conclusion

In this chapter we describe the process of developing the soundboard extension to the
e-puck robots that must be functional within the constraints on the extension’s physical
size, processing speed and memory size. This soundboard is capable of monitoring the
audio environment and interpreting it into frequency and DOA information.

Our initial attempt at building the soundboard involves delay and sum beamforming.
Although this method is theoretically promising, the implementation is too limited by
the physical constraints of the hardware to be effective. It may be that more advanced
DOA estimation algorithms would produce better results, but these would still need

86

Microphone
reading M.

M - (M*MicDifference)

M + (M*MicDifference)

(a) The microphone difference factor (MicDifference) is used to generate
a boundary around the microphone reading M .

(b) When there is no overlap between bound-
aries the DOA is estimated as 90◦ in the di-
rection of the larger microphone reading

(c) When there is less than 50% overlap the
DOA is estimated at 45◦ in the direction of
the larger microphone reading

(d) With more than 50% overlap the DOA is
estimated at 0◦

Figure 7.16: Using the microphone difference factor (MicDifference) to estimate the
DOA of a signal.

87

7. DEVELOPING THE HARDWARE

(a) Estimation success with respect to test tone
frequency.

(b) Estimation success with respect to test tone
DOA.

Figure 7.17: The success rate of the extension board as it changes with test tone
frequency and DOA. The black lines indicate the frequency estimation success, and the
lighter, cyan lines the angle estimation success.

to function within the size and processing constraints described in section 7.1.1. The
second attempt uses a more simple system of comparing the signal amplitudes of three
microphones to estimate which is the closer to the sound source. Tests show this to be
a more reliable solution, and the 9 signalling frequencies are chosen to give a success
rate of 93% for frequency and 39% for DOA.

The problems with the initial solution shows the value of co-developing the hardware
and simulation alongside each other. If we had simulated the extension as being as
reliable as beamforming would be under better conditions then the simulation would
be wrong. By developing the hardware and then calibrating the simulation to model it,
we prevent the simulation from becoming too idealised. The simulation stays grounded
in reality and can always be compared to a real artefact.

In chapter 8 the model from chapter 6 is calibrated to better incorporate our new
knowledge of the soundboard. Now that it is possible to take readings and measurements
with the soundboard we can get a much better understanding of the acoustic and
audio environment we are modelling. In this chapter we have already measured the
soundboard’s accuracy with different combinations of signal frequency and DOA. To
calibrate the model we should also measure:

Calibration 11: The soundboard accuracy as it gets further from
the sound source.

Calibration 12: The soundboard accuracy in the presence of two
or more tones.

88

Chapter 8

Calibrating the Model

8.1 Introduction

In this chapter we address the calibration points from chapters 6 and 7, so that we
can build a more realistic model of the soundboard for our simulation, which better
represents the measurable characteristics of the hardware.

To achieve this we perform several tests on the soundboard to measure its audio
characteristics, the results of which are fed back into the model to improve its realism.
Through these tests it emerges that the soundboards developed in chapter 7 are very
unreliable and erratic, so two different soundboard models are developed; one that is
idealised and not subject to noise, and one that is noisy and more realistic. Both models
are much simplified versions of the real soundboards, but the simplifications allow the
hypothesis of this work to be tested.

We begin this chapter by addressing the calibration points answered during the
development of the soundboards. In section 8.3 we compare two soundboards to see
if they produce equivalent readings under the same test conditions. In section 8.4 we
measure a soundboard’s response to changing the direction of arrival (DOA) of a test
tone. In section 8.5 we test the soundboard using two simultaneous tones, then in
section 8.6 the response of the soundboard to the test tone distance. Finally in section
8.7 the results of these tests are fed back into the simulation to produce both realistic
and idealised models of the soundboard.

8.1.1 List of Calibration Points

This is a summary of all the calibration points raised in chapters 6 and 7:

Calibration 1: The resistance of the speaker on the soundboard.

Calibration 2: The arena size, shape and height.

Calibration 3: The shape and size of the soundboard.

Calibration 4: The soundboards all have the same characteristics.

Calibration 5: The microphone sample rate.

Calibration 6: The minimum tone frequency.

89

8. CALIBRATING THE MODEL

Calibration 7: The number of FFT bands.

Calibration 8: The range the e-puck can detect a tone.

Calibration 9: The amount of noise on the sound intensity mea-
sure.

Calibration 10: The amount of noise on the direction of arrival
measure.

Calibration 11: The soundboard accuracy as it gets further from
the sound source.

Calibration 12: The soundboard accuracy in the presence of two
or more tones.

8.2 Calibration Points Already Answered

Several of the calibration points raised in chapter 6 have already been answered in
chapter 7 as the soundboard hardware is developed. In this section we briefly repeat
the answers to these calibration points.

Calibration 1: The resistance of the speaker on the audio hard-
ware.

The speaker has a resistance of 8Ω.

Calibration 2: The arena size, shape and height.

The dimensions of the arena remain variable, as the dimensions can easily be changed
in simulation and in reality. In our initial simulation we use an arena of 2 metres by
2 metres, but if this is found to be too large or small for the number of e-pucks in the
arena it can still be changed.

Calibration 3: The shape and size of the soundboard.

The soundboard had three microphones on it, spaced 5 cm apart, giving it a total length
of 10 cm. Figure 8.1 shows the simulated e-pucks with a soundboard.

Calibration 5: The microphone sample rate.

The microphones are all sampled at 8000 Hz.

Calibration 6: The minimum tone frequency.

The minimum tone frequency used is 720 Hz.

Calibration 7: The number of FFT bands.

There are 128 bands in the soundboard’s FFT. Combined with the sample rate of 8000
Hz, this means the soundboard is capable of detecting frequencies between 0 and 4000
Hz, and each FFT band has a width of 62.5 Hz.

90

Figure 8.1: Image of the simulated e-pucks with soundboards.

8.3 Comparing Soundboards

Calibration 4: The soundboards all have the same characteristics.

The purpose of this test is to learn whether physical copies of the soundboard give
equivalent readings to one another. This is so that in our simulation we will know
whether the simulated soundboards can be identical copies of each other, or whether
each one must be given different noise characteristics. If different noise characteristics
are required, this test should indicate areas in which they should differ. For exam-
ple, whether there are significant variations between soundboards at any particular
frequency or direction of arrival (DOA).

Two soundboards have been constructed following the work presented in chapter 7.
Ideally we would use more for this test, but the number of boards we are able to make
for this experiment is limited by the resources and time they take to build. For this
work, it would take too much time to construct the additional soundboards when the
focus of our work is to test the hypothesis from chapter 4 rather than the construction
of an e-puck extension. With results from only two soundboards we will have to assume
that both boards are typical, and that our results can be extrapolated to apply to all
other potential soundboards. So, if the two boards are found to be similar we assume
all soundboards are similar and can be simulated in the same way. If the soundboards
are different we assume that all soundboards have such variations and the simulation
is adjusted accordingly.

This test is imperfect but a useful measure of the soundboard capabilities. It may be
that the assumption about both boards being typical is true, so that the simulation of
the soundboards will be good enough to test the hypothesis. The testing and comparison
of additional soundboards is left as future work.

Assumption 12: The two soundboards used to calibrate the model
are representative of all soundboards.

8.3.1 Experimental Method

To test each soundboard, we play several different test frequencies, at varying DOAs to
the soundboard under test, and record the FFT data sent from the soundboard to the
e-puck.

91

8. CALIBRATING THE MODEL

Soundboard Parameter Value Success Rate (%)
board 1 Frequency threshold factor 2.7 90.4

Microphone difference factor 0.18 32.9
board 2 Frequency threshold factor 2.4 86.9

Microphone difference factor 0.34 16.1

Table 8.1: The frequency threshold and microphone difference factors for each sound-
board, to give the best success rate.

The frequencies used to test the soundboards are the signalling frequencies decided
upon in chapter 7, of 720, 900, 1100, 1280, 1470, 1650, 1840, 2030, and 2220 Hz.
The sound source is an e-puck equipped with its own soundboard at a distance of
20cm. DOAs of −90◦,−45◦, 0◦, 45◦ and 90◦ are measured. For each combination of test
frequency and DOA, 28 data readings are recorded, each reading consisting of the FFT
results from each of the three microphones on the tested soundboard.

8.3.2 Results

Before analysing the measured results, the algorithm which determines frequency and
DOA information from the raw data needs to be calibrated. This algorithm is described
in section 7.3.2 and consists of:

1. Frequency threshold factor. An amount to multiply the mean FFT reading
for each microphone by to get a threshold. If, two or more microphones have a
result over this threshold at any point along the frequency spectrum where we
know a test frequency may be, then a tone is detected.

2. Microphone difference factor. A factor controlling how similar the left and
right microphone readings must be to estimate DOA.

For calibrating the soundboards, we measured 10 runs of each combination of signal
frequency and DOA and recorded the FFT readings from each microphone. This data
is separate from the data used in this test so that the soundboards are not calibrated
on the data being used to test them. We tested the calibration data with frequency
threshold factors of 0 to 10, and microphone difference factors of 0 to 1.5. The frequency
and DOA estimation success rates, as a function of these parameters, are shown in figure
8.2. The best parameters and the corresponding success rate for each soundboard are
shown in table 8.1:

Figure 8.2b indicates that the soundboards may be similar when predicting fre-
quency, but will have different performances when predicting DOA. Using the best
performing estimation algorithm parameters, given in table 8.1, figures 8.3 and 8.4
show the performance of both soundboards as a function of test frequency and DOA.
It can be seen that:

• The frequency estimation accuracy of both soundboards appears similar.

• Soundboard 1 performs better than soundboard 2 at estimating the DOA.

• Soundboard 1 and board 2 have different responses when estimating DOA. While
board 1 is more accurate when the DOA is ±90◦, board 2 is more accurate with
DOAs of −45◦ and 0◦.

92

(a) (b)

Figure 8.2: The effects of changing the frequency threshold factor on the frequency
estimation success rate (a) and the microphone difference factor on the DOA estimation
success rate (b). The black line is the success rate for soundboard 1 and the lighter line
for soundboard 2.

(a) (b)

Figure 8.3: Success rate of soundboard 1 estimation algorithm with respect to test tone
frequency (a) and DOA (b). The black lines indicate frequency success rate and the
lighter lines the DOA success rate.

93

8. CALIBRATING THE MODEL

(a) (b)

Figure 8.4: Success rate of soundboard 2 estimation algorithm with respect to test tone
frequency (a) and DOA (b). The black lines indicate frequency success rate and the
lighter lines the DOA success rate.

The frequency and DOA estimations from each soundboard were compared using a
Wilcoxon rank-sum test [64]. The Wilcoxon rank-sum test is a non-parametric statis-
tical variance test to determine whether two sample sets of data are could have been
taken from the same overall set. It tests the null hypothesis that the two samples are
from the same set. A score U of the comparison of the sample sets is generated, as
well as a mean and standard deviation for the expected U that would be seen if the
two sample sets are the same. The Wilcoxon rank-sum tests the null hypothesis that
the sample sets are from the same source. If U falls within acceptable confidence limits
then this null hypothesis holds. [64]

For the comparison of the two soundboards, we compare the boards’ frequency and
DOA estimations with respect to the test frequency and test DOA. These results are
shown in figures 8.5a and 8.5b respectively. We use 95% confidence limits to judge
the Wilcoxon rank-sum results. Where the U score for frequency or DOA estimations
fall outside these limits indicates where the soundboards have statistically significant
differences in characteristics.

Examining the frequency estimations first, figure 8.5b shows that both soundboards
give similar results as the test tone’s DOA is varied; only at 90◦ do they significantly
differ. As test tone frequency is changed (figure 8.5a), the soundboard characteristics
show more variation. From figures 8.3 and 8.4 we can see that for mid-range frequencies
of 1280 to 1840 Hz both boards had near 100% accuracy, hence Wilcoxon rank-sum
values of U ≈ µ at these frequencies. However, at higher and lower frequencies, the
soundboards were both less accurate, causing more variation in their results and pushing
the U comparison further from the mean. Only the readings for 2030 and 2220 Hz
differed enough to fall outside the Wilcoxon rank-sum 95% confidence limits, so for
input tones of 720 to 1100 Hz both boards were inaccurate, but at least consistent with
each other.

In figure 8.5b the DOA estimation shows an interesting linear trend. This is due
to the DOA estimations of board 2 not changing as a results of input tone DOA or
frequency. Figure 8.6 shows the probability density function graph of all 1260 of sound-

94

(a) Comparison of tone frequency estima-
tions. Sample size is 140 for each board,
the Wilcoxon rank-sum µ = 9800 and
σ = 677.5.

(b) Comparison of tone DOA estima-
tions. Sample size is 252 for each board,
the Wilcoxon rank-sum µ = 31752 and
σ = 1635.

Figure 8.5: Wilcoxon rank-sum results between board 1 and board 2 results for fre-
quency estimation (marked with ×) and DOA estimation (marked with ◦). The hori-
zontal lines indicate the 95% confidence limits.

board 2’s DOA estimations. Ideally the bars should be equal, but 70% of all DOA
guesses were 0◦ and 26% were −45◦. This tendency to estimate either 0◦ or −45◦ did
not change, regardless of the correct DOA. Consequently, soundboard 2 is useless for
correctly estimating a tone’s DOA. The high accuracy at inputs of 0◦ shown in figure
8.4b is just a result of this tendency to guess 0◦ 70% of the time.

A new approach to DOA estimation is required to try and improve the soundboards’
accuracy.

8.3.3 Frequency and DOA Estimation From FFT Amplitude
and Differential

In our analysis of the soundboards so far, we have been examining the FFT data only
after applying our own processing techniques to it. Information contained in the FFT
readings for each microphone has been filtered and reduced to give an estimate of the
tone frequency and DOA. It may instead be that the work of processing the raw FFT
information can be left for the evolutionary algorithm.

Instead of our approach so far, we now try converting the information to a measure
of amplitude, and a left-right differential. The amplitude is the sum of the three micro-
phones’ FFT readings, and the differential is the left microphone’s FFT reading minus
the right microphone’s. The amplitude should give an indication of which frequencies
are currently detected, whilst the differential gives an indication of the DOA. The dif-
ferential reading for each FFT band will ideally be positive when the DOA is to left
of the robot, and negative when the DOA is to the right, getting a larger magnitude
with DOAs closer to ±90◦. Figure 8.7 shows an example set of FFT reading and how

95

8. CALIBRATING THE MODEL

Figure 8.6: The DOA guesses of soundboard 2 expressed as a probability density func-
tion.

it reduces to an amplitude and differential.

Using the same test data as with section 8.3.2 we generate amplitude and differential
readings, across all test frequencies and DOAs for both soundboards. Figure 8.8 shows
the median readings from both soundboards. It can be seen that in both boards there
is a considerable difference between the amplitude reading for frequencies where no
tone is played, and the amplitude reading when a tone is present. Figure 8.9 shows a
comparison of the distribution of differential readings as DOA changes. The differential
readings from soundboard 1 show a slight trend towards the differential increasing as the
test DOA moves from −90◦ to 90◦. However, each distribution also has a large spread of
results, so from the differential alone it would be difficult to determine what the actual
DOA of a tone would be. Conversely, the results for soundboard 2 in figure 8.9b cover
a much smaller range of values, with no significant variation between distributions.

The results from the Wilcoxon rank-sum test are shown in figure 8.10. These results
corroborate our analysis of the data from figures 8.9 and 8.8. At DOAs of ±45◦ and
0◦, U was within the 95% confidence limits since there was little to no difference in
the differential measurements. At ±90◦, the differential reading from soundboard 1 was
more responsive to changes in test tone DOA, so the U at these angles diverges from the
Wilcoxon rank-sum expected mean. For the Wilcoxon rank-sum by frequency in figure
8.10a, the comparison results are mixed. The mid-range frequencies have a U value
within the 95% confidence limits, with the exception of 1650 Hz. Both soundboards are
quite sensitive to this frequency, as can be seen in figure 8.8, but board 1 has a much
larger median reading, causing U to fall outside the confidence limits. At the high and
low end of the tested range, soundboard 2 is less responsive, and so U falls outside the
confidence limits at these frequencies too.

8.3.4 Discussion

In this section we have tested the soundboards’ response to tones of different frequency
and DOA, and how these responses differ between the two soundboards. The frequency

96

(a) Example FFT readings from the soundboard.

(b) Amplitude reading of the data from a)

(c) Differential reading of the data from a)

Figure 8.7: Example set of FFT readings from the soundboard (a) and the corresponding
amplitude (b) and differential (c). In a) the graph shows a single reading for a test
frequency of 1470 Hz and DOA of −90◦. b) is the sum of all microphone readings and
c) is the left microphone minus the right microphone’s FFT readings.

97

8. CALIBRATING THE MODEL

(a) (b)

Figure 8.8: Median amplitude readings from soundboard 1 (a) and soundboard 2 (b).
Each line shows the median amplitude reading, over 140 measurements, for each test
frequency. There are 9 lines on each graph, one for each test frequency,which is indicated
by a peak in the median amplitude.

(a) (b)

Figure 8.9: The distribution of differential readings with respect to the test tone DOA
for soundboard 1 (a) and soundboard 2 (b).

98

(a) (b)

Figure 8.10: The Wilcoxon rank-sum U value for the comparison of soundboard 1 and
2, for frequency (a) and DOA (b). Horizontal lines indicate the 95% confidence limits.

or amplitude readings from both soundboards can be characterised as being different
at frequencies of 720, 900, 1650, 2030 and 2220 Hz. We have also shown that both
soundboards are very poor at measuring the directionality of a tone, either when using
DOA estimation as in section 8.3.2 or a left-right microphone differential as in section
8.3.3. Soundboard 1 has a poor differential response because there is considerable
overlap between the spread of differential reading for each DOA. So when trying to guess
DOA from a differential alone, as the e-pucks are ideally expected to do, a reading of “0”
could indicate any of the five tested DOAs. However, board 1 does show an overall trend
towards the mean of the differential readings from −90◦ being lower and +90◦ being
higher, so there is an overall trend in the readings that is correlated with the actual
DOA. Conversely with soundboard 2, whether using DOA estimation or the differential
measure, there is nothing to distinguish a reading from one DOA from another. The
readings from, for example, −90◦ are indistinguishable from the readings for 0◦, +90◦ or
any other DOA. We are forced to conclude that soundboard 2 is incapable of measuring
DOA.

The discrepancies between the two soundboards are most likely due to minor dif-
ferences in the hardware. The FFT readings from both soundboards are subject to
variations in microphone quality and the performance of the microphone pre-amplifiers.
If a microphone is less responsive that the others on the board, it could cause a shift in
the differential and amplitude readings. This shift would however be consistent across
all frequencies and DOAs, which does not match the behaviour in the results we have
observed. Furthermore, the soundboards were both hand soldered so it is possible that
damage could have been done to components or the PCB tracks during construction.
The most likely cause of these differences is that soundboard 2 has a slightly improved
printed circuit board (PCB), with slightly wider tracks to make the soundboard PCBs
easier to fabricate1. However, the circuitry, components and code were unchanged, so

1The facilities at the University of York allow us to fabricate small numbers of PCBs, but this is

99

8. CALIBRATING THE MODEL

such a substantial change in performance is unexpected. The manufacturing improve-
ments to the PCB could have inadvertently caused attenuation in the signals from the
microphones to the PIC.

A possible follow up test would be to compare two new soundboards using a different
PCB design that doesn’t have this problem. However, this would require us to design
and test a new PCB design and then construct at least two more soundboards so that
they can be compared. As mentioned at the beginning of section 8.3, the number
of soundboards we can construct is limited by our resources and the amount of time
available, and the construction and comparison of the soundboards is not the focus of
this work. Consequently, no further tests to compare soundboards will be performed.
All remaining soundboard tests will be carried out on the better performing soundboard
and this data will then be used to inform our simulation.

8.3.5 Feedback into Simulation

The simulation will model two different soundboards: realistic and idealised. The
realistic soundboards are based on measurements from board 1 and incorporate noise.
The idealised soundboards give readings in the same range as the realistic ones, but
they are not subject to noise or interference and the data they provide is always correct.

Deriving our soundboard model from the two soundboards we have measured in
this section would make our simulation true to reality, but it would not help us to test
our hypothesis. Our hypothesis requires us to compare communication of information
where the tones have consistent meanings, against communication where the meaning
of each tone is variable and inconsistent. If the soundboards are unreliable then the
information received by each e-puck is inconsistent, regardless of the communication
used, thereby making the simulation incapable of reliably testing the hypothesis. By
simplifying our model of the soundboard, the simulation becomes less realistic, but
more suited to our requirements for it.

8.4 DOA Measurement Accuracy

Calibration 10: The amount of noise on the tone direction mea-
sure.

In section 8.3.3 we showed how the differential reading from the soundboard changes
according to DOA, but only angles±90◦, ±45◦ and 0◦ are tested. In this test we measure
the differential over a wider range of DOAs to see how noisy it is at different angles.

8.4.1 Experimental Method

As with section 8.3.1, we use an e-puck equipped with a soundboard to play a test
tone at the soundboard. The e-puck plays a tone of 1470Hz from a distance of 20cm.
The DOAs measured are 180◦, ±135◦ and 10◦ increments between −90◦ and +90◦ as
shown in figure 8.11. At each angle, 27 sets of FFT readings from the microphones are
recorded and from these the left-right differential is taken. To measure the noise, the
median and standard deviation for each DOA are taken. A larger standard deviation
meaning more noise.

done by hand. Narrow tracks have a tendency to disintegrate during the fabrication process, meaning
the PCB has to be remade.

100

Figure 8.11: Angles measured in section 8.4 to test soundboard noise.

8.4.2 Results and Discussion

Figure 8.12 shows the results of our experiment. The data shown is the differential
reading for the FFT band where the 1470 Hz tone would be measured. Each box shows
spread of these readings at each of the tested DOAs. From −90◦ to −50◦, and 50◦ to
90◦ the results show the expected trend of increasing from negative to positive with
increasing DOA.

Since our differential measure is comparing the comparative loudness at two micro-
phones, we would expect 135◦ and 45,◦ to have similar distributions, and the same for
the right hand side of the e-puck at −135◦ and −45,◦. Performing a Wilcoxon rank-sum
on the data, using ±50◦ instead of ±45◦ (which was not measured in this test) does
not indicate that these distributions were different 1 2. For the same reasons, we would
expect the distributions of the 180◦ and 0◦ readings to be similar. However, performing
a Wilcoxon rank-sum on the results gave p = 5.13 × 10−9, p being the probability of
observing these results if the samples were both from the same data set3.

Our results would indicate that the differential readings at extreme left and right
DOAs (≈ ±90◦) are more likely to indicate direction. This is because at these DOAs
we should observe the maximum difference between left and right microphone readings.
However, the increase in the differential at the extreme DOAs also causes more variance
in the readings, as shown by figure 8.13.

The final thing of note in our results is the interesting anomaly in data at DOAs
−40◦ and −30◦. At these angles the differentials were consistently much larger than
expected, and consequently do not fit the general trend. We are unsure as to why these

1For angles 135◦ and 50◦, U = 330, µ = 364.5 and σ = 57.80. Both data sets had 27 measurements
for comparison. p = 0.26, so the 135◦ and 50◦ results are not shown to be different.

2For angles −135◦ and −50◦, U = 343.5. µ, σ and the data set sizes are the same as for 135◦ and
50◦. p = 0.36, so the −135◦ and −50◦ results are not shown to be different.

3U = 33.5, µ = 364.5, σ = 57.8 with 27 samples in each data set.

101

8. CALIBRATING THE MODEL

Figure 8.12: Differential results for each DOA. The horizontal, dashed line indicates
the median over all readings (−16), the vertical, dashed lines indicate places where the
gaps between boxplots is greater than 10◦.

anomalies occurred. The increased differential reading at these angles was not observed
in previous tests, as can be seen in figures 8.9a or 8.3b. We suspect that it is due to
some transient problem in the soundboard, or perhaps environmental noise. However
the test is performed under the same conditions as the test from section 8.3. This would
indicate that the soundboard is somewhat erratic, and very sensitive to slight variations
in the environment.

8.5 Two or More Simultaneous Tones

Calibration 12: The soundboard accuracy in the presence of two
or more tones.

Assumption 10: Multiple tones of the same frequency combine as
the mean of their polar coordinates.

We have already established in this chapter so far that the accuracy of the sound-
board is very poor most of the time. In section 6.3.5 we made the assumption that if
two tones of the same frequency were to be played by different robots simultaneously,
their amplitudes and DOAs would combine as the average of polar coordinates (see
section 6.3.5). As the soundboards have proven to be unreliable it is worth testing that
this assumption is true.

102

Figure 8.13: Polar plot of differential standard deviation (r axis) as it changes with
DOA (θ axis).

103

8. CALIBRATING THE MODEL

(a) Ideal amplitude (b) Ideal DOA

Figure 8.14: The apparent amplitude (a) and DOA (b) of a tone when the two signals,
equal distances from the receiver, are combined as polar coordinates. These results
have not been converted into an expected amplitude or differential reading, but show
the general shape the results ought to take.

8.5.1 Experimental Method

As with previous tests in this chapter, a soundboard is tested by playing test frequencies
at it, using an e-puck equipped with a soundboard from several different DOAs. In this
experiment there are two such e-pucks generating the test frequencies at the same
time. The FFT readings from the tested soundboard are recorded and converted into
amplitude and differential measures for our results.

Three different test frequencies are used; low, medium and high at 720, 1470 and
2220 Hz respectively. The DOAs tested were ±90◦,±45◦ and 0◦. To test each combina-
tion of DOAs one robot stays fixed at a particular DOA and the other robot is moved
around all the other DOAs. Then the fixed position robot is moved and the process
repeats until we have measurements for each combination of the two robots’ DOAs.

8.5.2 Results

The results from this test are difficult to visualise because there are 3 degrees of freedom
in the test conditions: the test frequency and the DOAs of each robot. The data is
presented as line graphs where each line shows the amplitude or differential measured
with the fixed position robot. The line changes along the x axis according to the DOA of
the moved robot and the readings that are observed as a consequence of that movement.

Figure 8.14 is an idealised graph showing the DOA that would be observed if the
earlier assumption about combining tones of the same frequency as the mean of polar
coordinates is true. This is contrasted with the results that were actually observed in
figure 8.15.

It can be seen from figure 8.15 that our readings are quite noisy. Amplitude and
differential results do not follow the same shape or trends as the idealised results in
figure 8.14. The lines within each graph are not even correlated with each other.

104

(a) Amplitude 720 Hz (b) Differential 720 Hz

(c) Amplitude 1470 Hz (d) Differential 1470 Hz

(e) Amplitude 2220 Hz (f) Differential 2220 Hz

Figure 8.15: The amplitude and differential results of this experiment at 720, 1470 and
2220 Hz. Each data point on the graphs is the median of 37 different FFT readings.
Legends on each graph show the DOA of the fixed position robot. At data points where
the fixed robot and moved robot have the same DOA, data was not measured because
it required the two robots to be in the same place at once. Consequently, results at
these points are shown as zero.

105

8. CALIBRATING THE MODEL

8.5.3 Discussion and Feedback into Simulation

We can draw two conclusions from these results:

• the soundboard is insufficiently accurate to test the original assumption that tones
of the same frequency can be modelled and combined as polar coordinates.

• This assumption is not a good enough model of the true behaviour of the sound-
board for the purpose of our simulation.

To feed the information learnt in this section back into the model, the robot con-
troller has been altered so that when a robot wishes to play a particular frequency
tone, it first listens to check that another robot is not currently signalling with that
frequency. If it detects another tone of the desired frequency, it waits until the other
robot has finished before starting its own signal.

This check is subject to the maximum audio detection range of the soundboards, so
it is still possible for two tones of the same frequency to be played at the same time
when the first robot to play the tone is outside the second robot’s detection range. In
this situation, any listening robots will ignore the signalling robot which is furthest
away. This is a simplification of actual sound physics because we assume the closer
tone will seem much louder than the further one, but it is possible for the two sources
to be equidistant. However, depending on the size of the arena and the audio range of
the e-pucks, the eventuality of two tones being played at once may be quite rare.

8.6 Measuring Audio Range

Calibration 8: The range the e-puck can detect a tone.

Calibration 9: The amount of noise on the sound intensity mea-
sure.

Calibration 11: The soundboard accuracy as it gets further from
the sound source.

For our simulation to accurately reproduce audio communication we need to be able
to model how the soundboard affects the detection of audio signals at distances other
than 20cm. In this section we aim to measure:

• The amplitude and differential of an audio signal as the source gets further away.

• The amount of variation in these readings.

• The maximum range at which an audio signal can be detected.

8.6.1 Experimental Method

The soundboard is tested by playing a test tone of 1470 Hz at it, using an e-puck
equipped with a soundboard as a sound source. The sound source is placed at distances
of 5, 10, 15, 20, 30, 40, 50, 60, 80 and 100cm at DOAs of ±90◦,±45◦ and 0◦. A
total of 50 different combinations of DOA and distance are measured. For each DOA
and distance combination, the FFT readings from the soundboard are recorded and
converted into an amplitude and differential measure for our results.

106

(a) Amplitude

(b) Differential

Figure 8.16: Amplitude and differential results per DOA for the ranging test. Each
data point is the median of 27 readings, error bars indicate the 95% confidence limits.

107

8. CALIBRATING THE MODEL

8.6.2 Results

Figure 8.16 shows the results of this test. The amplitude graph in 8.16a shows that
changing the DOA does not significantly affect the way the amplitude of the signal
decreases with distance. The results are consistent across different DOAs, unlike in
previous experiments (for example figure 8.15) where amplitude readings have varied
significantly. This suggests that, at least for the amplitude measures, that at 1470 Hz
and ranges of less than 2 lengths of the microphone array it may give useful results.

The differentials results in 8.16b showed that for distances smaller than 20cm the
DOAs of −90◦ and −45◦ have a negative value medians and DOAs +45◦ and +90◦ have
a positive value medians. Meaning that for distances less than 20cm it may be possible
to determine directional information from the differential measures using thresholding.
However, this may only be true when the signalling frequency is 1470 Hz. The board
comparison test in section 8.3.4 showed that the soundboard’s response is not the same
over all signalling frequencies.

8.6.3 Discussion

At beginning of section 8.6 we state that the aim of this test is to get data that can be
used for calibrating simulation; to get the audio detection range of the soundboard and
“accuracy” of the soundboard as the distance from the sound source changes.

The results have shown that from the amplitude readings the detection range is
between 30 and 40 cm. Above this distance the amplitude tends to level out. For the
differential measure the detection range is around 20 cm at which point the differentials
for the different DOAs appear to converge. This means that between 20 and 40 cm it
is possible to detect that a tone has been played, without being able to determine the
DOA.

For calibrating the accuracy of the soundboard over distance we now have measure-
ments of the median and spread of the amplitude and differential data. The feedback
of these results, and the results of previous tests, into the model, is described in the
next section.

8.7 Calibrating the Model

In section 8.3.5 we conclude that the soundboard is very unreliable and that to test
our hypothesis we should model both idealised and realistic boards. This is so that
we can have a realistic simulation, by using the realistic model for the soundboards,
and one where we know that the e-pucks are communicating the frequency and DOA
of the tones effectively. The latter is important so that we can guarantee noise in the
sound transmission does not cause incorrect audio readings. Only the communication
coupling and signal-meaning mapping affects the information passed between robots.

For both soundboard models we need to approximate:

• The amplitude and differential observed when there is no tone present.

• The amplitude and differential observed when a single tone is played at a signalling
frequency.

We avoid the situation where there are two or more tones of same frequency, as de-
scribed in section 8.5.3. If there are several tones but they all have different frequencies,
they are assumed not to affect each other (see section 6.3.5).

108

(a) Amplitude (b) Differential

Figure 8.17: Boxplot showing the distribution of amplitude and differential readings for
FFT bands where a tone was not present. Each box shows the distribution for the tests
described in this chapter.

8.7.1 Amplitude and Differential with No Tone

For an idealised soundboard both amplitude and differential when there is no tone
present can simply be modelled as zero.

To model realistic board we use data taken from the tests in this chapter. The
amplitude and differential readings are taken from each experiment for all FFT bands
where no tone would be observed. In tests where the test frequency, DOA or distance
was varied, all data readings are shown together. This is because we are investigating
tones that were not played to the soundboard, therefore they have no frequency, DOA
or distance to the source. These results are given in figure 8.17.

For each test, the amplitude and differential distributions have similar median and
quartiles. For the amplitude readings some tests had more outliers than others, but
the distribution of the majority of the data is the same in each case. The difference in
the number of outliers may be due to slight variations in the environmental conditions
when performing the experiments. Figure 8.18 shows histograms of the amplitude and
differential readings for when no tone is present using all the data from figure 8.17.

Figure 8.18 shows that the differential has normal distribution, and the amplitude
is the absolute value of a normal distribution centred around zero. To generate realistic
amplitude and differential readings we therefore use a normally distributed random
number generator and then transform the random numbers to have the same mean and
standard deviation as the data we require.

The differential data shown in figure 8.18b has µ = −0.07 and σ = 3.26 (2 d.p.).
To get the mean and standard deviation for the amplitudes, we reflect figure 8.18a
around 0 to get figure 8.19. The mean of figure 8.19 is 0 and the standard deviation is
11.13 (2 d.p.). In our realistic model these values are converted into an amplitude and
differential reading using the following equations, where N is a normally distributed
random number with µ = 0 and σ = 1:

amplitude = |11.13N| (8.1)

109

8. CALIBRATING THE MODEL

(a) Amplitude

(b) Differential

Figure 8.18: Histogram showing the distribution of all the amplitude and differential
readings for FFT bands where a tone was not present. This is the combination of
readings from every test in this chapter, covering a total of 226554 data points.

110

Figure 8.19: Amplitude histogram reflected around zero.

differential = 3.26N − 0.07 (8.2)

8.7.2 Amplitude and Differential with One Tone

Realistic Model

To realistically model the soundboard’s response to a single tone, we model the results
from the range measurement test in section 8.6, figure 8.16. From the graphs in figure
8.16 we can use the distance between a sound source and the listening robot to estimate
the amplitude and differential that would be observed in reality. However, figure 8.16
shows the results of only one test frequency. Using this data in our model assumes
that these results are representative of all the signalling frequencies we used in the
experiment.

This is a significant simplification of the actual soundboard’s behaviour. Figure 8.20
shows how the test tone frequency affects the distribution by comparing the amplitude
and differential readings from the audio ranging test to the soundboard comparison
test. It can be seen that the audio range test, at 1470 Hz, has a different distribution
to the other test results, even at the same frequency. It also shows that, within the
soundboard comparison test, the distribution of data varies a lot between different
test frequencies. This is further evidence that the soundboard is highly sensitive to
environmental conditions, since both tests were performed in the same arena, using the
same e-pucks and soundboards, but on different days. The soundboard is so erratic that
any attempt to model it would either be intractably complicated or over-simplified.

The audio ranging results are not entirely representative of the data the soundboard
produces, but the soundboard is so erratic that it would be very difficult to derive data
that was representative of it. The model we use is an over-simplification, but it is at
least based on actual observations, so gives results which might be observed in reality.
Without running the experiment on real robots we cannot know if our approximate
model of the e-puck with a soundboard would act similarly to the real ones. For the

111

8. CALIBRATING THE MODEL

(a) Amplitude (b) Differential

Figure 8.20: The ranging results compared to the soundboard comparison results. All
boxes show the readings for a distance of 20cm, and DOA of 0◦. The leftmost box shows
the spread of amplitude (a) and differential (b) readings for the audio range test, the
other boxes show the soundboard comparison test results with different test frequencies.

purposes of this work, we assume that our approximation is good enough. The validation
of our model against the experiment using embodied e-pucks is left as future work.

Building the Realistic Soundboard Model To model the soundboard’s response
to one signal tone, we take a similar approach to modelling the lack of a tone in section
8.7.1. Firstly by finding the shape of the data distribution as it changes with distance
and DOA, deriving parameters which describe it, then finally programming the model
to generate data that fits the distribution described by the derived parameters.

Examining the distribution of the audio range test results (figure 8.21) it can be
seen that for each distance measured, the boxes mostly show a normal distribution.
We therefore assume the amplitude and differential readings given by the soundboard
are normally distributed. To model the results we must find the mean and standard
deviation of the amplitude and differential as they change with distance and DOA.

This information is shown in figure 8.22, as measured during the audio range test.
For each graph there are 5 DOAs measured, meaning that there are 20 curves in total
that we need to model in order to get the mean and standard deviations required for
reproducing the amplitude and differential readings.

For each curve in figure 8.22 we used the MATLAB curve fitting tool to fit a cubic
polynomial to its shape, because preliminary tests showed that cubic polynomial gave a
good enough fit for the data. Cubic polynomials are equations in the form ax3 + bx2 +
cx + d, so the curve fitting tool derived the coefficients a, b, c and d for each of the 20
amplitude and differential mean and standard deviations.

From the simulation we can measure the true distance and DOA between the source
and receiver robots. If the distance between the two is larger than the soundboard’s
maximum range of 20 cm our model assumes the tone is unheard and return a reading

112

(a) Amplitude (b) Differential

Figure 8.21: The results from the audio ranging test, for DOA of −90◦, showing the
distribution of the data.

for an unheard tone. Otherwise, we use the true distance and DOA to get the mean and
standard deviation of the amplitude and differential from the fitted cubic polynomial
curves.

In the model there are only curves for DOAs of ±90◦,±45◦ and 0◦, since these were
the only DOAs measured, but the DOA in the simulation could be any value. The true
DOA from the simulation needs to be converted into a set of coefficients to describe the
mean and standard deviation curves.

First there are cases where the true DOA falls outside the range −90◦ to +90◦. As
a result of the differential being derived from the difference between the left and right
microphone readings, the differential cannot distinguish between sound sources in front
or behind the robot. This was observed in the DOA accuracy test in section 8.4.2, when
the distribution of −135◦ differentials was found to be similar to those of −50◦ (and
+135◦ similar to +50◦). To account for this if the true DOA is less than −90◦ the DOA
is flipped to be between −90◦ and 0◦. Similarly, a true DOA of more than +90◦ is
flipped to be between 0◦ and +90◦. For example, if the DOA is −135◦, the DOA used
to find the mean and standard deviations will be −45◦, or if the DOA was 170◦ it gets
flipped to 10◦.

The DOA used to calculate the soundboard data is now in the range −90◦ to +90◦,
but it might not be exactly one of the DOAs that was measured. If this is the case then
the model linearly interpolates the cubic polynomial coefficients used to get the mean
and standard deviation from the two nearest measured values.

Once the co-efficients have been found for the simulated DOA, the amplitude and
differential mean and standard deviation can be found using the equations 8.3 to 8.6,
where r is the distance between the receiving robot and the sound source, aµ is the
amplitude mean, aσ the amplitude standard deviation, and dµ and dσ are the differential
mean and standard deviation:

aµ = aaµr
3 + baµr

2 + caµr + daµ (8.3)

113

8. CALIBRATING THE MODEL

(a) Mean

(b) Standard Deviation

Figure 8.22: The mean (a) and standard deviation (b) of the amplitude and differential
readings as the distance to the sound source increases. Each line shows the mean or
standard deviation at a different DOA.

114

aσ = aaσr
3 + baσr

2 + caσr + daσ (8.4)

dµ = adµr
3 + bdµr

2 + cdµr + ddµ (8.5)

dσ = adσr
3 + bdσr

2 + cdσr + ddσ (8.6)

Finally, the model can generate realistic amplitude and differential readings using a
normally distributed random number N:

amplitude = aσN + aµ (8.7)

differential = dσN + dµ (8.8)

Idealised Model

In chapter 6, section 6.3.5 we simulated sound dissipation over distance using equation:

Iat robot =
Wsource

2πr2
(8.9)

where Iat robot is the sound intensity at the robot, Wsource is the watts used at the
source to generate the sound, and r is distance from source to robot in metres. Given
we now know the hardware characteristics of the soundboard we can calculate Wsource

to be 1.36 Watts1.

Using equation 8.9 gave a value of 4.33 at 5cm, whilst the smallest of the actual
readings at 5cm was 232. Wsource is not a big enough scale factor to reproduce ampli-
tude. However, we found that equation 8.10 was a closer approximation to the shape
of the observed results, as shown by figure 8.23.

Ideal Amplitude =
150

2πr
(8.10)

We model ideal amplitude using equation 8.10. To model the ideal differential we
use the true DOA, and scale it by (2πr)−1:

Ideal Differential =
DOA

2πr
(8.11)

As with the realistic model, if the true DOA is behind the robot, then it is flipped
about the front/back axis of the robot as with the actual soundboard. So a DOA of
−100◦ would become −80◦, and +100◦ becomes +80◦. Figure 8.24 shows the ideal
differentials, and figure 8.25 shows the idealised differential plotted against the mean of
the observed differentials. It can be seen that the idealised curves quite closely match
the actual ones.

1Maximum voltage at speaker is 3.3V and speaker resistance is 8Ω. Power = V 2R−1 = 3.328−1 =
1.36125 Watts.

115

8. CALIBRATING THE MODEL

Figure 8.23: Approximation of curve amplitudes using equation 8.10

Figure 8.24: Approximation of differentials using equation 8.11.

Figure 8.25: The idealised differentials compared to the mean measured differential
readings.

116

8.8 Conclusion

In this chapter we address the calibration points raised in chapters 6 and 7.
Several tests are performed to measure the board’s audio characteristics. When two

similar soundboards are compared under the same test conditions, both soundboards
are found to be very poor at measuring the directionality of a tone, and one board was
incapable of measuring directionality. The final test on the soundboard was to find the
maximum range at which the soundboard would be effective. This showed that the
soundboard is able to give consistent readings at ranges of less than 20 cm.

The results from this chapter are used to calibrate two different models of the sound-
boards. One is realistic and returns noisy readings based on actual measurements from
section 8.6 of this chapter. The other model is idealised and does not implement any
signal or hardware noise into its results. Both models are simplified versions of the real
soundboard.

Due to the erratic nature of the hardware, an exact reproduction of the kind of
results that have been observed in this chapter would introduce inconsistency into the
information being transmitted between robots. This would make it difficult for the
robot, through evolution, to distinguish whether tones have been played or which di-
rection the tone arrived from. By simplifying the model we hope to prevent these extra
inconsistencies so that we can more reliably test the effects of different communication
strategies on the rate of evolution in a robotic swarm. In part III we use the model
developed in chapter 6 with the idealised soundboard model from chapter 8 to run the
experiment from chapter 5.

Further work is required to run the experiment from chapter 5 using the real e-
pucks and soundboards, to validate the simulated experiment against the embodied
experiment. This is left as future research.

By following the CoSMoS process and documenting the process of modelling the
robot swarm in chapter 6, we made a list of assumptions to show where our model is
weakest, and a list of areas to calibrate later when more can be found out about the real,
engineered system. These points are calibrated in this chapter. This documentation
makes it easier for future researchers to use this model or to see an example of developing
a model of an engineered complex system.

117

8. CALIBRATING THE MODEL

118

Part III

Results and Conclusions

119

Chapter 9

Initial Results From Testing
the Hypothesis

9.1 Introduction

In this work we aim to test our hypothesis, from chapter 4, that evolutionary swarm
robots will evolve collaborative behaviours faster if the swarm consists of independent
agents sharing stable information. In chapter 5 we propose an experiment for testing
this hypothesis, and in part II we develop a model for running that experiment in such
a way that result from the model could be extrapolated to a swarm of real, embodied
robots. In this chapter we present the results of the experiment, performed using the
model.

To summarise chapter 5, the robot swarm performs a foraging task. Robots collect
food from various food sources in the environment, larger food sources give more food,
but require more robots to be present before distributing food. Robots are able to
signal to each other about the food sources, so that other robots can decide which food
sources to forage from. We test our hypothesis by trying different methods of mapping
between signal and meaning, in order to control the coupling between robots:

1. Tightly coupled, fixed mapping. 9 signals, each tone expresses a different
combination of food source size and occupancy.

2. Loosely coupled, fixed mapping. 6 signals, two signals are combined sequen-
tially to express a food source’s size and occupancy.

3. Loose coupled, evolved description mapping. 6 signals, sequentially com-
bined as with (2). 3 signals always refer to a food source’s size, and the other 3
to an occupancy. Within those 3 signals the signal to meaning mapping for size
or occupancy can be evolved.

4. Loose coupled, evolved mapping. 6 signals, sequentially combined as with
(2). The mapping between signals and meanings is evolved.

5. Tight coupled, evolved mapping. 9 signals as with (1), the mapping between
signals and meaning is evolved.

121

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

Section 5.3.1 contains a full explanation of why these signal to meaning mappings have
been chosen. The hypothesised result is that the loose coupled, fixed mapping com-
munication would lead to better solutions sooner. However, the results show that all
robot swarms evolve solutions which do not use communication, and that no inten-
tional collaboration occurs under any of the tested coupling strategies or experimental
conditions.

Several different measures are taken to make it easier for the GA to evolve effective
communication and effective foraging. These are shown to alter the swarm’s overall
ability to forage, but do not cause collaboration or communication between robots to
evolve. Consequently, the hypothesis can not be tested because it is unclear whether
coupling has no effect, or the experiment has design flaws preventing coupling from
being effective.

Finally it is concluded that the task used in this chapter experiment is not suit-
able for testing the hypothesis because it can be completed without communication or
collaborative behaviour. Robots are encouraged to cooperate by rewarding coopera-
tion with more food; if the robots work together they can collect from the larger food
sources. However, there need to be multiple collaborating robots in the swarm before
collaboration can be rewarded more than individualism, but until collaboration is bet-
ter rewarded it is difficult for that behaviour to propagate into the genome population.
However, selfish behaviour is easier to evolve because a single robot can collect small
amounts of food, giving its genome a small fitness. Collaborative behaviour requires
multiple robots in the swarm trying to cooperate before food can be collected. If the
collaboration is successful the robots are rewarded more than the selfish robots, but
if unsuccessful it is not rewarded at all. It is difficult for collaborative behaviour to
propagate through population, because multiple robots need to be collaborating before
it become better rewarded. However, multiple robots will not be cooperating unless the
collaborative behaviour has propagated in the population.

9.2 Experimental Method

The experiment presented in this section is described in detail in chapter 5. In this sec-
tion we describe the implementation details of the experiment, and how the results are
measured. The experimental parameters are broken down into the following categories:

• Grammatical Evolution

• Genetic Algorithm

• Food Distribution

• Communication

When applicable, a parameter’s initial value is based on what we would expect that
parameter to be in a real robot swarm.

9.2.1 GE Grammar

In section 5.4.2 we stated that grammatical evolution (GE) [77] should be used in this
experiment to evolve a controller. The following GE grammar is used in the experiment:

122

<code> ::= <if> | <if><code>

<if> ::= IF <condition> THEN <action> ELSE <action>

<condition> ::= <tone><op><tone>

| <tone><op><constant>

| <condition><logical><condition>

| <food data><op><percent constant>

| isAtTree

<action> ::= <move> | <collect>

<tone> ::= <tone distance> | <tone bearing>

<op> ::= < | >

<logical> ::= AND | OR

<move> ::= forwards <time delay>

| left <time delay>

| right <time delay>

<collect> ::= collect <time delay>

<tone amplitude> ::= tone1 amplitude ...

<tone differential> ::= tone1 differential ...

<food data> ::= food source size

| food source occupancy

<constant> ::= 0 | 10 | 20 | ... | 260

<time delay> ::= 500ms | 1000ms | ... | 4000ms

<percent const> ::= 0 | 1 | ... | 100

START = <if><code>

The GE grammar is designed to create sequential IF - THEN - ELSE statements,
so that the robots are essentially running a sense - think - act loop as their controller.

In swarms where the communication mapping must be evolved, the genome contains
an extra S genes, where S is the number of signals that are used. These extra genes
control the signal frequency or frequencies a robot plays upon encountering a food
source. The mapping is implemented using the following pseudo code:

make list of the S signal frequencies to use, called signals

for each meaning m:

value = gene % number items remaining in signals

map meaning m to signals[value]

remove signals[value] from list of signals

gene = next mapping gene from genome

Depending on the communication coupling used, the meanings are allocated in the
follow order:

loose coupling =

0%< size, 33%< size, 66%< size, 0%< full, 33%< full, 66%< full

tight coupling =

0%< size:0%< full, 0%< size:33%< full, 0%< size:66%< full,

33%< size:0%< full, 33%< size:33%< full, 33%< size:66%< full,

66%< size:0%< full, 66%< size:33%< full, 66%< size:66%< full

In the case where we evolve only between the descriptions, the mapping code is run
once for size and again for occupancy signal mappings.

123

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

Initialisation

Genomes are initialised with random integers to a length of 80 genes. For genomes
which also contain a signal to meaning mapping there are an additional S genes which
are separate from the main genome.

9.2.2 Genetic Algorithm Parameters

In the simulated environment we have ten foraging robots and three food source robots.
Ten is a small number of robots to have in an evolving population, but swarm size is
limited by the number of real e-pucks available to use if this experiment were to be
performed on a real robot swarm.

With a small population there is little genetic diversity, so it is harder to perform
a wide search of the potential solutions. To give the GA a better change at finding
a suitable controller, we run the experiments for 1000 generations. This means that,
although each generation only performs a small search of the potential solutions, there
are many generations, so there is more opportunity to find a good solution. Each
generation lasts 120 seconds to give the robots a chance to find a food source and
collect from it. Consequently, over 1000 generations each experiment lasts 33 hours
and 20 minutes. However, by testing our hypothesis in simulation rather than on real
robots the experiments do not have to be run in real time, and so we can obtain results
much more quickly.

For each experimental run, the foraging and food source robots are given the ran-
domly generated starting positions shown in figure 9.1. After each generation the for-
aging robots are randomly repositioned in the environment. This is to prevent evolving
behaviour where the robots is stationary and waits at a food source waiting for more
food to be generated for it to immediately collect. By moving the foraging robots each
generation, we are trying to steer the GA towards generating solutions where the robots
can both find a tree and collect from it.

Genetic Operators

Selection Selection of genomes to create the next population is done by tournament.
Two different genomes are taken from the population and their fitnesses are compared.
The genome with the highest fitness is put into the new population.

Crossover The crossover function is applied with a 10% probability. Crossover takes
two genomes from the new population, and randomly picks a single, complete IF -

THEN - ELSE statement. These statements are then swapped into the vacated position
in the other genome. The length of the genome is not preserved since one statement
may require more genes to complete. The genomes are limited to have between 20 and
120 genes. if the genome is too short, random genes are added to the end of the genome,
if the genome is too long, genes are removed.

To crossover the signal to meaning mapping in two genomes (if present), a random
position along the length of the mapping genes is picked. The mapping genes after this
point are swapped. The length of the mapping genes is preserved so that there are
always enough genes to specify a meaning for each signal.

124

Figure 9.1: Simulation environment showing collector and food source initial positions.
The arena is a 2× 2 metre square. Robots acting as food sources are coloured in light
grey.

125

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

Mutation To mutate a genome, the algorithm checks every gene of the genome and
changes it to a new, random integer with 10% probability. The same is done for the
mapping genes, if present.

9.2.3 Food Distribution Parameters

The way that food is rationed in the environment is an important factor in how much
food the robots can collect, and consequently has a large effect on the swarm fitness.
In section 5.2 we describe how the size of each food source gets smaller over time, and
when a food source is emptied it replenishes to some random size after a short time.
The parameters used to control food distribution are as follows:

• Maximum food size: 5. Food source sizes are random and can be any integer
value between 1 and the maximum. We have chosen a maximum of 5 for our
initial experiments so that the task is not too difficult for a swarm of 10 robots.

• Replenish time: When a food source is depleted or collected it is given a new
size after 4 seconds.

• Food degradation rate: The food sources reduce a size every 15 seconds. With
a generation duration of 120 seconds this means a food source can deplete up to
8 times. This is another measure to prevent the robots waiting at a food source
until it shrinks enough to be collected. If the food sources deplete slowly, the
robots must wait longer before the source can be collected when it may be more
rewarding to move to another source.

9.2.4 Communication Parameters

To start with, the experiments use the idealised model of the soundboard, developed
in section 8.7.2, to test the hypothesis. This way, if the swarm fails to communicate or
collect food, then we know this is due to failings in the experimental setup or hypothesis
rather than the model. If we get promising results from the experiments then the
experiments can be repeated with the realistic soundboard model (see section 8.7.2) to
see how it affects the results.

Each tone has a duration of 500ms. If the swarm is using loosely coupled communi-
cation then each signal is a sequence of two tones, for a total length of 1000ms. When
a robot listens for signals it only takes a measure of the tones currently playing in the
environment, and does not have a memory of the previous measurements.

Section 5.3 of chapter 5 describes how the communication is implemented. To sum-
marise, as soon as a robot detects a food source, it broadcasts the size and occupancy
description of that food source to all other robots within audio range. There are Dsize

descriptions that the robot can use to describe the food source’s size and Docc for its
occupancy, Dsize = Docc = 3. These descriptions are equivalent to small, medium,
big, and empty, slightly occupied, mostly occupied; although they are calculated as a
percentage of the maximum possible size or occupancy, as given by equations 5.1 and
5.2 on page 36. We only investigate cases where Dsize and Docc are the same size, so
for the rest of this work we use D as notation for this coupling parameter, such that
Dsize = Docc = D.

126

9.2.5 Measuring Results

To test our hypothesis, we evaluate the results of the GA on the following metrics:

1. The fitness of the evolved robot controllers, compared to randomly generated
controllers.

2. The quality of the evolved controllers.

3. The speed with which a “successful” solution is reached.

For each metric, we will use the Wilcoxon rank-sum and A-test to compare fitness
results. The p values for the Wilcoxon rank-sum results are measured, and if p < 0.05,
this means that the two compared distributions are different, with 95% confidence.
However, what p does not tell us, is how much the two distributions diverge. For
this we use the A-test [91], which measures the “effect size” of the difference in the
distributions, i.e. how much the two distributions overlap. Vargha and Delaney [91]
define A by equation 9.1:

A = P (X > Y) + 0.5P (X = Y) (9.1)

where X and Y are samples from two different distributions of data.
Vargha and Delaney [91] give boundaries for A which indicate the effect size of the

distributions’ overlap:

• No effect. The distributions are the same: 0.5 ≤ A < 0.56

• Small effect. The distributions mostly overlap: 0.56 ≤ A < 0.64

• Medium effect. The distributions have some overlap: 0.64 ≤ A < 0.71

• Large effect. The distributions do not overlap or only have a small overlap:
0.71 ≤ A

From equation 9.1 it can be seen that the A-test is double-sided, so A < 0.5 if on
average Y > X. The above boundary values show how much A has to deviate from
0.5 to indicate a distribution difference. In our experiment we can therefore use the A
value to tell which experiment produced results with higher fitnesses.

Where A values are reported, they are calculated using equation 9.1 with the current
experiment’s data for X and the comparison experiment for Y . Therefore if A > 0.5 it
means that the experiment being reported gave higher fitnesses than the comparison.
For example, table 9.4 in section 9.4 reports A values greater than 0.5 when compar-
ing that section’s evolved genome fitnesses with random, indicating that the evolved
controllers have higher fitnesses than random. In cases where A < 0.5, or only the mag-
nitude of the effect size is relevant, A is also given normalised to the range 0.5 ≤ A < 1.
This normalised A value is denoted by A′.

Comparison to Random

The fitness of evolved controllers are compared to the fitnesses of randomly generated
ones with the same communication couplings under the same experimental conditions.
This is to test whether the experimental conditions are somehow preventing effective
evolution from taking place.

127

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

The distribution of evolved controller fitnesses from the final 50 generations of each
GA run, are compared to the fitnesses of 50 generations of randomly generated con-
trollers using the Wilcoxon rank-sum and A-test. If the Wilcoxon rank-sum shows that
the GA performs no differently to random, or they are different but the effect size is
only small (i.e. if A < 0.64), then it is concluded that no significant evolution occurred
and the experiment is unsuccessful.

Quality of Solution

The quality of the evolved solutions is not as relevant to testing the hypothesis as
the speed of the GA for finding the solutions, nevertheless it is interesting to know if
coupling affects solution quality.

The quality of the evolved solutions is measured using at the mean best fitness
(MBF) of each coupling. The MBF is measured as either the best fitness from the final
generation averaged over all runs, or alternatively the best fitness found throughout all
generations, averaged over all runs ([27] p245). In this thesis we will measure the MBF
both ways.

Speed of Solution

The speed with which the GA finds a “successful” solution is measured by the average
number of evaluations it takes to find a solution ([27] p245). In this chapter we measure
the number of evaluations as the first generation that finds a successful solution, and
then take the mean over all runs for each coupling. We also look at how the first
generations to success are distributed for each coupling, and compare with Wilcoxon
rank-sum and A-test to determine the effect size of the coupling on the speed of finding
a solution.

Before the average number of generations to success can be measured, we first need
to define what fitness value is “successful”. The success threshold is calculated by taking
the best fitness found in each random experimental run and average that over all runs
and couplings to get an overall MBF for equivalent, randomly generated controllers.
This threshold is chosen because a successful controller should be at least as good
as the best controller that can be randomly generated, and the MBF of the random
GA gives an easily calculable lower bound on what should be achievable within the
experiment.

9.3 Developing Test Benchmarks

9.3.1 Randomly Generated Controllers

As mentioned in section 9.2.5, the evolved solutions should be compared to random
ones. If the GA then evolves solutions that are the same or worse than random, the GA
can be shown to be unsuccessful. First though we must measure the fitnesses of some
randomly generated controllers to get a minimum baseline for how well the evolved
controllers should perform.

A population of 10 robots is run for 50 generations. Each robot evaluates a randomly
generated genome for one generation. At the end of each generation a new random
genome is assigned to each robot and the process repeats. This is repeated for 40
experimental runs.

128

Coupling MBF of last
generation

MBF over all
generations

Tight, Fixed 3.20 10.47
Loose Fixed 2.83 10.05
Loose, Evolved Descriptions 3.08 11.70
Loose Evolved 3.10 11.53
Tight, Evolved 3.00 10.93

Table 9.1: Quality metrics from the randomly generated robot controllers.

The results shown in figure 9.2, and table 9.1 give the quality metrics for fitness of
the random generated robot controllers. The MBF over all generations and couplings is
10.94. Consequently, we use a success threshold of 11 to determine whether a genome
is successful.

9.3.2 Designing A Controller

In this section we test a controller we have designed ourselves. This is done to in
order to get some measure of what a “good” fitness might be and to see whether it
is possible to complete the task given the GE grammar presented in section 9.2.1. By
comparing these results to our evolved results we can also find out whether it is possible
for evolution to develop solutions which outperform one designed by hand.

The following behaviours are expected to feature in a high fitness foraging controller:

• All robots in the swarm should share a common signal to meaning mapping.

• Robots should try to collect from the largest food source.

• Robots should try and move towards signals indicating a large food source.

• If a medium to large food source is in range, or a source that is nearly fully
occupied, then the robots should collect for a long period of time to maximise the
chances of receiving food.

• If any food source is in range, the robot should try collecting for a short time, in
case it is successful.

• If no food sources are within collection range then the robot should move away
for a short distance to search for food elsewhere.

The following controller has been written to perform these behaviours:

IF (largest size signal) amplitude > 10

AND (largest size signal) differential > 130

THEN turn left 45◦

ELSE collect for 500ms

IF (largest size signal) amplitude > 10

AND (largest size signal) differential < 130

THEN turn right 45◦

ELSE collect for 500ms

IF nearest tree size > 60%

129

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

0 10 20 30 40 50
Generation

0
2
4
6
8

10
12
14

Sw
ar

m
 F

itn
es

s

Tight coupled, Fixed mapping. Results of 40 experiments.

0 10 20 30 40 50
Generation

0
2
4
6
8

10
12
14

Sw
ar

m
 F

itn
es

s

Loose coupled, Fixed mapping. Results of 40 experiments.

0 10 20 30 40 50
Generation

0
2
4
6
8

10
12
14

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved Description mapping. Results of 40 experiments.

0 10 20 30 40 50
Generation

0
2
4
6
8

10
12
14

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved mapping. Results of 40 experiments.

0 10 20 30 40 50
Generation

0
2
4
6
8

10
12
14

Sw
ar

m
 F

itn
es

s

Tight coupled, Evolved mapping. Results of 40 experiments.

Figure 9.2: The total swarm fitness at each generation from randomly generated con-
trollers. The lines indicate 25th, 50th and 75th percentiles.

130

OR nearest tree occupancy > 60%

THEN collect for 4000ms

ELSE move forward for 500ms

IF Food source in range

THEN collect for 1500ms

ELSE move forward for 500ms

In couplings where the signal to meaning mapping should be evolved we use the same
mapping as the fixed couplings. Consequently only the “Loose, Fixed” and “Tight,
Fixed” couplings are necessary in this section.

The first two IF - THEN - ELSE statements perform basic phonotaxis towards a
signal indicating the largest possible sized food source. If a signal of any frequency is
undetectable, then the differential reading for that frequency defaults to 128 and the
amplitude to 0. The conditional statements check whether a signal for a large food
source is to the left (differential > 128) or the right (differential < 128). If a signal
is detected then the robot will turn 45◦ towards the signal. If no signal is detected
then the amplitude should not be more than 10, so the condition is false. There are
no ELSE-IF statements in the GE grammar, so instead the robot performs an arbitrary
actions for as short a time as possible; collect is used here because collecting can
lead to food being awarded, so is a useful default action. The signal used for the basic
“phonotaxis” is the signal indicating a large food source. For loose couplings this is
straight-forward since there is only one tone that expresses this information. For tight
couplings there are three signals indicating a large food source and these signals also
give information about the occupancy. Preliminary experiments were tried where the
tight coupling would check for all three of these signals, but this results in lower fitnesses
because the number of times the robot must check the audio environment is tripled,
and this has a detrimental effect on performance.

To measure the fitness of this controller, each of the 10 robots in the population
is given a copy of the controller to evaluate. The genetic algorithm is then run for 50
generations without applying any genetic operators, so that the population remains the
same and homogeneous throughout the whole run. The fitness of the robots after each
generation is recorded and the experiment is repeated for 40 runs for each coupling
type. These fitnesses are measured using the quality metrics from section 9.2.5, and the
results are given in tables 9.2 and 9.3.

Table 9.2 compares the fitnesses from the designed controller against randomly gen-
erated controllers. It shows that p < 0.05 meaning the distributions are different, and
that 0.64 ≤ A < 0.72 indicating that changing from random to the designed controller
has a medium to large effect on the resulting fitnesses.

9.4 Results

Figure 9.3 shows the results of the experiment presented in order of coupling strength as
given in section 5.3.1 in chapter 5. It can be seen that, as with the random controllers
from figure 9.2, the swarm fitness is variable from one generation to the next but does
not improve over the course of the experimental run.

Table 9.4 shows the Wilcoxon rank-sum and A-test results when the evolved and
randomised robot controller fitnesses are compared. Although the Wilcoxon rank-sum
p < 0.05 indicates that there is a statistically significant difference in the evolved and
random fitness distributions, the A-test result A′ < 0.56 indicates that the effect of this

131

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

0 200 400 600 800 1000
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Tight coupled, Fixed mapping. Results of 40 experiments.

0 200 400 600 800 1000
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Loose coupled, Fixed mapping. Results of 40 experiments.

0 200 400 600 800 1000
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved Description mapping. Results of 40 experiments.

0 200 400 600 800 1000
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved mapping. Results of 40 experiments.

0 200 400 600 800 1000
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Tight coupled, Evolved mapping. Results of 40 experiments.

Figure 9.3: The total swarm fitness at each generation from evolved controllers. The
lines indicate 25th, 50th and 75th percentiles.

132

Coupling p A
Tight Coupling 0.000 0.696
Loose Coupling 0.000 0.713

Table 9.2: Comparison of the fitnesses from the designed controller against randomly
generated controllers. For both couplings tested A > 0.5 meaning the designed solution
performed better than random. The tight coupling A′ > 0.64, meaning there are
“medium differences”, but the loose coupling gave A′ > 0.71 meaning that the designed
solution had a “large” effect on the fitness distributions.

Coupling MBF of last genera-
tion

MBF over all
generations

Tight, Fixed 3.55 11.53
Loose Fixed 4.30 11.95

Table 9.3: Quality metrics from the robot controller designed by hand.

Coupling p A
Tight, Fixed 6.77× 10−6 0.513
Loose Fixed 1.52× 10−5 0.513

Loose, Evolved Descriptions 5.14× 10−4 0.510
Loose Evolved 2.63× 10−5 0.512
Tight, Evolved 4.47× 10−6 0.513

Table 9.4: Comparison of evolved and randomised robot controllers from the experi-
ment. Results show the Wilcoxon rank-sum and A-test for the last 50 generations of
each coupling type.

difference is too small to be of interest. We can conclude from these results that there
is no significant evolution occurring in the experiment.

9.4.1 Discussion

It can be seen that the swarm fitness is highly variable from one generation to the
next. Successful behaviours are learnt and then quickly forgotten 1 or 2 generations
later. Successful behaviour is then re-learnt and the cycle of forgetting and re-learning
continued until the end of the run. In figure 9.3 this cycle manifests itself as a very
variable fitness which stays at approximately the same level throughout the entire run.

The inability to “remember” good solutions is most likely caused by the indirect
mapping between the genome and the evolved controller. In GE, when a good genome
is found, similar genomes do not always translate to similar controllers. This is discussed
in section 5.4.2. Although we cannot change this aspect of GE, we can try to improve
our results by improving the GA’s ability to remember information.

9.5 Elitism and Steady State GA

In order for the swarms to improve over time, the cycle of learning and forgetting suc-
cessful behaviours must be broken. In this section we re-run our experiment comparing

133

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

Coupling p A
Tight, Fixed 6.29× 10−14 0.522
Loose Fixed 1.76× 10−14 0.522

Loose, Evolved Descriptions 8.00× 10−11 0.519
Loose Evolved 1.16× 10−9 0.518
Tight, Evolved 1.76× 10−11 0.519

Table 9.5: Comparison of evolved and randomised robot controllers from the elitism GA
experiment. Results show the Wilcoxon rank-sum and A-test for the last 50 generations
of each coupling type.

elitism, and a steady state GA to see if results are improved.

9.5.1 Elitism

Introducing elitism into the genetic algorithm may help the successful behaviours to
persist in the population from one generation to the next, because it gives the swarm a
short memory of the best solution from the previous generation.

To implement elitism in our experiments, the best genome from each generation is
copied into the next generation, without any crossover or mutation being applied.

Results

Each experiment is run for 250 generations. Figure 9.4 shows the total population
fitness at each generation for each coupling, over 40 experimental runs.

The fitness of evolved genomes are compared with randomly generated genomes
from section 9.3.1, and the Wilcoxon rank-sum and A-test results are given in table
9.5. The A score region indicating that any difference in distributions shown by the
Wilcoxon rank-sum has no effect size is 0.50 ≤ A′ < 0.56. It can be seen that A scores
are all at the lower end of this region, so the genomes evolved with elitism have slightly
higher fitnesses overall, but differences between evolved and random controllers are very
small. As with section 9.4 we can therefore conclude that no significant evolution took
place in this test.

9.5.2 Steady State GA

In a steady state GA, instead of generating a new population at the beginning of each
generation, only a few members of the population are updated at any time so that some
genomes persist in the population whilst others are updated ([27] p58).

In this experiment, robots must evolve their response to the environment, but they
must also discover where the food sources are. At the beginning of each generation, the
robot controllers are changed and the robot is randomly repositioned, so the swarm has
to re-discover where the food sources are every generation. By updating and moving
only some robots at any one time, the knowledge of where food is located can persist
in the environment because the unchanged robots are able to remain at a food source.
This knowledge can still be lost over time as more genomes are updated and their
robots repositioned, potentially losing the discovery of the food’s location. As the
population evolves to become better at foraging, the rate the swarm is able to discover
food locations should begin to balance the rate at which this knowledge is lost.

134

0 50 100 150 200 250
Generation

0

5

10

15

20
Sw

ar
m

 F
itn

es
s

Tight coupled, Fixed mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Loose coupled, Fixed mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved Description mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0

5

10

15

20

Sw
ar

m
 F

itn
es

s

Tight coupled, Evolved mapping. Results of 40 experiments.

Figure 9.4: The total swarm fitness at each generation when using elitism in the GA.
The lines indicate 25th, 50th and 75th percentiles.

135

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

Coupling MBF of last
generation

MBF over all
generations

Random, Tight, Fixed 9.55 35.67
Random, Loose Fixed 8.85 38.33
Random, Loose, Evolved
Descriptions

9.95 36.92

Random, Loose Evolved 8.68 35.60
Random, Tight, Evolved 9.18 35.60
Designed, Tight Coupling 33.67 65.70
Designed, Loose Coupling 35.02 63.58

Table 9.6: Solution quality benchmark metrics for the steady state GA from randomly
generated genomes the designed controller from section 9.3.2.

The steady state GA is implemented in this experiment by updating the oldest
population member every 12 seconds. Previously, each generation lasts 120 seconds
and there are 10 members of the population. Updating one genome every 12 seconds
means that each genome is evaluated for 120 seconds before being updated, and it takes
120 seconds to update the entire population. To perform crossover, the genome being
updated is crossed with a random other genome in the population, using the same
crossover probability as in previous experiments (10%). However, the other genome
is not affected by the crossover. This is because updating members of the population
asynchronously means that the other genome is still being evaluated, and if we changed
the genome during evaluation then the fitness measure we get for it will be wrong.
Mutation is not affected by changing to the steady state GA since mutation does not
require any other genomes.

Re-evaluating Test Benchmarks

Using a steady state GA makes it easier for the robots to forage by helping locational
knowledge to persist for multiple generations. The random and designed controller
fitnesses must therefore be re-evaluated so that the population is updated in the same
way as the steady state GA, and there can be a fair comparison between the random,
designed and evolved GAs. All other test conditions remain the same as described in
section 9.3.

Table 9.6 shows the re-evaluated solution quality metrics for both designed and ran-
domly generated controllers. It can be seen that both random and designed controller
tests show much higher MBFs than in section 9.3. In section 9.3.1 the randomly gener-
ated controllers’ MBF over all couplings was 10.94, but using steady state GA the MBF
is 36.43, giving over a three times increase fitness. This result shows that updating to
a steady state GA makes the foraging task easier to perform.

The overall MBF of the designed controller from section 9.3.2 increased from 11.74
to 64.64, which is over a five times increase in fitness; a greater increase in fitness than
the random controllers showed. This suggests that the change to a steady state GA has
some other effect that is beneficial to the controller we designed. Possibly the steady
state GA makes communication more beneficial. If there are always some robots around
a food source then there will always be signals being broadcast about that food source.
If, on the other hand, the population updates generationally, then at the start of each
generation the swarm must re-discover the food sources, and so it is less likely that

136

Coupling p A
Tight, Fixed 1.11× 10−26 0.583
Loose Fixed 6.91× 10−36 0.605

Loose, Evolved Descriptions 1.78× 10−23 0.578
Loose Evolved 1.08× 10−17 0.565
Tight, Evolved 1.09× 10−56 0.629

Table 9.7: Comparison of evolved and randomised robot controllers from the steady
state GA experiment. Results show the Wilcoxon rank-sum and A-test for the last 50
generations of each coupling type.

Coupling p A A′

Tight, Fixed 0.00 0.269 0.731
Loose Fixed 0.00 0.280 0.720
Loose, Evolved De-
scriptions

0.00 0.236 0.764

Loose Evolved 0.00 0.233 0.767
Tight, Evolved 0.00 0.245 0.755

Table 9.8: A Wilcoxon rank-sum and A-test comparison of the evolved steady state
results and the designed controller steady state results.

there will other robots in the swarm signalling about the food. Consequently, reacting
to signals is not as worthwhile in the generational GA as it is in the steady state because
there are fewer signals, so our designed controller does not perform as well.

For the steady state GA experiment we use a success threshold of 36, which is the
MBF of the randomly generated controllers over all coupling types.

Results

The evolved fitnesses are shown in figure 9.5. The fitnesses are much larger than in
previous experiments, and improve over time. Table 9.7 shows the Wilcoxon rank-sum
and A-test comparison of the steady state experiment against the equivalent random
experiment. As with sections 9.4 and 9.5.1, the p and A scores show that the evolved
and random distributions are different, but the effect is only small. When the evolved
fitnesses are compared to the designed controller fitnesses (table 9.8) the evolved fit-
nesses are significantly lower, with A′ consistently greater than 0.710 for all couplings1.
However, A is larger than in previous experiments and the solutions produced have
higher fitnesses, so even though this test shows that evolution has no significant effect,
the speed and quality metrics described in section 9.2.5 are presented in table 9.9. These
metrics shows that there is not much difference between the couplings for both solution
speed and quality.

Performing a Wilcoxon rank-sum and A-test on the first successful generations from
each coupling run, compared against other couplings gave the results shown in table
9.10. This gives an indication of the couplings’ comparative speed at finding a successful
solution. No comparisons gave p < 0.05 or A > 0.64, which indicates that the commu-

1Where p is stated as zero, the true p value is less than can be represented by a floating-point
number on a 64-bit computer. This minimum value is 2.23 × 10−308, and any p value less than this
number is approximated to zero.

137

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

0 50 100 150 200 250
Generation

0
10
20
30
40
50
60
70
80

Sw
ar

m
 F

itn
es

s

Tight coupled, Fixed mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0
10
20
30
40
50
60
70
80

Sw
ar

m
 F

itn
es

s

Loose coupled, Fixed mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0
10
20
30
40
50
60
70
80

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved Description mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0
10
20
30
40
50
60
70
80

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0
10
20
30
40
50
60
70
80

Sw
ar

m
 F

itn
es

s

Tight coupled, Evolved mapping. Results of 40 experiments.

Figure 9.5: The total swarm fitness at each generation when using a steady state GA.
The lines indicate 25th, 50th and 75th percentiles.

138

Coupling Mean Generations to
Success
(Number Successes)

MBF of last
generation

MBF over all
generations

Tight, Fixed 109.50 (34) 12.88 43.40
Loose Fixed 103.68 (31) 11.53 44.42

Loose, Evolved Descriptions 113.70 (33) 11.20 42.80
Loose Evolved 92.81 (26) 11.00 42.12
Tight, Evolved 92.75 (28) 11.72 42.17

Table 9.9: Speed and quality metrics from the steady state GA experiment. Success
threshold is 36.

p/A′ Tight,
Fixed

Loose
Fixed

Loose,
Evolved
Desc

Loose
Evolved

Tight,
Evolved

0.154/
0.589

0.189/
0.559

0.089/
0.571

0.391/
0.521

Loose
Evolved

0.130/
0.541

0.198/
0.549

0.087/
0.560

Loose,
Evolved
Desc

0.423/
0.526

0.307/
0.544

Loose Fixed 0.374/
0.501

Table 9.10: Wilcoxon rank-sum and normalised A-test results for the steady state GA
experiment, comparing the distribution of the first generation to find a successful solu-
tion from each run.

nication coupling has no effect on the speed of finding a solution in this experiment.
Doing a similar comparison comparing the fitnesses from the last 50 generations of each
test run (described in section 9.2.5) gave A′ < 0.56 for each possible coupling compari-
son. This means that the distributions are the same, and therefore that coupling also
does not affect the quality of evolved solutions.

9.5.3 Discussion

In this section, we first try elitism to see if keeping the best solutions in the population
for at least one more generation would improve the fitness of the population. However,
the results from section 9.5.1 demonstrate that this is not the case for this experiment.
When these results are compared to our initial results from section 9.4, the A-test
showed that A was always less than 0.56 for each coupling type. Therefore the distri-
butions of the results from this section and section 9.4 have no significant differences,
and so elitism has no effect in this experiment.

The experiment with the steady state GA gives much better fitnesses than previous
experiments because the population does not lose information about the location of
food sources as quickly. Although, as with elitism, controllers evolved with a steady
state GA were not able to significantly out-perform randomly generated controllers.

From the elitism experiments of section 9.5.1, the best controller was found with a

139

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

fitness of 32 and the loose coupled, fixed signal to meaning mapping:

IF Food source in range

THEN Collect for 2500ms

ELSE Move forwards for 3500ms

IF Food source in range

THEN Collect for 4000ms

ELSE Move forwards for 2000ms

The best controller evolved by the steady state GA experiments has a fitness of 69,
and used the tight coupled, evolved signal to meaning mapping:

IF Food source in range

THEN Collect for 1000ms

ELSE Collect for 3500ms

IF Nearest food source occupancy < 72%

OR 2030Hz Differential > 220

THEN Move forwards for 4000ms

ELSE Collect for 1500ms

In both cases, the GA was able to evolve controllers with the ability to both collect
food and explore for new food sources. Both examples also appear not to use communi-
cation as part of the foraging behaviour to any significant degree. The fittest controller
from the elitism experiment does not check any audio signals as part of its behaviour,
relying solely on its own environmental observations for decision making. The fittest
controller evolved by a steady state GA does check one differential reading, but it is
unlikely to have much effect on the overall behaviour. If a signal of any frequency is
not detectable, then the differential defaults to 128 and the amplitude to 0. signals
to the left of the robot will have differential greater than 128 and to the right will be
less than 128. Therefore, differential(2030) > 220 checks if there is a signal of 2030Hz
to the extreme left of the robot, and will be true only in the event that such a signal
is observed. Consequently, the conditional IF statement usually simplifies to just the
occupancy check.

These experiments may not have produced results that were better than random
because the task the robots are performing is very difficult. To test our hypothesis, the
population needs to evolve communication so that we can compare the effects of the
different communication couplings. However, for the swarm to evolve communication
it must also evolve the ability to move towards sounds and prioritise some tones over
others. It is probably easier for the GA to evolve foraging behaviour which ignores
the audio signals and uses only the information that the robot can observe, even if the
resulting fitnesses are perhaps not as high.

9.6 With Phonotaxis

To improve the results from the steady state GA experiment, in this section we add
a phonotaxis behaviour to the GE grammar, so that the swarm no longer needs to
evolve the ability to move towards a tone, and the task of evolving foraging which
uses communication should be slightly easier. A steady state GA is still used to evolve
possible controllers for the swarm robots.

The updated grammar is as follows, with the new additions underlined:

140

<code> ::= <if> | <if><code>

<if> ::= IF <condition> THEN <action> ELSE <action>

<condition> ::= <tone><op><tone>

| <tone><op><constant>

| <condition><logical><condition>

| <food data><op><percent constant>

| isAtTree

<action> ::= <move> | <collect> | <phonotaxis>

<tone> ::= <tone distance> | <tone bearing>

<op> ::= < | >

<logical> ::= AND | OR

<move> ::= forwards <time delay>

| left <time delay>

| right <time delay>

<collect> ::= collect <time delay>

<phonotaxis> ::= phonotaxis <tone const><time delay>

<tone amplitude> ::= tone1 amplitude ...

<tone differential> ::= tone1 differential ...

<food data> ::= food source size

| food source occupancy

<constant> ::= 0 | 10 | 20 | ... | 260

<time delay> ::= 1 | 2 | ... | 8

<tone const> ::= 1 | 2 | ... | alphabetsize

<percent const> ::= 0 | 1 | ... | 100

START = <if><code>

The phonotaxis behaviour allows the robots to move towards a sound of a given
frequency for a time period specified by the genome. If no tone of that frequency can
be detected then the robot will instead wander for that time period.

We compare the swarm fitnesses using the above grammar when the number of
food source descriptions, D = 3 and when D = 4. Until this section, we have been
using D = 3, giving the loose coupled communication 6 signals, and the tight coupled
communication 9 signals. With D = 4, there are 8 loose coupled signals and 16 tight
coupled signals (see equations 5.3 and 5.4 on page 37). With more descriptions there is
a much larger difference in the number of signals required for loose and tightly coupled
communication. According to the hypothesis, if communication is used, the difference
between the swarm fitnesses of each coupling type should be more pronounced.

9.6.1 Simplifying the Audio and Soundboard Model

The audio communication in the model needs to be accurate so that phonotaxis can
work properly, otherwise the phonotaxis behaviour is too similar to random wandering.
By working in simulation, we can give the robots abilities that they would not have
in reality, due to the limitations of the soundboards. This makes it possible to run
this experiment, but makes it harder for the results to be extrapolated to a real swarm.
However, we have available a higher fidelity model than the one used for this experiment,
so it is possible to add realism back into the experiment later to validate the results
against a real swarm of robots.

141

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

Coupling MBF of last gen-
eration

MBF over all
generations

Random, Tight, Fixed 2.48 16.80
Random, Loose Fixed 2.67 15.57
Random, Loose, Evolved De-
scriptions

3.02 18.18

Random, Loose Evolved 3.20 17.45
Random, Tight, Evolved 3.02 16.38
Designed, Tight Coupling 30.68 58.25
Designed, Loose Coupling 18.43 44.80

Table 9.11: Quality metrics from the random GA with phonotaxis.

For the experiments in this section the audio range is increased so that sound does
not decay with distance, giving every tone infinite range. The differential is also idealised
so that it doesn’t get smaller with distance and gives the correct DOA of the tone.
This means that robot has access to all tones currently being played, and can use
phonotaxis behaviour to move towards it. However, it also means that comparative
distance information in the amplitudes is lost since tones which are closer have the
same amplitude as a tone which is very far away.

9.6.2 Re-evaluating Test Benchmarks

In section 9.3.2 we design a controller that reacts to signals about large food sources.
A basic phonotaxis is used which checks the signal is present and then uses the signal’s
differential to determine whether to turn left or right. The GE grammar has been
updated to include a phonotaxis behaviour, so the controller can now be simplified to:

IF (largest size signal) amplitude > 10

THEN phonotaxis (largest size signal) for 2000ms

ELSE collect for 500ms

IF nearest tree size > 60%

OR nearest tree occupancy > 60%

THEN collect for 4000ms

ELSE move forward for 500ms

IF Food source in range

THEN collect for 1500ms

ELSE move forward for 500ms

The quality metrics for the updated controller and the random GA are presented in
table 9.11. The overall MBF from random GA was 16.88 so in this section we will use
17 as the success threshold.

9.6.3 Results

Figure 9.6 shows the total swarm fitness per generation for each coupling where D = 3.
The fitnesses do not get better over time, and a comparison to the random GA (table
9.12) shows that there were no significant differences between the evolved and random
fitness distributions. When compared to the designed controller (table 9.13) the evolved
controller produces much lower fitnesses, and the effect size is large for all couplings.

142

0 50 100 150 200 250
Generation

0
5

10
15
20
25

Sw
ar

m
 F

itn
es

s
Tight coupled, Fixed mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0
5

10
15
20
25

Sw
ar

m
 F

itn
es

s

Loose coupled, Fixed mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0
5

10
15
20
25

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved Description mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0
5

10
15
20
25

Sw
ar

m
 F

itn
es

s

Loose coupled, Evolved mapping. Results of 40 experiments.

0 50 100 150 200 250
Generation

0
5

10
15
20
25

Sw
ar

m
 F

itn
es

s

Tight coupled, Evolved mapping. Results of 40 experiments.

Figure 9.6: The total swarm fitness at each generation from evolved with phonotaxis
behaviour in the grammar. The lines indicate 25th, 50th and 75th percentiles, and
D = 3.

143

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

Coupling p A
Tight, Fixed 1.87× 10−44 0.526
Loose Fixed 2.52× 10−39 0.525

Loose, Evolved Descriptions 6.11× 10−26 0.520
Loose Evolved 1.18× 10−38 0.525
Tight, Evolved 5.65× 10−22 0.518

Table 9.12: Results of Wilcoxon rank-sum and A-test of the phonotaxis experiment
fitnesses where D = 3 compared against random.

Coupling p A A′

Tight, Fixed 0.00 0.221 0.779
Loose Fixed 0.00 0.291 0.709

Loose, Evolved Descriptions 3.41× 10−83 0.241 0.759
Loose Evolved 3.78× 10−48 0.315 0.685
Tight, Evolved 3.61× 10−146 0.160 0.840

Table 9.13: Results of Wilcoxon rank-sum and A-test of the phonotaxis experiment
fitnesses where D = 3 compared against the designed controller.

When the alphabet size was changed to D = 4, the Wilcoxon rank-sum and A-test
again showed that the distribution of fitnesses for the last 50 generations is statistically
no different to random. According to the hypothesis, the speed to find a successful
solution should diverge more between couplings in the D = 4 experiment, since tight
coupling uses 16 signals, and loose coupling uses only 8 when D = 4. With twice as
many signals to interpret, the tight coupled communication strategy should be slower to
evolve successful solutions. However, a Wilcoxon rank-sum and A-test comparing the
first generation to find a successful solution (table 9.14) showed no statistical difference
between the couplings.

To see if an increase in alphabet size affects the GA speed, the distribution of first
successful generations for each experimental run is compared between the D = 3 and
D = 4 phonotaxis experiments. The Wilcoxon rank-sum and A-test results are given
in table 9.15. These results show that the smaller alphabet size was slightly faster to
evolve successful solutions, and p < 0.05 and A > 0.64 in three out of the five couplings.
However, since neither test shows signs of successful evolution, no definite conclusions
about increased solution speed can be drawn from these figures.

9.6.4 Discussion

From these results, it is clear that adding phonotaxis to the GE grammar causes the
GA to evolve genomes with lower fitnesses. Comparing the speeds of the phonotaxis
experiment from this section against the steady state without phonotaxis, from section
9.5.2, shows that the two experiments are as fast as each other to reach a successful
solution, meaning that the additional phonotaxis action gives no speed advantage to the
GA. The Wilcoxon rank-sum and A-test results of this comparison are given in table
9.16.

The best controllers evolved by the GA do not make much use of the new phonotaxis
behaviour. The following controller used the “Tight, Fixed” coupling where D = 3, with
a fitness of 49:

144

p/A′ Tight,
Fixed

Loose
Fixed

Loose,
Evolved
Desc

Loose
Evolved

Tight, Evolved 0.470/
0.577

0.432/
0.566

0.927/
0.502

0.414/
0.571

Loose Evolved 0.863/
0.512

0.882/
0.502

0.388/
0.558

Loose, Evolved
Desc

0.227/
0.589

0.453/
0.562

Loose Fixed 0.850/
0.508

Table 9.14: Wilcoxon rank-sum and normalised A-test results for the phonotaxis ex-
periment where D = 4, comparing the distribution of the first generation to find a
successful solution from each run. These results show that no coupling was significantly
faster than any other.

Coupling p A
Tight, Fixed 0.038 0.667
Loose Fixed 0.242 0.580
Loose, Evolved Desc 0.030 0.647
Loose Evolved 0.018 0.689
Tight, Evolved 0.501 0.549

Table 9.15: A Wilcoxon rank-sum and A-test comparison of the first generations to
find a successful genome from each run. The numbers show the comparison between
the phonotaxis experiment when D = 3 and D = 4, with A > 0.5 meaning that the
former found a successful genome sooner. Success threshold is 17 for both experiments.

Coupling p A A′

Tight, Fixed 0.768 0.473 0.527
Loose Fixed 0.485 0.485 0.515
Loose, Evolved Desc 0.936 0.489 0.511
Loose Evolved 0.311 0.575 0.575
Tight, Evolved 0.853 0.562 0.562

Table 9.16: A Wilcoxon rank-sum and A-test of the first generation to find a successful
solution in the phonotaxisD = 3 when compared to the steady state experiment (section
9.5.2). Where A > 0.5, indicates the steady state experiment was slower than with
phonotaxis. Success threshold is 17 for the phonotaxis experiment and 36 for the steady
state.

145

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

IF Food source in range?

THEN Collect for 500ms

ELSE Collect for 1000ms

IF Nearest food source size > 54%

THEN Collect for 3000ms

ELSE Phonotaxis (1470Hz) for 1500ms

This controller has some of the features of a good controller, specified in section
9.3.2. It collects from any nearby food source for a short amount of time, then tries to
collect from a medium sized food source for a longer time. In the tight, fixed coupling a
1470Hz signal indicates a food source 33% ≤ size < 66% and 33% ≤ occupancy < 66%.
So if there are no large enough food sources nearby then it will either move towards a
different food source’s signal, or if no such signal is detected then it wanders the arena.

The second highest genome evolved in this section used the “Loose, Evolved” cou-
pling with D = 3 and its fitness was measured as 45:

IF Food source in range?

THEN Collect for 4000ms

ELSE Collect for 4000ms

IF 1100Hz Amplitude < 1650Hz Amplitude

THEN Collect for 4000ms

ELSE Collect for 1000ms

This genome makes no use of the phonotaxis action and was successful only because
the robot happened to have started the generation within range of a food source.

This leaves the question of why adding phonotaxis to the grammar makes the fit-
nesses worse. The only option from the <action> grammar that directly awards food is
collect. With the addition of the phonotaxis option the chance of a genome selecting
the collect action is reduced from 50% to 33%, so from this change alone we might
expect fitness to reduce by a third. The MBF of the random steady state GA without
phonotaxis was 43, so with the extra phonotaxis action we might expect a random MBF
of approximately 29, however the random MBF was measured as 23.63. The addition
of the extra action should not affect the designed controller’s fitness, because we do
not need to randomly select from the <action> options, yet this also had a lower fit-
ness when using phonotaxis. Consequently the phonotaxis must have some additional
negative effect on the robots’ foraging ability.

One possible explanation is that the phonotaxis behaviour makes the robots better
at exploration, but also forces them to explore, even when the reward would be easier
to get by waiting at the food source. Another possibility is that the communication is
not used, and introducing actions which force robots to react to signals may lead to the
robots moving around without good cause. If there is no tone present, phonotaxis will
force the robot to wander, so phonotaxis could cause a robot to lose a food source it has
discovered. Since the results showed no significant differences between couplings, this
supports the theory that the communication was unused for the foraging task. Both of
these possibilities have the knock on effect of meaning that there are fewer robots at
the food source signalling to other robots. there are then fewer audio signals for the
robots to respond to, making it harder to locate food sources using phonotaxis.

146

9.7 Conclusion

In this chapter we try several approaches to running the experiment described in chapter
5, none of which adequately test the hypothesis of this thesis.

One factor in the failure of these experiments is that the fitness function does not
sufficiently reward collaboration. In our experiment, collaboration is encouraged by the
food sources giving out more food when there are multiple robots collecting from it.
However, the robots are able to collect food individually and collaboration happens by
robots accidentally, rather than purposefully, collecting from the same source. In this
experiment, a robot that tries to collaborate with others would prioritise large food
sources over small ones where it can quickly collect food. This behaviour would be well
rewarded if other robots in the swarm have the same behaviour. However, the swarm
is heterogeneous, and so other robots might not be so helpful. Individualism is easier
to evolve because a single robot can collect small amounts of food, giving its genome a
small fitness. Collaborative behaviour requires multiple robots in the swarm trying to
cooperate before food can be collected. If the collaboration is successful the robots are
rewarded more than the selfish robots, but if unsuccessful it is not rewarded at all. It is
difficult for collaborative behaviour to propagate through population, because multiple
robots need to be collaborating before it become better rewarded. However, multiple
robots will not be cooperating unless the collaborative behaviour has propagated in the
population. Such problems could be avoided by using a homogeneous swarm to evaluate
each genome.

Throughout this chapter, we evaluate the designed controller using a homogeneous
swarm, so all the robots in the swarm prioritise large food sources. However in the first
experiment of this chapter (section 9.4), the designed controller performed as well as
the random and evolved solutions, as shown in tables 9.1 and 9.3. This suggests that
the GA has a search space filled with mediocre solutions where it is very difficult to find
an outstanding genome. A flat topology of the GA search space would make it difficult
to evolve any form of collaborative behaviour, since no genome gives any particular
advantage over another.

The main reason the experiment is unsuccessful in testing our hypothesis is that the
task can be accomplished by the robots without needing to explicitly use communication
to share information about food sources. The swarm performs well enough without
communication in order for this to be the evolved solution each time an experiment
is run. The lack of collaboration does not encourage the evolution of communication.
Robots foraging alone just explore until they find a food source. No communication
is required for this behaviour. In the steady state experiment, information about food
source location is able to persist in the environment. However this is due to the robots
being physically located around the food source, making it easier to collect larger foods,
rather than because robots communicate that information to each other. This is why the
evolved solutions were not significantly better than random. Consequently, the effects
of different coupling strategies on the swarm fitness cannot be measured, because they
have no effect on the behaviour of robots in the swarm.

It would seem from the evidence in this chapter that the current experiment is not
appropriate for testing our hypothesis. In subsequent tests we should test both homoge-
neous and heterogeneous swarms, improve our fitness measure, and change the swarm’s
task to something that cannot possibly be performed without using communication.
Only when communication is essential to the task being performed, can we be certain
to test the effects of different communication strategies.

147

9. INITIAL RESULTS FROM TESTING THE HYPOTHESIS

148

Chapter 10

Coupling in Swarms Using
Indirect Communication

10.1 Introduction

In chapter 9 we attempted to test out hypothesis on a swarm of foraging robots, but
found that the robots are able complete the foraging task by ignoring communicated
information and acting independently. In this chapter we try a similar foraging experi-
ment, but make it impossible to collect food without making use of communication.

Heterogeneous and homogeneous swarms are compared, and it is found that the
homogeneous swarms tend to evolve controllers which are better at collecting food
and collaborating with other robots in the swarm. Comparing the couplings shows
that the loose coupled communication strategy gives higher fitness solutions than the
tight coupled strategy, and may be quicker to evolve successful solutions. However, an
uncoupled communication strategy using only a single tone to describe all food sources
gives higher overall fitnesses more quickly than either the loose or tight couplings.

Further investigation shows that when only information about the size of the food
sources is shared, swarms are able to collect the most food. Conversely, sharing infor-
mation about the food source’s occupancy results in low fitness solutions. Consequently
some of the information communicated to the robots is shown to be less useful than
other information, causing differences in the swarm fitnesses and GA speeds under dif-
ferent communication couplings. We conclude that there is a trade-off between the cost
of interpreting information and the benefit gained from having that information, but
using loose coupling could make the interpretation easier.

In section 10.2 we describe the experiment we used to ensure that the robots would
evolve to react to communicated information, and how the robots are evaluated on their
ability to interpret and act on this information. In section 10.3 we develop benchmarks
against which the experimental results can be tested. In section 10.4 we present the
results of the experiment and go on to test the swarm fitness using additional couplings
in section 10.5. Finally in sections 10.6 and 10.7 we discuss the significance of our
findings and suggest potential areas of future research.

149

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

10.2 Experimental Method

In this experiment it should be impossible to complete the task without acting on
communicated information, so that the hypothesis can be tested.

As with chapter 9 the robots forage for food from food sources of size n, requiring n
collector robots to be present before giving each collector n “foods”. Each food source
has a size and occupancy level that it communicates to the robots.

The following measures have been taken to ensure that the robots use communication
to perform foraging:

• There is no direct, robot to robot communication. The food sources signal the
size and occupancy information about themselves. Consequently, there is a fixed
signal to meaning mapping and the GA must evolve controllers to react to this
mapping.

• Different communication couplings are tested by changing the signal to meaning
mapping of the food sources.

• Robots can not collect food unless they are reacting to the signal currently being
played by the food source in range. If a robot happens to be wandering within
range of a food source it is not given food.

• The evolved controller is much simpler and the corresponding genome is much
shorter. The new controller maps between a list of which signals are currently
playing, and a high level behaviour to use in response to the signals.

• The GA is evaluated using heterogeneous and homogeneous swarms to see whether
homogeneity encourages collaboration between robots in the swarm.

In the rest of this section we describe in detail the experimental setup for this
chapter.

10.2.1 Task

There are D food sources in the environment, each is a different size such that each food
source uses a different frequency signal to describe its size. Food source size remains
constant over the experimental run. The objective of the task is to have the collector
robots distribute themselves around the sources, so that by the end of every generation
each food source is fully occupied and all available food can be collected. The food
sources are positioned in the environment so that it is not possible for one robot to be
within collection range of two sources at the same time, so as to avoid ambiguity.

At the end of the generation, each food source distributes food if there are enough
collectors. For a food source size n with c collector robots:

• if c < n: then no collectors are awarded food.

• if c ≥ n: then n collectors at the food source are given n food each. Remaining
collectors receive no food.

For a robot to count toward c, it must be both using phonotaxis to move towards the
food source and be within collection range of the source at the end of the generation.
Without this provision, the robots would be able to collect food by random wandering
alone, albeit with only limited success.

150

Swarm fitness is measured as the total amount of food collected by the swarm. By
not awarding food if there aren’t enough collectors we encourage the swarm to explore
and find sources that are occupied by other robots. if there are too many collectors
then the potential to collect more food is wasted by robots not being at other sources,
encouraging robots to find less occupied sources.

10.2.2 Communication

In our previous set of tests, the collector robots signalled to each other whenever they
found a food source, describing the source’s size and occupancy status. In some cases
we used evolution to determine what frequency signal the collector should use to express
that information.

In this experiment the food sources are the ones signalling their own status to the
robots in the swarm. Consequently we do not test evolved communication couplings
because the food sources are not subject to evolution. Instead we test our hypothesis
using the following communication strategies:

• Single Signal, Uncoupled. Each food source uses the same frequency signal to
indicate its location only, so the signal contains no size or occupancy information.
The only real coupling between information and the signal used is that a signal
can be interpreted as “A food source is here”.

• Loose Coupling. There are D + D signals, one for each size level and one for
each occupancy level. Food sources alternate between playing the signal that
describes its size and its occupancy.

• Tight Coupling. There are D×D signals, one for each combination of size and
occupancy level. Food sources play the signal that describes their current size and
occupancy.

In the uncoupled and loosely coupled communication, it is possible to have two tones
of the same frequency playing at the same time. However, in section 8.5.3 of chapter
8 we establish that the soundboard model is not capable of simulating this conflict,
and this is solved by having the model instead return the simulated amplitude and
DOA of the nearest tone only. For loose coupled communication the food sources are
different sizes but the occupancy might be the same, causing conflicts in the occupancy
signalling. We can minimise this by making the food sources alternate between express-
ing the size and occupancy signal asynchronously to attempt to reduce the number of
conflicts. For uncoupled communication conflict is unavoidable because all the food
sources use the same frequency to signal, so a robot can only detect the closest food
source. Consequently, as with the previous chapter, the swarm fitness is dependent on
where robots are positioned at the start of each generation.

Hypothesised Outcome

According to our hypothesis we would expect the tight coupled communication to cause
the robot fitnesses to improve over time the slowest of all three couplings tested. It re-
quires the most signals to express the food sources’ information, so the robot controllers
have the maximum number of signals to interpret and prioritise. Loose coupling is hy-
pothesised to have a more rapid improvement in swarm fitness over time, because it
expresses the same size and occupancy information using fewer signals. The uncoupled

151

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

Tone Number Priority Action
1 3 phonotaxis
2 7 wander
3 1 phonotaxis
4 9 wander
5 8 phonotaxis
6 6 wander
7 5 phonotaxis
8 2 wander
9 4 wander

Table 10.1: An example controller for when D = 3.

communication is expected to perform poorly because information about food source is
not available to the robots. However, there is only one signal that the controllers need
to react to, so the uncoupled communication is expected to show the most rapid initial
improvement but result in the worst performing swarms.

10.2.3 Evolved Controller

For each tone, the evolved controller dictates which action to associate with the tone,
and the priority to give that action. Possible actions are wander or phonotaxis.
The wander behaviour causes the robot to randomly explore the environment. The
phonotaxis behaviour is as described in section 9.6, using a simplified model of the
audio communication with infinite signalling range and accurate DOA estimation.

Every 5 seconds, the collector robot listens for tones in the environment. If a robot
detects a single tone it automatically perform the associated action, and if it can detect
multiple different tones then it performs the action associated to the tone with the
highest priority. If no tones are detected the robots automatically perform the wander

action because there are no tones for the phonotaxis action to respond to. An example
of a possible controller is given in table 10.1.

In the three types of coupling we test (given in section 10.2.2), the GA evolves
the action and priority for D2 tones. This is the number of tones used in the tightly
coupled communication strategy. In this way, the robot swarms for each tested coupling
are equivalent and each GA must evolve the same amount of genes. Our hypothesis
is tested by changing the way the information is presented to the robots by the food
sources.

This new controller addresses some of the problems encountered in our previous
chapter. The last controller presented the robots with very low level sensor inputs
and actuator outputs, and required them to evolve communication, phonotaxis and
exploration. With this new controller there are only high level, pre-processed inputs
and pre-programmed outputs. The GA must evolve the linkage between them, and in
doing so finding the best way to react to the information being communicated.

Genome to Robot Controller Mapping

The controller is represented by a genome which is a fixed-length sequence of 2D2

integers, representing the priority and action for each tone. These priority and actions
are stored in the following order in the genome:

152

priority1, action1, priority2, action2 . . . priorityD2 , actionD2

The action is is represented by either a 0 or 1, where 0 = wander and 1 = phonotaxis.
The priority is a number between 1 and D2, with larger numbers meaning a higher
priority. No two priority genes are allowed to have the same value, otherwise it would
cause a conflict when two tones of the same priority are detected. As an example, the
genome given in table 10.1 is represented by the sequence:

3, 1, 7, 0, 1, 1, 9, 0, 8, 1, 6, 0, 5, 1, 2, 0, 4, 0

10.2.4 Genetic Operators

To derive the next generation of genomes from the current population, the following
genetic operators are performed:

• Tournament selection.

• Position based crossover.

• Random and swap mutation.

Our representation for the tone priorities is similar to a “permutation representa-
tion”. This is when genome has fixed, non-repeating values and the evolved information
is the order, or permutation, of those values within the genome [27]. An example is
travelling salesman problem, where each city must be visited once, but the order the
cities are visited is the information being evolved. In this experiment, the priority genes
have fixed non-repeating values, but their position in the genome is more important that
the order which the priorities occur. For example, the genome 5 1 2 3 4 is completely
different to 1 2 3 4 5 because no two values have the same position. However if the
order was important, as with the travelling salesman problem, they would be similar or
the same because the ordering is mostly preserved.

The non-repeatability of the priority genes poses a problem when applying crossover
or mutation, as these operations could lead to invalid controllers. Permutation repre-
sentation GAs have various crossover and mutation methods designed to prevent gene
repetition. In the remainder of this section we describe the crossover and mutation
technique used in this experiment.

Tournament Selection

As with chapter 9, the parents for the next generation are selected by tournament. Two
random genomes from the current population are picked. The one with the highest
fitness is copied into the next generation. This is repeated until the next generation’s
population is full.

Position Based Crossover

Position based crossover [88] is a permutation representation crossover technique in-
tended for preserving positional information during crossover [85], without causing genes
to repeat. The crossover process is shown in figure 10.1. First, half of the genes from
the first parent are randomly selected and copied into the same position of the offspring.
Next the genes that appear in the offspring are removed from the second parent, and

153

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

1 2 3 4 5 6 6 54 32 1

Parent 1 Parent 2

* * *

1 2 4

Offspring 1 (partial)

6 5 3

Parent 2 – Offspring 1

1 2 46 5 3

Offspring 1 (full)

Figure 10.1: Position based crossover of two genomes. To get the second offspring the
process is repeated starting from parent 2.

the remaining genes are then placed into the offspring in the order they appear in the
second parent.

In this experiment, we group the priority and action pair for each tone and perform
crossover on the sequence of pairs. Our implementation of position based crossover is
therefore:

1. Copy randomly selected priority-action pairs from the first parent into the off-
spring.

2. Any pairs in the second parent which have the same priority as ones in the offspring
are removed.

3. The remaining pairs from the second parent are copied into the empty spaces of
the offspring.

Figure 10.2 shows an example of this crossover on genomes with three priority-action
pairs.

Random and Swap Mutation

After tournament selection and crossover, each gene in each genome is mutated with a
10% probability.

To mutate a gene representing an action, its value is replaced randomly with either a
0 or 1 representing the wander or phonotaxis actions respectively. To mutate a priority
gene, its position is swapped with another randomly selected priority gene from the
genome. Unlike with crossover, the corresponding action genes do not swap positions.
Figure 10.3 shows an example of both types of mutation.

154

Parent 1 Parent 2

Offspring 1 (partial) Parent 2 – Offspring 1

Offspring 1 (full)

*

1 1 2 1 3 12 0 1 0 3 0

3 01 1

1 1

3 0

2 1

2 1

Figure 10.2: Demonstration of how position based crossover is implemented in this
chapter. Truncated genomes are used in this example, of the form: priority1, action1,
priority2, action2, priority3, action3.

Two different types of mutation are used because there are strict limitations on the
priority genes, so a more restrictive mutation method is necessary to prevent invalid
genomes being generated. Conversely, the actions selected by mutation or crossover
can take any value and it does not matter if the same action is used twice, so more
flexibility is needed to allow the genome to use any permutation of actions for the D2

tones.

10.2.5 Implementing Collective Evolution

In section 5.4.1 we compare heterogeneous and homogeneous robot swarms in the con-
text of our research. A heterogeneous swarm, evaluating genomes in parallel is used in
the experiment described in chapters 5 and 9. This is because genomes can be evaluated
in parallel with each other making the genetic algorithm much quicker to run, and also
because it is easier to decentralise a heterogeneous swarm if the experiment is to be
repeated using embodied robots.

In this chapter we test both types of swarm to avoid the problem of fitness mea-
sures not necessarily being representative of a genome’s performance, and to try and
encourage the evolution of collaborative behaviour.

Heterogeneous Swarm

In the heterogeneous swarm each genome in the population controls a robot in the
population, as shown in figure 10.4a. Therefore the number of genomes in the GA
population must be the same as the number of robots in the experiment. Each robot

155

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

before mutation

*
2 0 1 0 3 0

after mutation

*

3 0 1 0 2 1

Figure 10.3: Example of mutation applied to an action and a priority gene (shaded).
Mutated priority genes swap position with a random other priority gene, whilst the
mutated action gene keeps its position but changes its value.

(a) Heterogeneous Swarm (b) Homogeneous Swarm

Figure 10.4: In a heterogeneous swarm (a) each genome is assigned to a different robot,
meaning there must be the same number of robots as genomes in the population. In a
homogeneous swarm (b) all robots are assigned the same genome, the genome popula-
tion does not need to be the same size as the number of robots.

156

evaluates a different genome, so the robots are all executing different controllers and
interpreting the information in the environment in different ways.

In chapter 9 we conclude that one of the reasons the previous experiment fails to
produce conclusive results, is that the fitness function does not reward collaborative
behaviour well enough. Consequently, for this experiment we measure a robot’s fitness
as the amount of food it collected plus the mean amount of food collected by the robots
in the swarm. The formula for calculating a robot’s fitness is given by equation 10.1,
for a swarm of N robots where fitnessi is the fitness and fi the amount of food collected
by robot i:

fitnessi = fi +
1

N

N∑
j=1

fj (10.1)

Once the fitness of each genome in the current population has been calculated, the
robots are randomly repositioned in the arena ready for the next generation of genomes
to be evaluated.

Homogeneous Swarm

In a homogeneous swarm, each genome in the GA population is assessed by putting its
derived controller onto all robots in the swarm, as shown in figure 10.4b. The fitness of
a genome is then measured by making the robots perform the task and summing the
amount of food collected by all the robots. Equation 10.2 shows the fitness function
of a homogeneous swarm, where fitnessi is the fitness of genome i, N is the number of
robots and fj is the amount of food collected by robot j.

fitnessi =
1

N

N∑
j=1

fj (10.2)

The fitness is measured for all the genomes in the population this way, and selection,
crossover and mutation are applied as with the heterogeneous swarms.

10.2.6 Other Experiment Parameters

There are 10 collector robots in both types of swarm, and the homogeneous swarm has
a GA population of 10 genomes. There are 3 food sources in the arena of sizes 1, 3
and 5, meaning that at least 9 robots are required in order to collect all the available
food. The food sources play each signal tone for 1.5 seconds. After this period, their
size and occupancy is re-evaluated and the corresponding signal tone is played. For the
loose coupled communication the food sources alternate between expressing size and
occupancy every 1.5 seconds. Table 10.2 shows the remaining GA parameters used in
the experiment.

Figure 10.5 shows the arena used in this experiment. The arena is 2 × 2 metres in
size and the food sources are all spaced 1 metre apart in an equilateral triangle. The
food sources have a collection range of 0.3 metres, so it is not possible to be in collection
range of two food sources at the same time. Collector robots are randomly positioned
at the start of each generation, with a uniform distribution across the arena.

157

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

Parameter Value
GA Population Size 10

Number of Generations 500
Generation Time 100 seconds

Coupling Parameter D 3
Tournament Size 2

Crossover Probability 10%
Mutation Probability 10%

Table 10.2: Genetic algorithm parameters.

Figure 10.5: Arena containing 3 food sources and 10 collector robots, food sources are
coloured light grey.

158

10.2.7 Measuring the Results

In this chapter we use the same assessment metrics as the previous chapter, described
in section 9.2.5. To summarise, these metrics are:

• Test that evolution is effective by comparing the distribution of evolved genomes’
fitnesses, to the fitnesses of randomly generated genomes. If a Wilcoxon rank-sum
test shows that the two distributions are different to a 95% confidence level, and
the effect size is medium or large, then the results is statistically significant; i.e.
if the Wilcoxon rank-sum p < 0.05 and the A-test A > 0.64.

• Measure the mean best fitness (MBF) of each coupling to compare the quality of
the evolved solutions.

• Measure the GA speed by examining the earliest generation that found a “suc-
cessful” genome in each experimental run. These are then compared for each
coupling to see if the coupling affects the speed.

In this experiment there is a fixed amount of food available to the swarm each
generation. We can define a successful genome as one that manages to collect from the
largest food source, which in this experiment is size five. The total swarm fitness if a
large food source is collected is at least 25. For the heterogeneous swarm, substituting
these values into equation 10.1 gives a success threshold of 7.5. For a homogeneous
swarm, using equation 10.2, the success threshold is 2.5.

Comparing the heterogeneous and homogeneous GAs is not as straightforward, be-
cause the different fitness functions mean that fitnesses are on a different scale to each
other. For the both swarms a maximum of 35 “food” items can be collected1. In the
homogeneous swarm each genome’s fitness is the mean amount of food collected by the
10 robots in the swarm, so each genome has a maximum possible fitness of 3.5 and a
maximum population fitness of 35 at each generation. The fitness function used for the
heterogeneous swarm means the maximum fitness for any single genome is 8.5. Which
would be a genome whose corresponding robot that collected from the largest food
source in a swarm that collected all the food2. The total population fitness is double
the amount of food collected; giving an upper limit of 70 for the total heterogeneous
swarm fitness.

Consequently, the heterogeneous and homogeneous GA fitnesses are not directly
comparable. However, the task the swarms are performing is the same, so we can
measure comparative success using the amount of food collected over the course of the
GA as a percentage of the amount it was possible to collect. Additionally, by using
different success thresholds for each swarm type, the average number of generations
until the GA finds a “success” gives values that can be compared with each other.

10.3 Developing Test Benchmarks

in this section we present the results of randomly generated GAs that will be used as
benchmark to test the evolved GAs. In section 10.3.2 we describe some designed “ideal”
controllers for each different coupling, and present the results when those controllers
are tested on the robot swarm.

1Each food source can give its size squared in food each generation, 12 + 32 + 52 = 35.
2The largest food source is 5, and the total amount of collectable food is 35: 5 + 35

10
= 8.5.

159

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

Coupling MBF of last generation MBF over all generations
Heterogeneous, Single 1.60 7.60
Heterogeneous, Loose 0.69 4.93
Heterogeneous, Tight 0.69 4.71
Homogeneous, Single 1.38 3.50
Homogeneous, Loose 1.28 2.82
Homogeneous, Tight 0.93 2.66

Table 10.3: Quality metrics for the random heterogeneous and random homogeneous
GAs.

10.3.1 Randomly Generated Controllers

To generate the random fitnesses, a population of 10 genomes is run for 500 genera-
tions for each coupling type, then repeated for 40 runs. Table 10.3 shows the MBF
measurements for the heterogeneous and homogeneous robot swarms. It can be seen
that in both swarms the single coupling results in much higher fitnesses than loose or
tight. This may be because only one signal is ever present in the environment, so only
the action gene relating to that tone affects the resulting controller behaviour. The
remaining genes are redundant, and can take any value without affecting behaviour.

10.3.2 Designing A Controller

In this experiment, some features we would expect to find in a good robot controller
are:

• A robot’s reaction to any tone it has detected should be to phonotaxis towards
it. This gives the maximum chance of collecting from a food source by the end of
the generation.

• Robots should prioritise the largest food source because that gives the largest
reward.

• High occupancy food sources should be prioritised over low occupancy ones be-
cause they have a greater chance of successful collection.

The designed controller’s genome is tested under the same experimental conditions
as the random genomes. Each coupling type has a slightly different genome because
a different amount of tones are used in each coupling and the tones have different
meanings. Consequently a genome designed for one coupling would not be the best
genome for another coupling.

Single Tone Coupling

In this coupling, there is only 1 tone in environment for the robots to react to. The
designed, single tone coupling controller has that tone’s action set to phonotaxis, and
is given the highest priority. The remainder of the genome is unused so the genes can
take any value.

160

Tone Priority Action
66% < size 9 phonotaxis
66% < full 8 phonotaxis
33% < size 7 phonotaxis
33% < full 6 phonotaxis
0% < size 5 phonotaxis
0% < full 4 phonotaxis
unused 3 phonotaxis
unused 2 phonotaxis
unused 1 phonotaxis

(a) Loose coupling controller.

Tone Priority Action
66% < size
66% < full

9 phonotaxis

66% < size
33% < full

8 phonotaxis

66% < size
0% < full

7 phonotaxis

33% < size
66% < full

6 phonotaxis

33% < size
33% < full

5 phonotaxis

33% < size
0% < full

4 phonotaxis

0% < size
66% < full

3 phonotaxis

0% < size
33% < full

2 phonotaxis

0% < size
0% < full

1 phonotaxis

(b) Tight coupling controller.

Table 10.4: Controllers used for the designed loose and tight coupling benchmarks.

Coupling MBF over last generation MBF over all generations
Heterogeneous, Single 3.95 8.48
Heterogeneous, Loose 2.33 7.78
Heterogeneous, Tight 2.09 7.52
Homogeneous, Single 2.67 3.50
Homogeneous, Loose 2.44 3.30
Homogeneous, Tight 2.14 2.58

Table 10.5: Quality metrics for the designed controllers.

Loose Coupling

For loose coupling, all actions are set to phonotaxis. The largest size signal is given
the highest priority, followed by the fullest occupancy signal, then the second largest
size signal and second fullest occupancy, and so on until all tone priorities are set. This
controller, for D = 3 signals is shown in table 10.4a.

Tight Coupling

All tones are assigned the phonotaxis action, and then prioritised primarily by size and
secondarily by occupancy as shown in table 10.4b.

Benchmarking Results

Table 10.5 gives the quality metrics for the designed solutions. Compared to the random
GA MBFs in table 10.3, the heterogeneous results and the loose coupling from the

161

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

0 5 10 15 20 25
Total Population Fitness

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

No
rm

al
is

ed
Fr

eq
ue

nc
y

De
ns

ity

Single coupled. p=0.00, A′ =0.93.

0 5 10 15 20 25
Total Population Fitness

0.00
0.05
0.10
0.15
0.20
0.25

No
rm

al
is

ed
Fr

eq
ue

nc
y

De
ns

ity

Loose coupled. p=0.00, A′ =0.90.

0 2 4 6 8 10 12 14 16
Total Population Fitness

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

No
rm

al
is

ed
Fr

eq
ue

nc
y

De
ns

ity

Tight coupled. p=0.00, A′ =0.74.

Figure 10.6: Histogram of the total population fitness at each generation, comparing
the fitness of homogeneous designed and random controllers. Each distribution contains
4000 samples.

162

Coupling p A
Heterogeneous, Single 0.00 0.667
Heterogeneous, Loose 3.43× 10−22 0.526
Heterogeneous, Tight 1.86× 10−53 0.540
Homogeneous, Single 0.00 0.729
Homogeneous, Loose 0.00 0.621
Homogeneous, Tight 5.97× 10−278 0.604

Table 10.6: Comparison of evolved and randomised fitnesses for each swarm type and
coupling. Results show the Wilcoxon rank-sum and A-test for the last 50 generations
of each coupling type.

homogeneous swarm are all improved. Figure 10.6 shows a histogram of the total
population fitnesses from the homogeneous designed and random GAs. The population
fitness is improved in the designed solution with p ≈ 0 and A′ > 0.72, meaning the
distributions are statistically different and the effect size is large for all couplings.

The combination of similar MBFs and significantly different population fitnesses
from the designed and random experiments, indicates that the random GA was able to
generate a small number of high fitnesses controllers in each experimental run, but its
overall performance is worse than the designed GA.

10.4 Results

The initial results of the experiment are shown in figures 10.7 and 10.8. Figures 10.7
and 10.8 show the mean total population fitness of the evolved and random GAs, and
the mean best individual fitness, as it changes over the course of the experiment. It
can be seen that the coupling where the food sources used only one tone performed
considerably better than the other two, and that for both kinds of swarm the loosely
coupled communication performed better than the tight coupled.

Table 10.6 gives the Wilcoxon rank-sum and A-test scores for the evolved fitnesses
compared to the random GA fitnesses from section 10.3.1. For all couplings and swarm
types p ≈ 0, meaning that evolution has an effect on the observed fitnesses, although
only in single coupling is the effect size large enough to be significant (A > 0.64).
Interestingly, the evolution has a greater effect size when applied to the homogeneous
swarm compared to the heterogeneous swarm, indicating that the homogeneous swarm
may be better at evolving collaborative foraging.

The results presented so far in this section contradict what is hypothesised in section
10.2.2. None of the results in figures 10.7 and 10.8 show improvement in population
fitness after the first few generations, and the coupling which presents no information
about the food sources consistently gives the best performance. However, these results
do suggest that there is a relationship between the amount of information shared by the
food sources, and the resulting fitness of the swarm. To investigate further, in section
10.5 we measure the effect of expressing size and occupancy information on the fitness
of the swarm.

163

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

0 100 200 300 400 500
Generation

0

5

10

15

20

Fi
tn

es
s

Single coupled. Mean evolved individual fitness 1.25

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6
7
8

Fi
tn

es
s

Loose coupled. Mean evolved individual fitness 0.25

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6
7

Fi
tn

es
s

Tight coupled. Mean evolved individual fitness 0.17

Figure 10.7: Mean total population fitness and MBF for the heterogeneous evolved and
random GAs. Solid lines indicate the mean total population fitness. The dashed lines
are the best individual fitness found up to the generation along the x-axis, averaged
over all experimental runs. The dark lines are the evolved results and the light grey
lines are the random results.

164

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6
7

Fi
tn

es
s

Random coupled. Mean evolved individual fitness 0.03

0 100 200 300 400 500
Generation

02
46
81012141618

Fi
tn

es
s

Single coupled. Mean evolved individual fitness 0.87

0 100 200 300 400 500
Generation

02
46
81012141618

Fi
tn

es
s

Size coupled. Mean evolved individual fitness 1.50

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6
7

Fi
tn

es
s

Occupancy coupled. Mean evolved individual fitness 0.20

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6
7

Fi
tn

es
s

Loose coupled. Mean evolved individual fitness 0.47

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6
7

Fi
tn

es
s

Tight coupled. Mean evolved individual fitness 0.23

Figure 10.8: Mean total population fitness and MBF for the homogeneous evolved and
random GAs. Solid lines indicate the mean total population fitness. The dashed lines
are the best individual fitness found up to the generation along the x-axis, averaged
over all experimental runs. The dark lines are the evolved results and the light grey
lines are the random results.

165

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

Tone Priority Action
66% < size 9 phonotaxis
33% < size 8 phonotaxis
0% < size 7 phonotaxis
unused 6 phonotaxis
unused 5 phonotaxis
unused 4 phonotaxis
unused 3 phonotaxis
unused 2 phonotaxis
unused 1 phonotaxis

(a) Size only coupling, designed controller.

Tone Priority Action
66% < full 9 phonotaxis
33% < full 8 phonotaxis
0% < full 7 phonotaxis
unused 6 phonotaxis
unused 5 phonotaxis
unused 4 phonotaxis
unused 3 phonotaxis
unused 2 phonotaxis
unused 1 phonotaxis

(b) Occupancy only coupling, designed controller.

Table 10.7: Designed controllers for the size and occupancy couplings.

10.5 Testing Additional Couplings

To investigate how the information shared by the food sources affects the swarm fitness
we test the following communication strategies:

• Random, uncoupled. Every 1.5 seconds the food source plays a random signal,
informing collector robots of the food source’s location, but lacking any other
meaning. Compared to the single tone uncoupled communication from section
10.2.2 the same amount of information is being transmitted, but the robots need
to interpret D2 signals instead of just one. Effective behaviour is therefore harder
to evolve.

• Size. Each food source only shares information about its size. There are D differ-
ent size levels, and D corresponding signals the food sources can use. Each food
source has a different size which does not change over the course of a generation.
Consequently each of the D signal tones is constantly repeated whilst the robots
are foraging.

• Occupancy. Each food source only shares information about its occupancy.
There are D occupancy levels and D corresponding signals the food sources can
use. The food sources’ occupancy is 0 at the start of each generation and changes
as robots discover them. Meaning the signals are not constant throughout a
generation, and several food sources could be transmitting the same signal at the
same time.

10.5.1 Benchmarks

The designs for the size and occupancy coupling controllers are given in tables 10.7a
and 10.7b. In the random coupling, the tones do not convey any specific meaning, and
they are equally as likely to be played by the food sources. The best design for the
random coupling would therefore set every action as phonotaxis so that the robot will
move to any tone it detects. The priorities are arbitrarily assigned, giving priorities
ascending with tone frequency, but kept consistent throughout the benchmark testing.

Testing the new couplings under the same conditions as those from section 10.3,
gives the random GA metrics in table 10.8 and the designed controller metrics from

166

Coupling MBF of last genera-
tion

MBF over all
generations

Heterogeneous, Random 0.20 2.93
Heterogeneous, Single 1.60 7.60

Heterogeneous, Size 1.20 7.54
Heterogeneous, Occupancy 0.54 4.70

Heterogeneous, Loose 0.69 4.93
Heterogeneous, Tight 0.69 4.71

Homogeneous, Random 0.22 2.48
Homogeneous, Single 1.38 3.50

Homogeneous, Size 2.06 2.60
Homogeneous, Occupancy 0.52 3.43

Homogeneous, Loose 1.28 2.82
Homogeneous, Tight 0.93 2.66

Table 10.8: Quality metrics from the random heterogeneous and homogeneous con-
trollers. Results from table 10.3 are included for reference.

Coupling MBF of last
generation

MBF over all
generations

Heterogeneous, Random 0.40 4.03
Heterogeneous, Single 3.95 8.48

Heterogeneous, Size 4.50 7.62
Heterogeneous, Occupancy 1.25 6.32

Heterogeneous, Loose 2.33 7.78
Heterogeneous, Tight 2.09 7.52

Homogeneous, Random 0.38 2.14
Homogeneous, Single 2.67 3.50

Homogeneous, Size 2.50 2.96
Homogeneous, Occupancy 0.86 2.84

Homogeneous, Loose 2.44 3.30
Homogeneous, Tight 2.14 2.58

Table 10.9: Quality metrics from the designed heterogeneous and homogeneous con-
trollers. Results from table 10.5 are included for reference.

167

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

0 20 40 60 80 100
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fi
tn

es
s

Occupancy coupled. Mean evolved fitness 0.23

Figure 10.9: The mean fitness and MBF for the first 100 generations of the homogeneous
occupancy coupling designed and random test. Solid line indicates the mean population
fitness, the dashed line is the mean best fitness. The dark lines are the evolved results
and the light grey lines are the random results.

table 10.9. As expected, the designed controller performs better than random in most
cases. The only exception is the homogeneous occupancy coupling where the MBF
over all generations is 3.43 in the random GA but 2.84 for the designed controller
test. Figure 10.9 shows the total population fitness and MBF for the homogeneous
designed and random tests as it changes over the first 100 generations. The designed
occupancy controller gives a higher mean fitness, but the random GA produces higher
peak fitnesses, suggesting that the designed controller is better than most possible
controllers, but is not optimal.

10.5.2 Results

Figures 10.10 and 10.11 show the random and evolved mean population fitness and
MBF for each coupling and swarm type, averaged over 40 runs of each experiment. In
all couplings there was no improvement in the population fitnesses after the first 25
generations. Table 10.10 gives the Wilcoxon rank-sum and A-test comparison of the
evolved GA results against the random GA. For both swarms and all couplings, p ≈ 0,
so evolution does affect the fitness with a 95% confidence level. For the heterogeneous
swarm, only the single coupling had a large enough effect size that the difference is
significant. The effect size of the evolution on the homogeneous swarm is larger than the
heterogeneous. The single, size and occupancy couplings all give A > 0.64, indicating a
medium or large effect size, and a significant improvement over the random GA fitnesses.

The evolved fitnesses are compared to designed controller fitnesses in table 10.11.
The Wilcoxon rank-sum shows that for all couplings except the homogeneous, loose
coupling the designed and evolved controllers give statistically different fitnesses. The
effect size varies, but only the tight coupled tests performed better than the designed
controller, and the effect size is almost large enough to be a significant difference. This
means that the designed controller for the tight couplings is not optimal and the GA is
able to evolve controllers which are able to collect more food.

Table 10.12 gives the speed and quality metrics for the evolved GAs. For both
swarm types, loose coupling gives higher fitnesses than tight coupling, but there is
little difference in the speed to success. Doing a Wilcoxon rank-sum and A-test on
the distribution of first generation to find a successful genome from all 40 runs, gives

168

0 100 200 300 400 500
Generation

0.00.51.01.52.02.53.03.54.0
Fi

tn
es

s
Random coupled. Mean evolved individual fitness 0.05

0 100 200 300 400 500
Generation

0
5

10
15
20

Fi
tn

es
s

Single coupled. Mean evolved individual fitness 1.25

0 100 200 300 400 500
Generation

0
2
4
6
8

10
12

Fi
tn

es
s

Size coupled. Mean evolved individual fitness 0.68

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6

Fi
tn

es
s

Occupancy coupled. Mean evolved individual fitness 0.17

0 100 200 300 400 500
Generation

01
23
45
67
8

Fi
tn

es
s

Loose coupled. Mean evolved individual fitness 0.25

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6
7

Fi
tn

es
s

Tight coupled. Mean evolved individual fitness 0.17

Figure 10.10: Mean total population fitness and MBF for the heterogeneous evolved and
random GAs. Solid lines indicate the mean total population fitness. The dashed lines
are the best individual fitness found up to the generation along the x-axis, averaged over
all experimental runs. The dark lines are the evolved results and the light grey lines
are the random results. Results from figure 10.7 have been included for comparison.

169

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

0 100 200 300 400 500
Generation

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Fi
tn

es
s

Random coupled. Mean evolved individual fitness 0.03

0 100 200 300 400 500
Generation

0
2
4
6
8

10

Fi
tn

es
s

Single coupled. Mean evolved individual fitness 0.87

0 100 200 300 400 500
Generation

02
46
81012141618

Fi
tn

es
s

Size coupled. Mean evolved individual fitness 1.50

0 100 200 300 400 500
Generation

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fi
tn

es
s

Occupancy coupled. Mean evolved individual fitness 0.20

0 100 200 300 400 500
Generation

0
1
2
3
4
5
6
7

Fi
tn

es
s

Loose coupled. Mean evolved individual fitness 0.47

0 100 200 300 400 500
Generation

0.00.51.01.52.02.53.03.54.0

Fi
tn

es
s

Tight coupled. Mean evolved individual fitness 0.23

Figure 10.11: Mean total population fitness and MBF for the homogeneous evolved and
random GAs. Solid lines indicate the mean total population fitness. The dashed lines
are the best individual fitness found up to the generation along the x-axis, averaged over
all experimental runs. The dark lines are the evolved results and the light grey lines
are the random results. Results from figure 10.8 have been included for comparison.

170

Coupling p A
Heterogeneous, Random 3.19× 10−6 0.509
Heterogeneous, Single 0.00 0.667
Heterogeneous, Size 1.49× 10−264 0.594

Heterogeneous, Occupancy 0.125 0.503
Heterogeneous, Loose 3.43× 10−22 0.526
Heterogeneous, Tight 1.86× 10−53 0.540

Homogeneous, Random 0.004 0.505
Homogeneous, Single 0.00 0.729
Homogeneous, Size 0.00 0.712

Homogeneous, Occupancy 0.00 0.669
Homogeneous, Loose 0.00 0.621
Homogeneous, Tight 5.97× 10−278 0.604

Table 10.10: Comparison of evolved and randomised fitnesses for each swarm type and
coupling. Results show the Wilcoxon rank-sum and A-test for the last 50 generations
of each coupling type. Results from table 10.6 have been included for comparison.

Coupling p A A′

Heterogeneous, Random 3.02× 10−76 0.460 0.540
Heterogeneous, Single 0.00 0.371 0.629
Heterogeneous, Size 0.00 0.341 0.659

Heterogeneous, Occupancy 0.00 0.299 0.701
Heterogeneous, Loose 7.81× 10−13 0.481 0.519
Heterogeneous, Tight 0.00 0.633 0.633

Homogeneous, Random 4.19× 10−158 0.443 0.557
Homogeneous, Single 2.56× 10−150 0.430 0.570
Homogeneous, Size 5.99× 10−11 0.484 0.516

Homogeneous, Occupancy 0.00 0.385 0.615
Homogeneous, Loose 0.448 0.500 0.500
Homogeneous, Tight 0.00 0.611 0.611

Table 10.11: Comparison of evolved and designed controller fitnesses for each swarm
type and coupling. Results show the Wilcoxon rank-sum and A-test for the last 50
generations of each coupling type.

171

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

Coupling Mean Generations to
Success
(Number Successes)

MBF of last
generation

MBF over all
generations

Heterogeneous, Random 274.00 (1) 0.19 3.95
Heterogeneous, Single 20.57 (40) 3.10 8.50

Heterogeneous, Size 117.51 (39) 1.30 7.52
Heterogeneous, Occupancy 216.86 (22) 0.60 5.98

Heterogeneous, Loose 213.82 (34) 0.76 7.01
Heterogeneous, Tight 224.26 (23) 0.65 6.03

Homogeneous, Random 93.47 (40) 0.19 2.58
Homogeneous, Single 0.80 (40) 2.45 3.50

Homogeneous, Size 0.20 (40) 2.46 2.80
Homogeneous, Occupancy 5.88 (40) 1.10 3.48

Homogeneous, Loose 5.05 (40) 1.39 2.92
Homogeneous, Tight 4.42 (40) 0.74 2.61

Table 10.12: Speed and quality metrics from the evolved heterogeneous and homoge-
neous GAs.

p = 0.271 A′ = 0.520 for the heterogeneous swarm and p = 0.092 A′ = 0.596 for
the homogeneous swarm. Since p > 0.05 and A′ < 0.64 in both cases, there are no
significant differences in GA speed between the loose and tight couplings.

Similarly, a Wilcoxon rank-sum and A-test on the distribution of fitnesses from the
last 50 generations of the loose and tight couplings gives p = 1.01 × 10−52 A′ = 0.540
for the heterogeneous swarm and p = 0.000 A′ = 0.618 for homogeneous. In both cases
p < 0.05, so the distributions are different, but A < 0.64 so although loose coupling
giving slightly higher fitnesses, the effect size of these differences is not large enough to
be significant.

Comparing the heterogeneous and homogeneous swarm types, the speed metrics
from table 10.12 show the homogeneous swarm is much faster at finding successful
solutions. In section 10.2.7 we define a successful genome as one which caused its
corresponding robot or robot swarm to collect from the largest food source. All 40
runs of each coupling type from the homogeneous swarm were able to find at least one
successful genome, unlike the heterogeneous experiments, indicating that there was a
much larger tendency towards cooperative behaviour in the homogeneous swarm. This
observation is supported by analysis of what food sources were collected, in table 10.13.
The homogeneous swarm collects a greater percentage of the larger food sources than
the heterogeneous swarm does, so the total food collected, as a percentage of available
food, is larger for the homogeneous experiments. This is especially noticeable for the
homogeneous size coupling, which prioritises the largest food source and so collected a
greater percentage of available food than any other coupling.

10.6 Discussion

In the previous chapter we speculate that using homogeneous swarms would improve
collaboration between robots, because a robot attempting to cooperate with others to
collect from a larger food source is less likely to have the cooperation attempt recipro-
cated in a heterogeneous swarm. Whereas in the homogeneous swarm, other robots are

172

Coupling Food Size
1 (%)

Food Size
3 (%)

Food Size
5 (%)

Total Food
Collected (%)

Heterogeneous, Random 20.34 0.56 0.01 0.73
Heterogeneous, Single 90.22 39.84 7.06 17.86

Heterogeneous, Size 69.55 24.32 2.03 9.69
Heterogeneous, Occupancy 51.85 3.25 0.20 2.46

Heterogeneous, Loose 58.38 6.46 0.37 3.59
Heterogeneous, Tight 49.39 3.42 0.17 2.41

Homogeneous, Random 15.97 1.43 0.11 0.90
Homogeneous, Single 89.36 52.21 12.54 24.94

Homogeneous, Size 10.55 12.19 55.21 42.87
Homogeneous, Occupancy 56.18 11.62 1.75 5.85

Homogeneous, Loose 30.63 31.07 6.54 13.54
Homogeneous, Tight 29.00 16.43 2.07 6.53

Table 10.13: Percentage of all runs in which the different food sources was collected
from, and the percentage of available food that was collected.

just as inclined to collect from the same sized source, and all are consequently rewarded
with more food. The results observed in this chapter do not contradict this theory
since the collection percentage for the medium and large food sources are higher in the
homogeneous swarm than the heterogeneous swarm (table 10.13).

Our results also suggest that size information is more useful than occupancy because,
with the exception of the random coupling, occupancy coupling had the lowest mean
fitness. Whereas the single and size couplings, where occupancy information is not
transmitted, had the highest mean fitness. One possible cause of occupancy signals
not being as useful as size signals is that the occupancy levels of the food sources are
affected by the success of the robot population, causing a possible feedback loop as the
population becomes better at locating food sources. As the population gets better at
reacting to “empty” signals they become better at finding the empty food sources. The
occupancy levels of the food sources increase causing the occupancy signal to change,
so the occupancy signal the population was using to find food is not as prevalent, and
the swarm is no longer as able to find the food. This could make it harder for swarms
to improve over time.

In chapter 4 we hypothesise that loose coupling would show a faster initial improve-
ment in swarm fitnesses compared to tight coupling, but it might not necessarily find
genomes with better fitnesses. However, results from this chapter show that for both
swarm types there is no significant difference in speed for the loose or tight coupling.
The analysis so far has focused on the evolved results, but the results from the random
benchmarking tests support the hypothesis. A Wilcoxon rank-sum and A-test compar-
ison of the random GA results from the loose and tight coupled homogeneous swarms
gives fitness results of p = 2.13×10−194, A′ = 0.591. Meaning the random loose coupled
test gave better fitnesses but the effect is only small. However, comparing the number
of generations before a successful solution is found, gives p = 0.029, A′ = 0.688, so
not only is loose coupling faster than tight, but the effect size is large enough to be
significant. If loose coupling is capable of making a random search GA able to find
better solutions faster than tight coupling, this indicates that changing the coupling
also changes the nature of the foraging task to make it easier to find food. We theorise

173

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

this is because loose coupling makes it easier to disregard the less useful occupancy
information shared by the food sources. With tight coupling, the size and occupancy
information is linked together into one signal so it is harder for the robots receiving the
signal to separate the pieces of information.

The loose coupling did not perform as well as the coupling with just the size infor-
mation. This indicates that there is a cost associated with interpreting the extra signals
in the environment, and that there may be a cost to filtering out the less useful occu-
pancy information. With tight coupling, these costs are high because there are more
signals and it is hard to separate signal and meaning. These costs are not balanced
by the usefulness of the occupancy information, since the tight coupling was only able
to collect a small percentage of the available food. With the loose coupling, the costs
are lower because there are fewer signals and they have distinct meanings, but these
costs are still not balanced by any benefit from the information, since the loose coupled
fitnesses are lower than if only the size information had been shared. The lower costs of
interpreting signals come at the expense of information transmission speed. The loosely
coupled communication takes twice as long to deliver the same information as a single
signal in a tightly coupled communication strategy. Consequently the robot might be
reacting to information that is no longer valid, and taking longer to react to a change
in a food source’s state.

10.7 Conclusion

In this chapter our aim is to test hypothesis of chapter 4 that loose coupled communica-
tion helps swarm behaviour to evolve sooner than it would using tight or no coupling. In
section 10.4 we tested the hypothesis using heterogeneous and homogeneous swarms of
robots and found that, in the context of our experiment, a homogeneous swarm tended
to evolve fitter solutions with a higher prevalence of collaboration. Furthermore, the
homogeneous swarm is able to evolve “successful”, collaborative controllers using fewer
fitness evaluations than the heterogeneous swarm. This matches the findings of Flore-
ano et. al. [29] cited in section 5.4.1, who were able to evolve signalling and foraging
behaviour in a homogeneous swarm that outperformed the behaviour evolved by an
equivalent, heterogeneous swarm.

The results of the hypothesis testing show that loose coupling performed slightly
better than tight coupling both in terms of speed and quality (table 10.12). The single
tone coupling, where the robots are given the smallest amount of information needed
to complete the task, the location of food sources, outperforms both the loose and
tight coupling strategies. Upon further investigation of the relationship between the
information transmitted and the swarm fitness, it is found that combining size and
occupancy information into a loose or tight coupling leads to lower fitnesses than if
just the size information is shared. With only the size information shared by the food
sources the robots in the homogeneous swarm are able to evolve controllers that favour
larger food sources, and consequently they collect a higher percentage of the available
food compared to the same swarm with the single tone coupling.

The most important finding of this chapter is that the cost of interpreting informa-
tion can be greater than the benefit gained from the information. Loose coupling gave
lower fitnesses than size only coupling, because it has to interpret more signals and ig-
nore the less useful occupancy information. Tight coupling has lower fitness than loose
coupling and collected less food overall because it has more signals to interpret and it

174

is much harder to separate the size and occupancy information. Loose coupling can
reduce cost of interpreting multiple pieces of information in return for slower message
transmission, but the evolved solutions are not as fit as they would be if the unneces-
sary information is not shared. Knowing what information is and is not relevant before
evolving the robots is a problem we have not addressed.

10.7.1 Further Work

In our work so far we have not investigated whether the idea of loose coupling can be
generalised to other swarm robotic systems. Could loose coupling be incorporated into
a swarm’s communication system, and if so is it beneficial? It would be worthwhile to
compare different couplings when the robot swarm is doing a different task that requires
robot to robot communication in order to be completed or effective. For example, shape
forming, where robots in a swarm must communicate in order to organise themselves
into a shape, or box pushing, where robots must cooperate to push a box across an
arena.

Further investigation could be done into the usefulness of information being trans-
mitted and the resulting effect on the swarm fitness. How does transmitting information
which is known to be meaningless affect how the robots interpret the signals when using
different couplings? Instead of measuring a food source’s actual occupancy we could
try selecting a random occupancy level, to see whether the results are similar to those
observed in this chapter. Or alternatively communicating another piece of informa-
tion, which is known to be meaningless, in addition to the existing size and occupancy
information.

175

10. COUPLING IN SWARMS USING INDIRECT COMMUNICATION

176

Chapter 11

Conclusion

11.1 Introduction

The aim of this thesis is to investigate whether it is beneficial to evolve a robotic
swarm in a loosely coupled way, in order to exploit the speed of evolution in complex
systems. We define coupling as the amount of influence that each robot has on another;
uncoupled robots are completely independent of each other and do not collaborate, with
tight coupling the robots are very co-dependent, and have a strong influence on each
other. Loosely coupled robots have some influence on each other but are comparatively
independent.

The hypothesis is tested using swarms of foraging robots, with food sources which
dispense food only when there are enough collecting robots present. The more robots a
food source needs in order to dispense food, the more food it will give to each collecting
robot. Robots can share information about a food source’s size (the number of robots
needed for it to dispense food), and the source’s occupancy, a measure of how many
more robots are needed before food can be dispensed.

To test the effects of coupling on the fitness of a robot swarm, we compare cases
where the swarm is uncoupled, loosely coupled and tightly coupled. The couplings
are varied by manipulating the communication between robots. The robots use sound
signals to express information, and coupling is varied by manipulating the mapping
between sound signal frequency and the meaning the robot wants to express. Loosely
coupled robots have one signal for each size and occupancy amount, and any message
plays these signals sequentially to describe the food source. With tight coupling, there
is one signal for each combination of size and occupancy amounts. Finally, uncoupled
robots must each evolve their mapping between signal and meaning.

In chapter 6 we build a model of the experiment following the CoSMoS process, so
that we can test the hypothesis in simulation, but have results that can be generalised to
embodied robots. The evolutionary swarm robotic (ESR) system that we model does
not exist in reality, because the e-pucks cannot detect sound or sound directionality
without additional sensors. Consequently in chapter 6 we build a model that cannot
be validated against a real system, but is flexible enough to be easily calibrated later
once the real system is built. Following the CoSMoS process we detail all the aspects
of the system that are known, and record all the assumptions made about the system
during the modelling process. Areas of the real system that are unknown are recorded as
calibration points to be addressed in later stages of the modelling. In chapter 7 we build

177

11. CONCLUSION

the soundboard add-on to the e-pucks so that they can detect the frequency, amplitude
and direction of signalling audio tones. The model is then calibrated to reproduce the
behaviour of the soundboard, by addressing each of the calibration points from chapter
6. The behaviour of the soundboard is tested and found to be erratic and highly sensitive
to environmental conditions, so both realistic and idealised models of the soundboard
are built for the simulation.

In chapter 9 we use the completed model to test couplings when the robots must
communicate with each other to locate food sources. For loose and tight couplings, each
robot is given the same signal to meaning mapping, which does not change over time.
For uncoupled swarms, each robot must evolve its own signal to meaning mapping. The
results show that in all tested couplings the robots do not evolve to use communication
and do not collaborate to collect from large food sources, usually preferring to stay
stationary for the whole generation.

Building on these results, we try a similar experiment where it is the food sources
that constantly express information about themselves. Loose and tight couplings are
implemented as in the earlier experiment, for the uncoupled swarm we use random
signalling and signalling with only one tone. We also test swarms where the food
sources just signal their size or their occupancy, but not both. Our results show that
the best fitnesses are found when only the size information is shared or when the food
sources all used the same tone to signal to the collectors. These couplings are also the
fastest to find “success” solutions. Loose coupling performed slightly better than tight
coupling for both finding higher fitness solutions and finding successful solutions sooner.
Although with a randomised solutions rather than evolved ones, the loose coupled tests
became significantly faster than tight coupled tests.

From these results we conclude that the occupancy information is not as useful for
the completion of the task as the size information. Furthermore, the evolutionary cost
of interpreting the occupancy information is greater than any benefit that was gained
from having that information. It is difficult to know what information will be useful
before beginning the evolution, and results indicate that being given extra information,
in case some of it is useful, can be a detrimental solution. The use of loose coupling
can negate the effects of sharing the extra information, but there is still an evolutionary
cost associated with interpreting the extra signals. Tightly coupled swarms perform
badly because of the strong effect of the less useful occupancy information on the signal
being broadcast. By coupling the pieces of information being broadcast, the experiment
demonstrates an interesting relationship between how the information is shared and the
swarm fitnesses.

With regards to the hypothesis, the results show that loose coupling leads to better
fitnesses than tight coupling. However, this is not necessarily achieved by having more
rapidly improving fitnesses as hypothesised, but because loose coupling makes the task
of interpreting signals easier. The best fitnesses are observed when there is only size
information being shared, or when only one signal tone is ever used. The size-only cou-
pling has a shared signal to meaning mapping, so there is some degree of coupling in the
environment, and because no extraneous information is shared the task of interpreting
messages is easier. The single tone coupling also has a fixed signal to meaning mapping,
in that a tone indicates the location of a food source. However, the robots only need
to evolve their reaction to one tone and the rest of the genome is redundant, making
the task of evolution much easier. Additionally, because the robots cannot distinguish
between food sources with this coupling, they can only learn to distribute themselves
evenly between the food sources, and this is a good tactic for completing the given task.

178

11.2 Impact of this Research

The research in this work can be most readily applied to swarms of robots doing tasks
which require explicit robot to robot communication.

The alphabetisation of information into simple, atomic descriptive primitives is ben-
eficial because it discretises information, making it easier to transmit. By demonstrating
that loose coupling gives better swarm fitnesses than tight coupling, it suggests that the
sequential transmission of several alphabetised descriptive primitives can be easier to
interpret than a large repertoire of many expressive signals from which only one signal
is needed at once to express all the information.

These findings are relevant not just to ESR but any form of swarm robotics where
robots directly communicate with each other, because it affects the design of the com-
munication. Sequential transmission of alphabetised data makes it easier for receiving
robots to extract relevant information from the message, but there may be situations
where short messages are preferable. It is an extra consideration when designing a
swarm robot experiment or when applying ESR to complete a task; asking what is the
best way of implementing the communication between robots for this application? In-
appropriately designed communication leads to robots not being properly able to share
information, and so not performing the task as well as they could.

Our research has also shown evidence that sharing more information between robots
does not make the task easier for them to complete. Future researchers should be
aware of this when designing experiments or swarm robot communication, taking care
to make sure any information being shared is useful. This has limitations if the task
or environment are likely to change over time because the data shared may become
irrelevant. In those circumstances, sharing as much information as possible in a loosely
coupled way may be a viable approach to designing the communication. An alternative
solution is to have the swarm robots evolve both the meanings and the signal to meaning
mapping, so that new meanings can be expressed as they become more useful [86].
However, in chapter 9 we show that when robots are able to evolve their signal to
meaning mapping, even with a fixed set of expressible meanings, reliable communication
and collaborative behaviour is difficult to evolve. It would be worthwhile to run short
experiments to see how useful any shared data is, before running the evolutionary
algorithm. Although, in embodied robots this could take a long time, so it may also be
worth building a simulation of the robot swarm to help determine the best conditions.

The CoSMoS process has been applied to modelling for the purpose of learning
more about the system being modelled (the domain), for example [32, 75]. However,
this is the first application of the CoSMoS process for modelling engineered complex
systems. Although we have not been able to validate our results against real robots,
we do recommend following the CoSMoS process. Noting the modelling assumptions
is a useful process, because it shows others where the model is assumed to be “good
enough” and any justifications for setting it that way. Assumptions that are later
found to be erroneous are much easier to address, especially if the original modeller is
not available. Another useful exercise has been to note what aspects of the modelled
system are unknown, so that they can be calibrated later when the domain is created.
By co-developing the model and domain, the features and limitations of the domain can
be fed back into the model, and the constraints of the modelling can inform requirements
of the domain.

179

11. CONCLUSION

11.2.1 Original Contributions

Major Contributions

• Applying loose coupling to evolutionary swarm robotic systems, and finding it
leads to higher fitnesses of robot controllers than other couplings by making the
communicated signals easier to interpret.

• Demonstrating that making more data available to the robots does not always
result in better performance.

• Providing a case study for the application of the CoSMoS process to engineered
systems.

Minor Contributions

• Building a model of e-pucks communicating with audio signals.

• Development of the e-puck soundboard.

• Testing of phased array beamforming under size and processing limitations of
e-pucks.

– It is shown that these limitations are too great for beamforming to be effec-
tive.

• Comparing the performance of homogeneous and heterogeneous swarms

11.3 Further Work

In section 10.7.1 we suggest further experiments that lead directly on from our findings
in chapter 10. In this section we suggest further work which builds on our research.

One of our aims is to provide a case study of applying the CoSMoS process to
engineered complex systems. Although we have developed a model and used it to
perform experiments, we have not yet validated the model against similar experiments
using real e-pucks. In chapter 10 we tested our hypothesis on simulated e-pucks with
idealised audio measuring and transmission. This was to test whether the hypothesis
would hold in an ideal environment, because if the hypothesis could be rejected there is
little point in time-consuming experimentation on real robots. Chapter 10 shows that
our hypothesis is able to hold in ideal conditions, so the same experiment needs to be
repeated using the realistic soundboard model, developed in chapter 8, and with real
e-pucks. After this has been done, the model can be validated against reality. The
simulated and embodied experiments can be compared to see whether fitnesses under
different couplings show the same trends in both, and whether the evolved controllers
are similar. If the two tests are found to be different, the assumptions of the model can
be addressed to try and make the model a closer representation of reality.

In this work we have not investigated circumstances where tightly coupled commu-
nication might be better than loose. The sequential transmission of alphabetised data
works well in chapter 10. However, if the robots must respond to signals quickly, or
if the communication is noisy or unreliable it may be preferable to send tightly cou-
pled information as one short signal that can be repeated frequently. With unreliable
transmission of loosely coupled information there is a higher chance of one alphabetised

180

descriptive primitive getting lost in transmission, meaning the whole message must be
repeated before that information is re-sent. If the message being transmitted contains
irrelevant information then there is a risk of the useful information being lost, impacting
a robot’s ability to act appropriately. Unreliable data transmission could be tested by
repeating the experiment from chapter 10 using the realistic soundboard model. If the
audio signal transmissions have a maximum range, it is possible for robots to move in
and out of range, meaning signals can be lost. Consequently, we may find that tightly
coupled communication gives higher fitnesses than loose coupled swarms.

Swarm robotics is inspired by swarm intelligence in insects, but the evolution used
in the genetic algorithms of our work is not the same as the evolution of swarm insects.
Traditionally, genetic algorithms have a population of individuals where the individuals
with the highest fitnesses survive to produce the next generation. It is possible for
individuals to cooperate, but their ability to reproduce is judged only on individual,
rather than collective, fitness. With swarm insects, most members of a colony are
sterile. These sterile insects work together to collect food and protect the colony from
danger. The only ants which reproduce and carry on their genetic material to the
next generation are queens and male ants. These ants reproduce with other queens or
males from other colonies. if a colony is good at collecting food and avoiding danger,
it can devote more energy to producing more reproductive ants, thereby giving it more
chances to reproduce [37]. Consequently, it is colonies that evolve, not individual
insects. Evolutionary selection is applied to the ability of the reproductive ants to
successfully mate before dying, but also to the performance of the colony.

It would be interesting future research to try applying swarm evolution to ESR rather
than the more traditional “survival of the fittest” evolution. This could be implemented
using a genetic algorithm with two genome populations, one of queens and one of males.
The robot controller genomes are then each derived from the crossover and mutation of
a queen and a male genome pair, and the robot swarm performs its task. Some number
of genomes are created from the two parents and placed into the next generation’s
reproductive population, this number is proportional to the performance of the robot
swarm. Once enough genomes are created in this way, then next generation is evaluated.

By evolving controllers in this way, the group performance is used as a measure of
evolutionary fitness. The swarm of robots is evolved rather than individual robot con-
trollers, much like when homogeneous robot swarms were used in chapter 10. However,
all robot controller genomes in a swarm are derived from the same “parents” and then
mutated, so individuals in the swarm are heterogeneous but genetically similar. This
has the advantage of encouraging collaborative behaviour, but maintaining diversity so
that the swarm is more adaptable and able to cope with environmental changes.

181

11. CONCLUSION

182

Appendix A

Supplementary Soundboard
Information

A.1 Microphone Pre-Amplifier Schematic

Figure A.1: Circuit diagram of microphone pre-amplifier used in the soundboard. Image
reproduced from [28].

A.2 Soundboard Circuit Diagram

183

A.3 Derivation of Microphone Phased Array Frequency
Response

The frequency response of a microphone phased array is the summation of the signals
at each microphone. These waves are not in phase so their amplitudes cannot simply
be added, as shown by figure A.2.

To sum waves, they are first represented as vectors on a complex plane as shown in
figure A.3. Then we sum the vectors, and the resultant gives the combined waveform.
The real and imaginary parts of the wave vector can be described by the following
equations, where A is the wave amplitude:

<(wave) = A cos(φ) (A.1)

=(wave) = A sin(φ) (A.2)

Consequently, the sum of all the waves is the sum of the real and imaginary parts of
all the composite waves. A wave can also be represented as a function of its frequency
f and time t by the expression sin(2πft). For each microphone, the time value will be
slightly different because the wave will have travelled different amounts, depending on
the phase, as illustrated in figure A.4.

Figure A.4 shows that the distance the wave must travel before reaching each mi-
crophone is L sin(θ), so the time delay for each microphone is the distance divided by
the speed of sound c. This gives the real and imaginary parts of the wave as:

<(wave) = A cos(2πf
L sin(θ)

c
) (A.3)

=(wave) = A cos(2πf
L sin(θ)

c
) (A.4)

Since ejx = cos(x) + j sin(x):

wave = A exp(2πf
L sin(θ)

c
) (A.5)

To sum this over all microphones, we just need to calculate the new value of L to
get the time delay for each microphone. If there are N microphones evenly spaced L
metres apart, this gives the equation:

1

N

N−1∑
m=0

exp(
j2πfmL sin θ

c
) (A.6)

The summation is normalised between 0 and 1 by dividing by N . The equation
assumes the microphones receive the wave perfectly across all frequencies and that the
the wave is not attenuated whilst being transmitted from the source to the array.

185

A. SUPPLEMENTARY SOUNDBOARD INFORMATION

Figure A.2: When two waves are out of phase, their amplitudes do not add linearly. In
this example, the combined wave strength is smaller than it is individually.

Figure A.3: Signal represented as a vector in a complex plane. The length of the vector
is the amplitude of the signal and φ is its phase.

186

Figure A.4: The extra distance a wave must travel to reach each microphone is L sin(θ),
where θ is the DOA and L is the distance between the microphones.

187

A. SUPPLEMENTARY SOUNDBOARD INFORMATION

188

Bibliography

[1] Epuck education robot website. http://www.e-puck.org, 2011.

[2] ABComponents. ABS-216-RC specification sheet. http://www.farnell.com/

datasheets/1662526.pdf.

[3] PW Anderson. More is different. Science, 177:393–396, 1972.

[4] Paul S. Andrews, Fiona Polack, Adam T. Sampson, Jon Timmis, Lisa Scott, and
Mark Coles. Simulating biology: Towards understanding what the simulation
shows. In Susan Stepney, Fiona Polack, and Peter Welch, editors, Proceedings of
the 2008 Workshop on Complex Systems Modelling and Simulation, York, UK,
pages 93–123. Luniver Press, 2008.

[5] Paul S. Andrews, Fiona A. C. Polack, Adam T. Sampson, Susan Stepney, and
Jon Timmis. The CoSMoS process version 0.1: A process for the modelling and
simulation of complex systems. Technical Report YCS-2010-453, Department of
Computer Science, University of York, March 2010.

[6] Paul S. Andrews, Susan Stepney, Tim Hoverd, Fiona A. C. Polack, Adam T.
Sampson, and Jon Timmis. CoSMoS process, models, and metamodels. In Susan
Stepney, Peter Welch, Paul S. Andrews, and Carl G. Ritson, editors, Proceedings
of the 2011 Workshop on Complex Systems Modelling and Simulation, pages 1–13.
Luniver Press, August 2011.

[7] Paul S. Andrews, Susan Stepney, Jon Timmis, Fiona Polack, Adam Sampson, Pe-
ter Welch, and Frederick Barnes. The CoSMoS process: Simulations for scientific
exploration. ECCS 2009: European Conference on Complex Systems, September
2009. extended abstract.

[8] Peter J. Angeline. Genetic programming and emergent intelligence. In Kim Kin-
near, editor, Advances in genetic programming, pages 75–97. MIT Press, Cam-
bridge, MA, USA, 1994.

[9] Aristotle. Metaphysics, volume H. Oxford University Press, 1924, 350 BC. Trans-
lated by W. D. Ross.

[10] R.D. Beer and J.C. Gallagher. Evolving dynamical neural networks for adaptive
behaviour. Adaptive Behavior, 1:91–122, 1992.

[11] Gerado Beni. The concept of cellular robotic system. In Proceedings of the IEEE
International Symposium on Intelligent Control, pages 57–62, 1988.

189

http://www.e-puck.org
http://www.farnell.com/datasheets/1662526.pdf
http://www.farnell.com/datasheets/1662526.pdf

BIBLIOGRAPHY

[12] Gerado Beni and Jing Wang. Swarm intelligence in cellular robotic systems. In
Proceedings NATO Advanced Workshop on Robots and Biological Systems, volume
102, pages 703–711, 1989.

[13] Gerardo Beni. From swarm intelligence to swarm robotics. In Erol Şahin and
William M. Spears, editors, Swarm Robotics, volume 3342 of Lecture Notes in
Computer Science, pages 1–9. Springer, 2004.

[14] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from
natural to artificial systems. Oxford University Press, Inc., New York, NY, USA,
1999.

[15] Rodney A. Brooks. Elephants don’t play chess. Robotics and Autonomous Sys-
tems, 6(1&2):3–15, June 1990.

[16] R. Burbidge, J.H. Walker, and M.S. Wilson. Grammatical evolution of a robot
controller. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ In-
ternational Conference on, pages 357–362. IEEE, 2009.

[17] J. Byrne, M. O’Neill, J. McDermott, and A. Brabazon. An analysis of the be-
haviour of mutation in grammatical evolution. Genetic Programming, pages 14–
25, 2010.

[18] S. Camazine, J.L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, and
E. Bonabeau. Self-organisation in Biological Systems. Princeton University Press,
2001.

[19] James P. Crutchfield and Karl Young. Inferring statistical complexity. Physical
Review Letters, 63(2):105–108, July 1989.

[20] R.A. Dain. Developing mobile robot wall-following algorithms using genetic pro-
gramming. Applied Intelligence, 8(1):33–41, 1998.

[21] Tom De Wolf and Tom Holvoet. Towards a methodology for engineering self-
organising emergent systems. In H. Czap, editor, Self-Organization and Auto-
nomic Informatics, volume 135, pages 18–34. IOS Press, 2005.

[22] J. L. Deneubourg, S. Goss, N. Franks, and J. M. Pasteels. The blind leading the
blind: Modelling chemically mediated army ant raid patterns. Journal of Insect
Behaviour, 2:719–725, 1989.

[23] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and
L. Chrétien. The dynamics of collective sorting robot-like ants and ant-like robots.
In Proceedings of the first international conference on simulation of adaptive be-
havior From animals to animats, pages 356–363. MIT Press, 1990.

[24] René Descartes. Discourses on the Method of Rightly Conducting One’s Reason
and of Seeking Truth in the Sciences, Part V. Project Gutenberg, 1637. Translator
not given.

[25] M. Dorigo and M. Birattari. Swarm intelligence. Scholarpedia, 2(9):1462, 2007.

[26] S Dumbacher, J Blough, D Hallman, and P Wang. Source identification using
acoustic array techniques. In Proceedings of the SAE Noise and Vibration Con-
ference, volume 2, pages 1023–1035, May 1995.

190

BIBLIOGRAPHY

[27] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Natural
Computing Series. Springer, 2003.

[28] Sparkfun Electronics. Amplified mic electret v14 schematic. http://www.

sparkfun.com/datasheets/BreakoutBoards/Amplified-Mic-Electret-v14.

pdf.

[29] Dario Floreano, Sara Mitri, Stéphane Magnenat, and Laurent Keller. Evolution-
ary conditions for the emergence of communication in robots. Current Biology,
17(6):514–519, 2007.

[30] N. R. Franks, N. Gomez, S. Goss, and J. L. Deneubourg. The blind leading
the blind in army ant raid patterns: Testing a model of self-organization (hy-
menoptera: Formicidae). Journal of Insect Behavior, 4(5):583–607, 1991.

[31] Phillip Garnett, Susan Stepney, and Ottoline Leyser. Towards an executable
model of auxin transport canalisation. In Susan Stepney, Fiona Polack, and Peter
Welch, editors, Proceedings of the 2008 Workshop on Complex Systems Modelling
and Simulation, pages 63–92, 2008.

[32] Teodor Ghetiu, Robert D. Alexander, Paul S. Andrews, Fiona A. C. Polack, and
James Bown. Equivalence arguments for complex systems simulations – a case-
study. In Complex Systems Simulation and Modelling Workshop (CoSMoS 2009),
pages 101–140, 2009.

[33] Robert B. Glassman. Persistence and loose coupling in living systems. Behavioural
Science, 18:83–98, 1973.

[34] F. Gruau. Automatic definition of modular neural networks. Adaptive Behavior,
3(2):151–183, September 1994.

[35] Andrew Guest. personal communication, 2010.

[36] John H. Holland. Complex adaptive systems. Daedalus, 121(1):17–30, 1992.

[37] B. Hölldobler and E.O. Wilson. The ants. Belknap Press of Harvard University
Press, 1990.

[38] Bert Hölldobler and Edward O. Wilson. Journey to the Ants: A Story of Scientific
Exploration. Belknap Press, 1994.

[39] D.M. Howard and J. Angus. Acoustics and Psychoacoustics, Third Edition. Focal
Press. Elsevier Science & Technology, 2006.

[40] Mattias Jacobsson, Sara Ljungblad, and Johan Bodin. Glowbots website. Glow-
bots Economy Library for the E–Puck.

[41] Nicholas R. Jennings. An agent-based approach for building complex software
systems. Communications of the ACM, 44(4):35–41, 2001.

[42] Chris Jones and Maja J Matarić. Adaptive division of labor in large-scale minimal-
ist multi-robot systems. In In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1969–1974, 2003.

191

http://www.sparkfun.com/datasheets/BreakoutBoards/Amplified-Mic-Electret-v14.pdf
http://www.sparkfun.com/datasheets/BreakoutBoards/Amplified-Mic-Electret-v14.pdf
http://www.sparkfun.com/datasheets/BreakoutBoards/Amplified-Mic-Electret-v14.pdf

BIBLIOGRAPHY

[43] J Kennedy and R Eberhart. Particle swarm optimisation. Proceedings of the
IEEE International Conference on Neural Networks, 4:1942–1948, 1995.

[44] Andrey Kolmogorov. Three approaches to the quantitive definition of information.
Problems of Information Transmission, 1:1–17, 1965.

[45] J. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.

[46] J.R. Koza. Genetic programming as a means for programming computers by
natural selection. Statistics and Computing, 4(2):87–112, 1994.

[47] J.R. Koza and J.P. Rice. Automatic programming of robots using genetic pro-
gramming. In Proceedings of the national conference on artificial intelligence,
pages 194–194. JOHN WILEY & SONS LTD, 1992.

[48] H Krim and M Viberg. Two decades of array signal processing research: the
parametric approach. IEEE Signal Processing Magazine, 13(4):67–94, 1996.

[49] C. Ronald Kube and Hong Zhang. Collective robot intelligence. In Proceedings of
the second international conference on From animals to animats 2 : simulation
of adaptive behaviour, pages 460–468, Cambridge, MA, USA, 1993. MIT Press.

[50] L. Lach, C.L. Parr, and K.L. Abbott. Ant Ecology. Oxford biology. Oxford
University Press, 2010.

[51] Robert Lacoste. PICFFT18 library. http://www.alciom.com/images/stories/
downloads/fftpic18-v14.zip, June 2004.

[52] W. Langdon and R. Poli. Fitness causes bloat: Mutation. Genetic Programming,
pages 37–48, 1998.

[53] Chris G. Langton. Computation at the edge of chaos: Phase transitions and
emergent computation. Physica D: Nonlinear Phenomena, 42(1-3):12–37, 1990.

[54] Kristina Lerman, Chris Jones, Aram Galstyan, and Maja J Matarić. Analysis of
dynamic task allocation in multi-robot systems. International Journal of Robotics
Research, 25(3):225–241, 2006.

[55] Wenguo Liu and Alan F.T. Winfield. Open-hardware e-puck linux extension board
for experimental swarm robotics research. Microprocessors and Microsystems,
35(1):60–67, February 2011.

[56] S.M. Manson. Simplifying complexity: A review of complexity theory. Geoforum,
32(3):405–414, 2001.

[57] Humberto R. Maturana and Francisco J. Varela. Autopoiesis and Cognition: the
Realization of the Living. D. Reidel, 1980.

[58] Warren Mcculloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biology, 5(4):115–133, December 1943.

[59] Microchip. PIC18(L)F2X/4XK22 data sheet. ww1.microchip.com/downloads/

en/DeviceDoc/41412F.pdf.

192

http://www.alciom.com/images/stories/downloads/fftpic18-v14.zip
http://www.alciom.com/images/stories/downloads/fftpic18-v14.zip
ww1.microchip.com/downloads/en/DeviceDoc/41412F.pdf
ww1.microchip.com/downloads/en/DeviceDoc/41412F.pdf

BIBLIOGRAPHY

[60] Mark M. Millonas. Swarms, phase transitions and collective intelligence. In
Christopher G. Langton, editor, Artificial Life III, pages 417–446. Addison-
Wesley, 1994.

[61] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[62] Daniel L. Moody. Metrics for evaluating the quality of entity relationship mod-
els. In ER ’98: Proceedings of the 17th International Conference on Conceptual
Modeling, pages 211–225, London, UK, 1998. Springer-Verlag.

[63] R Mucci. A comparison of efficient beamforming algorithms. IEEE Transactions
on Speech and Signal Processing, 32(3):548–558, 1984.

[64] Ulrich Nehmzow. Scientific Methods in Mobile Robotics. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

[65] S Nolfi and D Floreano. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. Cambridge, MA: MIT Press/Bradford
Books, 2000.

[66] Andrea Omicini. Soda: Societies and infrastructures in the analysis and design
of agent-based systems. In P. Ciancarini and M. J. Wooldridge, editors, Agent-
Oriented Software Engineering, pages 311–326. Springer-Verlag, 2000.

[67] Jennifer Owen, Susan Stepney, Jonathan Timmis, and Alan F. T. Winfield. Ex-
ploiting loose horizontal coupling in evolutionary swarm robotics. In Proceedings
of the 7th international conference on Swarm intelligence, ANTS’10, pages 432–
439, Berlin, Heidelberg, 2010. Springer-Verlag.

[68] H. Van Dyke Parunak, Robert Savit, and Rick L. Riolo. Agent-based model-
ing vs. equation-based modeling: A case study and users’ guide. In Proceedings
of the First International Workshop on Multi-Agent Systems and Agent-Based
Simulation, pages 10–25, London, UK, 1998. Springer-Verlag.

[69] Ognen Paunovski, George Eleftherakis, and Tony Cowling. Framework for em-
pirical exploration of emergence using multi-agent simulation. In Susan Step-
ney, Fiona Polack, and Peter Welch, editors, Proceedings of the 2008 Workshop
on Complex Systems Modelling and Simulation, York, UK, pages 1–32. Luniver
Press, 2008.

[70] Stuart L. Pimm. The complexity and stability of ecosystems. Nature, 307(6):321–
326, January 1984.

[71] Fiona A. C. Polack, Paul S. Andrews, Teodor Ghetiu, Mark Read, Susan Stepney,
Jon Timmis, and Adam T. Sampson. Reflections on the simulation of complex
systems for science. In ICECCS 2010: Fifteenth IEEE International Conference
on Engineering of Complex Computer Systems, pages 276–285. IEEE Press, March
2010.

[72] Fiona A.C. Polack, Tim Hoverd, Adam T. Sampson, Susan Stepney, and Jon
Timmis. Complex systems models: Engineering simulations. In ALife XI, pages
482–489. MIT Press, August 2008.

193

BIBLIOGRAPHY

[73] Jim Pugh and Alcherio Martinoli. Multi-robot learning with particle swarm op-
timization. In International Conference on Autonomous Agents and Multiagent
Systems, pages 441–448, May 2006.

[74] Jim Pugh and Alcherio Martinoli. Parallel learning in heterogeneous multi-robot
swarms. In Proceedings of the IEEE Congress on Evolutionary Computation,
pages 3839–3846, 2007.

[75] Mark Read, Paul S. Andrews, Jon Timmis, and Vipin Kumar. A domain model
of experimental autoimmune encephalomyelitis. In Susan Stepney, Peter Welch,
Paul S. Andrews, and Jon Timmis, editors, Proceedings of the 2009 Workshop on
Complex Systems Modelling and Simulation, York, UK, August 2009, pages 9–44.
Luniver Press, 2009.

[76] Justinian P. Rosca and Dana H. Ballard. Hierarchical self-organization in genetic
programming. In Proc. 11th International Conference on Machine Learning, pages
251–258. Morgan Kaufmann, 1994.

[77] C. Ryan, JJ Collins, and M. Neill. Grammatical evolution: Evolving programs
for an arbitrary language. Genetic Programming, 1391:83–96, 1998.

[78] Erol Sahin. Swarm robotics: From sources of inspiration to domains of application.
In Swarm Robotics, volume 3342 of LNCS, pages 10–20. Springer, 2004.

[79] Erol Sahin, Sertan Girgin, Levent Bayındır, and Ali Emre Turgut. Swarm
robotics. In Christian Blum and Daniel Merkle, editors, Swarm Intelligence,
Natural Computing Series, pages 87–100. Springer, 2008.

[80] Robert G. Sargent. Verification, validation, and accreditation: verification, vali-
dation, and accreditation of simulation models. In WSC ’00: Proceedings of the
32nd conference on Winter simulation, pages 50–59, San Diego, CA, USA, 2000.
Society for Computer Simulation International.

[81] R.O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE
Transactions on Antennas and Propagation, 34(3):276–280, 1986.

[82] H. A. Simon. The Sciences of the Artificial. The MIT Press, Cambridge, MA.,
1969.

[83] Herbert A. Simon. The architecture of complexity. Proceedings of the American
Philosophical Society, 106(6):467–482, 1962.

[84] Herbert A. Simon. The organization of complex systems. In H. H. Pattee, editor,
Hierarchy Theory, pages 1–27. George Braziller, 1973.

[85] T. Starkweather, S. Mcdaniel, D. Whitley, K. Mathias, D. Whitley, and Me-
chanical Engineering Dept. A comparison of genetic sequencing operators. In
Proceedings of the fourth International Conference on Genetic Algorithms, pages
69–76. Morgan Kaufmann, 1991.

[86] Luc Steels. Evolving grounded communication for robots. Trends in Cognitive
Sciences, 7(7):308–312, July 2003.

194

BIBLIOGRAPHY

[87] Susan Stepney, Robert E. Smith, Jonathan Timmis, and Andy M. Tyrrell. To-
wards a conceptual framework for artificial immune systems. In G Nicosia and
et al, editors, Third International Conference on Artificial Immune Systems, num-
ber 3239 in LNCS, pages 53–64. Springer, September 2004.

[88] Gilbert Syswerda. Schedule optimisation using genetic algorithms. In L. Davis,
editor, Handbook of Genetic Algorithms, VNR computer library. Van Nostrand
Reinhold, 1990.

[89] Vito Trianni. Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours
in Groups of Autonomous Robots. Springer, 2008.

[90] Jean-Marc Valin, François Michaud, Jean Rouat, and Dominic Létourneau. Ro-
bust sound source localisation using a microphone array on a mobile robot. In
Proceedings International Conference on Intelligent Robots and Systems, pages
1228–1233, 2003.

[91] András Vargha and Harold D. Delaney. A critique and improvement of the “CL”
common language effect size statistics of McGraw and Wong. Journal of Educa-
tional and Behavioral Statistics, 25(2):101–132, 2000.

[92] Richard Vaughan. Massively multi-robot simulation in Stage. Swarm Intelligence,
2:189–208, December 2008.

[93] Richard A. Watson, Sevan G. Ficici, and Jordan B. Pollack. Embodied evolution:
Embodying an evolutionary algorithm in a population of robots. In Angeline,
Michalewicz, Schoenauer, Yao, and Zalzala, editors, Congress on Evolutionary
Computation, pages 335–342. IEEE, 1999.

[94] Karl E. Weick. Educational organizations as loosely coupled systems. Adminis-
trative Science Quarterly, 21(1):1–19, March 1976.

[95] A. F. T. Winfield and J. Nembrini. Safety in numbers: fault-tolerance in robot
swarms. Int. J. Modelling, Identification and Control, 1(1):30–37, 2006.

[96] AFT Winfield, W Liu, and JD Bjerknes. Functional and reliability modelling
of swarm robotic systems. In Paul Levi and Serge Kernbach, editors, Symbiotic
Multi-Robot Organisms, Cognitive Systems Monographs, pages 56–79. Springer-
Verlag, 2010.

[97] Alan Winfield, Wenguo Liu, Julien Nembrini, and Alcherio Martinoli. Modelling
a wireless connected swarm of mobile robots. Swarm Intelligence, 2(2):241–266,
December 2008.

[98] Stephen Wolfram. A New Kind of Science. Wolfram Media, January 2002.

[99] Franco Zambonelli. Challenges and research directions in agent-oriented software
engineering. Journal of Autonomous Agents and Multiagent Systems, 9(3):253–
283, 2004.

[100] Dong Zhen, Fengshou Gu, and Andrew Ball. The study of acoustic source local-
ization using a small microphone array for condition monitoring. In Gary Lucas
and Zhijie Xu, editors, Future Technologies in Computing and Engineering: Pro-
ceedings of Computing and Engineering Annual Researchers’ Conference 2010,
pages 14–19. University of Huddersfield, Huddersfield, December 2010.

195

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background Context
	1.2 Aims and Contributions
	1.2.1 Contributions

	1.3 Thesis Structure

	I Background and Literature Review
	2 Complexity and Emergence
	2.1 Introduction
	2.2 Definitions
	2.2.1 Types of Complexity
	2.2.2 Unpredictability
	2.2.3 Emergence and Hierarchy
	2.2.4 A Definition

	2.3 Motivations Behind Complexity Research
	2.3.1 Complexity and Evolution

	2.4 Modelling
	2.4.1 The Advantages of Modelling
	2.4.2 Forms of Modelling
	2.4.3 Validation and Verification

	2.5 Conclusion

	3 Swarm Intelligence
	3.1 Introduction
	3.2 What is Swarm Intelligence?
	3.2.1 Motivations Behind Swarm Intelligence Research

	3.3 Swarm Robotics
	3.3.1 Benefits of Swarm Robotics

	3.4 Evolutionary Swarm Robotics
	3.4.1 Genetic Algorithms
	3.4.2 Implementing Evolutionary Swarm Robotics

	3.5 Conclusion

	4 Proposed Solution
	4.1 Hypothesis
	4.1.1 Coupling Strength
	4.1.2 Alphabetisation

	4.2 Motivations
	4.3 Conclusion

	5 An Experiment to Test the Hypothesis
	5.1 Introduction
	5.2 The Task
	5.3 Creating an Alphabet
	5.3.1 Varying the Amount of Coupling
	5.3.2 Benefits of Audio Communication

	5.4 Implementing ESR
	5.4.1 Collective Evolution
	5.4.2 Evolvable Robot Architectures

	5.5 Conclusion

	II Co-Development of Simulation and Hardware
	6 Basic Simulation
	6.1 Introduction
	6.2 The CoSMoS Process
	6.2.1 Benefits of Following the CoSMoS Process
	6.2.2 The CoSMoS Process for Engineered Systems

	6.3 Following the CoSMoS Process
	6.3.1 Research Context
	6.3.2 Biological Domain, Domain Model and Meta-Model
	6.3.3 Engineering Domain
	6.3.4 Domain Model
	6.3.5 Platform Model
	6.3.6 Simulation Platform
	6.3.7 Results Model

	6.4 Conclusion
	6.4.1 List of Assumptions
	6.4.2 List of Calibration Points

	7 Developing The Hardware
	7.1 Introduction
	7.1.1 Requirements

	7.2 Version 1: Phased Array Beamforming
	7.2.1 Soundboard Process
	7.2.2 Phased Array Beamforming
	7.2.3 Design Considerations
	7.2.4 Verification Tests
	7.2.5 Test Results

	7.3 Version 2: Microphone Amplitude Comparison
	7.3.1 Creating a Sound
	7.3.2 Test Results

	7.4 Conclusion

	8 Calibrating the Model
	8.1 Introduction
	8.1.1 List of Calibration Points

	8.2 Calibration Points Already Answered
	8.3 Comparing Soundboards
	8.3.1 Experimental Method
	8.3.2 Results
	8.3.3 Frequency and DOA Estimation From FFT Amplitude and Differential
	8.3.4 Discussion
	8.3.5 Feedback into Simulation

	8.4 DOA Measurement Accuracy
	8.4.1 Experimental Method
	8.4.2 Results and Discussion

	8.5 Two or More Simultaneous Tones
	8.5.1 Experimental Method
	8.5.2 Results
	8.5.3 Discussion and Feedback into Simulation

	8.6 Measuring Audio Range
	8.6.1 Experimental Method
	8.6.2 Results
	8.6.3 Discussion

	8.7 Calibrating the Model
	8.7.1 Amplitude and Differential with No Tone
	8.7.2 Amplitude and Differential with One Tone

	8.8 Conclusion

	III Results and Conclusions
	9 Initial Results From Testing the Hypothesis
	9.1 Introduction
	9.2 Experimental Method
	9.2.1 GE Grammar
	9.2.2 Genetic Algorithm Parameters
	9.2.3 Food Distribution Parameters
	9.2.4 Communication Parameters
	9.2.5 Measuring Results

	9.3 Developing Test Benchmarks
	9.3.1 Randomly Generated Controllers
	9.3.2 Designing A Controller

	9.4 Results
	9.4.1 Discussion

	9.5 Elitism and Steady State GA
	9.5.1 Elitism
	9.5.2 Steady State GA
	9.5.3 Discussion

	9.6 With Phonotaxis
	9.6.1 Simplifying the Audio and Soundboard Model
	9.6.2 Re-evaluating Test Benchmarks
	9.6.3 Results
	9.6.4 Discussion

	9.7 Conclusion

	10 Coupling in Swarms Using Indirect Communication
	10.1 Introduction
	10.2 Experimental Method
	10.2.1 Task
	10.2.2 Communication
	10.2.3 Evolved Controller
	10.2.4 Genetic Operators
	10.2.5 Implementing Collective Evolution
	10.2.6 Other Experiment Parameters
	10.2.7 Measuring the Results

	10.3 Developing Test Benchmarks
	10.3.1 Randomly Generated Controllers
	10.3.2 Designing A Controller

	10.4 Results
	10.5 Testing Additional Couplings
	10.5.1 Benchmarks
	10.5.2 Results

	10.6 Discussion
	10.7 Conclusion
	10.7.1 Further Work

	11 Conclusion
	11.1 Introduction
	11.2 Impact of this Research
	11.2.1 Original Contributions

	11.3 Further Work

	A Supplementary Soundboard Information
	A.1 Microphone Pre-Amplifier Schematic
	A.2 Soundboard Circuit Diagram
	A.3 Derivation of Microphone Phased Array Frequency Response

	Bibliography

