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Abstract

Crick and Watson were the first to recognise the importance of symmetry

in the structures of viral capsids. This observation was the departure point

for Caspar-Klug’s theory in which the possible positions and orientations of

the protein building blocks are predicted and classified in terms of T-numbers.

Whilst this theory predicts the layouts of the protein containers, it provides no

information on the thickness of the capsid or its surface features. The creation

of icosahedrally invariant point arrays via affine extension of the icosahedral

symmetry group and their mapping to viral capsids in [37] has shown that

they provide geometrical constraints on viral structure that not only correlate

positioning of proteins on the capsid, but also relate structural features on

different radial levels including genome organisation.

In this study we have extended this approach using the quasilattices em-

bedding these point arrays. To derive further geometric constraints on virus

architecture we firstly show how classifying the possible transitions between

the quasilattices modelling the structure of the virus before and after the tran-

sition allows us to derive information on the most likely transition paths taken

by the protein shell during the structural transformation. Next, a new algo-

rithm matching tile sets to viral capsids has been implemented to investigate

further the geometrical constraints quasilattices place on these structures over

and above the point arrays in [37].
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Chapter 1

Viruses and Symmetry

Viruses are well known for their devastating impact on health and economy,

but the development of technology has enabled us to deepen our understanding

of these entities and the possible applications of these results in the medical

field and nanotechnology are promising. For example, the construction of pro-

tein cages from viral proteins (lacking viral genome), referred to as virus-like

particles, can be used as gene vectors, i.e. to transport genetic material into

cells for therapeutic purposes [49]. These (non-infectious) particles provide

containers preventing premature degradation of drugs which, combined with

the high host-cell specifity of viruses, can deliver these drugs to the specific

targeted tissues. In cancer therapy, viruses carrying gold particles have been

used to target cells for photothermal cancer treatment [21].

Understanding how to alter viruses via protein engineering also finds appli-

cations in nanotechnology. The detection of biological markers often involves

proteins as “catcher” molecules that fix them onto a surface. However, using

viruses instead of proteins offers advantages. For instance, once the viral ge-

netic material has been genetically engineered so that its protein shell binds to

specific proteins, it can easily be reproduced through infection of new cells and

harvested by ultracentrifugation [22]. Microarrays made of viruses have been

used for the detection in sera of autoimmune antibodies specific to prostate

cancer [81].

14
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During its life cycle a virus needs to infect a cell in order to reproduce. Once

the cell is infected, the virus replicates within it using its host’s machinery.

The newly formed viruses then exit the cell (sometimes killing the cell in the

process) and are ready to infect other cells completing the cycle. To prevent

degradation of its genetic material (either RNA or DNA) from the extra-

cellular medium and to penetrate cells for infection, viruses have adopted

different techniques. These are distinguishable by the following morphologies

[18]: helical, icosahedral, enveloped and more complex viruses such as HIV

that contains a nucleocapsid with a cone-shaped morphology (see Figure 1.1).

Helical and icosahedral viruses use proteins to protect their genomic ma-

terial and to interact with the host-cell during the infection process. Other

viruses, such as the enveloped viruses, add an extra layer surrounding their

protein shell with an outer lipid membrane acquired during the release from

the host-cell (also known as “budding process”). Viruses with more complex

morphologies exist; one example is the Human immunodeficiency virus (HIV).

Although HIV’s nucleocapsid is surrounded by an envelope, its nucleocapsid,

made up of about 2000 proteins, has a cone-shaped morphology [54].

The work presented here focuses solely on the study of icosahedral protein

shells, also called icosahedral capsids or nucelocapsids. In these capsids, pro-

teins are arranged in such a way that the overall structure exhibits the same

symmetry as the icosahedron, see Figure 1.2. In structural biology it is com-

mon to distinguish different levels of structure when considering proteins. At

the lowest level, the primary structure of a protein is made up of a sequence of

amino acids. Each amino acid is made up of a backbone which constitutes the

“skeleton” (also called main-chain) of the protein, and a side-chain defining

the type of the amino acid. About 500 different amino acids were known at

the time of publication [80].

Folding of the primary structure, through hydrogen bonding between the

protein’s main chain, into regular structures constitutes elements of the pro-
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(a) (b)

(c)

Figure 1.1: Different morphologies of viruses protective shells: (a) represen-

tation of the Tobacco Mosaic virus whose RNA is protected by a helical shell

made of identical protein subunits [13]; (b) the icosahedral capsid of Cowpea

Chlorotic Mottle virus (CCMV) shown along a five-fold axis and rendered us-

ing the PyMol software [65]; (c) the cone-shaped nucleocapsid of the Human

Immunodeficiency Virus (HIV) type1 surrounded by a lipid membrane [54].

tein’s secondary structure (mainly α-helices and β-sheets). The globular form

of a single protein unit results from the subsequent folding of the secondary

structure’s elements, resulting in the so called tertiary structure. The next

organisational level is the quaternary structure, a 3D structure of an assembly
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of proteins. In some icosahedral capsids, such as in Cowpea Chlorotic Mottle

virus, the quaternary structure is formed via assembly of pentamers (cluster

of 5 proteins) and hexamers (cluster of 6 proteins).

Figure 1.2: Illustration of the icosahedral group. The 5-, 3-, 2-fold symmetry

axes bordering the fundamental domain (grey kite) are indicated with reference

to an icosahedron.

To study these viral capsids, whose radius may vary from 88 Å to 925

Å, libraries (Protein database [9] and Viperdb [12]) of Protein database files

(pdb files) containing the positions of atoms have been created based on X-ray

and Cryo-EM experiments [72]. In the rest of this chapter, earlier mathemat-

ical models developed to investigate the structures of these capsids through

symmetry will be introduced, starting with Caspar-Klug’s theory of quasi-

equivalence.

1.1 Previous Mathematical models

Crick and Watson [18] observed that many virus capsids have icosahedral

or helical shape if these are made of structurally equivalent subunits. The

underlying reason for this was believed to be related to genetic economy. Using

symmetry, the virus can code the maximal number of identical protein subunits

using the same genetic sequence. A consequence is that fewer genetic material

is needed to code the entire capsid making it easier to package. This was the

first step towards quasi-equivalence theory.
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1.1.1 Quasi-Equivalence theory

A protein shell where all proteins occupy equivalent positions is composed of

precisely 60 proteins, one for each element of the icosahedral group. In this

case the same type of bonds between each protein are used all over the protein

shell. To account for viruses with more than 60 proteins, Caspar and Klug

introduced the notion of quasi-equivalence [13]. Here, the capsid is formed

of 60T (with T ≥ 1) protein subunits but the bonds between proteins not

related by symmetry can be different, and the proteins may have different

conformations, i.e. they have different tertiary structures. To represent the

possible arrangements of proteins in the capsid, one could classify all ways

of paving a sphere by the folding of a planar net. It has been shown [57],

that these planar nets could only have 4-fold (the square lattice with square

units) or 6-fold symmetry (hexagonal lattice with triangular units). Because

a square net can only be folded orthogonaly, the triangular net is preferred as

its folding requires smaller bendings between triangles, i.e. allowing for the

maximal degree of quasi-equivalence.

In quasi-equivalence theory, different protein organisations are given by

triangulations with icosahedral symmetry, which are called icosideltahedra.

These are represented as onto planar nets as demonstrated for the icosahedron

in Figure 1.3. The positions of the proteins in the corresponding capsid are

then encoded by the corners of the triangular faces. At each vertex of the

icosahedron, five triangular facets meet forming clusters of 5 proteins (i.e.

pentamers).

Enumerating all icosadeltahedra is equivalent to finding all possible sub-

triangulations of the icosahedron. First, we choose one vertex as the origin O

and two vectors h and k, at an angle of
π

3
, forming a basis of the hexagonal

lattice, see Figure 1.4. Second, we represent the edge of one icosahedral face

by the segment OS defined by the coordinates (H,K) of vertex S in the basis

(h,k), where H and K indicate the numbers of steps between midpoints of

hexagons along the directions h and k, respectively. The icosahedral face is
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Figure 1.3: Folding of the icosahedron from the triangular net.

then subdivided by the smaller triangles congruent to the (O, h, k) triangle as

shown in Figure 1.4.

Figure 1.4: Subtriangulations of an icosahedral face are shown for two edges

OS and OS′ corresponding to icosadeltahedra T = 3 and T = 4 in Caspar-

Klug’s classification. A flattened and a folded version of these deltahedra are

shown in Figure 1.5.

Finding all possible subtriangulations is then equivalent to determining

all possible lengths, in terms of the (h,k) basis, of segment OS. Note that,

because of symmetry, we can limit the analysis to positive values for the co-

ordinates of H and K. The triangulation number T , which quantifies the
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subtriangulation, is defined as the ratio of the area of an icosahedral face over

that of a triangle:

T =

√
3
4 S

2

√
3
4

= S2

Using Pythagoras’ theorem, we obtain:

S2 = (H +
K

2
)2 + (

√
3

2
K)2

= H2 +HK +K2

Hence:

T = H2 +HK +K2 with (H,K) ∈ Z2.

The lowest non-tivial value of T is 1 for (H,K) = (0, 1) or (H,K) =

(1, 0) which corresponds to the standard icosahedron. Higher values of T

correspond to further subdivisions of the icosahedral faces. Examples of folded

nets corresponding to T = 3 and T = 4 icosadeltahedra are shown in Figure

1.5. Notice that there exist no values for H and K such that T = 2 and

that the lowest non trivial value of T is 3. These icosadeltahedra encode the

positions of the 60T proteins with precisely 12 pentamers (one around each of

the 5-fold axes of the icosahedron) and 10(T -1) hexamers (i.e. clusters of six

proteins).

We have seen that, due to the symmetry of the hexagonal lattice, only pos-

itive values of H and K need be considered. Note that the line H = K is also

a symmetry axis. This mirror symmetry leads to enantiomorphous structures

for values of T = 7, 13 , 19... as can be seen in Figure 1.6. To distinguish

between two enantiomers for a given T-number, we call the enantiomer laevo

if H > K > 0 and dextro if K > H > 0.

The structures of many viruses can be represented by quasi-equivalence,

provided that the same type of bonding environment occurs for every protein
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Figure 1.5: Folding of the triangular net of the icodeltahedra corresponding to

the T=3 (top row) and T=4 (bottom row) in Caspar and Klug’s classification.

In each case one of the faceted icosahedral faces has been highlighted in blue.

Figure 1.6: Possible values of T depending on H and K. For T = 7 mir-

ror images exist and (H > K) or (K > H) distinguishes laevo from dextro

configurations.
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Figure 1.7: A T = 4 triangulation superimposed on the capsid of Providence

virus pinpoints the position of proteins at the corners of the triangular faces.

in the capsid. In addition, it has been shown in [86] that symmetry occurs

as a consequence of energy minimisation. To demonstrate this, equilibrium

states are explored using Monte Carlo techniques applied to a coarse-grain

model. To describe the capsomere-capsomere interaction potential, a van der

Waals type potential energy V (r) (with r the distance between the centers

of the interacting capsomeres) includes a short range repulsion (representing

rigidity of the capsomere) and a long-range attraction (i.e. the driving force of

aggregation). This coarse-grained model includes two different morphological

units, hexamers and pentamers represented by the internal state H and P,

respectively. The minimum of V (r) acknowledges the geometrical size differ-

ence between pentamers and hexamers of the same edge length, and an energy

difference ∆E between a P and an H capsomere (taking into account different

individual contact interactions and folding conformations of the proteins) is

implemented. The N interacting capsomeres are allowed to freely move on a

spherical surface, each able to switch between the P and H states to explore

all possible configurations. The energy ε is plotted as a function of N in Figure

1.8, using the capsomere-capsomere binding energy ε0 as energy unit.
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Figure 1.8: Searching for capsids composed of N capsomeres which correspond

to a minimisation of the overall structure’s energy. Energy per capsomere

for ∆E = 0 (black curve) and for
∆E

ε0
>> 1 (dotted curve) are plotted as

functions of the number of capsomeres N in the capsid, figure adapted from

[86].

In the case ∆E = 0, one state (P or H) is not preferred over the other

and capsids are composed of a combination of the two. The minima of the

structure’s energy are located at N = 12, 32, 42 and 72 which correspond to

Caspar-Klug’s T = 1, 3, 4 and 7 structures, respectively. This supports the hy-

pothesis that icosahedral symmetry and T number structure are consequences

of energy minimisation. For ‖∆E‖ >> ε0 capsids are uniquely made up of

hexamers or pentamers depending on the sign of ∆E. Forcing all capsomeres

to be in the same state (either P or H) has a dramatic effect on icosahedral

symmetry and only the Caspar-Klug structure T = 1 (N = 12) and T = 3

(N = 32) are still observed. Other minima of ε(N) are observed at N = 24

and N = 48, both exhibiting octahedral symmetry. Under these circumstances

(i.e. ‖∆E‖ >> ε0), it has been shown that external pressure on the capsid is

necessary to facilitate icosahedral symmetry.



CHAPTER 1. VIRUSES AND SYMMETRY 24

Figure 1.9: The Simian virus 40 (pdb-id :1sva from [12]) falls outside quasi-

equivalence’s scope as its capsid is entirely composed of pentamers which is

not possible with a uniform type of inter-subunit interaction.

1.1.2 Viral Tiling Theory

Although many capsid structures conform to Caspar-Klug theory, the improve-

ment of experimental techniques has led to the discovery of an increasing num-

ber of capsids which fall outside quasi-equivalence’s scope. This is the case

for Polyoma-like viruses (a family of cancer-causing viruses) whose protective

shells are entirely composed of pentamers. The example of the Simian virus

40 is shown in Figure 1.9 where the 360 proteins form 72 pentamers, for which

the positions of the capsomeres correspond to those of the T = 7d (i.e. 7

dextro) capsid, albeit with different bonding environment.

To include these capsids into a broader theory required the inclusion of non-

quasi-equivalent bonding environments. A generalisation, called Viral Tiling

Theory was developed [79], and extends spherical tesselations with overall

icosahedral symmetry to non-triangular building-blocks. In the following, we

refer to these building blocks as tiles using tiling theory terminology. This

work is closely related to Penrose tilings [66] as the tiles have similar shape,

but here these tesselate spherical objects instead of a planar surface. Like



CHAPTER 1. VIRUSES AND SYMMETRY 25

the generalisation of tesselations to non-triangular tiles and the mixture of

different tiles, the concept of quasi-equivalence needs to be broadened, too to

include different types of bonding environments (such as a mix of dimer and

trimer interactions). The generalised quasi-equivalence guarantees that iden-

tical types of proteins occupy similar positions on the tile by locating protein

subunits at the corners of the tile subtending the same angle. This generalised

concept encompasses quasi-equivalence, for which proteins are located at the

corners of equilateral triangular tiles.

By allowing more than one bonding environment, Viral Tiling Theory better

describes inter-capsomere and intra-capsomere interactions between proteins.

The example of the Simian Virus 40 is shown in Figure 1.10, where represen-

tation of the 72 pentamers requires two different tiles, the rhomb and the kite.

Note that here colours represent positions that are equivalent under icosahe-

dral symmetry. Viral Tiling Theory allows for different inter-capsomere bonds.

These are either dimer interactions, i.e. interactions between two protein sub-

units (represented here by the rhomb-shaped tiles), or trimer interactions, in

which three protein subunits interact with each other (represented here by

a kite tile). Interactions take place via the C-terminal arms of the protein

subunits. In a dimer interaction, this occurs via an exchange of C-terminal

arms by the two protein subunits represented on the tile (see double line on

the rhomb tiles); in a trimer interaction, each subunit receives a C-terminal

arm from a protein subunit different from the one it extends its C-terminal

arm to (see single lines on the kite tile).

Even though quasi-equivalence theory and its generalisation to Viral Tiling

Theory predict the possible arrangements of proteins on a 2 dimensional lay-

out, they provide no information on the 3D structure of the virus, e.g. in terms

of radial extent and surface features. We introduce in the following section

previous mathematical models which investigate the full 3D organisation of

virus capsids.
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(a) (b)

Figure 1.10: Application of Viral Tiling theory to Simian Virus 40 whose cap-

sid is formed of 72 pentamers. Here the Viral Tiling theory encodes three

different bonding environments: the red and blue and the yellow rhombs (i.e.

two protein subunits interacting) and a kite (i.e. three protein subunits inter-

acting).

1.1.3 Janner’s approach

Janner was the first to use lattices to study the structure of clusters of proteins

and icosahedral viruses. We will briefly explain here his method [29, 30] applied

to different variants (or serotypes) of the human rhinovirus capsids. This T=3

virus counts approximatively 100 different serotypes of which serotypes 1a, 2,

3, 14, and 16 have been succesfully crystallised and used as a tutorial example

in [29] and [31]. Note that even though two different serotypes have the same

overall shape and the same architecture (that is same number and same overall

arrangement of coat proteins) there are differences in the protein structures

and in particular the antigens located on the surface of the capsid proteins

are different. Since the crystallisation of an ensemble of particles depends on

these surface features, two serotypes may crystallise with different symmetries.

In this series of papers, Janner investigated the relationship between serotype

and crystal symmetry and was able to define fingerprints using 3D lattices
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which encode the esssential properties (packing and symmetry) of the crystal

structure of the viruses.

First the crystal structure of viruses is represented by the crystal lattice

Λ, where each of its vertices coincides with the centers of the capsids in the

crystal, see Figure 1.11.

Figure 1.11: Example of crystal lattice Λ and packing ΛP corresponding to

the serotype 14 of Human rhinovirus adapted from [31]. The vertices of Λ,

located at the centre of each capsid in the crystal, are shown as double circles.

Spheres of radius R0 circumscribe capsids in the crystal and kissing points

(shown as filled circles) are located wherever two spheres touch. To index

these kissing points, the finer lattice ΛP (shown as open circles) is used.

Using spheres circumscribing each protein shell in the crystal, the proxim-

ity between two neighboring capsids is encoded by the kissing points defined

as the points where two spheres “touch”. The residues closest to these kiss-

ing points, called the kissing point residues (or KPR), are believed to play

an important role in the clusterisation process due to their proximity with

neighboring capsids.

To account for the symmetry of the capsid, an additional enclosing form

is chosen for the rhinovirus capsids (independently of their serotype): an ico-
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(a) (b)

(c)

Figure 1.12: Capsid of the human rhinovirus with the ico-dodecahedra used

as an enclosing form in [29], seen along a 3-fold (a), 2-fold (b) and 5-fold

axis (c). Vertices of the ico-dodecahedra can be indexed using either the

6-dimensional simple cubic lattice (represented as open circles) or the body-

centered cubic lattice (shown as filled circles). Projection of vertices from 6D

lattices (explained in detail in Chapter 2) are indexed by their coordinates in

the 6D standard Euclidean basis.

dodecahedron (i.e. the projection of the unit cube in the 6D SC lattice)

scaled to the outer surface and a 1
τ -rescaled ico-dodecahedron matching the

inner surface of the protective shell, see Figure 1.12. However, it is known

that no 3D lattice can embed the vertices of the ico-dodecahedron because of

the crystallographic restriction [66]. To circumvent this problem and better
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approximate the capsid without involving higher dimensional lattices, a finer

packing lattice ΛP is used. Since the vertices of the ico-dodecahedron used to

approximate the virus structure do not form a lattice in 3D, Janner uses the

vertices of the cubes circumscribing the outer ico-dodecahedron and inscribed

into the inner ico-dodecahedron. The lattice ΛP is constructed to contain all

vertices of these cubes. By construction Λ is a sub-lattice of ΛP , see Figure

1.11. ΛP can be considered as a representation of both the crystal lattice and

the orientation of each capsid. Indexing the kissing points in ΛP provides

a unique fingerprint for each of the studied serotypes. The example of the

fingerprints for serotypes 3 and 14 is shown in Figure 1.13, superimposed with

the coat protein VP2 and the corresponding lattice ΛP .

(a) (b)

Figure 1.13: The VP2 coat protein of human rhinovirus superimposed on the

ΛP -lattice for serotypes 3 (a) and 14 (b). The positions of residues closest to

these kissing points, believed to play a role in clusterisation, are marked by

filled circles and indexed by the number of its associated chain as given in pdb-

file. Together with the indexed kissing points (represented by double circles)

in ΛP , a fingerprint of a capsids crystal structure is constructed enabling the

reconstruction of its essential features.
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1.2 Extended Symmetry Group

The work presented in this section extends that by Janner as it considers

enclosing forms of the viral capsids using icosahedrally invariant points sets,

which are related to the vertex sets of lattice-like structures (quasilattices)

with non-crystallographic symmetry. We will discuss in more depth the con-

struction of these point sets as they will be used in the study of the dynamics

in the transition undergone by the Cowpea Chlorotic Mottle virus in Chapter

3.

As mentioned above icosahedral symmetry is non-crystallographic in 3D

space therefore no lattice can be constructed in 3D with the same symmetry

as the viral capsids. To gain knowledge of the radial distribution of material

in a virus, such as the thickness of its capsid and the features of its genome

organisation (which are not accessible via Caspar-Klug theory or Viral Tiling

theory) an affine extension of the icosahedral group has been used [35].

In general, the construction is as follows. Using group theory terminology,

a group element is a letter and combination of these letters forms a word, point

sets correspond to words in the extended symmetry group. They are iteratively

constructed using a base shape that is invariant under a desired symmetry

group and represents the action of the symmetry group geometrically. After

translation along one of its symmetry axes corresponding to the affinisation of

the group, i.e. the introduction of a translation, and subsequent application of

the symmetry group, a point set with the same symmetries as the base shape

is constructed. For arbitrary translations, the infinite group corresponding to

the resulting point array corresponds to the free group, i.e. has only trivial

mathematical structure, because there are no relations between words in the

group generators (elements in the infinite group) other than those already

present in the finite group. Therefore we introduce the concept of admissible

translation. Following [35], we call admissible those translations leading to

degeneracy of the points (given by the vertices of the translated and rotated

copies of the base shape) after application of the whole symmetry group. We
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denote the translation by λt, where t is the unit vector along a symmetry

axis and λ a scaling factor. Each vertex of these point sets can be obtained

by application of a product of the affine extended group elements to a vertex

of the base shape. The construction of these point sets is analogous to the

construction of lattices from affine extensions of symmetry groups. A 2D

example of such a construction is shown in Figure 1.14 demonstrating the

construction of an hexagonal lattice and of a point set exhibiting the 2D non-

crystallographic 5-fold symmetry.

(a) (b)

(c) (d)

Figure 1.14: Comparison between the 2D construction of an hexagonal lat-

tice and a point set with the non-crystallographic 5-fold via affine extension of

symmetry groups. first row : creation of an hexagonal lattice through trans-

lation of a red hexagon to a blue hexagon and subsequent rotation (green

hexagons) (a). Vertices are part of the hexagonal lattice (b). second row :

Similarly, translating the red pentagon through a symmetry axis followed by

5-fold rotation (green pentagons) in (c), a point set with 5-fold symmetry

(non-crystallographic) is constructed (d).

For a set of vertices with icosahedral symmetry, the base shape can be
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chosen as one of the three polygons invariant under the icosahedral group and

with minimal cardinality, i.e. the icosahedron, dodecahedron or the icosido-

decahedron represented in Figure 1.15. As will be shown in Chapter 2, these

base shapes appear naturally within the construction of icosahedral quasilat-

tices (i.e. set of ordered points that lacks lattice translational symmetry).

Figure 1.15: The icosahedron (a), the dodecahedron (b) and the icosidodec-

ahedron (c) are the three base shapes used in the construction of the 3D

point sets with icosahedral symmetry in [35]. Note that they correspond to

projections of the three icosahedral lattice types in 6D (see Chapter 2).

Exhaustive computation of admissible translations corresponding to the

three icosahedrally invariant base shapes resulted in a library of 55 point sets

[35] which correspond to all words containing at least one occurence of the

translation λt. Allowing for multiple uses of the non-compact operator λt

leads to spatially extended and denser point sets. Keeping in mind that these

must model structural constraints on viral capsids, application of λt should

be limited. An analysis of a range of viruses [83] suggests that, although the

thickness of the viral capsid may vary, allowing a single translation λt in the

construction of the point array, is enough to represent the structure of small

viruses (up to T = 4 and in some cases T = 7). A preferred way to create

denser point sets is by combination of existing ones. Two point sets A1 and

A2 are defined compatible if their associated translations t1 and t2 are along

the same symmetry axis and A1 is λ-rescaled such that λλ1 = λ2. Note that

in this case, λλ1t1 = λ2t2 is an admissible translation of both base shapes



CHAPTER 1. VIRUSES AND SYMMETRY 33

λA1 (i.e. A1 rescaled by λ) and A2. Combining the 55 point sets in this way

produced a library of 569 vertex sets which we call viral configurations or point

arrays.

To compare point arrays with a given viral capsid the only degree of free-

dom is the relative size of the point array to the protein shell, i.e. an overall

scaling factor, since the orientation of the capsid as well as the point set are

fixed by the axes of symmetry. Fixing the size of the protein container, an

automated algorithm has been developed in [37] to scale point arrays such

that the outer vertices match the outermost features of the viral capsid. Each

of the rescaled point arrays is then scored according to its proximity to atomic

positions in the viral capsid. As only structural information regarding the

capsid is used, three radii have been defined. The inner radius is given as the

minimal distance of any atoms in the capsid from its centre, the virus radius

(maximal distance of any capsid’s atoms from the centre of the capsid plus a

van der Waals radius of 1.9Å) and the mean radius as mean of inner and virus

radii. Vertices positioned below a 4Å threshold below the inner radius are not

included in the score as they may correspond to geometrical constraints on the

genomic material. Vertices below the mean radius contribute to the scoring

if they represent a good match to the capsid, that is if they are within 4Å

of the capsid’s material. By contrast, vertices above the mean radius cannot

possibly match to the genomic material and they are thus required to match

features of the capsid. Note that, by construction, two point arrays may have

the same “outer” points, but different “inner” points. It is therefore possible

to have more than one good match for a given virus, possibly representing

pleomorphic interiors. The example presented in Figure 1.16 shows for the

T = 3 Pariacoto virus how these point arrays can be thought of as geometrical

constraints and how these are related at different radial levels.
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Figure 1.16: Application of the matching algorithm to the Pariacoto Virus

[37]: Here the scaling was defined by the positions of the magneta points

fitting the 15Å-high protrusions located at the quasi-three fold axes. Points in

magenta, yellow, orange and light green are scored to the protein shell. The

RNA dodecahedral cage (not used in the fitting algorithm) is predicted by the

dark green and blue vertices providing information on the major and minor

grooves of the RNA, respectively.

1.3 Motivation for this study

The point arrays are by construction a subset of the vertex set of a quasilat-

tice as demonstrated later in Chapter 3. In this study we have constructed

the full 3D tilings, of which these point arrays are part, to investigate if these

structures correspond to additional geometric constraints and to better un-

derstand the role of symmetry in virus structure. Other models based on

quasilattice theory have been developed [43, 71] to understand the underlying
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principles of new ordered non-crystallographic structures (such as i -AlPdMn

quasicrystals), see Figure 1.17.

Figure 1.17: Match of a tiling to the i -AlPdMn quasicrystal determined via

Scanning Tunneling Microscopy (STM) experiment. A tiling is constructed

using the acute rhombus, crown and pentagon as tiles whose vertices match

atomic positions in the quasicrystal (a). A close up view shows that tiles have

an internal structure (b), i.e. these also contain atoms, shown as high contrast

region from the STM output (c). Figures adapted from [43].

The present study investigates how a completed quasilattice-based model

can help us understand the underlying principles of very different structures

such as viruses. If we can indeed use tilings to model the structure of vi-

ral capsids, we can assume that it supports the energy minimisation struc-

ture hypothesis as in the case of tilings mapping quasicrystal alloys. If so,

these geometrical constraints may have a direct influence on the evolution

of viruses. Indeed inferring evolutionary relationship between viruses using

sequence comparison of genomic material is difficult for long-range viral rela-

tionships because of high mutation rates. Instead morphological similarities

between capsids are used as indicators [5, 6, 23]. Thanks to improved experi-
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mental techniques, a growing number of structures have been determined and

it has become clear that some protein shells are strikingly similar even if the

corresponding viruses are from different families and infect different domains

of life (i.e. archæa, bacteria or eukaryota). Whether protective shells have

similar morphologies due to minimisation of their structure’s energy or as a

result of being closely related viruses, i.e. due to descendance from a common

ancestor, is still an open question. However, this study supports the hypoth-

esis that these similarities may be the consequences of structural constraints

on viral evolution towards a more stable capsid design.



Chapter 2

Cut-and-Project method

2.1 Introduction

The cut-and-project method is the most commonly used technique to con-

struct an aperiodic tiling with a given symmetry group [42, 56]. This technique

projects elements (such as vertices, edges, etc) from a higher dimensional lat-

tice L onto two subspaces that are invariant under the symmetry group, see

Figure 2.1. We call these two subspaces E‖ and E⊥, often referred as the

parallel or physical space and the orthogonal or control space, respectively.

As will be seen in subsequent sections, the physical space E‖ corresponds to

the space in which the tiling is constructed. The selection rule, defined in the

orthogonal space E⊥, specifies which elements from L project onto E‖ such

that the constructed tiling contains no holes, no overlapping tiles and is in-

variant under a specific point group G. The two requirements for a projected

quasilattice and its associated tiling to have G as a symmetry group are that:

(i) G must be a subgroup of the holohedry (i.e. the maximal point group sym-

metry) of the lattice L, and (ii) both subspaces E‖ and E⊥ must be invariant

under G. As we will see for 5-fold symmetric and icosahedral tilings, the de-

sired symmetry group G fixes the minimal dimensionality of the lattice L from

which the tiling is obtained via projection. Other techniques could have been

used to construct quasilattices such as the grid method [66]. Even though this

37
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Figure 2.1: Illustration of the cut-and-project method. Let L be a lattice,

embedded into an Euclidean space En, and let E‖ and E⊥ be two subspaces of

En that are invariant under a given symmetry group. The tiling, constructed

in E‖, is made of projected elements from L. To prevent tile overlaps or the

presence of holes in the tiling, the cut-and-project method defines the selection

criteria on lattice elements in the control space E⊥.

technique has been shown to be equivalent to the cut-and-project method [24],

we prefer the latter as it provides a link with the higher-dimensional lattices

used by Janner to index his models. Moreover, the point arrays discussed in

Chapter 1 are uniquely embedded into a 6D lattice. Projecting the other ele-

ments of this lattice is a natural extension of the point arrays to a quasilattice

and introduces additional geometric constraints. Next, the embedding into

higher dimensional lattices allows the use of 3D crystal transition techniques

to study structural transitions of viral capsids with minimal symmetry loss.

In this chapter, we will focus on the creation of tilings with 5-fold symmetry

(in Section 2.3) and icosahedral symmetry (in Section 2.4). The icosahedral

tilings are used, in Chapters 4 and 5, to construct models for viral capsids that

encase the protein structure akin to Janner’s encasing forms. Structural tran-

sitions of tilings with 5-fold or icosahedral symmetry are studied in Chapter

3 and applied to the study of capsid transitions.
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2.2 The cut-and-project method

We review here the cut-and-project method for the construction of aperiodic

tilings from higher-dimensional lattices. In the remainder of this chapter we

assume that L is an n-dimensional lattice embedded into an Euclidean space

En of dimension n and that the two subspaces E‖ and E⊥, with En = E‖⊗E⊥
and E‖ ⊥ E⊥, are invariant under a symmetry group G, which is a subgroup

of the holohedry of L. Before we define the selection rules specifying which

elements of L will be part of the projected tiling in E‖, let us recall a few

definitions from lattice theory (see [66] and [17]):

Definition 2.2.1. Given a lattice L in En and q ∈ L, the set:

V (q) = {u ∈ En; | q − u |≤| y − u |,∀y ∈ L − {q}}. (2.1)

is called the Voronoi cell of the centre vertex q.

Note that because all vertices of a lattice are equivalent modulo translations

so are the associated Voronoi cells, that is V (q) = V (q′)+q−q′ for any q, q′ ∈ L.

An example of the construction of Voronoi cells within a 2D lattice is presented

in Figure 2.2. Having defined the Voronoi cell of a lattice L, we call X(q) an

m-boundary (i.e. a boundary of dimension m such that m<n) of V (q), and

define the dual X∗(q) of X as follows.

Definition 2.2.2. Let S(X(q)) be the set of vertices k ∈ L whose Voronoi

cells V (k) share the same X(q) as a boundary, i.e:

S(X(q)) = {k ∈ L | X(q) ⊆ V (k)} (2.2)

Then the convex hull of S(X(q)) is called the dual of X(q) and is denoted as

X∗(q).

By definition the dual of q ∈ L is its associated Voronoi cell V (q). The

duals of vertices of V (q) (also known as “holes” of L) are the so-called Delone

cells [66].

This definition of dual leads to the following properties:
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1. The dual of X∗ is X∗∗ = X;

2. if X is an m-boundary then X∗ is an (n-m)-boundary;

3. if X1 ⊂ X2 then X∗1 ⊃ X∗2 .

Note that, by construction, Voronoi cells, their boundaries and the associated

duals are convex polytopes. Calculations of these have been performed using

the Qhull package [7].

2.2.1 Selection rule

This section summarises the selection rule used to prevent the overlapping

of tiles in E‖ using the so-called klotz tiles. To illustrate this concept, we

assume that E⊥ is an m-dimensional subspace (with m<n) and E‖ is (n-

m)-dimensional (since En = E‖ ⊗ E⊥). We define X(q), an m-dimensional

boundary of the Voronoi cell V (q), and X∗(q) its (n-m)-dimensional dual.

Definition 2.2.3. The n-dimensional klotz tiles constructed from V (q) are

given by:

X∗‖j(q)⊗X⊥j(q) j = 1, ..., N(m) (2.3)

where N(m) is the number of m-boundaries in V (q), X∗‖j(q) is the projection

of X∗j (q) into E‖ and X⊥j(q) the projection of Xj(q) into E⊥.

It has been shown in [42] that since the lattice L spans En, the klotz tiling

paves En, i.e. there are no two overlapping tiles and every point of En belongs

to a klotz tile. A 2D example of this construction is shown in Figure 2.2.

We can now state the selection rule defined by the cut-and-project method

which prevents the overlapping of any two tiles in E‖ as follows:

X∗‖ (q) is included into the tiling in E‖, which we call T ∗, if and only if E‖ cuts

the corresponding klotz tile. If we assume moreover that E‖ ∩ L = {O}, with

O the origin of L, then E‖ cuts a klotz tile if O⊥ ∈ X⊥(q). By construction

of the klotz tiling in En, the cut-and-project method guarantees that two tiles

X‖i and X‖j do not overlap in E‖ if and only if their projections X⊥i and X⊥j
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Figure 2.2: Example of the klotz construction in 2D based on [42]. The

1-boundaries of the Voronoi cells are represented as red lines and their 1-

dimensional duals as blue lines. The edges of the klotz tiles X∗‖ ⊗ X⊥ are

represented as black lines.

into E⊥ share an interior point. The situation where two tiles may overlap in

E‖ is explained in detail in Section 2.2.2.

Due to translational invariance of L, we can also consider the m-boundaries

X of a single Voronoi cell. Recalling that V (q) = V (O)+q for q ∈ L, it follows

that for any X(q) ∈ V (q) there is a single X(O) ∈ V (O) such that X(q) =

X(O)+q. The condition O⊥ ∈ X⊥(q) is then equivalent to −q⊥ ∈ X⊥(O) and

the tile X∗‖ (q) = X∗‖ (O) + q‖ is part of T ∗. Similarly, a vertex q‖ belongs to

the tiling T ∗ if there is at least one X⊥(O) ∈ V⊥(O) such that −q⊥ ∈ X⊥(O).

This is equivalent to −q⊥ ∈ V⊥(O).

The tiling T ∗ can then be constructed iteratively by projecting each vertex

q ∈ L such that −q⊥ ∈ V⊥(O) and completed by projection of all tiles obeying

the cut-and-project selection rules and sharing q‖ as a vertex. These tiles form

the so-called vertex configuration of q‖ which is constituted by the set of tiles

X∗‖ (O) + q‖ such that −q⊥ ∈ X⊥(O). Examples of vertex configurations with

5-fold symmetry and icosahedral symmetry are shown later in Figures 2.5 and
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2.7. An example of a 1-dimensional tiling is represented in Figure 2.2.

It is worth noting that the tiling T ∗ is composed of a finite number of non-

congruent tiles (as opposed to meshes, i.e. structures with unlimited number

of different shapes). Indeed V (O) is a finite polytope and the number of

boundaries of V (O) and their duals is therefore finite. Moreover, these can be

related by point group symmetry or by translation operations in L, and hence

the tiling is composed of a finite number of non-congruent tiles.

Following the terminology in [66], we introduce the following definition.

Definition 2.2.1. A set of tiles S of a tiling T ∗ is called a protoset, if S

contains no two congruent tiles and if all tiles in T ∗ are congruent to a tile in

S. Tiles within a protoset are called prototiles.

Notice that one could choose a different section of the klotz tiling by trans-

lating the physical subspace E
′

‖ = E‖+γ. This will be useful for the creation of

5-fold symmetric tilings in Section 2.3 where shifting E‖ allows us to maintain

rotational symmetry but not inversion symmetry. If γ ∈ E‖ then the tilings

in E‖ and E
′

‖ are simply related by translation. If γ ∈ E⊥ this may result in

a change of tiles in E
′

‖ since this subspace may cut different klotz tiles in En

as shown in Figure 2.3.
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Figure 2.3: E‖ and the translated subspace E
′

‖ = E‖ + γ with γ ∈ E⊥ cut

different klotz tiles resulting in different projected tilings. Examples of the

different intersected tiles are highlighted in pale green and blue.

2.2.2 Undefined vertex configurations

In this section, we show that the current construction does not allow us to

determine all vertex configurations, and we propose a corrective approach

based on [40]. We have developed a new algorithm to deal with these undefined

vertex configurations. A different approach will be discussed in Section 2.3.1.

First notice that, if G is non-crystallographic then the subspace E‖ must be

totally irrational, that is there is a single vertex q ∈ L such that E‖ ∩L = {q}

(recalling that we have chosen the case were q corresponds to the origin O).

If E‖ were not irrational, then there would be at least two vertices qi, qj such

that qi, qj ∈ E‖ ∩ L and the projected tiling would have to be periodic along

the vector (qi − qj)‖. This would contradict the fact that G is aperiodic.

In turn, the irrationality of E‖ implies a one-to-one correspondance be-

tween q ∈ L and its orthogonal projection in E⊥, q⊥. It can then be shown

that the set of vertices whose projection in E⊥ lies in V⊥(O) is dense and

uniformly distributed [66]. When constructing the vertex configuration of q‖
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(i.e. the set of tiles sharing q‖ as a vertex), if −q⊥ intersects the boundaries of

some X⊥ then overlapping between the corresponding X∗‖ may occur. Recall

that the cut-and-project method implies that two tiles, X‖i and X‖j do not

overlap in E‖ if and only if their projections X⊥i and X⊥j in E⊥ share an

interior point. Because the projection of vertices into E⊥ is dense, cases for

which −q⊥ lie on boundaries of non-intersecting polytopes X⊥(O) ∈ V⊥(O)

will occur. These cases can also occur via a shift of the subspace E‖ as shown

in Figure 2.4.

Figure 2.4: Demonstration of the occurence of glue-tiles. Here E‖ is chosen

such that it cuts En at the junction of two klotz tiles, hence leading to overlap-

ping tiles in the resulting tiling. In this case the selection rule does not specify

which of the blue or green tiles should project onto E‖. The one-dimensional

glue-tile, whose construction is explained in the text, is represented as a dashed

line.

Let us assume that −q⊥ belongs to the boundaries ∂X⊥j(O) of N poly-

topes X⊥j(O) j = 1, ..., N , that is −q⊥ ∈
N⋂
j=1

∂X⊥j(O), and any two polytopes

X⊥(O) do not share an interior point, i.e. X⊥i(O) ∩X⊥j(O) = ∅ if i 6= j.

We introduce D =

(
N⋂
j=1

∂Xj(O)

)
+ q =

(
N⋂
j=1

∂Xj(q)

)
with ∂Xj(q) :=
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∂Xj(O) + q and call D∗ =

(
N⋂
j=1

∂Xj(O)

)∗
+ q =

(
N⋂
j=1

∂Xj(q)

)∗
its dual.

We then choose the convex hull of D∗‖ as a new tile. To differentiate these new

tiles from regular tiles, we use the same terminology as in [41] and call these

glue-tiles. This corresponds to the cut-and-project construction, which can be

summarised as follows: if E‖ cuts X(q), project its dual X∗(q). According to

the properties of duals,
N⋂
j=1

∂Xj(q) ⊂ Xj(q) implies that X∗j ⊂

(
N⋂
j=1

∂Xj(q)

)∗
.

Thus all tiles X∗j (q) which may overlap are contained within the glue-tile. We

verify that this construction technique preserves the desired properties of the

projected tiling. Here the symmetry G is, by construction, preserved upon pro-

jection and the absence of holes in T ∗ is guaranteed by the klotz tile paving

of En. In addition, the projection onto E‖ of the (n-m)-boundaries X∗D of D∗

covers D∗‖. The set of polytopes X∗D of dimension n-m is given by the duals of

all m-dimensional polytopes X sharing D as a boundary. By definition of D,

m-dimensional polytopes X (whose projections into E⊥ contain −q⊥) either

share D as a boundary or overlap in E⊥. Thus D∗‖ does not overlap with other

tiles in E‖. Finally, glue-tiles contain all tiles susceptible to overlap and no

two glue-tiles can overlap. An example of a one-dimensional glue-tile is shown

in Figure 2.4.

In the following sections, we specify the spaces En and the subspaces E‖

and E⊥ for the construction of 5-fold symmetrical tilings (Section 2.3) and for

icosahedral tilings (Section 2.4). In both cases, we choose the subspaces E‖

and E⊥ such that E‖ ∩ E⊥ = {O}.

2.3 Quasilattices with 5-fold symmetry

In this section we apply the cut-and-project method to the construction of

tilings with 5-fold symmetry. Although these tilings have not been applied

directly to the study of structural constraints on proteins shells, they have

been used to classify the possible conformational changes that appear in 5-

fold symmetric tilings when transitions with minimal symmetry loss occur in
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their associated higher dimensional lattice as explained in Chapter 3.

From [44], SC, BCC and FCC lattices are known for any dimension n and are

given by:

LSC = {x = (x1, . . . , xn) : xi ∈ Z, i = 1, . . . , n} ,

LBCC = {x = 1
2
(x1, . . . , xn) : xi ∈ Z, xi = xj (mod 2), i, j = 1, . . . , n} ,

LFCC =

x = 1
2
(x1, . . . , xn) : xi ∈ Z,

n∑
j=1

xj = 0 (mod 2)

 .

(2.4)

Note that since the three different lattices (SC, BCC and FCC) have

Voronoi cells of different shapes, the tilings produced in E‖ will be different.

To generate the group C5, we use the generator G5:

G5 =



0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


(2.5)

This generator can be block-diagonalised using the following matrix M :

M =



1 cos(2π/5) cos(4π/5) cos(6π/5) cos(8π/5)

0 sin(2π/5) sin(4π/5) sin(6π/5) sin(8π/5)

1 cos(4π/5) cos(8π/5) cos(2π/5) cos(6π/5)

0 sin(4π/5) sin(8π/5) sin(2π/5) sin(6π/5)

1 1 1 1 1


(2.6)

giving the block-diagonalised form of G5:

MG5M
−1 =



cos(2π/5) − sin(2π/5) 0 0 0

sin(2π/5) cos(2π/5) 0 0 0

0 0 cos(4π/5) − sin(4π/5) 0

0 0 cos(4π/5) sin(4π/5) 0

0 0 0 0 1


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Without loss of generality, we choose the first two (respectively last three)

rows of M to be the projection matrix corresponding to E‖ (respectively E⊥)

and call π‖ (respectively π⊥) the associated projection matrices.

Note that the vector n = (1, 1, 1, 1, 1) is invariant under 5-fold rotation accord-

ing to 2.5 and belongs to either of the 5-dimensional SC, BCC or FCC lattice.

This additional constraint allows to reduce to 4 the minimal dimension of the

embedding space necessary to generate a lattice with this symmetry. However,

we consider in the present study 5D lattices to simplify the descriptions of the

lattice transitions in Chapter 3.

Figure 2.5: Vertex configurations of the origin for the 5-fold symmetrical tilings

SC (a), the BCC (b) and FCC (c) tilings. A way of achieving rotational sym-

metry, but not inversion symmetry, is by a shifting E‖ by γ =
1

2
(1, 1, 1, 1, 1).

2.3.1 A 5-fold tiling from the A4 lattice

Here we present an example, based on [3], where a different approach to dealing

with the undefined boundaries ofX⊥(O) ∈ V⊥(O) is implemented. In this case,

5-fold symmetry has been constructed from the 4-dimensional FCC lattice

(also known as A4 lattice) and both subspaces E‖ and E⊥ are 2D, making

the visualisation of V⊥(O) and its decomposition in terms of X⊥(O) ∈ V⊥(O)

easier. In [3], the A4 lattice, embedded into the 5-dimensional Euclidean space
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E5, is generated using the following basis:

BA4 =



1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1


Notice that all vertices generated by this basis are in a hyperplane orthog-

onal the to vector n = (1, 1, 1, 1, 1). The block diagonalised form is obtained

using the same matrix M as in 2.6 (up to a factor) and the projection of A4

lattice points into E‖ is done using the same projection matrix (up to a factor)

π‖ (given as the first two lines of 2.6). However projection into E⊥ is done

using the third and fourth lines of 2.6 (again up to a factor). A careful analysis

of the projection of V (O) onto this subspace E⊥ (see for instance Figure 2.6)

and its 2D boundaries reveals that the X⊥(O) ∈ V⊥(O) are congruent to one

of two polytopes. Each tile in the tiling T ∗ is therefore congruent to one of

two prototiles.

To deal with undefined cases, i.e. in the situation when −q⊥ lies on bound-

aries of non-intersecting polytopes X⊥(O), boundary conditions on X⊥(O)

have been defined [3]. In the case discussed here, boundaries between two

non-overlaping polytopes X⊥(O) are 1D edges in E⊥. To define in which of

the two polytopes −q⊥ belongs, one side of this edge is hatched, see Figure

2.6. Should −q⊥ belong to this boundary, it will be considered within the

window whose side is hatched. Note that after choosing one side of an edge

to hatch, translational invariance in A4 requires that parallel boundaries must

be hatched on the same side (as represented in Figure 2.6) and all constraints

on the others edges are obtained by subsequent application of 5-fold symme-

try. Although an arbitrary choice has been made (choosing which side of the

boundary is hatched), this technique permits the creation of a complete tiling

with 5-fold symmetry, no-overlaping tiles and without creating new tiles, i.e.

glue-tiles.
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Figure 2.6: Illustration of V⊥(O) and its partition into its 2-boundaries X⊥(O)

adapted from [3]. We highlight in blue the two polytopes to either of which

all X⊥(O) ∈ V⊥(O) are congruent. For clarity only one set of parallel edges

is hatched to define boundary conditions, the constraints on the other edges

are obtained through 5-fold symmetry. The numbers 1 to 9 count the dif-

ferent ways the X⊥(O) may overlap, each corresponding to different vertex

configurations in E‖.

However this technique is not applicable for symmetry allowing 2-fold ro-

tations, as is the case for icosahedral tilings. Indeed, conservation of transla-

tional symmetry in the higher dimensional lattice and of the 2-fold rotation

requires that both sides of the boundaries be hatched. We thus use instead

the creation of glue-tiles as explained in Section 2.2.2.

2.4 Icosahedral tilings

It has been shown [44] that the lowest dimension for which lattices have icosa-

hedral symmetry I as a subgroup of their holohedry is 6 and that these lattices

can only be SC, BCC or FCC. These are given by (2.4). The 6D matrix repre-

sentation of I is generated using the two-fold G2 and the three-fold G3 rotation

matrices:
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G2 =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0


, G3 =



0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0


(2.7)

Following [33], we choose the projection matrix M as follow:

M =



τ 0 −1 0 τ 1

1 τ 0 −τ −1 0

0 1 τ 1 0 τ

τ −1 τ 0 0 −1

1 0 −1 τ −τ 0

0 τ 0 1 1 −τ


with τ = 1

2(1 +
√

5).

M block-diagonalises G2 and G3, giving:

MG2M
−1 =

1

2



−τ τ ′ 1 0 0 0

τ ′ −1 −τ 0 0 0

1 −τ −τ ′ 0 0 0

0 0 0 −1 −τ −τ ′

0 0 0 −τ −τ ′ −1

0 0 0 −τ ′ −1 −τ


and

MG3M
−1 =

1

2



0 −2 0 0 0 0

0 0 −2 0 0 0

2 0 0 0 0 0

0 0 0 τ −τ ′ −1

0 0 0 τ ′ −1 −τ

0 0 0 −1 τ τ ′


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with τ ′ = 1− τ .

The two subspaces E‖ and E⊥ that are both invariant under I are therefore

3-dimensional subspaces. We choose the first three (respectively last three)

rows of M to be the projection matrix corresponding to E‖ (respectively E⊥)

and call π‖ (respectively π⊥) the associated projection matrices.

We take the opportunity to introduce here the dilatation matrix D which

will be needed to embed point arrays into the SC, BCC or FCC 6D lattices in

Chapter 3:

D =
1

2



1 1 −1 −1 1 1

1 1 1 −1 −1 1

−1 1 1 1 −1 1

−1 −1 1 1 1 1

1 −1 −1 1 1 1

1 1 1 1 1 1


(2.8)

The FCC and BCC lattices are invariant under D (i.e. ∀v ∈ L, Dv ∈ L for

L either the FCC or BCC lattice) while the SC lattice LSC is invariant under

the D3 matrix (i.e. ∀v ∈ LSC , D3v ∈ LSC) [20].

D has the following property related to the projections π‖ and π⊥ into the

parallel and orthogonal subspaces:

π‖Dv = τπ‖v and π⊥Dv = −1

τ
π⊥v. (2.9)

In particular, D acts as a dilation in E‖ and as a contraction in E⊥.

Using the cut-and-project method we constructed finite sized tilings asso-

ciated with the SC, the BCC and the FCC lattice. As an example, the vertex

configurations of the origin O corresponding to the three different tilings are

shown in Figure 2.7. The protoset of the SC tiling is composed of two reg-

ular prototiles and two glue-tiles. In accordance with [56], the BCC tiling is

composed of 8 prototiles (four tetrahedra and four pyramids) and no glue-tiles

were required. The FCC tiling is composed of 6 tetrahedral prototiles (also
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Figure 2.7: Vertex configurations of the origin for the three icosahedral tiling

types: (a) SC, (b) BCC and (c) FCC. For each case the different tiles are

represented in shades of grey.

found in [55]) and the addition of 10 glue-tiles was necessary to complete the

tiling.

2.5 Remarks on Tiling Construction

Using the cut-and-project method we have constructed 2-dimensional 5-fold

symmetric and 3-dimensional icosahedrally symmetric tilings corresponding

to SC, BCC and FCC lattices in 6D and have shown that these contain nei-

ther holes nor overlapping tiles. Because it is computationally impossible to

generate infinite size tilings we grow a tiling around the origin O until its size

is “large enough” to model virus architecture. We will explain in Chapter

4 what large enough means in the particular case of viral capsids embedded

into icosahedral tilings. To compute bigger icosahedral tiling patches, we have

retained only tiles inside the fundamental domain (shown in Figure 2.8). This

reduces by a factor of approximately 60 the number of tiles needed to be com-

puted using the cut-and-project method. When needed the entire tiling can

then be obtained by application of the icosahedral symmetry. Note that the

smaller fundamental domain Coxeter group H3 [25], i.e. the group composed

of all reflections of the icosahedron, could have been used instead. However

experimentally determined structures of viral capsids (on which is based the
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Figure 2.8: The half kite (indicated by the red boundaries) is the fundamental

domain of the Coxeter group H3 and the full kite (shaded in grey) is the

fundamental domain of I which corresponds to the rotational symmetry only.

Only tiles overlaping with the fundamental domain of I are retained in the

analysis as subsequent application of I allows us to obtain all other tiles via

symmetry.

matching algorithm discussed in Chapter 4) do not generally have this addi-

tional symmetry.

It is important to note that not all icosahedral lattices have been con-

structed in this study. Other examples of tilings would include the dual tiling

T [66], where X‖(q) is included into the tiling in E‖ if and only if E‖ cuts

X∗⊥(q). Here, the choice of T ∗ tilings over T tilings is motivated by the fact

that all point arrays used to fit viral capsids in [37], described in the introduc-

tory Chapter 1, can be embedded into the constructed tilings T ∗, see Chapter

3 for proof.

2.5.1 From Point Arrays to Tilings

Now that the mathematical background necessary for the construction of

tilings has been presented, we give here an insight into how point arrays are

embbeded into tilings. Figure 2.9 is a 2D graphical example showing the con-

struction of a 10-fold symmetric point array. The superimposed tiling was

created using the five-dimensional SC lattice and the projection matrix ex-

plained in Section 2.3. In order for the tiling to have inversion symmetry, and

hence 10-fold rather than 5-fold symmetry, note that no shift of the physical
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space E‖ in the lattice has been applied in contrast to Figure 2.5(a).
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(a) (b)

(c) (d)

(e)

Figure 2.9: Example of the embedding of a 10-fold invariant point array into

a tiling adapted from [37]. At each step of the construction, the embedded

point array is shown superimposed on the tiling. The construction starts with

the decagon shown in black in (a). Application of an admissible translation,

i.e. a non-compact operator of the affine extension group of C10, is applied

giving the blue decagon (b). The nine other copies of the translated decagon

are obtained by subsequent application of 10-fold rotation as shown in (c).

Vertices of the point array correspond to all words of the affine extended

group which contain at least one copy of the translation operator (black and

blue vertices)(d). How the point array “grows” with multiple use of the non-

compact operator is shown in (e), where red points correspond to the words

of the affine extended group containing exactly two non-compact operators.



Chapter 3

Structural transitions in

quasicrystals

3.1 Introduction

During a viral life-cycle, the viral capsid may undergo conformational changes

necessary for the particle to become infective (such as maturation events [16]).

Understanding the mechanisms governing these structural transformations is

therefore important for the design of new anti-viral strategies. Experimental

techniques allow observation of pre- and post-transitional states [16, 64, 67],

and theoretical models are developed to determine how these structural tran-

sitions occur. For example, normal mode analysis can be used to determine

how protein subunits rearrange during the transition (see for instance [74, 75]).

However, this technique requires intensive computation due to the many de-

grees of freedom to be considered.

In this chapter we are presenting the work developed in [26] and [27] in

which the point array descriptors from [36] and concepts from crystallography

are combined to infer information on possible transition paths, characterised

by minimal symmetry loss, between pre- and post-transitional states. We first

present in Section 3.2, the mathematical tools derived from reconstructive

structural phase transitions of crystalline solid studies [1, 4, 11, 34, 60, 61, 69,

56



CHAPTER 3. STRUCTURAL TRANSITIONS IN QUASICRYSTALS 57

77]. Transitions between the 3D quasilattices can be infered from the possi-

ble transitions between higher-dimensional lattices using the cut-and-project

method. The classification of the possible changes undergone by the quasi-

lattices during a transition is presented in Section 3.3, and applications to

the study of viral transitions, using the Cowpea Chlorotic Mottle virus as an

example, are explained in Section 3.4.

3.2 Mathematical Background

Let GL(n,Z) be the group of n×n unimodular integer matrices, GL(n,R) the

group of n × n invertible real matrices, O(n) and SO(n) the orthogonal and

special orthogonal group of Rn, and Sym+(n,R) the set of n × n symmetric

positive definite matrices with real coefficients. For a basis {bα}α=1,...,n of Rn,

we write B ∈ GL(n,R) for the matrix with column vectors bα. We denote by

L(B) = {x =

n∑
α=1

mαbα : mα ∈ Z}

the lattice with basis {bα}. All other lattice bases have the form {
∑n

β=1M
β
αbβ},

with Mβ
α ∈ GL(n,Z). Moreover we write

Λ(B) =

Mβ
α ∈ GL(n,Z) : ∃Q ∈ O(n) such that Qbα =

n∑
β=1

Mβ
αbβ

 ,

(3.1)

for the lattice group of L(B), and

P(B) =

Q ∈ O(n) : ∃Mβ
α ∈ GL(n,Z) such that Qbα =

n∑
β=1

Mβ
αbβ

 ,

(3.2)

for its point group. The following notations are equivalent:

Qbα =

n∑
β=1

Mβ
αbβ ⇔ QB = BM.

The point and lattice groups are related via the identity

Λ(B) = B−1P(B)B, (3.3)
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and moreover

P(RB) = RP(B)R>, P(BM) = P(B),

Λ(RB) = Λ(B), Λ(BM) = M−1Λ(B)M,

for R ∈ O(n) and M ∈ GL(n,Z). We therefore will also write P(L) for the

point group of the lattice L.

A lattice basis is characterised (modulo rotations) by its lattice metric

C = B>B ∈ Sym+(n,R),

and the lattice group is the subgroup of GL(n,Z) that fixes the metric [61]:

M ∈ GL(n,Z), M>CM = C ⇔ M ∈ Λ(B). (3.4)

For a matrix group G ⊂ GL(n,Z) we have the following standard definition:

Definition 3.2.1. The centraliser Z(G,R) of G in GL(n,R) is the group

Z(G,R) =
{
N ∈ GL(n,R) : N−1GN = G, ∀G ∈ G

}
.

The centraliser of G can be obtained by solving the linear equations GiC =

CGi in the unknown C, where Gi are generators of G. Hence, the centralisers

of a finitely generated group in general depend linearly on a finite list of real

parameters.

A lattice transition is defined as a continuous transformation between two

lattices L0 and L1 along which some symmetry is preserved, described by a

common subgroup G̃ ⊂ GL(n,Z) of the lattice groups of the intermediate

lattices.

Definition 3.2.2. Let L0 and L1 be two lattices, and G ⊂ P(L0). We say that

there exists a transition between L0 and L1 with intermediate symmetry G if

there exist bases B0 and B1 of L0 and L1, and a continuous path B : [0, 1]→

GL(n,R), with B(0) = B0 and B(1) = B1, such that, for

G̃ = B−10 GB0 ⊂ Λ(B0),
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one has

G̃ ⊂ Λ(B(t)), t ∈ [0, 1]. (3.5)

We call the linear mapping

T := B1B
−1
0 : L0 → L1, (3.6)

the transition, while the curve T (t) = B(t)B−10 is the transition path.

Notice that, by continuity, detB0 and detB1 have the same sign, so that

detT > 0.

The following equivalent statements characterise lattice transitions.

Proposition 3.2.3. Let L0 and L1 be two lattices, and G ⊂ P(L0). The

following statements are equivalent:

i) There exists a transition between L0 and L1 with intermediate symmetry G.

ii) There exist bases B0 and B1 of L0 and L1, such that for G̃ = B−10 GB0

G̃ ⊂ Λ(B0) ∩ Λ(B1). (3.7)

iii) There exist bases B0 and B1 of L0 and L1 such that

B1 = RUB0, with R ∈ SO(n) and U ∈ Z(G,R) ∩ Sym+(n,R). (3.8)

iv) There exists a basis B0 of L0, and continuous paths

R : [0, 1]→ SO(n), and U : [0, 1]→ Z(G,R) ∩ Sym+(n,R),

such that R(0) = U(0) = I and R(1)U(1)B0 = B1 is a basis of L1.

v) There exist bases B0 and B1 of L0 and L1 and a continuous path C : [0, 1]→

Sym+(n,R) such that, letting C0 = B>0 B0, C1 = B>1 B1 and G̃ = B−10 GB0,

then C(0) = C0, C(1) = C1, and

M>C(t)M = C(t) for all M ∈ G̃ and t ∈ [0, 1]. (3.9)

Proof. The implications i) ⇒ ii) and i) ⇔ v) are immediate. To prove

that ii) ⇒ iii), we notice that, by ii), letting G1 = B1G̃B−11 , then B−11 G1B1 =
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B−10 GB0. Hence G and G1 are conjugate in GL(n,R): G = T−1G1T , with

T = B1B
−1
0 . By the polar decomposition theorem, writing T = RU with R ∈

SO(n) and U ∈ Sym+(n,R), it follows that, for all G ∈ G there exists H ∈ G1

such that G = U−1R−1HRU , i.e., UG = R−1HRU . By the uniqueness of the

polar decomposition, since G and R−1HR ∈ O(n), one has

G = R−1HR and G = U−1GU,

Hence U belongs to the centraliser of G in GL(n,R). This proves iii). Notice

that, as a by-product of the above argument, G and G1 are conjugate in SO(n),

indeed

G = R−1G1R.

To prove that iii) ⇒ iv), notice first that SO(n) is arcwise connected, so

that there exist paths connecting R to the identity (one could choose R(t) =

exp(Wt) where W is not unique).

Further, since U is positive definite, we can write U = Q>DQ, with Q ∈

SO(n), D = diag(λ1, . . . , λn), and λi > 0. Then a path connecting U to

the identity is for instance U(t) = Q>D(t)Q, with D(t) = diag((λ1 − 1)t +

1, . . . , (λn−1)t+1), which is still in the centraliser. In fact, if U ∈ Z(G,R), then

D ∈ Z(QGQ>,R), which means that DH = HD for every H ∈ QGQ>. This

is equivalent to λihij = λjhij for all i, j = 1, . . . , n, where hij are the entries of

H. On the other hand, this identity is true if and only if [(λi − 1)t+ 1)]hij =

[(λj − 1)t+ 1]hij for all t ∈ [0, 1], which implies that D(t) ∈ Z(QGQ>,R), so

that U(t) ∈ Z(G,R) for all t ∈ [0, 1].

Finally, iv) ⇒ i): in fact, letting B(t) = R(t)U(t)B0, one has

B(t)G̃B(t)−1 =R(t)U(t)B0G̃B−10 U−1(t)R−1(t)

=R(t)U(t)GU−1(t)R−1(t) = R(t)GR−1(t) ⊂ O(n), t ∈ [0, 1].

Hence, G̃ ⊂ Λ(B(t)) for every t ∈ [0, 1] which proves the assertion.

If T (t) = R(t)U(t) is a transition path with symmetry G between the

lattices L0 and L1, the symmetry of the intermediate phase is also described
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by the group of orthogonal transformations

Gt = T (t)GT−1(t) = R(t)GR−1(t), (3.10)

which is a subgroup of the point group P(B(t)) of the intermediate phase.

The following result is a consequence of the above characterisation of lattice

transitions, and shows that any centraliser of G, not necessarily symmetric,

defines a transition with that symmetry.

Proposition 3.2.4. Any continuous path

T : [0, 1]→ Z(G,R), T (0) = I, T (1) = B1B
−1
0 ,

with B0 and B1 lattice bases for L0 and L1, defines a transition between L0

and L1 with intermediate symmetry G.

Proof. From 3.1, G̃ ⊂ Λ(B(t)) if B(t)G̃B(t)−1 ⊂ O(n).

However B(t)G̃B(t)−1 = B(t)B−10 GB0B(t)−1 = T (t)GT (t)−1 = G ⊂ O(n) prov-

ing the claim.

3.2.1 Structural transformations of cut-and-project quasicrys-

tals

We now show how structural transformations of cut-and-project quasicrystals

can be induced by transitions between higher-dimensional lattices. Consider

two n-dimensional lattices L0 and L1, with point groups P(L0) and P(L1),

and two subgroups H0 ⊂ P(L0) and H1 ⊂ P(L1). Assume that H0 and H1

have invariant subspaces E0 and E1, respectively, with dimE0 = dimE1 = k.

Without loss of generality we can rotate the lattice L0 such that E0 maps to

E1, i.e.

E0 = E1 =: E‖,

and consider the cut-and-project quasicrystals (L0, E‖) and (L1, E‖).

Definition 3.2.5. We say that there exists a transition between the cut-and-

project quasicrystals (L0, E‖) and (L1, E‖) with intermediate symmetry G ⊂
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P(L0) if there exists a transition with intermediate symmetry G between L0

and L1 according to Definition 3.2.2, and if

P(B(t)) ⊇ Gt ≡ G, t ∈ [0, 1]. (3.11)

Any such transition defines a family of cut-and-project quasicrystals (Lt, E‖)

in the same projection space E‖, all of which have symmetry G.

From this definition, the following proposition can be derived.

Proposition 3.2.6. For a transition between the cut-and-project quasicrys-

tals, the following statements are equivalent:

i) There exists a transition between L0 and L1 with intermediate symmetry G.

ii) There exist a basis B0 of L0, and continuous paths

T : [0, 1]→ Z(G,R), (3.12)

such that T (0) = I and where T (1)B0 = B1 is a basis of L1.

Proof. Demonstration that ii) implies i) has been shown in Proposition 3.2.4

and we only need to prove that i) implies ii).

First recall that from 3.5 and if 3.11 holds, we then have

Gt = G = B(t)G̃B−1(t), t ∈ [0, 1],

yielding

G = B(t)B−10 GB0B
−1(t), t ∈ [0, 1] .

Hence, T (t) = B(t)B−10 belongs to the normaliser of G in GL(n,R). Recalling

that the centraliser is a normal subgroup of the normaliser, we can then write

T (t) = N(t)C(t) for t ∈ [0, 1], with N a representative of the left cosets of

Z(G,R) in N (G,R) and C(t) ∈ Z(G,R).

Hence for any G ∈ G there exist H ∈ G such that

T (t)GT (t)−1 = H ⇒ N(t)GN−1(t) = H, t ∈ [0, 1]

In particular, for t = 0, T (0) = I (the identity matrix) leaving G = H. By

construction T (t) is continuous, the connected component of the identity in
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the normaliser of G in GL(n,R) is then contained in the centraliser, which

proves the claim.

It is useful to discuss the relation of our method with other higher di-

mensional approaches used in the literature to study experimentally observed

transitions between icosahedral quasicrystals and cubic phases in 3D [2, 15,

39, 45, 46, 47, 53, 73, 78], and for deformations of Penrose tilings of the plane

(see for instance, [28, 68, 84]). The procedure used to obtain a transforma-

tion of the projected 3D point set in these works is either (i) by rotating the

projection plane with respect to the 6D lattice or (ii) by deforming the 6D

lattice through certain linear transformations called phason strains. These

two approaches can be shown to be related [15].

The technique presented here generalises (i) and (ii), since it allows for

both deformations and changes of symmetry of the lattice, controlling the

intermediate symmetry. In detail our approach relates to the rotation-plane

method [39] as follows. For a fixed 6D cubic lattice L, it is known that suitable

choices of 3D subspaces E0 and E1 in R6 yield sets (L, E0) and (L, E1) that

correspond to a FCC crystal or to an icosahedral quasicrystal in R3. Suppose

that H0 and H1 are 6D representations of the 3D cubic group and of the

icosahedral group, respectively, so that E0 is invariant under H0 and E1 is

invariant under H1. Then there exist orthonormal bases B̃0 and B̃1 of R6 (not

necessarily lattice bases) that block-diagonalise H0 and H1 as the direct sum

of two 3D blocks. These bases are adapted to the subspaces E0 and E1.

Consider now the tetrahedral group T , which is a subgroup of both H0

and H1: both B̃0 and B̃1 block-diagonalise T , but since T has just a single 3D

irreducible representation, we may choose B̃0 and B̃1 such that B̃−11 T B̃1 =

B̃−10 T B̃0 = T ′. Hence, there exists C ∈ SO(6) in the centraliser of T ′ such

that B̃1 = B̃0C. Actually, there exists a continuous path C(t) in the centraliser

of T ′ that connects C to the identity (referred to as the “Schur rotation” in

[39]). This in turn means that the path R(t) = B̃0C(t)B̃−10 belongs to the
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centraliser of T in SO(6), and is such that B̃1 = R(1)B̃0. To summarise, the

Schur rotation defines a path in the centraliser of T , connecting E0 to E1, i.e.

such that E1 = R(1)E0, and R(t)E0 is invariant under T for every t ∈ [0, 1].

The Schur rotation can be used to define a transition with intermedi-

ate symmetry T in the sense of the present paper because rotating the pro-

jection plane with respect to the lattice is equivalent to rotating the lattice

with respect to a fixed projection plane: in fact, E0 is invariant under both

R(1)>H1R(1) (as R(1)>H1R(1)B0 = R(1)>H1B1 = R(1)>B1 belongs to E0)

and R(t)>T R(t), and since P(R(1)>L0) = R(1)>P(L0)R(1), this means that

the Schur rotation defines a family of rotated cubic 6D lattices

Lt := R>(t)L0, L1 := R>(1)L0,

with the property that R(t)>T R(t)-orbits in Lt project on tetrahedral orbits

in E0. Consider now any path

U : [0, 1]→ Sym+(n,R) ∩ Z(T ,R), U(0) = U(1) = I.

Then, choosing any lattice basis B0 for L0, the path

B(t) = R(t)U(t)B0, t ∈ [0, 1],

defines a lattice transition with tetrahedral symmetry between L0 and L1. Fur-

thermore, since R(t)>T R(t) and R(1)>H1R(1) have E0 as invariant subspace,

this transition defines in turn a transition between the quasicrystals (L0, E0)

and (L1, E0) with tetrahedral symmetry as defined in Definition 3.2.5.

3.3 Transformation between aperiodic tilings

3.3.1 Transformations between planar aperiodic tilings

preserving the five-fold symmetry

In this section we present three examples of transformations that preserve the

global five-fold symmetry between planar tilings having that same symmetry,

in particular the Penrose tiling. For the latter, we adopt here a 5-dimensional
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approach instead of the usual one based on a 4D minimal embedding [3],

because in this way it is simpler to describe the transitions in terms of defor-

mations of the unit cubic cell in R5.

Consider the SC, BCC, and FCC lattices, and the standard basis (eα),

α = 1, . . . , 5, in R5, together with the group G = C5 ⊂ SO(5) of five-fold

rotations about the body diagonal n of the unit cube:

n =
5∑

α=1

eα.

Recall from Chapter 2 that the group C5 leaves all the above three 5D cubic

lattices invariant and has two mutually orthogonal invariant subspaces: the

two-dimensional subspace E‖ and the three-dimensional subspace E⊥ with

projections

π‖ =

 1 cos(2π/5) cos(4π/5) cos(6π/5) cos(8π/5)

0 sin(2π/5) sin(4π/5) sin(6π/5) sin(8π/5)


and

π⊥ =


1 cos(4π/5) cos(8π/5) cos(2π/5) cos(6π/5)

0 sin(4π/5) sin(8π/5) sin(2π/5) sin(6π/5)

1 1 1 1 1

 .

With reference to Chapter 2, we choose to apply a shift γ = 1
2n to the

physical space E‖.

Projection of the SC lattice and the related Delone tiling on E‖ produces

the well-known Penrose tiling of the plane, while projecting the FCC and BCC

lattices on E‖ gives more complex aperiodic planar tilings. Examples can be

seen in Figure 3.4. All these aperiodic structures have a global five-fold sym-

metry about the origin, and we concentrate on their structural transformations

which preserve this symmetry.

Proposition 3.2.3 guarantees that the C5-preserving transition paths for the

associated 5D lattices are parametrised by the centralisers of C5 in GL(5,R).

We therefore compute the set of centralisers in GL(5,R) of the group C5
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solving the group of matrices M such that GC5M = MGC5 with

GC5 =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


,

Using the Maple software [50] we obtain

M =



x y z s v

v x y z s

s v x y z

z s v x y

y z s v x


.

and consider three specific transition paths: the first two are paths between

the SC and the BCC lattices in 5D:

T1(t) =



1− t/2 t/2 t/2 −t/2 −t/2

−t/2 1− t/2 t/2 t/2 −t/2

−t/2 −t/2 1− t/2 t/2 t/2

t/2 −t/2 −t/2 1− t/2 t/2

t/2 t/2 −t/2 −t/2 1− t/2


, (3.13)

and

T2(t) =



1− t/2 t/2 −t/2 t/2 −t/2

−t/2 1− t/2 t/2 −t/2 t/2

t/2 −t/2 1− t/2 t/2 −t/2

−t/2 t/2 −t/2 1− t/2 t/2

t/2 −t/2 t/2 −t/2 1− t/2


, (3.14)



CHAPTER 3. STRUCTURAL TRANSITIONS IN QUASICRYSTALS 67

while the third one joins the SC to the FCC lattice:

T3(t) =



1− t/2 0 0 0 t/2

t/2 1− t/2 0 0 0

0 t/2 1− t/2 0 0

0 0 t/2 1− t/2 0

0 0 0 t/2 1− t/2


. (3.15)

Each intermediate lattice along these paths has global five-fold symmetry by

construction. Since

T1(t)n = (1− t/2)n and T2(t)n = (1− t/2)n

the first two transition paths above involve a compression of the unit cube

along a body diagonal n. These paths provide, through the cut-and-project

method applied at each step, transformations between the Penrose and the

BCC and FCC tilings.

To explain transformations in tilings in E‖, it is useful to look at the

changes, in E⊥, of the projected Voronoi boundaries into which γ−q projects.

As a general observation, we see that the transformations of the aperiodic

structures proceed through a combination of three basic mechanisms:

(1) Splitting of a tile into two: This occurs when a facet of the Voronoi cell

splits into two. The projection on E⊥ of the facet before the split, and

the two new facets, are shown in Figure 3.1(a). A lattice point q such

that π⊥(γ−q) belongs to the region where the perpendicular projections

overlap will be a vertex of a single tile in the first step and two tiles in the

subsequent step (Figure 3.1(b)). Equivalently, two tiles join to become

a single tile if the projection of γ − q falls out of the intersection of two

regions into a region covered by only one.

(2) Tile flips: Rearrangements of tiles within limited areas, which we call

tile flips, occur due to points π⊥(γ−q) in E⊥ moving from one projected

facet in E⊥ to another, such as going through the shaded area in Figure
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(a) (b)

Figure 3.1: (a) The splitting of a Voronoi facet into two: the larger rhombo-

hedron is the projection on E⊥ of the facet before splitting, the two smaller

overlapping regions with shaded intersection being the projection of the split

facet. (b) The rhomb on the left corresponds to the projection on E‖ of the

dual of the facet before splitting, while the two triangular tiles correspond to

the duals of the two split facets.

3.2(a). In the upper half of the figure, the point γ − q is projected

into the projection of two Voronoi regions in E⊥, and therefore π‖(q)

is a vertex of two tiles as shown on the left of Figure 3.2(b). When

the projected point goes through the shaded face, it is now only within

the projection of a single Voronoi facet and π‖(q) is thus a vertex of a

single tile. Since the transitions are continuous, there is a time when a

projected lattice point lies in the intersection of these regions producing

overlapping tiles, and at this time we insert in the tiling a glue-tile, in

this case a quadrilateral tile.

(3) Tile mergers: During the lattice transition the Voronoi cells change, so

that the projection on E⊥ may involve different sets of points, see for

instance Figure 3.3(a). Points q such that π⊥(γ − q) fall outside the

resulting acceptance window are deleted from the tiling, along with any

tiles with these points as vertices. This produces tile mergers as seen for

instance in Figure 3.3(b).

All the changes in the transforming quasicrystals and tilings can be de-
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(a) (b)

Figure 3.2: (a) The projection on E⊥ of three 3D facets of V(0) for some

lattice L, two above the shaded face and one below. (b) Along a transition

path a projected lattice point, corresponding to the shaded vertex in the tiles

in E‖, passes from the two regions at the top of the shaded face to the lower

region when projected on E⊥. This results in a tile flip.

scribed through the three mechanisms above. Figure 3.4 shows four steps in

the transformations from SC to BCC along the paths defined by (3.13) and

(3.14), as well as the transformation from SC to FCC defined by the path

in (3.15). Figure 3.4(a) shows the tiling for t = 0, obtained via projection

from a simple cubic lattice, which then branches into three pathways. For the

path (3.13) shown in Figure 3.4(b),(c) and (f), the first step in the transition

is a splitting of all tiles along their long diagonal, followed by flips, deletions

of vertices and further splits/recombinations. The second path (3.14) shown

in Figure 3.4(d),(e) and (f) also displays at first a splitting of all the tiles,

in this case along the shorter diagonal, and then proceeds as above to fur-

ther splits/recombinations. For the transition from SC to FCC (3.15), Figure

3.4(g),(h) and (i), only the thin rhombs split at first, followed by further

changes in the tiles, finally resulting in a much coarser tiling than the one

produced by the BCC lattice.
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(a) (b)

Figure 3.3: (a) The projections on E⊥ of the Voronoi cells on the path (3.15),

at t = 0 (lines) and t = 0.3 (shaded area). (b) The central vertex is the image

of a lattice point projected near the boundary of the shrinking Voronoi cell.

As the Voronoi cell shrinks, the point is no longer in the acceptance window,

and is hence removed from the tiling.
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Figure 3.4: (a), (b), (c), (d), (e), (f): transition from the Penrose tiling (a)

to the BCC tiling (f) via two pathways; (a), (b), (c), (f) is the path defined

by (3.13), while (a), (d), (e), (f) is the path defined by (3.14). (a), (g), (h),

(i): the transition from the Penrose tiling (a) to the FCC tiling (i) via the

pathway defined by (3.15). Notice that, at the first time step, some vertices

have disappeared and tiles have flipped, but some of the original Penrose tiles

are still visible. The highlighted vertex corresponds to the ‘same’ lattice point

and shows the relative scaling of the corresponding tilings.
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3.3.2 Example of a transformation between icosahedral 3D

quasicrystals

We briefly discuss here a transformation between icosahedral quasicrystals in

R3 and their associated tilings.

We recall from Chapter 2, the definition of the two- and three-fold rotations

G2 =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0


, G3 =



0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0


,

(3.16)

which generate a 6D integral representation of the icosahedral group I.

The representation of I on R6 is the sum of two non-equivalent irreducible

representations of degree 3, and R6 splits into the direct sum of two 3D sub-

spaces, E‖ and E⊥, invariant under the icosahedral group. We recall from

Chapter 2 the matrix representation of the projection on E‖

π‖ =


τ 0 −1 0 τ 1

1 τ 0 −τ −1 0

0 1 τ 1 0 τ


with τ = 1

2(1 +
√

5).

The icosahedral group I has three maximal subgroups: the tetrahedral

group T and the dihedral groups D5 and D3. Since we are interested in tran-

sitions between the SC and the FCC, BCC lattices with maximal intermediate

symmetry, we therefore compute the centraliser in GL(6,R) for the three max-

imal subgroups. Using the Maple software [50], for each subgroup we solve

the set of equations MGi = GiM for each generator Gi of the subgroup and

with unknown M .

The tetrahedral group can be generated using the two- and three-fold gen-
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erators GT ,2 and GT ,3

GT ,2 =



0 0 1 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 1 0 0 0 0


, GT ,3 =



0 0 0 0 0 1

0 0 0 1 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0



Solving


MGT ,2 = GT ,2M

MGT ,3 = GT ,3M

for M ∈ GL(6,R) leads to the centraliser

CT =



z −x −y −r r −x

r z r x x y

−y −x z r −r −x

x −r −x z y r

−x −r x y z r

r y r −x −x z


, (3.17)

with the four parameters x, y, z, r ∈ R.

In a similar way, we compute the centraliser of D5, i.e. CD5 , choosing the

generators GD5,2 and GD5,5 corresponding to two- and five-fold rotations as:

GD5,2 =



0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

0 0 0 0 0 −1


, GD5,5 =



0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


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leading to

CD5 =



z x y y x r

x z x y y r

y x z x y r

y y x z x r

x y y x z r

v v v v v w


, (3.18)

with six parameters x, y, z, r, u, w ∈ R.

The subgroup D3 is generated using the two- and three-fold generators:

GD3,2 =



0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 −1


, GD3,3 =



0 0 0 0 0 1

0 0 0 1 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0


and the centralisers of D3 have the form

CD3 =



u w −w x s s

−r y v −v z −r

r v y v r −z

z −v v y −r −r

s x −w w u s

s w −x w s u


, (3.19)

with parameters x, y, z, r, u, w, v, s ∈ R.

We show that no tetrahedral transition exist between the 6D cubic lattices

using transitions between the SC and FCC lattices as example. A similar

proof being possible also for transitions to a BCC lattice.

First, assume that a tetrahedral transition exists. Then, according to

Proposition 3.2.3-(iii) the transition operators T can be decomposed as T =

RU , with R ∈ SO(n) and U ∈ Z(T ,R) ∩ Sym+(n,R) such that

B1 = RUB0,
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with B0 a basis of a SC lattice and B1 a basis of an FCC lattice.

Any U ∈ Z(T ,R) ∩ Sym+(n,R) has the form:

U =



z −x −y x −x −x

−x z −x x x y

−y −x z −x x −x

x x −x z y −x

−x x x y z −x

−x y −x −x −x z


,

with x, y, z ∈ R.

Recalling the definition of an FCC lattice as:

LFCC =

x = 1
2
(x1, . . . , xn) : xi ∈ Z,

n∑
j=1

xj = 0 mod 2


the metric of an FCC lattice C = B>1 B1 has entries in Z/4, and since

C = B>1 B1 = B>0 U
>R>RUB0 = B>0 U

2B0

and B0 ∈ GL(n,Z), then U2 = B−>0 CB−10 also has entries in Z/4:

U2 =



a −b −c b −b −b

−b a −b b b c

−c −b a −b b −b

b b −b a c −b

−b b b c a −b

−b c −b −b −b, a


,

with a = z2 + 4x2 + y2, b = 2xz, c = 2yz, and a, b, c ∈ Z/4.

Then det(U2) = det(B−>0 CB−10 ) leads to the following equation

[a2 − 4b2 − c2]3 =

(
1

2

)10

that cannot be fulfilled for any choice of a, b, c ∈ Z/4. In fact, for a = α/4,b =

β/4,c = γ/4 with α, β, γ ∈ Z the equation above reduces to(
α2 − 4β2 + γ2

)3
= 4,
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which cannot be solved by any integer α, β, γ since there is no n = α2−4β2 +

γ2 ∈ Z such that n3 = 4. Similarly there cannot be any tetrahedral transitions

between the SC and any rescaled FCC and BCC lattices. The same holds also

for the FCC-BCC lattice transitions in 6D.

Next, we consider the possibility of transitions with D5 symmetry of the

form 3.18. As an example, we consider a path with intermediate symmetry

D5 that deforms an SC lattice (at t = 0) into an FCC lattice (at t = 1):

T (t) =



1− 1
2 t 0 0 0 0 0

0 1− 1
2 t 0 0 0 0

0 0 1− 1
2 t 0 0 0

0 0 0 1− 1
2 t 0 0

0 0 0 0 1− 1
2 t 0

1
2 t

1
2 t

1
2 t

1
2 t

1
2 t 1


. (3.20)

Figure 3.5 shows three snapshots of a patch of the corresponding 3D tiling

around a fixed vertex, i.e. projections on E‖ of a suitable portion of the

Delone tiling of the lattices L(B(t)), for t = 0; 0.233; and 1. Throughout the

transition the tile arrangements have D5 symmetry, and we observe that they

evolve through mechanisms similar to those discussed in detail for the planar

case in Section 3.3.1.

The main purpose of this work is to explore the effect these structural

transformations have on the plane or space tilings associated with each qua-

sicrystal. The local tile rearrangements can be understood in terms of the

change of geometry of the Voronoi cell of the higher dimensional lattice during

the transition, and we analyse the effect this has on the projected tiling. Our

results suggest that the possible ways in which an aperiodic tiling can change,

while still conserving some intermediate symmetry, reduces to the three ba-

sic mechanisms of tile splitting, tile flipping, and tile merger. The general

patterns identified here may provide a basis for further analysis of structural
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Figure 3.5: Vertex stars at the origin of the tilings obtained by projection

of (a) the 6D SC lattice, (b) an intermediate D5 lattice and (c) the FCC

lattice. The vertex star is composed by repetitions of a number of suitable

tiles, highlighted in the figure. The pentagonal pyramid in (c) is a glue tile.

transitions in quasilattices and for a possible classification of transitions in

aperiodic structures. This is of interest both from a theoretical viewpoint and

for the applications. In the following section, we show how these structural

transitions in quasilattices may help us understand the structural rearrange-

ments of viral capsids necessary for infection.

3.4 Viral transitions via point arrays

The majority of viral capsids exhibit icosahedral symmetry before as well as

after their structural transition. As explained in Chapter 1, the pre- and post-

transition configurations can then be mapped using icosahedrally invariant

point arrays from [37]. Note that the approximating point array is not neces-

sarily unique as different members of an ensemble of point arrays may provide

equally good approximations of the capsid geometry according to [37]. As we

will explain shortly, these point arrays can be obtained as projections into 3D

space of suitable subsets of the icosahedral Bravais lattices in 6D (i.e. the SC,

BCC and FCC lattices). We can therefore, in principle, study the transitions

between two viral configurations (represented by the two corresponding icosa-

hedral point arrays) in terms of transitions between the two 6D lattices that

generate them via the cut-and-project method (see Figure 3.6).
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Figure 3.6: Sketch of the procedure: transitions in 6D can be used to study

conformational changes of models of 3D viral capsids.

Recall from Chapter 1 that these point arrays are obtained using affine

extension of the 3D icosahedral group I3 onto two nested polyhedra (either

an icosahedron, a dodecahedron or an icosadodecahedron). We will later refer

to these nested polyhedra as the skeletal structure. Therefore,

Definition 3.4.1. For every element S in the classification of icosahedral

point arrays listed in [35], there exists u, r and s such that

S ≡ S(u, r, s) = I3u ∪ I3r ∪ (I3u+ I3s) ∪ (I3r + I3s). (3.21)

where u, r and s are vectors that point along a two, a three or a fivefold

symmetry axis and I3u, I3r and I3s their respective icosahedral orbits.

We will first show that point arrays are finite subsets of the vertex sets of

suitable 3D icosahedral quasicrystals and that they can be uniquely associated

with icosahedral Bravais lattices in 6D. In Section 3.4.2 the procedure to com-

pute all transitions of the form (3.12) such that point arrays corresponding to

the native state map to those of the final state is presented. To illustrate our

approach we study the deformations for the 6D lattices related to the Cow-

pea Chlorotic Mottle Virus (CCMV). The point arrays corresponding to the
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(a) (b)

Figure 3.7: (a) The point array 10 − 44 superimposed on the pre-transition

state of CCMV (pdb-id: 1cwp). (b) The point array 27− 51 superimposed on

the post-transition state of CCMV (pdb-id: ccmv swln 1).

start and end configuration have been determined based on the pdb-files with

pdb-id 1cwp for the pre-, and ccmv swln 1 for the post-transition configura-

tion [82]. As an example we display the point arrays corresponding to these

configurations in Figure 3.7.

3.4.1 Embedding of the capsid geometry into a 6D icosahedral

lattice

In order to relate a point array of the form (3.4.1) with a 6D lattice, we use

the following facts:

(i) The projection π‖ is one-to-one onto its image when restricted to L, since

E‖ is totally irrational (i.e., E‖ ∩ L = {0}) with respect to LSC ,LFCC and

LBCC .

(ii) The icosahedral group commutes with the projection, so that the 6D preim-

ages of the standard icosahedral polyhedra are, in turn, icosahedral orbits.

(iii) A dilatation by a factor of τ in 3D corresponds to a symmetry operation

of the cubic lattices in 6D.

We use the following three-step procedure:

• Step 1: We embed the standard polyhedra (i.e. icosahedron, dodec-
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ahedron and icosadodecahedron) into 6D according to Table 3.1: The

standard icosahedron can be obtained via projection of the icosahedral

orbit of the canonical basis vector e1 of the SC lattice, the standard icosi-

dodecahedron via projection of the icosahedral orbits of the FCC lattice

vector 1
2(e1 + e2), and the standard dodecahedron via projection of the

icosahedral orbit of the BCC lattice vector 1
2(e1+e2−e3+e4−e5+e6).

• Step 2: Since the skeletal structure of the point arrays constructed in

[37] is a combination of two standard polyhedra at different scalings of

τk with k ∈ Z (see Tables 3.2, 3.3), we create the 6D counterparts of

standard polyhedra rescaled by τ via the action of the quasidilatation D

(see 2.8 of Chapter 2). For example, the 6D embedding of a icosahedron

of length τk
√

2 + τ , k ∈ Z is given by the icosahedral orbit of the rescaled

vector Dke1.

• Step 3: The translation vectors s ∈ R3, along which the skeletal struc-

ture (i.e. the two nested standard polyhedra) is translated to generate

the point arrays, also belongs to a rescaled standard polyhedron. There-

fore t = (π‖)
−1(s) and all its orbits belong to one of the icosahedral

lattices.

Hence, we associate with each point array S in (3.4.1) a unique set Σ of

points in either LSC , LFCC or LBCC . It is called the lifted viral configuration

or lifted point array, and fulfills π‖(Σ) = S. It follows from (3.4.1) that Σ is

the union of icosahedral orbits in R6 and their suitable translates:

Σ = Σ(v,w, t) = Iv ∪ Iw ∪ (Iv + It) ∪ (Iw + It), (3.22)

where π‖v = u, π‖w = r, π‖t = s.

By construction, all points of a given lifted viral configuration Σ are points

of some icosahedral lattice, and there exists a unique minimal such lattice that

contains a given lifted viral configuration. We say that the lifted point array

is embedded into such a lattice, and the following characterisation holds:
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Table 3.1: 6D vectors and their 3D projections corresponding to the vertices

of the standard polyhedra. Vectors are listed modulo inversion.

Orbits in 6D modulo inversion 3D representation

(1, 0, 0, 0, 0, 0) (τ, 1, 0)

(0, 1, 0, 0, 0, 0) (0, τ, 1)

Icosahedron (0, 0, 1, 0, 0, 0) (−1, 0, τ)

(0, 0, 0, 1, 0, 0) (0,−τ, 1)

(0, 0, 0, 0, 1, 0) (τ,−1, 0)

(0, 0, 0, 0, 0, 1) (1, 0, τ)

1
2
(1,−1, 1, 1,−1, 1) (0, 1− τ, τ)

1
2
(−1, 1,−1, 1, 1, 1) (1,−1, 1)

1
2
(1,−1,−1,−1,−1, 1) (1, 1,−1)

1
2
(1, 1,−1, 1,−1, 1) (1, 1, 1)

Dodecahedron 1
2
(1, 1, 1, 1,−1,−1) (−1, 1, 1)

1
2
(1, 1, 1,−1, 1,−1) (τ − 1, τ, 0)

1
2
(−1, 1,−1, 1,−1,−1) (−τ, 0, 1− τ)

1
2
(−1,−1, 1,−1,−1, 1) (−τ, 0,−1 + τ)

1
2
(1,−1, 1, 1, 1,−1) (−1 + τ,−τ, 0)

1
2
(1,−1,−1, 1,−1,−1) (0, 1− τ,−τ)

1
2
(1, 0, 0,−1, 0, 0) 1

2
(τ, τ2,−1)

1
2
(0, 1, 0, 0, 0, 1) 1

2
(1, τ, τ2)

1
2
(0, 1, 1, 0, 0, 0) 1

2
(−1, τ, τ2)

1
2
(0, 0, 0, 1, 0, 1) 1

2
(1,−τ, τ2)

1
2
(1, 0, 0, 0, 0, 1) 1

2
(τ2, 1, τ)

1
2
(1, 0, 0, 0, 1, 0) (τ, 0, 0)

1
2
(0, 0, 0, 1, 1, 0) 1

2
(τ,−τ2, 1)

Icosidodecahedron 1
2
(0, 0, 0, 0, 1, 1) 1

2
(τ2,−1, τ)

1
2
(0, 0, 1, 1, 0, 0) 1

2
(−1,−τ, τ2)

1
2
(0, 0, 1, 0,−1, 0) 1

2
(−τ2, 1, τ)

1
2
(1, 0,−1, 0, 0, 0) 1

2
(τ2, 1,−τ)

1
2
(1, 1, 0, 0, 0, 0) 1

2
(τ, τ2, 1)

1
2
(0, 0, 1, 0, 0, 1) (0, 0, τ)

1
2
(0, 1, 0,−1, 0, 0) (0, τ, 0)

1
2
(0, 1, 0, 0,−1, 0) 1

2
(−τ, τ2, 1)

Proposition 3.4.2. The minimal lattice containing a given lifted viral con-

figuration Σ has icosahedral symmetry.

Proof. Let Σ = {v1, . . . ,vN}∪{w1, . . . ,wM}∪{t1, . . . , tK}, where {v1, . . . ,vN}

and {w1, . . . ,wM} are distinct I-orbits, and let {t1, . . . , tK} be the icosahedral

orbit of the translation vector. Consider the Z-module

L′ =

x ∈ R6 : x =

N∑
i=1

nivi +

M∑
j=1

mjwj +

K∑
k=1

pktk , n
i,mj , pk ∈ Z

 .

Since {v1, . . . ,vN}, {w1, . . . ,wM}, and {t1, . . . , tK} are icosahedral orbits, L′
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Table 3.2: The list of shells (i.e. standard polyhedra and their corresponding

translations) relevant to the description of CCMV uses the same numbering

as in [37]. For the construction of a shell, the standard polyhedron can either

be an icosahedron (ICOS), a dodecahedron (DOD) or an icosidodecahedron

(IDD). The corresponding translation vector points to the vertices of either

an ICOS, a DOD or an IDD.

shell # st. polyhedron translation scaling factor

10 ICO DOD τ2

11 ICO ICO −τ ′

12 ICO ICO 1

13 ICO ICO τ

19 DOD ICO −2τ ′

26 DOD DOD τ2

27 DOD ICO τ ′2

29 DOD ICO 1

30 DOD ICO τ

44 IDD DOD 1
2
τ

51 IDD ICO 1
2

52 IDD ICO 1
2
τ

53 IDD ICO 1

54 IDD ICO 1
2
τ2

55 IDD ICO τ

Table 3.3: List of generating vectors and minimal lattices for each viral con-

figuration relevant to CCMV. The corresponding viral configurations are de-

noted by the two shells (listed in Table 3.2) from which they are composed.

For example viral configuration 10-44 combines shell 10 and 44 as explained

in Chapter 1.

viral conf. lattice v w t

10-44 SC (1, 0, 0, 0, 0, 0) (1, 1, 0, 0, 1, 1) (1, 1, 0, 0, 0, 1)

26-44 BCC (1, 0, 0, 1, 0,−1) (1, 0, 0, 0, 1, 0) 1
2
(1, 1, 1, 1,−1,−1)

11-27 BCC 1
2
(1,−1, 1, 1,−1,−1) 1

2
(1, 1,−1, 1, 1,−1) 1

2
(3,−1, 1, 1,−1,−1)

12-27 SC (1, 0, 0, 0, 0, 0) (1, 1, 0, 0, 0, 1) (1, 0, 0, 0, 0, 0)

13-27 BCC (1, 1, 1, 1, 1,−2) 1
2
(1, 1, 1, 1,−1,−1) 1

2
(3,−1, 1, 1− 1,−1)

27-51 SC (0, 1, 1, 0,−1, 0) (0, 1, 0, 0,−1, 0) (1, 0, 0, 0, 0, 0)

27-52 SC (0, 1, 0,−1,−1, 0) (0, 0, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0)

27-53 FCC 1
2
(1,−1,−1,−1,−1, 1) 1

2
(1, 0, 1, 1, 0,−1) 1

2
(3,−1, 1, 1,−1,−1)

27-54 SC (0, 1, 0,−1,−1, 0) (1, 0, 1, 0, 1,−1) (1, 0, 0, 0, 0, 0)

27-55 FCC 1
2
(1,−1, 1, 1, 1,−1) 1

2
(1, 1, 0, 2, 0,−2) 1

2
(3,−1, 1, 1,−1,−1)

27-29 BCC 1
2
(1, 1,−1, 1,−1, 1) 1

2
(1, 3,−1, 3, 1,−3) (1, 0, 0, 0, 0, 0)

27-30 SC (1, 1, 0, 0, 0, 1) (1,−1, 1, 0, 0, 0) (1, 0, 0, 0, 0, 0)
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is invariant under I. Furthermore, L′ is a lattice, because {v1, . . . ,vN} and

{w1, . . . ,wM}, and {t1, . . . , tK} are all lattice vectors of the maximal lattice

FCC. It is always possible to extract a basis of R6 from Σ, since otherwise

the subspace generated by Σ, being invariant under I, would coincide either

with E‖ or E⊥, both irrational with respect to the cubic lattices. But the

elements of Σ are lattice vectors, which leads to a contradiction. Further, L′

contains Σ, and it follows that L′ is a 6D icosahedral lattice. Finally, L′ is

also minimal, since every lattice that contains Σ must also contain all integer

linear combinations of vectors of Σ, that is, L′.

A given viral configuration can trivially be embedded in infinitely many

other lattices but the minimal lattice constructed above is unique. It follows

that, since the point arrays can be obtained by projection of a 6D lattice onto a

completely irrational icosahedrally-invariant subspace in 3D, they are subsets

of an icosahedral 3D quasicrystal [66].

The following definition is central in our approach to the study of structural

transformations of viral configurations.

Definition 3.4.3. Given a lifted viral configuration Σ = Σ(v,w, t), any basis

{bα}α=1,...,6 of R6 such that

i) {bα} is a basis for the minimal icosahedral lattice containing Σ;

ii) every basis vector bα belongs to either Iv, Iw, or It;

iii) each orbit contains at least one basis vector;

is called an admissible basis for the lifted viral configuration.

The second condition requires that the vectors of an admissible basis are

representatives of icosahedral orbits of the skeletal vectors and of the transla-

tion. Since the icosahedral orbits of these three vectors are used to construct

Σ, there exists a unique Σ for each basis B. We write this unique viral con-

figuration as

Σ = Σ(bα) = Σ(B). (3.23)
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Note that all admissible bases for a given lifted viral configuration are bases

of the same 6D lattice. Furthermore, applying a rotation R ∈ I to the vectors

of an admissible basis yields another admissible basis for the same lifted viral

configuration, and the same is true for permutations and change of signs of

the basis vectors.

3.4.2 Viral transitions

Consider two viral configurations S0 and S1, with corresponding lifted viral

configurations Σ0 and Σ1 in 6D. Let Σ0 be embedded into L0, and Σ1 into L1.

Definition 3.4.4. A viral transition between two viral configurations S0 and

S1 in 3D, with intermediate symmetry G is a transition obtained via the cut-

and-project method from a transition between the lattices L0 and L1 in 6D,

such that

i) B0 and B1 (the bases associated with the transition) are admissible for Σ0

and Σ1, i.e.,

Σ0 = Σ(B0), Σ1 = Σ(B1);

ii) the transition is compatible with the cut-and-project method as stated in

Definition 3.2.5.

By Proposition 3.2.6, given a transition T , the possible viral transition

paths are curves in Z(G,R) connecting the identity with T . To derive from

these paths the information about the actual intermediate structure of a viral

capsid, let

T (t) ∈ Z(G,R), for t ∈ [0, 1],

be a viral transition path with intermediate symmetry G. Let v0, w0 and t0

be three vectors of the basis B0 such that

Σ0 = Σ(v0,w0, t0),

i.e., v0 and w0 belong to the skeletal shells, and t0 is in the orbit of the

translation vector. For t ∈ [0, 1], define

v(t) = T (t)v0, w(t) = T (t)w0, t(t) = T (t)t0.
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By definition, v(t), w(t) and t(t) are vectors of the basis B(t) = T (t)B0 of

the intermediate lattice. We associate with the transition path T (t), for any

t ∈ [0, 1], a lifted viral configuration Σ(t) defined as

Σ(t) = Gv(t) ∪ Gw(t) ∪ (Gv(t) + Gt(t)) ∪ (Gw(t) + Gt(t)) ⊂ L(B(t)). (3.24)

The resulting point array, when projected to R3 via π‖, yields a family of

non-icosahedral point sets S(t) parametrised by t, with constant G-symmetry,

that represents the intermediate viral configurations, i.e.

S(t) = G3u(t) ∪ G3r(t) ∪ (G3u(t) + G3s(t)) ∪ (G3r(t) + G3s(t)), (3.25)

where G3 denotes a representation of G on E‖, and u(t) = π‖v(t), r(t) =

π‖w(t) and s(t) = π‖t(t).

3.4.3 A procedure to determine transitions between viral con-

figurations

As shown in Section 3.3.2, the centralisers of the three maximal subgroups of

the icosahedral group in GL(6,R) are 6×6 matrices whose coefficients depend

linearly on a finite number n of parameters, with n = 4, 6, 8 for tetrahedral,

D5 and D3 transitions respectively (see equations 3.17, 3.18 and 3.19). In

order to find transitions between two given lifted viral configurations, we use

the following strategy to determine their parameter values: we solve a linear

system of equations that formulates the requirement that the vectors acting as

descriptors of the pre-transitional configuration, be mapped into descriptors of

the final configuration. For this, we write T = T (p), with p = (p1, . . . , pn) ∈

Rn,and Σ0 = Σ(v0,w0, t0), Σ1 = Σ(v1,w1, t1). Choosing v0 ∈ Iv0, w0 ∈

Iw0, t0 ∈ It0, v1 ∈ Iv1, w1 ∈ Iw1, and t1 ∈ It1, we require that

v1 = T (p)v0, w1 = T (p)w0, t1 = T (p)t0 . (3.26)

This yields a system of equations for the unknown parameter p, whose solution

(if it exists) we denote by p. Notice that, by construction, T (p) is in the



CHAPTER 3. STRUCTURAL TRANSITIONS IN QUASICRYSTALS 86

centraliser of G, so that T (p)Gv = GT (p)v for every G ∈ G and v ∈ R6.

Hence, G-orbits in Σ0 are mapped into G-orbits in Σ1. If a basis B0 for the

minimal lattice containing Σ0 can be extracted from the G0-orbits of v0, w0,

and t0, then this basis is automatically admissible for Σ0. Moreover, its image

B1 = T (p)B0 is also admissible for Σ1, and T (p) is a viral transition between

Σ0 and Σ1.

By repeated application of the above procedure for all possible represen-

tatives of the orbits Iv0, Iw0, It0 and Iv1, Iw1, It1, we obtain all possible

viral transitions between Σ0 and Σ1.

3.4.4 Application to CCMV

We have applied the procedure developed in the previous sections to CCMV

capsid transitions during maturation. An analysis of the CCMV capsid struc-

ture via the algorithm in [37] shows that the pre-transition geometry of the

CCMV capsid is given by one of the two following viral configurations (see

Tables 3.2, 3.3 for the notations used to label the point-arrays):

S0 ∈ {10-44, 26-44} , (3.27)

while the swollen form of CCMV is best approximated by one of the ten

following viral configurations:

S1 ∈ {11-27, 12-27, 13-27, 27-29, 27-30, 27-51, 27-52, 27-53, 27-54, 27-55}.

(3.28)

We have determined the possible transitions with capsid configurations given

by a point array S0 in (3.27), and post-transition configuration given by an

array S1 in (3.28). The results are as follows:

i) In Section 3.3.2 we demonstrated that there is no transition with tetrahe-

dral symmetry between SC, FCC and BCC lattices. Therefore no transition

between initial and final configurations with this symmetry can exist.

ii) There exist no transitions with D5 symmetry between any of the initial and

final configurations.
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iii) There exist four transitions with D3 symmetry, mapping the initial con-

figuration 10-44 into one of the final configurations 27-52, 11-27 and 12-27.

Here we list these transitions together with the bases of the initial config-

uration involved in each transition.

• D3, 10-44→27-52

T1044−2752 =


0 −1 1 −3 1 1

0 0 1 −1 1 0

0 1 0 1 0 −1

1 −1 1 0 0 0

1 −3 1 −1 0 1

1 −1 3 −1 1 0

, B1044 =


0 1 0 0 1 0

0 0 0 1 0 0

0 0 0 1 −1 0

0 0 0 0 −1 1

0 0 1 −1 0 1

−1 0 0 1 −1 1

,

• D3, 10-44→27-52

T ′1044−2752 =


−1 1 −1 1 0 0

0 0 −1 1 −1 0

0 −1 0 −1 0 1

−1 1 −1 0 0 0

0 1 −1 1 −1 0

0 1 −1 1 0 −1

, B1044 =


0 0 0 1 0 1

0 0 1 1 0 0

0 0 1 −1 0 −1

0 0 −1 −1 1 0

1 0 −1 0 1 1

0 1 0 0 1 0

,

• D3, 10-44→11-27

T1044−1127 =


2 −1/2 1/2 1/2 −1 −1

0 −1/2 1/2 −1/2 1 0

0 1/2 −1/2 1/2 0 −1

1 −1/2 1/2 −1/2 0 0

−1 1/2 1/2 −1/2 2 −1

−1 −1/2 −1/2 −1/2 −1 2

, B1044 =


0 0 0 1 1 −1

0 0 1 0 1 −1

0 1 1 0 0 0

1 0 1 1 0 0

0 0 0 1 1 0

0 0 1 1 1 −1

,

• D3, 10-44→12-27

T1044−1227 =


1 −1 1 0 0 0

1 −1 0 0 −1 1

−1 0 −1 0 −1 1

−1 0 0 −1 1 1

0 0 1 −1 1 0

0 −1 0 −1 0 1

, B1044 =


0 0 0 1 0 1

0 0 1 1 0 1

0 1 1 −1 0 0

1 0 1 −1 1 0

0 0 0 0 1 0

0 0 1 0 1 1

.
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3.5 Conclusion

In this chapter we have determined the possible transitions between SC, BCC

and FCC lattices such that the projected quasilattices conserve maximal sym-

metry. Our procedure describes structural transformations in cut-and-project

quasilattices, and all structural transitions with all possible intermediate sym-

metries have been considered. We have characterised all local changes in these

quasilattice transitions via three mechanisms: splitting of a tile, tile flips and

tile mergers.

We have also demonstrated that quasilattice transitions can be used to

study structural transformations of viral capsids when combined with point

arrays descriptors from [36]. Note that our approach cannot determine the

exact transition path (as the energy landscape of transitions is unknown),

however the maximal symmetry of the intermediates has been determined.

In particular, by embedding the point descriptors corresponding to the pre-

and post-transitional states of an examplar virus (the Cowpea Chlorotic Mot-

tle Virus- CCMV), into higher dimensional lattices, the possible transitions

between these configurations have been computed. Provided that maximal

symmetry is conserved along the transition path, we have shown that icosahe-

dral symmetry is lost at intermediate states and that the maximal symmetry

preserved is D3, i.e. a single three fold axis is preserved in the case of this

virus. This result is consistent with the coarse-grained study in [14] which

suggests that different local environments favour loss of icosahedral symmetry

and that the structural transition is triggered at a given symmetry axis of the

viral capsid. Here, conservation of a single three-fold axis indicates that the

transformation propagates along this axis like a circular wave.



Chapter 4

The Matching Algorithm

We have seen in Chapter 1 that the icosahedrally invariant point arrays in [37]

can be used as descriptors of viral capsids. This implies that the structures

of these capsids are constrained by icosahedral symmetry at different radial

levels. In Chapter 3 we have shown that these point arrays are in fact a

subset of the vertex set of an icosahedral tiling. Here we investigate further

the icosahedral symmetry constraints by embedding these point arrays into

complete tilings and associating tilings, rather than points arrays, with virus

architecture. In this chapter we explain the algorithm used to match capsids

to subsets of tiles from either of the three icosahedral tilings (i.e. SC, BCC or

FCC), that have been obtained by the cut-and-project method in Chapter 2.

Application to a selection of T = 1 and T = 3 viral capsids will be discussed

in Chapter 5.

4.1 The Matching Algorithm

The experimental data of viral structure used by the algorithm is provided by

the Viperdb website [12], a database for capsid structures derived from X-ray

and Cryo-EM experiments. Each pdb-file contains the cartesian coordinates

of the atoms of the protein shell and, if available, of the genomic material

present in the viral capsid. First we describe how these data are processed

89
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before applying the model. The algorithm which compares the structure of

the viral capsid to the icosahedral tiling (be it SC, BCC or FCC) is explained

in detail in Section 4.1.2 and can be summarised as:

1. Data preparation and alignment to tilings:

Information about the atomic positions of the capsid proteins are ex-

tracted, removing atoms related to genomic material or water molecules.

A surface representation of the data is generated via PyMol, and a dis-

crete subset of the vertices in the corresponding mesh is retained for fur-

ther analysis. Viral capsids are embedded into the tilings via alignment

of the icosahedral symmetry axes, such that the only degree of freedom

remaining is the scaling of tiling size relative to the data. Different scal-

ings of the tilings for fixed data size will be assessed in increments of 0.1

Å in the following.

2. Identification of a maximal scaling:

An upper bound smax on the scaling of tilings relative to the data is de-

termined by requiring that the vertex star of the origin does not contain

any atoms. Otherwise the tiling would be too large to account for the

interior surface of the capsid.

3. Computation of tile occupancy:

For every scaling, starting from smax and decreasing in increments of 0.1

Å, the occupancy of tiles by atoms in the data set is computed for every

tile contained in the fundamental domain of the symmetry group.

4. Creation of a library of tile configurations as candidates for representing

the data:

For a given tiling and scaling, all tiles with an occupancy of at least 50%

are retained. Denoting the occupancy labelled in increasing order of the

N tiles in the fundamental domain with at least 50% occupancy as ρi

(i=1 . . . N), we call S(s, ρj) the s-scaled tiling subset consisting of all

tiles with at least occupancy ρj . The tile sets S are computed for every
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tiling and scaling. If such a tile set, contains at least 90% of the Cα

atoms of the viral capsid (modulo experimental precision) then this tile

set is added to the library of tile configurations that contain all possible

candidates to represent the data.

5. Computation of integral square error for each tile configuration in the

library:

The integral square error σsd, a concept from polynomial approximation,

is computed for each tile configuration in the library and plotted against

the scaling s corresponding to the tile configuration. A cut-off ∆σsd is

determined depending on the experimental precision of the data such

that approximations with a value of σsd below that would be too precise

given the uncertainty of the data. The minimal scaling smin is defined

as the scaling below which tile sets S with lowest scores σsd are below

∆σsd.

6. Computation of a renormalised integral square error for each tile config-

uration in the library:

A renormalisation procedure is introduced that gives different compo-

nents in the integral square error comparable weight. It takes into ac-

count all scalings s between smin and smax and all tile configurations in

the library.

7. Interpretation of renormalised integral square error plots:

Tile configurations in the library are grouped according to the number of

facets, and the renormalised score σ is then plotted against the number

of facets. Minima in this plot correspond to the tile configurations in

the library that best approximate the data. The smaller the number of

facets, the coarser the approximation, and the smaller the score σ the

better the approximation.
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4.1.1 Surface representation of the Viral Capsid

Although viral capsids from [12] are invariant under icosahedral symmetry, the

axes of symmetry are in general different from those we choose in our model.

Therefore, all atoms in the corresponding pdb-files are first rotated such that

the new axes of symmetry of the viral capsid align with those of the tilings.

Since our algorithm focuses only on the viral capsid, pdb-files which contain

information on the position of the genetic material of the virus must have this

information removed prior to analysis with our algorithm. From the modified

pdb-file, the shape of the viral capsid is calculated as the Solvent Excluded

Surface (or SES) of the proteins, the computation of which is performed using

the PyMol software [65]. The output from PyMol is a mesh of points on the

SES (depending on the radius of each of the atoms) that will in the next

section be compared with the tilings.

For simplicity, we assume that all atoms are represented by spheres cen-

tered on the atomic positions (given by the pdb-file) whose radius is equal to

the mean van der Waals radius computed over all types of atoms present in the

protein shell. The type (for example: Carbon, Nitrogen, etc...) of each atom

contained in the protein shell is also available in the pdb-file and the values

of the van der Waals radii used to compute the mean radius have been taken

from [10]. To reduce computation time the number of vertices representing

the mesh is limited to one every 2Å. This subset of vertices, which we call

M, enables faster simulation while keeping the essential features of the capsid

(see Figure 4.1). It is also consistent with the fact that the finest resolution

of experimental data is usually higher than 3Å.

4.1.2 Description of the algorithm

Using the cut-and-project method we have constructed the 3 different tilings

corresponding to the 3 lattices invariant under icosahedral symmetry in 6D

(i.e. the SC, BCC and FCC lattices). We now need to embed the virus into the
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Figure 4.1: Illustration of the surface representation procedure described in

4.1.1 based on the example of the native form of Cowpea Chlorotic Mottle

Virus (pdb-id: 1cwp [12]). The surface intersecting the fundamental domain,

rendered by PyMol [65], is represented in green. On the right hand side a close

up view representing the vertices of the un-reduced mesh (green spheres), is

shown together with the reduced mesh (red spheres).

tilings allowing for different scalings. This is equivalent to finding the scaling

for which the tiling (derived from SC, BCC or FCC lattices) best describes

the capsid of a given virus. The orientation of the virus with regards to the

tiling is fixed by the fact that both must share the axes of symmetry of the

icosahedral group, so the only degree of freedom we have is an overall scaling

factor.

The algorithm, which is described here, scores a selected set of tiles to the

viral capsid to find the most appropriate scaling. In this section we will define

the scaling of a tile and the selection rules used to pick the set of tiles which

approximate the surface of the capsid’s layout at a given scale. The ranking

of these sets of tiles is made using the scoring system explained in subsequent

subsections.

Using the same notation as in Chapter 2, a tiling will be called T ∗ regard-
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less of it being projected from a SC, BCC or FCC lattice.

Selection of tiles

Here, we choose to leave the viral capsid unchanged and rescale only the tiling

T ∗. Also, we choose the scaling s = 1 if the tiling corresponds to the one

projected from the lattices given by the bases:

BSC =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, BBCC =

1

2



2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

1 1 1 1 1 1


,

BFCC =
1

2



1 1 1 1 1 2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0


(4.1)

We refer to these lattices as the “gauge” lattices to which all others are scaled.

As the scaling increases or decreases, the size and the volume of each tile within

T ∗ increases or decreases, respectively. The set of tiles overlapping with the

protein shell may vary with the scaling. We next assume a fixed value of s and

describe the rules which select the subset of tiles within a tiling T ∗ that will

be matched to the viral capsid. The process is repeated for different values of

s in a given range (whose boundaries are explained in detail in Section 4.1.4).

Intuitively, for a tile to be selected it must contain at least a minimum number

of atoms of the viral capsid. It is more convenient to work in terms of occu-

pancy in terms of % of overlap rather than in terms of the number of atoms
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within a tile, since tiles may have different sizes. For simplicity, we say that

an atom is inside a tile if the center of the atom is inside the tile, bearing in

mind that in our model each atom is represented as a sphere of fixed radius.

This can lead to cases where the volume occupied by atoms within a tile is

bigger than the volume of the tile (i.e. ρ > 1), but these cases occur primarily

for small values of s. Overall, this simplification remains good enough while

reducing the computation time to reasonable levels.

Definition 4.1.1. Let V be the fixed volume of an atom and ti ∈ T ∗ a tile,

and define the occupancy of the tile ti as:

ρi =
NiV

|ti|
(4.2)

where Ni is the number of atoms of the viral capsid whose center lies in the

tile ti, and |ti| the volume of ti.

We fix a minimal threshold occupancy ρ as follows: a tile is taken into

consideration by the algorithm if its occupancy satisfies ρi ≥ ρ. The Quick

Hull algorithm [7] is used for the computation of convex hulls, volumes and of

the surface areas of the tiles.

Definition 4.1.2. We call ST ∗(s, ρ), the subset of tiles in T ∗(s) with occu-

pancy level above the minimal threshold ρ and ordered in increasing order of

tile occupancy ρi, as:

ST ∗(s, ρ) = {ti ∈ T ∗(s) : ρi ≥ ρ and ρi ≤ ρj for i ≤ j} (4.3)

where ρi is the fraction of the volume occupied by the atoms in tile ti, and

T ∗(s) is T ∗ rescaled by s.

Because the set of tiles in ST ∗(s, ρ) can be the same for different values

of ρ, we relabel ST ∗(s, ρ) as ST ∗(s, [ρmin, ρmax]) where ρmin and ρmax are,

respectively, the minimal and maximal ratio value for which ST ∗(s, ρmin) =

ST ∗(s, ρmax) = ST ∗(s, ρ) for every ρ ∈ [ρmin, ρmax]. Note that ρmax can also



CHAPTER 4. THE MATCHING ALGORITHM 96

be thought of as the lowest value of ρi for every tile ti in ST ∗(s, ρ).

In addition, we define AT ∗(s, ρ) the boundary surface of this set of tiles, de-

fined as the surface given by the facets of the tiles in ST ∗(s, ρ) which are not

shared by any two tiles in this set. The set of facets, edges (intersection of

two facets) and vertices (intersection of more than two facets) corresponding

to AT ∗(s, ρ) is called BT ∗(s, ρ) and |BT ∗(s, ρ)| denotes its cardinality. By the

same reasoning as for ST ∗(s, ρ), we can define BT ∗(s, [ρmin, ρmax]) = BT ∗(s, ρ)

for every ρ ∈ [ρmin, ρmax].

To restrict choices for ST ∗(s, ρ), we add two conditions:

R1 ρ ≥ 0.5, i.e. we consider no set ST ∗(s, ρ) in which any tile is less than

50% occupied;

R2 90% of the total main chain atoms of the capsid (i.e. the backbone given

by C, Cα and N atoms to which the side chains are attached) must be

within a distance of smaller than the experimental precision from the

tiles in ST ∗ , i.e. if data are given at xÅ resolution, the distance must be

less than or equal to xÅ.

These additional limitations reduce the number of sets to be considered (and

hence reduce computation time) to evaluate only good candidates for a fit. On

the one hand, restriction R1 ensures that we consider only sets with tiles that

are mostly fully occupied. An intuitive notion of a good match suggests that

the surfaces of the tiles would be as close as possible to the vertices of the mesh

M. This is the case if all tiles selected have a high occupancy and very few

atoms of the protein shell are in none of the selected tiles ST ∗(s, ρ). Tiles with

high occupancy (i.e. ρ ∼ 1), should not be affected by the limitation on the

minimal value of ρ. Instead ρ ≥ 0.5 limits the possible choice of tiles selected

nearer the outside of the protein shell. Accepting a tile if it is mostly full

allows us to consider sets whose external surface is more likely to be nearer

the mesh M. The scoring system (described in subsequent sections) then
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selects the set which best matches the capsid. On the other hand, restriction

R2 forbids sets for which the protein shell is not adequately covered by the

tiles. Without this restriction, sets covering a small portion of the viral capsid

would be selected and scored. A good scoring system should penalise such

configurations but allowing these sets and computing their scores would involve

unnecessary computations.

The scoring system aims at finding sets ST ∗(s, ρ) which provide good qual-

ity fits. To do this, sampling of the two variables s and ρ is necessary. Because

the sampling of s is a more complex process, it will be explained separately

in Section 4.1.6. If we assume a fixed scaling s, scores should be different for

different values of ρ if and only if the corresponding sets S(s, ρ) are different.

Notice that T ∗(s) ⊃ S(s, ρ) ⊇ S(s, ρ′) for ρ′ ≥ ρ. The values of ρ correspond-

ing to different sets of tiles can easily be computed as follows:

Recall that for every tile ti in S(s, ρ = 0.5), ρi ≤ ρj for i < j. Further no-

tice that S(s, ρ = ρi) ⊃ S(s, ρ = ρj) if i < j, and S(s, ρ) = S(s, ρ = ρi) if

ρ ∈ (ρi−1, ρi]. Choosing ρ = ρi for i ∈ [1, |S(s, 0.5)|] generates all possible

subsets of tiles with regards to ρ. If there exists i such that ρi = ρi+1 then

S(s, ρi) = S(s, ρi+1) and the previous method would create duplicated sets.

This is not a problem as the elements of {S(s, ρi) : i ∈ [1, |S(s, 0.5)|]} can

easily be made unique.

For example, suppose S(s, 0.5) is composed of three tiles t1, t2 and t3 with

respective ratios ρ1, ρ2 and ρ3 such that ρ1 < ρ2 < ρ3. Then three possible

sets S(s, ρ) can be generated:

S(s, 0.5) = S(s, ρ1) = {t1, t2, t3}, S(s, ρ2) = {t2, t3} and S(s, ρ3) = {t3}. Note

that in the above example, the set {t1, t3} is not considered.

4.1.3 Scoring system

At this point finding the best set of tiles that approximates the surface of

the protein shell can easily be related to a polygonal approximation problem

[38, 51, 52, 58, 59, 62, 63, 85] where one polygon is approximated by another.
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In our case, the polygon to be approximated is represented by the verticesM

on the SES of the viral capsid, and the approximating polygon is defined by

the boundary surface A(s, ρ) of S(s, ρ). In this section we describe the scoring

system we use to quantify the approximation error.

We introduce some notation which will be needed. Let vi ∈M and denote

by PB(vi) the projection of vi onto B(s, ρ), i.e. the point of B(s, ρ) having

minimal distance from vi (assuming this is unique). Moreover, denote by di

the minimal distance between vi and B(s, ρ).

Definition 4.1.3. The integral square error σsd is defined as:

σsd =
∑

{i:vi∈M}

d2i . (4.4)

σsd is widely used in polygonal approximation problems [38, 51, 52, 58].

This score penalises each vertex inM with regards to its distance from A(s, ρ).

The bigger the value of σsd, the poorer the quality of the approximation.

As the scaling s diminishes, the size of the tiles diminishes and more of

them are needed to cover the viral capsid. As a result of this and conditions

R1 and R2, σsd tends to decrease with s. An example is shown in Figure

4.5 and we observed the presence of local minima of σsd. These local minima

reflect the fact that for a given set of tiles S, there exists a scaling s for which

σsd is minimal. Varying the scaling around s by a small amount will result in

an increase of σsd.

In our case, however, for a simple example, such as the one presented in

Figure 4.2, σsd would favour sets which do not match our intuitive notion of

a good approximation of the shell’s surface by the tiles. Therefore, we instead

decompose σsd into two scores σ1 and σ2. CallingMj the set of vertices whose

projection belongs to the jth element of B(s, ρ) and Dj =
1

|Mj |
∑

{i:vi∈Mj}

di,

the mean distance of the jth element of B(s, ρ) to vertices of Mj , we obtain:
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(a) (b)

Figure 4.2: The vertices inM (grey dots) and their projections (empty circles)

onto the facets of A(s, ρ) (black lines) are shown for two different tile selections

in (a) and (b). The score σsd is higher in case (a) than in case (b), contradicting

our intuitive notion of a good fit.

σsd =

|B(s,ρ)|∑
j=1

∑
{i:vi∈Mj}

d2i

=

|B(s,ρ)|∑
j=1

∑
{i:vi∈Mj}

(di −Dj +Dj)
2

=

|B(s,ρ)|∑
j=1

2Dj

∑
{i:vi∈Mj}

(di −Dj)︸ ︷︷ ︸
0

+

|B(s,ρ)|∑
j=1

∑
{i:vi∈Mj}

D2
j︸ ︷︷ ︸

σ1

+

|B(s,ρ)|∑
j=1

∑
{i:vi∈Mj}

(di −Dj)
2

︸ ︷︷ ︸
σ2

The definition of σ1 and σ2 is such that the lower the score, the better the

approximation of the set of tiles to the viral capsid. σ1 penalises sets for which

the distance between the mean position of the approximated points in Mj ,

and the corresponding element in B(s, ρ), is bigger. σ2 mesures the difference

between the distance of the vertices in Mj to the jth element in B(s, ρ) and

the mean distance Dj . It can be thought of as a score which quantifies the

alignment of this boundary with the surface of the protein shell modelled by

M. In the case where all vertices in Mj are equidistant to the jth element in

B(s, ρ), the contribution of these vertices to σ2 is null, see Figure 4.3.
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Figure 4.3: Here we assume an approximating polygon made up of a single

tile whose edges are represented by dashed lines and where vertices of M are

located on the greyed surface. σ2 is minimised if the vertices projecting on

a plane of B(s, ρ) are located on a plane parallel to this facet (light grey in

the Figure). Similarly, vertices projecting on an edge of B(s, ρ) minimise σ2

if they are on a cylinder with axis this edge (dark grey in the Figure) and

vertices projecting on a vertex of B(s, ρ) are be located on a sphere centered

on this vertex (black in the Figure).

The reason why σsd is not a suitable score is due to the fact that in general

σ1 is bigger than σ2 and a renormalisation of the two scores must be applied

in order to make them comparable. The calculation of the renormalisation

factor (which will be discussed in Section 4.1.5) should only consider sets which

are plausible approximations in order to save computation time. Restriction

R1 already limits the possible values for the unknown ρ, while restriction R2

excludes sets of tiles which do not represent enough of the viral capsid. But the

size of tiles also needs to be bounded as very small tiles can approximate any

structure indiscriminately. To do this we also restrict the values the scalings

can take.
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4.1.4 Defining boundaries for the scaling value s

If the size of the tiles is too large compared to the size of the protein shell (for

large values of s), then no information can be obtained about the structure

of the viral capsid. In this case the approximation is considered too rough.

In a similar way, tiles could be rescaled to a very small size (corresponding

to small values of s), but we would gain no meaningful information by doing

so. Hence, we need to restrict the values that s can take by defining a lower

bound smin and an upper bound, smax, outside of which we consider ST ∗(s, ρ)

irrelevant to the study of the structure of the viral capsid. We discuss here

the choices made to define these boundaries for s.

For this model to provide additional information with regards to the Caspar-

Klug model, we require that the algorithm finds sets of tiles which give infor-

mation on the thickness of the capsid. First let us consider the capsid as a

container whose interior is empty. We require that some tiles within the capsid

remain empty for any sampled value of s. For large scaling values, this is the

case if at least the tiles in the vertex configuration of the origin O (see Figure

4.4) are within the protein shell. We then choose smax as the maximal scaling

such that no atoms of the capsid are within tiles with vertex O. In practice,

however, the calculations for large values of s are fast and the scalings for

which the tiles are too big to match the viral structure are penalised by the

scores (especially by σ1).

To estimate a lower bound for s, we use the score σsd and the precision on

the experimental data.

Definition 4.1.4. We call ∆σsd, which is defined in terms of experimental

precision ε, as:

∆σsd = ε2|M| (4.5)

the error on σsd.

If σsd ≤ ∆σsd then the uncertainty on the experimental data does not allow

us to differentiate the value of σsd from 0. In the case where ∆σsd = σsd, each
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Figure 4.4: The maximal scaling smax is defined as the maximal scaling for

which the tiles of the vertex configuration of the origin O are empty. As an

example we show the surface representation of the Minute Mice virus (pdb-id:

1mvm) computed using PyMol software [65] with the edges of the tiles from

the BCC tiling sharing the vertex O and scaled to smax shown in black. For

s > smax no sets S could provide information on the capsid’s thickness.

vertex inM could be translated by ε onto the boundaries of the approximating

polygon B(s, ρ). Remembering that globally σsd decreases when s decreases.

We can therefore use ∆σsd to estimate the minimal value smin.

Because we can assume that high quality fits may have a very low σsd

(possibly lower than ∆σsd), we cannot choose smin as the highest value of s

for which σsd ≤ ∆σsd. In particular, we need to check that the condition

σsd ≤ ∆σsd is not due to a local decrease of σsd near a possible good fit. If

σsd(s, ρ) ≤ ∆σsd for any value ρ ≥ 0.5 and for s ∈ [s1, s2] and if [s1, s2] is wide

enough to exclude a local effect, we choose smin = s2. An example is shown

in Figure 4.5. To estimate the value of smin, σsd has been computed for s

varying by a fixed interval step ∆s of 0.1.
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Figure 4.5: Determination of smin for the matching of the BCC-tiling to the

viral capsid of the Minute Mice Virus (pdb-id: 1mvm [12]). The values of

σsd are represented (y-axis) as a function of the scaling s (x-axis) for con-

figurations S(s, ρ ≥ 0.5). The different configurations due to variations of ρ

are represented for each scaling and sets for which σsd ≤ ∆σsd are colored

in red. σsd displays local minima for scalings s=9.5, 10.3 and 11.4 which are

candidates for good fits. For s ≤ 9.0, all sets of tiles with lower σsd values

fulfill σsd ≤ ∆σsd. The measure of σsd is then limited by the uncertainty of

the experimental data. Therefore we choose smin = 9.0.

4.1.5 Renormalisation

Now that suitable boundaries for the occupancy ρ and the scalings s have been

defined, we can calculate the renormalisation factor r, i.e. σ = rσ1 + σ2, such

that σ1 and σ2 have comparable weights. We will call σ the total score. To do

this, after determining smin and smax (which are tiling-dependent), we select

every possible configuration S(smin ≤ s ≤ smax, ρ) such that conditions R1

and R2 of Section 4.1.2 are fulfilled.
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Definition 4.1.5. We define R(γ) given by:

R(γ) :=
∑
i

(γσ1,i − σ2,i)2 (4.6)

where the index i runs over all possible configurations S(smin ≤ s ≤ smax, ρ ≥

0.5) for any tiling. σ1,i and σ2,i correspond to σ1 and σ2 for the ith configura-

tion, respectively.

R(γ) can be thought as the sum of squared distances between γσ1,i and σ2,i

over all configurations i. To minimise the difference between the contributions

of γσ1 and σ2 to σ, when considering the whole sets of configurations i, we

minimise R(γ) with respect to γ.

Definition 4.1.6. Keeping the same notations as in Definition 4.1.5, we call

r such that R(r) is minimal, the renormalisation factor. Using ∂R
∂γ (r) = 0, we

obtain:

r :=

∑
i

σ1,iσ2,i∑
i

σ21,i
. (4.7)

R(r) is minimal as ∂2R
(∂γ)2

≥ 0.

Note that in the calculation of the renormalisation factor, the acceptable

configurations considered come from either of the SC, BCC and FCC tilings

such that there is a single factor r for each virus regardless of the tiling. This is

to ensure that the contribution of σ1 in the total score σ is the same regardless

of the tiling. Once the renormalisation factor is computed, σ is determined

for each acceptable (according to conditions R1 and R2 in Section 4.1.2) con-

figuration of each tiling.

4.1.6 Exhaustive Sampling of s

Up to now we have sampled the scaling with a fixed interval of ∆s = 0.1

to estimate, through the score σ, the approximation error of S as s varies.



CHAPTER 4. THE MATCHING ALGORITHM 105

However, ∆s = 0.1 may not be a fine enough sampling to determine all possible

sets S that can approximate the viral capsid. For large values of s, ∆s = 0.1 is

small enough for all possible sets S to be selected at least once, i.e. there is no

scaling s′ ∈ [s, s+ ∆s] such that S(s′, ρ′) 6= S(s, ρ) and S(s′ρ′) 6= S(s+ ∆s, ρ)

for at least a pair of occupancy values ρ and ρ′. However, this is not true

for lower values of s where the sizes of the tiles are small compared to the

capsid. To prevent this, the scaling interval needs to be sampled such that

any set S(s, ρ) that could obey conditions R1 and R2 for any value s within

the sampled interval is scored at least once.

To discretise the scaling interval, notice that a change in the sets of tiles

can only occur when an atom enters or exits a tile as s varies. All possible

changes of S can then be listed by computing the sets of tiles satisfying R1 and

R2 each time an atom “hits” a tile surface as s changes. Also note that the

same tile set may be selected for different scalings, i.e S(si, ρ) = S(sj , ρ) for

si 6= sj . In this situation the scores σ associated with the two configurations

S(si, ρ) and S(sj , ρ) may be different. Computing the scores for each of these

scalings is too time consuming so we choose to score the set with highest

covering. We define covering in Section 4.1.2 as the ratio of main chain atoms

whose distance to the tile set is less than the experimental precision).

Unfortunately the smaller the scaling, the smaller the size of tiles and the

quicker the changes in S arise as s varies. For this reason we cannot sample s

fine enough for the determination of smin as the computation increases rapidly

as s diminishes. Similarly the renormalisation factor r can only be estimated

(using a sampling interval of ∆s = 0.1) as an exhaustive sampling of the

scaling over the range [smin, smax] would be computationally too intensive.

We assume that ∆s = 0.1 is fine enough to provide us with a reasonable

sampling of the sets S. An exhaustive sampling of the variable s is then

performed over smaller intervals in the vicinity of minima of σ to guarantee

that no sets S which may correspond to good approximation of the capsid

surface have been omitted.
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4.1.7 Interpretations

In 2D polygonal approximation studies, two approximating polygons with the

same number of edges are compared. In our 3D case, we compare different

approximations if they have the same number of facets approximatingM (i.e.

|A|), and represent σ as a function of |A|. Since more than one configuration

may exist for a single value of |A|, we plot the one with lowest σ for clarity.

For example, see Figure 5.1, 5.4, 5.6 and 5.10.

In these plots, we distinguish between two regions of |A|:

1. For low values of |A| (i.e. when the sizes of the tiles in S are large)

σ varies between high and low values as the change of tiles in S corre-

sponds to large changes in the shape of the approximating polygon. In

some cases, tiles overlapping with the protein shell represent such a poor

approximation that condition R1 or R2 are not fulfilled, leaving values

of |A| to which no sets S can be attributed.

2. For large values of |A| the size of the tiles compared with that of the

capsid is small. In this case, conditions R1 and R2 are no longer too

restrictive and a score σ is associated to each value of |A|. As |A|

increases, and when sufficiently many facets are used in the fit, smaller

features of the capsid (such as protrusions) can be approximated. When

these features can be fitted, σ decreases to a local minimum or a plateau.

Care must be taken when interpreting results for high |A|-values. Indeed,

given sufficiently many facets, the algorithm attempts to minimise the score by

fitting smaller features including those related to the tertiary structures of the

proteins. For this reason, coupled with the restricted resolution of the input

data and the fact that some features may be subject to thermal fluctuation,

the reliability of the results is reduced for high |A|-values. We therefore only

consider |A|-values which result in a steep minima of σ as these indicate a

region of interest despite these factors.
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To find good quality fits, we refer to the two main problems addressed in

polygonal approximation studies:

P1 Which configuration is the best fit given a fixed number of facets (referred

to as the min-ε problem in [38])?

P2 What is the minimal number of facets needed to have a good match (re-

ferred to as the min-# problem in [38])?

Note that the case P1 is already dealt with since we consider only sets with

minimal σ for a fixed |A|-value. To address P2, we would need to arbitrarily

choose a maximum tolerance for σ. However, σ depends on the number of

vertices in M, making it difficult to define a maximum tolerance.

Ideally, we would prefer a configuration whose corresponding σ and |A|-

values are both low. Because we cannot define the maximum tolerance for σ,

we analyse minima of σ with increasing values of |A|. If the approximation

matches the main surface features, we consider no finer fits. In the case of

high values for |A| corresponding to a minimum of σ, more than one set S

may represent a good match to the capsid shell. As the difference between

these configurations is difficult to judge, we will refer to them as a class of

approximations.

As by definition the renormalisation factor r is independent of the type of

tiling (i.e. σ1 is equally weighted in the three cases), we represent the results

corresponding to the three different tilings on the same plot for comparison.

See Figures 5.1, 5.4, 5.6 and 5.10 for examples. A tiling is preferred over an-

other if its approximation of the capsid surface has lower σ for equal or lower

|A|.

To clarify these concepts, we explain the results obtained for a selection of

T = 1 and T = 3 viral capsids in the following chapter.



Chapter 5

Application to viruses

structure

In this chapter, we apply the matching algorithm described in the previous

chapter to a range of T = 1 and T = 3 viral capsids. The present approach

will be compared with the icosahedrally invariant point array approach [37]

described in the introductory chapter. For all plots, we keep the same color

code to distinguish between sets from different tilings and choose to represent

scores corresponding to SC, BCC and FCC tilings as blue, red and green dots,

respectively, on the figures. An exhaustive search of tile sets S corresponding

to local minima of σ has been carried out and the results are included in the

plots. When representing the fits, edges of the tiles are pictured as black lines

and, for T = 3 viruses, the different chain types are represented in different

colors.

5.1 Pariacoto Virus (PaV)

The PaV is a T = 3 virus that infects insects. The 180 coat proteins cluster

into 60 trimers with protrusions, which are about 15 Å high along the quasi-

three-fold axis [76]. These protrusions, see Figure 5.1 (a), are believed to be

involved in host-cell recognition and are therefore important features which

108
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need to be included into our approximation. The tile matching algorithm was

run on the pdb-file (pdb-id: 1f8v) from [12]. Because the matching of tile is

performed only on the viral capsid, information on the genetic material avail-

able in the pdb-file has been removed prior analysis. Results are plotted in

Figure 5.1 (b).

(a) (b)

Figure 5.1: The tile matching algorithm is applied to the PaV’s capsid shown

in (a) with proteins labelled as “A”, “B” and “C” chains in pdb-file colored in

blue, red and green, respectively. The output of the algorithm for each of the

three tilings is shown in (b) and a renormalisation factor r1f8v of about 0.369

between the two scores σ1 and σ2 as explained in the Chapter 4 Definition

4.1.6.

First note that the BCC tiling provides a better match for equal or lower

values of |A| up to |A| = 74. The first local minimum of the BCC tiling is

located at |A| = 16, but the corresponding approximation by the tiles is too

coarse, i.e. the outer and inner capsid surfaces are not well represented by the

tile set. To match the protrusions, whose size is small when compared to the

size of the virus (with an outer radius ∼ 175 Å), a finer fit is needed. The

second minimum of σ in the BCC case belongs to the interval |A| ∈ [40, 52].

Matches corresponding to |A| ∈ [41, 52], with exception of |A| = 40 or 44

(which do not fit the protrusions), are visually very similar and because the

difference between these configurations is difficult to appreciate, we refer to
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them as a class of approximations. We choose to represent |A| = 41 in Figure

5.2 since it is the simplest representation of this class of BCC matches. For

(a) (b)

Figure 5.2: Best match for the Pariacoto virus with a front view along the

two-fold axis (a) and a slice of 50 Å along the same axis (b).

this viral capsid we consider no finer fits as much higher values of |A| are

required for FCC or BCC tilings to display lower σ values.

We can compare our approach with the point array approach developed

in [37] by analysing their respective results when fitting PaV’s viral capsid.

For clarity, we will call P the point array obtained in [37] that best matches

PaV and SPaV the tile subset corresponding to |A| = 41 obtained by fitting

tiles to PaV. Recall from Chapter 1 that a library of 569 point arrays has

been created using affine extension of the icosahedral group. After rescaling

of these vertex sets such that the outermost vertices match the protrusions

of PaV, an RMSD-based score measuring the distance between vertices and

the surface capsid has been used to rank these point arrays according to the

approximation error (which is scored according to its proximity to atomic

position in the viral capsid, see [37] for more details). First P and the tile

subset SPaV are both subsets of a BCC-tiling. Once scaled to the PaV capsid,

P can be embedded into the gauge BCC tiling (defined in Chapter 4 as the

BCC tiling with scaling factor s = 1) rescaled by a factor s = 15.51 whereas

the scaling factor obtained by fitting SPaV is s = 16.05. This small difference
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(a) (b)

Figure 5.3: We compare the point array P obtained in [37] with our selected

tile set SPaV using two cross-sectional views: (a) a 50Å thick slice along a

two-fold axis is shown and (b) a 100Å thick slice along a five-fold axis. For

clarity vertices of P are displayed with a 4Å radius and are rescaled to match

the vertices of the tile set SPaV . We colored in red, vertices contributing to

a poorer match. All vertices in P matching the capsid features (in magenta)

are included within the tile set selected by our algorithm. Whereas vertices

which contribute to a lower approximation error (in red) and those (in blue)

providing geometrical constraints on the genomic material (not shown), are

not included within SPaV .

in the scalings of the BCC tilings corresponding to P and SPaV can easily

be associated with the difference in the matching algorithms, i.e. minimising

the capsid to vertices distance (in the point array approach) as opposed to

minimising the capsid to tile subset distance (in the current study). As can be

shown in Figure 5.3 the two approaches converge toward similar embedding

of the PaV’s capsid.

5.2 Carnation Mottle Virus (CarV)

Carnation Mottle virus is a T = 3 virus responsible for mild mottling and

chlorosis (i.e. whitening of green plant tissues due to choropyllic deficiency) in
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carnation crops. The pdb file (pdb-id: 1opo) which displays protrusions near

the two-fold axes, see Figure 5.4 (a), was matched against the three types of

tilings and the results are shown in Figure 5.4(b).

(a) (b)

Figure 5.4: The tile matching algorithm is applied to the CarV capsid shown

in (a) using the same color coding as in Figure 5.1(a). The output for each of

the three tilings is shown in (b) with a renormalisation factor r1opo of about

0.362.

As in the case of Pariacoto virus, the BCC-tiling offers better fits than the

SC or FCC-tilings for equal or lower values of A. Also, the first minimum at

|A| = 59 provides only a poor description of the inner capsid surface and of

the protrusion contour. We therefore require a finer approximation to better

match the capsid contour. A steep decrease in σ for |A| ∈ [73, 80] suggests that

smaller features of the viral capsid are matched. After this σ decreases almost

linearly over |A| ∈ [80, 114]. A closer analysis reveals that for |A| ∈ [80, 101]

the set of approximating tiles is indeed very similar and the difference between

them is mostly due to fine-tuning of the variables s and ρ. From |A| = 102 to

114 fits of the protrusions are less good, and we suspect that the lower score is

solely due to the high number of facets scoring the protein tertiary structures.

Since |A| = 80 corresponds to the configuration for which the decrease of σ

is the most significant, we choose this as the simplest representation of the

essential features of the viral capsid (see Figure 5.5).
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(a) (b)

Figure 5.5: Best match for the Carnation virus with a front view along the

five-fold axis (a) and a 30Å thick slice along the same axis (b).

5.3 Cowpea Chlorotic Mottle Virus (CCMV)

This T = 3 virus can undergo a reversible pH-dependent conformational

change. For pH > 6.5 the expansion (or “swelling”) of the viral capsid is

accompagnied by the formation of openings at the pseudo three-fold axis and

allows molecular exchange between the capsid cavity and the external medium.

When the pH is reduced below 6.5, these openings close and no further ex-

change has been observed. Using this property, crystals of paratungstate ions

have succesfully been packaged in CCMV capsids [19]. Subsequent modifica-

tion of the outer surface proteins could provide specific biological targeting

and make the CCMV capsid a good vector for drug targeting and delivery.

As in CarV and PaV, the BCC-tiling presents lower scores than FCC and

SC tilings as shown in Figure 5.6(b). Note that no fits have been scored

for |A| ∈ [45, 53] and that the total score σ fluctuates greatly for |A| < 45,

indicating that the size of tiles is large compared to the size of the capsid.

However, the bulky structure of the CCMV capsid, see Figure 5.6 (a), is well

approximated by fits corresponding to |A| = 35, 37. These two configurations

differ very slightly in both variables s and ρ and the exchange of a single tile

relates the two sets of tiles. The configuration for |A| = 37 is represented in
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(a) (b)

Figure 5.6: The matching algorithm is applied to the CCMV capsid shown

in (a) using the same color coding as in Figure 5.1(a). The output for each of

the three tilings is shown in (b) with a renormalisation factor r1cwp of about

0.392.

Figure 5.7. As the thickness of the capsid shell, as well as the structure of

(a) (b)

Figure 5.7: Best match for CCMV capsid with a front view along a five-fold

axis (a) and a slice of 60Å along the same axis (b).

hexamers and pentamers, are well approximated within the BCC tile set no

finer configuration is considered.
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5.4 Physalis Mottle virus (PhyMV)

PhyMV is another T=3 plant infecting virus. The pdb-file (pdb-id: 1e57) used

in the tile matching alogrithm was created from X-ray crystallography with

capsids already devoid of genomic material [70]. The tile matching algorithm

output is plotted in Figure 5.8(b).

(a) (b)

Figure 5.8: Application of the tile matching algorithm to the PhyMV capsid

shown in (a) in a frontal view along the two-fold axis. The output of the

algorithm for each of the three tilings is shown in (b) with a renormalisation

factor r1e57 of about 0.415.

For this capsid shell the BCC tiling provides better fits for coarser approxi-

mations. For |A| < 50, configurations provide poor matchings of the hexamers

outer surface, and we therefore look for finer approximations. |A| ∈ [50, 66]

correspond to fits which share a common subset of tiles fitting the bulk of the

hexamers. The main differences between these fits correspond to two different

fittings of the pentamer’s outer surface. Our procedure cannot distinghuish

between these two approximations of the outer surfaces. This may be due to

the fact that the spikes on top of the pentamer’s surface could be subject to

fluctuations. Note that no information was available from the pdb-file, i.e.

the temperature factor available in the pdb-file has been set to a constant

value of 15.00. However, as |A| increases, i.e. as the approximation is made

finer, one of the two approximations appears consistently. We therefore dis-
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play the simplest representation (corresponding to |A| = 53) of this class of

approximations in Figure 5.9.

(a) (b)

Figure 5.9: Best match for PhyMV with a front view along a three-fold axis

(a) and a 65Å thick slice along the same axis (b).

5.5 Minute Mice Virus (MVM)

This T = 1 virus replicates in cells which are undergoing division and is

responsible for behaviour modifications of biological systems where cell mul-

tiplication is important, such as in cancer research studies. The pdb-file from

[12] (pdb-id:1mvm) includes information on the RNA of the virus with chain

identifiers “R” and “S”, that is removed prior to analysis.

As can be seen from the results in Figure 5.10(b), the minimal score σ

corresponds to configurations from BCC tilings (at |A| = 14) then SC tilings

(at |A| = 26) and finally for FCC tilings (for |A| ∈ [30, 38]). Over |A| ∈

[30, 38], the prefered subset of FCC tiling oscillates in turn between two classes

of approximations. As such |A| = 33, 35 and 37 correspond to one class and

|A| = 30, 32, 34, 36, 38 (no configurations with |A| = 31 have been found) to

another. Since each representative of the first class has higher values of σ

over the same interval |A|, we only consider the second. As an example we

show, in Figure 5.11, a representative of tile sets corresponding to each of the
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(a) (b)

Figure 5.10: Application of the matching algorithm to the MVM capsid. This

T = 1 capsid is shown in (a) with one protein subunit represented in blue.

The output of the algorithm for each of the three tilings is shown in (b) with

a renormalisation factor r1mvm of about 0.324.

SC, BCC and FCC minima. From Figure 5.11, it is clear that the FCC tiling

represents a better approximation to the viral shell. This is also reflected in

the scores. Since the difference between the configurations of the FCC class

for |A| = 30, 32, 34, 36 and 38 mainly consists of a fine-tuning of the scaling

of the tiles and that the size of these tiles is large compared to the capsid,

we are confident that the decrease of σ is not dominated by the fit of the

capsids tertiary features. Therefore we chose to represent the configuration

with lowest score, i.e. |A| = 36 in Figure 5.12. As the contours of the inner

and outer surfaces of the viral capsid are well approximated by the FCC tile

set (including the β-barrel involved in host-cell recognition [48]), there is no

need to consider finer configurations.
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(a) (b)

(c)

Figure 5.11: Comparison of the configurations corresponding to the first

minima of σ for the three tilings when matching the MVM capsid using cross-

sectional views along the five-fold axis. For the SC tiling (50Å cross-sectional

view shown in (a)), the minimum is located at |A| = 26 with σ ∼ 35697,

BCC has a minimum at |A| = 14 with σ ∼ 56391 (70Å cross-sectional view

shown in (b)), and FCC has a minimum at |A| = 36 with σ ∼ 26275 (40Å

cross-sectional view shown in (c)). Despite corresponding to minima of the

approximation error σ, the tile sets obtained by matching the SC or the BCC

tilings do not offer good approximations of the inner and outer surfaces of the

MVM capsid whereas the FCC tiling provides a better approximation of the

capsid layout.



CHAPTER 5. APPLICATION TO VIRUSES STRUCTURE 119

(a) (b)

Figure 5.12: Best match for the Minute Mice virus with a front view along

the two-fold axis (a) and a slice of 45Å along the same axis (b).
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5.6 Bacteriophage α3

Fitting of the T = 1 Bacteriophage α3 capsid to icosahedral tilings was per-

formed using the pdb-file with pdb-id:1m06 created from X-ray crystallogra-

phy in [8]. The structure is mostly spherical save the G-proteins positioned at

each of the five-fold axes as shown in Figure 5.13(a).

(a) (b)

Figure 5.13: The T = 1 bacteriophage α3 capsid is shown along a two-fold

axis in (a). The output of the algorithm for each of the three tilings is shown

in (b) with a renormalisation factor r1m06 of about 0.360.

The fit of Bacteriophage α3 is more subtle. The configurations within the

first minima, i.e. |A| ∈ [48, 53] correspond to very similar approximations (i.e.

each tile set contains about 29 tiles and change by only one or two tiles as |A|

varies) enclosing forms for the viral capsid and therefore constitute a single

class of approximations. The configuration corresponding to |A| = 53 is shown

in Figure 5.14(a) and (b). For |A| = 53, the protrusions (labelled as G chains

in the pdb-file) are not very well approximated and we can assume that the

minisation of σ is due to a rather good approximation of the capsid core (i.e.

no G chains). A finer fit to the G-proteins may be found with higher values

of |A|, but then the fit of the capsid’s core is less good. A good compromise

has been found for |A| = 62 (see Figure 5.14(c) and (d)). However the σ score

associated with configuration |A| = 62 is higher than the one with |A| = 53

despite fits on G-proteins being finer and having similar tiles fitting the capsid’s
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core. The tile sets corresponding to |A| = 53 and |A| = 62 are both shown in

Figure 5.14 for comparison. The difference in scores can be explained by the

different scalings of the two tile sets corresponding to |A| = 53 and |A| = 62,

respectively s ∼ 14.09 and s′ ∼ 13.32. For |A| = 53, σ is minimised due to

a better fit of the capsid core. As the scaling decreases towards configuration

|A| = 62, the σ1 component (i.e. the measure of the capsid-to-tiles mean

distance) of σ increases. In this case a better fitting of the protrusions does

not compensate for a poorer fit of the overall capsid.
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(a) (b)

(c) (d)

Figure 5.14: Comparison of tile sets matching the Bacteriophage α3 capsid

corresponding to |A| = 53 (first row) and |A| = 62 (second row) along a five-

fold axis. A 50Å thick cross-sectional view along the same axis in (b) and (d)

demonstrates that a subset of tiles common to the two configurations are used

to fit the capsid core despite displaying different outer surfaces approximating

the G-chains (shown in green in the front views along five-fold axes (a) and

(c)).
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5.7 Discussion

The work presented here extends previous mathematical models for the de-

termination of viral structures. Starting with the prediction and classification

of the possible two dimensional layouts for protein capsids [13], it was shown

in [37] that the use of icosahedrally invariant point arrays created from affine

extensions of the icosahedral symmetry group provides geometrical contraints

for virus structure at different radial levels. In this study we have extended

this approach further, and have constructed tilings of which these point arrays

are part, to better understand the role of symmetry in virus structure.

Because these icosahedral tilings fill the 3D space and provide more geo-

metrical restrictions (such as the edges and faces of the tiles), a new algorithm

as been devised here to match them to protein shells. Since the orientations

of the tilings and the capsids are fixed by the axes of the icosahedral group,

the set of tiles approximating the capsid shell is determined by two unknowns:

the scaling s of the tiling and the minimal occupancy ρ for each tile in the set.

Upper and lower bounds for these two variables have been defined, taking ex-

perimental precision into account, and the sampling of these have been carried

out such that all sets of tiles which may provide a suitable fit are considered.

A scoring system, derived from polygonal approximation studies, has been

implemented to locate good fits. Although the optimal solution can be found in

2D polygonal approximation it is computationally intensive and near-optimal

algorithms are being developed instead to reduce computations. Here the 3-

dimensional character of the problem adds further complexity and the search

of an optimal is beyond the scope of our IT resources. Another problem,

inherited from polygonal approximation studies, is the definition of a “low

enough” approximation error, i.e.: “How fine an approximation needs to be

to represent the main capsid features?”. Unfortunately this question remains

unanswered as structural features involved in host-cell recognition may require,

due to their size, a very fine approximation. Finally capsids are dynamical

systems with structural features more or less subject to thermal fluctuations.
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Depending on the experimental measurement, these fluctuations may not be

readily accessible in pdb-files.

Despite these difficulties we have shown that conditions on the tile set se-

lection and minimisation of the approximation error σ suggested the intervals

of |A| which may provide good matches using a selection of T = 1 and 3

capsids as tutorial examples. Moreover we have shown that our approach and

the one developed in [37] converge towards similar results, using PaV’s capsid

as an example the two matching algorithms embed the viral capsid into BCC

tilings of size very alike.

The objection has been raised that, given sufficient resolution on the ex-

perimental data (allowing a small value of smin), all features of the capsid

could be matched well enough with sufficiently small tiles. We therefore need

to clarify under which circumstances embedding viral capsids into tilings is

relevant. As can be seen for viruses with sufficiently high experimental resolu-

tion (for which a smaller value smin is allowed), high values of |A| correspond

to a plateau (or a shallow slope) of σ. This is particularly noticeable, for

example, on Figure 5.1(b). Under these conditions the error approximation σ

is practically the same independently of the |A|-values and it is clear that the

approximation of the viral capsid is too fine, i.e. any tile set is as good as any

other. However note that in all cases studied explained above, the preferred

fit always corresponds to a coarser approximation (lower values of |A|) and

in most cases corresponds to local minima of σ such that the plateau of σ is

not reached. In the case of PhMV no match, corresponding to local minima

of σ, provided a reasonable approximation of the pentamers and hexamers.

The preferred match (corresponding to |A| = 53) was therefore chosen as the

coarser approximation fitting sufficiently well the capsid before the plateau of

σ (observed for |A| approaching 60 and higher).



Conclusions

As the structure of more and more viral capsids are determined experimentally,

it has become clear that symmetry plays a major role in capsid structure. The

aim of this work is to develop mathematical methods to describe the full 3D

structure of these protein shells and show that their structural features (such

as capsid size and thickness, and the location of protrusions etc) are in fact

related to each other.

Janner was the first to use 3D lattices to study the crystal structures of

viruses. Although the essential features of these crystals (packing and symme-

try) could be modeled, the icosahedral nature of viral capsids requires the use

of non-crystallographic symmetry to understand the geometrical constraints

imposed on the shell structure. As opposed to Caspar-Klug theory, the cre-

ation of icosahedrally invariant point arrays via affine extension of the under-

lying symmetry group and their mapping to viral capsids in [37] has shown

that the geometrical constraints not only correlate positioning of proteins in

the capsid, but also relate structural features at different radial levels including

genome organisation.

In this study we have extended the point array approach using quasi-

lattice theory to demonstrate that quasilattices provide additional structure

constraints on virus architecture. We have used this to derive the most likely

transition paths taken by the protein shell during the structural transforma-

tion. Our model does not involve any chemical or physical interactions between

the atoms of the capsid, but it is not suggested that these are not important

for understanding the shell’s structure. However, we show that these inter-

125
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actions are under strong geometric constraints restricting the possible ways

these can affect the capsid structure.

In Chapter 3 we have used the point arrays as descriptors of virus structure

to represent pre- and post-transitional state of viral capsids. We have lifted

these non-crystallographic 3D constraints in 6D icosahedral lattices, and have

used crystallographic techniques to compute the transitions with minimal sym-

metry loss between these 6D lattices. Via projection into 3D we have then

induced transitions between the corresponding quasilattices. By inference this

method allows us to determine the maximal symmetry that can be conserved

by the intermediate configurations. For example, application of this method

to CCMV suggests that the structure of the capsid has at most D3 symmetry

throughout the transition. Note that the symmetry analysis used here cannot

predict the exact transition path, as this would require a complete analysis of

the energy landscape. Instead, using symmetry considerations it is possible

to consider only the most favourable subspaces and derive statements on the

most likely symmetry properties of the intermediate states.

Each point array from [35] is in fact a subset of the vertex set of one of

three quasilattices. We have constructed these quasilattices by projecting from

higher dimensional lattices. These provide in addition the elements, such as

the complete vertex set, edges and tile surfaces, that the point array descrip-

tors lack. To investigate further the geometrical constraints on viral capsids

imposed by these new elements, an algorithm has been developed in Chap-

ter 4 to match the viral capsid to patches of quasilattices. The algorithm

depends on two parameters that capture the relative size of the tiling to the

viral capsid, and the minimal occupancy of tiles by atomic positions in the

capsid proteins, respectively. An exhaustive search of the parameter space

has been performed and a scoring system (based on polygonal approximation

studies) used to measure the approximation error of the capsid surface by the
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tile sets.

In Chapter 5, we have applied this algorithm to the quaternary structures

of a range of test viruses. Scoring each of the possible tile sets necessitates

intensive computation and the quality of the fitting is more easily observable

for viral capsids whose structural features (such as protrusions) have a size

comparable to the capsid itself. Bigger T -number capsids already involve more

computation due to their size and often display relatively smaller protrusions

requiring finer approximations. For both these reasons we have restricted

our study cases to T = 1 and T = 3 viruses, although the same algorithm

is in principle also applicable to viruses with higher T numbers. Note that,

we have neglected changes in structure due to thermal fluctuation, but such

information is not always readily available in pdb-files (via b-factor). However,

we expect that experimental precision, which is included in our model, would

be poorer for highly mobile features, which should be borne in mind when

interpreting the results. Despite this our results provide valuable new insights

into structural constraints on virus architecture can serve as a coarse-grained

approximations of virus architecture.

Outcome of the model

Our technique permits a finer classification of viral capsids than that provided

by Caspar-Klug theory (i.e. in terms of T -numbers) as the tile matching

algorithm may associate different tile sets to two viruses with same the T -

number. Our model also provides finer icosahedrally invariant enclosing forms

than those used by Janner. Indeed, only two triacontrahedra (one scaled to

the inner capsid surface and a τ -rescaled one for the outer surface) are used in

[32] as enclosing forms for the T = 3 Pariacoto and Cowpea Chlorotic Mottle

viruses. We have shown in Chapter 5 that two different tile sets match these

two viruses better, hence distinguishing between them.

In our approach, for two viruses to be mapped to the same tile set would
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require that, they have similar outer and inner capsid surfaces modulo some

scaling factor, that is: the position of protrusions should be the same with

regards to the icosahedral symmetry axes; the sizes of the protrusions relative

to the size of the capsid should be the same; they should have comparable

thickness to capsid size ratio. The tile matching algorithm applied to Car-

nation and Pariacoto viruses in Chapter 5 shows how the two T = 3 viruses

(with similar capsid and protrusion sizes but with different locations of these

protrusions) are matched to different tiles sets. On the contrary, some viral

capsids cannot be differentiated using the tile matching algorithm. An exam-

ple of this are Canine Parvovirus (pdb-id: 1c8h) and the Minute Mice Virus

(pdb-id: 1mvm), see Figure 5.10(a). Both are small animal viruses infecting

different hosts, that exhibit strickingly similar structural features despite their

capsid proteins sharing only 52% amino acids [48].

A parallel can be drawn with the study in [86], which shows using a coarse-

grain model that the occurence of quasi-equivalence in viral capsids is a conse-

quence of overall energy minimisation. By analogy, quasilattice-based models

can also be viewed as resulting from energy minimisation [43, 71]. The fact

that viral capsids can be embedded into icosahedral tilings suggests that not

only the quasi-equivalent positions of proteins, but also the whole 3D structure

of viral capsids should be a consequence of energy minimisation, albeit in the

context of a more complex energy landscape.

Being able to categorise protein shells using tile matching has implications

for phylogeny. Indeed, criteria such as the genome type (eg. single- or double-

stranded RNA or DNA) are only one option to classify viruses, and capsid

structure may be an alternative. Indeed, it has been observed that despite

infecting different hosts, viral capsids could display very similar morphologies.

Phylogenetic trees of viruses have then been constructed using capsid similar-

ities as indicators [5, 6, 23]. However the present study suggests that these

unexpected similarities between capsids may be due to a convergent evolution.

That is, two viral capsids of non-related viruses may still evolve towards sim-
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ilar capsid designs due to the fact that they are subject to similar geometric

constraints. Our study therefore provides a new view also on the constraints

impacting on viral evolution.
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