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Abstract 

 

 

 

 Scrutiny over solvent selection in the chemical industry has risen in recent decades, 

popularising research into neoteric solvent systems such as ionic liquids and supercritical fluids. 

More recently bio-based solvent products have been considered as replacements for 

conventional petroleum derived solvents. Because they bear a close resemblance to existing 

solvent products, bio-based solvents can be readily absorbed into the fine chemical industries. 

This work develops a methodology for identifying reactions of concern with respect to current 

solvent selection practice, and then implementing a high performance bio-based solvent 

substitute. 

 In this thesis, kinetic studies of heteroatom alkylation, amidation, and esterification are 

documented, and the solvent effect dictating the rate of each reaction ascertained. With the 

ideal properties for the solvent known, bio-based solvent candidates were screened for suitability 

in each case study. This process, which employs computational tools, was also applied to model 

the productivity of the Biginelli reaction as a representative multi-component heterocycle 

synthesis. A strong case is made for limonene and p-cymene as bio-based solvents for all but 

heteroatom alkylation from the case studies listed above. Alkylations with nitrogen nucleophiles 

are instead suited to high polarity solvents, and to this end some bio-based amides were 

investigated. 
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1. Introduction: A critical analysis of green and 

renewable solvents 

 

 

 

Solvents are ubiquitous throughout synthetic chemistry and are also prevalent in professional 

and general consumer articles. The versatility of active ingredients when in solution is 

indispensible to our modern world. Still, the definition of solvent is fraught with complications. It 

is best to be lenient in order to avoid dismissing certain neoteric systems such as supercritical 

fluids [Oakes 2001]. Solvents can be defined by the roles which they serve, as in European 

legislation [EC 1999]. Alternatively, as in this work, a solvent can be regarded simply as a 

substance, or mixture of substances that has another substance dissolved in it, or it is the 

intention to dissolve another substance in it. The purpose of dissolving chemicals in an excess of 

fluid is usually to achieve homogeneity. A paint product for example must carry pigments, an 

adhesive, and biocides amongst other additives, which is achieved with a solvent. The solvent 

also modifies the viscosity of the product, imparting properties of its own onto the formulation. 

After application of the paint the solvent is no longer required, and allowed to evaporate. The 

same stages are present in synthetic chemistry. A solvent is introduced into a mixture, performs a 

given task during the reaction, and is then removed. Although the role of a solvent for synthesis 

is largely dissolution of the reaction components, it also includes thermal regulation and ease of 

material transfer [Adams 2004 page 3, Kerton 2009 page 1].  

The renewed interest in solvents and solvent effects in organic chemistry is explored here 

at the beginning of this work, a phenomenon that is driven by the widespread desire to replace 

non-renewable chemicals with bio-based alternatives. This stance also provides an excellent 

opportunity to design safer solvents of lower toxicity and minimal environmental impact. 

Importantly, measurements of solvent performance, and the properties that define it, are also 

described. Protocols with which the performance of bio-based solvents can be established are 

presented throughout this chapter. The demand for green solvents and bio-based chemicals will 

only increase, and enhancing reaction performance with benign yet renewable solvents can only 

benefit people and the environment. 
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1.1 Modern solvent use 

 

Solvents and green chemistry: The impact of large scale manufacturing practices on the 

environment has been recognised for many decades [Cue 2012 page 553, Lancaster 2002 page 

24, Matlack 2001 page 1]. Numerous laws have been established in order to minimise pollution 

and maximise safety [Anastas 2002]. But only recently in the history of industrial chemistry is it 

more common to scrutinise the actual process in a pro-active manner rather than implement so-

called ‘end of pipe’ solutions [Anastas 2010]. This is the central tenet of green chemistry, 

encompassing waste and energy efficiency as well as sustainability, toxicity, and health and 

safety [Clark 2005 page 3, Sheldon 2005]. The gradual act of discouraging the use of certain 

solvents and promoting others is now becoming common. Legislation, industry documents, and 

non-governmental organisation (NGO) reports have all published banned or restricted chemical 

lists which inevitably feature solvents [EC 2007, Kerton 2009 page 2, SubsPort 2013].  

 The use of solvents, especially in organic synthesis, is one of the largest areas of research 

conducted within the field of green chemistry. A lot of this research begins with the identification 

of an unusual solvent, often an ionic liquid, for which an application is developed as a means of 

demonstrating the prowess of that solvent. In this work, the opposite is true. Potential case 

studies will be scrutinised and those reactions that are of vital importance, whilst also commonly 

practiced and currently employing a less than desirable solvent will be considered for study. 

Legislative drivers and growing consumer pressure for safer and renewable chemical products 

means that novel bio-based solvents must be keenly considered in any case study considering 

solvent substitution. The pharmaceutical industry provides many of this type of case study 

[Constable 2007a, Dunn 2012, Jiménez-González 2012]. Highly dependent on solvents, the 

production of pharmaceuticals could benefit immensely from the identification of suitable bio-

based solvents. 

Solvent use in the pharmaceutical industry: The fine chemical industries rely on solvents, but 

none more than the pharmaceutical industry [Sheldon 2000]. The volume in which they use 

solvents dwarfs the amount of other chemical inputs. At manufacturing scale organic solvents are 

more than half the mass of material required to produce an active pharmaceutical ingredient 

(API) according to data from GlaxoSmithKline (GSK), rising to over 80% if including water (Figure 

1.1) [Henderson 2011]. Accordingly much activity on solvent reduction and solvent replacement 

is occurring within the pharmaceutical industry, as it has been for a number of years now. Waste 

reduction and health and safety are important, as is the renewability of the solvents. 
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Figure 1.1 Materials (by mass) required for the manufacture of a typical pharmaceutical product. 

 

The pharmaceutical industry utilises a wide range of transformations, adopting a distinct 

preference for particular solvents in each reaction. By identifying the most valuable, most 

practiced transformations, solvent replacement in favour of sustainable alternatives can be 

targeted to achieve the most benefit to the pharmaceutical industry and the environment. 

Recently pharmaceutical process development at AstraZeneca, GSK, and Pfizer collated the data 

from over 1000 reactions to provide an insight into the frequency at which they perform 

different classes of reaction (Table 1.1) [Carey 2006]. At this scale volumes of solvent become 

very significant. It should be noted that protection and deprotection reactions recorded in the 

original publication have been removed from the list provided in Table 1.1 as efforts should be 

made to avoid this practice rather than simply minimise its impact. Alkylation (nitrogen and 

oxygen nucleophiles) and amidation are clearly very important, followed by the synthesis of 

heterocycles and cross-coupling reactions. The most prevalent functional group interconversion 

is the synthesis of organohalides from alcohols. Other reactions are less practiced (2% of total 

chemistry or less each) and because of this should receive less attention when case studies are 

selected for the purpose of identifying alternative renewable solvents. 

More reaction surveys have emerged in the last couple of years. GSK report that the top 

three reaction classes most practiced in their respiratory disease division of medicinal chemistry 

are alkylation, acylation, and palladium C-C cross coupling, each contributing to 17% of a total of 

4800 reactions surveyed in 2005 [MacDonald 2010]. Heterocycle synthesis stands at 5% of the 

total reaction count. Solvent use is less per reaction in this department compared to process 

development because of the small scale of the work being conducted, but cumulatively it is still 

of great significance [Alfonsi 2008]. Another cross-company survey reports similar data from 

2008, although this data set was gathered from literature sources and not in-house reports 

[Roughley 2011]. Regardless the picture is similar, with heteroatom alkylation (23%) and                   

Solvents

Reactants

Water

Other
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Table 1.1 Multi-company process development chemistry reaction frequency for transformations 

contributing to at least 1% of total chemistry. 

Rank Transformation Frequency 

01 N-Substitution 10.8 % 

02 N-Acylation to amide 7.9 % 

03 O-Substitution 5.3 % 

04 Heterocycle synthesis 3.4 % 

05 Cross-coupling 2.4 % 

06 Alcohol to halide 2.2 % 

07 Nitrate to amine 2.0 % 

08 Halogenation 1.6 % 

=09 Claisen condensation 1.5 % 

=09 S-Substitution 1.5 % 

11 Amide to imidoyl chloride 1.4 % 

=12 Imine/nitrile to amine 1.3 % 

=12 Organometallic C-C bond formation 1.3 % 

=12 Acid to acid chloride 1.3 % 

=15 Alkene to alkane 1.1 % 

=15 Friedel-Crafts alkylation/acylation 1.1 % 

=15 N-Sulphonation to sulphonamide 1.1 % 

=15 Nitration  1.1 % 

=19 Dehydration 1.0 % 

=19 Oxidation of sulphur 1.0 % 

 

acylation (22%) dominating synthetic procedures. Unsurprisingly cross coupling and heterocycle 

synthesis feature prominently too, repeating the now familiar reaction hierarchy. 

Data for manufacturing processes at Pfizer sees a fair correlation with the frequency of 

reactions performed on smaller scales (Table 1.2) [Dugger 2005]. Protection and deprotection 

reactions were not treated separately in this dataset and so they could not be removed as 

before. Amidation now tops nucleophilic substitution in terms of frequency, and with a quarter of 

drug molecules containing an amide bond it is no wonder that this is the case [Ghose 1999]. 

Esterification and the reverse hydrolysis reaction are prominent at manufacturing scale, probably 

mostly consisting of protection strategies given its absence in Table 1.1.  

Grouping the transformations reviewed thus far by reaction class helps the comparison 

between process development and API manufacture. With the following classes the dominance 
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Table 1.2 Data for manufacturing scale transformations at one Pfizer site for transformations 

contributing to at least 1% of total chemistry (1997-2002). 

Rank Transformation Frequency Rank in Table 1.1 

01 N-Acylation to amide 10.0 % 02 

02 O-Acylation to ester/ester hydrolysis 4.5 % n/a 

03 Heterocycle synthesis 3.2 % 04 

04 N-Substitution 3.1 % 01 

05 Reductive amination 3.0 % n/a 

06 Reduction to amine 2.6 % 12 

07 SNAr (N-arylation) 2.2 % n/a 

08 O-Substitution 2.1 % 03 

09 Cross-coupling 2.0 % 05 

10 Aldol condensation 1.9 % n/a 

=11 Claisen condensation 1.7 % 09 

=11 Enolate alkylation 1.7 % n/a 

13 Hydride reduction 1.6 % n/a 

=14 Lithium carbanion addition 1.4 % 12 

=14 SNAr (Ullmann and variants) 1.4 % n/a 

=14 Acid derivative reduction to amine 1.4 % n/a 

17 Imine/oxime/hydrazone formation 1.2 % n/a 

=18 Grignard addition 1.1 % 12 

=18 Michael addition 1.1 % n/a 

=18 Friedel-Crafts acylation 1.1 % 15 

 

of acylation and alkylation chemistries becomes very clear, from drug design to multi-kilogram 

global production: A, Acylation; B, heteroatom alkylation; C, oxidation; D, reduction; E, C-C bond 

formation; F, C-C bond formation (metal mediated); G, functional group interconversion; H, 

functional group addition; and I, heterocycle synthesis (Figure 1.2). 

 

1.2 Properties of solvents 

 

Historical solvent effect studies: The art of dissolution captured the minds of even the earliest 

chemists, the alchemists. Even Aristotle had something to say on the subject, remarking “No 

coopora nisi fluida”, or “No reaction occurs in the absence of solvent” [Tanaka 2000]. Whether he
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Figure 1.2 A comparison between reaction class frequency in process chemistry and 

manufacturing plant chemistry within the pharmaceutical industry. 

 

was actually right or not is still debated to this day with the emergance of ‘solventless’ reactions 

[Mack 2012 page 297, Welton 2006]. Christian Reichardt gives a good account of these first 

endeavours towards understanding the interaction between solvent and solute, and so will not 

be repeated here in any great detail [Reichardt 2003 page 2]. The pioneering work of Berthelot 

and Péan de Saint-Gilles is worth discussing, who in 1862 documented the influence of the 

solvent on the esterification of acetic acid with ethanol. This was the first time that the role of 

the solvent on the rate of a chemical reaction was recognised. The other classic solvent effect 

study occurred some thirty years later, when Menschutkin noticed thousand fold rate 

enhancements in the reaction rate constant between amines and chloroalkanes depending on 

the choice of solvent. The influence of the solvent over chemical equilibria did not escape the 

chemists of the nineteenth century either because studies concerning diketo-enol 

tautomerisation conducted by Claisen and his contemporaries also revealed a dependence on the 

nature of the liquid medium in which the substrates were dissolved [Claisen 1896]. Perhaps 

surprisingly these three chemical systems feature within this work, revisited 100-150 years after 

they were first studied. The reason for this, in part, is a renewed interest in the origins of 

chemical products in light of concerns over the future security of crude oil and natural gas 

reserves. Having said this, with varying motivations these chemical systems have been studied 

periodically throughout the twentieth century and into the twenty first century, highlighting a 

continuing interest in the role of solvents in organic chemistry. 
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Dissolution: The number of solvents in common use might appear disproportional to their 

responsibility, which may be mistaken for a passive role at first glance. So why are so many 

different solvents used in synthesis? The use of solvents in purification highlights the reason for 

the abundance of solvents available. Purification by recrystallisation or column chromatography 

relies on the polarity of the solvent to match certain components of the mixture but not others at 

a given temperature. Selecting a solvent with an unsuitable polarity will result in poor separation 

of the desired components from each other and any impurities. Much the same applies in a 

reactive system where it is desirable to dissolve the reactants, stabilise intermediates along the 

reaction pathway, suppress formation of side-products, promote a favourable equilibrium 

position, and sometimes affect dissolution of the product for easy removal. All this depends on 

the polarity of the solvent [Adams 2004 page 6]. 

A complementary match between the polarities of solvent and solute will result in 

favourable mixing and high solubility (Figure 1.3). If the Gibbs free energy increases upon 

 

Figure 1.3 An energy profile of 4-nitroaniline dissolving in acetic acid. 

Free energy of solvation
ΔG < 0
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breaking solvent-solvent bonds and solute-solute bonds and replacing these interactions with 

intermolecular solvent-solute bonds then the substrate will not be soluble. If the converse is true 

then dissolution will be favourable. This thermodynamic description has no bearing on the 

rapidity of the process, which is defined by kinetics. 

In addition to solubility arguments, solvent melting and boiling points are often crucial to 

the chemistry they are applied to, along with other more application specific properties. Of 

course properties defining health, safety, and the environmental impact of solvents are also 

factored into solvent selection although they do not have a direct bearing on the chemistry. 

Although in total many solvent properties are relevant, giving rise to the multitude of solvents 

currently in use, a large number of physical properties such as boiling point and viscosity are a 

consequence of polarity (or more precisely the strength of intermolecular forces that are 

associated with polarity) which in turn arises from the molecular structure of the solvent. Even 

some modes of chemical toxicity can be partly attributed to polarity, with aquatic toxicity 

partially dependant on the lipophilicity of the molecule [Schultz 2006]. 

A term frequently associated with solvents when it comes to describing dissolution is 

polarity, although it is often only understood in a very qualitative and simplistic way. Polarity has 

been defined as “the overall solvation capability for solutes which in turn depends on the action 

of all possible, nonspecific and specific, intermolecular interactions between solute ions or 

molecules and solvent molecules, excluding such interactions leading to definite chemical 

alterations of the ions or molecules of the solute” [Muller 1994]. The number of approaches by 

which it is possible to measure polarity is probably detrimental to its understanding rather than 

useful. Relative permittivity (also known as dielectric constant, εr) is widely used because of, and 

not despite of its age. It is a single parameter, ‘non-intrusive’ method of obtaining a measure of 

solvent polarity using a capacitor [Abboud 1999]. The scale of εr is essentially capped at the 

upper end by water (εr = 78.36) with hydrocarbons like heptane sitting at the lower end (εr = 

1.92). Without being derived from the strength of a solvent-solute interaction like ‘intrusive’ 

methods of polarity determination are, the bulk behaviour of the medium is assessed rather than 

any specific interactions. The downfall of this attempt at understanding the solvent can be 

highlighted with acetic acid (εr = 6.15) [Lide 1991]. The obviously strong potential of acetic acid 

for hydrogen bonding is not accounted for by εr and so misrepresents the polarity of this acidic 

solvent. The specific reason for this is hydrogen bonding between pairs of acetic acid molecules, 

which persist even as a gas [Chocholoušová 2003]. This uses up the available intermolecular 

interactions, and in doing so creates an apparently non-polar environment (Scheme 1.1). The 

introduction of a solute defies this interpretation, with strong solvent-solute interactions readily 

formed in acetic acid solutions. To this end εr is poor when it comes to establishing relationships 

between molecular phenomena and the medium. 
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Scheme 1.1 The relative permittivity of acetic acid and acetyl chloride for comparison. 

 

There is disagreement even between this type of single parameter non-intrusive (bulk) 

solvent polarity scale. Again hydrogen bonding is responsible. The Hildebrand solubility 

parameter (δT) is the square root of the cohesive energy density of the solvent [Hansen 2007 

page 2, Reichardt 2003 page 9]. The conventional representation of δT actually uses an H 

subscript but this conflicts with another parameter to be introduced shortly. It is a measure of 

the strength of solvent-solvent interactions, gauged by the enthalpy of vaporisation and the 

molar volume of the solvent in such a way to provide a term representing energy density: 

Equation 1.1     
  

        

  
 

A comparison between δT and εr reveals a discrepancy because δT accounts for the hydrogen 

bonding between solvent molecules more effectively (Figure 1.4). Accordingly protic solvents are 

given an extra emphasis by δT, distinguishing these solvents from aprotic solvents. Nevertheless 

the trends for protic and aprotic solvents when δT is plotted against εr converge within the 

proximity of acetic acid (δT = 21.4 MPa½) showing that both scales agree on the polarity of acetic 

acid as being relatively low. So is it in fact correct to conclude that acetic acid is a low polarity 

solvent? The answer to the successful modelling of solubility lies with removing the restrictions 

of a single parameter measurement of polarity. 

To model solubility the Hansen solubility parameters of dispersion forces (δD), polarity 

(δP), and hydrogen bonding (δH) have proven to be successful [Hansen 2007 page 4]. These are 

derived by splitting the Hildebrand solubility parameter into these three constituent parts: 

Equation 1.2      
    

    
    

  

The square of each Hansen solubility parameter is therefore an energy density term derived from 

the strength and nature of specific solvent-solvent interactions contained within the Hildebrand 

solubility parameter. Unlike the parent term δT (and εr), between them the three Hansen 

parameters give a good account of the strength of the different bulk solvent interactions that 

define polarity relevant to dissolution. Matching the Hansen solubility parameters of a solute to 

solvent candidates gives a fairly reliable method of predicting and rationalising solubility. 
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Figure 1.4 A comparison between relative permittivity and the Hildebrand solubility parameter. 

 

A clear and often used demonstration of the Hansen solubility parameters is the differing 

solubility of ethanol and nitromethane in water [Hansen 2007 page 134]. Because they have 

similar δT values this cannot be explained by this single parameter approach. The greater δH value 

of ethanol (δH = 19.4 MPa½) matches the polarity of water (δH = 42.3 MPa½) much more closely 

than that of nitromethane (δH = 5.1 MPa½). The Hansen parameters are reliably calculated using 

computational methods [Hukkerikar 2012]. The Hansen solubility parameters can be represented 

three dimensionally relative to the polarity of a solute (Figure 1.5). Using urea as an example, 

positioned at the origin of Figure 1.5, solvents are to be found within a close proximity of the 

solute. Non-solvents have less closely related polarities. The solubility sphere is indicated with a 

dashed line, which is derived through empirical observation. Those fluids that dissolve urea fall 

inside the sphere and are indicated by green data points. Ethanol is one of these. Non-solvents 

are marked with red data points. The very high polarity of urea pushes most solvent candidates 

out of the solubility sphere. 

Solvent polarity scales: The Hansen solubility parameters can only provide an explanation of 

dissolution. Intrusive measurements of solvent polarity that are based on solvent-solute 

interactions and not solvent-solvent interactions offer an insight into solvent effects in reactive 

systems. An example of such a quantitative polarity scale is that arrived at from the UV-vis.  
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Figure 1.5 Three dimensional Hansen plot based on the solubility of urea. 

 

spectra of Dimroth-Reichardt’s betaine dye [Dimroth 1969, Reichardt 2003 page 411]. The 

ground state of this polarity probe is more polar than the excited state in which the negative 

charge of the zwitterion is spread over an extensive conjugated system and no longer localised 

on the phenoxide oxygen. This means that the ground state is more stable in highly polar 

solvents than it is low polarity solvents. The opposite is true for the excited state which is 

relatively stabilised in solvents of low polarity. This results in an energy gap between the two 

electronic states that is very susceptible to the medium in which the dye is dissolved. This 

phenomenon is known as solvatochromism [Reichardt 2003 page 330]. Dimroth-Reichardt’s 

betaine dye is an example of a negatively solvatochromic (or hypsochromic) compound with the 

UV absorbance wavelength decreasing with increasing solvent polarity [Reichardt 1994]. This can 

be expressed as an energy term as follows: 

Equation 1.3                         

Accordingly the energy gap between the ground state and electronic excited state of the dye is 

very important (Figure 1.6). A simple scale of solvent polarity can be devised based on the 

observed absorption wavelength, normalised between tetramethylsilane (TMS,   
  = 0.000) and 

water (  
  = 1.000): 

Equation 1.4     
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Figure 1.6  The solvent effect influencing the light absorbance of Dimroth-Reichardt’s betaine 

dye. 

 

The   
  scale is often used to represent solvent polarity in correlations with chemical 

kinetics and equilibria [Reichardt 1979]. Dipolarity is accounted for, but on this scale proticity has 

an almost additive effect, and this propels hydrogen bond donors into the high polarity regions of 

the scale. Whereas the most dipolar but aprotic solvents tend to hit a maximum at   
  = 0.500, 

protic solvents can have polarities double this value (Figure 1.7) [Mistry 2008 page 57]. 

Accordingly acetic acid is finally represented as a high polarity solvent (  
  = 0.648) [Reichardt 

2003 page 422]. One drawback of this probe molecule is its poor solubility in low polarity 

solvents, and the protonation of the phenoxide in acidic solvents. Nile red is an alternative dye 

Tetramethylsilane
λ = 931 nm

Water
λ = 453 nm

hν hν
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for lipophilic media, while the polarity of acidic solvents can be measured with Kosower’s dye 

[Kosower 1958, Moog 2004].  

 

 

Figure 1.7 The solvent polarity scale derived from Reichardt’s dye. 

 

We have seen that single scales of polarity represent a mixture of interactions and are 

not always useful for constructing correlations with. The Kamlet-Taft solvatochromic scale of 

solvent polarity on the other hand offers a three parameter assessment consisting of hydrogen 

bond donating ability (α), hydrogen bond accepting ability (β), and dipolarity/polarisability (π*) 

all based on solvent-solute intermolecular bonding strengths [Kamlet 1983]. The separation of 

these interactions is useful for resolving relationships between observed solvent effects and the 

polarity of the solvent. They are suited to this role because, like   
 , the resultant solvent polarity 

scale is derived from the energy differences between two electronic states of a dye molecule. 

These solvent dependant energy differences mirror the variable energy levels of kinetic and 

equilibrium profiles in chemical transformations. 

The UV-vis. absorbance maxima of N,N-diethyl-4-nitroaniline in solution, normalised 

between the observed wavelengths in cyclohexane and DMSO (although usually expressed as 

wavenumbers in units of cm-1) is used to obtain values of π* [Kamlet 1977]. This is analogous in 

construction to the   
  polarity scale of Reichardt: 

Equation 1.5      
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Alternative dyes can be used, and with normalisation give similar results in most cases [Kamlet 

1979]. N,N-Diethyl-4-nitroaniline is sometimes replaced by its dimethyl- analogue or 4-

nitroanisole because these dyes offer a sharper and more consistent band shape [Laurence 

1994]. Sometimes average π* values are used to soften the effect of outliers unique to certain 

dyes [Marcus 1993]. However N,N-diethyl-4-nitroaniline was established as a solvatochromic 

probe even before the π* scale was established and understandably is the first choice in many 

studies of non-specific solvent effects [Crowhurst 2003, Kamlet 1977]. Regardless of the dye 

used, π* as a combined measure of dipolarity and polarisability relies on the difference in 

polarity between the electronic ground state and the excited state of the probe molecule (Figure 

1.8). The opposite of Dimroth-Reichardt’s betaine dye, the excited electronic state of N,N-diethyl-

4-nitroaniline is more polar than the ground state, and so the energy gap between the two now 

decreases with increasing solvent polarity. Accordingly N,N-diethyl-4-nitroaniline is known as a 

positively solvatochromic (or bathochromic) compound. The range of wavelengths that can be 

obtained is not as broad as that of Dimroth-Reichardt’s betaine dye but sufficient to produce a 

reliable scale (Figure 1.9). 

 

 

Figure 1.8 The solvatochromism of N,N-diethyl-4-nitroaniline. 
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Figure 1.9 The UV-vis. spectrum of N,N-diethyl-4-nitroaniline in cyclohexane, 2-MeTHF, and 

DMSO. 

 

Values of β representing solvent hydrogen bond accepting ability are obtained in 

conjunction with another dye, 4-nitroaniline [Kamlet 1976]. Solvents that cannot engage in 

hydrogen bonds as an acceptor (therefore β = 0.00) stabilise 4-nitroaniline with the same non-

specific interactions that form the basis of interactions with N,N-diethyl-4-nitroaniline. The 

relationship between the absorbances of the two dyes can be represented in the following 

equation, derived from experimentation, where 4-nitroaniline is denoted as dye 1, and N,N-

diethyl-4-nitroaniline as dye 2: 

Equation 1.6                              R2 = 0.994 

The departure of observed 4-nitroaniline UV absorbances from the response expected due to 

Equation 1.6 provides the basis of β [Nicolet 1986]. The magnitude of any deviation is 

proportional to the strength of the solvent’s hydrogen bond accepting ability onto 4-nitroaniline. 

Of course this mode of stabilisation is not possible for N,N-diethyl-4-nitroaniline (Scheme 1.2). 

The excited state of 4-nitroaniline with its deshielded amino group will strive to generate 

stronger hydrogen bonds with the solvent than the ground state requires. This results in the 

variable energy gap between the electronic states of the dye needed for the polarity scale. 
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Scheme 1.2 The solvent interactions of 4-nitroaniline and N,N-diethyl-4-nitroaniline as 

exemplified with DMSO. 

 

The upper end of the β scale was originally normalised with hexamethylphosphoramide 

(HMPA) set as β = 1.00 [Kamlet 1976]. This resulted in the polarity of DMSO being β = 0.74. The 

difficulties of using HMPA (namely toxicity and hydrolysis when exposed to air) mean that DMSO 

is an attractive upper bookend of the β scale for modern studies. Thus the equation for the 

calculation of β can be scaled to retain the historical values of hydrogen bond accepting ability: 

Equation 1.7            
                             

                                              
 

There is a clear hierarchy separating alkanes and chloroalkanes, aromatic solvents, modestly 

basic oxygenated solvents and the highly polar amides and sulphoxides (Figure 1.10). The 

aromatic solvents have been incorporated into the baseline with the non-hydrogen bond 

accepting solvents in the past, but it is now usually accepted that they can engage with hydrogen 

bond donors via weak pi-orbital interactions [Nishio 2011]. 

Solvent hydrogen bond donating ability, the opposite effect to β, is represented as α. 

Calculation of α requires the same approach as for β, with Dimroth-Reichardt’s betaine dye and 

4-nitroanisole originally chosen as the homomorphic dye pairing [Taft 1976]. A shortcut for 

accessing α values is available, based on an empirical relationship developed to describe   
 , π*, 

and the parameter in question [Marcus 1991]: 

Equation 1.8     
                     

The range of α values originally reported by Kamlet and Taft was capped by methanol (α = 1.00) 

[Taft 1976]. Alcohols and carboxylic acid solvents typically have high α values. A considerable 

number of solvents are aprotic and so understandably have zero α values. Of more interest is the 

range in-between these two extremes. Subtle effects of C-H acidity are recognised for the 

solvents chloroform (α = 0.20) and acetonitrile (α = 0.35) although the exact numbers vary 

between reports [Crowhurst 2003, Marcus 1993].ter in question [Marcus 1991]. 
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Figure 1.10 A comparison between aniline dye absorbance maxima in different solvents. 

 

Populating the diagram: Collectively bio-based solvents will need to represent the same variety 

of polarity that we have come to rely on from traditional petroleum derived organic solvents. 

Protic and aprotic solvents can be presented in separate 2D graphs (by plotting β against π* in 

each case) which is regarded as a more helpful representation than a single three dimensional 

graph [Jessop 2011]. A cut-off point at α = 0.37 was chosen to define proticity so that acetonitrile 

(α = 0.35) falls with the aprotic solvents and t-butanol (α = 0.39) is considered as a protic solvent. 

Otherwise this treatment follows the same principle as Jessop’s original tool for discerning the 

polarity of green solvents [Jessop 2011]. The resulting polarity maps can be neatly divided into a 

grid of nine regions which conveniently separate different types of solvent. The rule is not 

absolute but serves as a guide. In the aprotic solvent polarity map a distinction can be made 

between dialkyl ethers and cyclic ethers, and the same for organic carbonate solvents (Figure 

1.11). Less systematic exceptions include pyridine, which although classed as an amine is more 

like a highly dipolar aprotic solvent, and the very dipolar but only weakly basic sulpholane. 

Chlorinated solvents, although inevitably only weakly hydrogen bonding, have dipolarities that 

vary from carbon tetrachloride (π* = 0.28) to DCM (π* = 0.82) depending on the overall dipole 

moment of the solvent [Abboud 1977]. What is most striking about this polarity map is that 

almost all the possible regions are represented. There are readily available solvents for all 

imaginable purposes, and presumably this is borne out of necessity and not luxury. Therefore 

aprotic bio-based solvents need to be found of all conceivable polarities.  
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Figure 1.11 Aprotic solvent polarity map. 

 

The protic solvents can also be mapped in the same way (Figure 1.12). Here there is no 

option for hydrogen bond donating yet non-dipolar solvents. This is not so surprising given that 

proticity must arise from some degree of bond polarisation. Fortunately there does not seem to 

be much demand for such a solvent. Weak hydrogen bond acceptors are provided in the guise of 

fluorinated alcohols. Alcoholic solvents appear to cover a wide spread of polarity, but this is 

slightly deceiving because the two obscure (but bio-based) solvents glycerol formal and ethyl 

lactate, both highly dipolar, extend the range usually occupied by more typical alcohols. These 

two solvents appear in the middle row-right column box rather than the top row-middle column 

of Figure 1.12 where the other alcohols reside. Lactic acid is much more dipolar than other acids, 

which appears outside of the boxed area in the proximity of water. A small selection of ionic 

liquids (1-butyl-3-methylimidazolium triflate, 1-butyl-3-methylimidazolium tetrafluoroborate, and 

1-butylpyridinium tetrafluoroborate) are also represented in Figure 1.12 because a cation can 

give rise to a hydrogen bond donating effect as it stabilises the phenoxide anion of Dimroth-

Reichardt’s betaine dye (or an equivalent probe molecule) [Ab Rani 2011]. 

Many more solvents could have been represented on these polarity maps to accentuate 

what bio-based solvents need to replicate. Data for a wider range of solvents is included in the 

appendix (Table 8.2). What is clear is that a single bio-based solvent would not suffice as an 

alternative to even a few conventional solvents. Not only is polarity important of course, but
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Figure 1.12 Protic solvent polarity map. 

 

boiling point for example is massively significant. The reactivity of solvents is also a vital 

consideration and specific to the application. The use of Grignard reagents in solution requires a 

electron donating solvent to be able to stabilise the organometallic solute but if the solvent is 

also electrophilic it will react, and probably violently. Esters and cyclic ethers occupy a similar 

position in their polarity diagram (Figure 1.11) but only the latter are a viable option for this 

chemistry. These are the reasons for the present diversity of solvents. The daunting task required 

of bio-based solvents, if they are to ever completely supplant non-renewable solvents, is to 

approach the density and coverage of the solvents represented on Figure 1.11 and Figure 1.12. 

The tools available to tackle this considerable task are reviewed in the following section. 

 

1.3 Solvent selection 

 

Computational tools: An algorithm for solvent selection has been developed by the CAPEC 

research group at DTU, Denmark. The methodology was tested in collaboration with GSK and 

applied to actual chemical systems [Gani 2005]. One example is the aqueous enzymatic oxidation 

of toluene to its cis-glycol. A solvent is required to form a second phase and extract the 

unreacted toluene. As such the solvent needs to create a phase split with water, dissolve toluene, 
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and be a liquid at the process temperature amongst other things. A toxicity limit was also set 

(LC50 > 10 mg/kg). The solvent selection algorithm refines a large dataset of solvent candidates 

into only those solvents that can provide the conditions and properties required. A score is 

attributed to each solvent that accumulates during the algorithm to help solvent selection. 

Instead of benzene and other viable but undesirable solvents, 2-heptanone was selected for 

further study based on its algorithm score. A multistep organic synthesis has also been optimised 

in this way [Gani 2008]. The reactants were not disclosed for confidentiality reasons but the 

method for selecting each solvent with the algorithm was reported. Along with other case 

studies, a proof of concept has been established, validating the usefulness of this solvent 

selection algorithm for improving examples of organic synthesis. 

The original solvent selection algorithm refines solvent candidates largely based on the 

physical state of the solvent at the application temperature, its relative polarity with respect to 

certain solutes, with the possibly of environmental, health, and safety parameters being 

introduced as well (Figure 1.13). In this work the basic framework of the algorithm is expanded to 

encompass more solvents and a greater bias toward synthetic organic chemistry, rather than

 

Figure 1.13 A visual representation of the algorithmic solvent selection process. 
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chemical engineering as formerly intended. The revised solvent selection algorithm is set up in a 

computer spreadsheet (Microsoft Excel) which also contains a database of all the relevant solvent 

properties, either experimental values or predictions (obtained through recognised estimation 

models) where necessary [Hukkerikar 2012].  

Each filtering step, or rule, is known as a reaction index (Ri). Adherence to each rule is typically 

assessed by way of a five tier assessment. These are called the reaction-solvent indices (RSi). Each 

reaction-solvent index is converted into a score (Si) for that reaction index (Ri), and the 

summation of the scores from each rule gives a numerical value for every solvent as a measure of 

its suitability. Scores (Si) are associated with each reaction-solvent index (RSi) as in the original 

solvent selection algorithm. However RSi = 5 always results in Si = 1 which is considered a fail. A 

solvent candidate only has to fail one reaction index to be removed from the solvent candidate 

optimisation process. The original scoring system is shown in the following figure, which 

exemplifies the generally applicable scoring system with rule D (Figure 1.14). Solubility of 

reaction components is evaluated with δT (rule D and rule E). Rule G uses the Hansen solubility 

parameters in a more thorough polarity matching exercise. 

 

 

Figure 1.14 Rule D of the solvent selection algorithm. 
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Revised solvent selection algorithm: The greatest change to the original algorithm made in this 

work is to rule C as defined by R2. In the original assessment a parameter denoted Ts is calculated 

as the midpoint between the boiling point and the melting point of a solvent. This is compared to 

the desired application temperature (Tr) and a score (S2) awarded (via RS2) based on the 

proximity of Ts to Tr. With a flexibility margin of only ±20 K this calculation will reliably ensure 

that only liquids are selected as solvent candidates. However the assessment is harsh and omits 

many potentially satisfactory solvents. It is common practice to operate under refluxing 

conditions which is not compatible with rule C of the original solvent selection algorithm. 

In the revised algorithm rule C is divided into two sections. Firstly the user decides 

whether solvent recovery by distillation (large scale) or disposal (small scale) is preferable (R2a). In 

the first instance solvents that are not gaseous at the desired reaction temperature, yet have low 

boiling points are favoured in the assessment (Figure 1.15). Solvents with increasingly higher 

boiling points (Tb) fair less well across a range of 60 K (Tx) above the reaction temperature (Tr), 

and those solvents with boiling points above that (i.e. Tb ≥ Tr + Tx) are designated RS2a = 4 (which 

 

Figure 1.15 Rule C (R2a) of the revised solvent selection algorithm when the solvent is opted to be 

recycled. 
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results in the lowest score barring a fail). Solvents that are a gas at the desired reaction 

temperature are removed from the final solvent set (RS2a = 5). If the alternative solvent disposal 

scenario is chosen then the scoring gradient is reversed, and high boiling solvents are preferred 

to minimise losses to the atmosphere. This setting is also suitable for solvents that are to be 

reused without distillation, for example after induced crystallisation of the reaction components. 

Again the solvent must not be a gas at the desired reaction temperature. The second part of this 

rule (R2b) concerns the melting point of the solvent to avoid recommended solvents being solids 

at the desired reaction temperature. It is generally desirable for a solvent to be liquid at room 

temperature for handling and purification purposes and so this is also factored into the 

assessment. Ultimately if the solvent is a liquid at the reaction temperature then it will pass this 

reaction index.  

Rule G is also amended in the revised solvent selection algorithm. Previously stabilisation 

was determined with a comparison between a solute and each solvent candidate using their 

respective δP and δH values. This is plotted on a two-dimensional graph rather than the 3D 

Hansen chart seen earlier in Figure 1.5. This is because of the relatively small changes in the δD 

parameter between solvents, but also the simplicity of a two dimensional graph is preferred. The 

maximum permissible discrepancy is ±20% of the magnitude of each Hansen solubility parameter 

describing the solute. Therefore if the solute has a δP value of 10 MPa½ then solvent candidates 

must have a δP value between 8 MPa½ and 12 MPa½. This turns out to be hugely restrictive, 

especially because the δH solubility parameter will impose constraints of its own (again ±20%) to 

create a small zone of acceptable solvent polarity within the vicinity of the solute (Figure 1.16). 

The use of a fixed percentage flexibility in the assessment is also unfair because it favours polar 

substrates with large Hansen solubility parameters. In the revised solvent selection algorithm a 

percentage leeway is still applied but it is now user defined to be as restrictive or lenient as 

required in order to approximate the solubility sphere. Solute stabilisation now only accounts for 

half of rule G in the revised solvent selection algorithm because destabilisation of a particular 

solute can now also be modelled. The scoring scale assigned to stabilisation (S6a) is reversed for 

modelling destabilisation (S6b). This may be useful in instances where precipitation of a product is 

useful. 

The final change made to the original solvent selection algorithm relates to how any 

environmental, health and safety (EHS) parameters are assessed (Rule J). Previously this was 

accounted for by selecting a target value for a relevant property (LD50 perhaps) and then 

proximity to this value within a limit of ±20% was rewarded [Gani 2005]. This means different 

solvent candidates may have either a higher or a lower value than the target and be awarded the 

same score. For example 10% below the target LD50 is obviously less favourable than a solvent 

with a LD50 10% above the target value but these scenarios are rewarded equally. This oddity is 
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Figure 1.16 An arbitrary polarity map with rule G assignments from the revised solvent selection 

algorithm. 

 

changed to the user having the option to either maximise or minimise a solvent EHS parameter in 

the course of solvent selection (Figure 1.17). 

Linear solvation energy relationships: The major limitation of the existing solvent selection 

algorithm (referred to here as model A) is that there are few deviations from intuitive questions 

and answers, and even then these are limited to thermodynamic models. Kinetics is hugely 

important, and can used to differentiate between feasible solvent solutions and those solvents 

that would also pass the solvent selection algorithm but not facilitate the reaction within a 

meaningful time span. Predictions of solvent performance in a specific application can be made 

as an additional assessment (model B2), aligned with the revised solvent selection algorithm 

(now known as model B1). Scales of solvent polarity are known to permit correlations with 

parameters describing the efficiency of solution chemistry. A linear solvation energy relationship 
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Figure 1.17 A hypothetical comparison between methods for identifying the permissible toxicity 

limits of solvents when the user defined limit is log(LD50) = 3.5. 

 

(LSER) is a correlation between an energy term (or a parameter proportional to energy such as 

the logarithm of a rate constant) and a property (or a summation of properties) of a solvent 

[Reichardt 1979]. Analogous to linear free energy relationships (LFERs), the original and primary 

purpose of the LSER (as with all linear free energy relationships) is to determine the mechanism 

of the chemical process being studied. Louis Hammett was at the forefront of developing the 

LFER approach in the 1930’s, developing the use of benzoic acid dissociation equilibrium 

constants in water (Ka) as a reference system [Hammett 1933]. 

The Hammett equation models a chemical equilibrium or reaction rate (expressed as 

ln(K) or ln(k) respectively) as a function of reagent reactivity, as inferred from the electronic 

influence of substituents on Ka values (σ) [Hammett 1937]: 

Equation 1.9        
 

  
      

The value of ρ is determined by the nature of the activated complex [Hammett 1937]. Solvents 

are not accountable and so reactions are performed in the same solvent for a fair and valid 

comparison. However the influence of solvents can be seen in arguably the simplest Hammett 
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relationship [Williams 2003 page 17, Hoefnagel 1989]. By plotting the acid dissociation 

equilibrium constants of benzoic acids in different solvent systems against pKa, the intensity of 

the relationship changes, equating to the ability of the solvent to stabilise the charges created by 

deprotonation, in turn affecting the equilibrium position (Figure 1.18). Adding ethanol to 

aqueous solutions of benzoic acids reduces the extent of deprotonation, as expected from the 

introduction of an organic solvent that discourages the formation of ions. Accordingly the 

gradient of the LFER increases from unity when water is the solvent (effectively pKa plotted 

against pKa) to steeper relationships as the co-solvent concentration is increased. But the most 

significant difference is the change in intercept, reflecting the reluctance of benzoic acids to 

deprotonate when dissolved in organic solvent systems. 

 

 

Figure 1.18 A linear free energy diagram showing the acidity of benzoic acids in different 

solvents. 

 

The most reliable and commonly used versions of the LSER principle are based on the 

solvent-solute interactions described by the Kamlet-Taft solvatochromic scale of solvent polarity. 

It provides a reliable empirical means of correlating performance to the nature of the reaction 

medium, as required in order to ascertain solvent performance in organic synthesis [Williams 

2003 page 35]. Although specifics will be introduced when the need arises, the general format of 

a LSER can be presented with the following equation: 
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Equation 1.10                      

The energy derived XYZ term will usually be ln(k) or ln(K), but selectivities, enthalpies and 

entropies are also applicable [Taft 1985]. Not every parameter will be relevant to each system, 

and there is no limit on the magnitude or sign of each coefficient. The solvent polarity parameter 

coefficients (a, b, and s) indicate the relative important of each type of solvent-solute interaction, 

and whether each is beneficial or not. But little further meaning can be gleaned from these 

coefficients as products of empirical observation. The normalisation of the Kamlet-Taft 

parameters affects the magnitude of their coefficients too, and so comparisons between terms 

are only qualitative. Even so an LSER is immensely useful in allocating a mechanism to a process. 

Indeed studies of solvatochromism and examples of LSERs are prevalent, a testament to their 

usefulness and validity [Reichardt 1994, Taft 1985]. In constructing one such relationship, Wells 

et al. found that the rates of the Fischer esterification between benzyl alcohol and 2-

methoxyacetic acid are inversely proportional to the hydrogen bond accepting ability of the 

solvent (Figure 1.19) [Wells 2008]. Only β of the Kamlet-Taft parameters was statistically 

significant and the strength of the correlation was satisfactory (R2 = 0.959). The relationship is 

indicative of an effect exerted by hydrogen bonding solvents that retards the progress of the 

reaction. A suggestion from the authors implicates deactivation of the acid catalyst by the 

solvent. 

 

 

Figure 1.19 The rate of a Fischer esterification correlated to solvent polarity. 
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The other use of a LSER (the first being the study of mechanism) is to predict the 

performance of solvents in a given reaction and aid solvent selection on the basis of minimal 

experimentation. This is the role of the solvent performance assessment (model B2) which 

accompanies the revised solvent selection algorithm (model B1). In order to have a reliable 

correlation, the LSER must hold up to statistical tests of accuracy. Random error is a natural 

consequence of experimental science, although large random errors will disguise the underlying 

solvent effect. True deviations from a trend set by a LFER are in fact not uncommon, and are 

indicative of changes in mechanism or rate determining step [Sykes 1981, Williams 2003 page 

129]. Once a case study has been represented by a LSER with enough solvents to be sure of the 

trend, and data obtained to a sufficient level of accuracy as exemplified with Figure 1.19, then it 

can be reinterpreted as a means of scoring solvents based on their performance. The solvent 

performance assessment (model B2) ranks solvents based on the magnitude their predicted XYZ 

value (probably ln(k) in most instances). Of the solvents in the dataset, the algorithm user 

chooses the number of solvents they wish to pass the assessment (model B2). The successful 

solvents are divided into a hierarchy of four quarters: the best performing solvents awarded the 

score associated with RS = 1, the second quarter of solvents assigned RS = 2, and so on. Those 

solvents outside the cut-off point receive the equivalent of RS = 5 which, as always, is considered 

a fail. The results of this assessment (model B2) can be combined with the revised solvent 

selection algorithm (model B1) with a weighting to enhance the role of solvent performance 

relative to the rules contained within the usual algorithm. 

Solvent selection guides: A solvent selection guide can be used to further scrutinise the solvents 

that successfully negotiate the revised solvent selection algorithm. Solvent selection guides rate 

solvents according to their EHS properties to inform users of their risks to human health and the 

environment. The pharmaceutical industry has long recognised the significance of solvents in 

their drive to reduce costs and comply with tightening regulation, minimise waste, and lower 

energy requirements [Curzons 2001]. In order to address this, various prominent companies and 

institutes have developed solvent selection guides that sort solvents into classes of suitability. 

These in turn have been incorporated into a solvent greenness assessment (model B3). 

The complexity of solvent selection guides is proportional to the scale of the chemistry 

for which they are intended. Beginning at the smaller end of the scale, tools intended for 

medicinal chemistry (i.e. sub-gram scale synthesis) take the form of colour coded diagrams in 

which solvents are ordered with respect to their health, safety, and environmental impact. The 

first solvent selection guide of this sort to be made openly available was developed by Pfizer 

[Alfonsi 2008]. Although published in 2008, the guide had been in circulation around the 

laboratories at Pfizer for several years by this time (Table 1.3). The purpose of the guide is to 

raise awareness about the issue of solvent selection, and reassure chemists about deviating from 
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established procedures where a sound solvent substitution can be made to improve the EHS 

profile of the reaction. Unfortunately the rationale behind the assignments is not publicly 

available. Nevertheless most recommendations appear to be reasonable based on safety and 

toxicity arguments alone. 

 

Table 1.3 A representation of the Pfizer medicinal chemistry solvent selection guide. 

Preferred Usable Undesirable 

Water Cyclohexane Pentane 

Acetone Heptane Hexane(s) 

Ethanol Toluene Diisopropyl ether 

2-Propanol Methylcyclohexane Diethyl ether 

1-Propanol Methyl t-butyl ether Dichloromethane 

Ethyl acetate Isooctane Dichloroethane 

Isopropyl acetate Acetonitrile Chloroform 

Methanol 2-Methyltetrahydrofuran DMF 

Methyl ethyl ketone Tetrahydrofuran NMP 

1-Butanol Xylene(s) Pyridine 

t-Butanol Dimethyl sulphoxide DMAc 

 Acetic acid 1,4-Dioxane 

 Ethylene glycol Dimethoxyethane 

  Benzene 

  Carbon tetrachloride 

 

By the time the Pfizer solvent selection guide was published, a GSK process chemistry 

solvent selection guide of greater complexity had already been available for almost a decade 

[Curzons 1999]. The basis of this guide has recently been translated into a more useful tool for 

medicinal chemists, borrowing the colour coded presentation of the rival Pfizer solvent selection 

guide [Henderson 2011]. The GSK solvent selection guide consists of six constituent assessments 

(Table 1.4). A numerical scoring system is used to indicate the performance of every solvent in 

each category. Values range from one (serious issues) to ten (benign). The colour coding 

highlights the best scores (8-10) in green and the worst scores (1-3) in red. These scales are the 

amalgamation of various physical properties. For example, the waste category contains an 

evaluation of the ability to recycle the solvent, but incineration is also considered. A high calorific 

value is beneficial if the solvent is combusted to provide energy. Conversely, nitrogen and 

sulphur containing solvents will result in the production of the atmospheric pollutants NOx and 



62 
 

SOx when burnt, and are penalised accordingly. Other categories are environmental impact (‘E-

Impact’ in Table 1.4), health, flammability (‘Fire’ in Table 1.4), reactivity and life cycle assessment 

(‘LCA’ in Table 1.4). 

 

Table 1.4 An excerpt from the GSK solvent selection guide supporting table. 

Solvent Waste E-Impact Health Fire Reactivity LCA 

Acetone 3 9 8 4 9 7 

Acetonitrile 2 6 6 6 10 3 

1-Butanol 5 7 5 8 9 5 

t-Butanol 3 9 6 6 10 8 

Chloroform 3 6 3 6 9 6 

1,2-DCE 4 4 2 6 10 7 

DMSO 5 5 7 9 2 6 

1,4-Dioxane 3 4 4 4 5 6 

Ethanol 3 8 8 6 9 9 

Ethyl acetate 4 8 8 4 8 6 

Ethylene glycol 5 8 7 10 9 9 

Hexane 5 3 4 2 10 7 

2-MeTHF 4 5 4 3 6 4 

NMP 5 6 3 9 8 4 

Toluene 6 3 4 4 10 7 

Triethylamine 4 5 3 4 8 7 

 

Although solvent selection guides highlight the greenness of solvents, what these tools 

do not directly facilitate is the means to make an educated solvent substitution in favour of a 

preferable solvent which is also compatible with the application. Reaction specific solvent 

selection guides have recently been developed that overcome this hurdle, but then of course 

these guides have a very specialised and limited use [MacMillan 2013, McGonagle 2013]. The two 

general use solvent selection guides reviewed here have been incorporated into a more 

sophisticated tool (model B3) to enhance their focus and usefulness. A third guide for solvent 

selection developed by ETH is also included [Capello 2007]. Minimum acceptable levels of 

greenness can be set to refine the list of solvent candidates. Of those that remain a summation of 

the values in the GSK solvent selection guide can be used to establish a hierarchy of solvent 

greenness. Scores to reflect this are assigned in the same way that the predictions of an LSER 

were used to generate scores in the solvent performance assessment (model B2). Greater detail 
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of this process, and all the algorithm procedures, will be given during the reaction case studies 

that follow in the subsequent chapters. 

 

1.4 Analysis of bio-based solvents 

 

A renewability index for solvents: Solvent selection guides adequately cover a range of issues 

stemming from health and safety legislation. They also represent a lot of environmental concerns 

resulting from solvent use. Yet all fail to consider the origin of the solvents they discuss. The 

closest any existing solvent selection guide has come to accounting for this is a tool developed by 

ETH that accounts for the energy used in the manufacturing process of a solvent [Capello 2007]. 

It too is incorporated into the greenness assessment (model B3) that accompanies the revised 

solvent selection algorithm (model B1). Although undoubtedly useful when considering whether 

it is practical to recycle a solvent, or instead to incinerate it after use and reclaim the energy of 

combustion, the origin of the solvent remains unaccountable. A new qualitative measure of 

renewability (denoted with the abbreviation SUS to indicate its relation to sustainability) can be 

implemented as part of a wider assessment of solvent greenness. A numerical score is assigned 

to each solvent based on its availability from a biomass feedstock (Table 1.5). Colour coding and 

the use of a numerical scale are directly taken from the presentation of the GSK solvent selection 

guide [Henderson 2011]. Solvents that cannot be obtained from biomass are assigned a score of 

zero. This system will be used in the following case studies to help identify the optimum solvent, 

given that the renewability of the solvent must be considered as an important factor in solvent 

selection. 

 

Table 1.5 The basis for assigning a renewability index (SUS) to bio-based solvents. 

Scenario Score 

Regarded as readily obtainable from biomass. 10 

Available with 100% bio-carbon content but only produced on a small scale. 8 

An alternative manufacturing process using biomass is being developed at pilot 

plant stage or is feasible based on existing academic research. 

6 

The feedstock of an existing manufacturing process could be directly replaced with 

an equivalent bio-based version. 

4 

The solvent is chlorinated but otherwise could be bio-derived based on its carbon 

and hydrogen content. 

2 

Not obtainable by any reasonable and known process beginning with biomass. 0 
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Debate surrounding the assignments in such a classification is inevitable. The assessment, 

because it is subjective, is difficult to justify beyond its role here as only a rough guide. For 

example, it is hard to appreciate the potential of an academic study to become a commercial 

enterprise. Chemical companies may readily produce press releases stating the imminent 

production of a bio-based solvent or a key platform molecule, but until manufacturing is live and 

sustained at a high enough volume to impact the market it is not possible to know the exact 

status and probable longevity of the process. Some decisions are easier, such as the assignment 

of bio-ethanol at the top of the scale and hexane at the bottom. 

Tailoring solvent selection guides to compliment renewability: The GSK solvent selection guide 

combines physical property and toxicity data for solvents and establishes a useful hierarchy 

which can be used to supplement the SUS classification discussed previously. The six categories 

of the GSK solvent selection guide is probably too many for the chemist with a casual interest in 

the subject, but the Pfizer solvent selection guide is too vague with its poorly defined classes of 

greenness [Alfonsi 2008, Henderson 2011]. It is possible to combine the health, flammability and 

reactivity categories of the GSK solvent selection guide into a single health and safety 

classification system (denoted HAS, acting as an acronym for health and safety). The health score 

is given an enhanced weighting in the calculation, which although is subjective, reflects the 

importance of human toxicity: 

Equation 1.11      
                                  

 
 

Similarly the waste, environmental impact and LCA categories of the GSK solvent selection guide 

can become an environmental classification system (denoted ECO, as an inference to the word 

ecological) by taking the average of the existing category scores, but weighted in favour of the 

arguably more important LCA category: 

Equation 1.12      
                                  

 
 

The resulting HAS and ECO classifications are scaled to enhance the spread of data. Without this 

treatment, an identical process to how the π* scale in Equation 1.5 is normalised, the resulting 

values of the HAS and ECO classifications tend to cluster together. With the scaling, equal 

numbers of solvents can be distributed across the complete range of possible scores (i.e. one to 

ten), and then a useful means of classification is provided. 

A criticism of the SUS-HAS-ECO framework is because it relies on the published GSK data 

set, it has no predictive element. A total of 110 solvents make up the complete GSK solvent 

selection guide, but any additional bio-based solvents like limonene cannot be fully assessed. A 

small selection of these solvents have been reinterpreted with the SUS-HAS-ECO classifications in 
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the following table (Table 1.6), and the rest tabulated in the appendix (Table 8.3). Although not 

applicable to the solvents presented in Table 1.6, some entries in the GSK solvent selection guide 

do not have any LCA data. In these instances the ECO classification is constructed from the mean 

average of the waste and environmental impact categories. This is noted where appropriate 

throughout this work. Nevertheless this interpretation appears to present sensible conclusions 

for the vast majority of solvents in the data set. Indeed the weightings of the categories in the 

HAS and ECO classifications (and the scaling that followed) were chosen because the appearance 

of the results they provided seemed the most sensible. 

 

Table 1.6 A bio-based solvent selection guide. 

Solvent SUS HAS ECO 

Acetone 8 9 9 

Acetonitrile 4 7 1 

1-Butanol 8 6 3 

t-Butanol 4 7 10 

Chloroform 2 1 3 

1,2-DCE 2 1 6 

DMSO 4 7 4 

1,4-Dioxane 4 1 1 

Ethanol 10 10 10 

Ethyl acetate 8 9 6 

Ethylene glycol 8 10 10 

Hexane 0 1 6 

2-MeTHF 10 1 1 

NMP 6 2 1 

Toluene 0 3 6 

Triethylamine 6 1 6 

 

It should be explained how each of the solvents in Table 1.6 came to receive their 

allocated SUS classification. Acetone was once made on an appreciable scale by fermentation, a 

technology that has only recently come back into consideration [Cathay Biotech 2013, Qureshi 

2001, Rhodia 2013]. 1-Butanol is a co-product of this fermentation process. This results in a SUS 

classification of 8 assigned to acetone and 1-butanol. Acetonitrile is made from propene as a by-

product of acrylonitrile production [McConvey 2012]. Several strategies with the purpose of 

producing bio-based propene are being explored by different organisations [Global Bioenergies 
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2012a, Hayashi 2013, Iwamoto 2013, Mizuno 2012, UOP 2013]. Accordingly a SUS classification of 

4 is appropriate for any upstream products of propene, including acetonitrile. Remarkably 

isobutene has some history as a fermentation product, and a manufacturing process has been 

patented [Global Bioenergies 2012b, van Leeuwen 2012, Marlière 2010, Marlière 2011a, Marlière 

2011b]. Hydration of bio-based isobutene would give t-butanol, hence the SUS classification of 4 

[Weissermel 1997 page 69]. 

Chloroform could be obtained by replacing the natural gas used in the established 

chlorination process with methane from anaerobic digestion (biogas) [Lowenheim 1975 page 

266]. Hence it has a SUS classification of 2, but it does not appear that anyone has been 

motivated to make chloroform in this way. The same can be said of 1,2-DCE which is made by 

reacting ethylene with chlorine (Scheme 1.3) [Lowenheim 1975 page 392]. A slightly better use of 

bio-based ethylene might be the synthesis of ethylene glycol via ethylene oxide [Lowenheim 

1975 page 688, India Glycols 2013]. Although this intermediate presents toxicity issues, the 

manufacture of bio-based poly(ethylene terephthalate) (PET) plastic relies on this procedure 

[Kriegel 2010, Toray 2011]. 1,4-Dioxane is another solvent that is synthesised from ethylene 

oxide [Weissermel 1997 page 155]. Ethylene is now produced with the ethanol resulting from the 

fermentation of sugarcane [Fan 2013, Morschbacker 2009]. As such a SUS classification of 8 is 

 

Scheme 1.3 Some bio-based solvents accessible by the fermentation of glucose. 
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appropriate for ethylene glycol, but hypothetical bio-1,4-dioxane is awarded a 4 instead. Bio-

ethanol, being widely produced as a fuel attains the highest SUS classification, as does 2-

methyltetrahydrofuran (2-MeTHF) because it is exclusively manufactured by the hydrogenation 

of furfural [Aycock 2007, Balat 2009, Pace 2012]. Ethyl acetate is available as the product of a 

ruthenium catalysed bio-ethanol dehydrogenation, although this is by no means a widespread 

practice [Ashley 2006, Colley 2004]. Another procedure that reacts ammonia with bio-ethanol to 

give triethylamine (mirroring the standard industry process) has been patented but not actually 

implemented [Gerlach 2006]. That is why triethylamine is assigned a SUS classification of 6 but 

bio-based ethyl acetate, which not only has been patented but then put into practice, is awarded 

an 8. 

Both DMSO (SUS = 4) and NMP (SUS = 6) production utilises methanol which can be 

made from the syngas resulting from the steam reforming of biogas [Fukui 2002, Khadzhiev 2008, 

Lowenheim 1975 page  524, Weissermel 1997 page 102]. N-Methyl pyrrolidinone receives a 

higher SUS classification then DMSO because a procedure for making bio-based NMP has been 

developed, if perhaps of limited utility [Lammens 2010, Lammens 2011]. The fact that from a 

human health perspective DMSO is the superior of the two highly dipolar aprotic solvents, and 

thus a better target for bio-based product development, is accounted for by their respective HAS 

and ECO classifications. 

Hexane and toluene are not considered to be bio-based solvents in this work. This is 

despite efforts to commercialise techniques converting carbohydrates to liquid aromatics using 

zeolite catalysts [Carlson 2009, Foster 2012, Huber 2005, Huber 2013]. If such a manufacturing 

process is in fact successful and economically viable, the product stream will probably be used 

entirely in fuel and platform molecule applications [Anellotech 2013]. The demand for aromatic 

solvents is decreasing in the face of legislative efforts aimed at discouraging their use [SubsPort 

2013]. This is because of toxicity not feedstock reasons, and so aromatic bio-based solvents 

would appear to be redundant. So for reasons similar to those used to justify ostracising all 

chlorinated solvents, hydrocarbon solvents not naturally occurring in sources of biomass (or the 

direct products of related compounds) will not be considered as bio-based. This highlights that 

perhaps the distinctions made by the SUS classification will be short lived, and within a 

generation it is conceivable that all products of the oil refinery will also be obtained from bio-

refineries on large scales [Saunders 2007]. Then the question will escalate to become one of 

environmental sustainability, which includes land use, water management, the preservation of 

bio-diversity, and many other factors beyond the scope of this work. 

Repopulating the diagram: For the bio-based product economy to be successful and sustain our 

current standard of living, the roles of all petroleum derived chemicals will need to be accounted 
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for with the products of renewable feedstocks. Using the aprotic (Figure 1.11) and protic (Figure 

1.12) polarity maps developed earlier we are able to reveal the strengths and weaknesses of the 

bio-based solvent catalogue as it presently stands. Gaps in their collective polarity coverage will 

need to be resolved, aiding targeted bio-based solvent development for where demand is 

greatest [Jessop 2011]. Only solvents possessing a SUS classification of 6 or higher are regarded 

as being bio-based in this treatment. As such only the aprotic solvents acetone, ethyl acetate, 2-

MeTHF, NMP and triethylamine from Table 1.6 are accounted for (Figure 1.20). Because the SUS 

classification is dependant only on academic articles, patents, and press releases it can be 

extended to the neoteric and sometimes obscure bio-based solvents such as the following 

diterpenes: limonene, α-pinene and cineole, all of which are present on Figure 1.20. Also 

included is p-cymene, which is synthesised from limonene and occasionally used as a solvent 

[D’hooghe 2008, Fessard 2007, Kelly 1997, Liu 2010, Marchais-Oberwinkler 2011, Ritter 2004]. To 

make a second aromatic bio-based solvent, a patented procedure for dehydrating the isobutanol 

formed through a fermentation process to give isobutene is followed by a dehydrocyclisation to 

give p-xylene [Gevo 2013, Peters 2011]. Finally γ-valerolactone, the product of levulinic acid 

hydrocyclisation is included as an ester solvent [Alonso 2013]. 

 

 

Figure 1.20 Aprotic bio-based solvent polarity map. 
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There are a total of eleven bio-based solvents on Figure 1.20. This leaves quite 

considerable gaps throughout the polarity map. The number of aprotic bio-based solvents would 

grow quite considerably if biogas and bio-based ethylene were used in conventional solvent 

manufacturing practices in place of their non-renewable analogues. More examples of highly 

dipolar aprotic solvents could be made from biogas, including DMF [Weissermel 1997 page 43]. 

Chlorination of biogas (bio-based methane) to DCM and chloroform would also be possible 

[Lowenheim 1975 page 266]. The modestly hydrogen bond accepting belt of the solvent polarity 

map (i.e. the middle row of Figure 1.20) could be enhanced by the presence of diethyl ether 

amongst others if ethylene was renewably sourced for the purpose of its synthesis [Lowenheim 

1975 page 345]. Still this would not resolve the poor health and safety aspects of these solvents, 

which is why there is scope for introducing greener but unconventional solvents if they are 

produced from biomass. Sometimes there is no other reasonable option, like with the 

introduction of limonene and α-pinene as bio-based solvents in place of traditional hydrocarbon 

solvents. The difference in boiling point between n-hexane and limonene for example, because it 

is such an important property of the solvent, will limit the number of applications where 

limonene would actually be considered as a replacement for n-hexane, despite their similar 

polarity. So unfortunately in addition to the gaps in the polarity map of Figure 1.20, there are 

false positives where at first it appears that solvent substitution options are accounted for. Of 

course this depends on the nature of the application the solvent is being sought for; sometimes 

limonene is an excellent substitute for petroleum derived hydrocarbon solvents [Clark 2012, 

Veillet 2010]. This is why it is so important to combine a knowledge of solvent properties and 

greenness within the context of an application, as the solvent selection algorithm has been 

revised to do. 

Because many fermentation products are alcoholic, the protic bio-based solvent polarity 

map is more densely populated than its aprotic equivalent (Figure 1.21). The ionic liquids of the 

original diagram did not qualify as bio-based, obviously nor does water. Although in the special 

case of water it would be acceptable to include it with the bio-based solvents if desired. Aside 

from the halogenated alcohols all the other solvents from Figure 1.12 are present in Figure 1.21 

with the exception of t-butanol. Because of the number of bio-based alcohols available the 

impact of this loss should be minimal. Actually the number of bio-based solvents available greatly 

exceeds those indicted on Figure 1.20 and Figure 2.11, especially when blends for cleaning 

applications are taken into consideration [Datta 2005, Datta 2008]. But unless their Kamlet-Taft 

polarity parameters are available, bio-based solvents cannot be treated within the framework of 

this sort of polarity map assessment. 
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Figure 1.21 Protic bio-based solvent polarity map. 

 

An earlier analysis of solvent polarity maps conducted by Jessop correctly identifies 

supercritical carbon dioxide as a useful addition to the bio-based solvents [Jessop 2011]. Carbon 

dioxide is obtained from various industrial waste-streams, including as a by-product of the 

brewing industry [Hunt 2010]. In its correct place on the aprotic polarity map, carbon dioxide 

would reside within the vicinity of the alkane solvents [Marcus 2005]. More interestingly, carbon 

dioxide can be mixed with alcoholic co-solvents to create either tuneable supercritical media for 

use in chromatographic applications or gas expanded liquids as solvents for synthesis [Jessop 

2007, Rajendran 2012]. As expected, gas expanded liquids have an intermediary polarity between 

that of both components. The combination of carbon dioxide and methanol produces a medium 

with a π* value of just 0.37 [Abbott 2009]. Unfortunately β values were not available, although 

Jessop estimates it to be as low as 0.40 for carbon dioxide-methanol mixtures at 50 bar [Jessop 

2011]. Using gas expanded liquids to explore the low dipolarity/polarisability region of Figure 

1.21 (i.e. the left-most column) increases the polarity range described by protic solvent systems, 

whilst not relying on any non-renewable solvents. 

Case study selection: Comparing reaction classes helped assess which reactions to target for 

solvent optimisation based purely on their frequency of use (Figure 1.2). Equally important are 

current trends in solvent selection, and this will dictate whether it is worth seeking an alternative 

solvent for each particular transformation. Each of the reactions surveyed will employ a solvent, 
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when emerging technologies assist the application of solventless reactions (e.g. microwave and 

ball mill reactions) [Cave 2001, James 2012, Varma 1999]. The following exercise matches the 

popular (and seemingly essential) reactions discussed earlier with the regular solvent choice 

(Table 1.7). Solvent assignments were made primarily by using data describing the synthesis of 

the top 200 selling pharmaceutical products [Kleemann 2001, Mack 2009]. Only the most 

frequently used solvents are presented in Table 1.7. This assessment strengthens concerns over 

current solvent use with DCM and toluene frequently used to make esters and amides, and DMF 

and other highly dipolar aprotic solvents applied in alkylations. These solvents are known to be 

toxic and unsustainable, which makes these reactions ideal as case studies in order to push 

forward the art of solvent selection and the design and application of bio-based solvents. 

 

Table 1.7 Solvent selection practices in reactions common to the pharmaceutical industry. 

Transformation Ranka Popular solvents 

N-Substitution 1-4 DMF and DMSO [Kleemann 2001]. Also acetone, 

acetonitrile, nitromethane and sulpholane [Reichardt 

2003]. 

N-Acylation to amide 2-1 DCM and toluene [Kleemann 2001]. 

O-Substitution 3-8 DMF and THF [Kleemann 2001] 

Heterocycle synthesis 4-3 Acetic acid, DMF, ethanol and toluene [Kleemann 

2001] 

Cross-coupling 5-9 DMF [Kleemann 2001]. Toluene, aqueous 1,4-

dioxane and other aqueous ether or alcohol mixtures 

[Scifinder 2013a]. 

Alcohol to halide 6-n/a DCM and DMF [Kleemann 2001]. 

Reduction to amine 7-6 Ethanol and methanol [Kleemann 2001]. 

O-Acylation to ester n/a-2 DCM, THF, toluene and pyridine [Kleemann 2001]. 

aTransformation rankings displayed in the following format: process development-manufacturing 

scale. 

 

Reduction to give an amine can be ruled out as a candidate for further study. Despite its 

popularity there is little point in trying to replace lower alcohols with unfamiliar solvents given 

that bio-ethanol is an established renewable product. All the other reactions in Table 1.7 rely on 

the use of undesirable solvents to some extent. However there must be good reason for these 

solvents being used in spite of their human toxicity and environmental impact. To appreciate this 

fully, solvent properties and how they influence organic reactions must be understood before a 
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solvent substitution is attempted. The remaining reaction classes listed in Table 1.7 are all viable 

case studies, especially the much practiced N-substitution and amidation reactions. These two 

transformations are addressed in this work, as are esterifications (listed as ‘O-acylation to ester’ 

in Table 1.7) and a heterocycle synthesis (specifically to make dihydropyrimidinones). 

The synthesis of haloalkanes was not selected as a case study because in many cases the 

functional group interconversion is of an intermediary nature [Constable 2007b]. It would be 

better to devote research efforts towards the telescoping of reactions to avoid unnecessary 

halogenation [Risatti 2013]. The reason why O-substitution was omitted is because of its 

similarity to the more prevalent N-substitution. Originally it was imagined that an example of a 

cross-coupling reaction would follow the nucleophilic substitution case study because they 

traditionally rely on similarly dipolar aprotic solvents, and so studying nucleophilic substitution 

before cross coupling reflects a logical increase in complexity. Any bio-based solvent developed 

for one of these two applications would almost certainly be useful in the other, and strengthen 

the case for introducing a novel bio-based solvent if one could be found. But the results of the 

nucleophilic substitution case study, and the fact that (for the Suzuki reaction at least) aqueous 

alcohols have gained favour as a solvent system, meant this option became less attractive 

[Maegawa 2007].  

Solvent effect screening methodology: What it means for a solvent to be bio-based, and the 

limits to how much we can elaborate this definition has been touched upon in the preceding 

pages. The reaction case studies in most need of a substitution in favour of a bio-based solvent 

have also been chosen. Now the experimental foundation for the assignment of solvent effects to 

help establish green yet bio-based replacement solvents must be equally understandable and 

reliable. This work will examine the benefits and flaws of the solvatokinetic method used 

independently by Wells and Schleicher [Schleicher 2009, Wells 2008]. This approach will be 

supplemented with the solvent selection algorithms and related assessments introduced 

previously. Most of the experiments described subsequently will have been conducted within the 

framework of this methodology, and the final conclusions of this thesis will be as much about the 

success of this approach in identifying high performance bio-based solvents as it will be about the 

solvents themselves. 

The premise of the methodology is that a reaction can be conducted in a variety of 

solvents (under otherwise identical conditions) and the kinetics monitored by 1H-NMR 

spectroscopy with an accuracy sufficient to then determine the underlying solvent effect with a 

LSER. As previously alluded to, the Kamlet-Taft solvatochromic parameters of solvent polarity are 

usually reliable for this purpose, and can be measured easily if required. If one of the reactants 

has an easily identifiable 1H-NMR signal, and the corresponding moiety is observed in the product 
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(albeit at a different chemical shift to avoid signal overlap) then the progress of the reaction can 

be derived from the relative intensities of the signal integrals. Conversion to the product at a 

given time (Ct) is assigned with the following equation, where [A]0 is the initial concentration of 

the yield limiting reactant, [B]0 is the initial concentration of a reactant with a distinctive 

spectrum signal, IB is the signal integral of B, IP is the signal integral of the product, HB is the 

number of hydrogens responsible for reactant signal, and HP is the number of hydrogens 

responsible for the product signal: 

Equation 1.13      
    

    
  

       

               
  

If it is to be the yield limiting reactant that is monitored, then the equation simplifies to the 

following expression: 

Equation 1.14       
       

               
  

Calculated conversions at given times can be processed with an integrated rate equation to give 

the rate constant (k) for the reaction. Integrating the second order rate equation for example 

gives the following equation where [P]t is the concentration of product P at time t and the 

reactants are designated as A and B [Logan 1996]: 

Equation 1.15       
 

         
   

               

               
  

As will be shown during the course of this work, no normalisation of 1H-NMR signal 

intensities is necessary. This is an advantage over chromatographic methods of analysis. The 1H-

NMR spectrum is produced within ten minutes on a 400 MHz spectrometer which is faster than 

all but the most rapid HPLC systems. With either method each aliquot of the reaction mixture 

taken for analysis must be quenched. It was found that for reactions requiring elevated 

temperature, aliquots could simply be diluted in a suitable deuterated solvent at room 

temperature and not show any significant additional conversion. Analytical chromatography 

becomes more useful than NMR spectroscopy when the reaction components are very complex, 

resulting in no clear 1H-NMR signals to follow as the reaction progresses. Similarly when the 

reactants and products are very alike it may be difficult to attribute signals in a 1H-NMR spectrum 

to the correct component. The best choice of analysis will always be influenced by the type of 

chemistry of course, but 1H-NMR spectroscopy will be regarded as the default option. If this 

analysis fails alternatives are available. Some reactions have been successfully monitored by UV-

vis. spectroscopy and the kinetics interpreted with a LSER [Ranieri 2008]. Naturally this approach 

requires a chromophore to be present, which usually is the case with pharmaceutical products. 

Both UV-vis. and NMR spectroscopic methods also permit in situ monitoring of a dynamic system. 
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Rate constants need to be obtained in enough solvents to give statistically significant 

data. Typically at least six solvents are used in each of the following case studies, followed by 

verification in further solvents after the optimal solvent properties have been identified and then 

intepretated with the revised solvent selection algorithm and its associated assessments. In order 

to minimise error all experiments were repeated to ensure reproducibility, covering conversions 

in excess of at least 50% of the theoretical maximum where possible. The temperatures of the 

reactions were calibrated with internal temperature measurements and not from the settings on 

the external heater.  

 Solvent effects can be evaluated without much difficulty once the LSER coefficients have 

been calculated. The ‘Data Analysis’ tool in the Microsoft Excel spreadsheet software proves very 

useful for this job. Statistical significance of each Kamlet-Taft solvent polarity parameter is 

ascertained using p-values [Wells 2008]. A p-value below 0.01 is indicative of a given Kamlet-Taft 

parameter being responsible for the observed solvent effect. Of course other solvent polarity 

scales can be introduced when they provide a more fitting description of the system being 

studied. Once the LSER is completed to a satisfactory degree, the selection of possible solvent 

substitutes can commence. Extrapolation of an LSER trend should give a strong clue towards 

identifying the solvent properties required for maximal performance. Use of the solvent selection 

algorithms and associated solvent selection guides reviewed earlier will ensure any solvent 

candidates fulfil the requirements of a benign yet suitable solvent. If a high performance bio-

based solvent candidate is identified, and experimentation confirms this prediction, then a 

comprehensive comparison between the traditional solvent option and the recommended bio-

based substitute is provided in the following case studies. A wider discussion ensures that the 

broader implications of replacing a solvent with another, that might not otherwise be apparent 

from just conducting the reaction, are fully appreciated. 
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2. Nucleophilic substitution 

 

 

 

Nucleophilic substitution, the introduction of vital functionality in place of sacrificial electron rich 

chemical groups, is currently an essential, if atom uneconomical transformation employed to 

build up complexity in drug candidate molecules. True to this, heteroatom alkylation is the most 

practiced class of transformation in the pharmaceutical industry [Carey 2006, Dugger 2005]. It 

seems that nucleophilic substitution was the most popular reaction system to study in the 

infancy of physical organic solvent chemistry. Reactions of both unimolecular (SN1) and 

bimolecular (SN2) mechanisms have been investigated in detail [Abraham 1985]. It is the more 

prevalent SN2 mechanistic pathway that will be examined in this chapter, using a LSER to assess 

solvent performance and solvent selection tools to implement bio-based solvents. 

 

2.1 Solvents and nucleophilic substitution 

 

The dawn of solvent effects research: As long ago as 1890 Nikolai Menschutkin realised that a 

solvent and any reaction occurring within that solvent are inseparable [Menschutkin 1887, 

Menschutkin 1890a, Menschutkin 1890b, Menschutkin 1900, Reichardt 2003 page 2]. In 

concluding this, Menschutkin revealed much about the role of the solvent in the reaction 

between triethylamine and iodoethane to give the respective quaternary ammonium halide salt 

(Scheme 2.1). He attributed the variable rate constants of this reaction to the chemical properties 

and not the physical properties of the solvent [Reichardt 2003 page 3 and page 147]. Usually the 

solvent of a reaction will not undergo any chemical change, and so in the century that followed 

after Menschukin’s discovery, attempts were made in the broader field of physical organic 

chemistry to understand how the physical properties of solvents could be related to observed 

changes in reaction rates or equilibrium positions. The inception of the LSER was the pinnacle if 

 

Scheme 2.1 Menschutkin’s original reaction. 
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not the culmination of this effort, which will be put to use here in combination with other 

complementary tools to suggest solvents with improved EHS profiles for nucleophilic substitution 

reactions. 

Michael Abraham, before his collaborations with Kamlet and Taft, revisited the 

Menschutkin reaction with trimethylamine and both methyl iodide or p-nitrobenzyl chloride 

[Abraham 1969]. Although no LSER was constructed at this time, the rate constants for the 

reactions in a variety of solvents were reliably ascertained (Figure 2.1). The rate constants were 

adjusted against methanol as a reference. The pronounced variation in reaction rate, first 

recognised by Menschutkin, is obvious. It appears that highly dipolar solvents provide the best 

medium for accelerating the rate of reaction. Current practice usually employs solvents like DMF, 

DMSO, acetonitrile, and nitromethane in SN2 alkylations, all solvents with large π* values. 

[Kleeman 2001, Reichardt 2003 page 489]. 

 

 

Figure 2.1 The natural logarithms of rate constants (relative to methanol) for the Menschutkin 

reaction. 

 

Nucleophilic substitution and linear solvation energy relationships: To this day research is still 

dedicated to nucleophilic substitution solvent effects under the guise of topical reactions such as 
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the synthesis of ionic liquid precursors. Schleicher observed that the non-specific polarity of the 

solvent is largely responsible for the observed rate of alkylation of imidazole derivatives 

[Schleicher 2009]. The rate of this SN2 reaction is also inversely proportional to α. The β term 

claimed by Schleicher as significant is not actually so, as implied by the small magnitude of its 

coefficient (b) and verified with its insignificant p-value when recalculated here (Table 2.1). The 

work of Abraham on the rate of trialkylamine quarternisation also shows no dependence on β, 

and although initially describing an LSER with the expected proportionality between ln(k) and π* 

and inverse proportionality with respect to α, the latter term was later removed by the author on 

grounds of statistical insignificance [Abraham 1985]. It was not explained why solvent hydrogen 

bond donation was not relevant to the rate of this transformation, but is influential in near-

identical reactions. Examples of both types of alkylation (of tertiary amines and imidazoles) with 

benzyl and alkyl halides are pesented in Table 2.1, indicating that the electrophile does not 

profoundly influence the solvent effect, only the magnitude of the coefficients obtained. A 

comparison.  

Table 2.1 A collection of LSER analyses for Menschutkin type reactions and the solvolysis of t-

butyl chloride as reported in the original publications. 

1. Alkylation of 1-methylimidazole [Schleicher 2009]. 

 

 

 ln(k) = -14.72 – 2.07α + 0.07β + 4.99(π* – 0.20δ)        (R2 = 0.95) 

2. Alkylation of 1,2-dimethylimidazole [Skrzypczak 2004]. 

 

 

 log(k) = -4.95 – 1.22α + 2.61π*        (R2 = 0.92) 

3. Alkylation of triethylamine [Abraham 1985]. 

 

 

 -ΔΔG‡ = -6.04 + 6.98π*        (R2 = 0.980) 

4. Solvolysis [Abraham 1985]. 

 
 

 -ΔΔG‡ = -8.36 + 6.87α + 8.76π* + 0.0007  
         (R2 = 0.996) 
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comparison to the SN1 solvolysis of t-butyl chloride reveals a distinct difference between the two 

mechanisms. The common use of alcoholic solvents in SN1 heteroatom alkylations is indicative of 

the beneficial influence of hydrogen bond donation on the reaction [Kleemann 2001]. However 

the dipolarity of the solvent is equally vital as it is in determining the rate of SN2 type reactions. 

 As discussed previously the role of LSER analysis is to deduce mechanism. In combination 

with other techniques, some computational, the linear activated complex of the SN2 mechanism 

has become well understood [Abraham 1975, Castejon 1999]. Our current understanding of the 

Menschutkin reaction would suggest that an imidazole-solvent hydrogen bond reduces the 

nucleophilicity of the imidazole (or indeed another type of nucleophile). But most importantly 

the activated complex shows the beginnings of charge separation as the salt product is created, 

and it is this species that benefits most from the stabilising influence of solvent dipolarity 

(Scheme 2.2). 

 

 

Scheme 2.2 The general mechanism of the Menschutkin reaction in which the activated complex 

is stabilised through an interaction with the solvent DMSO. 

 

Generally no recommendations for an ideal solvent have been suggested in the case 

studies preceding this work . The goal of previous research was always the understanding of 

mechanism [Solà 1991]. Usually even yield maximisation was forsaken. The greatest 

achievements in the physical organic chemistry of solvent effects were conducted long before the 

principles of green chemistry were established [Anastas 1998]. To justify adding to this body of 

work, any contribution to the understanding of the mechanism will be greatly supplemented with 

an attempt to design solvents to enhance the productivity of the reaction. This approach also 

incorporates the solvent selection tools proposed in the Chapter 1. The advent of green 

chemistry has reinvigorated many of the chemical science disciplines, none more than solvent 

research. 
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2.2 Nucleophilic substitution results and discussion 

 

Model reaction: The reaction between 1-bromodecane and 1,2-dimethylimidazole at 323 K was 

chosen as a model SN2 nucleophilic addition (Scheme 2.3), which is analogous to the system 

studied by Schleicher [Schleicher 2009]. Such a reaction lends itself to this study because the rate 

of imidazole alkylation is within a measurable range at practical temperatures, making it a good 

choice of substrate. The use of a long chain haloalkane to give 1-decyl-2,3-dimethylimidazolium 

bromide is an attempt to impart wide ranging solubility to the salt product across a variety of 

solvents. Unfortunately the salt was not soluble in low polarity solvents such as arenes and 

alkanes and a biphasic system resulted as the reaction progressed. In other instances the reaction 

can be followed by 1H-NMR spectroscopy. 

 

 

Scheme 2.3 The model Menschutkin reaction between 1,2-dimethylimidazole and 1-

bromodecane. 

 

The initial reaction mixture consisting of 1,2-dimethylimidazole and a slight excess of 1-

bromodecane in solution was stirred at 323 K, with aliquots removed from the mixture at regular 

intervals for 1H-NMR spectroscopic analysis. Conversion to the product can be calculated using 

the CH2X signal integrals of what begins as the 1-bromodecane reactant. Because 1-bromodecane 

is used in excess this must be accounted for when calculating conversions (Equation 1.13). The 

CH3 signals of the methylimidazole group can also be used, or even the proton signals from the 

imidazole moiety itself. The variation of these NMR signal intensities can be seen in the results of 

a trial reaction in DMSO (Figure 2.2).  Figure 2.2 shows 1H-NMR spectra at four points during the 

course of a reaction, with the relative intensities of the signals associated with the product 

increasing with time relative to those representing the reactant. 

The conditions of the reaction needed to be such that a large variation in rate constants 

could be obtained in different solvents within a reasonable time span. This depends on the 

concentration of the reaction and the temperature. Graphs of conversions (Figure 2.3) and 

integrated rate equations (Figure 2.4) as a function of time in DMSO and ethanol are drawn 

subsequently. It is obvious that the reaction proceeds with a much greater velocity in DMSO (a 
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Figure 2.2 The progression of the model Menschutkin reaction in DMSO as observed by 1H-NMR 

spectroscopy. 

 

dipolar solvent) than ethanol (a protic solvent). It takes 2.5 hours for conversions in DMSO at 323 

K to exceed 50%. In ethanolic solution more than 2.5 days are required. The extremes of this case 

study are indeed large enough to indicate a profound solvent effect, but manageable at the same 

time. It was not possible to greatly improve the rate of reaction in ethanol without making the 

reaction in DMSO impossible to accurately analyse. The integrated second order rate equation is 

equivalent to the rate constant multiplied by time (Equation 1.15), and so differentiation of each 

linear plot in Figure 2.4 provides the rate constant of the reaction. 

Empirical parameters to describe the Menschutkin reaction solvent effects: The rate of the 

reaction needed to be studied in a greater variety of solvents in order to ascertain any solvent 

effect. Further solvents were selected to cover a range of polarities in order to help obtain strong 

correlations. Toluene and similar solvents have already been ruled out on the basis of their 

failure to dissolve the product. This is not always an issue for kinetic studies but the formation of 

a second, more polar, liquid phase meant that it could not be guaranteed that the reactants 

resided entirely in the intended solvent phase. Care was taken to avoid any inadvertent 
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Figure 2.3 The conversion to 1-decyl-2,3-dimethylimidazolium bromide with the Menschutkin 

reaction in DMSO and ethanol as determined by 1H-NMR spectroscopy. 

 

 

Figure 2.4 Integrated rate equations of Menschutkin reactions in DMSO and ethanol. 
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proportionality between the polarity parameters of the solvents in the data set in order to aid 

associating any solvent effect with only the responsible solvent-solute interactions. A bias 

towards highly dipolar aprotic solvents was adopted given that this class of solvent is the most 

popular for this transformation. A quick test to ensure an unbiased solvent set consists of plotting 

a graph of the Kamlet-Taft solvatochromic polarity parameters to visually assess whether a 

suitable distribution of polarity occurs (Figure 2.5). This can be simplified by just plotting β 

against π* as with the solvents polarity maps already featured in Chapter 1. The hydrogen bond 

donating ability of solvents is indicated visually. 

 

 

Figure 2.5 The polarity of the model Menschutkin reaction solvent set.  

 

The greatest rate constant is obtained with DMSO as the solvent, closely followed by 

NMP and then the other highly dipolar aprotic solvents (Table 2.2). Ethanol and t-butanol can be 

written off as potential solvents for SN2 reactions given the slow reaction kinetics. In fact only the 

most polar solvents can be considered as performing adequately given the long established 

precedent of solvents like DMSO in this reaction.  

Aside from the alcoholic solvents that impart very slow reaction kinetics, DMSO has the 

best EHS profile in the solvent set (Figure 2.6). However this is not to say that DMSO is the ideal 

solvent for this class of reaction. Dimethyl sulphoxide is not currently made from a renewable 

feedstock. Economic and supply issues still prevent this from happening. Naturally occurring 
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Table 2.2 Solvent polarity measurements and kinetics of the model Menschutkin reaction. 

Solvent ln(k) α β π*    
 a εr

a 

Acetonitrile -9.87 0.35 0.37 0.80 0.460 35.94 

t-Butanol -11.88 0.39 0.95 0.58 0.389 12.47 

Chloroform -10.93 0.20 0.10 0.58 0.259 4.89 

DMAc -9.52 0.00 0.73 0.85 0.377 37.78 

DMF -9.58 0.00 0.71 0.88 0.386 36.71 

DMSO -9.01 0.00 0.74 1.00 0.444 46.45 

1,4-Dioxane -11.26 0.00 0.38 0.52 0.164 2.21 

Ethanol -12.53 0.83 0.77 0.62 0.654 24.55 

NMP -9.19 0.00 0.75 0.90 0.355 32.2 

aQuoted as reported [Reichardt 2003 page 418 and page 472]. 

 

 

Figure 2.6 The SUS-HAS-ECO classifications of the model Menschutkin reaction solvent set. 

 

dimethyl sulphide could be oxidised to DMSO also [Charlson 1987, Hussain 2012]. An issue that 

prevails over possible sustainability concerns and not taken into account in the health and safety 

(HAS) classification is the ability of DMSO to draw chemicals through the skin barrier of humans 

[Tilstam 2012]. In addition, the environmental profile of DMSO is less than satisfactory with an 
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ECO classification of four. This low score arises from problems caused by the presence of DMSO 

in waste streams. Being water miscible, incineration and recycling of DMSO are negatively 

impacted. It is also reactive at high temperatures and has a relatively low autoignition point 

[MSDS 2013]. As such, a replacement dipolar aprotic solvent is still a priority. 

A correlation was developed describing the natural logarithm of the observed rate 

constants as a function of solvent polarity. As expected ln(k) is proportional to solvent polarity 

(π*) for non-alcoholic solvents at least. Ethanol and t-butanol provide a less satisfactory medium 

for the reaction than predicted by the correlation with π* (Figure 2.7). The aprotic solvents 

appear to be closely correlated. A non-general LSER for aprotic solvents only can be represented 

by the following equation: 

Equation 2.1                        (R2 = 0.986) 

The discrepancy caused by alcoholic solvents can be corrected by introducing α into the LSER but 

this in turn displaces the C-H acids acetonitrile and chloroform from the new LSER (Figure 2.8): 

Equation 2.2                            (R2 = 0.994) 

As with the previous correlation, when Equation 2.2 is applied to those solvents for which it is 

valid, the resulting relationship is reliable. Note that β is not significant in this instance. 

 

 

Figure 2.7 The LSER describing the rate constant of the model Menschutkin reaction as a function 

of solvent dipolarity only. 
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Figure 2.8 A comparison between experimental and predicted SN2 ln(k) values based on a LSER 

incorporating both π* and α. 

 

It appears necessary to consider the α term as separate contributions by X-H hydrogen 

bond acidity and the weaker C-H hydrogen bond acidity (Scheme 2.4). The former is applicable in 

modelling the kinetics of this reaction while the latter is not statistically significant. It can be 

imagined that the hydrogen bonding interaction between ethanol and an imidazole for example 

would be quite strong and influential in determining the kinetics of any subsequent reaction. 

Presented with the evidence it is not unconceivable that a similar interaction in a solution of 

chloroform might not occur at all, given that the electronic resonance of imidazoles will make 

hydrogen bonding less appealing then it would be with an amine. 

 

 

Scheme 2.4 The typical X-H hydrogen bond donor ethanol (left) compared to a C-H hydrogen 

bond donor chloroform (right) as they interact with 1,2-dimethylimidazole. 
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Dividing a solvent polarity parameter into component parts is accepted for the π* term in 

cases where dipolarity and polarisability exert different strengths of interaction. A polarisability 

correction term (δ) is separated from π* so that the modified ‘s(π* + dδ)’ term now accounts for 

dipolarity and polarisability in a ratio suitable for the application that is being described [Taft 

1981, Taft 1983]. The non-specific polarity of aromatic solvents is strongly dictated by 

polarisability, with δ equal to unity. Polychlorinated solvents are designated δ values half that of 

the aromatics. Other solvents are considered to be without polarisability. With few exceptions, 

the π* values of these unpolarisable solvents are linearly related to their dipole moments 

[Abboud 1977, Taft 1983]. Using the same procedure, C-H hydrogen bond acidity (designated as 

ε) can be separated from α so that a ‘a(α + eε)’ term now accounts for the differences in the 

modes of hydrogen bond acidity. As with d, the e coefficient should always be of the opposite 

sign (+ or -) to its parent solvent polarity term, be it α or π* (Table 2.3). Note that δ is not used in 

this case study due to a lack of variation in the solvent set.  

 

Table 2.3 An explanation of the polarisability term coefficient d. 

Magnitude Effect 

d > 1 Not possible to account for more polarisability than is there. 

1 > d > 0 
Not possible for permanent and induced dipoles to have an 

opposing influences. 

d = 0 Dipolarity and polarisability have an equivalent influence. 

0 > d > -1 Polarisability has a diminished effect compared to dipolarity. 

d = -1 Polarisability is statistically insignificant (dipolarity is not). 

d < -1 Not possible to subtract more than the original amount. 

 

With the introduction of ε the LSER can now account for all solvents in the initial set. This 

is the first reported observation of a noticeable difference in the mode of action by C-H and X-H 

hydrogen bond donors in a relationship formulated with the Kamlet-Taft solvent polarity 

parameters. The value of e is close to the negative of unity (i.e. complete removal of C-H acid 

contribution by ε from α), which goes some way to justify its introduction. As expected, the 

parameter with the largest coefficient is π* and there is a pronounced and negative α coefficient: 

Equation 2.3                                       (R2 = 0.995) 

The strength and hence utility of the correlation is most readily confirmed with R2 values of data 

variance. Furthermore p-values were used to discriminate between statistically significant 

parameters and those which played no part in dictating the kinetics of the reaction. Error in the 
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predictive capacity of the LSER was much less than 1% of the experimental ln(k) values in the 

solvent set (Figure 2.9). The related system studied by Schleicher cannot be confirmed as 

expressing a similar solvent effect in which ε is a meaningful parameter due to data scatter 

masking this subtle effect. The linearity of the trend in Figure 2.9 indicates that the rate 

determining step and the mechanism of the reaction is unchanged as the solvent is varied [Sykes 

1981]. 

 

 

Figure 2.9 Predicted ln(k) values from the LSER featuring the ε modification to α compared to 

experimental Menschutkin reaction data (Equation 2.3). 

 

Finally any systematic errors were sought by plotting the error in predictions against 

experimental ln(k) values. A correlation would indicate a systematic error. It does seem that the 

solvents producing faster kinetics have more error associated with the reaction rate 

measurements, but the error is not biased in one direction (Figure 2.10). This is likely to come 

from error introduced by removing an aliquot from the reaction mixture and diluting at room 

temperature. This was the only attempt to halt the progress of the reaction before analysis. 

Reassuringly the variation is not severe, as attested to by the data in Figure 2.9 in which little 

deviation from predicted performance is observed.  
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Figure 2.10 A systematic error check of experimental rate constants for the model Menschutkin 

reaction.  

 

It has been shown that the Kamlet-Taft solvent polarity parameters, albeit with a 

modification to the term responsible for hydrogen bond donating ability, will successfully account 

the observed rates of reaction. The solvent polarity scale devised by Reichardt has also been used 

in this role, consisting of a single variable [Reichardt 2003 page 411]. There is an inherent 

proportionality between α and π* in the   
  scale, that unless it matches the system being 

studied, will introduce error. This error removes all traces of correlation between solvent polarity 

and the kinetics of the model reaction (Figure 2.11). Furthermore relative permittivity, once the 

favourite of the physical organic chemist, is shown to be no better at describing the system 

(Figure 2.12). Based on these assessments the Kamlet-Taft solvent polarity parameters will be 

used exclusively in further investigations. 

Mechanistic insights: The refined LSER (Equation 2.3) meets the expectation that α will generally 

impede the kinetic progress of the Menschutkin reaction, but π* would chiefly determine it 

through stabilisation of the separated charge that is developed in the activated complex of the 

reaction. Strong solvent hydrogen bond donation will restrict the rate of reaction considerably 

regardless of how dipolar that solvent may be. In terms of free energy implications, the 

hindrance to the rate of reaction observed with X-H hydrogen bond donors most likely arises 

from a stabilising hydrogen bond interaction between 1,2-dimethylimidazole and the solvent that 

increases the energy gap between reactants and activated complex (Figure 2.13). The free energy
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Figure 2.11 A demonstration of the absence of a correlation between Reichardt’s   
  parameter 

and ln(k) of the model Menschutkin reaction. 

 

 

Figure 2.12 The relationship between relative permittivity and experimental values of ln(k) of the 

model Menschutkin reaction. 
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Figure 2.13 An relative free energy diagram indicating Menschutkin reaction solvent effects in 

DMSO relative to chloroform and ethanol. 

 

diagram presented is a tool, and energy levels are not representative of actual chemical systems. 

It is the breaking of the hydrogen bond interaction between protic solvent and nucleophile that 

must occur to accommodate the introduction of the haloalkane in the activated complex, which 

leads to the longer reaction times reported earlier. Solvent dipolarity (π*) will stabilise all 

reaction components, but the greater benefit is supplied to the most polarised species, in this 

case the activated complex. The activation energy of the reaction is increased upon the 

introduction of an alcoholic solvent but not so with C-H acidic solvents regardless of their non-

zero α values. As this hydrogen bond interaction seems not to exist between 1,2-

dimethylimidazole and C-H acids like acetonitrile and chloroform then the full benefit of their 

dipolarity can be exerted. 

 To tie these observations into existing studies, the solvent effect deduced here appears 

to be consistent with the enthalpy of activation and entropy of activation of the Menschutkin 

reaction in various mixtures of acetonitrile and methanol [Kondo 1984]. The enthalpy of 
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activation is minimised in highly dipolar aprotic solvents. The increased ordering of the solvent 

around the activated complex entropically favours less dipolar solvents (or solvent mixtures for 

that matter) but this benefit is overwhelmed by the increase in enthalpy. 

The magnitude of the LSER coefficients can sometimes aid the assignment of either an 

early or a late transition state. In Equation 2.3 the s coefficient that represents the importance of 

π* is neither extraordinarily small nor large for this type of correlation, and as such does not 

reveal the nature of the activated complex. Abraham suggested a dipole moment of 7.6 D exists 

in the activated complex of the reaction between methyl iodide and tripropylamine [Abraham 

1975]. This corresponds to a late transition state and accordingly a sensitive solvent effect. Later 

Abraham claims to resolve the dispute over the nature of the activated complex and decided on 

an early transition state [Abraham 1981]. Nevertheless an appreciable dipole must be created 

during the course of the model reaction, even if the activated complex is ‘reactant-like’ as 

opposed to resembling the ionic product, resulting in the observed solvent effect. 

Data entry for the solvent selection algorithm: Immediately, the LSER of the Menschutkin 

reaction strongly indicates that the use of dipolar aprotic solvents will enhance reaction kinetics. 

It would in theory be possible to select other dipolar solvents (aside from the usual basic amides 

and sulphur containing solvents) with the guidance of the polarity maps presented in the 

preceding chapter. However it is unlikely that, of the possible alternatives (a ketone or a nitrile 

perhaps), any will challenge the π* magnitude of DMF or DMSO. A notable exception is the 

exceedingly dipolar but unsustainable nitrobenzene. 

Confirmation of bio-based solvent suitability can be obtained with the solvent selection 

algorithm. The basic outputs of the method will be examined here in some detail, this being the 

first case study, advancing from the principles set out in the general introduction. In later case 

studies the description will be truncated and only explored in greater depth where required. 

Because many bio-based solvents are novel reaction media their physical parameters are not 

necessarily known and will have to be estimated. A computational method for the estimation of 

the Kamlet-Taft solvatochromatic polarity scales has been developed, but without access to this, 

solvent polarities could not be approximated [Lamarche 2001, Platts 2000a, Platts 2000b]. 

The solvent selection algorithm (both the original and revised models) was set up to 

operate in a computer spreadsheet (Microsoft Excel). The initial input screen of the spreadsheet 

is dedicated to the properties of the solutes (Figure 2.14). Cells coloured either yellow or brown 

are available to the user to modify and enter data. Properties can be predicted using external 

software, or so called group contribution calculation methods if otherwise unavailable [Hansen 

2007 page 6, Hukkerikar 2012]. The Hildebrand and Hansen solubility parameters are necessary 

as a means of assessing solubility, with cells provided for other optional properties. The product 
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of the Menschutkin reaction is a salt and as such the prediction of physical properties was not 

possible using the group contribution methods of property estimation currently available. This 

has minor ramifications later on which should be accounted for, but within this solely kinetic 

analysis the properties of the product are not vital. 

 

 

Figure 2.14 Menschutkin reaction solvent selection algorithm screenshot, step 1: Reaction 

components. 

 

The next stage refines the database of 195 solvents to include only those that have 

acceptable functional groups (Figure 2.15). This may have to be intuitive at the first pass, but 

after preliminary experiments have been conducted (as is the case here) this can be amended 

confidently and as necessary. For a nucleophilic substitution, acids and bases (e.g. amines) are 

not suitable solvents because competing side reactions are likely to occur. Esters, carbonates, 

aldehydes, and ketones were removed for the same reason. Hydrocarbon solvents were excluded

 

Figure 2.15 Menschutkin reaction solvent selection algorithm screenshot, step 2: Solvent class 

inclusion. 
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because they are unable to dissolve the reaction components, although they do not necessarily 

have to be removed here because the following polarity matching reaction indices will discount 

the low polarity solvents anyway. 

Then the full set of reaction indices familiar to the original method of Gani are introduced 

under the heading of rules A to J [Gani 2005]. The parameter input section of the spreadsheet 

contains the rules of the original algorithm with the additions and alterations described in 

Chapter 1 (Figure 2.16). Although the data entry is the same from the perspective of the user, 

differences become apparent when the results are generated. The first two rules must be 

responded to with a ‘Y’ (yes) otherwise the rest of the assessment becomes redundant. The 

reaction temperature (rule C) is important to the algorithm because this is used to discount the 

majority of unsuitable solvents. The desired reaction temperature of 323 K was entered. An 

important distinction to remember between the original (model A) and revised (model B1) 

solvent selection algorithms is that in the revised algorithm no solvent that is a liquid at the 

reaction temperature will be discarded at this early stage (Figure 1.15). 

  

 

Figure 2.16 Menschutkin reaction solvent selection algorithm screenshot, step 3: Parameter 

input. 

 

If certain solutes should be dissolved then this can also be decided in step 3 (Figure 2.16). 

The ability of a solvent to dissolve a solute is gauged by the closeness of their respective 

Hildebrand solubility parameters (rule D and rule E). Only rule D was applied here, as solubility of 

the product is not a requisite, but ultimately because the polarity parameters of the product are 

not known. The stabilisation or destabilisation of solutes is determined by the Hansen polarity 

and hydrogen bonding solubility parameters (rule G). This is a more sophisticated version of rule 

D and rule E. The flexibility in the solute stability assessment is user defined, and was set at ±80% 

of the polarity of 1,2-dimethylimidazole. In the original solvent selection algorithm (model A) it is 
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fixed at ±20%. In accordance with the five reaction-solvent indices explained in the introduction 

(Figure 1.14), proximity to the polarity of the solute results in a higher score being attributed to 

that solvent. A diagram is available in the spreadsheet indicating the polarity of solvent 

candidates and whether they reside within the user defined limits (Figure 2.17). In this case study 

DMF is within the highest category (RS6a = 1) while toluene fails the solvent selection algorithm 

assessment based on its poor polarity relative to 1,2-dimethylimidazole (RS6a = 5). All solvents 

that do not reside within these limits are deemed unsuitable and removed from the solvent set. 

Destabilisation of any reaction components was not deemed necessary and so this part of rule G 

(RS6b) was not applied.  

 

 

Figure 2.17 Menschutkin reaction solvent selection algorithm screenshot: Polarity matching 

diagram for estimating the solubility of 1,2-dimethylimidizole. 

 

Solvent neutrality and association and/or disassociation can also be addressed, a 

remnant of the original method that is not vital in the revised version of the solvent selection 

algorithm, in which the emphasis is shifted from chemical engineering to laboratory organic 

synthesis. As such these rules are not applied in this case study, and neither is rule J because 

greenness and associated metrics are now assessed with the additional solvent greenness 

assessment based on solvent selection guides instead (model B3).  

The original scoring method that translates user defined parameters (the reaction 

indices, Ri) into the relevant reaction-solvent index (RSi) and then into a useful score (Si) can be 
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amended by the user if desired. The original method was kept for this case study (Figure 2.18). 

The number of solvents passing the assessment is not changed, only the score associated with 

each solvent because the score given for RS5 cannot be changed from 1. Any solvent scoring a 1 

in any reaction index in the solvent selection algorithm results in a fail and is excluded from the 

final list of solvent candidates. 

 

 

Figure 2.18 Menschutkin reaction solvent selection algorithm screenshot, step 4: Scoring system. 

 

 At this stage, data entry for the original solvent selection algorithm (model A) and the 

thermodynamic aspect of the revised solvent selection algorithm (model B1) is complete. These 

can be compared and questioned, but generally the conclusions are the same; unsurprising given 

they share much of their algorithmic structure. Before the results are considered, the extension 

to the revised solvent selection algorithm concerning solvent effects, the solvent performance 

assessment (model B2), should be completed.  When a LSER is available describing a parameter 

such as the rate of reaction, the performance of solvent candidates can be estimated prior to any 

experimental work. Because it seems that generally solvent effects are of the same nature across 

a reaction class (heteroatom alkylation in this instance), if data is available for a related system it 

can be used in the absence of reaction specific data as an approximation. A custom LSER can also 

be entered based on laboratory data. This aspect of the assessment is heavily dependent on 

solvatochromic polarity parameters (e.g. Kamlet-Taft solvent polarity parameters) and so many 

solvents will fail this part of the solvent selection algorithm purely due to a lack of data. This 

subset of solvent performance results (model B2) are presented separately so if a solvent does 

well in the other solvent selection algorithm models that will not be lost because of 

undetermined polarity measurements. Either Kamlet-Taft or the related Catalán parameters can 

be used [Catalán 2009]. Although analogous in their construction, the latter are newer and 

unproven. As such the Kamlet-Taft solvent polarity parameters were used in this instance. These 

were sourced from a variety of publications and novel data featured throughout this work (Table 

8.2). Problems with inconsistencies do occur as often different dye pairs or even averaged values 

are used in the determination of the Kamlet-Taft solvent polarity scales. This will be mentioned in 

instances where data might be skewed. Only the top 30 scoring solvents were allowed to pass 

the assessment, although up to 50 are permitted depending on the wishes of the user (Figure 
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2.19). Predicted ln(k) values of solvent candidates were calculated from the Menschutkin SN2 

LSER (Equation 2.2) which is preset into the spreadsheet along with other relationships from the 

literature and the studies contained in this work. The new polarity parameter ε is not 

represented in the solvent selection algorithm spreadsheet, which is why Equation 2.3 was not 

used. 

 

 

 Figure 2.19 Menschutkin reaction solvent selection algorithm screenshot, step 5: Solvent effects.  

 

In the same data entry step (Figure 2.19), the spreadsheet will also suggest which general 

classes of solvent may be useful to maximise reaction rates based on their polarity, which can be 

fed into step 2 to narrow the number of solvents passing the assessment (model B1) to only 

those that will provide an effective reaction medium. As with the preset LSER equations, a 

custom LSER can also be used to generate a list of the best three solvent classes predicted to 

most accelerate the rate of reaction. The polarity zones are the same as those used in Chapter 1 

to characterise solvent properties (Figure 1.20). This may be helpful to flesh out an understanding 

of solvent effects from a small preliminary study. The LSER for the Menschutkin reaction was 

converted into the suggestion that highly dipolar aprotic solvents are the ideal class of solvent for 

accelerating the rate of reaction. Secondly ketones are recommended for their relatively high 

dipolarity, and thirdly the less desirable nitroalkane and nitroarenes are suggested (Figure 2.19). 

This process can also suggest whether aprotic or protic solvents are preferable. A weak 

preference for aprotics is suggested because the coefficient for α is negative but smaller in 

magnitude than the positive coefficient of π*. In actual fact the experimental data reveals that 

proticity is actually rather damaging to the rate of reaction although admittedly less important 

than dipolarity and polarisability. 

 The other novel section to the solvent selection algorithm spreadsheet comprises a 

greenness assessment of solvent candidates (model B3). The conclusions of three solvent 

selection guides are contained within the solvent database which can be used to refine the final 

KAT α SA

Step 5 Solvent effects Catalan β SB

δ SP

Type KAT Cut-off Top 30 LSER Pre-loaded π* SdP

Constant HBA HBD Polarisabil. Dipolarity Cavity Cohesion
XYZ XYZ0 α β δ π* Vm (δH)

2

-13.81 -2.16 0 0 4.92 0 0

From pre-loaded LSER list: From custom LSER:
Recommended class Recommended class 2.16 0 4.92

1st 3 Dipolar aprotics 1st 6 Ketones 0 0 0

2nd 6 Ketones 2nd 5 Esters

3rd 9 Nitros 3rd 4 Dialkyl ethers

Proticity Aprotic (weakly prefered) Proticity Aprotic (weakly irrelevant)

Ideal polarity zoneIdeal polarity zone

Nucleophilic substitution (SN2)
Custom
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list of recommended solvent candidates to only those which are relatively benign. For this case 

study the GSK solvent selection guide was selected, and only the top 30 performing solvents 

permitted to pass (Figure 2.20). More lenient users may wish to allow up to 50 solvent candidates 

to pass, or conversely as little as 10. Unlike the SUS-HAS-ECO classifications devised earlier (Table 

1.6), a single metric of greenness is required in order to attribute a final overall score to each 

solvent. Although this is much less informative than a triple parameter assessment it is a simple 

method of differentiating between solvents. Further detail is always available by referring back to 

the original solvent selection guide. The contribution of the GSK solvent selection guide 

categories can be weighted to suit the user. For this case study the GSK solvent selection guide 

‘stability’ category was removed because of the mild reaction conditions. The LCA category was 

removed because many of the solvents examined by GSK did not have full LCA data available. A 

minimum score for each category can be implemented, as can a minimum bio-standard to 

eliminate the least desirable solvent candidates (Table 1.5). Because of the strict cut-off (only the 

top 30 solvents pass), and the fact that many obvious bio-based solvents were excluded from the 

start because of potential reactivity, solvents of all sources were permitted. In other 

circumstances it is advisable to select from only established bio-based solvents, or solvents that 

will probably be available in the near future from renewable feedstocks. All the necessary SUS 

classifications are contained in the database of solvent properties. If the user wishes to use the 

Pfizer solvent selection guide then a minimum rank from the colour coded guide is selected. A 

new colour, pink, is introduced which encompasses all chlorinated solvents otherwise not 

present in the small solvent set of the Pfizer solvent selection guide. This is in order to remove 

them, as is often desirable. 

 

 

Figure 2.20 Menschutkin reaction solvent selection algorithm screenshot, step 6: Solvent 

selection guide. 
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Results of the solvent selection algorithm: At this point the suitability of solvent candidates has 

been established. The primary visualisation of the results takes the form of a list of solvents 

recommended for use by the original solvent selection algorithm (model A), the revised version 

of this method (model B1), then the revised algorithm in combination with the solvent 

performance assessment (model B2), and finally the revised solvent selection algorithm in 

combination with the greenness calculation (model B3) (Figure 2.21). The scores accumulated by 

each solvent are not shown in this step. The scores can be accessed later and used to prioritise 

solvent selection if multiple solvents are recommended. Only three scoring reaction indices are 

active in the original solvent selection algorithm method and so the maximum score is 30 

(specifically rule C, rule D, and rule G). There are no scores associated with rule A or rule B. In the 

revised solvent selection algorithm (model B1) the boiling point and melting point of each solvent 

candidate is treated separately and so the maximum score is 40. This should be taken into 

account if trying to compare across the two methods, which is why it is recommended to deal 

with the scores in a less than quantitative manner. 

 

 

Figure 2.21 Menschutkin reaction solvent selection algorithm screenshot, step 7: Results 

preview. 

 

The solvent performance (model B2) and greenness (model B3) assessments both consist 

of a single reaction index and so a maximum score of 10 is achievable. The usual score hierarchy 

is applied based on the rank of each solvent within the allowed cut-off, which in this case is thirty 

solvents in both models. The top quarter of solvents are awarded a score of 10 (which equates to 

8 solvents here), the following quarter a score of 8, then a score of 6, and then a score of 4 for 

the final quarter. Solvent candidates outside the cut-off are designated with a score of 1 which 

equates to a fail (Figure 1.14). 

The score of each solvent candidate is multiplied by the default weighting of 10 chosen 

for this case study, and added to the score obtained in the revised solvent selection algorithm 

Step 7 Results preview

Basic reaction scheme (may not include all components): Total hits Model Top hit(s) by name

1,2-dimethyl-1,3-imidazole (predicted)――――→ 1-Decyl-1,2-dimethyl-1,3-imidazolium bromide18 A

66 B1

17 B1+B2

Stabilised component: 1,2-dimethyl-1,3-imidazole (predicted)14 B1+B3
Number of solvents passing all B1-B3 assessments 5 B1+B2+B3 (max. 50)

Model Description Weighting Default

A Original Gani physical properties model

B1 Modified physical properties model Model B1 B2 B3

B2 Kinetic model S (default) 1 10 10
B3 Environmental model S (custom) 1 10 10

1 10 10

N,N-Dimethyl formamide

N-Acetyl pyrrolidine

Dimethyl sulphoxide (DMSO)

Benzyl alcohol

***TOO MANY SOLVENTS PASSING ALL ASSESSMENTS (MAX. 50)***

Sulfolane
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(model B1). This results in a maximum score of 140. For example, a solvent candidate achieving a 

score of 34 in model B1 and just passing the requirement of model B2 would have an overall 

score of 74 in the combined assessment. The default scoring system favours the performance 

and greenness assessments over the basic thermodynamic model ten to one because model B1 

(or model A) is not terribly important aside from the pass or fail aspect. If a solvent is a liquid at 

the reaction temperature and will dissolve the necessary solutes then this is generally enough as 

a starting point. It is the greenness of that solvent and how rapid the desired reaction will 

progress in that solvent that is prioritised here. 

The original method returned 18 hits of which DMF was the highest scoring. Although 

this is a quite valid suggestion using traditional metrics, DMF is not a solvent that should be 

recommended for chemistry given its chronic toxicity issues [MSDS 2013]. The revised solvent 

selection algorithm does not fare much better. Again DMF is the top scoring solvent with a total 

66 solvents passing the assessment. With so many candidates in the final solvent set the 

outcome is not any better than an educated judgement. This solvent set contains many of the 

candidates previously discounted because their melting points and boiling points are not 

symmetrically distributed around the reaction temperature (reaction index R2). 

When the revised solvent selection algorithm (model B1) is used in conjunction with the 

assessments concerning performance (via LSER, model B2) and greenness (via solvent selection 

guides, model B3), the number of recommended solvents is refined  to a smaller, more 

manageable and useful amount. Those solvents passing the assessments are presented in the 

following table, accompanied by their scores (Table 2.4). Five solvents appear to satisfy all 

criteria: anisole, benzyl alcohol, dimethyl-1,3-propylene urea (DMPU), DMSO, and sulpholane. 

But benzyl alcohol with its proticity and anisole’s modest dipolarity leave them ranked 26th and 

27th respectively in the solvent set according to predicted reaction rate constant (model B2). 

Whereas anisole and benzyl alcohol narrowly made the top 30 cut in the solvent performance 

assessment (model B2), DMSO and sulpholane were ranked an impressive 2nd and 3rd 

respectively.  

The solvent in which the velocity of the reaction is predicted to be maximised is 

nitrobenzene (π* = 1.01). This solvent should give a marginal improvement over DMSO in this 

regard but presents other issues. It is known that nitrobenzene is toxic, and also considered as a 

carcinogen [MSDS 2013]. The production of nitrobenzene requires benzene as the substrate, 

reacted with nitric acid in sulphuric acid which is incredibly exothermic and needs to be carefully 

controlled [Lailach 1988]. Nitrobenzene is not present in the GSK solvent selection guide, the 

Pfizer solvent selection guide, or the ETH solvent selection guide and so cannot take part in the 

greenness assessment (model B3). By contrast sulpholane is thought of as a much more benign 
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Table 2.4 Solvent hits generated by the solvent selection algorithm for the Menschutkin reaction. 

Solvent 
Score: 

Model B1 + model B2 

Score: 

Model B1 + model B3 

N-Acetylpiperidine 96 No data 

N-Acetylpyrrolidine 116 No data 

Anisole 72 72 

Benzyl alcohol 74 114 

Cyclohexanol Fail 86 

1,2-Dichloroethane 88 Fail 

N,N-Diethyl acetamide 116 No data 

DGME No data 114 

DMAc 136 Fail 

DMF 138 Fail 

DMPU 138 98 

DMSO 136 76 

Ethoxybenzene Fail 112 

2-Ethylhexanol No data 112 

Isoamyl alcohol Fail 92 

Methyl lactate No data 76 

NMP 136 Fail 

Nitrobenzene 132 No data 

Nitromethane 90 Fail 

2-Pentanol No data 74 

2-Propanol Fail 68 

N-Propionylpyrrolidine 94 No data 

Piperylene sulphone 108 No data 

Sulpholane 130 130 

Tri(ethylene glycol) No data 134 

Triethylphosphate 78 No data 

Total hits 17 14 

 

solvent, only bettered by tri(ethylene glycol) in the greenness assessment. Amongst those 

solvents passing the performance assessment (model B2) but not the greenness assessment 

(model B3) are NMP and DMF. 
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Implementing solvent selection: From the LSER it can be deduced that the ideal solvent for 

accelerating the rate of reaction will be very dipolar and aprotic. From the experimental solvent 

set, only DMSO fulfils this requirement and fully passes the revised solvent selection algorithm. 

Although DMSO is a clear favourite from this group there is scope for the introduction of a new 

highly dipolar aprotic solvent. This new solvent should address the issues of existing dipolar 

aprotic solvents, especially with an eye on improving the EHS benchmark set by DMSO; currently 

presenting the least issues of any solvent widely used in its class.  

Within the solvent selection algorithm only sulpholane performs consistently well in all 

assessments, although dimethyl-1,3-propylene urea (DMPU) and DMSO both outscore 

sulpholane in the solvent performance assessment (model B2). Sulpholane is more toxic than 

DMSO (about same order as DMF and DMAc) but has much lower skin permeability than all other 

dipolar aprotics [Tilstam 2012]. Sulpholane, like DMSO, is not a reproductive toxicant like DMF. In 

terms of safety (flash point, vapour pressure) sulpholane is better positioned than other dipolar 

aprotics too. It could be manufactured from bio-1,4-butadiene (a bio-derived platform molecule), 

which aside from a necessary preliminary dehydration to butadiene, would not cause a deviation 

from the existing manufacturing infrastructure (Scheme 2.5) [BASF 2013, BioAmber 2013, 

Myriant 2013]. 

 

 

Scheme 2.5 The manufacturing route to bio-based sulpholane. 

 

 Ureas are believed to be safer dipolar aprotics to replace amides (Scheme 2.6). Dimethyl-

1,3-propylene urea (DMPU) featured 6th in the list of solvents passing the solvent performance 

assessment (model B2) of the solvent selection algorithm. Interest in solvent substitution in 

favour of DMPU was ruled out during the earliest years of the green chemistry movement 

because of suspected mutagenicity [Lo 1990]. Still, DMPU is not more toxic than NMP or DMF. 

This is implied by the score of 4 DMPU receives in the GSK solvent selection guide health category 

compared to the 2 out of 10 scored by DMF, and the 3 of NMP [Henderson 2011]. Equally 

worrying is the LCA category of the GSK solvent selection guide, in which DMPU only scores 3 out 

of 10. This is lower than DMF (7) and NMP (4). The LCA category was not considered in the 

solvent selection algorithm because of gaps in the data set makes for an unfair comparison. But 

given that a life cycle of DMPU does exist, it should be used to better understand the 

environmental impact of that solvent. 
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The reaction between phosgene and amines seems likely to have been the most 

economical production method for urea solvents [Lüttringhaus 1964]. If alkylation of urea is not 

directly feasible then dimethyl carbonate can be made (albeit inefficiently) from urea and 

methanol [Zhang 2012], which in turn could be reacted with an amine to give a choice of 

alkylated urea derivatives (Scheme 2.6). A lack of complete toxicity, biodegradability, and 

physical property data will always be a disconcerting problem with new products, including bio-

based solvents, and ureas are no different. Because of the issues with the suspected 

mutagenicity of DMPU, and its significant environmental impact, it is sensible not to proceed into 

experimental verification [Henderson 2011]. Nevertheless we cannot rule out all liquid urea 

derivatives on this basis, and tetramethylurea has been suggested as another viable urea solvent 

which may be more promising in other applications [Lüttringhaus 1964]. 

 

 

Scheme 2.6 The potentially bio-derived ureas tetramethylurea (left) and dimethyl-1,3-

propyleneurea (DMPU, right). 

 

Acetonitrile has been proposed as a possible replacement (in certain favourable 

instances) for dipolar aprotics like DMF [Alfonsi 2008]. But supply shortages and a significant 

environmental impact associated with its disposal have tainted the perception of this solvent 

[McConvey 2012]. In fact efforts are now being made to replace acetonitrile in chromatographic 

applications [Brettschneider 2010]. Another attractive alternative to amide solvents are cyclic 
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carbonates (Scheme 2.7). The cyclic structure creates high dipolarity without resorting to 

nitrogen or sulphur containing functional groups. Therefore no NOx or SOx will be released upon 

incineration. Alcoholic fermentation products could serve as a feedstock in combination with 

carbon dioxide. Despite all these positive factors, propylene carbonate and ethylene carbonate, 

although scoring admirably in the GSK solvent selection guide, are electrophilic and may react 

with the nucleophilic 1,2-dimethylimidazole, and so for that reason carbonate solvents were 

excluded from the solvent selection algorithm. 

 

 

Scheme 2.7 The synthesis of cyclic carbonate solvents from alcohols. 

 

With some competition provided by the aforementioned oxides of organosulphur 

compounds, ureas, and possibly also alkyl phosphates, amides appear to be the most likely class 

of solvent capable to serve as highly dipolar, basic, and aprotic reaction media. The 

retrosynthesis of an amide indicates an amine and a carboxylic acid as starting materials (Scheme 

2.8). The latter are common renewable platform molecules, with acetic acid and succinic acid for 

example directly accessible by fermentation [Okino 2008, Yamada 2008]. Triglycerides are 

composed of three fatty acid moieties [Turley 2008 page 26]. The nitrogen containing portion of 

an amide could come from the alkylation of ammonia using bio-based alcohols. This would mirror 

current, if unsustainable, production methods for DMF and DMAc that utilise dimethyl amine 

[Weissermel 1997 page 43]. DMF is produced by the reaction of dimethylamine with carbon 

monoxide and so does not fit this retrosynthesis exactly. 

 

 

Scheme 2.8 The possibility of using a bio-based alcohol precursor for the synthesis of amides. 

 

An alternative route to a bio-based amide solvent would be to modify an amino acid 

derivative. A catalogue of research has recently arisen on the use of glutamic acid as a platform 



106 
 

molecule, including its role in the synthesis of NMP via pyrrolidinone [Lammens 2010]. Rather 

than alkylating pyrrolidinone to give the undesirable NMP or its analogues, reduction would give 

the amine pyrrolidine, which in turn could be acylated to give an amide (Scheme 2.9). The 

proposed synthetic route appears to be uncomplicated with no harmful by-products if an acid or 

ester is used in the final step of the reaction with pyrrolidine. It would seem to fit the 

requirement of feasible scale-up and solvent production. However the catalytic reduction of 

pyrrolidinone to pyrrolidine by hydrogen is perhaps slightly fanciful in its optimism [Núñez-Magro 

2007]. Hydride reduction would be more probable, creating the hazardous and stoichiometric 

waste associated with lithium aluminium tetrahydride and other sources of the hydride anion. 

Otherwise the chemistry, which begins with an enzymatic decarboxylation, is straightforward. 

 

 

Scheme 2.9 The synthesis of a class of N-acylpyrrolidines from glutamic acid. 

 

Examples of pyrrolidine derived bio-based amide solvents are N-acetylpyrrolidine, N-

propionylpyrrolidine, and N-laurylpyrrolidine (Scheme 2.10). Acetic acid and propionic acid are 

derivatives of fermentation products. Lauric acid is the most abundant fatty acid moiety in the 

triglyceride oil of coconuts [Laureles 2002]. It has a short alkyl chain relative to most fatty acids 

which will keep the melting point of the resulting amide solvent as low as possible. Lauric acid is 

also saturated, reducing the ways in which it can easily be oxidised or otherwise degraded. These 

liquids have never been applied as solvents in the past. The amide of lauric acid and 

dimethylamine has been used as a solvent but the intended reaction did not occur [Pérez-

Sánchez 2012]. None of these bio-based amides succeeded in negotiating the original version of 

the solvent selection algorithm (model A). They were predicted to dissolve and stabilise the 

solute 1,2-dimethylimidazole but failed reaction index R2: the solvent must be a liquid at the 

reaction temperature. All three are actually liquid at 323 K, but because of the way the original 

selection algorithm (model A) takes the mid-point of melting point and boiling point and 

compares it to the application temperature these three solvents all fail the assessment. When 
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ordered by predicted performance (model B2) N-laurylpyrrolidine ranks 37th in the set of solvent 

candidates, placing out of the required top 30 in order to be recommended by the solvent 

selection algorithm. The other two bio-based amides do feature in the top 30 passes. A lack of 

data prohibits any judgements on environmental impact or health and safety. 

 

 

Scheme 2.10 The proposed bio-based amide solvents N-acetylpyrrolidine (left), N-

propionylpyrrolidine (centre), and N-laurylpyrrolidine (right). 

 

Bio-based amide solvent synthesis and characterisation: Acetyl and propionyl amides of 

pyrrolidine were synthesised from their respective acid anhydrides (Scheme 2.11). Moisture and 

surplus anhydride and carboxylic acid by-product was removed by addition of sodium hydroxide, 

magnesium sulphate, and dilution in DCM [Beamson 2010]. Using an auxiliary petroleum derived 

solvent in the workup of the synthesis of a bio-based solvent negates the point of performing the 

procedure. An alternative purification reported in the literature for N-acetylpiperidine using 

vacuum distillation was recognised as poor by the authors and the workup employed here was 

used instead [Beamson 2010]. The synthesis of solvents is of high importance. Ultimately simple 

and facile transformations to give high yields are essential.  If manufacturing costs are too high 

then the solvent will not compete in the marketplace. A procedure that reacts carboxylic acids 

directly with pyrrolidine without resorting to using a coupling agent or solvent would be much 

more preferable to the procedure documented here. To this end silica based catalysts may be 

applicable [Comerford 2009]. If and when this new class of bio-amide solvent is proven to be 

adequate in a prominent application then it will make sense to investigate a reasonable 

manufacturing process.  

 

 

Scheme 2.11 Generalised reaction scheme describing the synthesis of N-acylpyrrolidines. R = Me- 

or Et-. 
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Even less appealing was the synthesis of N-laurylpyrrolidine, which was achieved by the 

addition of lauryl chloride to a solution of excess pyrrolidine in 2-MeTHF (Scheme 2.12). The 

single point of merit is the replacement of THF typical of these procedures with bio-based 2-

MeTHF [Kolocouris 1994]. Upon completion of the reaction to give N-laurylpyrrolidine, sodium 

hydroxide was added and the amide isolated as before. These procedures offered yields below 

ideal efficiency but quantities of product were enough to apply them as solvents in the model SN2 

reaction (Figure 2.22). Full procedures and yields can be found in the relevant appendix. 

 

 

Scheme 2.12 A fatty acid derived amide. 

 

 

Figure 2.22 Bio-based amide solvent yields. 

 

 The polarity of these new solvents was established using the method described by 

Kamlet and Taft [Kamlet 1983]. From the following figure it appears that N-acetylpyrrolidine and 

N-propionylpyrrolidine are marginally less dipolar than the other amide solvents DMF, DMAc, 

and NMP (Figure 2.23). The larger carbon atom to heteroatom ratio in the bio-based amides has 
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resulted in less dipolar character. This is exaggerated in the case of N-laurylpyrrolidine which has 

sixteen carbon atoms compared to the three of DMF. The polarities of tetramethylurea and 

DMPU were also examined. As expected the latter cyclic solvent is more dipolar than the former. 

Sulpholane is more akin to a ketone in terms of its polarity profile than an amide or DMSO but it 

has a strong dipole resulting in a π* value of 0.98. This makes it a strong candidate for solvent 

selection, probably more so than the less dipolar bio-based amide solvents.  

 

 

Figure 2.23 The polarity of highly dipolar aprotic solvents including bio-based amides.  

 

Application of bio-based solvents: Leading on from the results of the solvent selection algorithm 

the bio-based amide solvents were applied in the Menschutkin reaction along with sulpholane. 

What is immediately obvious is that none of these new bio-based amides are able to surpass the 

existing highly dipolar aprotic solvents in terms of accelerating the reaction rate (Table 2.5). With 

dipolarity (π*) crucial to the rate of the reaction, N-laurylpyrrolidine is less satisfactory than even 

acetonitrile. Sulpholane performs better in terms of kinetics, slightly more than predicted. It 

should be made clear that no LCA data is available for sulpholane [Henderson 2011]. This has an 

impact on the reported greenness of sulpholane with the maximum ECO score of 10 (that would 

normally include the LCA category) very tentative indeed. The method of calculating the ECO 

classification is stated in Chapter 1 (Equation 1.12). The bio-based amides are not present in the 
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GSK solvent selection guide and so no comment can be made regarding their greenness within 

the SUS-HAS-ECO framework. 

 

Table 2.5 The properties and reaction rates of the Menschutkin reaction in DMSO and optimal 

solvent candidates. 

Solvent ln(k) α β π* SUS HAS ECO 

DMSO -9.01 0.00 0.74 1.00 4 7 4 

Sulpholane -8.81 0.00 0.30 0.96 4 9 10a 

N-Acetylpyrrolidine -9.59 0.00 0.76 0.83 6 n/a n/a 

N-Propionylpyrrolidine -9.61 0.00 0.79 0.82 6 n/a n/a 

N-Laurylpyrrolidine -10.55 0.00 0.86 0.67 6 n/a n/a 

aNo LCA score available in the GSK solvent selection guide [Henderson 2011]. 

 

The predicted rate constants fit very well with experimentally obtained data. A 

comparison between experimental and predicted ln(k) can be updated to reflect this (Figure 

2.24). Sulpholane produced the greatest reaction acceleration of all the solvents. It is not the 

 

Figure 2.24 The performance of bio-based amide solvents and sulpholane in the Menschutkin 

reaction. 
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most dipolar solvent according to its π* value, this status is reserved for DMSO. The disparity is 

only small however, and this role reversal is probably due to experimental error. Attempts to 

improve the correlation with the Hildebrand solubility parameter failed. N-Acetylpyrrolidine and 

N-propionylpyrrolidine are competitive but not outstanding in terms of reaction kinetics, nestling 

at the lower end of the region defined by the highly dipolar aprotic solvents in Figure 2.24. 

 

2.3 Heteroatom alkylation summary 

 

The success and implications of solvent selection: The solvent effect determining the rate of the 

model Menschutkin reaction demands a highly dipolar and aprotic solvent for efficient 

conversion to the product. The precise reason for the rate enhancement in dipolar solvents can 

be attributed to a reduction in the enthalpy of activation, which outweighs a reduction in the 

entropy of activation [Kondo 1984]. The drawbacks of the optimal performing solvents (water 

miscibility, high boiling point, teratogenicity, depleting feedstock) have not been resolved 

through solvent selection. The health issues associated with solvents bearing an amide 

functionality would seem to be inseparable from their high dipolarity, both arising from the 

carboxamide moiety. Some potentially bio-derived amide solvents were synthesised, but the 

looming uncertainty over their EHS profiles means that there is no secure reason by which they 

can be recommended as replacements for established highly dipolar aprotic solvents, casting 

doubt on their suitability as solvents. 

As identified using the solvent selection algorithm, no performance is lost by using more 

benign solvents such as sulpholane. Sulpholane resolves previous compromises between reaction 

performance and environmental impact, and could be produced from renewable feedstocks 

(Scheme 2.5). Sulpholane (£44.20, 500 g, Sigma-Aldrich, 99% purity, as of 21st June 2013) is 

reasonably comparable in price to DMSO (£35.00, 500 mL, Sigma-Aldrich, 99.5% purity, as of 21st 

June 2013). 

To their detriment, sulpholane and nitrogen containing solvents will present end of life 

air pollution issues if incinerated. Cyclic carbonates are sufficiently dipolar to serve in nucleophilic 

substitution reactions without the possibility of producing SOx or NOx emissions upon 

incineration. This presents an opportunity for future work in this area. However for this specific 

case study carbonate solvents were excluded from the solvent selection algorithm for fear of 

unwanted nucleophilic addition. Like sulpholane, cyclic carbonates are probably good solvent 

candidates to consider for the wider range of chemistries reliant on highly dipolar yet aprotic 

solvents. This includes cross coupling reactions and some types of hydrogenation. 
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Broader appeal: It has been said of the Menschutkin reaction that it is “a special kind of SN2 

reaction where the reactants are uncharged, in contrast to the most [sic] usual SN2 reactions 

where one of the reactants is charged” [Solà 1991]. The implication is that the separation of 

charge in the Menschutkin reaction will respond differently to the polarity of the solvent than the 

transfer of charge from nucleophile to leaving group in other SN2 reactions (Scheme 2.13). This 

could mean that the case study presented here is not of broad interest. The Hughes-Ingold rules 

state that because the activated complex of the Menschutkin reaction generates a separation of 

charge in previously neutral molecules, the Gibbs free energy of activation will be lowered in 

polar solvents [Hughes 1935]. In this instance ‘polar’ is vaguely used to imply dipolarity. The more 

usual SN2 reaction of an anion displacing a leaving group from an uncharged species has a 

transition state at which the activated complex features a shared charge across two 

electronegative centres. The reduction in point charge means that ‘polar’ solvents now 

discourage the reaction according to the Hughes-Ingold rules. Instead stabilisation of the ionic 

reactant (and the ionic product) is now preferentially favourable. The Gibbs free energy of 

activation should be reduced by using ‘non-polar‘ solvents to destabilise the ionic species. 

 

 

Scheme 2.13 The comparison between the mechanism of different types of SN2 reaction. 

 

 To resolve this potential hurdle, classic kinetic solvent effect studies concerning the more 

usual SN2 reaction between an anion and an alkyl halide (or pseudo-halide) were reinterpreted 

using the Kamlet-Taft solvent polarity parameters to construct a LSER (Table 2.6). The reaction of 
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Table 2.6 A collection of LSERs describing SN2 and SNAr reactions. 

1. Menschutkin reaction. 

 

 

 ln(k) = -13.79 – 2.17(α - 1.02ε) + 4.90π*        (R2 = 0.994) 

2. Aromatic nucleophilic substitution reaction [Mancini 1986]. 

 

 

 ln(k) = -1.74 - 1.21α + 1.86π*        (R2 = 0.934) 

3. Nucleophilic substitution [Kondo 1982]. 

 

 

 ln(k) = -5.86 - 11.04α + 7.18β        (R2 = 0.981) 

4. Nucleophilic substitution [Müller 1972]. 

 

 

 ln(k) = -3.62 - 7.08α + 7.52β        (R2 = 0.927) 

5. Nucleophilic substitution [Delpuech 1965]. 

 

 

 ln(k) = -6.58 - 6.25α + 5.10β        (R2 = 0.794) 

 

ethyl iodide and bromide ion at 303 K appears to be kinetically dependent on the α and β value 

of the solvent [Kondo 1982]. The familiar inverse proportionality with α was probably expected, 

but this is counterbalanced by an equally strong but opposing dependence on β. The same is true 

of the kinetics of methyl tosylate reacting with tetrabutylammonium bromide [Müller 1972]. The 
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nucleophilic attack of an azide ion on 1-bromobutane follows these same rules, if a little weaker 

in terms of the strength of the resulting correlation [Delpuech 1965]. This means that instead of 

searching for dipolar solvent substitutes as with the Menschutkin reaction, strongly hydrogen 

bond accepting yet aprotic solvents should be sought in order to accelerate more typical 

heteroatom alkylation reactions. The choice consists of amines, reactive under these conditions, 

and the dipolar aprotic amides and sulphoxides already investigated. So it is still correct to state 

(if only by coincidence) that the kinetics of all SN2 reactions are hastened by highly dipolar aprotic 

solvents. The kinetics of SNAr reactions follow the familiar Menschutkin solvent dependence 

(Table 2.6). 

This raises a question over the mechanism of non-Menschutkin SN2 reactions, which 

apparently disobey the Hughes-Ingold rules. The negative influence of α on the kinetics of the 

reaction is presumably of the same variety that retards Menschuktin reactions. The beneficial 

effect of a solvent engaging in hydrogen bonds as an acceptor but not as a donor is not easy to 

pinpoint from the reaction pathway. It may be as simple as the solvent interacting with the 

counter ion of the reactive anion, unmasking the nucleophilicity of the reactant (Scheme 2.14). 

This effect might be more important than stabilising the activated complex, and so the 

suggestion from the Hughes-Ingold rules to use low polarity solvents is not realised 

experimentally. 

 

 

Scheme 2.14 The non-Menschutkin SN2 mechanism as assisted by DMSO. 

 

The alkylation of 1,2-dimethylimidazole provides access to a few potentially useful 

products, but the purpose of this case study was to demonstrate a means of synthesising a great 

variety of compounds by heteroatom alkylation, this being just one example. Products formed 

from the N,N’-polyalkylated imidazolium moiety do not feature in medicinal products, but work 

using these compounds can be translated to other chemistries of wider utility, including 

singularly substituted imidazoles such as those that are used to treat fungal infection [Karakurt 

2001, Kathiravan 2012, Yang 2012a]. Obviously ionic liquids are one product that utilises the 

dialkylimidazolium moiety directly [Welton 1999, Hallett 2011]. It has been shown that the 
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Menschutkin reaction offers little in the way of understanding the general SN2 mechanism of 

charged nucleophiles but the optimum class of solvent is the same regardless. 

Recapitulation and future work: Sulphur containing dipolar aprotic solvents seem superior to 

nitrogen containing dipolar aprotics in terms of performance and health and safety. End of life air 

pollution concerns would be very much reduced if neither nitrogen nor sulphur were present in 

the solvent, and so cyclic carbonates also appear to be an attractive alternative. However they 

were presumed to be reactive under the conditions of this case study and more research would 

need to be conducted in this respect. There does not seem to be any significant issues with the 

long term sourcing of feedstocks for these types of solvents, which are predominately 

constructed from low molecular weight fragments. Ultimately a LCA for sulpholane would be 

needed, and compared to those of other solvents such as propylene carbonate to arrive at any 

definitive conclusion. 

The solvent selection algorithm and its associated assessments have successfully 

enhanced the understanding of the reaction and placed it within a firmer context amongst the 

other SN2 reactions. Although issues clearly remain, sulpholane offers an improvement over 

many other seemingly similar solvents. What has become very clear is that any mechanistic 

knowledge of the reaction in itself is a massively useful tool when it comes to solvent selection. 

All of what has been learnt from studying this model reaction can be applied in the subsequent 

case studies to further develop the art of solvent selection. 
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3. Amidation 

 

 

 

The creation of amide linkages is fundamental in as much as amino acids combine in this way to 

form proteins. The synthesis of amide functionalised chemical products is prevalent in the fine 

chemical and pharmaceutical industries. One in four anti-cancer drugs contains a carboxamide 

functionality [Ghose 1999]. Amidation is therefore not simply unavoidable, but prevalent. A 

recent survey of process development in the pharmaceutical industry places amidation as the 

most common acylation procedure and second only to N-alkylation chemistries overall in terms 

of the most frequently practiced synthetic procedure [Carey 2006]. Acid chloride (44%) and 

coupling agent (25%) facilitated routes dominate, even though the health and safety implications 

are a concern, and the waste streams associated with these procedures of a significant volume. 

Amidation solvent effects have not been studied to the detail that those in the Menschutkin 

reaction have, but attempts to interpret what data is available have been conducted in the past 

[Charville 2010]. The following introductory passages will explain the findings of existing research 

that is relevant to the understanding of solvent effects in amidation chemistries. The following 

results help understand the reaction mechanism and apply this knowledge to solvent selection. 

 

3.1 Solvents and amidation 

 

Current mindset and practice: Carbonyl additions feature heavily in synthetic organic chemistry 

and have widely attracted the attention of those practicing contemporary green chemistry. 

Traditional methods of ester and amide synthesis rely on aromatic or chlorinated solvents to 

achieve high yields [Kleeman 2001]. Not much more is known about the role of the solvent. 

Typically the reaction is assisted by a coupling agent or the carboxylic acid is converted to a more 

reactive species [Smith 2007 page 1427]. To illustrate the point, one only needs to return to the 

previous chapter to find evidence of amide forming reactions that are less than ideal in terms of 

the reagents and conditions used. 

Thus the synthesis of amides can be far from the ideal process, in which a carboxylic acid 

is reacted directly with an amine. Amidation by the liberation of water as the sole by-product, yet 

without the use of stoichiometric auxiliaries is rarely practiced by synthetic chemists. Although 
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this approach can be adopted for the analogous formation of esters, the basicity of amines is 

often believed to lead to the unassailably preferential formation of an ammonium carboxylate 

salt with the carboxylic acid reactant (Scheme 3.1). The equilibrium position is thought to heavily 

favour the salt over the free reactants [Montalbetti 2005]. The term ‘free reactants’ will be used 

to distinguish the molecular species from the products of any acid-base equilibrium involving 

these substrates.  

 

 

Scheme 3.1 The commonly perceived competing amidation and salt forming equilibria. 

 

Amide hydrolysis results in the loss of the stabilising carboxamide resonance. As such the 

amide product is thermodynamically favoured over the free reactants [Ulijn 2002]. Consequently 

the equilibrium position of the amidation (denoted as K2 in Scheme 3.1) is not troublesome, the 

problem lies with the salt formation (K1). Instead of negotiating the thermodynamic pitfall of the 

ammonium carboxylate salt, the carboxylic acid reactant tends to be either activated, or a 

dehydrating reagent used to form an acid anhydride in situ for high yielding, but somewhat 

wasteful procedures (Table 3.1). The E-factor and associated metrics all indicate the flaws of 

these methodologies [Comerford 2009]. Because of the prevalence of these techniques, the 

literature is not lacking in comprehensive accounts appraising developments in carbodiimide and 

other coupling agent technologies [Han 2004, Mikolajczyk 1981, Valeur 2009]. Activation to form 

an intermediate acid chloride is a staple of discovery and medicinal level chemistry (i.e. the 

milligram scale synthesis of pharmaceutical drug candidates), which should not escape scrutiny 

for it also requires stoichiometric auxiliaries, in turn creating harmful by-products. 

Macmillan et al. recently studied the rate of amide coupling assisted by various coupling 

agents in order to replace what they had identified as an overdependence on the solvents DMF 

and DCM [Macmillan 2013]. Such is the velocity of amide coupling in the presence of HATU, 

COMU, etc. that of the solvents investigated only t-butyl methyl ether and cyclopentyl methyl 

ether of their solvent set were poor substitutes. Ethyl acetate, 2-MeTHF, dimethyl carbonate, and 

often 2-propanol were suitable across a wide range of substrates. Any solvent effect is difficult to 

identify with a lack of kinetic variation across the data set. 

Current practice regarding coupling agents in amidation chemistry was considered as a 

suitable target for the work of the ACSGCI Pharmaceutical Roundtable [Constable 2007b].      
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Table 3.1 A selection of activating techniques for promoting amidation. 

1. Two step acid activation [Comerford 2009, Montalbetti 2005]. 

 

 

2. In situ acid activation by CDI [Vaidyanathan 2004]. 

 

 

3. Acid dehydration DCC [Comerford 2009, Montalbetti 2005]. 

 

 

 

The committee decided that amide formation is the chief priority in the greening of 

pharmaceutical manufacturing and medicinal chemistry. In response, Pfizer have identified two 

activators in N,N’-carbonyldiimidazole (CDI) and isobutyl chloroformate which satisfy their 

understanding of wide utility, scalability, and greenness (Figure 3.1) [Alfonsi 2008]. It would seem 

that conversion of carboxylic acids into their respective chlorides is not considered ‘green’ but 
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catalysis as it currently exists does not have wide utility. The use of traditional stoichiometric 

coupling agents, essentially dehydrating agents, cannot be considered as green or sustainably 

scalable. However CDI, the in situ activator covered in Table 3.1 and the similar isobutyl 

chloroformate still appear to present significant waste issues, and the likely use of toxic phosgene 

in their synthesis is also at odds with the concept of green chemistry. The authors of this 

assessment acknowledge that their greenness criteria rely very strongly on the context 

established by alternative methods of amidation. This being the case, any progress made in this 

regard should be gratefully received by the medicinal chemistry community. 

 

 

Figure 3.1 A reproduction and simplification of the Pfizer reagent selection Venn diagram for 

amide coupling protocols [Alfonsi 2008]. 

 

Solvent-free amidations: Despite the common use of coupling agents and activation by auxiliary 

compounds, with the application of high temperatures it is possible to form the desired 

carboxamide from the precursor salt, although this approach is incompatible with the delicate 

functionalities common to specialty chemicals [Al-Zoubi 2008]. The reaction between some 

carboxylic acids and amines can be thermally activated with temperatures above 433 K, without 

any requirement for an auxiliary solvent [Cossy 1989, Gooßen 2009]. The reaction proceeds 

equally as well with or without molecular sieves, and so the reaction can be performed in the 

absence of any chemical species that are not incorporated into the product. The sole by-product 

of water suggests that (high temperatures aside) the procedure is an improvement over the use 

Greenness

Wide utility Scalability

HATU

DCC

Cyanuric chloride

Boric acid

SOCl2

(COCl)2

iBuOCOCl

CDI
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of coupling agents, with yields typically in excess of 75%. Mass utilisation is expected to be 

enhanced over some of the higher yielding protocols discussed previously.  

Microwave technology has provided surprisingly good amidation results. The microwave 

facilitated, direct reaction between acetic acid and a variety of amines begins to occur above a 

temperature of 363 K [Ferroud 2008]. The ammonium carboxylate salt will absorb microwave 

energy far better than a molecular organic solvent, and so the combination of an auxiliary and 

solvent-free microwave assisted synthesis seems the ideal marriage. A detailed exploration into 

the parameters upon which the microwave assisted reaction is dependent has been conducted, 

offering a useful insight prior to further studies [Perreux 2002]. The proposed rate determining 

step is bimolecular, and is equivalent mechanistically to the tetrahedral intermediates of other 

carbonyl additions, such as those associated with the synthesis or hydrolysis of esters [Smith 

2007 page 1402]. The situation is believed to be complicated by the ability of a molecule of either 

reactant to stabilise the activated complex of the reaction via the formation of a hydrogen 

bonded complex (Scheme 3.2). This might be defined as a self assistance mechanism, a concept 

that will reappear throughout this chapter. The rate of related acid-catalysed esterifications have 

been shown to be decelerated by reaction solvents capable of blocking similar interactions when 

a catalyst is providing this type of hydrogen bonding stabilisation [Wells 2008]. The bimolecular 

hypothesis has other advocates [Gooßen 2009], as well as opponents [Arnold 2006]. Indeed the 

experimental data available to date has not resolved this debate, and so it is reasonable to make 

alternative suggestions based on new eveidence. 

 

 

Scheme 3.2 A proposed reactant stabilised activated complex of amidation. 
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Mechanism: The rationale provided by Perreux and co-workers for the presence of the self 

assistance interactions shown in Scheme 3.2 comes from their own studies in which an excess of 

either reactant seems to be beneficial to the resultant yield, although this could just be because 

more substrate is available to react [Perreux 2002]. Complementary microwave studies show 

that the addition of an auxiliary base (imidazole rather than a classical amine) accelerates rates of 

amidation [Nezhad 2003, Baldwin 1996]. In the analogous synthesis of esters from an acid 

anhydride, N-methylimidazole performs almost equally as well in the role of an auxiliary base as 

2-methylimidazole does [Kingston 1969]. This being the case it appears that the additive does not 

have to be protic to accelerate the rate of carbonyl additions. Hydrogen bond stabilisation of the 

reaction components is most likely to be offered by solvent molecules instead, owing to their 

relative prevalence in the reaction mixture. Furthermore, the observed reaction rate is much 

slower using triphenylimidazole as a catalyst, suggesting a nucleophilic mode of action, as 

opposed to an acid-base interaction. 

If the possibility of nucleophilic catalysts is extended to include the reactants, this 

hypothetical exercise would lead either directly to the product if the amine reactant is the 

nucleophile (i.e. no catalysis) or an acid anhydride if a second carboxylic acid is the nucleophile 

(Scheme 3.3). Following the latter line of pursuit, in his investigations into the catalytic effect of 

boronic acids on amidations, Arnold proposes a mechanism for the uncatalysed reaction between 

a carboxylic acid and an amine by supposing that the carboxylic acid dehydrates to form an acid 

anhydride [Arnold 2006]. The nucleophilic attack of the amine would be so rapid by comparison 

that the rate equation describing the reaction would be zero order with respect to amine 

concentration. In buffered aqueous solutions, it is known that a dicarboxylic acid will proceed via 

an anhydride intermediate in its reaction with an amine to give the carboxamide [Higuchi 1963]. 

However it should be noted that an intramolecular reaction would presumably be more feasible 

than its intermolecular counterpart. Furthermore, the rate of anhydride formation decelerates as 

the pH of the solution is increased, dropping to zero in neutral media. At pH 7 the vast majority of

 

Scheme 3.3 Nucleophilic attack on a carboxylic acid by either reactant in an amidation reaction. 
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the carboxylic acid may well be deprotonated, resulting in the loss of a viable leaving group. In 

their investigations into phenyl boronic acid derived amidation catalysts, Al-Zoubi et al. were able 

to eliminate the possibility of an intermediate carboxylic acid anhydride [Al-Zoubi 2008]. 

The absence of any correlation in Perreux’s work between the pKa values of the 

reactants with the production of the respective carboxamide precedes the inevitable conclusion 

that the competing equilibrium between the free reactants and their ammonium carboxylate salt 

is not of great significance in attempts to enhance the reaction of the free carboxylic acid and 

amine [Perreux 2002]. Instead satisfactory correlations describing the reactivity of different 

carboxylic acid and amine partners were based on the relative energy differences of the HOMO 

belonging to the nucleophilic amine and the vacant antibonding π*C=O orbital of the carboxylic 

acid [Perreux 2002]. A bimolecular mechanism involving both reactants is therefore implicated, 

certainly proceeding via a tetrahedral intermediate. 

Whiting and co-workers have recently reported the results of a jointly computational and 

calorimetric study of the uncatalysed reaction of carboxylic acids and amines, which can be used 

to summarise the state of the art built upon the preceding mechanistic proposals [Charville 

2011]. This supersedes the suggestion of an intermediate acid anhydride species proposed a few 

years earlier by this same group [Arnold 2006]. With new evidence they now conclude that acid 

catalysis and base catalysis, feasibly provided by the reactants themselves, does not occur 

[Charville 2011]. More importantly the zwitterionic intermediate created by the nucleophilic 

attack of the amine upon the carboxylic acid is unstable according to computational calculations. 

The remaining intermediate possibility is a neutral intermediate that must be accessed without 

passing through its zwitterionic analogue. Stabilisation by carboxylic dimerisation (not 

 

Scheme 3.4 The hydrogen bond assisted amidation mechanism. 
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protonation) is called upon to avoid the formation of charge (Scheme 3.4). This proposal is a 

more specific version of the self assisted mechanism, beginning with a carboxylic acid dimer. 

Such a mechanism helps to explain the effect of surplus carboxylic acid on the rate and order of 

the reaction, but not the influence of excess amine as described in Scheme 3.2. 

Catalysis: The mechanism should be used to address the fundamental problem that the direct 

reaction between a carboxylic acid and an amine is slow. One response to the slow rates and high 

temperatures required in the absence of coupling agents is the use of catalysis. Unfortunately the 

development of an efficient catalyst has been somewhat elusive. Boric acid has been 

demonstrated as catalysing the amide forming step in the synthesis of Efaproxiral, once tested as 

a potential treatment for brain metastasis (Scheme 3.5) [Anderson 2006]. A cheap but toxic 

chemical, boric acid is usually let down by its modest catalyst effect. Attempts to build upon the 

activity of boric acid have resulted in quite elaborate phenylboronic acid derivatives, the benefits 

of which must be weighted against their arduous preparation [Arnold 2006, Arnold 2008, 

Georgiou 2009]. Heterogeneous catalysts have also been successfully developed. The use of 

activated silica as a recyclable catalyst for example offers many advantages over the boronic acid 

derivatives in terms of greenness, as the associated metrics have shown [Comerford 2009]. 

 

 

Scheme 3.5 Catalysis capable of enhancing amidation reactions, demonstrated in the synthesis of 

Efaproxiral. 

 

Aniline is often chosen as a relatively unreactive reagent to prove the worth of amidation 

catalysts. Because of its poor nucleophilicity, uncatalysed amidation reactions have been shown 

to be negligible over the course of a 24 hour reaction (0-6% conversion when aniline is reacted 
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with 4-phenylbutanoic acid for example) [Comerford 2009]. High temperatures seem necessary 

for the heterogeneous catalysis of aniline acylation with carboxylic acids (Table 3.2). Acetylations 

are often conducted with a large excess of acetic acid in the dual role of reactant and solvent. 

Heterogeneous zeolite and clay catalysts can coerce high amide productivity under this type of 

reaction conditions [Choudary 2001, Narender 2000]. Acetic acid is not a terribly hazardous 

solvent, performing admirably in the GSK solvent selection guide [Henderson 2011], and has an 

established fermentative bio-synthesis [Fukaya 1992, Yamada 2008]. When also considering the 

low price of acetic acid there seems to be little need for further scrutiny of this procedure, aside 

perhaps from the high temperatures currently required. An acidified carbon (Starbon-400-SO3H) 

appears to have wide utility as a heterogeneous catalyst [Luque 2009]. The catalytic effect 

exerted by activated silica is also impressive, especially given that unlike the other 

transformations covered in Table 3.2 equimolar quantities of each reactant were used 

[Comerford 2009]. 

 

Table 3.2 Heterogeneously catalysed methodologies for the synthesis of carboxamides. 

 Catalysta Product and conditions Yield 

1. 
HY zeolite 

(0.15 g/mmol)  

6 hr, 389 K in excess acetic acid [Narender 2000]. 

99% 

2. 

Iron-exchanged 

montmorillonite  

(0.002 g/mmol) 
 

3 hr, 389 K in excess acetic acid [Choudary 2001]. 

98% 

3. 
Starbon-400-SO3H  

(0.05 g/mmol)  

10 min, 403 K, neat, μW [Luque 2009]. 

87% 

4. 
Starbon-400-SO3H  

(0.05 g/mmol)  

10 min, 403 K, neat, μW [Luque 2009]. 

92% 

5. 
K60 activated silica 

(0.05 g/mmol)  

24 hr, 383 K in toluene [Comerford 2009]. 

74% 

aLoading relative to amine given in parentheses. 
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What is important to the fine chemical industries is that the high yielding synthesis of an 

amide from two high value (and often solid) reactants can be guaranteed. Therefore large 

reagent excesses are not feasible and an auxiliary solvent is required. Homogeneous catalysis 

often provides high yields but the conditions are no less harsh than in heterogeneously catalysed 

reactions (Table 3.3). For the synthesis of N-benzyl-4-phenylbutanamide, it seems that non-

renewable aromatic solvents heated to reflux are the favoured reaction medium, highlighting the 

importance of solvent selection in favour of greener alternatives. Considering the solvent 

orientated context of this work, it is intriguing to note that Georgiou remarks that fluorobenzene 

offers some advantages over toluene regarding catalyst stability [Georgiou 2009]. The nature of 

the catalyst adds another layer of complexity onto the solvent selection dilemma. The bottom 

line is this: if the reactants are of high value, then maximal conversion to the amide product will 

undoubtedly be pursued for economic purposes in preference to E-factor minimisation. This 

means that these catalysed methodologies, be it homogenous or heterogeneous in nature, will 

have to compete with the established coupling agents and activators. The boron based catalysts 

will. 

Table 3.3 Homogeneously catalysed methodologies for the synthesis of N-benzyl-4-

phenylbutanamide. 

 Catalysta Conditions Yield 

1. 
B(OH)3 

(1 mol%) 
16 hr, 383 K in toluene [Tang 2005]. 91% 

2. 

 

3,4,5-Trifluoro-benzene 

boronic acid (1 mol%) 

18 hr, 383 K in toluene [Ishihara 1996]. 96% 

3.  

o-N,N-diisopropyl-

benzylaminoboronic acid  

(10 mol%) 

24 hr, 358 K in fluorobenzene [Arnold 2008]. 68% 

aLoading relative to amine. 
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will often provide high enough amide yields, but the reaction duration is too long and the 

temperatures too high when compared to the rapid room temperature, coupling agent facilitated 

procedures that are still  commonplace. 

 

3.2 Amidation results and discussion 

 

Model reaction: The focus of this work will be an examination of the solvent effects and 

mechanism of an uncatalysed amidation, without the complications of coupling agents. 

Ultimately the goal is to deduce an effective yet renewable solvent. The reaction between 4-

phenylbutanoic acid and benzylamine is known to proceed without the use of any chemical 

auxiliaries, having already been established as a model reaction in previous work (Scheme 3.6) 

[Arnold 2006]. The pairing of these two reactants in toluene does not result in the precipitation 

of their ammonium carboxylate salt. This is important for accurately measuring the rate of 

reaction. Instead, mixing 4-phenylbutanoic acid and benzylamine in toluene has been shown by 

1H-NMR spectroscopy to create a 2:1 molar ratio of the expected salt (in solution) and a hydrogen 

bonded pair of the solutes [Charville 2011]. Using a carboxylic acid with a lower pKa value would 

result in a greater amount of salt formation and inevitably some, if not complete, precipitation. 

The order of the reaction will be clarified and the mechanism confirmed by observing solvent 

effects. By contributing this study, practitioners of amidation chemistries may take it upon 

themselves to utilise its findings in combination with catalysts of their own invention, so that the 

solvent may be complimentary yet also environmentally benign. 

 

 

Scheme 3.6 Amidation to give N-benzyl-4-phenylbutanamide. 

 

Experimental procedure: As a benchmark, Arnold observed a little less than 60% conversion in 

refluxing toluene for the uncatalysed reaction of 4-phenylbutanoic acid and benzylamine within 

approximately 30 minutes [Arnold 2006]. A reaction temperature of 373 K was chosen based on 

this existing precedent. Each experiment consisted of preheating 4-phenylbutanoic acid in the 

chosen solvent, to which benzylamine was added in a single dose. This marked the start of the 
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reaction. For the determination of reaction kinetics a small aliquot of the reaction mixture was 

diluted in deuterated chloroform at selected intervals during the course of the reaction. Rate 

constants were calculated from the ratio of the 1H-NMR signal integrals corresponding to the N-

CH2 moiety of the product, N-benzyl-4-phenylbutanamide, and the reactant, benzylamine (Figure 

3.2). The spectrum in Figure 3.2 shows that the progress of the reaction can be followed without 

interference from other signals. These ratios can be converted into a rate constant for the 

reaction (Equation 1.13 and Equation 1.15). The ratio of NMR signal intensities were found to 

accurately represent the conversion when compared to standards of benzylamine and N-benzyl-

4-phenylbutanamide in solution, as presented in the appendix (Figure 8.1). 

 

 

Figure 3.2 An example of a 1H-NMR spectrum showing the partially complete model amidation in 

toluene. Full solvent signals are not shown to improve resolution of the solute signals. 

 

Determining the reaction order: Prior to determining rate constants in a greater variety of 

solvents, the order of the reaction was confirmed (at least in toluene) as being second order. The 

actual order with respect to the individual reactants is slightly larger than unity, measured at 1.1 

for both amine and carboxylic acid. This result was obtained by calculating the gradient of a 

graph plotting the natural logarithm of the initial rate of reaction against the natural logarithm of 

reactant concentration (Figure 3.3) [Moore 1981 page 65, Pilling 1995 page 13]. The initial 

concentration of one reactant was varied while the other was kept constant across a series of 

kinetic experiments. A modest excess of amine created pseudo-first order conditions. With the 

ammonium carboxylate salt present in solution, a small excess of either reactant becomes very 

significant relative to the amount of the other free reactant able to exist at any given time.  

Chemical shift /ppm
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Figure 3.3 Amidation reaction order determination in toluene.  

 

The reaction order of slightly greater than unity with respect to either reactant lends 

some credence to the Perreux self assistance mechanism (Scheme 3.2). While the mechanism is, 

by and large, of the obvious bimolecular variety the interaction of a third reactant molecule has 

increased the experimentally determined reaction order coefficients slightly above unity (Scheme 

3.4). An excess of benzylamine results in a reaction that is zero order in terms of the amine, not 

inconsistent with the acid anhydride mechanism [Arnold 2006]. But why this mechanism should 

be active only when virtually all the acid is deprotonated by excess amine is counterintuitive. 

While a modest excess of benzylamine removes rate dependence dramatically, the change from 

first to zero order kinetics with respect to 4-phenylbutanoic acid is much less sensitive, occurring 

gradually. Once again invoking the Perreux self assistance mechanism, it is possible that the acid 

reactant is a superior chelator to the amine, although this is not borne out of the observed 

reaction orders which are the same. The acid is probably able to form the same sort of dimer 

with the activated complex that results in the perceived polarity of acetic acid being lower than 

expected on the scale of relative permittivity [Chocholoušová 2003]. Although just conjecture at 

this time, this may be the cause of the superior maximum reaction rate ceiling achieved in excess 

4-phenylbutanoic acid compared to excess benzylamine conditions (Figure 3.3).  

Solvent effects to describe the kinetics of amidation: The concentration of 4-phenylbutanoic 

acid and benzylamine chosen for the following solvent effect study was the upper end of the 
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bimolecular mechanism region (Figure 3.3). Therefore the reaction was performed under 

conditions in which the kinetics can be described as first order with respect to each reactant, and 

second order overall. The solvent study at the temperature of 373 K permitted a useable range of 

reaction rate constants to be derived, but restricted the number of solvents available to study. A 

result of this was a smaller range of solvent polarities to explore and the solvent set does show 

some equivalence in the values of β and π* (Figure 3.4). In hindsight greater diversity might have 

been provided with a high boiling dialkyl ether solvent such as dibutyl ether. Hydrogen bond 

donating solvents were not included in the solvent set and so all solvents had α values of zero. 

This is because C-H acids such as acetonitrile and chloroform are gases at the reaction 

temperature, and stronger hydrogen bond donators, specifically alcohols and carboxylic acids, 

will result in competitive reactions to give esters and alternative amides respectively. 

Chlorobenzene, cyclohexanone, DMF, DMSO, 1,4-dioxane, n-octane, toluene, p-xylene formed 

the initial solvent screen. 

 

 

Figure 3.4 A polarity map of solvents included in the initial screening of the model amidation 

reaction. 

 

The reaction progressed at a measurable rate in seven of the original eight solvents 

(Table 3.4). Reactions attempted in n-octane failed to occur. At temperatures above 313 K 4-

phenylbutanoic acid becomes soluble in n-octane, a necessary prerequisite, but addition of 

DMF

DMSO

1,4-Dioxane

Toluene

p-Xylene

n-Octane

0.0

0.2

0.4

0.6

0.8

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

β

π*

Cyclohexanone

Chlorobenzene



131 
 

benzylamine immediately resulted in the white precipitate of the ammonium carboxylate salt of 

the two reactants. The heterogeneous reaction mixture was not suitable for study, and the 

reaction abandoned. The fastest rates of reaction occurred in aromatic solvents. The possible 

formation of an imine adduct (a secondary ketimine to be precise) between cyclohexanone and 

benzylamine was suggested by the red colour of the reaction mixture rather than the pale yellow 

achieved in other solvents. This did not appear to disrupt the progression of the reaction (as 

followed by 1H-NMR spectroscopy) but the solvent was withdrawn from further studies anyway 

in case of misleading results. 

 

Table 3.4 Amidation rate constants in different solvents and the polarity of those solvents. 

Solvent ln(k) α β π* 

Chlorobenzene -10.51 0.00 0.06 0.65 

Cyclohexanone -11.06 0.00 0.58 0.71 

DMF -11.30 0.00 0.71 0.88 

DMSO -11.42 0.00 0.74 1.00 

1,4-Dioxane -10.97 0.00 0.38 0.52 

Toluene -10.65 0.00 0.12 0.50 

p-Xylene -10.63 0.00 0.14 0.47 

 

 Examination of the data suggests that chlorobenzene not only accelerates the reaction 

beyond the rate obtained in toluene, but is actually better for the environment (Figure 3.5). 

Chorobenzene is not without its flaws however and appears on restricted chemical lists just as 

toluene does [SubsPort 2013]. The HAS classification of chlorobenzene is shaped by a toxicity (rat 

oral LD50) on a par with toluene. It is still toxic to aquatic organisms and bioaccumulating 

[ECOTOX 2013], but the reduced flammability of chlorobenzene makes the biggest difference in a 

comparison with toluene.  p-Xylene has the best HAS profile of the aromatic solvents, which is 

marginally less flammable and less toxic than toluene. 1,4-Dioxane and DMF have serious safety 

and health issues respectively, but like cyclohexanone and DMSO they were not very good at 

accelerating the rate of reaction anyway. The solvent set does not feature any high performance 

and green solvents, providing the justification for an alternative bio-based solvent.  

Natural logarithms of the second order rate constants obtained from the initial screening 

could be correlated to the hydrogen bond accepting ability of the solvents (β): 

Equation 3.1                        R2 = 0.974 

The coefficient of determination (R2 value) rises to 0.991 when cyclohexane is removed from the 
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Figure 3.5 The environmental, health and safety of amidation solvents. 

 

solvent set. Refer to the appendix for more details (Table 8.9). The inverse proportionality of this 

relationship indicates that low polarity solvents enhance the rate of reaction (Figure 3.6). Other 

solvent polarity parameters were found to be insignificant, or in the case of α for example, not 

enough variation in the data set was present to construct a meaningful relationship. This 

observation is convincing from the strength of the data fit but not in terms of its consequences. 

The reaction progresses via an activated complex in which the partial forming and breaking of 

bonds is polarising. As such polar solvents are expected to stabilise the activated complex and 

accelerate the reaction according to the same principles established for SN2 type reaction 

mechanisms. However the opposite effect is observed. To understand the role of the solvent, the 

observed rate constants must be separated into their enthalpic and entropic contributions. 

Determination of the activation parameters of amidation: It is now established that at a 

temperature of 373 K, poor hydrogen bond accepting solvents provide a superior environment 

for amidation [Clark 2012]. The reactions were repeated at various temperatures and the 

resulting rate constants interpreted with the linear form of the Eyring equation: 

Equation 3.2      
 

 
     

  

 
  

   

  
 

   

 
 

In graphical form, the Erying equation reveals a temperature at which all solvents are predicted 

to provide an equally suitable reaction medium (Figure 3.7). However this iso-kinetic 
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Figure 3.6 The LSER correlating the rate of the model amidation reaction with the hydrogen bond 

accepting ability of the solvent. 

 

 

Figure 3.7 A multi-solvent Eyring relationship for amidation including a predicted crossover point 

of reaction rates at an iso-kinetic temperature. 
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temperature corresponds to a point at which the uncatalysed reaction is unmeasurably slow to 

complete (approximately 353 K). This means that realistically the point of coalescence can only 

be extrapolated from data obtained at higher temperatures. This data itself is somewhat limited 

by the boiling points of the solvents but it gives an indication of the solvent effect in operation. 

The existence of the inversion point at the iso-kinetic temperature suggests that this case 

study may not be directly relevant to room temperature amidations which proceed assisted by a 

coupling agent. Reassuringly a reaction case study on the dehydration of carboxylic acids to their 

respective anhydride (using DCC as a coupling agent at 303 K) notes that the rate of the initial 

addition of the acid to DCC is inversely proportional to β, consistent with this work (Scheme 3.7) 

[Balcom 1989]. This suggests that all carbonyl additions, unassisted or otherwise, may be 

kinetically governed by the same empirical solvent effects revealed here.  

 

 

Scheme 3.7 The synthesis of carboxylic acid anhydrides. 

 

The iso-kinetic temperature demonstrates that enthalpy and entropy are exerting 

opposing influences. This can be seen in the Gibbs free energy equation that relates the two: 

Equation 3.3                   

The temperature-entropy term of Equation 3.3 becomes smaller than the enthalpy of activation 

below the trend inversion in Figure 3.7, reversing the solvent effect when the magnitude of the 

former effect is superseded by the latter. The gradient of the Eyring plots are proportional to the 

negative of the enthalpy of activation, as deducible from the actual Eyring equation (Equation 

3.2). The intercept is determined by the magnitude of the entropy of activation, which becomes 

more negative with increasing solvent polarity. Together these two parameters give the Gibbs 

free energy of activation term which in turn is related to ln(k) (Equation 3.3). Equation 3.1 

suggests that the enthalpy of activation and the entropy of activation will also have a strong 

dependence on β. The enthalpy of activation is indeed inversely proportional to hydrogen bond 

accepting ability (Figure 3.8). The same is true for the entropy of activation (Figure 3.9): 
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Figure 3.8 The correlation between the enthalpy of activation and solvent hydrogen bond 

accepting ability (β). 

 

 

Figure 3.9 The correlation between the entropy of activation and solvent hydrogen bond 

accepting ability (β). 
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Equation 3.4                          R2 = 0.982 

Equation 3.5                            R2 = 0.982 

Both Equation 3.4 and Equation 3.5 present themselves identically but when combined in 

Equation 3.3 it is obvious they will exert opposing effects because the entropic term is subtracted 

from the enthalpy of activation. As solvents with ever increasing polarity (as measured by β) are 

selected to support the amidation, the enthalpy of activation is favourably decreased, as 

expected on the basis of hydrogen bonding arguments. However at the reaction temperature of 

373 K the entropic contribution dominates (T·ΔS‡ > ΔH‡), and an increase in β further enhances 

the system order as the reactants go on to form the activated complex. The unfavourable 

decrease in entropy caused by greater hydrogen bonding in polar solvents is ultimately not 

beneficial to the kinetics of the reaction above the iso-kinetic temperature.  

 The considerable effect the solvent exerts on the rate of reaction can be further 

demonstrated by examining the data in more detail. The enthalpy of activation stands at 97.2 

kJmol-1 in toluene but a relatively low 55.4 kJmol-1 in DMSO (Table 3.5) The analogous Arrhenius 

parameters have also been derived for comparison and show a similar trend: 

Equation 3.6                
  

  
 

 Conversely the entropy of activation is -74.7 Jmol-1K-1 in toluene, indicating an increase in the 

order of the system as the activated complex is formed from the two reactants. A significant 

entropy change of -193.1 Jmol-1K-1 occurs in DMSO. The enthalpy and entropy terms, in 

combination at 373 K, create less than a 3 kJmol-1 difference between the Gibbs free energies of 

activation in these two solvents (Equation 3.3). Although the change in Gibbs free energy is small, 

it makes a striking difference. 

Table 3.5 Activation parameters for the model amidation reaction including the Gibbs free 

energy at 373 K. 

Solvent ΔH‡  

/kJmol-1 

ΔS‡  

/Jmol-1K-1 

ΔG‡  

/kJmol-1 

ΔEa  

/kJmol-1 

A  

/dm3mol-1s-1 

PhCl 101.9 -61.0 124.7 105.1 1.39*1010 

DMF 61.6 -175.1 126.9 64.7 1.53*104 

DMSO 55.4 -193.1 127.4 58.5 1.76*103 

1,4-Dioxane 75.4 -135.9 126.0 78.4 1.67*106 

Toluene 97.2 -74.7 125.0 100.3 2.67*109 

p-Xylene 93.6 -84.5 125.1 96.8 8.29*108 
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it makes a striking difference to the conversions achievable in dissimilar solvents. This effect, 

when proportionality between enthalpy and entropy almost cancel out when combined into the 

Gibbs free energy, is known as enthalpy-entropy compensation [Boots 1989, Liu 2001, Perez-

Benito 2013]. 

The relationship between the enthalpy of activation and the entropy of activation 

reported here is perfectly linear (R2 = 1.000), a consequence of the iso-kinetic temperature (353 

K) which manifests itself as the gradient in this relationship (Figure 3.10). This type of plot is 

regularly found to be linear, but only valid if a single iso-kinetic temperature point exists such as 

that shown in Figure 3.7 [Petersen 1964]. Not only are enthalpy and entropy exactly proportional, 

but furthermore, as a consequence of this Figure 3.8 must be identical in appearance to Figure 

3.9 (R2 = 0.988 in both cases). The relationship between the two activation parameters is partly a 

product of the manner in which they are deduced from a single relationship. Enthalpy is 

calculated from the gradient of the trends in Figure 3.7 which is quite acceptable. The entropy of 

activation is obtained by extrapolating a trend to its interception of the y-axis far from the range 

where the experimental data resides. This treatment is often thought of as being susceptible to 

error, but this idea has been discredited. It is possible to reconstruct the Eyring equation so that 

graphically the gradient of the trend corresponds to the entropy and the intercept is proportional 

to the enthalpy [Lente 2005]. Either way, enthalpy and entropy are derived from the same ln(k) 

 

Figure 3.10 The relationship between the activation parameters dictating the kinetics of the 

model amidation. 
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measurements (via the Eyring equation) and are therefore linked. The experimental errors 

associated with the measurement of rate constants are unavoidably translated onto both the 

enthalpy of activation and the entropy of activation, giving rise to the similarity in their 

presentation. 

This does not now mean that the general trends required from this analysis, namely that 

the hydrogen bond accepting ability of the solvent is proportional to the enthalpy of activation 

(Equation 3.4) and entropy of activation (Equation 3.5), are flawed. This work has shown a 

precise iso-kinetic temperature of amidation, and therefore it must be so that enthalpy and 

entropy are closely related in a well defined manner. In fact, one of the prerequisites for a valid 

LFER or LSER such as Equation 3.1, Equation 3.4, or Equation 3.5 is that if one of enthalpy or 

entropy is not constant, then both terms must be proportional to each other [Exner 1964, Exner 

1972 page 8, Leffler 1955]. Without this stipulation there is no basis for a relationship between 

ln(k) and β, or the variety of other parameters used to construct free energy relationships. The 

dye responses used to determine β are necessarily the result of proportional enthalpy and 

entropy contributions, not dissimilar to the same hydrogen bonding arguments that describe the 

mechanism of amide formation. 

The mechanism of amide formation: We can now appreciate the influence of the solvent upon 

this model amidation reaction. For polar solvents, the enthalpic benefit of stabilising the 

activated complex of the reaction is overridden by the large entropic penalty of arranging the 

necessary solvent-solute hydrogen bonds at the high temperatures required to see any progress 

in the reaction. The enthalpy of activation is still relevant and should not be completely 

dismissed, especially at lower temperatures where hopefully future catalysts will be effective. 

The following enthalpy diagram summarises the important solvent-solute interactions and also 

provides a clue as to why entropic effects trump enthalpy at higher temperatures (Figure 3.11). 

This is not a free energy diagram, which by including entropy would show the opposite trend. For 

simplicity the ammonium carboxylate salt is ignored in this treatment, after it was found not to 

be influential in a previous study [Charville 2011]. The self assistance mechanism at the transition 

state is not shown either, partly for simplicity, partly because the order of the reaction has been 

shown to be only slightly greater than unity with respect to each reactant. The free reactants will 

be heavily stabilised by DMSO and other hydrogen bond accepting solvents. These interactions 

are only strengthened as the activated complex polarises the reactants, which is the cause of the 

solvent effect governing the enthalpic profile of the reaction. The entropy of activation and free 

energy of activation also stem from this phenomena. The kinetics of the reaction are of course 

entropically controlled at 373 K and some indication of why this is so can be seen from the 

ordered structures of Figure 3.11. 
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Figure 3.11 The generalised variable enthalpy of amidation illustrated in toluene and DMSO. 

 

Toluene is weakly hydrogen bond accepting, as indicated by its small β value. It is quite 

probable that the free reactants might help themselves to each others’ hydrogen bonding 

functionalities in non-hydrogen bonding solvents like toluene. This could be in the form of a 

carboxylic acid dimer (Scheme 3.4), or the alternative acid-base partnership indicated in Figure 

3.11. This will increase the enthalpic gap between the reactants and the activated complex in 

non-hydrogen bonding solvents, making the counteractive entropic forces even more impressive. 

If a carboxylic acid molecule is hydrogen bonded to another reactant, the stabilising hydrogen 

bond of the self assistance mechanism is installed prior to reaction. Strongly hydrogen bond 
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accepting solvents may disrupt the formation of the hydrogen bond dimer prior to the reaction 

(as indicated in the comparison between DMSO and toluene in Figure 3.11) but because there is 

no net loss in hydrogen bonding no energy difference penalty is added to the enthalpy of 

activation. This conclusion is borne out of experimental observations that indicate the enthalpy 

of activation is reduced in polar solvents. Finally, their claim that a zwitterionic intermediate 

species is unstable led Charville et al. to rely on a modification of the self assistance mechanism 

(Scheme 3.2), utilising a trimolecular reaction to avoid the formation of any charged species 

(Scheme 3.4) [Charville 2011]. Given that the order of the reaction has been established and does 

not necessitate the presence of a third reactant, it seems more plausible that amidation shares a 

mechanism with AAC2 esterification, proceeding via the same intermediates but without acid 

catalysis (Scheme 3.8) [Smith 2007 page 1402]. 

 

 

Scheme 3.8 The AAC2 mechanism of amidation proceeding through a tetrahedral intermediate. 

 

Binary solvents for amidation: The role of the solvent was explored further by using a binary 

solvent mixture of toluene and DMSO. It is known that Kamlet-Taft solvent polarity parameters 

do not vary linearly as a function of solvent composition in binary mixtures [Marcus 1994]. It was 

hoped that β would decrease in a binary mixture and accelerate the reaction. The outcome was 

synergetic but not beneficial if such juxtaposition exists (Figure 3.12). A significant drop in the 

velocity of the reaction occurred. Starting with a wholly DMSO based system, the addition of the 

preferable solvent toluene would be expected to increase the reaction rate. Instead a reduction 

in productivity occurs. At 373 K it has been already been shown that entropic effects dictate the 

rate of reaction. Of the two solvents, DMSO with its superior polarity (gauged by the Hansen 

solubility parameters) is assumed to be the preferred candidate to fill the cybotactic region (in 

other words, the solvation sheath), suggesting DMSO preferentially solvates the solutes. As such 
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we are presented with a scenario in which the inferior solvent in terms of kinetic enhancement 

but the superior solvent in terms of solvating ability is ordered around the reaction component, 

further increasing entropic penalties. The result is a drop in reaction rate that is gradually 

rectified as more toluene is introduced, displacing DMSO due to its numerical advantage. 

 

 

Figure 3.12 The toluene-DMSO binary solvent effect on the rate of amidation. 

 

Solvent selection: Although hydrocarbons are clearly ideal solvents within the narrow scope of 

rate enhancement, their EHS profile and sustainability are of concern. The GSK solvent selection 

guide and the SUS-HAS-ECO interpretation of it highlight this. Aside from being non-renewable, 

most alkane and aromatic solvents are highly flammable and pose environmental issues of 

bioaccumulation and toxicity [Curzons 1999, Henderson 2011]. The representative alkane n-

octane was found to be unsuitable because it fails to homogenise the reaction mixture or 

produce any amide. Aromatic solvents were successful at enhancing reaction productivity but the 

use of toluene and p-xylene presents risks worth avoiding. Mesitylene is marginally less worrying 

than either toluene or p-xylene in terms of flammability and toxicity and is expected to perform 

equally as well in the model amidation reaction. However it is still a product of the petroleum 

industry and as such does not satisfy the need to establish bio-based solvents for the long term 

security of organic synthesis. The other common class of solvent for synthesising amides are the 

halogenated solvents, which even though they fit the polarity requirements, do not improve 
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upon the aromatic solvents for environmental, health and safety properties. Many are highly 

regulated or on restricted lists because they are carcinogens [SubsPort 2013]. 

 The solvent selection algorithm was used to verify the application of alternative 

hydrocarbon solvents. Dissolution of 4-phenylbutanoic acid (rule D) and destabilisation of N-

benzyl-4-phenylbutanamide (rule G) were required to permit the reaction yet facilitate removal 

of the product from high boiling solvents by promoting precipitation (Figure 3.13). The reaction 

temperature was set at 373 K. Limonene, along with toluene, fails to complete the demands of 

the original algorithm (model A) based on these inputs due to the manner in which the solvent is 

deemed to be a liquid at the reaction temperature (rule C). p-Cymene passes the original solvent 

selection algorithm model, and along with limonene and toluene also completes the revised 

solvent selection algorithm (model B1). (R)-(+)-Limonene is contained in waste orange peel, but 

infrequently used as a solvent. However potential solvent applications for limonene and its 

derivatives are not insignificant. Limonene is a common component in cleaning and degreasing 

products [Henneberry 2004], and has also been used as a solvent for synthesis. The reactivity of 

the limonene terminal double bond and its chirality has been exploited in both ring opening 

polymerisations and the construction of optically active polymers respectively. [Kawagoe 2010, 

Mathers 2006] The sequential isomerisation and dehydrogenation of limonene to the aromatic 

compound p-cymene provides a route to a more robust solvent [Martin-Luengo 2010]. p-Cymene 

is also naturally occurring in trace amounts [Banthorpe 1972]. The current uses of p-cymene 

include, most recognisably to synthetic chemists, use as a ligand for ruthenium complexes 

devoted to catalysis [Castarlenas 2006]. Recent cameos as a solvent include dehydrogenation 

[Marchais-Oberwinkler 2011], decarbonylation reactions [Fessard 2007], and others [D’hooghe 

2008, Kelly 1997]. 

devoted. 

 

Figure 3.13 Amidation reaction solvent selection algorithm screenshot, step 3: Parameter input. 
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 The LSER modelling ln(k) as a function of β (Equation 3.1) was entered into the solvent 

selection algorithm and the top 30 solvent candidates permitted to pass the solvent performance 

assessment (model B2). To determine the greenness of solvent candidates a stricter approach 

was taken to that used in the nucleophilic substitution case study. Again using the GSK solvent 

selection guide as its basis, a minimum score of 4 out of 10 was required in each category (Figure 

3.14). This included the LCA category that was omitted from the nucelophilic substitution case 

study. Furthermore the LCA category was given a much greater weighting in the assessment than 

the other categories, accounting for half of the eventual greenness assessment score (model B3). 

As per usual this does not affect the number of solvent candidates passing the assessment only 

the score attributed to them. 

 

 

Figure 3.14 Amidation reaction solvent selection algorithm screenshot, step 6: Solvent selection 

guide. 

 

Because limonene and p-cymene do not feature in any solvent selection guides they 

cannot be fully assessed. However both solvent candidates successfully negotiate the revised 

solvent selection algorithm (model B1) and the solvent performance assessment (model B2). The 

only three solvents that pass the revised algorithm and the two associated solvent performance 

and greenness assessments are 1,2-dichlorobenzene, chlorobenzene, and cumene (Table 3.6). 

The maximum score was 140, just as in the previous case study. None of these solvents 

immediately appear to be what could be considered as green solvents, but all three do not have 

any scores in the GSK solvent selection guide below 4, which was set as the minimum 

requirement. These solvents actually perform quite well in the GSK solvent selection guide which 

puts them at an advantage over limonene and p-cymene which are not present in any publicly 
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available solvent selection tool. Toluene scores a 3 in the environmental impact category of the 

GSK solvent selection guide, eliminating it from the final solvent candidate list [Henderson 2011]. 

Due to the confines of the solvent selection algorithm’s solvent database, and the demands of 

the model reaction, it is important to note the lack of bio-based suggestions for an improved 

amidation solvent. 

 

Table 3.6 Solvent hits generated by the solvent selection algorithm for amidation reactions. 

Solvent 
Score: 

Model B1 + model B2 

Score: 

Model B1 + model B3 

1,2,4-Trichlorobenzene No data 116 

1,2-Dichlorobenzene 116 116 

Chlorobenzene 92 112 

cis-Decalin 100 Fail 

Cumene 78 78 

Cyclohexanone Fail 92 

Cyclopentanone Fail 96 

Diphenyl ether 68 No data 

Limonene 136 No data 

Mesitylene 80 Fail 

m-Xylene 72 No data 

Nitromethane 94 Fail 

p-Cymene 78 No data 

p-Xylene 74 Fail 

Tetrachloroethylene 116 No data 

Toluene 72 Fail 

Total hits 13 6 

 

Bio-based amidation solvent implementation: Predicted rates of reaction are essentially the 

same across the aromatic and chloroarene solvents but with limonene (β = 0.00) emerging as a 

marginal favourite. The certainty in the apparent greenness of the petroleum based solvents was 

overridden by the desire to implement bio-based solvents. As such limonene and p-cymene were 

taken forward and tested in the model amidation. Reaction rates were expectedly high (Table 

3.7). But prolonged heating of limonene resulted in some discolouration, suggesting that p-

cymene, a more robust solvent, would be preferable given a choice of the two. Degradation of 

limonene by oligomerisation, isomerisation, or oxidation could all be possible [Thomas 1989]. 
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Aside from a risk of hydroperoxidation in the presence of a base at elevated temperature 

(resulting in p-cresol and acetone) p-cymene is inert under most realistic reaction conditions 

[Fiege 1995 page 33, Makgwane 2010]. 

 

Table 3.7 A comparison between high performance bio-based and petro-chemical amidation 

solvents. 

Solvent ln(k) α β π* SUS HAS ECO 

Chlorobenzene -10.51 0.00 0.06 0.65 0 4 10 

p-Cymene -10.62 0.00 0.13 0.39 6 n/a n/a 

Limonene -10.50 0.00 0.00 0.16 10 n/a n/a 

Toluene -10.65 0.00 0.12 0.50 0 3 6 

 

 Limonene and p-cymene fit the trend described by the LSER (Equation 3.1) with excellent 

precision (Figure 3.15). As expected limonene improves upon the maximum kinetics obtained in 

non-renewable solvents. The relationship between ln(k) values predicted with the LSER and 

experimental data is also strong, aiding the hypotheses presented earlier in the chapter (Figure 

3.16). p-Xylene has not been designated as a bio-based solvent for the purpose of Figure 3.15 or

 

Figure 3.15 A LSER indicating the performance of limonene and p-cymene in amidation reactions. 
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in subsequent analyses. Although p-xylene was awarded a SUS classification of 6, the lower limit 

for recognition as a bio-based solvent as established in Chapter 1, a clear comparison between 

the citrus derived solvents and the original solvent set was preferable in this instance. However 

this does raise an interesting point. It is quite likely that given the choice between p-cymene and 

p-xylene, both of renewable sources, an organic chemist would opt for p-xylene because of its 

familiarity. On top of this the lower boiling point of p-xylene will usually work in its favour too. 

For the purpose of this work, with its emphasis strongly on the feedstock from which the solvent 

is made, p-cymene will be favoured over p-xylene. Whereas p-xylene is made by the 

fermentation of edible sugars, p-cymene originates from a voluminous waste-stream [Lohrasbi 

2010, Martin-Luengo 2010]. 

 

 

Figure 3.16 Experimental versus predicted ln(k) values of amidation. 

 

There seems to be no major systematic errors across the solvent set (Figure 3.17). The 

range of error is below that found in the previous Menschutkin reaction case study 

(cyclohexanone is the most erroneous based on the proposed correlation with β). Given the 

slower reaction progress in the amidation compared to the model Menschutkin reaction, this 

adds further credence to the proposal that the velocity of the reaction is responsible for the 

achievable accuracy. 
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Figure 3.17 Systematic error check in the amidation rate constants. 

 

Preparative scale amidation and analysis: Monitoring the kinetics of this model amidation serves 

a purpose only if the synthesis and isolation of the product is realised. Bearing in mind that this is 

an uncatalysed procedure, also devoid of coupling agents, the reaction was conducted at 373 K 

for 24 hours in toluene, p-cymene, limonene, cold pressed orange oil, and for 48 hours in DMSO. 

Cold pressed orange oil was obtained from Sigma-Aldrich chemical suppliers as an orange 

coloured liquid. The steam distilled essential oil of orange is colourless, indicating that the non-

volatile compounds existing in the oil are retrieved when extracting the oil from the food waste 

by force. The cold pressed orange oil is still more than 90% limonene. 

The carboxamide product was recystallised until thin, needle-like crystals were obtained. 

Characterisation was consistent with the literature [Verma 1998]. As expected toluene and p-

cymene are similarly productive, with an average of 74% yield obtained in both instances (Figure 

3.18). With the boiling point of p-cymene being significantly higher than the reaction 

temperature there is scope for further yield improvement not applicable to toluene. With some 

disappointment the use of either limonene or cold pressed orange oil did not result in the yields 

of amide expected from the rate constant provided by limonene in earlier reactions. The gradual 

decomposition of limonene at 373 K may be to blame. The slight difference in amide yields 

suggests that the other minor components of cold pressed orange oil do not interfere with the 

reaction to any significant extent. This is probably not a universal rule, which will have to be 

considered in the future. Dimethyl sulphoxide was confirmed to be a poor choice of solvent with 
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an average product yield of 24%, far below that required for a fairly uncomplicated organic 

synthesis protocol. Furthermore, the product was quick to precipitate from solutions of toluene 

and p-cymene upon cooling, aiding isolation. 

 

 

Figure 3.18 Isolated yields of N-benzyl-4-phenylbutanamide from different solvents. 

 

In terms of toxicity p-cymene is on a par with toluene [MSDS 2013]. The same can be said 

when considering their aquatic toxicity (Table 3.8). However, unlike toluene its flash point (closed 

cup) is above room temperature and has a lower vapour pressure at ambient temperatures. 

Given that p-cymene can also be made from a renewable feedstock there are sufficient benefits 

to justify the substitution of toluene with p-cymene. The chief drawback to p-cymene that will be 

felt. 

Table 3.8 Properties of toluene and p-cymene. 

Property Toluene p-Cymene 

Melting point /K 178 [Gani 2005] 204 [ChemIDplus 2013] 

Boiling point /K 384 [Gani 2005] 449 [MSDS 2013] 

δT /MPa0.5 18.3 [Gani 2005] 17.3 [Hukkerikar 2012] 

Flash point /K 277 [MSDS 2013] 320 [MSDS 2013] 

Autoignition point /K 808 [MSDS 2013] 709 [MSDS 2013] 

LD50 (Rat oral) /mgkg-1 >5580 [MSDS 2013] 4750 [MSDS 2013] 

logP 2.58 [Gani 2005] 4.1 [ChemIDplus 2012] 

LC50 (Sheepshead minnow) /mgL-1 (4 days) 280 [ECOTOX 2013] 48 [ECOTOX 2013] 

EC50 (Daphnia magna) /mgL-1 (24 hr) 8.0 [MSDS 2013] 9.4 [ECOTOX 2013] 
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felt by chemists is its higher boiling point when compared to toluene. Because many bio-based 

solvents will be non-volatile this may result in the need for a general departure from distillation 

as a means of solvent removal. Avoidance of distillation has already been identified as a priority 

for contemporary solvent research, and moving towards low volatility solvents will reduce loses 

to the atmosphere [Jessop 2011]. 

Metrics can be considered to further enhance our understanding of the reaction as a 

preparative procedure. The selection of reactions surveyed earlier in this chapter have been 

complied and their reported yields listed, along with calculated atom economies and reaction 

mass efficiencies [Constable 2002, Curzons 2001]. These can be compared to the results of the 

uncatalysed reactions performed in this work (Figure 3.19). The key to Figure 3.19 is as follows: A, 

uncatalysed reaction in p-cymene; B, uncatalysed reaction in limonene; C, thermally activated 

solventless reaction [Gooßen 2009]; D, thionyl chloride activation [Comerford 2009, Pearson 

1999 page 370]; E, CDI activation [Vaidyanathan 2004]; F, DCC activation [Comerford 2009, 

Sheehan 1955]; G, catalysis by boric acid [Tang 2005]; H, catalysis by 3,4,5-trifluorobenzoic acid 

[Ishihara 1996]; I, catalysis by 2-N,N-diisopropylbenzylaminoboronic acid [Arnold 2008]; J, as I but 

with an approximation of the catalyst synthesis based on the procedure for making 2-N,N-

diisopropyl-5-fluorobenzylaminoboronic acid [Arnold 2008]; K, catalysis by activated silica 

[Comerford 2009]. 

With the exception of the limonene facilitated reaction (entry B, Figure 3.19), yields are 

good to excellent in all other cases. With water as the only necessary by-product, atom 

economies only fall below satisfactory levels when activators are introduced and treated as 

reactants. So-called solventless reactions (e.g. entry C, Figure 3.19) do not present any extra 

benefit to waste minimisation in this assessment because solvents are not included in these 

metrics. The best scores are associated with catalytic processes utilising boric acid (entry G, 

Figure 3.19) and 3,4,5-trifluorobenzoic acid (entry H, Figure 3.19). This said, a word of caution 

must be exercised regarding catalysts. The most striking change to reaction mass efficiency (RME) 

is observed when the synthesis of an elaborate catalyst is included in the calculation (entry J, 

Figure 3.19). With 2-N,N-diisopropyl-5-fluorobenzylaminoboronic acid as an example, RME falls 

from 64% to 19% [Arnold 2008]. Catalyst loadings lower than 10 mol% would reduce the impact 

of the catalyst which is why high catalytic activity is desperately needed from amidation catalysts. 

The synthesis of 2-N,N-diisopropyl-5-fluorobenzylaminoboronic acid was approximated from 

available data (Scheme 3.9). A discussion of this calculation can be found in the appendix.  
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Figure 3.19 Associated metrics of amidation reactions between 4-phenylbutanoic acid and 

benzylamine unless otherwise stated.  

 

Activated silica is a strong candidate for a catalyst when considering the reaction used in 

this demonstration involved the less reactive aniline and not benzylamine [Comerford 2009]. To 

its detriment, reactivation of the catalyst requires a high temperature which is not accounted for 

in these mass utilisation metrics. Boric acid in certain instances will offer very high yields, and 

appears to operate successfully in aromatic solvents. Perhaps activated silica and boric acid can 

be considered as effective, benign catalyst options to complement p-cymene as the choice of 

solvent in future studies. It should be reiterated that the uncatalysed reaction can be satisfactory 

too, with or without solvent, but it is very substrate specific. 
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Scheme 3.9 The synthesis of 2-N,N-diisopropyl-5-fluorobenzylaminoboronic acid. 

 

Another metric worthy of attention is process mass intensity (PMI) [Jiménez-González 

2011]. As the ratio of input to output materials by way of a mass balance it goes further than the 

previous metrics, now accounting for the use of solvent (Figure 3.20). Solvents are responsible for 

almost all of the mass input in this sample of reactions, highlighting the limitations of the 

previous collection of metrics. The solventless reactions can now prove their worth, although 

both examples used a solvent in their work-up procedures (entries C and E, Figure 3.20). The old 

argument of quality over quantity can be applied here, toluene being the usual choice of solvent. 

Replacing toluene with limonene or p-cymene may not decrease the volume of waste solvent but 

it will alleviate the burden somewhat on limited petroleum resources. The counter-claim against 

this argument is that p-cymene is probably harder to recycle than toluene using conventional 

means because of its higher boiling point.  

The mass utilisation issues with the associated synthesis of elaborate amidation catalysts 

(entry J, Figure 3.20) can be trumped by the solvent intensity of work-up procedure, which in the 

case of homogeneously catalysed reactions can be quite severe. One amidation protocol calls for 
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Figure 3.20 The comparison of PMI in different amidations. The key for Figure 3.19 also applies 

here. 

 

the use of column chromatograph to isolate the product (entry H, Figure 3.20) [Ishihara 1996]. 

This also adds to the non-solvent waste in the form of spent chromatographic silica. The large 

PMI values found elsewhere are caused by solvent washes and recystallisation solvents. The least 

wasteful procedure is the silica catalysed amidation (entry K, Figure 3.20). The catalyst is washed 

with an additional aliquot of toluene before the product is allowed to crystallise from the filtered 

solution. This is close to an ideal situation and the catalyst can be recycled without much further 

issue. 
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3.3 Amidation summary 

 

The success and implications of solvent selection: It appears that the rate of amidation is 

accelerated by solvents with low β values, based on the case study of benzylamine reacting with 

4-phenylbutanoic acid. In addition to the measurement of rate constants, the enthalpy of 

activation and the entropy of activation were determined. Both these parameters are also 

dependant on solvent hydrogen bond basicity. The explanation for this phenomenon is founded 

on the enthalpic benefits of stabilising the activated complex of the reaction being overridden by 

the large entropic penalty created by organising the solvent to form these interactions. Hydrogen 

bond acidity may be influential too, but in this case study no protic solvents were used. 

There has been, at this fundamental level, disagreement over the reaction mechanism. 

The results presented in this work do not suggest the trimolecular mechanism of Scheme 3.4 is 

absolute. With a reaction order magnitude of 1.1 with respect to 4-phenylbutanoic acid, it is 

simply beneficial when it does occur. The polarity of the solvent possibly has a role in disrupting 

the carboxylic acid dimer, with strong hydrogen bond acceptors like DMSO able to provide their 

own source of intermolecular stabilisation. The same reaction order has been attributed to 

benzylamine, suggesting that stabilisation of the activated complex through the self assistance 

mechanism can occur with either acid or amine as the third party without bias (Scheme 3.2).  

 Given that perhaps the ideal conventional solvent for this class of chemistry is toluene, 

limonene and more obviously p-cymene offer a sustainable alternative. The synthesis of amides 

gives products that are likely in most cases to precipitate out of a p-cymene solution. This greatly 

simplifies their purification because the high boiling point of p-cymene will often be an issue in 

this regard. Currently p-cymene is synthesised by the alkylation of toluene, the solvent it has the 

intention of replacing [Strohmeyer 1971]. Consequently p-cymene (£18.33/L, Sigma-Aldrich, 99% 

purity, as of 21st June 2013) is more expensive than toluene (£11.86/L, Sigma-Aldrich, >99.5% 

purity, as of 21st June 2013) which will be important industrially. Until a sustainable 

manufacturing process for p-cymene is operational (and necessarily economically viable), 

persuasive arguments advocating the use of p-cymene must be accumulated until demand is 

satisfactory to warrant commercial production from citrus waste. An LCA comparing toluene and 

bio-based p-cymene will be required to prove the transition from the former to the latter is 

indeed worthwhile, but reassuringly the two step isomerisation and dehydrogenation of 

limonene to afford p-cymene is not drastically out of line from current protocols in the fine 

chemical and bulk chemical sectors. 

Broader appeal: Amidation is prominent in organic synthesis, and so the appeal of work 

concerning amide forming reactions is necessarily far reaching. But if current practice prevails, 
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and coupling agents remain widely utilised, then the results of this specific work become much 

less significant. MacMilllan has recently shown that a range of different solvents can be used 

without too much change in the rates of coupling agent assisted amidations at room temperature 

[MacMillan 2013]. However the work of Balcom highlights that carbonyl addition solvent effects 

can still be important at room temperature [Balcom 1989], and indeed the point at which 

catalysis becomes appealing is at similarly ambient temperatures and for equally short durations. 

The assumption that amidation catalysis will develop to the point where catalysts offer a 

reasonable alternative to stoichiometric auxiliaries is vital. At this point the interplay between 

solvent and catalyst becomes important. Future work should definitely address the optimal 

pairing of solvent and catalyst across a larger range of substrates. p-Cymene should make a 

complimentary partner to most catalysts, and maybe the design of catalysts should be guided by 

the likely choice of performance enhancing solvent. Activated silica has already been shown to be 

an effective amidation catalyst compatible with aromatic solvents and flow reactors, making it 

the ideal companion for p-cymene [Comerford 2012]. The silica acts as a stationary phase, and 

the reaction solution can later be cooled down which should cause the product to precipitate. 

The p-cymene could then be reused after the depleted reactant concentrations are rejuvenated. 

The challenge facing amidation chemistry is equally about its perception as it is about the 

development of greener technologies. To this end, attention should be drawn to the use of 

coupling agents, and this practice discouraged on grounds of mass efficiency whilst promiting 

burgeoning catalytic technologies. 
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4. Uncatalysed esterification 

 

 

 

The very first examination of solvents influencing the rate of a reaction was Berthalot’s 

nineteenth century observations on the synthesis of ethyl acetate, preceding Menschutkin’s work 

on solvent effects by a few decades [Reichardt 2003 page 2]. Esters, like ethyl acetate, are useful 

products for a variety of applications, including fragrances and pharmaceuticals [Liu 2006, Yadav 

2004]. Many solvents are esters. Acylations account for 12% of the chemistry performed in 

pharmaceutical research and development [Carey 2006]. The majority are implemented for the 

synthesis of amides, but esterification and its reverse reaction are prominent in their own right at 

manufacturing scale [Dugger 2005]. Esterification features heavily in the literature when green 

chemistry is concerned, usually with the catalyst under scrutiny. Such is the importance of 

catalysis, the interplay between solvent and catalyst is addressed the following chapter. Prior to 

investigations into catalysis, the role of the solvent shall be analysed here in the absence of a 

catalyst, and the two will be introduced together when appropriate. Given the previous case 

study on amidation and its superficial similarity to esterification, one set of results should 

strengthen or disprove the hypotheses formulated in the other to the benefit of the whole 

research.  

 

4.1 Solvents and esterification 

 

Mechanism and protocol: Concerning the reaction of carboxylic acids with alcohols, eight 

possible reaction mechanisms have been proposed for the hydrolysis of esters, of which half 

(only the acid catalysed mechanisms) are applicable to the reverse reaction [Ingold 1969 page 

1129, Smith 2007 page 1402]. The most commonly observed of these reaction mechanisms 

proceeds via a tetrahedral intermediate and has been given the abbreviated name AAC2, 

representing a second order, acid catalysed acylation or ester hydrolysis (Table 4.1). The rate 

determining step is the combination of the protonated acid and alcohol to form a tetrahedral 

intermediate. As such this reaction is second order and probably similar to what was established 

for amidation reactions previously in this work. 
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Table 4.1 The acid catalysed mechanisms of ester hydrolysis. 

Code Mechanism Class 

AAC1 

 

SN1 

AAC2 

 

Tetra-

hedral 

AAL1 

 

SN1 

AAL2 

 

SN2 
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There are four traditional methods by which the acylation of alcohols with carboxylic 

acids can be performed; employing an excess of one reactant to drive the equilibrium forward, 

removal of water by azeotropic distillation, removal of water using dehydrating agents, or 

continuous extraction of the ester product by distillation [Smith 2007 page 1414]. The common 

theme is the separation of the products, the ester and water, in order to overcome the yield 

limiting equilibrium position. Dean-Stark apparatus is suitable for this purpose, and limonene has 

already been demonstrated as being a solvent compatible with this technology [Veillet 2010]. Of 

course, solvents are also important, not only to influence the equilibrium position but also for 

stabilising the reaction intermediates. Two of the four acid catalysed esterification (or hydrolysis) 

mechanisms in Table 4.1 are designated as SN1 reactions which should favour highly dipolar or 

polarisable protic solvents as alluded to briefly in Chapter 2 (Table 2.1). The one SN2 mechanism 

pathway in Table 4.1 involves a charged reactant and as such will not adhere to the LSER devised 

for the model Menschutkin reaction, but rather this particular mechanistic pathway should be 

accelerated by aprotic hydrogen bond accepting solvents (Table 2.6). However by far the most 

common mode of esterification is that described by the AAC2 mechanism [Bender 1951]. This is 

the same as the mechanism of amidation and as such the solvent dependence will be different to 

the other three esterification mechanisms (but possibly the same as for amide forming 

reactions). The solvent effects controlling esterification deduced later on can help identify the 

mechanism of the reaction more precisely. 

Another option is to employ the acid anhydride of the carboxylic acid reactant. The 

reaction between sterically unhindered reactants and an acid anhydride does not require an 

additional catalyst, but in the reaction with tertiary alcohols catalytic quantities of a catalyst such 

as DMAP are usually employed [Hölfe 1987, Reicheneder 2004]. N,N-Dimethyl-4-aminopyridine 

(DMAP) is a nucleophilic catalyst, with a stoichiometric amount of an auxiliary base usually added 

to prevent protonation of the catalyst.  

The application of solvents in esterification: A great deal of work has been done on refining the 

acylation of alcohols to develop a protocol that is consistent with green chemistry principles 

[Otera 2001]. The ultimate goal is the use of equimolar quantities of each reactant to give 100% 

conversion. To this end, recycling of the catalyst and solvent would result in zero waste. The work 

lead by Otera has come close to this ideal scenario. By using a catalyst with fluorinated 

appendages in a liquid fluorous phase, the reaction medium (solvent plus catalyst) can be 

recycled, reducing the environmental impact of the tin based catalyst and perfluorohexane 

solvent. An elevated reaction temperature is of kinetic assistance, but heating is also necessary to 

dissolve the carboxylic acid and alcohol reactants [Otera 2002]. Upon cooling the product is 

immiscible with the fluorous phase and hence easily separated (Figure 4.1). Using the equivalent 

acid anhydride, the reaction will proceed at room temperature [Otera 2005]. An additional issue 
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is that the recycling of the perfluorinated solvent demands the use of a traditional organic 

solvent, in this case toluene, to retrieve the solutes. Although high yielding as it stands, there is 

definitely scope for the application of safer, renewable, and more environmentally sound bio-

based solvents in place of this procedure. 

 

 

Figure 4.1 The manipulation of a fluorous multiphasic system to enhance esterification yields. 

 

The rate of Fischer esterification between methoxyacetic acid and benzyl alcohol in 

various molecular and ionic liquid solvents has been reported as expressing an inverse 

relationship with β (Figure 1.19), mirroring the amidation case study previously described 

(Equation 3.1) [Wells 2008]. The kinetic benefit of hydrogen bond accepting solvents was 

attributed to the avoidance of a deactivating acid-base interaction between the catalyst (p-TSA) 

and the solvent (Scheme 4.1). Although this is likely, it seems plausible that a more general 

solvent effect, the same as that observed in amidation reactions, is also in operation. It was 

reported by Wells et al. that the reaction is bimolecular, and of the AAC2 tetrahedral mechanism. 

This is consistent with the observed solvent effect, and strengthens the similarity with the 

kinetics of uncatalysed amide synthesis [Wells 2008]. 
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Scheme 4.1 A proposal for an acid catalysed esterification solvent effect. 

 

4.2 Uncatalysed esterification results and discussion 

 

Model reaction: In order to confirm the solvent effect present in esterifications and identify the 

ideal renewable solvent, an uncatalysed reaction between butanoic anhydride and 1-butanol to 

give butyl butanoate was attempted (Scheme 4.2). Acid catalysed Fischer esterifications can be 

found in the following chapter. If the same inverse dependence on solvent hydrogen bond 

accepting ability (β) is observed in this case study as it was for amidations and Well’s catalysed 

esterification, it would constitute as good evidence of an analogous mechanism being in 

operation.  
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Scheme 4.2 The model uncatalysed esterification reaction. 

 

The kinetics of the reaction at 323 K to give butyl butanoate were again monitored by 1H-

NMR spectroscopy. This time the signal integrals of the O-CH2 moiety of 1-butanol and the 

equivalent group present in its ester upon reaction with butanoic anhydride were used to deduce 

the progress of the reaction (Figure 4.2). The data obtained from the 1H-NMR spectra was 

processed in an identical way to the amidation case study, assuming a bimolecular reaction 

mechanism (Equation 1.14 and Equation 1.15). 

 

 

Figure 4.2 A 1H-NMR spectrum of the uncatalysed model esterification occurring in chloroform. 

 

The kinetics of uncatalysed esterification: The model reaction to give butyl butanoate was 

attempted in the following solvents: acetonitrile, butanone, chlorobenzene, chloroform, 

cyclohexane, DMF, 1,4-dioxane, and toluene. Weak C-H acids were selected to observe the 

influence of hydrogen bond donors on the rate of esterification, also adding much needed variety 

to the polarities covered by the solvent set (Figure 4.3). Obviously alcoholic solvents would tend 

to interfere with the reaction, with the exception of t-butanol perhaps. 

 

Chemical shift /ppm



163 
 

 

Figure 4.3 Polarity map of solvents used in the initial uncatalysed model esterification solvent set. 

 

 As expected from previous work concerning amidation, the aromatic and chlorinated 

solvents provide a superior reaction medium to oxygenated solvents (Table 4.2). Unfortunately, 

as we have come to know, this generally creates a trade-off between solvent greenness and 

solvent performance, although plenty of members of the solvent set are toxic, unsafe, and 

damaging to the environment regardless of their performance in the reaction (Figure 4.4). 1,4- 

Dioxane is especially bad in this regard within the SUS-HAS-ECO classification framework, closely 

followed. 

Table 4.2 Uncatalysed model esterification rate constants and solvent properties. 

Solvent ln(k) α β π* δT 

Acetonitrile -11.81 0.35 0.37 0.80 24.2 

Butanone -11.46 0.00 0.51 0.68 19.0 

Chlorobenzene -9.73 0.00 0.06 0.65 19.4 

Chloroform -9.81 0.20 0.10 0.58 18.9 

Cyclohexane -9.18 0.00 0.00 0.00 16.8 

DMF -12.64 0.00 0.71 0.88 24.0 

1,4-Dioxane -10.88 0.00 0.38 0.52 20.5 

Toluene -9.68 0.00 0.12 0.50 18.2 
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Figure 4.4 Uncatalysed model esterification solvent SUS-HAS-ECO classifications. 

 

followed by chloroform. The former is consistently low scoring throughout the GSK solvent 

selection guide and chloroform is considered toxic whilst also presenting waste issues 

[Henderson 2011]. The two best solvent options, all things considered, appear to be cyclohexane 

and chlorobenzene, leaving room for improvement. Cyclohexane is able to do what n-octane 

could not in the model amidation reaction and support the reaction, providing the greatest 

reaction rate acceleration of the eight solvents. Of the potential mechanisms presented in Table 

4.1, the kinetic benefit of a non-polar solvent in this reaction is only consistent with the 

tetrahedral intermediate AAC2 mechanism. 

As anticipated the relationship between solvent polarity and ln(k) is inversely correlated 

to β (Figure 4.5). An exception is acetonitrile, which underperforms based on the expectation of 

its polarity. This does not appear to be caused by its modest α value because chloroform adheres 

to the trend set by the rest of the solvents. Dipolarity and polarisability (as represented by π* and 

δ) along with α were statistically insignificant. The LSER (ignoring acetonitrile for now) is as 

follows: 

Equation 4.1                      R2 = 0.987 

Error bars indicating the range of ln(k) values obtained in each solvent have been marked on 

Figure 4.5, but none are longer in length than the data points representing the average value of 
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at least three experiments. The precision of monitoring the reaction by NMR spectroscopy 

alleviates fears that the outlying acetonitrile is caused by experimental error. 

 

 

Figure 4.5 The LSER describing the uncatalysed model esterification but excluding acetonitrile. 

 

The notable anomaly (that being acetonitrile) was not present in the amidation case 

study, and so this deviation from ideality, less efficient at promoting the reaction than expected 

from a trend based on β alone, cannot yet be properly described. Anhydrous grade acetonitrile 

did not offer improved results to other products, nor did the addition of drying agents. For 

clarification propanenitrile (β = 0.39) was used as a solvent too, but behaved as predicted by 

estimation with Equation 4.1. Both nitriles have similar β values and would be expected to 

perform near equally as well. The difference in the experimentally determined rate constants is 

too large to be casually attributed to error (Figure 4.6). This suggests that acetonitrile is a special 

case and not an effect arising from the nitrile functional group. Instead, it might be concluded 

that another parameter, as of yet unaccounted for, is jointly responsibly in combination with β 

for the observed rates of reaction. 

The introduction of the Hildebrand solubility parameter (δT) rectifies the discrepancy 

between the nitrile solvents. Accounting for the cohesive energy density of the solvent by taking 

the square of this parameter, a negative coefficient for   
  signifies that strongly self-associating 

solvents, of which acetonitrile and DMF are clearly more inclined towards than the other solvents 
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Figure 4.6 Conversions to butyl butanoate in acetonitrile and propanenitrile at 323 K. The dashed 

lines indicate ±1 standard deviation. 

 

in this set, are disadvantaged with respect to accelerating the rate of reaction:  

Equation 4.2                             
  R2 = 0.988 

The upgraded LSER (Equation 4.2) appears to have a small coefficient of   
 , which raises 

questions over its necessity. It should be remembered that   
  is itself typically three orders of 

magnitude larger than the Kamlet-Taft solvent polarity parameters and so LSER coefficients will 

be proportioned appropriately to account for this. Importantly both β and   
  are statistically 

significant, and only when they are combined, as in Equation 4.2, is a satisfactory predictive 

element to the resulting LSER achieved (Figure 4.7). 

The simplest explanation for the partial dependence of the reaction rate on δT can be 

thought of as the activated complex of the reaction occupying a larger volume than the sum of 

the reactants in solution (Scheme 4.3) [Taft 1985]. The implication being that some solvent-

solvent interactions must be broken, and if these are strong intermolecular bonds the reaction 

becomes less favourable than what otherwise would be appreciated from the Kamlet-Taft 

solvent polarity parameters alone. In a more precise sense, it may not strictly be the size of the 

cavity occupied by the reaction components that is relevant but the relative quantities of solvent-

solvent interactions in the vicinity that are lost or gained as the reaction progresses. The variation 

of δT in the initial solvent set of the related amidation reaction was sufficient to highlight its role, 
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Figure 4.7 The estimated ln(k) values of the uncatalysed model esterification, including nitrile 

solvents, compared to experimental data. 

 

if any, in the kinetics of the reaction. The fact that it was found to have no influence means that 

the activated complex of the amidation should be approximately as voluminous as the two 

reactants. If hydrogen bonded pairs of reactants are considered as the precursors to amidation 

reactions (Scheme 3.4), the experimental data requires a similar sized solvent cavity to that made 

by the activated complex. The reactants of the uncatalysed model esterification (an alcohol and a 

carboxylic acid anhydride) do not form strong hydrogen bonds between themselves. If the 

tetrahedral activated complexes of esterifications are assumed to require a similar volume within 

the bulk solvent to that of analogous amidations, then the individual esterification reactants 

must reside in a smaller cavity, or at least permit more intermolecular solvent-solvent bonding, 

than the reactants in an amidation reaction. If this is the case, creating the activated complex of 

esterification would result in a significant loss in solvent-solvent bonds, consistent with the 

observed solvent effect represented with a statistically significant negative coefficient of   
 , as in 

Equation 4.2 (Scheme 4.3).  

An explanation for these solvent cavity volumes could stem from the previously visited 

anomaly regarding the relative permittivity of acetic acid (Scheme 1.1). Carboxylic acid dimers 

have a surprisingly low relative permittivity, appreciably less than even their respective 

anhydrides or acyl chlorides [Lide 1991, Reichardt 2003 page 472]. This would imply hydrogen 
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Scheme 4.3 The AAC2 mechanism specifically concerning the disturbance to the bulk solvent 

medium as illustrated with acetonitrile. 

 

bonded solutes demand less interaction with the solvent and a ‘looser’ solvation sphere results. 

This could be similar in volume to the cybotactic region of the activated complex of carbonyl 

addition. The ‘tighter’ solvation sphere of carboxylic acid anhydrides caused by stronger solvent-

solute intermolecular interactions would have to be disrupted to accommodate the activated 

complex of any reaction undergone by the solutes. 

This result implies that, generally speaking, the same type of solvent effect as observed 

for amide forming reactions is in place for esterifications, dictating the rate of reaction. This 

requires entropic control to dominate the contribution of enthalpy towards the Gibbs free energy 

of activation at a much lower temperature than is the case for amidation. Without the full Eyring 

treatment it is not possible to say if this is true. But it is plausible, depending on the relative 

magnitude of the activation parameters. The added influence of solvent cohesive energy density 

would suggest that solvent-solvent ordering is of crucial importance to the rate of reaction in a 

given solvent, complimenting this hypothesis. These suggestions are consistent with 

experimentally derived terms for the enthalpy of activation and entropy of activation in various 
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esterifications [Bamford 1972, Bankole 2011 page 69]. These state that the enthalpy of activation 

is positive, as expected, across a wide range of substrates. Meanwhile the entropy of activation in 

esterifications is negative, describing a change towards a more ordered system as the activated 

complex is created from the combining of reactants. Because of this, hydrogen bond accepting 

solvents might stabilise the activated complex, but in doing so will create additional structural 

ordering and increase further still the entropic penalty associated with the kinetics of the 

reaction. A full proposal for the mechanism of AAC2, uncatalysed esterification with an emphasis 

on solvent effects can now be established (Scheme 4.4). This mechanism does not need to rely on 

the acidity-blocking prowess of the solvent. Although only one specific solvent-solute 

 

Scheme 4.4 The solvent-solute interactions dictating the rate of uncatalysed esterification as 

demonstrated with DMF. 
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hydrogen bond exists throughout, this will get stronger (i.e. more stabilisation provided by the 

solvent) as the reaction precursors become polarised in the activated complex at the high energy 

transition state. 

Solvent selection: In the solvent selection algorithm the polarity characteristics of solvent 

candidates were targeted so as to stabilise the product butyl butanoate. Destabilisation of the 

by-product butanoic acid was also demanded from rule G in an effort to perhaps aid separation 

of the two compounds. A phase split with water was also asked of the solvent because unlike 

amides, ester products will hydrolyse back to their constituent reactants. Otherwise, aside from 

the lower reaction temperature, the data input is much the same as it was for the amidation case 

study (Figure 4.8). This is also true of the solvent performance (model B2) and greenness 

assessments (model B3), except in the latter the weighting of the GSK solvent selection guide 

categories have been adapted slightly (Figure 4.9).  

 

 

Figure 4.8 Uncatalysed esterification solvent selection algorithm screenshot, step 3: Parameter 

input. 

 

Just like the amidation case study, 1,2-dichlorobenzene, chlorobenzene, and cumene are 

the only three solvents to pass all of the requirements of the revised solvent selection algorithm 

and the associated models (Table 4.3). The maximum score when the revised solvent selection 

algorithm (model B1) is combined with the solvent performance assessment (model B2) or the 

solvent greenness assessment (model B3) is 160 (with a 1:10 weighting between models as 

before). The returned solvent candidates are much the same as what was recommended for 

amidation reactions. Unfamiliar additions to the list of solvent hits are due to the lower reaction 

temperature of the uncatalysed esterification compared to the hotter amidation conditions. After 

a promising start, cyclohexane failed to meet the requirements of the greenness assessment 

Step 3 Parameter input

Rule Input Value Flexibility

A Y

B Y

C 323

D Y 100 %

E N 100 %

F Y

G Y 200 %

Y 100 %

H N

I N

J EHS constraints applicable?

logP N Top 30

EHS 2 N Top 30

EHS 3 N Top 30

EHS 4 N Top 30

Dissolve solid reactant(s)? 1-Butanol

Solvent desirable?

Liquid phase reaction performed previously?

Reaction temperature /K

Destabilisation of reaction component? Butanoic acid

Recycle solvent

Butyl butanoate

Solvent neutrality required?

Is solvent association/dissociation undesirable?

Is a phase split required?

Stabilisation of reaction component?

Butyl butanoateDissolve solid product(s)?
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Figure 4.9 Uncatalysed esterification solvent selection algorithm screenshot, step 6: Solvent 

selection guide. 

 

(model B3). This was because of a low flammability score. Perfluoroalkane solvents appear in 

Table 4.3, and after their success in facilitating esterifications this is not surprising [Otera 2005]. 

However their greenness scores in the GSK solvent selection guide are their downfall, with no 

data available for perfluoromethylcyclohexane, and perfluorohexane scoring poorly throughout. 

Critically, a score of 3 in the health category, and no LCA data resulted in a fail for 

perfluorohexane. Both limonene and p-cymene appear as recommended solvent candidates in 

the solvent performance assessment (model B2), and it seemed fitting that they should be 

applied in the uncatalysed esterification case study. 

Application of bio-derived solvents in uncatalysed esterification: As with the model amidation, 

limonene and p-cymene would appear to be excellent solvent candidates for esterification 

reactions. The experimentally determined rates of reaction are very high (Table 4.4). Limonene 

and p-cymene follow the trend dictated by β and δT as expected (Equation 4.2). Updating the 

LSER with these solvents gives the following equation: 

Equation 4.3                             
  R2 = 0.989 

Limonene appears to be slightly superior to cyclohexane as a reaction medium, although with 

identical β values this is not a significant improvement. Nevertheless limonene (and p-cymene 

not far behind) again demonstrates the ability of bio-based solvents to easily substitute 

petroleum derived solvents whilst maintaining high rates of reaction. 
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Table 4.3 Uncatalysed esterification solvent hits from the solvent selection algorithm. 

Solvent 
Score: 

Model B1 + model B2 

Score: 

Model B1 + model B3 

1,1,1-Trichloroethane 152 No data 

1,2,4-Trichlorobenzene No data 128 

1,2-Dichlorobenzene 128 128 

1,2-Dichloroethane 114 Fail 

Benzene 112 Fail 

Carbon tetrachloride 114 Fail 

Chlorobenzene 110 130 

cis-Decalin 110 Fail 

Cumene 86 86 

Cyclohexane 152 Fail 

Cyclohexanone Fail 130 

Cyclopentanone Fail 108 

Diphenyl ether 82 No data 

Fluorobenzene 114 Fail 

Heptane 150 Fail 

Hexane 154 Fail 

Limonene 148 No data 

Mesitylene 90 Fail 

m-Xylene 90 No data 

p-Cymene 88 No data 

Perfluorohexane 154 Fail 

Perfluoromethylcyclohexane 152 No data 

p-Xylene 90 Fail 

Tetrachloroethylene 130 No data 

Toluene 90 Fail 

Trichloroethylene 134 No data 

Total hits 23 6 
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Table 4.4 A comparison between high performance bio-based and petro-chemical esterification 

solvents. 

Solvent ln(k) α β π* δT SUS HAS ECO 

PhCl -9.73 0.00 0.06 0.65 19.4 1 4 10 

p-Cymene -9.38 0.00 0.13 0.39 17.4 6 n/a n/a 

Limonene -9.15 0.00 0.00 0.16 15.1 10 n/a n/a 

Toluene -9.68 0.00 0.12 0.50 18.2 1 3 6 

 

Both the citrus waste derived solvents can be incorporated into the kinetic LSER 

(Equation 4.3) and represented successfully in terms of the correlation between experimental 

and predicted ln(k) values (Figure 4.10). There does not appear to be any systematic error, 

although the data scatter is slightly greater than that seen in the amidation and nucleophilic 

substitution reaction case studies (Figure 4.11).  

 

 

Figure 4.10 The estimated ln(k) values from the LSER describing the uncatalysed model 

esterification, including bio-based solvents, plotted against experimental data. 
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Figure 4.11 Systematic error check regarding the certainty of rate constant estimation in the 

uncatalysed model esterification. 

 

Unsurprisingly the same arguments for and against the introduction of bio-based solvent 

can be raised as before in Chapter 3. A lack of data concerning health, safety, and environmental 

considerations is not acceptable just because the product is renewable. Caution must be applied 

in this circumstance. Having said this, the prevalence of limonene in consumer products is 

reassuring of its low potential to be toxic, but aquatic toxicity data suggests limonene pollution is 

a burden on the environment. Due to its lipophilicity, and resulting aquatic toxicity and 

bioaccumulation potential, limonene may not be a holistically beneficial solvent substitute in all 

instances. Of course the damage that limonene can do to its environment depends on the way in 

which it is handled. If disposal is carried out correctly, or better still, the solvent is recycled, then 

this argument loses some of its power. If limonene is not being extracted from citrus waste to be 

used in synthetic chemistry, then it is a burden on the environment regardless as a component of 

citrus waste, without having been made to work for that privilege. 
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4.3 Esterification summary 

 

The success and implications of solvent selection: Considering the esterification presented here, 

and further evidence from other solvent studies on related systems, it appears (perhaps 

unsurprisingly) that a universal relationship between the rate of AAC2 carbonyl additions and 

solvent hydrogen bond accepting ability is likely to exist. This class of reaction is accelerated by 

solvents with low β values. The explanation for this solvent effect is that the enthalpic benefits of 

stabilising the activated complex of the reaction are overridden by the large entropic penalty 

created by organising the solvent in order to establish these interactions. The influence of the 

Hildebrand solubility parameter on the kinetics of butyl butanoate synthesis is complimentary to 

the impeding function of solvent hydrogen bond accepting ability (β). For these reasons, p-

cymene can be considered a renewable alternative solvent for carbonyl additions. Limonene or 

even citrus oils directly can be used as solvents for synthesis, although the reactivity of limonene 

is sometimes a major and usually unsurpassable barrier to its application as a solvent. p-Cymene 

is also compatible with existing methodologies for managing less routine carbonyl additions. A 1 

mol% loading of DMAP in p-cymene at 323 K provided complete conversion to butyl butanoate 

within one hour, as judged by 1H-NMR spectroscopy of the reaction mixture. 

It is also worth addressing the relative merits of esterification reactions performed in 

perfluorinated solvents, ionic liquids, and of course more typical reaction conditions using 

limonene or p-cymene as renewable reaction media. The LCA of typical ionic liquids indicates a 

relatively large environmental impact for a solvent [Zhang 2008]. Perfluorinated solvents pose a 

threat in the environment, but also have an ungreen manufacturing process, like ionic liquids, but 

for different reasons (Scheme 4.5). With fluorine inevitably comes the demand or emission of 

hydrogen fluoride [Barbour 1952, Pearlson 1986]. A more detailed description of ionic liquids and 

perfluorinated solvents is available elsewhere [Breeden 2012]. Needless to say, bio-based 

solvents, accessible in two or less synthetic transformations from a renewable feedstock, will 

significantly reduce the associated energy and waste issues of chemical manufacture attributed 

to the products in which they are synthesised compared to ionic liquid or perfluorinated solvent 

based processes. 

Broader appeal and future work: There are a variety of roles in which limonene and p-cymene 

could be adopted as bio-based alternatives, but some important applications will be off-limits, 

either because the polarity of these solvents is not suitable or that their high boiling points are 

irreconcilable with the design of the application. The high boiling points of the citrus oil derived 

solvents also mean they have no chromatographic use. This is unfortunate given the volumes of 

solvent required for column chromatography, dwarfing that of the actual reaction solvent.
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Scheme 4.5 Manufacturing routes to solvents fit for esterification chemistry. 

 

Considering the huge number of solvents in use today, it would be impossible for one or two new 

bio-based solvents to cover all applications once reliant on petroleum derived solvents. The quest 

to discover and validate more sustainable solvent solutions will continue indefinitely as scientists 

seek to improve and investigate solvent phenomena. What is now known is that limonene and p-

cymene can be applied as solvents in an assortment of commercially attractive acylation 
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chemistries relied on by all chemical sectors. By being of low polarity, both limonene and p-

cymene help populate a niche in the range of possible solvent polarity that typical oxygenated 

bio-based solvents do not satisfy (Figure 4.12). Expanding the polarity range of bio-based solvents 

is probably the strength of the citrus waste derived solvents. 

 

 

Figure 4.12 A solvent polarity map highlighting limonene and p-cymene. 

 

A reasonable criticism of this work is that an abstract model reaction is not necessarily 

versatile in making a case for a particular solvent selection across a whole class of reaction. The 

reaction between butanoic anhydride and 1-butanol serves a purpose as an easy to follow kinetic 

study, but bears little resemblance to typical esterification strategies. The solvent effects 

governing a Fischer esterification would be more useful in this respect, and a study of this kind is 

already available [Wells 2008]. The uncatalysed esterification developed here partners this 

existing research and reveals that the role of the acid catalyst in Fischer esterification is not 

necessarily dependent on the solvent. Whether limonene and p-cymene can also be used in 

catalysed reactions is investigated in the following chapter, where the range of esterifications 

studied is significantly broadened, as is the capacity of limonene as a platform molecule. 
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5. Catalysed carbonyl addition 

 

 

 

The imposing solvent effects discussed in the previous chapters may conjure a likeness between 

the rate enhancements provided by solvents and those imparted by catalysis. In fact solvents will 

also modify reaction equilibria in addition to adapting kinetic profiles. Solvent effects are not 

equated to catalytic effects because solvents are applied in a large excess and are responsible for 

the environment surrounding reaction components. Although solvent effects often involve a 

specific solute-solvent interaction the effect is usually not attainable if the solvent were to be 

applied in catalytic amounts. However it is clear that when optimising a reaction system the 

choice of solvent and catalyst is important for similar reasons, and to a certain extent the 

performance of each is dependant on the other. It is sensible to examine how all the reaction 

auxiliaries perform in combination, and which precise combination is optimal. The bio-based 

content and suitability of catalysts can be scrutinised in the same way that solvents have been 

treated thus far.  

 

5.1 Bio-based acid catalysts for organic chemistry 

 

Acid catalysis in Fischer esterification: All the Fischer esterification methods and mechanisms 

discussed previously require an acid catalyst. Bases unfavourably deprotonate the carboxylic acid 

and are only useful for ester hydrolysis. The favoured choice of acid catalyst for the 

manufacturing of typical ester bulk chemicals is either a mineral acid or quite often p-

toluenesulphonic acid (p-TSA) [Smith 2007, page 1414]. Alternatively a number of heterogeneous 

catalysts have recently been applied to esterifications in an attempt to reduce waste [Barbosa 

2006, Kirumakki 2004, Sawant 2007, Shanmugam 2004]. Lewis acids are presented as less 

corrosive alternatives to p-TSA and other Brønsted acids [Chakraborti 2003, Chandra 2002, 

Chandrasekhar 2002a, Corma 2003, Mihara 2010, Orita 2001]. Alternatively activated carboxylic 

derivatives can be used; either generated in situ or as isolated intermediates. This approach 

obviously mirrors the attitude widely adopted in the synthesis of amides, and in the previous 

chapter regarding uncatalysed esterification with acid anhydrides. Acid chlorides are often used 

too, and also dialkylcarbodiimide coupling agents [Smith 2007 page 1417]. Both solutions either 
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avoid the formation of, or remove the stoichiometric water formed during the acylation. But in 

order to do so atom economy is sacrificed. 

Introducing p-cymenesulphonic acid: The consensus amongst contempory chemists and 

chemical engineers is that an increased use of heterogeneous, non-corrosive, recyclable catalysts 

is a good approach for the future of sustainable chemistry [Kaneda 2006, Martin 2002 page 321]. 

Heterogeneous catalysis is already prevalent in the bulk chemical manufacturing sector [Tanabe 

1999]. However the more delicate speciality chemicals produced on a smaller scale are more 

frequently produced with the assistance of homogeneous catalysis. Homogeneous catalysis is 

ubiquitous throughout the various stages of pharmaceutical research and development. Although 

heterogeneous catalysts can offer greater thermal stability, less contamination of products and 

improved reusability, this practice is not established in the fine chemical sector, unable as of yet 

to broadly match homogeneous catalysis [Hagen 2006 page 10].  

As a strong acid that is also soluble in organic solvents, p-TSA is widely used as a Brønsted 

acidic catalyst for Fischer esterifications and similar reactions [Baghernejad 2011]. Historically p-

TSA has been synthesised by the sulphonation of toluene as an intermediate in the production of 

p-cresol [Hoff 1979 page 268]. Because this valuable process is based on a petrochemical 

substrate it is beneficial to seek a sustainable alternative. Having suggested that p-cymene made 

from limonene is a capable solvent replacement for toluene in carbonyl addition chemistry, by 

extension it seems probable that p-TSA could be supplanted for the sulphonic acid of p-cymene. 

Treatment of p-cymene with sulphuric acid will give p-cymene-2-sulphonic acid (p-CSA) (Scheme 

5.1) [Hixson 1918, Phillips 1924].  

 

 

Scheme 5.1 The synthesis of p-CSA from limonene via p-cymene. 

 

The sulphonation of p-cymene contained within sulphite turpentine provided a means of 

obtaining carvacrol in the past [Hixson 1918]. The purpose of making p-CSA has never been for 

catalyst applications, and so the work described here is the first time that p-CSA has been used as 

an acid catalyst. Sulphonation occurs primarily at the 2-position relative to the methyl group, and 

this isomer can be selectively recrystallised from the reaction mixture [Le Fèvre 1934, Hixson 

1918, Phillips 1924, Schorger 1918, Spica 1881]. To obtain the alternative 3-isomer a series of 
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protection strategies need to be employed to block the less sterically hindered 2-position during 

sulphonation [Philips 1920].  

This all contributes to the argument in favour of replacing toluene across all of its current 

diverse uses with p-cymene as far as can possibly be achieved. The greater and broader the 

demand, the sooner and more economically viable the supply is likely to become. The most 

important of these substitutions might be the synthesis of terephthalic acid from p-cymene, 

replacing p-xylene in this instance. This is currently being explored as part of the movement 

towards 100% bio-based poly(ethylene terephthalate) (PET) [Berti 2010]. Although outside of the 

scope of this work, this would probably be the greatest driver in establishing p-cymene as a 

platform molecule. This network of chemical transformations can be likened to that which stems 

from toluene as a platform molecule (Scheme 5.2). Both substrates can be used to synthesise p-

cresol [Shinohara 1973], which in turn can be alkylated to give the antioxidant BHT [Hoff 1979 

page 268].  

 

 

Scheme 5.2 A comparison between the synthetic routes linking the products of toluene and p-

cymene. 

 

In light of previous discussions, an alternative process for obtaining p-CSA beginning with 

the oxidation of the limonene present in the peel of citrus fruits is more suitable for the purposes 

of this investigation [Martin-Luengo 2008, Martin-Luengo 2010]. Although this route was alluded 

to in the preceding chapters, currently the production of p-cymene is the result of the alkylation 
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of toluene [Simons 1944, Zupp 2012]. This is despite attempts at the synthesis of p-cymene from 

limonene being high yielding on a laboratory scale and the toluene alkylation route not being 

selective towards the para- isomer [Hoff 1979 page 251]. It is the aim of this chapter to 

demonstrate the synthesis of p-CSA from a renewable citrus waste feedstock and its application 

as an organic acid catalyst. Along the way solvent effects and the interplay between solvent and 

catalyst will be discussed when the need arises. 

Optimisation of the processes required for the synthesis of p-CSA: Given the success of 

experiments in the literature showing the production of bio-derived p-cymene, the 

transformation of p-cymene into its sulphonic acid was explored to obtain the desired product 

before a complete synthesis from citrus waste was attempted. The substrate p-cymene was 

purchased from a chemical supplier (Sigma-Aldrich), and as mentioned is likely to be 

manufactured from toluene rather than limonene or another terpenoid source. The action of 

concentrated sulphuric acid on p-cymene at 373 K for 4 hours produced an unsatisfactory 30% 

yield of p-CSA. The active electrophile in this reaction is actually sulphur trioxide (which can be 

thought of as dehydrated sulphuric acid) or higher dehydrated species, and so a better source of 

the electrophile was sought to improve the yield (Scheme 5.3) [Smith 2007 page 695]. The use of 

20 w/w% fuming sulphuric acid at room temperature increased the sulphonation yield 

significantly [Le Fèvre 1934, Schorger 1918]. The crude product could be isolated from the 

reaction by the addition of water, which induces the solidification of the product [Hixson 1918, 

Schorger 1918]. Recrystallisation from concentrated hydrochloric acid results in a white 

crystalline solid, previously described in the literature as the dihydrate of p-CSA in yields 

exceeding 90% of the theoretical maximum. As expected only the 2-isomer was present after 

recrystallisation, fitting reports from previous syntheses, which could be characterised by two 

 

Scheme 5.3 The mechanism of p-cymene sulphonation by sulphuric acid. 
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dimensional NMR spectroscopy (HSQC and HMBC). 

It was then wise to confirm that p-cymene could indeed be produced from citrus waste. 

Optimisation of the procedure was in the first instance conducted with limonene rather than 

citrus oil. The mechanism of this transformation proceeds via two distinct stages (Scheme 5.4). 

Firstly isomerisation of the exo-cyclic double bond of limonene results in α-terpinene amongst its 

other isomers [Martin-Luengo 2008]. Earlier reports have stated that the isomerisation of 

limonene to terpinolene is rapid, then the isomerisation onto α-terpinene, although slower, is 

considered irreversible [Derfer 1979 page 720]. This process is followed by dehydrogenation to 

give the oxidised product p-cymene. 

 

 

Scheme 5.4 A mechanistic proposal describing the process of converting limonene into p-

cymene. 

 

It was found that when mineral acids come into contact with limonene they cause its 

decomposition, probably into polymerisation products as suggested by the resulting black tar. 



184 
 

Instead the isomerisation was promoted by K-10 montmorillonite, an acidic clay known for its 

ability to isomerise terpenes [Frenkel 1983]. Stirring a wet slurry of limonene and K-10 

montmorillonite at 373 K for one hour resulted in only trace amounts of aromatic products. 

Instead a variety of olefinic species were formed by acid catalysed alkene isomerisation. A slurry 

of p-cymene and K-10 montmorillonite subjected to the same conditions did not affect any 

decomposition, suggesting that the catalyst provides poor selectivity towards aromatic products 

and not that the product is unstable. 

The use of palladium on activated carbon (or palladium acetate) also failed to convert 

limonene to p-cymene under similar conditions. However it was found that palladium catalysts 

will oxidise α-terpinene, the key intermediate in the synthesis of p-cymene from limonene, to the 

desired product (Scheme 5.4). The chloride salts of other metals were also screened, including 

copper, zinc, iron, nickel, and platinum. Polymerisation catalysts, such as aluminium trichloride, 

that are used to make terpeniod resins were avoided [Derfer 1979 page 749] Although they all 

showed some evidence of catalysing the dehydrogenation of α-terpinene, none of the metal salts 

compared to palladium, often providing less than complete conversion of the substrate and a 

variety of products. By contrast, 5 mol% of palladium supported on activated carbon was able to 

convert all of the α-terpinene at 413 K, and largely into p-cymene (Figure 5.1). 

 

 

Figure 5.1 The comparison between Pd/C and ZnCl2 catalysed oxidations of α-terpinene by 1H-

NMR spectroscopy. 
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It is apparent that the first stage of the transformation from limonene to p-cymene can 

be achieved with a mildly acidic catalyst to generate the intermediate olefins. It is then necessary 

that a metal abstracts dihydrogen from the intermediate α-terpinene to give p-cymene. It 

appears that only a combination of these catalyst types will suffice to see this mechanistic 

pathway to fruition (Scheme 5.4). That is not to say that another route circumnavigating these 

stages is not feasible, but harder to imagine. A suitable catalyst, the so-called mechanical mixture 

of palladium on activated carbon (Pd/C) and K-10 montmorillonite can be created simply by 

shaking a vial containing both components until homogeneity is apparent by eye. This 

combination of solid catalysts has been used before, and again dehydrogenation was a key step 

[Kulkarni 2009]. Limonene was cautiously added dropwise to the catalyst mixture, preheated to 

373 K. An acid loading of at least 1 mol% (based on the number of acid sites in the clay) was 

required to obtain any p-cymene at all, which corresponds to 0.12 g of clay per millilitre of 

limonene [Gonçalves 2008]. Raising the acid fraction higher had no effect on the yield (Figure 

5.2). An increase in selectivity could be obtained by increasing the quantity of 10 wt% Pd/C up to 

1 mol% but further palladium had no significant effect, especially when considering the monetary 

price associated with doing so. The loading of each catalyst component can therefore be applied 

at levels equating to 1 mol% each in the mechanical mixture to give a little better than 50% 

conversion to p-cymene at 373 K within 1 hour. 

 

 

Figure 5.2 An optimisation study concerning the loading of Pd/C and K-10 for the conversion of 

limonene to p-cymene at 373 K. 
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Although increasing the catalyst loadings beyond 1 mol% had minimal benefit, raising the 

reaction temperature from 373 K to 413 K resulted in an improvement to 71% selectivity to p-

cymene (Figure 5.3). The trend of selectivity dependence on temperature is not ideal, with a 

modest change in selectivity if a reaction temperature of 393 K rather than 373 K was applied. 

Then a jump in selectivity occurs when reactions are conducted 20 K hotter still. Higher 

temperatures were less promising, with a drop in selectivity observed. The reason, as inferred 

from 1H-NMR spectroscopy, is that reactions at 413 K show a single aromatic product, p-cymene, 

but other aromatic signals are present at higher reaction temperatures (Figure 5.4). This implies 

some cracking of the terpenoid structure is occurring to our disadvantage. At lower temperatures 

complete conversion of the limonene was still achieved, and a single aromatic signal 

accompanied by the other three distinctive p-cymene signals observed in the 1H-NMR spectrum 

of the reaction mixture. Complete consumption of limonene and no olefin by-products were 

always observed when Pd/C was the catalyst, confirmed with NMR spectroscopy and GC-MS, 

which means the selectivities reported in Figure 5.2 and Figure 5.3 should translate to yields. 

 

 

Figure 5.3 Product selectivity to p-cymene from limonene at different temperatures.  
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Figure 5.4 A 1H-NMR spectroscopic analysis of the reaction mixture after limonene oxidation, 

largely to give p-cymene at 413 K (black), but less effective at 433 K (red). 

 

2:1 molar ratio of the two disproportionation products (Scheme 5.5) [Lesage 1996]. In fact a 

product selectivity just above 67% has been achieved, hopefully suggesting disproportionation 

does not impose an impassable ceiling for the highest achievable yield. The yield of p-cymene 

from α-terpinene was even higher at 82% (Figure 5.1). This implies that the role of the acidic clay, 

by promoting multiple alkene isomerisations, is also to blame for the less than quantitative yield. 

Because no other dehydrogenation catalyst from the metal salt screening could match this 

obviously flawed disproportionating mode of catalysis, palladium still proves to be the most 

useful metal catalyst for this reaction. It is possible that K-10 montmorillonite could be 

supplanted for a more efficient acid to help increase the yield of p-cymene. Alternatively it is 

known that p-menthane will oxidise to p-cymene in the presence of palladium above 530 K, but 

this was not attempted here [Littmann 1942]. 

 

 

Scheme 5.5 The disproportionation of α-terpinene to p-cymene and p-menthane. 

 

The reusability of the co-catalysts as their mechanical mixture was poor. Virtually no p-

cymene was produced upon the second use of the catalyst under otherwise identical conditions, 

although no pre-treatment was applied beyond the drying of the catalyst. Attempts to use 

hydrogen acceptors have been applied in the past, to this and similar reactions, but 1-decene and 
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levulinic acid were found to actually inhibit the reaction with no p-cymene identified in the 

reaction mixture [Lesage 1996, Wise 2007]. Finally, diluting the reaction using p-cymene as a 

solvent could not improve the selectivity of the reaction either. So it seems an improvement in p-

cymene yield might require a completely different approach. In order to progress with the 

synthesis of p-CSA, what p-cymene could be made by this method was taken forward. 

The synthesis of bio-based p-cymenesulphonic acid: This procedure for making p-cymene was 

then transposed onto citrus oil feedstocks. Steam distillation of orange peel afforded the 

colourless essential oil in yields equating to a little over 1 g of essential oil for every three fruits. 

Each fruit, Uruguyan Navel Late, weighed approximately 80 g. The orange oil gave similar results 

to neat limonene in the synthesis of p-cymene (Figure 5.5). The final reaction mixture containing 

p-cymene could be purified with a second steam distillation stage, although p-cymene and p-

menthane are co-distillates. Attempts to separate these compounds by distillation have been 

fraught with difficulty [Berg 1992]. Resorting to chromatography would be an unacceptable move 

considering the product is intended for use as a commodity solvent as well as a chemical 

intermediate. Also, using additional solvent to purify p-cymene would defeat the point of 

synthesising the p-cymene in the first place. Thankfully in the following sulphonation procedure 

p-menthane is unreactive, and upon formation of the highly polar sulphonic acid, the 

hydrocarbon component of the resultant mixture can be decanted. 

 

 

Figure 5.5 The efficiency of p-cymene production utilising different sources of limonene. 
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Unfortunately sulphonation of the mixture of p-cymene and p-menthane was not nearly 

as high yielding as observed in the previous optimisation study using pure p-cymene. A p-CSA 

yield of 28% of the theoretical maximum based on the p-cymene content of the substrate was 

isolated, corresponding to a 16% yield based on the limonene content of the citrus waste. 

Nevertheless the bio-based product was identical to p-CSA made from pure p-cymene. Either 

could be used to catalyse a variety of reactions equally well. 

The properties of p-cymene sulphonic acid: Prior to its application as an acid catalyst it was 

necessary to determine the acidity of p-CSA. The Hammett acidity function (H0) is an equivalent 

measurement to pH for strong acids [Hammett 1932]. As a method of calculating the ability of 

strong acids to protonate a weak base by UV–vis. spectroscopy, it is now routinely used as part of 

the characterisation of novel sulphonic acids [Tao 2011]. The calculation is equivalent to that 

describing pH (Henderson-Hasselbalch equation) but water is generalised to a base: 

Equation 5.1                 
   

     
 

Familiar from Kamlet-Taft solvatochromism studies, 4-nitroaniline was selected as the base 

partner for determining H0 (Scheme 5.6).  

 

 

Scheme 5.6 The H0 equilibrium between p-CSA and 4-nitroaniline. 

 

Increasing the concentration of the sulphonic acid will adjust the equilibrium, generating 

a greater quantity of the conjugate acid. This protonated species does not absorb light as the free 

base does, and so the absorbance recorded by a UV spectrophotometer is proportional to the 

equilibrium position (Figure 5.6). As expected from electronic arguments, the acid strength of 

alkyl functionalised arenesulphonic acids is inversely proportional to the degree of substitution 

present, and so p-CSA (H0 = 1.26) is a slightly weaker acid than p-TSA (H0 = 1.22) at a 

concentration of 80 mmol·dm-3 (Figure 5.7). To put this in context the difference is less than that 

between p-TSA and benzenesulphonic acid (BSA, H0 = 1.12) implying that little influence would be 

felt in terms of performance upon substituting one sulphonic acid for the other. 
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Figure 5.6 The absorbance profile of 4-nitroaniline in the presence of varying concentrations of p-

CSA. 

 

 

Figure 5.7 The Hammett acidity of sulphonic acids. 
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A key benefit of using p-TSA as a catalyst in synthesis is that it can be easily washed out 

of an organic phase with water. Biphasic systems of ethyl acetate (20 mL) and water (20 mL) 

containing 0.05 mmol of either p-TSA or p-CSA were prepared to represent a post-reaction work-

up. Neither organic layer contained any sulphonic acid after mixing and separation of the phases 

upon standing, as determined by 1H-NMR spectroscopy. It is noticeable that the system 

containing p-CSA is slower to separate into two phases after agitation, but addition of sufficient 

water allowed the complete removal of the acid from the organic phase. The thermal stability of 

both sulphonic acids is also comparable, as evidenced by their comparable decomposition 

temperatures (Td). These observations are summarised in the following table, along with their 

melting points (Tm) (Table 5.1). 

 

Table 5.1 A selection of properties defining p-TSA and p-CSA. 

Property p-TSA p-CSA 

Tm /K 379-380 [Shultz 1979 page 60] 323-324 

Td /K 479 476 

H0 at 80 mmol.dm-3 1.22 1.26 

 

5.2 Combined solvent and catalytic effects in carbonyl additions  

 

Kinetics of Fischer esterification assisted by sulphonic acid catalysts: The first application 

selected as a test of the catalytic prowess of p-CSA was the Fischer esterification of acetic acid 

and benzyl alcohol (Scheme 5.7). The reaction was attempted in a variety of solvents in 

combination with both p-TSA and p-CSA. A similar case study evaluating the synthesis of benzyl 

methoxyacetate can be found in the literature, and was referred to earlier as a counterpoint to 

the study of 1-butanol reacting with butanoic anhydride [Wells 2008]. The purpose of this study, 

beyond confirming the solvent effect, is to further develop an understanding of solvent-catalyst 

synergy, and of course to determine if p-CSA is a suitable replacement for p-TSA or not. 

 

 

Scheme 5.7 The synthesis of benzyl acetate by Fischer esterification. 
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The solvent selection algorithm can be applied prior to any experimental work, because 

thanks to various studies in this work and elsewhere it is well established that carbonyl addition 

is inversely proportional to β. This being the case the LSER generated by Wells et al. was used 

[Wells 2008]: 

Equation 5.2                     

With this single parameter relationship, candidates are ranked within the solvent performance 

assessment (model B2) in accordance to their inverse proportionality with β. Few changes to the 

inputs used in the previous case study concerning uncatalysed esterification were required. No 

extra considerations were made given the introduction of an acid catalyst, whether that is p-TSA 

or p-CSA. Alkene functionalised solvents like limonene are certain to be incompatible with a 

sulphonic acid catalyst and so were not included in the solvent set. Amines were also excluded in 

order to limit interference with the catalyst and prevent side reactions. Homogeneity of acetic 

acid and benzyl acetate was demanded, with the addition of a phase split to eliminate water 

from the reaction medium, thereby discouraging an equilibrium that would limit the eventual 

yield (Figure 5.8). The GSK solvent selection guide was again used as the basis of the greenness 

assessment (model B3), with a score of 4 set as the minimum permissible value in each category, 

including the LCA category [Henderson 2011]. 

 

 

Figure 5.8 Acid catalysed Fischer esterification to give benzyl acetate solvent selection algorithm 

screenshot, step 3: Parameter input. 

 

 Being so closely related to the previous two case studies, it is no surprise that p-cymene 

is offered as an option for a renewable solvent by the solvent selection algorithm. Of course the 

greenness assessment (model B3) can not be applied to p-cymene because of an absence of the 

necessary data. Otherwise it is competitive. As with the previous esterification case study, 1,2-
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dichlorobeznene, chlorobenzene, and cumene are the only solvents to pass all the assessments in 

the solvent selection algorithm. Rather than overload the experimental solvent set with obscure 

petroleum-derived aromatics, toluene was chosen as the only hydrocarbon solvent to 

compliment p-cymene. Acetonitrile, butanone, chloroform, 2-MeTHF, and THF were also selected 

as solvents for experimentation. Rate constants were determined with a 1H-NMR spectroscopic 

analysis (Equation 1.14 and Equation 1.15), following the benzyl group of benzyl alcohol moiety 

much as benzylamine in its amidation with 4-phenylbutanoic was before (Figure 5.9). 

 

 

Figure 5.9 A 1H-NMR spectrum of the Fischer esterification to give benzyl acetate in p-cymene. 

 

As expected, toluene and p-cymene, the precursors to the sulphonic acid catalysts, 

provide an environment that accelerates the rate of reaction in combination with either catalyst 

(Table 5.2). None of these solvents are considered green, but of course p-cymene is an unknown 

in this regard (Figure 5.10). Joining p-cymene in this case study is 2-MeTHF, another bio-based 

solvent [Aycock 2007]. Unfortunately this solvent has a medium hydrogen bond accepting ability 

and will not provide a great environment for esterifications. It also fares poorly in the SUS-HAS-

ECO classifications, being outscored by chloroform in two categories (Figure 5.10). This is because 

of consistent mediocrity rather than one severe shortcoming, although 2-MeTHF is regarded as a 

dangerous peroxide former [Fábos 2009]. With no data for p-cymene, none of the solvent set 

provide an appealing reaction medium. 
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Table 5.2 Solvent properties concerning a Fischer esterification to give benzyl acetate. 

Solvent ln(k) 

p-TSA 

ln(k) 

p-CSA 

α β π* 

Acetonitrile 20.5 18.0 0.35 0.37 0.80 

Butanone 11.0 10.4 0.00 0.51 0.68 

Chloroform 85.1 102 0.20 0.10 0.58 

p-Cymene 92.9 104 0.00 0.13 0.39 

2-MeTHF 5.60 4.02 0.00 0.57 0.51 

THF 3.35 2.37 0.00 0.55 0.58 

Toluene 84.5 111 0.00 0.12 0.50 

 

 

Figure 5.10 The solvent SUS-HAS-ECO classifications for the benzyl acetate case study. 

 

 With the experimental data now obtained the LSER can be constructed. As presumed 

only β is influential in determining the rate of esterification (Figure 5.11). The weak hydrogen 

bond donating ability of acetonitrile and chloroform has no effect on the reaction, which is not 

surprising given that this effect will be relatively weak by comparison in the presence of a strong 

acid catalyst. Dipolarity (π*) was also statistically insignificant. Reactions were performed using 
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Figure 5.11 The LSER describing Fischer esterification catalysed by p-TSA and p-CSA to give benzyl 

acetate, also including the combination of benzenesulphonic acid in p-cymene. 

 

were barely distinguishable from each other (Figure 5.11). Equations describing these LSERs can 

be found in the appendix (Table 8.14) 

There is an indication that p-TSA is superior to p-CSA in high polarity solvents, while p-

CSA marginally enhances reaction rates in low polarity solvents. Given the slightly superior acidity 

of p-TSA, the former observation is expected. The latter observation is most probably due to 

differences in the solubility of the catalysts, or more precisely the stability of their conjugate 

bases in solution during protonation of the reactive substrate. The upshot of this is that p-CSA 

will outperform p-TSA in solvents whose polarity is suited to esterification. The relative difference 

in ln(k) between p-TSA and p-CSA catalysed esterifications can also be interpreted as a function 

of β (Figure 5.12). The correlation is weaker than what would be liked (R2 = 0.856) but is still 

significant, suggesting this observation is a true consequence of the structures of the sulphonic 

acids. Removing butanone from the solvent set increases the coefficient of determination to a 

more satisfactory level (R2 = 0.963).  

This study, beyond the confirmation that p-cymene is an effective bio-based solvent for 

this class of transformation, aids the hypothesis that the same solvent effect seems to dictate the 

rate of all carbonyl addition chemistries. To reiterate, the role of the solvent appears to be one of 
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Figure 5.12 The difference between the ln(k) of p-TSA and p-CSA catalysed Fischer esterifications. 

 

enthalpy stabilisation at the transition state but at a large entropic cost. Once more, there is no 

need for the explanation previously presented by Wells for the action of the solvent consisting 

solely of a solvent-catalyst hydrogen bond (Scheme 4.1) [Wells 2008]. In many cases a catalyst 

such as p-CSA would be expected to protonate the solvent (Scheme 5.8). As long as the proton is 

transferred to the carbonyl moiety of the reactive substrate then this apparently makes no 

difference. Because the correlations are derived from experimental data and do not rely on a 

correction factor to account for the exact nature of the proton donor, there is no need to make 

any special considerations for catalyst-solvent interactions or even salt formation between the 

two. 

Preparative Fischer esterifications catalysed by sulphonic acids or metal salts: It is 

apparent from previous results that the p-cymene/p-CSA system should be very well suited to 

promoting a variety of esterifications and related transformations. To verify this, another Fischer 

esterification was undertaken, but with the objective of isolating the product rather than 

monitoring the rate of the reaction. Accordingly ethyl levulinate, itself identified as a possible bio-

based solvent, was synthesised in p-cymene, toluene and 2-MeTHF using a variety of catalysts 

(Scheme 5.9). Combinations of p-cymene, toluene and 2-MeTHF with p-TSA (1 mol%), p-CSA (1 

mol%), In(OTf)3 (5 mol%), InCl3 (5 mol%), or FeCl3 (5 mol%) as catalysts were evaluated. Both the 

Brønsted acid catalysts were effective, with p-CSA indistinguishable from p-TSA (Figure 5.13). In 

fact the performances of all the catalysts were fairly similar, although the Lewis acids had to be 
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Scheme 5.8 The combined roles of solvent and catalyst in the AAC2 mechanism of a 

representative carbonyl addition. 

 

 

Scheme 5.9 Fischer esterification to give ethyl levulinate. 
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Figure 5.13 Combinations of different catalysts and solvents for the synthesis of ethyl levulinate. 

 

used in higher loadings to compete with the sulphonic acids. The comparable yields suggest that 

the equilibrium position of the reaction was being approached, which is not an unreasonable 

assumption given that equimolar quantities of the reactants were used. There is nothing to 

suggest from these results that Lewis acidic compounds make especially effective catalysts in 

condensation chemistry but can be made competitive with Brønsted acids at higher loadings. 

The most significant practical drawback to the use of p-cymene instead of toluene 

(despite of the slightly superior yields) becomes apparent in this case study. The high boiling 

point of p-cymene (450 K) means that removal of the solvent is not routine as it is for toluene. 

Toluene and 2-MeTHF could be removed in vacuo to give the product. In contrast, p-cymene was 

removed by running the reaction mixture through a column of silica, resulting in extra solvent 

waste and silica waste far outweighing the benefits of substituting toluene with p-cymene in the 

first place. Removal of p-cymene by steam distillation was deemed inappropriate given the 

nature of the product, although this approach may be suitable in a number of other reactions. In 

real terms this restricts the use of p-cymene as a solvent to chemistry in which the product can 

be precipitated or otherwise extracted from solution. Although this is the ideal way of claiming 

the product from a reaction mixture it is not always feasible. On the other hand, the higher 

boiling point of p-cymene when compared to toluene imparts the ability to perform reactions at 

higher temperatures than those attainable using toluene, xylene(s), or even mesitylene. Although 
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this is not necessarily enough of a benefit to warrant the complete phasing out of toluene on this 

basis alone it will be advantageous on occasion.  

Further p-CSA catalysed condensations: In order to establish p-CSA as a catalyst for 

condensation chemistry more examples of successful transformations are required to 

complement the esterification studies. Accordingly the synthesis of 4-bromochalcone via an aldol 

condensation (Scheme 5.10), and the acetal protection of 4-nitrobenzaldehyde with ethylene 

glycol were performed as further demonstrations of acid catalysis by p-CSA (Scheme 5.11). Both 

these types of procedure have been used previously as demonstrations of novel sulphonic acid 

catalysis [Liang 2008, Xu 2008].  

 

 

Scheme 5.10 A chalcone synthesis by aldol condensation. 

 

 

Scheme 5.11 Acetal protection using ethylene glycol. 

 

The aldol condensation was performed without an auxiliary solvent, and the product was 

recrystallised from ethanol. After refluxing in cyclohexane, the acetalisation reaction product 

precipitated from the reaction mixture upon cooling. The comparison shows that p-TSA fairs no 

better than p-CSA in its role as an acid catalyst despite its ever so slightly greater acidity (Table 

5.3). After performing each reaction in triplicate no difference in the mean yield between p-TSA 

and p-CSA catalysed reactions is observed. In the synthesis of ethyl levulinate only a 2% variation 

in yields was observed. Generally it appears that no major allowances have to be made or 

additional considerations accounted for if replacing p-TSA with p-CSA. Plus the benefit of a 

renewable reaction auxiliary is an important attribute in modern synthetic chemistry. 

Life cycle aspects of p-cymene and p-CSA: It is important to address the environmental impact of 

sulphonic acids pre-application and post-application and not just during the reaction. To begin, 

the synthesis of p-cymene from limonene must be addressed. Several procedures are in the 
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Table 5.3 Comparison of yields in esterification, aldol condensation, and acetalisation chemistries 

obtained by p-TSA and p-CSA catalysis. 

Product Solvent Yield (p-TSA) Yield (p-CSA)  

Ethyl levulinate  p-Cymene 71% 69% 

Ethyl levulinate  Toluene 65% 67% 

Ethyl levulinate 2-MeTHF 11% 10% 

4-Bromochalcone n/a 73% 73% 

2-(4-Nitrophenyl)-1,3-dioxolane Cyclohexane 92% 92% 

 

literature describing highly efficient protocols (Scheme 5.12). These arguments were used in the 

previous chapters to validate the use of p-cymene as a viable bio-based solvent. Now that the 

conversion of limonene to p-cymene has actually been attempted, and demand for p-cymene as 

a chemical intermediate has been established, it becomes wise to assess the benefits of each 

route to p-cymene. The iron doped sepiolite clay catalyst of Martin-Luengo can give complete 

conversion of limonene into p-cymene [Martin-Luengo 2010]. Secondly, the patented procedure 

of Berti requires sodium metal, iron trichloride, and ethylene diamine to oxidise limonene [Berti 

2010]. Both these procedures are more productive than the route proposed in this work and so 

deserve to be considered as alternatives. 

 

 

Scheme 5.12 Three different sets of conditions that effect the transformation of limonene to p-

cymene with varying success. 
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The effectiveness of each route can be illustrated with the appropriate metrics where A 

refers to this work; B, iron-sodium oxidation [Berti 2010]; C, small scale iron sepiolite microwave 

experiment [Martin-Luengo 2010]; D, larger scale iron sepiolite microwave experiment; E, large 

scale iron sepiolite thermally heated experiment (Figure 5.14). Although the yield of the 

palladium catalysed reaction from this work is lower yielding the other limonene oxidations, it 

benefits from the low quantity of catalyst required. Perhaps if more effective heating could be 

imparted to the reaction mixture by microwave technology, the yields might be improved in the 

same way those of Martin-Luengo’s process are. To its disadvantage, the iron doped clay catalyst 

of Martin-Luengo is applied in super-stoichiometric amounts (based on its iron content) in the 

most effective protocol. However the worst reaction mass efficiency actually belongs to the 

sodium and iron trichloride assisted p-cymene synthesis, which is not helped by the 20 mol% of 

sodium metal and the excess ethylene diamine required. 

 

 

Figure 5.14 Metrics associated with the conversion of limonene to p-cymene.  
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Concerning the patented method of Berti and co-workers, the PMI also suffers from the 

large amount of solvent used for purification, half of which is DCM (Figure 5.15) [Berti 2010, 

Colonna 2011]. The same issue applies to the route proposed in this work, but in this case all of 

the auxiliary solvent is the water required for steam distillation. Unlike the procedure devised by 

Berti, no auxiliary organic compounds are required but the process of steam distillation 

introduced a small loss of product, further affecting the yield and associated metrics. The PMIs of 

Martin-Luengo’s work varies according to the scale of the reaction [Martin-Luengo 2010]. At 

almost analytical scale the minute amount of product is recovered with ethanol after the 

reaction, the auxiliary solvent contributing massively to the PMI. Thermally heated reactions with 

improved substrate to catalyst ratios (4 mol% iron loading) fail to provide a reasonable 

conversion to p-cymene, and so the PMI is now dictated by unreacted limonene and by-products. 

However the yields and the quantity of waste produced from the procedure are acceptable when 

the microwave activated reaction is conducted with the lower loading of iron doped clay, and no 

solvent is required at all. It seems that overall, each procedure has faults and that makes it is 

hard to decide upon the best option. The literature protocols will maximise the yield [Colonna 

2011, Martin-Luengo 2010], which is the greatest hurdle in the palladium catalysed route 

described here. But in actuality, if the water used in the steam distillation was recycled then the 

waste associated with the K-10 montmorillonite and Pd/C catalysed synthesis of p-cymene would 

 

Figure 5.15 Process mass intensity of different p-cymene syntheses. Key: Same as that stated for 

Figure 5.14. 
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be very little indeed. Ultimately the full conversion of limonene to p-cymene would be desirable, 

probably essential, for larger scale production purposes. 

 Of course it is not just the synthesis of p-cymene that needs to be addressed. The 

subsequent sulphonation to give p-CSA presents some issues. The manufacturing process for p-

TSA uses an excess of toluene that is constantly recycled by distillation as the reaction proceeds 

by reflux [Knaggs 1979 page 7]. The higher boiling point of p-cymene will certainly prevent the 

same approach being used (Figure 5.16). Instead, an excess of sulphuric acid was used in this 

work to sulphonate p-cymene. Unlike p-TSA production, this means that more sulphuric acid is 

used in the synthesis of p-CSA than can be accounted for by the resultant sulphonic acid. This has 

obvious economic implications, but more importantly (it might be argued) it is a waste of 

resources given the catalytic properties of sulphuric acid. 

 

 

Figure 5.16 The manufacturing processes for arene sulphonic acids. 

 

Since sulphonic acids are products of a reaction between an arene and sulphuric acid, 

why is sulphuric acid not used directly as a catalyst? Unless sulphonic acids resolve issues in 

synthesis caused by the use of sulphuric acid then converting sulphuric acid into a sulphonic acid 

appears to have little use. Sulphonic acids have the advantage of not corroding steel, steel being 

the material that many industrial reaction vessels are made of [Avdeev 2007]. In fact steel 

corrosion protection agents sometimes feature the sulphonic acid moiety [Srivastava 2010, Zhao 

1999]. The milder acidity of sulphonic acids may improve reaction selectivity in cases where 

sulphuric acid causes the unwanted dehydration of the substrate. However it appears that 

solubility is the main reason that sulphonic acids are used instead of mineral acids. This may have 

more to do with perception rather than actual evidence, but nevertheless in small scale 

preparatory chemistry p-TSA is used more frequently than sulphuric acid [Scifinder 2013b]. This 

bodes well for the introduction of p-CSA as a bio-based analogue of p-TSA. 
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We are now left to consider post-application concerns regarding the use of p-CSA. 

Sulphonic acids have been detected in industrial waste waters, but being of high polarity, their 

bioaccumulation potential is much less than that of their precursor hydrocarbons [Alonso 1999]. 

Some bacteria can desulphonate p-TSA to p-cresol but then the environmental impact of phenols 

would have to be considered [Kertesz 1994]. Nothing can be concluded with any certainty until a 

full LCA is calculated. What may be said of the systems in this work is that the quantity of p-CSA 

used has always been small (it was 2.5 g per mole of substrate in the synthesis of ethyl levulinate 

for example) and so barring any intensely acute toxicity problems its impact on the environment 

should be minimal. If at any point in the future p-CSA emerges as an acid catalyst and is widely 

adopted for this purpose it would be subjected to tighter controls and greater scrutiny. 

Although it seems obvious that the sustainability of p-CSA will be greater than petroleum 

derived p-TSA this does not certainly have to be the case. Sustainability is a complex entity 

incorporating social and economic implications in addition to environmental issues [UN 1987]. 

One consequence of this is that the manufacturing process of p-CSA would have to be profitable 

and fulfil an ongoing market demand. An impending fossil fuel reserve crisis will probably force 

this issue at some point in the not too distant future, which makes the assessment of bio-based 

product performance a wise endeavour. 

 

5.3 Catalysed carbonyl addition summary 

 

General remarks on acid catalysed esterification: The solvent effect dictating the rate of an acid 

catalysed acetylation of benzyl alcohol mirrored an earlier study by Wells on the Fischer 

esterification of 2-methoxyacetic acid and benzyl alcohol [Wells 2008]. The inverse 

proportionality between ln(k) and β is no different to the solvent effect observed when 1-butanol 

reacts with butanoic anhydride, or in an uncatalysed amidation to give N-benzyl-4-

phenylbutanamide. This amount of evidence indicates that carbonyl addition chemistry of this 

type proceeds rapidly in low basicity solvents because of a lack of entropic interference. The bio-

based condensation reaction auxiliaries p-cymene and p-CSA in combination are ideal for 

accelerating carbonyl addition chemistry through optimal solvent stabilisation and acid catalysis 

together. 

General remarks on p-CSA as an acid catalyst: The organic acid p-TSA and its parent compound 

toluene have become a standard system for a variety of chemical transformations. However in 

light of recent attitudes and ensuing legislation, toluene may soon no longer be a permissible 

solvent for manufacturing scale chemistry. Some effort has already been dedicated to phasing 
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this solvent out of use [Constable 2007a, SubsPort 2013]. At best its use is likely to be 

significantly restricted. Toluene and its sulphonic acid are unsustainable, albeit useful and 

versatile chemicals. It seems that p-CSA is an adequate replacement for p-TSA, indeed more so 

than p-cymene is for toluene it might be said. Successful acid catalysed reactions consist of 

esterification, aldol condensation, and acetalisation. No further considerations need be made 

within the context of the synthetic application when substituting p-TSA for p-CSA. This will be of 

much reassurance to the medicinal and discovery chemists whose primary objective is high 

throughput, and the best way to achieve this is with established and reliable methods.  

The synthetic route to p-CSA has potential for improvement, a certain amount of 

optimisation having already been conducted. Palladium was selected as the best choice in 

dehydrogenation catalyst, but more detailed studies might find a way of circumventing the use of 

rare and expensive metal catalysts for what should be an uncomplicated high yielding reaction. In 

turn it was found that oleum was more effective at sulphonating p-cymene than sulphuric acid at 

373 K to give the desired product, although it is more hazardous. 

Broader appeal: The role of p-CSA does not necessarily end here. Many other reactions currently 

rely on p-TSA or chemicals derived from it. A simple substitution to p-CSA would be beneficial in 

most instances. Although leaving groups and protecting groups are discouraged by the principles 

of green chemistry [Anastas 1998], they are still used in order to realise the total synthesis of 

natural products and pharmaceuticals [Wuts 2007]. To this end the tosylate protecting/leaving 

group could be supplanted by the p-cymenesulphonate moiety (Scheme 5.13). Procedures for the 

synthesis of p-cymenesulphonyl chloride (CymCl) already exist in the literature [Brown 1950, 

Huntress 1941]. Although waste problems are not addressed with this approach, using bio-based 

reaction auxiliaries and protecting groups contributes to a chemical industry independent of non-

renewable materials. 

 

 

Scheme 5.13 A generalised enhanced leaving group strategy using the reagent p-

cymenesulphonyl chloride. 

 

To establish p-CSA as a bio-based product, it would also seem prudent to follow up on 

some of the previous suggestions for realising the broader appeal of p-CSA and its derivatives. 
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Revisiting some historical procedures, p-CSA could be used as an intermediate in the synthesis of 

bio-derived compounds such as sulphonamides or even phenols and acetone. There is a whole 

network of chemical transformations that utilise p-cymene and limonene as a feedstock, and now 

with the onset of a heightened interest in bio-based products, p-cymene and its derivatives 

should be able to find a greater role in modern organic chemistry. 
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6. Heterocycle synthesis: The Biginelli reaction 

 

 

 

Heterocycles are fundamental structural motifs for drug molecule design. Medicinal chemistry is 

conducted in a systematic way by functionalising, each in turn, the positions of a core 

heterocyclic template. The substitutents at the key positions are then substituted and new 

molecules synthesised to seek out more active compounds. The synthesis of heterocycles is 

ranked within the top four most prevalent reactions at both process development and 

manufacturing scale [Carey 2006, Dugger 2005]. The complexity of these (often multicomponent) 

transformations represents an increase in difficulty from the transformations previously 

assessed. This is a sterner test of the solvent selection algorithm and should push the art of 

identifying solvent effects beyond typical case studies. The Biginelli reaction has been selected 

for this purpose. 

 

6.1 Introduction to Pietro Biginelli and his reaction 

 

Dihydropyrimidinones: One interesting class of heterocycles are the pyrimidines, amongst the 

most common heterocycles in pharmaceutical process development [Carey 2006]. The Biginelli 

reaction to give related dihydropyrimidinones consists of the double condensation of urea (or 

one of its derivatives), an aldehyde, and a 1,3-dicarbonyl compound [Kappe 1993, Tron 2011]. 

The classical synthetic method requires a large quantity of hydrochloric acid as a catalyst (10 

mol%) in either ethanol or sometimes acetic acid as the solvent. Initiated by the first revisit to 

this reaction by Folkers et al. [Folkers 1932], research dedicated to catalysis has been 

considerable, driven on by the biological activity of Biginelli products [Kappe 1993, Seresh 2012]. 

Antihypertensive agents, potassium channel antagonists, anti-inflammatories, anti-malarials, 

anti-bacterials, epilepsy medicines, and other applications are known [Seresh 2012]. 

Discovery and mechanism: Pietro Biginelli discovered the reaction that is named in his honour in 

1891 when working for Hugo Schiff, who had previously condensed urea and salicylaldehyde 

[Tron 2011]. Although at first Biginelli himself thought a linear compound was created upon the 

mixing of urea, salicylaldehyde and now also ethyl acetoacetate in acidified ethanol, it is now 

understood that a cyclised dihydropyrimidinone product had been formed (Scheme 6.1) [Biginelli 
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1891a, Biginelli 1891b]. A testament to the usefulness of this reaction are the multiple review 

articles that document hundreds of conditions by which dihydropyrimidinones can be 

synthesised [Kappe 2000, Kolosov 2009, Seresh 2012, Wan 2010]. The state of the art is such that 

it appears that any acid may act as a reliable catalyst if applied in sufficient quantities. Base 

catalysis is less developed but also viable [Debache 2008, Raj 2011, Shen 2010]. 

 

 

Scheme 6.1 The original Biginelli reaction. 

 

An increase in the depth of knowledge regarding the mode of catalysis and how this 

differs between Brønsted and Lewis acids has not grown proportionally with the number of 

articles proposing novel reaction conditions. Typically Lewis acid catalysis is explained with an 

analogous pathway to the mechanism of Brønsted acid catalysis experimentally derived by Kappe 

[Kappe 1997], verified by De Souza [De Souza 2009], but proposed some time before by Folkers 

and Johnson [Folkers 1932, Folkers 1933]. Despite this, matters are complicated by reports of 

different mechanisms for specific but unusual reaction conditions [Cepanec 2007, Seresh 2012, 

Shen 2010]. In this work the standard Folkers mechanism will be used unless such evidence is 

amassed to warrant a new hypothesis (Scheme 6.2). The rate determining step in Brønsted acid 

catalysed Biginelli reactions is considered to be the initial carbonyl addition between urea and 

the aldehyde. In proposing Lewis acid promoted mechanisms, the rate determining step is 

frequently given less attention than metal enolate and metal acylimine complexes at later stages 

of the reaction [Adibi 2007, Bose 2003, Russowsky 2004].  

Solvent effects in the synthesis of dihydropyrimidinones: Considering the large number of 

investigations into catalysis, by contrast it is surprising that little work has been conducted in 

order to describe the role of the solvent in the Biginelli reaction, and none of it quantitative 

[Debache 2008, Dilmaghani 2009, Ghassamipour 2010, Lee 2004]. Deducing the role of the 

solvent from existing studies is hampered because reactions are often conducted at the boiling 

points of each solvent and for unequal durations. With the vast number of catalysts available it is 
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Scheme 6.2 A standard Brønsted acid catalysed Biginelli reaction (left path) and a proposed Lewis 

acid catalysed Biginelli reaction illustrated with a zinc cation (right path). 

 

possible that different solvent effects could be observed depending on the exact conditions 

employed. The overwhelming favourite choice of solvent is ethanol, but perhaps only for 
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historical reasons. The yields possible in ethanol are rarely outstanding and so there is scope to 

improve the productivity of the Biginelli reaction via solvent selection protocols. A word of 

caution however, because ethanol, being a bio-based solvent with few environmental issues, 

should not be replaced without careful consideration. 

 Of the work that does exist concerning solvent selection in the Biginelli reaction there 

seems no clear agreement over a definitive solvent. The yields from many different solvent-

catalyst combinations have been compared (Figure 6.1). The five Brønsted acid catalysed 

reactions, and one each for Lewis acid catalysis, Brønsted base catalysis, and Lewis base catalysis 

have been summarised in the following table (Table 6.1). Because the reaction temperatures are 

not consistent and the catalyst loadings not necessarily the same, it is not unexpected that no 

obvious correlation exists. The objective of all these works was the development of a catalyst 

which explains the haphazard approach to solvent selection. The essentially random yields across 

the study make it hard to decide whether there even is a solvent effect governing the 

productivity of the Biginelli reaction at all. Surprisingly ethanol rarely provides the best yield 

 

Figure 6.1 Combined catalytic and solvent effects. Letter coding refers to the entries in Table 6.1. 

Brønsted acid 
catalysis

Lewis acid

Brønsted base

Lewis base

0% 20% 40% 60% 80% 100%
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Table 6.1 A selection of catalysts that have been used to promote the standard Biginelli reaction 

in different solvents. 

 Catalyst Conditions 

A 
HCl 

(Hydrochloric acid) 

Eight drops of HCl in 40 mL of solvent were 

refluxed for 3 hours [Folkers 1932]. 

B 

 

(Supported sulphuric acid) 

1.5 mol% catalyst, refluxed for 5-7 hours 

[Dilmaghani 2009]. 

C 
 

(Supported PEG-SO3H) 

300 g of catalyst per mole of benzaldehyde  

was heated for 10 hours at 353 K [Quan 

2009]. 

D 
 

(Dodecyl sulphonic acid) 

10 mol% catalyst for between 4-10 hours 

under standard conditions [Sharma 2007]. 

E 
 

(Dodecyl phosphonic acid) 

10 mol% catalyst, refluxed for 3-6 hours 

[Ghassamipour 2010]. 

F 

(EPZ-10) 

10 mol% catalyst, refluxed for 6-48 hours 

[Lee 2004]. 

G  

(t-BuOK) 

Equimolar base at ambient temperature was 

stirred over 12 hours [Shen 2010]. 

H  

(Triphenylphosphine) 

10 mol% catalyst, refluxed for 18 hours 

[Debache 2008]. 

 

across these case studies. Only trace amounts of product were formed in ethanol with 

triphenylphosphine [Debache 2008]. What can be gleaned from these examples is that there is 
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no real reason to stray from the usual Brønsted acid catalysed reaction conditions, which work 

perfectly well, but more might be gained from optimising the solvent. 

 

6.2 Standard Biginelli reaction solvent effects 

 

Model reaction: For the initial study a hydrochloric acid catalysed Biginelli reaction was 

attempted. Urea, benzylaldehyde and methyl acetoacetate were chosen as the reactants to give 

methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate (Scheme 6.3). A 

uniform reaction temperature of 348 K was chosen to approximate the boiling point of ethanol, 

and more importantly for a fair comparison between solvents. In order to assess the interplay 

between solvent and catalyst, zinc chloride supported on montmorillonite clay (EPZ-10) was also 

selected as a catalyst for a subsequent set of complementary experiments to come. The 

comparison between a homogeneous Brønsted acid catalyst and a heterogenous Lewis acidic 

catalyst should cover close to the extremes of the wide range of materials applied as catalysts in 

this transformation to date. Instead of the usual kinetic analysis it was expected that the product 

would precipitate from solution and so yields were recorded instead.  

 

 

Scheme 6.3 The model standard Biginelli reaction. 

 

Solvent selection: For this case study the solvent selection algorithm will be used prior to any 

experimental work in order to assess how well the original and revised solvent selection 

algorithms work without an overreliance on a LSER. Because of this, the solvent performance 

(model B2) was based on a generic LSER for the rate of carbonyl addition to offer preliminary 

results (Equation 5.2) [Wells 2008]. It was not known whether this correlation would be 

appropriate, although the initial nucleophilic attack on benzaldehyde by urea is generally 

considered to be the rate determining step of this synthesis. The rate of carbonyl addition is by 
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now well established as being inversely proportional to β. A lack of any dependence on β by the 

performance of this reaction would strongly suggest that either the wrong rate determining step 

has been identified, or potentially the kinetics of the reaction are not responsible for the final 

yield at all. The LSER can be changed in a second reiteration of the solvent selection algorithm to 

a more suitable alternative once experimental data is available. For this reason no solvent could 

be absolutely ruled out at this early stage. 

Of the candidates in the solvent selection algorithm only basic solvents were omitted (to 

avoid competition with urea during the reaction). The ability to dissolve and stabilise urea was 

demanded of the remaining solvent candidates. The radius of the solubility sphere surrounding 

urea was roughly approximated with a maximum flexibilty of 60% in Rule D, as previously 

described in the introduction (Figure 1.5). Precipitation (destabilisation) of the product was also 

incorporated in Rule G as this has been a useful facet of the reaction in the past for retrieving the 

product (Figure 6.2). Those solvents that adhere to these polarity requirements are unfortunately 

not predicted to be excellent solvents in terms of accelerating the rate of reaction. Accordingly 

the top 50 solvents in the solvent performance assessment (model B2) were selected to pass. 

Only the top 30 entries in the solvent greenness assessment (model B3) were permitted to pass, 

although no minimum requirements were established with regards to the GSK solvent selection 

guide categories, only that they existed (i.e. a minimum score of 1 in each of the six categories, 

including LCA). Model B2 and model B3 scores have been double weighted to make 70 the 

highest possible score when either are combined with the revised solvent selection algorithm 

(model B1). Previously it was a 1:10 ratio. This change reflects both the cautiousness of applying 

a LSER to discriminate between solvents before experiments have been conducted, and the 

greater attention now being paid to the solubility characteristics of the solutes. 

 

 

Figure 6.2 Biginelli reaction solvent selection algorithm screenshot, step 3: Parameter input. 

Step 3 Parameter input

Rule Input Value Flexibility

A Y

B Y

C 348

D Y 60 %

E N 100 %

F N

G Y 100 %

Y 200 %

H N

I N

J EHS constraints applicable?

logP N Top 30

EHS 2 N Top 30

EHS 3 N Top 30

EHS 4 N Top 30

Destabilisation of reaction component? Methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate 

Dispose solvent

Urea

Solvent neutrality required?

Is solvent association/dissociation undesirable?

Is a phase split required?

Stabilisation of reaction component?

Methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate Dissolve solid product(s)?

Solvent desirable?

Liquid phase reaction performed previously?

Reaction temperature /K

Dissolve solid reactant(s)? Urea
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Only dimethyl carbonate and propionic acid passed all aspects of the solvent selection 

algorithm (Table 6.2). Solvents scoring highly in the greenness assessment (model B3) such as 

ethanol were not competitive in the solvent performance assessment (model B2) due to their 

high polarities. Acetic acid, the other traditional solvent choice, fails the revised solvent selection 

algorithm (model B1) because it is predicted to dissolve the product which is forbidden in rule E. 

 

Table 6.2 Solvent hits generated by the first iteration of the solvent selection algorithm for the 

standard Biginelli reaction. 

Solvent 
Score: 

Model B1 + model B2 

Score: 

Model B1 + model B3 

1,2-Dichloroethane 42 Fail 

1,2-Propanediol Fail 56 

1,3-Dioxolane 36 No data 

1,3-Propanediol Fail 56 

1,4-Butanediol No data 58 

2-Ethylhexanol No data 48 

3-Pentanone 36 Fail 

Acetonitrile 36 Fail 

Benzyl alcohol Fail 42 

Bis(2-methoyethyl) ether 40 Fail 

Butyric acid 40 No data 

Cyclohexanol Fail 48 

Cyclohexanone Fail 48 

Cyclopentanone Fail 48 

Di(ethylene glycol) No data 60 

Diethyoxymethane 34 No data 

DGME No data 40 

Dimethyl carbonate 38 42 

Ethanol Fail 46 

Ethoxybenzene 44 No data 

Ethyl acetate 34 Fail 

Ethylene glycol Fail 64 

Glycerol Fail 64 

Isoamyl alcohol Fail 48 
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Table 6.2 Solvent hits generated by the first iteration of the solvent selection algorithm for the 

standard Biginelli reaction (continued). 

Solvent 
Score: 

Model B1 + model B2 

Score: 

Model B1 + model B3 

Nitrobenzene 46 No data 

Nitromethane 46 No data 

Propanenitrile 38 No data 

Propanoic acid 40 40 

Propylene carbonate 44 No data 

t-Butyl acetate No data 48 

t-Butanol Fail 34 

Tri(ethylene) glycol No data 60 

Water Fail 60 

Total hits 15 20 

 

An initial screening of eight solvents was undertaken so that a comparison between 

prediction and experiment could be established. The selection was chosen to represent a wide 

range of solvent polarity as gauged by the Kamlet-Taft solvent polarity parameters (Figure 6.3). 

The preliminary results of the solvent selection algorithm were not used to select solvents but 

instead confirm its success retrospectively. Four protic and four aprotic solvents were included, 

as well as an equal number of solvents sourced from petroleum and (potentially) renewable 

feedstocks. Acetic acid [Gorbanev 2012], ethanol [Balat 2009, Hahn-Hägerdal 2006], ethyl acetate 

[Colley 2004], and ethylene glycol from bio-ethylene [Morschbacker 2009], all have 

straightforward syntheses beginning with the fermentation of biomass. t-Butanol, 1,2-

dichloroethane (1,2-DCE), DMF and toluene make up the remainder of this solvent set. This is the 

most elaborate diversity of solvent polarities selected yet for a case study in this work, helped by 

the compatability of protic, hydrogen bond donors in the Biginelli reaction. 

 The predictions of the solvent selection algorithm regarding these eight solvents were 

compared to the rest of the solvent candidates. Of the solvent set, toluene (poor solubility of 

urea), DMF (dissolves product) and acetic acid (dissolves product) all failed the revised solvent 

selection algorithm (model B1) and could not be carried forward into the additional assessments 

(Table 6.3). Ethanol fails the solvent performance assessment (model B2) because of its relatively 

high β value. This is inconsistent with the prevalent use of ethanol as a solvent in this reaction, 

casting doubts over the use of this LSER. All eight of the solvents were used in the reaction 

anyway as a means of determining how successful the solvent selection algorithm was in 
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Figure 6.3 The polarity range of the Biginelli reaction solvent set. 

 

Table 6.3 First screening of the experimental solvent set through the solvent selection algorithm 

describing the standard Biginelli reaction. 

Solvent 

Score:  

Model B1 + model B3 (failed 

assessment in parenthesise) 

Score:  

Model B1 + model B3 (failed 

assessment in parenthesise) 

Acetic acid Fail (model B1) Fail (model B1) 

t-Butanol Fail (model B2) 34 

1,2-DCE 42 Fail (model B3) 

DMF Fail (model B1) Fail (model B1) 

Ethanol Fail (model B2) 46 

Ethyl acetate 34 Fail (model B3) 

Ethylene glycol Fail (model B2) 64 

Toluene Fail (model B1) Fail (model B1) 
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differentiating between the solvent candidates. After the preliminary experiments the solvent 

selection algorithm inputs can be amended as part of the iterative process of optimisation. 

The SUS-HAS-ECO classifications define more acceptable solvents in this solvent set than 

in the previous case studies (Figure 6.4). This is because alcoholic fermentation products and 

their close derivatives tend to be fairly ammenable in terms of health and safety and 

environmental impact, as well of course as being bio-based. The same cannot be said for 1,2-DCE, 

DMF, and toluene. Ethanol and ethylene glycol are assigned the highest possible classifications, 

which is made feasible because the data is normalised to give a good spread of results. Inevitably 

this means the select few of especially high performing solvents get bunched up at the top of 

each classification scale. In reality occasional issues such as mild toxicity or flammability still exist 

with these solvents.  

 

 

Figure 6.4 The SUS-HAS-ECO classifications of solvents selected for the standard Biginelli reaction 

case study. 

 

Homogeneous Brønsted acid catalysed Biginelli reaction: Upon addition of hydrochloric acid (10 

mol%) to the other reaction components each mixture became homogeneous. This means that 

the requirement of the solvent selection algorithm for the solvent to dissolve urea is 

unnecessarily restrictive. Reactions were stirred for 3 hours, but dissolution of the product 
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occurred very soon after addition of the catalyst, often in less than 5 minutes (Table 6.4). 

Reactions in acetic acid and DMF were the exception to this, remaining in a single phase as 

predicted. Ethylene glycol created a suspension of the product rather than a distinct precipitate, 

but the addition of a small amount of water after the reaction produced satisfactory separation. 

Filtration of the resultant solid after 3 hours was followed by recrystallisation from ethanol. 

Toluene provides a marginal improvement over ethanol in terms of the eventual yield. But, as 

warned previously, the proven and commercially successful production of bio-ethanol to give a 

sustainable solvent cannot be overlooked in favour of marginally enhanced yields. Toluene has 

been observed as a product of the catalytic pyrolysis of bio-derived feedstocks [Hoang 2009], but 

at the time of writing bio-derived toluene is not a commodity product.  

 

Table 6.4 Solvent polarity and performance in the synthesis of methyl-1,2,3,4-tetrahydro-6-

methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate by HCl catalysis. 

Solvent Yield Solubility (Y/N) α β π* 

  Urea Product    

Acetic acid 35% Y Y 0.71 0.40 0.60 

t-Butanol 55% N N 0.39 0.95 0.58 

1,2-DCE 44% N N 0.00 0.00 0.76 

DMF 37% Y Y 0.00 0.71 0.88 

Ethanol 56% Y N 0.83 0.77 0.62 

Ethyl acetate 51% N N 0.00 0.48 0.54 

Ethylene glycol 38% Y N 0.79 0.57 1.01 

Toluene 59% N N 0.00 0.12 0.50 

 

The range of product yields from the initial screening provided enough dissimilarity to 

attempt a correlation between reaction productivity and the nature of the solvent. The yield, 

although dimensionless, is not a suitable term for a LSER expression. For this purpose a quantity 

proportional to an energy change is required, with ln(k) proportional to the Gibbs free energy of 

activation for example. Given the large quantity of catalyst and the observation that the reactions 

appear to be complete before the designated 3 hours suggests that the resulting yields are 

dictated by the thermodynamics of the system rather than kinetics. An equilibirum constant is 

not obtainable for the Biginelli reaction, which even if precipitation of the product does not 

occur, involves an irreversible cyclisation step. For quantification purposes, reaction productivity 

will refer herein to the natural logarithm of the molar ratio of isolated product (P) to 

unincorporated urea (R) as the yield limiting reactant. The form of an equilibrium constant, e.g. 
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ln(P/R), is used for this metric in lieu of an actual equilibrium measurement. Other candidate 

expressions did not provide a correlation with the polarity of the solvent. The only reasonable 

LSER correlation was achieved by expressing the productivity of the reaction as a function of π* 

and not β, which along with α was found to be statistically insignificant (Figure 6.5). The clear 

exception to this correlation is acetic acid which is less productive than predicted. Without acetic 

acid the LSER can be described as the following: 

Equation 6.1      
 

 
               R2 = 0.862 

The lower than anticipated R2 value may be due to the nature of the phenomenon, or it could be 

indicative of the limitations of the dependant variable. Regardless, when coupled with the fact 

that the product is made to precipitate, the solvent effect justifies the common choice of ethanol 

as a solvent. It also nullifies the results of the solvent selection algorithm, highlighting the 

importance of the combination of experimental observations and a theoretical framework by 

which to intepret them. 

 

 

Figure 6.5 The relationship between reaction productivity and π* to give methyl-1,2,3,4-

tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate by HCl catalysis. 

 

It is noticeable that the inverse proportionality between reaction productivity and π* 

followed by non-acidic solvents mirrors the solvent dependence of the diketo-enol 
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tautomerisation equilibrium constant (KT) of methyl acetoacetate at the concentration applied in 

the reaction (Figure 6.6). Other alkyl acetoacetates express the same solvent effect trend [Mills 

1985, Moriyasu 1986]. These tautomerisation equilibria constants can be determined by UV-vis. 

spectroscopy or NMR spectroscopy (Figure 8.5). Acetic acid and propanoic acid betray this 

otherwise strong relationship just as acetic acid does in the relationship shown in Figure 6.5. The 

reason for this is not clear from previous studies. The ability of acidic solvents to protonate the 

diketo form of the acetoacetate ester offers the stability of an intramolecular hydrogen bond and 

may supplant the role of the enol tautomer. Despite being a stronger acid than acetic acid or 

propanoic acid, tautomerisation of methyl acetoacetate in lactic acid obeys the relationship with 

π*. The low pKa of lactic acid is due to the stabilising intramolecular hydrogen bond character of 

its conjugate base between the alcoholic and carboxylic moieties of the anion [Losada 2008]. This 

implies that the conjugate base of an acidic solvent may be responsible for diminishing the enol 

concentration and not the donated proton. Without their own intramolecular stabilisation, the 

‘naked’ conjugate bases of acetic acid and propanoic acid may interfere with the enol hydrogen 

bonding system making this tautomer less energetically favorable than otherwise expected 

(Scheme 6.4). 

 

 

Figure 6.6 Solvent dependence of the tautomerisation equilibrium of methyl acetoacetate at the 

reaction concentration of 1.875 M. 
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Scheme 6.4 The effect of acidic solvents on the tautomerisation equilibrium of methyl 

acetoacetate.  

 

A more suitable relationship in which reaction productivity is expressed as a function of 

the tautomerisation equilibrium (and not π*) can be derived, and the predictive capacity of this 

correlation tested. Predictions should be improved from those obtainable from the previous 

relationship because of the better data fit: 

Equation 6.2      
 

 
                    R2 = 0.925 

If it is correct to suppose that solvents which promote the enol form of methyl acetoacetate 

boost the eventual yield, then non-acidic solvents with little dipolarity or polarisability will be 

ideal. The solvent selection algorithm was applied with the following ammendments: The 

requirement to dissolve urea was removed (rule D) and the LSER changed to Equation 6.1. 

Tautomerisation equilibrium constants are not available in the solvent selection algorithm 

database and so Equation 6.2 could not be used. With the loss of one reaction index the 

maximum score is now 60 for the revised solvent selection algorithm (model B1) in combination 

with either the performance assessment (model B2) or the solvent greenness assessment (model 

B3). Ethanol now reassuringly passes all assessments in the solvent selection algorithm (Table 

6.5). The biggest change is to the solvent candidates now suggested as attaining the required 

level of solvent performance (model B2). p-Cymene is now recommended, and the solvent 

selection algorithm suggests a variety of alcohols, esters and ethers as possible solvents based 

(indirectly) on the diketo-enol tautomerisation equilibrium position of methyl acetoacetate with 

Equation 6.1. Although many of the alcoholic solvents narrowly missed the cut-off in the 

greenness assessment (model B3) there is a case for reinvestigating them as solvent candidates, 

especially the higher alcohols with low π* values, and therefore presumably larger KT constants. 
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Table 6.5 Solvent hits generated by the second iteration of the solvent selection algorithm for the 

standard Biginelli reaction. 

Solvent 

Score:  

Model B1 + model B2 

 (if different, previous 

score in parenthesise) 

Score:  

Model B1 + model B3 

(if different, previous 

score in parenthesise) 

1,2-Propanediol Fail 48 (56) 

1,3-Propanediol Fail 48 (56) 

1,4-Butanediol No data 48 (58) 

1,4-Dioxane 32 (n/a) Fail (n/a) 

1-Butanol 36 (n/a) Fail (n/a) 

1-Propanol 34 (n/a) Fail (n/a) 

2-Butanol 42 (n/a) Fail (n/a) 

2-MeTHF 30 (n/a) Fail (n/a) 

2-Propanol 32 (n/a) Fail (n/a) 

Benzyl alcohol Fail 38 (42) 

Butyl acetate 38 (n/a) 46 (n/a) 

Cineole 44 (n/a) No data (n/a) 

Di(ethylene glycol) No data 52 (60) 

Dibutoxymethane 48 (n/a) No data (n/a) 

Dibutyl ether 44 (n/a) Fail (n/a) 

Diethyoxymethane 38 (34) No data 

Diethyl carbonate 38 (n/a) No data (n/a) 

DGME No data 36 (40) 

Dimethyl carbonate 30 (38) 38 (42) 

Ethanol 32 (Fail) 40 (46) 

Ethyl acetate 30 (34) Fail 

Ethylene glycol Fail 56 (64) 

Glycerol Fail 56 (64) 

Isoamyl alcohol 44 (Fail) 44 (48) 

Isobutanol 42 (n/a) No data (n/a) 

Isopropyl acetate 30 (n/a) 30 (n/a) 

Limonene 50 (n/a) No data (n/a) 

p-Cymene 46 (n/a) No data (n/a) 

α-Pinene 46 (n/a) No data (n/a) 
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Table 6.5 Solvent hits generated by the second iteration of the solvent selection algorithm for the 

standard Biginelli reaction (continued). 

Solvent 

Score:  

Model B1 + model B2 

 (if different, previous 

score in parenthesise) 

Score:  

Model B1 + model B3 

(if different, previous 

score in parenthesise) 

Propanoic acid Fail (40) 36 (40) 

p-Xylene 42 (n/a) Fail (n/a) 

Tri(ethylene) glycol No data 52 (60) 

Water Fail 54 (60) 

Total hits 22 16 

 

Cyclohexane and p-cymene were selected as candidates for optimal solvents in this 

model Biginelli reaction, providing yields of 68% and 66% respectively in combination with HCl 

catalysis. Cyclohexane is produced from a non-renewable feedstock but has a marginally less 

detrimental environmental, health and safety profile to hydrocarbons of equally low polarity 

[Henderson 2011]. As we know the limonene in the essential oil of citrus fruits can be converted 

into the aromatic compound p-cymene [Martin-Luengo 2010]. The yield obtained with p-cymene 

acting as the reaction solvent is in good agreement with that predicted from the relationship with 

tautomerisation equilibrium (Figure 6.7). It is also an improvement over the previous best yield 

using toluene and HCl as the reaction auxiliaries. Cyclohexane gave a marginally improved yield 

over p-cymene, but deviated significantly from the expected yield. This is likely to be due to 

solubility issues often associated with a solvent of such low polarity. Reactions in dimethyl 

carbonate were not investigated because of its hydrogen bond accepting ability (β = 0.32) and 

the electrophilicity of the solvent. 

The correlation between tautomerisation equilibrium and productivity is more 

satisfactory than that using π* because all solvents (with the exception of cyclohexane) can now 

be accounted for. Observations suggesting that the reaction is quick to complete are essential to 

the hypothesis that the tautomerisation equilibrium, also a rapid process, is responsible for the 

reaction productivity. If the reaction was sluggish this would give an opportunity for the reserves 

of enol to be replenished as the tautomerisation equilibrium seeked to re-establish itself. In 

doing so the observed solvent effect would be significantly diminished. The formation of 

intermediate products, as explored by Kappe for example, might explain the yields of less than 

the theoretical maximum (Scheme 6.5) [Kappe 1997, De Souza 2009]. Side reactions 

preferentially proceeding via the nucleophilic attack of the diketo tautomer and not through the 
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Figure 6.7 HCl catalysed reactions showing the influence of ln(KT) on the yield of methyl-1,2,3,4-

tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate. 

 

 

Scheme 6.5 The different reactivity of dicarbonyl compound tautomers. 

 

enol would be required in order to be consistent with this hypothesis. Urea is known to react 

with acetoactate esters in the presence of an acid catalyst to give a uracil derivative, or at least 

an imine condensation product [Burgula 2012, Cepanec 2007, Kraljević 2010]. If the reactants are 
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quickly expended by an alternative competing pathway such as this then the amount of enol 

available at any one time will be vital in dictating the final yield. 

Heterogeneous Lewis acid catalysed Biginelli reaction: To clarify both the solvent and catalytic 

effects on the system the same set of eight solvents was then examined in combination with a 

heterogeneous Lewis acidic catalyst: EPZ-10, which is simply zinc chloride on a montmorillonite 

clay support [Clark 1989, Clark 1996, Shaikh 2011]. Given that they both catalyse the reaction, 

the differences between HCl and EPZ-10 are considerable. A previous study on the EPZ-10 

catalysed Biginelli reaction exists, featuring a simple solvent screening study comparing the yields 

obtained in five refluxing solvents [Lee 2004]. It presented toluene as the optimum solvent 

(Figure 6.1), akin to the results presented here for the equivalent HCl catalysed procedure. 

The catalyst was dried prior to the reaction but otherwise the reaction conditions were 

unchanged. After three hours the catalyst was filtered from the reaction and washed with acetic 

acid. The combined organic phase became homogeneous once acetic acid was introduced. Water 

was then added to induce precipitation of the product, which was subsequently isolated with a 

second filtration. The productivity of the reaction was generally lower than the analogous HCl 

catalysed reactions but still dependant on the tautomerisation of methyl acetoacetate as 

dictated by the solvent (Figure 6.8).  

 

 

Figure 6.8 Reaction productivity to give methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-

pyrimidinecarboxylate by EPZ-10 catalysis. 
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Interestingly ethylene glycol, but more significantly acetic acid are more productive than 

expected from the tautomerisation equilibrium constant of methyl acetoacetate in these 

solvents. The yield achieved in acetic acid was 53%, which is appreciably higher than the 35% 

yield arising from HCl catalysis in the same solvent. Toluene on the other hand, by adhering to 

the expected relationship with ln(KT) gave a lower yield of 33% compared to 59%. The reason for 

enhanced productivity in acetic acid and ethylene glycol is not immediately obvious. Introducing 

propanoic acid and lactic acid demonstrates that an enhancement to reaction productivity in the 

presence of EPZ-10 is common to all carboxylic acid solvents (Figure 6.9). The precise trend set by 

the acidic solvents in Figure 6.9 is not strong, and would require a larger set of solvents in order 

to correctly attribute a trendline. The increase in yield occurring with ethylene glycol and EPZ-10 

in combination is too modest to be regarded with the same esteem as the acidic solvent yield 

enhancements. 

 

 

Figure 6.9 Correlating the influence of Brønsted acid and Lewis acid catalysis to the isolated yields 

of methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate. 

 

The productivity trends of catalysis by HCl, EPZ-10 in non-acidic solvents, and EPZ-10 in 

acidic solvents appear to operate in parallel (Figure 6.10). Exceptions are the ethylene glycol and 

EPZ-10 system already mentioned, and also the poor yield obtained from lactic acid in 

combination with HCl. The latter does not seem to be indicative of a special effect that should be 
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considered in more detail because lactic acid performs as expected of an acidic solvent in 

reactions catalysed by EPZ-10. The trends in Figure 6.10 suggest that the underlying influence of 

the tautomerisation equilibrium is in effect for each of these three scenarios, but acidic solvents 

offer a synergetic enhancement that compliments catalysis by EPZ-10. 

 

 

Figure 6.10 A comparison between the solvato-catalytic effects in the synthesis of methyl-1,2,3,4-

tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate under different conditions. New 

solvent entries are labelled. 

 

The result of Lewis acid catalysis can be explained by considering the interaction between 

the metal cation and the chelating methyl acetoacetate. Yields obtained from EPZ-10 catalysis are 

generally lower than those when HCl is the catalyst. The assumption applied here that 

thermodynamics and not kinetics determines the yield is not necessarily inconsistent with this 

observed catalyst effect. Even though catalysis does not modify equilibrium positions like 

solvents do, the introduction of a stable zinc enolate complex with methyl acetoacetate creates a 

new reaction pathway (Scheme 6.2). Such a complex is expected to form with all the available 

enol tautomer but reduce its reactivity. Formation of a metal enolate complex will focus electron 
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density onto the oxygen atoms and not the α-carbon of the ligand, decreasing the desired 

nucleophilicity of this species. This reduction in nucleophilicity may be responsible for the lower 

yields in most solvents (Scheme 6.6). The 10 mol% loading of zinc chloride in each reaction (based 

on 12 wt% in EPZ-10) is enough to exert an appreciable influence, because only p-cymene and 

cyclohexane of the solvents examined will permit more than 20% enol at equilibrium at the 

concentration applied here. Presuming a 2:1 reaction ratio between the enol and zinc cation 

means that generally most of the methyl acetoacetate (1.5 equivalents in each reaction) could be 

suppressed in this manner. 

 

 

Scheme 6.6 The nucleophilic moieties of methyl acetoacetate tautomers (marked in red). 

 

In acidic solvents the interaction between solvent and zinc cation may displace the 

enolate ligand from its complex allowing greater reactivity to return (Scheme 6.7). Formation of 

the zinc enolate liberates an equivalent amount of HCl which would be expected to assist the 

reaction. However in non-acidic solvents this hydrochloric acid is used up to form the subsequent 

intermediate, whereas in acidic solvents the hydrochloric acid survives and presumably assists 

the reaction, perhaps in combination with the resultant zinc acetate. Ethylene glycol produces a 

similar if less profound effect, which can be explained by a more liable complex between solvent 

and metal cation as observed in related systems with zinc [Labadi 1993], and nickel [Nylander 

1970] (Scheme 6.8). Although the zinc enolate may be broken down in the presence of ethylene 

glycol, HCl will not be liberated by creating the expected additive complex. 

The Brønsted acidity of acetic acid, propanoic acid, and lactic acid may be assisting the 

reaction directly, although in the presence of HCl this effect should not be significant. Acetic acid 

and lactic acid have actually been used as catalysts for the Biginelli reaction in place of HCl and so 

their proticity may become influential in combination with Lewis acidic catalysts [Seresh 2009, El-

Hamouly 2006]. However the enhancement to reaction productivity in ethylene glycol, a non-

acidic solvent, in combination with EPZ-10 belies this hypothesis. Instead it reaffirms the proposal 

of a breakdown of the metal enolate complex being greater in importance than contributions 

from the acidity of the solvent. 
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Scheme 6.7 Proposed solvent control over the generation of intermediates in the Biginelli 

reaction.  

 

 

Scheme 6.8 The complex created by the addition of ethylene glycol to zinc chloride. 

 

What must also be addressed is the possibility of a change in mechanism upon replacing 

HCl with a Lewis acid catalyst. The analogous solvent effect suggests this is not the case but does 

not provide comprehensive evidence either way. In reports of antimony trichloride being used as 

a Lewis acid catalyst the authors claimed that urea would not react with benzaldehyde in its 

presence, seemingly ruling out the mechanistic pathway of Kappe which relies on this carbonyl 

addition as the first (and rate determining) step of the reaction [Cepanec 2007]. However, a 

reaction between urea and benzaldehyde was observed in ethanolic reactions catalysed by EPZ-

10, consistent with the mass spectrometry evidence gathered by De Souza et al. and the 1H-NMR 

spectroscopic analysis of the Biginelli reaction by Kappe [De Souza 2009, Kappe 1997]. Hence we 

find that the mechanism of the Biginelli reaction appears to be the same for both Brønsted and 

Lewis acid catalysed pathways. 
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The effect of catalysis observed thus far can be summarised using experiments in acetic 

acid, ethanol, and p-cymene (Figure 6.11). It was found that further yield of methyl-1,2,3,4-

tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate is minimal when extending the 

reaction duration from 3 hours to 16 hours, again suggesting predominately thermodynamic 

control. Interestingly, over 16 hours in the absence of a catalyst a product yield of 25% is 

obtained in acetic acid. Recalling that acetic acid can be used as the catalyst in the Biginelli 

reaction, this is not unexpected [El-Hamouly 2006]. In non-acidic solvents uncatalysed yields are 

more modest over the same time period. Clearly EPZ-10 is superior to HCl as a catalyst only when 

in combination with acidic solvents, but the combination of HCl and p-cymene afforded the 

highest yield of methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate 

recorded in this case study. 

 

 

Figure 6.11 A comparison between the isolated yields of methyl-1,2,3,4-tetrahydro-6-methyl-2-

oxo-4-phenyl-5-pyrimidinecarboxylate in acetic acid, ethanol, and p-cymene catalysed by either 

HCl or EPZ-10. 

 

Further solvato-catalytic effects with Lewis acidic catalysts: A more detailed investigation of 

catalysis in acetic acid provided results not inconsistent with earlier propositions (Figure 6.12). 

Drying of EPZ-10 was useful but only offered a minimal increase in yield. This catalyst could not 

be reused successfully which probably means the zinc chloride (which is not intercalated into the 

0%

15%

30%

45%

60%

75%

Acetic acid Ethanol p-Cymene

Yi
el

d

No catalyst (16 hrs)

EPZ-10 (3 hrs)

HCl (3 hrs)

HCl (16 hrs)



233 
 

clay) leeches off the support during the reaction. The similarity between yields using EPZ-10 and 

zinc chloride suggests that the clay has a minimal, if any role in the reaction. In acetic acid, zinc 

acetate is a poorer catalyst than both zinc chloride and EPZ-10, giving credence to the influence 

of liberated hydrochloric acid with the latter two catalysts (Scheme 6.7).  

 

 

Figure 6.12 A comparison between the isolated yields of methyl-1,2,3,4-tetrahydro-6-methyl-2-

oxo-4-phenyl-5-pyrimidinecarboxylate arising from different methods of catalysis in acetic acid 

over the course of 3 hours unless otherwise indicated. Activation times of EPZ-10 in parenthesise. 

 

Because reactions in acetic acid without any catalyst are less productive than those 

catalysed by zinc acetate, the zinc cation must also be influential in assisting the reaction. Of 

course zinc acetate will not lead to the evolution of hydrochloric acid and so the metal must be 

actively involved (Scheme 6.7). A likely source of this stabilisation is in the carbonyl addition steps 
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of the reaction, especially the first step of the reaction to give the adduct of urea and 

benzaldehyde. Dismissing the zinc enolate as a source of catalytic enhancement, the other 

remaining alternative is the imagined metal-acylimine interaction (Scheme 6.2). This species 

would seem only to provide a weak contribution to enhancing electrophilicity given the influence 

of the neighbouring carbonyl group next to the proposed nitrogen donor atom. However these 

are kinetic effects, and if the hypothesis of thermodynamic control is correct they would be 

irrelevant. The reaction productivity, expressed as ln(P/R), may actually be indicative of 

selectivity (a kinetic phenomena) and not thermodynamics. In this case the unreacted starting 

material would be incorporated into a competing by-product, giving the equivalent expression 

ln(P1/P2). The dual reactivity of methyl acetoacetate, depending on the tautomer in question, will 

convert urea, our designated yield limiting reactant (R), to the desired dihydropyrimidinone (P) or 

a uracil derivative as a result of its reaction with the enol or diketo tautomer respectively 

(Scheme 6.5). Metal cations diminish the reactivity of the enol by forming a stable complex, but 

in doing so they might also reduce the concentration of the diketo tautomer (Scheme 6.9). By 

enhancing the tautomerisation equilibrium, zinc acetate may be able to exert a yield enhancing 

effect, if not strictly speaking a catalytic one. 

 

 

Scheme 6.9 The roles of metal cations as Lewis acids in the standard Biginelli reaction. 
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Reactions with iron(III) chloride were conducted and compared to the performance of 

zinc chloride. Generally iron(III) chloride was found to be superior to zinc chloride (Figure 6.13). 

An additional benefit to the iron salt is that a purple colour is observed in acetic acid and ethanol 

indicative of the metal enolate intermediate [Schüttler 1972, Starke 1963]. As the reaction 

progresses in acetic acid, the colour fades to a pale yellow (typical of many organic reaction 

mixtures) as expected if the complex were to be broken down by the solvent. Tellingly, the purple 

colour remains in ethanol. Co-catalysis with a Lewis acid and a Brønsted acid features 

infrequently in Biginelli reaction studies [Zorhun 2006], but serves a purpose in this study to 

highlight the roles of the catalysts. Employing HCl and a metal salt in a non-acidic solvent is less 

productive than using HCl as the sole catalyst, although the improvement in yield over that 

obtained with the Lewis acid alone is quite significant. Therefore in this so-called co-catalysis,

 

Figure 6.13. A comparison between the isolated yields of methyl-1,2,3,4-tetrahydro-6-methyl-2-

oxo-4-phenyl-5-pyrimidinecarboxylate in acetic acid, ethanol, and p-cymene using a variety of 

catalysts. 
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while HCl is promoting the reaction, the Lewis acid is probably deactivating the enol by creating 

the now familiar metal enolate complex. Co-catalysis in acetic acid is underwhelming. As 

suggested by the observed yields, the liberation of HCl postulated previously with Lewis acid 

catalysts means the addition of another 10 mol% of HCl is unlikely to be of much benefit in this 

thermodynamically controlled reaction. 

Further solvato-catalytic effects with Brønsted acidic catalysts: In addition to the plethora of 

examples of Lewis acids being applied to the Biginelli reaction, novel sulphonic acids and 

sulphonated solids also appear as candidate catalysts [Bose 2004, Gupta 2006, Jin 2002, Konkala 

2012, Quan 2009, Sharma 2007]. Using the solvents toluene and p-cymene for a case study, a 

comparison between the yields obtained using their respective sulphonic acids and HCl catalysis 

was made (Figure 6.14). Although the p-cymene based reactions outperform those conducted in 

toluene, the highest yield achieved in this work still arises from the combination of p-cymene and 

HCl, and not by the application of more complicated catalysts. The use of p-TSA in ethanol has 

already been reported as giving much higher yields than HCl in ethanol [Jin 2002]. However the 

authors did not make clear that they were comparing the historical Biginelli reactions of Folkers 

catalysed by 10 mol% of HCl to their own in the presence of 15 mol% p-TSA [Folkers 1932]. 

Accordingly HCl can still be considered as the slightly superior of these two catalysts. 

 

 

Figure 6.14 The comparison between the isolated yields of methyl-1,2,3,4-tetrahydro-6-methyl-2-

oxo-4-phenyl-5-pyrimidinecarboxylate in aromatic solvents catalysed by their respective 

sulphonic acids. 
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6.3 Modified Biginelli reaction solvent effects 

 

Solvent effects in a modified Biginelli reaction: The hypotheses developed from studying the 

standard Biginelli reaction hinge on the presumption that the tautomerisation equilibrium of 

methyl acetoacetate determines the productivity of the reaction. In order to provide stronger 

evidence for this essential premise a modified version of the Biginelli reaction was attempted. 

Methyl acetoacetate can be replaced with 5,5-dimethyl-1,3-cyclohexanedione to give 4,6,7,8-

tetrahydro-7,7-dimethyl-4-phenyl-2,5(1H,3H)-quinazolinedione from the usual Biginelli reaction 

conditions (Scheme 6.10) [Konkala 2012, Yarım 2003]. 

 

 

Scheme 6.10 A modified Biginelli reaction with 5,5-dimethyl-1,3-cyclohexanedione to give 

4,6,7,8-tetrahydro-7,7-dimethyl-4-phenyl-2,5(1H,3H)-quinazolinedione. 

 

The dependence of the tautomerisation equilibrium constant of 5,5-dimethyl-1,3-

cyclohexanedione on the solvent differs markedly from that of methyl acetoacetate (Scheme 

6.11). The enol form of 5,5-dimethyl-1,3-cyclohexanedione is increasingly favored as the 

hydrogen bond basicity (β) of the solvent rises [Mills 1985]. Due to conformational constraints 

this cyclic diketone is unable to create an intramolecular hydrogen bond as methyl acetoacetate 

does. In the absence of this interaction, the enol tautomer is highly dependent on the stability 

provided by a solvent-solute hydrogen bond. The range of tautomerisation equilibrium constants 

of 5,5-dimethyl-1,3-cyclohexanedione vary over a much wider range to that expressed by methyl 

acetoacetate, with less than a 10% proportion of enol in toluene but over 99% in ethanol (Table 

6.6) [Mills 1985]. With the exception of water, the correlation between ln(KT) of 5,5-dimethyl-1,3-

cyclohexanedione and β is very strong, and so this was used to predict the values of ln(KT) for 

solvents where data was not available: 
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Equation 6.3                        R2 = 0.962 

The difference in dipolarity between the diketo and enol tautomers that previously gave rise to 

the dependence on π* is lost, meaning that a different solvent effect proportional to β should 

now dictate the performance of the Biginelli reaction. 

 

 

Scheme 6.11 Differences in the solvent stabilisation and resulting tautomerisation equilibria of 

the 1,3-dicarbonyl compounds methyl acetoacetate and 5,5-dimethyl-1,3-cyclohexanedione 

exemplified with DMF. 

 

Table 6.6 The proportions of the enol tautomer of 1,3-dicarbonyl compounds in different 

solvents. 

Solvent Methyl acetoacetate 5,5-Dimethyl-1,3-cyclohexanedione  

Ethanol 12.9% 99.4% 

DMF 5.2% 98.8% 

Toluene 17.4% 7.4% 

Water 2.0% 95.0% 

 

The experimental procedure was similar to that for the standard Biginelli reaction with 

catalysis provided by HCl (10 mol%). Recrystallisation from ethanol enabled purification of the 

product. A correlation between solvent polarity and reaction productivity was found using β or 

equally ln(KT), with π* now statistically insignificant: 

Equation 6.4      
 

 
                R2 = 0.899 

Equation 6.5      
 

 
                    R2 = 0.902 
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This proportionality with β is of course indicative of a more fundamental correlation with ln(KT) 

(Figure 6.15). Remembering that the kinetics of carbonyl addition is inversely proportional to β 

(the opposite of the observed effect) suggests that kinetics are still not responsible for the 

productivity of the reaction. This is strong evidence for the productivity of the Biginelli reaction 

being dictated only by the tautomerisation equilibrium of the dicarbonyl reactant when in the 

presence of sufficient catalyst. The solvent effect now in place denies p-cymene with its poor 

hydrogen bond accepting ability being a feasible option. Water performs better than expected 

from its already favorable tautomerisation equilibrium position. This suggests that although this 

is a condensation reaction the heterogeneous nature of the system is assisting the reaction. Urea 

dissolves in water but the other two reaction components have very restricted aqueous 

solubilities. Accordingly the reaction might only occur at the boundary between phases which 

forces the reaction to occur in a very concentrated region, enhancing productivity [Chanda 2009]. 

This hypothesis cannot be confirmed at this stage, but whatever the reason this does mean that a 

benign solvent such as water is an excellent choice of solvent for this specific transformation. 

 

 

Figure 6.15 The correlation between solvent hydrogen bond accepting ability and the 

productivity of the reaction to give 4,6,7,8-tetrahydro-7,7-dimethyl-4-phenyl-2,5(1H,3H)-

quinazolinedione. 
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6.4 Biginelli reaction summary 

 

Solvent optimisation and mechanism determination: Overall it seems that the Biginelli reaction 

is very sensitive to the choice of solvent, catalyst, and the 1,3-dicarbonyl reactant. However all 

facets of the reaction can be accounted for by the quantity of available enol in the reaction 

mixture, a phenomenon not recognised in previous studies. The apparent synergy between Lewis 

acid catalysts and Brønsted acidic solvents may not be synergetic in the most precise sense but 

instead the liberation of HCl assists the action of the existing Lewis acid catalyst and activates the 

enol. After elucidating the combined influence of solvent and catalyst with the intention of 

ensuring that reaction auxiliaries of low environmental impact could be justified as efficient 

components in the Biginelli reaction, it is hard to justify moving away from HCl as a catalyst. 

Unless an alternative is equally active at lower loadings (and reusable too) there is little to gain 

from deviating from the traditional catalyst. More benefit is to be gained from optimising the 

solvent. 

Replacing ethanol, the most popular solvent for the Biginelli reaction with p-cymene 

using HCl catalysis raises the yield obtained from 56% to 66%, an appreciable increase. In 

addition the greater boiling point of p-cymene (440 K) compared to ethanol permits higher 

temperature reactions if deemed desirable. Water is a very favorable option for a solvent if a 

cyclic dicarbonyl reactant is employed. Together these two solvents provide a renewable option 

for maximising the productivity of the Biginelli reaction. Some catalyst development studies 

favour the use of hydrocarbon solvents over ethanol to an even greater extreme than shown in 

this work, providing more justification for a move towards alternative solvent systems 

[Dilmaghani 2009, Zeynizadeh 2009]. 

Different mechanisms have been continually proposed since a wide interest in the 

Biginelli reaction evolved. The observation of solvent effects has been a disappointingly 

underused tool in the past for this purpose. The actual mechanism, at least the one that prevails 

under the conditions applied here, is consistent with the original suggestion confirmed by Kappe 

[Kappe 1997]. As revealed by this case study the thermodynamics of the system is probably more 

important than the kinetic profile. Under different experimental conditions, perhaps with less 

catalyst, this may change. Although the revelation that diketo-enol tautomerisation is very 

important in determining the yield of the Biginelli reaction, this does not tell us very much about 

the actual mechanism of how the product comes to be. What does appear to be the case is that 

an electrophilic attack on the enol occurs, which has been disputed [Cepanec 2007]. One facet of 

the mechanism clarified in this work is the role of Lewis acid catalysts. Usually suggested as 
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stabilising various intermediates, it now seems that the little help Lewis acidity provides in the 

transition state is overwhelmed by its disadvantageous interactions with methyl acetoacetate. 

Broader appeal and future work: The appeal of the Biginelli reaction is already wide ranging and 

so the solvent effects disclosed in this work should be of great use to a number of interested 

parties. The development of new catalysts for the Biginelli reaction will remain a topic of interest 

for some time yet. Even sodium chloride has ironically been proposed as a catalyst [Kolosov 

2009]. What the authors of this piece of work failed to realise is that the role of a catalyst is to 

lower the energy requirement of the reaction, and by ‘catalysing’ the reaction with sodium 

chloride at 500K ruined their otherwise good point that too much time has been invested 

researching and developing new catalysts for the Biginelli reaction without improving upon 

hydrochloric acid. Instead they have emphasised the point that catalysis is the key to making the 

Biginelli reaction viable, practical and efficient. 

 This work should be very useful as a tool for the design and implementation of further 

catalysts, but as stated previously this is superfluous to requirements given the numerous 

options currently available. A better use of resources would be the optimisation of the synthesis 

of pharmaceutical products utilising the pyrimidine structural motif. The use of the ‘correct’ 

solvent (as defined by the structure of the dicarbonyl reactant) might help facilitate higher 

efficiency and make the synthesis of these products more appealing from a mass balance and 

economic perspective. Further solvents, not tested in this work but maybe of some benefit might 

be fatty acids hydrolysed from triglycerides. Acidic solvents have already proven to be beneficial 

in the standard Biginelli reaction but are usually too dipolar to be considered as optimal for this 

task. The substantial hydrophobic region of a fatty acid will lower the π* value of the solvent 

below that of acetic acid. The only issue with these compounds are their relatively high melting 

points which will hamper isolation of the product. Lauric acid and palmitic acid for example are 

common, saturated fatty acids that melt at temperatures lower than the reaction temperature of 

348 K but are solids at room temperature [Turley 2008 page 28]. 

The current case study could easily be extended to further analyse a variety of other 

phenomena. More reactions involving different alkyl acetoacetates and diketone deriviatives 

would help promote the central hypothesis to this work concerning tautomerisation. The solvent 

effects in the base catalysed reaction were not considered at all and so great potential lies here 

as well. The use of lower catalyst loadings might allow a kinetic investigation to be held, providing 

a way to resolve the mechanistic conundrum that still exists. The most interesting option for 

further work might well be comparing this case study to an equivalent investigation concerning 

the Hantzsch synthesis of dihydropyridines for example (Scheme 6.12). The requirement of two 

equivalents of an acetoacetate reagent should mean that the solvent effects observed here 



242 
 

should at least not be diminished, and maybe even enhanced in this related transformation. 

 

 

Scheme 6.12 An example of the Hantzsch dihydropyridine synthesis. 
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7. Conclusion 

 

 

 

The results of each case study have been reviewed in some detail within their individual chapters. 

Aside from a brief summary of each transformation, what is left to describe here is the success of 

the methods applied in order to obtain those conclusions, and what improvements can be made 

in preparation for future studies. This is also an opportunity to develop an idea of how solvents 

might present themselves in the bio-based economy of the future. 

 

7.1 Case study recapitulation 

 

Carbonyl addition reaction case studies: A strong case for the wider acceptance of limonene, but 

especially p-cymene as bio-based solvents has been made over the course of this work. It was 

coincidental that three of the four transformations examined favoured one or both of these 

solvents, but this common theme is beneficial. To justify the adoption of an unfamiliar solvent in 

only one, perhaps quite specific, reaction might not warrant the effort required, but a widely 

applicable solvent should achieve general approval much more readily. Whereas the amidation 

and esterification studies favoured p-cymene as a solvent because of its low hydrogen bond 

accepting ability, the Biginelli reaction is enhanced by replacing ethanol with p-cymene because 

of the weak polarisability of the substitute solvent. 

Citrus waste derived limonene and p-cymene occupy a useful region of the polarity maps 

evaluated in the introductory chapter, because most other bio-based solvents are dipolarised 

oxygenated compounds with a disposition for hydrogen bonding (Figure 1.20). A notable 

exception is p-xylene, which can also be considered as a bio-based solvent when its synthesis 

from isobutanol is commercialised [Gevo 2013, Peters 2011]. The high boiling points of limonene, 

p-cymene, and p-xylene will leave some applications usually suited to hydrocarbon solvents off 

limits. As such the need for low polarity yet also renewable solvents has not been fulfilled just 

yet. Generally speaking the need for new bio-based solvents will never be completely satisfied. 

There will always be demand for improved products and greater consumer choice, and 

renewable solvents are no different in this respect. 
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Heteroatom alkylation: The first case study, presented in Chapter 2, was a Menschutkin-type 

nucleophilic substitution. It was already known prior to this work that this class of reaction 

favours the highly dipolar and aprotic solvents that are able to stabilise the electronic charge 

generated in the intermediary stages of the reaction [Schleicher 2009]. This is a class of 

transformation that hydrocarbon solvents like limonene cannot adequately serve, and to a 

certain degree this is the reason why it was studied. The typical oxygenated bio-based solvents 

(acetone, ethanol, glycerol, 2-MeTHF, etc.) are either not inert to the reaction components, 

eliminate the nucleophilicity of the amine reactant through hydrogen bonds, or simply are not 

dipolar enough to deserve consideration. Renewable alternatives to the current crop of highly 

dipolar aprotic amides and sulphur functionalised solvents are few in number. An elaborate 

synthetic procedure for bio-based NMP has been developed [Lammens 2010]. In a not dissimilar 

approach, the amides of pyrrolidine were tested as solvent candidates here in this work (Scheme 

2.9). However their uncertain toxicity and undetermined environmental impact lead to some 

hesitance regarding further study. 

By introducing bio-gas to replace natural gas in conventional solvent manufacturing 

processes, DMF, DMSO, and other solvents could perhaps be made in a sustainable fashion 

[Weissermel 1997]. Recreating highly dipolar aprotic solvents from biomass however does 

nothing help to minimise their health issues, which arguably trump concerns over feedstock 

security. It is probable that some of the more amenable highly dipolar aprotic solvents like DMSO 

will survive tightening legislative measures, and solvent selection options will be supplemented 

with some new, bio-derived oxygenated solvents in the future. Poly(ethylene glycol) and cyclic 

carbonates have shown some promise as dipolar aprotics in the applications dominated by DMF 

and similar solvents [Chandrasekhar 2002b, Pieber 2013]. The useful polarity profile of amides 

and the oxides of organosulphur compounds will continue to attract synthetic organic chemists 

wishing to use them as solvents, and green chemists attempting to make less toxic replacements 

for them. Even though the amide solvents synthesised for this work were not ideal in this 

respect, the information contained within may help progress towards low toxicity solvent 

substitutes in the future. 

Solvent-catalyst synergy: During the course of these studies the role of catalysis grew in 

importance to the point where the reaction system (solvent plus catalyst) were being treated 

together as an inter-related system. The synergy between acid catalysis and the choice of solvent 

is very important to the function of both. Work in this area stemmed from the novel use of p-CSA 

as an acid catalyst, something that was not anticipated at first, but complimented the use of p-

cymene as a renewable solvent. Once the combined p-cymene and p-CSA condensation reaction 

system was developed it was found to be of equally broad utility as its toluene derived cousin. 
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Success of the solvent effect screening methodology: This work has documented several 

attempts to optimise the solvent in organic transformations of use to the pharmaceutical 

industry. The approach taken in order to fulfil this task was conscientiously systemised, adopting 

computational tools, a simple method of quantifying reaction performance, and above all a focus 

on replacing conventional non-renewable solvents with bio-derived substitutes. The solvent 

selection algorithm and its associated assessments were very successful at presenting viable 

solvent options for a given transformation, once a preliminary solvent study had been conducted. 

When used prior to any experimental work the results again appeared to be satisfactory. In the 

case of the standard Biginelli reaction however, the solvent selection algorithm was unable to 

arrive at the unintuitive but accurate conclusion that hydrocarbon solvents are ideally suited to 

maximise the product yield. In fact this conclusion is not surprising at all upon completion of a 

short solvent screening exercise. If we consider the LSER and its interpretation, i.e. the solvent 

performance assessment (model B2), together with the greenness assessment (model B3), then it 

was these two tools that were of most use for solvent optimisation. The original solvent selection 

guide (model A) was criticised in the introduction to this work as not progressing beyond simple, 

often intuitive criteria that could be scrutinised by most chemists without relying on any form of 

computation. Although how these rules were judged was improved in the revised solvent 

selection algorithm (model B1), the underlying system was no better. Still, there is a use for the 

revised solvent selection algorithm. Optimising the performance and greenness of the reaction 

medium relies on the databank of physical property data contained within the solvent selection 

algorithm. So if only as a means of processing this data, the computational aspect of solvent 

selection still remains relevant. 

 The most rewarding exercise within each case study was the construction of an LSER, first 

to elucidate the underlying influence of the solvent, and then to extrapolate the relationship to 

suggest high performance solvents from a renewable source. This solvatokinetic assessment 

would not have been of any great utility had it not been for a reliable method of calculating the 

rate of reaction. The use of 1H-NMR spectroscopy, and its advantages and disadvantages 

compared to other methods of analysis were dealt with in Chapter 1. In practice these attributes 

of NMR spectroscopy, pro et contra, were realised without notable issues arising. Reactants for 

each case study were chosen with the preferred analysis in mind, and certain solvents could not 

be used without masking key signals in the spectra, but otherwise the use of 1H-NMR 

spectroscopy imposed few limits on the chemistry being undertaken. 
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7.2 The future of bio-based solvents 

 

The bio-based economy: Ultimately the use of fossil fuel feedstocks for chemical production will 

become impractical. Either the current power structure and manufacturing infrastructure will 

survive to some extent, with biomass converted to hydrocarbon platform molecules, or those 

compounds found in biomass that might currently be considered only as exotic curiosities to the 

platform chemical industry could be used more effectively. Beginning with the simplest 

argument, the synthesis of hydrocarbons from biomass robs the feedstock of its pre-existing 

functionality. Subtleties such as chirality will also be lost. Preserving the effort already made in 

bio-synthesis should be appealing to the producers of chemicals. Conversely, by continuing to use 

the established methods of chemical production, less research effort will be required in order to 

continue producing high demand products in high volumes. A further bonus is that there is no 

need to persuade consumers to use replacement bio-based products when the products are 

essentially the same as the originals. 

Inevitably both scenarios will share the marketplace to some degree, but it remains to be 

seen how much the landscape of the bulk chemical industry can be changed. However, to what 

extent chemical manufacturing adapts and evolves in the future is certainly beyond the influence 

of the demand for bio-based solvents. Examining the sizes of the different chemical product 

markets can only lead to the conclusion that it must be the bio-plastics and fuel sectors that will 

determine the nature of the chemical industry to come. The primary uses of crude oil at present 

(with about 13 billion litres consumed every day) are as fuel (90%) and for making plastic (6%) 

[Achema 2012, BP 2013]. The remaining 4% of the annual crude oil crop is enough to satisfy 

society’s present need for solvents and all other petroleum derived products. 

The global solvent market is 20 million tonnes per year [Achema 2012, Kerton 2009 page 

2]. Therefore plastics (265 million metric tonnes per year) are an order of magnitude more 

important than solvents in terms of production effort. Even recognisable solvent products such as 

1-butanol are more frequently used to make plastics and plasticisers than they are used as 

solvents [Chemical Strategies Group 2013]. Consequently the availability and precise structure of 

bio-based solvents will depend on other manufacturing processes. This is already true of most 

contemporary solvents, and must continue this way for economic reasons. This will affect bio-

based solvent availability whenever a new manufacturing process is established. Novel synthetic 

routes unfamiliar to the oil refinery and its associated industries, that in turn generate unfamiliar 

products, will be a source of future bio-based solvents. Although the exact nature of these future 

chemicals cannot be foretold with certainty, a contemporary example may illustrate the point. 

Production volumes of bio-diesel are generally increasing in countries across the world 



249 
 

[EurObser’ER 2012]. The rise of bio-diesel as an alternative fuel has provided glycerol an 

opportunity to become a successful bio-based solvent and platform molecule [Bauer 2013, Gu 

2010]. If it were not an unavoidable by-product of a more valuable process then glycerol would 

not be studied seriously as a potentially green solvent. This is perhaps at odds with the 

philosophy purported throughout this work, namely that solvents derived from wastes should be 

selected because they enhance a reaction and not simply because they are available, but there is 

no harm in understanding the capabilities of this abundant resource. Before the emergence of 

green chemistry, glycerol was rarely considered as a solvent due to its high viscosity hindering 

any reaction that might have occurred within it. Glycerol also has a prohibitively high boiling 

point for any useful means of removal from the reaction mixture. But now several research 

groups have dedicated a significant portion, if not all of their resources into studying its 

application in organic synthesis [Delample 2010, Diaz-Álverez 2013, Wolfson 2009]. 

It may not be long before a biorefinery based on citrus waste becomes operational too. A 

manufacturing plant that extracts limonene from citrus waste, perhaps in order to make p-

cymene, could never be economically viable. But a process that makes ethanol by fermenting the 

sugars in citrus waste, digesting the resulting residues to produce another fuel product in the 

form of methane, whilst also presenting limonene and pectin as secondary products is a realistic 

enterprise [Lorasbi 2010]. Again it is the prospect of selling fuel, and maybe expensive niche 

chemicals that makes the processing of food waste an attractive prospect, not the production of 

solvents. 

Ethyl lactate is another bio-based solvent that is gaining popularity [Pereira 2011]. The 

only reason why ethyl lactate has aroused an interest within solution chemistry is because it 

shares a precursor, lactic acid, with poly(lactic acid) (PLA). In fact lactic acid, from the anaerobic 

fermentation of corn starch, has itself been successfully implemented as a solvent in a number of 

transformations [Yang 2012b]. Annual production of PLA is expected to grow, but with a 

diminishing percentage share of global bio-plastics sales because of the rapidly expanding bio-

PET market [European Bio-plastics 2013]. Without the bio-plastic manufacturing process, little or 

no effort would have been made to obtain bio-based ethyl lactate for use as a solvent. 

Instead of solely relying on niche solvent products from a variety of differing bio-

refineries (which would be welcome on an appropriate scale of course), gaining access to the 

traditional solvents via the processes established by the bulk chemical industries would be 

appealing to most end-users. Obviously those companies holding intellectual property in this 

area, and with the specialised facilities needed to execute it, find this approach more attractive 

still. The huge quantities of bio-ethanol fuel produced in Brazil, the USA, and increasingly 

elsewhere provides a platform molecule just one dehydration reaction away from the established 
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oil derived chemical manufacturing hierarchy [Angelici 2013, Balat 2009]. In a crucial advance for 

the bio-based economy, bio-ethanol is being upgraded to make poly(ethylene) and PET via 

ethylene. It is here that the strongest short term potential lies for bio-based solvents. Ethylene 

provides access to ethers and other familiar solvents [Angelici 2013, Fan 2013]. These could be 

blended into (probably) cheaper but non-renewable versions of themselves in order to ease 

consumers into what will probably be a more expensive bio-based economy at first, until 

production volumes increase and bring prices down. 

Other attempts to retain the principles of the oil refinery include synthesising liquid 

aromatics from carbohydrate [Anellotech 2013, Huber 2013]. This technology complements the 

use of bio-gas and bio-ethanol as platform molecules. To complete the full array of petroleum 

platform molecules, other potential bio-based hydrocarbon manufacturing operations 

(specifically those for isobutene and propene) will also have to progress beyond the pilot plant 

[Global Bioenergies 2013, UOP 2013]. Whether this is the dawn of a bio-based industry 

developed specifically to mirror that built on the oil refinery and its downstream products is yet 

to be seen. Although there are arguments against it, moving from non-renewable hydrocarbon 

platform molecules to their bio-based analogues will at least change the geopolitical dynamic of 

the world. A global bias in energy reserves will not be eliminated, but instead regions rich in 

biomass and its wastes will replace the dominant oil producing nations when it comes to 

monopolies over energy resources. However one can envisage a less extreme scenario to the one 

we currently operate within [Woolsey 2013]. 

So could bio-refineries producing bio-diesel from used cooking oil and methane from 

citrus waste present the beginning of a greater overhaul of the bulk chemical industry? Or is the 

scenario described in the previous paragraph an inevitable eventuality? It is an unavoidable 

consequence of the world socio-economic model that available resources will be exploited on the 

basis of price, be it food waste to make new chemicals, virgin plant feedstocks to replicate 

petroleum derived chemicals, or crude oil while it is still profitable to refine. As long there is an 

economic stimulus it will be done. Of course the vision of a truly free market that this statement 

invokes has never actually existed, and governmental initiatives, either incentives or prohibitive 

legislation, will have to be the means with which to dictate and direct the future bio-based 

economy. Hopefully this will provide the motivation for a network of smaller independent 

organisations to continue to operate bio-refineries, processing local waste-streams in a cost 

effective manner to produce inventive product streams. Larger hydrocarbon manufacturing 

plants will never be eliminated it seems, but the petroleum lead energy and chemicals industry 

can be adapted.  

Bio-based solvent strategy: The current bio-based solvent market is probably less than 2% of the 
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total solvent market, although estimating this value is difficult [Achema 2012]. The majority of 

bio-based solvents are plant oils and simple fermentation products in the form of cleaning 

products. The most exotic of these will be no more than one synthetic step from a fermentation 

product. Ethyl lactate is one example, currently blended with either citrus oils or FAMEs and 

marketed as a cleaning solvent [Henneberry 2004]. In terms of solvents of interest to the 

synthetic organic chemistry industries, acetone [Qureshi 2001], ethanol [Hahn-Hägerdal 2006], 

and ethyl acetate are amongst the most obvious bio-based examples [Colley 2004]. The types of 

bio-based solvent that are most likely to be introduced in the near future are still those that 

directly replace familiar solvents of a petrochemical origin. A chemist will not necessary know 

that their acetone or ethyl acetate is bio-derived in the future, or indeed a blend of a bio-based 

solvent and the same petroleum sourced solvent. 2-Methyltetrahydrofuran is a slight oddity in 

this respect, given that it possesses an extra carbon atom compared to its most obvious 

substitute, THF [Aycock 2007]. Because 2-MeTHF is so structurally similar to THF, few objections 

have been raised, and the growing presence of 2-MeTHF is a testament to the willingness of 

chemists to adapt to the problems presented by feedstock security [Pace 2012]. This is not to say 

that 2-MeTHF is inferior to THF, quite the opposite in fact, and this must be true of all bio-based 

solvents if they are to be successful. 

Whereas the phasing out of THF in favour of 2-MeTHF is a slow but unproblematic task, 

the same might not be true of future changes in solvent use habits. The day may come when 

legislation or the management structure overseeing medicinal chemistry (one of several relevant 

examples) rule against the use of a vital solvent. Given current attitudes and the influence of 

REACH, solvents such as NMP and toluene seem particularly vulnerable [EC 2007]. So whereas 

replacing non-renewable acetic acid, ethanol, ethyl acetate, or ethylene glycol ‘like for like’ will 

not be an issue because of their reasonable environmental, health and safety profiles, other 

solvents will need to be phased out because of legislative measures long before feedstock 

security becomes an issue. This means that although the synthesis of NMP from the glutamic acid 

in plant protein wastes has been demonstrated, this will not save it from being tightly restricted 

[Lammens 2010]. Toluene is less obviously bio-based, but this is of little relevance given the 

toxicity of these chemicals will always remain the central issue.  

To avoid the crisis point caused when a solvent is suddenly made unavailable, more bio-

based solvents must be implemented. If needs be, they should deviate from the traditional 

solvent structures in order to possess more agreeable physical properties, without being toxic or 

otherwise a danger to humans or the environment. p-Cymene, as an alternative to toluene, has 

been suggested throughout this work as one such possibility. By phasing in new bio-based 

solvents as early (and gradually) as possible, less of a ‘culture shock’ will result. Once a greater 

variety of bio-based hydrocarbon solvents are established, and the quest for greener dipolar 
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aprotics is realised, then the oxygenated bio-based solvents, ethyl acetate and ethanol to name 

but two, will satisfy demand for most other solvent applications. Reviewing the LSERs featured in 

this work makes the need for alternative solvents even more apparent (Figure 7.1). By annotating 

the aprotic bio-based solvent polarity map (Figure 1.20) with the conclusions of the solvent effect 

studies, it becomes obvious that only when the extremes of solvent polarity have been 

accounted for with bio-based solvents can we be comfortable that reaction performance will not 

become impaired without the use of unsustainable solvents. In what guise these solvents will 

present themselves is unknown, but to replicate the chlorinated solvents or the highly dipolar 

aprotic solvents with benign substitutes will require a great leap of imagination and an equal 

measure of support from the synthetic organic chemistry community. We are beginning to realise 

that  a combination of theoretical tools and experiment can provide an answer to current worries 

 

Figure 7.1 The polarity map of Figure 1.20 annotated with LSER trends (reaction rates in green, 

equilibria in blue). 
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over solvent safety, environmental impact, and renewability. Amongst the plethora of novel 

solvents that will inevitably appear in the near future, a few vital solvent substitutes will surely be 

found to ease concerns and advance the art of green solvent selection [Moity 2012]. 
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8. Appendices 

 

 

 

8.1 Experimental section 

 

General notes: All reactions were conducted under an ambient atmosphere and generally 

without any purification of reagents prior to use. Hammett acidity functions and solvent polarity 

measurements were determined using a Jasco V-550 UV-vis. spectrophotometer. Thermal 

decomposition temperatures were obtained using a PL Thermal Sciences system (STA 625). Mass 

spectra by ESI detection were obtained with a Bruker MicrOTOF mass spectrometer, while EI 

mass spectra were obtained with a Perkin-Elmer Clarus 560 S mass spectrometer coupled to an 

Perkin-Elmer Clarus 500 gas chromatograph. Elemental analysis was determined using an Exeter 

Analytical CE 440 elemental analyser. All NMR spectra were obtained with a Bruker 400 MHz 

spectrometer, and calibrated against the residual solvent signal. No calibration of the NMR 

proton signals was found to be necessary. Characterisation of reaction products was consistent 

with literature data or authentic samples where available.  

Determination of the Kamlet-Taft solvatochromic parameters: The determination of the β 

Kamlet-Taft solvatochromic parameter was performed in the same manner as originally 

described with 4-nitroaniline and N,N-diethyl-4-nitroaniline [Kamlet 1976]. Similarly values of π* 

were obtained by applying the absorbance maxima wavelengths of N,N-diethyl-4-nitroaniline to 

Equation 1.5 [Kamlet 1977]. When α values were needed spectroscopic data from Dimroth-

Reichardt’s betaine dye was interpreted with Equation 1.8. A Jasco V-550 UV-vis. 

spectrophotometer was used to obtain the required absorbance maxima wavelengths of each 

dye in solution. Aside from drying, generally no purification of the solvents was performed before 

the measurements. In the case of p-cymene a distillation was performed prior to analysis. 

1-Decyl-2,3-dimethylimidazolium bromide: To a solution of 1,2-dimethylimidazole (0.288 g, 3.00 

mmol) preheated to 323 K in the chosen solvent (3 mL) was added 1-bromodecane (0.736 g, 3.33 

mmol) in a single aliquot. The progression of the reaction was monitored by 1H-NMR 

spectroscopy, ideally until over 50% conversion had been achieved (Figure 2.2). No further 

analysis or isolation of the product was attempted. 
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N-Acetylpyrrolidine: An excess of acetic anhydride (36.72 g, 0.36 mol) was added dropwise to 

pyrrolidine (21.30 g, 0.30 mol) cooled to 273 K. The reaction mixture was then allowed to warm 

to room temperature with stirring. To the solution was added solid sodium hydroxide (22 g), 

magnesium sulphate (22 g), and DCM (100 mL). The solution was retrieved by filtration and the 

reaction concentrated in vacuo to give N-acetylpyrrolidine (29.08 g, 86%). NMR: δH (400 MHz, 

CDCl3) 1.79 (2H, m, CH2CH2N), 1.89 (2H, m, CH2CH2N), 1.97 (3H, s, CH3CO), 3.36 (4H, m, CH2N) 

/ppm; δC (100 MHz, CDCl3) 22.5 (CH3CO), 24.6 (CH2CH2N), 26.1 (CH2CH2N), 45.5 (CH2N), 47.5 

(CH2N), 169.3 (CO) /ppm. MS (+EI): m/z 114 (M+H+). Consistent with characterisation in the 

literature [Mucsi 2008]. 

N-Propionylpyrrolidine: An excess of propionic anhydride (42.63 g, 0.36 mol) was added 

dropwise to pyrrolidine (21.30 g, 0.30 mol) at 273 K. The reaction was conducted and purified 

according to the previous procedure to give N-propionylpyrrolidine (33.0 g, 86%). NMR: δH (400 

MHz, CDCl3) 1.10 (3H, t, 3J = 7.5 Hz, CH3CH2CO), 1.80 (2H, m, CH2CH2N), 1.91 (2H, m, CH2CH2N), 

2.24 (2H, q, 3J = 7.5 Hz, CH3CH2CO), 3.35 (2H, m, CH2CH2N), 3.41 (2H, m, CH2CH2N) /ppm; δC (100 

MHz, CDCl3) 9.0 (CH3CH2CO), 24.2 (CH2CO), 26.0 (CH2CH2N), 27.8 (CH2CH2N), 45.4 (CH2N), 46.4 

(CH2N), 172.2 (CO) /ppm. MS (+EI): m/z 128 (M+H+). 

N-Laurylpyrrolidine: Lauryl chloride (6.527 g, 86 mmol) was added dropwise to a stirred solution 

of excess pyrrolidine (1.448 g, 0.26 mol) in 2-MeTHF (10 mL). Upon completion of the reaction 

solid sodium hydroxide (7 g) was added, filtered, and the solvent removed in vacuo to give N-

laurylpyrrolidine. (16.7 g, 76%) NMR: δH (400 MHz, CDCl3) 0.84 (3H, t, 3J = 6.6 Hz, CH3), 1.11-1.34 

(16H, m, CH2), 1.61 (2H, m, CH2CH2CO), 1.81 (2H, m, CH2CH2N), 1.91 (2H, m, CH2CH2N), 2.22 (2H, t, 

3J = 8.0 Hz, CH2CO), 3.38 (2H, t, 3J = 6.8 Hz, CH2CH2N), 3.43 (2H, t, 3J = 6.8 Hz, CH2CH2N) /ppm; δC 

(100 MHz, CDCl3) 14.13 (CH3), 22.70 (CH3CH2), 24.44 (CH2CH2N), 25.00 (CH2CH2CO), 26.16 

(CH2CH2N), 29.35 (CH2), 29.50 (CH2), 29.55 (CH2), 29.57 (CH2), 29.64 (CH2), 29.66 (CH2), 31.93 

(CH2CH2CH2CO), 34.88 (CH2CO), 45.59 (CH2N), 46.64 (CH2N), 171.91 (CO) /ppm. MS (+EI) m/z: 254 

[M+H+]. 

N-Benzyl-4-phenylbutanamide kinetic experiments: To a solution of 4-phenylbutanoic acid 

(0.328 g, 2.0 mmol) in the chosen solvent (4 mL) preheated to 373 K was added benzylamine 

(0.235 g, 2.2 mmol) in a single aliquot. The progression of the reaction was monitored by 1H-NMR 

spectroscopy, ideally until over 50% conversion had been achieved (Figure 3.2). This process was 

conducted for binary solvent mixtures as well as single solvents. The precision executed during 

the experimental practice is listed here as follows: solvent volume by volumetric flask (± 0.05 

mL), weighing of chemical reactants (± 0.001 g), reaction temperature calibrated by internal 

measurement of the liquid (rather than the heating apparatus) within ±1 K, sensitivity of NMR 

integration reported to 4 decimal places using Spinworks software. This means the concentration 



257 
 

of the rate limiting benzylamine will reside within limits of 0.500 ±0.008 M. The kinetics of 

chemical reactions are temperature dependant, and a ±1 K (0.3% of absolute) accuracy regarding 

temperature control will introduce an error into the calculated Gibbs free energy of the reaction 

of 125.0 ±0.4 kJmol-1 (also 0.3% error). 

N-Benzyl-4-phenylbutanamide kinetic activation parameter determination: The above 

procedure was repeated at various temperatures in different solvents and modelled with the 

Eyring equation (Equation 3.2) to provide experimental values of ΔH‡ and ΔS‡. 

N-Benzyl-4-phenylbutanamide reaction order determination: The model amidation was 

repeated in toluene with different concentrations of both reactants ranging between 0.32 M and 

1.83 M of benzylamine (0.5 M 4-phenylbutanoic acid) and between 0.45 M and 2.66 M of 4-

phenylbutanoic acid (benzylamine concentration held and 0.55 M). The initial rate of reaction 

was determined by 1H-NMR spectroscopy, taking multiple measurements during the first 10% of 

the total possible conversion to the product. 

N-Benzyl-4-phenylbutanamide NMR signal calibration: Several standards were prepared using a 

known amount of benzylamine and recrystallised N-benzyl-4-phenylbutanamide dissolved in 

toluene. For example, 30% conversion was approximated by dissolving 0.152 g (0.6 mmol) of N-

benzyl-4-phenylbutanamide and 0.171 g of benzylamine (1.6 mmol) in 4 mL of toluene. A 

hypothetical 10 mol% excess of benzylamine was used to mirror the conditions used in kinetic 

experiments, and so 1.6 mmol of benzylamine is required to represent 30% conversion and not 

1.4 mmol. 4-Phenylbutanoic acid was omitted from this exercise because it was not required to 

determine the conversion in situ during the reaction. 

N-Benzyl-4-phenylbutanamide preparative experiments: To a solution of 4-phenylbutanoic acid 

(0.493 g, 3.0 mmol) in p-cymene (4 mL), preheated to 373 K was added benzylamine (0.324 g, 3.0 

mmol) in a single aliquot. The reaction was stirred for 24 hours, at which point the solution was 

allowed to cool to ambient temperature. The product crystallised from the solution when 

refrigerated. Recystallisation from aqueous acetone gave long white needle-like crystals of N-

benzyl-4-phenylbutanamide (0.56 g, 74%). NMR: δH (400 MHz, CDCl3) 1.62 (2H, m, 

CH2CH2CH2CONH), 1.83 (2H, t, 3J = 7.1 Hz, CH2CH2CH2CONH), 2.29 (2H, t, 3J = 7.1 Hz, 

CH2CH2CH2CONH), 4.04 (2H, d, 3J = 5.7 Hz, CH2NHCO), 5.30 (1H, bs, NHCO), 6.69-7.03 (10H, m, 

aromatic protons) /ppm; δC (100 MHz, CDCl3) 27.3 (CH2CH2CH2CONH), 35.3 (CH2CH2CH2CONH), 

36.1 (CH2CH2CH2CONH), 43.8 (CH2NHCO), 126.1 (CarH), 127.7 (CarH), 128.0 (CarH), 128.5 (CarH), 

128.6 (CarH), 128.88 (CarH), 138.4 (CarCH2N), 141.6 (CarCH2CH2CH2CONH), 172.7 (CONH) /ppm. MS 

(+ESI): m/z 254 (M+H+). Elemental analysis calculated (%) for C17H19NO: C 80.60%, H 7.56%, N 

5.53%; found C 80.32%, H 7.59%, N 5.51%. 
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Butyl butanoate kinetic experiments: To a solution of 1-butanol (0.373 g, 5.0 mmol) in the 

chosen solvent (5 mL), preheated to 323 K, was added butanoic anhydride (0.967 g, 5.5 mmol) in 

a single aliquot. The progression of the reaction was monitored by 1H-NMR spectroscopy, ideally 

until over 50% conversion had been achieved (Figure 4.2). Processing of data into rate constants 

was performed in the same way as the amidation data was previously. 

Synthesis of p-cymene from limonene: A mixture of 10 wt% Pd/C (0.788 g, 1 mol%) and K-10 

montmorillonite clay (1.48 g) was heated to 413 K, and limonene (10.10 g, 74.1 mmol) slowly 

added dropwise. After stirring for one hour, the reaction was cooled to room temperature and 

water (100 mL) added prior to steam distillation. The organic phase of the distillate was dried to 

give p-cymene as a colourless liquid (8.87 g, 89% yield, 71% selectivity as determined by GC and 

1H-NMR spectroscopy). NMR: δH (400 MHz, CDCl3) 1.22 (6H, d, 3J = 7.0 Hz, CHCH3), 2.31 (3H, s, 

CarCH3), 2.87 (1H, m, CHCH3), 7.11 (4H, m, CarH) /ppm; δC (100 MHz, CDCl3) 21.1 (CarCH3), 24.3 

(CHCH3), 33.9 (CHCH3), 126.5 (CarHCarCH), 129.2 (CarHCarCH3), 135.3 (CarCH3), 146.1 (CarCH) /ppm. 

MS (+EI): m/z 134 (M+). 

Sulphonation of p-cymene: To p-cymene (4.300 g, 32.0 mmol) was slowly added 20% fuming 

sulphuric acid (5 mL). The reaction was stirred at room temperature for 4 hours. After this time 

had elapsed, stirring was stopped and water (6 mL) carefully added to avoid the mixture 

becoming hot. The diluted mixture was left to stand in a refrigerator overnight to produce a solid, 

which could be recrystallised from concentrated hydrochloric acid to give p-cymene-2-sulfonic 

acid dihydrate (7.29 g, 91%). Melting point: Tm 323-324 K. NMR: δH (400 MHz, DMSO-d6) 1.14 (6H, 

d, 3J = 6.9 Hz, CHCH3), 2.46 (3H, s, CarCH3), 2.83 (1H, m, CHCH3), 7.05 (1H, d, 3J = 7.8 Hz, 

CarHCarCH3), 7.16 (1H, d, 3J = 7.8 Hz, 4J = 1.7 Hz, CHCarCarHCarH), 7.70 (1H, d, 4J = 1.7 Hz, 

CarHCarSO3H), 9.56 (1H, bs, CarSO3H) /ppm; δC (100 MHz in DMSO-d6): 19.9 (CarCH3), 24.3 (CHCH3), 

33.2 (CHCH3), 124.7 (CarHCarCH3), 127.4 (CHCarCarHCarH), 131.2 (CarSO3H), 133.1 (CarHCarSO3H), 

145.1 (CarCH3), 145.3 (CarCH) /ppm. MS (-EI): m/z 213 (M-H‒).  

Complete synthesis of p-CSA from the essential oil of oranges: The flavedo (outer peel) was 

separated from the albedo (inner peel) of sixteen oranges (Navel late variety, diameter of 70-80 

mm). Using a fine grater gave 110 g of wet citrus waste. To the separated flavedo was added 150 

mL of water and the suspension distilled for 1 hour. The organic phase of the distillate was dried 

to give 5.71 g of the essential oil (5.2 wt%). The steam extracted citrus oil was added dropwise to 

a mixture of 10 wt% Pd/C (0.434 g, 1 mol%) and K-10 montmorillonite clay (0.815 g), pre-heated 

to 413 K, and stirred for an hour once addition of the citrus oil was complete. The reaction was 

then allowed to cool and 100 mL of water added. The solution was distilled, and the organic 

phase of the distillate dried to give crude p-cymene (4.43 g, 88% yield, 70% selectivity). To this 

colourless liquid was carefully added 3.5 mL of 20% fuming sulphuric acid. The reaction was 



259 
 

stirred at room temperature for 4 hours. After this time had elapsed, stirring was stopped and 

water (4.2 mL) carefully added to avoid the mixture becoming hot. At this stage the p-menthane 

co-product caused by limonene disproportionation can be decanted. The diluted mixture was left 

to stand in a refrigerator overnight to solidify. The solid was retrieved by filtration to give p-

cymene-2-sulfonic acid dihydrate (1.55 g, 27% yield based on the p-cymene content of the 

reaction distillate, 16% total yield based on the limonene content of the citrus oil, and 27 wt% 

based on the mass of citrus oil). 

Benzyl acetate kinetic experiments: To a solution of benzyl alcohol (0.541 g, 5.0 mmol) and the 

acid catalyst (p-TSA or p-CSA, 0.05 mmol) in the chosen solvent (5 mL), stirred at 323 K, was 

added acetic acid (0.330 g, 5.5 mmol). Aliquots of the reaction mixture were removed at 

convenient intervals and diluted with deuterated chloroform to allow the reaction progress to be 

monitored by 1H-NMR spectroscopy by the same method described by Welton and co-workers 

[Wells 2008]. Reactions were typically allowed to proceed beyond 50% conversion to guarantee 

accuracy in the calculation of rate constants (Figure 5.9).  

Ethyl levulinate: To a solution of levulinic acid (0.581 g, 5.0 mmol) in the chosen solvent (5 mL) 

was added either a Brønsted acid (p-TSA or p-CSA, 0.05 mmol) or a Lewis acid (In(OTf)3, InCl3, or 

FeCl3, 0.25 mmol), followed by the addition of ethanol (0.230 g, 5.0 mmol). The reaction mixture 

was stirred at 323 K for 20 hours. After this time, the reaction was cooled and potassium 

carbonate added. Filtration of the reactions performed in either toluene or 2-MeTHF gave a 

filtrate that could be concentrated in vacuo to give the desired product, ethyl levulinate, in yields 

of up to 73% of the theoretical yield depending on the conditions used. Reactions conducted in p-

cymene were similarly filtered and purified by column chromatography (hexane:ethyl acetate) to 

give ethyl levulinate (up to 76% yield depending on the conditions used). NMR: δH (400 MHz, 

CDCl3) 1.24 (3H, t, 3J = 7.1 Hz, CH3CH2O), 2.18 (3H, s, CH3CO), 2.56 (2H, t, 3J = 6.6 Hz, CH2CO2Et), 

2.74 (2H, t, 3J = 6.6 Hz, COCH2), 4.12 (2H, q, 3J = 7.1 Hz, CH3CH2O) /ppm; δC (100 MHz, CDCl3) 14.23 

(CH2CH3), 28.11 (CH3COCH2CH2), 29.90 (CH3CO), 38.04 (CH3COCH2), 60.64 (CH2CH3), 172.88 

(COCH2CH3), 206.81 (CH3CO) /ppm. MS (+EI): m/z 144 (M+). 

4-Bromochalcone: A mixture of acetophenone (0.258 g, 2.03 mmol), 4-bromobenzaldehyde 

(0.562 g, 3.04 mmol, and the acid catalyst (p-TSA or p-CSA, 0.10 mmol) was stirred at 393 K for 24 

hours. The reaction was then allowed to cool, giving rise to fine needles of a white solid and an 

amorphous orange solid. The latter could be removed by recrystallisation with ethanol to give 4-

bromochalcone (0.44 g, 73%). NMR: δH (400 MHz, CDCl3) 7.44-7.61 (8H, m, CarH, CH=CHCO), 7.72 

(1H, d, 3J = 15.7 Hz, CH=CHCO), 8.00 (2H, m, CarHCarCO) /ppm; δC (100 MHz, CDCl3) 122.7 

(CH=CHCO), 124.9 (CarBr), 128.6 (CarHCarCO), 128.8 (CarHCarHCarCO), 130.0 (CarHCarHCarBr), 132.4 

(CarHCarBr), 133.1 (CarHCarHCarHCarCO), 133.9 (CarC=CH), 138.1 (CarCO), 143.5 (CH=CHCO), 190.5 
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(CO) /ppm. MS (+EI): m/z 287, 289 (M+H+). 

2-(4-Nitrophenyl)-1,3-dioxolane: A suspension of 4-nitrobenzaldehyde (1.511 g, 10.0 mmol) and 

the acid catalyst (p-TSA or p-CSA, 0.20 mmol) in cyclohexane was heated to reflux in Dean-Stark 

apparatus, at which point the mixture became homogeneous. Ethylene glycol (0.621 g, 10.0 

mmol) was then added and the reaction stirred at reflux for 5 hours. The reaction was the left to 

cool, allowing the product, 2-(4-nitrophenyl)-1,3-dioxolane, to precipitate and be isolated by 

filtration (1.92 g, 92%). NMR: δH (400 MHz, DMSO-d6) 4.03 (4H, m, OCH2), 5.89 (1H, s, CH), 7.71 

(2H, d, 3J = 8.7 Hz, CarHCarHCarNO2), 8.26 (2H, d, 3J = 8.7 Hz, CarHCarNO2) /ppm; δC (100 MHz, 

DMSO-d6) 65.10 (OCH2), 101.44 (CH), 123.61 (CarHCarNO2), 127.93 (CarHCarHCarNO2), 145.14 (Car), 

147.99 (CarNO2) /ppm. MS (+EI): m/z 136 (M+H+). 

Synthesis of methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate with 

HCl: Urea (0.300 g, 5.00 mmol) dissolved or suspended in the chosen solvent (4 mL) was heated 

to 348 K. Upon reaching thermal equilibrium benzaldehyde (0.532 g, 5.00 mmol), methyl 

acetoacetate (0.872 g, 7.50 mmol), and finally concentrated hydrochloric acid (10 mol%) were 

added to the mixture. The reaction was stirred for a duration of 3 hours unless otherwise stated 

in Chapter 6. Upon completion of the reaction, the mixture was allowed to cool to ambient 

temperature. If acetic acid or DMF were used as the solvent, water was added to effect 

precipitation of the product. The resultant solid was separated from the reaction mixture by 

filtration, washed with 50% aqueous ethanol, and recrystallised from ethanol to give methyl-

1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate as a white crystalline solid. 

NMR: δH (400 MHz, DMSO-d6) 2.25 (3H, s, CH3CNH), 3.53 (3H, s, CO2CH3), 5.15 (1 H, d, 3J(N,H) = 

3.4 Hz, CHNH), 7.35-7.20 (5H, m, CarH), 7.76 (1H, bs, CHNH), 9.22 (1H, s, CH3CNH) /ppm; δC (100 

MHz, DMSO-d6) 17.9 (CH3CNH), 50.4 (CHNH), 54.6 (CO2CH3), 99.9 (CCO2), 126.0 (CarH), 127.1 

(CarH), 128.0 (CarH), 143.8 (Car), 147.2 (CH3CNH), 153.2 (NHCONH), 165.8 (CO2CH3) /ppm. MS 

(+ESI): 247 (M+H+). Elemental analysis calculated (%) for C13H14N2O3: C 63.40%, H 5.73%, N 

11.38%; found C 63.44%, H 5.77%, N 11.44%. Consistent with characterisation in the literature 

[Gangadasu 2006]. 

Synthesis of methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate with 

EPZ-10: Typically EPZ-10 (0.57g, equivalent to 10 mol% zinc chloride) was pre-heated to 398 K for 

3 hours prior to the reaction. In some experiments this was modified, as represented in Figure 

6.12. After this time urea (0.300 g, 5.00 mmol) and the chosen solvent (4 mL) were added to the 

catalyst and heated at 348 K. Upon reaching thermal equilibrium benzaldehyde (0.532 g, 5.00 

mmol), and methyl acetoacetate (0.872 g, 7.50 mmol) were added to the mixture. The reaction 

was stirred for a duration of 3 hours, and then allowed to cool to ambient temperature. The 

mixture was filtered and the solid washed with acetic acid. To the combined organic phase was 
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added water to induce precipitation of the product. The resultant solid was separated by 

filtration and recrystallised from ethanol to give a white crystalline solid. 

Synthesis of methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate with 

other Lewis acids: Urea (0.300 g, 5.00 mmol), the catalyst (10 mol%) and the chosen solvent (4 

mL) were heated to 348 K. Upon reaching thermal equilibrium benzaldehyde (0.532 g, 5.00 

mmol) and methyl acetoacetate (0.872 g, 7.50 mmol) were added. The reaction was stirred for a 

duration of 3 hours. Upon completion of the reaction the mixture was allowed to cool to ambient 

temperature, and then water added to effect dissolution of the product. The resultant solid was 

separated from the reaction mixture by filtration and recrystallised from ethanol to give a white 

crystalline solid as previously obtained. 

Synthesis of 4,6,7,8-tetrahydro-7,7-dimethyl-4-phenyl-2,5(1H,3H)-quinazolinedione with HCl: 

Urea (0.300 g, 5.00 mmol), 5,5-dimethyl-1,3-cyclohexanedione (1.05 g, 7.50 mmol), and the 

chosen solvent (12 mL) were heated to 348 K. Upon reaching thermal equilibrium benzaldehyde 

(0.532, 5.00 mmol) and concentrated hydrochloric acid (10 mol%) were added to the mixture. 

The reaction was stirred for a duration of 24 hours. Upon completion of the reaction, the mixture 

was allowed to cool to ambient temperature. Water was then added to ensure complete 

dissolution of the product. The resultant solid was separated from the reaction mixture by 

filtration, washed with 50% aqueous ethanol and recrystallised from ethanol to give 4,6,7,8-

tetrahydro-7,7-dimethyl-4-phenyl-2,5(1H,3H)-quinazolinedione as a white needle-like crystals. 

NMR: δH (400 MHz, DMSO-d6) 0.88 (3H, s, CH3) 1.00 (3H, s, CH3), 2.10 (2H, m, CH2), 2.34 (2H, m, 

CH2CO), 5.14 (1H, d, 3J(H,N) = 2.8 Hz, CH), 7.34-7.18 (5H, m, CarH), 7.77 (1H, bs, CHNH), 9.47 (1H, 

s, CH2CNH) /ppm; δC (100 MHz, DMSO-d6) 26.9 (CH3), 28.8 (CH3), 32.3 (CCH2CO), 40.3 (CH2CNH), 

49.8 (CH2CO), 52.0 (CH), 107.4 (COC=C), 126.3 (CarH), 127.2 (CarH), 128.4 (CarH), 144.7 (Car), 152.0 

(COC=C), 152.5 (NHCONH), 192.2 (CH2CO) /ppm. MS (+ESI): 271 (M+H+). Elemental analysis 

calculated (%) for C16H19N2O2: C 71.09%, H 6.71%, N 10.36%; found C 71.07%, H 6.69%, N 10.27%. 

Consistent with characterisation in the literature [Yarım 2003]. 

 

8.2 Supplementary data 

 

Solvent properties: The non-intrusive measurements of solvent polarity, namely relative 

permittivity, the Hildebrand solubility parameter, and the Hansen solubility parameters are 

tabulated here (Table 8.1) [Abboud 1999, Reichardt 2003 page 472, Hansen 2007 page 347]. The 

Kamlet-Taft polarity parameters for relevant solvent are also reported (Table 8.2). Instances 

when literature values have not been calculated using the single dye set consisting of 4-
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nitroaniline, N,N-diethyl-4-nitroaniline, and Dimroth-Reichart’s betaine dye have been noted. 

This is most useful for haloalkanes that otherwise express β values of zero, and an average of dye 

sets is used to correct this. 
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Table 8.1 Bulk solvent polarity parameters. 

Solvent εr δT /MPa½ δD /MPa½
 δP /MPa½ δH /MPa½ 

Acetic acid 6.17a 21.38 14.5 8.0 13.5 

Acetone 20.56 19.73 15.5 10.4 7.0 

Acetonitrile 35.94 24.2 15.3 18.0 6.1 

N-Acetyl pyrrolidine n/a 17.00b 18.3b 9.1b 7.4b 

Benzene 2.27 18.73 18.4 0.0 2.0 

Butanoic acid 22.59b 18.74c 14.9 4.1 10.6 

1-Butanol 17.51 23.35 16.0 5.7 15.8 

t-Butanol 12.47 21.75 15.2 5.1 14.7 

Butanone 18.11 19.0 16.0 9.0 5.1 

n-Butyl acetate 5.01a 17.41c 15.8 3.7 6.3 

Butylamine 5.4 18.62c 16.2 4.5 8.0 

t-Butyl methyl ether 4.5a 15.07 14.8 4.3 5.0 

Carbon tetrachloride 2.24 18.11c 16.1 8.3 0.0 

Chlorobenzene 5.62 19.4 19.0 4.3 2.0 

Chloroform 4.89 18.9 17.8 3.1 5.7 

Cineole 4.84a 17.65c 16.7 4.6 3.4 

Cyclohexane 2.02a 16.76 16.8 0.0 0.2 

Cyclohexanone 15.50 19.56c 17.8 6.3 5.1 

Cyclopentyl methyl ether 4.47b 18.82b 14.4b 3.2b 4.3b 

p-Cymene 4.68b 17.4d 18.5b 1.8b 2.3b 

Cumene 2.38a 18.18c 18.1 1.2 1.2 

1,2-Dichlorobenzene 9.93 20.47c 19.2 6.3 3.3 

1,2-DCE 10.36 20.26 19.0 7.4 4.1 

DCM 8.93 20.37 18.2 6.3 6.1 

Diethyl carbonate 2.82a 16.73c 15.1 6.3 3.5 

Diethyl ether 4.20 15.42 14.5 2.9 5.1 

Diisopropyl ether 4.04a 14.43c 13.7 3.9 2.3 

DMAc 37.78 22.35 16.8 11.5 10.2 

Dimethyl carbonate 3.17a 18.70c 15.5 3.9 9.7 

DMF 36.71 23.96 17.4 13.7 11.3 

DMSO 46.45 26.45 18.4 16.4 10.2 

1,4-Dioxane 2.21 20.48 19.0 1.8 7.4 

Ethanol 24.55 26.43 15.8 8.8 19.4 

Ethyl acetate 6.02 18.35 15.8 5.3 7.2 
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Table 8.1 Bulk solvent polarity parameters (continued). 

Solvent εr δT /MPa½ δD /MPa½
 δP /MPa½ δH /MPa½ 

Ethyl lactate 16.54b 21.68c 16.0 7.6 12.5 

Ethylene glycol 37.70 33.34 16.9 11.1 26.0 

Fluorobenzene 5.55a 19.77c 18.7 6.1 2.0 

Glycerol 42.5 36.16c 17.4 12.1 29.3 

Glycerol formal n/a 28.79b 19.9b 12.0b 16.6b 

n-Heptane 1.92a 15.20 15.3 0.0 0.0 

Hexafluoroisopropanol n/a 23.07c 17.2 4.5 14.7 

n-Hexane 1.88 14.90c 14.9 0.0 0.0 

Isoamyl alcohol 15.19 21.30c 15.8 5.2 13.3 

Lactic acid 39.52b 34.12c 17.0 8.3 28.4 

Limonene 2.3 15.1e 17.2b 1.8b 4.3b 

Methanol 32.66 29.59 15.1 12.3 22.3 

Methyl acetate 6.68 18.70c 15.5 7.2 7.6 

2-MeTHF 6.97 18.14c 16.9 5.0 4.3 

NMP 32.2 23.16 18.0 12.3 7.2 

Nitrobenzene 34.79 22.15c 20.0 8.6 4.1 

Nitromethane 35.87 25.08c 15.8 18.8 5.1 

α-Pinene 2.7 17.28c 16.9 1.8 3.1 

Piperidine 9.74b 20.23c 17.6 4.5 8.9 

1,2-Propanediol 29.35b 30.22c 16.8 9.4 23.3 

1,3-Propanediol 33.68b 31.67c 16.8 13.5 23.2 

Propanenitrile 28.26 21.65c 15.3 14.3 5.5 

Propanoic acid 25.91b 19.95c 14.7 5.3 12.4 

1-Propanol 20.45 24.60c 16.0 6.8 17.4 

2-Propanol 19.92 23.58c 15.8 6.1 16.4 

Propylene carbonate 64.92 27.22c 20.0 18.0 4.1 

Pyridine 12.91 21.75c 19.0 8.8 5.9 

Sulpholane 43.3 29.36 20.3 18.2 10.9 

THF 7.58 20.23 16.8 5.7 8.0 

Toluene 2.38 18.2 18.0 1.4 2.0 

Tributyl phosphate 8.29a 18.00c 16.3 6.3 4.3 

Triethylamine 2.42a 15.20 17.8 0.4 1.0 

Triethyl phosphate 13.01a 22.21c 16.7 11.4 9.2 

Trifluoroethanol n/a 23.98c 15.4 8.3 16.4 
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Table 8.1 Bulk solvent polarity parameters (continued). 

Solvent εr δT /MPa½ δD /MPa½
 δP /MPa½ δH /MPa½ 

γ-Valerolactone 7.08b 20.02b 15.2b 10.1b 5.6b 

Water 78.36 47.81 15.5 16.0 42.3 

p-Xylene 2.27a 17.90c 17.6 1.0 3.1 

aRecorded at 293 K rather than 298 K. 

bPredicted values using ProPred property estimation software. 

cCalculated with Equation 1.2. 

dReference: Sagadeev 2006. 

eReference: Hazra 2002. 

 

Table 8.2 Values for the Kamlet-Taft solvent polarity scale. 

Solvent α β π* Ref. 

Acetic acid 0.71 0.40 0.60 Clark 2013, Taft 1976 

Acetone 0.00 0.51 0.70 Kamlet 1976 

Acetonitrile 0.35 0.37 0.80 Crowhurst 2003 

N-Acetyl pyrrolidine 0.00 0.76 0.83 This work 

Benzenea 0.00 0.10 0.59 Marcus 1993 

Butanoic acida 1.10 0.45 0.56 Marcus 1993 

1-Butanol 0.73 0.85 0.61 Kamlet 1976, Taft 1976 

t-Butanol 0.39 0.95 0.58 Kamlet 1976, Taft 1976 

Butanone 0.00 0.51 0.68 Kamlet 1976, Reichardt 1994 

n-Butyl acetatea 0.00 0.45 0.46 Marcus 1993 

Butylaminea 0.00 0.72 0.31 Marcus 1993 

Carbon tetrachloridea 0.00 0.10 0.28 Marcus 1993 

Chlorobenzene 0.00 0.06 0.65 Clark 2012 

Chloroforma 0.20 0.10 0.58 Marcus 1993 

Cineole 0.00 0.61 0.36 Jessop 2012 

Cyclohexane 0.00 0.00 0.00 This work 

Cyclohexanone 0.00 0.58 0.71 Clark 2012 

Cyclopentyl methyl ether 0.00 0.49 0.41 This work 

p-Cymene 0.00 0.13 0.39 Clark 2012 

Cumene 0.00 0.11 0.43 This work 

1,2-Dichlorobenzenea 0.00 0.03 0.80 Marcus 1993 

1,2-DCE 0.00 0.00 0.76 This work 
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Table 8.2 Values for the Kamlet-Taft solvent polarity scale (continued). 

Solvent α β π* Ref. 

DCMa 0.13 0.10 0.82 Marcus 1993 

Diethyl carbonatea 0.00 0.40 0.45 Marcus 1993 

Diethyl ether 0.00 0.51 0.28 Kamlet 1976 

Diisopropyl ethera 0.00 0.49 0.27 Marcus 1993 

DMAc 0.00 0.73 0.85 Kamlet 1976, Reichardt 1994 

Dimethyl carbonate 0.00 0.32 0.55 This work 

DMF 0.00 0.71 0.88 Kamlet 1976, Reichardt 1994 

DMSO 0.00 0.74 1.00 Kamlet 1976, Reichardt 1994 

1,4-Dioxane 0.00 0.38 0.52 Kamlet 1976, Reichardt 1994 

Ethanol 0.83 0.77 0.62 Kamlet 1976, Taft 1976 

Ethyl acetate 0.00 0.48 0.54 Kamlet 1976, Reichardt 1994 

Ethyl lactate 0.69 0.52 0.82 Jessop 2012 

Ethylene glycol 0.79 0.57 1.01 Clark 2013, Taft 1976 

Fluorobenzenea 0.00 0.07 0.62 Marcus 1993 

Glycerol 0.93 0.67 1.04 Jessop 2012 

Glycerol formal 0.59 0.59 0.87 Jessop 2012 

n-Heptane 0.00 0.00 -0.03 This work 

Hexafluoroisopropanola 1.96 0.00 0.65 Marcus 1993 

n-Hexane 0.00 0.00 -0.05 This work 

Isoamyl alcohola 0.84 0.86 0.40 Marcus 1993 

Lactic acid n/a 0.40 1.09 This work 

Limonene 0.00 0.00 0.16 Clark 2012 

Methanol 1.00 0.65 0.69 This work 

Methyl acetatea 0.00 0.42 0.60 Marcus 1993 

2-MeTHF 0.00 0.57 0.51 This work 

NMP 0.00 0.75 0.90 This work 

Nitrobenzenea 0.00 0.30 1.01 Marcus 1993 

Nitromethanea 0.22 0.06 0.85 Marcus 1993 

α-Pinene 0.00 0.00 0.11 Jessop 2012 

Piperidinea 0.00 1.04 0.30 Marcus 1993 

1,2-Propanediol 0.83 0.78 0.76 Jessop 2012 

1,3-Propanediol 0.80 0.77 0.84 Jessop 2012 

Propanenitrile 0.00 0.39 0.72 This work 

Propanoic acida 1.12 0.28 0.51 This work, Marcus 1993 
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Table 8.2 Values for the Kamlet-Taft solvent polarity scale (continued). 

Solvent α β π* Ref. 

1-Propanola 0.84 0.90 0.52 Marcus 1993 

2-Propanol 0.66 0.92 0.61 Kamlet 1976, Taft 1976 

Propylene carbonatea 0.00 0.40 0.83 Marcus 1993 

Pyridine 0.00 0.67 0.85 Kamlet 1976 

Sulpholane 0.00 0.30 0.96 This work 

THF 0.00 0.55 0.58 Kamlet 1976, Reichardt 1994 

Toluene 0.00 0.12 0.50 Clark 2012 

Tributyl phosphatea 0.00 0.80 0.65 Marcus 1993 

Triethylamine 0.00 0.70 0.08 Kamlet 1976 

Triethyl phosphate 0.00 0.79 0.71 Kamlet 1976 

Trifluoroethanola 1.51 0.00 0.73 Marcus 1993 

γ-Valerolactone 0.00 0.60 0.83 Jessop 2012 

Water 1.05 0.18 1.28 This work, Taft 1976 

p-Xylene 0.00 0.14 0.47 Clark 2012 

aPolarity measurements derived from the average value of different dyes. 

 

Solvent greenness: The SUS-HAS-ECO classifications for all the solvents in the original GSK 

solvent selection guide have been calculated (Table 8.3) [Henderson 2011]. The SUS 

classifications were assigned in the same way as indicated in the main text (Table 1.5). 

 

Table 8.3 The full SUS-HAS-ECO classifications of solvent greenness. 

Solvent SUS HAS ECO 

Acetic acid 8 7 10 

Acetic anhydride 4 3 6 

Acetone 8 9 9 

Acetonitrile 4 7 1 

t-Amyl methyl ether 0 4 10 

Anisole 0 7 3 

Benzene 0 1 8 

Benzyl alcohol 0 9 6 

Bis(2-methoxyethyl) ether 4 1 3 

1,4-Butanediol 6 10 1 

1-Butanol 8 6 3 
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Table 8.3 The full SUS-HAS-ECO classifications of solvent greenness (continued). 

Solvent SUS HAS ECO 

2-Butanol 4 10 4 

t-Butanol 4 7 10 

Butanone 4 9 1 

n-Butyl acetate 4 10 4 

t-Butyl acetate 4 10 10 

t-Butyl ethyl ether 4 2 10 

t-Butyl methyl ether 4 4 9 

Carbon disulphide 4 1 10 

Carbon tetrachloride 2 1 6 

Chloroacetic acid 2 8 7 

Chlorobenzene 0 4 10 

Chloroform 2 1 3 

Cumene 0 6 9 

Cyclohexane 0 7 7 

Cyclohexanol 0 10 10 

Cyclohexanone 0 7 7 

Cyclopentanone 0 8 6 

Cyclopentyl methyl ether 0 2 1 

cis-Decalin 0 7 7 

Di(ethylene glycol)  4 10 10 

Di(ethylene glycol) monobutyl ether 4 8 9 

Dibutyl ether 4 1 1 

1,2-Dichlorobenzene 0 8 10 

DCM 2 3 6 

1,2-DCE 2 1 6 

Diethyl ether 4 1 3 

Diisopropyl ether 4 4 10 

1,2-Dimethoxyethane 4 1 6 

DMAc 4 1 1 

N,N-Dimethyl aniline 0 4 1 

Dimethyl carbonate 4 9 10 

Dimethyl ether 8 4 6 

DMF 4 1 7 

Dimethylpropylene urea 4 4 1 
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Table 8.3 The full SUS-HAS-ECO classifications of solvent greenness (continued). 

Solvent SUS HAS ECO 

DMSO 4 7 4 

1,4-Dioxane 4 1 1 

Diphenyl ethera 0 3 8 

Ethanol 10 10 10 

Ethoxybenzenea 0 10 6 

Ethyl acetate 8 9 6 

Ethyl formatea 4 4 1 

2-Ethyl hexanol 0 8 7 

Ethyl lactatea 8 4 6 

Ethyl propionatea 4 1 6 

Ethylene carbonatea 4 7 8 

Ethylene glycol 8 10 10 

Fluorobenzene 0 6 1 

Formamide 4 1 10 

Glycerol 10 10 10 

Heptane 0 9 6 

Hexane 0 1 6 

Isoamyl alcohol 6 10 6 

Isooctane 0 9 7 

ISOPAR G (C10-12 isoalkanes)a 0 10 1 

Isopropyl acetate 4 8 9 

Mesitylene 0 9 8 

Methanol 8 5 10 

2-Methoxyethanol 4 1 8 

Methyl acetate 4 7 9 

Methyl lactate 4 4 4 

Methylcyclohexane 0 9 8 

Methylcyclopentane 0 3 7 

N-Methylformamide 4 1 7 

Methylisobutyl ketone 4 7 1 

2-Methylpentane 0 7 6 

NMP 6 2 1 

2-MeTHF 10 1 1 

Nitromethanea 0 1 3 
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Table 8.3 The full SUS-HAS-ECO classifications of solvent greenness (continued). 

Solvent SUS HAS ECO 

n-Octyl acetate 0 6 7 

n-Pentane 0 9 8 

2-Pentanol 0 7 6 

2-Pentanone 0 7 1 

3-Pentanone 0 9 1 

Perfluorocyclic ethera 0 2 1 

Perfluorocyclohexanea 0 1 1 

Perfluorohexanea 0 1 1 

Perfluorotoluenea 0 3 1 

Petroleum spirit 0 1 6 

1,2-Propanediol 6 10 1 

1,3-Propanediol 6 10 1 

Propanenitrilea 4 3 1 

Propanoic acid 6 7 9 

1-Propanol 6 6 8 

2-Propanol 6 10 1 

Propyl acetate 4 10 1 

Propylene carbonatea 4 6 8 

Pyridine 0 4 1 

Sulpholanea 4 9 10 

Tetrahydrofuran 4 3 1 

Toluene 0 3 6 

Tri(ethylene glycol) 4 8 10 

Trichloroacetic acid 2 7 6 

Trichloroacetonitrilea 2 7 3 

1,2,4-Trichlorobenzene 0 5 10 

Triethylamine 6 1 6 

Trifluoroacetic acida 2 7 1 

2,2,2-Trifluoroethanol 2 1 6 

Trifluorotoluenea 0 1 1 

Water 10 10 10 

p-Xylene 6 7 6 

aNo LCA data and so the ECO classification is based only on the waste and environmental impact 

categories of the GSK solvent selection guide. 
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Linear solvation energy relationship calculations from Chapter 2: Coefficients for the 

construction of all LSERs are deemed to be statisically significant if their associated p-value is 

below 0.01. The following tables document the initial Kamlet-Taft solvent polarity parameter 

screening (Table 8.4), and final relationships (Table 8.5). Also included are LSER calculations that 

include the ε term (Table 8.6) and redundant relationships featuring εr or ET
N (Table 8.7). 

 

Table 8.4 The statistical significance of LSER coefficients for the kinetics of the Menschutkin 

reaction in the form ‘ln(k) = XYZ0 + aα + bβ + sπ*’. 

n Coefficient (p-value) R2 

 XYZ0 a b s  

7 (no alcohols) -13.64 

(2.5*10-5) 

0.46 

(0.60) 

0.51 

(0.55) 

4.32 

(0.014) 

0.988 

7 (no C-H acids) -13.79 

(3.1*10-5) 

-2.14 

(4.7*10-3) 

-0.04 

(0.93) 

4.94 

(1.7*10-3) 

0.995 

9 (original solvent set) -13.74 

(5.1*10-7) 

-1.65 

(4.3*10-3) 

-0.98 

(0.033) 

5.67 

(1.8*10-4) 

0.980 

 

Table 8.5 The final LSER coefficients for the kinetics of the Menschutkin reaction in the form 

‘ln(k) = XYZ0 + aα + bβ + sπ*’ using only statistically significant parameters. 

n Coefficient (p-value) R2 

 XYZ0 a b s  

7 (no alcohols) -13.75 

(1.4*10-8) 

0.00 0.00 4.85 

(7.4*10-6) 

0.986 

7 (no C-H acids) -13.81 

(9.2*10-7) 

-2.16 

(3.4*10-4) 

0.00 4.92 

(1.1*10-4) 

0.994 

9 (original solvent set) -13.69 

(6.4*10-7) 

-1.99 

(5.4*10-3) 

0.00 4.90 

(7.0*10-4) 

0.948 
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Table 8.6 The final LSER coefficients for the kinetics of the Menschutkin reaction in the form 

‘ln(k) = XYZ0 + a(α + eε) + sπ*’ using only statistically significant parameters. 

n Coefficient (p-value) R2 

 XYZ0 a e s  

9 (original solvent set) -13.79 

(1.8*10-8) 

-2.17 

(4.2*10-5) 

-1.02 

(1.0*10-3) 

4.90 

(8.0*10-6) 

0.995 

13 (all solvents) -13.79 

(3*10-13) 

-2.18 

(4.2*10-7) 

-1.03 

(2.1*10-4) 

5.12 

(1.1*10-8) 

0.991 

 

Table 8.7 The LSER coefficients for the kinetics of the Menschutkin reaction in the form ‘ln(k) = 

XYZ0 + f  
 ’ or ‘ln(k) = XYZ0 + gεr’. 

n Coefficient (p-value) R2 

 XYZ0 f g  

9 (original solvent set) -8.72 

(2.4*10-4) 

-4.39 

(0.20) 

0.00 0.220 

9 (original solvent set) -10.05 

(9.6*10-6) 

0.00 -0.014 

(0.65) 

0.031 

 

Amidation reaction monitoring from Chapter 3: Standard solutions were prepared using the 

recrystallised carboxamide product, and combining with benzylamine in toluene to re-create the 

concentration of both components at the desired conversion. 4-Phenylbutanoic acid was omitted 

from this exercise because it is not required to determine the conversion in situ during the 

reaction. At room temperature these standard solutions could be prepared up to about a 

replication of 50% conversion. It was at this point that the saturation point of the amide was 

reached. Reactions were typically carried out until 50% conversion was achieved, sometimes 

further in the more accelerated reactions, but 50% conversion was deemed to provide enough 

data variation for reliable results [Moore 1981 page 37]. As such it seemed convenient to limit 

the calibration at this point, rather than change the concentration of the standards and risk 

introducing an error. The correlation suggests quantitative proportionality between yields and 

conversions estimated from the signal intensities of 1H-NMR spectra (Figure 8.1). This considered, 

no actual calibration was applied during kinetic experiments. This gave the methodology of 

kinetic analysis by 1H-NMR spectroscopy a firmer grounding than just the assumption that 

conversion is accurately accounted for. Similarly strong calibration relationships were obtained in 

other case studies. 
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Figure 8.1 The correlation between 1H-NMR signal integrals and the proportion of amide product 

in solution based on the consumption of benzaldehyde. 

 

Linear solvation energy relationship calculations from Chapter 3: As previously, coefficients for 

the construction of all LSERs are deemed to be statistically significant if their associated p-value is 

below 0.01. The following tables document the initial parameter screening for correlations 

describing ln(k), ΔH‡, and ΔS‡ solvent dependant variables (Table 8.8), and final relationships 

(Table 8.9). 
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Table 8.8 The statistical significance of LSER coefficients for the kinetics of amidation in the 

model reaction in the form ‘XYZ = XYZ0 + aα + bβ + sπ*’. 

XYZ n Coefficient (p-value) R2 

  XYZ0 a b s  

ln(k) 7 (original solvent set) -10.45 

(1.2*10-7) 

n/a -1.16 

(2.8*10-3) 

-0.04 

(0.88) 

0.974 

ln(k) 6 (without cyclohexanone) -10.52 

(1.2*10-6) 

n/a -1.30 

(2.0*10-3) 

0.10 (0.59) 0.991 

ln(k) 8 (with bio-based solvents) -10.50 

(1.6*10-11) 

n/a -1.29 

(3.7*10-5) 

0.08 (0.47) 0.993 

ΔH‡ 6 (without cyclohexanone) 97.47 

(3.4*10-4) 

n/a -72.4 

(2.7*10-3) 

13.89 

(0.29) 

0.988 

ΔS‡ 6 (without cyclohexanone) -73.00 

(0.016) 

n/a -204.35 

(2.7*10-3) 

37.97 

(0.31) 

0.988 

 

Table 8.9 The final LSER coefficients for the kinetics of the model amidation in the form ‘XYZ = 

XYZ0 + bβ’ using only statistically significant parameters. 

XYZ n Coefficient (p-value) R2 

  XYZ0 b  

ln(k) 7 (original solvent set) -10.47 

(1.7*10-11) 

-1.19 

(3.7*10-5) 

0.974 

ln(k) 6 (without cyclohexanone) -10.47 

(2.8*10-10) 

-1.24 

(3.3*10-5) 

0.991 

ln(k) 8 (with bio-based solvents) -10.48 

(1.7*10-15) 

-1.23 

(1.8*10-7) 

0.992 

ΔH‡ 6 (without cyclohexanone) 103.71 

(7.9*10-7) 

-63.84 

(1.3*10-4) 

0.982 

ΔS‡ 6 (without cyclohexanone) -55.92 

(5.4*10-4) 

-180.84 

(1.2*10-4) 

0.982 

 

For verification purposes the enthalpy of activation and the entropy of activation can be 

demonstrated as being dependant on β by comparing the relationship between experimental 

values and those estimated with the respective LSER. The estimation of enthalpy (Figure 8.2) and 

entropy (Figure 8.3) through Equation 3.4 and Equation 3.5 respectively give satisfactory 

correlations. 
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Figure 8.2 A comparison between experimental and calculated amidation enthalpies of 

activation. 

 

 

Figure 8.3 The comparison between experimental and calculated entropies of activation in the 

model amidation reaction. 
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Metric calculations from Chapter 3:  The equations required for calculating atom economy, RME, 

and PMI are given here [Curzons 2001]: 

Equation 8.1                
              

                     
 

Equation 8.2       
               

                    
 

Equation 8.3       
                             

               
 

The synthesis mass metrics of 2-N,N-diisopropyl-5-fluorobenzylaminoboronic acid were based on 

the published experimental procedure [Arnold 2008]. The quantities of solvent and silica used in 

column chromatography were not available and so these were estimated, employing a 20:1 mass 

ratio between silica and substrate and supposing that 20 litres of solvent are required per 

kilogram of silica. Strangely, in their publication Arnold et al. give the preparation of the 

fluorinated catalyst but record the amide yields assisted with its non-fluorinated analogue 

[Arnold 2008]. It is assumed that the yield of 68% would be the same if 2-N,N-diisopropyl-5-

fluorobenzylaminoboronic acid was applied as the catalyst in refluxing fluorobenzene for 24 

hours instead of 2-N,N-diisopropylbenzylaminoboronic acid. All mass data required to calculate 

the metrics used in this work are provided here (Table 8.10). The recrystallisation solvent for the 

catalyst was ignored, while the other chemicals are correctly scaled to provide enough catalyst 

for a 10 mol% loading in the amidation reaction to give N-benzyl-4-phenylbutanamide. 

It should be noted that the metrics in this work are not a comprehensive analysis, which 

in order to be quantitatively comparable to other reaction protocols would require much more 

information than was made available. The additional contribution of energy usage should be 

considered, and combined with mass utilisation in a comparable form. Carbon dioxide 

equivalents are one way of achieving this, as used for carbon footprinting [Peters 2010]. Thinking 

in terms of energy equivalents would provide access to the wider scope of LCA [ISO 2006a, ISO 

2006b]. Subjects not discussed in this work, including water use, land use, pollution and generally 

the long term sustainability of materials and processes can then be understood with more clarity. 
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Table 8.10 Mass utilisation in the extended synthesis of N-benzyl-4-phenylbutanamide and the 

catalyst 2-N,N-diisopropyl-5-fluorobenzylaminoboronic acid. 

 Name Mass /g Purpose 

Catalyst preparation  

 3-Fluorobenzoyl chloride 3.94 Reagent 

 Diisopropylamine 6.25 Reagent 

 TMEDA 3.13 Reagent 

 n-BuLi (1.6 M solution in hexane) 11.00 Reagent 

 Trimethyl borate 2.80 Reagent 

 Pinacol 3.20 Reagent 

 Sodium tetraborahydrate 5.60 Reagent 

 TMSCl 32.16 Reagent 

 Diethyl ether 548.2 Work-up 

 THF 106.7 Work-up 

 Aqueous reagents 469.2 Work-up 

 Silica 103.2 Chromatography 

 Hexane 901.3 Chromatography 

 Ethyl acetate 617.1 Chromatography 

Amidation 

 4-Phenylbutanoic acid 17.58 Reagent 

 Benzylamine 11.47 Reagent 

 Fluorobenzene 1092 Work-up 

 DCM 653.1 Work-up 

 Aqueous reagents 2669 Work-up 

Product 

 N-Benzyl-4-phenylbutanamide 18.44 (68% yield) Product 

 

Linear solvation energy relationship calculations from Chapter 4: The following tables document 

the initial Kamlet-Taft solvent polarity parameter screening (Table 8.11), and final relationships 

that also include the square of the Hildebrand solubility parameter (Table 8.12).  
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Table 8.11 The statistical significance of LSER coefficients for the kinetics of an uncatalysed 

esterification in the form ‘ln(k) = XYZ0 + aα + bβ + sπ*’. 

n Coefficient (p-value) R2 

 XYZ0 a b s  

8 (initial solvent set) -9.06 

(1.3*10-6) 

-1.91 

(0.048) 

-4.53 

(6.8*10-4) 

-0.31 

(0.54) 

0.983 

7 (excluding acetonitrile) -9.09 

(8.4*10-6) 

-0.22 

(0.83) 

-4.29 

(1.3*10-3) 

-0.42 

(0.31) 

0.992 

 

Table 8.12 Extended LSER relationships for the kinetics of the uncatalysed model esterification in 

the form ‘ln(k) = XYZ0 + bβ’ or ‘ln(k) = XYZ0 + bβ + h  
 ’. 

n Coefficient (p-value) R2 

 XYZ0 b 0.001*h  

8 (initial solvent set) -9.31 

(5.9*10-9) 

-4.74 

(1.2*10-4) 

n/a 0.929 

 

8 (initial solvent set) -8.06 

(3.9*10-6) 

-3.48 

(1.3*10-4) 

-3.91 

(4.0*10-3) 

0.988 

7 (excluding acetonitrile) -9.25 

(1.3*10-9) 

-4.57 

(6.4*10-6) 

n/a 0.987 

7 (excluding acetonitrile) -8.59 

(3.9*10-6) 

-3.95 

(1.3*10-4) 

-2.16 

(0.048) 

0.996 

11 (all solvents) -9.20 

(5.5*10-13) 

-4.98 

(1.9*10-6) 

n/a 0.928 

 

11 (all solvents) -8.13 

(4.3*10-11) 

-3.45 

(2.7*10-6) 

-3.79 

(1.4*10-4) 

0.989 

 

Linear solvation energy relationship calculations from Chapter 5: As previously, coefficients for 

the construction of all LSERs are deemed to be statistically significant if their associated p-value is 

below 0.01. The following tables document the initial parameter screening for correlations 

describing ln(k) of Fischer esterification to give benzyl acetate (Table 8.13), and then final 

relationships (Table 8.14). 
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Table 8.13 The statistical significance of LSER coefficients for the kinetics of Fischer esterification 

to give benzyl acetate expressed in the equation ‘ln(k) = XYZ0 + aα + bβ + sπ*’. 

XYZ n Coefficient (p-value) R2 

  XYZ0 a b s  

ln(k) 7 (p-TSA) -9.10 

(3.5*10-3) 

-0.82 

(0.74) 

-6.73 

(9.6*10-3) 

1.23 

(0.66) 

0.959 

ln(k) 7 (p-CSA) -9.26 

(4.6*10-3) 

-1.94 

(0.50) 

-8.21 

(7.6*10-3) 

2.45 

(0.45) 

0.962 

Δln(k) 7 (p-CSA minus p-TSA) -0.16 

(0.37) 

-1.12 

(0.040) 

-1.48 

(2.9*10-3) 

2.45 

(0.044) 

0.972 

 

Table 8.14 The final LSER coefficients for the kinetics of Fischer esterification in the form ‘ln(k) = 

XYZ0 + bβ’ using only statistically significant parameters. 

XYZ n Coefficient (p-value) R2 

  XYZ0 b  

ln(k) 7 (p-TSA) -8.58 

(3.1*10-7) 

-6.33 

(1.4*10-4) 

0.956 

ln(k) 7 (p-CSA) -8.27 

(9.5*10-7) 

-7.38 

(1.7*10-4) 

0.953 

Δln(k) 7 (p-CSA minus p-TSA) 0.31 

(9.2*10-3) 

-1.05 

(2.8*10-3) 

0.856 

Δln(k) 6 (p-CSA minus p-TSA, 

excluding butanone) 

0.33 

(1.6*10-3) 

-1.19 

(5.1*10-4) 

0.963 

 

Conversion of limonene into p-menthane and p-cymene: The 13C-NMR spectroscopic analysis of 

the reaction mixture resulting from the action of Pd/C and montmorillonite clay on limonene at 

413 K was compared to p-cymene (Figure 8.4). The 13C-NMR spectrum in chloroform indicates a 

lack of olefins but extra alkane signals associated with p-menthane. 
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Figure 8.4 Overlap of a pure p-cymene standard (obtained from Sigma-Aldrich, red) and an 

experimental 13C-NMR spectrum of limonene converted to p-cymene at 413 K (black). 

 

Determination of tautomerisation equilibrium constants: Methyl acetoacetate (0.81 mL) was 

dissolved in the chosen solvent (4 mL). The neat solution was analysed by 1H-NMR spectroscopy 

at 400 MHz in the absence of a deuterated solvent. The relative amounts of the enol and diketo 

tautomers was determined from the signal intensity ratio of the peaks belonging to the α-olefinic 

enol proton and the α-methylene diketo protons (Figure 8.5). In instances where solvent signals 

 

Figure 8.5 Identification of key proton signals in the 1H-NMR spectrum of methyl acetoacetate in 

toluene. The complete height of the solvent signals is not shown to enhance resolution of the 

substrate signals. 
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overlapped with these signals the ratio of methyl group signals could be used. Experiments were 

conducted at 298 K and repeated to verify accuracy. 

Further reaction data from Chapter 6: The full array of data collected from the Biginelli is 

presented below, including all average yields, tautomerisation equilibrium coefficients and 

correlations with solvent parameters (Table 8.15, Table 8.16, Table 8.17, and Table 8.18). Valid 

statistical significance was declared when p-values of coefficients were below 0.01, otherwise 

these coefficients were assumed to be zero [Wells 2008].  

 

Table 8.15 Full yields and relevant solvent parameters for the synthesis of methyl-1,2,3,4-

tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate, including the tautomerisation 

equilibrium constants of methyl acetoacetate. 

Solvent π* ln(KT) Yield ln(P/R) 

   HCl EPZ-10 HCl EPZ-10 

Acetic acid 0.60  -2.92 35% 53% -0.60 0.10 

t-Butanol 0.58 -2.10 55% 24% 0.21 -1.13 

Cyclohexane 0.00 -0.09 68% n/a 0.73 n/a 

p-Cymene 0.39 -1.33 66% 37% 0.66 -0.54 

1,2-DCE 0.76  -2.57 44% 21% -0.23 -1.30 

DMF 0.88 -2.91 37% 18% -0.53 -1.49 

Ethanol 0.62 -1.91 56% 30% 0.25 -0.83 

Ethyl acetate 0.54 -2.00 51% 31% 0.03 -0.80 

Ethylene glycol 1.01  -3.21 38% 25% -0.51 -1.08 

Lactic acid 1.09  -3.48 24% 41% -1.16 -0.37 

Propanoic acid 0.51  -2.35 42% 54% -0.35 0.16 

Toluene 0.50 -1.56 59% 33% 0.35 -0.70 
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Table 8.16 Full yields and relevant solvent parameters for the synthesis of 4,6,7,8-tetrahydro-7,7-

dimethyl-4-phenyl-2,5(1H,3H)-quinazolinedione, including the tautomerisation equilibrium 

constants of 5,5-dimethyl-1,3-cyclohexanedione. 

Solvent ln(KT) Yield ln(P/R) 

    

Acetic acid 1.55a 27% -1.02 

t-Butanol 7.43a 51% 0.02 

1,2-DCE -3.74a 3% -3.46 

DMF 4.44 34% -0.65 

Ethanol 5.13 29% -0.91 

Ethyl acetate 1.93a 18% -1.53 

Ethylene glycol 2.96a 33% -0.69 

Toluene -2.53 8% -2.48 

Water 2.94 54% 0.16 

aPredicted from Equation 6.3 

 

Table 8.17 Solvent effects on the diketo-enol tautomerisation of 1,3-dicarbonyls and reaction 

productivity in the form of the LSER: XYZ = XYZ0 + aα + bβ + sπ*. 

XYZ n Coefficient (p-value) R2 

  XYZ0 a b s  

ln(KT) of methyl 

acetoacetate 

9 -0.13 

(2.41*10-1) 

0.00 0.00 -3.13 

(2.09*10-7) 

0.982 

ln(KT) of 

5,5-dimethyl-1,3-

cyclohexanedione 

9 -3.74 

(8.19*10-5) 

0.00 11.77 

(3.05*10-6) 

0.00 0.962 

ln(P/R) w/ HCla 7 1.17 

(3.61*10-3) 

0.00 0.00 -1.76 

(2.53*10-3) 

0.862 

ln(P/R) w/ EPZ-10a 6 0.22 

(2.96*10-1) 

0.00 0.00 -1.97 

(1.47*10-3) 

0.889 

ln(P/R) w/ HClb 8 -3.02 

(2.85*10-5) 

0.00 3.33 

(3.30*10-4) 

0.00 0.899 

aProduct is methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate. 

bProduct is 4,6,7,8-tetrahydro-7,7-dimethyl-4-phenyl-2,5(1H,3H)-quinazolinedione. 
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Table 8.18 Correlations between reaction productivity and tautomerisation in the following form: 

ln(P/R) = XYZ0 + t·ln(KT). 

XYZ n Coefficient (p-value) R2 

  XYZ0 t  

ln(P/R) w/ HCla 11 1.59 

(7.30*10-6) 

0.74 

(2.34*10-6) 

0.925 

ln(P/R) w/ EPZ-10a 7 0.29 

(9.91*10-2) 

0.62 

(2.88*10-4) 

0.941 

ln(P/R) w/ HClb 8 -1.95 

(1.68*10-5) 

0.28 

(3.03*10-4) 

0.902 

aProduct is methyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylate. 

bProduct is 4,6,7,8-tetrahydro-7,7-dimethyl-4-phenyl-2,5(1H,3H)-quinazolinedione. 
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Abbreviations and symbols 

 

 

 

α Kamlet-Taft scale of solvent hydrogen bond donating ability  

β Kamlet-Taft scale of solvent hydrogen bond accepting ability 

ΔΔG‡ Change in Gibbs free energy of activation 

ΔG‡ Gibbs free energy of activation 

ΔG° Gibbs free energy of formation 

ΔH‡ Enthalpy of activation 

ΔHvap Enthalpy of vaporisation 

Δln(k) Relative change in the natural logarithm of the reaction rate constant 

ΔS‡ Entropy of activation 

δC Chemical shift of carbon nuclei signals in nuclear magnetic resonance spectra 

δH Chemical shift of hydrogen nuclei signals in nuclear magnetic resonance 

spectra 

δP Hansen solubility parameter of dipolarity 

δD Hansen solubility parameter of dispersion forces 

δH Hansen solubility parameter of hydrogen bonding 

δT Hildebrand solubility parameter 

δ Kamlet-Taft scale polarisability correction term 

ε Hydrogen bond donating ability correction term 

εr Relative permittivity 

λ Wavelength 

μW Microwave energy irradiation 

ν Frequency 

   Wavenumber 
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π* Kamlet-Taft scale of solvent dipolarity/polarisability 

π* Pi anti-bonding orbital 

ρ Reaction constant 

σ Substituent constant 

A Arrhenius collision pre-factor 

AAC2 Bimolecular acyl cleavage reaction mechanism 

AAL2 Bimolecular alkyl cleavage reaction mechanism 

[A]0 Initial concentration of the reactant designated as A 

AAC1 Unimolecular acyl cleavage reaction mechanism 

AAL1 Unimolecular alkyl cleavage reaction mechanism 

a Coefficient of the Kamlet-Taft scale of solvent hydrogen bond donating ability 

in linear solvation energy relationships 

ACSGCI American chemical society green chemistry institute 

API Active pharmaceutical ingredient 

Aq. Aqueous 

[B]0 Initial concentration of the reactant designated as B 

b Coefficient of the Kamlet-Taft scale of solvent hydrogen bond accepting ability 

in linear solvation energy relationships 

BHT Butylated hydroxytoluene 

bs Broad singlet 

BSA Benzenesulphonic acid 

Bu Butyl 

Ct Conversion at time t 

c Light velocity 

CAPEC Computer assisted process-product engineering centre 

Cat. Catalyst 

CDI N,N’-Carbonyldiimidazole 

cm Centimetre 
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13C-NMR Carbon-13 nuclear magnetic resonance 

COMU (1-Cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-

carbenium hexafluorophosphate 

CSA Cymenesulphonic acid 

CyH Cyclohexane 

Cym p-Cymenesulphonyl 

D Debye 

d Coefficient of the Kamlet-Taft polarisability correction term in linear solvation 

energy relationships 

d Doublet 

DCC Dicyclohexylcarbodiimide 

DCE Dichloroethane 

DCM Dichloromethane 

DGME Diethylene glycol monobutyl ether 

dm Decimetre 

DMAc N,N-Dimethyl acetamide 

DMAP N,N-Dimethyl-4-aminopyridine 

DMF N,N-Dimethyl formamide 

DMPU Dimethyl-1,3-propylene urea 

DMSO Dimethyl sulphoxide 

DTU Technical University of Denmark 

Ea Activation energy 

   Dimroth-Reichardt’s betaine dye electonic transition energy 

  
  Reichardt’s normalised scale of solvatochromism 

e Coefficient of the Kamlet-Taft hydrogen bond donating ability correction term 

in linear solvation energy relationships 

EC European commission 

EC50 Half maximal effective concentration 
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ECO Environmental index 

E-Factor Environmental-factor metric 

EHS Environmental, health and safety 

EI Electron impact ionisation 

E-Impact Environmental impact 

ESI Electrospray ionisation 

Et Ethyl 

ETH Eidgenössische Technische Hochschule Zürich (Zurich Technical Institute) 

f Coefficient of Reichardt’s normalised scale of solvatochromism in linear 

solvation energy relationships  

g Coefficient of relative permittivity in linear solvation energy relationships 

g Gramme 

GC Gas chromatography 

GSK GlaxoSmithKline 

H0 Hammett acidity function 

H Number of hydrogens responsible for a NMR signal 

h Planck constant 

HAS Health and safety index 

HATU N-[(Dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-ylmethylene]-N-

methylmethanaminium hexafluorophosphate N-oxide 

HMBC Heteronuclear multiple-bond correlation 

HMPA Hexamethylphosphoramide 

1H-NMR Hydrogen-1 nuclear magnetic resonance 

HPLC High performance liquid chromatography 

hr Hour 

HSQC Heteronuclear single quantum correlation 

Hz Hertz 

I NMR signal integral 
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J Indirect dipole-dipole (J-coupling) constant 

J Joule 

K Equilibrium constant 

Ka Equilibrium constant of acid dissociation in water 

K0 Equilibrium constant (reference) 

K Kelvin 

KT Tautomerisation equilibrium constant 

kB Boltzmann constant 

k Rate constant 

Kg Kilogram 

kJ Kilojoule 

L Litre 

LC50 Lethal concentration affecting 50% of the sample population 

LCA Life cycle assessment 

LD50 Lethal dose affecting 50% of the sample population 

LFER Linear free energy relationship 

ln Natural logarithm function 

log Logarithm (base ten) function 

LSER Linear solvation energy relationship 

M Molar 

m Multiplet 

Me Methyl 

MeOH Methanol 

2-MeTHF 2-Methyltetrahydrofuran 

mg Milligram 

MHz Megahertz 

min Minute 

mL Millilitre 
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mmol Millimole 

mol Mole 

MPa Megapascals 

MS Mass spectrometry 

MSDS Material safety datasheet 

NA Avogadro constant 

N No 

n Normal- 

n/a Not applicable 

NGO Non-governmental organisation 

nm Nanometre 

NMP N-Methyl pyrrolidinone 

NMR Nuclear magnetic resonance 

NOx  Nitrogen oxides 

Nuc. Nucleophile 

OTf Triflate anion, CF3SO3- 

OTs Tosylate anion, CH3C6H4SO3- 

[P]t Concentration of the product at time t 

P Lipophilicity 

P Product 

p Para- 

PEG Poly(ethylene glycol) 

PET Poly(ethylene terephthalate) 

Ph Phenyl 

pH Negative logarithm of the activity (concentration) of oxonium ions 

PhCl Chlorobenzene 

pKa Negative logarithm of the equilibrium constant of acid dissociation in water 
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      Negative logarithm of the equilibrium constant of protonated base 

dissociation in water 

PLA Poly(lactic acid) 

PMI Process mass intensity 

ppm Parts per million 

q Quadruplet 

R Alkyl group 

R2 Coefficient of determination 

R Gas constant 

R Reactant 

Ri Reaction index i 

REACH Registration, evaluation, authorisation and restriction of chemicals 

Ref. Reference 

RME Reaction mass efficiency 

RMM Relative molecular mass 

RSi Reaction-solvent index i 

SN1 First order nucleophilic substitution reaction mechanism 

SN2 Second order nucleophilic substitution reaction mechanism 

s Coefficient of the Kamlet-Taft scale of solvent dipolarity/polarisability in linear 

solvation energy relationships 

s Second 

s Singlet 

Si Solvent score i 

SNAr Second order aromatic nucleophilic substitution reaction mechanism 

SOx Sulphur oxides 

SUS Renewability index 

Tb Boiling point 

Td Decomposition temperature 
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Tm Melting point 

Ts Mid-point between solvent melting point and boiling point 

Tr Reaction temperature 

T Temperature 

Tx Temperature flexibility in Rule C of the solvent selection algorithm 

t Coefficient of the natural logarithm of the tautomerisation equilibrium 

constant in linear solvation energy relationships 

t Tertiary- 

t Triplet 

THF Tetrahydrofuran 

TMEDA Tetramethylethylenediamine 

TMS Tetramethylsilane 

TMSCl Trimethylsilyl chloride 

TSA Toluenesulphonic acid 

UV Ultra violet 

UV-vis. Ultra violet-visible light 

Vm Molar volume 

w/w Weight ratio 

wt Weight 

X Electron rich atom or chemical moiety 

XYZ Linear solvation energy relationship dependant variable 

XYZ0 Linear solvation energy relationship proportionality constant 

Y Yes 

Y  Electron donor 
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