
Biologically Inspired Agents: A

Framework for Formal Modelling

and Simulation of Agents with

Elementary Spatial Attributes

Isidora Petreska

South East European Research Centre at Thessaloniki

Department of Computer Science

The University of Sheffield

A thesis submitted for the degree of

Master of Philosophy

December 2013

To all the people that supported me

and made this happen:

to my mother, Branka,

to my father, Petre,

to my partner, Kostas,

to my supervisors, Petros and Marian,

to my examiners, Dimitris and Ilias.

Abstract

Applications of biological or biologically inspired multi-agent systems

often assume a certain level of reliability and robustness, which is not

always easy to be achieved. Formal modelling and verification of these

systems may present many interesting challenges. For instance, formal

verification may be cumbersome or even impossible to be applied on

models with increased complexity. On the other hand, the behaviour

of bio multi-agent systems consists of communities evolving in space

and time (such as social insects, tissues, colonies of bacteria, etc.)

which are characterised with a highly dynamic structure. Formal

modelling of such systems cannot be carried out in a neat and effective

way.

This work presents many interesting problems in the area of mod-

elling and verification of bio multi-agent systems. Targeting a rather

broad scope, the path for devising a global solution to tackle all of

the problems, can be considered as secularly optimistic. Instead, we

discuss a number of improvements in the development process, includ-

ing enhancements on several modelling formalisms, alternative ways

to formal verification, as well as a research framework which changes

the standard modelling and verification approach of bio multi-agent

systems.

Contents

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Aims and objectives . 3

1.2 Structure . 5

2 Modelling bio-inspired systems as spatial MAS 7

2.1 Bio-MAS and their spatial behaviour 7

2.2 Modelling bio-MAS . 10

2.3 Formal modelling approaches for MAS 12

2.4 Finite state machine modelling approaches 15

2.4.1 X-machines and Communicating X-machines 15

2.4.2 Spatial agent modelling with XM 16

2.5 Membrane computing modelling approaches 21

2.5.1 Population P systems . 23

2.5.2 Spatial agent modelling with PPS 26

2.6 Hybrid modelling approaches . 29

2.7 Comparison of modelling approaches 30

2.8 Summary . 32

3 Description of languages for modelling and corresponding tools 33

3.1 X-System . 33

iii

CONTENTS

3.2 JSXM . 35

3.3 PPS-System . 36

3.4 FLAME . 38

3.5 Summary . 40

4 Simulation and validation of bio-systems 42

4.1 Introduction to verification, simulation and validation 42

4.2 Verification of XM models . 44

4.3 Verification of P system models 45

4.4 Visual simulation: case study and discussion 46

4.5 Summary . 52

5 Tools for Simulation 53

5.1 Simulation platforms . 53

5.2 Comparison of simulation platforms 54

5.2.1 Modelling . 56

5.2.2 Implementation . 58

5.2.3 Validation, Verification and Testing 59

5.2.4 Visualisation . 59

5.2.5 Supported Size of MAS and HPC 60

5.3 Conclusions on the comparison 60

5.4 Summary . 62

6 Framework for modelling and verification of spatial MAS 64

6.1 Overview of the modelling and verification framework 64

6.2 Instantiation of the modelling and verification framework 67

6.3 Summary . 70

7 Formal modelling of spatial MAS 71

7.1 Spatial XM . 72

7.1.1 Formal definition of spatial XM 73

7.1.2 Discussion of spXM . 75

7.1.3 Modelling with spXMDL 76

7.2 Spatial PPS . 77

iv

CONTENTS

7.2.1 Formal definition of spatial PPS 78

7.2.2 Discussion of spPPS . 81

7.2.3 Modelling with spPPSDL 82

7.3 Conclusion . 83

7.4 Summary . 85

8 Visualisation and simulation of spatial MAS 86

8.1 Simulation of spXMs . 86

8.1.1 SPXM2VISUAL CONVERSION TOOL 86

8.2 Simulation of spPPS . 90

8.3 Summary . 94

9 Discussion and evaluation 95

9.1 Summary . 95

9.2 Contribution . 96

9.3 Evaluation and future work . 99

Appendix A: List of Author’s Publications 101

Appendix B: The Aggressor-Defender case study in NetLogo. 104

Appendix C: Compiled code with the spXM2Visual tool for the for-

aging ant case study. 107

Appendix D: Class diagram of the translator component of the
spXM2Visual tool. 113

References 118

v

List of Figures

2.1 Case study 2.1. The foraging ant. 10

2.2 Framework for developing bio-MAS. 11

2.3 An abstract example of a X-machine. 16

2.4 An abstract example of a Communicating X-machine. 16

2.5 Examples of modelling the foraging ant case study: a) “very” ab-

stract representation b) more detailed, but complex representation

c) the “best” represented solution 17

2.6 A representation of a P system which outputs square numbers. . . 22

2.7 An abstract example of a Population P System. 24

2.8 Evolution rules in population P system with active cells. 26

2.9 An abstract example of a OPERASXC consisting of two agents. . 30

3.1 X-agent diagram. 38

3.2 Block diagram of FLAME framework. 39

4.1 Verification and validation of an X-machine. 44

4.2 Rules for playing the aggressor-defender game. a) The defend be-

haviour. b) The flee behaviour. 47

4.3 X-Machine model of the aggressor-defender game. 48

4.4 Visual output of the aggressor-defender game. a) All agents defend.

b) All agents flee. 49

4.5 Visual output of the aggressor-defender game: three different out-

puts when some agents defend and some flee. 50

vi

LIST OF FIGURES

6.1 A framework for validating emergent properties in spatial biology-

inspired MAS. 66

6.2 A XM instance of the framework for validating emergent properties. 67

6.3 A P systems instance of the framework for validating emergent

properties. 69

7.1 An abstract example of a spXM. 74

7.2 Verification and validation of an spX-machine. 76

7.3 Evolution rules in spPPS (a ∈ V, b ∈ V). 83

8.1 spXM mapping to NetLogo. 87

8.2 System architecture of spXM-Visual. 87

8.3 NetLogo simulation of the Ant Lines example. 93

D.1 The class diagram of the translator component. 113

D.2 The translator component of the spXM2Visual tool, part 1. 114

D.3 The translator component of the spXM2Visual tool, part 2. 115

D.4 The translator component of the spXM2Visual tool, part 3. 116

D.5 The translator component of the spXM2Visual tool, part 4. 117

vii

List of Tables

2.1 Foraging ant case study, solution a) 18

2.2 Foraging ant case study, solution b) 20

2.3 Foraging ant case study, solution c) 21

2.4 Modelling the ant lines case study with PPS 28

2.5 Advantages and disadvantages in modelling with XM, CXM, PPS

and OPERAS . 31

3.1 Advantages and disadvantages of the description of languages for

modelling and corresponding tools 41

4.1 Experiments on the aggressor-defender case study 51

5.1 Aggressor-defender game: The function defend in NetLogo, Repast

and Flame . 55

5.2 Aggressor-defender game: Definition of the MAS in NetLogo and

Repast . 56

5.3 Aggressor-defender game: Definition of the MAS in Flame 57

5.4 Aggressor-defender game: Defining functions in Flame 57

5.5 Comparison between NetLogo, Repast and Flame: Modelling and

Implementation . 61

5.6 Comparison between NetLogo, Repast and Flame: Visualisation,

Correctness and HPC . 63

7.1 Modelling the foraging ant case study with spXM. 78

7.2 Modelling the ant lines case study with spPPS 84

viii

LIST OF TABLES

8.1 Examples of the NetLogo library 88

8.2 Rules for transformation . 88

8.3 Beginning of the XMachine class of the object model. 90

8.4 The constructXM method of the Constructor class in reader. . . . 91

9.1 Mapping of the objectives with the corresponding chapters 98

ix

Chapter 1

Introduction

An agent-based model (ABM) is often used to describe complex phenomena as

dynamic systems of interacting agents. The ABM agents are often familiar to

actions such as adaptation and reproduction, introducing new computational

paradigms for modelling these behaviours, which are principally found in biolog-

ically inspired systems. Over the last years, formal modelling is considered as

one of the most essential stages in software engineering [22] and therefore in the

development of multi-agent systems (MAS) as well. It is often followed by formal

verification, a process which employs formal methods to confirm that a model

satisfies certain properties [32, 45, 47]. There are varieties of formal methods in

agent-oriented engineering (Z [85], VDM [41], FSM [31], Petri Nets [79], and oth-

ers), and a number of approaches towards modelling and verification biological

phenomena. However, as the complexity of a MAS increases, considerable diffi-

culties get introduced in the process of formal modelling and verification. Such

large-scale communicating and/or emergent systems are hard to be formally mod-

elled due to lack of expressiveness of the current formal notations for biological

and biology-inspired MAS.

Definition 1.1. Biological MAS are systems that mimic the be-

haviour of their biological counterparts. Examples of such systems

include insect colonies of ants or bees, flocks of birds, herd movement,

cell tissues etc. On the other hand, biology-inspired MAS are systems

inspired from biological processes. For instance, a flock of model heli-

1

1. Introduction

copters is a biology-inspired MAS inspired by the flocking behaviour

of birds. Both types of systems can be referred to as bio-MAS.

Defined as complex systems, bio-MAS should be characterised with reliability,

quality and robustness. Therefore, besides modelling, verification and testing

could be considered the next important steps in the developing cycle. However,

it is fairly straightforward (although not easy) to apply the known verification

and validation techniques to biological systems composed from one agent, but it

is extremely hard to transfer such techniques to MAS. This is particularly the

case when the MAS has a dynamic behaviour, i.e. the number of agents and

their communication network constantly changes throughout their lifetime. One

reason might be the observation of the amount of errors, which increase with

the amount of interacting components. Due to the computational complexity,

formal verification of a complete formal model, as well as complete testing, are

very hard to be achieved. Moreover, it may be also impractical to apply known

formal techniques due to the vast amount of time (combinatorial explosion of

state space) and effort spent.

Bio-MAS represent a network of interactions and information flow. Complex

systems experience dynamics in a non-linear group level [10, 53, 16]. Thus, even

the small changes within the individual agent rules might cause a huge difference

in behaviour of the system as a whole, i.e. emergence. Some research refers to this

relationship (between the individual agents and the system as a whole) at amicro-

level and macro-level and they focus towards investigating the links between

them [2]. In agents that operate in a 2 or 3-dimensional space, emergence is

characterised by a pattern appearing in the agents configuration at some instance

during the operation of the system. Common examples are colonies of social

insects, like ants, birds, fish etc. The type of emergence observed is related to

the agent’s positioning in space, for example formation of a line, flocks, schools,

herds etc.

Verification techniques, such as model checking are applied to check whether a

model satisfies certain properties, whereas validation is applied to confirm that a

model satisfies the user requirements. Verification and validation of the emergent

behaviour of MAS is an extremely complex task. It is not only due to the fact

that the verification process leads to combinatorial explosion, but also the fact

2

1. Introduction

that emergent properties should be identified first before there is an attempt to

be verified. The latter is not always straightforward. It is therefore desirable to

combine several formal with informal techniques that would be able to contribute

towards the verification of MAS. Moreover, someone could apply formal verifica-

tion techniques (model checking) under the assumption that a desired emergent

property is known, which might not be always the case. Finally, modelling these

agents would require modelling of their position; and verification would require

the exploration of the state space from the combination of all agent positions

evolved through time.

These concepts and properties of bio-MAS may indicate another perspective

to look into these systems, i.e. as spatial systems. There might be different

approaches for modelling and verification spatial phenomena of bio-systems.

1.1 Aims and objectives

Some of the common problems found in complex bio-systems with non-linear

dynamic properties, were already introduced. To highlight:

� As the complexity of a MAS increases (an increase in the number of agents

and their communication network), considerable difficulties are introduced

in the process of formal modelling and verification.

� Large-scale communicating and/or emergent systems are hard to be for-

mally modelled due to the lack of expressiveness of the current formal no-

tations.

� It is very hard to transfer known verification and validation techniques to

MAS.

� Due to the computational complexity, formal verification of a complete

formal model, as well as complete testing, are very hard to be achieved.

� It may be also impractical to apply known formal techniques due to the vast

amount of time (combinatorial explosion of state space) and effort spent.

3

1. Introduction

� Modelling and verification of bio-agents that operate in a 2 or 3-dimensional

space, leads to combinatorial explosion.

� Emergent properties should be identified, before there is an attempt to be

verified and that is not always straightforward.

The aim behind this work is: Definition of an abstract model supporting

elementary geometry and development of a methodology to build agent based

systems using this concept which will allow simulation and visualization of sys-

tems.

This can be further linked with the following research questions :

� Do bio-MAS require explicit spatial features in respect to modelling and

simulation?

� How can the existing modelling and simulation techniques for bio-MAS be

improved such as to facilitate more reliable and robust systems?

The objectives include:

O1: Investigate on spatial systems, modelling formalisms for spatial bio-MAS

outlining properties and disadvantages of existing modelling formalisms, as

well as verification and simulation strategies and how can they be enhanced

to better support complex spatial bio-MAS.

O2: Identifying illustrative case studies which are scalable (experiments with dif-

ferent numbers of agents), simple to be modelled and have spatial charac-

teristics.

O3: Linkage with simulation platforms in order to observe emergent behaviour.

O4: Proving the appropriateness of the method through simulations and visual-

isations.

O5: Devising a framework that will combine all of the steps of developing spatial

bio-MAS into a process to improve the standard modelling and verification

approach for bio-MAS.

4

1. Introduction

O6: Extending the definition of approaches for modelling bio-MAS with geomet-

rical elements into a coherent model.

O7: Extending existing tools with features coming out of the new definitions.

1.2 Structure

Chapter 2 talks about modelling bio-inspired systems as spatial

MAS. The discussion starts with bio-MAS and their spatial be-

haviour (Section 2.1), followed by modelling bio-inspired systems

(Section 2.2). A number of approaches towards modelling MAS

related biological phenomena are presented and discussed in de-

tails, such as: Finite state machine modelling approaches are

presented in Section 2.4, membrane computing modelling ap-

proaches in Section 2.5, and a hybrid modelling approach in

Section 2.6. This chapter concludes with comparison of these

modelling approaches Section 2.7 and a short summary.

Chapter 3 is a rather small chapter for the different tools for mod-

elling bio-inspired systems as spatial MAS. It is connected to

the previous topic on different modelling approaches because the

tools that are described in this chapter belong to the modelling

formalisms discussed. These tools will be also used in the follow-

ing chapters for demonstrating models of different case studies.

Chapter 4 introduces formal verification, simulation and validation

concepts for bio-systems. Sections 4.2 and 4.3 talk about verifi-

cation and simulation of the introduced modelling approaches.

Chapter 5 provides introduction of several visual simulation plat-

forms such as: NetLogo, Repast and the Flame visualiser (Sec-

tion 5.1). Comparison of these simulation platforms based on

the several criteria (modelling, implementation, validation, ver-

ification, etc.) is presented in Section 5.2. This chapter ends

with conclusions on the comparison (Section 5.3) and a short

summary.

5

1. Introduction

Chapter 6 introduces a framework for modelling and verification of

spatial MAS. Section 6.1 presents some requirements towards

development of such a framework and underlines its structure.

Section 6.2 talks about two different instantiations of this frame-

work. This chapter can be considered as a rather substantial one

because it lays foundations for the work of the following chapters.

Chapter 7 focuses on formal modelling of spatial MAS. Sections 7.1

and 7.2 provide definitions for extending two of the already in-

troduced the modelling formalisms, in order to extend them to

support spatial properties. The new formalisms are discussed

and supported with examples.

Chapter 8 talks about visualisation and simulation of spatial MAS.

Sections 8.1 and 8.2 can be considered as continuation of the

previous chapter because they discuss visualisation and simu-

lation strategies on the new modelling formalisms introduced.

This chapter also presents a tool developed for translation of a

system modelled with a finite state machine modelling approach

into executable code of a visual simulation platform.

Chapter 9 presents discussion and evaluation of this thesis, under-

lying the contribution, evaluation and future work.

Appendix A presents a list of the author’s publications sorted in

both in chronological order and the order of importance.

Appendix B shows the code of the Aggressor-Defender case study

in a visual simulation platform, namely NetLogo.

Appendix C shows the compiled code for the Foraging Ant case

study, with the tool presented in Chapter 8.

Appendix D shows the class diagram of the translator component

from the tool presented in Chapter 8.

6

Chapter 2

Modelling bio-inspired systems as

spatial MAS

Originating with the Von Neumann machine, an agent-based model (ABM) is

used to describe complex phenomena as dynamical systems of interacting agents.

The ABM agents are often familiar to actions such as adaptation and repro-

duction. Being characterized with autonomy, local views and decentralisation,

the ABM agents occur to manifest complex behaviour and self-organization even

when implementing simple individual strategies.

2.1 Bio-MAS and their spatial behaviour

The most widely accepted definition of an agent is the one provided byWooldridge

and Jennings [97]:

Definition 2.1. “The term agent is used to denote a hardware or

(more usually) software-based computer system that enjoys the fol-

lowing properties:

� Autonomy : agents operate without the direct intervention of hu-

mans or others, and have some kind of control over their actions

and internal state;

� Social ability : agents interact with other agents (and possibly

humans) via some kind of agent communication language;

7

2. Modelling bio-inspired systems as spatial MAS

� Reactivity : agents perceive their environment and respond in a

timely fashion to changes that occur in it;

� Pro-activeness : agents do not simply act in response to their

environment, they are able to exhibit goal-directed behaviour by

taking the initiative.”

Agents can also have other properties, to name a few [97]:

� Mobility: an agent can be moved from one environment to another;

� Adaptivity: an agent can be continuously adapted to its environment;

� Veracity: an agent communicates false information without its knowledge;

� Benevolence: an agent does not have conflicting goals;

� Rationality: an agent acts towards achieving its goals.

Agents can have different characteristics, such as knowledge, beliefs, desires,

intentions, obligations, learning ability etc. There are several common agent

architectures corresponding to the different types of agents. In a deliberative

architecture the beliefs of the agents and the environment state are represented as

logic formulae. The actions of the agents are defined in terms of deduction rules.

Reactive architecture has no explicit reasoning and maps the perceptual input of

the agents to actions. The behaviours are rules of the type: if <situation>

then <action>. In Belief desire intention (BDI) architecture an agent is defined

in terms of what the agent knows for the world or beliefs, what the agent likes to

achieve or desires and its intentions. There are also hybrid architectures, such as

exploiting both deliberative and reactive agent properties.

A multi-agent system (MAS) is a collection of agents with interacting capa-

bility, situated in an environment. Agents can serve as computational models to

represent the vastly dynamic organization of the biological phenomena in nature,

thus giving birth to the nature inspired computing or further, biological artificial

systems. These systems may take over two directions, namely systems that are

used in order to represent a model/simulation of a real biological phenomenon, or

8

2. Modelling bio-inspired systems as spatial MAS

the ones inspired by biological phenomena – already introduced in Definition 1.1

as bio-MAS.

A large subset of systems within the MAS domain, including bio-MAS, can

be characterised as spatial agents.

Definition 2.2. Spatial agents can be defined as collections of agents

distributed and moving in n-dimensional space. They have incomplete

knowledge of the environment and can change their direction and

position through time.

Spatial agents are distributed through a physical space, usually as a local

collection of agents (or computational devices) with the following characteristics:

� The distance between the individual agents has a robust impact on their

interaction links; and

� The spatial structure of the system very often characterizes the functional

goals of its agents.

MAS such as wireless sensor networks and animal (or robot) swarms, are clear

examples of how the distance between the agents can affect the overall network

topology of agent communication. At the same time, the overall structure of the

system affects solving of spatial problems like: reaction to some spatial variant

(temperature), destroying an enemy, etc. It is important to underline that not all

systems distributed in the space belong in the category of spatial systems. The

behaviour of the spatial MAS can be defined and analysed by observing spatial

concepts such as: location, region, neighbourhood, communication, perception,

propagation, etc.

Finally, their spatial relationships directly affect the internal organization of

the agents and the interactions between them. For the purpose of simplicity,

one-agent system inspired from biology can be considered with the following case

study.

Case Study 2.1. The foraging ant. An ant randomly moves in

a 2-D space. If the ant encounters a seed, it picks it up. If the ant

picks up a seed, it carries it back to the base and leaves it there. After

9

2. Modelling bio-inspired systems as spatial MAS

leaving a seed to the base, the ant again moves randomly. The ant

can carry only one seed per time (see Fig. 2.1).

Similar to this case study, instead of the ant agent there could be a foraging

bee (biology MAS) or a cleaning robot (biology-inspired MAS). It can be noted

that all these systems clearly fall in the category of spatial systems as well.

Figure 2.1: Case study 2.1. The foraging ant.

2.2 Modelling bio-MAS

When it comes to developing agent-based systems, there is a software engineering

process [96] that describes what is a specification of an agent system, how to

implement these specifications and how to verify that the system satisfies its

original specifications. This was adapted in the framework for developing bio-

MAS (presented in Fig. 2.2) that classifies the development process in four basic

steps:

I. Observation of natural phenomena;

II. Modelling;

III. Model implementation or model simulation; and

IV. Verification and testing, where verification can be formal verification (model

checking) and informal verification (visualisation or visual simulation).

10

2. Modelling bio-inspired systems as spatial MAS

Figure 2.2: Framework for developing bio-MAS.

This chapter has a focus on the first three steps of the development framework

(observation of natural phenomena is presented through case studies).

Modelling can be accepted as one of the most essential steps in bio-MAS de-

velopment and it can be carried out with many different techniques. The step

of modelling can be further classified as formal, semi-formal, or informal. In-

formal modelling refers to usage of visual modelling languages, such as use-case

modelling, which lacks a formal definition of their semantic (visual modelling

languages can often lead to subjective models). On the other hand, formal spec-

ification languages solve these weaknesses and they facilitate creation of models

with precise semantics.

As the complexity of a MAS increases, considerable difficulties get introduced

in the process of formal modelling. Such large-scale communicating and/or emer-

gent systems are hard to formally model due to the lack of expressiveness of

current formal notations. These concepts and properties of bio-MAS gave birth

to the idea to look at bio-MAS as spatial MAS.

Immediately after the process of modelling, the framework shows the step of

model implementation or model simulation. Model simulation is a representation

11

2. Modelling bio-inspired systems as spatial MAS

of the system that can be further divided as:

� Textual model simulation – examples include XMDL [42], JSXM [18], PPSDL [86];

� Visual model simulation (animation) – an application that would animate

the execution of ABM such as NetLogo [95, 94].

2.3 Formal modelling approaches for MAS

There are varieties of formal methods in agent-oriented engineering which ba-

sically focus on different aspects of the development. Some of them focus on

the data structures and operations of a system (Z, VDM [85, 41]), while others

into demonstrating the control of its states (FSM, Petri Nets [31, 79]). These

approaches are beneficial for modelling systems with a predetermined constant

number of agents that is not expected to change. Nevertheless, this is hardly

the case in biological systems wherein the simplest model is characterised with

dynamic structural changes [88]:

� new agents might be introduced at any point in the lifetime of the system;

� existing agents might discontinue to be a part of the system (i.e. die);

� new communication links between agents might be established;

� existing communication links might be broken; and finally

� agents constantly change their primary identifier (ex. positioning in space

or direction) affecting the overall topology of the system.

With the attempt to correctly model a system with these properties, a number

of approaches towards modelling MAS related biological phenomena have been

developed. Some of these approaches are:

� Finite State Machine approaches:

– X-machines (XM) and Communicating X-machines (CXM) – specialised

into representing the behaviour of biological colonies [42, 46].

12

2. Modelling bio-inspired systems as spatial MAS

� Membrane computing approaches:

– P Systems (PS) and Population P Systems (PPS) – inspired from the

biochemical processes in the living cells that bring in solutions to the

dynamic structure of multi-component systems [24, 75].

� Hybrid approaches:

– The OPERAS framework and its instances OPERASXC or OPERASCC

– originated as combination of both CXM and PPS targeting the

changes occurring in the structure of a dynamic MAS [88].

It is important to highlight:

The subsequent work is going to concentrate on these modelling ap-

proaches. This decision was based on a survey presented by Beal et

al. [3], which analyses and compares a large number of spatial com-

puting domain specific languages.

According to the survey, the goals of systems in the following domains are

often explicitly spatial [3]:

� Amorphous computing;

� Biological modelling and design;

� Agent-based models;

� Wireless sensor networks;

� Pervasive systems;

� Swarm and modular robotics; and

� Parallel and reconfigurable computing.

For this work, the biological modelling and design and agent-based models do-

mains are of a particular importance. There are many spatial computing domain

specific languages throughout these domains identified in [3], including a few ad-

ditional formalisms that deal with space explicitly. To name a few representative

languages [3]:

13

2. Modelling bio-inspired systems as spatial MAS

� Biological modelling and design approaches:

– Antimony [84], ProMoT [59] and iBioSim [60] allow description of the

bio-molecular reactions of cells.

– P-systems [24] and the Brane calculus [8] are particularly suitable for

computations carried-out in biochemical systems of cells and tissues

of cells.

– L-systems [74] and MGS [28] are more explicitly spatial approaches.

For instance, L-systems are used to model the growth and structure of

plants.

– Gro [52] is a Python-like language. It was designed for stochastic

simulations in a growing colony of Escherichia coli.

� Agent-based modelling approaches:

– Agent UML [62] and Agent Modeling Language (AML) [90] are graph-

ical agent modelling languages.

– Jade [51], AGLOBE [11] and The Cognitive Agent Architecture (Cougaar) [30]

are agent frameworks.

– NetLogo [95], Repast [61], MASON [54] and Swarm [58] are agent

modelling and simulation toolkits.

� Other modelling approaches:

– Approaches based on process algebras, such as: π-calculus and Api-

calculus (an extension of π-calculus) [57]. This group of formalisms

is also suited for modelling systems with dynamic structural changes.

Api-calculus addresses knowledge representation, organizational group-

ing and migration of agents among groups [78].

– 3π [9] is another extension of π-calculus. It employs the idea of mod-

elling the space as a 3-dimensional geometric space.

14

2. Modelling bio-inspired systems as spatial MAS

2.4 Finite state machine modelling approaches

A XM can be considered as a representative finite state machine (FSM) modelling

approach for bio-MAS. It actually resembles a FSM with the power of being more

expressive [45]. This property is achieved due to the differences that XM have

from FSM, namely they have memory and their transitions have functions that

operate on the inputs and the memory values. In this work, the term XM refers

to a XM variant particularly defined for modelling purposes, i.e. a deterministic

stream X-machine.

2.4.1 X-machines and Communicating X-machines

A deterministic stream X-machine is formally described in Definition 2.3. Fig. 2.3

shows an abstract example of a X-machine.

Definition 2.3. A stream X-machine is an 8-tuple M = (Σ, Γ, Q, M,

Φ, F, q0, m0), such that [42, 47]:

� Σ and Γ are input and output sets of symbols,

� Q is a finite set of states,

� M is an n-tuple called memory,

� Φ is a finite set of partial functions that map an input and a

memory state to an output and a new memory state,

ϕ: Σ × M �Γ × M,

� F is a function that determines the next state, given a state and

a function from the type Φ, F: Q × Φ �Q, and

� q0 and m0 are the initial state and memory respectively.

With the focus on the practical development of communicating systems, a

structure knows as Communicating X-machines (CXM) can be formed (see Fig. 2.4),

providing a way to deal with agents communication [44, 46]. A CXM model con-

sists of several XM models, able to exchange “messages”. The term “message”

refers to the output of a XM, which can become an input to a function of another

XM. In Fig. 2.4, the symbol • denotes that a function receives an input from

15

2. Modelling bio-inspired systems as spatial MAS

Figure 2.3: An abstract example of a X-machine.

another machine (CXj), and the symbol ♢ denotes that a XM sends its output

to another machine (CXk).

Figure 2.4: An abstract example of a Communicating X-machine.

2.4.2 Spatial agent modelling with XM

Referring to the foraging ant case study from Fig. 2.1, event though it is a very

simple example, there might be quite a few different models for it. Fig. 2.5

presents the XM models, from a very abstract to more detailed one using the XM

approach.

Table 2.1, Table 2.2 and Table 2.3 demonstrate the three ways of modelling

the foraging ant problem. The first solution a) of Fig. 2.5 is presented in Table 2.1.

16

2. Modelling bio-inspired systems as spatial MAS

Carrying_seed

Figure 2.5: Examples of modelling the foraging ant case study: a) “very” ab-
stract representation b) more detailed, but complex representation c) the “best”
represented solution

17

2. Modelling bio-inspired systems as spatial MAS

Table 2.1: Foraging ant case study, solution a)

a) Q = {carrying nothing, has seen seed, carrying seed, at base}
M = (Carries seed × At base × Sees seed), where Carries seed,
At base, Sees seed = {true, false}
mo = (false, false, false)
qo = {carrying nothing}
Σ = {“move to a place w/o seed”, “move to a place with seed”, “pick
seed”, “search for base”, “move to base”, “leave seed”}
Γ = {“ant keeps moving empty”, “ant detected seed”, “ant picked
seed”, “ant searches for base”, “ant found base”, “ant left seed”}
Φ = {
move and see seed (“move to a place with seed”, (Carries seed,
At base, Sees seed)) = (“ant detected seed”,(false, false, true)) if Car-
ries seed = false ∧ Sees seed = false,

move and see nothing (“move to a place w/o seed”, (Carries seed,
At base, Sees seed)) = (“ant keeps moving empty”, (false, false, false))
if Carries seed = false ∧ Sees seed = false,

pick seed (“pick seed”, (Carries seed, At base, Sees seed)) = (“ant
picked seed”, (true, false, false)) if Carries seed = false ∧ Sees seed =
true,

move and be at base (“move to base”, (Carries seed, At base,
Sees seed)) = (“ant found base”, (true, true, false)) if Carries seed
= true ∧ At base = false,

move and not be at base (“search for base”, (Carries seed, At base,
Sees seed)) = (“ant searches for base”, (true, false, false)) if Car-
ries seed = true ∧ At base = false,

leave seed (“leave seed”, (Carries seed, At base, Sees seed)) = (“ant
left seed”, (false, true, false)) if Carries seed = true ∧ At base = true,
}

This is a “very” abstract representation that does not even take into consid-

eration the position (coordinates) of the ant, or the positions of the seeds. The

18

2. Modelling bio-inspired systems as spatial MAS

fact that XM are generic and do not impose modelling of a position, in such an

example might result in an incomplete model.

A more detailed representation can be derived from the second solution b)

of Fig. 2.5, as seen in Table 2.2. It can be noted that the representation is a

design choice, for instance the memory variables that correspond to positions

are integers. Yet again, this representation is more complex and probably more

difficult for understanding. This is due to the fact that all of the positions of

the seeds must be known in advance. Once the ant finds a seed, its position is

removed from the set of seed positions.

Finally, the last representation c) of Fig. 2.5 is presented in Table 2.3. This is

a better solution with respect to the other two solutions because it is less complex

and more complete in terms of the attributes it describes. In this example the

seed positions are not known in advance. More comprehensive specification can

be found in [63].

This case study demonstrated that there might be different ways to modelling,

even for the simplest scenario. The differences in the foraging ant models appear

to be in the modelling of the position and the direction of the ant. This leads

towards identification of the following shortcomings:

� There might be many different solutions (even for the simplest model) for

representing the commonly found properties, such as the initial position

or the direction of an agent. This makes it more difficult to read a given

model (we have to understand how the modeller decided to represent these

properties) and even to create one (every time the modeller has to think

how to represent them).

� The memory holds all data structures required, including the position and

the direction.

It can be noted that these shortcomings outline the already discussed connec-

tion between bio-MAS and spatial systems.

19

2. Modelling bio-inspired systems as spatial MAS

Table 2.2: Foraging ant case study, solution b)

b) Q = {carrying nothing, carrying seed}
M = ((Xcurr × Ycurr) × (Xbase × Ybase) × Seed positions × Hand)
where Xcurr, Ycurr, Xseed, Yseed, Xbase, Ybase = Z, Seed positions =
{(Xseed1 × Yseed1), (Xseed2 × Yseed2), ... (Xseedn × Yseedn)}, n ∈ N,
Hand = {full, empty}
mo = ((2, 3) , (0, 0), {(2, -3), (4, -6), (2, 1), (3, 5), (-1, 5)}, empty)
qo = {carrying nothing}
Σ = (Xnew , Ynew), where Xnew , Ynew = Z
Γ = {“ant keeps moving empty”, “ant detected and picked seed”, “ant
searches for base”, “ant found base and left seed”}
Φ = {
search and see seed ((Xnew, Ynew), ((Xcurr, Ycurr), (Xbase, Ybase),
Seed positions, empty)) = (“ant detected and picked seed”, ((Xnew,
Ynew), (Xbase, Ybase), Seed positions\(Xnew, Ynew), full)) if (Xcurr,
Ycurr) ̸= (Xbase, Ybase) ∧ (Xcurr, Ycurr) ̸= (Xnew , Ynew) ∧ Seed positions
̸= ∅ ∧ (Xnew, Ynew) ∈ Seed positions,

search for seed ((Xnew, Ynew), ((Xcurr, Ycurr), (Xbase, Ybase),
Seed positions, empty)) = (“ant keeps moving empty”, ((Xnew, Ynew),
(Xbase, Ybase), Seed positions, empty)) if (Xcurr, Ycurr) ̸= (Xbase, Ybase)
∧ (Xcurr, Ycurr) ̸= (Xnew, Ynew) ∧ (Xnew, Ynew) /∈ Seed positions,

search for base ((Xnew, Ynew), ((Xcurr, Ycurr) , (Xbase, Ybase) ,
Seed positions, full)) = (“ant searches for base”, ((Xnew , Ynew) ,
(Xbase, Ybase) , Seed positions, full)) if (Xcurr, Ycurr) ̸= (Xbase, Ybase) ∧
(Xcurr, Ycurr) ̸= (Xnew , Ynew),

leave seed at base ((Xnew, Ynew), ((Xcurr, Ycurr), (Xbase, Ybase),
Seed positions, full)) = (“ant found base and left seed”, ((Xnew , Ynew)
, (Xbase, Ybase) , Seed positions, empty)) if (Xcurr, Ycurr) = (Xbase,
Ybase) ∧ (Xcurr, Ycurr) ̸= (Xnew , Ynew)
}

20

2. Modelling bio-inspired systems as spatial MAS

Table 2.3: Foraging ant case study, solution c)

c) Q = {carrying nothing, carrying seed}
M = ((Xcurr × Ycurr) × (Xbase × Ybase) × Carrying seed) where Xcurr,
Ycurr, Xbase, Ybase = Z, Carrying seed = {seed1, seed2, ... seedn} ∪
nil, n ∈ N
mo = ((2, 3), (0, 0), nil)
qo = {carrying nothing}
Σ = ((Xnew, Ynew), Seed Id), where Xnew, Ynew = Z, Seed Id = {seed1,
seed2, ... seedn} ∪ {nil}, n ∈ N
Γ = {“ant keeps moving empty”, “ant detected and picked seed”, “ant
searches for base”, “ant found base and left seed”}
Φ = {
search and see seed (((Xnew, Ynew), Seed Id), ((Xcurr, Ycurr), (Xbase,
Ybase), Carrying seed)) = (“ant detected and picked seed”, ((Xnew,
Ynew), (Xbase, Ybase), Seed Id)) if (Xcurr, Ycurr) ̸= (Xbase, Ybase) ∧
(Xcurr, Ycurr) ̸= (Xnew, Ynew) ∧ Carrying seed = nil ∧ Seed Id ̸= nil,

search for seed (((Xnew, Ynew), Seed Id), ((Xcurr, Ycurr), (Xbase, Ybase),
Carrying seed)) = (“ant keeps moving empty”, ((Xnew, Ynew), (Xbase,
Ybase), Carrying seed)) if (Xcurr, Ycurr) ̸= (Xbase, Ybase) ∧ (Xcurr, Ycurr)
̸= (Xnew, Ynew) ∧ Carrying seed = nil ∧ Seed Id = nil,

search for base (((Xnew, Ynew), Seed Id), ((Xcurr, Ycurr), (Xbase, Ybase),
Carrying seed)) = (“ant searches for base”, ((Xnew, Ynew), (Xbase,
Ybase), Carrying seed) if (Xcurr, Ycurr) ̸= (Xbase, Ybase) ∧ (Xcurr, Ycurr)
̸= (Xnew, Ynew) ∧ Carrying seed ̸= nil,

leave seed at base (((Xnew, Ynew), Seed Id), ((Xcurr, Ycurr), (Xbase,
Ybase), Carrying seed)) = (“ant found base and left seed”, ((Xnew,
Ynew), (Xbase, Ybase), nil) if (Xcurr, Ycurr) = (Xbase, Ybase) ∧ (Xcurr,
Ycurr) ̸= (Xnew, Ynew) ∧ Carrying seed ̸= nil
}

2.5 Membrane computing modelling approaches

The structure of a biological living cell, the system on which a living cell operates

and the functions of their membranes, gave a motivation to a whole new area of

research, namely membrane computing [75, 76]. The first membrane computing

21

2. Modelling bio-inspired systems as spatial MAS

models built, were comprised of membranes arranged in a hierarchical structure

(in a way that they can be included one inside another), resembling the mem-

branes of living cells. These membranes draw up the boundaries of the compart-

ments (i.e. regions), yet allowing for developing of chemicals within them [76].

Such operations are defined through evolution rules and the multisets of chem-

icals are actually named as objects. There are basically two types of evolution

rules in these models: rewriting rules (used for modeling chemical reactions) and

communication rules (rules that define a function for passing objects through the

membranes) [75, 76].

There are many advances in membrane computing up to date. Starting with a

hierarchical structure of the membranes that resemble a tree-like cell arrangement,

now we have models with a tissue-like (or graph) membranes structure or even

more advanced neural-like membrane systems, inspired from neurobiology and

neural networks [76]. The computing mechanisms found in membrane computing

in general, are called P systems. Fig. 2.6 shows a graphical representation of a P

system which outputs square numbers.

Figure 2.6: A representation of a P system which outputs square numbers.

Even though this research area is new, today there are large number of stud-

ies targeting P systems, in variety of application areas (biology, bio-medicine,

economics, computer science, etc). The classical P systems (described earlier as

the first membrane computing model) are found to experience certain obscurity

when it comes to modelling some areas, such as MAS with a dynamic configu-

ration [87]. Therefore, there are many different definitions of P systems, each of

22

2. Modelling bio-inspired systems as spatial MAS

them aiming to specific domain but having different computation. Some of the

other more prominent types of P systems are [77]:

� catalytic P systems;

� communication P systems;

� P systems with string objects;

� P automata;

� splicing P systems;

� tissue P systems;

� population P systems;

� kernel P systems;

� P systems with active membranes, and many others.

An interesting observation is that most of these different P systems definitions,

are actually equivalent to Turing machines, therefore they are computationally

complete [76]. The classical P systems for instance, apply their rules in parallel

for each cell, allowing computation of NP-complete problems in linear time [4].

This work will not focus on defining each of the types of P systems but will draw

focus on population P Systems.

2.5.1 Population P systems

A population P System (PPS [4]) is a collection of different types of cells that can

evolve according to specific rules and exchange substance with the neighbouring

cells. The rules can manage communication among cells, cell division, cell death,

etc. Formally, a PPS is described in Definition 2.4 [4], and an abstract example

of a PPS is given in Fig. 2.7.

Definition 2.4. A PPS can be defined as P = (V, K, γ, α, wE, C1,

C2, . . . , Cn, R), such that:

23

2. Modelling bio-inspired systems as spatial MAS

� V is a collection of all the objects from all the cells within the

system, V = {object a, object b, ...};

� K is a collection of all the different types, associated with each

individual cell in the system, K = {t1, t2, ...};

� γ is the initial structure of the undirected graph, formally defined

as:

γ = ({1, 2,... n}, A), with A ⊆ {{i, j} | 1 ≤ i ̸= j ≤ n};

� α is a finite set of bond making rules (t, x1; x2, p), such as x1, x2

∈ V* and t, p ∈ K ;

� wE ∈ V* is the multiset of objects initially assigned to the envi-

ronment;

� Ci = (wi, ti) is a tuple that contains a finite multiset of objects

wi ∈ V* and a type ti ∈ K, for each 1 ≤ i ≤ n;

� R is a finite set of cell evolution rules.

Figure 2.7: An abstract example of a Population P System.

Each node from the graph in Fig. 2.7 represents a membrane and is referred

to as a cell.

Definition 2.5. Every cell, Ci, contains a multiset of objects, Wi,

which represent some kind of a property (for instance, objects could be

age, temperature, position, etc). Objects are represented in the form

24

2. Modelling bio-inspired systems as spatial MAS

(label:value), where label is a descriptor of the object, and value holds

the actual object’s value (for instance (age:N0) or (temperature:R)).
A cell is associated with a type ti and all cell types in the system are

defined as K.

Every cell contains rules for evolution, Ri (a, b, c ∈ V* and t, p ∈ K):

� Communication rules – Communicating objects through the cells’ bound-

aries. These rules could be in one of the forms: (a; b, in)t, (a; b,

enter)t and (b, exit)t as presented in Fig. 2.8, i.–iii. accordingly. These

rules manipulate the objects within two cells, based on their types and the

existing bonds, or they manipulate the objects between a cell and the en-

vironment (again, based on the type of the cell).

� Transformation rules – Modifying/rewriting of the objects within a cell.

These rules have the form (a → b)t and they allow an object to be trans-

formed to a different one within a cell of a certain type. They are presented

in Fig. 2.8, iv.

� Differentiation rules – Changing of the cells’ types. They have the form

(a)t → (b)p and are presented in Fig. 2.8, v.

� Division rules – Generating new cells. These rules can be presented as

(a)t → (b)t (c)t as seen in Fig. 2.8, vi.

� Death rules – Removing cells from the system. They have the form

(a)t → � as presented in Fig. 2.8, vii.

It can be observed that the first two types of rules (communication and trans-

formation rules) affect the system on a micro level, i.e. the specific properties of

each individual cell. Thus at every cycle, all the applicable transformation and

communication rules are applied, also known as maximal parallelism in the use

of rules. On the other hand, the differentiation, division and death rules affect

the system on a macro-level, i.e. they affect the system’s structure. Therefore,

at every cycle only one rule from all the applicable ones is non-deterministically

selected and applied.

25

2. Modelling bio-inspired systems as spatial MAS

Figure 2.8: Evolution rules in population P system with active cells.

Besides the cell’s rules for evolution, a PPS with active cells contains a differ-

ent type of rules as well, which in turn affect the bonds between the cells. These

are called bond-making rules and they define which cells are able to communicate

with each other. These rules are applied last, at every step of execution (cycle).

The representation (t, x1; x2, p) can be interpreted as: a new bond between

all the pairs of cells (t, p) with types t and p can be formed, iff the object

x1 belongs to the cell of type t , and the object x2 belongs to the cell of type p .

2.5.2 Spatial agent modelling with PPS

PPS with active cells exhibit certain shortcomings when it comes to spatial mod-

elling. For the purpose of presenting them, let us consider a case study inspired

from a simple ant colony:

Case Study 2.2. Ant lines. We anticipate to model the behaviour

of the ants within a colony, given that there is one leader ant moving

towards a source of food, and every other ant is following the leader.

At the beginning, all of the ants are in their nest. With the first

evolution, the leader leaves the nest first, and chooses a random path

to follow. Subsequently, one of the other ants leaves the nest as well,

26

2. Modelling bio-inspired systems as spatial MAS

headed towards the current position of the leader. After a while, the

second ant leaves the nest, and follows the ant ahead of it in the same

manner. This process repeats until all of the ants reach the food

source.

It might be observed that this example looks like flocking. Utilizing PPS with

active cells, this case study can be modelled as presented in Table 2.4. It should

be noted that Table 2.4 contains a specification written with the PPS Description

Language (PPSDL [86]) explained in Section 3.3.

This case study represents a phenomenon that could be modelled by employing

the object-based parallel modelling power of PPS with active cells. The difficulties

encountered in terms of modelling the spatial characteristics of the ants though,

can be summarised as follows:

� There is a lack of supporting functions to describe movement. Functions,

like movement to a random/specific position or heading to a random direc-

tion, are very commonly found in the biological systems in the nature and

represent a common characteristic to every spatial system, as well.

� The position and the direction are not natively supported (we refer to pre-

defined object types), and these properties are also common when it comes

to spatial modelling.

� The concept of sensing cannot be described with the existing communica-

tion rules. In other words, abstract information (objects that cannot be

quantified) are normally communicated by multiplication, i.e. perception

which leaves multiple copies to both parties.

Furthermore, one might argue that having non-deterministically chosen cell evo-

lution rules, happens in the biological systems and might represent one of the

most important factors that leads to emergent behaviour. However, this is not

true for all of the biological processes. Therefore, an interesting property that

can be appended to this notion is prioritising of behaviours [43]. Referring to

the case study, let us assume that there are some obstacles in the environment

(for instance, water holes or fire places) and the ants are naturally (by instinct)

27

2. Modelling bio-inspired systems as spatial MAS

Table 2.4: Modelling the ant lines case study with PPS

V = {(nest position: Position), (food position: Position),
(leader heading : Direction), (ant position: Position), (ant heading :
Direction), (timer : N0), (ant no: N) }, where Position ∈ N0 × N0

and 1 ≤ Direction ≤ 360 ;

K = {leader ant, follower ant};

γ = ({1, 2, 3, 4, 5, 6}, { });

α = (leader ant, (timer : 1); (timer : 10), follower ant , follower ant,
(timer : 1); (timer : ant no * 5), follower ant);

wE = {(nest position: (0, 0)), (food position: (0, 50))};

C1 = ({(ant position: (0, 0)), (timer : 5), (ant no: 1), (leader heading :
60)}, leader ant), and

Ci = ({(ant position: (0, 0)), (ant heading : 60), (timer : 5 * i),
(ant no: i) }, follower ant), for 2 ≤ i ≤ 6 ;

R1 = { (timer → timer - 1)leader ant,
(ant position)leader ant → � if ant position = food position,
(leader heading → RandHeading)leader ant,
(ant position → RandPosition)leader ant},
where RandHeading and RandPosition are functions that return a
random direction and position accordingly, and

Ri = { (timer → timer - 1)follower ant,

(ant position)follower ant → � if ant position = food position,

(ant position → RandPosition)follower ant if timer = 0,

(ant heading → Heading)follower ant },
for 2 ≤ i ≤ 6 where RandPosition and Heading are functions that
return a random position and the heading of the previous ant, accord-
ingly.

28

2. Modelling bio-inspired systems as spatial MAS

constructed to avoid these obstacles. This would point to the fact that not all

of the processes in nature are of equal importance, and there is a need to model

some specific subset of rules in a way that they will be deterministically executed.

Driven by the subsumption architecture [7], the work presented in [43] suggests

defining a partial ordering over the evolution rules found in PPS with active cells.

2.6 Hybrid modelling approaches

The OPERAS framework for formal modelling originated as a combination of

formal methods, or even transforming to one another, for the purpose of achieving

their complementary features [88]. Formally, it is defined in Definition 2.6 [89, 88].

Definition 2.6. OPERAS is a tuple (O, P, E, R, A, S) containing:

� O is a set of reconfiguration operations or rules, which defines

how the system structure evolves;

� P is a set of percepts for the agents, which in essence is the set

of valid inputs to the system;

� E is the initial configuration of the environments model, ir de-

scribes the elements that are present and the agents can perceive

or affect;

� R is a relation that defines the existing communication channels,

which are the existing channels among agents;

� A is a set of participating agents; and

� S is a set of definitions of types of agents.

The rules in the set of reconfiguration operations O, have a general form

condition ⇒ action. Operators are applied with each operation and they create

or remove a communication channels between agents. These operators can also

introduce agents in the system, or remove existing agents from the system [88].

This framework views an agent as composed of two parts [88]:

� Individual agent behaviour, and

29

2. Modelling bio-inspired systems as spatial MAS

� Dynamic structural mutation.

The aim of OPERAS however, is not only decomposing of the modelling

process. It is flexibility to allow describing the agent’s parts with different formal

methods in the choice of the modeller. This opens new possibilities towards

biologically-inspired models.

There can be different instantiations of OPERAS, one of which is the OPERASXC

which employs communicating X-machines and ideas from PPS [89, 88]. This in-

stantiation of OPERAS aims at combining their advantages and suppressing their

weaknesses.

In OPERASXC the behaviour of the system (individual agents) are modelled

as a CXM, and the structural mutation mechanism of each agent is a PPS (see

Fig. 2.9) [88]. The agents’ communication is dealt with the CXM level.

Figure 2.9: An abstract example of a OPERASXC consisting of two agents.

2.7 Comparison of modelling approaches

All the formalisms described in the previous sections are characterised with cer-

tain advantages and disadvantages regarding modelling and implementation of

bio-MAS, as summarised in Table 2.5. XM and CXM are particularly suitable

at modelling the internal states of an agent and the agent’s perception [31]. On

the other hand, they do not support dynamic system reconfiguration (birth and

death of agents). On the other hand, PPS support rules for reconfiguration of

the structure within the system, but it is hard to distinguish different attributes

of an agent [75].

30

2. Modelling bio-inspired systems as spatial MAS

Table 2.5: Advantages and disadvantages in modelling with XM, CXM, PPS and
OPERAS

Advantages Disadvantages

XM

– Ability to model the internal states
of an agent, the agent’s perception,
the agent’s knowledge of the environ-
ment and how the agent can change
its internal state and knowledge when
a function is triggered.

– Do not support birth of agents
(dynamically creating agents) and
death of agents (dynamically destroy-
ing agents).
– It is not easy to specify agents that
move in space.

CXM

– Offer a way to represent the static
links and exchange of messages be-
tween agents.

– Reconfiguration of the structure
within the system remains not achiev-
able.
– It is not easy to model the topology
of MAS.

PPS

– Support rules for reconfiguration of
the structure within the system.
– Deal with a dynamic system’s struc-
ture (describing the behaviour of a
system).
– Support rules for cell birth and cell
death (ability to reconfigure a system
throughout its lifetime).

– It is hard to group objects based
on their use (distinguish different at-
tributes of an agent).
– The objects are the only way with
which an agent’s internal state can be
represented.

OPERAS

– Contemplates into separating the
behaviour of an agent from its con-
trol (modelling each of them individ-
ually).
– Provides ground to formal descrip-
tion of the changes occurring in the
structure of a dynamic MAS.

– Protocols for agent communication
and interaction are not supported.

31

2. Modelling bio-inspired systems as spatial MAS

It can be concluded that the drawback of XM (ability to reconfigure a system

throughout its lifetime) is supported in PPS. On the other hand, PPS lack the

advantages found in XM. Finally, OPERASXC serves the purpose of achieving

their complementary features.

It is important to highlight that this comparison of formalisms is not exhaus-

tive but focused on XM, CXM, PPS and OPERAS. The main reason for this

choice is to target modelling formalisms that are easy to be learnt by modellers

of different backgrounds having limited mathematical knowledge (such as biolo-

gists).

2.8 Summary

Parts of the following objectives were met with this chapter:

O1: Investigate on spatial systems, modelling formalisms for spatial bio-MAS

outlining properties and disadvantages of existing modelling formalisms, as

well as verification and simulation strategies and how can they be enhanced

to better support complex spatial bio-MAS.

O2: Identifying illustrative case studies which are scalable (experiments with

different numbers of agents), simple to be modelled and have spatial char-

acteristics.

This research was published in [68] and [66].

32

Chapter 3

Description of languages for

modelling and corresponding

tools

There are many different tools for practical formal modelling of bio-inspired sys-

tems as spatial MAS. Referring back to the previous topic on different modelling

approaches, the models of a X-machine can be described with tools such as:

X-System or JSXM, and the PPS models with PPSDL. These tools will be intro-

duced in this chapter because they are used for modelling different case studies

later on. Moreover, an agent based modelling framework, namely FLAME, will

also be introduced as a tool for modelling that employs XM as the basic compu-

tational model.

3.1 X-System

X-System is a tool created to support modelling with X-machines [42]. With

this tool, the X-machine models can be specified in the X-machine Definition

Language (XMDL [42]) and textual simulation. XMDL is a listing of definitions

that matches the tuples of X-machine’s definition. For example, a function in

XMDL takes an input and a memory value, returning an output with a new

memory value. Briefly, the XMDL keywords can be presented as [42]:

33

3. Description of languages for modelling and corresponding tools

� #model <model name> – Assigns a name to a model.

� #input <input tuple> – Describes the input set and corresponds to Σ in

XM.

� #output <output tuple> – Describes the output set and corresponds to

Γ in XM.

� #states <set of states> – Defines the set of states and corresponds to

Q in XM.

� #memory <memory tuple> – Defines the memory tuple and corresponds to

M in XM.

� #init state <state> – Sets the initial state and corresponds to q0 in

XM.

� #init memory <memory value> – Sets the initial memory and corresponds

to m0 in XM.

� #transition(<state>, <fun>) = <state> – Defines each transition in F

and corresponds to F in XM.

� #fun <function definition> – Defines a function in and corresponds

to Φ in XM.

The description language of a Communicating X-machines model is named as

XMDL−c [44, 46]. It represents an extension of the standard XMDL definition to

allow definition of the models in the system and how their functions communicate.

Advantages of X-System are [42]:

� The XMDL model represents a list of definitions which is close to the math-

ematical notation used for the definition of XM;

� Comes with a parser that helps in identifying omission and logical errors of

the specification;

� Comes with an animator and a model checker; and

34

3. Description of languages for modelling and corresponding tools

� Demonstrated to be successful in facilitating formal development of complex

real world problems [21].

On the other hand, the disadvantages are: it uses only ASCII characters, and

the graphical interface of the integrated system needs to be finalised [42].

3.2 JSXM

The models of a X-machine can be also described with JSXM [18]. JSXM intro-

duces a syntax for X-machines specifications based on XML and Java.

Some examples of the JSXM modelling language are provided as follows [18,

19]:

� The set of the initial state (corresponds to q0 in XM):

<initialState state=" initial" />

� The set of states (corresponds to Q in XM):

<states >

<state name="A" />

<state name="B" />

</states >

� The memory and the initial memory (corresponds to M and m0 in XM):

<memory >

<declaration > int C </declaration >

<initial > C = 0 </initial >

</memory >

An example of a function can be presented as [18]:

<function name="D" input="d" output ="dOut">

<precondition >

C > d.getE()

</precondition >

35

3. Description of languages for modelling and corresponding tools

<effect >

C = C - d.getE();

</effect >

</function >

One of main advantages of JSXM is that it represents a tool for automated

test generation [19]. Other advantages include [19]:

� In the case of input-uniform specifications, JSXM test generation is guar-

anteed to work;

� JSXM allows the definition of a CXM (each class is separately modelled as

an XM); and

� JSXM are demonstrated to be applicable in several application scenarios:

Web service testing, monitoring and run-time verification.

On the other hand, disadvantages are [19]:

� The input generators need to be changed such that test generation works

for generic specifications; and

� Lacks of test generation based on state-counting (in order to cover cases of

specifications in which not all states are separable).

These disadvantages however, have been identified as a future work by the

authors [19].

3.3 PPS-System

The PPS models can be described with the PPS Description Language (PPSDL [86])

and textual simulation. PPSDL is characterized along the same lines as XMDL,

but its list of definitions match the constructs of a PPS with active cells. PPSDL

is an orthogonal, mark-up and strongly typed language. Briefly, the PPSDL

keywords can be presented as [87]:

� #model <model name> – Assigns a name to a model and corresponds to P

in PPS.

36

3. Description of languages for modelling and corresponding tools

� #object <obj name> = <obj type> – Defines a type of object and cor-

responds to V in PPS.

� #cell types = <set of types> – Describes the cell types set and corre-

sponds to K in PPS.

� #graph = <set of cell pairs> – Defines the graph and corresponds to

γ in PPS.

� #bond making rule <r name> <rule definition> – Defines a rule and

corresponds to α in PPS.

� #env objects = <set of objects> – Initial env. objects and corresponds

to wE in PPS.

� #cell <cell name>:<set of objects> <cell type> – Defines a cell and

corresponds to Ci in PPS.

Moreover, the PPSDL keywords for the different types of rules (R in PPS) can

be presented as [87]:

� #transformation rule <r name><rule def>

� #communication in rule <r name><rule def>

� #communication exit rule <r name><rule def>

� #differentiation rule <r name><rule def>

� #division rule <r name><rule def>

� #death rule <r name><rule def>

A PPSDL model is initially compiled to Prolog. The computation is then

animated according to PPS theory [87]. Advantages of PPS-System are [87]:

� It is aimed to be an interchange language between tools developed around

P-Systems; and

� It does not deviate from the PPS formal mathematical notation.

37

3. Description of languages for modelling and corresponding tools

On the other hand, the disadvantages of PPS-System include [87]:

� It uses only ASCII characters;

� There is a need of a platform for thorough evaluation of the PPSDL nota-

tion; and

� There is a lack of a graphical display to visually show the model computa-

tion.

3.4 FLAME

FLAME (Flexible Large-scale Agent Modelling Environment) is an agent based

modelling framework that employs XM as the basic computational model (every

agent is a XM). Figure 3.1 illustrates a diagrammatic representation of the X-

agent used by the framework, where Si are the agent’s states, and Fi are the

transition functions that use the memory and input messages facilitating the

agent to change a state.

Figure 3.1: X-agent diagram.

FLAME is specialised to support mainly projects related to cell biology, in-

cluding tissue cultures and signalling pathways, given that it initially originated

from a project targeted on predicting the emergent behaviour of cells in epithe-

lial tissues [83, 12]. The FLAME models can be described with XMML, XM

38

3. Description of languages for modelling and corresponding tools

markup modelling language (similar to XML tags) for defining agents and their

communication links. On the other hand, the functions are implemented in the

C programming language. Figure 3.2 shows the block diagram of the framework

in which a model XMML file and a functions file are provided as inputs into a

parser program (XParser) [93]. The inputs are converted into simulation code

by the XParser which given starting values can simulate the model to produce

results and animation.

Figure 3.2: Block diagram of FLAME framework.

FLAME has the following advantages:

� Successful in modelling many biological systems as a consequence;

� Provides automatically parallelisable models;

� Allows high concentrations of agents to be simulated and the results to be

achievable in finite time; and

� Functions are written in C and thus they are directly executable.

39

3. Description of languages for modelling and corresponding tools

A disadvantage of FLAME could be the fact that it supports only fundamental

data-types. Moreover, the functions cannot be written in any other language

other than C, which requires a certain level of experience and expertise.

3.5 Summary

The advantages and disadvantages of the description of languages for modelling

are summarised in Table 3.1.

This chapter contains parts of the following objective:

O1: Investigate on spatial systems, modelling formalisms for spatial bio-MAS

outlining properties and disadvantages of existing modelling formalisms, as

well as verification and simulation strategies and how can they be enhanced

to better support complex spatial bio-MAS.

40

3. Description of languages for modelling and corresponding tools

Table 3.1: Advantages and disadvantages of the description of languages for
modelling and corresponding tools

Advantages Disadvantages

X-System

– The XMDL model represents a list
of definitions which is close to the
mathematical notation used for the
definition of XM.
– Comes with a parser that helps in
identifying omission and logical errors
of the specification.
– Comes with an animator and a
model checker.
– Demonstrated to be successful in fa-
cilitating formal development of com-
plex real world problems.

– Uses only ASCII characters.
– The graphical interface of the inte-
grated system needs to be finalised.

JSXM

– It is a tool for automated test gen-
eration.
– In the case of input-uniform specifi-
cations, the JSXM test generation is
guaranteed to work.
– Allows the definition of a CXM.
– Demonstrated to be applicable in
several application scenarios.

– The input generators need to be
changed such that test generation
works for generic specifications.
– Lacks of test generation based on
state-counting.

PPS-System

– Semantics directly inherited by the
PPS formal definition.
– Aimed to become an interchange
language between P-Systems tools.

– Lack of a graphical display for vi-
sual display of the computation.
– Needs a platform to thoroughly
evaluate the PPSDL notation.
– Uses only ASCII characters.

FLAME

– Successful in modelling many bio-
logical systems as a consequence.
– Provides automatically parallelis-
able models.
– Allows high concentrations of
agents to be simulated and the results
to be achievable in finite time.
– Functions are written in C and thus
they are directly executable.

– It supports only fundamental data-
types.
– The functions cannot be written
in any other language other than C,
which requires a certain level of expe-
rience and expertise.

41

Chapter 4

Simulation and validation of

bio-systems

Bio-systems exhibit an increased amount of complexity and this leads to diffi-

culties in the process of modelling, as well as in ensuring the correctness on the

model and its implementation. Looking at the framework for developing bio-MAS

presented in Fig. 2.2, this chapter talks about step IV: formal verification (model

checking), informal verification (visualisation or visual simulation) and testing.

The focus falls to verification strategies of XM and P system models.

4.1 Introduction to verification, simulation and

validation

Formal verification and validation are processes which employ formal methods

to confirm that a model satisfies its requirements and specifications [5].

Definition 4.1. Verification techniques, such as model checking, are

applied to check whether a model satisfies certain properties, whereas

validation is applied to confirm that a model satisfies the user require-

ments.

When it comes to spatial MAS, it is not always feasible to apply formal

verification and validation techniques. This constraint rises from the fact that

42

4. Simulation and validation of bio-systems

some of the properties found in these systems can have infinitely many values,

which naturally leads to state space explosion.

Definition 4.2. Model checking is one of the most widely used for-

mal verification technique, which focuses on thorough exploration on

a predetermined state space, trying to conclude whether some prop-

erties of a complex system are being met.

Basically, a model checker accepts as an input the model (as a labelled tran-

sition diagram) and a property defined with temporal logic. Then the checker

would either verify that the given property is true, or will provide a counterex-

ample, by following a specific search strategy on the labelled transition diagram.

In general, formal verification (such as model checking) of spatial MAS is an

extremely complex task. On one hand is the fact that it leads to combinatorial

explosion, but also the fact that all of the system’s properties should be identi-

fied first before there is an attempt to be verified [68]. This notion is not always

straightforward. As an example, properties and behaviour related to the position-

ing in space (or emergent behaviour such as line formation, flocks, schools, herds

etc.) may occur in a system even though they were not explicitly modelled. This

leads to the fact that spatial MAS may exhibit behaviour that was not present in

original system’s requirements. In order to detect such characteristics in systems,

simulation tools providing visual output should be applied. To summarize:

� Visual simulation can serve as an informal verification method for systems

that have spatial characteristics, which in turn are not formally verifiable;

and

� Visual simulation can help into discovering emergent properties, which are

common in spatial MAS.

Having state-based agent models as a starting point, formal methods can be

used to model spatial agents. Our aim is to find the most suitable way to vi-

sualise the behaviour of such models by using a simulation tool that will meet

certain criteria and facilitate the process of refining the formal model to exe-

cutable code. There exist large-scale MAS simulation platforms that support

43

4. Simulation and validation of bio-systems

Figure 4.1: Verification and validation of an X-machine.

formal state-based models [81], such as: Repast [61], Swarm [58], NetLogo [95],

Mason [54], and Flame [12, 72], to name a few. Such platforms may facilitate the

informal verification of a spatial model by allowing researchers to compare the

simulation’s outcome with the expected behaviour of the system or to discover

emergence.

4.2 Verification of XM models

XMs are supported by formal verification strategies [34, 20] as shown in Fig. 4.1.

XMDL is facilitated with a parser built using Definite Clause Grammars (DCG)

notation [45]. Apart from the syntax errors, this outputs warnings of any kind of

syntax error or omission [45]:

� “State defined is not used in transitions”;

� “The X-Machine is non-deterministic”;

� “User types are not defined”; etc.

Examples of errors are:

44

4. Simulation and validation of bio-systems

� “The initial memory tupple arity is different from memory type”;

� “Function in transition is not defined”;

� “Cannot infer the type of variable”;

� “Memory parameter inconsistent with memory”; etc.

The semantic analysis and the rules for transformation, are being checked

by the compiling component. This is facilitated by defined rules under which

the specification is translated into the equivalent Prolog code. This Prolog code

is after utilised by an animation tool, which simulates the computation of an

X-machine.

The model checking component in Fig. 4.1 defines a new logic, XmCTL [20].

With the implementation of model checking algorithms, this component can de-

termine whether a property is true or false. Finally, XMs are also supported

with automatic generation of test cases, which is proved to find all faults in the

implementation [34].

Recent research [19] employs JSXM as tool for automated test generation for

XM. Basically, JSXM facilitates [19]:

� Animation of XM models for the purpose of model validation;

� Automatic generation of abstract test cases from the XM specifications; and

� Transformation of abstract test cases into concrete test cases (in the imple-

mentation language of the system).

4.3 Verification of P system models

There are several approaches towards verification and testing strategies for P

systems. A recent model checking-based approach [37] for verification a P sys-

tem model, utilises the NuSMV symbolic model checker [13]. NuSMV verifies

the correctness of the system using temporal logic formulae and if the specified

properties are false, counterexamples are provided. This feature is used for the

creation of test cases. Similar work in [39], suggests a P system model verification

45

4. Simulation and validation of bio-systems

using the Spin model checker [33]. It provides techniques to translate a P system

into Promela which is the modelling language for Spin.

Other work in [36], utilises the Event-B (a formal modelling language [1])

for modelling, verification and testing of P Systems. Verifying and testing of P

systems are based on ProB, the model-checker of Event-B. Different approach for

testing P systems described in [23], defines a grammar and finite state machine

based strategies (approach focussed on cell-like P systems, but applicable for

tissue-like P systems as well). Finally, P systems could also be translated to a

XM model in order to apply the XM verification and testing strategies [48].

To elaborate on the verification and testing strategies, the first approach that

utilises the NuSMV symbolic model checker can be explained in more details,

namely [37]:

1. The P system is transformed into a Kripke structure [49];

2. The Kripke structure is written in NuSMV syntax;

3. These formulae are negated (for instance, this rule will never be applied);

4. NuSMV is run and the counterexamples provided for the negated formulae

are interpreted as test cases.

4.4 Visual simulation: case study and discus-

sion

The following problem can be highlighted:

Utilizing XM or P systems for modeling spatial systems, needs an

exponential time to complete the execution of a model checker. This

is due to the thorough exploration on the system’s state, which means

all possible positions (coordinates) and directions.

In order to explain these concepts, let us consider the following case study [6]:

Case Study 4.1. Aggressor-Defender. The following case study,

known as the aggressor-defender game [6], consists of two groups of

46

4. Simulation and validation of bio-systems

agents, namely defenders (or friends) and aggressors (or enemies).

Agents follow one of two strategies:

� defending: in each cycle the agent tends to position itself between

a friend and an enemy (such as they defend the friend against

the enemy; see Fig. 4.2 a).

� fleeing: in each cycle the agent tends to position itself so that a

friend is between it and an enemy (such as the friend protects

them from the enemy; see Fig. 4.2 b).

Figure 4.2: Rules for playing the aggressor-defender game. a) The defend be-
haviour. b) The flee behaviour.

This particular case study was chosen for reasons of exposition because of the

following characteristics:

� it has spatial characteristics and therefore it can be modelled as a spatial

MAS;

� it is scalable as users can experiment with different numbers of agents;

� it exhibits an emergent behaviour not evident in its definition;

� it is very simple to be modelled, which demonstrates that visualisation is

helpful even for the simplest spatial MAS; and

� it is general enough to make safe conclusions that relate to the characteris-

tics and the suitability of visual simulations platforms.

47

4. Simulation and validation of bio-systems

Figure 4.3: X-Machine model of the aggressor-defender game.

The XM state transition diagram of the Case Study 4.1: Aggressor-Defender

is provided in Fig. 4.3.

As an instance, the function defend can be formally modelled with the XM

approach as follows:

defend(((xfriend, yfriend), (xenemy, yenemy)),

(strategy, friendid, enemyid, (x, y), direction)) 7→
(((x′, y′), direction), (strategynew, friendid, enemyid,

(x′, y′), direction)), wherestrategynew ← defending ∧
x′ ← (xfriend + xenemy)/2 ∧ y′ ← (yfriend + yenemy)/2

At this point, the model can be translated into an executable form for a

simulation platform. Complete model of the case study in a visual simulation

platform, namely NetLogo, is presented in Appendix C. The visual output of the

aggressor-defender game is provided as follows:

� Fig. 4.4 a) shows the simulation output when all the agents defend;

� Fig. 4.4 b) shows the simulation output when all the agents flee; and

� Fig. 4.5 shows three different simulation outputs when some agents defend

and some agents flee.

In the simulation in Fig. 4.4 and 4.5, there is an observable emergent spatial

behaviour, such as:

48

4. Simulation and validation of bio-systems

Figure 4.4: Visual output of the aggressor-defender game. a) All agents defend.
b) All agents flee.

� The model in which all the agents defend behaved as the agents quickly

collapsed into a tight knot, see Fig. 4.4 a).

� The model in which all the agents flee behaved as a highly dynamic group

that expands over time towards the ends of the environment, see Fig. 4.4

b).

� The model in which some agents defend and some agents flee, exhibited

three different emergent behaviours:

– All agents collapsed into a knot (similar to the model in which all the

agents defend) with the difference that this knot was now oscillating

around the environment, see Fig. 4.5, i.

49

4. Simulation and validation of bio-systems

Figure 4.5: Visual output of the aggressor-defender game: three different outputs
when some agents defend and some flee.

– The agents were stationary, randomly distributed and oscillating, see

Fig. 4.5, ii.

– The agents would form a flocking, see Fig. 4.5, iii.

All of these different behaviours of the system, became apparent after observ-

ing repetitive patterns from the visual simulation. If the model was to be formally

50

4. Simulation and validation of bio-systems

verified before simulation, these emergent properties would probably not be dis-

covered. Moreover, it is impossible to apply model checking techniques when it is

not known what property to check for. This example clearly demonstrates that

suitable simulation tools for modelling spatial MAS can help to detect unknown

spatial behaviour, i.e. emergence.

There were number of experiments performed on the aggressor-defender case

study. Table 4.1 shows some of the results. The time is measured in ticks, which

are a unit of time measurement inside the NetLogo simulator. The time was

recorded at the point in which all of the agents were expanded towards the end

of the environment (in the flee strategy), or all of them were collapsed into knot

(in the defend strategy).

Table 4.1: Experiments on the aggressor-defender case study

Strategy Number
of agents

Emergence Time (in ticks)

Flee 5 Expands over time 226
Flee 50 Expands over time 1490
Flee 100 Expands over time 1601
Flee 200 Expands over time 1452
Flee 500 Expands over time 1469
Flee 1000 Expands over time 1597
Flee 2000 Expands over time 2417
Defend 5 Collapsed into knot 166
Defend 50 Collapsed into knot 237
Defend 100 Collapsed into knot 247
Defend 200 Collapsed into knot 231
Defend 500 Collapsed into knot 260
Defend 1000 Collapsed into knot 280
Defend 2000 Collapsed into knot 257

51

4. Simulation and validation of bio-systems

4.5 Summary

This chapter covers some parts of following objectives:

O1: Investigate on spatial systems, modelling formalisms for spatial bio-MAS

outlining properties and disadvantages of existing modelling formalisms, as

well as verification and simulation strategies and how can they be enhanced

to better support complex spatial bio-MAS.

O2: Identifying illustrative case studies which are scalable (experiments with

different numbers of agents), simple to be modelled and have spatial char-

acteristics.

Parts of this research were published in [68] and [66].

52

Chapter 5

Tools for Simulation

This chapter presents a survey of visual simulation platforms which are suitable

for spatial state-based MAS models: NetLogo, Repast and the Flame visualiser.

The comparison of these simulation platforms is based on the several criteria,

namely: modelling, implementation, validation, verification, testing, visualisa-

tion, supported size of MAS and high performance computing.

5.1 Simulation platforms

NetLogo [95] is a simulation platform for multi-agent systems. It is supported by

a functional language that can represent an agent’s behaviour, as well as by an

environment for the creation of a graphical user interface. As a programmable

modelling environment, NetLogo is specialised in simulating natural and social

phenomena, including modelling of complex systems [95, 94]. NetLogo supports

an agent’s actions called commands, and functions that compute and report re-

sults, reporters. The environment comes with many built-in commands and re-

porters called primitives, but the modeller is also allowed to define their own,

called procedures. Furthermore, it supports custom defined agent and/or global

variables, along with the built-in agent variables like the agent coordinates and

heading.

Repast (REcursive Porous Agent Simulation Toolkit) [61, 14], a framework

for creating agent-based simulations. It is composed of library of classes (i.e.

53

5. Tools for Simulation

programs) which enhance the creation, running and display of MAS models. This

system comes with a graphical user interface which can provide outputs in the

form of a histogram, visual display of the interactions between the agents, or a

chart of time-series data. This platform allows the specification of the logical and

spatial structure of a model, the types of agents a model is composed of, and

the individual properties and behaviour of the agents themselves. In this work

we are interested in its latest release Repast Simphony. Repast provides visual

point-and-click tools for model execution, as well as visualization and storage of

the results. Automated results analysis, data mining and statistical analysis tools

are also included [61].

Interesting to note is that Flame models can be visualized natively with the use

of an external tool which comes with Flame, i.e. the Flame visualiser. Moreover,

there is an extension to the Flame framework, Flame GPU, which is a high

performance Graphics Processing Unit (GPU) [80]. Flame GPU models can be

visualised in real time.

5.2 Comparison of simulation platforms

This section provides a comparison between NetLogo, Repast and Flame based

on the following criteria:

� Modelling: diagrammatic or declarative state-based modelling. Diagram-

matic models can be built by utilizing, for instance, flowcharts. Declarative

models can be built with the use of a description language.

� Implementation: coding with the use of a programming language (func-

tional, object oriented, scripting, etc.).

� Validation: a process used to demonstrate that the model is built right and

that it satisfies its intended use when placed in its intended environment.

� Verification: a process used to confirm that the model is correct with respect

to its requirements. One approach of formal verification is model checking,

a thorough exploration on a predetermined state space, trying to conclude

whether some properties of a complex system are being met.

54

5. Tools for Simulation

� Testing: a dynamic technique for providing a series of inputs and comparing

the respective outputs with the documented specification.

� Visualisation: visual output of the simulation platform.

� Supported size of MAS and High Performance Computing (HPC).

These factors are considered to be the most important when it comes to the

visualization of spatial MAS. However, other factors such as related tools for

development, interface, documentation, ease of use, support, open source code,

extensibility, and GUI creation, should not be excluded. For the purposes of

the comparison, Case Study 4.1: Aggressor-Defender. was implemented in all

NetLogo, Repast and Flame environments. Table 5.1 demonstrates the function

defend and Tables 5.2 and 5.3 show the description of the model.

Table 5.1: Aggressor-defender game: The function defend in NetLogo, Repast
and Flame

FUNCTION defend in NetLogo

to defend

facexy ([xcor] of friend +

[xcor] of enemy) / 2

([ycor] of friend +

[ycor] of enemy) / 2

end

FUNCTION defend in Repast Simphony (ReLogo)

def defend () {

facexy (({ xcor }.of(friend) +

{ xcor }.of(enemy)) / 2,

({ ycor }.of(friend) +

{ ycor }.of(enemy)) / 2)

}

FUNCTION defend in Flame

double handle_defend_X(double friendX , double enemyX)

{ double newPosition = (friendX + enemyX)/2;

return newPosition ;}

double handle_defend_Y(double friendY , double enemyY)

{ double newPosition = (friendY + enemyY)/2;

return newPosition ;}

55

5. Tools for Simulation

Table 5.2: Aggressor-defender game: Definition of the MAS in NetLogo and
Repast

Description of the model in NetLogo

to setup

clear -all

create -turtles no-of-turtles

ask turtles [

set xcor random -xcor

set ycor random -ycor

set color one -of [red blue]

set friend one -of other turtles

set enemy one -of other turtles

]

end

Description of the model in Repast Simphony (ReLogo)

def setup() {

clearAll ()

createTurtles(noOfTurtles)

ask (turtles ()){

xcor = randomXcor ()

ycor = randomYcor ()

color = oneOf ([red(),

blue()])

friend =

oneOf(other(turtles ()))

enemy =

oneOf(other(turtles ()))

}

}

5.2.1 Modelling

When it comes to defining agents and their communication links, NetLogo and

Repast are weak in terms of modelling methodology. Instead, they provide an

implementation language with which the user is expected to code the desired

system. The declarative part of Flame enforces the modeller to think in terms of

design. This represents a clear advantage of this framework.

X-machine models can be easily converted to Flame for the purpose of visual

simulation, because every agent in Flame is an X-machine. The Flame framework

is composed of X-agents, which have: states, memory, transition functions that

use a memory, and input messages facilitating the agent to change a state. An

example of the memory declaration can be found in Table 5.2 and Table 5.3, and

the functions definition in Table 5.4. Finally, Repast Simphony models can be

also built by utilizing point-and-click flowcharts.

56

5. Tools for Simulation

Table 5.3: Aggressor-defender game: Definition of the MAS in Flame

Description of the model in Flame

<agents >

<xagent >

<name >FriendEnemy </name >

<memory >

<variable ><type >int </type >

<name >agent_id </name >

<description ></description ></variable >

<variable ><type >double </type >

<name >agent_x </name >

<description ></description ></variable >

<variable ><type >double </type >

<name >agent_y </name >

<description ></description ></variable >

<variable ><type >int </type >

<name >friend [4]</name >

<description >int_list [4]</ description >

</variable >

<variable ><type >int </type >

<name >enemy [4]</name >

<description >int_list [4]</ description >

</variable >

<variable ><type >char </type >

<name >strategy </name >

<description ></description >

</variable >

</memory >

</xagent >

</agents >

Table 5.4: Aggressor-defender game: Defining functions in Flame
<functions >

<function >

<name >sendinformation </name >

<currentState >00</ currentState >

<nextState >01</ nextState >

<outputs >

<output >

<messageName >agentInformation </ messageName >

</output >

</outputs >

</function >

<function >

<name >move </name >

<currentState >01</ currentState >

<nextState >02</ nextState >

<inputs >

<input >

<messageName >agentInformation </ messageName >

</input >

</inputs >

</function >

</functions >

57

5. Tools for Simulation

5.2.2 Implementation

Observing the snippets of code provided in Table 5.1, Table 5.2 and Table 5.3,

it becomes apparent that NetLogo and Repast have a very similar syntax; which

sets them apart from Flame. The NetLogo programming language is fairly simple,

a procedural language based on follow up languages of Logo. NetLogo supports

external procedures/reporters in Java and Scala, and it has an extension that

allows the execution of Prolog inside NetLogo code. The Repast Simphony model

was build using ReLogo which is a dialect of Logo. However, Repast Simphony

models can be also built by utilizing Groovy or Java. Table 5.1 demonstrates

usage of the C programming language for writing functions in Flame. This might

represent a problem for the modellers, given that C requires a certain experience

and expertise.

Movement functions and manipulation of an agent’s position and direction, are

the most important spatial characteristics. Unlike Flame, NetLogo and Repast

support these characteristics natively. As it can be seen in Table 5.1, Table 5.2

and Table 5.3, the Flame implementation of the coordinates of an agent (the

variables agent x and agent y) are a custom user variable of any type chosen

by the modeller. This notion makes it more difficult to write Flame models for

spatial MAS or to understand existing models. Furthermore, there is an increased

level of difficulty when it comes to writing movement functions in Flame. The

modeller computes the values of what the new coordinates of the agent should

be, and then to update the custom variable that was assigned to hold the values

for the agent’s coordinates. This is much simpler with NetLogo and Repast. The

built in function facexy accepts input values for the x and y coordinates of the

agent, and automatically updates the coordinates of that agent resulting into

movement.

NetLogo and Repast have the advantage of assigning agents to positions ran-

domly, therefore allowing for the set up of different simulation scenarios automat-

ically. Flame requires that agents are individually instantiated in a set up file.

This usually involves writing an external program which will help into generation

of data for the set up file.

58

5. Tools for Simulation

5.2.3 Validation, Verification and Testing

NetLogo, Repast, and Flame support only empirical validation. This technique

can be performed by collecting the generated time-series output (or other data)

from the simulation and then comparing it to collected data from the real world.

NetLogo does not support verification or testing techniques [95, 94]. Similarly,

Repast does not support verification techniques [29]. There is, however, active

research towards testing techniques, which include a generic testing framework

for agent-based simulation models [15, 29]. Finally, given that Repast is entirely

built in Java, it supports a test-driven simulation development [15], i.e. unit tests

can be carried out to validate the behaviour of a model.

Although the main unit of Flame is an X-machine which is supported by

verification and testing strategies [31, 46], there is not a general methodology

to natively employ these techniques into Flame. A possible solution includes

verifying and testing an agent’s model individually, which would cover only the

micro-level of the system. Some research has shown that dependence analysis

techniques that aid automated test case generation, can also aid the testing of

Flame models [83, 12]. This approach is not natively adopted by Flame.

5.2.4 Visualisation

An interesting concept about the visualization tool in NetLogo and Repast is the

fact that they produce output in real time. Flame on the other hand, requires

that a model is initially run for a specific number of iterations, producing a

textual output. This textual output can be later visualized by utilizing the Flame

visualiser [83, 12]. Therefore, the models of NetLogo and Repast are directly

executable into visual simulation, while Flame models can be visualized with the

use of an external tool.

Comparing the forms of output, Repast can provide a histogram, visual dis-

play of the interactions between the agents, or a chart of time-series data. On

the other hand, NetLogo supports the following visualization options: line, bar,

scatter plots, and visual display of the interactions between the agents as 2D

and 3D models. Flame behaves poor in this aspect, i.e. it supports only visual

interactions display.

59

5. Tools for Simulation

Finally, NetLogo and Repast are characterised with visualisers of a very good

quality. On the other hand, the Flame’s visualiser is in very early stages of its

development.

5.2.5 Supported Size of MAS and HPC

NetLogo supports hundreds or thousands of agents to operate independently,

providing a clear picture of the micro-level behaviour of the agents, as well as

the macro-level patterns (emergence) within the whole system. One example is

the Segregation model, which was inspired from social systems (such as housing

patterns in cities) and demonstrates a large-scale patterns model [94]. NetLogo,

however, does not support high performance computing.

Repast Simphony is very similar to NetLogo regarding to the supported size

of MAS and it also does not support high performance computing. There is an-

other release of this framework, Repast for High Performance Computing (Repast

HPC) intended for large-scale distributed computing platforms tested to work in

a parallel distributed environment [61]. Repast HPC is written in C++ using

Message Passing Interface (MPI) for parallel operations [61].

Flame has a clear advantage by supporting simulations that contain up to

millions of agents [17]. Furthermore, only Flame is designed to utilise high per-

formance computing, and has been tested to work on both serial and parallel

systems [12].

5.3 Conclusions on the comparison

This chapter provides a survey of visualization platforms that, starting from a

formal model, are most suitable for spatial state-based MAS models: NetLogo,

Repast and Flame. One of the main purposes of this review is to investigate which

simulation platform will be best suited for automated translation of a state-based

formal model to executable code for visualisation. The results of the comparison

between NetLogo, Repast and Flame, are summarized in Tables 5.5 and 5.6.

It is safe to conclude that NetLogo and Repast possess the features that make

them more suitable to code simulation of spatial agents. In contrast, Flame,

60

5. Tools for Simulation

Table 5.5: Comparison between NetLogo, Repast and Flame: Modelling and
Implementation

Characteristics: NetL-
ogo (NL), Repast Sim-
phony (RS) and Flame
(F)

NL RS F Notes

Modelling

State-based modelling × ×
√

Other modelling methods ×
√

× Repast can be built by utilizing

point-and-click flowcharts.

Implementation

Native support of move-
ment functions

√ √
×

Agents have embedded po-
sition and direction

√ √
×

Agents can be assigned to a
random position

√ √
×

Fairly simple programming
language

√
× × Repast is more complex than

NetLogo. Flame functions are

written in C, which requires ex-

perience and expertise.

Automatic set up of differ-
ent simulation scenarios

√ √
× Flame agents have to be indi-

vidually instantiated in a set

up file.

External language interface
√ √

× Java, Scala and Prolog for

NetLogo. ReLogo, Java and

Groovy for Repast.

since it is based on X-machines, inherits XM verification and testing strategies

but does not have a built-in functionality for spatial agents. Moreover, Flame

supports HPC and models with millions of agents. These advantages make Flame

of a particular interest for this research.

Based on the disadvantages of NetLogo, Repast and Flame, there are cer-

tain ideas for extending these platforms and developing tools to support spatial

MAS better. For instance, Flame can be extended to support spatial properties.

61

5. Tools for Simulation

This includes support for modelling movement functions and manipulation of an

agent’s position and direction natively. Moreover, automatic set up of different

simulation scenarios for Flame can be solved by providing a tool which will behave

in the NetLogo/Repast manner, with the use of a graphical interface. To support

visualization in Flame a tool may be developed to read the produced textual out-

put in real time, and feed the Flame visualiser with partial data as they are being

generated. On the other hand, NetLogo, Repast and Flame have very poor native

support to verification, validation and testing strategies. If the spatial (formally

unverifiable) properties are removed from the spatial MAS, there is still the need

to formally verify, validate and test the remaining properties. Therefore, there is

a ground for developing tools for automatic translation from a NetLogo, Repast

and Flame models, into another platform supported with verification or testing.

5.4 Summary

This chapter covers parts the following objectives:

O2: Identifying illustrative case studies which are scalable (experiments with

different numbers of agents), simple to be modelled and have spatial char-

acteristics.

O3: Linkage with simulation platforms in order to observe emergent behaviour.

O4: Proving the appropriateness of the method through simulations and visual-

isations.

The comparative study of tools for visualisation of state-based spatial multi-

agent models was published in [64] and [67].

62

5. Tools for Simulation

Table 5.6: Comparison between NetLogo, Repast and Flame: Visualisation, Cor-
rectness and HPC

Characteristics: NetL-
ogo (NL), Repast Sim-
phony (RS) and Flame
(F)

NL RS F Notes

Visualisation

In real time
√ √

×
Directly executable as a vi-
sual simulation

√ √
×

Support to other types of
display besides visual inter-
actions

√ √
× NetLogo supports visual inter-

actions display, line, bar, and

scatter plots. Repast supports

histogram, visual interactions

display and a chart of time-

series data.

Display quality and easiness
to set it up

√ √
×

Comes as an embedded tool
√ √

×
Correctness

Verification support theory × ×
√

Flame inherits the verification

strategies from X-machines.

Validation support theory
√ √ √

They support only empirical

validation.

Testing support theory ×
√ √

Unit tests can be carried out

to validate the behaviour of a

Repast model. Flame inherits

the testing strategies from X-

machines.

HPC

HPC support × ×
√

There is another release for

Repast designed for HPC

(Repast HPC). Flame HPC

works on both serial and

parallel systems.

Support of millions of
agents

× ×
√

63

Chapter 6

Framework for modelling and

verification of spatial MAS

Emergence is a pattern appearing in the configuration of the agents, at some

instance during the lifetime of the system. Spatial systems exhibit the type of

emergence related to the positioning in space (such as line formation, flocks,

schools, herds etc.). However, formal verification techniques can only be applied

under the assumption that the emergent property is known beforehand. In order

to be able to tackle this kind of problems, a research framework, depicted in

Fig. 6.1 is proposed. This framework helps in identifying emergent behaviour

through the automatic transformation of a formal model to an executable visual

simulation [68].

6.1 Overview of the modelling and verification

framework

Combining the discussion of modelling, formal verification and simulation, there

is a need to identify or create a modelling formalism that will provide:

� Ability to model the internal states of an agent, the agent’s perception and

the agent’s knowledge of the environment.

� Ability to model how the agent changes its internal state and knowledge.

64

6. Framework for modelling and verification of spatial MAS

� Ability to represent links and exchange of messages between agents.

� Ability to represent spatial characteristics natively.

� Support to formal verification (ex. model checking).

� Complete testing strategy.

� Support for visual animation tools.

Assuming that we can develop such a formal model, it is interesting to consider

what property to check for, that is, whether there is an emergent behaviour a

given system. The spatial properties are common to every bio-MAS and they are

complex for modelling and verification. An interesting question may arise:

How can we handle the spatial properties, as to reduce the complexity

in modelling of bio-MAS?

The proposed framework is depicted in Fig. 6.1. At the top, we start by formal

modelling of agents. Such formal models should be able to clearly distinguish

modelling of various types of behaviours, such as spatial or other behaviours,

communication, dynamic organisation etc. By separating the various behaviours

within the same formal model, it is possible to apply different transformations

which will facilitate further processing. This can be presented as follows:

� On one hand, the spatial behaviour determined by movement in space, can

lead towards visual animation. The latter is a useful informal tool which

will help identification (or observation) of potential emergent properties,

properties1.

� On the other hand, suitable abstractions of spatial behaviour together with

the rest of the behaviours can lead towards simulation and logging of

time-series data. These could be used to identify patterns of behaviours,

properties2.

All of the properties1 and properties2 can be combined and possibly filtered

(some properties may be excluded) to produce a set of desired properties. Finally,

the desired properties (including emergence) can be verified in the original spatial

65

6. Framework for modelling and verification of spatial MAS

Figure 6.1: A framework for validating emergent properties in spatial biology-
inspired MAS.

agent model by model checking, as long as there is a way to transform the original

model into an equivalent, susceptible to formal verification, model.

A question may arise:

How is it possible to verify the desired properties since it is claimed

that verification of spatial properties leads to a state explosion if one

tries to model-check a complete model?

The answer of this question lies in the definition of the model that will be used

for formal verification. Basically, this model must contain suitable abstractions

of the spatial behaviour.

It can be stated that this method might have the following disadvantage:

66

6. Framework for modelling and verification of spatial MAS

� If the emergent behaviour is not known in advance, how can one guarantee

that it is not introduced by an error in the model?

Therefore, it is desired that the discovered emergent behaviour are carefully

examined and the model goes through the all of the steps of the framework

possibly more than one time.

6.2 Instantiation of the modelling and verifica-

tion framework

Emergence

Simulation
MAS Model

suitable for

Model Checking

Time Series Data

Other

properties
Spatial

properties

Other

behaviours

Spatial

behaviours

Transformation

Transformation

Pattern Identification
Visual animation

Figure 6.2: A XM instance of the framework for validating emergent properties.

This framework can be instantiated in many different ways. One possibility

is to utilise the XMs approach for the initial model, see Fig. 6.2. The spatial

behaviour can be detected by utilizing NetLogo. This means that the initial XM

67

6. Framework for modelling and verification of spatial MAS

model should be translated to an equivalent NetLogo model. The logging of time-

series data might be accomplished with a tool such as FLAME. The next step

involves utilizing a tool for identifying patterns, such as DAIKON [56]. Finally,

the XM can be suitably transformed into an equivalent model in SPIN, PRISM or

SMV [33, 50, 55] which will have suitable abstractions of the spatial behaviour.

In this case, given a temporal formulae, all of the desired properties could be

verified upon the original model. More information about this framework can be

found in [68].

It is important to stress that the spatial definition separates the XM memory

into two components, which can be observed as:

� A skeleton XM that can be used for verification and testing ; and

� A spatial XM that can be used for simulation and identification of proper-

ties.

To highlight:

� XM model can be translated in code of a simulation tool, which in turn can

generate a time-series data.

– Such tool may be FLAME, which is used to animate XM models with

thousands of agents.

– FLAME does not deal with the spatial behaviour. This can be mod-

elled with NetLogo.

� The logged time-series data can serve as an input to a tool identifying

patterns, such as DAIKON.

– The output would be interesting properties that combined with the

emergent properties from visual animation could aid us forming the

logic temporal formulae to verify.

� The XM can be suitably transformed into an equivalent model in SPIN,

PRISM or SMV with abstractions of the spatial behaviour.

� Given a temporal formulae, it can be verified that all the desired properties

hold in the original model.

68

6. Framework for modelling and verification of spatial MAS

Emergence

Simulation

Time Series Data

Other

properties
Spatial

properties

Other

behaviours

Spatial

behaviours

Transformation

Transformation

Pattern Identification
Visual animation

MAS Model

suitable for

Model Checking

Figure 6.3: A P systems instance of the framework for validating emergent prop-
erties.

Other options include utilising P systems approaches for creation of the ini-

tial model, Fig. 6.3. Such possibilities could be PPS or kernel P systems (kP

systems) [26], which are in essence an unifying framework for P systems. This

would be particularly useful because recent research supports verification of var-

ious properties of P systems with active membranes and kernel P systems, using

different tools like NUSMV [25], SPIN [38] and RODIN [35, 91]. This is very

similar to what was already proposed on the XM model as well. The expressive

power of kP systems is illustrated in a number of recent investigations [27, 40].

Most interesting for instantiation of the framework is the research that uses the

kP system as a modelling tool for biological systems [92], which shows how an

X-machine based model developed in FLAME can be naturally transformed into

kP system models.

It can be noted that Fig. 6.2 and Fig. 6.3 are divided into three stages: S1, S2

69

6. Framework for modelling and verification of spatial MAS

and S3. The following two chapters are going to focus on the stage S1 of Fig. 6.2

and the stage S1 and S2 of Fig. 6.3. Stage S3 in both of them can be considered

as future work.

6.3 Summary

The following objective was met with this chapter:

O5: Devising a framework that will combine all of the steps of developing spatial

bio-MAS into a process to improve the standard modelling and verification

approach for bio-MAS.

The chapter captures a part of the following objective as well:

O4: Proving the appropriateness of the method through simulations and visual-

isations.

The framework towards the verification of emergent behaviour of spatial MAS

was published in [68] and [71].

70

Chapter 7

Formal modelling of spatial MAS

Biological MAS can be characterised as spatial systems; collections of agents

distributed and moving in a physical n-dimensional space. They have incom-

plete knowledge of the environment and can change their direction and position

through time. There are different approaches for modelling spatial phenomena of

biological systems, such as:

� Process algebra - can be applied to develop a calculus of processes that

could describe the spatial geometric transformations [9].

� Membrane computing - can be utilised by introducing geometric informa-

tion [82].

� Intracellular NF-κB signalling pathway - an agent-based approach for mod-

elling spatial information in predictive complex biological systems [73].

However, the combination of biological agents and spatial data modelling still

remains an active research field. For this purpose, modelling spatial properties

with the existing modelling formalisms targeted to bio-MAS is considered. The

spatial properties are common to every bio-MAS and they are complex for mod-

elling (as presented in Section 2.2). An interesting question may arise:

How can we handle the spatial properties, as to reduce the complexity

in modelling of bio-MAS?

71

7. Formal modelling of spatial MAS

The idea utilised involves extending the modelling formalisms. The following

sections demonstrate extending XM and PPS in order to support spatial prop-

erties. Similar approach is applicable to other formalisms as well. Finally, the

model instance in stage S1 of the framework for validating emergent properties

in spatial biology-inspired MAS described in 6.2, can be represented with these

new structures.

7.1 Spatial XM

Referring back to Figure 2.5, the following shortcomings were identified when

modelling spatial agents with XM:

� Even for the simplest model, there might be many different solutions for

representing the commonly found properties, such as the initial position or

the direction of a spatial agent.

� There are difficulties in simulating a given model because there is not a

standard way that deals with the manipulation and processing of the spatial

properties like the initial position or the direction of a spatial agent.

� All data structures, including the position and the direction are held in the

memory.

Initiated by these shortcomings, a question that can be imposed is: How can

we redefine XMs to support spatial agent modelling natively? The motivation

behind this question can be further broadened into the following aspects:

� The subset of MAS that deals with movement in space is quite numerous,

starting with bio-MAS, up to MAS used in many industrial applications

like robotics, etc.

� Different modellers might represent a spatial agent’s basic characteristics,

like position and direction, in different ways.

� The current XM representation for a spatial agent model does not directly

map to an animation/simulation.

72

7. Formal modelling of spatial MAS

� The current XM representation for a spatial agent model is rather cum-

bersome/difficult to code, and in many situations it is also difficult to be

understood.

� When it comes to verifying a spatial model with XM, this will result into

space explosion due to the spatial information.

7.1.1 Formal definition of spatial XM

There is an element of spatial fit that the biological colonies inhabit, but there is

not a straight forward way to formally represent a position, direction or movement

utilizing XMs (or any other formalism in this category).

XM are extended by defining three new components (and modifying some

existing ones in order to facilitate unification):

� A tuple containing the current position of the agent and an integer that

represents its current direction. The current position determines the agent’s

location in its environment, and the direction represents its heading (such

as 30 degrees, 90 degrees, etc.).

� A set containing elementary operations. These operations allow manipula-

tion with the current position tuple and the current direction.

The input and the output set, the memory, the set of states and the next state

remain intact, because these structures do not deal with the spatial attributes.

Definition 7.1. The new structure, named spatial XM (spXM) is a

13-tuple spXM = (Σ, Γ, Q, q0, π, π0, θ, θ0, M, m0, E, Φ, F), formally

defined as:

� Σ is an input set of symbols;

� Γ is an output sets of symbols;

� Q is a finite set of states;

� q0 is the initial state;

� M is an n-tuple called memory;

73

7. Formal modelling of spatial MAS

� m0 is the initial memory;

� π is a tuple of the current position, i.e. (x, y) when a 2D repre-

sentation is considered;

� π0 is the initial position;

� θ is an integer in the range 0 to 360, that represents a direction

(integer values are used as a design choice);

� θ0 is the initial direction;

� E is a set which contains elementary positioning operations: ei

such as ei : Π×Θ −→ Π×Θ, such as direction, moving forward

and moving to a specific position. Here Π and Θ are the sets of

π and θ accordingly;

� Φ is a finite set of partial functions ϕ that map a memory state,

position, direction and set of inputs to a new memory state,

position, direction and set of outputs:

ϕ: M × Π × Θ × Σ −→ M × Π × Θ × Γ; and

� F is a function that determines the next state, given a state and

a function from the type Φ, such as F:

Q × Φ → Q.

MEMORY, POSITION, DIRECTION

 m, π, θ m’, π’, θ’

φ
1

φ
3

φ
2

φ
2

φ
2

φ
5 φ

4

φ
4

S1

S2

S3

S4

input stream

output stream

σ

γ

Figure 7.1: An abstract example of a spXM.

An abstract example of spXM is provided in Fig 7.1. The memory M is

composed of M′ ˆ< π, θ >, where M′ is a memory structure from the standard

74

7. Formal modelling of spatial MAS

XM. Moreover, talking about the set which contains elementary operations, there

are currently three operations, defined as:

� change direction m - changes the spatial agent’s direction to m, where m is

of type θ and m ∈ Θ (ex. change direction 60)

� move n forward n - moves forward for n units, where n is an integer (ex.

move n forward 3)

� move to position x y - moves to specific position (x, y), where x is the x-

coordinate, y is the y-coordinate of the agent and (x, y) ∈ Π (ex. move to

position 126 43)

7.1.2 Discussion of spXM

The following discussion will concentrate on investigating whether spXM inherit

the mentioned verification and validation techniques of XMs. An informal proof

that an spXM is equivalent to any XM could be derived by investigating:

� The memory M of a normal XM is equivalent to the structure of memory

M, position Π and direction Θ within an spXM. In other words, the position

and direction can either become members of the memory tuple in a normal

XM model, or they can be excluded from the model without loss of its

integrity.

� Any function in an spXM model can be translated into a function of the nor-

mal XM. More particularly, the predefined spatial operations of a function

in an spXM model can be omitted or replaced with the standard XMDL

syntax to preserve the logic flow.

If a position is found in a precondition of a function it can not be removed

because it affect the behaviour. In this situation the position can be kept, but

a relatively small set of possible positions may be defined. Alternatively, the

position may be translated to a type Postion, such as Postion = {Postion1,

Postion2 ... Postionn}, n ∈ N0.

Along these lines, by removing the newly defined components that in essence

define an spXM, what we get is still a completely valid skeleton of a normal

75

7. Formal modelling of spatial MAS

Figure 7.2: Verification and validation of an spX-machine.

XM model. Therefore, spXMs tend to provide a standardised way of representing

some properties of the system, which could also be represented with an XM model

and this can lead in easy formalisation, verification (model checking), testing and

implementation. The only condition imposed would be not to test or model check

the position (coordinates) and direction properties, which in turn will result into

state explosion. Finally, spXMs are supported by formal verification strategies.

They inherit these strategies from XMs. spXMDL is facilitated with a parser built

using Definite Clause Grammars (DCG) notation [45] as presented in Fig. 7.2.

7.1.3 Modelling with spXMDL

A part of the XMDL representation for modelling Case study 2.1. The foraging

ant. introduced in Sect. 2.4.2 is presented in Table 7.1. The model is based on

the new spXM approach. In order to support spXM representation, the XMDL

specification went through some changes. For example, POSITION and DIREC-

TION are predefined basic types used to represent the position π or the direction

θ of a spXM:

#po s i t i o n POSITION.

#i n i t p o s i t i o n (2 , 3) .

76

7. Formal modelling of spatial MAS

#d i r e c t i o n DIRECTION.

#i n i t d i r e c t i o n 60 .

POSITION and DIRECTION can be used for denoting any kind of position

or direction, accordingly. As an instance, in the foraging ant case study the

memory holds an element of type POSITION which in essence represents the

position of the seed:

#memory (POSITION, s e ed i d) .

#init memory ((0 , 0) , n i l) .

The set of operations has the following predefined functions: change direction,

move x forward and move to position. The operations found in the set of oper-

ations could be directly used within a where statement of a function in order to

instantiate a parameter, This is shown in the function search for base Table 7.1.

7.2 Spatial PPS

There are many advances in the area of membrane computing up to date; and

Population P systems (PPS) with active cells are considered to be one of them [4].

Defined as an arbitrary graph-like membrane structure, they exhibit rather unique

characteristics towards modelling multi-agent systems (MAS) with a dynamic

configuration (such as biological MAS) [4].

Biological MAS comprised of communities evolving in space and time, such

as ant colonies, bacteria populations and skin-like tissues, are characterized with

certain dynamicity found not only at the bonding concept, but also at their in-

dividual properties. A bonding concept refers to introducing new, or removing

old communication links between cells/individuals, which in turn changes during

the evolution of a system. On the other hand, individual properties are formed

by the notion that a cell can divide or get dissolved; individuals are being born

or they die. These two aspects are actually the most prominent behaviour found

in this rather complex application’s domain, completely supported by PPS with

active cells through cell division, cell death and structure reconfiguration, accord-

ingly. However, when it comes to evolution in space, whether it is at individual

or community level, it is argued that there is one more piece left out from the

77

7. Formal modelling of spatial MAS

Table 7.1: Modelling the foraging ant case study with spXM.

#model foraging ant.

#memory (POSITION, seed id).
#init memory ((0, 0), nil).
#position POSITION.
#init position (2, 3).
#direction DIRECTION.
#init direction 60.

#fun search for seed ((?new seed id), (?base position,
?carrying seed id), ?curr position, ?curr direction)=
if ?carrying seed id = nil and ?new seed id = nil then
((ant keeps moving empty), (?base position, nil),
?new position, ?new direction) where
?new position <- move x forward 1 and
?new direction <- change direction 10.

#fun search for base ((?new seed id), (?base position,
?carrying seed id), ?curr position, ?curr direction)=
if ?curr position\= ?base position and
?carrying seed id\= nil then
((ant searches for base), (?base position,
?carrying seed id), ?new position, ?curr direction) where
?new position <- move to position ?base position.

puzzle, i.e. the spatial characteristics found in nature. PPS with active cells do

not have explicit means and full support to these characteristics, which could be

simply defined as the position, the direction and the moving function of a cell or

an individual.

7.2.1 Formal definition of spatial PPS

An extension of PPS with active cells, namely spatial PPS (spPPS) introduces

the following spatial objects:

� (Πi:πi) ∈ V is a predefined object denoting the cell’s position, with values

78

7. Formal modelling of spatial MAS

πi ∈ N0 × N0 and a label Πi that stands for position; and

� (∆i:δi) ∈ V is a a predefined object denoting the cell’s direction, with values

0 ≤ δi ≤ 360 and a label ∆i that stands for direction.

Formally, a cell can be defined as a tuple Ci = (wi, Πi, ∆i, ti), for each 1 ≤ i

≤ n (where n is the total number of nodes/cells in the system), where wi ∈ V is

a finite multiset of objects (such as wi = (αi:υi)), ti ∈ K is a type and the spatial

properties (position and direction) are represented as (Πi:πi) and (∆i:δi).

Other changes that were introduced in the spPPS approach are the set of rules

R = Re ∪ Rs ∪ Rsp , where:

� Re is the finite set of cell evolution rules (communication, transformation,

differentiation, division and death rules) found in the basic PPS with active

cells;

� Rs = {((x:a); (y:b), incopy)t, ((x:a); (y:b); entercopy)t, ((y:b), exitcopy)t} is

the finite set of sensing rules ((x:a) ∈ V, (y:b) ∈ V); and

� Rsp is a finite set of cell spatial rules.

The spPPS definition is currently formulated to target spatial movement in

2-D space, however it can be easily generalised for spatial movement in an envi-

ronment with any dimension n-D. spPPS basically define new types of predefined

cell objects (that represent the cell’s position and direction), new type of commu-

nication rules (that define sensing properties) and spatial rules (used to establish

movement functions). Complete description and documentation of spPPS can be

found in [66].

The formal definition can be presented as follows:

Definition 7.2. spPPS = (V, K, C1, C2,..., Cn, wE, γ, α, R, O),

such as:

� V is a collection of all the objects from all the cells within the

system, including the objects from the environment;

� K is a collection of all the different types, associated with each

individual cell in the system to identify different classes/types of

cells;

79

7. Formal modelling of spatial MAS

� Ci = (wi, Πi, ∆i, ti), for each 1 ≤ i ≤ n (where n is the total

number of nodes/cells in the system);

� wE ∈ V is the multiset of objects initially assigned to the envi-

ronment;

� γ is the initial structure of the undirected graph, formally defined

as:

γ = ({1, 2,... n}, A), with A ⊆ {{i, j} | 1 ≤ i ̸= j ≤ n};

� α is a finite set of bond making rules (t, x1; x2, p), such as x1, x2

∈ V and t, p ∈ K ;

� R = Re ∪ Rs ∪ Rsp;

� O is a partial order over the set of all evolution rules R.

This definition is currently formulated to target spatial movement in 2-D

space, however it can be easily generalised for spatial movement in an environ-

ment with any dimension n-D. spPPS basically defined new types of predefined

cell objects (that represent the cell’s position and direction), new type of commu-

nication rules (that define sensing properties) and spatial rules (used to establish

movement functions). In order to define movement and change of direction (to

specific or random values), a particular type of rules, called spatial rules, were

introduces as follows:

� (A; Π, move B)t where B ∈ Z ∪ {Rand} – In presence of an object A in a

cell of type t, set Π at position B steps forward/backward (depending if B

holds a positive or negative value, respectively). If B holds the value Rand,

set Π at a random number of steps forward/backward;

� (A; Π, set B)t whereY ∈ {(N0 × N0) ∪ Rand} – In presence of an object

A in a cell of type t, set Π at position B. If B holds the value Rand, set Π

at a random position;

� (A; ∆, set B)t where B = Rand or 1 ≤ B ≤ 360 – In presence of an object

A in a cell of type t, set ∆ at direction B. If B holds the value Rand, set ∆

at a random direction;

80

7. Formal modelling of spatial MAS

And finally, for a given subset of evolution or spatial rules r1, r2, r3..., the

partial order O would allow ordering, for example r1, r2 ≻ r3 means that any

rule that among r1 and r2 can be non-deterministically chosen, as long as they

execute before r3.

This definition is currently formulated to target spatial movement in 2-D

space, however it can be easily generalised for spatial movement in an environment

with any dimension n-D.

7.2.2 Discussion of spPPS

The idea behind spPPS is to maintain all the advantages of PPS with active cells,

which makes them one of the most suitable formalisms for modelling the macro-

level of biologically inspired multi-agent systems with a highly dynamic nature.

Some of the most prominent advantages of PPS with active cells are their support

towards [87]:

� Non-deterministic communication – As opposed to deterministic commu-

nication, this property engages choices from indistinguishable possibilities,

i.e., a communication rule is selected randomly;

� Dynamic addition and removal of agent instances – Cells can be introduced

in (cell division) or removed from (cell death) the system, during the sys-

tem’s evolution;

� Dynamic restructuring of the communications network – Cells can change

the links (bonds) of their interconnection (form new bonds with other cells,

or destroy existing bonds) as the system evolves. In other words, this implies

to the concept of communication change;

� Maximal and arbitrary parallelism – These properties refer to the support

of applying a maximal/arbitrary number of rules, but only one instance of

any rule (selected non-deterministically) used at each computation step.

spPPS basically defined new types of predefined cell objects (that represent

the cell’s position and direction), new type of communication rules (that define

81

7. Formal modelling of spatial MAS

sensing properties) and spatial rules (used to establish movement functions). The

detailed specifications are going to be further explained, as follows.

All the objects in the system, including the cell’s position and direction, as

well as the objects that belong to the environment are represented in the form

(label:value), where label is a descriptor of the object and value holds the actual

object’s value, such as (age:N0) or (temperature:R). As for the cell’s position and

direction, they are treated as all the rest of the objects, therefore the existing bond

making rules found in the PPS with active cells definition, now allow manipulation

with the spatial objects, i.e. (t, (Π1:π1); (Π2:π2), p) where t, p ∈ K, is a valid bond

making rule. Similarly, the spatial objects can be used in all of the evolution rules

as well, and there might be objects that belong to the environment of these types

(π and δ). spPPS however, define the following three new sensing communication

rules: ((x:a); (y:b), incopy)t, ((x:a); (y:b), entercopy)t and ((y:b), exitcopy)t. The

difference from the existing communication rules is that now a copy of an object

can be communicated through the cell’s membrane, rather than the actual object.

If there is already an object within the cell with the same label as the copy,

this object will be replaced with the new one. A graphical summary of all the

evolution rules that exists in spPPS is provided in Fig. 7.3 (types of rules: i.–iii.

communication, iv. transformation, v. differentiation, vi. division, vii. death

rules and viii.–x. sensing communication rules).

7.2.3 Modelling with spPPSDL

Case Study 2.2: Ant lines. introduced in Sect. 2.5.2 can be modelled utilising the

new spPPS approach as presented in Table 7.2 (note that x represents any). This

can be compared with the implementation utilizing the PPS approach, already

presented in Table 2.4.

On each evolution cycle, all of the rules R are applied in parallel. The new

spatial objects defined in spPPS are optional and applicable only to the cells

that resemble biological moving individuals. On the other hand, an interesting

concept introduced within the spatial rules is the awareness of randomness, a

notion commonly found in the natural biological processes. Finally, the idea

behind the new communication rules allows the sensing characteristics, or more

82

7. Formal modelling of spatial MAS

Figure 7.3: Evolution rules in spPPS (a ∈ V, b ∈ V).

particularly object multiplication.

7.3 Conclusion

As it can be determined from the definition, a spXM in essence provides a sep-

aration of the behaviour within the system that deals with the movement (and

the other spatial attributes) from the rest of the behaviour. This provides a stan-

dardised way to modelling motion, which is easily understandable and provides a

direct mapping to an animation/simulation. And finally, this definition maintains

an obvious equivalence with the standard XM.

The new definition of spPPS expanded the limitations and/or difficulties that

were found in this modelling formalism when it comes to spatial agent proper-

ties, as discussed in Sect. 2.5. spPPS provide an intuitive and flexible way to

model spatial and temporal properties. Moreover, it allows modelling of these

characteristics with a great level of detail, which in turn would results to a more

prominent emergent behaviour. One might argue that some of the improvements

found in spPPS could be actually modelled with the standard PPS approach.

However, by introducing all of the new spatial characteristics in the spPPS def-

83

7. Formal modelling of spatial MAS

Table 7.2: Modelling the ant lines case study with spPPS

V = {(nest position:π),(food position:π), (timer :N0),(ant no: N)}
K = {leader ant, follower ant}
γ = ({ant1, ant2, ant3,... antn},
{{ant1, ant2}, {ant2, ant3}, ... {antn−1, antn}})
α = {(leader ant, (ant no: 1); (ant no: 2), follower ant),
(follower ant, (ant no: i); (ant no: i + 1), follower ant)}
wE = {(nest position: (0, 0)), (food position: (0, 50))}

C1 = ({(Π1: nest position), (∆1: 60), (ant no: 1)}, leader ant)
Ci = ({(Πi: nest position), (∆i: 60), (ant no: i), (timer : 0)}, fol-
lower ant), for 2 ≤ i ≤ n

R = {r1, r2,...r6}, such as:
r1 = ((timer :t) → (timer : t + 1))follower ant – transformation rule,

for each of the cells with a type follower ant, increase the timer object
by one.

r2 = (Πi)x → �, if Πi = food position, for 1 ≤ i ≤ n – death rule, once
a cell (of any type) reaches at the position of the food, this cell dies.

r3 = (x; ∆1, set Rand)leader ant – spatial rule, set random direction
to a cell of a type leader ant

r4 = (x; ∆i, set ∆i−1)follower ant, for 2 ≤ i ≤ n – spatial rule, set the

direction of a cell with a type follower ant to be the set the direction
of the preceding cell.

r5 = (x; Π1, move Rand)leader ant, Rand ∈ {-1, 0, 1} – spatial rule,
set random position to a cell of a type leader ant

r6 = (timer; Πi, move Rand)follower ant, if timer ≥ 2 + i where Rand

∈ {-1, 0, 1}, for 2 ≤ i ≤ n – spatial rule, set random direction to a
cell of a type leader ant if there is a object of type timer with value 2
+ i.

O = {r1 ≻ r2 ≻ r3, r4 ≻ r5, r6}

84

7. Formal modelling of spatial MAS

inition, a greater idea than uniform representation is established, i.e. forming a

basis towards informal validation of this modelling formalism.

7.4 Summary

The following objectives were met with this chapter:

O6: Extending the definition of approaches for modelling bio-MAS with geomet-

rical elements into a coherent model.

O7: Extending existing tools with features coming out of the new definitions.

Parts of this research were published in [70], [71] and [66].

85

Chapter 8

Visualisation and simulation of

spatial MAS

8.1 Simulation of spXMs

Referring to an earlier discussion for combining formal with informal techniques

towards the verification of spatial MAS, it is suggested to utilise visual animation

for detecting the emergent properties of a system, such as the NetLogo platform.

However, given an XM model, it is not always easy to map its representation into

an equivalent NetLogo code. This is due to the already discussed disadvantages

in Sec. 7.1 that deal with the behaviour of the system that represents motion

(and the other spatial attributes). This raises the question: Having a model of

a system, how can we visualise it? spXMs overcome the problem found in XMs

models, and thus enhance visual animation, as the agent’s position and direction

can be interpreted into motion within an animation platform. This feature opened

ideas for automation of the simulation scenarios for an spXM model, resulting into

a tool spXM2Visual.

8.1.1 SPXM2VISUAL CONVERSION TOOL

The mapping presented in Fig. 8.1 provided inspiration to pursue an automatic

mechanism that would translate a spXM model into code for the NetLogo plat-

form. NetLogo was chosen as an initial choice and a similar work for Repast is

86

8. Visualisation and simulation of spatial MAS

currently in progress. A variation of this idea was presented in [65] concentrating

on the semi-automatic translation of XMs to NetLogo code (the user had to man-

ually write NetLogo code for modelling motion in the environment). However,

the spatial characteristics of a spXM make it possible for a fully automatic trans-

lation because now there is a mapping from the spXMDL model to the NetLogo

functions that represent movement. The tool developed is called spXM2Visual,

and its components are abstractly presented in Fig. 8.2.

Figure 8.1: spXM mapping to NetLogo.

Figure 8.2: System architecture of spXM-Visual.

As it can be noticed from Fig. 8.2, the spXM2Visual system architecture con-

sists of 2 main components, the parser (reports of possible errors, like types and

logical ones) and the compiler (contains all the rules and the logic for the trans-

lation). Given that NetLogo supports only lists (this is a mathematical structure

similar to the array found in a programming language), in order to produce an

equivalent NetLogo model from a spXM representation, there was a need of cre-

87

8. Visualisation and simulation of spatial MAS

Table 8.1: Examples of the NetLogo library

Math
primitive

NetLogo
structure

Operations NetLogo
functions

set list = are sets equal

e.g. set1={a, b} e.g.[“a”,“b”] ∪ set union

set2={a, d, e} e.g.[“a”,“d”,“e”] ∩ set intersection

Table 8.2: Rules for transformation
IF THEN

⟨FUNCTION HEAD⟩ ⟨TRANSLATED FUNCTION HEAD ⟩
where let ⟨EXPR⟩ ⟨NEW VAR⟩
⟨VAR⟩ ← ⟨EXPR⟩ where

⟨NEW VAR⟩ = ?memory ⟨the position of the
element⟩ ⟨the name given by the modeller⟩ if
⟨NEW VAR⟩ ∈ ⟨MEMORY⟩
or ⟨NEW VAR⟩ = ?input ⟨the position of the
element⟩ ⟨the name given by the modeller⟩ if
⟨NEW VAR⟩ ∈ ⟨INPUT⟩

ating an external library. This external library for NetLogo (included in the

compiler of Fig. 8.2) supports all the mathematical primitives found in spXMDL

(sets, bags, sequences, etc.) and their operations (see Table 8.1 for examples).

Moreover, the set of operations from spXMs is translated within this library as

functions (an agent’s movement to a certain position, the perception of the envi-

ronment, etc.). Finally, functions that deal with the modelling of the environment

(defining obstacles, defining agents, etc.) are included as well.

Except from the library, other interesting parts of the compiling component

are: the rules for transformation and the translator. The rules for transformation

are simple if-then rules. An example of such a rule for the where statement in an
spXMDL representation is presented in Table 8.2.

The rules for transformation are written as BNF grammar:

� If there is a where statement and it contains the sign “←”, then replace

this sign with let and swap the positions of the operand with the sign.

88

8. Visualisation and simulation of spatial MAS

� If there is an if statement and it has a sign “=<”, then replace it with

“<=”.

Or more complicated nested if-then rules :

� If there is a where statement and its condition starts with “?”, then re-

place the variable name with the following formatting α ⟨the position of the

element⟩ ⟨the name given by the modeller⟩, such as:

– If the variable name can be found in the memory tuple, then replace

α with memory.

– If the variable name can be found in the set of inputs, then replace α

with input.

� If there is an if statement and it has a sign “\\=”, then replace it with

“!=”.

� If there is an if statement and it has a sign “belongs”, then replace it with

“member?”.

� If there is an if statement and it has a sign “=<”, then replace it with

“<=”.

On the other hand, the translator is composed of:

� a reader - parses a spXMDL representation and constructs the necessary

objects;

� an object model - function, memory, state, transition, etc.; and

� a writer - used in writing the NetLogo code.

The translator is coded in Java. For example, Table 8.3 shows the beginning

of the XMachine class. This class represents an XM and belongs to the object

model part. Table 8.4 shows the function constructXM and this belongs to the

reader part.

Fig. D.1 in Appendix D shows the class diagram of the translator component.

The diagram is divided into 4 parts as explained in Appendix D.

89

8. Visualisation and simulation of spatial MAS

Table 8.3: Beginning of the XMachine class of the object model.

package objectmodel;

import java.util.ArrayList;

public class XMachine {

public String Name;

public Memory Memory;

ArrayList <Type > Types;

ArrayList <Type > Inputs;

ArrayList <Type > Outputs;

ArrayList <Transition > Transitions;

ArrayList <Function > Functions;

public XMachine () {

Name = "";

Memory = new Memory ();

Types = new ArrayList <Type >();

Outputs = new ArrayList <Type >();

Inputs = new ArrayList <Type >();

Transitions = new ArrayList <Transition >();

}

Referring back to the framework towards the verification of emergent be-

haviour of spatial MAS presented in Section 6.1, the XM model can be actually

substituted with the new created spXM model. The following benefits will be

achieved:

� It will be easier to transform a spXM model into a simulation tool that can

generate a time-series data, such as FLAME.

� There is an automatic translation of spXM models to NetLogo with the new
spXM2Visual tool.

Appendix C presents the compiled code with the spXM2Visual tool for a

simple implementation of the foraging ant case study. It should be noted that

the file xmdl.nls is the library with mathematical primitives and other functions

for modelling.

8.2 Simulation of spPPS

spPPS are supported with formal verification techniques. Spatial multi-agent

systems however, are complex in nature. This means that utilizing spPPS one

90

8. Visualisation and simulation of spatial MAS

Table 8.4: The constructXM method of the Constructor class in reader.

public void constructXM () {

Memory memory = new Memory ();

State state = new State();

ArrayList <Type > xmOutputs = new ArrayList <Type >();

ArrayList <Type > xmInputs = new ArrayList <Type >();

ArrayList <Transition > xmTransitions = new

ArrayList <Transition >();

ArrayList <Function > xmFunctions = new ArrayList <

Function >();

for (int i = 0; i < File.size(); i++) {

String curr = File.get(i).toString ();

if (curr.startsWith ("# model")) {

constructModel(curr);

} else if (curr.startsWith ("# type")) {

constructType(curr);

} else if (curr.startsWith ("# memory ")) {

constructMemory(curr , memory);

} else if (curr.startsWith ("# states ")) {

constructStates(curr , state);

}

}

for (int i = 0; i < File.size(); i++) {

String curr = File.get(i).toString ();

if (curr.startsWith ("# init_memory ")) {

constructInitMemory(curr ,

openingAndClosingQuote , memory);

} else if (curr.startsWith ("# init_state ")) {

constructInitState(curr , state);

} else if (curr.startsWith ("# input")) {

constructInput(curr , xmInputs);

} else if (curr.startsWith ("# output ")) {

constructOutput(curr , xmOutputs);

} else if (curr.startsWith ("#fun")) {

constructFunctions(curr , xmFunctions ,

memory , xmInputs);

} else if (curr.startsWith ("# transition ")) {

constructTransitions(curr , xmTransitions);

}

}

XMachine.setMemory(memory);

XMachine.setStates(state);

XMachine.setInputs(xmInputs);

XMachine.setOutputs(xmOutputs);

XMachine.setTransitions(xmTransitions);

XMachine.setFunctions(xmFunctions);

}

would need an exponential time to complete the execution of a model checker,

because a thorough exploration on the system’s state means all possible positions

(coordinates) and directions.

91

8. Visualisation and simulation of spatial MAS

Along these lines, PPS are supported with testing strategies as well. Testing

is a dynamic verification technique by providing all possible series of inputs and

comparing its outputs with the documented specification [32]. Therefore, the

same concept from this discussion (an exponential time to complete all the test)

would apply for the idea of testing spPPS models. This leaves simulation as

the only appropriate way to confirm that the PPS model is having the intended

behaviour. Simulation refers to executing scenarios (animations) and comparing

the expected behaviour of the system to a textual or visual (visual animation)

outcome. We claim that informal verification (or more specifically, simulation

in a form of visual animation) in biologically inspired, spatial agent modelling

provides the following benefits:

� Benefit 1: Detecting an emergent behaviour that cannot (or it is rather

cumbersome to) be realised from a formal representation.

� Benefit 2: Visual ensurance that the behaviour of the system or an indi-

vidual within the system, acts according to the intended specification/re-

quirements.

� Benefit 3: Can act as a white box testing mechanism to systems that are

NP-hard (their output cannot be verified in polynomial time) or in some

cases, even NP-complete.

These concepts are going to be supported by simulating the Ant Lines case

study, introduced in Sect. 2.5.2. For this purpose, NetLogo [95], [94] as a pro-

grammable platform for visual animation of multi-agent systems, is going to be

utilised. The main reasons for choosing this software tool are: the support of

large-scale systems, the utilisation of a functional language as a back-end (which

in turn is perfect for representing an agent’s behaviour) and finally, the cus-

tomisable graphical interface that facilitates modelling of the environment. The

NetLogo simulation of this case study is presented in Fig. 8.3 (this simulation

comes with the NetLogo’s built-in library).

For the purpose of investigating the trace of the ants’ path, Fig. 8.3 a) shows a

mark being formed as the leader ant moves. Followed by the follower ants, it will

be noticed that the shape of the ant line changes over time. Finally, a trace is left

92

8. Visualisation and simulation of spatial MAS

Figure 8.3: NetLogo simulation of the Ant Lines example.

by the last ant, as shown in Fig. 8.3 b). Interesting observation at this point is the

comparison of the two paths left from the initial and final ants; the path from the

leader is rather circuitous in comparison to the smooth shaped trail formed by the

last ant. This simulation clearly demonstrates an emergent behavior that could

not be detected from the dry PPS or spPPS formal representation, i.e. Benefit 1.

Furthermore, by observing the shape of the ant line as it is being formed, it can

be ensured that the ants really follow the direction of the ant in front; which also

ensures that the system acts according to the intended requirements as expected

in Benefit 2. Finally, regarding the concept presented as Benefit 3, we bring into

notice that NetLogo is a rather interactive environment, allowing for run-time

user inputs and change of the global parameters.

The new modifications introduced with this work allow a direct mapping

between the spPPS formal notation to a NetLogo code. For instance:

� (nest-x nest-y) and (food-x food-y) are the NetLogo definitions for

the location of centre of nest and location of centre of food, supported in
spPPS by predefined object types (i.e. the position π ∈ N0 × N0);

� leader-heading is representation of the heading of a leader ant, supported

in spPPS by the predefined object ∆ denoting the cell’s direction;

93

8. Visualisation and simulation of spatial MAS

� set leader-heading [heading] are net logo functions, now directly sup-

ported with the spatial rules; this specific function matches (X; ∆, set Y)t;

� rt random-float angle is the NetLogo function that produces a random

number (in this particular case, a floating point number) and assigns it to

the direction of the ant. spPPS can represent this behaviour by the notion

of randomness introduced in the spatial rules;

� breed [leaders leader] and breed [followers follower] are supported

by defining cell types.

There are many other similar examples that could demonstrate the logical link

between NetLogo and spPPS. This lead to the idea that by defining some common

rules for transformation between a spPPS model and a NetLogo code, it is now

possible to develop a tool that would do this translation automatically. This

future direction will actually enhance spPPS with informal verification strategies.

8.3 Summary

The following objectives were met with this chapter:

O3: Linkage with simulation platforms in order to observe emergent behaviour.

O4: Proving the appropriateness of the method through simulations and visual-

isations.

O7: Extending existing tools with features coming out of the new definitions.

Parts of this research were published in [70], [71] and [66].

94

Chapter 9

Discussion and evaluation

9.1 Summary

The subset of MAS that deal with movement in space is quite large. It includes

complex bio-MAS such as: collective robotics, swarms of unmanned air vehicles

(UAVs) or underwater vehicles (UUVs), insect and animal societies, or even hu-

man behaviour [2]. Formal modelling and verification of spatial agents is a very

complex task. On one hand stands the fact that the verification process leads

to combinatorial explosion, because modelling these agents means modelling of

their spatial properties (such as position or direction). Therefore, the verification

would require exploration of a state space developed by the combination of all

agent positions evolved through time [68]. On the other hand, there is the fact

that the emergent properties of the system should be known in advance in order

to be verified. The concept of emergence can be explained as a pattern appearing

in the configuration of the agents, at some instance during the lifetime of the sys-

tem. In biology or biology-inspired agents the emergence can be observed in-vivo

(for example, line formation, flocks, schools, herds etc.). However, when it comes

to artificial agents, it is not always straightforward. Driven from these two prob-

lems, it might be desirable to combine several formal with informal techniques

that would be able to join forces towards the verification of spatial MAS [68].

The support to formal verification of XM, PPS, OPERAS and FLAME, can

be summarized as follows:

95

9. Discussion and evaluation

� X-machines are accompanied by a model checking technique (whereXmCTL

is used to express logic formulae [46]) and complete testing (under certain

assumptions, using a method derived from Chow’s W-method for Finite

State Machines [34, 20]).

� Verification still remains problematic when Communicating X-machines are

considered. The only possible approach is to formally verify and test indi-

vidual components, but not the system as a whole.

� P Systems and PPS are supported with formal verification and test tech-

niques as well.

� The OPERAS framework always carries the legacy of the formal methods

used in each OPERAS component.

� Although the main unit of FLAME is an X-machine which is supported by

verification and testing strategies, there is not a general methodology to

natively employ these techniques into FLAME. A possible solution includes

verifying and testing an agent’s model individually, which would cover only

the micro-level of the system.

9.2 Contribution

Some of the problems in developing spatial bio-MAS are:

� There are difficulties in simulating a given model because there is not a

standard way that deals with manipulation and processing of the spatial

properties (the initial position or the direction of a spatial agent).

� The representation of spatial model does not directly map to an anima-

tion/simulation.

� The representation of spatial model is rather cumbersome/difficult to code,

and in many situations it is also difficult to be understood.

� When it comes to verifying a spatial model, this will result into space ex-

plosion due to the spatial information.

96

9. Discussion and evaluation

Therefore, a hybrid approach of utilizing visual animation as an informal

verification technique in parallel with formal verification (where applicable) was

proposed.

The aim behind this work is:

The definition of an abstract model supporting elementary geometry,

the development of a methodology to build agent based systems using

this concept that allows the simulation and visual representation of

the systems.

This aim was accomplished by developing a framework for modelling spatial

MAS, which helps in identifying emergent behaviour through the automatic trans-

formation of a formal model to an executable visual simulation. This framework

facilitates simulation and visual representation of systems.

The objectives were accomplished as presented in Table 9.1. These objectives

were achieved as follows:

� O1 - Chapter 2 talked about modelling bio-inspired systems as spatial MAS,

Chapter 3 presented different tools for modelling these systems, Chapter 4

introduced formal verification, simulation and validation concepts for bio-

systems, and Chapter 5 provided introduction of several visual simulation

platforms and comparison of these simulation platforms based on the several

criteria;

� O2 - Chapter 2 and Chapter 4 presented the following illustrative case

studies: Case Study 2.1. The foraging ant, Case Study 2.2. Ant lines and

Case Study 4.1. Aggressor-Defender ;

� O3 - Chapter 5 and Chapter 8 talked about visual simulation platforms, vi-

sualisation and simulation of spatial MAS. Observable emergent behaviour

was presented through case studies;

� O4 - Chapter 5 and Chapter 8 discuss visualisation and simulation as strate-

gies for proving the appropriateness of the method (by utilising newly in-

troduced modelling formalisms);

97

9. Discussion and evaluation

� O5 - Chapter 6 introduces a framework for modelling and verification of

spatial MAS;

� O6 - Chapter 7 provides definitions for extending two modelling formalisms,

in order to support spatial properties; and

� O7 - Chapter 7 and Chapter 8 present a tool developed and discuss towards

translation of a system modelled with a finite state machine modelling ap-

proach into executable code of a visual simulation platform.

Table 9.1: Mapping of the objectives with the corresponding chapters

Objective Chapters

O1: Investigate on spatial systems, modelling
formalisms for spatial bio-MAS outlining proper-
ties and disadvantages of existing modelling for-
malisms, as well as verification and simulation
strategies and how can they be enhanced to better
support complex spatial bio-MAS.

Chapter 2, Chapter 3,
Chapter 4 and Chap-
ter 5.

O2: Identifying illustrative case studies which are
scalable (experiments with different numbers of
agents), simple to be modelled and have spatial
characteristics.

Chapter 2 and Chap-
ter 4.

O3: Linkage with simulation platforms in order to
observe emergent behaviour.

Chapter 5 and Chap-
ter 8.

O4: Proving the appropriateness of the method
through simulations and visualisations.

Chapter 5 and Chap-
ter 8.

O5: Devising a framework that will combine all of
the steps of developing spatial bio-MAS into a pro-
cess to improve the standard modelling and verifi-
cation approach for bio-MAS.

Chapter 6.

O6: Extending the definition of approaches for
modelling bio-MAS with geometrical elements into
a coherent model.

Chapter 7.

O7: Extending existing tools with features coming
out of the new definitions.

Chapter 7 and Chap-
ter 8.

98

9. Discussion and evaluation

9.3 Evaluation and future work

The problems found in XM and PPS (stated in Sec. 4.4, Sec. 7.1 and Sec. 9.2)

can be overcome by using their spatial extensions, spXM and spPPS. They do

not only facilitate the process of modelling, but the process of verification as

well. spXM and spPPS, provide consistent means and full support on the spa-

tial characteristics found in nature and expand the limitations and/or difficulties

that were found in original modelling formalisms. They provide an intuitive and

flexible way to model spatial and temporal properties. Moreover, it allows their

modelling with a great level of detail, which in turn results to a more prominent

emergent behaviour.

Besides the theoretical contribution that was discussed, a focus on the practi-

cal benefits was raised as well. Explicitly, there is now a direct mapping between

the spXM and spPPS formal notation to a the NetLogo (or similar) platform for

visual simulation. This might be expanded with the following future work:

� Defining rules for transformation between spPPS and NetLogo, similar to

the ones defined for XMs. This would lead into developing a tool for semi-

automatic translation of spPPS models to NetLogo executable code.

� Developing translation tools of spXM and spPPS models into executable

code for other simulation platforms, such as Repast or FLAME.

� Providing a spatial extension to the FLAME framework along the same

lines of spXM and spPPS.

There are quite a few other ideas for future work on the concept of improving
spPPS. They can be summarized as follows:

� Defining another type of rules that will deal with manipulation of the objects

within the cells. This is very similar to what was achieved with introducing

the sensing rules, but it can be further extended.

� The concept of ordering rules raises a question: How could dynamic ordering

of rules be modelled? This means that at every cycle, the order by which

the evolution rules execute should be recomputed.

99

9. Discussion and evaluation

� The new spatial support is very simplistic in order to support the basic

principles of PPS, but this notion can be extended much further.

Formal verification accompanied with simulation as an informal verification

technique, would help into discovering flaws of the formally unverifiable dynamic

communication within a bio-system. Moreover, it would provide means to fa-

cilitate the communication gap between the formal experts and the biologists

(which in turn have no formal background) by providing an immediate feedback

understandable to both of the teams. This whole process is further highlighted

with the supporting framework to modelling and verification of bio-MAS. Future

work includes the stage S3 of the framework, as presented in Fig. 6.2 and Fig. 6.3,

namely:

� Automatic transformation of spXM or spPPS into a simulation tool that can

generate a time-series data, such as FLAME.

� A process to utilize a tool for identifying patterns (such as DAIKON) from

the logged time-series data.

� A process to form logic temporal formulae from the identified patterns.

� Automatic transformation of spXM or spPPS into an equivalent model in

SPIN, PRISM or SMV.

100

Appendix A: List of Author’s

Publications

Short description on the publications up to date, is presented as follows in chrono-

logical order:

1. I. Petreska and P. Kefalas. Towards Novel Approaches to Modelling and

Verification of Biologically Inspired Multi-Agent Systems. - In this work

we focus on NetLogo and an abstract architecture of a system that could

fully transform MAS models to NetLogo is presented. In principle, this

paper’s main objectives are to set the foundations of future developments

in this area and to pose all the interesting research questions that arise.

Presented in the 5th Annual SEERC Doctoral Student Conference (DSC

2010), 2010 [65].

2. I. Petreska, P. Kefalas and M. Gheorghe. A Framework towards the Verifi-

cation of Emergent Properties in Spatial Multi-Agent Systems. - In this pa-

per we present a framework of how formal modelling can lead towards iden-

tification and verification of emergent properties of spatial biology-inspired

MAS. We discuss the problem in question as well as initial work done on

the formal modelling side and the visual animation of these formal mod-

els. Presented in the Workshop on Applications of Software Agents (WASA

2011), 2011 [68].

3. I. Petreska and P. Kefalas. Population P Systems with Moving Active Cells.

- In this work we introduce a class of population P systems with mov-

ing active cells, namely spPPS. We argue that the spatial properties might

101

Appendix A: List of Author’s Publications

lead to more accurate emergent behaviour on the macro-level of a multi-

agent system. Moreover, we demonstrate how these properties might bring
spPPS closer to informal verification strategies and enhance their models

with visual animation. Presented in the Twelfth International Conference

on Membrane Computing (CMC12), 2011 [66].

4. I. Petreska, P. Kefalas and M. Gheorghe. Informal Verification by Visuali-

sation of State-based Formal Models. - This paper introduces a mechanism

for semi-automatic transformation of a spatial X-machine agent models into

executable code for a visual simulation environment, namely NetLogo. The

rules governing the transformations and the mapping between constructs

are described as well. We discuss the implementation and present an ex-

ample of how visualisation rather than formal versification could assist the

understanding of emergent properties. Presented in the 6th Annual SEERC

Doctoral Student Conference (DSC 2011), 2011 [69].

5. I. Petreska, P. Kefalas, M. Gheorghe and I. Stamatopoulou. Extending X-

machines to Support Representation of Spatial 2-D Agents. - Starting with

the notion of modelling biologically inspired agents, this paper focuses on

their spatial characteristics. This approach resulted into a novel progres-

sion, Spatial X-machines, without retracting the legacy characteristics of

X-machines such as testing and verification strategies. Presented in the 4th

International Conference on Agents and Artificial Intelligence (ICAART

2012), 2012 [70].

6. I. Petreska. Tools for Visual Simulation of MAS Models. - This work ex-

amines three different simulation platforms (NetLogo, Repast and FLAME)

under various factors, such as: modelling, design, implementation, verifica-

tion, testing, visualisation and others. The results of the comparison shows

their advantages and disadvantages when it comes to simulating multi-agent

systems with spatial characteristics. Presented in the 7th Annual SEERC

Doctoral Student Conference (DSC 2012), 2012 [64].

7. I. Petreska, P. Kefalas, M. Gheorghe and I. Stamatopoulou. spX-Machines:

Formal State-Based Modelling of Spatial Agents. - An extended work of

102

Appendix A: List of Author’s Publications

Spatial X-machines was published for Communications in Computer and

Information Science series of Springer Berlin Heidelberg [71].

8. I. Petreska and I. Stamatopoulou. A comparative study of tools for visual-

isation of state-based spatial multi-agent models. - A comparative study of

tools for visualisation of state-based spatial multi-agent models, as an ex-

tended work of [64], was published for the Proceedings of the 2013 Balkan

Conference in Informatics (BCI’13), 2013 [67].

The order of importance is as follows: 7, 5, 3, 8, 1, 4, 6, 2.

103

Appendix B: The

Aggressor-Defender case study

in NetLogo.

t u r t l e s−own [

f r i e nd

enemy

]

to setup

c l ea r−a l l
c reate−t u r t l e s number−of−t u r t l e s
ask t u r t l e s [

s e t xcor random−xcor
s e t ycor random−ycor
s e t c o l o r one−o f [red blue]

s e t f r i e nd one−o f other t u r t l e s

s e t enemy one−o f other t u r t l e s

]

end

to go

ask t u r t l e s

104

Appendix B: The Aggressor-Defender case study in NetLogo.

[

i f s t r a t e gy = ”Defend”

[

defend

]

i f s t r a t e gy = ”Flee ”

[

f l e e

]

i f s t r a t e gy = ”Some defend some f l e e ”

[

i f (c o l o r = red)

[

defend

]

i f (c o l o r = blue)

[

f l e e

]

]

fd 0 .1

]

t i c k

end

to defend

facexy ([xcor] o f f r i e nd + [xcor] o f enemy) / 2

([ycor] o f f r i e nd + [ycor] o f enemy) / 2

end

to f l e e

facexy [xcor] o f f r i e nd + ([xcor] o f f r i e nd − [xcor] o f

enemy) / 2

105

Appendix B: The Aggressor-Defender case study in NetLogo.

[ycor] o f f r i e nd + ([ycor] o f f r i e nd − [ycor] o f

enemy) / 2

end

; ; ; DefaultNetLogoCode

106

Appendix C: Compiled code with

the spXM2Visual tool for the

foraging ant case study.

i n c l u d e s [” xmdl . n l s ”]

to setup

set mode l [” f o r a g i ng an t ” [[2 3] [0 0] ””] [”

ca r ry ing no th ing ”]]

c l e a r−a l l
c reate−t u r t l e s 1

ask t u r t l e s [run model ” f o r ag i ng an t ”]

end

to run model [model name]

whi l e [t rue]

[

l e t i n pu t 0 po s i t i o n user−input ”Enter the input

po s i t i o n : ”

l e t i n pu t 1 s e e d i d user−input ”Enter the input

s e ed i d : ”

107

Appendix C: Compiled code with the spXM2Visual tool for the
foraging ant case study.

i f g e t c u r r s t a t e model name = [” ca r ry ing no th ing

”] and

s e a r ch and s e e s e ed model name i npu t 0 po s i t i o n

i npu t 1 s e e d i d = true

[

s e t c u r r s t a t e model name [”

ca r ry ing no th ing ”]

]

i f g e t c u r r s t a t e model name = [” ca r ry ing no th ing

”] and

s e a r c h f o r s e e d model name i npu t 0 po s i t i o n

i npu t 1 s e e d i d = true

[

s e t c u r r s t a t e model name [”

ca r ry ing no th ing ”]

]

i f g e t c u r r s t a t e model name = [” ca r r y i n g s e ed ”]

and

s e a r c h f o r b a s e model name i npu t 0 po s i t i o n

i npu t 1 s e e d i d = true

[

s e t c u r r s t a t e model name [” c a r r y i ng s e ed

”]

]

i f g e t c u r r s t a t e model name = [” ca r r y i n g s e ed ”]

and

l e a v e s e e d a t b a s e model name i npu t 0 po s i t i o n

i npu t 1 s e e d i d = true

[

s e t c u r r s t a t e model name [” c a r r y i ng s e ed

”]

]

108

Appendix C: Compiled code with the spXM2Visual tool for the
foraging ant case study.

]

end

to−r epo r t s e a r ch and s e e s e ed [model name i npu t 0 po s i t i o n

i npu t 1 s e e d i d]

l e t curr memory get curr memory model name

l e t memory 0 pos it ion item 0 curr memory

l e t memory 1 pos it ion item 1 curr memory

l e t memory 2 seed id item 2 curr memory

i f memory 0 pos it ion != memory 1 pos it ion and

memory 0 pos it ion != i npu t 0 po s i t i o n and

memory 2 seed id = ”” and i npu t 1 s e e d i d != ””

[

output−pr in t ” an t de t e c t ed and p i cked s e ed

”

l e t memory []

s e t memory lput i n pu t 0 po s i t i o n memory

s e t memory lput memory 1 pos it ion memory

s e t memory lput i npu t 1 s e e d i d memory

set curr memory model name memory

repo r t t rue

]

r epo r t f a l s e

end

to−r epo r t s e a r c h f o r s e e d [model name i npu t 0 po s i t i o n

i npu t 1 s e e d i d]

109

Appendix C: Compiled code with the spXM2Visual tool for the
foraging ant case study.

l e t curr memory get curr memory model name

l e t memory 0 pos it ion item 0 curr memory

l e t memory 1 pos it ion item 1 curr memory

l e t memory 2 seed id item 2 curr memory

i f memory 0 pos it ion != memory 1 pos it ion and

memory 0 pos it ion != i npu t 0 po s i t i o n and

memory 2 seed id = ”” and i npu t 1 s e e d i d = ””

[

output−pr in t ” ant keeps moving empty ”

l e t memory []

s e t memory lput i n pu t 0 po s i t i o n memory

s e t memory lput memory 1 pos it ion memory

s e t memory lput memory 2 seed id memory

set curr memory model name memory

repo r t t rue

]

r epo r t f a l s e

end

to−r epo r t s e a r c h f o r b a s e [model name i npu t 0 po s i t i o n

i npu t 1 s e e d i d]

l e t curr memory get curr memory model name

l e t memory 0 pos it ion item 0 curr memory

l e t memory 1 pos it ion item 1 curr memory

l e t memory 2 seed id item 2 curr memory

i f memory 0 pos it ion != memory 1 pos it ion and

memory 0 pos it ion != i npu t 0 po s i t i o n and

memory 2 seed id != ””

110

Appendix C: Compiled code with the spXM2Visual tool for the
foraging ant case study.

[

output−pr in t ” a n t s e a r c h e s f o r b a s e ”

l e t memory []

s e t memory lput i n pu t 0 po s i t i o n memory

s e t memory lput memory 1 pos it ion memory

s e t memory lput memory 2 seed id memory

set curr memory model name memory

repo r t t rue

]

r epo r t f a l s e

end

to−r epo r t l e a v e s e e d a t b a s e [model name i npu t 0 po s i t i o n

i npu t 1 s e e d i d]

l e t curr memory get curr memory model name

l e t memory 0 pos it ion item 0 curr memory

l e t memory 1 pos it ion item 1 curr memory

l e t memory 2 seed id item 2 curr memory

i f memory 0 pos it ion = memory 1 pos it ion and

memory 0 pos it ion != i npu t 0 po s i t i o n and

memory 2 seed id != ””

[

output−pr in t ” an t f ound ba s e and l e f t s e e d

”

l e t memory []

s e t memory lput i n pu t 0 po s i t i o n memory

s e t memory lput memory 1 pos it ion memory

s e t memory lput ”” memory

111

Appendix C: Compiled code with the spXM2Visual tool for the
foraging ant case study.

set curr memory model name memory

repo r t t rue

]

r epo r t f a l s e

end

; ; ; DefaultNetLogoCode

112

Appendix D: Class diagram of

the translator component of the
spXM2Visual tool.

The class diagram of the translator component is presented in four parts (due to

space restrictions) as illustrated in Fig. D.1.

Figure D.1: The class diagram of the translator component.

113

Appendix D: Class diagram of the translator component of the
spXM2Visual tool.

Figure D.2: The translator component of the spXM2Visual tool, part 1.

114

Appendix D: Class diagram of the translator component of the
spXM2Visual tool.

Figure D.3: The translator component of the spXM2Visual tool, part 2.

115

Appendix D: Class diagram of the translator component of the
spXM2Visual tool.

Figure D.4: The translator component of the spXM2Visual tool, part 3.

116

Appendix D: Class diagram of the translator component of the
spXM2Visual tool.

Figure D.5: The translator component of the spXM2Visual tool, part 4.

117

References

[1] J. R. Abrial. Modeling in Event-B. System and software engineering, 2010.

46

[2] C. Anderson. Linking micro to macro-level behavior in the Aggressor-

Defender-Stalker game. Proceedings of the Second International Workshop

on the Mathematics and Algorithms of Social Insects, pages 9–16, 2003. At-

lanta, GA. 2, 95

[3] J. Beal, S. O. Dulman, K. Usbeck, M. Viroli, and N. Correll. Formal

and Practical Aspects of Domain-Specific Languages: Recent Developments,

chapter Organizing the Aggregate: Languages for Spatial Computing. IGI

Global, 2012. 13

[4] F. Bernardini and M. Gheorghe. Population P systems. In Journal of Uni-

versal Computer Science, pages 509–539, 2004. 23, 77

[5] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1st edition, 1981. 42

[6] E. Bonabeau. Agent-based modeling: methods and techniques for simulating

human systems. Proceedings of the National Academy of Sciences, pages

7280–7287, 2002. Washington, United-States. 46

[7] R. A. Brooks. Intelligence without representation. Artificial Intelligence 47,

pages 139–159, 1991. 29

[8] L. Cardelli. Brane calculi. Computational Methods in Systems Biology, In-

ternational Conference (CMSB 2004), pages 257–278, May 2004. 14

118

REFERENCES

[9] L. Cardelli and P. Gardner. Processes in space. In CiE’10, pages 78–87,

Heidelberg, 2010. Springer-Verlag Berlin. 14, 71

[10] J. Casti. Complexification. Harper Collins, New York, 1994. 2

[11] Czech Technical Institute Agent Technology Center. Aglobe, 2011. URL

http://agents.felk.cvut.cz/aglobe/. 14

[12] L. S. Chin, Science, and Technology Facilities Council (Great

Britain). FLAME-II: A Redesign of the Flexible Large-scale Agent-

based Modelling Environment. Technical report (Science and Tech-

nology Facilities Council (Great Britain)). STFC, 2012. URL

http://books.google.de/books?id=b3bRlwEACAAJ. 38, 44, 59, 60

[13] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new

symbolic model checker. Int. J. Software Tools Technol. Transfer, 2:410–425,

2000. 45

[14] N. T. Collier and M. J. North. Repast SC++: A platform for large-scale

agent-based modeling. Large-Scale Computing Techniques for Complex Sys-

tem Simulations, Wiley, 2011. (In Press). 53

[15] N. T. Collier, T. R. Howe, and M. J. North. Test-driven simulation devel-

opment using Repast Simphony. Proceedings of the North American Asso-

ciation for Computational Social and Organizational Science (NAACSOS),

2007 Annual Conference, June 2007. Emory University, Atlanta. 59

[16] P. Coveney and R. Highfield. Frontiers of complexity. Faber and Faber,

London, 1996. 2

[17] C. Deissenberg, S. van der Hoog, and H. Dawid. EURACE: A massively

parallel agent-based model of the european economy. Applied Mathematics

and Computation, 204(2):541–552, October 2008. 60

[18] D. Dranidis, E. Ramollari, and D.Kourtesis. Run-time verification of be-

havioural conformance for conversational web services. Seventh IEEE Euro-

pean Conference on Web Services, pages 139–147, 2009. 12, 35

119

REFERENCES

[19] D. Dranidis, K. Bratanis, and F. Ipate. JSXM: A tool for automated test

generation. In Software Engineering and Formal Methods, volume 7504 of

Lecture Notes in Computer Science, pages 352–366. Springer Berlin Heidel-

berg, 2012. 35, 36, 45

[20] G. Eleftherakis, P.Kefalas, and A.Sotiriadou. XmCTL: Extending temporal

logic to facilitate formal verification of X-machines. pages 79–95, Analele

Universitatii Bucharest, 2002. Matematica-Informatica. 44, 45, 96

[21] G. Eleftherakis, P. Kefalas, and A. Sotiriadou. Formal modelling and verifica-

tion of reactive agents for intelligent control. In Proceedings of the 12th Intel-

ligent Systems Application to Power Systems Conference (ISAP03), Lemnos,

Greece, September 2003. IEEE Power Engineering Society. 35

[22] M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Strategies for incorporating

formal specifications in software development. CACM, 37 (10):74–86, 1994.

1

[23] M. Gheorghe and F. Ipate. On testing P systems. In Membrane Computing,

volume 5391 of Lecture Notes in Computer Science, pages 204–216. Springer

Berlin Heidelberg, 2009. 46

[24] M. Gheorghe and G. Păun. Computing with membranes. Journal of Com-

puter and System Sciences, 61(1):108–143, 2000. 13, 14

[25] M. Gheorghe, F. Ipate, R. Lefticaru, and C. Dragomir. An integrated ap-

proach to P systems formal verification. In Proc. CMC’10, pages 225–238,

2010. 69

[26] M. Gheorghe, F. Ipate, and C. Dragomir. A kernel P system. In Proc.

BWMC10. Fénix Editora, pages 153–170, 2012. 69

[27] M. Gheorghe, F. Ipate, R. Lefticaru, M. J. Pérez-Jiménez, A. Turcanu,

L. Mierla, L. Valencia Cabrera, and F. M. Garcia-Quismondo. 3-Col problem

modelling using simple kernel P systems. International Journal of Computer

Mathematics, 90(4):816–830, 2013. 69

120

REFERENCES

[28] J. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz. Computational

models for integrative and developmental biology. Technical Report 72-2002,

2002. 14

[29] O. Gurcan, O. Dikenelli, and C. Bernon. Towards a generic testing frame-

work for agent-based simulation models. Federated Conference on Computer

Science and Information Systems (FedCSIS), pages 635–642, Sept. 2011.

Emory University, Atlanta. 59

[30] A. Helsinger, M. Thome, and T. Wright. Cougaar: a scalable, distributed

multi-agent architecture. 2:1910–1917, 2004. 14

[31] M. Holcombe. X-machines as a basis for dynamic system specification. In

Software Engineering Journal, pages 69–76, 1988. 1, 12, 30, 59

[32] M. Holcombe and F. Ipate. Correct Systems: Building a Business Process

Solution. Springer, London, 1998. 1, 92

[33] G. J. Holzmann. The model checker SPIN. IEEE IFans. on Software Engi-

neering, pages 279–295, 1997. 46, 68

[34] F. Ipate and M. Holcombe. Specification and testing using generalised ma-

chines: a presentation and a case study. pages 61–81. Software Testing,

Verification and Reliability, 1998. 44, 45, 96

[35] F. Ipate and A. Turcanu. Modelling, verification and testing of P systems

using Rodin and ProB. In Proc. BWMC9. Fénix Editora, pages 209–220,

2011. 69

[36] F. Ipate and A. Turcanu. Modeling, verification and testing of P systems

using Rodin and ProB. In Ninth Brainstorming Week on Membrane Com-

puting, pages 209–220, 2011. 46

[37] F. Ipate, M. Gheorghe, and R. Lefticaru. Test generation from p systems

using model checking. The Journal of Logic and Algebraic Programming, 79

(6):350–362, 2010. 45, 46

121

REFERENCES

[38] F. Ipate, R. Lefticaru, and C. Tudose. Formal verification of P systems using

SPIN. Int. Journal Found. Computer Science, 22(1):133–142, 2011. 69

[39] F. Ipate, R. Lefticaru, and C. Tudose. Formal verification of P systems using

SPIN. Int. J. Found. Comput. Sci., 22(1):133–142, 2011. 45

[40] F. Ipate, R. Lefticaru, L. Mierla, L. Valencia Cabrera, H. Han, G. Zhang,

C. Dragomir, M. J. Pérez-Jiménez, and M. Gheorghe. Kernel P systems:

Applications and implementations. In Proc. BIC-TA’13, volume 202 of Ad-

vances in Intelligent Systems and Computing:1081–1089, 2013. 69

[41] C. B. Jones. Systematic Software Development using VDM. Englewood

Cliffs. NJ: Prentice-Hall, 2 edition, 1990. 1, 12

[42] P. Kefalas and E. Kapeti. A design language and tool for X-machines specifi-

cation. In D.I.Fotiadis and S.D.Nikolopoulos, editors, Advances in Informat-

ics, pages 134–145, Singapore, 2000. World Scientific Publishing Company.

12, 15, 33, 34, 35

[43] P. Kefalas and I. Stamatopoulou. Towards modelling of reactive, goal-

oriented and hybrid intelligent agents using P systems. In Proceedings of

the 11th International Conference on Membrane Computing, pages 265–272,

Berlin, Heidelberg, 2010. Springer-Verlag. 27, 29

[44] P. Kefalas, G. Eleftherakis, and E. Kehris. Modular modelling of largescale

systems using communicating x-machines. Proceedings of the 8th Panhellenic

Conference in Informatics, pages 20–29, 2001. 15, 34

[45] P. Kefalas, G. Eleftherakis, and A. Sotiriadou. Developing tools for formal

methods. In Proceedings of the 9th Panehellenic Conference in Informatics,

2002. 1, 15, 44, 76

[46] P. Kefalas, G. Eleftherakis, and E. Kehris. Communicating X-machines: A

practical approach for formal and modular specification of large systems.

Information and Software Technology, 45:269–280, 2003. 12, 15, 34, 59, 96

122

REFERENCES

[47] P. Kefalas, M. Holcombe, G. Eleftherakis, and M. Gheorge. A formal method

for the development of agent based systems. In V.Plekhanova, editor, Intel-

ligent Agent Software Engineering, pages 68–98. Idea Group Publishing Co.,

2003. 1, 15

[48] P. Kefalas, I. Stamatopoulou, I. Sakellariou, and G. Eleftherakis. Transform-

ing communicating X-machines into P systems. Journal of Natural Comput-

ing, Springer, 2009. 46

[49] S. Kripke. Semantical considerations on modal logic. 16:83–94, 1963. 46

[50] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic

model checker. In Proc. PAPM/PROBMIV’01 Tools Session, pages 7–12,

2001. 68

[51] Telecom Italia Lab. Jade: Java Agent DEvelopment framework, 2011. URL

http://jade.tilab.com. 14

[52] The Klavins Lab. Gro: The cell programming language. 2012. 14

[53] R. Lewin. Complexity: Life on the edge. Phoenix, London, 1995. 2

[54] S. Luke, G. C. Balan, L. Panait, C. Cioffi-Revilla, and S. Paus. MASON: A

java multi-agent simulation library. Proceedings of the Agent 2003 Confer-

ence, 2003. 14, 44

[55] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

Englewood Cliffs, NJ, 1993. 68

[56] D. E. Michael, G. G. William, K. Yoshio, and D. Notkin. Dynamically

discovering pointer-based program invariants. Technical Report UW-CSE-

99-11-02, University of Washington Department of Computer Science and

Engineering, Seattle, WA, November 1999. Revised March 17, 2000. 68

[57] R. Milner. Communicating and mobile systems: The pi-Calculus. CUP,

1999. 14

123

REFERENCES

[58] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm simulation

system, a toolkit for building multi-agent simulations. Technical report, 1996.

14, 44

[59] S. Mirschel, K. Steinmetz, M. Rempel, M. Ginkel, and E. D. Gilles. Promot:

Modular modeling for systems biology. Bioinformatics, 25(5):687–689, 2009.

14

[60] C. Myers, N. Barker, K. Jones, H. Kuwahara, C. Madsen, and N. Nguyen.

iBioSim: a tool for the analysis and design of genetic circuits. 25, 2009. 14

[61] M. J. North, N. T. Collier, J. Ozik, E. Tatara, M. Altaweel, C. M. Macal,

M. Bragen, and P. Sydelko. Complex adaptive systems modeling with

Repast Simphony. Complex Adaptive Systems Modeling, Springer, Heidel-

berg, 2013. 14, 44, 53, 54, 60

[62] J. Odell, H. Parunak, and B. Bauer. Extending uml for agents. Ann Arbor,

1001:48-103, 1999. 14

[63] I. Petreska. Further material, 2011. URL

http://people.seerc.org/petreska/further_material.html. 19

[64] I. Petreska. Tools for visual simulation of mas models. In Proceedings of the

7th Annual SEERC Doctoral Student Conference (DSC 2012), pages 475–

480, Thessaloniki, Greece, September 2012. 62, 102, 103

[65] I. Petreska and P. Kefalas. Towards novel approaches to modelling and

verification of biologically inspired multi-agent systems. In Proceedings of

the 5th Annual SEERC Doctoral Student Conference (DSC 2010), pages

445–452, Thessaloniki, Greece, September 2010. 87, 101

[66] I. Petreska and P. Kefalas. Population P systems with moving active cells.

In Proceedings of the Twelfth International Conference on Membrane Com-

puting (CMC12), pages 421–431, Fontainebleau, France, August 2011. 32,

52, 79, 85, 94, 102

124

REFERENCES

[67] I. Petreska and I. Stamatopoulou. A comparative study of tools for vi-

sualisation of state-based spatial multi-agent models. In Proceedings of the

2013 Balkan Conference in Informatics (BCI’13), pages 53–60, Thessaloniki,

Greece, September 2013. 62, 103

[68] I. Petreska, P. Kefalas, and M. Gheorghe. A framework towards the verifi-

cation of emergent properties in spatial multi-agent systems. In Proceedings

of the Workshop on Applications of Software Agents (WASA 2011), pages

37–44, Novi Sad, Serbia, July 2011. 32, 43, 52, 64, 68, 70, 95, 101

[69] I. Petreska, P. Kefalas, and M. Gheorghe. Informal verification by visu-

alisation of state-based formal models. In Proceedings of the 6th Annual

SEERC Doctoral Student Conference (DSC 2011), pages 309–319, Thessa-

loniki, Greece, September 2011. 102

[70] I. Petreska, P. Kefalas, M. Gheorghe, and I. Stamatopoulou. Extending X-

machines to support representation of spatial 2-d agents. In Proceedings

of the 4th International Conference on Agents and Artificial Intelligence

(ICAART 2012), pages 54–61, Vilamoura (Algarve), Portugal, February

2012. 85, 94, 102

[71] I. Petreska, P. Kefalas, M. Gheorghe, and I. Stamatopoulou. spX-machines:

Formal state-based modelling of spatial agents. In J. Filipe and A. Fred,

editors, Agents and Artificial Intelligence, volume 358 of Communications

in Computer and Information Science, pages 379–391. Springer Berlin Hei-

delberg, 2013. ISBN 978-3-642-36906-3. doi: 10.1007/978-3-642-36907-0 25.

URL http://dx.doi.org/10.1007/978-3-642-36907-0_25. 70, 85, 94,

103

[72] M. Pogson, R. Smallwood, E. Qwarnstrom, and M. Holcombe. Formal agent-

based modelling of intracellular chemical interactions. Biosystems, 85:37–45,

2006. 44

[73] M. Pogson, M. Holcombe, R. Smallwood, and E. Qwarnstrom. Introduc-

ing spatial information into predictive NF-kB modelling - an agent-based

approach. PLoS ONE, 3(6):e2367, 06 2008. 71

125

REFERENCES

[74] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants.

1990. 14

[75] G. Păun. Membrane Computing: An Introduction. Springer, Berlin, 2002.

13, 21, 22, 30

[76] G. Păun and G. Rozenberg. An introduction to and an overview of membrane

computing. In The Oxford Handbook of Membrane Computing, pages 1–27,

Oxford, 2010. Oxford University Press. 21, 22, 23

[77] G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Membrane

Computing. Oxford. Oxford University Press, 2010. 23

[78] S. Rahimi, M. Cobband D. Ali, M. Paprzycki, and F. Petry. A knowledge-

based multi-agent system for geospatial data conflation. In Journal of Geo-

graphic Information and Decision Analysis, pages 67–81, 2002. 14

[79] W. Reisig. Petri nets: An introduction. In EATCS Monographs on Theoret-

ical Computer Science, Berlin, 1985. Springer. 1, 12

[80] P. Richmond and D. Romano. Agent based GPU, a real-time 3D simulation

and interactive visualisation framework for massive agent based modelling on

the GPU. In International Workshop on Supervisualisation 2008 (IWSV08),

Kos Island, Greece, June 2008. 54

[81] D. A. Robertson. Agent-based modeling toolkits. Academy of Management

Learning and Education, 4(4):525–527, 2005. 44

[82] F. J. Romero-Campero, J. Twycross, M. Camara, M. Bennett, M. Gheorghe,

and Natalio Krasnogor. Modular assembly of cell systems biology models us-

ing P systems. In International Journal of Foundations of Computer Science,

pages 427–442, 2009. 71

[83] R. Smallwood, M. Holcombe, and D. Walker. Development and validation of

computational models of cellular interaction. Journal of Molecular Histology,

35:659–665, 2004. 38, 59

126

REFERENCES

[84] L. P. Smith, F. T. Bergmann, D. Chandran, and H. M. Sauro. Antimony: a

modular model definition language. 25(18), 2009. 14

[85] M. Spivey. The Z Notation: A Reference Manual. Englewood Cliffs. NJ:

Prentice-Hall, 1989. 1, 12

[86] I. Stamatopoulou, M. Gheorghe, and P. Kefalas. Modelling dynamic

configuration of biology-inspired multi-agent systems with Communicating

X-machines and Population P Systems, volume 3365:389-401 of LNCS.

Springer-Verlag, Berlin, 2005. 12, 27, 36

[87] I. Stamatopoulou, P. Kefalas, G. Eleftherakis, and M. Gheorghe. A modelling

language and tool for Population P Systems. In Proceedings of the 10th

Panhellenic Conference in Informatics, PCI-05, 2005. 22, 36, 37, 38, 81

[88] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. OPERAS: A framework for

the formal modelling of multi-agent systems and its application to swarm-

based systems. In ESAW, pages 158–174, Berlin, Heidelberg, 2007. Springer-

Verlag. 12, 13, 29, 30

[89] I. Stamatopoulou, I. Sakellariou, P. Kefalas, and G. Eleftherakis. OPERAS

for social insects: Formal modelling and prototype simulation. Romanian

Journal of Information Science and Technology, 11:267–280, 2008. 29, 30

[90] I. Trencansky and R. Cervenka. Agent modeling language (aml): A compre-

hensive approach to modeling mas. Informatica Ljubljana, 29(4):391, 2005.

14

[91] A. Turcanu and F. Ipate. Modelling, testing and verification of P systems

with active membranes using Rodin and ProB. In Proc. CMC’11, pages

459–468, 2011. 69

[92] A. Turcanu, L. Mierla, F. Ipate, A. Stefanescu, H. Bai, and S. Coakley

M. Holcombe. Modelling and analysis of E. coli respiratory chain. submitted.

69

127

REFERENCES

[93] D. Walker, S. Wood, J. Southgate, M. Holcombe, and R. Smallwood. An

integrated agent-mathematical model of the effect of intercellular signalling

via the epidermal growth factor receptor on cell proliferation. Journal of

Theoretical Biology, 9, 2003. 39

[94] U. Wilensky. NetLogo segregation model. Center for

Connected Learning and Computer-Based Modeling, 1997.

http://ccl.northwestern.edu/netlogo/models/ Segregation. 12, 53, 59,

60, 92

[95] U. Wilensky. NetLogo simulation software. Center for Connected Learning

and Computer-Based Modeling, 1999. http://ccl.northwestern.edu/netlogo/.

12, 14, 44, 53, 59, 92

[96] M. Wooldridge. Agents and software engineering. AI*IA Notizie XI(3),

pages 31–37, September 1998. 10

[97] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.

Knowledge Engineering Review, 10:115–152, 1995. 7, 8

128

