
Quantum Walks and Quantum

Computation

Katharine Elizabeth Barr

Department of Physics and Astronomy

University of Leeds

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

31st May 2013

mailto:pykeb@leeds.ac.uk
http://physics.leeds.ac.uk
http://www.leeds.ac.uk

2

Declaration

The candidate confirms that the work submitted is her own, except where work which has formed part

of jointly-authored publications has been included. The contribution of the candidate and the other

authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit

has been given within the thesis where reference has been made to the work of others.

Several chapters of this thesis include work which was undertaken in collaboration with

summer project students, which I now detail:

1. The work in Chapters 4 and 5 was undertaken with Tim Proctor and Daniel Allen. Tim

and Daniel made the initial choice of graphs to test and ran the simulations which gave rise

to the results detailed in Chapter 4 concerning these graphs. They also noted that three of the

graphs gave rise to infinite families of graphs, the properties of which are detailed in Chapter

5. My contribution was the systematic testing of graphs based on cycles in Chapter 4, and the

robustness tests and work relating to the continuous time walk in Chapter 5. The results from

these chapters have been submitted to QIC in the paper ‘Periodicity and perfect state transfer

in quantum walks on variants of cycles.’

2. The work in Chapter 6 was undertaken with Tim Proctor, Ben Hanson, Simon Martiel,

Alex Bullivant and Vladan Pavlovic. Tim designed the general non-reversal coin operator and

the other students investigated the transport properties of the induced walk under a variety

of initial conditions. I first noted the independence of the first and second moments on the

initial condition and undertook wider and more systematic investigations into the walk. Tim

provided the proof that the moments of the permuted non-reversal coin are independent of the

initial condition. The results from this chapter are detailed in the paper ‘Non-reversal quantum

walks,’ which is currently in preparation.

3. In Chapter 2, Section 2.7.4, Toby Fleming used the networkx package to visualise

graphs and remove the isomorphisms from a set of structures I had created. This work is

mentioned in the paper ‘Simulation methods for quantum walks on graphs applied to perfect

state transfer and formal language recognition,’ to appear in the proceedings of CoSMoS 2013.

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement.

© 2013 The University of Leeds and Katharine Elizabeth Barr

i

List of papers

These are the papers which have resulted from my PhD:

1. Formal languages analysed by quantum walks. K. Barr and V. Kendon, accepted for oral

presentation and proceedings of QPL 2013. ArXiv preprint arXiv:1209.5238v1.

2. Simulation methods for quantum walks on graphs applied to perfect state transfer and

formal language recognition. K. Barr, T. Fleming, V. Kendon, accepted for oral presentation

and proceedings of CoSMoS 2013.

3. Non-reversal quantum walks. K. Barr, T. Proctor, B. Hansen, S. Martiel, V. Pavlovic, A.

Bullivant and V. Kendon, in preparation for resubmission to Physical Review A. ArXiv preprint

arXiv:1303.1966.

4. Periodicity and perfect state transfer in quantum walks on variants of cycles. K. Barr, T.

Proctor, D. Allen and V. Kendon, submitted to QIC, currently preparing a revised version for

further consideration. ArXiv preprint arXiv:1204.5937.

ii

Acknowledgements

Firstly I would like to thank my PhD supervisor Viv Kendon. Without such a

dedicated, understanding and motivated supervisor, I am sure that I would not

have completed my doctoral work. Without her patience and constant belief in

me, I would not have been able to maintain the self belief required to undertake

such difficult work. Viv’s support has gone beyond academic advice, and well

above and beyond the call of duty. Getting the opportunity to work with a truly

inspirational person has been one of the best aspects of my PhD and made it an

experience I will look fondly on forever, in spite of not always having enjoyed the

work!

Secondly I would like to thank my parents and closest friends for their ongoing

support. I know this hasn’t always been easy for them, and they have sometimes

found it difficult to understand why I am following the path I have chosen. Shand

and Aidan in particular deserve a special mention, for giving me something to look

forward to at the end of every working day. I could not ask for better people in my

life, and do not feel capable of fully expressing my level of gratitude.

Finally, I feel privileged to have met many fun and interesting people during the

course of my PhD. I have enjoyed getting to know everyone in the QI group in

Leeds, and my current and former office mates have been a reliable source of

amusement and distraction in addition to providing a relaxed and productive work-

ing environment. I look forward to coming into work every day, and know that I

am immensely lucky in that respect.

Abstract

The field of quantum information applies the concepts of quantum physics to prob-

lems in computer science, and shows great potential for allowing efficient compu-

tation. In this thesis I concentrate on a particular quantum information theoretic

tool known as the quantum walk. There are two widely studied versions of the

quantum walk, the continuous time walk, and the discrete time walk. The discrete

time walk is particularly amenable to investigation using numerical methods, from

which most of the results in this thesis are derived, and is the main focus of the

work presented.

Two aspects of the discrete time walk are investigated: their transport properties

and their interpretation as quantum computers. I investigated the transport prop-

erties in two ways, by looking for a particular type of transport known as perfect

state transfer, and examining the transport properties of a new type of coin oper-

ator. The search for perfect state transfer concentrated on modifications of small

cycles. I found that perfect state transfer is rare for the choices of coin operators

tested. The structures tested for perfect state transfer were based on cycles, and

it appears that the type of modification has more of an effect than the size of the

cycle. This makes intuitive sense, as the modifications found to lead to walks ex-

hibiting perfect state transfer affected only the initial and target node of the cycle.

I then investigated a new type of coin operator which does not allow amplitude

to return to the node it has come from. This effectively simulates a dimer. Using

the general form of this type of operator and random variables for each parameter,

I found that the expected distance of the walker from the origin, and standard

deviation, were independent of the initial condition.

The second half of the thesis concentrates on computational applications of quan-

tum walks using the language acceptance model. I first note their equivalence to a

type of quantum automaton known as the QFA-WOM, and this provides an intu-

itive understanding of the role of the WOM. I then use a more direct construction

to show that they can accept a range of formal languages. Using this construction

allows us to use superpositions of words as inputs, and the insights provided by in-

vestigating these suggest a new way of approaching the problem of quantum state

discrimination.

vi

Contents

1 Introduction 1

1.1 Thesis Aim . 1

1.2 Thesis Overview . 2

2 Quantum Walks 5

2.1 Introduction . 5

2.2 Basic Graph Theory . 7

2.3 Classical random walks . 8

2.3.1 Discrete time case . 8

2.3.2 Continuous time case . 9

2.4 Quantum walks . 10

2.4.1 Discrete time quantum walks on the line 10

2.4.2 Discrete time quantum walks over general structures 12

2.4.3 Continuous time quantum walks . 14

2.5 Perfect State Transfer . 15

2.6 Decoherence in Quantum Walks . 18

2.7 Simulating quantum walks . 19

2.7.1 Algorithm to generate quantum walk from the adjacency matrix of a

graph . 20

2.7.2 Generating the coin operation . 20

2.7.3 Generating the shift operation . 21

2.7.4 Visualising walks . 24

vii

3 Quantum Computation 27

3.1 Introduction . 27

3.2 Quantum circuits . 28

3.3 Simulation of quantum circuits by quantum walks 30

3.4 Formal languages . 34

3.4.1 Finite state automata . 34

3.4.2 Probabilistic acceptance . 36

3.5 A simple model of quantum computation . 37

3.5.1 Quantum finite automata . 37

3.6 Language acceptance models in the context of quantum computation 43

4 Quantum walks over small cycles 45

4.1 Introduction . 45

4.2 Prior Results . 46

4.2.1 Discrete Time Quantum Walk . 46

4.2.2 Continuous Time Quantum Walk . 48

4.3 Discrete time quantum walks over small structures 48

4.3.1 Diamond Chains . 49

4.3.2 Variants of Cycles . 50

4.4 Conclusion . 56

5 Quantum walks over three related families of graphs 57

5.1 Introduction . 57

5.2 Three related families of graphs admitting perfect state transfer 58

5.2.1 Periodicity and perfect state transfer on the graph K2 + Kn 58

5.2.2 Periodicity and perfect state transfer in K2 +Cn 59

5.2.3 Robustness of perfect state transfer in graphs from K2 +Cn 61

5.2.4 Interpolation between the three families 62

5.2.5 The continuous time walk on K2 + Kn, K2 +Cn and K2 + Pn 63

5.3 Conclusion . 65

viii

6 Non-reversal Quantum Walks 67

6.1 Introduction . 67

6.1.1 Classical self-avoiding random walks 68

6.1.2 Quantum walks on the square lattice 70

6.2 Non-reversal quantum walks . 72

6.2.1 Definition . 72

6.2.2 Properties . 74

6.3 Trimers . 76

6.4 Conclusion . 77

7 Quantum Finite Automata and Quantum Walks 79

7.1 Introduction . 79

7.2 ’Measure-Many’- QFAs . 81

7.2.1 Languages accepted by MM-QFAs 82

7.2.2 2-way MM-QFAs . 83

7.3 QFAs with write only memory . 84

7.4 Example QFA-WOMs . 87

7.5 Quantum walks as QFA-WOMs . 88

7.5.1 Walks with a time independent coin 90

7.6 Conclusion . 92

8 Language recognition 95

8.1 Introduction . 95

8.2 Requirements of language acceptors . 96

8.3 Spatially distributed input . 97

8.3.1 Accepting languages which contain more than one string of each length 104

8.4 Sequentially distributed input . 107

8.5 Conclusion . 109

9 Quantum inputs and quantum state discrimination 111

9.1 Introduction . 111

9.2 Superpositions of two words . 112

9.3 Superpositions of more than two words . 114

9.3.1 Expanding the alphabet . 115

ix

9.4 Comparison of language acceptance and quantum state discrimination 116

9.4.1 Distinguishing two states using the walk accepting Leq 116

9.4.2 Distinguishing three states using the walk accepting Labc 118

9.5 Conclusion . 121

10 Conclusion 125

10.1 Perfect state transfer . 125

10.2 Non-reversal quantum walks . 126

10.3 Formal language recognition . 126

10.4 Summary . 127

A Code example 129

References 144

x

List of Figures

2.1 Examples of simple graphs . 7

2.2 Probability distribution of the classical random walk on the line 9

2.3 Two steps of a discrete time quantum walk . 11

2.4 The effects of decoherence on quantum walks 17

2.5 The cycle of two nodes . 20

2.6 Relations between coin states and edges when generating the shift operator for

an arbitrary graph . 22

2.7 Different visualisations of a graph using networkx 24

2.8 Visualisations of graphs using nodebox . 25

3.1 A simple quantum circuit . 29

3.2 The Bloch sphere . 30

3.3 Wires in the quantum walk version of the circuit 31

3.4 Gates in the quantum walk version of the circuit 32

4.1 Variants of diamond chains . 49

4.2 Variants of cycles initially tested for perfect state transfer 51

4.3 Adding nodes to cycles . 52

4.4 Variants of C4 leading to perfect state transfer 53

5.1 Three families of graphs based on C4 . 58

5.2 Robustness of perfect state transfer to variation of initial conditions 61

5.3 Variation of fidelity of state transfer when interpolating between the three fam-

ilies of graphs . 62

5.4 Continuous time walks over two of the families of graphs 64

5.5 Effects of decoherence on two of the families of graphs 65

xi

6.1 The walk on the lattice using DFT and Grover coins 70

6.2 Probability distribution arising using a self-avoiding coin 74

6.3 Comparison of standard deviations arising from different initial conditions . . . 75

6.4 Comparison of the non-reversal (black), Hadamard (red), Grover (blue) and

DFT (green) coin operators in terms of a) expected radial distance from the

origin and b) standard deviation. 76

6.5 The three possible configurations of a self avoiding trimer 76

7.1 Schematic diagram of a QFA-WOM transition 87

7.2 A QFA-WOM accepting Lrev . 90

7.3 Quantum walk accepting language Leven . 91

8.1 Graphs accepting Leq and Lab . 98

8.2 Comparison of probability of acceptance and Jaro distance for walks accepting

Leq . 102

8.3 Alternate graphs accepting Leq and Lab . 103

8.4 Graph accepting Lsingle and comparison of accepting probability and Jaro distance104

8.5 Graph accepting Leven and comparison of accepting probability and Jaro distance106

8.6 Graph structures accepting Lab and a specific word from that language 107

8.7 Comparison of accepting probability and Jaro distance for sequential input

graph accepting Lab . 108

9.1 Probability of accepting superpositions of words using the graph accepting Lab 112

9.2 Comparison of quantum inputs on two walks accepting Leq 113

9.3 Graph accepting Labc and comparison of accepting probability and Jaro distance 115

9.4 Probability of accepting superpositions of three words using graph accepting

Labc . 116

xii

Abbreviations

C Coin operator
S Shift operator
G Graph
AG Adjacency matrix of a graph
Kn The complete graph of n vertices
Pn The path of n vertices
Cn The cycle of n vertices
V Set of vertices
E Set of edges
Gd d-dimensional Grover operator
DFT Discrete Fourier Transform
H Hadamard operator
FS A Finite State Automaton
QFA Quantum Finite Automaton
2QFA Two-way QFA
MO − QFA ‘Measure-once’ QFA
RMO Restricted class of languages accepted by an MO − QFA
UMO Unrestricted class of languages accepted by an MO − QFA
MM − QFA ‘Measure- many’ QFA
QFA −WOM QFA with ‘write-only’ memory
Σ Input alphabet
Q Set of computational states
δ Transition function for an automaton
Leq Language defined by {ambm|m ∈ N}
Lab Language defined by {(ab)m|m ∈ N}
Leven Language denoted by {a, b}∗a
Labc Language defined by {ambmcm|m ∈ N}

xiv

Chapter 1

Introduction

The 20th century saw many great advances in science, from the extraordinary, such as using

the curvature of spacetime to enable extremely precise global positioning systems, to the more

mundane, such as using microwaves to heat our food. Two theories which helped shape the

world as we know it today are the theory of computation and quantum theory. The field of

quantum information synthesises the two by applying the principles of quantum mechanics

to computational problems. This promises to enable us to perform computations far faster

than our current technology allows. As our understanding of science increases, we need more

detailed models, and more powerful computers to investigate them. Thus quantum computation

provides tantilising theoretical problems and the potential to facilitate progress in many areas

of science.

1.1 Thesis Aim

In this thesis I focus on one particular tool used by quantum information theorists, namely

the discrete time quantum walk. I have undertaken largely numerical work looking into two

particular applications: transport and computation. I investigate various aspects of transport

in the discrete time walk. Of particular interest is when and how a state can be transmitted

from one place to another with certainty. This question has been extensively studied in the

case of the continuous time quantum walk, which I also examine briefly, but has received little

attention in the case of the discrete time walk. I look into the role that the coin plays on the

transport properties of the walk, including using a novel type of coin which prevents the walker

from stepping back into the position it has just come from.

1

I then investigate discrete time quantum walks in the context of language acceptance mod-

els of computation. Firstly we see that they are equivalent to a new type of quantum finite

automaton known as the QFA-WOM. Then I show how the walk can be used to solve language

acceptance problems more directly. The concept of a quantum input arises quite naturally from

this application of the walk, and we finish by investigating these using the walks developed.

1.2 Thesis Overview

I start by giving a detailed overview of the relevant aspects of quantum walks in Chapter 2 and

quantum computation in Chapter 3. This motivates study into quantum walks and quantum

computers, and indeed quantum walks as quantum computers. I give examples of the dynamics

of both the discrete and continuous time walks on the line in the purely quantum regime, and

undergoing decoherence in order to show that the classical random walk dynamics are obtained

from the quantum walk dynamics. Chapter 3 includes introductions to classical computation in

terms of two paradigms: circuits and finite automata. Quantum computation is then described,

initially in terms of the circuit model, and the discrete time quantum walk is shown to simulate

a universal gate set. Quantum finite automata are also defined, and compared to their classical

counterparts.

The following three Chapters, 4-6, concern transport properties of the discrete time quan-

tum walk. In Chapter 4 we start by surveying past results concerning perfect state transfer in

quantum walks, before discussing the results of a brute force search for perfect state transfer

using three types of coin operator. This search looked at many variations of cycles of different

sizes, and generalisations of some of the graphs found to exhibit perfect state transfer are ex-

amined in detail in Chapter 5. These generalisations form three infinite families of graphs, and

the dynamics in the discrete time walk are compared to that of the continuous time walk.

In Chapter 6 a new type of coin operator, which, for the right choice of shift operator,

prevents amplitude leaving a node of a graph via the edge it arrived from, is introduced. This

would cause trivial dynamics in the one dimensional case, as it would cause deterministic

propagation away from the origin. I therefore investigate the dynamics of this type of walk

on a two dimensional lattice, and compare these to the dynamics which arise when other coin

operators are used,

I then turn to quantum computation in Chapters 7-9. In Chapter 7 we see how special types

of environmental interaction enable quantum finite automata to accept more languages. One of

2

the models which takes advantage of environmental interaction, the QFA-WOM, is equivalent

to a discrete time quantum walk. This enables an intuitive understanding of the behaviour of the

QFA-WOM, which is seen to control interference between computational states by controlling

when they are situated at the same node of a graph.

In Chapter 8 I show that discrete time quantum walks can be used to solve language accep-

tance problems by directing amplitude to an accepting node, without using explicit computa-

tional states. Two ways of initialising the input are introduced and it is observed that it is easy

to initialise the walk with an input which is a superposition of two words. This novel, quantum,

form of input is the subject of the preliminary investigations detailed in Chapter 9. The key

result from these investigations is that the language accepting walks can be seen to perform a

type of quantum state discrimination.

The final chapter concludes with a summary of the results detailed in the main body of the

thesis. Open questions and ideas for future work are also discussed.

3

4

Chapter 2

Quantum Walks

2.1 Introduction

As classical random walks have found many applications, particularly in mathematics, physics

and computer science, it is natural to consider their quantum counterparts. Classical random

walks have recently been used to develop new algorithms which outperform their predecessors.

For example, the best known algorithms to solve the constraint satisfiability problem, whereby

one must find objects with a certain set of properties, use the classical random walk [1; 2].

Prior to the development of quantum walks, quantum algorithms which solved problems

more efficiently than any known classical algorithm had been developed. Examples of these

are mentioned in the introduction to Chapter 3 below. The development of quantum walks can

be traced back to the study of quantum diffusion, which mostly focuses on the evolution of

particles on regular lattices. There is a wealth of literature on this topic, for example Feynman

et al [3]. There were many early models of quantum random walks [4; 5; 6], developed with

a variety of applications in mind. Quantum walks were first shown to be interesting from

an algorithmic point of view by Ambainis et al [7] in the discrete time case, and Farhi and

Guttmann [8] in the continuous time case. Both walks were shown to provide speedups in

comparison to the classical cases, on the line for the discrete time walk there is a quadratic

speedup and on a binary tree structure in the continuous time walk the speedup is exponential.

These results prompted a proliferation of further study into both types of quantum walk.

Quantum walks have many specific algorithmic applications, for example the element disct-

inctness algorithm [9], constraint satisfiability [1; 10] and the quantum walk search algorithm.

The search algorithm has both continuous [11] and discrete [12] time versions which have been

5

extensively studied over a variety of structures [13; 14; 15; 16; 17; 18; 19; 20]. In addition to

these applications, quantum walks have been shown to be universal for quantum computation.

This was first shown by Childs for the continuous time walk [21; 22], then by Lovett et al for

the discrete time walk [23]. Both of the proofs work by specifying graph structures, and in

the discrete time case appropriate coins, which simulate an elementary gate set required for

universal quantum computation. Overviews of the applications of quantum walks to computer

science can be found in [9; 24; 25].

The fact that they can achieve exponentially faster hitting times than their classical coun-

terparts [8; 26] gives rise to many of the algorithmic applications [8; 27; 28] of quantum walks.

This also leads to the consideration of quantum walks in the context of quantum transport. A

particular transport problem, that of finding conditions in which perfect state transfer can oc-

cur, has received much attention. The seminal work on perfect state transfer in unmodulated

spin chains was undertaken by Bose [29]. Since then, there have been many results, both an-

alytic and numerical, relating to perfect state transfer, and these have been recently reviewed

by Kendon and Tamon in [30]. Further reviews and discussions of applications of perfect state

transfer can be found in [31; 32]

Decoherence in quantum walks has been found to be useful under certain circumstances.

From an algorithmic point of view, decoherence in the position basis at the correct rate gives

rise to a perfectly random probability distribution for the particles position [33]. From the

transport perspective, an analysis of transport of an exciton through a light-harvesting antenna

complex showed that the successful trajectories were continuous time quantum walks [34].

Further investigations into environment assisted quantum transport followed, see, for example,

[35; 36]. Decoherence is not a main focus of this thesis, but will be briefly discussed in relation

to transport over particular structures.

The rest of this introductory chapter provides the background material necessary for the

discussions of quantum walks in the following chapters. First, some basic graph theoretic

concepts are introduced. Then the discrete and continuous time classical random walks are

defined. I then introduce the discrete time quantum walk on the line (Section 2.4.1), briefly

summarising its behaviour, before defining these walks over general structures. Continuous

time quantum walks over arbitrary structures are then briefly defined in Section 2.4.3. Perfect

state transfer conditions for both cases are defined in Section 2.5 and the effects of decoherence

are discussed in Section 2.6. The chapter concludes with Section 2.7 where I describe how to

simulate and visualise discrete time walks over arbitrary structures. The code generated using

6

the algorithm described was used for every discrete time walk described in subsequent chapters,

apart from the self-avoiding walks in Chapter 6.

2.2 Basic Graph Theory

Both discrete and continuous time quantum walks evolve over an underlying graph struc-

ture. In this section I introduce the graph theoretic apparatus which will be used throughout

this thesis.

A graph G = {E,V} is a set of vertices, or nodes, V and a set of edges E of the form (v,w)

where v,w ∈ V . If the pairs (v,w) are unordered, then the graph is said to be undirected. All the

graphs considered in this thesis are undirected, though there are quantum walk models which

use directed graphs [37; 38]. The degree of a vertex, dv, is the number of vertices it is joined

to. The order of a graph is the number of vertices, |V | and the size is the cardinality of the set

of edges. It is convenient to define the graph in terms of its adjacency matrix A with entries

specified by :

Av,w =

�
1 (v,w) ∈ E
0 otherwise (2.1)

The adjacency matrix AG of G has ones in the entries (v,w) if vertex v is connected to vertex

w and has zeroes elsewhere. A graph is complete if every vertex is joined by an edge to every

other vertex. Graphs with the same number, k, of edges incident on each vertex is k-regular,

with the k often omitted if its value is contextually clear. A particular type of regular graph

known as a hypercube has N = 2n vertices, each of which have n edges incident on them.

Some other common graphs, which will be used in this thesis are Kn, the complete graph with

Figure 2.1: Examples of graphs, from left to right: the complete graph with 2 vertices, K2 = P2, the
path with 2 vertices; the complete graph with 3 vertices K3 = C3 the cycle with 3 vertices; the complete
graph K4; the cycle C9 and the path P7. The open circles indicate potential end points for examining
transport properties.

7

n vertices; Pn the path of n vertices and Cn, the cycle of n vertices, which differs from the

path by only one edge. Examples of these graphs are shown in Figure 2.1. As an example, the

adjacency matrix of K4 is




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



. (2.2)

One can define the complement of a graph G, denoted by G, which shares the same vertices

as G but its set of edges is given by E = {(v,w) | (v,w) � E}. The join of graphs G and H is

denoted G +H and its adjacency matrix is given by

AG+H =

�
AG J
J AH

�
. (2.3)

J is the all ones matrix of the relevant dimensions, so the join operation links all nodes of G

to all nodes of H. The notion of the adjacency matrix can be generalised to allow it to have

entries not equal to either 0 or 1, which varies the strength with which vertices are joined. A

graph with only integer values in its adjacency matrix is called an integral graph. Classically,

integral graphs with adjacency matrices whose entries are greater than one represent multiple

edges between nodes. If the diagonals of AG are integers, then the graph G is interpreted as

having self loops.

2.3 Classical random walks

2.3.1 Discrete time case

The classical discrete time random walk is simply a succession of steps over some structure,

the directions of which are decided at random. The classic example is the walk on the line,

where the decision to take a step left or right is made using an unbiased coin. The walker can

be considered moving along a number line which stretches from −N to N much like the small

portion depicted in Figure 2.3. The average position of the walker at any time t is the origin,

but if run forever a walk over Z will pass each point an infinite number of times. If a sufficient

number of walks with t timesteps are performed and their final positions plotted, a binomial

distribution with standard deviation t is obtained, as can be seen in Figure 2.2.

8

Figure 2.2: The probability distribution of final positions of a classical random walker after multiple
runs each of 100 steps

2.3.2 Continuous time case

The classical continuous time random walk was introduced by Montroll and Weiss [39]. In

contrast to the discrete time case, in the continuous time case there is a certain probability of

the walker hopping within a certain time interval. This gives rise to a hopping rate γ. The

probability distribution across the graph over which the walk takes place is determined by a

matrix M. This matrix specifies how the probabilities are updated in every time step. The

entries Mv,w of M indicate the probability of jumping from the vertex v to vertex w and are

defined to be

Mv,w =




−γ if v � w and v is connected to w
0 if v � w and there is no connection between v and w

dvγ if v = w
(2.4)

The probability distribution over all vertices at time t, �p(t) can then be obtained by

�p(t) = e−Mt�p(0) (2.5)

where �p(0) is the initial probability distribution. The evolution of the probability of finding the

walker at a specific vertex v on the graph with adjacency matrix A is expressed in terms of the

9

differential equation

d
dt

p(v, t) = γ
�

w
{Av,w p(w, t) − Aw,v p(v, t)}. (2.6)

This just sums the incoming and outgoing probability at each vertex w where (v,w) ∈ E.

2.4 Quantum walks

2.4.1 Discrete time quantum walks on the line

Before introducing the discrete time walk on a general graph, I describe the walk on the line in

some detail by way of example. The first way one may consider ‘quantising’ the classical ran-

dom walk would be to allow the walker to move in a superposition of all possible walks. This

has been shown in [40] not to be reversible. The specification that all operations in quantum

mechanics must be unitary means that all purely quantum dynamics must be reversible, hence

this suggestion is not viable. Another approach is to to make a quantum coin flip operation, by

allowing the result of the coin flip to be a superposition of heads and tails. This means that,

analogously to the classical walk, each step is divided into two subroutines, one for the coin

toss and the other for shifting the probability amplitude along the line. Thus the Hilbert space

of the walk is the tensor product of the position space Hx = span{|x�|x ∈ Z}, and the coin space,

which has basis vectors specifying the ‘coin state.’ Coin states will be called −1 to indicate that

the walker is to move left, and +1 when the walker is to move right. The walker can start the

walk at position x = 0 in a superposition of coin states, as indicated by

|ψ(t = 0)� = a|0,−1� + beiφ|0,+1� (2.7)

where a and b are real numbers such that a2 + b2 = 1 and 0 ≤ φ < 2π is an arbitrary phase.

As the coin state specifies the direction in which the shift operation should move the walker,

having a superposition of coin states will result in the walker moving in a superposition of left

and right, leading to the state

|ψ(t = 1)� = a| − 1,−1� + beiφ|1,+1�. (2.8)

10

Figure 2.3: The first two steps of the discrete time quantum walk on the line with an initially localised
walker

The coin and shift operators, denoted C and S respectively give the time evolution of the

state |ψ(t)�, as |ψ(t + 1)� = SC|ψ(t)�. C can be any unitary operator on the Hilbert Space of the

coin states, the most general of which, in the case of the walk on the line, can be written

C
gen =

� √
ρ eiθ

�
1 − ρ

eiθ
�

1 − ρ −ei(θ+φ) √ρ

�
(2.9)

with arbitrary angles θ and φ and probability that the walker moves right such that 0 ≤ ρ ≤ 1.

Taking θ = φ = 0 and ρ = 1
2 gives the Hadamard coin operator, denoted H. If the columns of

H are swapped around we have H2

H =
1√
2

�
1 1
1 −1

�
H2 =

1√
2

�
1 1
−1 1

�
. (2.10)

It has been shown in [7] that the full range of dynamics for the walk on the line can be

obtained with just the biased Hadamard operator, taking θ = φ = 0 and varying ρ in Equation

2.9, by varying the initial state of the walker. The evolution of the first two steps of the walk

on the line using the unbiased Hadamard operator can be seen in Figure 2.3.

The classical random walk propagates at a rate proportional to
√

T , where T is the number

of timesteps, whereas the rate for the quantum walk is proportional to T . This speedup is

11

intuitively because some amplitude is always moved left, and some is always moved right for

each step of the walk, so every step results in the distribution being two positions wider than it

was at the previous step. Whilst a classical random walk may propagate away from the origin at

each timestep, this is unlikely. Due to the interference which takes place in the quantum walk,

it is possible to select initial conditions such that the walker will be measured at a position

which is some distance proportional to T from the origin with high probability.

2.4.2 Discrete time quantum walks over general structures

Whilst the transport properties of the discrete time quantum walk on the line are themselves

interesting, it can also be useful to consider quantum walks in higher dimensions. For example

the quantum walk implementation of Grover’s algorithm [12] takes place over an n-dimensional

hypercube where each node represents an n-bit binary string. Varying the structure over which

Grover’s algorithm is implemented has been found to affect its efficiency [41]. Walks on ir-

regular, higher dimensional graphs are used in the proof that discrete time quantum walks are

universal for quantum computation, see Chapter 3 Section 3.3, and to solve language accep-

tance problems in Chapter 8.

A discrete time quantum walk over an arbitrary graph structure G = {E,V} evolves, just

as for the walk on the line, according to a coin operator and a shift operator. In order to

accommodate walks over more complex structures both of these operators must be modified.

The coin operator acting at vertex v ∈ V has dimension d × d, where d is the degree of the

vertex, is any unitary. Coin operations which will be particularly relevant to this thesis are the

Grover operator:

Gd =




2−d
d

2
d · · · 2

d

2
d

2−d
d · · · 2

d

...
...
. . .

...

2
d

2
d · · · 2−d

d




(2.11)

and the unitary Discrete Fourier Transform (DFT), specified by:

12

DFT =
1√
d




ω0×0
d ω0×1

d . . . ω0×(d−1)
d

ω1×0
d ω1×1

d . . . ω1×(d−1)
d

...
...

. . .
...

ω(d−1)×0
d ω(d−1)×1

d . . . ω(d−1)×(d−1)
d




(2.12)

with ωd = e
−2πi

d . The d = 2 version of the DFT is more commonly known as the Hadamard, H.

After the coin toss, a shift operation is applied. This is simply a permutation between

the relevant coin states at different vertices, and is hence a unitary transformation. The shift

operator acts like S|v, c� = |w, n�, so moves amplitude from the cth coin state of v to the nth

coin state of w [42]. The probability of the walker being measured at position v after T steps

is the summation over coin states at v, p(v, t) =
�

i |v, ci|2. The state of the quantum walk must

describe both the position of the walker, and the configuration of coin states. A general state is

written

ψ(T) =
�

v,c
αv,c(T)|v, c� (2.13)

where αv,c ∈ C and |v, c� denotes a basis state on vertex v with coin state c.

Various attributes of discrete time quantum walks are of potential interest, such as the

limiting distribution, [43; 44], which is the limit as T → inf of the time averaged probability

distribution

PT (v|Ψ(t = 0)) =
1
T

T−1�

t=0

PT (v|Ψ(t = 0)) (2.14)

where

PT (v|Ψ(t = 0)) =
�

c
|�c, v|Ψ(t)�|2. (2.15)

The hitting time, which is characterised as the probability that a walker starting in state |Ψ�
will be at position |v� after T steps with probability greater than p

|�x|SC
T |Ψ�|2 ≥ p, (2.16)

13

has also been extensively studied [26; 45; 46]. In contrast to the walk on the line, differ-

ent choices of coin operation can produce dramatically different dynamics. This is discussed

further in Chapter 6 in the context of a new type of coin.

The quantum walks discussed in this thesis all take place on undirected graphs. In general,

it is difficult to ensure that the dynamics of the walk will be unitary if they take place on a

directed graph as the adjacency matrix is not symmetrical so the shift operator is not guaranteed

to be Hermitian. There have been a few approaches to the problem of defining quantum walks

on directed graphs, such as [37; 38] and some necessary and sufficient conditions which the

graph must fulfil to allow for unitary dynamics are shown in [47; 48]. The method used in [38]

uses a mapping which turns each edge of an undirected graph into a pair of directed edges,

however for the Grover coin this method was then shown to replicate the dynamics of the

walk over the original undirected graph [49]. There has been little follow up work concerning

walks on directed graphs, though they have been shown to give rise to faster transport than the

classical walk on the line in [50].

2.4.3 Continuous time quantum walks

Continuous time quantum walks were first introduced by Farhi and Gutmann in [8]. It is the

quantum analogue of the classical continuous time random walk. A continuous time quantum

walk evolves over graph G = {E,V} according to the Schrödinger equation. This means that,

in contrast with the discrete time case, no dynamical control is required to implement the

continuous time walk. In this thesis the adjacency matrix AG gives rise to the Hamiltonian,

which is taken to be H = γAG where γ is the hopping rate, though there are models where the

Laplacian, whose elements (v,w) are defined by

L(v,w) =




−1 if v � w and v is connected to w
0 if v � w and there is no connection between v and w
dv if v = w

(2.17)

is used instead. In the case of regular graphs, the evolution generated by using the Laplacian

rather than the adjacency matrix for the Hamiltonian is identical, as the diagonal elements of the

Laplacian are all equal and contribute a global phase. I used the adjacency matrix version of the

walk, as the vast majority of results concerning the continuous time walk use this formulation

[30; 51; 52], facilitating comparison of my results with prior work.

14

As there is no coin space, the walk evolves entirely in the position basis. The walker evolves

in an N dimensional Hilbert Space with basis states |v� where v ∈ V . In units where γ = � = 1,

the state of a continuous time walk at time t is given by

|φ(t)� = e−iγAGt|φ(0)�. (2.18)

The evolution of the amplitude at a specific node v is given by

i
d
dt
�v|φ(t)� =

�

w
�v|H|w��w|φ(t)�. (2.19)

The amplitude at vertex v at time a particular time t, αv(t), is �v|φ(t)�.
Unlike in the discrete time case, where multiple coin states can accommodate multiple

edges between the same two vertices, there can be at most one edge between vertices of G in

the continuous time case. Varying the value of the entry AG(i, j) gives rise to a weighted edge

between vertex i and vertex j, which is equivalent to repeating an edge when the value is made

greater than one. The probability distribution for the walk on the line is quite similar to that

of the discrete time walk, and can be seen in Figure 2.4 d) where the purely quantum version

corresponds to p = 0.

In the seminal paper, continuous time walks were shown to achieve exponentially faster

transport than their classical counterparts over a glued binary tree structure [8]. On the line,

they show the same speedup as the discrete time walk when an appropriate value for γ is

selected, as shown in Figure 2.4 d). It is not always the case that the continuous time quantum

walk propagates faster than the classical continuous time walk. This is shown in [53] for a case

which, for some initial conditions produces faster propagation but for others produces slower

propagation. The walks which are shown analytically to have infinite hitting times in [46] also

give rise to a class of structures over which continuous time quantum walks are slower than

classical walks as hitting times for classical walks are always finite.

2.5 Perfect State Transfer

For the continuous time walk, there is perfect state transfer between vertices v and w at time t

if the following condition is met:

15

�w|e−iAGt|v� = 1 (2.20)

where |v� and |w� are unit vectors at vertices v and w respectively and t > 0. If the perfect state

transfer condition holds for some v,w ∈ V then we say the graph G has perfect state transfer. A

special case of perfect state transfer occurs when v = w, in which case the graph G is periodic.

In the discrete time quantum walk, perfect state transfer occurs between vertices v and w

after T steps if

�

c,d

�w, d|(SC)T |v, c� = 1. (2.21)

It is clear from this definition that we are not concerned about whether the coin states are in

the same configuration at vertex w as they were at vertex v, which enables perfect state transfer

between vertices of different degrees. For the definition of periodicity, the stricter requirement

of returning to the same configuration of coin states is made:

�

c
�v, c|(SC)T |v, c� = 1. (2.22)

The perfect state transfer conditions may be stricter than necessary for some applications,

in which case one can look for high amplitude transfer instead. A lower bound λ for the

transmitted amplitude must be selected, and then we require that

�

c,d

�w, d|(SC)T |v, c� ≥ λ, �w|e−iγAGt|v� ≥ λ (2.23)

in the discrete and continuous time cases respectively.

16

a) b)

c) d)

Figure 2.4: The effects of decoherence on the discrete time walk over a range of rates a) the position
basis b) the coin basis and c) both the position and coin basis. Each walk was run for fifty steps and
started in an equal superposition of coin states. d) Shows the effect of decoherence on the continuous
time walk run for fifty timesteps with γ = 0.5

17

2.6 Decoherence in Quantum Walks

Quantum systems undergo decoherence when they interact with an environment, in which case

their evolution is no longer unitary. One way that an environment can interact with a system

is for it to perform measurements on the system using projection operators. This formalism

is chosen because, when the decoherence rate is set equal to one, the classical random walk is

recovered, justifying the description of the quantum walk as a quantum analogue of the classical

random walk. A detailed account of how to model uncorrelated environmental interactions in

various types of quantum walks can be found in Kendon [49]. For the discrete time quantum

walks, there are two potential types of decoherence: in the coin basis and in the position basis.

In both cases the density operator notation must be used, so the state of the quantum walker is

written

ρ =
�

v,c

�

v�,c�
ρv,c,v�,c� |v, c��v�, c�| (2.24)

The evolution operator U = S C acts on the density matrix in the required fashion, so Uρ =

S Cρ = SCρC†S†. Decoherence in either basis can then be modelled by modifying U:

U :→
�

j∈Θ
P jSCρC†S†P†j (2.25)

where the projection operators P j can project either in the coin basis, the position basis, or both.

The set of projection operators Θ has cardinality one if the evolution is unitary, as P j must be

the identity in this case. The evolution of the quantum walk, with probability of a decoherence

event occurring during a given timestep p is then given by

ρ(t + 1) = (1 − p)SCρ(t)C†S† + p
�

j

P jSCρ(t)C†S†P†j . (2.26)

The effects of decoherence depend on which basis the projection operators project onto, as

shown in Figure 2.4. In the case of the position basis, the decoherence rate can be selected so

that after a given number of steps, a perfectly random distribution is obtained, as seen in Figure

18

2.4 a). Decoherence in the coin basis creates a central cusp (Figure 2.4 b)), which, as the rate

increases becomes the peak of the expected classical distribution.

In the continuous time case, the purely quantum time evolution in density matrix notation

is given by

dρ(t)
dt
= −i[AG, ρ(t)] (2.27)

and when there is Markovian noise present the density matrix evolves according to

dρ(t)
dt
= −i[AG, ρ(t)] − pρ(t) + p

�

j

P jρ(t)P†j . (2.28)

This is a specific version of the Lindblad equation, where we have a complete set of projection

operators
�

j P
dagger
j P j = 1 and Pdagger

j = P j. The effect of decoherence in the continuous time

walk is shown in Figure 2.4 d).

2.7 Simulating quantum walks

Due to the degrees of freedom introduced by the coin space, the discrete time quantum walk is

very difficult to investigate analytically. Some cases on regular lattices have been solved exactly

using path counting and Fourier space techniques. The case of the walk on the line was solved

by Ambainis et al [7], the hypercube was treated by Moore and Russell [54] and then Kempe

[26], and higher dimensional lattices were treated by Gottlieb et al in [55]. General solutions

for walks over arbitrary structures have not yet been attempted. In cases where the initial states

and entries in the coin operator are represented by numbers which can be handled exactly by

the simulation, such as those in the Grover operator with the walker initially localised in a

specific coin state of a given node, they can be exactly simulated. In general, exact simulations

are rare, only being possible for a small number of timesteps or in cases where the evolution

is periodic. Our own simulations coupled with subsequent analytic work for a few exactly

solvable, highly symmetric, cases indicate that the walks can be simulated to a very high degree

of precision for at least 100 timesteps. Much longer walks can be simulated [56] but eventually

19

numerical accuracy may become an issue. Their difficulty in being treated analytically coupled

with their suitability for numerical investigation is why, thus far, the vast majority of results

concerning the discrete time quantum walk have been obtained numerically [23; 33; 43; 57].

This contrasts with the case of the continuous time walk where numerical methods are less

suitable, as numerical integration is required to simulate the time evolution. These walks are,

however more amenable to analytic techniques [29; 30; 52; 58]. As they obey the Schrödinger

equation their evolution can be written in terms of the eigensystems of their Hamiltonian,

which is either the adjacency matrix or Laplacian of their graph structure. In cases where the

eigenvalues and vectors have simple expressions, it is easy to write out the full time evolution

of the walk for a given initial state.

2.7.1 Algorithm to generate quantum walk from the adjacency matrix of a graph

The problem solved by the algorithm outlined in this section can be stated thus: Given the ad-

jacency matrix of a graph, generate appropriate time evolution operators to simulate a discrete

time quantum walk over that structure. Mathematically, this corresponds to performing the

appropriate matrix operations. As should be clear from the definition of a quantum walk, two

such operators are required, the coin operator C, and the shift operator S. The coin operator is

simpler to generate, so I describe this first.

Figure 2.5: The cycle of two nodes

2.7.2 Generating the coin operation

The coin operator acts locally on each node of the graph. Due to the structure and ordering

of the direct sum required to apply a coin to each vertex, we know that the operator will be

represented by a block diagonal matrix. Each block acts on a different node of the graph,

20

and the block’s dimension will be equal to the degree of that node. In order to generate the

operator, the relevant coin acting at each node is generated, and then we must ensure that it

is placed in the appropriate position in the large coin matrix. To do this, the degree of each

node is required, and this can be found easily by taking the sum of the row representing that

node in the adjacency matrix. Then the operations at each node must be specified, and there is

a large amount of freedom here. The simplest case is to have coins of the same type operate

at each node. For example, the Grover or DFT operators of appropriate dimensions can be

specified easily. In some walks discussed below, different types of coin are used at different

nodes. Exceptions for nodes of a specific degree, or even for specific nodes, can easily be

added. A very simple example of generating the coin operation can be given if we consider a

cycle of two nodes, which in standard notation is referred to as C2 and is depicted in Figure

2.5. Using the two dimensional DFT operator, also known as the Hadamard used at both nodes

gives rise to the following coin operator:

C =

�
1 0
0 1

�
⊗ 1√

2

�
1 1
1 −1

�
=

1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




(2.29)

2.7.3 Generating the shift operation

In order to ensure that the consistent labelling scheme required to guarantee unitarity of the

walk is taken into account, care must be taken in generating the shift operator. For each node,

we need not only the degree, but the indices of the other nodes it is joined to. In the program-

ming language Python, which was used for the majority of simulations in this thesis, it is easy

to generate a list of these by looping over the relevant row in the adjacency matrix AG, and this

list can then be used to specify the ordering of the coin states at that node. This list has the

form:

list 1 = ([i, j, k], [l,m]...[v,w])

where the index of each entry specifies which node the nodes i, j, k etc. are attached to. It is

also useful to create another list:

list 2 = [0, 3, 5...]

21

Figure 2.6: Relation between nodes (bold capitals), edge labels (bold lower case) and book keeping
quantities for a pair of nodes on an arbitrary graph structure. The dashed line at node j indicates that
there are possibly other edges

specifying the index of the first coin state for each node. So the nth entry of list 1 tells us

which nodes node n is joined to, and the corresponding entry of list 2 tells us which coin state

joins n to the first entry list 1 [n]. The dimension of the shift operator is simply the sum of the

number of coin states at each node. At a given node v, which corresponds to the row/column

numbered v in AG, the correct permutation between coin states is the most difficult part to find.

The algorithm can be described thus, with the full Python code shown in Appendix A:

Initialise list 1: an empty list of length |V |

Initialise list 2: an empty list of length |V |

Set coin state counter to zero

For v < |V |

For x < |v|

If AG[v][x] == 1

Append x to list 1[v]

list 2 [v] = coin state counter

Add |v| to coin state counter

22

Shift dimension = coin state counter

Initialise operator, a square array of size shift dimension

For v < |V |

// The first coin state, av, at the node v is list 2 [v]

av = list 2[v]

For x < |v|

// The node av + x joins to, j, is given by list 1[v][x]

j = list 1[v][x]

a j = list 2[j]

For y < | j|

// Find the coin state of j which joins to node v

When list 1[j][y] == v

b = y

Shift[av + x][a j + b] = 1

In Figure 2.6 the relations between the values used by this algorithm are shown schemat-

ically. Performing this routine for each node of the graph gives half of the shift operator. For

each nonzero entry (i, j) in the array simply populate the corresponding entry (j, i) and we have

the required permutation matrix.

This routine can be used to generate an appropriate shift operator for any standard ad-

jacency matrix, that is, any whose entries are only zeroes and ones, including those which

contain self loops. More care must be taken if we wish to generate shift operators for graphs

with multiple connections between edges, but the principles remain the same. Clearly, the size

of the structure which can be simulated depends on the available memory. I have been able to

use the functions created using the above routine to run walks over graphs with more than 7500

23

nodes for approximately 100 timesteps in less than five minutes using a standard desktop com-

puter. Currently simulations of quantum walks on regular graphs, which can be simulated in

a much more compact way, cannot have more than 1012 sites. The limits imposed by memory

considerations for the size of quantum walk we can classically simulate are discussed in more

detail and for a variety of situations in [56].

Once the appropriate shift and coin operators have been created, the only things left to be

specified are the number of timesteps the walk should be run for, the initial state of the walker

and the information we would like to gain about the walk.

2.7.4 Visualising walks

Due to the vast amounts of data that it is possible to generate regarding quantum walks, methods

to make the data more tractable are required. There are various ways to do this, such as only

looking at one specific aspect of the walk, as in Chapters 4 and 5. Visualisation of the graphs

over which the walks take place, and the evolution of amplitude through the graphs, can also

be helpful. I have used two packages to visualise graphs and walks, and briefly describe them

here.

Python’s networkx package is built specifically to facilitate analysis of complex networks.

It has a wide range of functions, such as converting other standard data structures (such as

a numpy array) into its specific graph data structure. Then further analysis of the graph can

be done using built in functions. For example graphs can be tested for isomorphism, which

facilitated analysis of the graphs generated for the study in Chapter 4. It is also possible to

visualise the graphs in a number of ways, as shown for a single graph in Figure 2.8. In cases

where there are many graphs to study and little intuition can be gained about them from their

adjacency matrix representation, visualisation is extremely helpful.

a) b) c)

Figure 2.7: Automated visualisation of a graph structure using networkx and various options for node
distribution: a) standard b) random distribution of nodes c) nodes positioned on a circle

24

For visualising entire walks, in which case animation is required, the nodebox package is

useful. This package is exclusively for visualisation, so rather than automatically generating a

picture of the graph structure, the choice of visual representation is left to the author and the

position of the nodes and edges must be specified manually. Basic forms such as lines and

circles are built in, so only the positions and colours of the nodes and edges need specifying.

By relating the colour of a node to the probability of the walker being at that node, it is easy to

see the walk taking place in the position basis.

a) b)

Figure 2.8: Visualisation using nodebox on a graph structure based on a protein pigment complex
called the FMO complex with a) amplitude equally distributed between the leftmost two nodes and b)
amplitude evolving away from these nodes

25

26

Chapter 3

Quantum Computation

3.1 Introduction

The idea of quantum computation dates back to Feynman [59] and the first theoretical quantum

computer was proposed by Deutsch [60]. Interest in quantum computation started to take off

when specific quantum algorithms were developed and shown to outperform their best known

classical counterparts. Examples of such algorithms are Shor’s algorithm [61], Grover’s algo-

rithm [11] and the Deutsch-Jozsa algorithm [62]. Shor’s algorithm finds the prime factors of

a given integer in polynomial time, in contrast to the most efficient known classical algorithm,

which requires sub exponential time. Grover’s algorithm finds a marked state in an unsorted

database in O(
√

N) time, and is asymptotically the most efficient quantum algorithm for solving

this problem, whereas the optimal classical algorithm requires linear time. The Deutsch-Jozsa

algorithm is faster than any deterministic classical counterpart can be. This algorithm deter-

mines whether a function is constant, returning the same value for any input, or balanced, in

which case for half of inputs it returns 0 and for the other half, it returns 1.

Whilst specific algorithms are useful for demonstrating the advantages of quantum comput-

ing over classical computing, shed new insights into the nature of the problems they address,

and motivate research into quantum information as a field, there are also strong motivations for

looking at more general models of quantum computation. In general, we want to find models

which can solve more than one type of problem. Classical digital computers do this easily, and

in order to be of use beyond limited settings quantum computers need similar versatility. The

ultimate goal would be to experimentally implement a Turing universal quantum computer. In

this chapter, I introduce quantum computation first via the most standardly used model, the

27

circuit model in Section 3.2. As it is of great relevance to later parts of this thesis, the outline

of the proof that the discrete time quantum walk can simulate a universal gate set is given in

Section 3.3. I then move onto computation in terms of language acceptance, by defining formal

languages and the simplest classical computer, the finite state automaton in Section 3.4. The

notion of probabilistic language acceptance is then defined. Then the definition of the simplest

quantum analogue to a finite state machine is given and the most important theorems regarding

its language acceptance properties are stated. The chapter concludes with a few remarks on the

motivations, both theoretical and practical, for studying quantum language recognisers.

3.2 Quantum circuits

Classical computation is performed by manipulating bits, which take logical values of 0 or

1. The manipulations are performed by circuits composed of logic gates, which implement

Boolean functions. Formally a circuit is a directed, acyclic graph, with the nodes corresponding

to the gates. A directed acyclic graph contains no directed cycles, it can contain cycles. Circuits

are often represented pictorially, with individual bits being represented by wires and operations

performed on those, and perhaps other, bits as rectangles bisecting the wires. Generally the

bits are considered to move right along the wire, so the leftmost gate is the first applied. An

example gate is the NAND gate, which can be used to perform universal computation. This

gate returns a 0 only when both inputs are 1, which is often interpreted as having a false output

only when both inputs are true. There also exist gates, such as the Toffoli gate, a three bit gate

sometimes called the ‘controlled-controlled-NOT’ gate, which are both universal (for classical,

not quantum, computation) and logically reversible [63]. This work was motivated by the

proof that any logically irreversible operation generates heat [64], so one way to minimise heat

generation in computers would be to use reversible operations. However, the results showing

that classical computing systems could be logically reversible formed part of the inspiration

to consider quantum mechanical computers. Quantum circuits are conceptually identical to

classical reversible circuits. A simple example of a small arbitrary quantum circuit is shown in

Figure 3.1.

In quantum computation, instead of bits, the fundamental units of information are known as

qubits. Qubits are represented by norm one vectors in a two dimensional Hilbert space. They

can be in any linear combination, otherwise known as superposition, of the values 0 and 1. A

28

Figure 3.1: The quantum circuit which applies the unitary operation U to qubit in state |ψ�

general qubit is written

|ψ� = α|0� + β|1� (3.1)

where α and β ∈ C are such that αα∗ + ββ∗ = 1 and the vectors in Dirac notation, |0� and |1�,
represent the logical states 0 and 1. In this notation the vector dual, or conjugate transpose, of

|ψ� is written �ψ|. The vector dual is required when calculating the effects of measurements on

quantum states.

In quantum circuits the gates are unitary operators. Operations on individual qubits are

represented by 2 × 2 matrices, for instance the phase shift gate

Rθ =
�
1 0
0 eiθ

�
. (3.2)

This gates leaves state |0� unaltered whilst adding a phase to the |1� state, taking it to eiθ|1�. This

corresponds to rotating a qubit by θ radians in a horizontal circle in its pictorial representation

known as the Bloch sphere, see Figure 3.2.

In order to perform universal quantum computation, a gate set must include gates which

operate on more than one qubit at a time. In fact, only one two qubit gate is required to form a

universal gate set, the controlled NOT gate:

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




(3.3)

29

Figure 3.2: The Bloch sphere representation of the qubit, which can occupy any position on the surface
of the sphere

which flips the logical state of the second qubit when the first qubit is in state |1�, hence |10� is

mapped to |11�. Together with the Hadamard operator, reproduced from Chapter 2 for clarity

H =
1√
2

�
1 1
1 −1

�
(3.4)

the phase shift and CNOT gates form a universal gate set [65]. The universal gate set shown

here is by no means unique [60; 66; 67; 68]. The exclusive-OR gate combined with a set of

single qubit gates is another such set [67]. Any two qubit gate which generates entanglement

between qubits, i.e. if they start in a product state, then they can no longer be written as

such after the gate is applied, has been shown to be universal for quantum computation. This

requirement has been shown to be necessary and sufficient for universal quantum computation

[69].

3.3 Simulation of quantum circuits by quantum walks

As part of the focus of this thesis is about the applicability of quantum walks to problems

in quantum computation, I now turn to their relation to the quantum circuit model. We have

already noted in the introduction to Chapter 2 that quantum walks have been used to design

specific algorithms. Both discrete and continuous time quantum walks are universal for quan-

tum computation. This was first shown by Childs in [21] for the continuous time walk. Using

an analysis of scattering theory on graphs, he was able to develop analogues to the wires along

30

Figure 3.3: One step of walk simulating wires in a quantum circuit by using the Grover coin

which qubits propagate in the circuit model. Widgets attached to these wires were then shown

to simulate the universal gate set.

The work in Chapter 8 was in part inspired by the fact that the discrete time quantum

walk is a computational primitive. This implies that its applicability to computer science is not

limited to the circuit model, as I show by construction in Chapter 8. As the work in this thesis

is strongly related to the fact that the discrete time walk is universal for quantum computation,

the proof of this is now stated.

Theorem 3.3.0.1. (Lovett et al.) The discrete time quantum walk simulates the wires and
elementary gate set required for universal quantum computation.

Proof. To simulate the wires, four dimensional nodes, as indicated in Figure 3.3, are used.
When the Grover coin is used, this gives the required unidirectional, deterministic evolution,
as can be seen by:




−1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

1
2

−1
2







α

α

0
0



=




0
0
α

α



. (3.5)

The vector here represents the coin states on a node of the wire. As there are two edges incident
on each node, a and b, and two leaving, transmitting amplitude to edges a and b of the next
node, the effect of the Grover operator is to move amplitude from both ‘entering’ coin states to
both ‘leaving’ coin states. For reasons which will shortly become clear, the Grover operator is
in fact multiplied by e−i π4 . As this adds a global phase it does not affect the evolution. Equation
3.5 holds only when the amplitude in the two populated states is equal in magnitude and phase.
The walk must be initialised to ensure this is the case. If the initial state is β|0� + η|1� such that
|β|2 + |η|2 = 1 then the amplitude for each qubit will be equally split along edges a and b:

|ψinitial� =
1√
2

(β|0�a + β|0�b + η|1�a + η|1�b) (3.6)

This state could represent, for example, the amplitude at the two leftmost nodes in Figure 3.4
(b). To simplify notation below, the 1√

2
is omitted.

31

a)

b)

c)

Figure 3.4: Discrete time quantum walk version of a) the controlled not gate b) the phase gate and c)
the Hadamard gate

Now graphs and coins which simulate a universal gate set are required. The CNOT gate is
trivial to implement, as the wires representing states |10� and |11� are simply swapped, as in
Figure 3.4 a). To implement the phase gate, the construction used in Figure 3.4 b) is used. As
the Grover operator applied at the two dimensional nodes does not add a phase, the qubit in
state |1� picks up a phase of ei π4 relative to the qubit in state |0�.

This leaves the Hadamard gate, which is the most complex to implement using the discrete
time quantum walk. The graph structure, shown in Figure 3.4 c) is comprised of four phase
gates along the wire for the qubit in state |ψ�, and a specially developed operation which com-
bines the inputs from both basis states and outputs them along the wires accordingly. This

32

operation is specified by

G(8) =
1
2




0 0 0 0 1 i i −1
0 0 0 0 i 1 −1 i
0 0 0 0 i −1 1 i
0 0 0 0 −1 i i 1
i −1 1 i 0 0 0 0
−1 i i 1 0 0 0 0
1 i i −1 0 0 0 0
i 1 −1 i 0 0 0 0




. (3.7)

When the |1� states reach the node where G(8) is applied, they are in states corresponding to
e−i π2 η|1�. So after the application of G(8) we have:

G(8)




β

β

e−i π2 η

e−i π2 η

0
0
0
0




=
1
2




0
0
0
0

(i − 1)β + (i + 1)e−i π2 η

(i − 1)β + (i + 1)e−i π2 η

(i + 1)β + (i − 1)e−i π2 η

(i + 1)β + (i − 1)e−i π2 η




(3.8)

Hence G(8) has the required basis changing properties, and after the further two phase gates are
applied the required relative phase of −1 is obtained.

Each of the gates begins and ends with one of the degree four nodes used to construct the
wires. This means they can be easily composed and hence circuits of arbitrary size can be
simulated. �

The graph structures are larger than their equivalent constructions in the circuit model, as

there is one wire for each qubit, the quantum walk model requires 2n wires to simulate an

n-qubit computation. However, on a quantum computer, these 2n wires can be simulated by

n qubits, as a graph with N nodes can be represented by log2N qubits. If multiple walkers

are used, like in the more recent construction by Childs [22] for the continuous time walk, an

exponential number of wires is not required.

33

3.4 Formal languages

A formal language is a set of words from some alphabet Σ. These languages are generated by

sets of formation rules, otherwise known as grammars. Formal grammars dictate how strings

in a given language can be formed from the language’s alphabet. There is a hierarchy of formal

grammars, known as the Chomsky hierarchy. At the bottom of the hierarchy lie the regular

languages, which are accepted by finite state automata (FSAs). As this thesis discusses the

quantum analogues of FSAs, I now introduce these in some detail.

3.4.1 Finite state automata

Finite-state automata (FSAs) are one of the simplest widely researched models for compu-

tation, and serve as the basis for other models of computation. Such automata consist of a

machine head which has some computational state, which is controlled by transition functions,

and an input tape. The machine head reads input symbols from the tape, and these control the

state transition made by the machine head.

Formally an FSA is a 5-tuple:

(Q,Σ, δ, q0, F)

with Q being a finite set of states, Σ being the finite input alphabet, δ:Q × Σ → Q being the

transition function, q0 being the initial state of the automaton and F ⊂ Q being the set of

accepting states of the automaton. For convenience one often specifies an end-marker symbol,

$ � Σ , thus the tape alphabet is Γ = Σ∪ $. Each symbol on the tape occupies one tape square.

If the machine is in an ‘accepting’ state after reading the end-marker symbol, the FSA is

said to have made an accepting computation. The language accepted, or recognized, by an

FSA M is the set of words L(M), or input strings, such that M is in an accepting state having

read the symbol $. It should be noted that when one talks about the language accepted by an

FSA, one refers to a unique set. However, if a language is accepted by an FSA, that language

will also be accepted by other FSAs, so there is no unique FSA accepting a given language.

The FSA with the smallest number of states accepting L is called the minimal FSA accepting

L.

From the definition of δ for individual symbols one can specify a function δ̂ the action of

an FSA on an entire string of symbols w, which can include the empty symbol �:

34

• δ̂(q, �) = q

• δ̂(q,wa) = δ(δ̂(q,w), a) for all strings w and input alphabet symbols a.

δ̂ agrees with δ for individual symbols, as can be seen by computing δ̂(q, a) = δ(δ̂(q, �), a) =

δ(q, a).

FSAs accept the simplest type of formal languages, regular languages, which can be ac-

cepted by simply examining each symbol in a string from the language in order. These are

at the bottom of a hierarchy of formal languages known as the Chomsky hierarchy. Regular

languages from alphabet Σ are denoted by regular expressions and consist of:

• ∅: the empty set

• �: the empty symbol

• a ∈ Σ: singleton symbol

From regular expressions a and b further regular expressions are formed inductively. If a and

b denote regular expressions, their concatenation a + b, their union a ∪ b and their Kleene

closure {a, b}∗ are regular expressions. The Kleene closure of an alphabet is the set of every

string which can be formed from symbols in the alphabet, including the empty string. For

example, the regular expression {ab}∗ denotes the language Lab = {(ab)m|m ∈ N}. The Kleene

closure means that any word from an alphabet can be accepted by an FSA, but, as we will see,

if we wish to only accept words with a certain structure, different models of computation are

required.

As regular expressions are closed under concatenation and set union, all languages con-

taining a finite number of symbols are regular. The proof of equivalence between regular ex-

pressions and FSAs can be found in any standard introductory textbook to theoretical computer

science [70; 71]. There are many variations of FSAs, for example δ can be nondeterministic,

or the tape head can be allowed to move both ways along the tape. Whilst these variations can

provide gains in computational efficiency, they have been proven not to allow us to solve any

problems which cannot be solved by a standard FSA.

The limitations of this model of computation become clear when one considers, for exam-

ple, the language Leq = {ambm|m ∈ N}, which cannot be accepted by an FSA. The reason that

this language cannot be accepted by an FSA is, heuristically, because some form of memory

is required in order to determine whether the number of a’s is equal to the number of b’s. In

35

fact, the simplest form of memory possible can be used to perform this task. This form of

memory is known as a ‘stack’ and operates on a ‘first in- last out’ basis and is included in the

definition of a pushdown automaton. The languages accepted by these automata form the stage

in the Chomsky hierarchy directly above the regular languages and are called context-free lan-

guages. Above these are languages called context-sensitive languages. In terms of language

acceptance, a universal computer is one which can accept any recursively enumerable lan-

guage. Such languages are defined to be subsets S of alphabet Σ for which there is some partial

recursive function f which is only defined for inputs in S . Only a universal Turing machine

can perform this task. In terms of computational power, these computers are equivalent to the

circuit model.

3.4.2 Probabilistic acceptance

As the outcome of a quantum computation is probabilistic, in order to discuss such compu-

tations the notion of language acceptance must be extended to capture this. In this case, we

simply carry over the definitions used when discussing classical probabilistic automata. These

automata are best understood by considering computation as matrix multiplication. If one rep-

resents the state of an FSA as a vector, it will be all zeros apart from a single entry equal to one,

in the basis state corresponding to the computational state that the FSA is currently in. The

transition function then induces a zero-one matrix for every symbol in the input alphabet. If,

in state qx whilst reading symbol σ, the transition function maps the state to qy, then the value

in the induced transition matrix at the position (qx, qy) will be one. A probabilistic automaton

is obtained simply by allowing stochastic transition matrices. This increases the computational

power of the automaton, and the languages accepted are called stochastic languages. Clearly

for a properly specified δ all the transition matrices for an FSA are stochastic, so probabilis-

tic automata accept all regular languages. Probabilistic automata accept more languages than

FSAs, so the regular languages are a proper subset of the stochastic languages.

In the probabilistic case language acceptance can be considered in terms of bounded or un-

bounded error. Formally a language L recognised with cut-point λ ∈ [0, 1) by the probabilistic

automaton M is L = {w |w ∈ Σ∗, fM(w) > λ} where fM(w) is the probability that word w is

accepted by M. M is said to accept L with bounded error if there is some � > 0 such that for

all w ∈ L, M accepts w with probability greater than λ + � and accepts all words w � L with

probability less then λ − �. � is the error margin. If there is no such � then M accepts with

unbounded error. Clearly, the choice of cut point is important, with lower cut points allowing

36

more languages to be accepted, but with greater probability of error in determining whether or

not the input has indeed been accepted.

3.5 A simple model of quantum computation

Though there are many models of quantum computation [65], in this section I concentrate on

the most relevant to the forthcoming chapters of this thesis. In Chapter 7 a specific variation

of quantum finite automata (QFAs) is discussed, so the most basic incarnation of the QFA is

introduced here.

3.5.1 Quantum finite automata

In [72] a ‘Measure-Once’-QFA, or MO-QFA, M is defined by a 5-tuple:

M = (Q,Σ, δ, q0, F)

where Q is a finite set of n states, Σ is the input alphabet, q0 is the initial state of the MO-QFA,

F ⊂ Q is the set of accepting states and δ is discussed below. As in the case of the FSA, for

convenience an end-marker symbol is used at either end of the word, let this be $. The input

alphabet and the end marker symbol form the tape alphabet Γ. This definition is equivalent to

that given by Moore and Crutchfield in [73]. When q0 is being considered as a vector in the

Hilbert space where Q is the basis, rather than just a computational state, it is represented |q0�
and called the initial state vector.

The value of the transition function

δ : Q × Γ × Q→ C

for a 3-tuple (q, a, q�) with a ∈ Γ and q, q� ∈ Q is the amplitude of the transition from con-

figuration (q, a) to state q�. The probability of a given transition taking place is calculated by

squaring the absolute value of the amplitude of that transition.

For each state the amplitude of the transition function for a given a ∈ Γ can be considered

as a matrix entry for the transition matrix, the matrix representing the transition operator Ua.

This operator must be unitary for it to be considered a valid transition operator for an MO-QFA.

For each letter a, δ induces a unitary operator, Ua, defined by:

37

Ua|q� =
�

qi,q j∈Q
δ(qi, a, q j)|q j� (3.9)

where qi is the state from which the transition will be made and q j is the state that the transition

might be made to. The induced transition matrix contrasts with the classical version, where the

entries to the transition matrix are always 0 or 1.

The probability of acceptance, fM, of an MO-QFA, M, accepting a given input word, w, is

given by:

fM(w) = |PaccUwq0|2 = |Pacc|ψ|w|�|2 = �ψ|w||Pacc|ψ|w|� (3.10)

Where Uw = Uw|w|Uw|w|−1 . . .Uw1 , represents the successive operations on the initial state vector

|q0� by the transition operators for each symbol of w. The vector |ψl�, where l is an index

of a symbol in the word w, represents the state of M once the operator Uwl , the operator on a

substring of w has been applied to the initial state vector. So |ψl� = Uwl |q0� is the state of M after

M has read the string w1 . . .wl. M has read the entire word once it is in state |ψ|w|� = Uw|q0�.
Once the end-marker symbol $ is read, the state of M must be measured. This measure-

ment is specified by a projection operator, Pacc. For an accepting computation to be made a

projection operator of the form Pacc =
�

f∈F P f =
�

f∈F | f �� f | must project the state onto the

accepting subspace F. Otherwise M has made a rejecting computation, or rejected the input.

Until the projection operator is applied the state of M can be in a non-trivial superposition
�n

i=0 ci|qi� where the |qi�’s are states in Q and
�n

i=0 ci = 1. The computation path of M for a

word w is the sequence of state vectors {|ψi�}i∈N such that Uwi |ψi� = |ψi+1�. Each computation

starts with just one computation path, as it does not start in a superposition, but operations

such as the Quantum Fourier Transform (QFT) cause the path to split. Hence each path is

the sequence of states entered by one part of the superposition of the QFA. In the absence

of interference between paths, each path will then evolve independently. The computation of

M on word w is the computation path taken by M on a specific instance of the input w. For

MO-QFAs the computation paths for a given word will differ only by the final vector in the

sequence {|ψi�}i∈N. This is because the projection of the state vector is the only operation with

a nondeterministic outcome performed by any MO-QFA.

38

The power of MO-QFAs depends on whether the machine must accept with bounded or un-

bounded error. In line with the definitions in [72] let UMO be the class of languages which can

be accepted by MO-QFAs with unbounded error and RMO be the class of languages accepted

with bounded error. In the acronyms, MO refers to the fact we are considered MO-QFAs, the

R refers to a restricted class of languages, where the restriction is that the language must be

accepted with bounded error. Hence the U refers to the fact that this class of languages is not so

restricted, and stands for ‘unrestricted’ in this context. As I will drawing comparisons between

the language acceptance properties of another type of QFA, one with ‘write only memory’ in

Chapter 7 below, I now reproduce the proofs concerning which languages are accepted with

bounded, and unbounded, error by MO-QFAs.

Languages accepted with bounded error by MO-QFAs

The following theorem shows precisely which languages are in the class RMO, but first requires

the definition of a Group Finite Automaton (GFA):

Definition 1. A GFA is an FSA such that for each state q ∈ Q and every input symbol a ∈ Σ
there is exactly one state q� ∈ Q such that δ(q�, a) = q, so δ must be a bijective function.

In order to prove theorem 3.5.1 below, two lemmas are needed, the first concerns the bound

on the error accumulated by repeatedly applying a unitary matrix; the second concerns the

variation in distance between the probability distributions arising from measurement of two

complex vectors |φ� and |ψ� with norm 1. These lemmas prove general facts about quantum

computations, so apply to all quantum systems fulfilling the requisite criteria rather than just

those considered in the case of MO-QFAs.

Lemma 3.5.1.1. (Brodsky and Pippenger 2008) For any unitary matrix U and � > 0 there is
some integer n > 0 such that for all vectors v with |v|2 ≤ 1, | (I − Un)v |2 < �.

Proof. As all unitary matrices are normal matrices, Un can be written:

Un = PDnP−1

where P is a unitary matrix and D is a diagonal matrix of the eigenvalues of U such that the jth
eigenvalue has the form eiπr j . If the eigenvalues represent rotations through rational fractions
of π, so r j is rational, then letting n = 2

�m
j=1 q j, where m = dim(U) and q j is the denominator

of r j, gives Dn = I as required.
If there are 1 ≤ l ≤ m eigenvalues of D corresponding to a rotation through an irrational

fraction of π, one can compute n as above for the other m − l eigenvalues to give D� = DN .

39

The jth element on the diagonal of D� will be either 1 or eiπr j with r j being some irrational
number. Taking a kth power of D� for some k ∈ Z+ does not change the entries of D� that are
equal to 1, but the other l eigenvalues form a vector which varies through a dense subset of an
l-dimensional torus. There will be some k that takes this vector arbitrarily close to �1. So for
any �� > 0 there is some k such that |(I − D�k)�1|2 < ��. So:

|(I − Ukn)v|2 = |(I − PDknP−1)v|2

= |P(I − D�k)P−1x|2 ≤ |(I − D�k)m�1|2

= m2|(I − D�k)�1|2 ≤ m2��

Selecting �� such that �� < �
m2 completes the proof.

�

The second lemma concerns the relation between the variation distance between the prob-

ability distributions resulting from the repeated measurement of two vectors and the difference

between their Euclidean distance. The total variation distance between two probability distri-

butions tells us, informally, the maximum difference between the probabilities assigned by the

distributions to the same event.

Lemma 3.5.1.2. (Bernstein and Vazirani 1997) If | φ� and |ψ� are two complex vectors such
that | | φ�|2 = | |ψ�|2 = 1 and | | φ� − |ψ�|2 < � then the total variation distance between the
probability distributions arising from measuring | φ� and |ψ� is at most 4�.

Proof. Let | φ� = �n
i=0 ai| qi� and |ψ� = �n

i=0 bi| qi� where n is the number of basis vectors in
the Hilbert space. The probability of observing each of the |qi�’s when measuring | φ� is |ai|2
and when measuring |ψ� is |bi|2. Let θ = |ψ� − | φ� = �n

i=0 (ai − bi)| qi� =
�n

i=0 γi| qi�, in which
case |bi|2 can be rewritten:

bib∗i = (ai + γi)(ai + γi)∗ = |ai|2 + |γi|2 + aiγ
∗
i + a∗i γi

which means that the total variation distance between the probability distributions arising from
measurement of φ and ψ is bounded by

n�

i=0

|γi|2 + |aiγ
∗
i | + |a∗i γi| ≤ |γi|2 + �a|γ� + �γ | a� ≤ �2 + 2�

as the superpositions have unit length, � ≤ 2. �

40

Now we have covered the requisite material to prove the main theorem about language

acceptance for MO-QFAs.

Theorem 3.5.1.1. A language is accepted by an MO-QFA with bounded error if and only if it
is accepted by a GFA.

Proof. The ‘if’ direction of the theorem is trivial because the transition functions for GFAs can
also be validly treated as transition functions for MO-QFAs.

The ‘only if’ direction is shown by contradiction, so assume that a language L is accepted
with bounded error with margin � by some MO-QFA, M = (Q,Σ, δ, q0, F) but that L is not
accepted by any GFA. L must be regular, as each MO-QFA can be simulated by another form
of QFA called a ‘Measure-Many QFA’ and these only accept a proper subset of the regular
languages (see Propositions 6 and 7 of [74]). Suppose strings x and y take M to the same
configuration, then the probabilities of M accepting xz and M accepting yz are equal. So by the
fact that regular languages are closed under concatenation xz ∈ L if and only if yz ∈ L. This
means that, by the Myhill-Nerode theorem, the space of reachable configurations during M’s
computation can be partitioned into a finite number of equivalence classes. The Myhill-Nerode
theorem states that a language L is regular if and only if there exists a relation on L which
divides the set of strings into a finite number of equivalence classes. This relation is called a
right invariant equivalence relation.

Suppose |φ� and |ψ� are reachable configurations of M and ∼L is the right invariant equiva-
lence relation induced by L. By assumption, L cannot be accepted by a GFA, which means that
there must be distinct equivalence classes [y] and [y�] with distinguishing string z, an equiva-
lence class [x] and a symbol a ∈ Σ such that [ya] ∼L [y�a] ∼L [x]. If the transition operator for
a is Ua, |φ� ∈ [y] and |ψ� ∈ [y�] then Ua|ψ� ∈ [x] and Ua|φ� ∈ [x].

By lemma 3.5.1.1 there is an integer k > 0 such that |(I−Uk
a)|φ�|2 < �4 and |(I−Uk

a)|ψ�|2 < �4 .
Therefore Uk

a |φ� ∈ [y] because if

|(I − Uk
a)|φ�|2 = | |φ� − Ukn|φ�|2 = |V(|φ� − Ukn)|φ�|2 < �4

with V being an arbitrary unitary matrix. By lemma 3.5.1.2 above, the probability of VUk
a |φ�

being measured in a given state is within �, i.e. the error margin, of V |φ� being observed in the
same state. The same goes for Uk

a |φ� ∈ [y�]. Hence [y] ∼L [yak] and [y�] ∼L [y�ak].
By assuming that [ya] ∼L [y�a] ∼L [x] it has been shown that [y] ∼L [yak] and [y�] ∼L

[y�ak], so [y] ∼L [xak−1] ∼L [y�]. This means that ak−1z should partition [x] into two distinct
equivalence classes, contradicting the fact that [x] is a single equivalence class. Hence the
assumption that L is accepted by an MO-QFA but not a GFA cannot be correct. �

41

Languages accepted with unbounded error by MO-QFAs

This is the final part of the section on MO-QFAs and in it the proof that a language not accepted

by a GFA is accepted with unbounded error by an MO-QFA is given. This means that the class

RMO is a proper subclass of UMO.

Theorem 3.5.1.2. (Brodsky and Pippenger 2000) The language L = {w ∈ {a, b}∗| |w|a � |w|b}
is accepted with cut-point 0 by a 2-state MO-QFA M. The notation |w|i indicates the number
of symbols i which occur in word w.

Proof. Let M = (Q,Σ, δ, q0, F) with Q = {q0, q1}, Σ = {a, b} F = {q1} and δ defined by the
following matrices:

Ua = U−1
b =




cosα sinα
−sinα cosα




where α is some irrational fraction of π. Ua causes a rotation of the state vector of M, and since
α is an irrational fraction of π there is only one k such that Uk

a |q0� = |q0�, which is k = 0. This
is also the case for Ub, so Uw|q0� = |q0� where w is the input to M if and only if the number of
rotations induced by M reading a is equal to the number of rotations induced by M reading b.
This will only be the case if |x|a = |x|b. If |x|a � |x|b then there is a nonzero probability that M
will be in state q1 once it finishes reading w. �

In [72] a sketch proof is given that all languages accepted with unbounded error by an MO-

QFA are accepted with unbounded error by some PFA; and that all languages accepted with

bounded error by an MO-QFA can also be accepted with bounded error by a PFA. Hence, MO-

QFAs are exactly as powerful as classical PFAs. To conclude this section I state the theorem

without proof.

Theorem 3.5.1.3. (Brodsky and Pippenger 2000) If M is an MO-QFA accepting language L
with cut-point λ then:

• There is a PFA which accepts L with cut-point λ�

• If M accepts L with bounded error then there exists a PFA which accepts L with bounded
error.

42

3.6 Language acceptance models in the context of quantum com-

putation

From a theoretical perspective, there remain many open problems relating to language accep-

tance models in quantum computation. This should become clear in later chapters, as we see

that unlike in the classical case, modifying a QFA leads to dramatic differences in language

acceptance properties. This means that there is, thus far, no clear cut quantum analogue of the

Chomsky hierarchy of langauges. The reasons as to why this is the case are still unclear, and

a better understanding of why this is the case, or development of a similar quantum hierarchy,

may provide new insights into both formal language theory and quantum computation. The

circuit model and its relation to the quantum Turing machine [75; 76] is well understood, and

hence does not raise such questions for the theoretical computer scientist.

This may not motivate the more practically minded to take an interest in quantum language

recognisers. However quantum circuits have, despite much effort, not yet been realised exper-

imentally beyond a few qubits. The best quantum computation devices currently in existence

are based on liquid state NMR [77]. Other models of computation better model these devices,

in particular the Latvian Quantum Finite Automaton (LQFA) [78], which has been specially

designed for that purpose. Hence the development of more computationally powerful QFAs

and classification of the types of problems they can solve may help us to build more powerful

quantum computers. Whilst a general purpose quantum computer is the eventual goal, univer-

sality is not required in order for quantum computers to be useful, as should be clear from the

speedups they provide for common algorithms.

43

44

Chapter 4

Quantum walks over small cycles

4.1 Introduction

In this chapter I outline results from investigations into one particular aspect of the transport

properties of quantum walks: perfect state transfer. The problem of quantum state transfer

was first posed by Bose [29] who considered using spin chains to transmit quantum states in

quantum computers. Since then, quantum, and in particular perfect state transfer has been

shown to be of interest for other reasons. It is a necessary ingredient in the quantum walk

implementation of the universal quantum gate set, developed initially by Childs [21] for the

continuous time walk, then by Lovett et al [23] for the discrete time walk. Quantum walks

with good transport properties when undergoing decoherence may provide a model for exciton

transport in photosynthetic complexes, as suggested by Mohseni et al [34], and in dendrimers,

as suggested by Mülken et al [79; 80]. For modelling charge and energy transfer, the important

factor is total transmitted amplitude, the phase does not also have to be transmitted.

Most efforts to classify when perfect state transfer can occur have used the continuous time

quantum walk model, as the addition of the coin states to the discrete time model makes for

more difficult analytical solutions [30; 58; 81; 82]. The purpose of the work presented here is

to investigate how strongly the presence of perfect state transfer depends on the precise graph

structure that the walk takes place over, and look for particular structural modifications of

graphs which do not affect their perfect state transfer properties. Both discrete and continuous

time walks were investigated but with far more attention paid to the less well examined discrete

time case. The first structures examined were based on cycles with n = 4, 6 and 8 and diamond

chains, as these are known to exhibit perfect state transfer [30; 83]. As the variations tested did

45

not give rise to much intuition about which types of graphs have perfect state transfer, a more

systematic study was then initiated.

Whether we are looking for perfect state transfer or high amplitude transfer, the basis of the

problem is the same: find graphs with pairs of points between which the desired transport takes

place. The graphs considered here are all unweighted. Unweighted graphs are abstractions of

unmodulated spin systems, with the edges representing coupling between spins [29; 51; 84].

Periodicity is closely related to perfect state transfer. A graph that has perfect state transfer

will also be periodic for any continuous time walk [81] , as well as for discrete time walks over

symmetric graphs.

The chapter proceeds as follows: Firstly previous results concerning perfect state transfer

in both the discrete and continuous time case are outlined in Section 4.2; then results from

the preliminary investigations into variants of diamond chains and cycles are given. The bulk

of the results section concerns which structural modifications to C4, C6 and C8 admit perfect

state transfer and under what conditions. The chapter concludes with some brief discussion

and outline of potential avenues for future research.

4.2 Prior Results

Some specific graphs arising in this and the following chapter are K2; Pn, the path with n nodes

and Cn, the cycle with n nodes. Therefore to put the results presented in context, previous

results concerning these graphs are discussed. It is clear that as there are no edges joining

the vertices of Kn, quantum walks on this structure do not evolve in the position basis. The

complete graph Kn has been shown not to exhibit perfect state transfer in the continuous time

case, but this can be achieved by the removal of an edge [85].

4.2.1 Discrete Time Quantum Walk

The quantum walk on the path Pn with n = ∞, or n > 2T if the amplitude is initially situated

at the middle vertex, is simply the quantum walk on the line [7]. The dynamics of the walk

on the line are well known. The effect of varying the initial coin state, and coin operator, is

investigated analytically by Bach et al in [86] and discussed by Tregenna et al in [43]. It is

found that for a given coin, the whole range of dynamics available to the quantum walk on the

line can be observed by varying the initial state. The evolution on the infinite line is solved

exactly by Ambainis et al [7]. The most notable fact about the walk on the line is that the

46

standard deviation of the position of the walker varies proportionally to T , as opposed to with
√

T in the classical case.

Discrete time quantum walks along finite paths Pn do not in general admit perfect state

transfer for non trivial coin operators, i.e., those not equal to the Pauli X operator, which is

also the 2 dimensional Grover operator. Inspired by the results from [51] indicated in Section

4.2.2 below, for the continuous time case, self loops were added to the ends of paths to see

if this improved transport. Though adding self loops to the ends of P4 created a walk with

perfect state transfer, and hence due to symmetry, periodicity, adding self loops in general did

not improve transport across the paths.

As very few cycles admit perfect state transfer for either the continuous, [52; 58], or discrete

time walk, [83], the dynamics of quantum walks on Cn are more often analysed in terms of

mixing times [44; 87; 88; 89; 90; 91]. Mixing times are the time which the walker takes to get

arbitrarily close to its time averaged distribution, and are not of interest in the context of this

chapter.

Periodicity in cycles was first noted for C4 [83]. In cycles with even n ≤ 10 and a suitable

coin, periodicity is observed and perfect state transfer occurs halfway through the period. Vary-

ing n can have a dramatic effect on the dynamics of the walk, doubling it to go from n = 8 to

n = 16 turns periodic evolution into highly irregular evolution. The quantum walk on the cycle

has been solved analytically [44] by taking the Fourier transform of the walker. The following

condition must be met in order for the walk on Cn to have period Ω:

cos
�π j
Ω

�
=
√
ρ cos

�
2πk
n
− πm
Ω

�
∀k (4.1)

where ρ is the bias of the coin operator (see Equation 2.9 of Chapter 2), and m is an integer

specifying the relative phases in the coin operator via the identity mπ/Ω− π/2 = δ = (θ+φ)/2.

The Fourier variable is j and can be different for each k, and its parity must be the same as that

of m. Solving this for all k is clearly difficult, though solutions for n ≤ 10 have been obtained

and are summarised in [30]. Whilst Fourier techniques are excellent for analysing walks on

graphs with some periodicity, they are not so suitable for analysing more irregular graphs, such

as the ones examined in Section 4.3 below.

47

4.2.2 Continuous Time Quantum Walk

The investigation of perfect state transfer along paths was initiated by Bose [29] where a string

of coupled qubits was considered. Later results, by Christandl et al [51], show that there is no

perfect state transfer between antipodal points on paths of length ≥ 4 with unweighted edges.

Cycles are a type of graph known as an integral circulant. Integral circulants were first

examined by So in [82], and results concerning their perfect state transfer properties were

developed by Saxena [52] and built upon by Bašić [58]. Integral circulants with odd numbers

of nodes cannot have perfect state transfer [52]. The only n-even cycle with perfect state

transfer is C4, in contrast to the discrete time case where it is exhibited up to C10.

Kendon and Tamon [30] review many results, both analytic and numeric, concerning per-

fect state transfer in the continuous time walk, as well as some for the discrete time case. Kay

[32] reviews the necessary and sufficient conditions for systems with nearest neighbour inter-

actions to exhibit perfect state transfer and how these can be used to design systems which

implement other protocols.

4.3 Discrete time quantum walks over small structures

Numerical simulations of discrete time quantum walks over a variety of structures based on

graphs known to exhibit perfect state transfer under some circumstances were performed, in

order to see if related structures displayed similar properties. All of the walks were tested using

3 types of coin operator:

• O1 = DFT at every node

• O2 = Grover at every node

• O3 = H at nodes of degree two and Grover at other nodes

O2 and O3 will be identical in graphs with no vertices of degree two. To assess the sensitivity

of perfect state transfer to the initial state, walks using 1500 initial states with different config-

urations of coin states at a particular node, uniformly distributed according to the Haar measure

[92], were run for 100 steps. This number of steps is sufficient to determine whether behaviour

such as periodicity is exhibited for cycles with less than ten nodes, as the largest period for

such cycles is 60 steps in the case of C5.

48

a) b)

c) d)

Figure 4.1: The basic diamond chain, (a), and the variants investigated. Vertices with self loops have
degree 3. I look for perfect state transfer between the nodes represented by white circles.

4.3.1 Diamond Chains

Chains of n diamonds where all amplitude is initially equally distributed between the coin states

at an end vertex are known to exhibit perfect state transfer after 2n steps when the Grover coin

operator is used [30]. This is because, as shown in Chapter 3, on structures of even degree,

if the amplitude is in initially equally distributed between half of the coin states, then it will

be transferred into the remaining coin states. This observation enables many other structures

exhibiting perfect state transfer to be specified. For example, the graph formed by combining

chains of diamonds to create a rectangular structure will exhibit perfect state transfer if all

amplitude is initially equally distributed between half of the coin states at the edge of the

structure. Three variants of the diamond chain, shown in Figure 4.1, were investigated.

The perfect state transfer in the diamond chain was found to be highly dependent on both

the structure and the choice of coin operator. For operators O1 and O3, no perfect state transfer

occurs for any initial condition tested. The only variant of the chain tested found to have

high amplitude transfer, with cutoff 0.9, was that depicted in Figure 4.1 (b), with self loops at

either end of the chain. This transfer occurred for only 35 out of the 1500 initial states tested,

so even the addition of a single edge to the end nodes along the chain destroys the perfect

state transfer. This is because the additional coin state at the initial node makes achieving the

required equal superposition between the other two coin states for the Grover coin to have the

desired effect impossible. If an additional self loop is added, then the initial node has even

degree so perfect state transfer would be recovered. The other variants of the diamond chain

did not exhibit perfect state transfer or periodicity for any selection of operator tested, and the

maximum probability observed at the end of the chain decreased roughly as n increased.

49

4.3.2 Variants of Cycles

Very few simple structures are known to exhibit perfect state transfer in the discrete time walk

[30] so more complex structures were investigated. As noted in Section 4.2.1, even cycles

with n ≤ 10 have periodicity. In particular, cycles C4 and C8 are periodic when the Hadamard

operator is used for the coin, and perfect state transfer occurs half way through the period. The

cycle C6 is periodic when a biased coin operator is used [43], though this specific operator is

not used for the present discussion. As the present study is to investigate perfect state transfer

rather than periodicity, and the walk on C6 does not have this at any point in its period, this

result does not motivate using the biased operator for the investigations I am discussing.

In order to test the sensitivity of the perfect state transfer to the underlying graph structure

we first investigated how a small set of specific modifications (see Figure 4.2) affects the perfect

state transfer. The modifications tested all resulted in the initial and target nodes of the original

cycle being joined, either directly or via intermediate nodes. The intuition behind this selection

is that creating new paths between these nodes gives rise to more ways for perfect state transfer

to occur. The modifications ensured that the cycles remained symmetric, as some types of

symmetry have been proven to be an important factor in determining which walks have perfect

state transfer [45; 46]. In fact, most of these modifications destroy the perfect state transfer, the

results of the simulations are summarised in Table 4.1 below. Operator O2 resulted in the most

walks with high amplitude transfer, this is due to the fact that it simply performs a swap at nodes

of degree 2 and the graphs are symmetrical. Typically the high amplitude transfer observed is

very sensitive to initial conditions, for all variants but (a) with high amplitude transfer fewer

than 3% of initial states tested exhibited this property. The variants of cycles found to have

perfect state transfer, namely (a) and (k), between antipodal nodes are members of the three

families of graphs discussed in Chapter 5 below.

Following this preliminary investigation I systematically simulated walks over structures

based on C4,C6 and C8. I modified the structures by adding up to four new nodes. This

modification worked in the following way: First, a single node was added, in turn, to each

existing node of the cycle. Technically this creates the same graph each time, adding a node

joined to the cycle by a single edge, but as I always started with amplitude at the same node,

the dynamics of the walk will be different depending on the node of the cycle that the new

node has been added to. I then generated further edges between that new node, and the nodes

of the existing cycle. After generating structures including each new node added to the cycle

50

a) b) c) d) e)

f) g) h) i) j) k)

Figure 4.2: Variants of 4 cycles: a), b), c), d), k), 6 cycles: (h), (i) and 8 cycles: e), f), g), j) investigated.
Open circles indicate the starting and end nodes, and due to the symmetries of the graphs these are
interchangeable.

Graph Coin (1) max Coin (2) max Coin (3) max
(a) 0.99 0.96 0.96
(b) 0.97 0.96 0.96
(c) 0.97 0.96 0.96
(d) 0.83 1.00 0.90
(e) 0.42 1.00 0.70
(f) 0.62 0.95 0.48
(g) 0.51 0.98 0.60
(h) 0.44 0.75 0.75
(i) 0.44 0.77 0.77
(j) 0.20 0.40 0.40
(k) 0.74 0.73 1.00

Table 4.1: Highest amplitude achieved for each operator and structure initially tested

51

a) b) c)

Figure 4.3: Generation of the variants of cycles, shown in the case of C4: a) attach individual node to
an existing node b) attach new node to every existing node c) combine each of these graphs, and add
links between new nodes. Dotted lines indicate other connections added for a single node, the rest are
omitted for clarity

in every possible way, see Figure 4.3 (b), it was necessary to combine these structures so that

the new nodes were joined not only to the cycles, but to each other. This was performed by

taking the sets of adjacency matrices which join each new node to the existing cycle (which are

technically for identical graphs, but when combined will lead to new structures) and combining

each of them in turn, then joining the new nodes to each other, see Figure 4.3 (c). I do not

claim that this is the most efficient way to generate these structures. As many duplicates of

adjacency matrices, which were removed before simulations were run, and permutations of the

same graph are created, however we were more concerned by implementing a systematic study

rather than a computationally efficient one.

As I was particularly interested in perfect state transfer between antipodal nodes, I now

turn to the results for each set of cycles relating specifically to this aspect of the walks in turn.

The limitation of our attention to perfect state transfer between antipodal nodes was motivated

by further preliminary studies where an arbitrary node was examined instead. Whilst this study

was not sufficiently systematic to make any conclusive remarks (using all examined variants of

C6 and C8 and examining a single node), it yielded no perfect state transfer.

Results

The results were very similar for C4, C6 and C8 so I discuss them together. The only operator

I tested leading to perfect state transfer on the variants of cycles was O2. As it is clear that any

variant of an even cycle which adds nodes only to the target node will have perfect state transfer

after a number of steps determined by the size of the cycle using this operator, I do not discuss

these results. In fact, the only variants of cycles found to exhibit perfect state transfer were

those with modifications to the antipodal nodes. As it is already known that on structures with

even degree, if amplitude populates half the coin states and is equal in magnitude and phase,

52

a)

�

�

�

b)

�

�
�

c)

�

�

Figure 4.4: Variants of C4 leading to non-trivial perfect state transfer between antipodal nodes. The edge
labels correspond to the coin states they represent when the state at that vertex is written as a vector

then the Grover operator perfectly transmits the amplitude to the other half of the coin states

[30], walks which reproduced these results are also not discussed. Two sets of graphs based on

C4 found to exhibit perfect state transfer can be generalised to families, these are discussed in

detail in Chapter 5 below. After pruning and generalising the results, this leaves us with three

new variants of C4 exhibiting perfect state transfer, shown in Figure 4.4. Two of the variations

also lead to perfect state transfer in C6 and C8 for the correct choices of initial conditions. The

low number of positive results implies that perfect state transfer is heavily sensitive to the graph

structure used for the walk.

The further analysis on these variants has been performed analytically, rather than numer-

ically. This analysis was performed using MAPLE. Having graph structures and the timestep

at which to look for perfect state transfer highlighted by the Python simulations, it was simple

to generate equations to solve for initial conditions leading to perfect state transfer. Taking this

approach, it is possible to avoid narrowly missing incidences of perfect state transfer which oc-

cur for initial states close to, but not identical to, those used in the Python simulations. Whilst

MAPLE was not suitable for the initial brute force search, it was able to solve these equations,

so we can be sure of the results for the graphs on which further analysis was performed.

Perfect state transfer occurs for the graph shown in Figure 4.4 (a) with initial states:

|ψ±� =




0
∓ 1√

2
± 1√

2




The coin states are represented in the order shown in Figure 4.4 a). This perfect state transfer

occurs after 50 steps. As the coin states at the target node are not identical to the initial state,

this perfect state transfer does not lead to periodicity.

For the graph shown in Figure 4.4 b) the following initial states lead to perfect state transfer

after 20 steps:

53

|ψ±� =




±0.705
∓0.709
∓0.005




The decimal expansions for this set of initial conditions do not appear to have any simple alge-

braic forms. Again, as the coin states at the target node do not replicate the initial conditions,

this perfect state transfer does not lead to periodicity. Additionally this variation admits perfect

state transfer for any even cycle after the correct number of steps if the initial conditions are

selected such that after the coin flip, only the coin states directing amplitude around the cycle

are populated. If we call the amplitude in the coin states on the cycle x and y, and require that

xx∗ + yy∗ = 1 then the initial states leading to this perfect state transfer when the Grover coin

is used can be written:

|ψ� =




2y−x
3

2x−y
3

2{2x−y
3 +

2y−x
3 }




For example, if we select x = y = 1√
2

then the initial condition leading to perfect state

transfer will be:

|ψ� = 1
3
√

2




1
1
2




This case is one of an entire class of cases, another example would be joining antipodal

nodes by a single edge, where the initial condition is selected in order to guarantee that no

amplitude is in the coin state for the new edge after the coin flip. In other words, the initial

condition is selected so that the new structure does not affect the evolution. Clearly this will

only preserve the initial perfect state transfer achieved by deterministically traversing the cycle,

and after this, the additional coin states will affect the evolution.

The final graph I discuss, in Figure 4.4 c), exhibits perfect state transfer for all initial

conditions. We denote these a and b as there are two coin states at the initial node. There is the

expected perfect state transfer after two steps. Then after ten steps the state at the target node

is:

|ψtarget� =




1
2 b − 1

2 a
1
2 a − 1

2 b
1
2 a + 1

2 b
1
2 a + 1

2 b




(4.2)

54

Unlike the other walks found, this walk is periodic, after a further two steps the initial

condition is recovered. As the form of Equation 4.2 does not depend on the length of the cycle,

any even cycle with this modification will lead to perfect state transfer, with a corresponding

scaling of period and perfect state transfer time. The same effect can be obtained with the

addition of a single vertex joined to the target node by two edges to form a loop.

Continuous time walk on these structures

Whilst the purpose of this section of this thesis is to investigate perfect state transfer in the dis-

crete time walk over small structures, simulations of the corresponding continuous time walks

were also run. In the continuous time walk considerations regarding numerical accuracy are

more important. To this end, results from simulations obtained from Python were compared

to the corresponding simulations in MATLAB. The Python simulations were based on numer-

ical integration, whereas the MATLAB simulations used exponentiation of the time evolution

operator. The results of this comparison, where 1.000 in Python became 0.997 in MATLAB,

indicate that our methods are not suitable for studying perfect state transfer in the continuous

time walk. However, the methods used can help in narrowing down which graphs to look

for perfect state transfer in. For example, the families discussed in the following chapter were

highlighted by these simulations, and with further analytic work I was able to prove that perfect

state transfer did take place. As the cut-points used to test for perfect state transfer were the

same in the discrete and continuous time case, we were able to draw one comparison- namely

that very high amplitude transfer is more common in the continuous time walk than the discrete

time walk, for instance being admitted by 16 variants of C4. Whilst there were commonalities

between these 16 variants, such as the majority having a constant number of nodes along any

path joining the initial and target node, without knowing precisely whether they admit perfect

state transfer concrete conclusions cannot be drawn.

Some refinements can make examining the continuous time case more tractable. As men-

tioned briefly in Chapter 2 the Python networkx package can be used for further analysis of

the graph structures created in order to perform the searches discussed in this chapter. In par-

ticular, it facilitated the removal of the isomorphisms, which were required for the brute force

search as this always started from the same node, meaning evolution on isomorphic graphs

would not necessarily be identical. From an initial 1042 graphs based on C4, 63 were left

once the isomorphisms were removed. Whilst removing the isomorphisms does not enable any

new results concerning the discrete time walk, it appears to be very useful for the analysis of

55

the continuous time walks. This is because in order to obtain the analytic expression for the

time evolution in the continuous time walk, the eigenvectors and eigenvalues of the adjacency

matrix are required. Once these are found, the time evolution in terms of an arbitrary initial

condition can be written down, so it is better to remove the isomorphic cases and then solve for

specific initial conditions. Examining the eigensystems of the adjacency matrices of the graphs

created in detail was, however, beyond the scope of the work undertaken here.

4.4 Conclusion

I investigated discrete time quantum walks over small graphs for a variety of choices of coin

operation. The graphs were variations of graphs known to exhibit perfect state transfer under

some circumstances, most notably diamond chains and cycles of length 4, 6 and 8. I have

systematically investigated how a range of specific variations, namely the addition of up to

four nodes, affects the perfect state transfer. I found that in general, varying the graphs in this

way destroys the perfect state transfer. There are a small number of simple ways in which

adding new nodes to the graph structure does not affect the perfect state transfer, and these

held for each of the cycles tested. No dramatically new ways of achieving perfect state transfer

were found, despite many of the structures investigated having properties shown analytically

to be important for perfect state transfer- namely symmetry in the graph structures and coin

operators [45; 46]. As some of these results [46] were obtained for graphs fulfilling very strict

criteria, it is not surprising that these properties do not, in general lead to the specification of

walks with perfect state transfer.

In terms of future work, if we intend to limit the size of the graphs examined, there is little

point in adding further nodes to the graphs tested. Whilst every way of adding the new nodes

to the existing cycles was tested, the effects of adding extra connections between the existing

vertices of the cycle were not examined. As all of the cases in which perfect state transfer

was not destroyed relied on the fact that our operator O2 is simply a swap operator at nodes

of degree 2, increasing the degree of these nodes does not appear to be a good way of varying

the structure for the purposes of investigating perfect state transfer. A systematic study of all

graphs upto a certain size may be required in order to obtain some potentially more interesting

results. Whilst there is also the freedom to vary the coin operators, my choices are natural as

they arise in many discussions of the quantum walks [11; 26; 43; 49].

56

Chapter 5

Quantum walks over three related

families of graphs

5.1 Introduction

In this chapter I discuss results which were first discovered during the investigation into walks

based on cycles discussed in Chapter 4. These results concern graphs which all contain C4 as a

substructure. I introduce three related families of graphs which have perfect, or high amplitude,

state transfer in the continuous time walk, and (in two cases) the discrete time walks. The

discovery of such ‘families’ gives us new ways of adding an arbitrary number of nodes to a

graph, without affecting its perfect state transfer properties. More general versions of such

methods are known, for example the results by Angeles-Canul et al in [93] show that if a set

of graphs have the requisite perfect state transfer properties, then their join will also. There are

also other ways to specify how to add nodes to an existing graph with particular properties in

a specific way to preserve perfect state transfer, most notably the theorem which proves that

all n-cubes have perfect state transfer [51]. These results apply to the continuous time walk

only. There are far fewer such results in the discrete time walk. The known results exploit

the property of the Grover operator which ensures that, on graphs of even degree, if half the

coin states are populated and their amplitude is all equal in magnitude and phase, then that

amplitude will simply be transmitted to the unpopulated coin states. Hence in Section 5.2.1

I present the first known such method for the discrete time walk which does not rely on the

Grover operator.

After introducing the families of graphs, and discussing specific discrete time quantum

57

walks over them, the robustness of the perfect state transfer to a number of possible variations

is tested. The simple relations between the families allow us some insight into the effects of

adding edges, which is further crystallised by interpolating between the graphs, as in Section

5.2.4. I also, in the case where I have to use a specific initial state to achieve the perfect state

transfer, test the robustness of the transfer to variations in the initial state in Section 5.2.3. The

chapter concludes by examining the continuous time quantum walk over the same structures in

Section 5.2.5.

5.2 Three related families of graphs admitting perfect state trans-

fer

a) b) c)

Figure 5.1: The three families: a) K2 + Kn, b) K2 + Pn and c) K2 +Cn. The nodes highlighted with open
dots indicate the initial and target nodes, due to the symmetry of the graphs, it does not matter which is
which.

In this section I discuss three families of graphs depicted in Figure 5.1. These have the

same number of nodes, and all include a join with the graph K2. The family K2 + Pn has no

notable transport properties in the discrete time walk, but exhibits perfect state transfer in the

continuous time walk for some choices of n.

5.2.1 Periodicity and perfect state transfer on the graph K2 + Kn

Due to the fact that the 2 dimensional Grover coin is simply a swap operator, it is obvious that

K2 + Kn exhibits perfect state transfer between the nodes of K2 in two steps when the Grover

coin is used at all nodes and all amplitude is initially at one vertex of K2. For this state transfer,

it does not matter how the amplitude is distributed between the coin states at the initial vertex,

or whether any of this amplitude has an associated phase.

Periodicity can be achieved using less trivial operations, as outlined for various cases in

Table 5.1 below. Perfect state transfer to the target vertex is not observed half way through the

58

period of the walk, except in special cases, usually with n = 2 where the graph is equal to C4.

If the DFT coin is used at the nodes of K2 + Kn, but with half of the Hadamards replaced by

H2, all the amplitude returns to the initial vertex when t is half the period, with the state being

the DFT of the initial state.

The calculation to show periodicity in walks over K2 + Kn with initial state (a1 . . . an)T

using the DFT coin is elementary. The state vectors at the initial, final, and intermediate (Kn)

nodes are denoted by |I�, |T �, and |Kn� respectively:

After step 1: |Kn� =
�
b∗i
0

�
After step 2: |I� = |T � =




b1√
2
...

bn√
2




After step 3: |Kn� =



ai√
2

ai√
2


 After step 4: Permutation of initial coin states at initial node

* bi = component corresponding to ai, where 1 ≤ i ≤ n after the DFT is performed. The

steps go the same for Grover coins at nodes of K2, but the initial state rather than a permutation

of it will arise. This will also be the case for any other unitaries where UU = I.

5.2.2 Periodicity and perfect state transfer in K2 +Cn

If the Grover coin is used at all vertices, the discrete time quantum walk over graph K2 + Cn

is periodic, with a period of 12. The walk has perfect state transfer after 6 + 12m steps, where

m ∈ Z≥0, from one vertex of K2 to the other, provided the initial state is an equal superposition

of all coin states at the initial vertex.

The initial state is an eigenvector of the Grover coin, with eigenvalue 1, so is unchanged by

the first coin operation. After the first step the state at each of the nodes of Cn is of the form:

Coins used at each vertex Initial state used Period
All DFT Any 8
Any unitary at K2, G2 in Kn Any 4
Gn at K2, H at Kn Any 4
Gn at K2, H, H2 at half nodes each, n > 2,

even

See below* 8

Table 5.1: The periods of walks with various coins over K2 + Kn with all amplitude initially in one of
the vertices of K2. *Equal superposition over all coin states and all amplitude initially in one coin state.

59

γ
�

n|γ|




1
0
0
0




where γ ∈ C (5.1)

The perfect state transfer in the discrete time walk with the Grover coin on the graph K2 + Cn

is achieved via the steps below. |Cn� denotes the state vector at the nodes of Cn.

After step 2: |I� =




− 1
2α
0
...
0



|T � =




1
2α
0
...
0




|Cn� =




0
0

1
2α
1
2α




After step 3: |I� =




1
2α
0
...
0




|T � =




1
2α
0
...
0



|Cn� =




−1
2α

1
2α
0
0




After step 4: |I� =




1
2α
0
...
0



|T � =




− 1
2α
0
...
0



|Cn� =




1
2α
1
2α
0
0




After step 5: |I� =




0
0
...
0




|T � =




0
0
...
0




Cn =




1
2α
− 1

2α
0
0




After step 6: |I� =




0
0
...
0




|T � =




α
α
...
α




|Cn� =




0
0
0
0




As we see, after six steps of the walk perfect state transfer is achieved. From the symmetry of

K2+Cn it can be seen that the evolution is periodic, with period 12. The choice of coin operator

is important in acheiving this perfect state transfer, using only a DFT coin for quantum walks

over K2 + Cn does not result in any notable transport properties. For the walk over K2 + Cn

starting with an equal superposition at one vertex of K2, the probabilities on the nodes of K2

do not depend on n when n > 1. The initial state is also important, as I now discuss.

60

0

20

40

0

5

0

0.5

1

n

(a)

Pr
ob

ab
ili

ty

0

20

40

0

0.5

1

0.7

0.8

0.9

1

n

(b)

Pr
ob

ab
ili

ty

Figure 5.2: Robustness of perfect state transfer to variation in a) initial phase and b) amplitude for one
coin state. The size of Cn is n, θ is the phase and δ is the defect in Equation 5.2.

5.2.3 Robustness of perfect state transfer in graphs from K2 +Cn

Numerical investigations were carried out to test the robustness of the first instance of perfect

state transfer, after 6 steps, to variation in initial conditions. The transport was shown to be

very robust to variations in initial condition of the form:

|ψint� =
1

�
(n − 2δ + δ2)




1
1
...

1 − δ




(5.2)

As n increases, the robustness increases too, even in the case where δ = 1, where the state

is of a qualitatively different form to the standard initial state. Taking δ > 1 adds a phase

to the perturbed initial coin state. The robustness of the perfect state transfer to variation in

phase of one of the initial coin states was also investigated, with similar findings, see Figure

5.2. Though the perfect state transfer is much less robust to variation in phase, with probability

going down to 0.19 for n = 5 when we have a phase factor of π, we can again increase the

robustness of the transfer by increasing n. For n > 35 the probability at the target vertex after

6 steps does not go below 0.9 for any phase. The robustness increases with n because an equal

superposition amongst n coin states is used for the initial state, and hence perturbing one part

of that superposition results in a smaller relative perturbation as n increases. If the initial state

is instead varied by perturbing each coin state by a random 0 ≤ δ ≤ 1 then the robustness

decreases slightly with n. For n = 3 the amplitude at the target node goes down to 0.82,

averaged from 1000 runs, at the perfect state transfer time. As n increases the value tails off at

0.77.

61

0
10

20

0

0.5

1
0.2

0.4

0.6

0.8

n

(a)

c

Pr
ob
ab
ili
ty

0
10

20 0
0.5

1

0.6

0.8

1

c

(b)

n

Pr
ob
ab
ili
ty

Figure 5.3: Variation of fidelity of state transfer during interpolation between a) Graphs K2 + Kn and
K2 + Pn; and b) K2 + Pn and K2 + Cn. n is the number of nodes in Kn, Pn or Cn and c is the weighting
of the edges that these graphs differ by. The orientations of the graphs are selected for clearest viewing.

The robustness of the transport with respect to decoherence was also tested. The effects

of decoherence in the coin state and decoherence in the position state are both independent

of n, and probability at the target vertex decays smoothly as the rate increases, recovering the

classical distribution for decoherence rate p = 1 as expected.

5.2.4 Interpolation between the three families

It is possible to interpolate between graphs with the same vertices but different edges by weight-

ing the edges. To perform quantum walks on such graphs, coins reflecting this edge weighting

are required. If we choose to use the Grover coin, the coin should be the Grover operator of

dimension (d − t) when no edge is present, and that of dimension d when the edge is fully

present, so t is the number of edges being ‘switched on’ in the interpolation. Although walks

using the Grover coin over both K2 + Kn and K2 +Cn display perfect state transfer, adding the

edges they differ by gradually by using a coin that interpolates between Grover operators of

different dimensions in the way described in [41] destroys this perfect state transfer. The coin

is specified by

Gd,t =




a b b . . . b c c c . . . c
b a b . . . b c c c . . . c
.
.
.
b b b . . . a c c c . . . c
c c c . . . c e f f . . . f
c c c . . . c f e f . . . f
.
.
.
c c c . . . c f f f . . . e




(5.3)

62

Where a . . . f ∈ R where there are (d − t) ‘normal’ edges giving rise to blocks of size (d − t)

containing a�s and b�s and t ‘tunneling’ edges with transitions specified by the block containing

e�s and f �s. This coin enables an edge to be ‘turned on’ with strength c. In order to guarantee

that this coin is unitary, certain relations between the parameters are required, details of these

can be found in [41]. The effect of turning on the additional edges to go from K2 + Kn to

K2 + Cn does not depend on n. The amplitude at the target vertex at the perfect state transfer

time decays quickly with c, and rises again very slowly as c → 1. One can also interpolate

between K2 + Kn and K2 + Cn by going via K2 + Pn. This interpolation does not improve the

transport properties of the walk over K2 + Pn, as can be seen in Figure 5.3.

5.2.5 The continuous time walk on K2 + Kn, K2 +Cn and K2 + Pn

In general, a graph exhibiting periodicity, high probability, or perfect state transfer for a specific

coin in the discrete time walk is no indication that this will occur for the continuous time walk

over the same graph. However for the three families of graphs discussed in this chapter, the

continuous time walks exhibit perfect or very high fidelity state transfer.

The continuous time walk on K2 +Kn displays perfect state transfer for any n, and is hence

periodic due to the symmetry of the graph. The perfect state transfer time can be tuned by

adjusting n, as n increases, the period decreases. An analytic expression for the period in terms

of n was deduced by inspection of the eigenvectors. The eigensystems of the graphs K2 + Kn

have only two nonzero eigenvalues of the form
√

2n, hence only two components of the analytic

expression for the time evolution determine the period, regardless of the initial state used. The

eigenvectors of the adjacency matrices of graphs from K2 + Kn are of the form:

|v+� =
1√
2n




1
...
1√
2n
2√
2n
2




|v−� =
1√
2n




1
...
1
−
√

2n
2

−
√

2n
2




|vn� =
1√
2




0
...
0
−1
1




|vi� =
1√
2




−1
...
1
...
0
0




63

There are n−1 eigenvectors, each having eigenvalue 0, of the form |vi�, with 1 occurring at a

different Pn basis state for each i ≤ n−1. The coefficient of these eigenvectors is 0 when solving

for the time evolution with the appropriate initial conditions, so they do not contribute to the

time evolution. The eigenvector |vn� also has eigenvalue 0, hence the eigenvectors |v+�, |v−�,
each with eigenvalue ±

√
2n, are the only ones whose contribution to the evolution varies over

time. The period of the graph is 2π/
√

2n, giving a perfect state transfer time between vertices

of Kn of π/
√

2n. The expression for the time evolution over K2 + Kn with adjacency matrix A

with the amplitude initially at a vertex of K2 is given by:

|ψ(t)� = e−itA|n + 1� = − 1√
2
|vn� +

�

±
±1

2
e−it
√

2n|v±�

=




1√
2n

(−i sin(
√

2n t))
...

1√
2n

(−i sin(
√

2n t))
1
2 (cos(

√
2n t) + 1)

1
2 (cos(

√
2n t) − 1)




(5.4)

where the first n entries are the vertices of Kn, the (n + 1)th entry is the initial vertex, and the

(n + 2)th entry is the final vertex. This expression applies for any n, including n = 0 where the

vertices of Kn are not connected, so no evolution can occur. The cases for n = 1 and n = 2,

giving rise to the graphs P3 and C4 respectively are already known [51].

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

t

Pr
ob
ab
ili
ty

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

t

Pr
ob
ab
ili
ty

Figure 5.4: Time evolution of probability at the target node for a) graph K2 + Pn with n = 11 (solid) and
n = 10 (dotted); b) graph K2 + Pn with n = 21 (solid) n = 11 (dotted).

64

There is little difference between the evolution over the graphs K2 + Pn and K2 + Cn, as

might be expected given that they differ by a single edge. Both exhibit oscillatory motion at

the initial and target vertices, as depicted in Figure 5.4, with the oscillations peaking at very

high probabilities or unity. Clearly from the choice of n’s plotted, perfect state transfer does

not occur for every n, so there is no simple relationship between the evolutions for different

n’s. The eigensystems of these families were too complex to enable a simple expression for

the time evolution to be deduced even for a specific choice of n. As for K2 + Kn, the periods of

the oscillations in these families get smaller as n increases. Decoherence in the walks over all

three families quickly smears out the oscillatory behaviour, as can be seen in Figure 5.5 (a).

(a) (b)

0

5

10 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

p

(a)

t

Pr
ob

ab
ili

ty

0

0.5

1 0
5

10
15

20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

n

(b)

p

Pr
ob

ab
ili

ty

Figure 5.5: a) Time evolution of probability at the target vertex for graph K2 +Cn with decoherence rate
p. b) Effect of decoherence on the probability at target vertex of graph K2 + Kn at the first perfect state
transfer time for increasing n

5.3 Conclusion

I have presented and analysed in some detail three families of graphs which have interesting

transport properties in both the discrete and continuous time walk. Two of the families of

graphs, for the right choices of coin operator in the discrete time walk, exhibit periodicity, and

in some cases perfect state transfer. I found that these families also exhibit very high amplitude

transfer, or perfect state transfer, in the continuous time case. In the case of the discrete time

walk over K2+Cn it was found that increasing n improved robustness of the perfect state transfer

65

to variations in one coin state of the initial state, but not to decoherence. In the continuous time

case, n can be used to tune the perfect state transfer time.

Characterising the graphs which admit perfect state transfer and understanding which struc-

tural properties of those graphs give rise to perfect state transfer remains an ongoing project. I

have found cases where adding an arbitrary number of nodes to a particular graph in the right

way preserves its state transfer properties. Ideally general methods of determining whether a

graph has perfect state transfer, such as that outlined in [81] for the continuous time case, are

required. Due to the coin degrees of freedom, and the choice in coin operator, this is a far more

difficult task in the discrete time case. Some analytical methods capable of dealing with the

coin degrees of freedom have been developed, but are relatively limited in scope. For exam-

ple, the methods used by Krovi and Brun in [46] only apply to regular graphs whose edges

can be numbered in a certain way. The numerical methods I have used are not so restricted,

and thus currently appear to be more suitable for investigating the discrete time quantum walk.

Once a discrete time walk result is obtained numerically, it is often very easy to reproduce it

analytically, however this will obviously not lead to such general analytical results as those in

[46].

66

Chapter 6

Non-reversal Quantum Walks

6.1 Introduction

The random walks introduced in Chapter 2 concerned idealised walkers with no spatial exten-

sion. Whilst these have many uses in modelling physical and biological processes, in some

cases we may want to consider walkers which do have spatial extension, and hence cannot

move into space which they are already occupying. In this chapter I introduce a quantum ver-

sion of such a walk, which effectively simulates a dimer whose tail always follows the head.

The motivation for studying such a walk is much the same as that for studying the classical

version: more realistic simulation of physical systems. There are also potential algorithmic

applications, such as searching. Search algorithms based on random walks can be made more

efficient by ensuring that they do not revisit positions already visited.

One process which has been modelled by a self-avoiding classical random walk is polymer

folding. In this case, the walker is finite rather than infinite, so does not have to avoid every

position it has ever visited, but does have to avoid positions which it currently occupies. In

some cases, such a restricted model may not be suitable. Continuing the example, polymers

can overlap to form loops, but they cannot occupy volume that they already occupy. A type of

intermediary between the fully random walk and the self avoiding walk is known as the non-

reversal walk. A non-reversing random walker is allowed to occupy spaces on a lattice that it

has previously occupied, but is not allowed to return to the point which it has just come from.

In both the classical and quantum case, the self-avoiding or non-reversal walk on the line

is trivial. This is because there are only two degrees of freedom in the movement, so if one of

those is prohibited by the model, then unidirectional ballistic transport is obtained. The walks

67

studied in this chapter take place over a square lattice, in which case the dynamics are highly

non-trivial.

The chapter proceeds as follows: In Section 6.1.1 classical self avoiding walks are intro-

duced in more detail. Then for the sake of comparison the properties of the quantum walk on

the square lattice are discussed. The non-reversal quantum walk is then defined in Section 6.2.1

and its properties are described in Section 6.2.2. I finish by indicating how one might obtain

a self-avoiding walker of length three in Section 6.3 and briefly summarising the results and

potential avenues for future work in the conclusion.

6.1.1 Classical self-avoiding random walks

The classical self-avoiding walk has proven difficult to treat analytically, hence the results

concerning it have all so far been numerical [94] and there remain many open questions about

it. Even enumerating the number of self avoiding walks, despite them being so rare that coming

upon one by mistake when examining a random walk is highly improbable, has proven very

difficult. Whilst some facts are clear, for example that cn+m ≤ cm + cn where cn is the number

of walks with n steps. The set of walks of length n concatenated with the set of walks of length

m contains not only the self avoiding walks of length n + m but some which overlap, hence

the inequality. However, determining the precise number of walks is difficult, though bounds

have been established. The number of self avoiding walks must be less than the number of

non-reversal walks, as these include the self avoiding walk as a subset. Additionally it is

possible to construct subsets of self avoiding walks which grow as 2n, so we know that there

are between 2n and 3n self avoiding random walks. The best evidence so far suggests that there

are 2.638n self avoiding walks of length n, and this is provided as a non-rigorous estimate in

[95]. The best evidence for this value was obtained by enumerating each such walk of length

up to 51 and required a 1024 processor supercomputer [96]. Without new algorithms it is

unlikely that we will be able to enumerate much further than this. Guttmann [96] obtained

14,059,415,980,606,050,644,844 walks using this method, however these walks make up less

than 1 in 240 million of the possible random walks of length 51.

As even counting the walks has proved difficult, it is unsurprising that little is known re-

garding other properties. The property we are most interested in when comparing walks is the

standard deviation. The mean squared displacement is conjectured to be n3/2 though so far,

even a proof that the exponent must be between 1 and 2 is elusive [94].

68

Another known fact about self avoiding walks demonstrates a key difference between the

self avoiding walk and its standard and non-reversal counterparts. This is that the self avoiding

walk does not necessarily continue indefinitely. This is because it is possible to reach a lattice

site whose only adjacent lattice sites have previously been visited, hence the walker cannot

continue. After the first few steps there is a small probability that the walk will end on any

subsequent step.

The non-reversal walk is in some ways more tractable. For example, it is clear that on the

square lattice there are 3n such walks, where n is the number of steps traversed by the walker.

Its mean squared displacement is 2n, so it spreads twice as fast as the standard random walk,

but slower than the completely self avoiding walk. There is very little literature on the non-

reversal walk, and this tends to examine specific characteristics of the walk relevant to the study

of polymer chains [97], rather than its general features.

69

a)

b)

Figure 6.1: Probability distributions arising after 40 steps of a walk on a 2d lattice using a) the DFT coin
and b) the Grover coin for the symmetric initial state shown in equation 6.3

6.1.2 Quantum walks on the square lattice

The properties of the discrete time quantum walk on the square lattice were extensively ex-

plored in [43] following initial investigations in [57]. In particular they examined the mean

70

distance at time t:

�r�t =
�

x,y

�
x2 + y2 p(x, y, t) (6.1)

so r is the radial distance from the origin, and p(x, y, t) is the probability of finding the walker

at position (x, y) at time t. They also characterise the walks in terms of the standard deviation:

σ =
�
�r2� − �r�2 (6.2)

They use three choices of coin operator. Their first choice behaves like the Hadamard operator

for both the ‘left/right’ (|l�/|r�) coin states and the ‘up/down’ (|u�/|d�) coin states. This operator

does not mix the two dimensions, so a two dimensional version of the distribution of the walk

on the line is obtained. More interestingly, they consider the DFT and Grover operators for a

number of initial conditions. These coins are both unbiased, in that they distribute amplitude

equally between each coin state. In contrast to the walk on the line, they find that the dynamics

of the walk depend strongly on the coin used. Additionally, the dynamics for a specific coin

depend strongly on the choice of initial state. The lowest and highest standard deviations

obtained for the position of the walker were found using the Grover operator. It was observed

that the reason for this is that regardless of the initial state, the distribution forms a central spike,

with a ring around it which propagates outwards. The choice of initial condition controls how

much amplitude is situated in the central spike, and how much amplitude is situated in the ring.

The initial state at the origin for both the distributions plotted in Figure 6.1 is:

|ψ� = 1
2

(|ld� + i|lu� + i|rd� − |ru�) ⊗ |0�

=
1
2

(|l� + i|r�) ⊗ (|d� + i|u�) ⊗ |0�
(6.3)

The authors of [43] studied all unbiased four dimensional unitary operators with entries

equal to either ±1/2 or ±i/2, which when the leading diagonal is selected to be 1/2 gives 640

unitary operators. These operators were found to fall into ten types, with the DFT, Hadamard

and Grover all being of different type. Of all operators tested, the Grover operator was found

to give rise to both the largest and smallest standard deviation, depending on the initial state.

71

6.2 Non-reversal quantum walks

6.2.1 Definition

I will now define our non-reversal quantum walk on the square lattice. Whilst in the treatment

of walks on the square lattice in [43] the specification of the shift operation is implied, more

care must be taken here to ensure that the coin operator really does what we want it to. Two

variations of the shift, ones which shifts amplitude from, say, the ‘moving-right’ state of one

node to the ‘moving-right’ state of the next, as is used in [57], and one which shifts the same

amplitude to the ‘moving-left’ state of the next node, are considered. The non-reversal walk

arises when the ‘moving-right’ to ‘moving-left’ permutation is used, this is the shift operation

defined in [42].

The state of the walker, Ψ, at time t ∈ N is described by a 4-dimensional vector which is a

function of each discrete lattice point (x, y) ∈ Z2. This is denoted

Ψ(x, y, t) =




ψ1(x, y, t)
ψ2(x, y, t)
ψ3(x, y, t)
ψ4(x, y, t)




(6.4)

where we have
�

x,y,i |ψi(x, y, t)|2 = 1 and each component is a complex function of discrete

position and time. The coin operator will then be given by a unitary in U(4). The first coin I

consider, albeit briefly, will be called the non-repeating coin, as when using the choice of shift

operator which makes the walk more amenable to Fourier space techniques, it never allows

amplitude to move in the same direction in two consecutive steps. This coin is defined by:

C(NF) =




0 λeiα γeiβ f (λ, γ)eiθ

λe−i(φ+δ+α) 0 − f (λ, γ)ei(ψ−θ+β) γeiψ

−γe−i(δ+α+ψ) − f (λ, γ)ei(φ−θ+α) 0 λeiφ

f (λ, γ)ei(θ−α−ψ−φ−β) −γei(δ+α−β) λeiδ 0




(6.5)

where all of the variables are real, 0 ≤ γ2 + λ2 ≤ 1, and f (λ, γ) =
�

1 − (λ2 + γ2). This

is the most general S U(4) operator with zeros on the diagonal. A simple example of such a

coin, used to produce the probability distribution shown in Figure 6.2, takes θ = φ = π and

λ = γ = f (λ, γ) = 1√
3
, with all other phase variables being zero. This leads to the following

72

coin:

C1 =
1√
3




0 1 1 −1
1 0 1 1
1 −1 0 −1
−1 −1 1 0




(6.6)

We can see that this coin does what it is required to by examining its operation on an

arbitrary state

|ψ� =




a
b
c
d




(6.7)

It is clear that

C1|ψ� = 1√
3




b + c − d
a + c + d
a − b − d
c − a − b




(6.8)

so the initial amplitude in each coin state is redistributed between the other coin states, and

none of it is transmitted to the node it came from. In the numerical work below I consider

CNR =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




CNF (6.9)

where clearly CNR is a permutation of CNF . Permuting the coin in this manner has the same

effect as permuting the shift operation and gives rise to the non-reversal walk. The permutations

arise naturally when one considers the freedom in choice of edge labelling on a 2d lattice. As

the arising walk dynamics have notable properties in common I discuss both. In [98] there is

an analytical proof that when using CNF the joint (x and y direction) moments are independent

of the initial condition. It was not possible to obtain a corresponding proof for the operator

CNR, so its properties were investigated numerically, as detailed below.

73

a)

b)

Figure 6.2: Probability distributions arising after 100 steps of a typical non-reversal quantum walk
shown a) over the entire lattice and b) in profile 6.3

6.2.2 Properties

An example of a typical probability distribution arising from a non-reversal quantum walk

is shown in Figure 6.2. The distribution is shown in 3d and in profile in order to show the

similarity of the profile to that of the walk on the line. Regardless of initial condition, the

dynamics are similar, tracing out a square with peaks at each corner. The initial condition

determines the height and number of distinctive peaks at the corners of the square. The initial

condition used to obtain the distribution shown in Figure 6.2 is the same as that used in equation

74

6.3.

a) b)

Figure 6.3: Comparison of standard deviation after 100 steps of the walk for various initial conditions
using a) the Grover coin and b) a self-avoiding coin

As the analytical result concerning the independence of moments on initial condition in-

dicated above applies only to walks using the operator UNR, the non-reversal walks were in-

vestigated numerically. I conjecture that the same result holds of the non-reversal walk. These

walks were investigated by varying the parameters in the coin as well as the initial condition.

Random choices for each variable were used to generate 500 coins, and the walks arising from

these operators were investigated using 1000 initial conditions. It was found numerically that

for all choices of initial condition the mean position (Equation 6.1) and standard deviation

(Equation 6.2) of the walker is constant at a given time t, as can be seen for the standard devi-

ation in Figure 6.3. Further investigations suggest that all the moments of the distribution are

independent of the initial condition. The parameters which determine the standard deviation

are λ and γ, so these values determine some real constant k for each self-avoiding coin so that

the standard deviation at time t is equal to kt. This contrasts strongly with standardly used

coins, as mentioned in Section 6.1.2 above, where the initial condition can be used to control

the standard deviation of the walk using the Grover coin operator. The mean and standard de-

viations as a function of time are shown for a variety of coins in Figure 6.4. Whilst the mean

position increases faster than all other coins, the standard deviation increases more slowly, so

in cases where we have freedom to choose our initial condition, the Grover operator is still

the best to use if we want to achieve the fastest possible spreading of the amplitude across the

lattice.

75

a) b)

Figure 6.4: Comparison of the non-reversal (black), Hadamard (red), Grover (blue) and DFT (green)
coin operators in terms of a) expected radial distance from the origin and b) standard deviation.

The analytics concerning the non-repeating coin deal with the joint moments, and numer-

ical investigations of both coins showed that the individual x and y moments do depend on

the initial condition. These were not investigated further as it appears that for any practical

application of the model, the fully specified position of the walker will be of more interest.

6.3 Trimers

A self-avoiding walker of length three, which models a trimer, requires a more complex def-

inition. This is because the trimer on a square lattice, presuming that the head and tail are

distinguishable, can be in one of three configurations, as shown in Figure 6.5. These configura-

tions can then have four possible orientations, facing in the up, down, left and right directions.

This means that in order to represent the trimer, a qutrit tensored with a ququat is required,

giving rise to a twelve dimensional coin. The head of the trimer can make the same moves

as that of the dimer, but now as well as updating the position of the walker, the configuration,

which will in general be in a superposition, is also updated.

Figure 6.5: The three possible configurations of a self avoiding trimer

76

It may be possible to define a fully general self-avoiding quantum walk, however this will

in practise be difficult. Even deciding when a site has been visited has some ambiguity, for

instance, can one part of the superposition access sites which another part of the superposition

has previously accessed?

6.4 Conclusion

I have introduced a new type of coin for the discrete time quantum walk and described analyt-

ically, for one choice of shift operator, and numerically for the other, that it has some notable

properties, namely that the mean and standard deviation of the position of the walker is in-

dependent of the choice of initial condition. The standard deviation grows linearly with t for

much the same reason as it does the walk on the line, as the coin operator always ensures that

some amplitude moves away from the origin with each step.

A fully self avoiding quantum walk is yet to be developed and explored, and thus far no

continuous time analogues have been proposed. In order to fully capture the folding of polymer

chains, the quantum nature of their constituents may need to be accounted for, which would

provide a potential application for such a model.

In addition to further investigating the properties of the self avoiding quantum walk and

developing the concept, better comparisons with its classical counterpart may be useful. For

example, only walks on square lattices have been considered here, but the self avoiding random

walk has been shown to have macroscopic properties which are independent of the choice of

lattice. In order to see if this property carries over into the quantum case, coins of varying

dimension are required.

In short, there are many potential avenues through which to explore the self avoiding or

non-reversal quantum walk, and the choices of which direction to take will depend on the

desired applications of the walk. The purpose of the work here was simply to find out whether

using a non-reversal coin operator gives rise to any properties which are not observed using

other operators, hopefully provoking further investigation into the uses of such a coin. In the

proceeding chapters, I turn to specific applications of various types of quantum walk.

77

78

Chapter 7

Quantum Finite Automata and

Quantum Walks

7.1 Introduction

Whilst perfect state transfer is an important component in quantum computing, as it is poten-

tially required for physically moving qubits around the computer, and in algorithms which rely

on it to gain their speedup over classical algorithms [8; 27; 28], further ingredients are required

[65; 99]. The required ingredients depend on the model of computation which we are using.

For example, in Chapter 3 we saw that in order to perform Turing universal computation in the

circuit model that, as well as wires, gates capable of, in combination, simulating any unitary

operation to arbitrary precision are required. We also saw another model of quantum compu-

tation which is not universal, and which does not have perfect state transfer as a key ingredient

in its construction, namely the QFA [72; 73; 74]. This model answers questions of the type: Is

the input of the required form? Traditionally models of computation of this type are abstrac-

tions of an input tape, which is read by a tape head. The tape head can evolve into different

computational states according to some transition function. These two models, circuits and

QFAs, appear to be quite different. For instance the input is necessarily manipulated by the

circuit model, and this generates the output, whereas an FSA does not manipulate its input and

the output is determined by the state of the tape head. However, in their most general forms,

in which case the FSA has extra structure added and can manipulate the input, becoming a

Turing machine, the apparently different models are computationally equivalent. Computa-

tional equivalence entails that each model can simulate the other, and hence gives researchers

79

freedom to choose from a variety of computational models when approaching new questions.

There are a wide variety of mathematical models, all of which are Turing complete. For

example, in addition to the Turing machine and circuit models, we have the cellular automaton

[100; 101; 102; 103], the untyped lambda calculus [104; 105] and partial recursive functions

[106; 107], all being equivalent. In the quantum case, the analogues of Turing machines [60;

108], cellular automata [109; 110] and circuits [76; 111] have also been shown to be equivalent,

hence we have a variety of universal models to work with. This means that non universal

restrictions of these models can also be explored in terms of each other as well if required. As

we know that discrete time quantum walks are universal for quantum computation [41], we

know that they can perform any computing task, regardless of the computing paradigm that

task comes from. For example, the discrete time walk on the line has been shown in [112] to

be equivalent to a one dimensional quantum cellular automaton [6; 109; 110; 113]. As these

had already been proven to simulate any quantum Turing machine [109] it is implied that the

discrete time walk on the line may also be able to simulate any quantum Turing machine. For

this to be the case the update rules for the cellular automaton to which the quantum walk is

mapped to must be of the form required for the second mapping onto the Turing machine.

Whether this is the case is unclear from the constructions used to prove the equivalences and

no subsequent research has examined this question. So whilst it has been known for a long

time that there may be ways to construct quantum walks which accept languages, the work in

this chapter is the first concrete example known to me.

In this chapter, we look at the relation between quantum walks and a model of quantum

computing based on QFAs. There are many ways in which to modify QFAs, for examples see

[73; 78; 114; 115; 116]. Unlike the case of their classical counterparts, these modifications do

increase their computing power. Beyond accepting more languages than the standard QFA, the

exact power of the different variations of QFAs is not generally known. Some progress, such as

finding closure properties of languages accepted, has been made in this direction [72; 117; 118].

The specific modifications considered in this chapter involve adding open system dynamics to

the QFA. We will also see in Section 7.2.2 that even much simpler modifications, such as

allowing the tape head to move in both directions along the input tape, affect the language

acceptance properties of some varieties of QFA.

The chapter proceeds as follows: In Section 7.2 I review the ’Measure-Many’-QFA, and

discuss its language acceptance properties in order to demonstrate how adding an auxiliary

system to the QFA increases its computational power. Then in Section 7.3 I introduce a much

80

newer modification of the QFA developed by Yakarylmaz et al in [119] which incorporates

a memory, despite the transition function never depending on the contents of the memory,

hence the term ‘write-only memory.’ To show how the write-only memory is useful, I provide

an original algorithm showing a how this type of memory enables languages which cannot

be accepted by standard QFAs. The final section shows that this modification of the QFA is

equivalent to a quantum walk which uses a time dependent coin. In Section 7.5.1 I then show

that by restricting the input alphabet to a unary alphabet, a time independent coin can be used,

but in this case the number of steps required to accept any given language vastly increases.

7.2 ’Measure-Many’- QFAs

An MM-QFA is a 6-tuple:

M = (Q,Σ, δ, q0,Qacc,Qre j)

with Q being a finite set of states, and Σ∪ { ¢, $ } being the tape alphabet where ¢ is the symbol

directly before the input word and $ denotes the end of the input word. The state vector evolves

according to the unitary operator Uσ induced by the transition function δ : Q × Γ × Q → C.

The evolution operator is the same as for MO-QFAs:

Uσ|q, σ� =
�

qi,q j∈Q
δ(qi, σ, q j)|q j�

The value of the transition function can be calculated if one knows the exact form of the

operator induced by δ:

δ(q, σ, q�) = �q� |Uσ | q� (7.1)

for a 3-tuple (q, σ, q�) with a ∈ Γ and q, q� ∈ Q the value of δ is the amplitude of the transi-

tion from configuration (q, σ) to state q. The probability of a given transition taking place is

calculated in the normal way by squaring the absolute value of the amplitude of that transition.

The Hilbert space with basis set Q is partitioned by three subsets into three orthogonal

subspaces: Qacc is the basis for the subspace spanned by accepting state vectors; Qre j is the

basis for the subspace spanned by rejecting state vectors and Qnon = Q \ (Qacc ∪ Qre j) is the

81

basis for the subspace spanned by all non-halting state vectors, so Q = Qacc ⊕ Qre j ⊕ Qnon. We

also require, for fixed n, product spaces Cacc = Qacc×Zn, Cre j = Qre j×Zn and Cnon = Qnon×Zn.

After each transition the projection operator is applied to the product of some natural number

less than n, the length of the input word, and the computational state. The computation halts

when the system is measured to be in Cacc or Cre j. By operating on the product space rather

than the Hilbert space itself, unwanted disturbance of the state vector of M is avoided.

During a computation an MM-QFA can accumulate accepting and rejecting probabilities

before it halts. It can be useful to keep track of these by representing the computational state as

a triple v = (|ψ�, pacc, pre j) which evolves according to an operator Tσ, upon reading symbol

σ

Tσ : (ψ, pacc, pre f)→ (PnonUσ|ψ�, pacc + | PaccUσ|ψ� |2, pre j + | Pre jUσ|ψ� |2) (7.2)

Once amplitude is transferred by the Tσ operator into a halting state it is simply a real

number rather than a coefficient of a vector. Hence it no longer interacts with any non-halting

states.

MM-QFAs are generalizations of MO-QFAs, hence the class of languages accepted by MO-

QFAs is contained in the class of languages accepted by MM-QFAs. MO-QFAs simply have

trivial projections between each computational step, those projections being identity matrices

over the whole Hilbert Space. The additional subspaces and projections effectively increase the

number of states the automaton can enter, and this increases its computational power.

7.2.1 Languages accepted by MM-QFAs

It was proven by Yakaryilmaz and Cem Say in [120] that the class of languages accepted with

unbounded error by MM-QFAs with cut-point 1/2 is precisely the stochastic languages. The

proof is very long and technical, so is omitted here. If attention is restricted to acceptance

with bounded error, then any advantage over classical FSAs is lost. This is because it has been

shown by Kondacs and Watrous in [74] that MM-QFAs accept only regular languages, and

there exists a regular language not accepted by MM-QFAs with bounded error. The language

in their theorem is accepted with bounded error by the quantum walks discussed in this chapter

and Chapter 8, so I include the proof that it is not accepted by MM-QFAs in order to give some

insight into how they operate and indicate why, in a standard quantum information setting, this

particular language can be problematic.

82

Theorem 7.2.1.1. The regular language, L denoted by the regular expression {a, b}∗a is not
accepted with bounded error by an MM-QFA.

Proof. The proof shows that given an MM-QFA, M, which accepts L, it cannot do so with
bounded error. Let x = σ1 . . . σn ∈ Γ∗, with Γ being the tape alphabet, so that

ψx = (PnonVan) . . . (PnonVa1)|q0�.

Define µ = in f { |ψ¢w | |w ∈ {a, b}∗}, thus µ is the smallest probability that M has not yet
halted, and the T operator for M will have placed the rest of the amplitude into halting states.
If µ = 0 then some computations of M will not depend on the symbol following w. However
wa ∈ L but wb � L, so in this case M cannot recognise L with bounded error.

Before considering the case where µ > 0, note that for some set A ⊂ B where B = { v ∈
V | |v| ≤ 1}, if there exists some ξ > 0 such that the norm of the distance between any v, v� ∈ A,
|v − v�| is greater than ξ then A has a finite number of elements. A must be finite in order
to represent the configuration of an MM-QFA. One can also derive a constant c, such that
|Txv − Txv�| ≤ c|v − v�|.

Take w such that |ψ¢w| < µ+ξ, in which case |ψ¢wy| ∈ [µ, µ+ξ) for any y ∈ {a, b}∗. Therefore
one can take any b j with

|(PnonVb) jψ¢wa| ∈
�
µ, µ + ξ) .

Thus the bounded sequence {(PnonVb) jψ¢wa} has a limit point. There will also be another integer
k ≥ 1 such that |(PnonVb) j(ψ¢wa − (PnonVb)kψ¢wa)| < ξ. Combining this with the bounds
established above for |(PnonVb) jψ¢a| one can derive a constant, c� independent of the limit such
that when j = 0, |ψ¢wa − (PnonVb)kψ¢wa| < c�ξ1/4. Hence there is another constant

|T¢wa$(|q0�, 0, 0) − T¢wabk$(|q0�, 0, 0)| < c��ξ1/4.

As ξ can be made arbitrarily small, the probability of accepting a word in L is arbitrarily
close to that of accepting a word not in L, for example wabk. In other words, M cannot accept
L with bounded error.

�

7.2.2 2-way MM-QFAs

MM-QFAs can be modified to accept all regular languages with bounded error, and some non-

regular languages (specifically the context free language Leq = {ambm |m ∈ N}), in a simple

way. Namely by allowing the tape head to move in both directions down the tape. These ma-

chines are known as 2QFAs. In this case, the transition function must be modified to encompass

83

the probability of moving left, right, or not at all along the input tape. This makes the problem

of ensuring that the transition function is well formed, in that it induces a unitary transition

matrix, more complex. However necessary and sufficient conditions which the function must

satisfy in order to guarantee being well formed were found by Kondacs and Watrous in [74]:

•
�

q� = δ
∗(q1, σ, q�, d)δ(q2, σ, q�, d) =

�
1 if q1 = q2
0 otherwise

•
�

q�(δ∗(q1, σ1, q�, 1)δ(q2, σ2, q�, 0) + δ∗(q1, σ1, q�, 0)δ(q2, σ2, q�,−1)) = 0

•
�

q� = δ
∗(q1, σ1, q�, 1)δ(q2, σ2, q�,−1) = 0

These conditions intuitively ensure logical reversibility, and that the rows and columns of

the induced transition matrix are orthogonal.

Rather than allowing the tape head to move both ways down the tape, computational power

can be gained simply by allowing the MM-QFA to pause on a tape square, becoming a PQFA.

I proved that the language Leq could be accepted by these automata in my MSc dissertation, by

employing ‘counting’ states which were designed to only reach the last square of the input at

the same time, thus allowing the QFT to transform them into the accepting state, if the number

of a’s was equal to the number of b’s. The same technique was also used to show that there

exists a PQFA accepting the context-sensitive language Labc = {ambmcm |m ∈ N}. Clearly these

automata require a large number of computational states, in the next section we see that the

addition of ‘write-only memory’ enables QFAs to accept Leq and Labc with a limited number

of computational states.

7.3 QFAs with write only memory

A Quantum Finite Automaton with Write Only Memory, M, a QFA-WOM hereafter, is defined,

in its simplest form, to be a 6-tuple:

(Q,Σ,Γ, δ, q0, F)

with Q being a finite set of states, and Σ ∪ { ¢, $ } being the tape alphabet as for MM-QFAs.

The WOM-tape alphabet is Γ, which also includes the empty string, #, and the empty symbol, �.

The initial state of M is q0 and F ⊂ Q is the set of accepting states. During each computational

step the tape head of M is restricted to move only right, but the WOM tape head is allowed to

84

move left, l, right, r, or remain stationary, s where the set {l, r, s} is denoted D. The states Q

form a basis for the computational Hilbert space, HQ.

The possible states of the WOM tape are ordered pairs from the set Γ∗ × Nm where Γ∗ is

the Kleene closure of Γ. The set Nm is the set of natural numbers up to m = 2k, where k is

the length of the input word plus two for the end markers. The length of the input word limits

how far the WOM tape head can move from its initial position, as it is only allowed to move

one square during each computational step. As the tape head can move in any direction, its

current position must be indexed by n ∈ N in order to give the complete state of the WOM.

A basis for the Hilbert space of the WOM, HW, can be formed from the set Γ∗ × Nm. As

the computation is guaranteed to halt, because the QFA tape head always moves right and the

computation ends when M reads the $ symbol, HW will be finite dimensional. The dimensions

of HW accessed by the QFA-WOM will depend on the precise instantiation of and input to M

and has upper bound 2m|Γ|, because during each step any γ ∈ Γ can be written to the WOM

tape and then the head can move in one of two directions or stays still. The space HW can

be interpreted physically as an environment which the QFA can interact with in a precisely

controlled manner.

In [119] they introduce variations of WOM. For instance, one can allow the tape head

to move in one direction only, in which case we have a QFA with a push-only stack, or a

QFA-POS. In this case the dimension of the Hilbert Space will be equal to the length of the

input string multiplied by |Γ|. One can simplify the model further by using an increment only

counter rather than a tape, to make a QFA-IOC. Please note that the QFA-WOM and the vari-

ations introduced here are a simplification of the QFA-WOM introduced in [119] which also

incorporates a finite register.

The transition function, δ when M is in state q reading symbol σ is specified by

δ(q, σ) =
�

(q,σ,d)∈Q×Σ×D (q, σ, q�, γ, d)(q�, γ, d).

where (q, σ, q�, γ, d) = a for a ∈ C. This gives the amplitude of the transition from state q as

the QFA tape head reads the symbol σ to q� whilst writing symbol γ to the WOM tape and

moving the WOM tape head in direction d. To ensure that the evolution is unitary it must be

the case that

�
(q,σ,d)∈G×Σ×D |δ(q, σ, q�, γ, d)|2 = 1.

85

One can interpret δ as changing the state of M to q�, writing γ ∈ Γ to the WOM tape and

moving the WOM tape head in direction d. After δ has been applied the QFA tape head moves

one square to the right. In order for M to be well-formed the transition matrices, Uσ, induced

by δ for each symbol of Σ, must be unitary. The entries of Uσ are specified from values of δ, but

it is easier to consider the action of this operator as two separate operations. One, UQσ , which

operates only on the QFA states and the other UWσ controls the evolution of the WOM. The

operator UWσ enables the QFA to control the WOM-tape, as the state of the QFA is updated

before the WOM tape is written to, we have Uσ = UWσUQσ . The configuration of the QFA-

WOM is its internal state, the position of the input tape head and the contents and position of

the WOM tape head. If a configuration c j can be reached in one step from ci whilst M writes γ

onto the WOM tape and moves in direction d then the (i, j)’th entry of Uσ is nonzero.

As the QFA and the WOM-tape are initially uncorrelated, we can assume without loss of

generality that the initial state of the WOM tape is |#k�, that is the empty string in the k’th tape

square. Therefore the initial state of M is |ψint� = |qi� ⊗ |#k�. After the operator Uσ is applied,

the state of M is a vector in the Hilbert space HQ ⊗HW of the form |ψQW� =
�

j,p a j,p|q j,wp�
where a j,p = α jβp where α j and βp are the coefficients of the vectors |q j� ∈ HQ and |wp� ∈ HW

respectively.

After the state transition from the $ symbol had been made, the state of the QFA must be

measured. The measurement is applied to reduced density operator ρQ = TrW(ρQW) where TrW

is the partial trace over the WOM subsystem. M is said to have made an accepting computation

if the state of M is measured to be in a state q ∈ F at the end of its computation. Whilst the term

‘write-only memory’ may imply that we cannot measure or deduce the state of the WOM, this

is not the case. In fact, as we will see in Section 7.4 below, knowing what state the WOM will

be in, and therefore when interference between computational states can occur, is important in

designing algorithms for the QFA-WOM. The term refers to the memory from the perspective

of the QFA-WOMs transition function, which can write to the memory, but whose value never

depends on the state of the WOM.

A schematic representation of a possible first transition of a QFA-WOM which accepts the

language Lrev = {wcwr |w ∈ {a, b}∗}, [119], omitting the part using the register, can be seen in

Figure 7.1. This QFA-WOM operates in a very similar way to the one in the example given in

Section 7.4 below, with a suitably increased input and WOM-tape alphabet.

QFA-WOMs and MM-QFAs could appear to be two sides of the same coin, as they involve

two different methods of describing environmental interactions. However, due to the fact that

86

Figure 7.1: Schematic diagram of a QFA-WOM transition. Part a)
shows the QFA-tape, where the input word is read, the red square
shows the tape head position. b) shows the initially empty WOM-
tape. After this transition it splits into an equal superposition of the
tape head having written ’a’ and moved one square right, and having
moved without writing a symbol. c) shows part of the state diagram,
the arrow going into state |q0� indicates that this is the initial QFA
state; arrows going from it are possible transitions. In this case the
state goes to 1√

2
(|q1� + |p1�).

the measurements performed during the computation of an MM-QFA are on space HQ ⊗ Zl,

not the computational basis space, this is not the case. Additionally, the entire evolution of

the QFA-WOM is unitary, whereas due to the projections, every computational step of an

MM-QFA may be non unitary. Only those steps where the projection operator is the identity

will give rise to unitary evolution. A direct comparison between MM-QFAs and QFA-WOMs

would shed light on what type of open system dynamics may be most beneficial in a quantum

computer, but due to the subtleties in the models such a comparison would be difficult.

7.4 Example QFA-WOMs

To complete the introduction to QFA-WOMs, I now show that QFA-WOMs are more powerful

than standard QFAs, by proving they accept the context-free language Leq with bounded error.

Whilst the conclusion that WOM adds computational power is not original, as it is shown in

[119], the algorithm described here is, though it is based on the same techniques used in [119].

Additionally, the formulation of QFA-WOMs used here is not quite identical to the original

definition, as mentioned above, that also includes a finite register, so we prove that not all of

the structure added to the QFA in [119] is required in order to gain computational power.

Theorem 7.4.0.1. There exists a QFA-WOM which accepts the language Leq with bounded
error.

Proof. Call the QFA-WOM we are considering M and let Q = {q0, q1, q2, q3, q4, q5}, F = {q0}
and Γ = {a}. Define δ in the following way:

δ(q0, ¢) = 1√
2
(q0, �, 0) + 1√

2
(q1, �, 0)

87

δ(q0, a) = (q0, a,+1) δ(q1, a) = (q1, �, 0)
δ(q0, b) = (q3, �, 0) δ(q1, b) = (q2, a,+1)
δ(q3, b) = (q3, �, 0) δ(q2, b) = (q2, a,+1)
δ(q3, a) = (q4, �, 0) δ(q2, a) = (q5, �, 0)

δ(q4, a) = δ(q4, b) = (q4, �, 0) δ(q5, a) = δ(q5, b) = (q5, �, 0)
δ(q3, $) = 1√

2
(q0, �, 0) + 1√

2
(q3, �, 0) δ(q2, $) = 1√

2
(q0, �, 0) − 1√

2
(q3, �, 0)

To show the result, first consider inputs of the required form. Upon reading the beginning
marker symbol the state splits into a superposition. The q0 state counts the number of a�s
appearing before the first b in the input by writing each occurrence of an a to the WOM tape.
The q1 state does nothing until it reaches a b. Upon reaching the first b the q0 state transitions
into state q3 and writes nothing further to the WOM tape. The q1 state transitions into state q2

and writes an a to the WOM tape. For the rest of the input, q2 writes another a each time, and
does not make a state transition. Therefore upon reading the end marker symbol, both parts of
the superposition will have the same WOM tape contents, a string of a’s which is half the length
of the input, and hence constructive interference can occur, resulting in the computational state
being q0 with certainty, as required.

For inputs not of the form ambn, the two parts of the superposition will have different
associated WOM-tape contents, so cannot constructively interfere. Hence the input will be
accepted with probability 1/2. In the case where we have inputs where an a occurs after the
first b the QFA transitions into rejecting states, and the probability of accepting is zero. �

Corollary 7.4.0.1. There exist QFA-WOMs accepting languages of the form L = {ambmcm...|m ∈
N}.

Proof. The construction above has states which indicate when transitions to new symbols have
been made, which use the WOM to count the number of new symbols and enter into rejecting
states if symbols which should not be occur at a given position of the input word are read.
Simply augment the set of computational states to allow for equivalent such states for each
additional symbol in the language. �

7.5 Quantum walks as QFA-WOMs

I will now show that the QFA-WOM as formulated above is simply a discrete time quantum

walk and show one of the algorithms from [119] as quantum walk in order to elucidate the

mapping. First, I specify what conditions, in general, must be fulfilled in order to map a QFA

onto a quantum walk:

88

1. An encoding of the computational states, which will automatically encode qi and q f .

2. An encoding of the input.

3. An operation which replicates the final probability distribution of states in HC ⊗HV as

is produced in HQ, the space whose basis is the set of computational states of the QFA,

for a specific input.

To model the QFA-WOM, in addition to the above conditions we must find:

1. An encoding of the WOM-tape.

2. An operation which replicates the final probability distribution of states in HC ⊗HV as

is produced in HQ ⊗HW for a specific input.

If we have a time dependent coin, then the mapping is direct. We can identify HQ with

HC and HW with HV , so the computational states are the coin states, and the WOM state is

the position state. In this case, the encoding of the input is in the sequence of coin operators

applied. Acceptance of the input is determined by measurement of the final coin state. This

formulation of the QFA-WOM helps to elucidate the role of the WOM, controlling when inter-

action between computational states can occur by only allowing them to interact when they are

both at the same position of the graph structure which represents the possible configurations of

the WOM and the relations between them. Whilst the examples of the operation of the WOM

given here are all based on an interferometer, as there are more ways for different parts of the

superposition of the quantum walker to end up at the same node of a graph, it is possible that

this formulation will lead to more sophisticated algorithms for the QFA-WOM.

A more concrete example of how this mapping works is shown schematically in Figure 7.2

for a walk accepting the language Lrev = {wcwr |w ∈ {a, b}} where wr denotes the word w

reversed. For clarity, only edges and coin states required at each step of the computation are

shown. In this example, an accepting computation is simply a quantum walk between antipodal

nodes of a cycle. The walker traverses each side simultaneously. If the input is in the language

accepted, then the walkers end up at the same node. If the input is not in the language accepted,

then the walk will not take place on a cycle. Instead, it is simply a walk on the line, with the

two parts of the superposition moving deterministically further away from each other at each

step.

89

Figure 7.2: The computation of a QFA-WOM accepting Lrev on word abcba

The graph structure induced by the WOM will be, in the most general case, multiply con-

nected. The number of connections between each node will be equal to |Q|. In practise, some

of the coin states at each node will never contain amplitude so they can be omitted. The over-

all structure of the induced graphs is restricted by its interpretation as possible configurations

of symbols on a tape. We cannot, for instance, jump from a vertex which represents the ini-

tial configuration of the WOM to one representing a string of length greater than one. As

every time the coin state splits into a superposition, the WOM-tape splits too, the graph will

generally have a branching structure, with branches meeting when separate parts of the QFA

superposition have the same WOM-tape contents and head position. If the coin state evolves

without updating the WOM-tape, then the graph will have self loops. As we are identifying the

computational states with coin states, a QFA would just be a single node with many self loops.

7.5.1 Walks with a time independent coin

The mapping between the QFA-WOM and the quantum walk requires a time dependent coin

in order to account for the input. A time independent coin can be used if we restrict inputs to a

unary alphabet. In this case, the input simply determines the number of steps that the walk is

run for, though the beginning and end marker symbols must now be incorporated into the coin

operation or the graph structure. As crucial state transitions are made from both end marker

symbols, they cannot be omitted even though we know how many steps to run the walk for,

and therefore when the end of the input word has been reached. In the example below, the end

90

Figure 7.3: The quantum walk and QFA-WOM accepting the unary version of the language Leven

marker symbols are not required so this problem is not tackled. The way to specify the coin

and graph structure must be independent of the length of input otherwise the problems may be

solved by this specification, rather than the quantum walk itself.

Moving to a unary language may seem to heavily restrict the types of problems a computer

can solve, however this is not necessarily the case as there are simple algorithms to convert be-

tween binary and unary representations of strings [121]. The choice of the number of symbols

affects the complexity of subsequent computations rather than their inherent computability. It is

not always the case that languages expressed in a unary alphabet take longer to recognise than

their binary representations, but if the model of computation being used to evaluate strings

for membership in the language is a one way model, and strings in the unary representation

are longer than their binary counterparts, this will be the case. In general, unary languages

are more often used to derive complexity results rather than computability results for specific

computational paradigms [122; 123].

A simple example of a unary language is Leven = { 0k | k is even }. In binary this language

is represented by the regular expression {a, b}∗a, which, as we saw in Theorem 7.2.1.1, cannot

be accepted with unbounded error by an MM-QFA.

Theorem 7.5.1.1. There exists a QFA-WOM accepting Leven

91

Proof. Take the QFA-WOM with Q = {q0, q1, q2, q3, q4}, q0 being, as usual, the initial state
and F = {q0, q2, q3}. The transition function is specified as follows:

δ(q0) = 1√
2
(q4, �, 0) + 1√

2
(q1, a,+1)

δ(q4) = (q2, a,+1) δ(q1) = (q3, �, 0)
δ(q2) = (q4, �, 0) δ(q3) = (q1, a,+1)

As the input alphabet is unary, the input symbol argument has been removed from δ. As
the states q2 and q3 are obtained after the first two applications of δ, and every subsequent
second application of δ, the language is clearly accepted with certainty. The states q2 and q3

cannot be reached after an odd number of steps, so inputs of odd length will be rejected with
certainty. �

Whilst it is not necessary for the proof that both accepting computational states occur at the

same position, this reduces the number of nodes required in the graph structure. The quantum

walk version of this QFA-WOM is a diamond chain. All of the coins but the first are permuta-

tion operators. A schematic diagram of the walk, along with its translation into the QFA-WOM

is shown in Figure 7.3.

7.6 Conclusion

We have seen how the addition of different types of heavily controlled environments increase

the computational power of QFAs. In the case of MM-QFAs, projections are applied meaning

that the evolution is no longer purely unitary. The advantage of these projection operators could

be clearly seen in the use of the T operator (see equation 7.2), as portions of the amplitude are

effectively disregarded in the computation. Accumulated accepting and rejecting probabilities

cannot be reintroduced into the non-halting subspaces, so different properties of the input can

be tested simultaneously without interference. However, whilst MM-QFAs are more compu-

tationally powerful than QFAs, their one way incarnations are still very limited in the types of

problems they can solve, even if we allow for unbounded errors. They are, however, poten-

tially more physically relevant, as environmental interaction, which is in practise very difficult

to avoid, is built into the model.

The evolution of the QFA-WOM is purely quantum, though the QFA itself enters into a

mixed state. QFA-WOMs have been shown to can accept, with certainty, context-free and

context-sensitive languages. The advantage of the WOM is that it enables control over when

92

interference between computational states can occur. In the examples both here and in [119]

this feature is only used in the last step of the computation so the full capabilities of this type

of memory may not yet have been realised. As they are a new model of quantum computation,

there are many open questions regarding the QFA-WOM. For example, thus far all the QFA-

WOMs studied only allow the input tape head to move in one direction along the tape. As this

modification increases the power of other QFAs, it may increase the power of the QFA-WOM.

Determining precisely which languages are accepted with bounded and unbounded error will

enable better comparison with other quantum computers. Establishing lower bounds for the

number of states, and the size of the WOM alphabet would indicate whether the WOM gives

any advantage beyond the ability to accept more languages.

By noting the equivalence between QFA-WOMs and quantum walks, I have found alter-

native frameworks for either to be investigated in and elucidated the role of the WOM. This

provides a new way of viewing quantum walks as quantum computers, by expressing them in

terms of the language acceptance model of computation rather than the circuit model. By re-

stricting attention to unary languages, a quantum walk can simulate a QFA-WOM with a time

independent coin. In the following chapter, I will give examples of quantum walks solving

language acceptance problems with a time independent coin and no such restrictions on the

size of the alphabet.

The motivations for examining both variations of QFAs and quantum walks is not purely

intellectual. Existing experimental implementations of quantum computers are far more similar

to QFAs than to quantum Turing machines, so by studying them we can learn more about which

problems it is currently practically feasible to solve with a quantum computer. Equally, discrete

time quantum walks have been experimentally realised in a variety of ways [124; 125], some

of which are capable of performing over 100 timesteps [124]. So far, these are typically walks

on the line, or on a two dimensional lattice. However as a high degree of control over the coin,

and protection from decoherence, can be obtained there is no reason not to be confident that

walks over more complex structures are feasible.

93

94

Chapter 8

Language recognition

8.1 Introduction

In the previous chapter we saw that quantum walks can solve language acceptance problems

via their equivalence to the QFA-WOM. In this case, we must either use a time dependent

coin or a unary alphabet. Due to the fact that the discrete time quantum walk using a time

independent coin is a computational primitive, we know that it must be possible to use it to

solve arbitrary language acceptance problems. In this chapter I show two ways of using the

quantum walk to solve precisely these sorts of problems. This provides a new way in which

to view quantum walks as performing quantum computations. As mentioned in the previous

chapter, the fact that quantum walks have been experimentally realised to a large number of

steps [125] motivates the investigation of quantum walks as quantum computers.

Long before the proofs that the continuous and discrete time quantum walks are universal

for quantum computation, it was known that they had algorithmic applications. For example,

the quantum walk search algorithm has been extensively studied [11; 12; 41], and the faster hit-

ting times have been exploited [26; 28; 126]. The algorithmic applications have been used to

prove complexity bounds, for example, the time taken to evaluate an AND-OR formula [127].

The purpose of the work presented in this chapter is to extend the applications of the discrete

time quantum walk to novel computational problems. As mentioned in Chapter 7 it is possible

that there is an indirect mapping from quantum Turing machines to quantum walks via the

quantum cellular automaton, but this has not been investigated. Also one can potentially use

the known equivalence between the quantum Turing machine and the quantum circuit model

to apply the results from [23] to language acceptance problems, finding a direct mapping pro-

95

vides a more intuitive understanding of this application of quantum walks. Furthermore, using

either possible route to equivalence with the Turing machine would require clarification and

extensions of the proofs. For example, the proof of equivalence between the quantum Turing

machine and the circuit model from [76] applies to circuit families, and makes no reference to

the specific unitaries used for the gates. Therefore to use this equivalence the proof would need

to be reformulated in terms of specific unitaries, and the notion of the circuit family would need

to be formulated in terms of the quantum walk model.

This chapter introduces two ways in which quantum walks can solve language acceptance

problems by constructing walks which accept specific languages. These walks are shown nu-

merically to have the required properties, and in two cases alternative walks which admit simple

analytic proofs are given. First, in Section 8.2 the requirements which a walk would have to ful-

fil for it to be considered to accept a language are stated. Then in Section 8.3 the first method,

which processes the entire input simultaneously, and the techniques used to analyse all follow-

ing walks, are described. The walks induced using this type of method are shown to accept

languages from different places in the Chomsky hierarchy. These walks are particularly suited

to accepting languages with at most one word of each length, but they are also shown to accept

languages with more than one word of each length in Section 8.3.1. Instead of processing each

input symbol simultaneously, it is possible to process each symbol in turn, and this case is dealt

with in Section 8.4. These walks can be used to accept specific words using only permutation

operators for the coin, so the graph structure itself is used to determine whether the input is of

the required form. Entire languages are then considered, and I show by example that this can

be more efficient than using the permutation scheme for words in the language.

8.2 Requirements of language acceptors

In order for anything to be considered to perform a computation, an input and an output are

required, as well as a way to manipulate the input in order to generate the output. As we are

specifically looking to apply the quantum walk to language recognition problems, the input

must represent a string, and the output must allow us to determine whether or not the string

was in the language we are recognising. Whilst there may be some freedom in choosing the

encoding of the input, it is difficult to see how the output can be determined by anything but

a measurement of the state of the walker. Once the input and output have been formulated

a graph structure and coin operations which generates an appropriate output from the input

96

must be found. There are a variety of ways that this can be done and in this chapter I use the

state of the walker itself as an input, starting in a superposition. First I distribute the input along

different nodes so that the entire word is operated on simultaneously. Then I show that the input

symbols can be fed into the graph structure one after another. These ways of initialising the

walk could potentially be implemented using a multiport interferometer, modulated to enable

differentiation between a and b inputs. Most of the work presented in this chapter deals with

languages from a binary alphabet, however the models developed are not restricted to using

only two input symbols, and using larger alphabets enables me to indicate how the walks can

accept context-sensitive languages.

The simplest way to deal with the output appears to be to designate an ‘accepting node,’

which all accepting amplitude should be directed to. This also offers potential practical ad-

vantages, as determining acceptance then equates to measuring the position of the walker. The

problem then is to find graph structures and sets of coin operations which, upon a string from

the language the walk is designed to accept, transports a high proportion of amplitude to the

accepting node. If the remaining amplitude can be redirected to another, rejecting, node then

the accepting and rejecting conditions can be inverted to allow the same walk to accept both

its language and its complement- the set of words not in that language. Choosing these meth-

ods of input and acceptance relates the language acceptance problem to perfect state transfer

problems, see, for example [29; 30; 84].

8.3 Spatially distributed input

In this type of walk the input will initially be distributed along different nodes of the graph

which are all operated on simultaneously. There are two nodes for each input symbol with

alternate nodes representing a or b. The length n of the input must be known. For each input

symbol σ at position j in the input string, the node 2 j is populated with amplitude 1/
√

n if

σ is an a and 2 j + 1 contains amplitude if it’s a b. The structure of the graph and coin for a

walk testing whether a word is in a given language must be specifiable in terms of n only. This

ensures that small computational overheads are required to initialise the walk. Representing

the input like this is reminiscent of the techniques used in quantum fingerprinting [128], as the

size of the HIlbert space used to represent a word from a binary alphabet is 2n where n is the

97

a)

b)

Figure 8.1: Graphs required to accept a) Leq and b) Lab with each input symbol being operated on
simultaneously. Grover coins of the appropriate dimensions are used at each vertex. Amplitude encodes
a word which will be accepted by the walk. Edges join only at nodes indicated by black circles

length of the word, rather than 2n. Quantum fingerprinting is used to determine whether two

strings are equal using their ‘fingerprints’ alone. The fingerprints are exponentially smaller

than the original words, but this gain results in a small probability of error when determining

if strings are equal. It is possible that the probability of error in determining whether a word is

in the language accepted by a given quantum walk occurs in a manner analogous to the case of

quantum fingerprinting, and is hence a result of representing the input in a Hilbert sapce which

is exponentially smaller than the Hilbert space of all possible inputs.

Once the input is intialised the walk is then run for a specified number of steps. When

the initial state encodes a word in the language accepted by the walk, the amplitude should be

98

directed to the designated ‘accepting node.’ If a word not in the language accepted is encoded

in the initial state then less of the amplitude will be directed towards the accepting node, so we

are looking for acceptance with bounded error. The modulus squared of the final amplitude at

the accepting node yields the probability of acceptance.

Acceptance of the empty set, empty string, and singleton symbols is trivial. For the empty

set and string, specify a graph with a single, accepting, node. For the singleton symbols, simply

connect only that symbol to the accepting node and use permutation operators for the coin. Less

trivially, these walks are most easily used to swiftly accept languages which contain at most

one word of each length, so the graph tests for that specific word. Examples of such languages

are the context free language Leq = {ambm|m ∈ N} and the regular language Lab = {(ab)m|m ∈
N} = {ab}∗ and graphs accepting them can be seen in Figure 8.1. The design of these graphs

was informed by the previous work in this thesis concerning perfect state transfer, particularly

using the Grover operator.

The input is accepted with certainty if it is in the language accepted by the walk. The

probability of accepting words not in the language depends precisely on the string, but will for

strings of length n > 1 be less than or equal to 2/n2. Acceptance with certainty can also be

achieved without using the Grover operator, by simply connecting the input nodes where there

should be amplitude if the input is in the language accepted by the walk to the accepting node.

However, in this case there is no way for amplitude to be transmitted away from the accepting

node if the input is not in the language accepted by the walk, hence the probability of accepting

these inputs is higher. For a word of the form ambm−1a the probability of accepting will be

1 − 1√
n , which is in general higher than the probability of accepting words not in the language

in the walk using the Grover operator.

In both of these walks the input is processed in three full steps of the walk, regardless

of length. However the gains in time complexity are at the expense of spatial complexity. For

inputs of length n the walks accepting Leq and Lab require 4n+3 nodes. The graph from Figure

8.1 a) can be extended to accept the archetypal context-sensitive language L = {ambmcm|m ∈ N}
(see Chapter 9 for further details) and b) to accept L = {(abc)m|m ∈ N} = {abc}∗. In this case

we must extend the model to deal with more than two input symbols which will involve a

corresponding increase in the number of nodes required.

The properties of the walks over the graphs indicated in Figure 8.1 were investigated by

simulating them in Python for all possible inputs up to a given length. For both languages the

results were very similar so I limit the discussion to Leq here.

99

For the analysis of the walk accepting Leq and all subsequent walks the Jaro distance [129;

130] between the input and the closest word to a word in the language under consideration for

that length was also calculated. The Jaro distance of strings w1 and w2:

d j =

�
0 if m = 0

1
3 (m
|w1 | +

m
|w2 | +

m−t
m) otherwise (8.1)

with m being the number of matching characters, characters which occur in both strings, in

the same order, within a certain distance determined by the length of the strings. The value of

t, the number of transpositions, is obtained by dividing the number of characters which differ

by sequence order by 2. The three parts to the equation calculate the ratios of the number of

matching characters to the lengths of w1 and w2 and then the ratio of non-transpositions to

matching characters.

The Jaro distance was selected as it always has values between 0 and 1, with 1 indicating

that two words are equal, hence it was easy to compare to the probability of acceptance. In the

case of even length inputs, the Jaro distance between that input and the word from Leq of that

length was calculated. For odd inputs with length n the word was compared to the word in Leq

of length n − 1. The results for the first 200 strings are illustrated in Figure 8.2 (a). The points

at which both curves peak are at the position of the words ab, aabb, aaabbb. As the languages

considered do not have words of each possible length, in order to test inputs of any possible

length a distance metric which can compare strings of different lengths was required, hence the

use of the Jaro distance, rather than, say, the Hamming distance.

The disparity between the Jaro distance and the probabilities of acceptance for words not

in Leq arises from the design of the algorithm, which requires a low probability of acceptance

for any word not in the language, regardless of how close that word is to a word in Leq. Hence

the probability of acceptance cannot be used as a good measure of how close the input word is

to one in in that language in cases where it is not equal to 1.

The constructions used here are based on the fact that a d dimensional Grover operator:

Gd =




2−d
d

2
d · · · 2

d

2
d

2−d
d · · · 2

d

...
...
. . .

...

2
d

2
d · · · 2−d

d




(8.2)

100

with d even, transmits all amplitude to the ‘leaving’ coin states of a vertex if the amplitude is

initially evenly (with respect to both magnitude and phase) distributed between n/2 ‘entering’

coin states. In other words:

Gd




α
α
...
α
0
...
0
0




=




0
0
...
0
α
...
α
α




(8.3)

The deterministic evolution that the Grover operator can produce was used to design the

‘wires’ which transmitted the amplitude between gates in [23]. This evolution can also be

exploited to generate walks accepting with certainty other languages such as Ltwin = {ww|w ∈
{a, b}∗} and Lrev = {wwr |w ∈ {a, b}∗} where wr denotes the symbols of w in reverse order.

It is simple to prove that the discrete time quantum walk accepts the languages Leq and Lab

with certainty if we use a slightly different graph, which requires an increase in the number

of nodes required by the graph accepting the walk. The graphs are shown in Figure 8.3. For

the walk accepting Leq the probability of acceptance for the first 200 strings using both graph

structures is plotted in Figure 8.2. Whilst both walks shown to accept Leq peak at the index

indicating a string in the language, and go to zero for words sharing no symbols with the word

in Leq of that length, their behaviour on intermediate words is quite different. This is due

to the fact that on the walk over the graph depicted in Figure 8.2 (b), if a single coin state

is populated at one of the four dimensional nodes, which will not happen for inputs in Leq,

half of the amplitude is always directed back towards the input nodes. In the case of the walk

over the graph shown in Figure 8.1 the proportion of amplitude directed back to the input nodes

depends on how many coin states are populated, which is determined by the number of symbols

the input is wrong by.

Proposition 8.3.0.1. The language Leq is accepted with certainty by the graph and choice of
operators shown in Figure 8.3 (a). Words not in the language are accepted with bounded error.

Proof. Words in Leq: The result follows by induction on m. For the base step, simple calcu-
lation and Equation 8.3 shows that ab will be accepted with certainty. For the induction step,

101

(a)

(b)

Figure 8.2: Probability of acceptance for (a) first walk detecting word Leq for the first 200 strings (black)
and (b) the second walk accepting the same language. The Jaro distance between the input word and an
appropriately sized word from Leq is indicated in red.

suppose that a word ambm is accepted with certainty, and consider the word am+1bm+1. Due to
the construction of the graph, every pair aibi+m where i ≤ m is treated independently, so by the
induction hypothesis all amplitude from the first m a’s and b’s is transmitted to the accepting
node. The calculation to show that all amplitude from the subsequent pair of a’s and b’s is
identical to the base step.
Words not in Leq: As there is no path between the input nodes representing symbols which do
not occur in words from Leq, their amplitudes cannot contribute to the accepting probability.
To prove the acceptance is with bounded error, consider a word which differs from a word in
Leq by one symbol, for example ambm−1a. This will be accepted with the maximum possible
probability for a word not in Leq. The amplitude from the final a cannot be transmitted to the
accepting node, so the word cannot be accepted with probability pacc > 1 − 1

2m . Additionally,
after step one of the walk the amplitude from the m’th a goes to the Grover operator, and now

102

(a)

(b)

Figure 8.3: Graphs accepting (a) Leq and (b) Lab used in proof of Proposition 8.3.0.1 and Corollary
8.3.0.1

some of this amplitude will be transmitted back to the input node:




− 1
2

1
2

1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 −1

2







1√
2m
0
0
0




=




− 1
2

1
2
√

2m
1

2
√

2m
1

2
√

2m




(8.4)

Hence the total probability of accepting ambm−1a is 1 − 1
2m − 1

4m . �

Corollary 8.3.0.1. The language Lab is accepted with certainty by the graph and choice of
operators shown in Figure 8.2 (b).

103

(a)

(b)

Figure 8.4: (a) Graph accepting Lsingle and (b) the probability of accepting the first 200 strings (black)
along with the Jaro distance between each string and a string of the same length entirely composed of
a’s (red) and entirely composed of b’s (blue)

8.3.1 Accepting languages which contain more than one string of each length

The walks outlined above take advantage of the fact that the languages they accept are highly

structured, to the extent that it is only possible to have one word of a given length in these

languages. Whilst other languages which contain more than one word of each length such

as (Lrev and Ltwin) were mentioned, as their structure can be exploited in a similar way, it is

also possible to use quantum walks to accept languages with far less structure. In this section

I present two such examples, a walk accepting the language Lsingle denoted by the regular

expression {a}∗ ∪ {b}∗, which has two words of each possible length, and a walk accepting

Leven = {a, b}∗a.

104

The walk accepting Lsingle exploits the Grover operator again, this time to ensure that if all

the input symbols are a or all the input symbols are b then all input amplitude will be directed

to the accepting node. The graph over which the walk takes place is shown in Figure 8.4 (a)

and the probability of accepting each string is shown in part (b). The walk accepts words in

the language with certainty. The acceptance is with bounded error. The strings not in Lsingle

with the highest probability of being accepted by the walk contain n − 1 a’s and a single b, or

vice-versa. The order of the symbols does not matter. In order to calculate the total probability

of a word of this form being accepted, we just add the contributions from the a and b symbols.

The contribution from the a symbols is (n2 − 2n + 1)/n3 and from the b symbol we have 1/n2

so the total probability of accepting words of this form is (1/n2)(2 + n2 − 2n).

The graph over which the walk accepting Leven takes place is shown in Figure 8.5 (a) and

the probability of accepting each string is shown in Figure 8.5 (b). This walk uses a biased

Hadamard operator at the central nodes:

Hbias =




�
1
2n

�
1 − 1

2n�
1 − 1

2n −
�

1
2n


 (8.5)

where n is the length of the input word. The acceptance is not with certainty, but it is with

bounded error. Words of length n in the language are accepted with probability (n−1)(1
2n2(n−1)+

1
n (1 − 1

2n)), and words not in the language are accepted with probability n−1
n (1 − 1

2n).

Whilst the walks presented in this section both accept with bounded error, they generally

have far greater probabilities of accepting words not in the language accepted by the walk than

the examples presented in the previous section. The walk accepting Lsingle exploits the Grover

operator to ensure that when the input is of the correct form, all amplitude is transmitted to

the accepting node, but even when words are not in the language, this operator will transmit

some of the amplitude to the accepting node. Unlike the previous cases where this operator is

used, every node representing a possible input symbol is connected to the accepting node via

nodes at which the Grover operator acts, so amplitude from any input node can influence the

accepting probability.

In the case of the language Leven the high probability of accepting words not in the language

occurs because the acceptance is determined by a single input symbol, the amplitude from

which is used to control the proportion of amplitude from other symbols that is directed to

the accepting node, but the coin operator always sends some amplitude to the accepting node

regardless.

105

(a)

(b)

Figure 8.5: (a) Graph accepting Leven, with the operator at the central nodes given by Equation 8.5 and
(b) the probability of accepting the first 200 strings (black) along with the Jaro distance between each
string and the closest string from Leven (red)

Using a spatially distributed input allows for long words to be accepted with the same

number of operations as short words. However, the number of nodes required in the graph

structure grows, albeit linearly in the examples shown, with the length of the word. The number

of nodes required to accept a given language can be held constant regardless of input length if

each input symbol is fed into the structure in turn, so we now turn to this case.

106

a) b)

Figure 8.6: a) Graph structure and coins accepting language Lab b) Graph specifically accepting the
word of length 4 from that language

8.4 Sequentially distributed input

The input can be treated sequentially if we start with it along a chain with two links between

each node. The two symbols are represented:

a =




α
0
0
0




b =




0
α
0
0




(8.6)

The coin on this part of the graph is σx ⊗ I2, which simply swaps amplitude between the

‘leaving’ nodes of the current node to the ‘arriving’ nodes of the next node. These are then fed

into a graph which has either ‘accepting paths’ and ‘rejecting paths’ or ‘accepting nodes’ and

‘rejecting nodes.’ The total square of the modulus of the amplitude on the accepting node/path

gives the probability of accepting the input. The shape of the graph and the coins at each node

determine which words will be accepted.

107

Figure 8.7: Probability of acceptance for walk detecting word from Lab for the first 200 strings (black).
The Jaro distance between the input word and an appropriately sized word from the language is indicated
in red.

The empty set and empty string are accepted trivially, as we can distinguish between no

walk occurring and all amplitude being rejected. Singleton symbols can be accepted by paths

of length 3 with the amplitude initially in the appropriate coin state of the central node and swap

operators between each node. In some cases, such as walks accepting specific strings of known

length, the only coins required are trivial swap operators, as in Figure 8.6 (b). More complex

languages require more complex graphs, such as that in Figure 8.6 (a), the graph accepting the

language Lab. This graph uses the Hadamard operator:

H =




1√
2

1√
2

1√
2

−1√
2


 (8.7)

to determine whether each pair of symbols fed to it is of the form ab and moves the amplitude

from both symbols into the accepting path if they are of that form. Words in the language are

accepted with certainty and those not in the language are accepted with probability at least 1/2.

By adding m nodes rather than one to the path which amplitude from b’s goes into, this walk

can be modified to accept Leq.

Here we have another example of multiple graphs performing the same function, in this

case accepting a specific word. Either a specific graph or the graph accepting Lab can be used

to accept abab, as shown in Figure 8.6 (a) and (b). In the case tested for comparing whether

different graphs accepting the same word, all words of length four, give rise to different prob-

ability distributions, the probability of acceptance did not depend on the graph, however this

108

property is not generally expected to hold. Here we can see that exploiting quantum properties,

using the Hadamard operator to control interference between different parts of the amplitude

rather than swapping amplitude around so that it all arrives at the right place eventually, gains

us efficiency. The simple swapping version of the graph accepting abab has 8 nodes (discount-

ing the input nodes) and takes 6 steps to accept the word. Whereas the more general graph

not only accepts more words, but accepts abab in 5 steps. To accept longer words from Lab

using a permutation scheme rather than the graph using the Hadamard operator, more cycles

are required and the size of the graph increases accordingly.

I demonstrate the algorithms correctness enumeratively, but similarly to those in Section

8.4 this can be proven easily by induction on m, where m is the number of times the string

ab is repeated. Again the probability of accepting each input string was computed and was

plotted alongside the Jaro distance from the input word to a string of an appropriate length in

the language as can be seen in Figure 8.7. The points at which both values go to unity indicate

the positions of the word ab, abab, ababab.

8.5 Conclusion

In this chapter, two models of language recognising quantum walks have been discussed. Spe-

cific examples of such walks have been given, and shown numerically, and in some cases

analytically, to have the required acceptance properties. We have seen that there can be more

than one walk accepting a given language and that these have different effects on strings not

in the language accepted by the walk. In order to specify walks accepting, for instance, an

arbitrary regular expression, some way of choosing which walks to use to accept a given ex-

pression must be found. This would also be required for stating any definite complexity results.

In order to compare the walks with other standard models of computation in terms of language

acceptance, relations between the efficiency measures used here and other standard efficiency

measures such as the minimal number of computational states, or tape squares traversed, must

be found.

In addition to enabling comparison with other models of computation in terms of com-

putability and complexity, I hope that further development of the work initiated in this chapter

may shed light on formal languages in the context of quantum computation. In classical com-

putation there is a well defined hierarchy of formal languages. As mentioned in Chapter 3 this

hierarchy is called the Chomsky hierarchy. There are well understood mappings between the

109

languages of the hierarchy and the computational models which accept them [70]. Currently

there is no quantum analogue of this hierarchy, and the fact that modifying QFAs can increase

the number of languages they can accept suggests that the quantum case will not be so clear cut.

The fact that very similar quantum walks can accept regular, context-free, and context-sensitive

languages highlights this. I hope that if it is possible to come up with quantum walks accepting

any formal language, comparison of the walks may clarify whether there is a quantum analogue

to the Chomsky hierarchy and how the languages might be grouped together in this case.

The two approaches discussed in this chapter may not be the only ways to specify quantum

walks such that they can be interpreted as accepting formal languages. It is not yet clear

what the most fruitful approach will be. A better understanding of the relative merits of using

spatially versus sequentially distributed inputs will be informative, and gaining insights into

their limitations may suggest further ways of specifying walks to recognise languages. Whilst

the examples in this chapter use the state of the walker to specify the input, there may be ways

of using the graph structure or coin operator to encode the input. There is less freedom in the

choice of the output, as the state of the walker is the only thing which would change during the

walk, so this must be used to determine whether the input is accepted, even if it did not initially

encode the input.

The choice of approach will depend on the intended applications of the walks. In the next

chapter we see that this work can be applied to the problem of quantum state discrimination. In

this case the spatially distributed input has a clear advantage: it is able to perfectly discriminate

orthogonal states, whereas the example given for the time sequential input accepts every input

with probability pacc ≥ 1/2 and hence cannot perform the task as well as a simple projective

measurement.

110

Chapter 9

Quantum inputs and quantum state

discrimination

9.1 Introduction

The models of computation we have seen so far take classical inputs. In the circuit model,

inputs are either state |0� or |1�, in the language acceptance model, the input is a specific word.

As the initial state of a quantum walk can be any quantum state, the language recognition

models from the previous chapter can be used to examine quantum inputs. Testing the walks

for different types of inputs should increase our understanding of these computational models

and may suggest ways to increase their power. Furthermore, this is the first instance known to

me of a quantum computational model which can take quantum inputs, so exploring them may

provide new insights into the field of quantum computation as a whole.

In this chapter I outline a preliminary investigation into the use of quantum inputs. First

in Section 9.2 I give examples of the effects of quantum inputs on the acceptance properties of

specific language accepting walks and note that the walks can then be interpreted as performing

a type of state discrimination. Then in Section 9.3 I note that with a binary alphabet, it is not

possible to have superpositions of more than two words. In Section 9.3.1 I give an example of

a walk which accepts a language from an alphabet of three symbols, and can take inputs which

are a superposition of three words. The results from these preliminary investigations suggest

a link to quantum state discrimination, and in Section 9.4 I revisit the example from Sections

9.2 and 9.3 to compare the state discrimination performed by the walk to the standard state

discrimination scenario.

111

Figure 9.1: Probability of accepting state for walk detecting word from Lab using a superposition of
input word ‘abab’ with every other binary string of length 4 using the sequentially distributed input.
The results for the words ‘baaa’ and ‘bbba’ are shown by the red curve; the lower black curve shows
‘aaaa,‘ ‘bbbb’ and ‘bbaa’; the green curve depicts ‘baba’; blue shows ‘aabb,’ ‘baab’, ’abba’,‘babb’ and
‘aaba’ and the upper black curve shows ‘abbb’, ’abaa’, ‘aaab’, and ‘bbab.’

9.2 Superpositions of two words

The way the language accepting walks have been set up allows us to give them a quantum

input. Each symbol in the word can be in a superposition of a or b, xa+yb such that |x|2+ |y|2 =
α2. Superpositions of words, for example abab and bbbb can then be created by using the

appropriate superposition for each symbol in the word. Where symbols match, the amplitude

is allocated to that symbol as for the classical encoding. Where symbols do not match, the

amplitude is distributed between the a and b states accordingly.

As a preliminary investigation into using quantum inputs I tested the effects of using a

quantum input on the acceptance probability for the walks accepting Lab using both the spatial

and sequential input versions. I then compared the two versions of the walk accepting Leq using

the spatially distributed input. The results from spatially distributed inputs were very similar,

so again I limit discussion to Leq in this case. For the potential application of quantum inputs

developed in this chapter it is preferable to use spatially distributed inputs, as we can see from

Figure 9.1 showing results for the sequential input accepting Lab, all states are accepted with

probability pacc ≥ 1/2, so focus the discussion on the case of the spatially distributed input. I

tested each possible binary string of length four in superposition with the word of length four

from the languages accepted by the walks. As the weighting of the word from the language

accepted by the walk increases, the probability of acceptance increases.

112

a) b)

Figure 9.2: Probability of accepting quantum inputs for walk detecting words from Leq using a super-
position of input word ‘aabb’ and every other binary string of length four using a) the walk using an
operator Gm and b) the walk using operator G2

For all the examples tested, the fifteen possible superpositions fall into four or five distinct

cases see Figures 9.2. Whether we get four or five cases, four cases always correspond to the

number of matching symbols between the words in the superposition. For example, in Figure

9.2 (a), the blue curve represents the probability of accepting a superposition between ‘aabb’

and the ‘orthogonal’ word ‘bbaa;’ the red curve represents the probability of accepting superpo-

sitions of ‘aabb’ and ‘abaa,’ ‘baaa,’ ‘bbba’ or ‘bbab’ and so on for the other two curves. Where

we get an additional curve, the ordering of the symbols affects the acceptance probability. In

the walk accepting Leq using the G4 operators, if there is an ‘a’ at position i and a ‘b’ at position

i + m then all amplitude from these symbols will be directed to the accepting node, giving rise

to the cyan curve of Figure 9.2 (b). In the other walk accepting this language, the positions of

‘a’s relative to ‘b’s does not affect the accepting probability so we get the four curves based on

the number of matching symbols. The case for the sequential input walk accepting Lab is more

subtle, as both the ordering of words and the positioning of specific pairs in the work affects

the acceptance probability. Words such as ‘baba’ are accepted with higher probability despite

sharing no symbols with the word of length four from Lab, because the walk does not take into

account the position in the word that a pair ‘ab’ occurs, so all the amplitude from this portion

of the word becomes accepting amplitude.

Using a quantum input frames the question of language acceptance in terms of quantum

state discrimination. If we have one of two states |ψ� and |φ�, one of which encodes a word in

the language accepted by the walk, and the other does not, then we can gain information about

which state we had by seeing whether or not it is accepted by the walk. Another setup for using

113

discrete time quantum walks to perform state discrimination by measuring at specific positions

is outlined in [131].

9.3 Superpositions of more than two words

In general, one may wish to distinguish between more than two states. In this case, a larger

alphabet is required, as superpositions of more than two words are always equal to one of

two words. This is because, when written in vector form, supepositions of three words do not

give rise to three linearly independent vectors, they can always be rewritten as two linearly

independent vectors. The words in the final superposition will have no overlap, and hence

be orthogonal states when representing the input to walks, as long as for each position in the

words, at least one word in the set considered has a different symbol to the rest. For example:

1√
3
|aabb� + 1√

3
|bbaa� + 1√

3
|abab� =




�
1+1

3 |a�
1√
3
|b�


 +




1√
3
|a�

�
1+1

3 |b�


 +




�
1+1

3 |a�
1√
3
|b�


 +




1√
3
|a�

�
1+1

3 |b�


 =

�
2
3
|abab� + 1√

3
|baba�

(9.1)

The words in the rewritten superposition can be perfectly distinguished by the walk accept-

ing Lab. When the words in the superposition do all share a symbol at a given position, it is

still the case that the superposition is equal to one of two words, but in this case they will not

be represented by orthogonal initial state vectors. Both parts of the superposition will have that

symbol at that position, for instance:

1√
3
|aaaa� + 1√

3
|bbaa� + 1√

3
|abab� =




�
1+1

3 |a�
1√
3
|b�


 +




1√
3
|a�

�
1+1

3 |b�


 +




�
1+1+1

3 |a�
0|b�


 +




1+1√
3
|a�

�
1
3 |b�


 =

�
2
3
|abaa� + 1√

3
|baab�

(9.2)

114

a)

!
! ! ! ! ! ! ! ! ! !
! " ! ! " ! ! " ! ! " ! ! "

b)

Figure 9.3: a) The graph accepting Labc, which uses the Grover operator at each node and b) the prob-
ability of acceptance for the first 200 strings (red) along with the Jaro distance between each string and
the string of the closest length from the language accepted

9.3.1 Expanding the alphabet

The walks developed in this thesis can be applied to state discrimination of sets of more than

two states. From a computer science perspective, there is no need to increase the alphabet, as

any language can be encoded in binary, but this will be required if we wish to develop a general

state discrimination scheme. Here I show that it is possible to use walks accepting languages

with a larger alphabet to discriminate between sets of more than two states. In particular I take

a walk which can discriminate between three states and show it has the desired properties. The

walk used accepts the context sensitive language Labc = {ambmcm|m ∈ N}. The graph required

to accept this walk is shown in Figure 9.3 a) and the probability of accepting for the first 200

strings of three symbols is shown in part b). Due to the fact that only strings of lengths which

are multiples of three can be accepted, and the large number of combinations of three symbols,

the only accepting peak shown on the graph is for the string ‘abc’. It is possible to prove

that this walk has the desired properties via induction on m, just as we saw for Leq and Lab

in Chapter 8. As seen in Figure 9.4, which shows the probability of accepting superpositions

of varying weights of the words ‘abc,’ ‘cab’ and ‘ccc,’ the properties of the walk in terms of

state discrimination are similar to those discussed in Section 9.2. The ‘orthogonal’ word is

discriminated perfectly, and the ability of the walk to discriminate between words depends on

the number of symbols they share. Hence ‘ccc,’ sharing one symbol with ‘abc,’ is accepted

with probability 1/3. In contrast to the case of superpositions of two words, if the walk rejects

the input, we cannot know with certainty whether we had ‘ccc’ or ‘cab.’

115

Figure 9.4: The probability of accepting superpositions of ‘abc,’ ‘cab’ and ‘ccc,’ the profile of the ‘abc’
axis gives the probability of accepting a superposition of just ‘abc’ and ‘cab’ and the profile of the ‘cab’
axis gives the probability of accepting superpositions of just ‘cab’ and ‘ccc.’

9.4 Comparison of language acceptance and quantum state dis-

crimination

I now compare the outcomes of walks using quantum inputs to quantum state discrimination

by calculating the probability of correctly identifying what input word we had with the theo-

retical bound for correctly identifying which quantum state we had in the case of two specific

examples.

9.4.1 Distinguishing two states using the walk accepting Leq

Suppose that we are trying to distinguish whether a state encoded the word ‘aabb’ or ‘aaab.’

In the case of the Leq example in Section 9.2 acceptance of a word means that it could have

been ‘aabb,’ but it could also have been ‘aaab.’ If the word is rejected, then the word had to be

‘aaab’. Without running the walk multiple times to gain the exact probability of acceptance,

in which case the states can be distinguished unambiguously, a firm answer to the question of

which state we had cannot be obtained. It is possible, however, to calculate the probability that

we had ‘aabb’ or ‘aaab.’ If we know the prior probabilities of each word occurring, then the

116

probability of the state having been ‘aaab’ can be calculated using Bayes theorem:

P(A|B) =
P(B|A)P(A)

P(B)
(9.3)

The probability of the walk accepting ‘aaab’ can be calculated directly, to simplify formulae

I round it to 0.6 in the following calculations. It is also assumed that the prior probabilities are

equal for ‘aabb’ and ‘aaab,’ but this does not have to be the case. In the case where the walk

rejects the input, we have

P(‘aaab�|re ject) =
P(re ject|‘aaab�)P(‘aaab�)

P(re ject)
=

0.4 × 0.5
0.2

= 1 (9.4)

as required. The probability of the walk rejecting is simply 1 − P(accept) where P(accept) is

the total probability that the walk accepts, given equal prior probabilities of either word, this is

1/2 + 0.6/2 = 0.8. In the case where the walk accepts, it is not possible to know exactly which

word we had, but the probability that we had either word can easily be calculated:

P(‘aaab�|accept) =
0.6 × 0.5

0.8
= 0.375 (9.5)

P(‘aabb�|accept) =
1 × 0.5

0.8
= 0.625 (9.6)

Hence even though it is not possible to know with certainty which word we had, information

has been gained. As the probability that the word was ‘aabb’ is greater than that of it being

‘aaab,’ we conclude that the word was ‘aabb’ in this case. As the probability that the word was

accepted was 0.8 and the probability that the word was ‘aaab’ is 0.375, the total probability

of making the wrong decision is 0.3. This is a much higher probability of error (PE) than that

established by the Helstrom bound [132]:

PE ≥
1 − (1 − |�ψ2|ψ1�|2)0.5

2
(9.7)

which comes to 0.169...when ψ1 and ψ2 are the appropriate vector representations of the words

‘aabb’ and ‘aaab.’

There is also another type of quantum state discrimination called ‘error-free’ or unambigu-

ous state discrimination. As the name suggests, in this case there is no probability of error, but

it is possible to have an inconclusive result. In our example, using the walk, the probability of

unambiguously distinguishing the state representing ‘aabb’ is 0, as if the computation accepts,

117

the input could have been ‘aabb’ or ‘aaab.’ In the case of the rejection, we know unambigu-

ously that the state was ‘aaab.’ The probability of rejection in this case is 1/4. With equal prior

probabilities, the probability that the result is inconclusive is 0.5×1+0.5×0.75 = 0.875. Using

the unambiguous state discrimination scheme, the probability of an inconclusive result is

P? = 1 −
�

j = 1, 2η jP j (9.8)

where the projection operator which unambiguously measures the state representing‘aabb’ is

indexed 1 and is represented by the matrix

P1 =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




(9.9)

and P2, which unambiguously measures the state representing ‘aaab’ is represented by

P1 =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




. (9.10)

As the probability that the state can be discriminated unambiguously is one in both cases, the

probability of an inconclusive result is zero. Hence, in this case our scheme is not optimal

either. These are examples of very specific types of quantum state discrimination, applied to

states with a very specific form. Quantum state discrimination is a broad subject area, which I

have by no means covered exhaustively, for more detail please see [133].

9.4.2 Distinguishing three states using the walk accepting Labc

Similar calculations to those used above can be used for the example which took a superposi-

tion of three words. In this case we wish to distinguish whether we had ‘abc,’ ‘cab’ or ‘ccc’

assuming equal prior probabilities. In this case the total probability of accepting is equal to

118

that of rejecting, namely 0.5. The following values are obtained for each word given a certain

outcome of the computation:

P(‘abc�|accept) = 1× 1
3

0.5 =
2
3

(9.11)

P(‘ccc�|accept) =
1
3× 1

3
0.5 =

4
9

(9.12)

P(‘ccc�|re ject) = (1− 1
3)× 1

3
0.5 =

4
9

(9.13)

P(‘cab�|re ject) = 1× 1
3

0.5 =
2
3

(9.14)

In the case where the input is accepted, the probability of the input word having been ‘abc’ is

higher, so we assume that this was the state we had, with probability of error is 2/9. In the

case where the input is rejected, we conclude that we had ‘cab,’ with probability of error 1/3.

This makes the total probability of error very high, 5/9, but given that the computation will

always reject or accept, I use the specific probabilities in each of these cases to compare to

the results obtainable using standard state discrimination. To calculate the probability of error

using projective measurements we must evaluate

PE = 1 −
�

j

η jT rΠ jρ j (9.15)

and as we have pure states we have that the probability of obtaining measurement result ω j

given initial state |ψ� it is the case that

P(ω j|ψ) = TrΠ jρ j = �ψ|Π jψ�. (9.16)

119

Taking the following vector representations of each word, and projection operators Π j:

|ψabc� = 1√
3




1
0
0
0
1
0
0
0
1




Πabc =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




(9.17)

|ψccc� = 1√
3




0
0
1
0
0
1
0
0
1




Πabc =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1




(9.18)

|ψcab� = 1√
3




0
0
1
1
0
0
0
1
0




Πabc =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0




(9.19)

we get �ψabc|Πabc|ψabc� = 2/3, �ψccc|Πccc|ψccc� = 2/3 and �ψcab|Πcab|ψcab� = 1. Plugging

these values into Equation 9.16 gives 1 − 2/9 − 2/9 − 1/3 = 2/9. Hence in this case, when

the computation accepts, the probability of error is the same as when we use the projective

measurements indicated. When the computation rejects, the probability of error using the

language recognising walks is slightly higher than using the projective measurements. So

whilst the overall probability of making the wrong decision regarding which input word we

had is very large, the probabilities for specific computational outcomes are equal to, or only

slightly larger than, the probability of error using a natural choice of projection operators.

There is however, one obvious flaw to this scheme, in that there is no option to say that the

word was ‘ccc,’ which according to the prior probabilities, it will be one third of the time. This

120

is due to the fact that there are only two outcomes from the computation. So from this example

we conclude that whilst the walks developed may be able to perform state discrimination tasks

with a relatively low probability of error, they must be modified to deal with cases where we

have more than two states.

If the prior probabilities are adjusted, the resulting scenarios can be worse still. Take, for

example, the probability of having ‘ccc’ being 0.8, and dividing the rest of the probability

equally between the other two words. In this case, if the walk accepts the input, we have

actually lost information about whether we had ‘ccc,’ as the probability of it being ‘ccc’ given

the walk accepted is 0.7272.... Information has been gained about whether we have ‘abc,’ but

we still conclude that we had ‘ccc.’ In the case where the walk rejects, the probability that we

had ‘ccc’ is 0.842..., so again we conclude that this was the input. In other words, in both cases

we get the same outcome. Analysing the walks in this way will never lead us to conclude that

we had any word but ‘ccc,’ but there was only a 0.8 prior probability of this being the case.

This suggests that great care must be taken if we attempt to modify these walks to distinguish

between more than two states, as in order to be useful the different outcomes from the walk

must lead to different conclusions about which state we had.

9.5 Conclusion

In this chapter I have performed a preliminary investigation of the effects of quantum inputs

on the language acceptance properties of the quantum walks developed in the previous chapter.

We have seen that in order to have superpositions of more than two words, we need to have

an alphabet which contains more than two symbols. Though there are potentially various di-

rections in which research into different types of inputs to the walks developed can be taken, I

have concentrated on using them as a potentially novel quantum state discrimination scheme.

In Section 9.4 I calculated the probability of correctly identifying which state we had in two

cases. In the first case, this was not optimal, whereas in the second case if we had an accept-

ing computation then the computation was able to distinguish one of the states as well as the

projection operators selected for the calculation could. This example illustrated the importance

of having more than two outcomes from the walk if we wish to discriminate between more

than two states, and guaranteeing that the different outcomes of the walk will lead to different

conclusions about which state we had.

121

The first way in which I would like to develop this work is to see if there is any way to

reduce the accepting probability of words not in the language accepted by the walk, and hence

increase the probability of correctly identifying which state we had. I tried one method to re-

duce the accepting probability of words not in the language, by attaching a mirror image of

the graph accepting Leq and using another Grover operator at the accepting node. Concate-

nating the resulting graph structures does not affect the probability of accepting words in the

language. The effect of the Grover coin means that for words not in the language, amplitude

gets distributed evenly between the new coin states, and so is also deterministically transmitted

along the graph, thus the probability of accepting is not reduced. Whilst I have other potential

strategies: dividing the input amplitude between various copies of the same graph, or modify-

ing the accepting node, I have not yet had time to test these.

In order to fully develop the proposed novel state discrimination scheme, there is much

more work to be done. There are some large differences between language acceptance models

and state discrimination schemes which may need to be addressed. For example, clearly there

are only two possible outcomes to a computer solving a language acceptance problem: ‘accept’

and ‘reject.’ State discrimination schemes typically have more outcomes [133; 134], because

the number of possible outcomes must equal the number of possible states. For instance the

tetrad state discrimination scheme in [135] has four possible outcomes, reflecting the four

possible states.

Beyond looking into the apparent link between language acceptance and state discrimina-

tion, there may be applications which make more direct use of quantum inputs. Current com-

putability results concern classical inputs. Given that the input to a quantum computer must

be a quantum state, it seems natural to ask how the computer will be affected if that state is in

a superposition. The work presented here gives a concrete way of investigating this. Ideally

more general language accepting walks would be used for this investigation, as this may enable

more general results. When developing walks with a view to devising new state discrimination

schemes, the choice of language accepted by the walk may be important. To perfectly distin-

guish orthogonal states, words which induce initial state vectors which are orthogonal to those

of words in the language must be rejected with certainty. In languages such as Leven = {a, b}∗a
this will not be the case, whereas, as we have seen in this chapter, it is for Leq.

Classical inputs can be grouped together into languages in a natural way. It is difficult to

see how quantum inputs could be naturally grouped together, but generalising from a quantum

‘word’ to a quantum ‘language’ would be interesting from a theoretical perspective. From

122

the preliminary investigation the quantum inputs separate themselves into distinct cases based

on how many symbols are shared between the words in the superposition. This may provide

one possible avenue to developing a quantum language. Naively, it appears that if we wish

to fully understand the implications of quantum inputs, we must be able to generalise them to

languages. This is because in the classical case, results concerning computational power are

formulated in terms of language acceptance, rather than the acceptance of specific words. A

wider and more detailed investigation of quantum inputs should inform us as to whether we do

indeed require a generalisation of the notion of quantum inputs.

123

124

Chapter 10

Conclusion

I now summarise the main results from this thesis and indicate directions in which to take future

work. There are three main topics in this thesis: perfect state transfer in quantum walks over

graphs based on cycles, self avoiding quantum walks, and formal language recognition, and I

describe each of these in turn.

10.1 Perfect state transfer

In Chapter 4 I outlined the results of a systematic study of discrete time quantum walks on

graphs based on cycles containing four, six and eight nodes. The graphs examined included

up to four extra nodes. I was looking for perfect state transfer between antipodal nodes of the

cycle, and tested three coin operators. Of the choices of coin operator, the one which used

a permutation operator at nodes of degree two gave rise to most of the cases of perfect state

transfer. In general perfect state transfer was found to be very rare, and most of the instances

found involved cycles where only the antipodal nodes were modified. Some of these cases

worked by having an initial state such that the coin operator ensured that amplitude was only

transmitted to the nodes of the cycle after the first step of the walk, rather than the extra nodes.

Some of the modifications of C4 found to lead to quantum walks which exhibit perfect

state transfer could be generalised into families of graphs, and these were studied in detail in

Chapter 5. The continuous time walks over these structures were also found to exhibit perfect,

or very high amplitude state transfer. In one case it was possible to write down a simple analytic

expression for the time evolution of the walk, but the eigensystems of the two other families

did not admit easy analytic solutions. Some conditions for when perfect state transfer can take

125

place have been discovered analytically for both the continuous and discrete time walk [46] but

necessary and sufficient conditions for when this transport can happen still need to be found.

10.2 Non-reversal quantum walks

In Chapter 6 a quantum walk using a new type of coin operator was introduced. The dynamics

of the walk using two versions of the shift operator, one where a particular coin state is a ‘going

right’ (left, up, down) state, and one which labels coin states by the edge which amplitude came

in from. I found that in contrast to other choices of coin operator, the expected position of the

walker and the standard deviation were independent of the initial coin states of an initially

localised walker. The moments depended only on the parameters used for the coin operator,

and in one case it was possible to prove this analytically. The self-avoiding coin used models

a dimer, modelling longer self-avoiding walkers is much more difficult, but the eventual goal

would be to come up with a fully self-avoiding walk. There remain questions about the type of

coin used. For instance, if we use a different geometry, in which case a coin of the appropriate

dimensions would be used, are the moments still independent of the initial condition?

10.3 Formal language recognition

Chapters 7 and 8 concerned the applications of quantum walks to computer science. In Chapter

7 I showed two ways in which quantum walks can accept a range of formal languages by direct-

ing amplitude from the input nodes to an accepting node. I showed that particular examples of

regular, context free and context sensitive languages can be processed with a small number of

steps using walks with a spatially distributed input. The walks with a sequentially distributed

input can be used to accept specific words using only permutation operators for the coin, but

in the example given smaller structures can be used to accept entire languages. There is a lot

of future work in this area, of particular interest to me is the development of walks which can

accept arbitrary formal languages. I would also like to explore other ways in which quantum

walks can be used to solve language acceptance problems.

The observation that the walks developed can take inputs which represent a superposition

of words, rather than specific words, lead me to investigate quantum inputs. It was found that

using these we can interpret language recognition as a type of quantum state discrimination.

Whilst the specific examples used did not perform optimal state discrimination, in one case

126

due to the probability of error and in another due to the restriction imposed by only having

two outcomes from a computation, it may be possible to devise walks which can do this. This

would provide an exciting novel approach to this problem, as well as suggesting theoretical

links between formal language theory and quantum state discrimination.

10.4 Summary

I have presented work relating to apparently disparate aspects of the quantum walk, but they

have an underlying theme, namely they are all key ingredients to designing a quantum com-

puter. We must understand quantum transport if qubits are to move around during a computa-

tion. Clearly we must also have a good command of the underlying theoretical computational

model before we can implement a quantum computer based on that model. Finally, in order

to get any information from a computation, we must know the result of the computation, in

which case we must be able to distinguish between different quantum states. The work pre-

sented in this thesis contributes to all these aspects of quantum computation, but leaves much

scope for future work. Studying the full capabilities of the language recognising walks and

developing the potential state discrimination scheme in more detail would lead to genuinely

novel approaches to these problems.

127

128

Appendix A

Code example

Example code used to generate the shift and coin operators for an arbitrary graph, then run the

walk and calculate the probability of being at each node of the graph.

import numpy as np

from math import *

from numpy import dot

from math import sqrt

import pickle

from numpy.fft import fft

function to find degree of node

def finddegree(adj):

number of nodes is just length of adj

degrees = [0 for i in range(len(adj))]

for i in range(len(adj)):

number = 0

for j in range(len(adj[i])):

number += adj[i][j]

degrees[i] = number

return degrees

function to list coin states for each edge on each vertex of the graph

def finddegrees(adj):

129

number of nodes is just length of adj

degrees = [0 for i in range(len(adj))]

for i in range(len(adj)):

number = 0

for j in range(len(adj[i])):

number += adj[i][j]

list = [0 for k in range(number)]

number2 = 0

for j in range(len(adj[i])):

if adj[i][j] == 1:

list[number2] = j

number2 += 1

degrees[i] = list

return degrees

function to list the first coin state of each node in the graph

def firstnode(degree):

number = 0

array = [0 for i in range(len(degree))]

for i in range(len(degree)):

array[i] = number

number += len(degree[i])

return array

function to create a DFT coin of appropriate dimension acting on each node

of the graph

def createcoin1(adj):

degrees = finddegree(adj)

number of coin states is just sum of degrees.

number = 0

for i in range(len(degrees)):

number += degrees[i]

bigcoin = [[0 for i in range(number)] for j in range(number)]

number to keep hold of index of parts of coin we have already populated

number = 0

130

for i in range(len(degrees)):

deg = degrees[i]

mat = [[0 for j in range(deg)] for k in range(deg)]

for j in range(len(mat)):

mat[j][j] = 1

coin = fft(mat)

for j in range(len(coin)):

for k in range(len(coin[j])):

coin[j][k] = (1./sqrt(deg))*coin[j][k]

for j in range(len(coin)):

for k in range(len(coin)):

bigcoin[number+j][number + k] = coin[j][k]

number += deg

return bigcoin

function to create a suitable shift operator from the adjacency matrix

of a graph

def createshift(adj):

degree = finddegrees(adj)

nodeindex = firstnode(degree)

create matrix of correct size from degree, size is last index of firstnode

plus degree of that node

size = nodeindex[len(adj)-1] + len(degree[len(adj)-1])

array = [[0 for i in range(size)] for j in range(size)]

go through each node in turn to assign correct indices to links between

coin states of each node

for i in range(len(degree)):

index of first coin state of node we’re on

index1 = nodeindex[i]

scroll through nodes that node were on now is joined to

for j in range(len(degree[i])):

coinstate1 = index1 + j

index of node coin state index1 + j joins to. find correct coin

state there to link to by finding which index of degree[nextnode] gives the

131

node we’re on

node = degree[i][j]

for k in range(len(degree[node])):

if degree[node][k] == i:

coinstate2 = nodeindex[node] + k

array[coinstate1][coinstate2] = 1

return array

sample adjacency matrix

adj = [[0,1,0],[1,0,1],[0,1,0]]

create appropriate shift operators

shift = createshift(adj)

coin = createcoin1(adj)

required to calculate the probability of the walker being at each node

degree = finddegrees(adj)

firstnodes = firstnode(degree)

initialise state

state = [1,0,0,0,0,0]

run walk for ten steps

for t in range(10):

state = dot(shift, dot(coin, state))

calculate probability of the walker being at each node

probs = [0,0,0]

for i in range(len(probs)):

prob = 0

first = firstnodes[i]

for k in range(len(degree[i])):

prob += state[first + k]*state[first+k].conjugate()

probs[i] = prob

132

References

[1] T. Schoning, “A probabilistic algorithm for k-sat and constraint satisfaction problems,”

in Foundations of Computer Science, 1999. 40th Annual Symposium on, pp. 410–414,

IEEE, 1999. 5

[2] C. H. Papadimitriou, “On selecting a satisfying truth assignment,” in Foundations of

Computer Science, 1991. Proceedings., 32nd Annual Symposium on, pp. 163–169,

IEEE, 1991. 5

[3] Feynman, R. P., Leighton, R. B., and Sands, M., Feynman Lectures on Physics. Addison

Wesley, 1964. 5

[4] S. Gudder, Quantum Probability. Academic Press Inc., CA, USA, 1988. 5

[5] Aharonov, Y,, Davidovich, L., and Zagury, N., “Quantum random walks,” Physical Re-

view A, vol. 2, p. 16871690, 1992. 5

[6] G. Grossing and A. Zeilinger, “Quantum cellular automata,” Complex Systems, vol. 2,

p. 197 208, 1988. 5, 80

[7] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, “One-dimensional

quantum walks,” in Proceedings of the thirty-third annual ACM symposium on Theory

of computing, pp. 37–49, ACM, 2001. 5, 11, 19, 46

[8] E. Farhi and S. Gutmann, “Quantum computation and decision trees,” Physical Review

A, vol. 58, no. 2, p. 915, 1998. 5, 6, 14, 15, 79

[9] A. Ambainis, “Quantum walks and their algorithmic applications,” International Jour-

nal of Quantum Information, vol. 1, no. 04, pp. 507–518, 2003. 5, 6

133

[10] E. Dantsin, V. Kreinovich, and A. Wolpert, “On quantum versions of record-breaking

algorithms for sat,” ACM SIGACT News, vol. 36, no. 4, pp. 103–108, 2005. 5

[11] A. M. Childs and J. Goldstone, “Spatial search by quantum walk,” Physical Review A,

vol. 70, no. 2, p. 022314, 2004. 5, 27, 56, 95

[12] N. Shenvi, J. Kempe, and K. Whaley, “Quantum random-walk search algorithm,” Phys-

ical Review A, vol. 67, 2003. 5, 12, 95

[13] A. Ambainis, “Quantum walk algorithm for element distinctness,” in Proceedings of the

45th Annual IEEE Symposium on Foundations of Computer Science, pp. 22–31, IEEE

Computer Society, 2004. 6

[14] F. Magniez, A. Nayak, J. Roland, and M. Santha, “Search via quantum walk,” SIAM

Journal on Computing, vol. 40, no. 1, pp. 142–164, 2011. 6

[15] B. Hein and G. Tanner, “Quantum search algorithms on the hypercube,” Journal of

Physics A: Mathematical and Theoretical, vol. 42, no. 8, p. 085303, 2009. 6

[16] A. Tulsi, “Faster quantum-walk algorithm for the two-dimensional spatial search,” Phys-

ical Review A, vol. 78, no. 1, p. 012310, 2008. 6

[17] B. Hein and G. Tanner, “Quantum search algorithms on a regular lattice,” Physical Re-

view A, vol. 82, no. 1, p. 012326, 2010. 6

[18] E. Agliari, A. Blumen, and O. Muelken, “Quantum-walk approach to searching on frac-

tal structures,” Physical Review A, vol. 82, no. 1, p. 012305, 2010. 6

[19] S. D. Berry and J. B. Wang, “Quantum-walk-based search and centrality,” Physical Re-

view A, vol. 82, no. 4, p. 042333, 2010. 6

[20] H. Krovi, F. Magniez, M. Ozols, and J. Roland, “Finding is as easy as detecting for

quantum walks,” Automata, Languages and Programming, pp. 540–551, 2010. 6

[21] A. M. Childs, “Universal computation by quantum walk,” Physical review letters,

vol. 102, no. 18, p. 180501, 2009. 6, 30, 45

[22] A. M. Childs, D. Gosset, and Z. Webb, “Universal computation by multiparticle quantum

walk,” Science, vol. 339, no. 6121, pp. 791–794, 2013. 6, 33

134

[23] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon, “Universal quantum

computation using the discrete-time quantum walk,” Physical Review A, vol. 81, no. 4,

p. 042330, 2010. 6, 20, 45, 95, 101

[24] V. Kendon, “A random walk approach to quantum algorithms,” Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

vol. 364, no. 1849, pp. 3407–3422, 2006. 6

[25] S. E. Venegas-Andraca, “Quantum walks for computer scientists,” Synthesis Lectures on

Quantum Computing, vol. 1, no. 1, pp. 1–119, 2008. 6

[26] J. Kempe, “Discrete quantum walks hit exponentially faster,” Probability theory and

related fields, vol. 133, no. 2, pp. 215–235, 2005. 6, 14, 19, 56, 95

[27] A. M. Childs, E. Farhi, and S. Gutmann, “An example of the difference between quantum

and classical random walks,” Quantum Information Processing, vol. 1, no. 1, pp. 35–43,

2002. 6, 79

[28] A. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. Spielman, “Exponential

algorithmic speedup by quantum walk,” Proc. 35th annual ACM STOC, pp. 59–68, 2003.

6, 79, 95

[29] S. Bose, “Quantum communication through an unmodulated spin chain,” Physical re-

view letters, vol. 91, no. 20, p. 207901, 2003. 6, 20, 45, 46, 48, 97

[30] V. Kendon and C. Tamon, “Perfect state transfer in quantum walks on graphs,” Journal

of Computational and Theoretical Nanoscience, vol. 8, no. 3, pp. 422–433, 2011. 6, 14,

20, 45, 47, 48, 49, 50, 53, 97

[31] S. Bose, “Quantum communication through spin chain dynamics: an introductory

overview,” Contemporary Physics, vol. 48, no. 1, pp. 13–30, 2007. 6

[32] A. Kay, “Perfect, efficient, state transfer and its application as a constructive tool,” In-

ternational Journal of Quantum Information, vol. 8, no. 04, pp. 641–676, 2010. 6, 48

[33] V. Kendon and B. Tregenna, “Decoherence can be useful in quantum walks,” Physical

Review A, vol. 67, no. 4, p. 042315, 2003. 6, 20

135

[34] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik. Environment-assisted quan-

tum walks in photosynthetic energy transfer. Journal of Chemical Physics, 2008. 6, 45

[35] F. Caruso, W. Chin, A, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy

excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted

transport,” The Journal of chemical physics, vol. 131, no. 10, 2009. 6

[36] P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, “Environment-

assisted quantum transport,” New Journal of Physics, vol. 11, no. 3, p. 033003, 2009.

6

[37] A. Montanaro, “Quantum walks on directed graphs,” arXiv preprint quant-ph/0504116,

2005. 7, 14

[38] J. Watrous, “Quantum simulations of classical random walks and undirected graph con-

nectivity,” in Computational Complexity, 1999. Proceedings. Fourteenth Annual IEEE

Conference on, pp. 180–187, IEEE, 1999. 7, 14

[39] E. W. Montroll and G. H. Weiss, “Random walks on lattices. ii,” Journal of Mathemati-

cal Physics, vol. 6, p. 167, 1965. 9

[40] D. A. Meyer, “From quantum cellular automata to quantum lattice gases,” Journal of

Statistical Physics, vol. 85, no. 5, pp. 551–574, 1996. 10

[41] N. B. Lovett, M. Everitt, R. M. Heath, and V. Kendon, “The quantum walk search algo-

rithm: Factors affecting efficiency,” arXiv preprint arXiv:1110.4366, 2011. 12, 62, 63,

80, 95

[42] V. Kendon, “Quantum walks on general graphs,” International Journal of Quantum In-

formation, vol. 4, no. 05, pp. 791–805, 2006. 13, 72

[43] B. Tregenna, W. Flanagan, R. Maile, and V. Kendon, “Controlling discrete quantum

walks: coins and initial states,” New Journal of Physics, vol. 5, no. 1, p. 83, 2003. 13,

20, 46, 50, 56, 70, 71, 72

[44] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, “Quantum walks on graphs,” in

Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 50–

59, ACM, 2001. 13, 47

136

[45] H. Krovi and T. A. Brun, “Hitting time for quantum walks on the hypercube,” Physical

Review A, vol. 73, no. 3, p. 032341, 2006. 14, 50, 56

[46] H. Krovi and T. A. Brun, “Quantum walks with infinite hitting times,” Physical Review

A, vol. 74, no. 4, p. 042334, 2006. 14, 15, 50, 56, 66, 126

[47] S. Severini, “On the digraph of a unitary matrix,” SIAM Journal on Matrix Analysis and

Applications, vol. 25, no. 1, pp. 295–300, 2003. 14

[48] S. Severini, “Graphs of unitary matrices,” Ars Combinatoria, vol. 90, pp. 99–117, 2009.

14

[49] V. Kendon, “Decoherence in quantum walks-a review,” Mathematical Structures in

Computer Science, vol. 17, no. 6, pp. 1169–1220, 2007. 14, 18, 56

[50] S. Hoyer and D. A. Meyer, “Faster transport with a directed quantum walk,” Physical

Review A, vol. 79, no. 2, p. 024307, 2009. 14

[51] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, “Perfect state transfer in quantum

spin networks,” Physical Review Letters, vol. 92, no. 18, p. 187902, 2004. 14, 46, 47,

48, 57, 64

[52] N. Saxena, S. Severini, and I. E. Shparlinski, “Parameters of integral circulant graphs

and periodic quantum dynamics,” International Journal of Quantum Information, vol. 5,

no. 03, pp. 417–430, 2007. 14, 20, 47, 48

[53] O. Mülken and A. Blumen, “Slow transport by continuous time quantum walks,” Physi-

cal Review E, vol. 71, no. 1, p. 016101, 2005. 15

[54] C. Moore and A. Russell, “Quantum walks on the hypercube,” in Randomization and

Approximation Techniques in Computer Science, pp. 164–178, Springer, 2002. 19

[55] A. D. Gottlieb, S. Janson, and P. F. Scudo, “Convergence of coined quantum walks on

Rd,” Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol. 8,

no. 01, pp. 129–140, 2005. 19

[56] V. Kendon, “Where to quantum walk,” arXiv preprint:1107.3795, 2011. 19, 24

137

[57] T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, “Quantum walks in

higher dimensions,” Journal of Physics A: Mathematical and Genera, vol. 35, 2002. 20,

70, 72

[58] M. Bašić, M. D. Petković, and D. Stevanović, “Perfect state transfer in integral circulant

graphs,” Applied Mathematics Letters, vol. 22, no. 7, pp. 1117–1121, 2009. 20, 45, 47,

48

[59] R. P. Feynman, “Simulating physics with computers,” International journal of theoreti-

cal physics, vol. 21, no. 6, pp. 467–488, 1982. 27

[60] D. Deutsch, “Quantum computational networks,” Proceedings of the Royal Society of

London. A. Mathematical and Physical Sciences, vol. 425, no. 1868, pp. 73–90, 1989.

27, 30, 80

[61] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,”

in Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on,

pp. 124–134, IEEE, 1994. 27

[62] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Pro-

ceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,

vol. 439, no. 1907, pp. 553–558, 1992. 27

[63] T. Toffoli, “Reversible computing,” Automata, Languages and Programming, pp. 632–

644, 1980. 28

[64] R. Landauer, “Irreversibility and heat generation in the computing process,” IBM journal

of research and development, vol. 5, no. 3, pp. 183–191, 1961. 28

[65] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cam-

bridge university press, 2010. 30, 37, 79

[66] S. Lloyd, “Almost any quantum logic gate is universal,” Physical Review Letters, vol. 75,

no. 2, pp. 346–349, 1995. 30

[67] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,

J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical

Review A, vol. 52, no. 5, p. 3457, 1995. 30

138

[68] D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Physical Re-

view A, vol. 51, no. 2, p. 1015, 1995. 30

[69] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer,

M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any

two-qubit entangling gate,” Physical review letters, vol. 89, no. 24, p. 247902, 2002. 30

[70] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley, 1979. 35, 110

[71] M. Sipser, Introduction to the Theory of Computation. Cengage Learning, 2012. 35

[72] A. Brodsky and B. Pippenger, “Characterizations of quantum finite automata,” SIAM

Journal on Computing, vol. 31, pp. 1456–1478, 2000. 37, 39, 42, 79, 80

[73] C. Moore and J. P. Crutchfield, “Quantum automata and quantum grammars,” Theoreti-

cal Computer Science, pp. 275–306, 2000. 37, 79, 80

[74] A. Kondacs and J. Watrous, “On the power of quantum finite state automata,” in Founda-

tions of Computer Science, 1997. Proceedings., 38th Annual Symposium on, pp. 66–75,

IEEE, 1997. 41, 79, 82, 84

[75] A. Chi-Chih Yao, “Quantum circuit complexity,” in Foundations of Computer Science,

1993. Proceedings., 34th Annual Symposium on, pp. 352–361, IEEE, 1993. 43

[76] H. Nishimura and M. Ozawa, “Perfect computational equivalence between quantum tur-

ing machines and finitely generated uniform quantum circuit families,” Quantum Infor-

mation Processing, vol. 8, no. 1, pp. 13–24, 2009. 43, 80, 96

[77] L. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, M. Sherwood, and I. Chuang, “Ex-

perimental realization of shor’s quantum factoring algorithm using nuclear magnetic

resonance,” Nature, vol. 414, no. 6866, pp. 883–887, 2001. 43

[78] A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, and D. Thérien, “Al-

gebraic results on quantum automata,” Theory of Computing Systems, vol. 39, no. 1,

pp. 165–188, 2006. 43, 80

139

[79] O. Mülken, V. Bierbaum, and A. Blumen, “Coherent exciton transport in dendrimers and

continuous-time quantum walks,” The Journal of chemical physics, vol. 124, p. 124905,

2006. 45

[80] O. Mülken and A. Blumen, “Continuous-time quantum walks: Models for coherent

transport on complex networks,” Physics Reports, vol. 502, no. 2, pp. 37–87, 2011. 45

[81] C. Godsil, “When can perfect state transfer occur?,” arXiv preprint arXiv:1011.0231,

2010. 45, 46, 66

[82] W. So, “Integral circulant graphs,” Discrete Mathematics, vol. 306, no. 1, pp. 153–158,

2006. 45, 48

[83] B. C. Travaglione and G. J. Milburn, “Implementing the quantum random walk,” Physi-

cal Review A, vol. 65, no. 3, p. 032310, 2002. 45, 47

[84] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl, “Perfect

transfer of arbitrary states in quantum spin networks,” Physical Review A, vol. 71, no. 3,

p. 032312, 2005. 46, 97

[85] S. Bose, A. Casaccino, S. Mancini, and S. Severini, “Communication in xyz all-to-all

quantum networks with a missing link,” International Journal of Quantum Information,

vol. 7, no. 04, pp. 713–723, 2009. 46

[86] E. Bach, S. Coppersmith, M. P. Goldschen, R. Joynt, and J. Watrous, “One-dimensional

quantum walks with absorbing boundaries,” Journal of Computer and System Sciences,

vol. 69, no. 4, pp. 562–592, 2004. 46

[87] P. C. Richter, “Quantum speedup of classical mixing processes,” Physical Review A,

vol. 76, no. 4, p. 042306, 2007. 47

[88] A. Ahmadi, R. Belk, C. Tamon, and C. Wendler, “On mixing in continuous-time quan-

tum walks on some circulant graphs,” Quantum Information and Computation, vol. 3,

no. 6, pp. 611–618, 2003. 47

[89] W. Adamczak, K. Andrew, P. Hernberg, and C. Tamon, “A note on graphs resistant to

quantum uniform mixing,” arXiv preprint quant-ph/0308073, 2003. 47

140

[90] W. Carlson, E. Harris, J. Rosen, C. Tamon, K. Wrobel, et al., “Universal mixing of

quantum walk on graphs,” Quantum Information & Computation, vol. 7, no. 8, pp. 738–

751, 2007. 47

[91] P. Lo, S. Rajaram, D. Schepens, D. Sullivan, C. Tamon, and J. Ward, “Mixing of quan-

tum walk on circulant bunkbeds,” Quantum Information & Computation, vol. 6, no. 4,

pp. 370–381, 2006. 47

[92] K. Nemoto, “Generalized coherent states for su (n) systems,” Journal of Physics A:

Mathematical and General, vol. 33, no. 17, p. 3493, 2000. 48

[93] R. J. Angeles- Canul, R. Norton, M. Opperman, C. Paribello, and C. Tamon, “On quan-

tum perfect state transfer on weighted join graphs,” International Journal of Quantum

Information, vol. 7, p. 14291445, 2009. 57

[94] B. Hayes, “Computing science: How to avoid yourself,” American Scientist, vol. 86,

no. 4, pp. 314–319, 1998. 68

[95] I. Jensen, “A parallel algorithm for the enumeration of self-avoiding polygons on the

square lattice,” Journal of Physics A: Mathematical and General, vol. 36, pp. 5731–

5745, 2003. 68

[96] A. J. Guttmann and A. R. Conway, “Square lattice self-avoiding walks and polygons,”

Annals of Combinatorics, vol. 5, pp. 319–345, 2001. 68

[97] A. Skrilos and S. Chirikjian, “Position and orientation distributions for non-reversal ran-

dom walks using space-group fourier transforms,” J Algebr Stat., vol. 1, pp. 27–46,

2010. 69

[98] K. Barr, T. Proctor, B. Hanson, S. Martiel, V. Pavlovic, A. Bullivant, and V. Kendon,

“Self-avoiding quantum walks,” arXiv preprint arXiv:1303.1966, 2013. 73

[99] M. H. Yung and S. Bose, “Perfect state transfer, effective gates, and entanglement gener-

ation in engineered bosonic and fermionic networks,” Physical Review A, vol. 71, no. 3,

p. 032310, 2005. 79

[100] S. Wolfram, “Cellular automata as models of complexity,” Nonlinear Physics for Be-

ginners: Fractals, Chaos, Solitons, Pattern Formation, Cellular Automata, Complex

Systems, vol. 311, p. 197, 1998. 80

141

[101] M. Cook, “Universality in elementary cellular automata,” Complex Systems, vol. 15,

no. 1, pp. 1–40, 2004. 80

[102] S. Wolfram, A new kind of science, vol. 5. Wolfram media Champaign, 2002. 80

[103] K. Morita and M. Harao, “Computation universality of one-dimensional reversible

(injective) cellular automata,” IEICE TRANSACTIONS (1976-1990), vol. 72, no. 6,

pp. 758–762, 1989. 80

[104] A. Church, “A set of postulates for the foundation of logic,” The Annals of Mathematics,

vol. 33, no. 2, pp. 346–366, 1932. 80

[105] A. M. Turing, “Computability and λ-definability,” The Journal of Symbolic Logic, vol. 2,

no. 4, pp. 153–163, 1937. 80

[106] M. L. Minsky, “Computation: finite and infinite machines,” Englewood Cliffs, N.].:

Prentice-Hall, 1967. 80

[107] H. Rogers, Theory of recursive functions and effective computation. McGrawHill, 1967.

80

[108] D. Deutsch, “Quantum theory, the church-turing principle and the universal quantum

computer,” Proceedings of the Royal Society of London. A. Mathematical and Physical

Sciences, vol. 400, no. 1818, pp. 97–117, 1985. 80

[109] J. Watrous, “On one-dimensional quantum cellular automata,” in Foundations of Com-

puter Science, 1995. Proceedings., 36th Annual Symposium on, pp. 528–537, IEEE,

1995. 80

[110] K. Wiesner, “Quantum cellular automata,” arXiv preprint arXiv:0808.0679, 2008. 80

[111] A. Chi-Chih Yao, “Quantum circuit complexity,” in Foundations of Computer Science,

1993. Proceedings., 34th Annual Symposium on, pp. 352–361, IEEE, 1993. 80

[112] M. Hamada, N. Konno, and E. Segawa, “Relation between coined quantum walks and

quantum cellular automata,” arXiv preprint quant-ph/0408100, 2004. 80

[113] P. Arrighi, V. Nesme, and R. Werner, “One-dimensional quantum cellular automata,”

International Journal of Unconventional Computing, vol. 7, no. 4, 2011. 80

142

[114] A. Ambainis and J. Watrous, “Two-way finite automata with quantum and classical

states,” Theoretical Computer Science, vol. 287, no. 1, pp. 299–311, 2002. 80

[115] M. Amano and K. Iwama, “Undecidability on quantum finite automata,” in Proceedings

of the thirty-first annual ACM symposium on Theory of computing, pp. 368–375, ACM,

1999. 80

[116] A. Nayak, “Optimal lower bounds for quantum automata and random access codes,”

in Foundations of Computer Science, 1999. 40th Annual Symposium on, pp. 369–376,

IEEE, 1999. 80

[117] A. Ambainis, A. Ķikusts, and M. Valdats, “On the class of languages recognizable by

1-way quantum finite automata,” in STACS 2001, pp. 75–86, Springer, 2001. 80

[118] M. Macko, On closure properties of quantum finite automata. PhD thesis, Comenius

University, 2006. 80

[119] A. Yakaryılmaz, R. Freivalds, A. Say, and R. Agadzanyan, “Quantum computation with

devices whose contents are never read,” Unconventional Computation, pp. 164–174,

2010. 81, 85, 86, 87, 88, 93

[120] A. Yakaryilmaz and A. C. Cem Say, “Languages recognized with unbounded error by

quantum finite automata,” arXiv:0809.0073v2, 2008. 82

[121] J. Rothe and J. Rothe, Complexity theory and cryptology: an introduction to cryptocom-

plexity. Springer, 2005. 91

[122] P. Berman, “Relationship between density and deterministic complexity of mp-complete

languages,” in Automata, Languages and Programming, pp. 63–71, Springer, 1978. 91

[123] S. R. Mahaney, “Sparse complete sets for np: Solution of a conjecture of berman and

hartmanis,” Journal of Computer and System Sciences, vol. 25, no. 2, pp. 130–143, 1982.

91

[124] H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Real-

ization of quantum walks with negligible decoherence in waveguide lattices,” Physical

review letters, vol. 100, no. 17, p. 170506, 2008. 93

143

[125] M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera,

“Quantum walk in position space with single optically trapped atoms,” Science, vol. 325,

no. 5937, pp. 174–177, 2009. 93, 95

[126] A. Ambainis, J. Kempe, and A. Rivosh, “Coins make quantum walks faster,” in Proceed-

ings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1099–

1108, Society for Industrial and Applied Mathematics, 2005. 95

[127] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang, “Any and-or

formula of size n can be evaluated in time nˆ1/2+o(1) on a quantum computer,” SIAM

Journal on Computing, vol. 39, no. 6, pp. 2513–2530, 2010. 95

[128] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys.

Rev. Lett., vol. 87, p. 167902, Sep 2001. 97

[129] M. A. Jaro, “Advances in record-linkage methodology as applied to matching the 1985

census of tampa, florida,” Journal of the American Statistical Association, vol. 84,

no. 406, pp. 414–420, 1989. 100

[130] M. A. Jaro, “Probabilistic linkage of large public health data files,” Statistics in medicine,

vol. 14, no. 5-7, pp. 491–498, 1995. 100

[131] P. Kurzynski and A. Wojcik, “Quantum walk as a generalized measuring device,” arXiv

preprint arXiv:1208.1800, 2012. 114

[132] C. W. Helstrom, “Quantum detection and estimation theory,” Journal of Statistical

Physics, vol. 1, no. 2, pp. 231–252, 1969. 117

[133] A. Chefles, “Quantum state discrimination,” Contemporary Physics, vol. 41, no. 6,

pp. 401–424, 2000. 118, 122

[134] A. Chefles, “Unambiguous discrimination between linearly independent quantum

states,” Physics Letters A, vol. 239, no. 6, pp. 339–347, 1998. 122

[135] R. B. M. Clarke, V. M. Kendon, A. Chefles, S. M. Barnett, E. Riis, and M. Sasaki, “Ex-

perimental realization of optimal detection strategies for overcomplete states,” Physical

Review A, vol. 64, p. 012303, May 2001. 122

144

	1 Introduction
	1.1 Thesis Aim
	1.2 Thesis Overview

	2 Quantum Walks
	2.1 Introduction
	2.2 Basic Graph Theory
	2.3 Classical random walks
	2.3.1 Discrete time case
	2.3.2 Continuous time case

	2.4 Quantum walks
	2.4.1 Discrete time quantum walks on the line
	2.4.2 Discrete time quantum walks over general structures
	2.4.3 Continuous time quantum walks

	2.5 Perfect State Transfer
	2.6 Decoherence in Quantum Walks
	2.7 Simulating quantum walks
	2.7.1 Algorithm to generate quantum walk from the adjacency matrix of a graph
	2.7.2 Generating the coin operation
	2.7.3 Generating the shift operation
	2.7.4 Visualising walks

	3 Quantum Computation
	3.1 Introduction
	3.2 Quantum circuits
	3.3 Simulation of quantum circuits by quantum walks
	3.4 Formal languages
	3.4.1 Finite state automata
	3.4.2 Probabilistic acceptance

	3.5 A simple model of quantum computation
	3.5.1 Quantum finite automata

	3.6 Language acceptance models in the context of quantum computation

	4 Quantum walks over small cycles
	4.1 Introduction
	4.2 Prior Results
	4.2.1 Discrete Time Quantum Walk
	4.2.2 Continuous Time Quantum Walk

	4.3 Discrete time quantum walks over small structures
	4.3.1 Diamond Chains
	4.3.2 Variants of Cycles

	4.4 Conclusion

	5 Quantum walks over three related families of graphs
	5.1 Introduction
	5.2 Three related families of graphs admitting perfect state transfer
	5.2.1 Periodicity and perfect state transfer on the graph K2+Kn
	5.2.2 Periodicity and perfect state transfer in K2+Cn
	5.2.3 Robustness of perfect state transfer in graphs from K2+Cn
	5.2.4 Interpolation between the three families
	5.2.5 The continuous time walk on K2+Kn, K2+Cn and K2+Pn

	5.3 Conclusion

	6 Non-reversal Quantum Walks
	6.1 Introduction
	6.1.1 Classical self-avoiding random walks
	6.1.2 Quantum walks on the square lattice

	6.2 Non-reversal quantum walks
	6.2.1 Definition
	6.2.2 Properties

	6.3 Trimers
	6.4 Conclusion

	7 Quantum Finite Automata and Quantum Walks
	7.1 Introduction
	7.2 'Measure-Many'- QFAs
	7.2.1 Languages accepted by MM-QFAs
	7.2.2 2-way MM-QFAs

	7.3 QFAs with write only memory
	7.4 Example QFA-WOMs
	7.5 Quantum walks as QFA-WOMs
	7.5.1 Walks with a time independent coin

	7.6 Conclusion

	8 Language recognition
	8.1 Introduction
	8.2 Requirements of language acceptors
	8.3 Spatially distributed input
	8.3.1 Accepting languages which contain more than one string of each length

	8.4 Sequentially distributed input
	8.5 Conclusion

	9 Quantum inputs and quantum state discrimination
	9.1 Introduction
	9.2 Superpositions of two words
	9.3 Superpositions of more than two words
	9.3.1 Expanding the alphabet

	9.4 Comparison of language acceptance and quantum state discrimination
	9.4.1 Distinguishing two states using the walk accepting Leq
	9.4.2 Distinguishing three states using the walk accepting Labc

	9.5 Conclusion

	10 Conclusion
	10.1 Perfect state transfer
	10.2 Non-reversal quantum walks
	10.3 Formal language recognition
	10.4 Summary

	A Code example
	References

