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Abstract 

This thesis aimed to probe the functional specializations present within several 

retinotopic divisions of human lateral occipital cortex (LO).  The divisions of interest were 

LO1 and LO2, two neighbouring visual field maps that are found within object-selective LO; 

the posterior portion of a larger area referred to as the lateral occipital complex (LOC), and 

V5/MT, the well-known visual complex that is highly selective to visual motion.  In order to 

seek out the causal roles played by these divisions in human visual perception, I used 

transcranial magnetic stimulation to temporarily disrupt neural processing within these 

areas, while observers performed visual tasks.  The visual tasks I employed examined both 

spatial vision, through orientation and shape discriminations, and motion processing, 

through speed discrimination.  

The data revealed a number of double dissociations.  A double dissociation was 

present between LO1 and V5/MT in the perceptions of orientation and speed. A similar 

pattern of results was present during orientation and speed discrimination of the same 

moving stimuli, although this effect was markedly weaker. Additionally, a double 

dissociation was present between LO1 and LO2 in the perceptions of static orientation and 

shape, respectively. These double dissociations suggest that LO1, LO2 and V5/MT exhibit 

functional specializations for orientation, shape and speed, respectively and moreover, 

perform these specialized roles largely independently of one another.  

It is unsurprising that I found evidence for parallel processing of motion and aspects 

of spatial processing because: (1) V5/MT has been shown to be a cluster of multiple visual 

field maps with a common foveal representation – a feature that has led to the idea that the 

maps within clusters perform related aspects of processing, but are independent of the 

processing undertaken in adjacent visual field map clusters like LO; (2) neuropsychological 

evidence, from studies of akinetopsia and visual form agnosia, points to a double 

dissociation in processing of motion and form and (3) there is evidence of parallel 

processing pathways from early visual areas and even subcortical structures to V5/MT.  

The parallel processing of orientation and shape in LO1 and LO2 is a novel and more 

surprising finding for the following reasons: (1) These visual field maps are adjacent maps 
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within a single cluster and therefore, might be expected to perform a series of related and 

dependent roles and (2) shape, as defined here by curvature, could be seen as a property 

that is dependent on orientation processing.  These findings therefore, point to an 

architecture whereby the extrastriate visual maps in LO sample visual information from 

antecedent visual areas in parallel, to extract higher order spatial statistics.  Mutual 

retinotopic information and parallel processing not only reduces replicated information 

across maps but also, provides a common mechanism for communication between maps 

which exhibit different specializations.  

Importantly, the well-known category-selectivity of extrastriate regions, like LO,  may 

simply emerge from patterns of unique and low-level visual computations, which encode 

category specific image statistics, performed by the individual visual field maps that 

subdivide these areas.  
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Chapter 1 

Introduction 

1.1: Overview 

The precise neural mechanisms, by which humans identify complex visual forms, 

remains poorly understood. One reason for this may reflect the fact that little is known 

about the functional properties of individual visual field maps (Zeki, 1990), of which there 

are many throughout visual cortex (Wandell, Dumoulin & Brewer, 2007). These visual field 

maps can be thought of as discrete computational units, each one of which containing the 

potential to contribute uniquely to visual perception (Zeki, 1990). Investigating the 

functional properties of individual visual field maps is considered, by some, to be a 

fundamentally important endeavour. Indeed as Wandell and colleagues comment: 

“Characterizing the responses within specific visual field maps is an essential task in 

understanding the cortical organization of visual function” (Wandell et al., 2007, p369, 56). 

The identification of retinotopic subdivisions LO1 and LO2 within the object-selective Lateral 

Occipital Cortex (LO) (Larsson & Heeger, 2006) provides a unique and timely opportunity to 

study the nature of neural computations within these retinotopic subdivisions at a relatively 

unachieved spatial scale. Throughout the thesis I aim to probe the causal nature of 

computations performed within LO1 and LO2, plus other sites, using the combination of 

functional magnetic resonance imaging (fMRI) visual field mapping techniques (Engel, 

Rumelhart, Wandell, Lee, Glover, Chichilnisky & Shadlen, 1994; Sereno, Dale, Reppas, 

Kwong, Belliveau, Brady, Rosen & Tootell, 1995; DeYoe, Carman, Bandettini, Glickman, 

Weiser, Cox, Miller & Neitz, 1996) and transcranial magnetic stimulation (TMS) (Cowey, 

2005).  

The principle aims of this chapter are to: (1) provide a description of the 

arrangement of the visual field on the retina, the major projections from the retina to the 

cortex, including achromatic and chromatic channels and how the visual field is 

reconstructed within cortex, using early visual cortex (V1-V3) as an example; (2) outline two 

fundamental organisational principles of human visual cortex – functional specialization and 

parallel (and serial) processing; (3) highlight two commonly adopted, but largely separate, 
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ways of dividing visual cortex – category-selectivity or retinotopic organisation; (4) outline 

how these two methods converge on the question of what role individual visual field maps 

play in visual perception and how the thesis will attempt to answer this question with 

respect to LO1 and LO2 and finally; describe the theoretical and analytical framework 

adopted throughout the thesis.  

1.2: Visual Processing from the Retina to Visual Cortex 

LO1 and LO2 are by definition, maps of the visual field (Larsson & Heeger, 2006). It is 

necessary therefore, to consider how the visual field is represented on the retina and how 

that representation projects to visual cortex. A schematic of the visual field representation 

on the retinas is provided in Figure 1.1. The retina can be divided into four sections – nasal, 

temporal, upper and lower. Convention dictates that these sections are referred to 

according to their representation of the visual field. Thus, the nasal retina represents the 

temporal field of view, with the temporal retina representing the nasal field of view (Lavidor 

& Walsh, 2004). Due to the eyes’ optics the nasal retina of the left eye and the temporal 

retina of the right eye represent the left visual field (left hemifield); whereas the right nasal 

retina and the left temporal retina represent the right visual field (right hemifield) (Zeki, 

1993).  Similarly, the lower retinal section represents the upper visual field and the upper 

retinal section represents the lower visual field. Each hemifield can then in turn be 

subdivided into upper and lower quadrants. The retina is further divided into foveal and 

peripheral sections, with foveal vision covering the first 3-5° of visual angle, with peripheral 

vision representing eccentricities greater than 5° (Zeki, 1993). Consideration of these retinal 

sections is important as the representation of the retina varies across different visual field 

maps throughout visual cortex (Zeki, 1993).   
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Figure 1.1: Representation of the visual field on the retinas. The right and left visual fields 

are displayed, with the upper/lower and nasal/temporal sections labelled (top). The nasal 

retina of the left eye and the temporal retina of the right eye represent the left visual field. 

Likewise the nasal retina of the right eye and the temporal retina of the left eye represent the 

right visual field.  Adapted from Figure 3.1, Zeki, 1993.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As light enters the eye, it is represented on the photoreceptor layer of the retina 

(made up of three cones types and rods). Signals from these photoreceptors pass via bipolar 

cells to ganglion cells. The retinal ganglion cells transmit visual information from the retina 

to visual cortex via three independent channels. The L + M or luminance channel, effectively 

adds together the outputs from L and M cones in order to compute the intensity of a 

stimulus. In the L - M colour opponent channel, the outputs from the L and M cones are 

subtracted from one another in order to compute the red-green element of a stimulus. In 

the S – (L + M) channel, the output from the L and M cones are summed and subtracted 

from the S cone output in order to compute the amount of blue-yellow within a stimulus 

(Gegnenfurtner, 2003).  The major projections from the retina to visual cortex are 

schematised in Figure 1.2. The axons of retinal ganglion cells form the optic nerve, the only 

projection from retina-to central nervous system. The optic nerve consists of many fibres, 

which cross over at the optic chiasm in a very specific manner (Zeki, 1993). Fibres that 

originate in the nasal retina project to the contralateral hemisphere, whereas fibres that 

originate in the temporal retina project to the ispilateral hemisphere (Zeki, 1993).  Beyond 
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the optic chiasm the visual pathway is re-labelled as the optic tract, which projects to the 

lateral geniculate nucleus (LGN), a sub-cortical structure within the thalamus (Solomon & 

Lennie, 2007). The LGN is a complex, six-layered structure, which acts as a relay station for 

visual processing. Two features of the LGN are noteworthy. First, the highly specific nature 

of projections from the eye to the LGN is important, the signals from the two eyes are 

segregated such that projections from the ipsilateral eye project to layers 2, 3 and 5, whilst 

projections from the contralateral eye terminate in layers 1, 4 and 6 (Zeki, 1993). Second, 

this highly organised structure is coupled with a point-point mapping from the retina, so 

that adjacent points on the retina project to adjacent points in each layer of the LGN (Zeki, 

1993). The LGN layers are further stacked upon one another maintaining the adherence to 

retinotopic organisation. The vast majority of LGN axons project directly to primary visual 

cortex (V1), specifically layer 4 of V1. The precise location of termination within layer 4 

depends on the origin of axons in the LGN. The majority of Parvocellular cells (P-cells) 

project to layer 4Cβ, with Magnocellular cells (M-cells) projecting to layer 4Cα and finally 

Koniocellular cells (K- cells) projecting to layer 4A and lower level 3 (Livingstone & Hubel, 

1988; Zeki, 1993; Solomon & Lennie, 2007).  Several important differences have been 

documented between Magnocellular and Parvocellular cells. Most notably, single-unit 

recordings in non-human primates reveal that the majority of Parvocelluar cells are highly 

sensitive to wavelength as opposed to Magnocellular cells, which exhibit a striking 

insensitivity to wavelength (Livingston & Hubel, 1988). Magnocelluar cells have also been 

reported to contain larger receptive field centres than Parvocellular cells across 

eccentricities. Further, Magnocellular cells have been shown to respond faster and more 

transiently than their Parvocellular counterparts, making Magnocellular cells critical to 

motion perception (Livingstone & Hubel, 1988).   
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Figure 1.2: Schematic representation of the major projections from the retina to the cortex. 

A ventral view of the right hemisphere is shown. As light enters the eye it is imaged on the 

retina. The axons of ganglion cells form the optic nerve which projects primarily to the LGN. 

Axons from the nasal retina (green line) project to the contralateral LGN, whereas those 

from the temporal retina (red line) project to the ipsilateral LGN. Within the LGN, the signals 

from the nasal and temporal retinas are aligned in all six layers, maintaining retinotopic 

organisation. Projections from the LGN terminate predominantly in layer 4 of V1, with the 

precise site of termination depending on whether the LGN projections are Parvocellular 

(layer 4Cβ), Magnocellular (layer 4Cα), or Koniocellular (layer 4A and lower level 3). 

Adapted from Box 1, Solomon & Lennie, (2007). 

 

 

 

 

 

 

 

 

 

 

 

1.2.1:     Human Colour Vision 

Humans have the capacity to distinguish between lights based on their wavelength 

content alone – colour vision. In order to achieve this, the human visual system makes use 

of different signals that originate from the three different types of cone photoreceptor in 

the retina. The three different cone photoreceptors have peak sensitivities to three 

different wavelengths, depicted in Figure 1.3. S-cones have a peak sensitivity to short 

wavelengths of light (~430nm), M-cones peak sensitivity is to medium wavelengths 

(~530nm) and finally L-cones exhibit a peak to long wavelengths (~560nm) of light. The 

absolute peak sensitivities of these cones vary across individuals. Despite these peak 

sensitivities, the tuning curves of these cones are broad enough such that each will respond 

to light across a wide range of wavelengths of the visible spectrum (Livingston & Hubel. 
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1988). Once a photon of light has been absorbed by a cone, the identity of the wavelength is 

lost. The result is that no single photoreceptor can distinguish between changes in the 

wavelength of light from changes in the intensity of that light – the principle of univariance 

(Rushton, 1972). Colour vision therefore, relies on the comparison of signals from different 

photoreceptors with different spectral sensitivities. The existence of three different cone 

types thus, makes human colour vision ‘trichromatic’ (Solomon & Lennie, 2007).  

 

 

1.2.2:    Representation of Visual Field in Cortex 

 Much of visual cortex is organised retinotopically (Wandell et al., 2007). That is, 

adjacent points on the retina project to adjacent points in cortex, creating a point-point 

mapping of visual space in cortical space. In both humans and non-human primates, the first 

three visual areas follow a very similar configuration; three complete hemifield maps of the 

contralateral visual field near the calcarine sulcus in the occipital lobe (Dougherty, Koch, 

Brewer, Fischer, Modersitzki & Wandell, 2003). To demonstrate this more explicitly, 

consider the visual field representations in V1-V3, depicted in Figure 1.4. V1 represents a 

complete contralateral hemifield and runs parallel to the calcarine sulcus. The lower vertical 

meridian is represented on the superior bank of the calcarine, the polar angle 

representation continues towards the horizontal meridian (represented in the fundus of the 

calcarine), with the upper vertical meridian represented on the inferior bank of the 

calcarine. Two additional maps (V2 and V3) encircle V1 both dorsally and ventrally, and 

Figure 1.3: Spectral sensitivity of 

cones in the human retina. The 

spectral sensitivities of S-cones (blue 

line), M-cones (green line) and L-

cones (red-line) are shown. For 

comparison, the spectral sensitivities 

of rods and photosensitive ganglion 

cells, which express melanopsin 

(Mel+), are shown. The broad tuning of 

cones is evident. A large proportion of 

the visible spectrum would elicit a 

signal in either all or at least two of the 

cones. Adapted from Figure 1, 

Solomon & Lennie, (2007). 
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contain quadrant maps, respectively. The combined dorsal/ventral divisions of V2 and V3 

create two hemifield representations. The eccentricity representations in these three maps 

run in parallel, beginning at the large foveal representation (foveal confluence) near the 

occipital pole. Increasingly eccentric positions of visual space are represented at increasingly 

anterior positions along the calcarine sulcus (V1) and medial surface (V2, V3) of the occipital 

lobe. The polar angle and eccentricity representations in V1, V2 and V3 are directly 

orthogonal to one another (Wandell et al., 2007).         

                                                     

Figure 1.4:  Early visual field maps V1, V2 and V3 in the right hemisphere of a single 

subject. The representations of eccentricity (left) and polar angle (right) are overlaid in false 

colour (see hemifield colour wheel inset into each figure). The colour indicates the stimulus 

position that elicited the largest BOLD response. The polar angle data clearly show the split 

representations of V2 and V3. Moving ventrally from V1, the polar angle representation in 

V2v progresses from the upper vertical meridian (blue) towards the horizontal meridian 

(green). The representation in V3v is the mirror-reverse, from the horizontal to the upper 

vertical meridian. Moving dorsally from V1, the polar angle representation in V2d progresses 

from the lower vertical meridian (orange) towards the horizontal meridian. The 

representation in V3d is the mirror-reverse of V2d. The eccentricity representations in all 

three maps follow a very similar pattern, extending anteriorly from the shared foveal 

representation (red) at the occipital pole. Figure adapted from Wandell et al., (2007).  
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1.3: Fundamental Principles of Human Visual Cortex 

Two fundamental organisational principles of the human brain are functional 

specialization and parallelism (Zeki, 1990).  The specific questions asked throughout this 

thesis were influenced heavily by consideration of these principles. The following sections 

provide an overview of the evidence for functional specialization in the human brain derived 

from neuropsychological, neuroimaging and neurostimulation studies and the evidence for 

parallelism within human cortex at a number of different spatial scales. 

1.3.1:    Functional Specialization 

Functional specialization is a fundamental organisational principle of the human 

brain (Zeki, 1990). The origins of functional specialization in human trace back to the post 

mortem observations made by Broca in 1861 (Broca, 1861), where he identified a region of 

the left frontal lobe that was damaged in a patient who had a profound inability to speak. 

Despite the origins of functional specialization residing in the frontal lobes, nowhere has 

functional specialization been more extensively researched, or demonstrated directly, than 

within visual cortex (Zeki, Watson, Lueck, Friston, Kennard & Frackowiak, 1991; Zeki, 1990). 

Human visual cortex contains areas that exhibit functional specializations for different visual 

properties, such as colour (Meadows, 1974; Lueck, Zeki, Friston, Deiber, Cope, Cunningham, 

Lammertsma. Kennard & Frackowiak, 1989; McKeefry & Zeki, 1997; Zeki, McKeefry, Bartels, 

& Frackowiak, 1998) and motion (Zihl, Voncramon & Mai, 1983;  Zeki et al., 1991; Walsh, 

Ellison, Battelli & Cowey, 1998; McKeefry, Burton, Vakrou, Barrett, & Morland, 2008) as well 

as selective responses to stimulus categories including faces (Kanwisher, McDermott, & 

Chun, 1997; Grill-Spector, Kushnir, Edelman, Avidan, Itzchak & Malach, 1999;Andrews & 

Ewbank, 2004), places (Epstein & Kanwisher, 1998), bodies (Taylor, Wiggett, & Downing, 

2007) and commonly encountered objects (Malach, Reppas, Benson, Kwong, Jiang, 

Kennedy, Ledden, Brady, Rosen & Tootell 1995; Kourtzi & Kanwisher, 2001; Grill-Spector, 

2003).  The selectivity exhibited by these areas has been demonstrated consistently across a 

number of investigative paradigms, including neuropsychological (Meadows, 1974; Zihl et 

al., 1983; Zeki, 1990; Goodale, Milner, Jakobson & Carey, 1991), neuroimaging (Malach et 

al., 1995; Kanwisher et al., 1997; McKeefry & Zeki, 1997; Epstein & Kanwisher, 1998;  Taylor 

et al., 2007) and neurostimulation (Beckers & Homberg, 1992; Walsh et al., 1998; McKeefry 
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et al., 2008; Pitcher, Charles, Devlin, Walsh, & Duchaine, 2009; Pitcher, Duchaine, Walsh, 

Yovel, & Kanwisher, 2011) studies.  

A schematic representation of the locations of these functionally specialized areas is 

provided in Figure 1.5, overlaid on the Montreal Neurological Institute (MNI) average brain. 

Inspection of Figure 1.5, not only reveals functionally specialized areas throughout dorsal 

and ventral regions of visual cortex, but also, the close proximity of these functionally 

specialized areas. The dorsal and lateral surface of visual cortex contains motion-selective 

V5/MT (Zihl et al., 1983; Zeki, 1990; Zeki et al., 1991), body-selective Extrastriate Body Area 

(EBA) (Taylor et al., 2007), object-selective LO (Malach et al., 1995) and the face-selective 

Occipital Face Area (OFA) (Silvanto, Schwarzkopf, Gilaie-Dotan & Rees, 2010). The ventral 

surface of visual cortex contains colour-selective V4 (Zeki, 1990; McKeefry & Zeki, 1997), 

place-selective Parahipocampal Place Area (PPA) (Epstein & Kanwisher, 1998) and the face- 

selective Fusiform Face Area (FFA) (Kanwisher et al., 1997).  

A noteworthy feature regarding the evidence for functional specialization is that of 

spatial scale. For instance, many of the aforementioned specialized areas are large relative 

to the size of many visual field maps (Wandell et al., 2007). An important aspect of the 

thesis will be whether or not functional specializations can be observed at the smaller 

spatial scale of individual visual field maps. 
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Figure 1.5: Functionally specialized regions of human visual cortex. The locations of 

functionally specialized areas are depicted by 5mm spheres overlaid on saggital and axial 

slices of the MNI average brain. Images are displayed in neurological convention. 

Coordinates were taken, where possible, from the original papers defining these regions. A 

saggital view (left) depicts the location of four functionally specialized regions on the dorsal 

and lateral surface of the occipital lobe; motion-selective V5/MT (blue), body-selective EBA 

(turquoise), object-selective LO (purple) and the face-selective OFA (burgundy). An axial 

view (right) depicts the location of three functionally specialized areas on the ventral surface 

of visual cortex; colour-selective V4 (fuchsia), place-selective PPA (green) and the face- 

selective FFA (red). The coordinates for these areas were transformed from Talairach to 

MNI space for all areas except the OFA, which was already in MNI space. 

 

1.3.2:    Parallel Processing  

The second fundamental organisational principle of human visual cortex is that of 

parallelism or functional independence (Zeki, 1990). Different spatial scales of parallelism, 

depicted in Figure 1.6, have been identified in human cortex through a variety of paradigms. 

First, at the largest spatial scale neuropsychological studies demonstrated parallel 

processing streams in dorsal (Perenin & Vighetto, 1988) and ventral (Goodale et al., 1991) 

cortex.  These parallel processing streams, encode different visual features and mirror those 

originally found through selective ablation in non-human primates (Mishkin, Ungerleider, & 

Macko, 1983). Neuropsychological evidence regarding the perception of colour and motion 

also suggests that these visual attributes are processed independently within spatially 

segregated visual areas V4 and V5/MT, respectively (Zihl et al., 1983; Lueck et al., 1989). 
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Indeed deficits in colour processing (achromatopsia) are seldom associated with deficits in 

motion processing (akinetopsia) and vice-versa (Zeki, 1990). Second, within these processing 

streams, at a smaller spatial scale, neuropsychological (Goodale et al., 1991), neuroimaging 

(Malach et al., 1995; Kanwisher et al., 1997; Epstein & Kanwisher, 1998; Taylor et al., 2007) 

and neurostimulation (Pitcher et al., 2009) studies have identified specialized areas that 

encode specific stimulus categories such as faces, places, bodies and objects independently. 

An influential study by Pitcher et al., (2009) demonstrated the causal roles played by three 

such category-selective areas. Disruptions to face, body and object processing only occurred 

following stimulation of the OFA, EBA and LO regions, respectively.  Third, the existence of 

visual field map clusters has been proposed as an organisational principle of human visual 

cortex (Wandell, Brewer & Dougherty, 2005; Brewer & Barton, 2011). These maps are 

suggested to form clusters around a central visual field representation. Whilst the maps 

within a cluster are suggested to perform similar visual computations, different clusters of 

maps are suggested to perform different visual computations independently of one another 

(Wandell et al., 2005).  

It is unclear whether or not this functional independence extends to adjacent visual 

field maps within a cluster; however, pioneering work in non-human primates would 

suggest parallel processing of visual information exists at this spatial scale. Visual field maps 

V4d and V5/MT have been shown to not only exhibit specializations for colour and motion, 

respectively, but also, receive parallel projections from antecedent V2 (Shipp & Zeki, 1985; 

Zeki & Shipp, 1988; Zeki, 1990).  An important factor for the thesis will be whether 

parallelism can be identified at the level of individual visual field maps in human cortex.  
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Although parallel processing appears a fundamental principle of the human brain, it 

is imperative to also acknowledge the presence and importance of serial connections 

between areas, which have been a persistent feature of various models of primate visual 

function (Felleman & Van Essen, 1991; Felleman & Mcclendon, 1991). The interconnections 

between visual field maps allow for both serial and parallel processing pathways (Shipp & 

Zeki, 1985; Zeki, 1990). As a consequence, a computation in one map may be performed, 

either independently of, or be reliant upon, computations performed in another map. 

Accordingly, an important aspect of the thesis will be to establish whether computations 

within individual visual field maps are performed in serial or parallel. 

 

 

Figure 1.6: Different spatial scales of parallelism in human visual cortex. At the largest 

spatial scale (Left), a medial view of the right hemisphere is shown. Two parallel processing 

streams are depicted (red arrows) flowing ventrally and dorsally from V1. Within those 

streams, at a smaller spatial scale (Middle), the locations of three functionally specialized 

areas, depicted by 5mm spheres, overlaid on the MNI brain. Pitcher et al., (2009) 

demonstrated through TMS the independent processing of preferred categories in these 

areas. At a smaller spatial scale (Right) schematic representation of visual field map 

clusters. Five clusters are depicted, each one of which is centred around a foveal 

representation. The maps within a cluster are suggested to perform similar functions but be 

largely independent from the functions of adjacent clusters. 
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1.4: Category-Selectivity versus Retinotopic Organisation 

Many visual neuroscientists adopt one of two general approaches to understanding 

the neural underpinnings of human visual perception. The first and possibly most widely 

adopted approach identifies and subsequently divides visual cortex into areas that exhibit 

selective responses to different visual stimuli. These areas are often labelled ‘category-

selective’ regions of cortex. The second approach divides visual cortex into discrete maps of 

the visual field.  These two alternative methods have created two largely bifurcated 

research strands that have developed in parallel with little overlap. The following sections 

outline, albeit briefly, some of the chief findings from both approaches before describing 

how they can be seen to converge on a simple yet important question. 

1.4.1:    Category-Selectivity 

 The category-selective approach to dividing visual cortex has led to a number of 

important demonstrations, some of which were considered above, but expanded upon 

here. Early neuropsychological studies suggested that selective and localised damage to 

visual cortex could lead to selective disturbances in the perceptions of particular visual 

features such as colour (achromatopsia) and motion (akinetopsia), respectively (Verrey, 

1988; Meadows, 1974; Zihl et al., 1983; Zeki, 1990). Further neuropsychological studies 

provided compelling evidence for category-selective deficits in face (termed prosopagnosia) 

and object (termed object-agnosia) perception following damage to fusiform and lateral 

occipital areas, respectively (Charcot, 1883; Meadows, 1974; Damasio, Damasio & Van 

Hoesen, 1982; Goodale et al., 1991). The advent of functional imaging techniques such as 

positron emission topography (PET) provided compelling and complimentary evidence to 

these neuropsychological findings. Indeed, PET led to the first direct demonstrations of 

functional specialization in human visual cortex, locating the colour centre in man on the 

ventral surface (Lueck et al., 1989) and motion-selective cortex on the lateral surface of the 

occipital lobe (Zeki et al., 1991). The inception of fMRI however, has arguably had the 

largest impact on the category-selective approach, leading directly to the demonstration of 

a number of different category-selective regions of visual cortex. The literature on each area 

is vast and therefore, for brevity, the original studies are prioritised here. One of the first 

reported category-selective regions was the lateral occipital complex (LOC) (Malach et al., 
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1995). This region of cortex was shown to preferentially respond to objects and faces 

compared with scrambled versions of the same stimuli. The LOC is a large area of 

extrastriate cortex and covers both dorsal and ventral regions of the occipital lobe. 

Subsequent fMRI studies identified different hubs of selectivity within the LOC, with dorsal 

regions responding preferentially to objects (LO), and ventral regions responding more to 

faces, located around the posterior fusifiorm gyrus (pFS) (Grill-Spector et al., 1999). One of 

the most impactful findings of category-selectivity was that of the FFA, an area on the 

fusiform gyrus that responds preferentially to faces over other stimulus categories 

(Kanwisher et al., 1997). The identification of the FFA led to a large body of work exploring 

face-selectivity in human cortex (Haxby, Hoffman & Gobbini, 2000; Andrews & Ewbank, 

2004; Andrews, 2005; Andrews, Davies-Thompson, Kingstone & Young, 2010). Very recently, 

fMRI has been used to identify two spatially distinct hubs of activity within the FFA, termed 

FFA-1 and FFA-2, respectively, although, it is yet to be discovered as to whether they are 

functionally separable (Weiner & Grill-Spector, 2012).  

Following the discovery of the FFA, regions of cortex selective to places, bodies and 

even parts of bodies were identified. The PPA located on the ventral surface has been 

shown to respond preferentially to images of scenes than other stimulus categories (Epstein 

& Kanwisher, 1998). Additionally, the EBA was originally identified on the basis of 

preferential responses to bodies over other stimulus categories (Taylor et al., 2007). A 

further region has been suggested to exist, which exhibits spatially distinct activation to 

different body parts (Weiner & Grill-Spector, 2010). As mentioned above, several 

neurostimulation studies have confirmed the selectivity’s within a number of these regions 

including V5/MT’s specialization for motion (Walsh et al., 1998; Mckeefry et al., 2008), the 

object, face and body selectivity of the LO, OFA and EBA, respectively (Pitcher et al., 2009) 

and a very recent demonstration of the place selectively of an area referred to as the 

occipital place area (OPA) (Dilks, Julian, Paunov & Kanwisher, 2013).   
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1.4.2:    Retinotopic Organisation 

Whilst the existence of category-selective divisions of visual cortex is well 

established, visual cortex can also be divided on the basis of maps of the visual field. Indeed, 

to date human cortex comprises more than twenty separate and discrete representations of 

the visual field across its surface (Wandell & Wade, 2003; Wandell et al., 2007; Wandell & 

Winawer, 2011). Such retinotopically organised maps extend, not only throughout visual 

cortex, both dorsally and ventrally from V1, but also, within temporal (Arcaro, Pinsk, Li, & 

Kastner, 2011) and frontal cortices (Kastner, DeSimone, Konen, Szczepanski, Weiner & 

Schneider, 2007; Silver & Kastner, 2009). The identification of visual field maps throughout 

visual cortex runs contrary to a long-standing belief (of some) that retinotopic organisation 

be restricted to the first four visual areas (V1-V4).  Indeed, many of the category-selective 

areas mentioned above were originally labelled as non-retinotopic. Recently however, 

functionally selective areas of cortex, originally considered to either lack or have weak 

retinotopic organisation (Grill-Spector et al., 1999; Levy, Hasson, Avidan, Hendler, & Malach, 

2001), have been subdivided into multiple visual field maps (Larsson & Heeger, 2006; 

Wandel et al., 2007).  

Prior to the explicit demonstration of visual field maps within higher-level areas, the 

importance of location information within these areas was documented (Malach et al., 

1995; Levy et al., 2001). One of the first signs of the importance of position information was 

the finding that face and place selective areas of cortex exhibited biases toward foveally and 

peripherally presented stimuli, respectively (Levy et al., 2001). Since then, a number of 

other studies have highlighted the importance of location information throughout visual 

cortex (Gardner, Merriam, Movshon & Heeger, 2008; Cichy, Chen, & Haynes, 2011; Cichy, 

Heinzle, & Haynes, 2012). The importance of location information during visual processing 

has been explored recently using fMRI multi-voxel pattern analysis (MVPA) techniques 

(Cichy et al., 2011; Cichy et al., 2012; Golomb & Kanwisher, 2012). One can think about 

location information in two different frames of reference. One is relative to the eye, and 

therefore the retina (retinotopic). The other is relative to the world around us (spatiotopic).  

A number of studies have investigated the relative contribution of, and extent to which, 

retinotopic and spatiotopic information is present throughout visual cortex (Gardner et al., 
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2008; Golomb & Kanwisher, 2012). Across studies, the influence of retinotopic information 

consistently outweighed spatiotopic information (Gardner et al., 2008). Indeed, a ventral-

dorsal segregation was suggested to exist within the retinotopic frame of reference (Cichy et 

al., 2012). Retinotopic information was found to vary systematically in its influence across 

the cortical surface, with dorsal-lateral areas showing more marked exploitation of this 

retinotopic information (Cichy et al., 2012). Despite this division however, all areas were 

found to be more reliant on retinotopic than spatiotopic information (Cichy et al., 2012). 

The results suggest even putative ‘higher-order’ visual areas encode visual information on a 

retinotopic basis (Gardner et al., 2008; Kravitz, Kriegeskorte, & Baker, 2010;  Cichy et al., 

2011; Cichy et al., 2012; Golomb & Kanwisher, 2012). The exsitence of retinotopic location 

information within these high-level areas runs contrary to a long-held belief that visual 

object representation becomes increasingly position invarient and abstract as one moves 

further along the visual heirachy. The importance and functional significance of retinotopic 

location information therefore, appears to be crucial when considering how we perceive 

complex stimuli.  

To date, retinotopic, functionally selective regions of cortex have been identified in 

both dorsal and ventral streams. A schematic representation of the overlap between 

category-selective and retinotopic areas is given in Figure 1.7. Ventrally, the place-selective 

PPA has been shown to comprise two retinotopic maps (PHC1, PHC1) (Arcaro, McMains, 

Singer & Kastner, 2009). Likewise, adjacent to colour-selective V4, two more visual field 

maps have been identified (VO1, VO2) (Brewer, Liu, Wade, & Wandell, 2005). Dorsally, 

motion-selective V5/MT contains two visual field map divisions (TO1, TO2) (Amano, Wandell 

& Dumoulin, 2009), and finally, the object-selective LO comprises two more retinotopic 

areas, (LO1, LO2) (Larsson & Heeger, 2006). In each case, two adjacent visual field maps 

were identified within the encompassing functionally selective area; both maps containing a 

complete hemifield representation of the contralateral visual field. Additionally, the face- 

selective OFA is considered, by some (Brewer & Barton, 2011), to be comprised of multiple 

visual field maps (LO3-6), although this is yet to be accepted formally. The existence of these 

retinotopic subdivisions suggest that perhaps the category selectivity observed in these 

areas emerges from computations performed by their respective retinotopic components.  
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Figure 1.7: Schematic representation of the overlap between category-selective regions and 

known visual field maps in human cortex. A partially inflated surface reconstruction of the 

right-hemisphere of a single subject is shown. The hemisphere is viewed from behind, gyri 

are light grey, sulci are dark grey. The approximate locations of several category-selective 

regions are overlaid in colour (see key inset). Also overlaid are the approximate locations of 

known visual field maps. In many cases, category-selective regions can be seen to 

encompass multiple visual field maps. It is clear that retinotopic information is present 

throughout visual cortex and not restricted to early visual areas V1-V4. 

 

 

 

 

 

 

 

 

 

Computationally, these retinotopic subdivisions have the potential to perform 

unique sets of visual analyses and therefore, contribute uniquely to visual perception (Zeki, 

1990). In macaque, neighboring visual field maps V4d and V5/MT, exhibit dissociable 

specializations for colour and motion, respectively (Shipp & Zeki, 1988; Zeki, 1978). Indeed, 

it is unlikely that adjacent visual field maps in human sub-serve exact visual functions; if 

such functional replications were evident, the second, third or nth map within a cluster 

would effectively be redundant. A more plausible explanation for the existence of multiple 

visual field maps (within a cluster) is that they allow numerous visual computations to be 

performed at every point of the visual field. The more independent representations of the 

visual field, the more visual computations can be performed within functionally selective 

regions. Mutual retinotopic information could provide a common mechanism for 

communication between regions of cortex with different selectivities (Kravitz, Saleem, 
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Baker, Ungerleider & Mishkin, 2013).  The seemingly on-going discovery of retinotopic maps 

within higher-level areas also suggests that retinotopic organisation may be a general 

principle of human visual cortex (Kravitz et al., 2013). The mere presence of visual field 

maps within functionally selective areas, previously considered as non-retinotopic, warrants 

the investigation of their functional properties (Wandell et al., 2007). Taken together, these 

two largely separate research strands can now be seen to converge on the important 

question of what role (if any) individual visual field maps play in human visual perception, 

when those maps subdivide larger functionally selective cortical areas?   

1.5: Retinotopic Organisation in LO, LO1 & LO2  

A pertinent example which highlights the importance of asking the above question is 

the consideration of visual field maps LO1 and LO2 and their relationship with object- 

selective cortex. In order to do so, the identification of LO1 and LO2 needs to be placed in 

the context of the history of retinotopic organisation in LO. Until relatively recently, many 

researchers considered the expanse of cortex between V3d and V5/MT as non-retinotopic. 

Indeed, fMRI studies indicated that this region corresponded to the object-selective LO 

(Malach et al., 1995; Grill-Spector et al., 1998, 1999; Kourtzi & Kanwisher 2001; Hasson et 

al., 2003).  

Larsson and Heeger (2006) reported the first clear indication of retinotopic 

organisation within LO, depicted in Figure 1.8. They identified two adjacent visual field maps 

between dorsal V3d and V5/MT, termed LO1 and LO2, respectively. Both maps contained a 

complete hemifield representation of the contralateral visual field. Unlike previous reports 

(Levy et al., 2001), Larsson and Heeger highlighted an orderly representation of both 

eccentricity and polar angle within these maps. The representation of polar angle in LO1 

extended anteriorly from the boundary with V3d approximately half way towards V5/MT, 

progressing gradually from the lower vertical meridian toward the upper vertical meridian. 

The anterior boundary of LO1 was defined by a representation of the upper vertical 

meridian.  Within LO2, the representation of polar angle was the mirror-reverse of LO1, 

showing a gradual progression from the shared representation of the upper vertical 

meridian towards the lower vertical meridian, which defined the anterior boundary of LO2. 

Larsson and Heeger (2006) found the foveal representations in LO1 and LO2 to be 
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coextensive with V1, V2 and V3d with the periphery being represented anterioraly and 

dorsally. In approximately half of the hemispheres tested, the eccentricity map in LO2 

showed a distinctive and unusual pattern, in that the representation of eccentricity made a 

sharp shift from fovea to periphery. To date, a formal analysis of the extent of orthognaility 

in LO2 has not been conducted.  

 

 

 

 

 

 

 

 

 

 

The existence of LO1 and LO2, within object-selective LO, suggests that these maps 

may perform unique computations and therefore, exhibit unique functional properties. 

Indeed, Larsson and Heeger proposed a segregation of function between LO1 and LO2, with 

LO1 extracting orientation information and LO2 encoding shape information. Importantly 

for this thesis however, the functional properties of LO1 and LO2 have thus far, been 

investigated exclusively using fMRI paradigms (Larsson & Heeger, 2006; Larsson, Landy & 

Figure 1.8. Average visual field maps LO1 and LO2 on flattened schematics of the right 

hemisphere. Left: LO1 and LO2 can be seen to contain a hemifield representation of the left 

visual field, respectively. The polar angle representation in LO1 begins at the shared 

boundary with V3d at the representation of the lower vertical meridian and extends gradually 

through the horizontal meridian towards the upper vertical meridian. The polar angle 

representation in LO2 is the mirror-reverse of LO1, extending from the upper vertical 

meridian through the horizontal to the upper vertical meridian. Right: The eccentricity 

representation in LO1 and LO2 were found to be confluent with those of V1, V2 and V3. 

Figure Adapted from Larsson & Heeger, (2006).  
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Heeger, 2006; Sayres & Grill-Spector, 2008). Functional MRI provides a correlational 

measurement that is unable to determine the exact causal role that a specific area plays in 

perception. Neurostimulation techniques such as TMS have an important advantage in that 

TMS can induce temporary disruption to specific cortical areas and therefore, provide causal 

information regarding the functional properties of a given cortical area. The anatomical 

location of LO1 and LO2 make them superb and timely candidates for TMS (McKeefry, 

Gouws, Burton & Morland, 2009). The use of TMS will allow independent stimulation of 

these visual field maps and enable elucidation of the potentially unique and causal 

contributions made by these maps.  

Whether one divides visual cortex on the basis of selectivity to stimulus features or 

visual field representations, both approaches nevertheless appear to converge on the 

simple, but important question of what roles (if any) do the multiple visual field maps that 

subdivide larger functionally selective areas play in human visual perception?  Throughout 

the thesis this question will be addressed with respect to visual field maps LO1 and LO2. 

Through a series of TMS studies, this thesis aims to investigate whether functional 

specializations are observable at the level of adjacent visual field maps in human visual 

cortex and if present, whether these functional specializations are dependent or 

independent from one another (echoing that found in macaque). This thesis will attempt to 

answer these questions across two different spatial scales. The first, adopts a relatively 

conservative approach and considers whether specializations are observable between 

adjacent visual clusters, specifically between LO1 (part of the LO cluster) and V5/MT. The 

second, will explore whether specializations are present at the smaller scale of adjacent 

visual field maps within a cluster, specifically LO1 and LO2.  
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1.6: Theoretical & Analytical Framework 

The experiments conducted as part of this thesis were heavily influenced, both in 

design and interpretation, by two variants of a framework I term ‘map specific’. This 

framework is grounded in the concept that each discrete region of visual cortex underlies 

one or a number of specific visual functions (Zeki, 1990). Taken within this framework, our 

cortical areas of interest (LO1, LO2 and V5/MT) are hypothesised to perform unique sets of 

visual computations and therefore, exhibit functional specializations for different visual 

attributes. This framework has two components. The first, considers whether functional 

specializations operate within a strictly serial processing architecture. That is, whether the 

functional specializations of one area are dependent (to a degree) upon the computations 

performed within antecedent visual areas. The second component, considers whether these 

functional specializations operate largely independently of those performed by other areas 

including those directly antecedent. That is, whether these functional specializations exhibit 

parallelism.  

In order to demonstrate these alternative components more explicitly, let us 

consider a scenario whereby there are two cortical targets of interest (A and B) and two 

visual tasks (1 and 2) – a classic 2 x 2 design. In this scenario let us consider that Site A is 

specialized for Task 1 and that Site B is specialized for Task 2. Let us also consider, for now, 

that these cortical targets are organised within a strictly serial processing architecture. The 

predicted effects of TMS within this serial framework are plotted in Figure 1.9. Accordingly, 

TMS of Site A should disrupt performance of Task 1, but TMS of Site B, should leave 

performance of Task 1 relatively preserved. The pattern however, is different when 

considering Task 2. If computations performed by Site B are reliant on those performed by 

Site A, as they must in a strictly serial processing architecture, then TMS of Site B should 

disrupt performance, but so should TMS of Site A. In this framework, the performance of 

Task 2 by Site B is dependent upon input from Site A and therefore, disrupting the 

processing in Site A, leads to reduced input into Site B, which in turn, disrupts performance.   
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In contrast, let us now consider a scenario whereby Site A is specialized for Task 1 

and Site B is specialized for Task 2, yet instead of being part of a strictly serial processing 

architecture, these specializations operate independently of one another, or in parallel. In 

this scenario, the pattern of results is crucially different.  The predicted effects of TMS 

within this parallel framework are plotted in Figure 1.10. TMS of Site A, but not Site B should 

lead to selective disruption of Task 1 – same pattern as above for Task 1. In contrast TMS of 

Site B, but not Site A should disrupt Task 2 – a double dissociation.  

 

 

 

 

 

These two alternative accounts deal exclusively with map specific predictions.  

 

 

Figure 1.10: Schematic predictions of the effects of TMS for parallel processing. In this 

scenario, Site A is specialized for Task 1, and Site B is specialized for Task 2. Sites A & B 

operate independently of one another. Accordingly, TMS of Site A disrupts performance on 

Task 1, but not Task 2, whereas TMS of Site B disrupts performance of Task 2, but not Task 

1 – a double dissociation. .  

Figure 1.9: Schematic predictions of the effects of TMS for serial processing. In this 

scenario, Site A is specialized for Task 1, and Site B is specialized for Task 2. Sites A & B 

also operate within a strictly serial processing architecture. Accordingly, TMS of Site A 

disrupts performance on Task 1, but not Task 2, whereas TMS of both Sites A & B disrupt 

performance of Task 2.This framework assumes that computations performed by Site B are 

reliant on those performed by Site A.  
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Consideration of both accounts however, raises the question as to whether either 

prediction truly allows map specific inferences to be made. In order to make inferences 

regarding both the task and location specificity of these effects there is a need to 

contextualise the effects of TMS at both sites A and B with the effects of TMS at a control 

site (CON). A map specific inference can only be made if (1) the effect of TMS at the target 

site is significantly different to the effect of TMS at both the non-target site and the CON, 

and (2) the effect of TMS of the non-target site is not significantly different from TMS of the 

CON.  

The importance of contextualising the effects of TMS at both target sites with the 

effects of TMS at the CON is demonstrated in Figure 1.11. If we consider Task 1 alone, the 

predicted effects across Sites A and B are the same, whether they operate in serial or 

parallel. It is only when these effects are placed in the context of the effects at the CON can 

we make map specific inferences (red circle and arrows Figure 1.11). In the map specific 

model, there is no difference between the effects of TMS of Site B (no target site in this 

case) or the CON, making the effect specific to Site A. In contrast, in the location dependent 

effect, there is an effect at the CON and indeed that effect is larger than the effect at Site A. 

In this case, one would conclude that the performance of Task 1 is not specific to processing 

at Site A.  

An additional consideration is whether there is a general effect of TMS. That is, 

whether the delivery of TMS to visual cortex, irrespective of the location of delivery, leads to 

disturbances in performance during visual tasks. It is important therefore, to also 

contextualise the effects of TMS with a no TMS baseline. If the effects are truly map specific 

then there should be no significant difference between the effects of TMS of the non-target 

site and both the CON and the no TMS baseline. All four TMS studies reported in Chapters 4-

7 therefore, include CON and a no TMS baseline conditions.  
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Within each experimental chapter, the hypotheses were influenced heavily by the 

two components of the framework described above. Additionally, these components served 

to guide the analysis and subsequent interpretation of the results. The specific predictions 

are discussed in detail in each experimental chapter. Therefore, I provide a brief analytical 

overview here. In each experimental chapter, two visual tasks were employed. It was 

hypothesised that the two tasks would be underpinned by different regions. For this to be 

Figure 1.11: Theoretical framework schematics for map specific processing. The predicted 

effects of TMS in both the serial and parallel frameworks are reproduced. When considering 

Task 1 alone, there is no difference in the predicted effects of TMS between the serial and 

parallel frameworks (red circle). Only when we place the effects of TMS of Sites A & B in 

the context of TMS of the CON, can we make map specific inferences. The effects of TMS 

can only be interpreted as map specific (1) if there are significant differences between the 

effect of TMS at the target Site (Site A in this case) and the effects of TMS at both the non-

target Site (Site B in this case) and the CON and (2) there is no significant difference 

between the effects of TMS at the non-target site and the CON. If however, this pattern is not 

observed, a more parsimonious explanation for the differential effects of TMS of Sites A & B 

may be that performance of Task 1 operates along a location dependent mechanism. In 

other words, performance of Task 1 involved multiple areas and is therefore, not specific to a 

single visual field map.  
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the case, an interaction between Task and Site should therefore, be evident. The initial 

analysis step was to establish the significance of the Task by Site interaction using two-way 

repeated measures analysis of variance (ANOVA) tests. In order to make map specific 

inferences it will be essential to initially establish a significant Task by Site interaction. In the 

event that a significant Task by Site interaction is not found, the interpretation would be 

that the two tasks are not underpinned by different regions. If a significant Task by Site 

interaction is present, the effect of site across the two tasks needs to be considered 

separately.  Within each task, it will be important to demonstrate a significant effect of Site 

(including no TMS baseline). A significant effect of Site however, cannot by itself 

differentiate between the two alternative frameworks; additional between Site comparisons 

are needed for that.  If a significant effect of Site is not present, the interpretation must be 

that none of the cortical targets underpin performance of the task specifically.  

1.7: General Aims & Objectives 

I aim to use the relatively novel combination of fMRI visual field mapping and TMS to 

independently probe the functional specializations present within subdivisions of lateral 

occipital cortex, including LO1 and LO2 directly. This approach will allow, for the first time, 

the causal nature of computations performed within these maps to be determined.  In order 

to do this TMS will be employed to examine the effects of stimulation across visual 

discriminations of three relatively low-level visual attributes. Specifically, I aim to examine 

the effects of lateral occipital cortex stimulation on discriminations of orientation, motion 

and shape. 
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Chapter 2  

Methodology & Visual Stimuli 

 2.1: Overview 

The initial aim of this chapter is to provide an overview of the major methodological 

considerations and approaches undertaken throughout the thesis. These include the use of 

visual psychophysics, the major factors involved in TMS and probing the properties of visual 

field maps using fMRI. Additionally this chapter aims to outline the rationale for employing 

retinotopically-guided TMS and describe the three-stage process adhered too for all TMS 

studies. 

2.2: Measuring Behaviour with Visual Psychophysics 

 Throughout the thesis, we hoped to explore the functional roles played by 

subdivisions of lateral occipital cortex in the processing of three different visual attributes; 

orientation, motion and shape. In order to maximise the potential of TMS to elucidate the 

roles played by our cortical targets, precise measurements of behaviour were needed. 

Precise measurements of behaviour can be achieved through psychophysical techniques. 

The following section provides an overview of the method of constant stimuli; the 

psychophysical method employed here.  

  During the method of constant stimuli, the percentage of observations as a function 

of stimulus intensity is determined (Gescheider, 1997). A series of stimulus intensities or 

levels are chosen. This fixed set of stimulus intensities are presented multiple, but equal, 

times in a randomised fashion. After each stimulus presentation the observer reports 

whether or not the stimulus was detected (establishing the absolute threshold) or whether 

the stimulus was stronger or weaker than a fixed reference stimulus (establishing the 

difference threshold). In our psychophysical experiments we derived difference thresholds. 

Subjects were required to judge whether the test stimulus was of a greater or weaker 

magnitude than the reference. In such a discrimination experiment, we can calculate the 

point of subjective equality (PSE), which represents the value of the test stimulus that over a 

large number of trials was on average perceived subjectively as equal to the reference 



Chapter 2                                                                              Methodology & Visual Stimuli 

 

27 
 

(Gescheider, 1997). Often the PSE is not exactly equal to the reference value, with the 

difference between the two given as the constant error (Gescheider, 1997). Once each 

stimulus has been presented an equal number of times, the proportion of greater and 

weaker responses is calculated for each stimulus level. If there were fixed thresholds for 

detection, the psychometric function would show a sharp transition from perceived to not 

perceived. Psychometric functions, if acquired with appropriate stimulus intensities, seldom 

show this sharp transition. The resulting function is typically a sigmoid (s shape) curve. Often 

the cumulative Gaussian distribution is used to model the function. The method of constant 

stimuli is commonly adopted over other psychophysical paradigms, such as adaptive 

staircases, when subjects are naive or lack sufficient experience with psychophysics. The 

pool of subjects in the current body of work included both experienced psychophysical 

observers and entirely naive subjects and therefore, the method of constant stimuli was 

selected.  

2.3: Visual Stimuli  

In order to explore the processing of orientation, motion and shape, our stimuli must 

be suitably selected and controlled precisely.  Throughout the thesis we employed 

sinusoidal gratings (either presented static or drifting) and radial frequency patterns, in 

order to probe orientation, motion and shape perception. The following sections describe 

some of the findings that have arisen through their use.   

2.3.1:    Sinusoidal Gratings 

The motion and orientation studies reported in Chapters 4-6 made use of luminance 

modulated sinusoidal gratings. These simple, yet important stimuli allow one to examine 

orientation and motion discrimination with a high level of accuracy. In both cases, one need 

only change a single stimulus feature at a time; either orientation or speed. These stimuli 

ensure a high level of experimenter control, which is important when measuring behaviour. 

Sinusoidal gratings, like the ones employed here, have been used repeatedly to 

demonstrate orientation and motion selectivity across different species and investigative 

paradigms. In terms of orientation discrimination, these stimuli have been used to provide a 

neural basis for the oblique effect (Taylor, 1963), by demonstrating significantly greater 
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proportions of neurons in cat V1 tuned to the cardinal axes than to oblique orientations (Li, 

Peterson & Freeman, 2003). Grating stimuli have also been used to demonstrate 

orientation, size and spatial frequency selectivity within human visual cortex (Blakemore & 

Campbell, 1969). In addition, the dependency of orientation discrimination on spatial 

frequency (Burr & Wijesundra, 1991), and the maintenance of the oblique effect across a 

large range of spatial frequencies (1-35 cpd) (Campbell & Kulikowski, 1966), were 

demonstrated through the use of luminance modulated sinusoidal gratings. A final point on 

the use of grating stimuli for orientation discrimination is that they have been used 

successfully to assess achromatic as well as chromatic orientation processing (Webster & 

DeValois & Switkes, 1990) - a feature that is important for the studies reported in Chapter 7.  

Sinusoidal gratings have also been employed successfully to study a number of 

aspects of motion perception. Early work in non-human primates demonstrated direction 

selective neurons in both cat and macaque visual cortices (Adelson & Movshon, 1980). In 

human, these stimuli have been used to demonstrate that speed discrimination is contrast 

dependent (Thompson, Stone & Stone, 1992). Indeed, when two gratings drifting at the 

same speed are presented simultaneously, the lower-contrast grating appears slower across 

a wide range of contrasts (0.25-50%) (Thompson et al., 1992). More recent studies using 

imaging techniques have demonstrated direction (Singh, Smith & Greenlee, 2000) and 

motion selectivity in human V5/MT and V3A (McKeefry et al., 2008) and moreover, these 

stimuli have also been used in neurostimulation studies of human speed perception 

(McKeefry et al., 2008).  

Taken together, the findings from previous studies of orientation and motion 

discrimination serve to highlight the value and importance of sinusoidal gratings. The choice 

of stimulus selection was heavily influenced by those studies mentioned above (and many 

more).  

 2.3.2:     Radial Frequency Patterns 

Stimuli selected to probe shape processing were radial frequency (RF) patterns 

(Wilkinson, Wilson & Habak, 1998), created by deforming the radius of a circle via a sine 

wave, depicted in Figure 2.1. The solid black line in the top-left of Figure 2.1, (adapted from 
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Bell, Badcock, Wilson & Wilkinson, 2007) shows how sinusoidal modulation of a circle 

creates smooth deviations from circularity, with the frequency of complete cycles within 

360° defining the number of deformations and the amplitude of the sine wave (radius°) 

defining the magnitude of those deformations. The top right of Figure 2.1, illustrates a RF3 

pattern; there are three complete cycles and therefore, three smooth deviations from 

circularity. The bottom panel of Figure 2.1 illustrates three examples of RF3 patterns with 

different amplitudes. These three stimuli can be seen to vary from smooth to spiky (Left-

right).  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

RF patterns have been used previously to investigate various aspects of intermediate 

vision including contour integration (Wilkinson et al., 1998), local and global shape 

processing (Bell et al., 2007) and even the processing of biological shapes (Wilson, Loffler & 

Wilkinson, 2002; Wilson & Wilkinson, 2002). Wilkinson and colleagues (Wilkinson et al., 

1998) measured subject’s detection thresholds for several radial deformations of circular 

Figure 2.1: Schematics and examples of radial frequency patterns. Deforming a circle with a 

sine wave creates smooth deviations from circularity (solid black line), defined by the 

frequency and amplitude of the sine wave (top panel). Examples of radial frequency 

patterns (bottom panel). The RF patterns have the same frequency (3), differing only in the 

amplitude of the sine wave. Modification of the amplitude of the sine wave (from small to 

large) creates shapes that vary on a smooth (bottom panel: left) to spiky (bottom panel: 

right) axis. The phases (orientation) of the radial frequency patterns have been randomised. 
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contours. They found that even with 167ms presentation, subjects were able to identify 

radial frequencies of six cycles and below with over 90% accuracy, sensitivity peaked with 

radial frequencies of 3. Subject’s ability to detect these radial deformations was said to be in 

the hyper-acuity (Westheimer, 1975) range. More recently RF patterns have been presented 

during fMRI experiments to demonstrate different spatial scales of shape similarity in lateral 

and ventral portions of the LOC (Drucker & Aguirre, 2009). The authors used RF patterns to 

demonstrate a coarse coding of shape within lateral LOC, and a fine-scale coding of shape 

within ventral LOC.  The coarse shape coding in lateral LOC regions is suggested to allow the 

representations of features to be combined with orientation and/or retinotopic information 

(Edelman & Intrator, 2000)  to capture shape information (Drucker & Aguirre, 2009). The 

use of RF patterns to study shape processing was influenced by previous work. Importantly, 

the shapes of the RF patterns could be modified with the same level of control as the 

sinusoidal gratings employed in our discriminations of orientation and motion. That is, 

through modification of the amplitude only, we could create different shapes.  

Taken together these stimuli allowed us to probe the functional specializations 

present in lateral occipital cortex to orientation, motion and shape with equal levels of 

stimulus control.  

2.4: Disrupting Behaviour with Transcranial Magnetic Stimulation  

Having measured behaviour psychophysically, we hoped to elucidate the regions of 

lateral occipital cortex causally involved in mediating such behaviours by inducing selective 

disruptions to normal neural processes, through the use of TMS. The following sections 

outline some of the major factors involved in TMS stimulation. 

Notwithstanding the importance, nor impact that fMRI, has had on our 

understanding of human cognitive function, fMRI is limited by a major factor – causality. 

This technique cannot demonstrate that a particular cortical region is necessary for the 

performance of a particular cognitive function (Price & Fiston, 2002). In contrast, TMS allows 

causal inferences to made, via its ability to induce localised disruption to specific cortical 

areas and thus create ‘virtual lesions’ (Pascual-Leone, Walsh & Rothwell, 2000; Walsh & 

Cowey, 2000; Cowey & Walsh, 2000; Huang, Edwards, Rounis, Bhatia & Rothwell, 2005; 
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Cowey, 2005). TMS therefore, provides a means by which to study causal brain-behaviour 

relationships in the healthy individual which, prior to the inception of TMS was only possible 

through neuropsychological studies, the results of which can be troublesome to interpret. 

Deficits following head trauma, are typically catastrophic and diffuse in nature, making 

definitive interpretations as to which region underpins which task difficult. TMS avoids 

several interpretation issues associated with the results of patient studies, such as, 

individual differences in pre-trauma abilities. The great advantage of TMS however, lies in 

its ability to be delivered with a high degree of both spatial and temporal precision. 

2.4.1:    Different Forms of TMS 

TMS can be delivered in a number of ways. In its most basic form single TMS pulses 

are administered at a constant rate (typically 1Hz).  Pulse trains can also be delivered 

repetitively (rTMS) in a series of pulse trains.  A third method for TMS stimulation is referred 

to as ‘theta burst’, which involves the delivery of short burst, high frequency (50-100Hz) 

pulse trains (Huang et al., 2005).  

2.4.2:    How Does TMS work? 

TMS operates via the principle that when a rapidly alternating electrical current is 

passed through a metal coil (stimulating coil) a magnetic field is induced that flows 

orthogonally to the orientation of the coil (Walsh & Cowey, 2000; Cowey & Walsh, 2000; 

Cowey 2005). When the stimulating coil is placed upon the scalp, the magnetic field 

penetrates through the skull and induces an electrical current within the underlying cerebral 

cortex (Hallett, 2002; 2007). The induced electrical current runs perpendicular to the 

magnetic field, and in turn, temporarily alters normal neuronal functioning. The action of 

TMS is schematised in Figure 2.2. 
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The exact mechanisms by which TMS exerts its effects, however, are not fully 

understood, presumably owing to reports of both facilitatory and inhibitory effects of TMS 

on various aspects of cognitive functioning (Hallett, 2007). Whether TMS produces 

excitatory or inhibitory neuronal effects appears to depend on a multitude of factors 

including the timing, strength and temporal make-up of the TMS pulses (Hallett, 2007).  

Allen and colleagues (Allen, Pasley, Duong & Freeman, 2007) provided a direct 

neurophysiological demonstration of the effects of TMS in cat visual cortex. TMS of cat 

visual cortex during visual stimulus presentation led to a transient increase in the firing rate 

of neurons not typically responsive (under no TMS conditions) to the visual stimulus.  The 

observed increase in background spontaneous activity was also accompanied by 

simultaneous inhibition in the firing rate of neurons actively responsive to the stimulus. The 

inhibitory effects of TMS were found to be temporally robust, suppressing visually evoked 

activity for up to 10 minutes post TMS stimulation. Allen and colleagues further 

demonstrated a coupling between the induced neuronal changes and changes in 

oxygenation and blood flow to the stimulated cortical area (Allen et al., 2007).  

Figure 2.2: Schematic representation of the action of TMS. The flux lines (dashed lines 

running vertically) of the magnetic field can be seen to flow perpendicular to the plane of 

the magnetic coil (dark grey ring). The magnetic field penetrates the scalp and induces an 

electrical current flow perpendicular to the magnetic flux lines (light grey ring). Adapted 

from Box 1 Hallett (2002). 
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In human studies, TMS is typically employed to demonstrate causal roles between 

cortical areas and the performance or perception of particular stimulus attributes (McKeefry 

et al., 2008) or categories (Pitcher et al., 2009). In these instances, TMS is often described as 

disrupting normal cognitive functioning through the introduction of random neural firing or 

‘neural noise’. Several suggestions have been proposed to account for the induced 

reduction in signal to noise ratio, citing either a loss in the stimulus driven signal strength 

(Harris, Clifford & Miniussi, 2008) or an increase in spontaneous background neuronal noise 

(Ruzzoli, Marzi & Miniussi, 2010). Harris and colleagues (2008) had subjects make 

orientation judgements of simple orientated gratings whilst manipulating the background 

noise in the image. The interaction between the effect of V1 stimulation and background 

noise was interpreted as TMS reducing the relevant signal strength, rather than increasing 

the background neuronal noise in the system (Harris et al., 2008). In contrast, Ruzzoli and 

colleagues (2010) investigated the effects of single pulse TMS of V5/MT on the shape of 

psychometric functions for a motion-direction discrimination task. The task had two 

elements, dots that moved coherently in one direction and randomly moving dots.  The 

effect of V5/MT stimulation was to reduce the slope of the psychometric function, which 

was interpreted as reflecting an increase in random neural noise plus a decrease in system 

sensitivity (Ruzzoli et al., 2010). Additionally, the relative degree to which TMS facilitates or 

suppresses cognitive function appears to depend on the activation state of the neurons 

prior to TMS delivery (Silvanto, Muggleton, Cowey & Walsh, 2007). Under neuronal 

adaptation (repeated exposure to the same stimulus decreases the firing rate of the 

encoding neurons over time) the delivery of TMS increases the firing of the adapted neural 

populations, whilst suppressing the activity of neural populations unaffected by the adaptor 

stimulus. In the case of adaptation, TMS is suggested to exert its effects on the least active 

neurons (Silvanto et al., 2007). Relatively recently, it was suggested that TMS investigators 

should strive to move away from the ‘virtual lesion’ conceptualisation of TMS and rather, 

interpret the effects of TMS with respect to models of psychological processing, with a 

special emphasis on signal detection theory (Miniussi, Ruzzoli & Walsh, 2010). In this 

framework, one can explain facilitatory and inhibitory effects of TMS within the same 

model, rather than interpreting inhibitory effects as virtual lesions and facilitatory effects as 

paradoxical (Miniussi et al., 2010). 



Chapter 2                                                                              Methodology & Visual Stimuli 

 

34 
 

2.4.3:    The Spatial Resolution of TMS 

An exact measure of the spatial resolution of TMS (in mm or cm) cannot be given as 

the induced effects depend on a plethora of factors; initial activity of neurons in the 

stimulated region of interest (Silvanto et al., 2007) stimulation intensity (McKeefry et al., 

2008) stimulation frequency (Huang et al., 2005) and the behavioural metric used to 

evaluate the effect of TMS, to name but a few. Estimates of the spatial resolution of TMS 

can however, be made and are aided by knowledge of cortical organisation. For instance, in 

visual cortex, Kammer (1999) demonstrated that phosphenes (perceived dots of light, in this 

case induced by stimulating parts of V1) can be elicited with a spatial resolution of 1-2 

degrees of visual angle, which corresponded to approximately 10-20mm of cortex, mapped 

functionally (Kammer, 1999). Coil Displacement as small as 1cm along the scalps surface can 

shift the perceived retinal location of phosphenes (Walsh & Cowey, 2000; Cowey, 2005). 

Recently, TMS induced dissociations have been reported between stimulation sites 

separated by approximately 7.8mm (Pitcher et al., 2009); although of note, these 

measurements were derived from transformation between individual’s native space and 

MNI space, which could therefore, lead to distortions.  A commonly accepted estimate of 

the spatial resolution of TMS appears to be in the range of 1cm (Walsh & Rushworth, 1999; 

Cowey, 2005).  

2.4.4:    Localising the Site of TMS stimulation 

The limiting step in any TMS endeavour is the precision with which the TMS coil can 

be positioned so that the induced neural disruption is centred on the cortical target of 

interest. TMS investigators routinely employ a number of localisation methods, which differ 

in their accuracy and reliability. In order to maximise the potential of TMS to probe the 

functional properties of specific brain areas, it is fundamentally important to have detailed 

information regarding how and where specific visual areas are mapped across the cortical 

surface of individuals. Of paramount importance therefore, is to establish a spatial 

framework within which, areas are identified and localised in each individual. The use of 

retinotopic mapping techniques, which allows for detailed and precise delineation of visual 

areas, provides such a framework.  
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Although it is commonly hypothesised that the basic organisation of the visual cortex 

is maintained across individuals, subtle variation in the size, position and orientation of 

visual field maps illustrates the necessity of identifying these maps in individuals. For 

example, visual field map sizes can vary by a factor of two between different subjects 

(Stensaas, Eddington & Dobelle, 1974; Andrews, Halpern & Purves, 1997; Dougherty et al., 

2003; Duncan and Boynton, 2003). The variations in location are not trivially solved using 

anatomical landmarks on an individual’s scalp or cortex. Indeed, McKeefry et al., (2009) 

highlighted how this individual variation can be particularly problematic for visual TMS 

studies, where placement of the coil on the subjects scalp has often been performed with 

limited knowledge of the underlying cortical organisation of the individual being stimulated.  

A relatively common method in TMS studies is to localise particular cortical stimulation sites 

based on the external anatomy of the skull, measuring particular distances from a fixed 

location, such as the inion (Ellison & Cowey, 2006). As such, these methods do not account 

for the identified variation in visual area location across subjects.  

Sack and colleagues (Sack, Kadosh, Schuhmann, Moerel, Walsh & Goebel, 2009) 

systematically compared the accuracy of four commonly employed methods of TMS coil 

localisation. The authors compared the accuracy with which each of the four methods could 

localise the inter-parietal sulcus (IPS) and measured the induced TMS effects on a 

subsequent mental arithmetic task. The effects of TMS of the IPS were compared using the 

following four methods (1) Individual fMRI-guided TMS neuronavigation, (2) individual MRI-

guided TMS neuronavigation, (3) group functional Talairach coordinates and (4) 10-20 EEG 

position (P4). A systematic difference in the efficacy of the TMS effect was observed 

between the four approaches. The individual fMRI-guided TMS neuronavigation yeilded the 

strongest behavioural effect, with the P4 stimulation yielding the weakest. Power analyses 

indicated that the number of necessary participants needed to achieve a significant effect of 

TMS increased systematically across localisation methods. For instance, although five 

participants were sufficient to reveal a significant behavioural effect during fMRI-guided 

localisation, this number increased to 9 for the MRI anatomical localisation method, to 13 in 

the case of group averaged Talairach coordinates and to 47 when TMS was localized using 

the P4 method.  
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2.5: The Use of fMRI 

Probing the functional properties of specific visual field maps in human is not a novel 

endeavour. Indeed, throughout the literature many experiments that have done so using a 

variety of neuroscience tools, including PET (Lueck et al., 1989; Zeki, 1990) and fMRI 

(McKeefry & Zeki, 1997; Wandell et al., 2005; Brewer et al., 2005; Larsson and Heeger 2006; 

Wandell et al., 2007). Despite these endeavours however, a vanishingly small number of 

studies have employed TMS to probe the functional properties of individual visual field 

maps (McKeefry et al., 2009), presumably due to their small size and close proximity 

(adjacent visual field maps abut one another). One novel contribution made by this thesis 

lies in the successful use of retinotopic mapping to guide the TMS coil so that LO1 and LO2 

may be stimulated independently. The following section provides a brief description of the 

fMRI methodology, how it has been employed in the study of visual field maps, including 

LO1 and LO2 and finally why, and under what circumstances TMS may provide a more 

fruitful and informative tool.  

2.5.1:    Probing Visual Field Maps with fMRI 

Functional MRI provides an indirect, correlational measurement of neuronal activity, 

through measuring hemodynamic responses over time. Critical to fMRI is the assumption 

that an active region of the brain requires an increase in energy in the form of glucose and 

oxygen (Logothetis 2008).  An increase in neural firing in turn increases cells’ metabolic 

demands and consequently, increases the demand for replenishment. The energy required 

for cell firing is transported throughout the body in the form of haemoglobin. Oxy and 

deoxy-haemoglobin have magnetic properties that are detectible at different strengths with 

fMRI. Changes in the concentration of oxy:deoxy haemoglobin within a region of the brain 

therefore, provides an indirect measure of neural activity. An active brain region will contain 

a higher concentration of deoxy-haemoglobin relative to non-active regions of cortex. The 

change in oxygenation concentration is referred to as the Blood Oxygenation Level 

Dependant (BOLD) response; fMRI measures changes in BOLD over time (Logothetis, 2008).  

The great advantage of fMRI, over other neuroimaging techniques such as EEG and 

MEG, lies in its spatial resolution (Logothetis, 2008). Despite this ability however, fMRI is 



Chapter 2                                                                              Methodology & Visual Stimuli 

 

37 
 

limited in terms of temporal resolution, by the time-delay between neuronal activity and 

the replenishment of oxygen to active cells. Neural activity, in the form of action potentials, 

occurs rapidly (a few ms) following the onset of a stimulus, whereas the replenishment of 

oxygen is of the order of several seconds, with a peak occurring ~6sec post stimulus onset, 

referred to as the hemodynamic response function (HRF). The HRF is highly reliable, forming 

a canonical tool for many software packages (SPM, FSL) which employs the HRF to convolve 

fMRI time-series data. Despite the poor temporal resolution the BOLD response does 

however, correlate with action potentials (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 

2001). 

A plethora of studies have successfully employed fMRI to elucidate the responsive 

nature of many different visual field maps across both dorsal (Larsson & Heeger, 2006; 

Amano et al., 2009) and ventral (McKeefry & Zeki, 1997; Wandell et al., 2005; Brewer et al., 

2005; Arcaro et al., 2009; Winawer et al., 2010) surfaces of the occipital lobe. 

Notwithstanding the importance, nor impact of such findings, they are nonetheless 

constrained by the major limitation inherent in the BOLD signal – causality. As a result, fMRI 

cannot demonstrate definitively that neural activity within a spatially specific area of cortex 

is essential for, or causally related to, a particular characteristic of perception or cognition. 

In direct contrast, TMS has the ability to induce spatially specific disruption to normal 

cortical activity, providing a unique opportunity to identify causal links between brain and 

behavior in neurologically healthy human subjects. The application of TMS provides a means 

to examine the specific computations performed by individual human visual field maps. 

Indeed, the assessment of causality in brain-behaviour relationships is thought by some 

(Silvanto & Pascual-Leone, 2012), to require brain stimulation.   

In the case of LO1 and LO2, previous work has exclusively employed fMRI (Larsson & 

Heeger, 2006; Larsson et al., 2006; Sayres & Grill-Spector, 2008; Amano et al., 2009). 

Utilising TMS offers the potential to demonstrate, for the first time, causal links between 

neural activity within LO1 and LO2 and particular features of visual perception. LO1 and LO2 

are superb candidates for TMS stimulation (McKeefry et al., 2009). LO1 and LO2 are 

superficial sources, located on the dorsal and lateral surface of the brain, making them ‘ripe’ 

for TMS stimulation (McKeefry et al., 2009). The main point here is that where appropriate, 

TMS may provide a more valuable tool than fMRI to probe causal relationships.  There are of 
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course, scenarios where the use of TMS is redundant. For instance, there are a number of 

visual field maps that have been identified on the medial and ventral surfaces of the brain 

(McKeefry & Zeki, 1997; Wandell et al., 2005; Arcaro et al., 2009). These visual field maps 

make it unlikely, if not it impossible to stimulate precisely with TMS. In these circumstances, 

the use of fMRI is clearly favorable; however, when the opportunity presents, TMS may 

provide a more informative neuroscience tool.  

2.5.2:    Advantages of Retinotopically-Guided TMS 

The results of Sack et al (2009) indicate that fMRI-guided TMS is the most accurate 

method to localise the site of TMS stimulation. Often the site of TMS localisation is selected 

on the basis of the peak responding voxel in functional localiser scans (Pitcher et al., 2009). 

Although these localisers can account for individual variation in anatomical location, they 

are inappropriate for identifying areas of cortex with poorly defined functional properties, 

such as LO1 and LO2. In these cases, retinotopic mapping allows the localisation of smaller 

and more specific regions of visual cortex, compared to regions defined using functional 

localisers, such as LO. Indeed, these functionally selective areas are often large and 

encompass multiple visual field maps (Larsson & Heeger, 2006; Wandell et al., 2007; Amano 

et al., 2009; Arcaro et al., 2009). Combining retinotopic mapping with TMS allows 

investigators to probe the contributions of single cortical areas to the performance of 

particular tasks in a precise and accurately targeted manner. The marrying of the two 

techniques provides visual neuroscientists with the platform to investigate the properties of 

human visual cortex at a relatively new spatial scale. 

The current body of work diverges from previous studies of LO1 and LO2 in that it 

employs the use of fMRI visual field mapping in order to localise LO1 and LO2 so that they 

may be targeted with TMS. Such a paradigm has been implemented successfully in the study 

of visual areas, V5/MT and V3A (McKeery et al., 2008). The use of visual field mapping is 

essential given the individual variation in size, location and orientation of LO1 and LO2 

reported previously (Larsson & Heeger, 2006). Importantly, the use of TMS in this regard 

allows for causal inferences to be made and is a necessary step (Silvanto & Pascual-Leone, 

2012) in order to elucidate the functional specializations exhibited by LO1 and LO2 – which 

are currently unknown.  
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2.6: Our Paradigm  –  Three Stage Experimental Approach  

An important feature of the current body of work is that the experimental protocol 

for all psychophysical and TMS studies remained constant. That is, the basic spatial and 

temporal organisations of the psychophysical and TMS experiments were identical across 

studies, as were the TMS stimulation parameters and simulating coils. Each TMS study 

adhered to a strict three-stage process of: (1) Identification of cortical targets, either 

through fMRI visual field mapping techniques (in the case of LO1 and LO2) or anatomical 

landmarks (in the case of V5/MT); (2) measuring discrimination thresholds for each 

individual subject on a variety of visual tasks using the method of constant stimuli and (3) 

delivery of TMS pulses to our cortical targets (LO1, LO2 & V5/MT) in individual subjects 

whilst those subjects perform visual tasks at threshold. This adherence to the same 

methodological processes allows the results from the different experiments to be compared 

directly. The following sections describe in full the three stage process implemented in each 

TMS experiment. 

2.6.1:    Stage 1 – Identification of Cortical Targets  

The initial stage of each study relied upon identifying LO1 and LO2 in individual 

subjects. A full description of fMRI visual field mapping techniques, and how they were 

implemented is provided in Chapter 3, along with detailed descriptions and analyses of the 

retinotopic features defining LO1 and LO2.  Briefly, LO1 and LO2 are adjacent mirror-image 

representations of the contralateral visual field on the lateral surface of the occipital lobe 

(Larsson & Heeger, 2006). The visual field mapping experiments conducted throughout the 

thesis allowed LO1 and LO2 to be identified in at least one hemisphere in each subject. 

Overall LO1 and LO2 were identifiable in ~90 % of hemispheres tested, an identification rate 

slightly higher than that reported previously (Larsson & Heeger, 2006).  

Definitions of V5/MT were made anatomically following published guidelines 

(Dumoulin, Bittar, Kabani, Baker, Le Goualher, Pike & Evans, 2000). The V5/MT target site 

was located in the ascending limb of the inferior temporal sulcus (ALITS) in all subjects. 

Given the reliability in anatomical location of V5/MT relative to common gyral and sulcal 

patterns, an anatomical method of identification is justified (Dumoulin et al., 2000). 
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Additionally, functional confirmations of these anatomical targets were possible in a subset 

of subjects (n = 4). In these subjects the anatomically defined V5/MT target was not only 

located within the ALITS, but also, the region of cortex maximally responsive to the 

presentation of moving over static gratings during fMRI acquisition. Subjects S1, S6, S7 & 

S12, participated in a standard motion selective localiser (see Appendix for full fMRI 

protocol). Subjects viewed two luminance modulated sinusoidal gratings, presented in a 

circular aperture (diameter 4°) at 50% contrast. Stimuli were centred at 10° eccentricity 

along the horizontal meridian into both the left and right visual fields. A standard block 

design (12 sec on/12 secs off) was employed. Subjects fixated a central black dot (diameter 

0.3°). Within a motion block, the stimuli drifted at 8°/sec. The direction of drift (left-

right/right-left) reversed every 3 secs. Static and motion blocks were alternated.  The results 

of the motion localiser are plotted in Figure 2.3, for subjects S1, S6, S7 and S12. The left 

column of Figure 2.3, depicts motion selective regions of cortex on saggital and axial slices 

of the right hemisphere. The crosshairs are centred on the anatomically defined V5/MT 

target sites. The middle column of Figure 2.3, depicts the BOLD responses derived from the 

contrast motion > static on right hemisphere surface reconstructions. In all subjects, the 

anatomically defined target sites (blue circles) can be seen to not only fall within the ALITS, 

but also within the region of cortex maximally active during motion blocks. The right column 

of Figure 2.3, depicts the average time-course from the functional V5/MT ROI. Given the 

correspondence between the anatomical and functional definitions of V5/MT illustrated in 

this subset of subjects, I am confident therefore, that the cortical region stimulated with 

TMS was indeed the V5/MT complex in all subjects.   
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Figure 2.3: Correspondence between anatomical and functional definitions of V5/MT. The 

anatomical and functional definitions of V5/MT are compared for subjects S1, S6, S7 & S12. 

Left column: motion selective regions of cortex are depicted on saggital and axial slices of 

the right hemisphere of all subjects. The crosshairs are centred on the anatomically defined 

V5/MT targets for TMS. Images are depicted in neurological convention. Middle column: 

motion selective regions of cortex are depicted on partially inflated surface reconstructions of 

the right hemisphere. In all subjects the anatomically defined V5/MT TMS targets are 

depicted by the blue circle and can be seen to (1) fall within the ALITS and (2) fall within 

functional definitions of V5/MT. Right column: mean time-series plots, plus mean signal 

amplitudes from the functionally defined V5/MT ROIs. In all subjects, activity within V5/MT 

can be seen to be modulated (positively) by the onset of moving stimuli. Taken together, 

these data show a good correspondence between our anatomical and functional definitions 

of V5/MT.  
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2.6.2:    Stage 2  –  Visual Psychophysics & the Method of Constant Stimuli 

The second phase of each study was to establish individual discrimination thresholds 

using visual psychophysics employing the method of constant stimuli. Stimuli employed in 

all psychophysical and TMS studies reported in this thesis were generated using MATLAB 

(Mathworks, USA) and displayed on a Mitsubishi Diamond Pro 2070SB display with a refresh 

rate of 60 Hz, controlled by a VISAGE graphics card (Cambridge Research Systems TM). Prior 

to the acquisition of psychophysical data, the monitor was calibrated and Gamma correction 

procedures were undertaken. The luminance output of most monitors is not proportional to 

the voltage of the applied signal, but to some power of this voltage. The voltage/luminance 

can even vary across screens of the same make and model. Gamma correction was 

performed using the VISAGE in order to accurately reproduce stimulus contrast and/or 

absolute luminance values. The VISAGE outputs a sequence of voltage levels for each active 

colour-gun in a target area of the screen. The inverse voltage-luminance curves are 

calculated to correct the non-linearities. The values from the Gamma correction are 

provided in Table 2.1.   

 

 

 

   

 

 

 

 

 

 

 

 Psychophysical tasks for all TMS studies initially comprised seven linearly spaced 

stimulus intensity levels (including a reference) that spanned a range of values either side of 

the reference. Orientation discrimination psychometric functions from two representative 

subjects are shown in Figure 2.4. During orientation discrimination seven orientations were 

selected that spanned a range of orientations more vertical and more horizontal than 45° – 

Gamma Correction 

  Phosphor Coordinates   Luminance  

  CIE   cd/m
2
 

  x y   Min Max 

R 0.6100 0.3460   0.0000 14.9900 

G 0.2800 0.5940   0.0000 51.7100 

B 0.1420 0.0700   0.0000 9.7500 

Table 2.1: Results of Gamma correction. The values of the Gamma corrected colour-guns 

are given in CIE space along with the min and max luminance measurements for each 

colour-gun 
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Figure 2.4 Example psychometric functions. Orientation discrimination psychometric 

functions are plotted for two representative subjects. Orientation is plotted on the x axis, with 

the proportion of more vertical responses plotted on the y axis. Seven orientations (blue 

circles) were presented that spanned a range of orientations more vertical and more 

horizontal than the reference (45deg). In both examples, the psychometric function (pale 

curve) is well described by a sigmoid curve.  

the reference. Subjects were required to judge whether the test grating was more vertical 

or horizontal relative to the reference. The proportion of vertical responses for each 

orientation was then calculated. In both examples, the functions are well described by 

sigmoid curves. 

 

 

 

 

 

 

 

 

Throughout the thesis, a single psychophysical protocol was adopted. The spatial and 

temporal organisation was identical across studies. The studies themselves differing only in 

the specific stimuli presented. As a result a single description of the psychophysical protocol 

is provided here, with details of the specific stimuli used in each study provided within each 

TMS experimental chapter.  The basic spatial and temporal organisation of a single 

psychophysical trial is plotted in Figure 2.5. In all subjects tested, visual stimuli were centred 

at 10 eccentricity along the horizontal meridian into the visual field contralateral to the 

hemisphere in which LO1 and LO2 were most readily identifiable (hemisphere stimulated 

during subsequent TMS experiments). That is, for subjects in whom LO1 and LO2 were 

identified in the right hemisphere, visual stimuli were presented into the left visual field and 

vice-versa. Stimuli were viewed monocularly with the subject’s self-reported dominant eye 

from a fixed distance of 57cm. The placement of the stimuli ensured that they were 

presented into the visual field contralateral to TMS stimulation. Subjects fixated a central 

black dot (diameter 0.3), which remained throughout the studies. A blank screen was 
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Figure 2.5: Spatial and temporal organisation of a single psychophysical trial. Throughout all 

psychophysical studies, stimuli were centred at 10° eccentricity into the visual field 

contralateral to the hemisphere in which LO1 and LO2 were most readily identifiable – the 

left visual field In this case. Subjects viewed a central fixation dot (diameter 0.3°) for 500ms. 

A reference stimulus was then presented for 200ms, followed by a 1200ms ISI and then the 

test stimulus for 200ms. Subjects were required to judge whether the test stimulus was of a 

greater or weaker intensity than the reference, by pressing the appropriate key on a 

keyboard. Subject’s responses were recorded after the presentation of the test stimulus.  

presented first (500ms), followed by a fixed reference stimulus (200ms), an inter-stimulus 

interval (1200ms) and finally a test stimulus (200ms). Subjects were required to judge 

whether the test stimulus was of a greater or weaker intensity than the reference, by 

pressing the appropriate key on a keyboard.  

 

 

 

 

 

 

 

 

 

 

 

To capture individual psychometric functions, seven test stimuli were presented 

(including one that matched the reference). Selected stimuli spanned a range of values both 

greater and weaker in intensity than the reference. The seven stimulus levels were linearly 

spaced from one another.  The spacing (step size) of the test stimuli were chosen for each 

subject on the basis of performance on a single 70 trial pilot run. Pilot runs were not 

included when calculating psychometric functions. Each subject completed five 

experimental runs, each run comprising 70 trials (10 trials per stimulus intensity level). Test 

stimuli were presented in a randomised order. A cumulative Gaussian was fitted to the 

average data of all runs from each subject to model the psychometric function. Initially 

thresholds (75% correct) were established for stimuli of a greater and weaker intensity than 

the reference. In some subjects the best fitting psychometric function may not pass through 

50% correct identification when the reference and test stimuli were equal, the PSE. This in 

turn may lead to asymmetric psychometric functions which will result in asymmetric 

thresholds. In this case, one threshold may be closer to the reference than the other, 
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Figure 2.6: Procedure for defining thresholds to be presented during TMS sessions. An 

orientation discrimination psychometric function for a single subject is shown. In this case, 

the function does not pass through 50 % identification when both reference and test stimuli 

were equal (45°), resulting in an asymmetric function. Initially, the 75% correct more vertical 

and the 75% correct more horizontal orientations were defined (dashed blue lines). From 

these it is clear that these thresholds are asymmetrical – one is much closer to the reference 

than the other. To account for this, the range (black double-arrow) between these 

orientations was calculated and divided in half. TMS stimuli were created by the following 

equation: TMS stimuli = reference ± range/2. This created two stimuli that were equidistant 

from the reference. 

illustrated in Figure 2.6. In order to account for this, we defined stimuli that were 

equidistant from the reference stimulus, but also, approximated threshold (75% correct). 

Initially, we calculated the 75% correct values for stimuli greater and weaker than the 

reference. The range between the two 75% correct values was calculated and added to the 

following equation: TMS stimuli = reference ± range/2 
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Figure 2.7: Spatial and temporal organisation of a single TMS trial. Throughout all TMS 

sessions (and baseline), stimuli were centred at 10° eccentricity into the visual field 

contralateral to the hemisphere in which LO1 and LO2 were most readily identifiable – the 

left visual field In this case. Subjects viewed a central fixation dot (diameter 0.3°) for 500ms. 

A reference stimulus was then presented for 200ms, followed by a 1200ms ISI and then one 

of two test stimuli for 200ms. 4 biphasic TMS pulses, at 70% of the maximum stimulator 

output (2.6 Tesla) were delivered concurrently with the presentation of the test stimuli – 

depicted by the red lightning bolt. 

2.6.3:    Stage 3  –  TMS Protocol  

The spatial and temporal organisation of the TMS and psychophysical protocols 

differed in only one important aspect. During the application of TMS to cortical targets and 

baseline (no TMS), only the two threshold stimuli (described above) were presented as test 

stimuli during each TMS task. That is, during TMS sessions, subjects were required to 

discriminate between the reference stimulus and two test stimuli only (per task). Each TMS 

session comprised 100 trials (50 per threshold stimulus). The spatial and temporal 

organisation of a single TMS trial is depicted in Figure 2.7. Subjects viewed an initial blank 

screen (500ms) followed by the reference stimulus (200ms), an ISI (1200ms) and finally one 

of the two test stimuli (200ms) selected at random.  TMS pulses were delivered concurrently 

with the presentation of the test stimuli (depicted by the red lightning bolt). 

 

 

 

 

 

 

TMS sessions (task and condition) were counterbalanced across subjects within each 

study. During TMS sessions a train of 4 biphasic (equal relative amplitude) TMS pulses, 

separated by 50ms (20Hz) at 70% of the maximum stimulator output (2.6 Tesla) were 

applied to the subject’s scalp using a figure-of-eight coil (50mm external diameter of each 

ring) connected to a Magstim Rapid2 TM stimulator (Magstim, Wales). Selecting a fixed 

stimulation intensity is consistent with a number of recent TMS studies (McKeefry et al., 

2008; Pitcher et al., 2009).  
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A practical consideration when conducting TMS studies is coil temperature, which 

increases during the delivery of TMS pulse trains. The Magstim TM system monitors the 

temperature of the coil and ceases the delivery of pulses when coil temperature reaches a 

predetermined level. Pilot testing of the adopted TMS protocol indicated a total of 64 pulse 

trains could be delivered through a single 50mm coil before overheating occurred. 

Subsequent TMS sessions were therefore, split into two 50 trial (50 pulse trains) sessions. In 

order to minimise the delay between the first and second halves of each TMS session, two 

50mm coils were utilised. The order of use was kept consistent throughout all TMS studies.   

The TMS set up is depicted in Figure 2.8. Subjects were seated in a purpose built 

chair with chin rest and forehead support. The coil, which could be tracked in real-time with 

respect to the subjects head, was secured mechanically and placed directly above each 

cortical target with the handle orientated parallel with the floor. The use of a chin and 

forehead support, coupled with mechanical clamping of the coil dramatically reduced not 

only subject movement, but also, movement of the coil during stimulation (caused by 

vibrations) and operator error caused through manual handling of the coil. 
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Figure 2.8: TMS set up. A single subject can be seen seated in the purpose-built chair with 

chin and forehead support. Subjects viewed stimuli from a fixed distance of 57cm. The 

position of both subject (subject tracker) and stimulating coil (coil tracker) is monitored 

and tracked in real-time. The stimulating coil is secured in position via a mechanical clamp, 

which can be manoeuvred along the length of either arm of the chair. The set up greatly 

reduces localisation errors that are inherent when holding the stimulating coil by hand, and 

movement errors induced in both the subject and stimulating coil following the delivery of 

TMS pulses. 

  

 

 

 

 

 

 

 

 

 

 

 

The position of the coil could be monitored and tracked in real time with respect to 

the subject’s head. The real-time navigation system built into Brainsight 2.1TM (Rogue 

Research, Canada) provides a measure of the precision of TMS targeting, depicted in Figure 

2.9. During TMS sessions, a schematic representation of the figure-of-eight coil is presented 

on the screen, with crosshairs at the centre of the coil representing the coordinates of the 

selected cortical target. Assuming that coil calibration and subject registration procedures 

were implemented successfully, as the tracked coil moves across the subject’s scalp, the 

location of the coil’s calibration point (hot-spot) is updated with reference to the selected 

cortical target. As the coil moves close to the target (within ~ 20mm) a red-dot appears on 

the coil schematic. The coil can be manoeuvred into position, such that the red-dot falls on 

the crosshairs. The displacement error (mm) between the intended site of stimulation and 

actual site of stimulation is displayed and can be recorded with each pulse train. The error 
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Figure 2.9: Real-time tracking of the stimulating coil during TMS sessions. Taken from an 

active TMS session,   a schematic representation of the figure of eight coil is shown with the 

crosshairs representing, in this case, the LO1 centroid in the right hemisphere of a single 

subject (RH_LO1). The red-dot provides an estimate of the accuracy with which the 

calibration point (hot-spot) of the coil is directly in-line with the target. The green value (1.0 

mm) (bottom left) provides an estimate of the error between the intended site of stimulation 

and the actual site of stimulation. Displacement error (mm) was recorded with each pulse 

train. 

represents the distance from the target to the closest point along the line projecting from 

the coils calibration point into the head along the coils trajectory.  

 

 

 

 

 

 

 

 

 

 

 The adopted TMS protocol allowed a number of important measurements to be 

recorded with each pulse train:  (1) the displacement (mm) between the intended site and 

actual site of TMS delivery (described above); (2) the Euclidean distance (mm) from the 

calibration point (hot-spot) of the coil to the cortical target and (3) the orientation of the 

coil relative to the vector joining the calibration point (hot-spot) of the coil and the TMS 

target. Post TMS stimulation, the accuracy of TMS delivery can be reviewed. One can scroll 

through each TMS pulse train and observe the projected focal point of the TMS pulse. Figure 

2.10 depicts the projected site of a single pulse train through three cortical targets (CON, 

LO1 & LO2) in the right hemisphere of a single subject. In each case, the projected site of the 

TMS pulse can be seen to pass through the cortical target of interest.  



Chapter 2                                                                              Methodology & Visual Stimuli 

 

50 
 

Figure 2.10: Estimates of the most focal site  of TMS delivery. The precision of TMS 

delivery is shown for three stimulation sites (CON-cyan, LO1-red, LO2-blue) within the right 

hemisphere of a single subject. Images are shown in radiological convention. In each image, 

the dashed green line represents the estimated focal point of TMS delivery. In each image 

the dashed green line can be seen to pass directly through the intended target. The shortest 

distance from the target to the green dashed line provides the displacement error illustrated 

in Figure 2.6. Additionally, measurements of the Euclidean distance (mm) between the coil 

and target, and the orientation (degrees) of the coil and target were recorded with each 

pulse train. 

 

TMS pulses were always delivered concurrently with the presentation of the TMS 

stimuli. The selection of this temporal configuration was influenced heavily by previously 

published work that employed TMS in this manner to successfully identify the causal roles 

played by different cortical areas (McKeefry et al., 2008; Pitcher et al., 2009). McKeefry et 

al., (2008) employed visual field mapping and TMS to probe the roles played by cortical 

areas V3A and V5/MT in motion perception. The study demonstrated causal links between 

activity in V3A and V5/MT and the accurate perception of motion. The study explored 

further the temporal characteristics of these effects, by varying the temporal delivery of 

TMS. TMS pulses were delivered at 11 different stimulus onset asynchronies within a single 

trial. The researchers measured the variation in the speed of a test grating needed to match 

an 8°/sec reference grating. The results indicated that the variation in speed of the test 

grating was maximised (faster speed was required) when TMS pulses were delivered 

concurrently with the presentation of the test stimulus at both V5/MT and V3A cortical 

sites. In addition, a recent study employed TMS to probe the causal nature of processing in 
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three category-selective areas of cortex (Pitcher et al., 2009). TMS pulses were delivered to 

the EBA, OFA and LO, whilst subjects performed body, face and object discriminations, 

respectively. The authors reported a triple-dissociation. Deficits in body, face and object 

perception were only evident following TMS of EBA, OFA and LO. TMS pulses were also 

administered concurrently with the presentation of the stimulus, albeit for a longer duration 

(500ms). Very recently, this paradigm has been employed to establish a causal link between 

neural activity within the Transverse Occipital Sulcus (TOS) and the discrimination of visual 

scenes (Dilks et al., 2013). The decision to administer TMS pulses concurrent with the 

presentation of the test stimulus was selected on the basis of these findings.  

2.7: Measuring the Precision of TMS Delivery 

Several methodological advancements have improved the TMS paradigm. Most 

notably, the ability to monitor and track, in real time, the location of the stimulating coil 

with respect to the subject’s head, has dramatically increased researchers ability to 

stimulate reliably their respective cortical areas of interest. Precise stimulation of cortical 

targets is important especially when targets are in close proximity to one another. Imprecise 

TMS stimulation can occur for a number of reasons. Movement of the coil (with respect to 

the target of stimulation) is inevitable because: (1) the action of the coil firing induces 

vibrations throughout the coil itself; (2) many subject’s display an involuntary ‘jerky’ 

reaction to the administration of the TMS pulses, which can be substantially more 

pronounced if the target sites are located in close proximity to facial nerves and (3) the TMS 

coil itself is frequently held in place by the experimenter’s hand, which is highly likely to 

move throughout the course of the TMS session. Even during ‘theta burst’ stimulation 

sessions, which are often short in duration, movement of the hand and therefore, the coil is 

likely if not inevitable. Throughout the current body of work a number of measurements 

were acquired with each pulse train in an attempt to overcome the potential shortcomings 

of imprecision.  
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2.7.1:    Mechanical Clamping 

The current body of work employed the use of a mechanical clamp to secure the 

TMS coil in the desired position. The combination of the mechanical clamp, custom-built 

chair, chin and forehead supports ensured that during TMS stimulation, subjects were 

comfortable and stable. These measures dramatically reduced the absolute amount of 

movement inherent in TMS experiments.   

2.7.2:    Measuring the Coil Displacement 

One advantage of the TMS Brainsight 2.1TM system (Rouge Solutions, Canada) is the 

ability to measure the displacement between the intended site of stimulation and the actual 

site of stimulation. The error (mm) is the closet distance from the target to the predicted 

focal point of the TMS pulse. Measurements of this displacement (mm) were acquired with 

each pulse train. This displacement measure was used to filter the TMS data. In any TMS 

session, trials for which the coil-displacement was large (> 2.5 mm) were removed prior to 

data analysis. This stringent criterion provides evidence for the precision of stimulation and 

allows one to be confident that TMS was delivered to the cortical targets independently.  

2.7.3. Measuring the Coil-Target Distance 

Along with the ability to measure coil displacement, the distance (Euclidean distance 

mm) between the calibration point and the target in cortex was recorded with each pulse 

train. It is important to show that the distance between the coil and target does not vary 

across tasks in a way that could explain any differential task effects observed in individual 

subjects. Crucially, the cortical targets of interest cannot change their location across tasks, 

and thus, the distance from the stimulating coil to those cortical targets should be equal. 

Differences in the coil-target distances between sites is likely, if not inevitable, given that 

cortical targets vary with respect to gyral and sulcal pattern, yet nevertheless the distance 

separating the coil to a single target should not differ across tasks. Errors in this distance 

measurement could arise from imprecise calibration of the TMS coil, and/or imprecise 

registration of the subject’s location within the Brainsight TM systems field of view. If the 

coil-target distance does not differ significantly for a target across tasks, then one can be 
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confident that any behavioral changes observed are a reflection of the cortical targets and 

tasks examined, and not, differences in the precision of TMS delivery.  

2.7.4:    Measuring the Coil-Target Orientation 

The third measurement taken to control for spatial and geometric issues of TMS 

stimulation was the difference between the coil orientation and the vector joining the 

calibration point of the coil and the TMS target; accurate targeting corresponding to 90° on 

this measure. The importance of recording this measurement is that it provides a 

mechanism by which to evaluate the precision of TMS delivery. Any significant differences in 

the coil-target orientation across tasks for one site, or across sites within a task must be due 

to operator error. In this regard, it provides a means by which to exclude operator error as 

an alternative explanation for any behavioral deficits observed. For instance, if an effect was 

observed at LO1 for condition A and across subjects the mean coil orientated was 90°, yet 

for stimulation of LO1 during condition B the mean coil orientation was 60°, the difference 

in coil-target orientation and therefore, the precision of stimulation could provide an 

alternative account for any observed effects. On the other hand, if the coil orientation for a 

particular site does not vary (significantly) across task, or across sites for a single task, a 

functional dissociation is a far more parsimonious explanation of the data.  
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Chapter 3  

Visual Field Mapping & Retinotopic Features of LO1 & LO2 

3.1: Overview 

 The main aims of this chapter are to outline the major hypotheses tested and results 

that relate to various features of visual field maps LO1 and LO2. The chapter begins with a 

brief history of retinotopic organisation within lateral occipital cortex, before outlining a 

number of hypotheses regarding the retinotopic, spatial and object-selective features of 

LO1 and LO2. A review of fMRI visual field mapping is also provided along with the specific 

fMRI protocol employed in all retinotopic mapping experiments. 

3.2: Retinotopic Organisation of Lateral Occipital Cortex 

Until recently, the retinotopic organisation of human lateral occipital cortex 

remained relatively unknown and uncharacterised. A handful of studies reported a 

discontinuity in the eccentricity representation within this area of cortex, but argued that 

the representations of polar angle were insufficient to indicate a clear retinotopic 

organisation (Levy et al., 2001; Tootell et al., 1995; Tyler et al., 2005). Indeed, this area was 

labelled as ‘non-retinotopic’ by many researchers (Malach et al., 1995; Grill-Spector et al., 

1999; Kourtzi & Kanwisher, 2001), and several fMRI studies demonstrated object selective 

responses in LO (Malach et al., 1995; Grill-Spector et al.,  1999; Kourtzi & Kanwisher, 2001; 

Hasson, Harel, Levy, & Malach, 2003). Tootell & Hadjikhani (2001) reported measuring 

incomplete eccentricity and angular representations in LO, but nevertheless suggested that 

this region contained an eccentricity bias in which adjacent regions responded preferentially 

to central and peripheral stimuli, referring to this region of cortex as LOc/Lop, meaning 

lateral occipital central and lateral occipital peripheral, subdivisions (Tootell & Hadjikhani, 

2001).  

In contrast, Wandell and colleagues (Wandell et al., 2005) reported clear, yet 

inconsistent measurements of both polar angle and eccentricity in this area of cortex and 

suggested that with further advancements in visual field mapping techniques and stimulus 

protocols, clear maps would eventually become evident. Just one year later, the first 
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indication of a clear retinotopic organisation within LO was reported (Larsson & Heeger, 

2006). Two adjacent visual field maps (LO1 & LO2) between dorsal V3d and V5/MT were 

identified, with both maps containing a complete representation of the contralateral visual 

field. Unlike previous reports (Levy et al., 2001; Tootell & Hadjikhani, 2001), Larsson and 

Heeger highlighted an orderly representation of both polar angle and eccentricity within 

LO1 and LO2, respectively. LO1 and LO2 were suggested to be two new and potentially 

unique human visual areas, lacking direct macaque homologues. 

3.3: Hypotheses & Aims  

 The specific empirical questions asked throughout the thesis were heavily dependent 

upon precise mapping of LO1 and LO2 in individual subjects. Given this dependency, a 

number of hypotheses regarding the retinotopic, spatial and object-selective features of 

LO1 and LO2 were tested here. First, we tested whether LO1 and LO2 could be reliably 

identified using fMRI visual field mapping techniques. Second, we tested whether the visual 

field representations within LO1 and LO2 were consistent with previous work, with respect 

to the visual dimensions of polar angle and eccentricity (Larsson & Heeger, 2006). Third, we 

tested whether our LO1 and LO2 definitions were commensurate in size and location with 

original definitions. Finally we tested whether our LO1 and LO2 targets exhibited object-

selective responses consistent with functional definitions of the lateral occipital cortex 

(Malach et al., 1995). 
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3.4: Visual Field Mapping using fMRI - The Travelling Wave Method 

In order to probe the functional properties of LO1 and LO2 they must first be 

identified using fMRI visual field mapping techniques. The following section describes the 

travelling wave method for fMRI visual field mapping (Engel et al., 1994; Sereno et al., 1995; 

DeYoe et al., 1996).  The travelling wave method measures the visual field position, which 

elicits the largest response (maximum BOLD signal) at each location within the brain. In this 

method a fixating observer is presented with high contrast (typically 100%) flickering 

checkerboard stimuli, which progress gradually through the visual field. Stimuli comprising a 

wedge and a series of concentric rings are most commonly employed allowing the 

representations of polar angle and eccentricity to be derived, respectively.  

 The expanding ring stimulus is designed to measure retinotopic organisation with 

respect to visual eccentricity. As one moves from posterior to anterior in early visual cortex 

(V1-V3) the representation of the visual field shifts from foveal to peripheral.  The ring 

stimulus elicits sustained neural activity at each location in the brain that modulates at the 

stimulus frequency (cycles per scan). As the stimulus progresses from the centre of the 

visual field (foveal representation) to more eccentric (peripheral representation) locations, 

the activity within neurons containing peripheral receptive fields is delayed with respect to 

activity within neurons containing foveal receptive fields; creating a travelling wave of 

neural activity along the posterior-anterior axis.  Due to the periodic nature of the neural 

activity, the delay in activation can be measured by the phase of the neural activity. 

Analysing the phase of the maximum signal at each voxel provides an estimate of the 

location of the stimulus in the visual field, with respect to visual eccentricity. 

The rotating wedge stimulus is designed to measure retinotopic organisation with 

respect to polar angle. As the wedge rotates about the fixation point, activity at locations 

within the brain containing neurons with receptive fields further along the direction of 

rotation will be delayed with respect to areas containing neurons with receptive fields closer 

to the starting position of the stimulus. Again, because the neural activity modulates 

periodically, this delay can be measured by the phase of the neural activity. The stimulus 

creates a travelling wave of neural activity, which progresses between both the vertical and 

horizontal meridian representations. The phase informs as to the position of the stimulus in 
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the visual field that elicited the largest signal at each voxel, with respect to polar angle. 

Combined, the measurements derived from the ring and wedge stimuli define the most 

effective visual field position for each voxel in polar coordinates (eccentricity, angle).  

The key concept in the travelling wave method is to measure, within each voxel, the 

harmonic function (best fitting sin wave) that best correlates with the acquired fMRI time 

series (Engel, et al., 1994; Sereno et al., 1995; DeYoe et al., 1996). The amplitude of the best 

fitting harmonic relative to other harmonics provides a measure of the reliability of the 

signal; this ratio measures the signal coherence, which is used to threshold retinotopic data. 

Within each voxel, the phase of the best fitting harmonic informs as to the position within 

the visual field that most effectively stimulated that voxel. The travelling wave method has 

successfully identified approximately twenty separate visual field maps throughout human 

cortex, including those found in regions of the brain traditionally thought of as non-

retinotopic (Wandell et al., 2007). 

3.4.1:    The Travelling Wave in Action 

The following section provides an example of the travelling wave method. This 

example is derived from visual field mapping scans of a representative subject acquired as 

part of the current body of work. Examples of the ring and wedge stimuli employed in visual 

field mapping experiments can be seen in Figure 3.1A. The centre of Figure 3.1 A, depicts a 

medial view of a surface reconstruction of the grey-white matter boundary of the right 

hemisphere of a single subject. The black dashed box focuses on the calcarine sulcus. V1 is 

located parallel to the calcarine sulcus and is outlined by the black line. An enlarged 

representation of V1 is shown in Figure 3.1B, with the calcarine sulcus (CaS) clearly labelled. 

The retinotopic organisation within V1 can be seen with respect to polar angle (Figure 3.1C) 

and eccentricity (Figure 3.1D).  

Figure 3.1E, demonstrates the travelling wave in action. The travelling wave 

demonstration is taken from eccentricity scan data. At the onset of each eccentricity run, a 

ring subtending the first 3° of visual angle was presented at the centre of the screen 

(fixation point). Throughout the scan, rings at greater eccentricities replaced the preceding 

ring periodically. Eight different rings positions (eccentricities) were presented. When the 

ring reached its outer extent of 15°, a ring at the centre replaced it. Eight stimulus 
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repetitions (cycles) are shown, depicted by the eight peaks in amplitude as a function of 

time (secs).  Within a single cycle, the time (phase) of the peak modulation in each voxel 

progresses smoothly across the cortical surface (distance).  In this example, distance 

measures the cortex along V1, in a posterior-anterior direction, indicated by the dashed line 

in Figure 3.1D. The time delay (phase) defines the most effective stimulus eccentricity along 

that line As the ring stimulus progresses gradually through the visual field, so activity along 

the cortical surface of V1 progresses gradually along the eccentricity dimension: That is, as 

the rings progresses from foveal to peripheral positions, activity in V1 progresses from 

posterior to anterior locations. Inspection of Figure 3.1E highlights several peaks of 

amplitude at different distances along V1, within each of the eight stimulus repetitions. 

Within a single cycle, each peak in amplitude represents a different phase of activity along 

the cortical surface of V1 (distance); corresponding to the different eccentricity bands 

depicted in Figure 3.1D.  
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Figure 3.1: Visual field mapping stimuli, visual field representation in V1 and the travelling 
wave. (A) Visual field mapping stimuli and right hemisphere surface reconstruction. Left: 
Example of a single frame of the eccentricity scans. A 100% contrast ring is presented; 
arrows indicate the direction of travel. In this case, the ring expands throughout the visual 
field. Middle:  A medial surface reconstruction of the grey-white matter boundary of the right 
hemisphere of a single subject. The calcarine sulcus is outlined with solid black line. Dashed 
black box indicates the area of interest and is enlarged in B-D. Right: Example of a single 
frame from the polar angle scans. A 100 % contrast 90° wedge is presented; the arrow 
indicates the direction of travel. (B) Enlarged area of interest from A. The calcarine sulcus 
(CaS) is clearly defined, running along a posterior-anterior axis from the occipital pole on the 
medial surface. (C) Polar angle representation in V1. V1 contains a complete contralateral 
hemifield representation from the upper vertical meridian (blue) to the lower vertical meridian 
(yellow), see hemifield colour wheel inset. Dashed black line indicates the middle of the CaS, 
corresponding to the horizontal meridian representation. (D) Eccentricity representation in 
V1. Eccentricity can be seen to progress from foveal (purple) to peripheral (cyan) along a 
posterior-anterior axis, see hemifield colour wheel inset. Dashed black line indicates the 
middle of the CaS. (E) Travelling wave in action. Time-series data plotted along the dashed 
black line in D. Across time (x axis) eight peaks are depicted, one for each stimulus cycle. 
Within a single cycle, several peaks of activity (red) can be seen at different distances (z 
axis) along V1, corresponding to the different eccentricity bands present in D. As the ring 
progresses from central-peripheral visual field locations, activity in V1 travels from the foveal 
representation at the posterior end of the CaS (0mm on z axis) to more anterior portions of 
the CaS (40mm on z axis). 

 



Chapter 3                                          Visual Field Mapping & Retinotopic Features of LO1 & LO2 

 

60 
 

3.5: Visual Field Mapping Methods used in this Thesis 

3.5.1:    Subjects 

Throughout the thesis a total of 20 subjects (mean age = 26, range = 25, 7 male) 

participated in fMRI retinotopic mapping experiments. All subjects had normal or corrected 

to normal vision and gave informed consent in accordance with the Declaration of Helsinki. 

York Neuroimaging Centre (YNiC) Research Governance Committee approved the 

acquisition of fMRI retinotopic data.   

3.5.2:    Structural & Functional MRI Imaging Parameters 

Retintopic data were acquired using either an 8-channel phase-array head coil, or a 

16-channel phase-array half-head coil (see section 3.5.3, for analysis of coil comparison). All 

scanning took place on a GE 3-Tesla Sigma HD Excite scanner at YNiC (University of York). 

Structural data 8 channel: Multi-average, whole-head T1-weighted anatomical volumes 

were acquired for each subject (TR = 7.8ms, TE = 3ms, TI = 450ms, FOV = 290 x 290 x 176, 

matrix = 256 x 256 x 176, flipangle = 20°, 1.13 x 1.13 x 1.0mm3). Imaging parameters 

provided good grey-white contrast allowing the segmentation of anatomical data into grey 

and white matter, and subsequent visualization in volume and inflated cortical views. 

Functional data 8 channel: Gradient recalled echo pulse sequences were used to measure 

T2* BOLD data (TR = 2000ms, TE = 30ms, FOV = 192cm, 64 x 64 matrix, 26 contiguous slices 

with 3mm slice thickness). Functional data 16 channel: Gradient recalled echo pulse 

sequences were used to measure T2* BOLD data (TR = 2000ms, TE = 30ms, FOV = 192cm, 

128 x 128 matrix, 26 contiguous slices with 1.5mm slice thickness).  Images were read out 

using an EPI sequence. Magnetisation was allowed to reach a steady state by discarding the 

first five volumes. On average 6 fMRI runs were acquired (3 x rings, 3 x wedges). The time 

courses were averaged across runs and used for visual field map identification.  

3.5.3:  Comparison of Coils 

In August 2012 YNIC acquired a 16-channel phase array half-head coil. In order to 

test whether the new coil provided better signal-to-noise ratio than the existing 8-channel 

coil, analyses were conducted on the signal amplitude generated by both coils at two 
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Figure 3.2: Signal comparisons of the 8 & 16 channel coils at two functional resolutions. 

Left: V1 in the right hemisphere of subject EHS. A surface reconstruction of the medial 

surface of the right hemisphere is shown. The black dashed box highlights V1 and is 

enlarged. The white dashed lines delineate the full hemifield representation in V1, from the 

upper vertical meridian (purple/blue) to the lower vertical meridian (yellow/green). The ROI 

(blue ROI) has a diameter of 4mm and is centred in the middle of the calcarine sulcus at the 

representation of the horizontal meridian (red). Right: Single cycle comparisons for the 8 

and 16 channel coils at 3mm
 
and 1.5mm isotropic resolution. The average single cycle data 

are plotted from voxels within the ROI in the centre of V1. In all scans the wedge began in 

the top left of the visual field and rotated counter-clockwise. Accordingly, each single cycle 

can be seen to peak and return to baseline within the first half of the 36sec cycle. The 8 

channel 3mm isotropic combination yielded the smallest signal change (blue line). There 

was no obvious difference in signal between the 8 channel at 1.5mm isotropic (green line) 

and the 16 channel at 3mm isotropic (red line). The 16 channel coil at 1.5mm isotropic (pink 

line) yielded the highest signal change. 

different functional resolutions (3mm isotropic and 1.5mm isotropic). The analyses were 

conducted on one subject (EHS) and compared the average single cycle time series 

generated within a small region of interest (ROI) (diameter 4mm) from the centre of V1 in 

the right hemisphere, depicted in the left plot of Figure 3.2. Four retinotopic mapping 

sessions were undertaken (8 channel - 3mm3; 8 channel - 1.5mm3; 16 channel - 3mm3; 16 

channel - 1.5mm3) on EHS. In each session four wedge runs were acquired and averaged 

together. Across each of the four sessions, the average time course of a single 36sec cycle 

was calculated. The single cycle data from each of the four sessions is plotted on the right of 

Figure 3.2.   
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In all sessions, the wedge stimulus began in the upper left visual field and rotated 

counter- clockwise. Accordingly, activity within the ROI (right V1) occurs during the first half 

of the cycle. Inspection of Figure 3.2, reveals an increase in signal-to-noise when using the 

16 channel head coil, but crucially, only when combining it with higher resolution acquisition 

(1.5mm isotropic). Using the 16 channel coil with standard voxel dimensions (3mm 

isotropic) yields a similar signal-to-noise ratio as using the 8 channel coil with higher 

resolution acquisition. Overall it appears, perhaps unsurprisingly, that using higher 

resolution fMRI acquisition yields better signal-to-noise ratios using either coil type. The 

continuing development of head-coils, coupled with increasingly higher resolution scans 

may reveal visual field maps that hitherto were not able to be resolved using standard fMRI 

visual field mapping protocols (Wandell et al., 2007).   

3.5.4:    Retinotopic Mapping Visual Stimuli  

Computer generated visual stimuli were rear projected (using a Dukane ImagePro 

8942) onto an acrylic screen situated in the bore of the MRI scanner, behind the subject’s 

head. Subject’s viewed the stimuli via a mirror mounted on the head coil. Standard 

retinotopic mapping stimuli were employed: a rotating wedge to map polar angle, and an 

expanding annulus to map eccentricity. Stimuli were generated using MATLAB (Mathworks, 

USA) and controlled by MatVis (Neurometrics Institute, Oakland, CA). All stimuli were 

derived from a radial (radius 15°) checkerboard with 8 rings and 24 segments and were 

presented on a mean grey background. Contrast was 100 % and the reversal rate of the 

checks was 6 Hz. The wedge stimulus was a 90° wedge of the flickering checkerboard, 

rotating about the centre of the screen in 15° increments. The ring stimulus comprised 8 

rings of the checkerboard, which increased in angular extent (to a maximum of 15°). As it 

moved to the limiting radius of the visual field a ring at the centre replaced it. Both the 

wedge and ring stimuli had a period of 36 seconds and were repeated for eight cycles in 

each run. 
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3.5.5:    Retinotopic Data Analysis 

Data were analysed using publicly available tools 

(http://white.stanford.edu/software/). Most analyses were performed in MATLAB using the 

mrVista toolbox. For anatomical data, individual hemispheres of acquired anatomical 

volumes were segmented into white and grey matter volumes using the Freesurfer4 

“autorecon” script (http://surfer.nmr.mgh.harvard.edu) followed by manual topology 

checking using mrGray, part of the Stanford “VISTA” toolbox. Cortical surfaces (grey matter) 

of each subject were constructed and rendered in three dimensions from this segmentation 

for data visualisation using mrMesh, a visualization tool available in the “VISTA” toolbox. 

Functional volumes were motion corrected within and across runs using FSL’s MCFLIRT. 

Images were also corrected for spatial inhomogeneity. The EPI volumes were initially aligned 

to individual high-resolution anatomical volumes manually and subsequently refined with 

automated procedures. This procedure allowed the parameters derived from the analysis of 

the functional data to be visualised on the inflated cortical surfaces.  

3.6: Results 

3.6.1:    Delineation of Visual Field Maps 

To identify visual field maps in individual subjects, the phase-encoded data were 

visualised and inspected for cortical representations of polar angle and eccentricity. 

Retinotopically organised cortical maps were identified in all tested hemispheres (n = 40). 

The main features of the maps, in particular, the reversals in the visual field representation 

at the vertical and horizontal meridians were consistent across subjects. In accordance with 

previous reports (Engel et al., 1994; Sereno et al., 1995; DeYoe et al., 1996; Larsson & 

Heeger, 2006; Wandell et al., 2007), retinotopic visual area boundaries were identified using 

the following criteria: (1) the response phases progressed smoothly across each visual area, 

consistent with a topographic organisation of the visual field representation on the cortical 

surface; (2) The polar angle components of the visual field maps displayed phase reversals. 

That is, the polar angle representations in neighbouring visual areas were mirror reversals of 

each other, with a phase reversal along their shared boundary and (3) the polar angle and 
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eccentricity components within each visual area were largely orthogonal to one another 

(Zeki, 2003). 

 The method for visual field identification was identical across subjects. In each 

subject, the response phases of the BOLD signal were overlaid initially in false colour onto 

partially inflated bilateral surface reconstructions. The hierarchical process of visual field 

map identification is illustrated in Figures 3.3 & 3.4, for the right hemisphere of a single 

subject; although importantly, the procedure was identical for visual field maps identified in 

the left hemisphere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Hierarchical stages of visual field map identification on the medial surface. At 

each stage of visual field map identification (successive visual field map), the response 

phase of the BOLD signal to the rotating wedge stimulus in that visual field map is overlaid in 

false colour onto a partially inflated surface reconstruction of the right hemisphere of a 

representative subject (gyri are light grey, sulci are dark grey). All data are thresholded at 

coherence of 0.25.  Top row:  A medial view of the right hemisphere of a single subject is 

shown. The red dashed box focuses on the occipital cortex and is enlarged to the right. 

Schematised depictions of the locations of visual field maps on the medial/ventral surface of 

visual cortex are shown: key: V1 (black), V2 (blue), V3 (cyan), V4 (white). Second row: 

depicts the visual field representation with respect to polar angle within V1 (left) and V2 both 

dorsally and ventrally (right). Third row: depicts the visual field representation with respect 

to polar angle within V3 both dorsally and ventrally (left) and V4 (right) on the ventral surface. 
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At the outset, visual field identification began with defining the lower vertical 

meridian (LVM) and upper vertical meridian (UVM) boundaries of V1. In all subjects, the 

representation of the UVM was found to fall along the inferior bank of the CaS with the 

representation of the LVM falling along on the superior bank of the CaS. The horizontal 

meridian was represented therefore, within the fundus of the CaS (Figure 3.3). Following the 

identification of V1, the visual field boundaries defining V2 and V3 (Figure 3.3) were 

identified. Moving dorsally, the visual field representation within V2d begins at the shared 

boundary with V1 at the representation of the lower vertical meridian and extends to the 

horizontal meridian. The representation within V3d begins at the horizontal meridian and 

extends back to the lower vertical meridian. Moving ventrally from V1, the visual field 

representation within V2v, begins at the shared boundary with V1 at the representation of 

the upper vertical meridian and extends to the horizontal meridian. V3v begins at this point 

and displays a representation from the horizontal meridian back to the upper vertical 

meridian.  Following the delineation of early visual cortex (V1-V3), the representation within 

V4 on the ventral surface was defined as a hemifield map, beginning at the upper vertical 

Figure 3.4: Hierarchical stages of visual field map identification on the lateral surface. At 

each stage of visual field identification (successive visual field map), the response phase of 

the BOLD signal to the rotating wedge stimulus in that visual field map is overlaid in false 

colour onto a partially inflated surface reconstruction of the right hemisphere of a 

representative subject (gyri are light grey, sulci are dark grey). All data are thresholded at 

coherence of 0.25. Left: A posterior view of the right hemisphere is shown, with the dashed 

red box focusing on the posterior and lateral portions of the occipital lobe, which are 

enlarges to the right. Schematised depictions of the locations of visual field maps on the 

lateral/dorsal surface of human visual cortex: key: V1 (black), V2 (blue), V3 (cyan), V4 

(white), V3A/V3B (magenta), LO1 (red) and LO2 (green). Middle: Depicts the visual field 

representation with respect to polar angle within V3A/V3B on the dorsal surface. Right: 

Depicts the visual field representation with respect to polar angle within and LO1/LO2 on the 

lateral surface. 
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meridian boundary with V3v. Dorsally, the visual field representations within V3A and V3B 

were next (Figure 3.4). V3A abutted the dorsal boundary of V3d at the lower vertical 

meridian, both V3A and V3B containing hemifield representations. Finally, LO1 and LO2 

were defined (see below for retinotopic delineation). 

The identification of the visual field maps antecedent in the visual hierarchy to LO1 

and LO2 is a crucially important step. As touched upon above, the borders of adjacent visual 

field maps share a visual field representation, with the reversal in that representation 

defining the boundary between the two maps. It is important therefore, to show consistent 

visual field representations in visual field maps antecedent to LO1 and LO2, because, if for 

instance, V3d and V3A/V3B were not clearly identifiable, then subsequently, LO1 (and in 

turn LO2) could not be indentified reliably.  

3.6.2:    Delineation of Visual Field Maps LO1 & LO2 

In all subjects tested, LO1 and LO2 were defined as two adjacent mirror-image 

representations of the contralateral visual field, located within the expanse of cortex 

between V3d and V5/MT (Larsson & Heeger, 2006; Wandell et al., 2007 Amano et al., 2009; 

Wandell & Winawer, 2011). It was originally reported (Larsson & Heeger, 2006) that the 

combination of V3d, V3A/V3B and LO1 created a chain of lower vertical meridian 

representations that together closely followed the contours of a ‘Y’. Indeed, in almost all 

subjects it was reported that approximately half way along the lower vertical meridian 

boundary of V3d, the representation bifurcated into two branches; one extending dorsally 

and posteriorly along V3d and a second that extended anteriorly away from V3d (Larsson & 

Heeger, 2006). In accordance with previous reports, the posterior boundary of LO1 was 

defined at the shared boundary with V3d, at the representation of the LVM. The dorsal 

(superior) boundary of LO1 was defined as the LVM boundary with V3A/V3B. The 

convergence of the LVM representations in V3d, V3A/V3B and LO1, created a ‘Y’ 

configuration (Figure 3.5).   
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Figure 3.5: Configuration defining the posterior and superior boundaries of LO1. A posterior 
view of the right hemisphere of a sinhle subject is shown (left).The red dashed box outlines 
the area of interest and is enlarged (right). The response phases of the BOLD signal in 
areas V3d, V3A/V3B and LO1 (outlined in blue) are overlaid in false colour. The 
convergence of the lower vertical meridian representations (yellow) in V3d, V3A/V3B and 
LO1 can be seen to form a ‘Y’ configuration (black dashed lines). The polar angle 
representation in LO1 begins at the junction of the ‘Y’ and progresses anteriorly from the 
lower vertical meridian (yellow), towards the upper vertical meridian (blue).  

 

 

 

 

 

 

 

The representation of polar angle in LO1 begins at the junction of the ‘Y’ and extends 

anteriorly and laterally from this junction, displaying a gradual progression from the LVM, 

through the horizontal to the UVM.The anterior boundary of LO1 is defined by a 

representation of the UVM and abuts the posterior boundary of LO2. LO2 is the mirror-

reverse of LO1, and also contains an orderly representation of polar angle, extending from 

the UVM (at its shared boundary with LO1) towards the LVM (Figure 3.6).  

 

 

 

 

 

 

 

 

Figure 3.6: Polar angle representations in LO1 and LO2. A posterior view of the right 
hemisphere of a sinhle subject is shown (left).The red dashed box outlines the area of 
interest and is enlarged (right). The response phases of the BOLD signal in areas V3d, 
V3A/V3B, LO1 & LO2 (outlined in blue) are overlaid in false colour.  LO1 begins at the  ‘Y’ 
junction created as the lower vertical meridian representations in V3d and V3A/V3B 
converge. LO1 displays a complete contralateral hemifield representation of polar angle, 
extending from the shared boundary with V3d at the LVM (yellow) towards the UVM (blue). 
LO2 also displays a complete contralateral hemifield representation of polar angle, 
progressing gradually from the shared representation with LO1 at UVM towards the LVM.  
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3.6.3:    Representation of Eccentricity in LO1 & LO2 

Larsson and Heeger found the foveal representations in LO1 and LO2 to be 

coextensive with V1, V2d and V3d with the periphery being represented anteriorly and 

dorsally (Larsson & Heeger, 2006). In the original description, it was reported that in 

approximately half of the hemisphere tested the eccentricity representation in LO2 showed 

an unusual pattern. That is, eccentricity representations made a sharp shift from foveal to 

peripheral (Larsson & Heeger, 2006). Unlike earlier visual areas, where the representations 

of polar angle and eccentricity are directly orthogonal, in LO1 and LO2, there were not. It 

was reported that isoeccentricity contours ran at an acute angle to isoangle contours, 

resulting in visual field representations that were noticeably skewed in both maps, but 

particularly in LO2, in some subjects. 

Throughout the thesis, similar patterns were observed in the eccentricity 

representations within LO1 and LO2, with examples of both orthogonal (unskewed) and 

nearer parallel (skewed) representations shown in Figures 3.7A and 3.7B. Figure 3.7A, 

depicts the representation of eccentricity across V3d, LO1 and LO2 in a single subject. In this 

subject the eccentricity representations within these areas run along a ventral-dorsal axis, 

directly orthogonal to the polar angle representation, which ran along a posterior-anterior 

axis (black arrows Figure 3.7A). In all three visual field maps, the polar angle and eccentricity 

representations are directly orthogonal to one another, consistent with early visual cortex 

(V1-V3). In addition, the foveal representation within LO1 and LO2 can be seen as confluent 

with the representation in V3d. Figure 3.7B depicts eccentricity across V3d, LO1 and LO2 in a 

different subject. In this subject the eccentricity representation within V3d and LO1 run 

along a ventral-dorsal axis, directly orthogonal to the polar angle representation, which ran 

along a posterior-anterior axis. In contrast however, the eccentricity representation in LO2 

appears to not only make a sharp shift from foveal to peripheral, but, also appears to run 

close to parallel with the polar angle representation (black arrows Figure 3.7B).   

 

 

 

 



Chapter 3                                          Visual Field Mapping & Retinotopic Features of LO1 & LO2 

 

69 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Representation of visual field eccentricity in LO1 and LO2. (A) A surface 
reconstruction of the right hemisphere of a single subject in shown (left). The area of interest 
incorporating V3d, LO1 and LO2 (outlined in blue) is shown (dashed-red box) and is 
enlarged (right). Visual field eccentricity within the area of interest is overlaid in false-colour. 
The eccentricity representation in LO1 and LO2 progresses from foveal-peripheral along an 
inferior-superior axis, directly orthogonal to the representation of polar angle in this subject, 
which, progressed along a posterior-anterior axis – depicted by the black arrows. (B) A 
surface reconstruction of the right hemisphere of a second subject in shown (left). The area 
of interest incorporating LO1 and LO2 is down (dashed-red box) and is enlarged (right). 
Visual field eccentricity within the area of interest is overlaid in false-colour. The eccentricity 
representation in this subject is dramatically different from the example above it. Here the 
eccentricity representation in LO1 runs along the inferior-superior axis and is orthogonal to 
polar angle. The eccentricity representation in LO2 is however, skewed. The representation 
appears to progress along a largely posterior-anterior axis and thereby parallel with the 
representation of polar angle found across LO1 and LO2 in this subject – depicted by the 
black arrows.  
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3.6.4:    Visual Field Map Gallery 

The initial step in each experiment of the thesis was to identify LO1 and LO2 in each 

subject. The reliability with which LO1 and LO2 were identified varied across subjects, a 

feature consistent with a number of previous reports on LO1 and LO2 (Larsson & Heeger, 

2006; Sayres & Grill-Spector, 2008; Amano et al., 2009). Nevertheless, LO1 and LO2 were 

identifiable in at least one hemisphere in each subject. In each case, the identification of 

LO1 and LO2 adhered to the guidelines set out by others (Sereno et al., 1995; DeYoe et al., 

1996; Engel et al., 1997; Larsson & Heeger, 2006; Wandell et al., 2007). The following 

sections illustrate the retinotopic maps (with respect to polar angle) acquired from each 

subject (Figure 3.8). Medial and lateral views of partially inflated surface reconstructions of 

the left (shown on the left) and right (shown on the right) hemispheres are presented such 

that visual field maps are visible on both the medial and lateral surfaces of visual cortex. 

Where possible visual field maps V1, V2d, V2v, V3d, V3v, V4, V3A, V3B, V7, LO1 & LO2 were 

identified. For each subject, the phase encoded data were statistically thresholded at a 

coherence level equivalent to significance at the P = < 0.05 level, according to the number of 

samples acquired (Bandenttini, Jesmanowicz, Wong & Hyde, 1993).  

In each subject, the response elicited by the rotating wedge stimulus is overlaid in 

false-colour. The colour represents the location (phase) of the wedge in the visual field that 

elicited the maximum activity at that location within cortex (see colour wheel inset at the 

top). Due to the dominent contralteral representations within visual cortex, the left 

hemisphere maps are represented by the right side of the colour wheel, whilst the right 

hemisphere maps are represented by the left side of the colour wheel. In both hemispheres, 

the lower vertical meridian is represented by yellow, with the upper vertical meridian 

represented by blue (white dashed lines). The horizontal meridians in the left and right 

hemispheres are represented by cyan and red, respectively (solid white lines). 
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Figure 3.8: Visual field maps in the right and left hemispheres of all subjects tested. Lateral 

and medial views of the occipital lobe of both hemispheres are shown for all subjects. 

Images have been restricted to the occipital lobe for clarity. LO1 and LO2 can appear as two 

adjacent mirror-image representations of the contralateral visual field in the majority of 

hemispheres.   

 

The retinotopic mapping experiments conducted throughout the thesis allowed the 

visual field representations within LO1 and LO2 to be identified reliably in at least one 

hemisphere in all subjects. In each subject, the hemisphere in which LO1 and LO2 were 

more readily identifiable was chosen as the stimulated hemisphere. In many subjects LO1 

and LO2 were identifiable in both hemispheres, yet the representations were more easily 

delineable in the right than the left hemispheres. 
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3.6.5:    Visual Field Coverage & Surface Based Averaging 

 In addition to the visual field map gallery presented above, we computed group 

average visual field coverage plots for several retinotopic areas (V1, V2d, V2v, V3d, V3v, V4, 

LO1 & LO2) in order to compare them to previous literature (Larsson & Heeger, 2006; 

Wandell et al., 2007). To compute these plots we assessed the phase (delay) of the BOLD 

responses across all subjects to the ring and wedge stimuli presented during fMRI visual 

field mapping. Initially, we divided the visual field into 16 equal sectors of polar angle and 

then subsequently divided those sectors into different eccentricity bands. Three eccentricity 

bands were selected, representing foveal portions of the visual field (central 3°), parafoveal 

portions of the visual field (3-8°) and peripheral portions of the visual field (8-15°), 

respectively. Taken together, these patches form a dartboard-like pattern.  A grey-scale 

depicts the proportion of voxels within each ROI that represents a patch of visual field 

(Figure 3.9).  For some participants (n = 4) the cortical visual field maps were identified in 

the left, rather than the right hemisphere.  These data have been flipped to present a group 

average with respect to the right hemisphere (left visual field). 

In the top row of Figure 3.9, the average visual field coverage for V1, V2d, V2v, V3d, 

& V3v are plotted.  Inset to the right of each plot is a schematic representation of the visual 

field coverage within these visual areas reported previously (Larsson & Heeger, 2006; 

Wandell, et al., 2007; Amano et al., 2009; Wandell & Winawer, 2011). The data are 

unthresholded. The visual field coverage in these maps are largely consistent with previous 

studies, demonstrating close to a full hemifield representation within V1, lower quadrant 

representations within V2d and V3d, with upper quadrant representations present within 

V2v and V3v.  The coverage in V1 is largely symmetrical about the horizontal meridian 

(green dashed line), whereas the coverage in the other maps are largely asymmetrical about 

the horizontal meridian. The bottom row of Figure 3.9, depicts the visual field coverage 

within V4, LO1 and LO2. Each plot contains a complete, or close to complete hemifield 

representations of the contralateral visual field, evidenced by the largely symmetrical 

pattern about the horizontal meridian. There is clear evidence of coverage in both the upper 

and lower quadrants of the visual field, a pattern consistent with previous findings (Larsson 

& Heeger, 2006; Wandell., et al, 2007; Amano et al., 2009; Wandell & Winawer, 2011). The 
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marginal coverage in the opposite visual fields (right visual field) within V4, LO1 and LO2 is 

likely due to noise as these data were unthresholded. One feature of the LO1 and LO2 plots 

is noteworthy. The sector with the highest proportion of voxels in LO1 can be seen within 

the inner eccentricity ring (foveal vision), whereas in LO2, the highest proportion of voxels is 

found within the outer eccentricity ring (peripheral vision). It was originally reported that 

the eccentricity representation within LO1 was more heavily dominanted by foveal 

representation, whereas LO2 showed a sharp shift from foveal to more eccentric visual field 

locations in many subjects. The visual field coverage in these maps is consistent with that 

interpretation (Larsson & Heeger, 2006). 

 

 

 

 

 

 

 

 

Figure 3.9: Average visual field coverage plots. The average visual field coverage is plotted 

for visual field maps V1, V2d, V2v, V3d, V3v, V4, LO1 and LO2. Inset to the right of each plot 

is a schematic representation of the visual field coverage from previous studies, with white 

representing the expected area of coverage. In both the schematics and plots the vertical 

and horizontal meridians are represented by the dashed green lines, with the red dashed 

rings demarking foveal (inner ring) parafoveal (middle ring) and peripheral (outer ring) 

eccentricities, respectively. Top row: V1 displays a full hemifield representation, whereas 

V2d and V3d display a more weighted representation of the lower quadrant, with V2v and 

V3v displaying a more weighted representation of the upper quadrant. Bottom row: V4, LO1 

and LO2 display full hemifield representations, with representations largely symmetrical 

about the horizontal meridian. The pattern of visual field coverage across all tested maps is 

entirely consistent with previous reports. 
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In addition to the average visual field coverage plots, we also conducted a surface 

based averaging procedure in order to establish whether LO1 and LO2 adhered to common 

gyral and sulcal patterns. In their original paper, Larsson and Heeger identified a number of 

features regarding the location of LO1 and LO2 relative to common gyral and sulcal 

patterns. First, LO1 and LO2 were localised to the fundus of the lateral (middle) occipital 

sulcus (LOS), with LO2 anterior of LO1. Secondly, it was reported that in many subjects, 

either or both visual field maps extended over the inferior and/or superior boundaries of 

the sulcus onto the lateral occipital gyrus (LOG). Thirdly, in a handful of subjects where a 

lunate sulcus could be identified, the authors report that LO1 was more often than not 

located within this sulcus.  Finally, it was observed that in a few hemispheres the dorsal 

parts of LO1 extended into the transverse occipital sulcus, and in a small number of 

hemispheres, both LO1 and LO2 extended onto the inferior occipital gyrus (IOG).   

Surfaced based averaging was performed using the Freesurfer image analysis suite, 

which is documented and freely available for download 

(http://surfer.nmr.mgh.harvard.edu/). Anatomical volumes were initially segmented into 

grey and white matter. Once complete, each surface volume was inflated and registered to 

a spherical atlas which utilised individual cortical folding patterns to match the cortical 

geometry across subjects with the cortical geometry template taken from a single subject 

(EHS) (Fischl, Sereno & Dale, 1999a). This is an iterative procedure which aligns each 

subject’s cortical geometry with the target geometry (EHS in this case). Once aligned to the 

target template, the representations of polar angle and eccentricity were averaged together 

and projected onto the template geometry. The results of the averaging procedure are 

depicted in Figure 3.10, with respect to both polar angle and eccentricity across medial and 

lateral views of both hemispheres,  

http://surfer.nmr.mgh.harvard.edu/
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Figure 3.10: Polar angle and eccentricity representations derived from surface-based 

averaging of all subjects. Left column: Medial and lateral views depict partially inflated 

surface reconstructions of the left (top two rows) and right (bottom two rows) hemispheres 

of EHS are show. Middle column: The average representations of polar angle are overlaid. 

Visual field map boundaries are defined by the vertical (dashed white lines) and horizontal 

(solid white lines) respectively. Right column: The average representations of eccentricity 

are overlaid, the visual field map boundaries defined by the reversals in polar angle are 

overlain onto the same anatomy. 
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From Figure 3.10, one can see that visual field maps are delineable in both the left 

and right hemispheres. The location and visual field representations within these areas are 

largely consistent with those defined in individual subjects. It is quite remarkable that the 

structure of LO1 and LO2 is largely maintained throughout this procedure. Although the 

visual field representation at the boundary with LO1 and LO2 is not quite at the upper 

vertical meridian, this can be attributed to the averaging process. Nevertheless, the fact that 

two adjacent mirror-image representations can be found anterior of V3d highlights that LO1 

and LO2 show a reasonable correspondence to common gyral and sulcal patterns. Figure 

3.11 depicts close up views of the retinotopic organisation within the LO complex of the 

right hemisphere of a single subject and the group average. In both cases, the visual field 

representations within LO1 and LO2 are clearly evident. Additional visual field maps LO3-6 

(Brewer & Barton, 2011) are also evident in both the single subject and group average. 

These additional maps also exhibit largely hemifield representations of the contralateral 

visual field.  In both cases, reversals in the visual field representations define the boundaries 

between each of the six LO maps. 

  
Figure 3.11: Enlarged images of visual field maps within the LO cluster. Enlarged images of 

the LO cluster in the right hemisphere are shown from a single subject (left) and the group 

average (right). In both cases, the hemifield representations within LO1 and LO2 are clearly 

delineable, with LO1 beginning at the lower vertical meridian boundary (yellow) and 

extending towards the upper vertical meridian (purple/blue). LO2 is the mirror-reverse of 

LO1. Additional visual field maps LO3-6 are also delineable in both cases. All six LO maps 

contain complete hemifield representations of the contralateral visual field.  



Chapter 3                                          Visual Field Mapping & Retinotopic Features of LO1 & LO2 

 

80 
 

Figure 3.12: Visual field map size. Left: The average volume mm
3
 of visual field maps V1, 

V2, V3, V4, LO1 and LO2 is shown. Right: The percentage of V1 volume in LO1 and LO2. 

Error bars represent s.e.m. 

3.6.6:    Size & Location of LO1 & LO2 

The average volume (mm3) of visual field maps V1, V2, V3, V4, LO1 and LO2 and the 

percentage of V1 volume within LO1 and LO2 are plotted in Figure 3.12. A number of 

features are noteworthy. First, LO1 and LO2 were found to be very similar in size, a paired-t 

test (two-tailed) revealed no significant difference in volume between LO1 and LO2 (t (19) = 

1.153, p = 0.377). Second, LO1 and LO2 were found to be considerably larger than those first 

identified by others (Larsson & Heeger, 2006), with the volume in LO1 being ~37% of V1, 

and LO2 having a volume of ~41% of V1. In their original report, the sizes of LO1 and LO2 

were reported to be ~30% of V1 (Larsson & Heeger, 2006). The ring and wedge stimuli 

employed during visual field mapping had an angular extent of 15°, considerably larger than 

employed previously. The additional visual field stimulation likely underpins the larger 

estimates of size relative to previous reports (Larsson & Heeger, 2006). 

 

As described in Chapter 2, in order to target LO1 and LO2 for TMS, the centroids or 

centre of mass coordinates were calculated for each subject. The centroids for LO1 and LO2 

were transformed into Talairach space (Table 3.1), for comparison with previously published 

work (Larsson & Heeger, 2006). Inspection of Table 3.1, demonstrates that the mean 

centroid locations of LO1 and LO2 (in both hemispheres) were within the range previously 

published (Larsson & Heeger, 2006). However, with closer inspection, systematic increases 

within the Z coordinate can be seen. The wedge used in the current polar angle mapping 

experiments had an angular extent of 15°, rather than the 6° wedge used previously 

(Larsson & Heeger, 2006). The eccentricity representations in LO1 and LO2 extend along the 
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Z dimension, on an inferior to superior axis, and therefore the larger stimuli likely account 

for the observed increase in the Z dimension. 

 

 

 

 

In order to test this, new LO1 and LO2 ROIs (and therefore centroids) were defined 

for each subject, restricted to a maximum eccentricity of 6°, as follows. First, the phase 

representing the foveal confluence (at the occipital pole) was calculated. Second, the phase 

window was restricted from this start-point to a phase reflecting 6° eccentricity. Third, in 

those subjects in whom LO1 and LO2 were found to extend beyond this 6° eccentricity cut-

off, new (6°) LO1 and LO2 ROIs were defined, and the centroids of those maps were 

calculated and transformed into Talairach space for comparison (Table 3.2).  Restricting LO1 

and LO2 to 6° eccentricity resulted in mean centroid locations that were more inferior 

(lower Z dimension) and closer to the LO1 and LO2 centroids originally reported (Larsson 

and Heeger, 2006).  

 

 

 

Table 3.1. Average centroid locations of LO1 and LO2 (Talairach coordinates), including 

those from Larsson & Heeger (2006).  

 



Chapter 3                                          Visual Field Mapping & Retinotopic Features of LO1 & LO2 

 

82 
 

 

 

 

 

 

Across subjects there was a large degree of individual variation in the centroid 

locations of LO1 and LO2. This feature is consistent with previous reports (Larsson & Heeger, 

2006) and serves to highlight the necessity of identifying these visual field map targets on an 

individual basis and not relying on measuring fixed distances across the scalp as used 

previously (Ellison & Cowey, 2006). The extent of the variation is captured in Figure 3.13. 

Centroid locations of LO1 and LO2 have been transformed into MNI space and overlaid onto 

wire representations of the MNI brain, courtesy of the DV3D software (Gouws, Woods, 

Millman, Morland, & Green, 2009).           

 

 

 

 

 

 



Table 3.2: Centroid locations of LO1 and LO2 restricted to 6° eccentricity (Talairach 

coordinates), including those from Larsson & Heeger.  
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 Additionally, the transformed LO1 and LO2 centroids were plotted in 3D space for 

comparison with the location of the inion (a bony protrusion at the back of the head), which 

is often used as a landmark for TMS localisation (Ellison & Cowey, 2006; 2009). The left plot 

in Figure 3.14 depicts the transformed LO1 (red) and LO2 (blue) centroids for all 20 subjects. 

The inion (green circle, green arrow) is also plotted to provide a reference point. Even after 

normalisation to an average coordinate space the centroids of LO1 and LO2 show marked 

individual variation. The left plot of Figure 3.14 serves to underscore the necessity to map 

the location of LO1 and LO2 in individuals. Previous methods of TMS localisation such as 

measuring a fixed distance from the inion would be an inappropriate method for localising 

these regions. The right plot in Figure 3.14, depicts the average LO1 and LO2 centroids with 

the inion plotted, again as a reference.  

 

 

 

 

Figure 3.13: Individual variation in LO1 and LO2 centroid location. The centroids (3mm
3
 

spheres) of LO1 (burgundy) and LO2 (purple) have been transformed into MNI space and 
overlaid onto wire representations of the MNI brain. The individual variation in LO1 and LO2 
centroid location is evident in the left hemisphere of the axial (left) and coronal (right) 
images. For comparison the right hemisphere of both images illustrates the average LO1 
and LO2 centroid locations. 
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            Additionally, and for comparison with previous work, the transformed LO1 and LO2 

centroids were compared to the peak MNI coordinate of object-selective responses 

reported by Pitcher et al., (2009), depicted in Figure 3.15. Inspection of Figure 3.15 reveals 

that the peak LO voxel falls on the outer range of LO1 and LO2 centroids. Of note the 

centroids, along with the peak voxel are simply that, one voxel coordinates. The overlap 

therefore, between the definitions of object-selective LO and LO1 and LO2 likely extend 

beyond this. The right plot of Figure 3.15 depicts the mean MNI centroids for LO1 and LO2 

along with the peak LO voxel from Pitcher et al., (2009) and the mean centroids for LO1 

(light red circle, light red arrow) and LO2 (cyan circle, cyan arrow) from Larsson & Heeger 

(2006). Of note, these coordinates were transformed from Talairach to MNI. In comparison 

with Larsson and Heeger (2006), the current LO1 and LO2 centroids can be seen to be 

slightly more anterior and superior.  

 

 

 

 

Figure 3.14: LO1 and LO2 centroids in MNI space. LO1 (red) and LO2 (blue) centroids in 

MNI space for each individual subject (left) with the inion (green dot, green arrow) as a 

reference. The marked individual variation in LO1 and LO2 location is evident by the 

desertion of centroid locations.  Mean LO1 and LO2 centroids in MNI space, relative to the 

inion (right). 
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3.6.7:    Are LO1 & LO2 Part of Object-Selective Cortex? 

The extent to which LO1 and LO2 are considered part of object selective cortex has 

been a recent source of debate (Larsson & Heeger, 2006; Sayres & Grill-Spector, 2008). In 

this section, I briefly review the previous work demonstrating object-selective responses in 

LO1 and LO2, before describing the object-selective analyses undertaken as part of the 

thesis on a subset of subjects (n = 5). 

The lateral occipital complex (LOC) is a large area of extrastriate cortex, extending 

across both dorsal and ventral surfaces of visual cortex; defined operationally as the cortical 

area on the lateral and ventral surfaces of the occipital lobe that exhibit larger BOLD 

responses to images of common objects and faces, compared with scrambled images of the 

same stimuli (Malach et al., 1995; Grill-Spector et al., 1999; Kourtzi & Kanwisher, 2001). 

Anatomically, LOC has been divided into a more dorsal and posterior region, referred to as 

the lateral occipital cortex (LO), and a more ventral and anterior region, located in the 

posterior aspect of the fusiform gyrus (pFs). A number of studies report a functional division 

within the LOC, with responses to faces clustering in and around the pFs (Malach et al., 

1995) (in close proximity to the FFA), and neural activity related to the perception of objects 

Figure 3.15: LO1 and LO2 centroids relative to previously published work. Left: LO1 (red) 

and LO2 (blue) centroids in MNI space for each individual subject with the inion (green) as 

a reference are compared to the peak LO voxel from Pitcher et al., (2009) (clack circle, 

black arrow). Right:  Mean LO1 and LO2 centroids in MNI space, relative to the inion, the 

peak voxel from Pitcher et al. (2009) and the mean centroids for LO1 (light red circle, light 

red arrow) and LO2 (cyan circle, cyan arrow) from Larsson & Heeger (2006). 
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centred around LO (Kourtzi & Kanwisher, 2001). The object-selective nature of LO has been 

demonstrated consistently across a number of paradigms including neuropsychological 

(Goodale et al., 1991), neuroimaging (Kourtzi & Kanwisher, 2001; Sayres & Grill-Spector, 

2008; Amano et al., 2009) and neurostimulation studies (Pitcher et al., 2009). 

Importantly, LO1 and LO2 have been shown to exhibit the same selectivity to objects 

as the larger area that encompasses them, LO (Larsson & Heeger, 2006). Subjects were 

shown alternate sequences of greyscale images of faces and commonly encountered 

objects. These blocks were alternated with blocks (12sec) of scrambled versions of the same 

stimuli. Objects and faces were shown in alternating (12sec) sequences, allowing the 

segmentation of the LOC into face and object preferring regions, respectively. A large 

proportion of visual cortex, including LO1 and LO2 showed a larger response to intact over 

scrambled images of objects and faces. Object-selective responses evoked in LO1 and LO2 

were highly significant. The magnitude of responses to intact objects and face stimuli 

differed markedly across visual areas, and was larger in LO2 than any other retinotopically 

defined visual area, including LO1. Given the common division of the LOC into anterior face-

selective (pFus/pOTS) and posterior object-selective (LO) regions, a separate analysis of the 

responses evoked in LO1 and LO2 by images of faces and common objects, respectively, was 

undertaken. LO1 and LO2 were found to respond significantly more strongly to images of 

intact objects over images of faces. These combined results confirm LO1 and LO2 as part of 

the LOC with object-selective responses consistent with the posterior object-selective 

portion, LO, a finding more recently replicated (Amano et al., 2009). LO1 and LO2 therefore, 

represent the retinotopic subdivisions of LO, although the extent to which LO is restricted to 

these retinotopic boundaries is a source of debate (Larsson & Heeger, 2006; Sayres & Grill-

Spector, 2008).  

In a subset of subjects (n = 5) the overlap with object selective cortex and object- 

selectivity within LO1 and LO2 were assessed. Subjects participated in a standard LOC 

localiser (see appendix for full fMRI protocol). Subjects were presented with alternating 

blocks (9sec) of objects, faces and scrambled versions of these images. Each block contained 

ten images presented in a randomised order (700ms) with a short ISI (200ms). In an attempt 

to maintain attention, subjects were required to detect a red dot on a subset of images by 

pressing a response button. All images were centred at fixation and subtended 6 x 8° of 
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visual angle. Images were overlaid onto a mid-grey background. The aims of this analysis 

were twofold. First, to demonstrate that responses in LO1 and LO2 exhibit greater 

responses to the presentation of objects over the presentation of faces. This finding would 

be consistent with previous work and serve to strengthen the view that the object-selective 

responses  exhbibited in LO1 and LO2 are consistent with the object-selective LO (Larsson & 

Heeger, 2006). Second, to assess whether a dissociation is present in the object selectivity 

observed in LO1 and LO2. The spatial overlap between functional definitions of object-

selective LO (objects > scrambled objects) and the retinotopic boundaries of LO1 and LO2 in 

a single subject is plotted in Figure 3.16.  

 

 

 

 

 

 

 

 

Figure 3.16: Overlap between object-selective cortex and LO1 and LO2 in a single subject. 

All images are in radiological convention. LO is shown (left column) on axial (top) and 

saggital (bottom) slices by contrasting the BOLD responses elicited by the presentation of 

objects over scrambled objects. LO1 (red) and LO2 (blue) are shown (middle column) on 

axial and saggital slices in the right hemisphere. The overlap between LO and LO1 and LO2 

is shown (right column). Axial slices have been enlarged to focus on the occipital lobe of 

the right hemisphere. Object selective responses (top) and LO1 and LO2 (bottom) can be 

seen to show a close anatomical correspondence. The green arrow highlights the same 

sulcus in both images. 
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 LO1 and LO2 were intially defined on inflated surface reconstructions, but were later 

transformed back into the individuals native anatomical space. LO1 and LO2 can be seen to 

be adjacent visual field maps on posterior and lateral surface of the occipital lobe (middle 

column Figure 3.16). In the same subject, LO was defined by contrasting the responses 

elicited by the presentation of objects over scrambled objects, using FSL. In order to 

demonstrate the overlap between these independant definitons of LO, the data were 

overlaid onto the same anatomical volume (right column Figure 3.16). In accordance with 

previous reports (Larsson & Heeger, 2006), the functional definition of LO encompasses 

both LO1 and LO2. The functional definition of LO however, is not restricted to the 

retinotopic boundaires of LO1 and LO2, a feature that is consistent with previous reports 

(Sayres & Grill-Spector, 2008). 

The mean percentage signal change across all subjects for each condition is shown in 

Figure 3.17.  The responses to objects were larger in LO1 and LO2 than the responses to 

either faces or scrambled objects. These findings are consistent with previous reports and 

add to the evidence suggesting that LO1 and LO2 are the retinotopic subdivisions of LO. In 

order to assess the object selective nature of responses in LO1 and LO2, a series of paired t-

tests (one-tailed) were conducted comparing the responses in LO1 and LO2 across object, 

face and scrambled conditions.  The object-selective responses in LO1 were not significantly 

different to the responses to either faces (t (4) = 2.003, p = 0.051) or scrambled objects (t (4) = 

1.352, p = 0.117). The comparison with faces however did approach significance. The object- 

selective responses in LO2 were not significantly greater than the responses to faces (t (4) = 

1.327, p = 0.121), but were significantly greater compared to scrambled objects (t (4) = 2.641, 

p = 0.023). The differences in object responsiveness between LO1 and LO2 were also not 

significantly different (t (4) = -0.179, p = 0.887). 

 

 

 

 

 

 

 



Chapter 3                                          Visual Field Mapping & Retinotopic Features of LO1 & LO2 

 

89 
 

 

 

 

 

 

 

 

 

In addition to the analyses reported above, all subjects were put through a high-level 

group analysis. Statistical analysis of the fMRI data was performed using FEAT 

(http://www.fmrib.ox.ac.uk/fsl). The initial 9sec of data from each scan were removed to 

minimise the effects of magnetic saturation. Motion correction was followed by spatial 

smoothing (Gaussian, FWHM 6 mm). The group averaged data along with the mean LO1 and 

LO2 centroids are shown in Figure 3.18, overlaid onto the MNI brain. Data were cluster 

thresholded at Z = 2.3. In order to compare the location of LO1 and LO2 with respect to the 

LOC, the mean LO1 and LO2 centroids were transformed into MNI space and overlaid onto 

the same MNI brain. The centroids appear as 5mm spheres.   

 

 

 

 

 

 

 

Figure 3.17: Group averaged percent signal change across LO1 and LO2 to objects, faces 

and scrambled objects. The BOLD signals elicited across LO1 and LO2 were larger 

following the presentation of objects than either faces or scrambled objects. Error bars 

represent s.e.m. 
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The current analyses revealed a number of features of LO1 and LO2, consistent with 

previous reports. First, LO1 and LO2 were found to exhibit object-selective responses 

consistent with typical functional definitions of LO (Malach et al., 1995; Grill-Spector et al., 

1999). The BOLD responses in LO1 and LO2 were greater to the presentation of objects, 

than to either faces or scrambled objects. This is consistent with the original definitions of 

the posterior portion of the LOC, the object selective LO. Second, despite the object- 

selective responses in LO1 and LO2, the functional definition of LO were found not to be 

restricted to the retinotopic boundaries of LO1 and LO2. That is, statistically significant 

activation to objects was observed outside of LO1 and LO2, suggesting that either LO 

extends beyond retinotopic cortex or that LO may be comprised of more visual field maps 

than LO1 and LO2. The latter explanation is consistent with recent reports of four additional 

visual field maps (LO3-6) ventral of LO1 and LO2 (Brewer & Barton, 2011).  

 

 

 

 

Figure 3.18: Overlap between object selective cortex and visual field maps LO1 and LO2 in 

MNI space. Images are displayed in neurological convention. The group BOLD response to 

images of objects > scrambled objects is shown on saggital (left), coronal (middle) and axial 

(right) slices of the MNI (0.5mm) brain. 5mm spheres centred on the mean centroids for LO1 

(burgundy) and LO2 (purple) are also shown on the same slices. There is a good 

correspondence between the locations of LO1 and LO2 and functional definitions of LO. Of 

note, LO1 and LO2 extend beyond the areas depicted by these 5mm spheres.  
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3.7: Discussion 

 This chapter aimed to outline the retinotopic mapping protocol employed 

throughout the thesis and test several hypotheses which relate to the retinotopic, spatial 

and object-selective properties of visual field maps LO1 and LO2. The results reported in this 

chapter reveal a number of important features of LO1 and LO2, which are discussed in turn 

below. 

First, the results reported here demonstrate that retinotopic definitions of LO1 and 

LO2 were reliably made in at least one hemisphere in all subjects tested. Indeed, LO1 and 

LO2 were delineable in ~90% of hemispheres tested, an identification rate slightly higher 

than that previously reported (Larsson & Heeger, 2006). The visual field representations 

within LO1 and LO2 were also largely consistent with previous definitions (Larsson & 

Heeger, 2006). The representation of polar angle in LO1 began at the lower vertical 

meridian junction (‘Y’) with V3d, V3A /V3B and continued anteriorly and laterally towards 

the upper vertical meridian. LO2 was found to be the mirror-reverse of LO1, displaying polar 

angle representations from the upper vertical towards the lower vertical meridian. These 

visual field representations were found to be consistent not only across individual subjects, 

but also, when group average visual field coverage and surface based analysis techniques 

were employed.   

Second, the sizes and anatomical locations of LO1 and LO2 were found to be 

commensurate with the original definitions of these visual areas (Larsson & Heeger, 2006). 

The precise location of our LO1 and LO2 centroids varied across subjects, even following 

normalisation to an average coordinate space - a feature previously reported. Despite this 

variation LO1 and LO2 nevertheless show some adherence to common gyral and sulcal 

patterns, evidenced through the surface based averaging results.   

Third, LO1 and LO2 were found to exhibit object-selective responses. The BOLD 

responses in LO1 and LO2 were greater following the presentation of objects compared to 

either faces or scrambled objects – a feature consistent with previous work (Larsson & 

Heeger, 2006), and the original definitions of object-selective LO (Malach et al., 1995).  
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Finally, the retinotopic organisation and visual field coverage observed in our LO1 

and LO2 definitions were entirely consistent with the delineation of lateral occipital cortex 

proposed by Larsson and Heeger (2006).  The largely complete hemifield representations 

observed within LO1 and LO2 runs contrary to a recent suggestion which purports the 

existence of a dorsal component to human V4 (V4d) (Hansen, Kay & Gallant, 2007).  This 

alternative organisation is illustrated in Figure 3.19 and is compared with the retinotopic 

delineation of LO as proposed by Larsson and Heeger. Hansen and colleagues argue that 

V4d is homologous to the dorsal component of V4 found in macaque visual cortex. The 

argument for human V4d originated from studies, which reported that V4 contained only a 

lower quadrant representation, rather than the complete hemifield representation 

originally reported (McKeefry & Zeki, 1997). In addition, human V4d is purported to contain 

a lower quadrant representation anterior of V3d (Hansen et al., 2007). The alternative 

account, argues that part of the LO1 map should be combined with V4 to complete the 

hemifield representation. V4d is also suggested to directly abut LO1, but importantly, 

without displaying a phase reversal at this boundary (Hansen et al., 2007).  

 

 

 

 

 

Figure 3.19: Two alternative models for the existence of human hV4. The model proposed 

by Larsson and Heeger is shown to the left. In this model both hV4 and LO1 contain full 

hemifield representations. The model proposed by Hansen and colleagues is shown to the 

right. This model proposes that hV4 contains an upper quadrant representation only, with 

the lower quadrant being represented by a region of cortex anterior of V3d, which would 

constitute half of the LO1 map. Adapted from Goddard et al., (2011).  
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The V4d proposal faces two major challenges. First, a number of independent 

laboratories have not only demonstrated a complete hemifield map in V4 (McKeefry & Zeki, 

1997; Wandell et al., 2007; Goddard et al., 2011), which reduces the likelihood of there 

being a dorsal component of V4, but also, a complete hemifield representation anterior of 

V3d, LO1 (Larsson & Heeger, 2006; Wandell et al., 2007; Amano et al., 2009; Goddard et al., 

2011). Second, if one accepted the model, then the spared portion of LO1 (upper quadrant) 

would be stand-alone, with no identified ventral counterpart, this would constitute an 

‘improbable area’ (Zeki, 2003). Third, the proposal is reliant on V4d abutting LO1, but 

crucially, without a reversal in the visual field representation at this boundary. This scenario 

represents a divergence from the accepted method of visual field map identification, with 

reversals in the phase being the gold standard for retinotopically defining boundaries 

between visual areas. In contrast to Hansen et al., (2007) but consistent with previous 

reports (McKeefry & Zeki, 1997; Larsson & Heeger, 2006), our visual field mapping 

experiments reveal that (1) V4 is a single visual field map on the ventral surface of the brain 

that contains a complete hemifield representation and (2) anterior of V3d lies a complete 

hemifield representation LO1, rather than the lower quadrant that the alternative proposal 

relies upon. The visual field representations observed in V4 and LO1 are entirely consistent 

with previous reports and argues against LO1 being the dorsal component of V4.   

The visual field representations of our LO1 and LO2 definitions also run in contrast to 

the visual field representations observed at the commensurate level of the macaque visual 

cortex, depicted in Figure 3.20. In macaque, visual field maps V4d and V4t (V4 transitional) 

occupy the expanse of cortex between V3d and V5/MT (Orban, Van Essen, & Vanduffel, 

2004; Larsson & Heeger, 2006). Both V4d and V4t are reported to contain a lower quadrant 

representation of the visual field only. In contrast, the visual field coverage we observe in 

LO1 and LO2 is consistent with previous reports (Larsson & Heeger, 2006; Gardner et al., 

2008; Goddard et al., 2011), demonstarting complete hemifield represetnations in these 

regions, arguing against a direct homology between LO1 and LO2 and macaque V4d and 

V4t. LO1 and LO2 could therefore, represent two uniquely human visual field maps. 
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3.8: Conclusion 

This chapter has described and demonstrated the travelling wave method for fMRI 

visual field mapping adopted throughout the thesis. In addition, the retinotopic features, 

sizes and locations of LO1 and LO2 were assessed and found to be consistent not only with 

the original LO1 and LO2 report (Larsson & Heeger, 2006), but also, a number of more 

recent studies (Wandell et al., 2007; Amano et al., 2009; Goddard et al., 2011). LO1 and LO2 

were also shown to exhibit object-selective responses, consistent with previous definitions 

of LO (Malach et al., 1995).  The data presented in this chapter are consistent with the 

retinotopic organisation of lateral occipital cortex proposed by Larsson and Heeger (2006) 

and not the more recent model proposed by others. Finally, the retinotopic mapping 

experiments allowed LO1 and LO2 to be clearly defined in at least one hemisphere in all 

subjects tested. This was the crucial and initial step in all of the experiments conducted 

throughout the thesis.   

Figure 3.20: Flattened schematics of visual field maps in the right hemisphere of human and 

macaque visual cortex. In early visual cortex, V1, V2 and V3, there is clear homology 

between the two species. However, beyond V3d, the homology is less straightforward. In the 

macaque, V4d and V4t (shaded) represent the lower quadrant, respectively. In contrast, LO1 

and LO2 (shaded) in the human, contain a hemifield representation, respectively. LO1 and 

LO2 appear therefore, to be two uniquely human visual areas. Figure adapted from Larsson 

& Heeger (2006). 
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Chapter 4 

Motion & Orientation Processing in Lateral Occipital Cortex – A 

Pilot Study 

4.1: Overview 

The aim of this study was to investigate whether applying TMS to three relatively 

closely separated cortical targets could induce selective disturbances to performance on 

two visual tasks. The cortical targets for stimulation were LO1, LO2 and V5/MT. Given the 

previous literature in both macaque and human detailing V5/MT’s causal role in motion 

perception, a motion discrimination task was selected. Specifically, the motion task was 

designed to replicate a previously published finding regarding the effect of V5/MT 

stimulation on speed discrimination (Mckeefry et al., 2008). The second task was orientation 

discrimination – a visual task which may crucially depend on computations performed by 

LO1. The causal role played by LO2 in these visual tasks remains unknown, but we include 

this site in order to determine whether or not it plays a role in either task. If LO2 is causally 

involved in a visual task that is independent of both LO1 and V5/MT and moreover, 

contributes little to motion or orientation discrimination then TMS of LO2 should have no 

effect on discrimination relative to our No TMS baseline condition. 

4.2: The Processing Characteristics of V5/MT, LO1 & LO2 

 This study aimed to reveal specializations for motion and orientation processing in 

cortical areas V5/MT and LO1, respectively. In order to place the current study in the 

appropriate empirical context, the following sections outline the evidence for motion and 

orientation processing in several cortical visual areas. Evidence is taken from both macaque 

and human studies across a number of investigative paradigms. 

4.2.1:    Motion Processing in Primate Visual Cortex 

In both macaque and human cortex, the study of visual motion has revealed a 

number of areas specialized for motion perception. The following section reviews the role of 

V5/MT (the major contributor in this network) in motion processing, beginning with single 



Chapter 4               Motion & Orientation Processing in Lateral Occipital Cortex – A Pilot Study 

 

96 
 

unit studies in macaque and culminating in the application of TMS to V5/MT in human. 

Macaque visual cortex contains multiple visual areas, each one of which may be responsible 

for the analysis of one or more visual features (Zeki, 1990). Among these visual areas the 

evidence in favour of functional specialization is particularly strong for the middle temporal 

(MT/V5) area. Originally identified as an extrastriate area of cortex receiving direct input 

from V1, V5/MT was shown to contain a high proportion of directionally tuned neurons 

(Zeki, 1978).  A subsequent wealth of physiological and behavioural studies confirmed the 

critical role that V5/MT plays in the perception of motion. In addition to directionally tuned 

neurons, V5/MT has been shown to contain neurons that are tuned to different speeds 

(Maunsell & Newsome, 1987). Indeed the directional tuning of V5/MT neurons has been 

shown to be similar across speeds (Rodman & Albright, 1987). The specialization of V5/MT 

neurons was also shown to be somewhat independent of V1 input. Selective ablation and 

inactivation (via targetted cooling) of V1 in macaque cortex did not alter the visual 

responsiveness of the majority of tested V5/MT neurons and left recpetive field size and 

topographic represenation relatively unaltered (Rodman & Gross, 1989). In contrast, 

selective ablation of V5/MT directly led to increased thresholds for motion discrimination of 

dynamic random dot displays (Newsome & Pare, 1988).  More recently, recordings from 

macaque V5/MT have demonstrated that the speed encoding of V5/MT neruons are 

relatively form invarient (Priebe, Cassanello, & Lisberger, 2003). Using single square-wave 

gratings, the preferred speed of ~75 % of neurons were found to be dependent to an extent 

on spatial frequency, whilst ~25 % maintained speed tuning despite changes in spatial 

frequecny. When two gratings were superimposed onto one another, neurons prefered 

speed became less dependent on spatial frequency, suggesting that V5/MT neurons contain 

form-invarient speed tuning. Neuronal activity within macaque V5/MT has also been shown 

to correlate with speed perception judgements, whilst microstimulation of V5/MT actively 

altered speed judgements (Lui & Newsome, 2003; 2005).  

 In human, the existence of and role played by V5/MT  has been demonstarted 

repeatedly across neuropsychological and neuroimaging studies. In 1983, Zihl and 

colleagues reported the case of Patient L.M, who suffered bilateral damage to the lateral 

temporo-occipital cortex (Zihl et al., 1983). Across a large battery of neuropsychological 

tests, L.M exhibited selective disturbances of visual motion despite relatively normal visual 
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functions including acuity, visual field topography and colour vision, among others (Zihl et 

al., 1983).  Patient L.M was the first case of a pure motion deficit, refered to as visual 

akinatopsia (Zeki 1991). Later studies using PET and fMRI have not only confirmed the 

selectivity of V5/MT to the perception of visual motion (Zeki et al., 1991; Huk, Dougherty, & 

Heeger, 2002; Orban, Fize, Peuskens, Denys, Neilssen, Sunaert, Todd & Vanduffel 2003; 

Tootell, Tsao, & Vanduffel, 2003), but also, revealed the topographical representations 

within and surrounding this area (Huk, Dougherty, & Heeger, 2002; Amano et al, 2009; 

Kolster, Peeters & Orban, 2010). Very recently, V5/MT was shown to contain two 

retinotopic subdivisions termed TO1 and TO2, respectively. Both visual field maps contain 

complete contralateral hemifield representations (Amano et al., 2009). 

 A number of TMS studies have also been undertaken in order to probe the 

functioning of V5/MT. TMS has a distinct advantage over neuroimaging techniques as it can 

provide causal, rather than correlational information regarding cortical function. TMS has 

been employed therefore, to provide evidence in normal individuals that compliments the 

neuropsychological evidence reported in patients with seletive lesions. Early TMS studies of 

V5/MT showed selective disturbances to the accurate discrimination of direction (Beckers & 

Homberg, 1992; Beckers & Zeki, 1995).  An investigation into the role of V5/MT on visual 

attention of motion confirmed the critical role played by V5/MT during six visual search 

tasks. TMS of V5/MT caused a disproportianate disruption to visual search tasks when 

motion, but not form, was the attended visual cue (Walsh et al., 1998). An additional TMS 

experiment, which is repeated here to form one part of the current study, investigated the 

role of V5/MT (plus other sites) in the perception of speed (McKeefry et al., 2008). Given 

that V5/MT is the cortical target common to both the previous and current studies, I focus 

on V5/MT alone. TMS was applied to V5/MT to transiently disrupt the processing in this 

area whilst subjects performed delayed speed discrimination psychophysical experiments. 

The reference grating had a fixed speed of 8°/sec, while test gratings moved at one of seven 

predetermined speeds, specified to span a range of speeds both quicker and slower than 

the reference. A two-interval forced choice paradigm was employed, with subjects required 

to report which one of the two gratings appeared to move faster. Three experimental blocks 

(10 trials per test speed) were completed to derive psychometric functions, allowing the 

effect of TMS on the PSE and discrimination threshold to be determined relative to a no 
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TMS baseline. The delivery of TMS to V5/MT produced two main effects: (1) There was a 

right-ward shift in the psychometric functions, indicating that as a result of TMS stimulation 

the test gratings were perceived as slower than the reference and (2) a significant reduction 

in the slope of the psychometric function, indicating an elevation in speed discrimination 

thresholds. Importantly, the effect of TMS of V5/MT exhibited task and location specificity. 

TMS of V5/MT did not alter performance on a spatial frequency discrimination task and 

furthermore, displacement of the coil ~2cm away from the V5/MT target removed the 

disruptive effect of TMS on performance. The demonstration that TMS of V5/MT exhibits 

location and task specificity are important control measurements, which add compelling 

evidence to the large body of work supporting the specialized role of primate V5/MT’s in 

motion processing.  

Along with V5/MT, a second cortical area, V3A, has been shown to be selective to 

motion through neuroimaging (Smith, Greenlee, Singh, Kraemer, & Hennig, 1998; Tootell et 

al., 2003) and neurostimulation studies (Mckeefry et al., 2008). Intriguingly, LO1 and LO2 are 

located between the V3A and V5/MT motion selective areas (Figure 4.1) (Larsson & Heeger, 

2006). The posterior and dorsal boundary of LO1 abuts the ventral boundary of V3A. 

Likewise the lateral boundary of LO2 lies either in close proximity with the posterior 

boundary of V5/MT, or in some cases abuts it directly (Larsson & Heeger, 2006). The fact 

that LO1 and LO2 are located in between two cortical areas specialized for motion 

perception raises the question as to whether or not computations performed by LO1 and 

LO2 are also causally involved in motion perception. 

The motion selective nature of computations in LO1 and LO2 has been previously 

investigated using fMRI (Larsson & Heeger, 2006).  Subjects were presented with alternating 

blocks of moving and stationary dot patterns. The authors report the identification of three 

cortical areas that were selectively responsive to moving over stationary patterns (V1, V3A, 

and V5/MT). The average responses across subjects to moving dot patterns in LO1 and LO2 

were, however, not significantly different from the responses to stationary dot patterns 

(two-tailed t-test, df = 6, p = 0.62 and p = 0.06, for LO1 and LO2, respectively), suggesting 

that neither LO1 nor LO2 contain neurons that exhibit motion selectivity. Although of note, 

the response in LO2 approach significance (p = 0.06). Causal inferences however, cannot be 

made as a result of fMRI contrasts. In order to establish the role (if any) that LO1 and LO2 
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play in human motion perception there is a need to probe the functioning of these maps at 

a causal level through the application of TMS and furthermore, compare the effects to those 

found following TMS of V5/MT.  

 

 

 

 

 

 

 

 

 

 

4.2.2:    Orientation Processing in Striate & Extrastriate Cortex 

Early electrophysiological studies in non-human primates provided the first 

demonstrations of orientation selectivity in primary visual cortex. Pioneering single-unit 

studies of cells within cat V1 demonstrated that the most effective stimulus for V1 neurons 

was not a single spot of light, as previously thought, but rather, long narrow rectangles of 

light, referred to as ‘slits’ (Hubel & Wiesel, 1963). Hubel & Wiesel observed that a given V1 

cell would respond vigorously when an appropriate stimulus was shone on or moved across 

the receptive field, provided that the stimulus was of a particular orientation. The 

orientation selectivity of V1 neurons were shown to be structured in a columnar 

organisation. Later studies confirmed the columnar organisation of orientation selective 

neurons in macaque V1 (Hubel, Wiesel & Stryker, 1978). These neurons, like those in the cat 

were found to respond selectively to specifically orientated straight-line segments, rather 

than single spots of light placed within their receptive fields.  Human fMRI experiments have 

Figure 4.1: Visual field maps in the right hemisphere. Visual field maps are shown on 

posterior (Left) and lateral (Right) views of surface reconstructions of the right hemisphere 

of a single subject. V3A (purple) abuts the posterior and dorsal boundary of LO1 (peach), 

with V5/MT (hMT) (red) located slightly anterior of the posterior boundary of LO2 (orange). 

Adapted from Figure 2, Wandell et al., 2007). 
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largely confirmed the existence of orientation-tuned neurons in V1 (Furmanski & Engel 

2000). Indeed, the authors report fMRI data demonstrating the ‘oblique effect’, the finding 

that human orientation discrimination is more sensitive at the vertical and horizontal 

meridians, relative to oblique angles (Cambell & Kulikowski, 1966).  

Orientation selectivity has also been explored beyond striate cortex. Indeed, 

previous fMRI work identified a possible segregation of function between LO1 and LO2 in 

terms of their selectivity to stimulus orientation (Larsson et al., 2006).  LO1, but not LO2, 

was found to show robust and significant orientation selective MR adaptation (Larsson et 

al., 2006). Subjects were required to count the frequency with which an ‘X’ was present in 

an array of rapidly changing letters at fixation. During a single trial, a high-contrast adapting 

grating was presented parafoveally for 4sec. The adapting gratings were orientated either 

vertically or horizontally.  One second after cessation of the adapting grating, a probe 

grating was presented. Probe gratings were either presented at orientations parallel or 

orthogonal to the adapting stimulus.  

An area with orientation selectivity should exhibit a greater response to the probe 

oriented orthogonal to the adapting grating than parallel to it. This greater response to 

orthogonal than parallel probes is referred to as a release from adaptation.  LO1 exhibited a 

significant release from adaptation as did many other retinotopic visual areas, depicted in 

Figure 4.2. Interestingly however, LO2 exhibited no significant release from adaptation. The 

results indicated that a large number of extrastriate cortical areas exhibited orientation 

selective adaptation to the luminance modulated grating stimuli. The adaptation in 

extrastriate regions could occur for at least two reasons.  First, the extrastriate regions 

exhibiting the adaption effect may contain neurons that explicitly compute orientation and 

adapt to orientation.  Second, the extrastriate areas may simply inherit orientation 

adaptation which is set by neurons in a lower level visual area (likely V1) to which the 

extrastriate areas are connected. The authors (Larsson et al., 2006) adopted the second 

explanation for these data and suggested that the majority of extrastriate adaptation to 

luminance-modulated orientation was attributable to feed-forward propagation from V1 

(Larsson et al., 2006).  
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Figure 4.2: Orientation-selective 

fMRI adaptation in human visual 

cortex. The response to an 

orthogonally orientated grating 

can be seen to exhibit a significant 

release from adaptation in a 

number of visual field maps. 

Importantly, the significant release 

from adaptation observed in LO1, 

is not reflected in LO2. Adapted 

from Figure 10 (Larsson et al., 

2006). 

 

 

 

The result suggested a segregation of function between LO1 and LO2, with LO1 

exhibiting highly significant orientation selective neural responses, a result not evident in 

LO2 (Larsson et al., 2006). The orientation selective activation observed in LO1 extended to 

all stimulus dimensions tested; luminance, contrast and orientation (Larsson et al., 2006). 

Interestingly, and in addition to LO2, V5/MT also showed a lack of selectivity to stimulus 

orientation.  

Despite the strong evidence for orientation processing in LO1, but not LO2, the 

analysis suffers from the limitation inherent in the fMRI signal, that of causality. Although 

signals in LO1 displayed significant adaptation to orientation, that signal in of itself cannot 

establish whether the neural processing within LO1 is causally related to the processing of 

orientation, or simply a correlated hemodynamic response.  In order to address this issue, 

TMS was employed in the current study to elucidate the causal role played by LO1 in 

processing orientation. Specifically, this study aimed to establish whether neural activity 

within LO1 processes orientation information directly. To be consistent with the motion 

experiment we also investigated the roles of LO2 and V5/MT in the processing of 

orientation.  

 

 



Chapter 4               Motion & Orientation Processing in Lateral Occipital Cortex – A Pilot Study 

 

102 
 

4.3: Theoretical Considerations 

As outlined in the theoretical & analytical framework section of Chapter 1 (1.6), the 

design and interpretation of studies conducted throughout the thesis were heavily 

influenced by consideration of two components of a framework I term ‘map specific’, which 

proposes that each visual area exhibits functional specialization for the processing of 

particular visual features. Within this framework these functional specializations could be 

expressed either in a strictly serial and dependent processing architecture or alternatively 

independent of the computations performed by other areas, in other words in parallel.  

In regard to the current study, there is considerable evidence in both macaque and 

human that V5/MT exhibits parallel processing capabilities. In macaque, V4d and V5/MT 

abut one another on the lateral aspect of the occipital lobe. These visual areas have been 

shown to be functionally specialized for visual attributes of colour and motion, respectively 

(Zeki et al., 1978; Zeki, 1990). These areas also receive parallel projections from antecedent 

V2 (Shipp & Zeki, 1988), providing a plausible anatomical mechanism underlying these 

functionally parallel processes. In human, one of the first celebrated demonstrations of 

parallelism and functional specialization came with the observation that, V4 and V5/MT 

exhibited specializations for colour and motion processing, respectively. Indeed, damage to 

V5/MT, is seldom associated with deficits in colour processing and vice-versa – damage to 

V4 is seldom associated with deficits in motion processing (Zeki, 1990). Direct projections 

from subcortical structures such as the LGN to V5/MT have been identified in macaque 

cortex (Sincich, Park, Wohlgemuth & Horton, 2004). These direct projections bypass several 

stages of the visual hierarchy and therefore offer a plausible explanation for parallel 

processing. Intriguingly, LO1 and LO2 are in a commensurate location within the visual 

hierarchy in human as V4d and V5/MT are in the macaque, making the existence of parallel 

anatomical connections and functional specializations at least plausible.  

It is only following the demonstration of task and location specificity that a genuine 

claim of functional specialization can be made. These considerations echo those employed 

by McKeefry et al., (2008). The need for a control site is therefore, paramount. In the 

current experiment a control site (CON) was selected posterior of LO1 and therefore, closer 

in proximity to V1. The reason underpinning the location of the CON was that it provided a 
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sensible means by which to test whether any effect observed at LO1 during orientation 

discrimination is attributable to LO1’s closer proximity to V1 than our other target sites. Of 

note, LO1’s orientation selective adaptation was originally explained in terms of selective 

inheritance due to V1 proximity (Larsson et al., 2006). Although consideration of the effects 

of TMS at the CON, LO1 and V5/MT alone fits the requirements of the framework, we 

include LO2 as a target site, despite having no strong directional hypotheses regarding LO2’s 

role in either task. An absence of effect of TMS of LO2 for either task however, would be 

profoundly important for: (1) interpretation of functional specialization in the event that 

TMS of V5/MT and LO1 selectively disrupt motion and orientation, respectively; (2) the 

precision of TMS and (3) the nature of computations performed by LO2.  

4.4: Aims & Predictions 

The studies described in this chapter aimed to examine functional specialization in 

two closely separated cortical areas for two visual tasks. Given the clear evidence for 

parallel processing at the level of V5/MT reported above, we focus here on the predicted 

effects of TMS on our tasks based upon ‘map specific’ and ‘parallel’ processing only. It 

should be noted that these predictions are reliant upon the following three assumptions: (1) 

that the spread of TMS will be focal enough to allow stimulation of the intended target site 

without the effects spreading markedly into adjacent sites; (2) LO1 and V5/MT’s 

specializations and parallel processing capabilities exist and (3) that LO2 does not play a 

causal role in either motion or orientation processing.  

The map specific and parallel predictions are plotted in Figure 4.3. If V5/MT is 

specialized for motion processing and that processing is independent of other areas then 

TMS of this site and no other should disrupt motion discrimination (Left plot Figure 4.3). As 

explained above, this prediction brings with it a number of assumptions demonstrated by 

the bi-directional red arrows above the LO2 site. The bi-directional red arrow demonstrates 

that the exact role played by LO2 in motion processing is currently unknown. If LO1 is 

specialized for orientation processing independently of other visual areas then TMS of LO1 

alone should disrupt orientation processing (Right plot Figure 4.3). Again, the bi-directional 

red arrow depicts the uncertain effect that TMS of LO2 will have on orientation 

discrimination. Taken together the two plots predict a double dissociation. That is, V5/MT 
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Figure 4.3: Schematic predictions of the effects of TMS on motion and orientation 

discrimination. For motion discrimination, TMS of V5/MT should disrupt processing relative 

to all other conditions. For orientation discrimination, TMS of LO1 should disrupt processing 

relative to all other conditions – a double dissociation. The bi-directional red arrows above 

LO2 in both tasks, represents the unknown effect that TMS of this site may have.  

and LO1 will exhibit functional specializations for motion and orientation processing, 

respectively, and moreover, that these functional specializations will operate in parallel. 

 

 

 

 

 

 

 

4.5: Methods 

4.5.1:    Subjects 

Six subjects (mean age = 32, range = 23, 3 male) participated in the study. All 

subjects had normal or corrected to normal vision and gave informed consent in accordance 

with the declaration of Helsinki. York Neuroimaging Centre (YNiC) Research Governance 

Committee approved the study.   

4.5.2:    Visual Field Mapping 

All subjects completed retinotopic mapping sessions using standard fMRI visual field 

mapping techniques, as outlined in Chapter 3. Data analysis, segmentation and delineation 

of visual areas were also completed in accordance with previously published work (Baseler 

et al., 2011) and the steps described in Chapter 3. 

4.5.3:    Identification of Visual Field Maps LO1 & LO2 
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LO1 and LO2 were identified in at least one hemisphere in all six subjects in 

accordance with previous reports (Larsson & Heeger, 2006). LO1 extended anteriorly and 

laterally from the boundary of V3d, progressing gradually from the lower vertical meridian 

toward the upper vertical meridian. LO2 neighboured and was the mirror-reverse of LO1, 

displaying a gradual progression from the upper vertical meridian toward the lower vertical 

meridian.  

4.5.4:    Identification of V5/MT 

V5/MT was identified anatomically in each subject, in accordance with published 

methods (Dumoulin et al, 2000). V5/MT was located within the ascending limb of the 

inferior temporal sulcus (ALITS). In accordance with previously published data the posterior 

boundary of V5/MT was either in close proximity to, or directly abutted the anterior 

boundary of LO2 (Larsson & Heeger, 2006). Newly identified visual field maps TO1 and TO2 

(Amano et al., 2009), which lie within the V5/MT area, were present in some, but not all, 

subjects, so were not used to localise V5/MT. 

4.5.5:    Defining the Control Site 

Anatomically, LO1 is closer in proximity to V1 than either LO2 or V5/MT. The closer 

proximity, coupled with the clear evidence for orientation selectivity of neurons within cat 

(Hubel & Wiesel, 1963), macaque (Hubel, Wiesel & Stryker, 1978) and human V1 (Furmanski 

& Engel, 2000),  it was desirable to control for V1 proximity by selecting a control TMS site 

even closer to V1 than LO1.  For orientation discrimination, if dissociations were evident 

between LO1 and LO2, and/or between LO1 and V5/MT then the inclusion of a control site 

closer to V1 would provide a means by which to assess whether or not this dissociation was 

due to LO1’s proximity to V1. If V1 proximity explained these dissociations, one would 

predict the greatest disruption to orientation discrimination the closer the target to V1. That 

is, the effects of TMS on orientation discrimination should be maximised at the point of 

closest V1 proximity. Of note, this interpretation cannot hold if no effect is observed at the 

control site (compared to no TMS baseline). In an attempt to define an unbiased control site 

(in terms of retinotopic organisation), the control site was specified on a geometric basis 

only by calculating the Euclidean distance between the LO1 and LO2 centroids in each 
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subject and subsequently moving that distance from the LO1 centroid towards the midline 

and therefore, V1.  

4.5.6:     Psychophysical Stimuli & Procedures 

Stimuli for the behavioural and TMS experiments were generated using MATLAB 

(Mathworks, USA) and displayed on a Mitsubishi Diamond Pro 2070SB display with a refresh 

rate of 60 Hz, controlled by a VISAGE graphics card (Cambridge Research Systems TM). 

Grating stimuli were luminance modulated sinusoidal gratings (50% contrast) presented in a 

circular aperture (diameter 4) with a spatial frequency of 2 cpd. All stimuli had a mean 

luminance of 31 cd.m-2 and were presented on a uniform grey background of the same 

luminance.  

The visual tasks employed were motion (speed) and orientation discrimination of 

sinusoidal gratings. The parameters for psychophysical and TMS experiments followed the 

protocols outlined in the Psychophysical & TMS Protocol sections of Chapter 2.  Prior to 

TMS stimulation each subject completed motion and orientation discrimination 

psychophysical experiments using the method of constant stimuli described in full in 

Chapter 2. The spatial configuration of the gratings and temporal trial structure for the 

motion and orientation experiments were identical (see schematic Figure 4.4). The motion 

discrimination task was based heavily on the work by McKeefry et al., (2008). That is, the 

reference grating drifted at a constant speed (8°/sec) and test stimuli were randomly 

selected from seven predetermined speeds that spanned a range of speeds both slower and 

faster than the reference. In an attempt to make the orientation task as similar as possible, 

the reference orientation was fixed (45°), and thus, test stimuli were selected from seven 

predetermined orientations that spanned a range of orientations both more vertical and 

more horizontal than the reference.  The stimuli for the orientation task were static. For 

both tasks the phase of the reference and test gratings were randomised within each trial to 

prevent either task being solved via local luminance cues. In addition, for the motion task 

the direction of drift (left-right/right-left) was randomised between trials to avoid any 

directional adaptation. Individual psychometric functions for orientation and motion 

discrimination were plotted from the average for each subject (average of 350 trials – 50 



Chapter 4               Motion & Orientation Processing in Lateral Occipital Cortex – A Pilot Study 

 

107 
 

Figure 4.4: Trial structure schematics for motion (top) and orientation (bottom) 

psychophysical tasks. During motion discrimination the reference grating drifted at a fixed 

speed of 8°/sec. During orientation discrimination the orientation of the reference grating was 

fixed at 45°. Test stimuli for both tasks were randomly selected from a pre-determined list of 

seven speeds (motion task) and orientations (orientation task) that spanned a range of 

values either side of the reference stimuli. 

 

presentations per stimulus level), in order to determine the individual thresholds (75% 

correct) to be tested on during subsequent TMS sessions. 

In some subjects, the best fitting psychometric function may not pass through 50% 

correct identification when the reference and test stimuli were identical – the PSE. This may 

result in an asymmetrical function, which in turn will lead to asymmetric thresholds relative 

to the reference. In order to create symmetrical thresholds with respect to the reference 

stimulus, we calculated the 75% correct values for speeds both faster and slower than the 

reference and orientations more vertical and more horizontal than the reference. The range 

between these values was then calculated and divided in half. Stimuli used in TMS sessions 

were created using the following equation: TMS Stimuli = reference ± range/2. If for 

example, during orientation psychophysics the 75% correct more vertical orientation were 

51° and the 75% correct more horizontal orientation were 38°. The range (13°) would be 

halved (6.5°) and then added too and taken away from the reference (45°). This results in a 

more vertical (38.5°) and a more horizontal (51.5°) test grating, both of which are 

equidistant from the reference. 
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4.5.7:    TMS Protocol 

A train of 4 biphasic (equal relative amplitude) TMS pulses, separated by 50ms 

(20Hz) at 70% of the maximum stimulator output (2.6 Tesla) were applied to the subject’s 

scalp using a figure-of-eight coil (50mm external diameter of each ring) connected to a 

Magstim Rapid2 TM stimulator (Magstim, Wales). Subjects were seated in a purpose built 

chair with chin rest and forehead support. The coil was secured mechanically and placed 

directly above each cortical target (CON, LO1, LO2 and V5/MT) with the handle orientated 

parallel with the floor. The position of the coil was monitored and tracked in real time with 

respect to the subjects head, allowing several measurements to be recorded with each 

pulse train. Each subject underwent 10 counterbalanced sessions (2 tasks x [4 TMS sites + 1 

No TMS baseline]). 

During TMS sessions (and no TMS baseline) only the two stimuli defined using the 

method described above were randomly presented in a trial structure identical to that used 

to establish thresholds. Each TMS session comprised 100 trials (50 per threshold stimulus).  

TMS pulses were delivered concurrently with the presentation of the test stimulus (Figure 

4.5). This temporal configuration was identical to that used in previous studies of motion 

perception (McKeefry et al., 2008) where induced functional deficits were maximised when 

TMS pulses were delivered coincident with stimulus onset. 
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Figure 4.5: Trial structure schematics for motion (top) and orientation (bottom) TMS tasks. 

During TMS sessions for both tasks (and no TMS baseline) only the two threshold stimuli 

were presented as test stimuli in a randomised order. TMS pulses were delivered coincident 

with the presentation of the threshold stimuli symbolised by the red lightning bolt. 

 

 

 

 

 

 

 

 

 

 

4.5.8:    Data & Statistical Analysis 

Before data analysis some trials (~3%) were removed on the basis of two criteria: 

trials for which coil displacement was large (>2.5 mm) and trials for which reaction time was 

greater than 2,000 ms after the cessation of the presentation of the test stimulus. Statistics 

were calculated using the SPSS software package (IBM TM). A series of two-way repeated-

measures ANOVAs were employed initially to examine the effects of discrimination (% 

correct) and reaction times (secondary measure), along with two potentially confounding 

variables (coil-target distance and coil-target orientation), which relate to spatial 

relationships between the TMS coils and the cortical targets. These measurements provide a 

means to assess the amount of variance in the data that can be explained by imprecision in 

the delivery of TMS pulses, caused by operator error or head movement. In the case of a 

significant interaction, subsequent one-way repeated-measures ANOVAs were calculated 

for each task considered separately, followed by paired t-tests. For each ANOVA, whether or 
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not the ANOVA adhered to the assumption of sphericity was established initially using 

Mauchly’s test. When the assumption of sphericity is violated, two approaches to correcting 

the degrees of freedom are typically adopted to allow appropriate interpretation of the F 

value that resulted from the ANOVA. The Greenhouse-Geisser correction to the degrees of 

freedom is routinely used when the estimate of sphericity is less than 0.75, but when the 

estimate of sphericity exceeded this value, the more liberal Huynh-Feldt correction is 

considered more appropriate. 
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4.6: Results 

4.6.1:    Identification of Visual Field Maps LO1 & LO2 

Visual field maps LO1 and LO2 were clearly identifiable in at least one hemisphere in 

all subjects (See Visual Field Map Gallery in Chapter 3 for full retinotopic breakdown of 

subjects S1-S6). Figure 4.6 illustrates visual field maps with respect to polar angle (including 

LO1 and LO2) on lateral views of both the left and right hemispheres of a representative 

subject (S6). In both hemispheres, LO1 extends anteriorly from the shared boundary with 

V3d, at the representation of the lower vertical meridian. LO1 displays a gradual progression 

from the lower vertical meridian towards the upper vertical meridian. LO2 is the mirror-

reverse of LO1 and therefore, displays a gradual progression from the upper vertical 

meridian towards the lower vertical meridian. The retinotopic features of LO1 and LO2 are 

entirely consistent with previous definitions (Larsson & Heeger, 2006). Centroids of LO1 and 

LO2 were calculated in order to define TMS targets. 

  

Figure 4.6: Bilateral visual field maps in a single subject. Lateral views depict visual field 
maps in the left and right hemispheres of a representative subject (S6). The BOLD 
responses to the rotating wedge stimulus are overlaid in false colour (see colour wheel, 
centre) onto surface reconstructions of the grey-white matter boundary of the left and right 
hemispheres. The vertical meridian representations are shown by the dashed white lines, 
with the horizontal meridian representations shown by the solid white lines. In both 
hemispheres the visual field representations in LO1 and LO2 are clearly identifiable. LO1 
begins at the shared boundary with V3d at the representation of the lower vertical meridian. 
LO1 extends anteriorly from the lower vertical meridian toward the upper vertical meridian. 
LO2 is the mirror-reverse of LO1 and displays a gradual progression from the upper vertical 
meridian back toward the lower vertical meridian. LO1 and LO2 were identified in at least 
one hemisphere in each subject. 
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4.6.2:    Identification of V5/MT 

In all subjects, the V5/MT target site for TMS was located in the ascending limb of 

the inferior temporal sulcus (ALITS) in accordance with previous literature (Dumoulin et al., 

2000). Figure 4.7, demonstrates the anatomical location of V5/MT in a representative 

subject (Left of Figure 4.7), along with an example of the close proximity of our cortical 

targets (Right of Figure 4.7).  The Euclidean distances between cortical targets in each 

subject are given in Table 4.1. Distances were calculated within individual’s native space and 

therefore, reflect the actual distances without normalisation to an average coordinate 

space. 

 

 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Euclidean distance (mm) between targets 

Subject LO1-LO2 LO1-V5/MT LO2-V5/MT 

S1 10.7700 29.8998 16.1864 

S2 9.0200 38.4448 24.3516 

S3 10.2900 24.7386 20.3224 

S4 13.7400 26.7208 16.0312 

S5 6.0600 30.0167 12.6886 

S6 11.8700 24.8596 12.0830 

Average 10.1960 29.1134 16.9439 

Figure 4.7: Anatomical identification of V5/MT. Saggital and Axial slices depict the location 
of the V5/MT target in a typical subject. Images are displayed in radiological convention. The 

superior temporal sulcus (STS) and ascending limb of the Inferior temporal sulcus (AlITS) 

are illustrated with the dashed white arrows. The V5/MT target, depicted at the centre of the 
green crosshairs can be seen to fall within the ALITS (left). The V5/MT target is in close 
proximity to the LO1 and LO2 cortical targets identified through retinotopic mapping 
procedures (right). The V5/MT target was either found to be close to or abutting the anterior 
boundary of LO2 in many subjects. 

 
Table 4.1: Euclidean distances (mm) between LO1, LO2 and V5/MT in all subjects. The 

average distances demonstrate the two spatial scales of investigation: LO1 – V5/MT 

between clusters and, LO1-LO2, within cluster. 
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Figure 4.8: Motion and orientation psychometric functions. Individual psychometric functions 
for the motion (top) and orientation (bottom) discrimination tasks for subjects S1-S6. The 
threshold stimuli to be used in subsequent TMS sessions were derived from these 
psychometric functions. For motion, the 75% correct faster and slower speeds were 
calculated. The range between these values was divided in half and added to and subtracted 
from the reference speed to create the two stimuli for TMS. For orientation, the 75% correct 
more vertical and more horizontal orientations were calculated. The range between these 
values was divided in half and added and subtracted from the reference orientation to create 
the stimuli for TMS. 

 

4.6.3:    Motion & Orientation Psychophysics 

Motion and orientation psychometric functions for subjects (S1-S6) are plotted in 

Figure 4.8. Inspection of Figure 4.8, demonstrates the high individual variation across 

subjects. Of particular note, the range of orientations required for S6 is substantially larger 

than the range of orientations needed for Subjects S1-S5. The x axis for S6 is rescaled to 

account for the greater range of orientations required by this subject. This individual 

variation underscores the necessity in defining individual discrimination thresholds. If 

arbitrary stimulus intensities were selected, then during TMS some subjects may exhibit 

floor effects, whilst others may exhibit ceiling effects.  
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We defined, in each individual subject, two stimuli to be presented during each TMS 

task. These stimuli were equidistant from the reference stimulus. Table 4.2, contains the 

75% correct thresholds for speeds faster and slower than the reference (motion) and 

orientations more vertical and more horizontal than the reference (orientation), for all 

subjects. Table 4.2, also includes the value added too and subtracted from the reference 

stimulus and the actual values presented during TMS for all subjects.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  speed (degrees/sec) 

Subject threshold S  threshold F ref ±  TMS S  TMS F 

S1 6.4075 8.5075 1.0500 6.9500 9.0500 

S2 7.3100 8.5550 0.7725 7.2275 8.7725 

S3 6.5150 8.6750 1.0800 6.9200 9.0800 

S4 7.2650 8.7500 0.7425 7.2525 8.7425 

S5 7.2500 9.7550 1.2525 6.7475 9.2525 

S6 7.2200 9.2900 1.0350 6.9650 9.0350 

  orientation (degrees) 

Subject threshold H threshold V ref ±  TMS H TMS V 

S1 43.4400 46.3200 1.4400 43.5600 46.4400 

S2 43.1250 46.8000 1.8375 43.1625 48.8375 

S3 43.7250 46.7750 1.5250 43.4750 46.5250 

S4 44.2800 46.2600 0.9900 44.0100 45.9900 

S5 43.1400 48.2700 2.5650 42.4350 47.5650 

S6 43.2000 52.8000 4.8000 40.2000 49.8000 

Table 4.2: Threshold and TMS values derived from the motion and orientation psychometric 
functions for subjects S1-S6. For motion (top), table includes the 75% correct values for 
speeds slower (threshold S) and faster (threshold F) than the reference, plus the value 
added too and taken away from the reference (ref ±) and the values used during TMS for the 
slower (TMS S) and faster (TMS F) test stimuli. For orientation (bottom), table includes the 
75% correct values for orientations more horizontal (threshold H) and more vertical 
(threshold V) than the reference, plus the value added too and taken away from the 
reference (ref  ±) and the values used during TMS for the more horizontal (TMS H) and more 
vertical (TMS V) test stimuli. 
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Figure 4.9: Effects of TMS on motion and orientation discrimination performance. Group 
average performances are plotted for all conditions grouped by task. Prediction schematics 
for parallel processing are inset above each task. The pattern of deficits induced by TMS 
closely follows that predicted by map specific and parallel processing of motion and 
orientation, respectively. For motion discrimination, performance is maximally disrupted 
following TMS of V5/M. For orientation discrimination, performance is maximally disrupted 
following TMS of LO1. TMS effects at V5/MT and LO1 are specific to motion and orientation 
tasks, respectively. Error bars represent s.e.m. 

 

4.6.4:    Effects of TMS on Motion & Orientation Discrimination 

Group average performance (% correct) for all conditions are plotted for both tasks 

in Figure 4.9. Inspection of Figure 4.9, reveals a number of important and interesting 

patterns of results across conditions for both tasks. For motion discrimination, the data 

indicate that: (1) performance is maximally disrupted following TMS of V5/MT, relative to all 

other conditions; (2) performance is largely equivalent following TMS of the CON, LO1 and 

LO2 and (3) performance during the no TMS condition is surprisingly high, relative to the 

collective TMS conditions.   For orientation discrimination, the data indicate that: (1) the 

greatest disturbance to performance occurred following TMS of LO1, relative to all other 

conditions; (2) the effects of TMS were very similar following TMS of the CON, LO2 and 

V5/MT and (3) the no TMS condition displays slightly worse performance relative to TMS of 

the CON, LO2 and V5/MT. Comparing the overall pattern of deficits across tasks also 

indicates lower performance in the motion over orientation tasks for all conditions, 

suggestive of a general effect of task.  
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If V5/MT and LO1 are specialized for motion and orientation perception, 

respectively, an interaction between Task and Site should be evident. Accordingly, a 2 x 5 

repeated measures ANOVA was conducted with conditions Task (motion & orientation) and 

Site (no TMS, CON, LO1, LO2 & V5/MT).  The ANOVA revealed a significant Task x Site 

interaction (F (4, 20) = 11.936, p = < 0.0001). The main effect of Task (F (1, 5) = 23.186, p = 0.005) 

was significant, reflecting poorer performance during motion than orientation 

discrimination across conditions. The main effect of Site was also significant (F (1, 20) = 6.242, 

p = 0.002), presumably reflecting the lower performances during V5/MT and LO1 simulation 

across the motion and orientation tasks, respectively. There were no significant pairwise site 

comparisons (p = > 0.152, in all cases: Bonferroni corrected). Although the identification of a 

significant Task x Site interaction was essential to the analysis, additional analyses are 

required to determine whether or not the effects of TMS of V5/MT and LO1 exhibit both 

Task and Site specificity. Accordingly, one-way ANOVAs were conducted on each task 

considered separately, to elucidate whether task dependant effects were specific to V5/MT 

and LO1, respectively. 

 For motion discrimination, a one-way repeated measures ANOVA revealed a 

significant effect of Site (F (4, 20) = 8.429, p = < 0.0001). Due to our ‘a priori’ hypothesis the 

effect of TMS of V5/MT on performance was compared to all other conditions using paired 

t-tests (one-tailed). TMS of V5/MT caused a significant and selective disturbance to motion 

discrimination performance compared to all other conditions (V5/MT versus No TMS: t (5) = -

4.587, p = 0.003; V5/MT versus CON: t (5) = -2.569, p = 0.025; V5/MT versus LO1: t (5) = -4.073, 

p = 0.005; V5/MT versus LO2: t (5) = -2.822, p = 0.0185).  As mentioned above, performance 

on the no TMS condition was surprisingly high relative to all other TMS conditions. This 

could be indicative of a general effect of TMS, which is further pronounced following TMS of 

V5/MT. Indeed paired t-tests (two-tailed) indicate significant differences between the no 

TMS condition and TMS of LO1 and LO2, but not the CON (no TMS versus CON: t (5) = 2.122, 

p = 0.088; no TMS versus LO1: t (5) = 2.815, = 0.037; no TMS versus LO2: t (5) = 3.276, p = 

0.022). Given the data one would be tempted to infer that TMS in general led to a significant 

reduction in performance relative to no TMS condition, which was further pronounced 

following TMS of V5/MT. It will be important however, to consider the reaction time data in 

order to examine whether a speed-accuracy trade off is present for this condition.  
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 The lack of a significant effect following TMS of LO2 would be profoundly important 

for further work. Accordingly, paired t-tests (two-tailed) were conducted in order to 

elucidate whether TMS of LO2 disrupted performance relative to TMS of the CON, LO1 and 

the no TMS baseline. There was a significant difference between the effect of TMS of LO2 

and the no TMS (reported above), but no significant difference between the effect of TMS of 

LO2 and either the CON or LO1 (LO2 versus CON: t (5) = -0.105, p = 0.921; LO2 versus LO1: t (5) 

= -0.630, p = 0.556).  

For orientation discrimination, a one-way repeated measures ANOVA revealed a 

significant effect of Site (F (4, 20) = 9.995, p = < 0.0001). Due to our ‘a priori’ hypothesis the 

effect of TMS of LO1 during orientation discrimination was compared to all other conditions 

using paired t-tests (one-tailed). TMS of LO1 induced significant disruption to orientation 

discrimination compared to all other conditions (LO1 versus No TMS: t (5) = -3.588, p = 0.008; 

LO1 versus CON: t (5) = -5.350, p = 0.0015; LO1 versus LO2: t (5) = -4.313, p = 0.004; LO1 versus 

V5/MT: t (5) = -3.659, p = 0.0075). We also assessed the effect of TMS of LO2 on orientation 

performance using paired t-tests (two-tailed). TMS of LO2 did not significantly alter 

performance relative to the no TMS condition or TMS of the CON or V5/MT (LO2 versus 

CON: t (5) = 1.008, p = 0.360; LO2 versus V5/MT: t (5) = 0.177, p = 0.867). 

Taken together, the patterns of deficits induced by TMS closely follow that predicted 

by map specific and parallel processing of motion and orientation, respectively. TMS of 

V5/MT maximally disrupted motion, but not orientation performance, whereas TMS of LO1 

maximally disrupted orientation, but not motion performance – a double dissociation.  

 

4.6.5:    Is There a Perceived Slowing of Motion Following TMS of V5/MT? 

 In accordance with previous research, we analysed the extent to which TMS of 

V5/MT resulted in a perceived slowing of motion (McKeefry et al., 2008). In order to do this 

the percentages of slower responses across conditions was calculated. In each TMS 

condition there were 100 stimulus presentations, 50 presentations of the stimuli both faster 

and slower than the reference stimulus. If a response bias is not present, the percentage of 

faster responses minus 50 should therefore, not be significantly different from zero.  If a 

positive value is observed this would be indicative of a bias towards the faster grating, 
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Figure 4.10: Response biases during motion discrimination. The mean percentages of 
responses (either slower or faster) are plotted for all conditions. In all TMS conditions (as 
well as no TMS baseline), TMS caused a response bias towards the slower moving grating. 
These response biases were only significantly different from zero following TMS of V5/MT. 
Error bars represent s.e.m. 

 

whereas if a negative value is observed, this would indicate a bias towards the slower 

moving grating. Group averaged response biases are plotted for all conditions in Figure 4.10.  

 

 

Inspection of Figure 4.10, indicates that a perceived slowing was evident in all 

conditions, but was greatest during stimulation of V5/MT. One-tailed (V5/MT) and two-

tailed (no TMS, CON, LO1 and LO2) t - tests were calculated, in order to evaluate whether 

these biases were significantly different from zero. The perceived slowing of motion was 

significantly different from zero following TMS of V5/MT only (no TMS: t (5) = -1.414 p = 

0.217; CON: t (5) = -0.872 p = 0.423; LO1: t (5) = -0.330 p = 0.755; LO2: t (5) = -1.658, p = 0.152; 

V5/MT: t (5) = -2.360, p = 0.032). Across subjects there was a significant bias towards the 

slower moving grating following TMS of V5/MT. A result not found following TMS of any 

other site or during the no TMS baseline. The current result successfully replicates previous 

findings, demonstrating that TMS of V5/MT induces a perceptual slowing of motion 

(McKeefry et al., 2008). 
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4.6.6:    The Effect of TMS on Reaction Times  

Discrimination performance (% correct) was used as the primary measure of the 

effects of TMS. Nevertheless, reaction times were recorded as they are often the primary 

measure in TMS studies and can add valuable information when interpreting the effect of 

TMS on behaviour. For instance, reaction time data can be used to determine the presence 

of a speed-accuracy trade off, which if present, would confound the interpretation of the 

discrimination performances reported above. If one assumes that TMS to a particular site 

increases task difficulty, one may also assume that reaction times should increase or remain 

unchanged. Quicker reaction times that are associated with poorer performance – a speed 

accuracy tradeoff - present a challenge to interpretations regarding functional 

specialization. This is particularly important here given the high level of performance 

observed for the no TMS condition during motion discrimination. 

Group averaged reaction times for all conditions and tasks are plotted in Figure 4.11. 

Inspection of Figure 4.11, reveals a number of interesting patterns. For motion 

discrimination: (1) the slowest reaction time during TMS stimulation was observed during 

TMS of V5/MT. That is, the slowest reaction times during TMS stimulation were associated 

with the poorest performance, suggesting the lack of a speed-accuracy trade of for the 

V5/MT condition; (2) reaction times during TMS stimulation of the CON, LO1 and LO2 were 

very similar, echoing the discrimination data reported above and (3) reaction times during 

the no TMS condition were substantially slower than all other TMS conditions, including 

V5/MT. In this case, the slowest reaction times across all conditions were associated with 

the best performance – hinting at a speed-accuracy trade off. For orientation discrimination, 

there is little suggestion of a speed-accuracy trade off across conditions. Indeed, the 

condition in which reaction times are the slowest during LO1 is associated with the poorest 

performance – TMS of LO1.    
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To assess formally the effect of reaction times, a 2 x 5 repeated measures ANOVA 

was conducted with conditions Task (motion & orientation) and Site (no TMS, CON, LO1, 

LO2 & V5/MT). There was a significant effect of Task (F (1, 5) = 15.418, p = 0.011), indicating 

slower reaction times during motion discrimination, but neither a significant effect of Site (F 

(4, 20) = 1.192, p = 0.345) nor a significant Task by Site interaction (F (4, 20) = 2.772, p = 0.055).  

Given that the Task x Site interaction approached significance and in order to echo the 

analysis of discrimination task specific one-way repeated measures ANOVAs were 

conducted, followed by t-tests to explore further these effects.  

For motion discrimination, there was a significant effect of Site (F (4, 20) = 3.129, p = 

0.038). This effect is likely driven by the substantially slower reaction times during the no 

TMS baseline relative to all other conditions. The best performance was observed during the 

no TMS condition, relative to all other TMS sites. One interpretation of this is that there was 

a general effect of TMS to all sites, and further pronounced following TMS of V5/MT. In 

order to rule out speed-accuracy trade off as an explanation for the no TMS performance 

and therefore accept this interpretation, the reaction times during the no TMS condition 

Figure 4.11: Effect of TMS on reaction times during motion and orientation discrimination. 

For motion discrimination, there is no evidence of a speed-accuracy trade off during TMS 

conditions. Stimulation of V5/MT, which led to maximum disruption to performance, is 

associated with the slowest reaction times compared to other TMS sites. In contrast the 

increased performance during no TMS is associated with slower reaction times, suggesting 

the possibility of a speed-accuracy trade off for this condition.  For orientation discrimination, 

there is no evidence that quicker reaction times led to the reduction in performance observed 

following TMS of LO1.This is in the predicted direction and is the opposite of a speed-

accuracy trade off. Error bars represent s.e.m. 
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were compared to all TMS conditions using paired t-tests (one-tailed). Reaction times were 

significantly different for all condition except V5/MT (no TMS versus CON: t (5) = 2.103, p = 

0.0445; no TMS versus LO1: t (5) = 2.061, p = 0.047; no TMS versus LO2: t (5) = 2.111, p = 

0.044; no TMS versus V5/MT: t (5) = -1.630, p = 0.164). The increase in performance during 

no TMS is associated with significantly slower reaction times, making a speed-accuracy trade 

off the most parsimonious explanation for this result. 

 For orientation discrimination, the main effect of site was not significant (F (4, 20) = 

0.677, p = 0.616). Given the lack of a significant effect of Site, further tests were not 

conducted. There is no evidence that the significant disruption to orientation discrimination 

induced following TMS of LO1 is due to speed-accuracy trade off. Indeed, reaction times 

during LO1 stimulation were longer than any other condition. Taken together, the analyses 

of reaction times strengthen the main interpretation of the effects of TMS on performance 

of our visual tasks. The selective disturbances to motion and orientation performance 

following TMS of V5/MT and LO1, respectively, were not due to quicker reaction times 

during these conditions.  
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Figure 4.12: Mean Euclidean distance between stimulating coil and cortical targets during 

motion and orientation discrimination.  The results indicate that coil-target distance did not 

vary in a manner that explains the observed patterns of TMS on performance. There is no 

evidence that differences in the distance between the stimulating-coil and cortical targets led 

to the dissociable effects observed. Error bars represent the s.e.m. 

4.6.7:    Analysis of Potentially Confounding Variables 

Additional measurements were recorded with each TMS pulse train in an attempt to 

account for two potentially confounding variables that relate to the spatial relationships 

between the stimulating coil and the targets within cortex; coil-target distance and coil-

target orientation. These measurements are included as they provide a means by which to 

rule out differences in the precision of TMS, caused by operator error, as an alternative 

account of the discrimination data reported above. 

4.6.7.1:    Coil -Target Distance  

The mean Euclidean distances (mm) separating the calibration point of the coil and 

the targets in cortex are plotted for all TMS targets and tasks in Figure 4.12.   

 

 

 

 

 

From figure 4.12, one can see that for both tasks the coil-target distances vary as a 

function of site – a feature that may reflect the method for defining these cortical targets. 

Variation in the coil-target distance could be underpinned by the location of the targets with 

respect to gyri and sulci. Recall that V5/MT was defined anatomically and located in the 

ascending limb of the inferior temporal sulcus, the depth of which may underlie the greater 

distances relative to other targets. The pattern across sites is largely equivalent for both 

tasks. This is important as the target locations within cortex are identical for both tasks, and 

orienttion 
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therefore, any variation between tasks must be caused by operator error. Potential sources 

of operator error include imprecise calibration and/or registration procedures. In order to 

assess whether the coil-target distances varied in such a way that could explain the 

discrimination data a 2 x 4 repeated measures ANOVA was conducted with conditions Task 

(motion & orientation) and Site (CON, LO1, LO2 & V5/MT). The Task x Site interaction 

violated sphericity (Mauchly’s W (5) = 0.015, p = 0.01, estimate of non sphericity = 0.525) the 

degrees of freedom were therefore, corrected using Greenhouse-Geisser. There was a 

significant effect of Site (F (2.082, 10.412) = 4.457, p = 0.020, Greenhouse-Geisser corrected), but 

neither a significant effect of Task (F (1, 5) = 0.117, p = 0.747), nor a significant Task by Site 

interaction (F (3, 15) = 0.087, p = 0.966). The significant effect of site likely reflected the larger 

coil-target distance between V5/MT and all other sites across both tasks.  There were no 

significant pairwise site comparisons (p = > 0.101, in all cases, Bonferonni corrected).  

As with all variables, task specific one way ANOVAs were conducted. For motion 

discrimination, the main effect of Site violated sphericity (Macuhly’s W (5) = 0.026, p = 0.022, 

estimate of non sphericity = 0.637) the degrees of freedom were therefore, corrected using 

Greenhouse-Geisser. The main effect of Site was not significant (F (1.911, 9.554) = 2.227, p = 

0.162, Greenhouse-Geisser corrected). Given the non significant effect of site no further 

tests were conducted. For orientation discrimination, the main effect of Site was not 

significant (F (3, 15) = 1.124, p = 0.371). Given the non significant effect of site no further tests 

were conducted.  

4.6.7.2:    Coil-Target Orientation 

Coil orientation provides a measure of the difference between the coil orientation 

and the vector joining the calibration point of the coil and the TMS target, with accurate 

targeting corresponds to 90° on this measure. The group averaged coil-target orientations 

for all TMS sites and tasks are plotted in Figure 4.13.  
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Figure 4.13: Mean coil-target orientation during motion and orientation discrimination. The 

results indicate that changes in the orientation of the coil relative to the cortical targets did 

not vary in a manner that explains the observed patterns of performance.  Indeed, the 

orientation across all conditions was very close to 90 degrees, indicating accurate targeting. 

Error bars represent s.e.m. 

 

 

 

 

 

Inspection of Figure 4.13, indicates that across all sites and conditions the coil-target 

orientations are largely grouped around 90°. Indeed, the mean coil-target orientations are 

largely similar across sites and tasks. The orientation of the stimulating coil relative to the 

scalp is important, even slight changes in coil position can alter the locus of effective 

stimulation (Cowey, 2005). In order to determine whether variations in the orientation of 

the coil relative to the target might explain the discrimination results, a 2 x 4 repeated–

measures ANOVA with conditions Task (motion & orientation) and Site (CON, LO1, LO2 & 

V5/MT) was conducted. There were neither significant effects of Site (F (3, 15) = 0.504, p = 

0.685), nor Task (F (1, 5) = 0.129 p = 0.734), nor a Task by Site interaction (F (3, 15) = 1.106, p = 

0.378).  

As with all variables, task specific one way ANOVAs were conducted. For motion 

discrimination, the main effect of Site was not significant (F (3, 15) = 0.633, p = 0.605). Given 

the non significant effect of site no further tests were conducted. For orientation 

discrimination, the main effect of Site was not significant (F (3, 15) = 0.804, p = 0.511). Given 

the non significant effect of site no further tests were conducted.  There is no evidence that 

variations in the spatial relationships between the stimulating coil and the cortical targets 

varied in such a way that could explain the selective disturbances to performance on our 

visual tasks. 
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4.7: Discussion 

In this chapter TMS was delivered to three closely separated targets (LO1, LO2 & 

V5/MT) in order to assess its effects on performances of motion and orientation 

discrimination. TMS stimulation of V5/MT resulted in significant and selective disturbances 

to normal motion discrimination performance, relative to all other conditions. Interestingly, 

TMS of additional cortical sites disrupted motion discrimination relative to baseline, but to a 

lesser degree than TMS of V5/MT. Similarly, TMS stimulation of LO1 induced significant and 

selective disruption to normal orientation discrimination performance relative to all other 

conditions.  The pattern of deficits induced by TMS could be interpreted as demonstrable of 

a double dissociation between motion and orientation processing. TMS of V5/MT disrupted 

motion maximally, but left orientation discrimination relatively preserved; whereas TMS of 

LO1 disrupted orientation maximally,and led to modest disruption of motion 

discrimination.. These selective disturbances were found to be immune to speed-accuracy 

tradeoffs and variations in the spatial relationship between the stimulating coil and the 

cortical targets.  

4.7.1:    V5/MT Functionally Specialized for Motion Processing 

The results from the motion experiment reveal a successful replication of previous 

work (McKeefry et al., 2008). TMS of V5/MT significantly deteriorated subject’s ability to 

accurately discriminate speed, relative to all other conditions. The current TMS results, 

combined with others (Beckers & Homberg, 1992; Walsh et al., 1998; Mckeefry et al., 2008) 

confirm the critical role that V5/MT plays in the neural mechanisms that underpin motion 

perception.  

The effect of TMS of V5/MT was found to exhibit both task and site specificity. 

Displacement of the coil away from V5/MT (targeting LO1, LO2 or the CON) did not alter 

discrimination performance. Additionally, TMS of V5/MT left orientation discrimination 

unaltered. In addition, the effect of TMS delivery to V5/MT also replicated a previously 

reported bias (Mckeefry et al., 2008). TMS of V5/MT resulted in an inflated number of 

slower over faster responses, compared to all other conditions, which likely led to the 

decreased performance values (% correct) observed. Although, it must be noted that TMS of 

orientation 
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all other sites also resulted in a slower, but non-significant response biases. The significant 

bias towards the slower moving grating is consistent with previous studies applying TMS to 

V5/MT (McKeefry et al., 2008). The effect of TMS to human V5/MT likely causes a decrease 

in stimulus driven neural firing, the frequency of which has been suggested to underpin the 

perception of speed (Priebe et al., 2003).  

The results of the motion discrimination experiment, also extend previous fMRI 

findings regarding the functional properties of LO1 and LO2 (Larsson & Heeger, 2006), by 

demonstrating that LO1 and LO2 are less causally involved in the perception of speed than 

V5/MT, despite lying directly adjacent to cortical areas specialized for motion perception 

(Larsson & Heeger, 2006). Larsson and Heeger (2006) measured the BOLD responses to 

moving and stationary dot patterns throughout visual cortex. Neither LO1, not LO2 

responded strongly to motion, although the BOLD signal elicited in LO2 did approach 

statistical significance (p = 0.06). TMS of LO1 and LO2 during motion discrimination led to 

largely equivalent levels of performance across subjects. That is, although differences were 

observed relative to baseline, TMS of V5/MT disrupted speed discrimination further, a 

decrease in performance that was significantly different; a pattern consistent with the lack 

of selectivity observed through fMRI (Larsson & Heeger, 2006). Intriguingly, it appears that 

neural representations encoding motion largely by-pass LO1 and LO2 on its route from V1-

V3A-V5/MT. Direct projections to V5/MT from both V1 and subcortical structures (Sincich et 

al., 2004) offer a plausible explanation for the reduced  effect following TMS of LO1 and 

LO2, relative to TMS of V5/MT. 

4.7.2:    LO1 Functionally Specialized for Orientation Processing 

The results of the orientation discrimination experiment are novel. They 

demonstrate that human orientation discrimination can be selectively impaired when TMS 

is precisely targeted so as to disrupt the normal functioning within LO1. The fact that 

disruption to LO1 can generate impairments in orientation discrimination represents a 

significant finding. Hitherto V1 has been considered the main cortical locus for the neural 

mechanisms underpinning orientation perception (Hubel & Wiesel, 1963; Hubel, Wiesel & 

Stryker, 1978; Furmanski & Engel, 2000; Larsson et al., 2006). The results presented here 

demonstrate that behaviourally relevant information concerning orientation is encoded by 
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activity in LO1 and strongly suggests that information regarding orientation is available at 

this level of the visual hierarchy.  

The current results are consistent with previous fMRI reports (Larsson et al., 2006), 

but extend them to show that LO1 plays an active and causal role in encoding orientation, 

even when defined by luminance modulation, rather than the more complex encoding of 

orientation by second order cues that might be thought to be processed by extrastriate 

areas.  The lack of effect following TMS of LO2 and V5/MT on orientation discrimination is 

also consistent with previous fMRI findings demonstrating a lack of orientation selectivity 

within these areas (Larsson et al., 2006). The effect of TMS of LO1 exhibited both location 

and task specificity, moving the TMS coil away from LO1 (to sites either closer to V1 (CON) 

or further from V1 (LO2 and V5/MT) reduced the effects of TMS on orientation 

discrimination. Additionally, TMS of LO1 left motion discrimination unaltered.  In their 

original assessment of orientation selective adaptation in LO1 (Larsson & Heeger, 2006), 

Larsson and Heeger accounted for the majority of orientation selective adaptation through 

feed-forward propagation from V1. The results of the current experiment run contrary to 

this and suggest that neurons in LO1 encode orientation information directly. TMS of the 

CON, which lay closer to V1 than all other target sites, did not disrupt orientation 

discrimination to the same degree as TMS of LO1. The significant difference between LO1 

and CON demonstrates that the orientation specific nature of computations in LO1 is not 

due to TMS of LO1 spreading into representations of the target in V1. 

4.7.3:    Double Dissociation & Parallel Processing 

The current findings could be interpreted as supporting a double dissociation 

between two closely separated cortical areas (average separation between LO1 and V5/MT 

targets was ~30mm). The parallel nature of processing reported here is consistent with 

previous work in both macaque and human demonstrating parallel processing at the level of 

V5/MT. In both species, the processing of colour and motion has been shown to operate in 

parallel, with both visual features being computed in distinct and relatively distant visual 

areas (Lueck et al., 1989; Zeki, 1990; Zeki et al., 1991). The current demonstration that 

motion and orientation are predominantly processed in distinct visual areas echo’s the 

parallelism observed previously. Notably, the parallel processing of motion and orientation 
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reported here is at a smaller spatial scale than the parallel processing of colour and motion 

in the human brain. In that regard, it is more similar to the parallel processing colour and 

motion in macaque, which occurs in neighbouring retinotopic maps (Zeki, 1990).  

  The parallel processing observed here is likely underpinned by parallel anatomical 

connections. For instance, direct anatomical connections from the LGN to V5/MT have been 

reported (Sincich et al., 2004), which bypass V1 and as a consequence bypass the major 

access point into the serial system. Additionally, direct V1-V5/MT projections have been 

reported (Beckers & Zeki, 1995), offering a plausible account for how motion signals can be 

processed in parallel to the orientation signals that could rely on connections from V1-LO1. 

In macaque, V4d and V5/MT receive parallel inputs from antecedent visual field map V2 

(Zeki & Shipp, 1988). These visual areas are in a commensurate stage of the visual hierarchy 

of the macaque as LO1 (LO2) and V5/MT are in human. Although the homology between 

human and macaque is less clear at this level of the hierarchy (Tootell et al., 2003; Larsson & 

Heeger, 2006), the parallel anatomical connections may nevertheless remain. 

The results would suggest that contrary to a strictly serial model of visual processing, 

information necessary for the encoding of motion and orientation are processed in parallel. 

The conclusion that TMS of V5/MT and LO1 reduces the activity of neurons in these areas is 

consistent with recent assertions that TMS operates via the suppression of neural signals 

that directly relate to the target stimulus (Harris et al, 2008). Physiological measurements 

from cat visual cortex (Allen et al., 2007) are consistent, with TMS suppressing activity, 

which leads to a decrease in signal to noise ratio in the cortical area under stimulation 

(Walsh & Cowey, 2000; Cowey, 2005). An alternative account argues that TMS exerts its 

effects by decreasing signal-to-noise via the increase in the background neural noise (Ruzzoli 

et al., 2010). The effects of TMS may ultimately lie with a combination of reduced firing of 

neurons encoding stimulus relevant features and an increase in spontaneous background 

activity, although the neuronal state of the underlying cortical area also plays an important 

role in mediating TMS effects (Silvanto et al., 2007). 
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4.7.4:    Implications for the Thesis 

The results reported in this chapter make several important implications for the 

progression of the thesis. First, the results demonstrate that TMS can be used to elucidate 

functionally specialized roles of close proximity cortical targets with a sample size of six 

subjects. Of note however, both the motion and orientation discrimination experiments 

were heavily influenced by strong ‘a priori’ hypotheses, based on the results from macaque 

single-unit as well as human neuropsychological, neuroimaging and neurostimulation 

studies. In future studies, where the effects are less predictable or currently unknown, a 

larger sample size is desirable. Future studies will therefore, include double the number of 

subjects.   

 Second, the results provide compelling evidence that, if targeted precisely, TMS can 

elucidate the functional properties of close proximity targets. The single dissociation 

observed between LO1 and LO2 in terms of orientation processing, at an average separation 

of ~10mm provides good evidence that TMS could be used to tease apart the functional 

properties of these two adjacent visual field maps. This separation is similar to that reported 

in previous TMS work probing category selective areas of visual cortex, where independent 

effects were reported at separations as small as 7.8mm (Pitcher et al., 2009). Of note, these 

distances were calculated following transformation from native anatomical to MNI space, 

which could distort the actual separations.  

 Third, the results raise an important question regarding the role played by LO2. The 

current results would suggest that LO2 is neither maximally selective for nor crucially 

involved in either motion or orientation discrimination. LO2’s lack of selectivity to stimulus 

orientation (Larsson et al., 2006) and motion (Larsson & Heeger, 2006) has been 

demonstrated previously using fMRI. The current data extends these findings to 

demonstrate a lack of causality. The absence of an effect on orientation discrimination and 

the effect on motion discrimination has a number of important implications. The lack of 

effect provides some evidence as to the effective spread of TMS. If TMS exerted its effects 

over a large area, then TMS of LO2 should have disrupted both the orientation and motion 

tasks not just motion, as LO2 lay in-between the V5/MT and LO1 sites. The lack of consistent 

effects could be interpreted as confirming that TMS has sufficient spatial specificity to allow 
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stimulation of individual, but closely separated, cortical targets. The lack of effect, coupled 

with the specialized and parallel processing observed in areas both anterior (V5/MT) and 

posterior of (LO1) LO2, suggests that LO2 may underpin the processing of a visual feature 

that is independent of both motion and orientation and moreover, that this feature may be 

computed independently of LO1’s computations – in parallel. It has been suggested that 

perhaps LO2 undertakes more complex spatial processes and encodes shape information 

(Larsson & Heeger, 2006), however, it remains to be seen what, if any, visual attributes LO2 

is selective for.  

 Finally, the results reported here open up two avenues for further investigation, 

which form the basis of Chapters 5 and 6. The first avenue, explored in Chapter 5, is a logical 

and systematic extension of the current work and will investigate whether LO1 maintains 

orientation selectivity over V5/MT when stimuli move. The key conceptual advance here is 

whether orientation discrimination of moving stimuli is reliant on computations within LO1 

– a feature currently unknown. The second avenue, explored in chapter 6, will explicitly test 

whether LO2 exhibits a specialization for shape processing, as suggested previously (Larsson 

& Heeger, 2006). This will be contrasted against a replication of the specialization for 

orientation in LO1, in an attempt to demonstrate functional specialization at the spatial 

scale of adjacent visual field maps within a cluster of human visual cortex.  

4.8: Conclusion 

TMS of V5/MT results in maximal disturbance to normal motion processing, 

confirming the functional specialization exhibited by this cortical area. Similarly, TMS of LO1, 

a potentially uniquely human visual area, results in selective disturbances to normal 

orientation processing – a new finding. The functional specializations exhibited by these 

closely separated targets appear to operate independently, possibly facilitated by parallel 

anatomical projections from antecedent visual areas.  The ability of TMS to demonstrate 

functional specializations of areas within such close proximity of one another, provides 

promising evidence that TMS could be used to probe the functional properties of LO1 and 

LO2 independently – the ultimate aim of the thesis.  

 



Chapter 5              Is Orientation Processing of Moving Stimuli Reliant Upon LO1? 

 

131 
 

Chapter 5 

Is Orientation Processing of Moving Stimuli Reliant Upon LO1? 

5.1: Overview 

This study aimed to investigate whether LO1 is specialized for the orientation 

perception of moving stimuli. Specifically, we ask here whether LO1 maintains its causal 

involvement in orientation discrimination of gratings, but this time when they move.  We 

also include a second task – motion discrimination of oriented gratings in order to test 

whether V5/MT maintains its specializations for motion processing in the presence of 

orientation noise. It is possible that for moving gratings the direction of motion, a feature 

that could be computed by V5/MT might be the most useful cue for orientation. 

Demonstrating a causal role for LO1 during orientation perception of moving stimuli will 

provide further evidence for the functional specializations exhibited by LO1, and indicate 

the presence of cue-invariant representations. The main comparison of interest is between 

the effects of TMS of LO1 and V5/MT on performance of both tasks however, we include the 

CON, LO2 and no TMS conditions in order to echo the approach adopted in Chapter 4. The 

role played by LO2 in these tasks remains unclear. Importantly, if computations in LO2 are 

independent of those required for these tasks, TMS of LO2 should have no effect on 

discrimination relative to baseline (No TMS condition).  

5.2: Introduction 

The data reported in Chapter 4 revealed a number of important features regarding 

the processing of motion and orientation within subdivisions of lateral occipital cortex. First, 

the results of the motion experiment successfully replicated a previously reported effect 

(McKeefry et al., 2008) by demonstrating that TMS of V5/MT induced a selective 

disturbance to motion perception whilst simultaneously inducing a perceptual slowing of 

visual stimuli (McKeefry et al., 2008). The results, combined with previous TMS studies 

(Beckers & Homberg, 1992; Walsh et al., 1998; McKeefry et al., 2008) confirm the 

specialized role played by V5/MT in the perception of motion. Second, the results of the 

orientation experiment revealed, for the first time, a direct link between computations 
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performed within LO1 and the accurate discrimination of orientation. Third, the results from 

both tasks revealed a lack of selectivity within LO2 for either stimulus. TMS of LO2 neither 

disrupted motion nor orientation discrimination, suggesting that orientation and motion 

signals are not encoded in LO2. Finally, the results demonstrated a double dissociation 

between LO1 and V5/MT. Anatomically dissociable routes from antecedent visual areas may 

well underpin the functional dissociation observed between these nearby regions. Taken 

together, the results from Chapter 4 demonstrated specializationss for orientation and 

motion processing in isolation. There are times however, when there is a need to encode 

more than one visual feature at a time. Where is the information regarding orientation and 

motion combined? Do computations in LO1 causally underpin our orientation discrimination 

of moving stimuli? In order to address this, the current experiment investigated the effects 

of TMS on orientation discrimination of moving gratings and motion discrimination of 

oriented gratings.  

5.2.1:    Motion & Orientation Processing in V5/MT, LO1 & LO2 

 This study aimed to investigate whether orientation discrimination of moving stimuli 

is reliant upon computations performed by LO1. We also include the converse condition – 

motion discrimination of oriented gratings as an appropriate foil for our orientation 

discrimination task. The following sections outline the evidence for motion and orientation 

processing in V5/MT, LO1 and LO2. 

 Evidence from both macaque and human studies highlights the important role that 

V5/MT plays in the perception of motion. In macaque, single-unit recordings have 

demonstrated the existence of directionally-tuned neurons within V5/MT (Zeki, 1969). In 

addition to directionally-tuned neurons, V5/MT contains a high proportion of neurons tuned 

to different speeds (Maunsell & Newsome, 1987; Rodmann & Albright, 1987), the tuning of 

which has been reported to be relatively form invariant (Priebe et al., 2003). Some V5/MT 

neurons also exhibit joint direction and orientation selectivity (Albright, 1984), with the 

peak orientation sensitivity of these neurons being typically, but not exclusively, 

perpendicular to that neurons preferred direction (Maunsell & Van Essen, 1983). The 

evidence from macaque V5/MT suggests that neurons are capable of processing motion 

information from a number of different cues. In human, evidence for V5/MT’s role in 
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motion processing comes from multiple investigative paradigms, including 

neuropsychological (Zihl et al., 1983), neuroimaging (Zeki et al., 1991; Orban et al., 1995; 

Amano et al., 2009) and neurostimulation (Beckers & Homberg, 1992; Walsh et al., 1998; 

McKeefry et al., 2008) studies.  The results of the motion component of Chapter 4 are 

entirely consistent with previous literature and highlight the specialization of V5/MT in the 

perception of motion. The processing of motion within LO1 and LO2 has also been 

investigated previously using fMRI. Larsson and Heeger (2006) report that neither visual 

field map exhibited preferential responses to moving dot patterns compared to static dot 

arrays, although a noteworthy  feature is that the responses observed in LO2 approached, 

but did not reach significance (p = 0.06). Again, the data reported in Chapter 4 are 

consistent with a lack of motion sensitivity within these visual field maps.    

Previously, orientation selective responses have been reported in cat (Hubel & 

Wiesel, 1963), macaque (Hubel, Wiesel & Stryker, 1978) and human V1 (Furmanski & Engel, 

2000).  The processing of orientation in extratriate cortical areas using fMRI adaptation 

demonstrated orientation selective responses in LO1, but not LO2 (or V5/MT) (Larsson & 

Heeger, 2006), a segregation of function confirmed by the results of the orientation 

discrimination experiment reported in Chapter 4. Importantly however, whether LO1 

encodes orientation of moving stimuli is not well understood. Evidence from both macaque 

and human cortex highlights the presence of regions of cortex selective to the orientation of 

motion boundaries. Single-unit studies identified neurons selective to the orientation of 

moving boundaries not only in early visual cortex (V1-V3) (Marcar, Raiguel, Xiao & Orban, 

1995), but also, several extrastriate areas (V4, V3A) (Mysore, Vogels, Raiguel & Orban, 

2006), including macaque inferotemporal cortex (IT) (Sary, Vogels, Kovacs & Orban, 1995) 

which is commonly believed to be the macaque homologue of human LOC (Malach et al., 

1995; Grill-Spector et al., 1998). In human, the Kinectic Occipitial (KO) area was found, using 

fMRI, to be more responsive to random-dot stimuli that contained motion-boundaries than 

to transparent motion control stimuli (Dupont et al., 1997). More recent studies suggest 

that KO is not a single entity, rather it extends across multiple retinotopic visual areas 

including V3, V3A/V3B, LO1 and LO2 (Zeki, Perry & Bartels, 2003; Larsson & Heeger, 2006). 

Larsson, Heeger and Landy (2010) investigated orientation-selectivity of motion-boundary 

responses in human visual cortex. They employed fMRI adaptation techniques to identify 
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regions of cortex selective for motion-boundary orientation. The study had two main aims; 

the first was to identify regions of human visual cortex that exhibited selectivity to 

orientation defined by motion-boundaries and measure the extent to which these regions 

were selective to motion-boundary orientation and second, determine whether the degree 

of orientation selectivity within each area was related to motion-boundary preference; 

defined as stronger responses to motion-boundary stimuli than to transparent motion 

control stimuli. In their paradigm, an adapting stimulus (either a vertically or horizontally 

orientated motion-boundary grating) was presented (4sec). Following a 1sec ISI, a probe 

grating was presented. Three probe gratings were employed: 1) motion-boundary gratings 

oriented parallel with the adaptor; 2) motion-boundary gratings oriented orthogonally to 

the adapter and 3) transparent motion control stimuli. Subjects were required to count the 

frequency with which an ‘x’ appeared in a rapidly changing array of letters presented at 

fixation.  

 The authors report eight retinotopically organised areas (V2, V3, V3A, V3B, V4, V7, 

LO1 & LO2) that exhibited significant orientation-selective adaptation. That is, the mean 

fMRI response following the presentation of a parallel probe was significantly weaker than 

that following an orthogonal probe. Within the areas mentioned above, differences in the 

response amplitudes between parallel and orthogonal probes were largest in V3A, V3B and 

LO1. These were found to be ~50% greater than the responses in V2, V3, V4, V7 and LO2. 

One interesting finding was that LO2 exhibited orientation-selectivity to motion boundaries, 

although the difference between motion-boundary and transparent motion exhibited by 

LO2 was not significant. The authors state therefore, that they cannot rule out the 

possibility that the orientation-selectivity observed in LO2 was due to variability in the 

measured response coupled with the effects of statistical thresholding, rather than 

reflective of a genuine difference in response properties within LO2.  

Whether or not LO1 is causally involved in processing the orientation of moving 

stimuli remains unknown. We address this in the current study by measuring the effects of 

TMS of LO1 (plus other sites) on performance of orientation discrimination of moving 

stimuli. The converse condition is also included in order to assess whether V5/MT maintains 

its specializations for motion processing in the presence of orientation ‘noise’. The exact 

role played by LO2 in these combined tasks is also unclear. 
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5.3: Theoretical Considerations  

There is considerable evidence, from macaque and human studies, suggesting 

parallel processing capabilities at the level of V5/MT (Zeki, 1990; Zeki et al., 1991). In 

macaque, V4d and V5/MT abut one other on the lateral surface and exhibit specializations 

for colour and motion processing, respectively. These specializations have also been directly 

related to parallel anatomical connections from antecedent cortical (Shipp & Zeki, 1988) and 

subcortical (Sincich et al., 2004) regions. In human, the parallel processing of colour and 

motion between V4 and V5/MT is maintained, although over a larger spatial scale (Lueck et 

al., 1989; Zeki et al., 1991; McKeefry & Zeki, 1997). The double dissociation reported in 

Chapter 4 is consistent with previous work, provided compelling evidence for parallel 

processing of motion and orientation within LO1 and V5/MT.  

Consistent with the approach adopted in Chapter 4, a control site (CON) was defined 

in each subject that lay medial to LO1 by the distance separating our LO1 and LO2 centroids. 

As mentioned previously, the CON provides a mechanism to rule out V1 proximity as an 

alternative explanation for any differential effects observed following TMS of LO1 and our 

other target sites. If orientation discrimination is only disrupted following stimulation of LO1 

and not the more medial control site (CON), a pattern reported in Chapter 4, then the 

effects of TMS spreading into V1 cannot explain the result. Given the results of Chapter 4, it 

was predicted that TMS of the CON would not disrupt orientation processing. We also 

include a no TMS baseline, in order to examine any general effects induced by TMS. 

Additionally we include LO2 as a fourth target site, despite predicting no effect of TMS of 

LO2 on performances of either task. An absence of effect following TMS of LO2 will provide 

valuable interpretative information regarding the potential specializations exhibited not 

only by LO1 and V5/MT, but also, LO2 itself. 

5.4: Aims & Predictions 

The experiments reported here aimed to evaluate whether LO1’s specialization for 

orientation extended to moving stimuli and whether V5/MT maintained its specialization for 

motion processing in the presence of additional orientation information. There is 

considerable evidence, from multiple species, for parallel processing at the level of V5/MT, 
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and even LO1. Given this, we focus here primarily on the predicted effects of TMS on our 

tasks based upon map specific and parallel processing, although two additional predictions, 

not built into the framework our nonetheless, noteworthy.  

Initially, let us consider the two additional predictions. The first, suggests that 

performance of both tasks is largely V5/MT driven – Top left plot Figure 5.1. That is, due to 

the speed and directional tuning of V5/MT neurons, one could solve both the motion and 

orientation tasks by engaging V5/MT alone. The discriminations of speed required to 

complete the motion task, are predicted to be underpinned by V5/MT’s speed selectivity. In 

the orientation task, it is possible that directionally tuned V5/MT neurons could underpin 

performance of this task; the orientation of the gratings will be orthogonal to the direction 

of drift. The second prediction suggests that the motion task is driven solely by the speed 

tuning of V5/MT neurons, but the orientation task is driven by computations performed by 

both LO1 and V5/MT – Top right plot Figure 5.1. The map specific and parallel prediction is 

plotted at the bottom of Figure 5.1. If LO1 is specialized for orientation processing of moving 

stimuli, then TMS applied here should disrupt performance alone. Likewise If V5/MT 

maintains its specializations for motion processing then TMS of V5/MT should disrupt 

performance – a double dissociation.   
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Figure 5.1: Three alternative predications for the effects of TMS during performance of 

combined motion and orientation discrimination. Top left: predicted effects of TMS if both 

tasks are driven by computations within V5/MT. During both motion and orientation tasks, 

performances are only disrupted following TMS of V5/MT alone, due to V5/MT’s speed and 

directionally tuned neurons. Top right: predicted effects of TMS if V5/MT and LO1 interact. 

During motion discrimination, performance is only disrupted following TMS of V5/MT; 

however during orientation discrimination performances are disrupted following TMS of LO1 

and V5/MT. Bottom: predicted effects for map specific and parallel processing. Motion 

discrimination is only disrupted following TMS of V5/MT; likewise orientation discrimination is 

only disrupted following TMS of LO1 – a double dissociation. 
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5.5: Methods 

5.5.1:    Subjects 

This study included 12 subjects (mean age = 28, range = 24, 5 male). All subjects had 

normal or corrected to normal vision and gave informed consent in accordance with the 

Declaration of Helsinki. York Neuroimaging Centre (YNiC) Research Governance Committee 

approved the study.   

5.5.2:  Visual Field Mapping 

All subjects participated in full fMRI retinotopic mapping experiments (~1 hour) 

employing standard visual field mapping techniques (Engel et al, 1994; Sereno et al., 1995; 

DeYoe et al., 1996). Data analysis, segmentation and identification of visual field maps 

followed the steps outlined in previous work (Baseler, et al., 2011) and Chapter 3. 

5.5.3:    Identification of Visual Field Maps LO1 & LO2 

LO1 and LO2 were identified in at least one hemisphere in all subjects. The visual 

field representations within LO1 and LO2 were consistent across subjects and with previous 

reports (Larsson & Heeger, 2006). Both maps displayed complete hemifield representations 

of the contralateral visual field and were located between V3d and V5/MT on the lateral 

surface of the occipital lobe. 

5.5.4:    Identification of V5/MT 

V5/MT was identified anatomically in each subject, in accordance with published 

guidelines (Dumoulin et al, 2000). V5/MT was located within the ALITS in all cases. The 

posterior boundary of V5/MT was either in close proximity to, or directly abutted the 

anterior boundary of LO2. In a subset of subjects (n = 4) visual field maps TO1 and TO2 were 

defined according to previous reports (Amano et al., 2009). Due to the inconsistency in 

identification of these maps, they were not used for V5/MT target identification. 
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5.5.5:    Psychophysical Stimuli & Procedures 

Stimuli for the behavioural/TMS experiments were generated using MATLAB 

(Mathworks, USA) and displayed on a Mitsubishi Diamond Pro 2070SB display with a refresh 

rate of 60 Hz, controlled by a VISAGE graphics card (Cambridge Research Systems TM). 

Grating stimuli were luminance modulated sinusoidal gratings (50% contrast) presented in a 

circular aperture (diameter 4) and had a spatial frequency of 2 cpd. All stimuli had a mean 

luminance of 31 cd.m-2 and were presented on a uniform grey background of the same 

luminance.  

The visual tasks employed were orientation discrimination of moving sinusoidal 

gratings and motion discrimination of oriented sinusoidal gratings. Prior to TMS stimulation 

each subject completed orientation and motion discrimination experiments using the 

method of constant stimuli described in full in Chapter 2. The spatial and temporal 

organisation of the orientation and motion experiments was identical (see schematic Figure 

5.2). Individual psychometric functions for orientation and motion discrimination were 

plotted for each subject in order to determine the individual thresholds (75% correct) to be 

tested on during subsequent TMS sessions. The phases of the reference and test gratings 

were randomised within trials to prevent the orientation task from being solved via local 

luminance cues. During motion discrimination, the directions of drift (left-right/right-left) 

were randomised between trials to prevent any directional adaptation. Definitions of stimuli 

to be used in TMS sessions initially followed the procedure outlined in Chapter 2. That is, 

75% correct thresholds were defined for speeds quicker and slower than the reference and 

orientations more vertical and horizontal than the reference. The range between these 

values was calculated, divided in half and added to the following equation: TMS stimuli = 

reference ± range/2. These stimuli were then combined to create four possible test stimuli: 

TMS stimulus 1 = faster + more vertical; TMS stimulus 2 = faster + more horizontal; TMS 

stimulus 3 = slower + more vertical; TMS stimulus 4 = slower + more horizontal.  
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Figure 5.2: Trial structure schematics for motion (top) and orientation (bottom) 

psychophysical tasks. During motion discrimination the test grating was at a fixed speed of 

8°/sec. During orientation discrimination the reference grating was fixed at 45°. Test stimuli 

for both tasks were randomly selected from a pre-determined list of seven speeds (motion 

task) and orientations (orientation task) that spanned a range of values either side of the 

reference stimuli. 

 

 

 

 

 

 

 

 

 

 

5.5.6:    TMS Protocol 

A train of 4 biphasic (equal relative amplitude) TMS pulses, separated by 50ms 

(20Hz) at 70% of the maximum stimulator output (2.6 Tesla) were applied to the subject’s 

scalp using a figure-of-eight coil (50 mm external diameter of each ring) connected to a 

Magstim Rapid2 TM stimulator (Magstim, Wales). Subjects were seated in a purpose built 

chair with chin rest and forehead support. The coil was secured mechanically and placed 

directly above each cortical target (CON, LO1, LO2 & V5/MT) with the handle orientated 

parallel with the floor. The position of the coil was monitored and tracked in real time 

allowing the displacement between the intended and actual site of TMS delivery to be 

recorded.  

Each subject underwent 10 counterbalanced sessions (2 tasks x [4 TMS sites + 1 no 

TMS]).  During subsequent TMS sessions (and no TMS baseline) only the stimuli defined 
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using the method above were presented in a trial structure identical to that used to 

establish thresholds. Each TMS session comprised 100 trials (25 per threshold stimulus). 

During motion discrimination, subjects were instructed to attend to the speed of the 

gratings, ignoring the orientation component. During orientation discrimination, subjects 

were instructed to attend to the orientation of the gratings only, ignoring the motion 

componentTMS pulses were delivered concurrently with the presentation of the test 

stimulus (Figure 5.3). This temporal configuration was identical to that used by Mckeefry et 

al., (2008), where induced functional deficits following TMS of V5/MT were maximised.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Trial structure schematics for motion (top) and orientation (bottom) TMS tasks. 

During TMS sessions for both tasks (and no TMS baseline) only the two threshold stimuli 

were presented as test stimuli in a randomised order. TMS pulses were delivered coincident 

with the presentation of the threshold stimuli symbolised by the red lightning bolt. 
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5.5.7:    Data & Statistical Analysis 

Before data analysis some trials (~3%) were removed on the basis of two criteria: 

trials for which coil displacement was large (>2.5 mm) and trials for which reaction time was 

greater than 2,000 ms after the cessation of the presentation of the test stimulus. Statistics 

were calculated using the SPSS software package (IBM). A series of two-way repeated-

measures ANOVAs were employed initially to examine the effects of discrimination (% 

correct) and reaction times (secondary measure), along with two potentially confounding 

variables (coil-target distance and coil-target orientation), which relate to spatial 

relationships between the TMS coils and the cortical targets. Statistically significant 

differences in these variables, caused by operator error, could confound the results. In the 

case of a significant interaction, subsequent one-way repeated-measures ANOVAs were 

calculated for each task considered separately. Given that our primary hypotheses related 

to the effects of TMS of LO1 and V5/MT we are justified in running planned comparisons in 

addition to the main ANOVAs to test the differences between these target sites with more 

sensitivity. For each ANOVA, whether or not the ANOVA adhered to the assumption of 

sphericity was established initially using Mauchly’s test.  
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5.6: Results 

5.6.1:    Identification of Visual Field Maps LO1 & LO2 

Definitions of LO1 and LO2 were made in at least on hemisphere in all subjects. The 

visual field representations within LO1 and LO2 were entirely consistent with previous work 

(Larsson & Heeger, 2006; Wandell et al., 2007), with both maps containing complete 

hemifield representations of the contralateral visual field. Figure 5.4, depicts visual field 

maps (including LO1 and LO2) on lateral views of both hemispheres of subject S7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Bilateral visual field maps in subject S7. Lateral views depict visual field maps in 
the left and right hemispheres of a representative subject (S7). The BOLD responses to the 
rotating wedge stimulus are overlaid in false colour (see colour wheel, centre) onto surface 
reconstructions of the grey-white matter boundary of the left and right hemispheres. The 
vertical meridian representations are shown by the dashed white lines, with the horizontal 
meridian representations shown by the solid white lines. In both hemispheres the visual field 
representations in LO1 and LO2 are clearly identifiable. LO1 begins at the shared boundary 
with V3d at the representation of the lower vertical meridian. LO1 extends anteriorly from the 
lower vertical meridian toward the upper vertical meridian. LO2 is the mirror-reverse of LO1 
and displays a gradual progression from the upper vertical meridian back toward the lower 
vertical meridian.  
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5.6.2:    Identification of V5/MT 

The anatomical definition of V5/MT for a representative subject is depicted in Figure 

5.5. Inspection of Figure 5.5, highlights the location of V5/MT (green circle) within the 

ALITS. The Euclidean distances (mm) between our cortical targets of interest (LO1, LO2 & 

V5/MT) in all subjects are displayed in Table 5.1. Distances were calculated within 

individual’s native space and therefore, reflect the actual distances without normalisation to 

average coordinate spaces, which may distort these distance measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Anatomical definition of V5/MT in a representative subject. Saggital, axial and 

coronal slices demonstrate the anatomical location of V5/MT in the right hemisphere of a 

single subject Images are displayed in neurological convention. The centre of the green disk 

is within the ascending limb of the inferior temporal sulcus (ALITS). Crosshairs centred in the 

middle of the green circle depict the V5/MT target site.  
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Table 5.1: Euclidean distances (mm) between LO1, LO2 and V5/MT in all subjects. The 

average distances demonstrate the two spatial scales of investigation: LO1 – V5/MT 

between clusters and, LO1-LO2, within cluster. 

 

 

 

 

 

 

 

 

 

 

 

5.6.3:    Motion & Orientation Psychophysics 

In order to establish whether the motion and orientation discrimination tasks were 

behaviourally dissociable, two subjects (EHS and JR) completed orientation and motion 

psychophysical experiments both in isolation and when the two stimuli were combined. 

Identical stimulus intensities were used for each subjects across both types of 

psychophysical experiment (isolation and combined). Fitting of psychometric functions 

followed the method outlined in the psychophysical protocol section of Chapter 2. Briefly, 

both subjects completed 350 trials (50 per stimulus level) for each task, both in isolation and 

when combined. The average proportion of faster (motion) and more vertical (orientation) 

responses was calculated for each stimulus level and a cumulative Gaussian was used to plot 

each function. The psychometric functions for all conditions are plotted in Figure 5.6. For 

both subjects the isolated data are depicted by the red dots and pale lines, with the 

combined data depicted by the blue dots and darker lines. 

 

  Euclidean distance (mm) between targets 

Subject LO1-LO2 LO1-V5/MT LO2-V5/MT 

S1 10.7700 29.8998 16.1864 

S2 9.0200 38.4448 24.3516 

S3 10.2900 24.7386 20.3224 

S4 13.7400 26.7208 16.0312 

S5 6.0600 30.0167 12.6886 

S6 11.8700 24.8596 12.0830 

S7 14.8930 18.5472 4.3589 

S8 11.2230 19.7990 12.3693 

S9 10.4800 40.8167 31.0644 

S10 10.8612 28.0000 15.6844 

S11 12.6800 21.0000 14.2127 

S12 14.7330 20.7123 14.4914 

Average 11.3804 26.9630 16.1537 
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Inspection of Figure 5.6, suggests performances differences between orientation and 

motion discrimination in isolation relative to the combined conditions. To test this, 

psychometric functions were randomly resampled 15 times using a bootstrap technique. 

Each psychometric function was created by averaging the responses to 350 stimulus 

presentations (50 x 7 stimulus levels). Initially, the 50 responses for each stimulus intensity 

were randomly selected and reordered. The first 25 choices were subsequently selected as a 

new sample. The PSE and just noticeable difference (JND) of the best fitting cumulative 

Gaussian of these samples were then computed using a least squared minimisation 

procedure. JND was computed as the standard deviation of the cumulative Gaussian, with 

smaller JND indicative of better discrimination. PSE provided a measure of shift of the curve, 

indicating bias in responses. 

 

Figure 5.6: Isolated and combined motion and orientation psychometric functions in two 

subjects. Psychometric functions for motion (top row) and orientation discrimination 

(bottom row) conducted in isolation (red dots – pale lines) or combined with a second 

stimulus dimension (blue dots – darker lines) for subjects EHS (left column) and JR 

(Right column). 
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The results of the bootstrapping procedure are displayed in Table 5.2. The PSE and 

JND values derived from both the isolated and combined discrimination experiments for 

both EHS and JR are displayed.  

 

 

 

 

 

 

 

 

 

 

 

The PSE and JND values derived from the isolated and combined psychophysical 

tasks were compared for EHS and JR using independent samples t-tests. For motion 

discrimination, the PSE of the isolated and combined psychophysics were significantly 

different for both participants but, interestingly, in opposite directions. The PSE was higher 

in the combined condition for JR (t (28) = -8.031, p = < 0.001), but lower for EHS (t (28) = 6.479, 

p = < 0.001). Participant JR showed no significant difference in JND between conditions (t (28) 

= -1.548, p = 0.067), whereas EHS showed significant difference in JND, which was smaller in 

the combined condition (t (28) = 7.541, p = < 0.001), indicative of better discrimination during 

combined presentation. For orientation discrimination, only participant JR showed 

significant differences in PSE (t (28) = 6.788, p = < 0.001, and JND, (t (28) =6.747, p = <0.001) 

between the isolated and combined conditions. EHS showed no significant difference in PSE 

(t (28) = -0.187, p = 0.853, or JND (t (28) =1.394, p = 0.087), between the isolated and combined 

conditions, suggesting that the combined presentation did not alter orientation 

discrimination ability relative to isolated presentation.  

 

 

 

 

Subject motion (deg/sec) orientation (deg) 

  Isolation Combined Isolation Combined 

EHS         

PSE 8.1700 7.6300 47.8900 48.0100 

JND 1.4800 0.9000 7.1300 5.6700 

          

JR         

PSE 7.5500 8.1700 46.4000 45.0200 

JND 1.2800 1.4900 4.8600 3.3200 

Table 5.2: Mean point of subjective equivalence (PSE) and just noticeable difference (JND) 
values derived from the isolated and combined motion and orientation psychophysical tasks 
for subjects EHS and JR. 
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Taken together, motion and orientation discrimination appear to be dissociable 

behavioural tasks. Although significant differences in JND and PSE were found, these were 

not consistent across either subjects or tasks. In addition, the only significant differences 

found for JND were in the opposite direction predicted with better discrimination in the 

combined presentation, suggesting rather counter-intuitively, that combining motion and 

orientation signals together aided discrimination. On the basis of these inconsistent 

findings, it was decided that motion and orientation thresholds be derived from isolated 

presentations of both visual features. These thresholds were then combined to create the 

stimuli for TMS. 

 

Table 5.3, contains the 75% correct thresholds for speeds faster and slower than the 

reference and orientations more vertical and more horizontal than the reference for all 

subjects. Table 5.2, also includes the value added to and subtracted from the reference 

stimulus and the actual values presented during TMS for all subjects. The two TMS stimuli 

for each task, were then combined together to define four TMS stimulus combinations: TMS 

stimulus 1 = faster + more vertical; TMS stimulus 2 = faster + more horizontal; TMS stimulus 

3 = slower + more vertical; TMS stimulus 4 = slower + more horizontal. 
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  speed (degrees/sec) 

Subject threshold S threshold F ref ±  TMS S TMS F 

S1 6.4075 8.5075 1.0500 6.9500 9.0500 

S2 7.3100 8.5550 0.7725 7.2275 8.7725 

S3 6.5150 8.6750 1.0800 6.9200 9.0800 

S4 7.2650 8.7500 0.7425 7.2525 8.7425 

S5 7.2500 9.7550 1.2525 6.7475 9.2525 

S6 7.2200 9.2900 1.0350 6.9650 9.0350 

S7 6.5000 8.5600 1.0250 6.9700 9.0300 

S8 6.5450 9.0950 1.2750 6.7250 7.0700 

S9 6.8000 8.6600 0.9300 7.0700 8.9300 

S10 5.9000 9.4550 1.7775 6.2225 9.7775 

S11 6.4850 9.7700 3.7200 6.3575 9.6425 

S12 5.9000 9.6200 1.8600 6.1400 9.8600 

  orientation (degrees) 

Subject threshold H threshold V ref ±  TMS H TMS V 

S1 43.4400 46.3200 1.4400 43.5600 46.4400 

S2 43.1250 46.8000 1.8375 43.1625 48.8375 

S3 43.7250 46.7750 1.5250 43.4750 46.5250 

S4 44.2800 46.2600 0.9900 44.0100 45.9900 

S5 43.1400 48.2700 2.5650 42.4350 47.5650 

S6 43.2000 52.8000 4.8000 40.2000 49.8000 

S7 43.1550 49.4100 3.1275 41.8725 48.1275 

S8 43.9000 46.3250 1.2125 43.7875 46.2125 

S9 43.5600 46.6650 1.5525 43.4475 46.5525 

S10 44.1900 47.1900 1.5000 43.5000 46.5000 

S11 43.3875 46.5750 1.5938 43.4062 46.5938 

S12 42.8650 48.0450 2.5900 42.4100 47.5900 

Table 5.3: Threshold and TMS values derived from the motion and orientation psychometric 
functions for subjects S1-S12. For motion (top), table includes the 75% correct values for 
speeds slower (threshold S) and faster (threshold F) than the reference, plus the value 
added too and taken away from the reference (ref ±) and the values used during TMS for the 
slower (TMS S) and faster (TMS F) test stimuli. For orientation (bottom), table includes the 
75% correct values for orientations more horizontal (threshold H) and more vertical 
(threshold V) than the reference, plus the value added too and taken away from the 
reference (ref  ±) and the values used during TMS for the more horizontal (TMS H) and more 
vertical (TMS V) test stimuli. 
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5.6.4:    Effects of TMS on Combined Motion & Orientation Discrimination 

          Group averaged performances (% correct) for all conditions and tasks are plotted in 

Figure 5.7.  Inspection of Figure 5.7, reveals a number of interesting patterns of results for 

both motion and orientation tasks. For motion discrimination, the data indicate that: (1) 

performance was maximally disrupted following TMS of V5/MT, relative to all other 

conditions; (2) performances were largely similar following TMS of the CON, LO1 and LO2 

and (3) performance during the no TMS condition was slightly improved, relative to the 

collective TMS conditions – a feature also observed in Chapter 4.  For orientation 

discrimination, the data indicate that: (1) TMS of LO1 induced maximum disturbance to 

performance, relative to all other conditions; (2) performances were very similar following 

TMS of the CON, LO2, V5/MT and the no TMS baseline, and (3) performance is best during 

V5/MT stimulation. Comparing the overall pattern of deficits across tasks also indicates 

slightly lower overall performances in the motion compared to orientation tasks for all 

conditions, a pattern also consistent with the data reported in Chapter 4. The slight overall 

drop in performance during motion task may suggest a potential main effect of task  

 

  

 

 

 

 

 

 

 

 

 

Figure 5.7: Effect of TMS on combined motion and orientation TMS tasks. Mean 

discrimination performances (% correct) across all conditions for the combined motion and 

orientation TMS tasks. Motion discrimination was maximally disrupted following TMS of 

V5/MT, whereas orientation discrimination was maximally disrupted following TMS of LO1. 

Within each task, performances are largely equivalent across other conditions. Error bars 

represent s.e.m. 
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Crucially, if orientation perception of moving stimuli is reliant upon computations 

performed by LO1, and V5/MT maintains its specializations for motion, even when 

combined with the presence of an additional irrelevant stimulus feature, an interaction 

between Task and Site should be evident. Accordingly, a 2 x 5 repeated-measures ANOVA 

was conducted with conditions Task (motion & orientation) and Site (no TMS, CON, LO1, 

LO2 & V5/MT). Sphericity was maintained across all main effects. The main effects of Task (F 

(1, 11) = 2.583, p = 0.136), and Site (F (4, 44) = 2.248, p = 0.079) were not significant. Despite the 

slightly lower performances, across conditions, during motion discrimination, performances 

across the two tasks were not significantly different, suggesting that both tasks were 

equivalently difficult. The ANOVA did however, reveal a significant Task x Site interaction (F 

(4, 44) = 3.415, p = 0.016). There were no significant pairwise site comparisons (p = > 0.214, in 

all cases: Bonferroni corrected). Although the identification of a significant Task x Site 

interaction was essential to the analysis, additional analyses were required to determine 

whether or not disruptions to performance were specific to TMS of LO1 and V5/MT. 

Accordingly, one-way repeated-measures ANOVAs were conducted on each task considered 

separately. 

 For motion discrimination, there was a significant effect of Site (F (4, 44) = 3.613, p = 

0.012). It was hypothesised that V5/MT would exhibit specializations for motion perception 

despite the presence of orientation noise. In order to explore further the nature of the 

above effect, paired t-tests (one-tailed) were computed to compare the effects of TMS of 

V5/MT relative to all other conditions. TMS of V5/MT caused a significant and selective 

disturbance to motion discrimination despite the presence of different orientations, 

compared to all other conditions (V5/MT versus no TMS: t (11) = -3.699, p = 0.002; V5/MT 

versus CON: t (11) = -1.950, p = 0.0385; V5/MT versus LO1: t (11) = -1.995, p = 0.0355; V5/MT 

versus LO2: t (11) = -1.924, p = 0.0405). As noted above (and in Chapter 4), performance on 

the no TMS condition was slightly higher than all other TMS conditions. This could be 

indicative of a general effect of TMS, which in turn was more pronounced following TMS of 

V5/MT. In order to assess the validity of such an interpretation, paired t-tests (two-tailed) 

were conducted to compare performance during the no TMS with performances following 

TMS of the CON, LO1 and LO2. There were no significant differences between performance 

during the no TMS baseline and TMS of any site other than V5/MT (no TMS versus CON: t (11) 
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= 1.781, p = 0.102; no TMS versus LO1: t (11) = 1.750, p = 0.108; no TMS versus LO2: t (11) = 

1.890, p = 0.085). The data argue against a general effect of TMS on performance. Analysis 

of reaction times however, will be important in order to rule out speed-accuracy trade off as 

an explanation for the higher performance during no TMS.  

For orientation discrimination, there was no significant effect of Site (F (4, 44) = 1.610, 

p = 0.189). Larger degrees of variance (evidenced by the large error bars relative to the 

motion tasks) could potentially account for the lack of a significant effect of Site. Indeed, 

from the data presented in Figure 5.7, one can clearly see that on average performance was 

maximally disrupted following TMS of LO1. Despite the lack of a significant effect of Site, 

paired t-tests (one-tailed) were nevertheless conducted to ascertain whether any site 

comparisons were significant. There were no significant differences between TMS of LO1 

and either the no TMS condition (LO1 versus no TMS: t (11) = -1.138, p = 0.1395) or LO2 (LO1 

versus LO2: t (11) = -1.549, p = 0.075), although the data approached significance for this 

condition. There were however, significant differences between TMS of LO1 and TMS of the 

CON (LO1 versus CON: t (11) = -1.924, p = 0.0405) and V5/MT (LO1 versus V5/MT: t (11) = -

1.874, p = 0.044). 

As mentioned above, our primary hypotheses related to whether computations in 

LO1 underpin the orientation perception of moving stimuli and whether the specializations 

for motion perception exhibited by V5/MT is maintained in the presence of stimuli that 

differ in orientation. It is therefore justified to refine our analysis to consider those two 

targets sites alone using planned contrasts. The interaction term between LO1 and V5/MT 

was significant (F (1, 11) = 15.087, p = 0.003). Subsequent paired t-tests (one-tailed) confirm a 

double dissociation between these two cortical regions; for motion TMS of V5/MT caused a 

significant disturbance to performance relative to TMS of LO1 (t (11) = -1.995, p = 0.035), 

whereas during orientation TMS of LO1 significantly deteriorated performance relative to 

TMS of V5/MT (t (11) = -1.874, p = 0.044).   
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5.6.5:    Effects of TMS on Reaction Times 

Reaction times were recorded as a secondary measure of the effects of TMS. 

Reaction times are often the primary metric by which the effects of TMS are measured, in 

particular when the effects of TMS on discrimination are thought to be minimal. Group 

averaged reaction times across all conditions and tasks are plotted in Figure 5.8. Inspection 

of Figure 5.8, reveals a number of interesting pattern of results. Beginning with motion 

discrimination, the data indicate that the effects of TMS of V5/MT cannot be due to quicker 

reaction times relative to other conditions. Indeed, reaction times were very similar across 

all TMS conditions, this argues against speed-accuracy trade off as an explanation for the 

V5/MT effect. Interestingly, reaction times during the no TMS baseline were slower than 

any other condition. The slower reaction times may underpin the higher performance rates 

in the no TMS condition reported above – a pattern observed in Chapter 4. For orientation 

discrimination, reaction times were slowest during TMS of LO1, a pattern consistent with 

the effect of TMS of LO1. During LO1 stimulation, performance was maximally disrupted, 

and reaction times were slower, presumably due to increased task difficulty. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Effect of TMS on reaction times during combined motion and orientation TMS 

tasks. Mean reaction time across sites and tasks. The results indicate that reaction times did 

not vary in a manner that explains the observed patterns of performance. For each task, the 

condition with the slowest reaction times was associated with the poorest performance, LO1 

for orientation and V5/Mt for motion. This is in the predicted direction as is the opposite of a 

speed-accuracy trade off. Error bars represent s.e.m. 
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To assess formally the effect of reaction times, a 2 x 5 repeated measures ANOVA 

was conducted with conditions Task (motion & orientation) and Site (no TMS, CON, LO1, 

LO2 & V5/MT). Mauchly’s test of sphericity was only violated for the Task x Site interaction 

(Mauchly’s W (5) = 0.121, p = 0.020, estimate of non-sphericity = 0.564), the degrees of 

freedom for the Task x Site interaction were therefore corrected using the Greenhouse-

Geisser correction. The Task x Site interaction was not significant (F (2.258, 24.837) = 1.819, p = 

0.180; Greenhouse-Geisser corrected). The main effect of Task was significant (F (1, 11) = 

6.983, p = 0.023), whereas the main effect of Site was not significant (F (4, 44) = 1.507, p = 

0.216). The main effect of task suggests that in general subjects took longer to respond 

during motion than orientation task.  

Given the lack of a significant interaction, task specific ANOVAs were not conducted. 

As mentioned above, motion discrimination performance during no TMS was higher than all 

other conditions. This higher performance rate could have been caused by the slower 

reaction times during no TMS. In order to assess this statistically, reaction times during no 

TMS were compared to all other conditions using paired t-tests (two-tailed). There were no 

significant pairwise comparisons (no TMS versus CON: t (11) = -1.787, p = 0.101; no TMS 

versus LO1: t (11) = 0.482, p = 0.639; no TMS versus LO2: t (11) = 0.086, p = 0.933; no TMS 

versus V5/MT: t (11) = 0.424, p = 0.680). The higher performance rates during no TMS are not 

due to speed-accuracy trade-offs. There is no evidence that the effects of TMS of V5/MT 

and LO1 during combined motion and orientation discrimination are due to the presence of 

speed-accuracy trade-offs.   

5.6.6:    Analysis of Confounding Variables 

Additional measurements were recorded with each TMS pulse train to account for 

two potentially confounding variables that relate to the spatial relationship between the 

stimulating coil and the targets within cortex; coil-target distance and coil-target 

orientation. These measurements, which evaluate the precision of TMS delivery, are 

included as they provide a means by which to assess whether the discrimination data 

reported above were due to operator error.  
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5.6.6.1:    Coil - Target Distance  

We assessed whether the distance from the calibration-point of the TMS coil (hot-

spot of coil) to the TMS targets varied across tasks and conditions in a way that might 

explain the observed effects of TMS on motion and orientation discrimination, respectively. 

Group averaged coil-target distances (mm) for all TMS sites and tasks are plotted in Figure 

5.9.  From Figure 5.9, one can see that the coil-target distances across sites are very similar 

for both tasks.  

 

 

 

 

 

 

 

 

 

To assess the effect of coil-distance a 2 x 4 repeated-measures ANOVA was 

conducted with conditions Task (motion & orientation) and Site (CON, LO1, LO2, V5/MT). 

Sphericity was maintained across all main effects.  There were neither significant effects of 

Task (F (1, 11) = 0.504, p = 0.611), nor Site (F (2, 22) = 0.028, p = 0.870), nor Task x Site 

interaction (F (2, 22) = 0.389, p = 0.682). Given the lack of significant main effects or a 

significant interaction further tests were not conducted.  The result indicates that the effect 

of TMS on discrimination of motion and orientation cannot be explained by differences in 

the distance from the stimulating coil to the targets across tasks.  

Figure 5.9: Mean Euclidean distance between stimulating coil and cortical targets during 

combined motion and orientation discrimination Mean distance between stimulating coil and 

cortical targets.  The results indicate that coil-target distance did not vary in a manner that 

explains the observed patterns of TMS on performance. There is no evidence that 

differences in the distance between the stimulating-coil and cortical targets led to the 

dissociable effects observed.Error bars represent the s.e.m. 
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5.6.6.2:    Coil - Target Orientation  

Coil orientation provides a measure of the difference between the coil orientation 

and the vector joining the ‘hotspot’ of the coil and the TMS target. Given the figure-of-eight 

coils used, the optimum coil-target orientation is 90° on this measure. Group averaged coil-

target orientations for all TMS sites for both tasks are plotted in Figure 5.10. Inspection of 

Figure 5.10, demonstrates slight variations in the coil-target orientation across sites. For 

motion discrimination the coil-target orientation during CON stimulation is different from 

stimulation of LO1, LO2 or V5/MT, which are largely similar. For orientation discrimination 

less variation across sites is observed. Indeed, the coil-target orientations are largely 

equivalent across sites.   

 

 

 

 

 

 

 

 

To assess the effects of coil-target orientation a 2 x 4 repeated-measures ANOVA 

was conducted with conditions Task (motion & orientation) and Site (CON, LO1, LO2 & 

V5/MT). The Task by Site interaction was the only main effect to violate the assumption of 

sphericity (Mauchly’s W (2) = 0.318, p = 0.003, estimate of non-sphericity = 0.594), therefore 

the degrees of freedom for the interaction were corrected using Greenhouse-Geisser. There 

was neither a significant effect of task (F (1, 11) = 2.391, p = 0.150), nor site (F (2, 22) = 0.178, p = 

0.863), nor task by site interaction (F (1.189, 13.076) = 1.263, p = 0.291).  Given the lack of 

significant main effects or an interaction, subsequent one-way ANOVAs on each task were 

not conducted. There is no evidence that the angular displacement of the coil varied in a 

Figure 5.10: Mean coil-target orientation during combined motion and orientation 

discrimination. For motion discrimination, the largest variation is evident between the CON 

and all other conditions. For orientation discrimination, the coil-target orientations were 

similar across tasks. Error bars represent s.e.m. 
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way that could explain the main interaction or the double dissociation between LO1 and 

V5/MT reported above. 

5.7: Discussion 

In the current study TMS pulses were applied to cortical targets whilst subjects 

performed two visual tasks – orientation discrimination of drifting gratings and motion 

discrimination of oriented gratings. Our primary hypotheses concerned the effects of TMS of 

LO1 versus V5/MT, yet in a desire to be consistent with the practices in Chapter 4, we 

included the additional conditions of LO2, CON and no TMS. Overall the effects of TMS on 

discrimination performance produced a significant Task x Site interaction, with TMS of 

V5/MT maximally disrupting motion discrimination relative to all other conditions and TMS 

of LO1 inducing maximal disturbance to orientation discrimination relative to all other 

conditions. Indeed, planned contrast analysis between LO1 and V5/MT revealed a significant 

double dissociation between the effects of TMS on motion and orientation discrimination, 

respectively. The overarching pattern of deficits induced by TMS is consistent, to a degree, 

with the map specific and parallel predictions and also those reported in Chapter 4, 

although it is important to note however, that the effects observed here are markedly 

weaker than those reported in Chapter 4. Indeed, the one-way ANOVA for orientation was 

not significant, despite having double the number of subjects, and was only significant when 

planned contrasts were applied. The patterns of results are inconsistent with either the 

prediction that V5/MT underpins performance of both tasks or that of V5/MT and LO1 

interact to perform the orientation task, whilst V5/MT alone underpins the motion task. 

These effects were immune to the presence of speed-accuracy trade-offs and to differences 

in the spatial relationships between the stimulating coil and the cortical targets, which could 

have arisen due to operator error.   
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5.7.1:    LO1 Involved, but not Critical to Orientation Processing of Moving 

Stimuli 

 The results of the orientation (plus motion) discrimination study indicate that the 

accurate perception of orientation of a moving stimulus is influenced (to a degree) by 

computations performed within LO1. The disturbance to performance following LO1 

stimulation was significantly different relative to TMS of the CON and V5/MT. The effects 

were not significant relative to the no TMS baseline or following TMS LO2, although 

approached significance in the latter condition. Taken together, the current findings are 

consistent with the maximal disruption to static orientation processing following TMS of LO1 

reported in Chapter 4, although much weaker in power. The results echo those reported in 

Chapter 4, by demonstrating that behaviourally relevant information regarding the 

orientation of moving stimuli is present at this level of the visual hierarchy. The data are also 

in-line with previous fMRI work investigating orientation selectivity of motion-boundaries in 

human visual cortex (Larsson et al., 2010). A number of extrastriate regions of cortex, 

including LO1 and LO2, were shown to exhibit orientation-selective releases from motion-

boundary adaptation. Indeed, the release from adaptation within LO1 following the 

presentation of a probe grating orientated orthogonally to the adaptor was significant in 5/5 

subjects tested and found to be ~50% greater than that observed in LO2. The orientation 

selective effect following TMS of LO1 was found not to be due to LO1’s proximity to V1, as 

previously suggested (Larsson et al., 2006). The significant difference in discrimination 

following TMS of LO1 and the CON, echoes the pattern of results reported in Chapter 4. An 

important feature to note is that the effect of TMS of LO1 was markedly weaker here than 

that reported in Chapter 4, despite double the number of subjects. Indeed, the one-way 

ANOVA for orientation discrimination was not significant, making the additional planned 

contrasts less justified. Although orientation discrimination of moving gratings may depend 

on LO1, it appears less dependent on LO1 computations than for static orientation.  

 A noteworthy, but non-significant, feature of the discrimination data reported here 

is that during motion discrimination, TMS of LO1 resulted in the higher performance levels 

relative to all other TMS conditions. Although the differences in performances are small, 

they are nevertheless evident. Taken within the context of Walsh et al., (1998), one 
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interpretation of this effect is that TMS of LO1, reduced the demand placed on the system 

for the encoding of orientation and therefore, ‘free-up’ the capacity for encoding motion 

presumably, but not exclusively,  by V5/MT. 

 One possibility for the reduced effect following TMS of LO1 and LO2 during motion 

discrimination may reflect the speed of our stimulus targets (8º/sec). An interesting 

possibility for future research would be to examine the effects of LO1 and LO2 stimulation 

during motion discrimination at a range of stimulus speeds. 

5.7.2:    V5/MT Specialized for Motion Perception 

In the first instance, TMS of V5/MT induced significant and selective disturbances to 

performance on our combined motion (plus orientation) discrimination task. The pattern of 

results is entirely consistent with the data reported in Chapter 4 during motion 

discrimination in isolation, where TMS of V5/MT maximally disrupted performance relative 

to all other conditions. The TMS data reported here are largely consistent with previous 

TMS studies probing the functional properties of V5/MT (Beckers & Homberg, 1992; Walsh 

et al., 1998; McKeefry et al., 2008). V5/MT neurons appear therefore to sufficiently 

sophisticated to extract the motion component of a stimulus, even in the presence of an 

additional visual feature. In this instance the presence of orientation information would be 

unlikely to aid in the discriminations of speed required by our subjects. In contrast, had the 

discriminations we required our subjects to complete been direction based, the presence of 

orientation information would likely have aided performance. Evidence from single-unit 

recordings in macaque V5/MT, highlight the presence of neurons selective for orientation 

and direction, with the peak orientation sensitivity typically (but not exclusively) 

perpendicular to the preferred direction (Maunsell & Van Essen, 1983; Albright, 1984). The 

results reported in Chapter 4, coupled with the selective disturbance to performance 

reported here demonstrate the specialized role played by V5/MT in the perception of 

motion, even when a second stimulus feature is present.  

An interesting, but non-significant, pattern of results during orientation 

discrimination was that performance was best following TMS of V5/MT relative to all other 

conditions. Although this difference was small, relative to TMS of the CON, group averaged 
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discrimination performance was nonetheless, numerically greatest following TMS of V5/MT. 

A previous TMS study reported that TMS of V5/MT caused facilitation in performance of 

visual search tasks where motion was present, but irrelevant, or when attention was 

directed towards either form or colour (Walsh et al., 1998). The facilitation of performances 

following TMS of V5/MT was interpreted in a framework of mutual inhibition between 

different extrastriate cortical areas. That is, difference extrastriate visual areas compete for 

the limited processing resources available and that disruption of V5/MT had the effect of 

‘freeing-up’ processing capabilities for regions of cortex processing stimulus features other 

than motion. Taken within this context, one interpretation of the effect of TMS of V5/MT 

during orientation discrimination of moving gratings, where motion was present, but 

irrelevant to the task, is that processing resources were ‘freed-up’ allowing more processing 

to be allocated to encoding orientation, presumably by LO1. Indeed, this pattern was not 

observed following TMS of V5/MT during static orientation discrimination reported in 

Chapter 4, where performance was greatest following TMS of the CON.  

The data reported above add to the growing body of evidence from 

neuropsychological (Zihl et al., 1983), neuroimaging (Zeki et al., 1991; Orban et al., 1995) 

and neurostimulation studies (Beckers & Homberg, 1992; Walsh et al., 1998; McKeefry et 

al., 2008) that demonstrate the specialized role played by V5/MT in motion perception. 

5.7.3:    Double Dissociation & Parallel Processing 

The planned contrast analysis revealed a double dissociation between the effects of 

TMS of LO1 and V5/MT during our visual tasks. The double dissociation is consistent with 

the data reported in Chapter 4 and provides further evidence for parallel processing 

between LO1 and V5/MT, although as mentioned previously, this double dissociation was 

only present following planned contrasts therefore should be interpreted with caution. The 

effects reported here for combined stimuli are much weaker than those reported in Chapter 

4. The encoding of orientation information by LO1 appears to persist, despite the influence 

of motion. Likewise, the encoding of stimulus speed by V5/MT appears not to be altered by 

changes in orientation. Given the evidence for orientation sensitive responses in V5/MT one 

interpretation is that during motion discrimination attention increased the selectivity of 

V5/MT neurons tuned to detect speed over those tuned for orientation (Treue & Trujillo, 
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1999; Treue, 2001; Trujillo & Treue, 2004). As mentioned in Chapter 4, the functional 

independence between LO1 and V5/MT reported here may be underpinned by independent 

anatomical connections from antecedent (Beckers & Zeki, 1995) and in the case of V5/MT, 

even subcortical (Sincich et al., 2004) regions. The marginal facilitation in performances 

during motion discrimination following TMS of LO1 and orientation discrimination following 

TMS of V5/MT is a particularly intriguing pattern. Taken in the framework of mutual 

inhibition between different cortical areas suggested by Walsh et al., (1998), LO1 and 

V5/MT may compete for processing resources when orientation and motion signals are 

present simultaneously – an interesting avenue for future work could explore this potential 

mechanism for mutual inhibition more explicitly.  

5.7.4.    The Role Played by LO2 in Visual Perception? 

 The current results, coupled with the data reported in Chapter 4, bring into focus the 

question of the role played by LO2 in visual computations. Recall that in Chapter 4 TMS of 

LO2 neither disrupted motion nor orientation discrimination relative to other conditions. 

The patterns of performances following TMS of LO2 in the current study are largely 

consistent with that reported in Chapter 4. TMS of LO2 neither disrupted performances on 

the combined motion nor orientation discrimination tasks. The lack of effect following TMS 

of LO2 is consistent with previous fMRI work, highlighted a lack of selectivity to orientation 

and motion in LO2 (Larsson & Heeger, 2006). Interestingly, LO2 has been shown to exhibit 

orientation-selective adaptation for motion-boundaries (Larsson et al., 2010), although the 

authors stress that this selectivity was ~50% of that exhibited by LO1. Speculation regarding 

the role played LO2 originated from the finding that BOLD signals following the presentation 

of everyday objects were larger in LO2 than any other retinotopically defined regions, 

including LO1 (Larsson & Heeger, 2006). A number of more recent reports also highlight the 

object-selective nature of responses in LO2 (Sayres & Grill-Spector, 2008; Amano et al., 

2009). From this, it was originally suggested that a hierarchy existed between LO1 and LO2, 

with LO1 extracting boundary information and LO2 representing more complex shape 

information. The data reported in Chapter 4, coupled with the current data certainly suggest 

that orientation and boundary information is processed in LO1. Chapter 6 will explore 

whether LO2 is specialized for the processing of shape explicitly, by applying TMS to LO1 
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and LO2 whilst subjects perform shape discriminations of radial frequency patterns. We also 

include the static orientation discrimination task from Chapter 4, as a direct replication.  

5.8: Conclusion 

Accurate orientation discrimination of moving stimuli is disrupted (to a degree) 

following TMS of LO1. Likewise, accurate discrimination of motion is significantly and 

selectively impaired following TMS of V5/MT, even when the stimuli contain orientation 

information. Following planned contrasts only, the data revealed specializations within LO1 

and V5/MT that were consistent, albeit markedly weaker, than those reported in Chapter 4. 

Taken together, the data reported in this chapter provide a much weaker account for 

functional specialization and parallel processing than those data reported in Chapter 4. One 

alternative account of the data is that they provide support for a lack of cue-invariance in 

LO1. The effect of orientation was only present following planned contrasts and moreover 

following a non significant one-way orientation ANOVA. The current results extent those 

reported previously in terms of the sophisticated tuning of neurons present within these 

regions. The role played by LO2 in visual perception remains unclear. 
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Chapter 6 

Specialized & Parallel Processing of Orientation & Shape in LO1 & 

LO2 

6.1: Overview 

The overarching aim of this study was to investigate whether applying TMS to LO1 

and LO2 could induce selective disturbances to performance on two visual tasks. Given the 

results reported in Chapter 4 a static orientation discrimination task was selected – a task 

demonstrated to be critically dependent on LO1. The second task was shape discrimination 

– a visual task that may well be crucially dependent on LO2. Whether or not LO1 and LO2 

operate independently of one another is currently unknown and therefore, the predicted 

effects of TMS are considered with respect to both serial and parallel map specific 

processing frameworks. 

6.2: Introduction 

 The results reported in Chapters 4 and 5 revealed a number of important features 

regarding the visual computations performed by LO1 and LO2. First, LO1 was found to be 

critically involved in the perception of orientation of static gratings and to lesser extent 

moving gratings. In both cases, this functional specialization was not attributable to LO1’s 

proximity to V1. Second, a single dissociation was present between the effects of TMS of 

LO1 and LO2 on orientation discrimination of static and drifting gratings.  Although the 

difference during orientation discrimination of moving gratings was not significant it 

nonetheless approached significance (p = 0.075). Finally, TMS of LO2 was found not to 

disrupt either motion or orientation perception whether presented in isolation or 

combined. Taken together these findings suggest that LO2 may be specialized for the 

processing of different visual features. It has been suggested previously that LO2 may 

underpin the perception of shape and therefore, the current study aimed to test this 

explicitly. Whether or not LO1 and LO2 exhibit independent specializations for orientation 

and shape is currently unknown. 
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6.2.1:    Functional Specialization & Parallelism in the Human Brain 

The current study aimed to reveal functional specializations for adjacent visual field 

maps LO1 and LO2. The design of this study was heavily influenced by the evidence for 

functional specialization and parallelism present in human visual cortex. The following 

sections summarise the evidence for functional specialization and parallelism taken from a 

number of investigative paradigms. 

Human visual cortex has been shown to contain a number of spatially distinct 

regions that exhibit functional specializations for the encoding of specific visual attributes 

(Lueck et al., 1989; McKeefry & Zeki, 1997; Zihl et al., 1983; Zeki et al., 1991; Walsh et al., 

1998; McKeefry et al., 2008; Amano et al., 2009) and even complex visual categories 

(Kanwisher et al., 1997; Grill-Spector et al., 1999; Epstein & Kanwisher, 1998; Malach et al., 

1995; Kourtzi & Kanwisher, 2001; Grill-Spector et al., 2003; Taylor  et al., 2007; Pitcher et al., 

2009). Many of these specialized regions were originally identified through early 

neuropsychological work, and later extended through the use PET, fMRI and 

neurostimulation techniques, such as TMS. 

An additional feature, common too many of the specialized areas mentioned above, 

is that of parallelism. Different spatial scales of parallelism have been identified within 

human cortex. First, at the largest spatial scale, parallel processing streams in dorsal and 

ventral cortex have been identified. These parallel processing streams, are suggested to 

encode visual features that underpin our ability to determine what a visual stimulus is 

(Ventral – What?) and where that stimulus may be (Dorsal – where?) (Goodale et al., 1991). 

Second, at smaller spatial scale, neuropsychological (Zihl et al., 1983; Goodale et al., 1991), 

neuroimaging (Malach et al., 1995; Kanwisher et al., 1997; Epstein & Kanwisher, 1998; 

Taylor et al., 2007) and neurostimulation (McKeefry et al., 2008; Pitcher et al., 2009) studies 

have identified specialized areas that encode specific visual features (colour and motion) as 

well as different visual categories (faces, places, bodies & objects) independently of the 

visual features and/or categories encoded by other nearby areas.   Third, at an even smaller 

spatial scale, visual field map clusters have been proposed as a general organisational 

principle of visual cortex (Wandell et al., 2005; Brewer & Barton, 2011). These clusters are 

suggested to form ‘clover-leaf’ configurations around a central foveal representation and 
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whilst the maps within a cluster are suggested to perform very similar computations these 

are thought to occur independently of the visual computations performed by adjacent visual 

clusters.  

It was originally suggested that LO1 and LO2 may exhibit different functional 

properties from one another (explored below) and therefore, LO1 and LO2 offer a perfect 

opportunity to investigate whether functional specialization is present at the level of 

adjacent visual field maps in human cortex. Additionally, LO1 and LO2 offer the potential to 

reveal parallel processing between adjacent maps within a visual cluster (LO cluster) a 

feature currently unknown (Larsson & Heeger, 2006).  Such a finding would show that in 

addition to the  parallel processing present at the spatial scale of adjacent clusters (LO and 

V5/MT – see Chapters 4 & 5), there may also be parallel processing at the finer spatial scale 

of neighbouring maps.  This would have an interesting implication about the way visual 

information is represented and processed within visual field map clusters.  

6.2.2:    Segregation of Function between LO1 & LO2? 

LO1 and LO2 have been shown previously to exhibit object-selective responses 

(Larsson & Heeger, 2006; Sayres & Grill-Spector, 2008; Amano et al., 2009), a feature 

consistent with data reported in Chapter 3. Despite the object-selectivity exhibited by both 

LO1 and LO2, a segregation of function between the two maps was proposed (Larsson & 

Heeger, 2006). First, fMRI adaptation revealed robust and significant orientation-selective 

responses in LO1, a feature that was not present in LO2 (Larsson et al., 2006). Second, the 

lack of orientation selective responses in LO2, coupled with its more marked selectivity to 

objects than LO1 (Larsson & Heeger, 2006; Sayres & Grill-Spector, 2008)  led to the idea that 

LO2 undertakes more complex spatial analyses and perhaps processes shape information 

(Larsson & Heeger, 2006; Sayres & Grill-Spector, 2008; Amano et al., 2009). In these 

experiments however, neither the stimuli, nor the fMRI protocols employed were 

equivalent.  The conclusion that LO1, but not LO2 exhibits orientation selectivity was based 

upon greater orientation selective fMRI adaptation in LO1; whereas, the suggestion that LO2 

may process shape information was made on the basis that BOLD response magnitudes in 

LO2 were greater than those in LO1, following the presentation of greyscale 3D images of 

common objects. In addition these experiments, which exclusively employed fMRI, are 
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unable to determine the exact causal role that LO1 and LO2 play in visual processing. In 

order to address this and probe the possible segregation of function more explicitly, the 

current study employed TMS to ascertain whether neural activity in LO1 and LO2 causally 

underpins orientation and shape perception, respectively.  

The current set of experiments aimed to investigate the segregation of function 

between LO1 and LO2 more explicitly, but crucially, aimed to do so by employing similar 

types of stimuli and tasks. To explore further the nature of processing between LO1 and 

LO2, there is a need to probe their respective selectivity to both orientation (for replication) 

and shape.  In order to achieve this, and overcome the shortcomings mentioned above, 

there was a necessity to probe shape processing with stimuli and tasks that were equivalent 

(or close) to those employed previously in this thesis to probe orientation processing. The 

data reported in Chapter 4 demonstrated a dissociation between LO1 and LO2 and revealed 

a specialized role for LO1 in orientation processing. During orientation discrimination, only 

one visual feature changed (orientation). It was desirable therefore, to probe shape 

processing with the same level of stimulus control. That is, employ a stimulus set whereby 

shape processing could be assessed by changing only one visual feature. The stimuli 

selected to explore shape processing were radial frequency patterns (Wilkinson et al., 1998). 

Through the deformation of a circle via a sine wave these stimuli allow one to create 

different shapes. Modifying the contour of a circle with a sine wave creates smooth 

deviations from circularity, with the frequency of the sine wave defining the number of 

deformations and the amplitude of the sine wave defining the magnitude of each 

deformation.  Importantly, the shapes of these radial frequency patterns can therefore, be 

modified via manipulation of the amplitude of the sine wave only. The selection of this 

stimulus was desirable as it provided equal measures of control across both orientation and 

shape tasks; altering only one variable modifies stimuli in both tasks.   
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6.3: Theoretical Considerations 

As in Chapters 4 and 5 an important factor to account for is that neurons in V1, 

which lies closer to LO1 than LO2, also exhibit orientation selectivity (Hubel & Wiesel, 1963; 

Hubel, Wiesel, & Stryker, 1978; Furmanski & Engel, 2000).  Given the clear evidence for 

orientation selectivity in V1 it was crucial to ensure that any differential effects of TMS on 

orientation discrimination observed between LO1 and LO2 were not simply due to LO1s 

closer proximity to V1. Mindful of this potential proximity effect, coupled with a desire to be 

consistent with the experimental practices in Chapters 4 and 5, a control site (CON) was 

defined in each subject that lay medial to LO1 and therefore, closer to V1. The CON was 

defined by moving medial from LO1 by the distance separating the LO1-LO2 centroids. It is 

essential to note that the aim of selecting the control site was not to stimulate V1, which 

would likely disrupt performance in both tasks due to (1) disruption to the  orientation 

selective neurons within V1 and (2) because V1 serves as the major feed-forward station for 

visual processing. Rather, the control site was selected only on the criteria that it is closer to 

V1 than LO1 is to V1. This allowed us to test whether the stimulation's proximity to V1 is the 

critical factor affecting orientation discrimination. If orientation discrimination is only 

disrupted following stimulation of LO1 and not the more medial control site (CON), then the 

effects of TMS spreading into V1 cannot explain the result. More generally, if the 

computations performed within LO1 and LO2 are causally involved in human perception of 

orientation and shape, only stimulation of these sites and not the CON will affect 

performance, relative to the no TMS baseline. 

6.4:  Aims & Predictions 

This study aimed to demonstrate that LO1 and LO2 exhibit functional specializations 

for orientation and shape processing, respectively. Whether these specializations operate 

within a strictly serial processing architecture or in parallel are currently unknown, although 

the data reported in Chapters 4, and to a lesser extent in Chapter 5, would suggest that 

parallel processing exists between LO1 and V5/MT, the area of cortex directly anterior of 

LO2. Considering the pattern of deficits induced by TMS of LO1 and LO2 across both tasks 

can disambiguate whether computations in LO1 and LO2 are performed in serial or parallel. 

Consideration of both alternatives however, results in very different predictions, depicted in 
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Figure 6.1. In a strictly serial processing architecture (left column Figure 6.1), one may 

assume that orientation information is first extracted in LO1 and then passed to LO2 to 

allow shape processing to occur. In this scenario, one would predict TMS of LO1 to disrupt 

orientation processing, but not TMS of LO2. For shape processing however, the pattern is 

different. If the computations in LO2 are reliant on those performed by LO1, TMS of both 

LO1 and LO2 should lead to disruptions in shape processing. In contrast, if LO1 and LO2 

perform visual computations independently (right column Figure 6.1), TMS of LO1, but not 

LO2, should disrupt orientation processing and similarly, TMS of LO2, but not LO1, should 

disrupt shape processing – a double dissociation. It is important to note that the top panel 

of Figure 6.1 is meant to represent the serial and parallel alternatives and is not meant to 

convey anatomical connections between LO1, LO2 and antecedent visual areas, which are 

currently unknown.  

The two alternatives mentioned above demonstrate the two components of the map 

specific framework outlined in Chapter 1. As mentioned in Chapter 1, in order to make map 

specific conclusions there is a need to consider the effects of TMS of LO1 and LO2 in the 

context of the effects of TMS CON and the no TMS baseline. If the effects of TMS are specific 

to LO1 and LO2 alone, then irrespective of whether these computations are performed in 

serial or parallel, there should be no statistical difference between the effect of TMS at the 

CON and the no TMS baseline for either task. Comparing the effect of TMS against a no TMS 

baseline provides a measurement for a general effect of TMS. In order to establish 

parallelism between LO1 and LO2, there would need to be, for orientation, an effect of TMS 

of LO1, but no statistical difference between the effects of TMS at the CON, LO2 and no TMS 

baseline. Likewise for shape, there would need to be an effect of TMS of LO2, but no 

statistical difference between the effects of TMS at the CON, LO1 and no TMS baseline.  
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Figure 6.1: Serial and parallel predictions for the effects of TMS on orientation and shape 

discrimination. In a serial processing architecture (left) TMS of LO1 alone disrupts 

orientation processing, but if LO2 is reliant on input from LO1, TMS of both LO1 and LO2 

disrupts shape processing. In a parallel or independent processing architecture (right), 

orientation processing is only disrupted following TMS of LO1 and shape processing is only 

disrupted following TMS of LO2 – a double dissociation. Note, these alternative predictions 

are restricted to effects of TMS that are ‘map specific’ and therefore, predict no effect of 

TMS at the control site (CON). If the effects of TMS are specific to LO1 and LO2, and not 

due to a general effect of TMS, there should be no effect at the CON for either task, 

expressed by no difference between CON and No TMS.  
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6.5: Methods 

6.5.1:    Subjects 

This study included 12 subjects (mean age = 28, range = 24, 5 male). Six of the 

subjects were tested in Chapter four. However, they are retested here to ensure the TMS 

data are not recycled.  All subjects had normal or corrected to normal vision and gave 

informed consent in accordance with the Declaration of Helsinki. York Neuroimaging Centre 

(YNiC) Research Governance Committee approved the study.   

6.5.2:    Visual Field Mapping 

All subjects completed visual field mapping experiments using fMRI (Engel et al., 

1994; Sereno et al., 1995; DeYoe et al., 1996). Data analysis, segmentation and delineation 

of visual areas were completed in accordance with previous work (Baseler et al., 2011) and 

the steps described in Chapter 3. 

6.5.3:    Identification of Visual Field Maps LO1 & LO2 

Definitions of LO1 and LO2 were made in at least one hemisphere in all subjects. 

Across subjects, LO1 and LO2 contained a complete hemifield map of the contralateral 

visual field and were located in the expanse of cortex in between V3d and V5/MT. 

6.5.4:    Psychophysical Stimuli & Procedures 

Stimuli for the behavioural/TMS experiments were generated using MATLAB 

(Mathworks, USA) and displayed on a Mitsubishi Diamond Pro 2070SB display with a refresh 

rate of 60 Hz, controlled by a VISAGE graphics card (Cambridge Research Systems TM). 

Grating stimuli were luminance modulated sinusoidal gratings (50% contrast) presented in a 

circular aperture (diameter 4) and had a spatial frequency of 2 cpd. Shape stimuli were 

radial frequency patterns (Wilkinson et al., 1998) (50% contrast) with a fixed radial 

frequency (3) All stimuli had a mean luminance of 31 cd.m-2 and were presented on a 

uniform grey background of the same luminance.  
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The visual tasks employed were orientation discrimination of sinusoidal gratings and 

shape discrimination of radial frequency patterns. Prior to TMS stimulation each subject 

completed orientation and shape discrimination experiments using the method of constant 

stimuli described in full in Chapter 2. The spatial and temporal organisation of the 

orientation and shape experiments was identical (see schematic Figure 6.2). The orientation 

discrimination experiment was identical to that employed in Chapter 4. For shape 

discrimination, a fixed amplitude was set as the reference shape. Test shapes were selected 

from seven pre-determined levels that spanned a range of amplitudes either side of the 

reference - creating a range of stimuli that were either spikier or smoother than the 

reference. Subjects were required to discriminate whether the test shape was spikier or 

smoother than the reference. The phases of the reference and test gratings were 

randomised within trials to prevent the orientation discrimination task being solved via local 

luminance cues. Similarly the phases (orientation) of the reference and test shapes were 

randomised within trials to prevent the shape discrimination task being solved via local 

orientation cues. Subjects completed a total of 350 trials (5 runs comprising 70 trials per 

run) for each task. Individual psychometric functions for orientation and shape 

discrimination were plotted from the average of five runs for each subject in order to 

determine the individual thresholds (75 % correct). 

As mentioned in Chapter 4 and 5, in some subjects, the best fitting psychometric 

function may not pass through 50% correct identification when the reference and test 

stimuli were identical. This may result in an asymmetrical function, which in turn will lead to 

asymmetric thresholds relative to the reference. To account for this, the 75% correct 

thresholds were defined for orientations more vertical and horizontal than the reference 

and for shapes spikier and smoother than the reference. The range between these values 

was calculated, divided in half and added to the following equation: TMS stimuli = reference 

± range/2. If for example, during shape discrimination the 75% correct spikier shape had an 

amplitude of 0.25 and the 75% correct smoother shape had an amplitude of 0.19,  the range 

(0.06) would be halved (0.03) and then added to and taken away from the reference (0.2). 

This results in a spikier (0.23) and a smoother (0.17) shape, both of which are equidistant 

from the reference.  
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Figure 6.2: Trial structure schematics for orientation (Top) and shape (Bottom) 

psychophysical tasks. During orientation discrimination the reference grating was fixed at 

45°. During shape discrimination the reference shape had a fixed amplitude (0.2). Test 

stimuli for both tasks were randomly selected from a pre-determined list of seven 

orientations (orientation task) and amplitudes (shape task) that spanned a range of values 

either side of the reference stimuli 

 

 

 

 

 

 

 

 

 

 

 

6.5.5:    TMS Protocol 

A train of 4 biphasic (equal relative amplitude) TMS pulses, separated by 50ms 

(20Hz) at 70% of the maximum stimulator output (2.6 Tesla) were applied to the subject’s 

scalp using a figure-of-eight coil (50 mm external diameter of each ring) connected to a 

Magstim Rapid2 TM stimulator (Magstim, Wales). Subjects were seated in a purpose built 

chair with chin rest and forehead support. The coil was secured mechanically and placed 

directly above each cortical target (CON, LO1, and LO2) with the handle orientated parallel 

with the floor. The position of the coil was monitored and tracked in real time allowing the 

displacement between the intended and actual site of TMS delivery to be recorded, along 

with two additional measurements; coil-target distance and coil-target orientation. Each 

subject underwent 8 counterbalanced sessions (2 tasks x [3 TMS sites + 1 no TMS]).  During 

subsequent TMS sessions (and no TMS baseline) only the two stimuli defined using the 

method above were presented in a trial structure identical to that used to establish 
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thresholds. Each TMS session comprised 100 trials (50 per threshold stimulus). TMS pulses 

were delivered concurrently with the presentation of the test stimulus (Figure 6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5.6:    Data & Statistical Analysis 

Before data analysis some trials (~6%) were removed on the basis of two criteria (1) 

trials for which coil displacement was >2.5 mm (~2% of trials) and (2) trials for which 

reaction time was greater than 2000 ms after the cessation of the presentation of the test 

stimulus (~4 % of trials). Statistical analyses of the results were performed using the SPSS 

(Version 18) software package (IBM). A series of two-way repeated-measures ANOVAs were 

employed to examine the effects of discrimination (% correct) and reaction times, along 

with two potentially confounding variables (coil-target distance and coil-target orientation). 

Subsequent one-way repeated-measures ANOVAs were calculated for each task considered 

separately. In the case of a significant main effect, pair-wise comparisons were calculated 

Figure 6.3: Trial structure schematics for orientation (top) and shape (bottom) TMS tasks. 

During TMS, only the two threshold stimuli were presented as test stimuli. TMS pulses were 

delivered concurrently with the presentation of the threshold test stimuli represented by the 

red lightning bolts.  
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and corrected for multiple comparisons (Bonferroni corrected). For each ANOVA, whether 

or not the ANOVA adhered to the assumption of sphericity was established initially using 

Mauchly’s test. When the assumption of sphericity was violated, two approaches to 

correcting the degrees of freedom are typically employed to allow appropriate 

interpretation of the F value that resulted from the ANOVA. The Greenhouse-Geisser 

correction to the degrees of freedom is routinely used when the estimate of sphericity is 

less than 0.75, but when the estimate of sphericity exceeds this value, the more liberal 

Huynh-Feldt correction is applied. Departures from sphericity were only observed in the 

reaction time data. Even though, in these cases, sphericity never exceeded 0.75, both 

corrections are reported nevertheless, to ensure that any significant results that might 

indicate speed accuracy trade-offs are not masked by using a conservative correction.  

6.6: Results 

6.6.1:    Identification of Visual Field Maps LO1 & LO2 

LO1 and LO2 were identified in at least one hemisphere in all 12 subjects (8 right-

hemisphere), using standard retinotopic mapping techniques, described in full in Chapter 3. 

Visual field maps from a representative subject (S10) are illustrated in Figure 6.4. LO1 and 

LO2 were defined as two adjacent hemifield representations of the contralateral visual field 

on the lateral surface of the brain extending anteriorly from V3d. In all subjects, LO1 

displayed a gradual progression from the shared boundary with V3d at the lower vertical 

meridian towards the upper vertical meridian.  LO2 was the mirror-reverse of LO1 and 

therefore, displayed a progression from the upper vertical meridian towards the lower 

vertical meridian. To create unbiased targets for TMS (in terms of visual field 

representation), the centroids or centre of mass coordinates of LO1 and LO2 were 

calculated in each subject and used for TMS targeting. 
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6.6.2:    The Control Site 

The cortical targets of interest (LO1 and LO2) were on average separated by a 

relatively small distance (~11mm). Based on the results reported in Chapters 4 and 5 it was 

assumed that TMS would act sufficiently locally to elicit differential behavioral effects 

following stimulation of LO1 and LO2. In view of the previously identified dissociation, it was 

assumed that TMS had the spatial resolution to disrupt the processing in LO1 and LO2 

independently. To test this assumption however, a control site (CON) was defined in each 

subject (Figure 6.5) by (1) calculating the distance between the centroids of LO1 and LO2 

and (2) moving that distance toward the midline from the LO1 centroid. The control site was 

chosen to be closer to V1 than the other TMS targets and could therefore, be used to rule 

out the possibility that differential effects of TMS may arise from its action spreading into 

V1, when LO1 or LO2 were stimulated. The inclusion of a control site provides a means by 

which one can differentiate effects of TMS that are specific to LO1 and LO2 from effects that 

arise due to our targets proximity to V1.  The effects of TMS at the CON can be used to 

assess any general effect of TMS.   

Figure 6.4: Bilateral visual field maps in a representative subject. Surface reconstructions of 

the grey–white matter interface of the lateral surfaces of both the left and right hemispheres 

of S10 subjects are shown; gyri are light grey, sulci dark grey. Superimposed on these 

inflated surfaces, in false colour, are the response phases of the BOLD signal generated by 

fMRI retinotopic mapping procedures. The boundaries defining LO1 and LO2 occur at the 

upper (purple/blue) and lower (yellow/green) vertical meridians, as indicated on the colour 

wheel inset. White dashed and solid lines indicate the representations of the vertical and 

horizontal meridians, respectively. The meridians define the boundaries between 

neighbouring visual field maps. 
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6.6.3:    Orientation & Shape Psychophysics 

Individual psychometric functions for both the orientation and shape discrimination 

tasks for all subjects (S1-S12) are plotted in Figure 6.6.  As in Chapter 4, the axis of S6 has 

been rescaled relative to the other subjects. There is less individual variation in the shape 

task than in the orientation task. The range of values needed during shape psychophysics 

was more consistent across subjects than the range of values needed for during orientation 

psychophysics. 

 

Figure 6.5: TMS target locations in a 

representative subject transformed 

into MNI space. TMS targets (CON, 

LO1 and LO2) have been 

transformed into MNI space and 

overlaid on coronal (left) and axial 

(right) wire representations of the 

right hemisphere of the MNI brain. 

The centroids for LO1 (red; centre), 

LO2 (purple; most lateral) and the 

control site (CON, green; most 

medial) are shown. The CON site is 

anatomically closer to V1 than either 

LO1 or LO2 and therefore provides a 

control measurement for the spread 

of TMS. 
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Two stimuli were defined in each subject to be presented during orientation and 

shape TMS experiments. These stimuli (two orientations and two shapes) were equally 

different from the reference. Table 6.1 contains the 75% correct thresholds for orientation 

more vertical and more horizontal than the reference and for shapes spikier and smoother 

than the reference, for subjects S1-S12. Table 6.1 also includes the value added to and 

subtracted from the reference stimulus and finally the actual values presented to subjects 

during orientation and shape TMS experiments.   

 

Figure 6.6: Orientation and shape psychometric functions for subjects S1-S12. Individual 

subject psychometric functions for orientation (top) and shape (bottom) discrimination tasks 

are plotted. For orientation discrimination, the x axis of S6 is expanded relative to other 

subjects, a larger range of orientations were required for S6. The stimuli to be used in 

subsequent TMS (and no TMS) sessions were derived from these psychometric functions.  
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  orientation (degrees) 

Subject threshold H threshold V ref ±  TMS H TMS V 

S1 43.4400 46.3200 1.4400 43.5600 46.4400 

S2 43.1250 46.8000 1.8375 43.1625 48.8375 
S3 43.7250 46.7750 1.5250 43.4750 46.5250 
S4 44.2800 46.2600 0.9900 44.0100 45.9900 
S5 43.1400 48.2700 2.5650 42.4350 47.5650 
S6 43.2000 52.8000 4.8000 40.2000 49.8000 
S7 43.1550 49.4100 3.1275 41.8725 48.1275 
S8 43.9000 46.3250 1.2125 43.7875 46.2125 
S9 43.5600 46.6650 1.5525 43.4475 46.5525 

S10 44.1900 47.1900 1.5000 43.5000 46.5000 
S11 43.3875 46.5750 1.5938 43.4062 46.5938 
S12 42.8650 48.0450 2.5900 42.4100 47.5900 

  shape (modulation amplitude) 

Subject threshold SM threshold SP ref ±  TMS SM TMS SP 

S1 0.1900 0.2119 0.0110 0.1890 0.2110 

S2 0.1825 0.2172 0.0175 0.1862 0.2174 

S3 0.1880 0.2140 0.0130 0.1870 0.2130 

S4 0.1910 0.2077 0.0083 0.1917 0.2083 

S5 0.1905 0.2152 0.0123 0.1877 0.2123 

S6 0.1830 0.2095 0.0133 0.1868 0.2132 

S7 0.1847 0.2112 0.0133 0.1868 0.2132 

S8 0.1817 0.2253 0.0218 0.1783 0.2218 

S9 0.1850 0.2122 0.0136 0.1804 0.2136 

S10 0.1845 0.2125 0.0140 0.1860 0.2140 

S11 0.1885 0.2165 0.0140 0.1860 0.2140 

S12 0.1905 0.2152 0.0124 0.1876 0.2124 

Table 6.1: Threshold and TMS values derived from the orientation and shape psychometric 

functions for all subjects S1-12. For orientation (top), table includes the 75% correct values 

for orientations more horizontal (threshold H) and more vertical (threshold V) than the 

reference, plus the value added too and taken away from the reference (ref  ±) and the 

values used during TMS for the more horizontal (TMS H) and more vertical (TMS V) test 

stimuli. For shape (bottom) table includes the 75 % correct values for shapes smoother 

(threshold SM) and spikier (threshold SP) than the reference, plus the value added too and 

taken away from the reference (ref ±) and the values used during TMS for the smoother 

(TMS SM) and spikier (TMS SP) test stimuli.  
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6.6.4:    Effects of TMS on Orientation & Shape Discrimination 

            Group averaged performances (% correct) for all conditions and tasks are plotted in 

Figure 6.7. Inspection of Figure 6.7, reveals a number of important patterns of results. The 

pattern of deficits closely follows that predicated by map specific and parallel processing in 

LO1 and LO2 (right schematic inset in Figure 6.7). First, orientation discrimination is only 

disrupted following TMS of LO1 – directly replicating the effect reported in Chapter 4. 

Second, orientation discrimination performances are largely equivalent across all other 

conditions, and indicate no general effect of TMS. Interestingly, and unlike the data 

reported in Chapter 4, there is no inflation of performance during the no TMS baseline. For 

shape discrimination, performance is only altered following TMS of LO2. Again the 

performances are very similar across all other conditions and also support the lack of a 

general effect of TMS. The pattern of deficits induced by TMS follows closely that predicted 

by specialized and parallel processing of orientation and shape in LO1 and LO2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Effects of TMS on orientation and shape discrimination. Mean discrimination 

performance (% correct) across all subjects for all conditions plotted by task. Inset into the 

figure are the schematics for serial (left) and parallel (right) processing. The pattern of 

deficits induced by TMS follows the predictions of map specific and parallel processing 

between LO1 and LO2. Orientation discrimination was disrupted following TMS of LO1 

alone. Shape discrimination was only disrupted following TMS of LO2 – a double 

dissociation. Across both tasks, there was no effect of TMS at the CON (no difference 

between CON and No TMS), indicating that TMS effects were specific to LO1 and LO2, 

respectively. Error bars represent s.e.m. 
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              It was hypothesised that computations performed by LO1 and LO2 would play 

specialized and causal roles in orientation and shape discrimination, respectively. An 

interaction between Task (orientation versus shape) Site (LO1 versus LO2) and should 

therefore, be evident. In order to asses this a 2 x 4 repeated measures ANOVA with 

conditions Task (orientation, shape) and Site (No TMS, CON, LO1, LO2) was conducted. The 

analysis confirmed a highly significant Task by Site interaction (F (3, 33) = 15.154, p = 2.556 x 

10-6). The effect of task was not significant (F (1, 11) = 1.391, p = 0.268) suggesting that across 

subjects and conditions both tasks were equally difficult.  The effect of site was significant (F 

(3, 33) = 5.572, p = 0.003), presumably reflecting the overall drop in discrimination 

performance following TMS of LO1 and LO2, during the orientation and shape tasks, 

respectively. No pair-wise site comparisons were significant (p = > 0.077, Bonferroni 

corrected).  

                While it was essential to identify an initial Task by Site interaction, additional 

analyses are required to determine whether task dependant effects of TMS are specific to 

LO1 and LO2. For orientation discrimination, a one-way repeated measures ANOVA revealed 

a significant effect of site (F (3, 33) = 12.514, p = 1.260 x 10-5). Pair-wise comparisons 

(Bonferroni corrected) revealed that this was solely due to a decrease in performance when 

stimulating LO1 compared to all other conditions (LO1 versus No TMS,  p = 0.010; LO1 versus 

CON, p = 0.010; LO1 versus LO2, p = 0.008). Importantly, no other pair-wise comparisons 

were significant (p = 1.000 in all cases). For shape discrimination, a one-way repeated 

measures ANOVA revealed a significant effect of site (F (3, 33) = 6.302, p = 0.002).  This effect 

was caused entirely by a decrease in performance when LO2 was stimulated compared to all 

other conditions (LO2 versus No TMS, p = 0.023; LO2 versus CON, p = 0.019; LO2 versus LO1, 

p = 0.018; Bonferroni corrected).  Comparisons between all remaining conditions were not 

significant (p = 1.000, in all cases).   

               The nature of deficits induced by TMS closely follows the pattern predicted for map 

specific and parallel processing between LO1 and LO2. The result demonstrates that 

computations of orientation and shape are specific to LO1 and LO2, respectively. For either 

task, the effect of TMS of the control site was not significantly different to the no TMS 

baseline, arguing strongly against a general effect of TMS. The effects of TMS delivery to 

LO1 and LO2 exhibit both task and site specificity. The results also indicate a double 
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dissociation between these map specific computations, suggesting that orientation and 

shape are processed independently in LO1 and LO2, respectively. The pattern of deficits 

runs contrary to the prediction based upon a strictly serial processing architecture in this 

region of cortex.  

6.6.5:    Effect of TMS on Reaction Times 

Although discrimination performance was the primary measure used to asses the 

effects of TMS, reaction times were also recorded as a secondary measure. Reaction times 

are often the measure of choice in TMS experiments (Whitney, Kirk, O'Sullivan, Lambon 

Ralph, & Jefferies, 2011; 2012) and can provide valuable interpretive information. Group 

averaged reaction times for all conditions and tasks are plotted in Figure 6.8. Inspection of 

Figure 6.8, reveals a pattern of results that argues strongly against the presence of speed-

accuracy trade-offs as an explanation for the disturbances to performance reported above.  

Indeed, within each task the slowest reaction times during TMS simulation occurred when 

poorest discrimination was recorded (LO1 for orientation discrimination and LO2 for shape 

discrimination). This is the opposite of a speed accuracy trade off.  
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In order to assess formally the effect of TMS on reaction times a 2 x 4 repeated 

measures ANOVA with conditions Task (orientation and shape) and Site (no TMS, CON, LO1 

and LO2) was conducted. The data for reaction times were the only measurements for 

which the assumption of sphericity was violated. As mentioned above, two approaches 

were adopted to correct the degrees of freedom when this violation occurred, in order to 

ensure that the more conservative Greenhouse-Geisser approach did not mask any 

significant effects.  Mauchly’s test of sphericity was not significant for either the main effect 

of Task or the interaction between Task and Site.  Neither the main effect of Task, nor the 

interaction were significant; Task (F (1, 11) = 1.156, p = 0.305) and Task by Site interaction (F (3 

33). = 2.310, p = 0.094). Mauchly’s test of sphericity was significant for the main effect of Site 

(Mauchly’s W (5)  = 0.250, p = 0.020, estimate of non-sphericity = 0.55). The effect of Site was 

not significant (F (1.657, 18.232) = 3.363, Greenhouse-Geisser corrected, p = 0.065: F (1.915, 21.063) = 

3.363, p = 0.056, Huynh-Feldt corrected).  However, given the trend in these data and a wish 

to be consistent with the approach used to analyse the discrimination data, one way 

ANOVAs were also applied to investigate the effect of Site for each task considered 

separately. For orientation discrimination, Mauchly’s test of sphericity was significant for 

the main effect of Site (Mauchly’s W (5) = 0.247, p = 0.019, estimate of non-sphericity = 

0.664). There was no significant effect of Site (F (1.991, 21.896) = 2.574, Greenhouse-Geisser 

Figure 6.8: Effects of TMS on reaction times during orientation and shape discrimination. 

The effects of TMS on reaction times are consistent with the main effect of TMS on 

discrimination. There is no evidence of a speed-accuracy trade off. Indeed, reaction times 

are slowest for those conditions in which performance is poorest (LO1-orietnation, LO2-

shape). Error bars represent s.e.m. 
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corrected, p = 0.099:  F (2.429, 26.722) = 2.574, p = 0.085, Huynh-Feldt corrected) and therefore, 

subsequent analyses were not conducted.  For shape, Mauchly’s test of sphericity was 

significant for the main effect of Site (Mauchly’s W = 0.044, (5), p = 1.48x10-5, estimate of 

non-sphericity = 0.403). There was no significant effect of Site (F (1.209, 13.294) = 3.975, 

Greenhouse-Geisser corrected, p = 0.061: F (1.277, 14.045) = 3.975, p = 0.058, Huynh-Feldt 

corrected). Despite the non-significant effect of site, the data nevertheless display a trend 

approaching significance. To explore further the nature of this effect, pair-wise comparisons 

(Bonferonni corrected) were undertaken. There were no significant pair-wise comparisons 

(No TMS versus CON, p = 0.462; No TMS versus LO1, p = 1.000; No TMS versus LO2, p = 

0.880; CON versus LO1, p = 0.724; CON versus LO2, p = 0.261; LO1 versus LO2, p = 0.199).  

It is clear that the parallel nature of processing observed in LO1 and LO2 cannot be 

due to speed-accuracy trade-offs. Analysis of the reaction time data indicate that the 

significant deficits in orientation and shape processing following TMS of LO1 and LO2, 

respectively, were not associated with significant decreases in reaction time – in fact they 

increased although not significantly. These tests demonstrate that the effect of TMS on 

reaction times cannot explain the main effect of TMS on orientation or shape 

discrimination.  

6.6.6:    Potentially Confounding Variables 

The current study made use of two measurements of the spatial relationship 

between the stimulating coil and the cortical targets. Although, the primary measure of the 

effects of TMS was discrimination performance (% correct) this measure could however, be 

affected by two potentially confounding variables, which relate to precision with which TMS 

was delivered; coil-target distance and coil-target orientation. These measurements are 

important as they inform as to whether operator error can explain the discrimination data. 

Of note, although the double dissociation provides compelling testimony to the conclusion 

that LO1 and LO2 are (1) specialized for orientation and shape, respectively and (2) perform 

these specialized roles in parallel, an alternative explanation may be that the observed 

effects of TMS were due to a single dissociation (as reported in Chapter 4) plus one (or 

more) confounding variables caused by the operator. Although unlikely, the effect of these 

potentially confounding variables nevertheless warrants consideration.  

orientation 
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6.6.6.1:    Coil-Target Distance 

The distance from the calibration point of the coil to the cortical target was recorded 

with each pulse train. This measurement allows one to determine whether the distance 

from the coil to the TMS targets varied across Task and Site in a way that might explain the 

discrimination results. Group averaged coil-target distances for all TMS sites and tasks are 

plotted in Figure 6.9. Inspection of Figure 6.9, illustrates that the coil-target distances were 

largely equivalent across both sites and tasks. These measurements are important as the 

location of the target within cortex cannot change as a function of task, and therefore the 

distance from the target to the stimulating coil should be equal across tasks. Differences in 

the coil-target distance must therefore, be caused by operator error, occurring through 

incorrect registration/coil-calibration procedures.  

 

 

 

 

 

 

 

 

 

 

The effect of coil-target distance was analysed using a 2 x 3 repeated measures 

ANOVA with conditions Task (orientation and shape) and Site (CON, LO1, and LO2). There 

was neither a significant effect of Site (F (2, 22) = 0.538, p = 0.591), nor Task (F (1, 11) = 0.732, p = 

0.411) nor Task by Site interaction (F (2, 22) = 0.762, p = 0.479).  As with all variables, we also 

applied one-way ANOVA tests to examine the effect of site for each task separately. For 

Figure 6.9: Mean Euclidean distance between stimulating coil and cortical targets during 

orientation and shape discrimination.  Group averaged coil-target distances (mm) across all 

TMS conditions grouped by task. The data indicate that the distance between the stimulating 

coil and cortical targets did not vary across tasks in a way that could explain the differential 

effects observed between LO1 and LO2 during orientation and shape discrimination, 

respectively. Error bars represent s.e.m. 
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orientation, there was no significant effect of Site (F (2, 22) = 1.065, p = 0.362), for shape, 

there was no significant effect of Site (F (2, 22) = 0.332, p = 0.938), therefore further tests 

were not conducted. The results indicate that the effect of TMS on discrimination of 

orientation or shape cannot be explained by differences in the distance from the stimulating 

coil to the targets across tasks.  Significant differences for one site across tasks would 

indicate errors in the calibration and/or registration procedures along with errors in coil-

localisation. The inclusion of these data demonstrates that each TMS site was stimulated 

with equal precision across tasks. 

6.6.6.2:    Coil-Target Orientation  

Coil-target orientation provides a measure of the difference between the coil 

orientation and the vector joining the ‘hotspot’ of the coil and the TMS target (accurate 

targeting corresponds to 90° on this measure). Group averaged coil-target orientations for 

all TMS sites and tasks are plotted in Figure 6.10. Inspection of Figure 6.10, reveals that the 

angles of the stimulating coil are (1) very similar across all sites and tasks and (2) cluster 

around 90° for all sites, which is the optimum angle for stimulation.  

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Mean coil-target orientation during orientation and shape discrimination. Mean 

coil-target orientation (degrees) across all TMS conditions grouped by task. The data 

indicate that the orientation of the stimulating coil and cortical targets did not vary across 

tasks in a way that could explain the differential effects observed between LO1 and LO2 

during orientation and shape discrimination, respectively. Error bars represent s.e.m. 
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In order to determine whether variations in the orientation of the coil relative to the 

target might explain the discrimination results, the effect of coil orientation was assessed 

using a 2 x 3 repeated measures ANOVA with conditions Task (orientation and shape) and 

Site (CON, LO1, and LO2).   There was neither a significant effect of site (F (2, 22) = 0.236, p = 

0.791), nor task (F (1, 11) = 0.305, p = 0.592) nor site by interaction (F (2, 22) = 0.150, p = 0.861). 

As with all variables, one-way ANOVA tests were also applied to examine the effect of site 

for each task separately. For orientation, there was no significant effect of site (F (2, 22) = 

0.359, p = 0.702). For shape, there was no significant effect of site (F (2, 22) = 0.088, p = 0.916). 

Given the non-significant effects of site, further tests were not conducted. There is no 

evidence therefore, that the angular displacement of the coil varied in a way that could 

explain the selective disturbances to orientation and shape discrimination reported above. 

Again the data indicate that cortical targets were stimulated with equal precision.  

6.6.7:    Individual Differences in Distance between LO1 & LO2 

In the current study small distances relative to the estimated spread of TMS, 

separated our cortical targets of interest (LO1 and LO2).  The actual separations of LO1 and 

LO2, along with their Talairach coordinates for each individual are given in Table 6.2.  In all 

but one individual (S5), the separations of the TMS targets are greater than the mean 

separations of targets stimulated in another study (Pitcher et al., 2009) (7.8mm) in which 

clear dissociations in task performance were observed.  However, that study used a 70mm 

coil, which is larger than the 50mm coil we employed to yield more focal stimulation.  It is 

also worth mentioning that the distances reported in Pitcher et al., are those calculated 

from the transformation of TMS targets into MNI space, whereas those reported in Table 

6.2 are the distances within each individual’s native space. The transformation to MNI space 

may have reduced or indeed increased the actual distances between the peaks of activation. 

Nevertheless, the data indicate that the separations of each subjects TMS targets were 

sufficiently large to minimise the effects of TMS spread from one target into another. 

 

 

orientation 
orientation 
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Table. 6.2: LO1 and LO2 centroids. Talairach coordinates of the centroids along with the 

actual distance between LO1-LO2 centroids are given for subjects S1-S12. 

 

 

    Talairach coordinates LO1-LO2 distance (mm) 

Subject Hemisphere   LO1  LO2       

  Right/Left x y z x y z       

S1 Right 40 -82 3 48 -74 8   10.7700   

S2 Right 36 -88 4 43 -81 5   9.0200   

S3 Right 30 -86 4 40 -84 0   10.2900   

S4 Right 24 -91 8 38 -88 4   13.7400   

S5 Right 30 -84 8 36 -83 9   6.0600   

S6 Right 33 -85 13 37 -72 11   11.8700   

S7 Left -26 -89 13 -37 -81 11   14.8930   

S8 Right 29 -89 18 35 -86 15   11.2230   

S9 Left -29 -96 4 -35 -87 4   10.4800   

S10 Left -38 -87 4 -46 -76 3   10.8612   

S11 Left -22 -95 7 -31 -87 9   12.6800   

S12 Right 28 -88 17 40 -83 19   14.7330   

                Mean   SD 

                11.38   2.481 

 

6.6.8:    Cortical Orientation 

While LO1 and LO2 are adjacent visual field maps, it is possible that in an individual, 

the cortex comprising one visual field map may be systematically orientated differently from 

the other. Indeed, in their original report, Larsson and Heeger identified a high level of 

variability in the actual location and orientation of LO1 and LO2 relative to common gyral 

and sulcal patterns (Larsson & Heeger, 2006). The individual variation in anatomical location 

reported in Chapter 3 partially supports these findings. The difference in cortical orientation 

could in turn make TMS more effective when applied to one visual field map compared to 

the other. Importantly however, an effect specific to cortical orientation could only explain a 

main effect of site rather than a Task by Site interaction. Indeed, the cortical orientation of 

LO1 and LO2 within an individual cannot change across tasks, and therefore, cannot be used 

as an explanation for the double dissociation reported.  
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6.6.9:     TMS of the Control Site 

The question of the control site and what role (if any) it plays in orientation and 

shape processing requires careful consideration. It is important to note that the location of 

the control site was defined not on the basis of retinotopic features (like LO1 and LO2), but 

rather on the basis of a geometric distance from LO1. That being said, analysis of the 

location of the control site relative to visual field maps revealed that the control site fell 

within the retinotopic boundaries defining V3d in all subjects. That is, the control site fell 

within the representations of the horizontal meridian at the V2d boundary and the lower 

vertical meridian boundary with LO1. In a strictly serial processing architecture, one may 

assume that for information to be processed in LO1, antecedent areas, such as V3d, must 

first process that information. This assumption however, is not based on known anatomical 

connections with and between LO1 and LO2 in the human brain. Indeed, in macaque 

anatomical connections at this level of the hierarchy suggest the existence of parallel, as 

well as serial processing pathways (Shipp & Zeki, 1985; Zeki & Shipp, 1988; Zeki, 1990).  

Nevertheless the close proximity of the TMS targets warranted the analysis of the potential 

effects of TMS at the control site.      

The control site was specified primarily to account for a potential proximity effect of 

V1 arising when stimulating LO1 versus LO2 therefore, no ‘a priori’ hypothesis was 

generated about the effect of TMS of the control site. Indeed, if a hypothesis were to be 

given it would have been heavily biased towards a strictly serial architecture. Whilst this 

study was under review, the question as to why TMS of the control site (V3d) did not lead to 

any measurable behavioural effects was raised. This question arose from the assumption 

that LO1 and therefore LO2, receives the majority of its input from V3d. An assumption 

heavily grounded in the framework of serial connectivity (Zeki, 1990; Zeki et al., 1991). We 

interpreted the lack of effect at the control site as confirmation of LO1 and LO2’s specialized 

and parallel roles in orientation and shape processing.  The lack of effect at the control site 

however, could have been interpreted as a finding regarding the functional properties of 

V3d itself. That is, the lack of effect when stimulating V3d could be interpreted as 

demonstrating that V3d does not exhibit specializations for either orientation or shape.  This 

interpretation however is invalid. To comment upon the functional properties of V3d, one 
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would need to have targeted it on the basis of its retinotopic features and not on the basis 

of a distance from LO1. Indeed, based upon its retinotopic organisation, V3d would have 

been an unwise choice for a third cortical target of interest given that the visual field 

representation within V3d only extends to the contralateral lower quadrant, as reported 

previously (Larsson & Heeger, 2006; Wandell et al., 2007), and demonstrated in Chapter 3.  

In order to assess formally the lack of effect at the control site it was necessary to 

demonstrate initially the visual field representations in LO1 and LO2 along with those in 

antecedent visual field maps V3d, V2d and V1. The retinotopic features of visual field maps 

V1, V2d, V3d, LO1 and LO2 were analysed to compare them with previous literature 

(Larsson & Heeger, 2006; Wandell et al., 2007; Amano et al., 2009; Wandell & Winawer, 

2011) and to evaluate them with respect to the position and size of the visual stimuli 

presented in this study.  To this end, ‘visual field coverage’ plots were computed for each 

cortical visual field maps, by assessing the phase (delay) of the BOLD responses of all 

subjects to the ring and wedge stimuli presented during fMRI experiments. Specifically, the 

average proportions of voxels in each visual field map that represented different ‘patches’ in 

the visual field were calculated.  The patches were defined by dividing the visual field into 

16 sectors of equal polar angle and then subsequently, dividing those sectors into 

eccentricity bands.  In all plots, the crucial eccentricity band between 8 and 12 degrees, 

where the stimuli were presented was defined first. The other eccentricity bands were then 

defined to capture the proportion of voxels equal to that found in the stimulus eccentricity 

band.  This helped account for cortical magnification of eccentricity, which varies across 

different visual field maps (Larsson & Heeger, 2006; Wandell et al., 2007).  Taken together, 

these patches form a dartboard-like pattern.  A grey-scale is used to show the proportion of 

a visual field map that represents a patch of visual field (Figure 6.11).  For some participants 

(n = 4) the cortical visual field maps were identified in the left, rather than the right 

hemisphere.  These data have been flipped to present a group average with respect to the 

right hemisphere (left visual field). 
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              In Figure 6.11, the visual field coverage within V1, V2d, V3d, LO1 and LO2 is plotted. 

Inset in each figure is a schematic representation of the visual field coverage from previous 

literature (Larsson & Heeger, 2006; Wandell et al., 2007; Amano et al., 2009; Wandell & 

Winawer, 2011). The plots of visual field coverage are entirely consistent with previous 

literature and show that along with V1, LO1 and LO2 have complete representations of the 

contralateral hemifield (Larsson & Heeger, 2006; Wandell et al., 2007; Amano et al., 2009; 

Wandell & Winawer, 2011), denoted by the largely symmetrical pattern of representation 

about the left horizontal meridian.  In contrast, the coverage within cortical maps V2d and 

V3d is asymmetrical about the horizontal meridian and is largely restricted to the lower left 

quadrant. The representations within V2d and V3d are consistent with previous studies and 

demonstrate the lower quadrant representations within these dorsal visual field maps 

(Larsson & Heeger, 2006; Wandell et al., 2007; Amano et al., 2009; Wandell & Winawer, 

2011). The corresponding upper quadrant representations are represeted within V2v and 

V3v on the ventral surface of the brain.  The data demonstrate therefore, that the nearest 

full and contiguous representation of the visual stimulus in visual field maps antecedent to 

LO1 and LO2 lies within V1.  

 

 

 

Figure 6.11: The visual field representation found in early visual field maps V1, V2d and 

V3d, and visual field maps LO1 and LO2.   In all diagrams, the circle in red on the horizontal 

meridian shows the stimulus location centred at 10° eccentricity and the green broken line 

defines the stimulus eccentricity band (8-12°).  Scale bars measure the percentage of voxels 

in each patch. An average of the data is given for 12 subjects. No statistical threshold was 

applied to the data.  Inset in each plot is a schematic of the visual field representations found 

in previous studies. 
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6.6.10:  The TMS Control Site in the Context of the Retinotopic Features of 

Visual Field Maps 

             The CON was located within V3d in all subjects and although this visual field map 

represents the contralateral lower quadrant only, there is still a chance that the action of 

TMS of the CON could be biased towards the representation of the horizontal meridian in 

V3d.  If this were the case, neural processing of part of the stimulus in V3d could be 

disrupted by TMS of the control site.  Whether the local action of TMS affected the stimulus 

representation in V3d, LO1 and LO2 was assessed by calculating visual field coverage plots 

for 10mm spheres centered on the three target sites, CON, LO1 and LO2 (Figure 6.12). 

Spheres of 10mm – marginally less than the mean separation of neighbouring TMS targets – 

were selected because they were very similar to the distances over which differential effects 

are being tested for.  Previous literature also indicates that differential effects can be 

observed between sites separated by this or even shorter distances (Cowey, 2005; Ellison & 

Cowey, 2009; Pitcher et al., 2009). It is also important to note that the distances from the 

coil to all three TMS targets were equivalent (see Figure 6.10) and therefore, modeling the 

effect of TMS over spheres of equal size is justified. The visual field coverage plots depicted 

in Figure 6.13 show that representations of the stimuli were only captured when LO1 and 

LO2 were targeted.  This indicates that if TMS acts locally one would not expect there to be 

an effect of stimulation of the control site on visual discriminations. The absence of any 

effect at the control site demonstrates that TMS acted sufficiently locally to examine the 

hypotheses regarding LO1 and LO2.  Moreover, the deficits induced by TMS of LO1 and LO2 

cannot be attributed to non-focal spread of TMS into the representation of the stimulus in 

V1, or other antecedent visual field maps, V2 and V3  
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6.7:    Discussion 

In this chapter TMS pulses were applied to adjacent visual field maps LO1 and LO2 in 

order to assess its effects on orientation and shape discrimination, respectively.  A double 

dissociation was evident. TMS of LO1 led to a significant and selective disturbance during 

orientation discrimination, relative to all other conditions, whereas TMS of LO2 induced a 

significant and selective disturbance to normal shape processing, relative to all other 

conditions. These effects were found to be robust to the presence of speed-accuracy 

tradeoffs and differences in the spatial relationships between the stimulating coil and the 

cortical targets, caused by operator error. 

6.7.1:    Functional Specialization in LO1 & LO2 

It has been suggested that within cortex each discrete visual field map may perform 

unique sets of computations and therefore, contribute uniquely to visual perception (Zeki, 

1990). The current results demonstrate that is indeed the case for adjacent visual field maps 

LO1 and LO2 (Larsson & Heeger, 2006). The striking feature of these specializations is that 

LO1 and LO2 are thought to be subdivisions of a larger object-selective region, LO. These 

results reveal a number of important features of extrastriate cortical function. Firstly, the 

results demonstrate that LO1 and LO2 play specialized roles in the processing of orientation 

and shape, two different relatively low-level visual features. The specific effect of TMS on 

orientation discrimination following TMS of LO1 not only extends recent neuroimaging 

Figure 6.12: Visual field coverage plots for 10mm spheres centred on the TMS target 

locations, CON, LO1 and LO2. The eccentricity bands are the same as those used in plots 

for V3d, LO1 and LO2 in the top row. It is noteworthy that a 10mm sphere centred on the 

control site captures visual field representations at more central eccentricities – a feature that 

results from using a geometric criterion to select this site, rather than the retinotopic criterion 

used to select LO1 and LO2. 
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findings (Larsson & Heeger, 2006), but also, replicates directly the effect reported previously 

in Chapter 4 and finally, confirms LO1 as an area of extrastriate cortex that is causally 

involved in the perception of orientation.  

               The lack of an effect of TMS at the control site during orientation discrimination 

rules out LO1’s proximity to V1 as a likely cause of this effect. Unlike the fMRI data reported 

previously (Larsson et al., 2006), the most parsimonious explanation for the pattern of 

deficits induced by TMS of LO1 is that computations within LO1 itself causally underpin 

orientation discrimination, not that LO1 selectively inherits its orientation selectivity from 

V1 (Larsson et al., 2006). These results, taken together with previous work (Larsson et al., 

2006) indicate that LO1 is an area of the human brain that integrates visual information to 

extract orientation of boundaries, even when those boundaries are solely defined by 

luminance (first-order) changes. The effect observed at LO1 also suggests that while V1 

contains neurons selectively tuned to the orientation (Hubel & Wiesel, 1963; Hubel et al., 

1978) of gratings, such tuning alone may be necessary, but not sufficient for normal 

orientation processing. This interpretation is consistent with neuropsychological studies 

indicating deficient processing of orientation following damage to LO, despite intact V1 

(Milner et al., 1991). In addition to a profound inability to recognise familiar objects, patient 

DF also exhibited an inability to correctly identify the orientation of slots. DF’s   damage 

appears to be relatively localised to the LO region (James, Culham, Humphrey, Milner, & 

Goodale, 2003) and likely encompasses LO1 and LO2. Indeed, a very recent study measured 

retinotopic maps in patient DF using standard retinotopic mapping procedures (Bridge, 

Thomas, Minini, Cavina-Pratesi, Milner & Parker, 2013). On flat representations of the 

occipital cortex of DF, the authors delineate early visual cortical regions (V1-V4). 

Importantly, they also outline the extent of DF’s lesion on the flattened cortex. A large area 

of damaged cortex was identified anterior and lateral of V3d; a location commensurate with 

our definitions of LO1 and LO2. It is highly likely therefore, that DF’s LO lesion encompasses 

the region of cortex, where if intact, LO1 and LO2 would likely be located (Bridge et al., 

2013). 

         The pattern of deficits induced by TMS during shape discrimination reveals, for the first 

time, a causal link between computations within LO2 and the processing of shapes, defined 

by differences in curvature. It remains to be seen whether the perception of shape based on 
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visual features other than curvature are also causally dependent on computations within 

LO2. The current results nevertheless demonstrate that there is a hierarchy of increasingly 

sophisticated spatial computations performed within the retinotopic subdivisions of LO, a 

feature consistent with the suggestions put forward by others (Larsson & Heeger, 2006). 

Crucially however, these results indicate that the more sophisticated processing of shape in 

LO2 occurs in parallel with the more basic processing of orientation within LO1, a feature 

not previously suggested. Future work should seek to further classify the visual features that 

are selectively processed by LO2. Indeed, LO2’s selectivity to shape stimuli likely extends 

beyond the simple modulations in curvature reported here. One likely candidate is 

concentric processing (circular shape). Dumoulin & Hess (2007) investigated the processing 

of circular shape in human visual cortex using fMRI. Subjects were presented with arrays of 

gabors that either formed circles or random flowfields. Highly significant activity related to 

the processing of circles over flowfields was present in ventral and dorsal cortex. Although 

the authors focused the majority of their discussion on the highly significant activity within 

the vicinity of area V4, an additional cluster of significant activity was present posterior of 

V5/MT, the area of cortex commensurate with the anatomical location of LO2. Recall that in 

~50% of subjects tested, LO2 abutted V5/MT directly (Larsson and Heeger, 2006). It is likely 

therefore, that LO2 processes the shape of stimuli via a number of stimulus features. 

6.7.2:    Parallel Processing Between LO1 & LO2 

          The double dissociation of orientation and shape processing demonstrates that LO1 

and LO2 perform these specialized roles independently of one another. One interpretation 

of the data is that the lack of an effect of shape following TMS of LO1 indicates that 

computations performed by LO2 are not reliant on orientation computations performed 

within LO1, as would be predicted by a strictly serial processing architecture. An alternative 

is that despite a reduction in input to LO2, following TMS of LO1, LO2 can nonetheless 

perform its computations sufficiently well to not alter performance relative to baseline.  In 

line with the initial interpretation, the existence of separable functional processing 

pathways mirrors those, which have been a persistent feature of many models of the 

primate visual system (Felleman & Mcclendon, 1991; VanEssen, Felleman, Deyoe, & 

Knierim, 1991). For example, lesion studies in non-human primates and later human 
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neuropsychological evidence highlighted the processing of different types of visual 

information within dorsal (Perenin & Vighetto, 1988) and ventral (Goodale et al., 1991) 

streams. The characterisation of visual cortex into dorsal ‘where’ and ventral ‘what’ streams 

(Mishkin et al., 1983) has had a large impact on models of human visual processing.  Within 

these separate streams, but at a smaller spatial scale, a number of neuroimaging studies 

(Malach et al., 1995; Kanwisher et al., 1997; Epstein & Kanwisher, 1998; Kourtzi & 

Kanwisher, 2001) have identified discrete regions of visual cortex that exhibit selective 

responses to different visual stimuli whilst being in close proximity to one another. The 

independent nature of within these areas was later confirmed through neurostimulation 

studies demonstrating that these functionally selective regions of cortex process different 

types of visual information independently of one another (Pitcher et al., 2009). At an even 

smaller spatial scale, it has been proposed that visual field maps form clusters (Brewer et al., 

2005; Brewer & Barton, 2011) around a common foveal representation and that different 

clusters perform independent visual analyses (Wandell et al., 2005). The current results go a 

step further by demonstrating parallel processing at the smaller spatial scale of neighboring 

visual field maps (within a cluster) in human visual cortex. 

             Importantly, in monkey the functional independence exhibited by neighboring visual 

field maps is underpinned by parallel anatomical connections from lower tier visual areas 

(Shipp & Zeki, 1985; Zeki & Shipp, 1988). Indeed, at the same level of the visual hierarchy in 

macaque cortex, V4d and V5/MT receive independent and parallel inputs from antecedent 

V2 (Shipp & Zeki, 1985). V4d and V5/MT in the macaque are commensurate in location to 

LO1 and LO2 in the human (Larsson & Heeger, 2006).  It is plausible therefore, that the 

independent functional roles identified here also result from similar patterns of parallel 

connectivity with antecedent visual areas, a feature however, that is yet to be 

demonstrated empirically.  While the interpretation of the results observed here relies upon 

there being parallel cortical connections, they do not however, rule out the presence of 

serial connections that are often highlighted as an important and influential feature of 

cortical organisation (Felleman & Van Essen, 1991). 
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6.7.3:    Implications for ‘High-level’ Visual Processing 

           Retinotopic mapping provides a means by which the visual cortex can be delineated 

into discrete maps of the visual field. A number of these visual field maps have recently 

been shown to subdivide larger functionally specialized areas and therefore, probing these 

visual field maps with TMS provides a means to study causal mechanisms in human visual 

processing at a spatial scale seldom achieved. Through the use of TMS, one can elucidate 

the functional properties of individual visual field maps echoing, to a degree, pioneering 

work in non-human primates (Zeki, 1978; Shipp & Zeki, 1985). The present results 

demonstrate that the retinotopic subdivisions of a larger category-selective area exhibit 

specializations for different relatively low-level visual features. One interpretation of these 

results is that these low-level specializations provide a potential mechanism to explain 

category selectivity.  The parallel processing observed in LO1 and LO2 could be seen to 

create an organisational framework that offers a highly efficient mechanism for encoding 

complex visual forms across multiple visual field maps. That is, if individual visual field maps 

perform unique sets of computations, and moreover, performs those computations 

independently of one another, then replicated information, which is biologically expensive 

to compute (Kravitz et al., 2013), is reduced across those maps. The specialized and parallel 

nature of processing observed in LO1 and LO2, could extend to additional visual field maps 

within the LO cluster. Brewer and colleagues (Brewer & Barton, 2011) have proposed the 

existence of four additional maps in the LO cluster, with LO3-6 lying ventral to LO1 and LO2. 

The combined LO maps are suggested to form a cloverleaf configuration around a central 

foveal representation. All six LO maps are also suggested to have hemifield representations 

and show a high degree of overlap with the face-selective OFA (explored in Chapter 8 

General Discussion). The presence of these additional LO maps offers the possibility that the 

unique and independent processing observed in LO1 and LO2 extends to the LO3-6 maps. If 

each map within this cluster performs unique computations and therefore, contributes 

uniquely to visual perception then perhaps the category-selectivity observed in these larger 

areas (LO-objects, OFA-faces) simply emerges from the unique and map specific 

computations of relatively low level spatial features performed by their respective 

retinotopically organised subdivisions. If each map contains a hemifield representation and 

performs unique computations then the visual system has a mechanism to decode multiple 
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unique low-level visual features efficiently at each point in the visual field (Kravitz et al., 

2013). Indeed, selectivity for low-level visual features within higher-level visual areas has 

been shown previously (Andrews, Clarke, Pell & Hartley, 2010).  

            This framework is consistent with previous proposals that attempt to explain the 

emergence of category selectivity in terms of neural encoding of simple features (Op de 

Beeck, Haushofer, & Kanwisher, 2008). The previous model proposes that cortex contains a 

number of large overlapping maps, with each map having weak selectivity to particular 

visual features. The highly significant activation observed in response to complex objects is 

explained by the selectivity’s within these large overlapping maps being multiplied together. 

In contrast to these features being computed in large overlapping maps however, the 

current results indicate that these features are computed independently in discrete regions 

that map the visual field. The specialized and parallel nature of processing observed in LO1 

and LO2 is hard to accommodate with a model of large overlapping maps with weak 

selectivity (Downing, 2009). The results strongly suggest that the computations of 

orientation and shape are processed independently in LO1 and LO2. One way to 

conceptualise this is that the maps are in fact modules of selectivity, which are organised 

retinotopically. The results reported here can be viewed as consistent with the highly 

influential recognition by components model proposed by Biederman (Biederman, 1987). 

The low-level specializations present within LO1 and LO2 are similar in concept to the basic 

geons with which the recognition by components model suggest underpins the recognition 

of objects. 

6.7.4:    Implications for Future Work 

          The results reported in this chapter reveal specializations for orientation and shape 

within LO1 and LO2, respectively. An important feature of this specialization is that the 

stimuli presented during TMS studies have been luminance modulated and therefore, 

achromatic. A logical extension of the work reported here is to investigate whether LO1 and 

LO2 causally underpin the perception of chromatic orientation and shape. The key 

conceptual advance here is whether or not LO1 and LO2 exhibit cue-invariant 

representations of orientation and shape. Evidence from the Inferior Temporal (IT) cortex of 

macaque, which is thought the homologue of human LOC, would suggest some form of    
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cue-invariance is present at this level of the visual hierarchy (Sary, Vogels & Orban, 1993). 

Accordingly, Chapter 7 will explore whether LO1 and LO2 contain cue invariant 

representations by assessing the effect of TMS of LO1 and LO2 on performance of 

chromatically defined orientation and shape discrimination. 

6.8:    Conclusion 

          The results of the current study demonstrate that two different, relatively low-level 

visual attributes (orientation and shape) are analysed independently, in neighboring visual 

field maps LO1 and LO2. These results, combined with those reported in Chapters 4 and 5, 

confirm that LO1 is a cortical area specialized for orientation discrimination. This orientation 

selectivity is not solely inherited from antecedent visual areas. The results also indicate that 

LO2 is an area of cortex specialized for the perception of shape. Disturbances to shape 

discrimination were only evident following TMS of LO2. Additionally, the computations of 

shape performed by LO2 do not appear reliant on input from LO1, although an alternative 

account is that LO2 can function as normal, despite reduced input from LO1, in other words 

that the functions of these areas can operate independently of one another. The functional 

parallel processing observed between LO1 and LO2 may be underpinned by parallel 

anatomical connections. The double dissociation between LO1 and LO2 demonstrates that 

the retinotopic subdivisions of object-selective LO, have different and dissociable functional 

properties.  
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Chapter 7  

Do LO1 & LO2 Contain Cue-Invariant Representations of 

Orientation & Shape? 

7.1: Overview 

The primary aim of this chapter was to investigate whether LO1 and LO2 contain 

cue-invariant representations of orientation and shape. We aimed to test this in a specific 

manner by applying TMS to LO1 and LO2 and measuring its effects on orientation and shape 

discrimination of chromatically defined stimuli. If LO1 and LO2 contain cue-invariant 

representations then TMS of LO1 should disrupt orientation processing and TMS of LO2 

should disrupt shape processing. We also include the CON and no TMS conditions, in order 

to echo the experimental design employed in Chapter 6. If LO1 and LO2 contained 

specializations for chromatically defined orientation and shape, a secondary aim was to 

establish whether these specializations operated in serial or in parallel. 

7.2: Introduction 

The data reported in Chapters 4-6 revealed a number of important properties 

exhibited within subdivisions of lateral occipital cortex, in particular LO1 and LO2. First, the 

results of the motion discrimination studies reported Chapters 4 and 5 extend the body of 

evidence from neuropsychological (Zihl et al., 1983), neuroimaging (Zeki, 1990; Zeki et al., 

1991) and neurostimulation (Beckers & Homberg, 1992; Walsh et al., 1998; McKeefry et al., 

2008) studies demonstrating the causal role played by V5/MT in the perception of motion. 

Second, the orientation discrimination data reported in Chapters 4-6 revealed a causal role 

for LO1 in the processing of static, and to a lesser degree moving orientation. A consistent 

pattern of results in Chapters 4 and 5 were the lack of effect of TMS of LO2 on either motion 

or orientation discriminations. Third, the data reported in Chapter 6 revealed a specialized 

role for LO2 in the processing of shape information. Finally, the results from Chapters 4-6 

demonstrate that: (1) TMS can be used effectively to reveal functional specializations 

between adjacent visual clusters - a double dissociation was evident between LO1 and 

V5/MT in the processing of orientation and motion, respectively and (2) TMS can be used to 
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elucidate the functional specializations between adjacent visual maps within a cluster. 

Crucially, the functional specializations revealed in Chapters 4-6 were observed for 

achromatic (luminance-modulated) stimuli only. This raises an intriguing question. Do the 

functional specializations observed previously in LO1 and LO2 extend to chromatically 

defined stimuli? The presence of these specializations would therefore, represent cue-

invariant representations within these visual field maps. The following sections outline the 

evidence detailing chromatic processing in lateral occipital cortex (including LO1 and LO2) 

and the evidence in favour of cue-invariance. 

7.2.1:    The Cortical Processing of Colour 

Evidence from several neuroscience paradigms highlights the importance of ventral 

occipital areas in human cortical processing of colour (Wade, Augath, Logothetis & Wandell, 

2008). First, damage to ventral occipital cortex can lead to cerebral achromatopsia, a 

perceptual deficit in colour processing (Meadows, 1974; Zeki, 1990).  Achromatopsic 

individuals report a monochromatic representation of the world (Heywood & Cowey, 1987). 

Patients with achromatopsia are also reported to have poor colour constancy, making 

systematic errors in colour naming when presented with colours under different illuminants 

(Kennard, Lawden, Morland & Ruddock, 1995; Clarke, Walsh, Schopping, Assal & Cowey, 

1998), a finding initially reported following selective lesioning of macaque V4 (Walsh, 

Carden, Butler & Kulikowski, 1993).  Second, a number of PET (Lueck et al., 1989; Zeki, et al 

1990) and fMRI (Mckeefry & Zeki, 1997; Hadjikhani et al., 1998; Bartels & Zeki, 2000; Wade, 

Brewer, Rieger & wandell, 2002; Brewer et al., 2005) studies report consistent and powerful 

responses to chromatic stimuli in ventral occipital areas. 

 In non-human primates, the forth visual area (V4) is split into dorsal (V4d) and 

ventral (V4v) components, which have lower and upper quadrant representations of the 

visual field, respectively (Zeki, 1978). In contrast, the majority of evidence in human is in 

favour of a different model, whereby the forth visual area is a single complete hemifield 

map of the contralateral visual field on the ventral surface of the occipital lobe (Mckeefry & 

Zeki, 1997). The existence of a single human V4 sparked an intense debate between two 

competing groups of researchers. Originally Zeki and colleagues described the existence of a 

single complete hemifield map on the ventral surface of the brain that they labelled V4 
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(McKeefry & Zeki, 1997). V4 was found to be consistent with the location of lesions, which 

led to achromatopsia and responded significantly to chromatic over achromatic stimuli. In 

contrast, Hadjikhani and colleagues argued for the existence of an additional colour centre 

(V8) that neither, corresponded to V4 as proposed by Zeki and colleagues, or the ‘putative’ 

dorsal component of V4 (as in macaque cortex) (Hadjikhani et al., 1998). Since these 

publications, the vast majority of papers have reported a complete hemifield, chromatically 

sensitive map that corresponds well with the original definition of V4 (Wade et al., 2002, 

2008; Brewer et al., 2005; Wandell et al., 2007; Goddard et al., 2008). Interestingly, a 

relatively recent publication shed some light on the possible reasons for the discrepancy 

across studies. Winawer and colleagues (Winawer, Horlguchi, Sayres, Amano & Wandell, 

2010) observed that in ‘most hemispheres’ fMRI BOLD signals were contaminated by 

artefacts caused by the transverse sulcus, which lies within the vicinity of V4 and influences 

the visual field representations measured through fMRI within and around V4. By modelling 

the ‘venus eclipse’ the authors were able to select subjects in whom the transverse sulcus 

was sufficiently displaced from the lateral edge of V4. In doing so the authors were able to 

reconstruct the visual field coverage without the artefact. In those subjects, the visual field 

coverage extended to the lower vertical meridian, making the measurements consistent 

with the model of a single hemifield map on the ventral surface originally reported by 

McKeefry & Zeki (1997).  

Wade and colleagues (Wade et al., 2008) conducted an extensive analysis of the 

cortical colour responses in macaque and human cortex using fMRI. Consistent with 

electrophysiological recordings in macaque (Zeki, 1983), the responses in V4v and V4d to (L-

M) cone chromatic contrast were found to be equal., suggesting that in macaque cortex, the 

two components fuse to create a single functional area, V4. In similar experiments (full field 

colour exchange) areas of human cortex exhibiting preferential responses to chromatic over 

achromatic stimuli were largely confined to ventral cortex. Indeed, the colour selectivity 

within V4, matched the location of V4 reported previously (McKeefry & Zeki, 1997).  In 

recent years the debate surrounding the retinotopic organisation human of V4 resurfaced, 

with Hansen and colleagues proposing an alternative to the single hemifield V4 model 

(Hansen et al., 2007). The model suggests that V4 does not contain a complete hemifield 

representation, but rather, contains a representation that extends slightly beyond the upper 
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quadrant. Similarly they propose that a dorsal component of V4 (V4d) exists anterior of V3d 

and contains the lower quadrant counterpart to ventral V4 (V4v).  This alternative model 

has important implications for the interpretation of the results of Larsson and Heeger, who 

proposed a model to divide lateral occipital cortex into two retinotopic regions (LO1 and 

LO2) that is dependent on V4 being a single hemifield map on the ventral surface 

(schematised in Chapter 3, Figure 3.19). If dorsal V4 (V4d) existed, it would need to be 

subtracted from the LO1 map, resulting in a map that contained just short of an upper 

quadrant representation only, with no ventral counterpart. Such an unexplained and 

fragmented visual field map would therefore, constitute an ‘improbable area’ (Zeki, 2003). 

Despite the alternative model, the majority of studies are in agreement with the retinotopic 

delineation of ventral visual cortex suggested by Zeki and colleagues and the retinotopic 

delineation of dorsal visual cortex proposed by Larsson and Heeger (2006).  

7.2.2:    Chromatic Processing in Lateral Occipital Cortex 

As mentioned above, evidence from neuropsychological and neuroimaging studies 

strongly suggest that chromatic signals are processed predominantly in ventral regions of 

human visual cortex. The role played by dorsal and lateral regions in colour processing has 

nevertheless, been a source of interest, and debate.  The following section reviews the 

evidence, in favour of and against chromatic processing in lateral occipital cortex in general, 

but also, specifically in LO1 and LO2. 

 The evidence against a dorsal role for colour processing comes from a number of 

investigative paradigms. Neuropsychological evidence suggests that damage to lateral 

occipital cortex, although impairing visual object and shape recognition, leaves colour 

recognition and discrimination relatively preserved (Cavina-Pratesi, Kentridge, Heywood & 

Milner, 2010). Patient DF, was found to perform at chance levels (50% correct) on shape 

discrimination tasks, but above chance on both texture and colour discrimination tasks.  

Indeed, fMRI responses to chromatic visual stimuli in DF have been shown to be consistent 

with age-matched controls; generally localised to ventral regions of cortex (James et al., 

2003; Bridge et al., 2013).  Mullen and colleagues compared the selectivity of retinotopic 

cortex to L-M cone opponent and achromatic stimulation using fMRI. The authors report a 

large cluster of ventral cortex that exhibited a preferential response to the chromatic over 
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achromatic stimulation. Interestingly, the authors also report two clusters of dorsal and 

lateral cortex that exhibited a preferential response to achromatic over chromatic 

stimulation. These achromatically selective clusters were in the vicinity of V3A and V5/MT. 

The authors, labelled these clusters as dorsal occipital (DO) and lateral occipital (LO), 

respectively (Mullen, Dumoulin, McMahon, De Zubicaray & Hess, 2007). As mentioned in 

Chapter 4, LO1 and LO2 fall in between V3A and V5/MT on the lateral surface of the brain. 

The authors make no explicit mention of LO1 and LO2 and do not define them on the 

cortical surface reconstructions in the paper, making specific comments about LO1 and LO2 

difficult. Wade and colleagues demonstrated that in human, regions of cortex exhibiting 

preferential responses to chromatic stimuli were confined to the ventral cortex, a pattern 

not found in macaques, where chromatic responses were found in both ventral and dorsal 

divisions of V4. Interestingly, the authors report that in single subject analyses (n = 7) no 

areas displaying significant activation to the colour exchange experiment were found on 

dorsal or lateral surfaces of the brain. Indeed, only through a more powerful surface-based 

group analysis did a small dorsal ‘island’ of colour selective cortex appear (Wade et al., 

2008). The authors comment that although this dorsal island only just reached statistical 

significance, it nonetheless, is located in the approximate location of the ‘putative’ V4d 

proposed by others (Hansen et al., 2007).  

 To date, two studies have investigated chromatic processing in LO1 and LO2 directly. 

The first, used multivariate fMRI pattern analysis techniques to decode and subsequently 

reconstruct colours from BOLD responses in human visual cortex (Brouwer & Heeger, 2009). 

Subjects viewed concentric sinusoidal gratings in a circular aperture. Each sinusoid 

modulated from mid-grey to one of eight points in colour space. Stimulus colour could be 

correctly decoded at above chance levels from the activity within cortical areas V1, V2, V3 

V4 and VO1, but not, LO1, LO2 or V5/MT.  The correct colours were only accurately decoded 

(above chance) in 2/5 subjects in both LO1 and LO2, suggesting that LO1 and LO2 do not 

encode stimulus colour. The second, attempted to clarify the debate regarding the existence 

V4d alluded to above. The authors, used fMRI retinotopic mapping procedures to define 

multiple maps across both dorsal and ventral surfaces. The responsiveness of these maps to 

image colour were subsequently tested. The results not only confirm the full hemifield 

representation in V4, but also, show a robust preference for colour stimuli over luminance-
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matched achromatic stimuli in V4, compared to little or no colour preference in the vicinity 

of putative V4d (LO1).  

These fMRI based experiments are complimented by a TMS study, which aimed to 

elucidate the role played by LO (the area encompassing LO1 and LO2) in colour 

discrimination, amongst others (Ellison & Cowey, 2006). Three tasks (distance, shape and 

colour discrimination) were employed whilst TMS pulses were delivered to LO (plus other 

sites). Briefly, TMS of LO was found to selectively disrupt shape processing only, leaving 

distance and colour processing relatively unaffected. Consistent with the above findings, the 

data suggest that LO does not play a causal role in colour discrimination, but rather plays a 

causal role in shape discrimination. A caveat however, which the authors acknowledge, is 

that the colour task was a stand-alone task and not connected per se with the shape task. In 

order to assess the role played by LO (or LO1 and LO2), there is a need to make a shape task 

contingent on colour. 

The results discussed above suggest that neither LO nor its retinotopic subdivisions 

(LO1 and LO2) exhibit preferential responses for chromatic over achromatic stimuli. A 

number of questions however, remain unanswered. Although LO1 and LO2 may not exhibit 

preferential fMRI responses to chromatic over achromatic stimulation, do they process the 

chromaticity of stimuli in some form? Do the specializations observed for achromatic 

orientation and shape reported in Chapter 6, extend to chromatic stimuli? That is, when the 

task is dependent on chromatic processing, do LO1 and LO2 play a causal role in chromatic 

orientation and shape processing?  

In contrast to the reports above, Self and Zeki (2005) investigated the processing of 

colour and motion using fMRI. In their paradigm, subjects were shown shape stimuli 

composed of kinetic, coloured dots. The shapes were constructed by varying the amount of 

colour and motion coherence present in the arrays. In doing so, the authors created three 

different conditions under which shape detection could occur: (1) shapes defined purely by 

colour coherence; (2) shapes defined purely by motion coherence and (3) shapes defined by 

both colour and motion coherence.  The results suggest that both colour and motion 

defined shapes activate regions within the LOC, with shapes defined by the integration of 

colour and motion signals activating a more ventral LOC region. The LOC contains therefore, 
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may contain cue-invariant representations, which are capable of representing the shape of 

objects independent of the cue used to define them. In addition, Clarys and colleagues 

(Claeys, Dupont, Cornette, Sunaert, Hecke, De Schutter & Orban, 2004) reported the 

involvement of both ventral and dorsal regions of cortex when active judgements regarding 

colour were required. The authors argues that ventral and dorsal regions cooperate in the 

processing of chromatic signals, when those signals require active judgements. Interestingly, 

Larsson and Heeger originally suggested that LO1 and LO2 were perfectly placed in the 

visual hierarchy to receive parallel projections from both ventral and dorsal streams, making 

a role in chromatic processing at least plausible.   

7.2.3:    Chromatic Processing of Orientation & Shape 

 In both human and non-human primates, visual information is transferred from the 

retina to the cortex via two colour opponent channels and one luminance channel. It was 

originally suggested that the cortical pathways for colour and form adhered to the early 

segregation with the luminance channel specialized for form processing and the two 

chromatic channels specialized for colour perception (Livingstone & Hubel, 1988; Felleman 

& Van Essen, 1991). Evidence for single neurons jointly selective to both orientation and 

colour in areas V1-V4 of non-human primates (Leventhal, Thompson, Liu, Zhou & Ault, 1995; 

Johnson, Hawken & Shapely, 2001) however, argue against this strict segregation. In human, 

behavioural and neuroimaging studies have explored the coupling between colour and 

form. The tight coupling of orientation and colour has been demonstrated through such 

behavioural paradigms as the tilt-after effect and the tilt-illusion (Clifford, Sphehar, 

Solomon, Martin & Zaidi, 2003). Engel (2005) demonstrated the presence of oriented and 

unoriented colour selective neurons in V1 and other early retinotopic visual areas. Indeed, 

adaptation jointly selective for colour and orientation was observed in V1 and an area 

termed V3m, which comprised V3, V3A and V7. The extrastriate adaptation could have 

occurred either through local computation of both colour and orientation in these areas, or 

through feed-forward propagation from V1 (Engel, 2005). The joint representation of colour 

and orientation was later confirmed within early visual cortex (V1-V4) (McDonald, Mannion, 

Goddard & Clifford, 2010). Orientation and colour combinations can also be decoded 

accurately from BOLD responses in early visual areas (V1-V4) using MVPA analysis 
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techniques (Seymour, Clifford, Logothetis & Bartels, 2009; 2010). Whether LO1 is a cortical 

region also involved in the joint encoding of orientation and colour however, remains to be 

seen. 

In addition to the evidence for a coupling of orientation and colour, a number of 

fMRI studies highlight the processing of shapes defined by colour within the LOC. Early fMRI 

work probing the response properties of the LOC demonstrated that shapes were more 

strongly represented within the LOC than random textures when defined by chromatic 

information alone (Grill-Spector et al., 1998; 1999; Kourtzi, Bulthoff,  Erb & Grodd, 2000). 

Self and Zeki (2005) reported colour-defined shape selectivity within an area of the LOC 

consistent the original LOC definition (Malach et al., 1995). More recently, an area on the 

ventral aspect of the LOC was found to be commonly activated by stimuli that contained 

colour, shape and texture information (Cavina-Pratesi et al., 2010). This region, on the 

fusiform gyrus, was more active to the conjunction of visual features than to any single 

feature in isolation. Taken together, it appears that both chromatic orientation and shape 

are processed together in a number of extrastariate cortical regions. Whether or not LO1 

and LO2 also processed these features jointly however, is currently unknown.  

7.2.4:    Cue-Invariant Processing in Visual Cortex 

Evidence from a number of investigative paradigms suggests the presence of cue-

invariant representations within macaque and human visual cortices. In macaque, single-

unit recordings highlight cue-invariant responses in V2, V3 and V4 with cells sensitive to the 

orientation, direction and colour of stimuli (Leventhal et al., 1995; Leventhal, Wang, 

Schmolesky & Zhou, 1998). Neurons in macaque inferotemporal cortex (IT) exhibit 

preferential responses to shapes than simple features and maintain this preference across 

multiple visual cues (Sary et al., 1993; Vogels & Orban, 1996; Tanaka, Uka, Yoshiyama, Kato 

& Fujita, 2001; Kriegeskorte, Mur, Ruff, Kiani, Bodurka, Esteky, Tanaka & Bandettini, 2008). 

In human, fMRI studies provided evidence for cue-invariance in the Kinetic Occipital area 

(KO) (Zeki, Perry & Bartels, 2003), as well as LOC, the ‘putative’ human homologue of 

macaque IT (Malach et al., 1995). The LOC responds more strongly to objects (Grill-spector 

et al., 1998; 1999; Kourtzi & Kanwisher, 2001) than uniform textures or random stimuli 

across a number of visual dimensions including luminance, texture, illusory contours, 
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motion and colour (Grill-Spector et al., 1998; 1999; Kastner, De Weerd & Ungerlieider, 2000; 

Kourtzi & Kanwisher, 2001). The LOC also represents shapes when integrated across 

multiple cues, such as motion and colour (Self & Zeki, 2005; Vinberg & Grill-Spector). The 

LOC therefore, may contain specialized regions with the potential to respond to their 

preferred visual feature irrespective of how that feature is defined.  

Despite the scarceness of evidence in favour of pure colour processing in LO, LO1 or 

LO2, these visual field maps may nevertheless, contain neurons capable of representing 

orientation and shape across multiple cues, one of which may be colour. By making the 

orientation and shape tasks crucially dependent on the colour of the stimulus, we extend 

previous TMS work on chromatic processing in LO (Ellison & Cowey, 2006). The exact causal 

roles that LO1 and LO2 play in the processing of chromatic stimuli remains unclear, with 

conflicting results of chromatic processing in LO. The current experiment aims to test 

explicitly whether LO1 and LO2 exhibit specializations for the processing of chromatic 

orientation and shape defined by modulations in colour along the L-M axis; such 

specializations would provide compelling evidence for cue invariance. 

7.3: Theoretical Considerations 

 Consistent with the studies undertaken in Chapter 4 and 5, it was necessary to 

account for V1 proximity, due to the orientation (Hubel & Wiesel, 1963; Hubel, Wiesel, & 

Stryker, 1978; Furmanski & Engel, 2000), and colour (Leventhal et al., 1995; Clifford et al., 

2003; Engel, 2005) selectivity of V1 neurons.  Consistent with the methodology in previous 

chapters a control site (CON) was defined in each subject by moving medially from LO1 by 

the distance separating our LO1 and LO2 targets. The control site allows us to evaluate 

whether or not any differential effects observed between LO1 and LO2 are attributable to 

LO1’s closer proximity to V1. We also include a no TMS baseline measurement in order to 

evaluate any general effect of TMS.  
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Figure 7.1: Serial and parallel map specific predictions for the effects of TMS on chromatic 

orientation and shape discrimination. In a serial processing architecture (left) TMS of LO1 

alone disrupts orientation processing, but if LO2 is reliant on input from LO1, TMS of both 

LO1 and LO2 disrupts shape processing. In a parallel or independent processing 

architecture (right), orientation processing is only disrupted following TMS of LO1 and 

shape processing is only disrupted following TMS of LO2 – a double dissociation.  

7.4: Aims & Predictions 

Establishing causal roles for LO1 and LO2 in chromatic orientation and shape 

processing would provide compelling evidence for cue-invariant processing within these 

visual field maps. Given the evidence for cue-invariant responses in macaque IT and human 

LOC, it was hypothesised that LO1 and LO2 would exhibit specializations for chromatically 

defined orientation and shape, respectively. If present, whether these specializations 

operate in serial or parallel however, is currently unknown, although the data reported in 

Chapter 6 would suggest the existence of parallel processing at this level of the visual 

hierarchy.  Two alternate predictions of the effects of TMS are depicted in Figure 7.1. If LO1 

and LO2 process chromatic orientation and shape information in serial, TMS of LO1 should 

disrupt orientation processing, but TMS of both LO1 and LO2 should disrupt shape 

processing (Left column Figure 7.1). If these processes operate independently of one 

another, then TMS of LO1 alone should disrupt orientation and TMS of LO2 alone should 

disrupt shape processing – a double dissociation (Right column Figure 7.1). As with previous 

chapters, the effects of TMS of LO1 and LO2 need to be considered within the context of 

TMS of the control site and the no TMS baseline. 
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7.5: Methods 

7.5.1:     Subjects 

The current study included 12 subjects (mean age = 23, range = 17, 4 male). All 

subjects had normal or corrected to normal vision and gave informed consent in accordance 

with the Declaration of Helsinki. York Neuroimaging Centre (YNiC) Research Governance 

Committee approved the study.   

7.5.2:    Visual Field Mapping 

 Prior to TMS stimulation, all subjects completed full fMRI visual field mapping 

experiments (~1 hour) using standard retinotopic mapping procedures. Data analysis, 

segmentation and delineation of retinotopic visual area boundaries were conducted in 

accordance with previous reports (Baseler et al., 2011) and the processing steps outlined in 

full in Chapter 3. 

7.5.3:     Identification of Visual Field Maps LO1 & LO2 

Retinotopic definitions of LO1 and LO2 were made in at least one hemisphere in all 

subjects tested. The representations within LO1 and LO2 were consistent not only with 

previous reports (Larsson & Heeger, 2006), but also, with previous definitions made 

throughout the thesis. LO1 began at the lower vertical meridian boundary with V3d and 

displayed a gradual progression towards the upper vertical meridian. LO2 began at the 

shared boundary with LO1 at the representation of the upper vertical meridian and 

displayed a gradual progression towards the lower vertical meridian.  

7.5.4:    Establishing Isoluminance using Minimum Motion 

Prior to completing psychophysical experiments, isoluminant thresholds were 

defined for each subject using the minimum motion paradigm (Anstis & Cavanagh, 1983; 

Cavanagh, Tyler & Favreau, 1984). Subjects viewed a coloured sinusoidal grating modulated 

along the L-M axis, presented in a circular aperture (diameter 4) with a spatial frequency of 

2 cpd. The grating was centred at 10° eccentricity along the horizontal meridian into the left 

visual field. The grating was presented at a fixed orientation (45°) and drifted left-right at a 
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constant speed (8°/sec). Subjects fixated a black dot (diameter 0.3°) at the centre of the 

screen and were required to modify the luminance of the red channel until the perceived 

movement of the grating slowed and/or stopped; this is the point at which the two colours 

are perceived as being of equal luminance (isoluminant). The value of the red channel was 

recorded, reset to its default value and repeated ten times for each subject. The mean value 

of the red channel for each subject was used in defining the luminance values presented 

during subsequent orientation and shape discrimination experiments. Saccades away from 

fixation could interfere with isolumianant values. Despite this eye tracking was not 

performed. (See Appendix for the exact RGB values used for each subject). 

7.5.5:    Psychophysical Stimuli & Procedures 

Stimuli for the psychophysical and TMS experiments were as described in the Visual 

Stimuli section in Chapter 2. Briefly, stimuli for the behavioural and TMS experiments were 

generated using MATLAB (Mathworks, USA) and displayed on a Mitsubishi Diamond Pro 

2070SB display with a refresh rate of 60 Hz, controlled by a VISAGE graphics card (Cambridge 

Research SystemsTM). Grating stimuli were coloured sinusoidal gratings modulated along the 

L-M axis, presented in a circular aperture (diameter 4) with a spatial frequency of 2 cpd. 

Shape stimuli were coloured radial frequency patterns modified along the L-M axis, with a 

fixed radial frequency (3).  

The visual tasks employed were orientation discrimination of isoluminant gratings 

and shape discrimination of isoluminant radial frequency patterns. The parameters for 

psychophysical and TMS experiments followed the protocol outlined in the Psychophysical 

Protocol section of Chapter 2.  Prior to TMS stimulation each subject completed orientation 

and shape discrimination experiments using the method of constant stimuli described in full 

in Chapter 2. The spatial configuration of the stimuli and temporal trial structure for the 

orientation and shape experiments were identical (see schematic Figure 7.2). The phases of 

both the gratings and radial frequency patterns were randomised within trials. Individual 

psychometric functions for orientation and shape discrimination were plotted from the 

average for each subject (average of 350 trials – 50 presentations per stimulus level). 

Consistent with the practices in Chapters 4-6, we initially defined thresholds (75% correct) 

for orientations more vertical and horizontal than the reference and for shapes spikier and 
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smoother than the reference. The range between these values was calculated and halved. 

Stimuli for TMS were defined by the following equation: TMS stimuli = reference ± range/2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

7.5.6:    TMS Protocol 

A train of 4 biphasic (equal relative amplitude) TMS pulses, separated by 50ms 

(20Hz) at 70% of the maximum stimulator output (2.6 Tesla) were applied to the subject’s 

scalp using a figure-of-eight coil (50 mm external diameter of each ring) connected to a 

Magstim Rapid2 TM stimulator (Magstim, Wales). Subjects were seated in a purpose built 

chair with chin rest and forehead support. The coil was secured mechanically and placed 

directly above each cortical target (CON, LO1, and LO2) with the handle orientated parallel 

with the floor. The position of the coil was monitored and tracked in real time allowing the 

displacement between the intended and actual site of TMS delivery to be recorded, along 

Figure 7.2: Trial structure schematics for chromatic orientation (top) and shape (bottom) 

discrimination tasks. During chromatic orientation discrimination the reference orientation 

was fixed 45°. Test stimuli were randomly selected from a pre-determined list of seven 

stimuli that spanned a range of orientations more vertical and more horizontal than the 

reference. During chromatic shape discrimination the amplitude of the reference shape was 

fixed (0.2). Test stimuli were randomly selected from a pre-determined list of seven stimuli 

that spanned a range of shape spikier and smoother than the reference. 
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with two additional measurements; coil-target distance and coil-target orientation. Each 

subject underwent 8 counterbalanced sessions (2 tasks x [3 TMS sites + 1 no TMS]). Each 

TMS session (orientation and shape) contained 100 trials (50 per threshold stimulus). TMS 

pulses were delivered concurrently with the presentation of the test stimulus, depicted in 

Figure 7.3.  

 

 

 

 

 

 

 

 

 

 

 

 

7.5.7:    Data & statistical Analysis 

Before data analysis some trials (~4%) were removed on the basis of two criteria: 

trials for which coil displacement was large (>2.5 mm) and trials for which reaction time was 

greater than 2000 ms after the cessation of the presentation of the test stimulus. Statistics 

were calculated using the SPSS software package (IBM). A series of two-way repeated-

measures ANOVAs were employed to examine the effects of discrimination (% correct) and 

reaction times (secondary measure), along with two potentially confounding variables (coil-

target distance and coil-target orientation), which provide a measurement of operator 

error. In the case of a significant interaction, subsequent one-way repeated-measures 

Figure 7.3: Trial structure schematics for chromatic orientation (top) and shape (bottom) 

TMS tasks. During chromatic TMS sessions (and no TMS baseline) only the threshold 

stimuli were presented as test stimuli. TMS pulses were delivered concurrently with the 

presentation of the threshold test stimuli, depicted by the red lightning bolts. 
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ANOVAs were calculated for each task considered separately. Given that our central 

hypotheses concern the processing within LO1 and LO2 specifically, in addition to the full 

ANOVAs, planned contrasts will be computed between LO1 and LO2, in order to assess with 

greater sensitivity whether any effects are observed. For each ANOVA, whether or not the 

ANOVA adhered to the assumption of sphericity was established initially using Mauchly’s 

test.  

7.6: Results 

7.6.1:    Visual Field Map Identification 

LO1 and LO2 were clearly identifiable in at least one hemisphere in all subjects (See 

visual field map Gallery in Chapter 3 for full retinotopic breakdown of subjects S6, S7, S9, 

S11, S13-S20). The centroids of LO1 and LO2 were calculated to define TMS targets. Figure 

7.4, illustrates visual field maps with respect to polar angle (including LO1 and LO2) on 

lateral views of both the left and right hemispheres of S12. In both hemispheres, LO1 

extends anteriorly from the shared boundary with V3d, at the representation of the lower 

vertical meridian (yellow). LO1 displays a gradual progression from the lower vertical 

meridian towards the upper vertical meridian (purple/blue). LO2 is the mirror-reverse of 

LO1 and therefore, displays a gradual progression from the upper vertical meridian towards 

the lower vertical meridian.  
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7.6.2:    Chromatic Orientation & Shape Psychophysics 

Chromatic orientation and shape psychometric functions for all subjects are plotted 

in Figure 7.5.  Inspection of Figure 7.5 highlights the individual variation in orientation and 

shape discrimination performance and underscores the need to establish individual 

discrimination thresholds. For example, the range of orientations required for S6 is greater 

than the range of orientations required for S13, indicated by the much steeper slope for 

S13. As in previous chapters, the x axis of S6 has been rescaled relative to other subjects. 

Interestingly, it appears in some subjects that good orientation discrimination is not 

necessarily associated with good shape discrimination. For instance, S6 required the largest 

range of orientations yet has one of the steepest shape discrimination functions, indicating 

that S6 required a smaller range of values than other subjects during shape discrimination. 

  

 

Figure 7.4: Bilateral visual field maps in a representative subject. Lateral views depict visual 
field maps in the left and right hemispheres of a representative subject (S12). The BOLD 
responses to the rotating wedge stimulus are overlaid in false colour (see colour wheel, 
centre) onto surface reconstructions of the grey-white matter boundary of the left and right 
hemispheres. The vertical meridian representations are shown by the dashed white lines, 
with the horizontal meridian representations shown by the solid white lines. In both 
hemispheres the visual field representations in LO1 and LO2 are clearly identifiable. LO1 
begins at the shared boundary with V3d at the representation of the lower vertical meridian. 
LO1 extends anterioraly from the lower vertical meridian toward the upper vertical meridian. 
LO2 is the mirror-reverse of LO1 and displays a gradual progression from the upper vertical 
meridian back toward the lower vertical meridian, LO1 and LO2 were identified in at least 
one hemisphere in each subject. 

 



Chapter 7        Do LO1 & LO2 Contain Cue-Invariant Representations of Orientation & Shape? 

 

215 
 

 

 

 

 

 

We defined, in each individual subject, two stimuli for each task to be presented 

during TMS sessions using the method described above. Table 7.1, contains the 75% correct 

thresholds for orientations more vertical and more horizontal than the reference and 

shapes spikier and smother than the reference. Table 7.1, also includes the value added to 

and subtracted from the reference stimulus and the actual values presented during TMS for 

all subjects.  

 

Figure 7.5: Chromatic orientation and shape psychometric functions. Individual 
psychometric functions for the chromatic orientation (top) and shape (bottom) discrimination 
tasks. The threshold stimuli to be used in subsequent TMS sessions were derived from 
these psychometric functions. For orientation, the 75 % correct more vertical and horizontal 
orientations were calculated. The range between these values was divided in half and added 
to and subtracted from the reference orientation to create the two stimuli for TMS. For shape, 
the 75 % correct smoother and spikier shapes were calculated. The range between these 
values was divided in half and added and subtracted from the reference shape to create the 
stimuli for TMS. 
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isoluminant orientation (degrees) 

Subject threshold H threshold V ref ±  TMS H TMS V 

S6 43.2950 48.9050 2.8050 42.1950 47.8050 

S7 43.2500 45.9450 1.4825 43.5175 46.4825 

S9 43.3250 46.5750 1.1250 43.8750 46.1250 

S11 42.7800 46.6800 1.9500 43.0500 46.9500 

S13 42.5800 47.3450 2.3800 42.6200 47.3800 

S14 41.3250 47.5900 3.1325 41.8675 48.1325 

S15 40.6800 47.0250 3.1725 41.8275 48.1725 

S16 42.8300 46.1900 1.6800 43.3200 46.6800 

S17 41.9550 48.1850 3.1150 41.8850 48.1150 

S18 42.7050 49.3650 3.3300 41.6700 48.3300 

S19 40.2750 48.0450 3.8850 41.1150 48.8850 

S20 43.5000 47.4750 1.9875 43.0125 46.9875 

  isoluminant shape (amplitude modulation) 

Subject threshold SM threshold SP ref ±  TMS SM TMS SP 

S6 0.1876 0.2093 0.0109 0.1892 0.2109 

S7 0.1976 0.2198 0.0111 0.1889 0.2111 

S11 0.1870 0.2144 0.0138 0.1863 0.2138 

S12 0.1763 0.2267 0.0252 0.1748 0.2252 

S13 0.1858 0.2078 0.0110 0.1890 0.2110 

S14 0.1883 0.2093 0.0105 0.1895 0.2105 

S15 0.1918 0.2240 0.0153 0.1847 0.2153 

S16 0.1946 0.2119 0.0087 0.1914 0.2087 

S17 0.1837 0.2203 0.0183 0.1818 0.2183 

S18 0.1772 0.2189 0.0209 0.1792 0.2209 

S19 0.1850 0.2216 0.0183 0.1817 0.2183 

S20 0.1807 0.2152 0.0173 0.1828 0.2173 

Table 7.1: Threshold and TMS values derived from the chromatic orientation and shape 
psychometric functions. For orientation (top), table includes the 75 % correct values for 
orientations more horizontal (threshold H) and more vertical (threshold V) than the 
reference, plus the value added too and taken away from the reference (ref  ±) and the 
values used during TMS for the more horizontal (TMS H) and more vertical (TMS V) test 
stimuli. For shape (bottom) table includes the 75 % correct values for shapes smoother 
(threshold SM) and spikier (threshold SP) than the reference, plus the value added too and 
taken away from the reference (ref ±) and the values used during TMS for the smoother 
(TMS SM) and spikier (TMS SP) test stimuli. 
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7.6.3:    Effects of TMS on Chromatic Orientation & Shape Processing 

Group average performance (% correct) for all conditions grouped by task is plotted 

in Figure 7.6. The results depicted in Figure 7.6, reveal a couple of interesting results. First, 

there is a clear effect of task. Performance on the shape task is worse relative to the 

orientation task for all conditions, indicating that on average subjects found the shape task 

more challenging. Second, there is no clear indication of an effect of condition for either 

task. For orientation discrimination, performances are very similar across conditions. 

Similarly, for shape discrimination, performances are largely equivalent across conditions. 

Indeed, performance is marginally increased following LO2 stimulation. The pattern of 

deficits induced by TMS across conditions does not follow either the serial or parallel 

predicted effects of TMS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Effects of TMS on chromatic orientation and shape discrimination. Group 
average performances are plotted for all conditions grouped by task. The pattern of deficits 
induced by TMS is not consistent with either the serial or parallel predictions. Performances 
are largely equivalent across conditions for both tasks. Specifically, TMS of LO1 did not lead 
to a selective disturbance to chromatic orientation discrimination, nor did TMS of LO2 lead to 

selective disturbance to chromatic shape discrimination. Error bars represent s.e.m.  
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 In order to assess formally the effect of TMS on performance a 2 x 4 repeated 

measures ANOVA was conducted with conditions Task (orientation & shape) and Site (no 

TMS, CON, LO1, & LO2). There was a significant effect of Task (F (1, 11) = 16.582, p = 0.002), 

indicating that across conditions performances were worse on the shape task than the 

orientation task. There was neither a significant effect of Site (F (3, 33) = 0.107, p = 0.955), nor 

Task x Site interaction (F (3, 33) = 0.547, p = 0.654). The lack of a significant Task x Site 

interaction suggests that neither LO1 nor LO2 underpinned the processing of chromatic 

orientation and shape. Due to the lack of a Task x Site interaction, further one-way ANOVAs 

on each site considered separately were not undertaken. 

 As previously mentioned the primary hypotheses pertained to the role of LO1 and 

LO2 in chromatic orientation and shape processing, with the inclusion of the CON and no 

TMS baseline serving as suitable foils for any effects observed. We are therefore justified in 

running planned contrasts to analyse the pattern of results across LO1 and LO2 alone. The 

interaction term between LO1 and LO2 was not significant (F (1, 11) = 0.608, p = 0.432). The 

data demonstrate that discrimination performance was not disrupted following TMS of LO1 

and LO2 for either task. This pattern of results is inconsistent with the predicted effects of 

TMS and the achromatic data reported in Chapter 6. 

7.6.4:    Effect of TMS on Reaction Times  

 In accordance with Chapter 4-6, discrimination performance was the primary 

measure of the effects of TMS. Nevertheless the effect of TMS on reaction times was also 

assessed. The analysis of reaction times is important. In the event that TMS effects on 

discrimination are subtle, the effect of TMS on reaction times can provide evidence for TMS 

induced interference. Group average reaction times across all conditions and tasks are 

plotted in Figure 7.7. Inspection of Figure 7.7, highlights a number of potentially important 

patterns of results. First, during orientation discrimination reaction times are notably slower 

during LO1 stimulation than any other condition. Indeed, reaction times across the other 

conditions are largely equivalent. Second, during shape discrimination reaction times are 

slower during stimulation of LO2 than any other conditions. Again, the reaction times during 

other conditions are more similar than between LO2 and any other condition.  
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 To assess the effect of TMS on reaction times, a 2 x 4 repeated measures ANOVA 

was conducted with conditions Task (orientation & Shape) and Site (no TMS, CON, LO1 & 

LO2). There was neither a significant effect of Task (F (1, 11) = 0.153, p = 0.704), nor Site (F (3, 

33) = 2.671, p = 0.064). The Task x Site interaction however, was significant (F (3, 33) = 3.130, p 

= 0.039). Given the significant Task x Site interaction, one-way repeated measures ANOVAs 

were conducted on each task considered separately. For orientation, there was a significant 

effect of Site (F (3, 33) = 3.373, p = 0.030). Pairwise comparisons (Bonferroni corrected) 

revealed a single significant pairwise comparison (LO1 versus CON, p = 0.022), all other 

comparisons were not significant (p = > 0.186, in all cases). For shape, the effect of Site was 

not significant (F (3, 33) = 2.135, p = 0.155), there were no significant (Bonferroni corrected) 

pairwise comparisons (p = >0.411, in all cases). Given our primary hypotheses regarding LO1 

and LO2, we are therefore justified in running planned contrasts to analyse the pattern of 

results across these targets sites alone. The interaction term between LO1 and LO2 was 

significant (F (1, 11) = 5.517, p = 0.039). Paired t-tests (two-tailed) revealed a significant 

difference in reaction times between LO1 and LO2 for orientation discrimination (t (11) = 

2.474, p = 0.031), but not for shape discrimination (t (1, 11) = 1.363, p = 0.200).  

Figure 7.7: Effects of TMS on reaction times during chromatic orientation and shape 

discrimination. Mean reaction time across sites and tasks. For chromatic orientation 

discrimination, reaction times during LO1 stimulation are considerably slower relative to all 

other conditions. Reaction times during all other conditions are largely similar. For chromatic 

shape discrimination, reaction times during LO2 stimulation were the slowest across all 

conditions. Again, reaction times across other conditions are largely equivalent. Error bars 

represent s.e.m. 
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7.6.5:    Analysis of Potentially Confounding Variables 

Two additional measurements were recorded with each TMS pulse train in an 

attempt to account for two potentially confounding variables that relate to the spatial 

relationships between the stimulating coil and the targets within cortex; coil-target distance 

and coil-target orientation. These measurements are included as they provide a means by 

which to rule out differences in the precision of TMS, caused by operator error, as an 

alternative account of the data reported above. 

7.6.5.1:    Coil -Target Distance  

 The mean Euclidean distance (mm) from the calibration point of the stimulating coil 

to the cortical targets is plotted in Figure 7.8, for all TMS sites and tasks. Inspection of Figure 

7.8, reveals an interesting pattern of results. There is a slight indication that the coil-target 

distances vary across sites as a function of task - a result that can only be due to operator 

error. For example during orientation discrimination the coil-target distance was shortest 

during LO1 stimulation, whereas during shape discrimination the coil-target distance is 

longest during LO1 stimulation.  

 

 

 

 

 

 

 

 

 

 

 

orienttion 

Figure 7.8: Mean Euclidean distance between stimulating coil and cortical targets during 

chromatic orientation and shape discrimination. The results indicate that coil-target distance 

did not vary in a manner that explains the observed patterns of TMS on performance. Error 

bars represent the s.e.m. 
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 In order to assess whether differences in the coil-target distances could explain the 

effects of TMS on discrimination and reaction times a 2 x 3 repeated measures ANOVA was 

conducted with conditions Task (orientation & shape) and Site (CON, LO1 & LO2). There was 

neither a significant effect of Task (F (1, 11) = 2.607, p = 0.135), nor Site (F (2, 22) = 0.135, p = 

0.757), nor Task x Site interaction (F (2, 22) = 2.391, p = 0.165). Given the lack of significant 

main effects and interaction, one-way ANOVAs for each task were not conducted. There is 

no evidence that the slight differences in coil-target distances account for the effects of TMS 

on discrimination or reaction times.  

7.6.5.2:    Coil -Target Orientation 

Coil orientation provides a measure of the difference between the coil orientation 

and the vector joining the calibration point of the coil and the TMS target. The group 

averaged coil-target orientations for all TMS sites and tasks are plotted in Figure 7.9. 

Inspection of Figure 7.9, reveals two interesting patterns of results. First, the mean coil-

target orientations are largely equivalent across sites and tasks. Second, the mean coil-

target orientations are further from the optimum orientation of 90° than reported in 

previous Chapters, where in general coil-target orientations clustered around 90°.  

 

 

 

 

 

 

 

 

 

Figure 7.9: Mean coil-target orientation during chromatic orientation and shape 
discrimination. The results indicate that each cortical target was stimulated at very similar 

orientations across both tasks. Interestingly, the orientations are less than optimum (90°) 
across all conditions. Error bars represent s.e.m. 
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A 2 x 3 repeated measures ANOVA with conditions Task (orientation & shape) and 

Site (CON, LO1 & LO2) was conducted in order to assess the influence of coil-target 

orientation. There was neither a significant effect of Task (F (1, 11) = 1.706, p = 0.200), nor Site 

(F (2, 22) = 0.073, p = 0.359), nor Task x Site interaction (F (2, 22) = 0.219, p = 0.805). Given the 

lack of significant effects, one-way ANOVAs for each task were not conducted. Despite the 

non-optimum coil-target orientations across sites and tasks, there is no evidence that 

differences in coil-target orientation contributed to the effects of TMS on discrimination 

performance or reaction times.   

7.7: Discussion 

 In this study, TMS pulses were applied to LO1 and LO2 in order to assess whether 

they contain cue-invariant representations of orientation and shape. Specifically, TMS was 

applied to LO1 and LO2 to measure its effects on performance of two visual tasks; chromatic 

orientation and shape discrimination, respectively.  The delivery of TMS produced several 

interesting patterns of results. First, TMS of LO1 and LO2 did not lead to selective 

disturbances to chromatic orientation and shape discrimination, respectively; a pattern of 

results inconsistent with either the serial or parallel predictions. This pattern is also in direct 

contrast to the results reported in Chapter 6. Additionally, neither chromatic orientation nor 

shape discrimination was effected by TMS of any site relative to the no TMS condition, 

ruling out a generalised effect of TMS. Second, the effect of TMS of LO1 and LO2 resulted in 

longer reaction times during orientation and shape discrimination respectively. These 

results need to be considered carefully however, as they may be associated with speed-

accuracy tradeoffs.  Taken together, the data provide limited evidence for cue-invariant 

representations within LO1 and LO2. These findings were immune to differences in the 

spatial relationships between the stimulating coils and the cortical targets.  
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7.7.1:    Lack of Chromatic Processing in Lateral Occipital Cortex 

 It is important to reflect that the data reported here are inconsistent with either the 

serial or parallel predictions for the effects of TMS. Moreover the data are in direct contrast 

with those reported in Chapter 6 for achromatic processing of orientation and shape, 

despite both studies comprising the same methodology and stimuli. It appears that the 

speciailisations for orientation and shape exhibited by LO1 and LO2 are highly dependent on 

the manner with which these stimuli are defined – this is the opposite of cue-invariance. 

Taken at a first glance, the discrimination data reported in the current study can be 

seen to be consistent with a number of studies from several different paradigms. To begin, 

recall that in human, the majority of evidence for chromatic processing highlights the 

importance of ventral occipital regions. Achromatopsia, a deficit in colour vision is most 

commonly associated with lesions to ventral occipital cortex (Meadows, 1974; Zeki, 1990; 

Heywood & Cowey; Kennard et al., 1995; Clarke et al., 1998). The results of studies using 

neuroimaging techniques including PET (Lueck et al., 1989; Zeki et al., 1990 and fMRI 

(Mckeefry & Zeki, 1997; Bartels & Zeki, 2000; Brewer et al., 2005; Wade et al., 2008) are 

largely consistent with the neuropsychological evidence suggesting that ventral occipital 

regions and V4 in particular play a critical role in the cortical processing of chromatic signals.  

Evidence from several paradigms has investigated the role of lateral occipital cortex 

(including LO1 and LO2) in the processing of chromatic information. First, 

neuropsychological evidence highlights that damage to LO although impairing visual object 

and shape recognition, leaves colour processing and colour discrimination relatively 

unaltered (Cavina-Pratesi et al., 2010). Indeed, patient DF, performed at chance levels on 

shape discrimination tasks, but was significantly above chance on tasks that required colour 

or texture discriminations to be made. Moreover, these spared texture and colour 

processing abilities were contrasted with a second Patient (MS), who presented with 

bilateral ventral occipital lesions and was severely impaired at both colour and texture 

discriminations, but was relatively unimpaired during shape discrimination (Cavina-Pratesi 

et al., 2010). Very recently, it has been reported that fMRI responses to chromatic stimuli in 

patient DF are largely consistent with aged-matched controls (Bridge et al., 2013). The 

above chance colour discrimination observed in DF, despite extensive LO lesions, could be 
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interpreted as evidence against a role for LO in chromatic processing. Taken within this 

context the lack of a disruptive effect of TMS following stimulation of LO1 and LO2 could be 

seen as consistent with the evidence from DF.  

Second, several fMRI experiments highlight a lack of chromatic processing in LO. 

Wade and colleagues conducted an extensive study comparing the chromatic sensitivity in 

macaque and human using fMRI. In human, chromatically preferring regions of cortex were 

largely confined to ventral occipital regions, a pattern not found in macaques. Intriguingly, 

there were no significant chromatically preferring voxels in dorsal and lateral regions of 

cortex during single subject analyses (n = 7). Moreover, only following a more powerful 

surface-based group analysis did a small dorsal island of colour selectivity appear. A general 

lack of chromatic processing in LO, is further refined by two studies that investigated 

chromatic processing within individual visual field maps, including LO1 and LO2. Brouwer & 

Heeger (2009) employed a number of MVPA fMRI analysis techniques to decode and 

reconstruct colours from the pattern of BOLD responses measured across visual cortex. 

Stimulus colour was only correctly classified (above chance) in 2/5 subjects across both LO1 

and LO2, compared to significantly above chance classification in V1, V2, V3, V4 & VO1. The 

inability to accurately decode stimulus colour from signals in LO1 and LO2 suggests that 

chromatic signals are not present within these visual field maps and offers a potential 

explanation for the lack of a disruptive effect of TMS on discrimination performance 

reported here.  A further study demonstrated a clear preference for chromatic stimuli in 

ventral occipital regions, with little or no chromatic preferences in LO1 or LO2. Indeed, 

group averaged colour responses in LO1 and LO2 were lower in magnitude than all other 

visual areas tested, except V3A (Goddard et al., 2011). The fact that TMS to LO1 and LO2 did 

not lead to disturbances in chromatic orientation and shape processing could be interpreted 

as consistent with the lack of chromatic processing in general measured within these 

regions of cortex.  

Third, the accuracy data reported here are consistent with a previous study that 

investigated the role played by LO in colour discrimination (plus other tasks) (Ellison & 

Cowey, 2006). During colour discrimination, subjects were presented with three coloured 

squares (each subtending 1° x 1°) with one square positioned 5° to the left of the vertical 

meridian (along the horizontal meridian) and two further squares positioned 4° either side 



Chapter 7        Do LO1 & LO2 Contain Cue-Invariant Representations of Orientation & Shape? 

 

225 
 

of the horizontal meridian (one above, one below). Subjects were required to select which 

of the two vertically displaced squares matched the colour of the central square. TMS of LO 

during colour discrimination did not disrupt discrimination performance. Importantly, the 

shape discrimination task employed in the current study was contingent on the colour of the 

stimulus, a feature that was absent from the previous TMS experiment, in which the colour 

task was a stand-alone chromatic discrimination task. Nevertheless the data reported here 

are consistent with the results of Ellison & Cowey (2006), but extend them by showing that 

TMS of LO1 and LO2 did not lead to significant disturbances in orientation and shape 

processing despite both tasks being contingent on colour.  

One interpretation of the current TMS data, which is consistent with the evidence 

reported above, is that LO1 and LO2 are specialized for achromatic over chromatic 

orientation and shape (Mullen et al., 2007). Mullen and colleagues investigated the 

selectivity of visual cortex to   L-M cone-opponent and achromatic stimulation using fMRI. 

Early visual areas V1-V4, exhibited robust responses to colour, although a clear preference 

for colour was only apparent in a region of ventral occipital cortex anterior of V4.  

Additionally, two regions on the dorsal and lateral surfaces exhibited robust and preferential 

responses to achromatic over chromatic stimulation. The locations of these areas were 

suggested to show considerable overlap with V3A and V5/MT, two cortical areas known to 

play causal roles in the perception of visual motion (Zihl et al., 1983; Zeki, 1990; Walsh et al., 

1998; McKeefry et al., 2008). The authors suggest that these two regions form part of a 

functional network of dorsal and lateral areas that have receive strong magnocellular inputs. 

Of note, these locations were based on transforming the peak voxel in each area into 

Talairach space. As previously mentioned, LO1 and LO2 are located in close proximity to V3A 

(posterioraly) and V5/MT (anteriorly) and therefore, the achromatic selectivity exhibited by 

these regions may extend into LO1 and LO2. The data reported in Chapters 4-6 certainly 

suggest that LO1, LO2 and V5/MT play causal roles in processing of achromatic visual 

features and thus, provides evidence for strong magnocellular input to these regions. 

Importantly however, the equivalent achromatic measurements were not taken for all 12 

subjects, making conclusions regarding the achromatic versus chromatic selectivity, and by 

extension magnocellular versus parvocellular inputs within LO1 and LO2 problematic. An 
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important goal for future research would be to compare directly the effects of TMS during 

both achromatic and chromatic visual tasks.   

LO1 and LO2 appear therefore, not to be causally involved in the processing of 

chromatic orientation and shape. Visual areas antecedent in the visual hierarchy of LO1 and 

LO2 have been shown previously to be involved in the joint encoding of colour and 

orientation (Clifford et al., 2003; Engel, 2005; Seymour et al., 2009; 2010; McDonald et al., 

2010). Indeed, combined colour and orientation selectivity has been reported in areas V1-

V4.  The encoding of colour and orientation may be resolved prior to signals reaching LO1. In 

addition, regions of the LOC have been shown to encode shapes defined by chromatic 

signals (Grill-Spector et al., 1998; 1999, Self & Zeki, 2005; Cavina-Pratesi et al., 2010). The 

selective processing for colour defined shapes however, was localised to ventral regions of 

the LOC, whereas our LO2 targets are located on the lateral and dorsal aspect of the LOC. 

The processing of chromatic shape may therefore, take place in regions of cortex anterior 

and ventral of LO2. 

Limited, rather than absent selectivity may offer an alternative account for these 

data. That is, despite the lack of an effect on percent correct, if more sensitive 

measurements of behavior, such as adaptation or changes in the slope/shape of 

psychometric functions were employed, the effects of TMS of LO1 and LO2 on chromatic 

processing may emerge. 

7.7.2:    Possible Mechanisms Underpinning the Effects of TMS on Reaction 

Times 

An intriguing result was that TMS of LO1 and LO2 induced a pattern of reaction times 

that were longest during orientation and shape discrimination, respectively. These data 

require careful consideration. The longer reaction times may be associated with increased 

performances during these conditions. Indeed for orientation discrimination, performance 

was higher following TMS of LO1 relative to TMS of LO2. Likewise for shape discrimination, 

performance was improved following TMS of LO2 relative to TMS of LO1. The increased 

reaction times may under-pin the better performances in these conditions, rather than 

indicating a role for LO1 and LO2 in chromatic processing. One interpretation of the reaction 
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time data relates to the temporal processing of chromatic information. Evidence from 

behavioural, neuroimaging and neurostimulation studies indicate that chromatic signals are 

processed more slowly than achromatic signals, with Parvocellular cells responding more 

slowly than their Magnocellular counterparts (Livnigstone & Hubel, 1988; Burr, Fiorentini & 

Morrone, 1998). Regan and He (1995) measured the electrical and magnetic time-courses 

for chromatic and luminance processing and found the processing of chromatic singles to be 

delayed with respect to the processing of luminance signals by approximately 100-160ms.  

The delay in chromatic processing has also been reported from MEG recordings in V1 (Fylan, 

Holliday, Singh, Anderson & Harding, 1997). Beaudot & Mullen (2001) investigated the 

temporal mechanisms of chromatic and luminance processing during a contour-integration 

task, which required the linking of orientations across space. A delay in reaction times was 

evident between the achromatic and chromatic contour integration tasks, with achromatic 

contour integration being detected more quickly. Finally, TMS of both occipital cortex and 

temporal-parietal-occipital junction (TPO) was reported to maximally disrupt performance 

on a colour-defined-form task when TMS pulses were delivered on average 120 and 127ms 

post stimulus onset, respectively (Anand, Olson & Hotson, 1998). Taken in the context of 

these findings it is possible that, given the adopted TMS protocol, TMS pulses were 

delivered to LO1 and LO2 prior to the arrival of chromatic signals, thereby rendering the 

disruptive effects of TMS mute. Recall that TMS pulses were always delivered with the onset 

of the test stimuli. It is possible therefore, that the chromatic signals were processed in LO1 

and LO2 post TMS stimulation, offering a potential mechanism for the lack of effect of TMS 

on discrimination.  

  Given the evidence reported above, a likely candidate for the preliminary processing 

of chromatic information is V4. Indeed, chromatic, orientation and shape (curvature) 

sensitive responses have been reported in both macaque (McAdams & Maunsell, 1999; 

2000) and human (Zeki et al., 1991; Fang, Murray, Kersten & He, 2005; Engel, 2005; 

Wilkinson, James, Wilson, Gati, Menon & Goodale, 2000) ventral occipital regions, including 

V4. Advancements on the current work could potentially elucidate the interactions between 

these regions.  First, varying the delivery of TMS pulses relative to the onset of the visual 

stimuli could potentially inform as to the temporal window within which chromatic signals 

are present within LO1 and LO2.  Second, a relatively recent study suggests that TMS 
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stimulation of V4 may be possible (Banissy, Walsh & Muggleton, 2012), providing an 

opportunity to study the timing of chromatic processing within this region.     

 The temporal encoding of chromatic signals offers a potential mechanism for the 

lack of effect following TMS of LO1 and LO2, although a more parsimonious explanation may 

reflect the lack of cue-invariance within these visual field maps, discussed below.    

7.7.3:    Cue-Invariance in LOC, but not LO1 or LO2 

 Despite the lack of evidence for chromatic processing in LO (including LO1 and LO2), 

several pieces of evidence suggest the presence of cue-invariant representations within 

macaque and human visual cortices. In macaque, cue-invariant responses have been 

reported within early visual areas (V-V4) (Leventhal et al., 1995; 1998) and also higher level 

areas, such as IT, the ‘putative’ macaque homologue of human LOC (Vogels & Orban, 1996; 

Tanaka et al., 2001; Kriegeskorte et al., 2008). In human, cue-invariant responses have been 

reported in KO (Zeki et al., 2003) as well as the LOC (Malach et al., 2005), both of which are 

reported to encompass LO1 and LO2 (Larsson & Heeger, 2006).  Indeed the LOC has been 

reported to represent the global shape of stimuli across multiple cues including luminance, 

texture, illusory contours, motion and colour (Grill-Spector et al., 1998; Grill-Spector et al., 

1999; Kastner et al., 2000; Kourtzi & Kanwisher, 2001; Vinberg & Grill-Spector, 2008). The 

discrimination data reported here is inconsistent with the reports of cue-invariance in the 

LOC. The cue-invariance observed previously in the LOC may occur in anterior and ventral 

regions further progressed along the visual hierarchy than LO1 and LO2. The spatial extent 

of the LOC typically extends beyond the retinotopic boarders of LO1 and LO2 (Sayres & Grill-

Spector, 2008), activating more anterior and ventral regions of visual cortex. Indeed, 

although macaque IT is thought of as the homologue of human LOC, the locus of this 

homology is likely to be anterior of LO1 and LO2.  

 Self and Zeki (2005) reported observing shape selectivity within LOC whether defined 

by motion, colour or their integration. Subjects viewed stimuli that varied in the amount of 

colour and motion coherence present. Initially, the authors report an area of LOC that was 

equally responsive to shapes defined by either 100% motion or 100% colour coherence, 

relative to stimuli that contained 100% coherence, but with no visible shape. The peak 

shape selective voxel was found to be consistent with previous definitions of the LOC 



Chapter 7        Do LO1 & LO2 Contain Cue-Invariant Representations of Orientation & Shape? 

 

229 
 

(Malach et al., 1995; Grill-Spector et al., 1998; 1999; Kourtzi & Kanwisher, 2001). An 

additional region of LOC was found to be selectively responsive to shapes defined by the 

integration of motion and colour coherence over shapes defined by a single feature in 

isolation. A further adaptation experiment revealed that the adaptation observed within 

this area to shapes defined by alterations in motion and colour coherence was equal to that 

observed for shapes defined by either cue in isolation, suggesting that this region of LOC 

indeed contained cue-invariant representations. Sections of the LOC therefore, may contain 

specialized regions with the potential to respond to their preferred visual feature 

irrespective of how that feature is defined. The cue-invariant region of LOC reported by Self 

& Zeki (2005) however, was found to be ventral of previous definitions of the LOC, and 

therefore is unlikely to overlap with our definitions of LO1 and LO2. Indeed comparisons of 

the Talairach coordinates for our mean LO1 and LO2 centroids and the shape selective 

voxels reported by Self & Zeki (2005), depicted in Figure 7.10, support this view.  

 

 

 

 

 

 

 

 

 

 

 From Figure 7.10, it is clear that: (1) the motion and colour shape selective LOC voxel 

falls ventral of our LO1 and LO2 definitions. Indeed relatively large Euclidean distances, 

(relative to the separation of LO1 and LO2) separate these coordinates (LO1 – peak LOC = 

~27mm; LO2 – peak LOC = ~18mm) and (2) the cue-invariant region of the LOC lies further 

ventral than our LO1 and LO2 centroids. Again relatively large Euclidean distances, separate 

Z 
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X 

Figure 7.10: Comparison of the mean 

LO1 and LO2 centroids and the peak 

shape selective voxels from Self & Zeki 

(2005). The centroids of LO1 (red) and 

LO2 (blue) in Talairach space are shown. 

The peak shape selective voxel elicited 

by the presentation of either 100% motion 

or 100% colour coherence shapes over 

non shape 100% coherence arrays (light 

blue) can be seen to be ventral of LO1 

and LO2. The peak shape selective voxel 

to the integration of motion and colour 

coherence (purple) can also be seen to 

be ventral of LO1 and LO2. 
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these coordinates (LO1 – peak cue-invariant LOC = ~34mm; LO2 – peak cue-invariant LOC = 

~26mm). Taken within the context of these findings, the inability to disrupt chromatic 

orientation and shape processing in LO1 and LO2 may reflect that more ventral and anterior 

regions of LOC contain cue-invariant representations and not LO1 and LO2. Interestingly, the 

anatomical location of the cue-invariant patch of LOC reported by Self and Zeki (2005), 

ventral to LO1 and LO2 is consistent with very recent reports of additional visual field maps 

within LO (Brewer & Barton, 2011). The response properties of these additional maps (LO3-

6), reported to be ventral of LO1 and LO2, may become increasingly complex in a 

hierarchical fashion, beginning with luminance defined edge and curvature detection in LO1 

and LO2 and continuing towards cue-invariant representations in latter regions (LO3-6). The 

retinotopic representations suggested to be common to these maps (LO1-6 are suggested to 

contain full hemifields, respectively) offers a plausible mechanism for efficient 

communication of information between these maps, which may facilitate cue-invariance 

(Kravitz et al., 2013).   

The location of our LO1 and LO2 targets relative to previously identified cue-

invariant regions, coupled with the lack of effect of TMS on percent correct performance for 

chromatic processing suggests a lack of cue-invariance in LO1 and LO2. The data reported 

here are in contrast with the highly selective effects reported for achromatic orientation and 

shape and suggest a lack of cue-invariant representations within LO1 and LO2. 

7.8: Conclusion 

 The results of the current study are mixed. TMS of LO1 and LO2 during chromatic 

orientation and shape discrimination did not induce the selective disturbances predicted by 

either the serial or parallel predictions. Moreover the data run against those reported in 

Chapter 6 for achromatically defined stimuli. The increase in reaction times is potentially 

misleading and could be susceptible to the presence of speed accuracy tradeoffs. Taken as a 

whole, the discrimination results reported here, coupled with those reported in Chapters 4-

6 suggest specialized roles for LO1 and LO2 in the processing of achromatic orientation and 

shape, making the presence of cue-invariant representations within LO1 and LO2 unlikely. 
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Chapter 8  

General Discussion 

8.1: Overview 

Human visual cortex contains regions that exhibit functional specializations for the 

processing of different visual features (Lueck et al., 1989; Zeki, 1990; Zeki et al., 1991) and object 

categories (Malach et al., 1995; Kanwisher et al., 1997; Epstien & Kanwisher, 1998; Pitcher et al., 

2009). Why and, possibly more importantly, how these functional specializations emerge, remains 

poorly understood. One organisational feature of human visual cortex that has only relatively 

recently emerged, is the presence of multiple retinotopic subdivisions within larger functionally 

selective regions of cortex (Larsson & Heeger, 2006; Wandell et al., 2007; Arcaro et al., 2009; 

Amano et al., 2009). These visual field maps may in turn perform unique visual computations 

(Zeki, 1990) of low-level visual properties, which when combined (Op de Beeck & Kanwisher, 

2008), allow complex visual forms to be encoded efficiently (Kravitz et al., 2013). A crucial step 

therefore, is to establish what role (if any) these individual visual field maps play in visual 

perception. This thesis has focused on using TMS to elucidate the functional specializations 

present within several retinotopic subdivisions of lateral occipital cortex. Through the combination 

of fMRI visual field mapping and TMS, functional specializations for the processing of orientation, 

motion and shape have been demonstrated.  The following sections outline the principle findings 

from the thesis and the implications they have for our understanding of the cortical organisation 

of visual function.  

8.2: Retinotopic Features of Lateral Occipital Cortex 

 In order to complete the current body of work, reliable identification of LO1 and LO2 in 

individual subjects was necessary. This presented a substantial challenge. Previous reports 

documented high levels of individual variation in anatomical location and reliability of LO1 and 

LO2 (Larsson & Heeger, 2006; Sayres & Grill-Spector, 2008). Indeed, LO1 and LO2 were originally 

identified in just over 50% of hemispheres tested (Larsson & Heeger, 2006). Throughout the 

entirety of the thesis, LO1 and LO2 continued to be reliably identifiable, with successful 

delineation of these maps in ~90% of tested hemispheres. The reasons behind this higher 

identification rate are difficult to determine definitively, but may reflect the retinotopic protocols 
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adopted. For example, in their original paper, Larsson and Heeger employed a 45° wedge stimulus 

with an angular extent of 6°. A recent study reported that neurons within LO (the region of cortex 

encompassing LO1 and LO2) have large receptive fields (Dumoulin & Wandell, 2008) with 

sensitivities that extend beyond the areas stimulated by Larsson and Heeger, which has led some 

researchers to suggest that Larsson and Heeger systematically underestimated the size of LO1 and 

LO2 (Dumoulin & Wandell, 2008). The retinotopic mapping experiments conducted throughout 

the thesis employed a 90° wedge with an angular extent of 15°. The increase in size of the visual 

stimuli employed during retinotopic mapping likely underpins the higher identification rates.  

The visual field representations observed in LO1 and LO2 were consistently demonstrated 

at both the single subject and group levels in Chapter 3. Furthermore, the retinotopic 

organisations we observed within LO1 and LO2 are largely consistent with the delineation of 

lateral occipital cortex suggested by others (Larsson & Heeger, 2006), dividing the expanse of 

cortex between V3d and V5/MT into two adjacent hemifield maps. The retinotopic organisation of 

LO1 and LO2 described in this thesis runs contrary to an alternative model suggested by Hansen 

and colleagues (Hansen et al, 2007). This model makes two assumptions. The first is that V4 

contains an upper quadrant representation only, rather than the hemifield representation often 

reported (McKeefry & Zeki, 1997). Second, LO1 is suggested to contain a lower quadrant 

representation, which when combined with V4, completes the hemifield map. The visual field 

coverage we measured in these two areas argues against the split V4 model. In essence, whereas 

in macaque cortex the combination of V4v and V4d constitutes a full hemifield map, in human, 

both V4 and LO1 contain full hemifield representations and therefore, it is improbable that they 

constitute the ventral and dorsal components of a single visual area (Zeki, 2003). Instead the data 

support the delineation of dorsal cortex by Larsson & Heeger (2006) and the delineation of ventral 

cortex suggested by Zeki and colleagues (McKeefry & Zeki, 1997). The representations in LO1 and 

LO2 relative to the position of our visual stimuli are important. If LO1 were a lower quadrant map, 

as Hansen as colleagues suggest, then the action of TMS of LO1 could only have disrupted half of 

the stimulus representations.   

The use of fMRI visual field mapping was essential to the work described in this thesis, 

without which reliable and precise identification of LO1 and LO2 would not have been possible. 

Although LO1 and LO2 show some adherence to common gyral and sulcal patterns (demonstrated 

by retinotopic structure following surface-based averaging), these maps also show individual 
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variations in location and orientation (Larsson & Heeger, 2006), making individual identification 

through fMRI essential. Indeed, the results from Sack et al., (2009) demonstrate the advantages of 

fMRI-guided TMS over other identification techniques, including structural MRI, group averaged 

Talairach/MNI coordinates and the EEG 10-20 method. Combining fMRI visual field mapping with 

TMS provides the opportunity to investigate the properties of individual visual field maps and 

probe the visual system at not only a causal level, but also a finer spatial scale than that made 

possible by many standard fMRI paradigms.  

8.3: Functional Specializations & Parallel Processing Revealed within 

Subdivisions of Lateral Occipital Cortex 

The results reported in this thesis make several novel contributions to our understanding 

of the functional specializations present within human lateral occipital cortex.  The uniform three-

stage approach of: (1) identification of cortical targets through a combination of anatomical 

(V5/MT) and functional (LO1 and LO2) MRI procedures; (2) establishing individual discrimination 

thresholds for a variety of visual tasks using method of constant stimuli and (3) independent 

stimulation of cortical targets with TMS, whilst subjects perform visual discriminations at 

threshold,  proved capable of teasing apart the functional specializations exhibited by our cortical 

regions of interest, despite their close anatomical proximity to one another. Through the use of 

TMS, the current body of work builds on previous fMRI research regarding LO1 and LO2, and the 

neuroimaging and neurostimulation studies of V5/MT, by demonstrating specialized roles for LO1, 

LO2 and V5/MT in the perception of low-level visual attributes of orientation, shape and motion, 

respectively.  

First, the results of the motion discrimination experiments reported in Chapters 4 and 5, 

add to the large body of work from neuropsychological (Zihl et al., 1983), neuroimaging (Zeki, 

1990, Zeki et al., 1991) and neurostimulation (Beckers & Homberg, 1992; Walsh et al., 1998; 

McKeefry et al., 2008) studies demonstrating the specialized role played by V5/MT in the 

perception of motion. Second, the effects of TMS during orientation discrimination, reported in 

Chapters 4-7, demonstrate that LO1 represents an extrastriate cortical area specialized for the 

processing of static orientation. The orientation specialization exhibited by LO1 was demonstrable 

across three independent TMS studies, providing evidence for the reliability of this effect.  Third, 

the data reported Chapter 6 revealed, for the first time, a causal link between neural activity 
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within LO2 and the accurate processing of shape, based on changes in curvature. The 

computations of curvature performed by LO2 are more complex than those of orientation 

performed by LO1. Larsson and Heeger (2006) suggested that a hierarchy of increasingly 

sophisticated computations existed within lateral occipital cortex. The shape processing observed 

in LO2 could be interpreted as consistent with this hierarchical processing. 

The specializations exhibited by our cortical targets were shown to operate largely 

independently of one another. Indeed, parallel processing was evident across two different spatial 

scales. First, specializations were evident for LO1 and V5/MT, which can be considered as two 

adjacent visual clusters – LO1 can be conceptualised as part of the LO cluster; whereas V5/MT has 

long been considered a separate motion specific cluster. Second, at a smaller spatial scale, 

specializations were observed for LO1 and LO2, which constitute adjacent visual field maps within 

an object-selective cluster.  The data are consistent with previous reports of parallelism in human 

cortex, but extend them in terms of the spatial scale at which this parallelism is expressed. In 

order of spatial scale, previous demonstrations of parallelism include the delineation of visual 

cortex into dorsal and ventral processing streams (Perenin & Vighetto, 1988; Goodale et al., 1991), 

the identification of independent and close proximity category-selective areas (Malach et al., 

1995; Kanwisher et al., 1997; Epstien & Kanwisher, 1998; Taylor et al., 2007; Pitcher et al., 2009) 

and the emergence of visual field map clusters  

The results reported in Chapters 4-5 are consistent with the idea that adjacent visual 

clusters perform independent computations (Wandell et al., 2005). The double dissociation 

observed between LO1 and V5/MT, demonstrates that orientation and motion are computed 

independently in separate (close proximity) clusters. The double dissociation also extends the 

evidence in favour of parallel processing at the level of V5/MT. The parallel processing evident at 

the level of V5/MT is likely underpinned by parallel anatomical routes from antecedent and even 

subcortical (Sincich et al., 2004) areas. The results reported in Chapter 6 go one step further by 

demonstrating parallel processing at the level of adjacent field maps within a cluster. The results 

indicate that LO1 plays a causal role in orientation, but not shape processing and LO2 plays a 

causal role in shape, but not orientation processing. The pattern of results suggests a hierarchy of 

increasingly sophisticated computations performed by the retinotopic subdivisions of LO. This 

finding is consistent with previous proposals (Larsson & Heeger, 2006), but differs in that this 

hierarchy of cortical processing operates largely in parallel, rather than as part of a serial 
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processing architecture. The more sophisticated shape processing in LO2 is not reliant on the 

more basic orientation processing in LO1. If computations in LO2 were reliant on those performed 

by LO1, as they must in a serial framework, TMS of LO1 would have disrupted shape processing.  

This pattern was not found. Although the data cannot rule out the existence of serial connections, 

the data provide compelling evidence for parallel processing pathways at this level of the visual 

hierarchy. Intriguingly, parallel connections from antecedent areas have been found at a 

commensurate stage in the visual hierarchy of the macaque (Shipp & Zeki, 1989). The 

demonstration of dissociable functional properties between LO1 and LO2 echoes that found in 

macaque cortex for visual field maps V4v and V5/MT (Zeki, 1990). Despite the current lack of clear 

evidence for such pathways in human, it is plausible, at least, to suggest that such pathways may 

persist and moreover, that these pathways provide a plausible explanation for the parallel 

processing observed between LO1 and LO2.  

8.4: Lack of Cue-Invariance in LO1 & LO2 

An important feature of the specialized and parallel processing reported in Chapters 4-6 is 

that the visual stimuli used were all luminance-modulated and therefore, achromatic. Chapter 7 

aimed to directly assess whether the specializations for achromatic orientation and shape 

observed within LO1 and LO2 extended to isoluminant chromatic stimuli. Demonstrating such 

specializations would provide compelling evidence for cue-invariant representations within LO1 

and LO2. Indeed, cue-invariant responses have been reported previously within the IT of macaque 

monkeys (Vogels & Orban, 1996; Tanaka et al., 2001; Kriegeskorte et al., 2008), an area commonly 

believed to be the macaque homologue of human LOC (Malach et al., 1995). In human, fMRI 

studies have highlighted the presence of cue-invariant responses within the LOC (Malach et al., 

1995; Grill-Spector et al., 1998; 1999; Self & Zeki, 2005; Vinberg & Grill-Spector, 2008).  

The pattern of results reported in Chapter 7 ran contrary to not only those predicted, but 

also those reported in Chapters 4-6. TMS of LO1 and LO2 did not lead to selective disturbances to 

chromatic orientation and shape discrimination, and although reaction time data hint at effects, 

those data may be susceptible to speed-accuracy tradeoffs. Overall, the results from the 

experiments in chapter 7 point to a lack of cue-invariant representations within LO1 and LO2. The 

LOC, the region of cortex encompassing LO1 and LO2, may well contain regions which exhibit cue-

invariant capabilities (Self & Zeki, 2005; Vinberg & Grill-Spector, 2008), however the data reported 
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here suggest strongly that these representations are not present at the level of LO1 and LO2. A 

further example regarding the lack of cue-invariance can be seen when comparing the size of the 

effect following TMS of LO1 during static versus moving orientation discrimination. Recall that in 

Chapter 4, TMS of LO1 induced a significant and selective disturbance to orientation processing 

relative to all other conditions. This selectivity was statistically robust despite the relatively small 

sample size (n = 6).  In Chapter 5, the effect of TMS of LO1 was found to be markedly weaker, 

indeed there was no significant effect of site for the orientation task, and it was only following 

planned contrasts that a significant effect was observed. If LO1’s specialization for orientation 

were cue-invariant, one would predict TMS induced disturbances to orientation processing 

irrespective of how such orientations were defined.  Taken together, the data reported in this 

thesis argue against the existence of cue-invariant representations within LO1 and LO2, indeed 

they are heavily in favour of achromatic cue-dependent specializations. 

8.5: Implications for ‘high-level’ Visual Processing 

The findings from this thesis have a number of important implications in terms of the 

mechanisms by which humans process complex visual forms. A central hypothesis proposes the 

existence of multiple retinotopically organised divisions within larger category-selective areas. 

Such an organisation creates a computational framework capable of rapidly and efficiently 

decoding complex visual forms. This framework not only reduces replicated information between 

maps, which is biologically expensive to compute (Kravitz et al, 2013), but also, due to the 

adherence to retinotopic organisation, creates a common mechanism for communication across 

visual field maps with different specializations (Kravitz et al, 2013). Consider a scenario whereby a 

cluster within visual cortex contains four visual field maps, each one of which displays a full 

hemifield representation. If each map within this cluster computes at least one unique feature, 

then the system has the ability to encode up to four unique visual features, independently, at each 

point in visual space.  

This framework is consistent with previous models that have attempted to explain the 

emergence of category selectivity on the basis of processing of low-level visual attributes (Op de 

Beeck & Kanwisher, 2008). Kanwisher and colleagues proposed the existence of large overlapping 

maps in visual cortex, with each map exhibiting weak selectivity for particular visual features. 

When encountered with complex stimuli, these overlapping maps were suggested to multiply 
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their respective selectivities together, allowing the object to be encoded efficiently (Op de Beeck 

& Kanwisher, 2008).  

The data reported in this thesis are consistent with the premise put forward by Kanwisher 

and colleagues however, instead of these visual features being computed weakly across large, 

mainly overlapping maps, the data reported here suggests these visual attributes are computed 

locally in discrete visual field maps that exhibit high levels of functional specialization. Indeed, the 

level of specialization observed in LO1, LO2 and V5/MT is hard to accommodate within a model of 

large overlapping maps with weak selectivities.  

The pattern of responses across LO1 and LO2 suggests the possibility that the object 

selectivity observed in LO, simply emerges as a property of the unique and parallel map specific 

computations that are performed by LO1 and LO2. This interpretation has important implications 

for the emergence of category-selectivity in several other regions of visual cortex. Very recently, 

four additional retinotopic maps were reported to exist in lateral occipital cortex (Brewer & 

Barton, 2011). These additional maps (LO3-6) are suggested to lie ventral to LO1 and LO2 and 

show considerable anatomical overlap with the location of the OFA (Brewer & Barton, 2011). The 

presence of these additional LO maps suggest that the pattern of unique and parallel processing 

identified within LO1 and LO2 extends to LO3-6. If each map in the LO cluster performs unique 

computations and therefore, contributes uniquely to visual perception then perhaps the category 

selectivity observed in these larger areas (LO-objects, OFA-faces) emerges from the unique 

computations performed by their respective retinotopic subdivisions.    

A schematic representation of this framework is depicted in Figure 8.1. The left plot of 

Figure 8.1, depicts the LO cluster, divided into its six putative retinotopic subdivisions. Overlaid 

onto these maps are larger areas corresponding to the object-selective LO and face-selective OFA. 

LO comprises LO1 and LO2, with the spatial extent of the OFA encompassing LO3-6. The right of 

Figure 8.1, depicts hypothetical patterns of activity across the six LO maps to the presentation of 

two objects and two faces. The patterns of responses across these maps vary as a function of the 

stimuli they are encoding. Viewed within a framework whereby each map encodes unique visual 

features, the encoding of objects can thus be accomplished by the pattern of greater activity 

within LO1 and LO2 relative to the LO3-6 maps. In contrast, the encoding of faces results in a 

different pattern of results across the maps, with signals in LO3-6 being greater in general than 
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Figure 8.1: Schematic representation of retinotopically driven object and face selectivity. 

Left: A schematic of the six retinotopic subdivisions (LO3-6) within the LO cluster. Object-

selective LO (green oval) and face-selective OFA (red oval) can be seen to encompass 

these maps. Right: Hypothetical patterns of activity across the six LO maps to two objects 

and two faces. The category of object could be derived from the pattern of activity across 

these maps, rather than reflecting a large region responding heterogeneously. Each map 

may encode a unique visual feature, which when combined allows category-selectivity to 

emerge.   

those in LO1 and LO2. Taken together, these schematics predict that the ability to encode objects 

and faces emerges from the pattern of unique specializations for low-level visual attributes 

present within the retinotopic subdivisions of these larger category-selective areas.  

 

 

 

 

 

 

 

8.6: Future Directions 

Until very recently, the retinotopic organisation ventral of LO1 and LO2 remained largely 

uncharacterised. Indeed inspection of Figure 8.2 (taken from Wandell et al., 2007) illustrates a 

cluster of ‘non-retinotopic’ cortex ventral of LO1 and LO2 on the lateral surface of the brain (black 

arrow). Intriguingly, this area of cortex is surrounded by retinotopic maps posteriorly (V3d, V2d, 

V1), anteriorly (V5/MT), dorsally (LO1, LO2, V3A, V3B, IPS-0-4) and ventrally (V2v, V3v, V4, VO1, 

VO2).  
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The anatomical location of LO3-6 is in very close proximity to functional definitions of the 

OFA. This proximity suggests that like LO, the OFA may also contain multiple retinotopically 

organised subdivisions. Inspection of the retinotopic data acquired throughout the thesis revealed 

evidence for LO3-6 in a subset of individuals (n = 5, see appendix for delineation of LO3-6 in each 

individual). Within those individuals, the visual field representations were largely consistent with 

previous proposals (Brewer & Barton, 2011). Figure 8.3 illustrates the retinotopic organisation of 

the LO1-6 maps in a single subject. The LO3-6 maps were found to fall ventral of LO1 and LO2. 

Moving ventrally and rotating clockwise from the anterior boundary of LO2 four more hemifield 

representations are evident. The proposal suggests that LO3 begins at the anterior boundary of 

LO2 and shows a gradual progression from the lower vertical meridian to the upper vertical 

meridian. LO4 is the mirror-reverse of LO3, with the visual field representations within LO5 and 

LO6 following the same mirror-reverse configuration. Additionally, a subset of those subjects 

exhibiting evidence for LO3-6, also participated in experiments investigating higher-level visual 

representations, such as faces, places and objects. The right plot in Figure 8.3 depicts the 

correspondence between visual field maps LO3-6 and functional definitions of the OFA in a single 

subject. Intriguingly, functional definitions of the OFA (Faces > scrambled faces) show a high 

anatomical correspondence with the location of LO3-6. These data, albeit in preliminary form, 

Figure 8.2:  Known visual field maps in human cortex in 2007. Visual field maps are shown 

on medial (left) and lateral (right) views of the right hemisphere of a single subject. Multiple 

representations of the visual field are evident (see key far right). Intriguingly, there is a 

region of uncharacterised (retinotopically) cortex ventral of LO1 and LO2 (tip of black arrow). 

This region of cortex is in close proximity with functional definitions of the OFA. Since 2007, 

more visual field maps have been identified, with two maps in the V5/MT complex (TO1 & 

TO2), and two maps within the PPA (PHC1 & PHC2) Adapted from Wandell et al (2007). 
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Figure 8.3: Visual field maps LO1-6 and the OFA. A partially-inflated surface reconstruction 

of the right hemisphere of a single subject is shown (left). The hemisphere is viewed from 

behind. The black dashed box focuses on the posterior and lateral surface of the occipital 

lobe and encompasses the lateral occipital cortex (blue outline). The organisation of visual 

field maps within the LO are shown (middle). Data have been restricted to the LO cluster for 

clarity. LO1 and LO2 can be seen at the most dorsal point of the LO cluster. Moving ventrally 

from the anterior boundary of LO2, at the representation of the lower vertical meridian 

(yellow) an additional four visual field reversals can seen running clockwise. LO3 is the 

mirror-reverse of LO2 and this pattern continues through to LO6. The star indicates the 

representation of the fovea. The responses to images of faces > scrambled faces is shown 

(right). The anatomical location of this face-selective cluster is consistent with functional 

definitions of the occipital face area (OFA). The visual field boundaries (dashed white lines) 

delineating LO1-6 are overlaid onto the same anatomy. The OFA shows a high level of 

overlap with the visual field maps LO3-6. 

suggest as others have, that the OFA may be retinotopically organised. If so, the unique and 

parallel pattern of processing observed in LO1 and LO2 may extent to these additional maps. 

Characterising the reliability with which LO3-6 can be identified, coupled with a formal assessment 

of their overlap with the OFA are crucial stages for future work.   
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8.7: Conclusions 

 Through the relatively novel approach of retinotopic fMRI-guided TMS, this thesis 

has elucidated  the functional specializations present within several retinotopic subdivisions 

of human lateral occipital cortex. Across a number of visual tasks LO1, LO2 and V5/MT were 

found to exhibit specializations for orientation, shape and speed, respectively. Our cortical 

targets of interest exhibited these specializations largely independently from one another, 

providing evidence for parallel processing at the spatial scales of adjacent clusters within 

human visual cortex and at the relatively unachieved spatial scale of adjacent visual field 

maps within a cluster.  

Taken together, the data reported in this thesis suggest that the category-selectivity 

exhibited by many regions of cortex, may simply emerge from patterns of unique and low-

level visual computations performed by individual visual field maps that subdivide such 

regions. Mutual retinotopic information and parallel processing not only reduces replicated 

information across maps, which is biologically expensive to compute, but also, provides a 

common mechanism for communication between maps with different specializations.  

 

 

 

 

 

 

 

 

 

 



Appendices  

 

242 
 

Appendices 

A.1: Motion-Selective Responses in Visual Cortex 

In order to assess the reliability of our anatomical definitions of V5/MT, we analysed, 

in a subset of subjects (n = 4), the correspondence with functional definitions of V5/MT. 

These subjects participated in an fMRI motion localiser. There were two conditions: Static 

and motion. A central black fixation dot (diameter 0.3°) remained throughout the 

experiment.  Subjects viewed two sinusoidal gratings (diameter 4°), presented in a circular 

aperture. Stimuli were centred at 10° eccentricity along the horizontal meridian into both 

the left and right visual fields. A standard block design was used (12sec on/12sec off). Static 

and motion blocks were alternated. Grating stimuli were orientated at 45°. During motion 

blocks, grating stimuli drifted at 8°/sec, the direction of drift (left-right/right-left) alternated 

every 3sec. Each block was repeated 10 times. 

Structural and Functional MRI Protocols:  Multi-average, whole-head T1-weighted 

anatomical volumes were acquired for each subject (TR = 7.8ms, TE = 3ms, TI = 450ms, FOV 

= 290 x 290 x 176, matrix = 256 x 256 x 176, flipangle = 20°, 1.13 x 1.13 x 1.0mm3). 

Functional data 8 channel: Gradient recalled echo pulse sequences were used to measure 

T2* BOLD data (TR = 2000ms, TE = 30ms, FOV = 192cm, 64 x 64 matrix, 26 contiguous slices 

with 3mm slice thickness). 

fMRI data analysis: Data analysis was performed in Matlab using the mrVISTA fMRI analysis 

package, part of the Vista toolbox (www.white.stanford.edu/software/). Functional volumes 

were motion corrected using FSL’s MCFLIRT. Images were also corrected for spatial 

inhomogeneity. The EPI volumes were initially aligned to individual high-resolution 

anatomical volumes manually and subsequently refined with automated procedures. This 

procedure allowed the parameters derived from the analysis of the functional data to be 

visualised on the inflated cortical surfaces. Data were analysed using a general linear model 

(GLM) to determine regions of cortex differentially active during the motion compared to 

static blocks. Statistical maps were thresholded statistical at p = < 0.001, uncorrected. The 

mean time series across conditions within the V5/MT ROI was calculated for each subject 

along with the mean percentage signal change. 

http://www.white.stanford.edu/software/
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A.2: Object-Selective Responses in Visual Cortex 

 In order to assess the object-selective responses in LO1 and LO2 an fMRI LOC 

localiser was conducted on a subset of subjects (n = 6). There were three conditions: faces, 

objects and scrambled versions of the same stimuli. Images were all greyscale. Images from 

each condition were presented in a blocked design with ten images in each block. Each 

image was presented for 700ms, followed by 200ms fixation. Blocks were separated by a 

9sec fixation screen. Each condition was repeated four times in a counterbalanced fashion. 

Subjects were required, whilst maintaining central fixation, to detect the presence of a red-

dot that was superimposed onto some of the images.  

Structural and Functional MRI Protocols:  All imaging experiments were performed using a 

GE 3-tesla HD Excite MRI scanner at York Neuroimaging Centre at the University of York. An 

8-channel phase array head coil was used in conjunction with a birdcage, radio-frequency 

coil tuned to 127.4 MHz. A gradient-echo echoplanar imaging (EPI) sequence was used to 

collect data from 38 contiguous axial slices [time of repetition (TR) = 3, time of echo = 25 ms, 

field of view = 28 × 28 cm, matrix size = 128 × 128, slice thickness = 4 mm]. These were 

coregistered onto a T1-weighted anatomical image (1 × 1 × 1 mm) from each participant. To 

improve registrations, an additional T1-weighted image was taken in the same plane as the 

EPI slices. 

fMRI data analysis: Statistical analyses of the fMRI data were performed using FEAT 

(www.fmrib.ox.ac.uk/fsl). The initial 9sec of data from each scan were discarded to 

minimise the effects of magnetic saturation. Motion correction was followed by spatial 

smoothing (Gaussian, FWHM 6 mm) and temporal high-pass filtering (cutoff, 0.01 Hz). 

Initially, object and face-selective regions of cortex were defined separately in each 

individual subject by computing the following contrasts (1) objects > scrambled objects and 

(2) faces > scrambled faces. Statistical images were thresholded at P < 0.001 (uncorrected). 

In each individual subject, LO1 and LO2 ROIs were transformed from the grey-matter 

surface reconstructions back into each subject’s native anatomical space. The mean 

percentage signal change within LO1 and LO2 across blocks was calculated in each subject 

and averaged together. High-level analyses were also performed using FEAT. The individual 

http://www.fmrib.ox.ac.uk/fsl
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subject analyses were averaged together and registered to the MNI average brain. Statistical 

images were cluster threholded at Z = 2.3.  

A.3: Overlap between LO3-6 & the OFA 

 In order to assess the correspondence between our retinotopic definitions of LO3-6 

and the functional definitions of the OFA, we analysed in a subset of subjects (n = 5), the 

regions of cortex maximally responsive to faces. The structural and functional parameters, 

along with the stimuli employed for these experiments, were identical to the procedures 

outlined in Appendix 2. fMRI data analysis was conducted in mrVista, allowing the results 

derived from the retinotopic and face localiser experiments to be overlaid onto the same 

anatomical grey-matter surface reconstructions. Functional volumes were motion corrected 

using FSL’s MCFLIRT. Images were also corrected for spatial inhomogeneity. The EPI volumes 

were initially aligned to individual high-resolution anatomical volumes manually and 

subsequently refined with automated procedures. This procedure allowed the parameters 

derived from the analysis of the functional data to be visualised on the inflated cortical 

surfaces. Data were analysed using a general linear model (GLM) to determine regions of 

cortex differentially active during the face compared to scrambled face blocks. Statistical 

maps were thresholded statistical at p = < 0.001, uncorrected. 

Figure A.1, depicts a schematic representation of the spatial layout of LO1-6. LO1 

and LO2 are located at the most dorsal section, and run left-right. LO3-6 are located by 

rotaing about the centre of the cluster in a clockwise manner.   
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Figure A.1: Schematic representation of the spatial layout of visual field maps LO1-6. LO1 

and LO2 are located at the most superior portion of the LO cluster. Moving ventrally and 

clock-wise, four additional visual field maps are suggested to exist. LO3-6, along with LO1 

and LO2 also contain full hemifield representations of the contralateral visual field. These 

visual field maps are suggested to form around a central representation of the fovea, 

depicted by the white circle in the centre. To date the existence of these maps have not 

been reported in peer-reviewed format. 

 

 

 

 

 

 

The spatial overlap between our retinotopic definitions of LO3-6 and functional 

definitions of the OFA are plotted in Figure A.2, in each subject. In each case, a surface 

reconstruction of the right hemisphere is shown from behind. A black dashed box focuses 

on the posterior and lateral region of the occipital lobe, with the LO cluster outlined in blue. 

This section is enlarged to the right. Initially, we delineate visual field maps LO1-6 based on 

representations of the visual field. In each case, the visual field representations within these 

areas are found to contain (largely) complete hemifield representations of the contralateral 

visual field. Additionally, we project the results of the face-localiser onto the same 

anatomical surface reconstructions, including the boundaries between each visual area. In 

all cases, regions of cortex differentially responsive to face stimuli can be seen to overlap 

with one or more of the LO3-6 maps. These data, suggest that perhaps like LO, the OFA 

contains multiple maps of the visual field, which may perform unique and specialized sets of 

visual computations. 
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Figure A.2: Overlap between retinotopic definitions of LO3-6 and functional definitions of 

OFA. To the left of each plot is a partially-inflated surface reconstruction of the grey-white 

matter boundary of the right hemisphere. Hemispheres are viewed from behind. The black 

dashed box focuses on the posterior and lateral aspect of the occipital lobe. The blue outline 

within the black box highlights the LO complex, and is enlarged to the right. The middle 

column in each plot depicts the visual field representations within the LO cluster. LO1 and 

LO2 are clearly delineable in all cases. Moving ventrally from the anterior boundary of LO2, 

four more reversals in the visual field representation can be seen. These reversals rotate 

about LO1 and LO2 in a clock-wise fashion. The stars in each plot represent the location of 

foveal representations derived from eccentricity scans in the same subjects.  
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Figure A.3: Stimuli used to establish isoluminance using the minumim motion paradigm. 

Subjects viewed a sinusoidal grating modulated along the L-M axis centred at 

10°eccentricity along the horizontal meridian into the left visual field. The grating drifted from 

left-right at a constant speed (8°/sec) and was at a fixed orientation (45°). Subjects could 

modify the luminance of the red channel until the grating appeard to slow down/stop. The 

value of the red channel was then stored and reset. This procedure was repeated ten times 

per subject.  

A.4: Minimum Motion & Isoluminant Values 

Prior to the collection of psychophysical data, isoluminant thresholds were defined 

for each subject using the minimum motion paradigm (Anstis & Cavanaugh, 1983; Cavanagh, 

Tyler & Favreau, 1984). During the isoluminant threshold experiment, subjects viewed a 

sinusoidal grating presented in a circular aperture (diameter 4°) with a spatial frequency of 

2cpd (Figure A.3). The grating stimulus drifted from left-right at a constant speed (8°/sec). 

The colours of the grating were modulated sinusoidally along the L-M axis. Subjects were 

required to fixate centrally and modify the luminance of the red channel, until the grating 

was perceived to exhibit minimum/slowest motion. The value of the red channel was 

recorded and reset to its default value. This procedure was repeated 10 times for each 

subject and the mean value of the red channel was calculated and used as a measurement 

of the isoluminant value.  

 

 

 

 

 

 

 

 

 

 

Initially a baseline luminance value was defined (baselum = 0.5). Additionally, red 

and green contour values were also defined (CONR = 0.2; CONG = 0.05) At the onset, the red 

and green values from which the stimuli ranged were defined as follows; 

RedRGB = [(baselum + CONR, baselum – CONG, baselum)], in RBG values  = [0.7, 0.45, 0.5] 

GreenRGB = [(baselum - CONR, baselum + CONG, baselum)], in RBG values  = [0.3, 0.55, 0.5] 
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Table A.1: Isoluminant values derived from the minimum motion experiment. The values of 

the red and green channels are given in RGB. The stimuli presented in Chapter 7 were 

defined by using these values for each subject.  

Subjects could either increase or decrease the value of the red contour (CONR) in 

increments of 0.01, by pressing one of two buttons on the keyboard. Subjects adjusted the 

value of CONR until they perceived the grating stimulus to slow down/stop. The value of 

CONR was then stored and reset to its default value (0.2). Subjects performed ten 

repetitions and the mean CONR value was used as the isoluminant threshold value for the 

red contour.  Subsequent stimuli were then specified in terms of the CONG (0.05) and each 

subjects CONR value. For example, if a CONR value of 0.25 was defined then subsequent 

stimuli would be defined in terms of RedRGB =  [0.75, 0.45, 0.5] and GreenRGB = [0.25, 0.55, 

0.5]. The actual red and green values (RGB) presented during TMS are given for each subject 

in Table A.3. 

 

 

 

 

 

 

 

 

 

 

 

 

  Isoluminant values using minimum motion 

Subject Red Channel (RGB) Green Channel (RGB) 

S6 0.2370 0.0500 

S7 0.2290 0.0500 

S9 0.2520 0.0500 

S11 0.2610 0.0500 

S13 0.2940 0.0500 

S14 0.1960 0.0500 

S15 0.2120 0.0500 

S16 0.2970 0.0500 

S17 0.2320 0.0500 

S18 0.2370 0.0500 

S19 0.2320 0.0500 

S20 0.2230 0.0500 

Average 0.2418 0.0500 
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