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ABSTRACT

Road-transport accounts for a substantial proportion of the air quality objective pollutants

experienced within the post-industrial cityscape. Traditionally, investigations have quantified

the temporal health effects of such pollutants, yet the confined nature of European intra-

urban environments often determine spatial variations in traffic pollutant levels, which tend to

be associated with a plethora of social disparities. Recently, elements of spatial heterogeneity

have attracted the attention of governmental advisory committees, whom acknowledge a

limited understanding of spatially inclusive practices in-spite of their potentially valuable

applications (COMEAP 2006). Through considering spatial variations in children’s respiratory

health, across the model British multicultural City of Leicester (Vidal-Hall 2003), this project

aimed to address the inadequacies of temporal models in capturing Pearce et al’s (2010) wider

‘triple jeopardy’.

The projects findings indicated significant global relationships to exist between

children’s hospitalisations, social-economic-status, ethnic minorities, and PM10 road-transport

emissions within Leicester. ‘Local Indicators of Spatial Association’ and ‘Geographically

Weighted Regression’ identified important localised variations within the dataset, specifically

relating to a ‘double-burden’ of residentially experienced road-transport emissions and

deprivation effecting inner-city children’s respiratory health. Further examination of the spatial

field’s, revealed critical distance-responses to exist between respiratory health fronts and

select socio-environmental phenomenon, thus recognising the importance of exposure

gradients found in the every-day environment.

It was suggested that exposure to detrimental socio-environmental factors initiated

upper respiratory episodes, with prolonged contact impeding recovery leaving the child

vulnerable to infection, exacerbating previous complaints and potentially causing conditions of

greater severity. These findings provide a preliminary link between extreme cases of ‘Catarrhal

Child Syndrome’ and socio-environmental influences, a conclusion previously eluding medical

practitioners. Interestingly, affluent intra-urban communities tended to contribute the highest

levels of emission from private transport, whilst residentially experiencing few environmental

burdens. Thus, indicating that environmental injustices prevail across the model British

multicultural city of Leicester. To readdress such environmental imbalances, the project

suggested and explored a selection of general and community tailored transport schemes. In

conclusion, geostatistical approaches are viewed to be an effective set of tools for health and

urban planners, in the management of localised issues, which have previously been ‘filtered’

out by temporal practices.
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CHAPTER 1

INTRODUCTION

“As crude a weapon as the cave man's club, the chemical barrage has been hurled against the

fabric of life a fabric on the one hand delicate and destructible, on the other miraculously tough

and resilient, and capable of striking back in unexpected ways.” (Carson 1962/2002, p297)

“The automobile has not merely taken over the street, it has dissolved the living tissue of the

city ... Gas-filled, noisy and hazardous, our streets have become the most inhumane landscape

in the world.” (Fitch 1960, p7)

“Why should we tolerate a diet of weak poisons, a home in insipid surroundings, a circle of

acquaintances who are not quite our enemies, the noise of motors with just enough relief to

prevent insanity? Who would want to live in a world which is just not quite fatal?” (Carson

1962/2002, p12)

“By respecting nature’s limits and investing in nature’s wealth, we can protect and enhance the

environment’s ability to sustain human wellbeing. But how humans interact with nature is

intimately tied to how we interact with each other. Those who are relatively powerful and

wealthy typically gain disproportionate benefits from the economic activities that degrade the

environment, while those who are relatively powerless and poor typically bear disproportionate

costs. All else equal, wider political and economic inequalities tend to result in higher levels of

environmental harm. For this reason, efforts to safeguard the natural environment must go

hand-in-hand with efforts to achieve more equitable distributions of power and wealth in

human societies” (Boyce 2007, p267)
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1.1. MOTIVATION

Clean air is considered to be a basic requirement of human health and well-being, however air

pollution continues to pose a significant threat to health worldwide, resulting in >2 million

premature deaths each year (WHO 2006). Epidemiological studies have demonstrated that

many health problems (e.g. respiratory and cardiovascular) can be caused or worsened by

exposure to air pollution on a day-to-day basis, with the level of severity varying from

mortality in extreme cases to less serious morbidity concerns such as the increased use of

inhalers by asthmatics (HEI 2009, COMEAP 2009).

The extent of these acute health effects have predominantly been documented

through time-series analyses of sensitive populaces often including the young and elderly,

which commonly reveal a significant level of increase in hospital admissions to occur even

across exposure levels below US EPA and WHO Guidelines (Brunekreef et al 1995). For

instance, children’s respiratory hospitalisations from Australia and New Zealand’s seven largest

cities have reportedly risen by 2.3-2.5% per 10μg/m3 increase in 24-hour PM10 levels (Barnett

2005). Investigations specifically documenting the shifting temporal effects of transport

derived air pollutants within an urban setting, also report a series of immediate and

detrimental impacts towards health. For example, Fusco et al (2001) found admissions for

acute respiratory infections in the general population (lag 0 days, +4.0%) and asthma among

children (lag 1 day, +10.7%) to occur close to episodes of higher pollution.

However, whilst ambient levels of PM10 across Southern California were identified to

increase the risk of bronchitic symptoms occurring in children with a history of asthma (Odds

Ratio [OR] 1.4 per 19μg/m3), no associations were found amongst children without predating

respiratory conditions, at these pollutant levels (McConnell et al 1999). This highlights the

difficulties enforcement agencies face in setting standards that protect public health, as critical

thresholds for certain population groups are conceivably non-existent. Still, there remains a

requirement for a continued development of the literature surrounding sensitive populaces

(extreme risk groups), to allow for the incorporation of adequate safety margins into state

funded multilocational valuations of the wider populace.

Interestingly, an investigation of General Practitioner (GP) consultations for upper

respiratory conditions in relation to extreme shifts in pollutant concentrations across London

(10-90th percentile change), identified the presence of pollutant specific age structuring. For

the multi-pollutant model, consultations of children, adult and elderly patients were observed

to respectively alter by 3.8%, 2.8% and 4.6% per 30μg/m3 rise in PM10, whereas a 1.5%, 2.7%

and 4.3% change was attributed to a 25μg/m3 increase in NO2 (Hajat et al 2002). Whilst the

various cocktail of pollutants unanimously affected children, the effects of gaseous pollutants
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were of a reduced nature; whereas the elderly populace persistently exhibited raised levels of

environmental sensitivity. However the viability of examining adult let alone elderly persons

should be questioned, when considering that a general deterioration of health occurs with age,

and that preceding (and often unaccountable) environmental events or lifestyle choices are

the potential underlying cause for such ailments.

This problematic phenomenon of mortality/morbidity displacement known as

‘Harvesting’, defines scenarios where a substantial proportion of cases occur only in those of

frail health, to whom it would have happened in a few days anyway. Whilst crudely controlled

for in multilocational enquires, insufficient historic databases presently exist to minimise any

local false positives accredited to ‘harvesting’ in a significant manner. For local inquires, one

would therefore recommend that epidemiological focus be placed on the young, whom (a)

offer the most viable response out of all sensitive groups as historical socio-environmental

events are rare; and (b) present the required conditions in which respiratory responses initially

materialise.

Whilst city specific studies have yielded important information to assist with the

quantification of acute respiratory responses, select authors focusing on the sensitivity of

these results have shown how different temporal techniques allow for various interpretations

of the responses magnitude (Smith et al 2000). Thus, the case for tighter regulations cannot be

based solely on studies of this nature, and as a consequence of such statistical uncertainties,

the cornerstone of all regulatory charters primarily stem from a select few large-scale research

efforts.

Two prospective cohort studies, known as the ‘Six Cities Study’ (Dockery et al 1993)

and the ‘American Cancer Society (ACS) Study’ (Pope et al 1995), represent the first of these

epidemiology studies to pool together information from multiple urban sites, in their

quantification of annual mortality responses attributed to fine particulates. In their study of

8,111 adults, Dockery et al (1993) observed a 26% difference in adjusted mortality rates

between those most and least polluted urban municipalities, whereas Pope et al (1995)

encountered a separation of 18% between the two extremes in their study of 295,223 adults.

Initially, medical records from both enquiries were kept private to maintain participant

confidentiality, yet this decision proved controversial, with select parties insisting that any data

generated using federal funding should be made public. In 1997, the US Environmental

Protection Agency (EPA) used these findings to uphold PM10 air quality standards, further

igniting levels of public scrutiny, so much so that both parties concerned requested the Health

Effects Institute (HEI) make an independent reanalysis. Upon validating the quality of the

original cohort datasets and successfully replicating the original outputs of the ‘Cox Models’,
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the reanalysis Team conducted a series of investigations to assess their analytical robustness.

For the ‘Six Cities Study’, hazard models which now extended the number of covariates,

incorporated temporal changes in secondary health influences (i.e. smoking and BMI) and

accounted for population mobility, respectively provided relative risks (RR) for PM2.5 of 1.28,

1.32 and 1.23 (HEI 2000); similar minor discrepancies were also observed from the ACS studies

original outputs.

Interestingly, the nationwide distribution of the 50 municipalities from the ACS dataset

also legitimised the application of spatial analytical methods, to validate from another

statistical tangent and to shed light on the viability of such emerging methodologies. In these

models, pollutant covariates were replaced by an indicator function for each city (avoiding

assumptions of independence), with a second stage then incorporating ecological and spatial

considerations. The base model achieved validation of the original outputs, whilst the inclusion

of spatial independence at a regional level resulted in a reduced RR of 1.16 (HEI 2000).

Interestingly, Pope et al (1995) had also investigated the effects of pollutants on mortality with

a second environmental tracer (sulphate), across a wider geographic sample (552,138 adults in

154 US cities), allowing for a more detailed spatial reanalysis. Sulphate base models also

validated those original outputs (RR=1.17), with the inclusion of spatial independence at a

regional, and filtered provincial level respectively providing RR values of 1.19 and 1.09 (HEI

2000). Spatial analytic methods therefore identified associations between mortality and

pollutant tracers to remain, but at a noticeably diminished level. Clearly, such evidence points

towards a need for future epidemiological studies to either filter or explore the spatial

relationships inherently present within datasets of a geographic nature, a process seldom

achieved.

To date, perhaps the most influential pooling of urban hospitalisation estimates, in

terms of short-term fluctuations in air pollutant concentrations, has been achieved within the

framework of the National Morbidity and Mortality Air Pollution Study (NMMAPS). However,

soon after its initial publication the projects thresholds were shrouded in controversy, as

sensitivity analyses detected imprecise standard errors and an upward bias of effect estimates;

produced by an insufficient default convergence criteria for Generalized Additive Models

(GAMs) in S-Plus Ver3.4 (Dominici et al 2002). To combat these issues identical GAM functions

with stricter convergence criteria were reapplied to the dataset, in addition to fully parametric

solutions, consisting of Generalized Linear Models (GLMs) with quantile fitted natural cubic

splines; which favourably provide unbiased estimates and suitable converge at the cost of a

more rigid account of fluctuating climatic influences.  Originally, the estimated effect of

particulates on mortality from non-external causes, across 90 US cities, was associated with a
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0.41% increase per 10μg/m3 of PM10; yet in the reanalysis under more stringent GAMs the

estimate fell to 0.27%, and with GLMs, the effect reduced even further to 0.21% (Dominici et al

2003). Prior to these findings, GAMs were widely used in air pollution epidemiology often with

the same lackadaisical selection of model characteristics, to the extent that a revaluation of

parallel European projects became necessary.

In the appraisal of ‘The Air Pollution and Health: A European Approach 2’ (APHEA2)

projects inspection of particulate matter on hospitalisations across 29 European cities, effect

estimates under different criteria appeared generally stable, reconfirming the projects central

findings and validating its robust framework.  Here, children’s asthma induced hospitalisations

were respectively associated with a 1.2% and 1.5% increase per 10μg/m3 of PM10 under the

original and more stringent GAM schemes; meanwhile hospitalisations of the entire

respiratory set made by the elderly were respectively associated with proliferations of 0.9%

and 1.0% (Atkinson et al 2003). Still, this only acts to highlight our recent overdependence on

studies with a temporal framework, which is of particular concern when evaluating an

environmental phenomenon whose spatial parameters are of equal important in its

distribution. To quell such discontent, it would appear necessary for researchers to conduct

small-scale studies assessing the viability of existing spatial datasets and their associated

techniques, prior to contemplating a large-scale project.

A recent 2004 Eurobarometer survey revealed air pollution to be the greatest

environmental concern for 45% of European citizens, which is of little surprise considering its

accountability for 370,000 premature deaths and an overall economic cost on health of 276-

790 billion euros each annum across the EU (EC 2005). Whilst the post-industrial city has

observed a rapid decline in airborne chemical concentrations with the out-of-town relocation

of heavy industry, improvements in urban air quality soon appeared offset through a rise in

unrestricted mobility, provided by the internal-combustion engine. At present, particulate

matter (PM) is the most serious environmental health risk in the EU, with an estimated 21 % of

the urban population exposed to concentrations higher than the EU limit (40µg/m3 24-hour

mean) designed to safeguard health (EC 2012). Furthermore, the World Health Organisation

recently ranked urban air pollution as the 13th highest contributor to global deaths (WHO,

2002), thus documenting the immediate importance of mitigating the detrimental impacts of

environmental exposures on human welfare.

Extensive epidemiological research (of a temporal nature) drawn from across the UK,

USA and Continental Europe has suggested an additional 0.75% of premature deaths and

0.80% of respiratory hospitalisations are caused per 10µg/m3 increment in (PM10)particulate

matter ≤10μm in aerodynamic diameter (COMEAP 1998). Across the UK, anthropogenic
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particulate matter air pollution is thought to annually contribute to approximately 29,000

deaths (COMEAP 2010). Meanwhile, the latest official government figures from within the UK,

reveal personal exposure to air pollutants as accountable for up to 50,000 premature deaths

per year, in addition to reducing the life expectancy of the general population by an average of

7-8months (Environmental Audit Committee, 2010). Combining these figures the importance

of PM10 is revealed, direct influencing 58% of health outcomes, in addition to acting as a tracer

pollutant for the vast cocktail of other detrimental pollutants emitted from combustion

sources.

In recent decades various forms of road-transportation have been identified as the

most significant emitter of pollutants, particularly in the urban environment, where

transportation contributes to over half of the total emissions of NO2 and PM10 (DEFRA 2001,

Harrison et al 2001).  What’s more, a UK Government panel of experts have shown that when

particulate levels exceed health standards (50µg/m3), road traffic’s contribution is typically in

the range of 75-84% (QUARG 1996). Across the 25 EU Member States, the adverse health risk

from particulates close to major roads is substantially above that of other urban sources, with

6.4% of EU citizens exposed to pollution >1% above the PM10 limit directly caused by road-

transport, and 13.7% of the EU population living ≤300m from a major road (EC 2006). Logically

one would therefore argue for road transportation as a considerable burden of influence on

respiratory health problems within the urban environment. Thus, it should be of necessity for

both health and transport planners to further their understanding of such issues with the

upmost importance, especially considering the forecasts of a continuously growing traffic fleet

volume occurring across a global scale.

1.2. PROPOSED AREA OF RESEARCH

1.2.1. HEALTH EFFECTS OF TRAFFIC POLLUTANTS

Currently considerable efforts are being made by manufactures to reduce vehicle emissions at

the source, and by scientists to develop new technology to exploit newer and cleaner fuels

including electric and hydrogen fuel cells. Existing levels of vehicular emissions are regulated

through Euro 3, 4 and 5 vehicle’s emissions standards, which have brought about drastic

reductions in traffic emissions levels (OECD 2003). However, emissions are predicted to

increase due to increased traffic growth (DfT 1997). A hydrogen economy holds the promise of

reducing such emissions to a minimum, but this is not likely to have a considerable market

share until 2035 (Jacobson et al, 2005). Reducing traffic emissions through traffic management
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is therefore one of the key issues to be addressed in developing a sustainable, environment

friendly urban transport system (DfT, 2004).

Such issues are starting to be addressed through legislation in the form of the Traffic

Management Act (TNA 2004), which imposes a duty on local authorities to manage their traffic

networks more efficiently and reduce traffic emissions. However the implementation of such

strategies require large-scale data management with real time demands and computationally

intensive modelling tools for evaluating traffic and air pollution levels. Furthermore, such tools

necessitate a data platform for the decision makers to identify solutions resulting in both

traffic network efficiency and air quality management. Subsequently, both researchers and

planners are starting to adopt and implement the use of geographic information system (GIS)

tools, in order to view and interpret the vast amount of data through a more accessible visual

format, which may be used in conjunction with a detailed statistical analysis.

Increasingly, it has come to the attention of researchers and policy makers alike that

the distribution of exposure to air pollution is not equitable, but this inequity has until recently

received little formal epidemiologic attention (Naess et al 2007). Traditionally, time-based

based epidemiological studies of air pollution have treated socioeconomic positioning as a

cofounding influence, removed by any available indicators in an attempt to achieve burden

estimates independent of the social environment. Yet the confined nature of European intra-

urban environments often determines those spatial variations in traffic pollutant levels, which

tend to be closely associated with a plethora of social disparities. For instance, across England

substantial demographic disparities are reported in relation to PM10 exposure, with 20.3% of

the most deprived decile residing within locations experiencing the highest 10% of PM10

concentrations, compared to only 2.0% of the country’s most affluent decile experiencing such

burdens (DEFRA 2006). The importance of such socio-environmental interactions are detailed

within Environmental Justice (EJ) research, which consistently report a ‘double-burden’ of

deprivation and air pollutant exposure as a key explanatory factor in defining health disparities

(Crouse et al 2009, Kingham et al 2007, Naess et al 2007, Namdeo & Stringer 2008, Wheeler &

Ben-Shlomo 2005). Within the UK, this relationship between deprivation and exposure would

appear most prolific across the 0-15 year age group, with population-weighted PM10 exposures

per child of 29.1µg/m3 and 22.8µg/m3 experience by England’s most deprived and affluent

demographics respectively (DEFRA 2006).

Although the environmental justice movement concerning air pollution has received

increased attention in recent years, it should be noted that a majority of the early literature

has tended to focus around the inequalities associated with industrial pollutants, particularly

within a North American context (Morello-Frosch et al 2001, Hipp & Lakon 2010). Traditionally,



- CHAPTER 1 -

8

EJ research has also faced a plethora of challenges in causally associating environmental

pollutants with adverse health outcomes, yielded through the absence of standardised

assessment techniques and a tendency of measuring exposure via proximity to source rather

than through actual pollutant distributions. Furthermore, the quantitative exploration of EJ

matters through conventional multivariate regression is prone to obscure local variations in

models of environmental equity. This is of particular concern, when considering that EJ is an

explicitly spatial problem, concerning geographic elements rarely distributed in a uniform

manner.

Thus far, a single study has applied appropriate spatial models that globally examine

the adverse health risks from automobiles within a metropolitan area (Chakraborty 2009).

Gilbert & Chakraborty (2011), also present the only EJ study to assess the local influence of

social and environmental elements on areal health using a technique known as Geographically

Weighted Regression (GWR). However in both circumstances areal health, in the form of

cancer risk, was derived from Toxic Release Inventory coefficients combined with modelled

emission rates; a method which presumes the detrimental effect toxins have within the study

region. To avoid biased health outcomes future research should aim to use ground-truthed

health datasets, comprising of conditions preferably recorded by medical professionals.

Furthermore through mapping health, social and environmental intensities over time, it would

be possible for local authorities to evaluate the wider geographic equity of implemented local

transport and air quality action plans, which could then be adjusted accordingly.

1.2.2 POLLUTER PAYS ENVIRONMENTAL JUSTICE RESEARCH

Mitchell & Dorling’s (2003) paper titled ‘An environmental justice analysis of British air quality’,

presents the results of the first national study of air quality in Britain to consider the

implications of pollutant distribution across over ten thousand local communities in terms of

potential environmental injustice. Of particular interest is the way in which the paper attempts

to tackle topical issues regarding the ‘Polluter Pays Principles’ (PPP), by investigating the role

of personal vehicle emissions in the air-quality-poverty relationship via the use of ‘static

models’ (actual population movements were not unaccounted for).

The subsequent data analysis consisted of simple plots of NOx emissions created by (Static

Model) and experienced within community Wards (National Atmospheric Emissions Inventory

1998 levels) in relation to poverty (Breadline Britain Index), grouped by deciles. Significant

conclusions drawn from this project included:
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I. Those most affluent wards appear to be the least polluted.

II. Poor and affluent areas both have the same polluting potential, with outputs from a

higher volume of vehicles in affluent areas existing at a rate similar to those emissions

emitted by the smaller fleet of aged vehicles typically found within deprived areas.

Subsequently one could possibly conclude that a ‘Polluter Pays’ scheme already exists,

with the poor contributing the most emissions per car.

III. Strong inequality does occur with respect to NOx in Britain, with deprived groups

experiencing elevated burdens at their place of residence. This would imply that

certain communities are not paying for their fair share of environmental contributions.

These findings would suggest that strong socio-environmental inequalities prevail throughout

modern Britain, igniting the previously highlighted need for ethical groundwork prior to the

implementation of future, traffic management schemes. Whilst Mitchell & Dorling (2003)

establish this tangent of EJ research at a local rather than international level, further research

is required. For instance, localised PPP issues have yet to be explored within the context of

health outcomes, or across smaller intra-urban communities with highly variable

demographics. In particular, intra-urban areas are thought to represent some of the most

extreme disparities in socio-environmental attributes, and as such it is conceivable that their

responses were previously smoothed out by this broader spatial analysis. In exploring whether

these conclusions uphold across a complex urban environment, this project intends to develop

upon Mitchell & Dorling’s (2003) initial framework via a number of methodological

improvements consisting of:

I. A more realistic measurement of community contributions to the pollution problem

are to be achieved through ‘Dynamic’ vehicle emission models, considering real-world

population movements; thus allowing for a truer account of census area emissions.

II. A direct comparison of emissions created with experienced National Atmospheric

Emission Inventory (NAEI) road-transport emissions, rather than overall air pollution

concentrations; so as to avoid the contributions from other emission and non-local

transport sources.



- CHAPTER 1 -

10

III. An examination of the ‘Polluter Pays Principles’ in greater detail through:

 Considering the relationships behind Pearce et al’s (2010) ‘triple jeopardy’ of

those wider social, health and environmental inequalities.

 The incorporation of spatial techniques to hold communities to account, and

to discover whether those most affected contribute to their own

environmental downfall.

 A wider examination of environmental attitudes, including the uptake of public

and ‘green’ transportation modes, to see whether an environmental balance

can be achieved.

Upon conducting such procedures, this body of research as a whole, can confidently say that it

has geographically located and measured health effects and interactions of those vulnerable

intra-urban populations, whilst distinctively holding select communities to account in an

environmental context. It is intended that this project will display and validate the application

of emerging spatial techniques within epidemiological fields, which in recent times have seen

an over-reliance on temporal techniques.

1.3. RESEARCH AIMS

The thesis primarily intends to assess the burdens associated with transport derived air

pollutants, across diverging sub-city communities within the context of Environmental Justice

(EJ). Subsequently the aims of this research are as follows:

I. To consider spatial variations in respiratory health, establishing their affiliations with

airborne pollutants emitted from mobile sources, across the City of Leicester’s high-

resolution Lower Level Super Output Area (LLSOA) census blocks.

II. To investigate how spatial variations in social-ethnic status relate to and interact with

airborne pollutants emitted from mobile sources, across the model British

multicultural City of Leicester. Thus, understanding the failure of temporal models in

capturing Pearce et al’s (2010) ‘triple jeopardy’, within a setting where environmental

injustices are considered minimalistic.
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III. To dynamically assess the mobile polluting potentials of sub-city population groups, in

order to ascertain whether those contributing towards the environmental degradation

of the city, experience proportional environmental, social and or health burdens.

1.4. RESEARCH OBJECTIVES

As such, the objectives and targets of this research project are:

1. To determine whether respiratory hospitalisations geographically correlate to areas

experiencing elevated annual air pollution levels, through a cluster analysis of mapped

NAEI road transport emissions and NHS hospital records.

2. To determine whether ethnic minorities and/or deprived communities reside within

locations experiencing reduced levels of air quality, through a cluster analysis of

mapped NAEI road transport emissions with the various UK Census datasets.

3. To construct spatially suitable models for respiratory related hospital admissions, in

order to ascertain the global relationship and significance of certain socio-

environmental forces (i.e. Multilevel Modelling).

4. To construct spatially suitable models for respiratory related hospital admissions, in

order to ascertain the local relationships and significance of certain socio-

environmental forces (i.e. Geographically Weighted Regression Modelling)

5. To investigate whether spatial relationships exist between relatively minor and severe

respiratory conditions, and if so, then to what extent do socio-environmental

mechanisms play in the decline of respiratory health.

6. To detect, describe and analyse the existence of geographic boundaries between air

pollutants, hospital admissions, deprivation and ethnicity in order to investigate

whether multiple burdens exist with respect to environmental exposures.

7. To dynamically acquire emission rates for personal modes of transport across each of

Leicester’s Lower Level Super Output Areas (LLSOA’s), through the use of workforce



- CHAPTER 1 -

12

population movement Origin-Destination matrices combined with DVLA citations of

vehicle ownership.

8. To assess whether significant transport related pollutant levels are caused by local

communities or through the movement of external social groups residing within other

sectors of the city.

9. To assess whether social groups creating the greatest levels of transport emissions

experience equally high environmental and or health burdens. Thus in effect

examining whether either a traditional environmental or health based Polluter Pays

scheme is already in operation. If this is not the case, a number of policy and personal

schemes are to be considered with the intention to redress those imbalances.

1.5. THESIS OUTLINE

In total, this thesis consists of eight chapters. Following on from this overview of the research

project, Chapter 2 provides an in-depth exploration of relevant background information, while

Chapter 3 describes the datasets and methods selected to conduct a spatial analysis. The

results of the spatial analyses are presented within Chapters 4, 5, 6 and 7, with the overall

project conclusions and Leicester’s local plan of action discussed in Chapter 8.

Chapter 2 opens with a brief historical overview of air pollution within the urban

environment, depicting the decline in industrial operations and establishment of personal

modes of mechanical transportation, whose emissions currently pose the greatest threats

towards human health. Focus is placed on particulates formed as a result of incomplete

combustion, exploring how the respirable fraction may bypass respiratory defence

mechanisms, to directly agitate the hosts airways and lungs. Emerging literature, into the

indirect influence prolonged exposure places on host resistance to infections, will also be

considered as a function of prolonging and/or exacerbating preceding conditions. This will be

followed by a review of the recent temporal epidemiological evidence linking particulates to

public health amongst children, highlighting the limited level of research into acute respiratory

infections; despite such ailments acting as the most common form of respiratory illness during

childhood. The final section of the literature review will examine the environmental injustices

of air pollution, through an appraisal of international and UK based EJ research, with specific

focus placed on the use (or lack) of spatially appropriate procedures.
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Chapter 3 initially provides the reader with a geodemographic account of the study

area, the City of Leicester, focusing on why its multicultural assets are appropriate for an in-

depth EJ enquiry. This chapter also provides information regarding the collection and

preparation of the geocoded datasets used within this enquiry. After which, a general

overview of the studies designs and selection of appropriate quantitative spatial procedures

will be discussed, citing the use and recommendation of such applications from the literature

where necessary. Pattern recognition strategies are presented as a means of capturing the

magnitude and mutual location of spatial distributions, whose common spatial transitions and

gradients may be further deliberated through the use of overlap statistics. Global regression

procedures summarising interactions across the study area as a whole, include a traditional

ordinary least squares (OLS) model with no spatial features (base), in addition to multilevel

procedures which entail the removal of broad spatial structures. Meanwhile, localised

regression procedures capturing and incorporating multiple spatial elements within model

estimates are to be realised through Geographically Weighted Regression (GWR) modelling.

Chapter 4 concentrates on the first stage of this research project, examining the

beneficial impacts, and or, burdens placed on a child’s overall respiratory health by influential

socio-environmental factors; realised in terms of hospitalisations across the entire respiratory

set (ICD-10: J00-99). Here, Global and Local Indicators of Spatial Autocorrelation (GISA, LISA)

statistically describe and illustrate the spatial nature socio-environmental influences and

annual average hospitalisation rates for children residing within Leicester UA from 2000-09.

Spatially appropriate modelling procedures, accounting for underlying geographical structures

within the datasets, are then applied to define the extent to which socio-environmental

variables of interest individually influenced respiratory health during childhood at global and

local scales.

Chapter 5 expands on these initial findings, by exploring whether spatial relationships

exist between specific relatively minor and severe respiratory conditions, and if so, what is the

extent to which socio-environmental mechanisms play in the decline of a child’s respiratory

health. Specific focus is to be placed upon respiratory infections of the upper (ICD-10: J00-06)

and lower (ICD-10: J20-22) respiratory tract, which are recognised as the primary cause of

children’s respiratory related complaints (58.52%) and portray  a progressive decline in

respiratory health. Here, spatially appropriate modelling procedures define the extent to

which socio-environmental variables of interest individually influence relatively minor and

severe respiratory complaints during childhood via shared pathways.

Chapter 6 moves onto the second stage of the research project, which entails the

examination of spatial fields, in-order to establish whether critical distance-response



- CHAPTER 1 -

14

connections exist between respiratory and socio-environmental phenomenon. Rather than

conducting a traditional inspection of health issues across artificially created buffers, the

analyses is to be achieved with boundary statistics, describing naturally occurring shifts of

magnitude in socio-environmental and health outcomes across the wider urban area. To date,

distance-threshold techniques have solely explored the response environmental attributes,

without considering the combined influence of additional social burdens.

Chapter 7 documents the third and final stage of the research project, which aims to

advance our understanding of social, health and environmental injustices across the post-

industrial cityscape, through developing upon Mitchell & Dorling’s (2003) localised Polluter-

Pays Principles. Here, levels of environmental accountability were measured in relation to

community mobility and the uptake of various transportation modes, to assess the extent to

which one pays for ones actions. In locating those most vulnerable, and holding specific

communities to account, one intends to assist the decision making process of future transport

policy makers; be that through a targeted incentive of environmentally ‘friendly’

transportation modes, or through suggesting a set of wider schemes to redress Leicester’s

environmental imbalances.

Finally, Chapter 8 presents the conclusions of the research project. Upon conducting

the procedures set out in the previous chapters, this body of research as a whole can

confidently announce that it has geographically located and measured (in a numerical and

proximal form) those vulnerable intra-urban populations, whilst distinctively holding select

communities to account in an environmental context. A partial solution is also offered to the

prescribed problems of a medium sized post-industrial cityscape, where the adoption of

drastic transportation schemes would likely impede a city’s financial standing.

Whilst demonstrating the credibility of current spatial techniques within the fields of

epidemiology and environmental justice, many limitations still remain. Certainly, temporal

techniques fail to capture fleeting social-environmental interactions and are unable to locate

those most at risk, yet they are able to display the sensitive nature in which environmental and

climatic forces operate. As such, the project highlights a need for greater integration between

the two approaches, which may only be found through the continued gathering of and

construction of new databases. Despite addressing local environmental issues and opening up

new avenues within the debate of social justice, this project should be primarily viewed as a

benchmark for impending socioecological research of a spatial nature, until validated across

multiple equally complex cityscapes. As such, several possible avenues for supplementary and

additional research are also discussed here.
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CHAPTER 2

LITERATURE REVIEW

OVERVIEW

Through conducting a multidisciplinary review this chapter intends to provide the reader with

an adequate understanding of the urban inequalities in respiratory health, attributed to

environmental exposures specific to road-transportation. The chapter opens with a brief

historical overview of air pollution within the urban environment, depicting the decline in

industrial operations and its offset by personal modes of mechanical transportation.

Subsequent focus is placed on particulates formed from incomplete combustion, exploring

how the respirable fraction may bypass respiratory defence mechanisms, to directly agitate

the host’s airways and indirectly cause immunosuppressive responses, theoretically prolonging

and/or exacerbating preceding conditions.

An overview of the recent temporal epidemiological evidence, linking particulates to

public health concerns amongst children, highlights the limited level of research into acute

respiratory infections; despite such ailments acting as the most common form of respiratory

illness during childhood. Finally the chapter concludes with an examination of the

environmental injustices of air pollution, with specific focus placed on the use (or lack) of

spatially appropriate procedures. This is of particular concern, considering that environmental

justice is an explicitly spatial problem, involving geographic elements rarely distributed in a

uniform manner. Through conducting this review, one intends to define the gaps present

within the literature, further clarifying the focus provided by the projects aims and objectives.
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2.1. URBAN AIR POLLUTION

2.1.1. A RECENT HISTORY OF URBAN AIR POLLUTION

A variety of chemicals are emitted into the air from both natural and anthropogenic sources on

a daily basis, with the later potentially working to unbalance the fine-tuned atmospheric cycles

operating on planet earth. Nevertheless, the formation of anthropogenic air pollution has only

rapidly increased in our relatively recent history since the forthcoming of industrialisation. A

period in which western civilisations powered by the extensive use of coal, observed rapid

levels of prosperity and social change, accompanied by equally intense deteriorations in

environmental and societal health. Yet, these industrial processes were soon accompanied by

mounting concerns of the gentry, initially addressed within the UK through the ‘Railways

Clauses Consolidation Act’ (1845), legislating for locomotive engines to consume their own

smoke; similar rudimentary constraints were soon applied to factory furnaces in ‘The Town

Improvement Clauses Act’ (1847).

By the 1920’s, technological strides including the electrification of many urban railway

terminals and factories, witnessed a considerable transfer of urban pollutants to a few point

sources; yet public attitudes and an inadequate understanding of airborne by-products,

impeded further legislative change (Boubel et al 1994). A heightened state of public concern

was to arrive only in response to early industrial episodes, like the Muese Valley Incident of

1930 and Great London Smog Disaster of 1952, triggered by a combination of winter weather

and poor practices. In the United Kingdom, the London smog of December 1952 proved a

turning point in the history of air pollution and attempts at its control. A vast quantity of

research into this episode attributes a rise in daily average concentrations of sulphur dioxide

(≤3500 µg/m3) and smoke levels (4000 µg/m3), to have caused 4,000-12,000 excess deaths in

the period immediately following the event (Appendix A1); undoubtedly highlighting the

associations between a deterioration in public health with increased pollutant concentrations.

Whilst all age groups were affected, infants and the elderly were found to be most at risk, with

the main causes of death occurring in response to respiratory and cardiac disease.

Because of such incidents, major efforts have been made to reduce air pollution within

the European Region in recent decades through legislation, primarily focusing on tackling the

problem of industrial pollutants. Most significantly, ‘The Clean Air Act’ (1956), introduced

'smoke control areas' in some towns and cities across the UK, in direct response to the London

smog of 1952. This legislation included the relocation of power stations away from densely

populated areas, in addition to raising the height of industrial stacks, to mitigate future risks of

fumigation under select climatic conditions. Residential properties were also encouraged to

obtain their sources of heat from cleaner forms of coal, and alternative energy sources (i.e. gas



- CHAPTER 2 -

17

and electricity supplies). In recent years, European air quality directives adopted by the

European Commission (EC), have also placed legal obligation on member states to achieve set

limit values for individual pollutants by specified dates. As part of this scheme, member states,

including the UK, are required to undertake air quality assessments, reporting their findings to

the EC on an annual basis. The first European directives date back to 1980, in the setting of

ambient air quality limits for sulphur dioxide and suspended particles (EC 1980).

Through strict legislation, industrial emissions declined significantly across urban

areas, with the most pronounced effect observed for sulphur dioxide (SO2), which reduced by

approximately 50% in the period 1980-1995 (WHO 2000). Within the UK, levels of smoke,

measured by the blackness of filters through which air passed, were also found to decline from

175µg/m3 in 1958 to 75 µg/m3 in 1968 (Royal Commission 1971). However unfortunately, the

reduction of smoke and SO2 levels within the city brought about by the Clean Air Act (1956)

and its surrounding legislation, was soon offset by an increase in CO, NOx, PM10 (constructed

from PAH, PAN, Pb, Br, Cl) and O3 concentrations, as a direct result of the ever-increasing

volume of motor-vehicles (Alloway & Ayres 1997). This phenomenon is best observed through

annual motor-vehicle sales within the US, recorded at 4,192 in 1900; 4,265,830 in 1925; and

8,003,058 in 1950, a figure from which annual sale figures have seldom deviated (Boubel et al

1994). Whilst Europe was experiencing a decline in the intensity and frequency of industrial

driven ‘winter smog’ events, stateside cities typically of a subtropical temperament, began to

experience photochemical episodes largely attributed to the rise of the automobile, circa 1950.

Photochemical smog is a unique type of air pollution, in which secondary pollutants are

formed via sunlight-driven oxidation reactions, converting NOx into O3, with reactive

hydrocarbons and NOx collectively resulting in the formation of peroxyacetyl nitrate (PAN).

Both O3 and PAN are strong oxidants, of considerable phytotoxic risk, with the potential to

aggravate the mammalian respiratory tract.

In particular, the effects of photochemical episodes were heavily documented

throughout California's South Coast Air Basin (SoCAB), with persons often complaining of

headaches and irritations of the eyes, throat and chest (minor restricted activity day [MRAD]).

For instance, ambient exposure to ‘Los Angeles Smog’ (0.165ppm O3, 227µg/m3 total

suspended particulates [TSP]) was observed to decrease the FVC (Forced Vital Capacity) of 60

non-asthmatic exercising adults by 3.45% (Avol et al 1983). In-fact, major health incidents

(RAD) appeared almost exclusive to persons with existing conditions, with smog days

accounting for a 14% variation in the number of asthma attacks (Schoettlin & Landau 1961).

Nevertheless, a 1989 regional benefit assessment of California’s SoCAB, recorded up to 17 days

per year in which O3 levels exceeded critical standards (Max 1hr >0.12ppm), with PM10

exposures associated with such events (Max 24hr >150µg/m3) increasing the risk of death to
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1/10,000 (Hall et al 1992). The annual economic value of avoiding the health impacts of O3 was

estimated at $2.7 billion (MRAD, RAD), with the impact of PM10 priced at $6.4 billion (RAD,

mortality); which in total equated to an annual cost of $750 per person (Hall et al 1992).

Whilst markedly beneath pollutant levels of classic pollutant episodes, such research

identifies the continued threat pollutants pose to one’s wellbeing via monetary contexts,

which naively demonstrate the newfound importance of the individual in post-industrial

societies. Still exploring health in a financial term highlights the prominent role our personal

actions would now play in the destruction of one’s local environment, the intensity of which

remains largely fashioned by natural climatic forces. In particular, the respirable fraction of

particulate matter (PM10) appeared key to this new type of air pollution, primarily derived from

the combustion of oil based vehicular fuels. Not only were increments of PM10 strongly linked

to a constellation of systemic health effects, unlike other pollutants these associations

appeared robust to weather variations, with discernible effects present even when other

pollutants such as SO2, O3 or acid aerosols are virtually absent (Bates 1999). What’s more,

extensive epidemiological research drawn from across the UK, USA and Continental Europe,

identify a prevalence of health concerns even at ambient concentrations, with current

guidelines suggesting a 0.80% rise in respiratory hospitalisations per 10µg/m3 of PM10

(COMEAP 1998). In contrast, those impacts of the second most crucial element of vehicular

emissions, ground-level O3, appear focused towards vegetation; reportedly causing over 30%

losses in certain commercial species across California's SoCAB (Grantz & Shrestha 2005). Thus,

it is of little surprise that the pollutants of most concern today, within the EU, are ground-level

O3 and particulate matter (EC 2005).

To combat developing environmental nuances attributed to the motor-vehicle, the

initial 1980 European Commission Council directives on ambient air quality were soon

extended, to incorporate nitrogen dioxide (EC 1985a). Critically around this time, the EU also

introduced environmental specifications applicable to fuels, prohibit the marketing of leaded

petrol within all member states by 2000 (EC 1985b); thus eliminating a particularly toxic

fraction of PM10. Later, in 1999 air quality limit values were revised and tightened, with further

regulation occurring more recently in 2008 (EC 1999, EC 2008). In particular, the

implementation of Euro Standards on motor vehicles during the 1990’s has played a key role in

the reduction of directive pollutants. For example, a petrol-car of Euro IV Standard (2006)

emits levels of CO, NOx and Hydrocarbons at rates approximately 96%, 97% and 98%

respectively lower than a Pre-Euro Standard (>1990) vehicle (OECD 2003). However, even with

these constructive reductions in air pollutants driven through ever-evolving legislation, trends

in concentrations of urban air pollutants related to mobile sources (including particulates and

nitrogen dioxides) remain less clear, as vehicle fleets increase. An issue highlighted by only 2
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out of the 27 EU Member States achieving PM10 and NO2 limits across urban areas, in time for

their respective deadlines of 2005 and 2010 (EC 2008). Still, findings from recent epidemiology

studies have foreseen these pollutants to constitute a risk to human health even at low

concentrations, with some pollutants potentially yielding virtually non-existent safety

thresholds. Thus, there remains a need for continued environmental scrutiny, particularly

when adequate attention is yet to be paid directly towards road-transport, the primary source

of pollution within the post-industrial cityscape.

2.1.2. AN OVERVIEW OF THE MOTOR-VEHICLES DIRECT CONTRIBUTION

A vast majority of the transport sector with a few omissions are responsible for the release of a

variety of air pollutants, derived from processes involving the combustion of liquid fossil fuels.

Consequently, a majority of transport sources emit similar pollutants, making it extremely

difficult to distinguish contributions from specific forms of transportation, especially in regions

where integrated transport systems are within close proximity. However, it is feasible to

allocate emissions proportionately in relation to concentrations and composition, which varies

according to fuel composition and combustion conditions. Alternatively, one may approach

such issues via emission inventories, which yield a more accurate description of the individual

contributions, whilst neglecting meteorological parameters and thus the full account of its

spatial distribution.

Motor vehicle pollutant sources include emissions from the exhaust pipe, blow-by

from the engine crankcase, fuel evaporative emissions from the fuel tank and carburettor, as

well as particulate emissions from the wear-and-tear of tyres and breaks (OECD 1988). Major

pollutants emitted from fossil-fuelled vehicles consist of carbon monoxide (CO), nitrous oxides

(NOx) and volatile hydrocarbons emitted as vapour in the exhaust, or particulate matter (PM10)

derived primarily from incompletely burnt fuel. The most significant transport emissions to the

atmosphere by mass are carbon dioxide and water vapour from the complete combustion of

fuel (Colvile et al 2001). However, the toxicological effects of carbon dioxide (CO2) on human

health, including drowsiness and in extreme circumstances unconsciousness, only start to

occur at phenomenally high concentrations (>10,000 ppm); hence the concerns of CO2 are

purely environmental. Furthermore, it is often very difficult to attribute CO2 directly to a

source of creation, let alone a specified form of transportation, due to its distribution existing

in vast quantities from a number of potential sources (Figure 2.1A). Therefore, CO2 should not

be deemed suitable as a tracer pollutant for the impacts of the various pollutants produced by

motor-vehicles.
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A feature that distinguishes other mobile combustion sources from almost all

stationary sources, however, is that combustion is incomplete (Colvile et al 2001), thus

resulting in the production of volatile hydrocarbons and carbonaceous particles which can be

chemically linked to specific forms of transport (Figure 2.1B). Consequently, particulate matter

is often used as a marker to examine the effects of particular forms of transport on human

health.

FIGURE 2.1: Carbon related UK emission inventories (Adapted from: Colvile et al 2001)

In addition to hydrocarbons, most fuels contain impurities such as sulphur, which either

oxidises into SO2 on combustion or forms particulate accumulations in the engine, in the form

of sulphate. However, the major source of sulphur emissions derive from impure fossil fuels

used at point sources, with natural gas, petrol and diesel fuels containing relatively low sulphur

contents (Figure 2.2A). Consequently, sulphur emissions from transportation pose a relatively

limited threat to human health.

FIGURE 2.2: SO2 and NO2 UK emission inventories (Adapted from: Harrison et al 2001)

Other pollutants originate from the high combustion temperatures occurring in the engine,

which is responsible for the oxidation of atmospheric nitrogen into nitric oxide (NO) and
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Nitrogen dioxide (NO2). Road transport is a major contributor of various nitrogen oxides,

accounting for 46% of the total UK’s NO2 emissions (Figure 2.2B). As with particulates, the

motor-vehicle contributions towards the overall levels of airborne nitrogen dominate the

urban landscape, accounting for up to 85.0% of NOx in London (Blair et al 2004). Consequently,

nitrogen oxides are integral pollutants in vehicle emission investigations due to their high

emission correlation rates at both street level and regional monitoring stations.

In 1988, road-transport was calculated to typically account for 100% of CO levels, for

at least 60% NOx and hydrocarbon levels, for about 10% of SO2 and 50% of particulate levels, in

the centre of an average built up area; with the street environment encouraging either the

containment or dispersion of such pollutants (OECD 1988). Interestingly, an assessment of

transport emission trends from 1990-2007 undertaken by the US Environmental Protection

Agency (EPA), documented levels of CO, non-methane hydrocarbons (NMHC), NOx and PM10 to

have all fallen by 54%, 48%, 27% and 34% respectively during this timeframe (HEI 2009). A

similar response is expected to have occurred in a European setting over this timespan, as an

outcome of the Euro Emission Standards, which have seen significant pollutant reductions in

both petrol and diesel vehicles (Table 2.1). However, this decrease in emission rates from

motor vehicles is likely to have been offset by changing trends in world fleets, as an upshot of

increased rates of social wellbeing resulting in increasing rates of population growth,

urbanisation, economics and urban sprawl. Subsequently, since 1990, approximately 27 million

additional motor vehicles have been added to the world highways each year (HEI 2009), a

factor likely to counterbalance any improvements in vehicle emission technologies.

TABLE 2.1: The staged development of Euro Emission Standards, as a control measure from road-
transports environmental contributions across Europe (OECD 2003)
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Interestingly, this trend for increased motor-vehicle usage and its subsequent increase in

pollutant levels, does not appear to be restricted solely to developing countries. A fact

illustrated by the United Nations Framework Convention on Climate Change (UNFCCC) in 2006,

who noted that across developed countries, GHG emissions from the transport sector had

grew by 16% from 1990-2006 (HEI 2009). Furthermore, national mobility studies predicted that

the 2002 total distance driven by UK residents of 540 billion km, will have risen to 653 billion

km per year by 2010 (Colls 2002). As previously discussed, such factors are likely to impede

current emission abatement technologies.

In either scenario, one can conclude that the motor-vehicle remains the central

underlying cause for urban air pollution within a European setting. A case perfectly illustrated

by the City of Oxford’s ‘Air Quality Management Area’ (AQMA). Within this AQMA, Oxford City

Council recognised the motor-vehicle to significantly affect particulate levels in addition to

accounting for on average 60-65% of NOx emissions throughout the city, increasing to 80% of

NOx levels at city centre locations (Oxford City Council 2006). In addition, 2004/05 urban

roadside monitoring at Marylebone Road in London, revealed passing traffic to be directly

responsible for 85% of urban NOx and 40.2% of urban PM10 emissions for this particular street;

with other local sources accounting for only 1.9% of PM10 emissions (Blair 2004). In viewing

Figure 2.1, one may observe that a substantial amount of urban background particulates also

originate from road-transportation (78.1%), of which diesel vehicles have the greatest impact.

Whilst both pollutant concentrations appear substantially determined by localised forces, the

heightened spatial sensitivity of gaseous pollutants is problematic for use as a marker of road-

transport, considering the resolution restrictions imposed by accompanying datasets that

experience geographic anonymisation (i.e. hospital records). Meanwhile, PM10 offers a more

forgiving spatial description of local processes, in addition to describing the emission

component thought to cause most harm. Based on this information, it would be most

appropriate to use particulates as the surrogate measure of road-transportations overall

influence within the following geostatistical analyses.

It is predicted that for at least the next decade or two, conventional diesel and petrol

engines will remain the dominant technology of the automotive sector, throughout Europe.

What’s more, trends indicate that diesel-powered vehicles will continue to increase their share

of the market, as they continue to attract the thrifty motorist by boasting a superior fuel

economy and lower (carbon focused) taxation charges. Although, commanding a premium

price from retailers, diesel cars generally offer a more efficient use of energy than their petrol

counterparts do, with such vehicles now reaching a stage where negligible differences exist in

ride quality. For instance, a medium sized diesel vehicle (Vauxhall Astra) initially costs the

consumer an extra £2,370, yet under real-world urban driving conditions, annually requires
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£500 less in fuel with a payback period of 4.7 years (Consumers' Association 2013). In the

period 1990-2020, diesel’s share of the market is expected to increase from 40% to 59% at the

expense of petrol’s share, with alternative fuels predicting only a modest penetration (0.3%)

into the market by 2020 (Figure 2.3).

FIGURE 2.3: Fuel use in the road-transport sector, recorded by the 15 founding EU Member States,
projected from 1990 to 2020 (Adapted from: WHO 2005)

In the past, petrol engines were recognised through emitting high levels of NOx, a pollutant

compared to particulates as the lesser of two ills on human health (WHO 2005). As petrol

engines maintain a stoichiometric ratio between fuel and air, incomplete combustion and thus

the formation of particulate emissions are rare; a factor favouring the uptake of three-way

catalyst aftertreament devices which, eliminate virtually all toxic gases leaving the tailpipe

(Table 2.1). Because of the different operating characteristics of diesel engines (i.e. oxygen rich

environment, high soot content), it is impracticable to use the same catalyst technology to

clean up diesel exhaust gases, which continue to contribute modest levels of NOx after exhaust

recirculation measures (Table 2.1). Whilst exhaust gases rarely reach temperatures required to

combust soot (>500°C), some gains have been achieved through particulate filters which may

also be retrofitted to older vehicle stock. Based on these outputs and their amplified level of

uptake, diesel emissions will play a proportionately greater role in urban air pollution in the

coming years, a key feature of which are their particulate contributions.

There are three peaks (or modes) of distribution for airborne particles, with primary

exhaust particles typically occupying the transient nuclei mode, formed through the

condensation of hot vapours (including hydrocarbons, nitrates, sulphates and VOC’s). Fine

carbonaceous particles (PM2.5) also generated from the combustion process, provide a stable

site for accumulation of these reactive species, potentially creating a product of a highly toxic

nature. As previously stated, Figure 2.4 confirms the petrol car to be a negligible source of

particulate emissions from the exhaust, with unregulated vehicles providing the most
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significant outputs, although few of these vehicles exist within a European setting. Vehicle

class would also appear to play an important role, with larger diesel passenger vehicles

currently emitting similar levels of condensed volatile materials to an unregulated vehicle,

whereas this fraction appears drastically reduced amongst smaller diesel vehicles.

Nevertheless, the continued importance of particulate emissions from diesel vehicles remains

clear.

For all motor-vehicles, the respirable fraction of coarse particles (PM2.5 - 10) chiefly

originating from the brake pads and clutch, often contains metals (such as iron, copper and

lead) and organic materials known to cause harm at a cellular level. These coarse particles also

offer a favourable site for interactions amongst transient nuclei, typically of diesel origins. In-

fact, non-exhaust particle sources will become increasingly important as diesel exhaust

emissions decrease, through improved technology entering the market. For instance, a Euro I

(1992) diesel vehicles particulate contributions from the exhaust, brakes, tyres and clutch were

respectively recorded at 91%, 3%, 3% and 2%; whereas for a Euro IV (2005) vehicle these

values exist at 60%, 15%, 14% and 9% (WHO 2005). Thus reinstating the importance of

evaluating the entire respiratory fraction of particulate matter emitted from anthropogenic

sources, despite recent academic focus towards the finer end of the spectrum.

FIGURE 2.4: Typical size distributions of exhaust particulates by vehicle type, in context to generalised
formation mechanisms (Adapted from: Ntziachristos et al 2003, Harrison et al 2001)

2.1.3. HEALTH BURDEN OF URBAN AIR POLLUTANTS

Numerous investigations since the 1970’s have suggested that air pollution may cause severe

long-term as well as short-term effects on human health. Whilst marked improvements in air

quality standards have been experienced within the developed world over recent decades,

many cities are now experiencing an influx in the levels of motor-vehicles, which aim to offset



- CHAPTER 2 -

25

targets for key pollutants such as nitrogen oxides (NOx), ozone (O3) and particulate matter

(PM). All of which, on an individual and collective basis, pose a substantial threat towards the

human respiratory tract.

2.1.3.1. HEALTH IMPACTS OF PARTICULATE MATTER (PM)

Particulate matter consists of a variety of solid or liquid particles found in the atmosphere,

which vary in chemical compositions related to their creation process. Coarse particles

(>2.5µm) are often derived from natural processes, including silicates and carbonates from

windblown dusts, and thus posing little harm to human health. Still certain exceptions to this

rule remain in the urban environment, where incomplete combustion or the mechanical wear

of manmade materials occurs. In contrast, fine particles (PM2.5) are derived chiefly from local

anthropogenic combustion processes, due to their relatively short residence times (Pope

2000). Across most urban areas, PM2.5 compromises of primary-source particles and secondary

combustion particles consisting of nitrates often derived from local street sources. As such,

fine particulate matter may itself be toxic or carry carcinogenic substances absorbed to its

surface.

FIGURE 2.5: Particulate deposition in relation to the respiratory system. The nasopharyngeal region
consists of the nose and throat; the tracheobronchial region consists of the windpipe and large
airways; and the pulmonary region consists of the small bronchi and the alveolar sacs. (Adapted from:
Boubel et al 1994)

Whilst all particles may aggravate the linings of the respiratory tract, diesel particulates are of

particular concern, due to their carcinogenic properties caused by high levels of trace metals,

and small size (<2.5µm) which allows passage through the narrowest lung passages (Figure

2.5). However, PM2.5 measuring equipment is often limited to only a few urban stations,

therefore direct correlations between motor vehicles and human health has to be indirectly

associated through measurements of PM10. Still COMEAP exposure-response coefficients
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across London have revealed citywide background pollution levels as responsible for 1.66% of

all mortalities; a figure rising to 2.5% in locations within close proximity to busy road networks

(Namdeo & Bell 2005). Furthermore, DEFRA’s expert panel on air quality standards found a 4%

rise in daily asthmatic symptoms to occur per 10µg/m3 of PM10 originating from motor-

transport (EPAQS 1995).

2.1.3.2. HEALTH IMPACTS OF NITROGEN OXIDES (NOx)

Nitrogen oxides are a class of compounds that have a variety of direct and indirect effects on

human health, of which NO2 poses the greatest concern. Acute exposure to NO2 decreases

gaseous exchanges in the blood and increases respiratory symptoms producing lower lung

function values, with further irritation resulting in the swelling of tissues or irreversible lung

diseases such as emphysema (OECD 1988). Even short-term exposure within sensitive groups

such as children can result in a range of respiratory problems including coughs and sore

throats. It has been found that levels as low as 120µg/m3 (0.1ppm) per hour can cause adverse

effects on asthmatics (OECD 1988).

This evidence is further supported by COMEAP (1998), who reported NO2 to result in

acute health issues at an exposure-response coefficient of 0.5% per 10µg/m3. In following this

exposure-response coefficient, NO2 would be accountable for a 2.5% increase in the current

base rate of London’s Respiratory Hospital Admissions (RHA) solely because of background

pollution levels, with perhaps a 4.18% increase in RHA near busy roadside locations (Namdeo

& Bell 2005). Interestingly, NOx can be closely correlated to roadside particulates (Appendix

A2), further murkying the separation of the pollutant’s individual health effects across urban

environments. Upon facing this challenge, it is proposed that a single pollutant should be used

as a tracer, representative of the collective impact of road-transportation pollutants.

Favourably, in focusing on the pollutant thought most detrimental and representative of the

wider mix, one obtains a conservative estimate of source specific impacts; in that the broad

trend will be captured, but inevitably some contaminants from a complex source will remain

omitted.

2.1.3.3. HEALTH IMPACTS OF OZONE (O3)

Ozone is a secondary pollutant created through a series of photochemical reactions involving

precursor pollutants, such as the oxides of nitrogen (NOx) and volatile organic compounds

(VOCs). Such reactions are cyclic in nature particularly within the urban environment, with

pollutants contained in street canyons undergoing a series of conversions between oxides of

nitrogen and ozone (Appendix A3).
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As ozone concentrations increase above the guideline value, health effects at the

population level become increasingly numerous and severe. Such effects can occur in places

where concentrations are currently high due to human activities or are elevated during

episodes of very hot weather. Prolonged periods of stagnation and intense sunlight coupled by

vast transport fleets and heavy industry have been held accountable for the numerous severe

photochemical smog incidents across American coastal cities particularly during the 1970/80’s.

A retrospective study of the 1988 and 1989 New Jersey photochemical smog episodes

recorded elevated ozone concentrations of 140-150μg/m3 to be accountable for approximately

13.2-15.4% (95% CI) of asthma hospitalisation incidences (Cody et al 1992). Still, across Europe

photochemical smog events are yet to be experienced at such magnitudes.

Ozone unlike its precursors NO/NO2 that only have residence times of a few days, may

affect the environment at a regional scale with residence times over hundreds of days

(Harrison et al 2001). Subsequently ozone is viewed as transboundary pollutant, whose

precursors are often emitted within an urban setting, radiating into the surrounding region if

favourable conditions prevail. Consequently, ozone remains a difficult pollutant to regulate

and control without complete International cooperation. The current Air Quality Strategy for

England, Scotland, Wales and Northern Ireland sets the current standard for ozone exposure

levels at 100μg/m3, measured as a daily maximum of a running 8-hour mean (DEFRA 2007). A

figure, defined though extensive controlled chamber tests into the transient changes in lung

function and lung inflammation, within healthy young adults undertaking intermittent

exercise.

At present tests have revealed exposure to ozone levels of 0.06 ppm (115-120μg/m3)

to result in a 2.85% reduction in a participants FEV1 [forced expiratory volume in 1 second]

(Brown 2008). Furthermore, there is some evidence that long-term exposure to ozone may

result in chronic health effects, however the evidence is not sufficient to recommend an

annual guideline (WHO 2006). Whilst road-transport is heavily involved within the formation of

ozone, this pollutant forms in distant locales and is primarily an agricultural concern, only

occasionally burdening those individuals with existing conditions. As such, ozone will not be

the focus of this enquiry, analysing the impact of the motor-vehicle on respiratory health

within an urban setting.
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2.2. HUMAN RESPIRATORY SYSTEM

2.2.1. BIOLOGICAL MECHANISMS OF LUNG INJURY CAUSED BY PM10

In the process of exchanging 10,000 - 20,000 litres of air each day, the human respiratory

system is exposed to a multitude of potentially harmful foreign substances and

microorganisms (Seaton et al 1989, Weinberger et al 2008). Initially the upper respiratory tract

(nose and pharynx) acts to warm, humidify and filter the air before it reaches the delicate

lungs for gas exchange to occur. Here, the nasal passages act as the first line of defence, in

which hairs and mucus provide a physical barrier, which particles adhere to. The branching

passage of airways from the bronchi down to the respiratory tree continues to encourage the

deposition of particulates, where they may be removed via the mucociliary escalator. Within

the lower respiratory tract, mechanical clearance processes are replaced by a sole dependency

on humoral and cellular responses, to quarantine (inflammatory response) and or destroy

foreign substances, prior to their removal back up the respiratory tract. During either stage,

the toxic nature of particulates may prove harmful, yet even the presence of an insoluble

particle has the potentially to stimulate and unbalance a host’s immune response. Here, the

excessive release of antimicrobials has the potential to inflict severe damage upon healthy

cells within the nearby vicinity, if left unchecked (Cumming & Semple 1980, Seaton et al 1989,

Weinberger et al 2008, Ward et al 2010). Upon understanding how the respiratory immune

system functions, this section aim to explore in detail the mechanisms by which PM10 achieves

its adverse conclusions across specific target tissues.

The anatomical structure of the nasopharynx, by enlarge prevents the passage of

materials towards the coarse end of the spectrum of respirable particulates; with only 8-21%

of particles 10µm in diameter (typical of mechanical brake and clutch wear) entering the large

airways, and 0-21% reaching the bronchial tree for clearance via mucociliary processes (Figure

2.5). Yet, along the airway walls and mucociliary escalator lie several potential targets for

particles, including the smooth muscle cells and mesenchymal cells, which perform functions

essential for continual tissue development. Furthermore, it may take up to 40 minutes for

mucus from large bronchi to reach the pharynx (Ward et al 2010), an ample period for such

interaction to occur.

For particles 2.5µm in diameter, anatomical structures have a diminished influence,

with 32-58% of all these particles leaving the large airways; it is here that the mucociliary

escalator takes over, to clear 22-32% of the total fraction from the tracheobronchial region

(Figure 2.5). Still one should note that 0-36% of inhaled particles 2.5µm in diameter remain

free within the terminal airways, despite the presence of mechanical clearance processes. Thus

in the terminal airways, macrophages play an important role in the removal of particles by
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phagocytosis (‘cellular eating’), which eventually migrate to the start of the mucociliary

escalator, where they leave the lung with their cargo of particles bound for the gut (Donaldson

& MacNee 1998).

Beyond the ciliated airways, the net flow of air is zero, and as such, the deposition

efficiency for extremely small particles rapidly increases as diffusion processes take over. For

particles 0.01µm in diameter, 57-68% of this inhaled fraction deposits within the bronchial tree

(Figure 2.5). Whilst their size may beneficially assist in deposition processes, this is also of

detriment, as a larger surface area increases the likelihood for adverse interactions to occur,

with their small size potentially enabling passage into the pulmonary interstitium and lymph

nodes. If particles cross the epithelium they are no longer likely to be cleared by normal

processes, either remaining in the subepithelial regions close to key response cells, or

migrating towards the draining lymph nodes; the site in which lymphocytes grow and mature.

The effects of dust in the lymph node are not known, however adjuvant effects are to be

anticipated (Donaldson & MacNee 1998). One should note that granulocytes (white blood

cells) release proteases and reactive oxygen species during phagocytosis, which if occurring in

the interstitium could impair host cells.

Cardiovascular deaths are thought to be another important adverse health effect of

PM10, classically caused by blood clots in coronary vessels (heart attack) and the brain

microvascular (stroke) (COMEAP 2006). Whilst the effect of inhaled particles on the respiratory

tract is understandable, the link between airway depositions and an increased likelihood of

clotting is tentative at best. Donaldson & MacNee (1998) hypothesise that inflammatory

responses of the lung, triggered by inhaled particulates, are likely to cause a local production

of procoagulant factors, and or effect how mediators from the lung interact with the liver, to

increase the overall synthesis of procoagulant factors. Although a relatively untested

hypothesis, epidemiological evidence has shown an increased level of blood viscosity to exist

during air pollution episodes (Peters et al 1997, Brook & Rajagopalan 2009).

The manner in which PM10 appears to cause adverse health effects, unrestricted by

any specific exposure threshold (WHO 2006), would suggest that PM10 is a highly toxic

material, yet the individual components on their own are often not particularly toxic at

ambient air levels. It is on this understanding that transitional metals and very small particles

are of the utmost importance in mediating those health burdens associated with PM10

(Donaldson & MacNee 1998). In particular, ultrafine particles (<0.1µm) are viewed to be highly

toxic towards the lungs, even when those particles are formed from materials that are non-

toxic as larger but still respirable particles (Grassian et al 2007, Hamilton et al 2009, Karlsson et

al 2009). This would suggest that ultrafine particles have a toxicity that is a result of their small

size, and hence large surface area, rather than their chemical composition.
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In humans, ultrafines are known to have the potential to deposit in high numbers

towards the terminal airways. When rodents have been exposed to high levels of ultrafines,

‘classical particle overload’ has been reported to impair alveolar macrophage mediated

clearance from the distal regions of the lung, culminating in fibrosis and cancer of the lung

(Oberdorster 1995). Within this original hypothesis, signs of impaired movement have been

reported when phagocytosed particles constitute 6% of a macrophages internal volume, with

60% volume levels preventing the movement and thus clearance mechanisms provided by

macrophages (Renwick et al 2001). An expert panel concluded, whilst it is uncertain whether

high lung burdens of ultrafines can lead to lung injury in humans via mechanisms similar to

those of the rat, in the absence of mechanistic data to the contrary, it must be assumed that

the rat model can identify potential carcinogenic hazards to humans (ILSI Risk Science Institute

2000).

The biological effects of several different types of particle contained within PM10,

including inert components, have been shown to be mediated by their transitional metal

content (Castranova et al 1997, Gilmour et al 1996). Oxidative stress is considered to arise first

from the transition metals themselves, such as iron and copper, which have a well-

documented ability to generate hydroxyl free radicals via Fenton chemistry (Donaldson &

McNee 2001). A response supplemented by an influx of inflammatory cells that result from the

primary interaction between lung cells and general particle deposition. Whilst inflammation

acts to seal off infected areas and attract additional immune cells, if left unregulated, the

proteases and reactive oxygen species (ROS) released by surplus granulocytes will impair host

cells, causing oxidative DNA damage. The potential magnitude of this mediation is best

observed within Castranova et al’s (1997) laboratory study of F344 rats exposed to 20mg/m3

doses of 2µm chemically inert quartz particles. Here, the pathogenic properties of quartz

within the lung drastically rose after contamination with trace levels of iron; to cause a 537%

increase in leukocyte recruitment and 71% increase in nitric oxide production from

macrophages (Castranova et al 1997).

Ultimately the deposition of particles that deliver an oxidative stress signal to the lungs

result in the activation of NF-κB proteins, which initiate a coagulation cascade involving the

proinflammatory mediator thrombin, potentially causing a state of haemostasis (Donaldson &

McNee 1998, Maki et al 2010). This increased production of inflammatory mediators, along

with the increased permeability of antigens, is potentially most problematic for persons with

underlying inflammation of the airways (i.e. tracheobronchial and asthmatic conditions).

Figure 2.6 summarises the hypothetical interactions between PM10 and target cells in the

generation of respiratory conditions discussed within this section.
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To conclude, a recent appraisal of particulate compositions across four English

roadside locations respectively identified PM2.5-10 and PM2.5 fractions to be dominated by

carbonaceous combustion particles (21.1%, 62.9%), secondary nitrates and sulphate (14.5%,

22.3%), and coarse dusts (60.2%, 8.5%) (Harrison et al 2004). As anticipated, the PM2.5 fraction

contained a substantial carbonaceous component, which is formed from incomplete

combustion and defines the most important components relating to toxicity. Yet interestingly,

the composition of coarse dusts within the PM2.5-10 fraction was also observed to be rich in iron

(65.8%), hypothetically originating from brake wear and corrosion in addition to engine

emissions. This abundance of transition metals within the coarser particulate fraction,

although typically limited to shorter residential times within the main airways, reinstates the

need for one to address the wider impact of road transport on health, not limited to exhaust

emissions or a particularly sized fraction.

FIGURE 2.6: Hypothetical interactions between PM10 and target cells in the generation of respiratory
conditions (marked by inflammation), with relation to further issues of the human cardiovascular
system (Modified from Donaldson & MacNee 2001)
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2.2.2. PM10 A MODULATOR OF PULMONARY HOST RESISTANCE

Particulate induced health effects are understood to predominantly involve the destruction of

cellular DNA via oxidative stress, followed by a natural inflammatory response, which isolates

then attacks both the foreign entity and surrounding area affected by its presence. Yet it has

also been shown that exposure to pollutants can alter the host’s defence mechanisms,

increasing the likelihood for infections to occur following an exposure episode (Becker &

Soukup 1999, Zelikoff et al 2003). This secondary mechanism may be of far greater

importance, when considering that a 3-year Australian Cohort of 263 infants detected viruses

in 69% of non-hospitalising acute respiratory illnesses (Kusel et al 2006). Meanwhile, a 2-year

Finish Cohort of 293 children hospitalised with acute expiratory wheezing, detected causative

viral agents in 88% of cases (Jartti et al 2004). The literature would therefore suggest that viral

activity has an important role in initiating, prolonging or exacerbating respiratory conditions,

particularly during childhood.

Animal toxicology studies have consistently identified the immunosuppressive

influence of pollutants in host susceptibility to viral and bacterial infections. Mice challenged

with the influenza virus, ensuing a 6 month exposure period to diesel engine emissions

(2mg/m3), were shown to experience significantly higher levels of lung consolidation (61.5%)

than their air-exposed counterparts (33.3%) (Hahon et al 1985). Rats infected with a strain of S.

pneumoniae, then exposed to a 5-hour dose of concentrated ambient particulates (65-

150µg/m3), have also displayed bacteria burdens 300% above air-exposed subjects (Zelikoff et

al 2003). Furthermore, mice instilled with 40µg of black carbon 3-days after Respiratory

syncytial virus (RSV) infection, demonstrated an exacerbation of RSV-induced airway hyper-

responsiveness and excessive pulmonary inflammation responses (Lambert et al 2003).

Human in-vitro investigations have indicated alterations in proinflammatory cytokine

production of cultured bronchial epithelial cells following diesel exhaust particulate

concentrations of 0.08 - 0.33mg/mL (up to 39x control value), potentially upsetting the

immune homeostasis of the lung (Steerenberg et al 1998). Becker & Soukup (1999) recorded a

50% decrease in the uptake of RSV in human alveolar macrophages (AM) in the presence of

PM10, with PM10 exposure in the absence of infection significantly increasing the production of

macrophage inflammatory proteins. This would imply that exposure to PM10 alters AM-

regulated inflammatory responses to viruses, enhancing the spread of infection. Furthermore,

Jaspers et al (2005) identified solutions comprising of 25µg/cm2 diesel exhausts to increase

viral RNA levels in bronchial epithelial cells, 80% above samples that had only been infected

with the influenza virus.

For the adenovirus group, Fujii et al (2002) has demonstrated ambient urban PM10,

collected from Ottawa, to directly induced lung inflammation via a response amplified by
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latent viral infection. Here, human lung epithelial cell lines challenged with a 6-hour exposure

of 100µg/ml PM10, solely infected with the adenovirus, or a combination of the two,

respectively recorded a 22%, 46% and 132% increase in the release of the proinflammatory

mediator IL-8 over control samples (Fujii et al 2002). Similar results have been produced in

human lung alveolar cells, infected with the adenovirus 24-hours prior to an 18-hour

treatment of 100mg/ml ambient urban PM10, collected in London. Here, cell lines only infected

with the adenovirus or challenged by PM10, or a combination of the two, respectively recorded

a 170%, 200% and 580% increase in the release of IL-8 over control samples (Gilmour et al

2001). Thus reconfirming the individual detrimental importance of both factors, whose actions

appear exacerbated when mutually presented. It is suggested that the presence of adenoviral

primes the cell transcriptional machinery for oxidative stress signalling and therefore facilitates

amplification of proinflammatory responses, leaving the individual susceptibility to

exacerbation of the airways in response to particulate air pollution (Gilmour et al 2001).

Mushtaq et al (2011) have also demonstrated the colonisation of Streptococcus

pneumoniae, a common cause of bacterial pneumonia, to be promoted by 4-hour exposures of

ambient urban PM10, collected in Leicester. Here, the adhesion of s. pneumoniae to lines of

human airway and bronchial epithelial cells, as assessed by confocal microscopy fluorescence

levels, respectively recorded 120% and 240% more viral infected cells to be present that at the

control sample, when 30 µg/ml and 50µg/ml PM10 doses are introduced.

Unsurprisingly, studies have also indicated that pollutants capable of oxidative stress,

inclusive of NO2 and O3, can amplify the generation of proinflammatory mediators by infected

cells. Spannhake et al (2002), have demonstrated that after a 3-hour exposure to NO2 (2.0

ppm) or O3 (0.2 ppm), human nasal and bronchial cells burdened by rhinovirus and an oxidant

respectively produced 42-250% and 41-67% more IL-8, than those environmentally

unburdened infected cells; note that lower and upper bounds relate to cell to viral

concentrations of 1:3,000 and 1:300. Yet in using influenza as the viral contagion, studies have

demonstrated inhalation exposure to NO2 to provide no effect on (Lefkowitz et al 1986),

increase (Ehrlich et al 1975) or decrease (Buckley & Loosle 1969) viral induced impairment of

murine lungs. Whilst less is known concerning the possible interactions between NO2 and viral

infections, a plethora of toxicological studies have demonstrating the suppressive effect upon

host responses to bacterial infection.

In particular, Bouley et al (1986) noted a preceding 4-day NO2 (20ppm) exposure

period as insignificantly altering the natural resistance of non-immunised mice challenged with

Klebsiella pneumoniae. Meanwhile, in their immunised counterparts, the number of

inoculated bacteria per mouse was reduced by 19.6%, to a level only 6.7% above that of the

non-immunised mice (Bouley et al 1986). This would suggest that rather than reducing host
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immunity beyond its baseline, NO2 only acts to impede the operations of one’s immune

system, where one has been developed. Thus, if one was to extrapolate these findings to

humans, children are candidates at particular risk, considering their reliance on a respiratory

immune system still in its early stages of development.

In a series of studies, Jakab (1987) conclusively demonstrated NO2 as a modulator of

murine pulmonary antibacterial defences, establishing a threshold dose for adverse effects to

occur across a range of bacterial strains. In unexposed animals 7% of S. attreus remained after

4-hours, antibacterial defences appeared suppressed at NO2 levels of 4ppm and greatly

reduced at 15ppm, with 11% and 48% of bacteria respectively lingering (Jakab 1987). For P.

pneumotropica antibacterial defences were impaired at 10ppm, with bacteria residence levels

shifting from 19% (control) to 26%, rising more gradually to 37% under a 30ppm exposure

(Jakab 1987). Yet interestingly, exposure to 10ppm was found to enhance the intrapulmonary

killing of P. mirabilis, as recorded by bacterial levels reducing from 24% (control) to 18%, with

bactericidal activity only becoming impaired at 20ppm (Jakab 1987). Thus demonstrating how

low levels of oxidants may act to induce beneficial responses against certain pathogenic

strains.

From this wealth of toxicological research, air pollutants are expected to provide an

immunosuppressive influence on human susceptibility to viral and bacterial infections. Of

which particulates are decidedly linked to infections of a viral nature, with oxidising pollutants

sharing closer ties with bacterial pathogens. As mentioned above and discussed in detail within

the succeeding section of this chapter, viral infections are heavily associated with respiratory

burdens, whereas bacterial infections are specialised to only a selection of cases. Thus, not

only are particulates thought to provide a greater direct respiratory burden, they also appear

most entwined with these secondary (pathogenic) mechanisms of detriment. Whilst

epidemiological evidence in this field is lacking, one investigation of 2,604 Washington State

infants hospitalised with RSV-Bronchiolitis provides some evidence for this

immunosuppressive influence. Here, a 10µg/m3 increase in PM2.5 was associated with a 14%

and 4% rise in bronchiolitis hospitalisations in RSV infected and non-infected infants

respectively (Karr et al 2009).

In their medical overview of respiratory system disorders, Cumming & Semple (1980)

discuss that although the human lower respiratory tract of healthy is virtually sterile,

microorganisms may be cultured from the upper respiratory tract for transport into the deeper

regions of the lung. Following this logic, one should therefore consider the possibility of socio-

environmental stimuluses’ by enlarge acting to weaken those upper respiratory regions (where

contact is greatest), priming these locations for pathogenic colonisation. Subsequent

exposures are then either likely to facilitate the passage of these pathogens towards the lungs,
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or have direct impact in the lower regions themselves caused by the hosts reduced

immunosuppressive response. Upon viewing Figure 2.7, one may clearly observe that may

viruses associated with mild URTI cases have a secondary distribution within the LRT, involving

tracheobronchial symptoms. It is thus of interest for this research project to uncover the level

of involvement immunosuppressive stimuli have in respiratory decline.

FIGURE 2.7: The influence of pathogenic agents on acute respiratory infections (qualitative estimate),
occurring in the proximal to distal regions of the human respiratory tract (Cumming & Semple 1980)

2.2.3. PREVALENCE OF PEDIATRIC RESPIRATORY DISORDERS

Acute respiratory infections characterised by the inflammation of mucous membranes lining

the upper and or lower respiratory passages, are a major international health concern,

recorded as the third highest global cause of mortality at a rate of 4,259,000 per annum (7.2%

total); with lower respiratory tract infections (LRT) responsible for 98.1% of these cases (WHO

2008). In addition, acute respiratory infections are deemed the leading cause of global disease

burden, annually accounting for 94,511,000 disability-adjusted life years (6.2% total), with

conditions of the LRT once again holding the majority stake (96.6%) of this figure (WHO 2008).
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Such findings are of little surprise considering that the mammalian respiratory tract is the

easiest portal of entry to outside pathogens, irritants and pollutants. Within a UK context, the

average person likely to suffer from 5-7 episodes of acute respiratory infections per annum,

with acute respiratory infections accounting for 30-35% of all new complaints presented to

GP’s, the majority of which appear viral related (Cumming & Semple 1980).

Per 10,000 Persons
Upper Respiratory Tract Infection (URTI) 2,235
 Common cold & influenza 1,450
 ‘Flu-like’ illness 170
 Throat infections 600
 Glandular fever 15
 Ear infection 850
 Nasal infection 260

Acute Chest Infections 640
 Bronchitis 580
 Pneumonia 60

Chronic Chest Conditions 450
 Chronic bronchitis-emphysema 250
 Asthma 200

Other Condition (lung cancer, hay-fever, etc.) 530

TABLE 2.2: Third National Morbidity Survey annual patient consulting rates relating to conditions of
the respiratory tract (Adapted from Fry & Sandler 1993)

Upon viewing a summary of respiratory consultations recorded within ‘The Third National

Morbidity Survey’, representative of UK primary care consultations for >300,000 person-years

at risk, one may understand the respiratory burden practitioners face in greater detail (Table

2.2).  Out of this broad categorisation of respiratory complaints, one may observe that URTI’s

account for the majority (58.0%) of respiratory consultations, which typically involve

symptoms associated with the common cold. Whilst it has been demonstrated that URTI’s

pose a limited lasting threat to health, they may instigate infections of the lower respiratory

tract (LRT), thus demonstrating a systematic deconstruction of the respiratory system.

Concerning the LRT’s involvement in 28.2% of respiratory consults (Table 2.2), infections

resulting in bronchitis are at fault 53.2% of the time. Interestingly, the more commonly

explored condition in air pollutant investigations, asthma, only accounts for 18.3% of the LRT’s

burden. On another note of interest, respiratory disorders are the largest group of conditions

causing absence from work or prolonged invalidity, accounting for 25% of all causes within the

UK [Bronchitis 9%, Acute URTI 5%, Flu-like illness 5%, Asthma 3%, Other 3%] (Fry & Sandler

1993). Such information reinforces the importance of intermediating infections, not only of the

lower, but of the upper tract as well.
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2.2.3.1. CENTRAL RESPIRATORY CONDITIONS

Respiratory conditions of prominent importance would appear to focus around three specific

classifications of infection, two of which involve the URTI, entwined with each other and

infections of the LRT:

I. The common cold (acute coryza) & influenza

Whilst probably the largest group of common diseases in the world, URTI’s are a confusing

mass of uncertainty of nature, causes and management (Fry & Sandler 1993). The most

common of which is the common cold (or acute coryza), defined as a self-limiting illness of

short duration typified by catarrhal symptoms including nasal discharge, sneezing and sore

throat, often characterised by viral participation. As such, their prevalence peaks in mid-winter

from December-April, although symptoms are present throughout the year (Fry & Sandler

1993). Rhinoviruses are the primary causative agents of the common cold accounting for 30%

of all cases, with other agents including coronaviruses, enteroviruses, parainfluenza viruses

and RSV; however, fascinating 30% of all cases still transpire from unknown causes (Seaton et

al 1989). While bacteria are not the primary causes of acute coryza, they may cause secondary

infections by streptococcus pyogenes, haemophilus influenza and pneumococci (Fry & Sandler

1993).

To remove foreign material from the nasopharynx, damaged columnar epithelial cells

containing viral antigenic material and invasive pathogens (and or particulate matter) are shed

into the nasal discharge. The shedding of cells is usually completed within a few days, and

although mucosal damage is minimal in the majority of cases, cellular recovery may take up to

2-weeks (Seaton et al 1989). This leaves the region primed for secondary infections, and or

damage from environmental stimuli. Under certain conditions, an accumulation of shed cells

also has the potential to pass into the lower regions of the respiratory system. As previously

noted, adenovirus and coronaviruses are responsible for a variety of respiratory infections, and

RSV is strongly associated with impairment of the tracheobronchial tree (Figure 2.7). The

common cold and influenza share many clinical features, with differing only by its increased

severity and abrupt onset (hours), compared to the gradual appearance of acute cold

symptoms over a few days.

II. Infections of the throat & nasal passages

Pharyngitis, tonsillitis, sinusitis, and laryngitis encompass a collection of disorders whose

prominent clinical features are sore throat with variable degrees of accompanying ill health,

with their similarities, further separation into individual diagnostic labels is considered

somewhat unhelpful (Fry & Sandler 1993, Seaton et al 1989). Pharyngotonsillitis is the most
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common classification for acute throat infections, characterised by a localised swelling of the

tonsils, which are often covering exudate and have a pitted follicular look; complications are

rare and generally associated with streptococcus bacterial infections, resulting in scarlet fever

(Fry & Sandler 1993, Seaton et al 1989). Most cases naturally recover within a week, with

recurrent attacks frequent in children and adolescents (caused by minor immunological

changes between adolescence and adulthood), which cease after the age of 25 (Appendix A4).

Viruses account for 70-85% of pharyngotonsillitis cases in children >3 years and for 90-95% of

cases in adults, the bacteria streptococcus pyogenes is typically responsible for those other

cases (Mazur 2010). The adenovirus is commonly found to be the primary viral agent here,

accounting for up to 73% of all children’s cases (Donati et al 1998). Likewise, cases of laryngitis

are habitually accredited to viral infection, parainfluenza acts as the causative agent 75-100%

of the time, with bacterial laryngitis known to follow or occur alongside the viral illness (Donati

et al 1998, Nadel 2009).

In contrast to the above conditions, sinusitis is a bacterial infection that occurs

commonly in the population, complicating about 1 in 200 upper respiratory tract infections,

with bacterial isolates for S. pyogenes, H. influenza and S. pneumoniae respectively found in

94%, 78% and 69% of all cases (Seaton et al 1989, Jousimies-Somer et al 1989). It is supposed

that a disruption of normal defensive mechanisms associated with the common cold and

throat infections, result in the accumulation of a mucous exudate, which then becomes

secondarily infected by bacterial pathogens, causing infections of the sinus and potentially

chest. In addition, sinus and throat infections often directly spread to the ears, and may

indirectly cause problems of the inner-ear through the congestion of nasal passages.

Treatment is empirical, a logical choice being penicillin; where a severe infection is

unresponsive to 10-day course, sinus contents may be aspirated by direct puncture (Seaton et

al 1989).

III. Acute chest infections: Tracheobronchitis & pneumonia

This group labelled as the ‘acute chest infections’ refer to a series of common inflammatory

conditions affecting part or the whole of the tracheobronchial tree. These conditions, which

overlap and are ill-defined clinically, frequently follow infection with any of the common cold

viruses; thus illustrating the gulf between the specific postulation of conditions in an artificial

context and practitional realities, as a process hindering the assessment and management of

these patients (Fry & Sandler 1993, Seaton et al 1989). Tracheobronchitis may affect any age

group but is reported more commonly in children and the elderly. It initiates as a dry cough

followed by an excessive production of sputum, and as such is usually described by adults as ‘a

cold that has gone to my chest’ (Seaton et al 1989, p276). Underlying causes may be identified
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through the sputum, with a green-yellowish tinge indicating a bacterial infection, ‘rusty’

colouration pneumonia, with a thin mucoid representing viral bronchitis (Fry & Sandler 1993).

Wheezing in adults is not usually a feature unless the patient has a chronic respiratory

condition, but it is more common in children, potentially resulting in diagnostic confusion with

chronic conditions. When a bacterial infection of the windpipe (Tracheitis) is present, the

patient may complain of chest tightness, sometimes described as burning that may be

heightened by inspiration or coughing (Seaton et al 1989).

Within Dr John Fry’s Greater London general practice, the term ‘pneumonitis’ is a

portmanteau attempt to combine pneumonia and bronchitis, suggesting something less severe

than pneumonia and not quite bronchitis. Here, a causative diagnosis is only observed in 33%

of pneumonitis episodes, with some bacteria (pneumococci, staphylococci) and viruses

(influenza, parainfluenza, RSV) recognised to instigate such acute chest infections; however

this is of limited use in a primary care context, where combinations of causal agents are usually

indefinable and superimposed on individual and social factors (Fry & Sandler 1993).

2.2.3.2. THE CATARRHAL CHILD SYNDROME (CCS)

Children in their first 10 years of life are most susceptible to a wide spectrum of clinical

respiratory conditions (Appendix A4). In general practices, illness involving the upper and

lower respiratory tracts account for almost 50% of all attendances for children, with over 25%

of cases referred to paediatric hospital services involving the specific combination,

sinobronchitis (Nichols 1959). Yet in spite of their frequency, their causes remain uncertain and

unproven. This has resulted in the rather generalised classification of these acute respiratory

conditions, specific to this early developmental phase in life, known as ‘Catarrhal Child

Syndrome’ (CCS).

“It is assumed that they are infections caused by viruses but the specific pathogens are rarely

isolated; bacteria may be responsible for a minority of ear, throat and chest infections but then

again they are isolated in a minority of cases. Whilst allergy has been put forward as a

possibility there is no reliable evidence for this. Undoubtedly some children and some families

appear to suffer more frequently and more seriously than others and therefore it is likely that

there may be underlying social familial and genetic factors”

(Fry & Sandler 1993, p48)

To understand this syndrome, catarrh is fluid flowing from a mucous membrane, and thus the

catarrhal child is characterised by an excessive response of the mucous membranes to

disturbing factors; with each candidate typically responding by producing a single aspect of the
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syndrome, reoccurring at a specific site (Nichols 1959). CCS may be divided into four main

clinical groups of children’s respiratory infection. The largest, with a clinical consulting rate of

58 cases per 100 children (Fry & Sandler 1993), involves the inflammation of the mucous

membranes of the airways causing a frequent reoccurrence of coughs and colds. The second

group involves the condition Otis media, which relates to earache, deafness and purulent

discharge of the ears, occurring at a rate of 13 consults per 100 children (Fry & Sandler 1993).

Communication between the auditory and respiratory systems is achieved by the eustachian

tube connecting the middle ear to pharynx, yet this link may also assist the spread of infection

to the middle ear; thus explaining why Otis media is included as a respiratory complaint.

The third group relates to infections of the throat, a set of complaints tending to occur

almost exclusively only in older children, as recorded by a rate of 7 consults per 100 children

(Fry & Sandler 1993). Unlike the three previous subsets, the final group characterises

infections of the lower respiratory tract (or acute chest infections), which exist at the lowest

rate of 6 consults per 100 children (Fry & Sandler 1993). This group includes episodes of acute

wheezing, debatably labelled as asthma or acute bronchitis, which generally ceases in

susceptible children >10 years of age (Fry & Sandler 1993, Seaton et al 1989). This group also

accounts for generalised (acute bronchitis) and localised (pneumonia) signs of chest distress,

involving an accumulation of extravascular fluid in the lungs (moist rale), which is potentially

life-threatening.

“Considering the well-nigh inevitability of children suffering from variants of one syndrome and

the fact that they appear to ‘outgrow it’ and gradually cease to suffer from it after the age of 7

to 8 it is likely to be a natural response of an immature immunological system to various

external pathogens, pollutants and irritants that given time a natural immunity develops”

(Fry & Sandler 1993, p49)

Still this collective vulnerability has puzzled GP’s as to why this syndrome has remained so

difficult to define and is resistant to specific therapy, with the common link appearing to be

the mothers of these catarrhal children whom often display anxiety disproportionate to the

severity of the condition (Nichols 1959). Nevertheless, many children are thought to

experience these features, the majority of which are rarely presented to the doctor.

In this project, it is considered that through analysing the spatial outbreak of URT and

LRT infections, one may be able to shed light on the perceived involvement of various socio-

environmental stimuli on CCS, which until now have only been theorised in an extensive body

of anecdotal research (Fry 1966, Fry 1993). Through using hospital data (tip of the clinical

iceberg), cases of hypersensitive awareness presented at the practitioner’s level should be
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filtered, hopefully allowing for a clearer account of CCS. By focusing on these extreme cases,

not only may solutions be offered to mitigate the introduction of long-term conditions in a few

select subjects, such knowledge also has the potential to assist with reducing accounts of mild

CCS across the wider populace.

2.3. EPIDEMIOLOGICAL EVIDENCE

2.3.1. AIR POLLUTANTS & CHILDREN’S RESPIRATORY HEALTH

Childhood is a critical period for the development and maturation of the delicate spongy

organs of the cardiorespiratory system, which are particularly susceptible to the absorption of

external environmental agents experienced within the urban arena. Children also spend more

time outdoors compared to adults, conducting activities that increase ventilation rates (Cooper

et al 2010, Steele et al 2010); factors that respectively extend the contact period and time-

proportional intake of ambient pollutants experienced by children. Furthermore, a child’s lung

surface area is also considerably larger in relation to their body mass, with children potentially

breathing up to 50% more air per kilogram of body weight (Schwartz 2004). In-fact, a

laboratory analysis of PM2.5 deposition rates normalised by lung surface, recorded levels in

children aged 7-14 years to be 35% above of those of adults during resting breathing;

attributed to a superior rate of ventilation in relation to lung size (Bennett & Zeman 1998). As

such, air pollutant exposure during childhood is of particular concern, with prolonged contact

periods stunting the development of vital cardiorespiratory organs, thought to induce ailments

that prevail into adulthood (Grigg 1999, Stick 2000, Mathieu-Nolf 2002, Schwartz 2004)

A plethora of studies has found associations between selected air pollutants and

adverse health effects in children. With respect to particulates, these adverse health effects

have tended to focus upon physician validated signs of acute respiratory illness, or deficits in

lung functionality. The most prominent investigation of these outcomes was realised by the

‘Pollution Effects on Asthmatic Children in Europe’ (PEACE) study, conducted in the winter of

1993/94 across 14 European research centres (Roemer et al 1998). In total, 2,010 children

participated over 28 panels, with each centre providing an urban and suburban (with no major

traffic or industrial sources) locale, to compare differences in pollutant effects caused by level

and composition. Enrolled children aged 6-12 years with chronic respiratory symptoms in the

last 12 months and/or doctor-diagnosed asthma ever in life, personally monitored their health

status through diary records and measurements of peak expiratory flow (PEF) conducted on a

bi-daily basis.
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A standardised panel-study protocol was applied to each panel separately. Initially,

individual PEF readings were transformed into daily population morning and evening mean

values. Symptoms reported within the diaries were recoded at 0 (no symptom) and 1 (slight,

moderate or severe symptom) to obtain measurements of daily prevalence. Linear regression

models accounting for minimum temperature, weekday, time trends and autocorrelation were

created to measure the association between daily pollutant exposures on population weighted

health outcomes. A single pollutant model was preferred because of the high correlation

(R>0.6) between PM10, BS, SO2 and NO2. In the second stage of this investigation, singular

effect estimates of air pollution on PEF or the daily prevalence of respiratory symptoms were

calculated from panel-specific effect estimates using fixed effect meta-analysis techniques. In

the presence of heterogeneity, random effect estimation was calculated using the non-

iterative method with unequal weights; the simplest method of addressing both within-study

and between-study variance.

The overall findings of the multicentre PEACE study revealed no clear associations to

exist between levels of pollutant and PEF, or the prevalence of respiratory symptoms.

Unexpectedly, the majority of combined effect estimates for air pollutants were associated

with a beneficial PEF response, albeit at a non-significant level. A significant negative

association was only found for PM10 (1 day lag) and evening PEF levels, inducing a change of -

0.6 L/min (CI:-1.1,-0.1) per 100μg/m3 (Roemer et al 1998). Furthermore, significant odds ratios

(OR) were not identified in relation to symptoms of either the upper or lower respiratory

tracts, with a 100μg/m3 increase in PM10 found only to influence phlegm production (1.02; CI:

0.94-1.11) (Roemer et al 1998). The lack of effect in Roemer et al’s (1998) multicentre study

cannot be explained by insufficient statistical power, or by low levels of exposure, as burdens

have been documented across lower pollutant concentrations. Interestingly, successive

reports of the wider PEACE project identified a concurrent influenza epidemic to be of some

influence, unavoidable by the panel’s short and common timeframes, which had beneficially

reduced the potential for heterogeneity (Roemer et al 2000).

In response to such uncertainties, Ward & Ayres (2004) conducted a meta-analysis of

temporally based cohort (or panel) studies, measuring individual levels of lung function

amongst children, 0-15 years of age. Using the ‘Web of Science Interface’, major bibliographic

databases were searched from 1966 to June 2002 for appropriate materials, complemented by

an inspection of paper references, consulting books and reports known to the authors. The

search identified 13 suitable panel studies of children that used daily measures of PM10 as a

marker of PEF. Four were summer studies; one was set across an entire year, whilst another

eight were conducted in winter conditions, the largest study of which was part of the PEACE

project documented by Roemer et al (1998). The majority of studies recruited panels of



- CHAPTER 2 -

43

children either diagnosed with asthma or with reported existing respiratory symptoms

(‘symptomatic subjects’), with all except two studies reporting daily average PM10

concentrations in excess of 50µg/m3. Older children were included in four studies; three

extending the range to 13 years, and one to 15 years. A two stage analytical approach was

adopted by two studies, whereby individuals were modelled then pooled to form an average

PEF value, the remainder employing a population daily average PEF outcome in their analyses.

Potential autocorrelation effects were included within all studies, with all models adjusting for

temperature. A descriptive summary of these studies used for this enquiry is presented within

Appendix A5.

Taken as individual study components, a wide spread of results are observed in

relation to PM10, with all except one recording lung performance in an adverse direction

(Figure 2.8).  Pooled results under a fixed effects model identified a -0.012 L/min change in PEF

per 1µg/m3 increase in PM10 (CI: -0.017, -0.008), increasing to -0.033 L/min (CI: -0.047, -0.019)

under a random effects scheme which placed less weight on the PEACE study (Ward & Ayres

2004). However, in using an asymmetrical funnel plot to explore the possibility of publication

bias, Ward & Ayres (2004) observed strong associations between increasing effect size and

decreasing size of the study estimate’s standard error. Whilst smaller studies are less likely to

be published presenting negative findings, it is also plausible for the precision of an effect

estimate to be determined by variability in exposure. Still, the degree of heterogeneity evident

between panel studies, indicated by Q-combinality tests (derivative of chi-square), questions

the transferability of estimated effect sizes between locations or populations, limiting the

direct use of such summary measures.
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FIGURE 2.8: Meta-analysis of mean and 95% confidence interval estimates of the impact of PM10 on
PEF, expressed as litre/minute change per 1µg/m3 rise (Adapted from Ward & Ayres 2004)

A vast quantity of pediatric research, examining the health effects of particulates, has also

placed focus on understanding its associations with asthmatic symptoms on a day-to-day scale.

Whilst PM10 has often been associated with increases in symptomatic frequency amongst

children, Weinmayr et al (2010) also recognised inconsistencies within this tangent of

research, yet to be addressed by comprehensive quantitative evaluation.

To quell these discrepancies Weinmayr et al (2010) conducted a systematic search of

the literature contained within the MEDLINE database from 1990 through to 2008, for children

aged 0-18 years. Indoor and laboratory studies were excluded, while panel studies of

asthmatic or symptomatic children were included under restricting criteria of one publication

per dataset. In total, 29 studies comprising of 43 populations, were identified to present

suitable measurements for a meta-analysis of asthmatic symptoms. Of these populations, 24

represented urban settings, 32 were from Europe and 11 from elsewhere, mainly the United

States. As before, publication bias was assessed in a graphical manner through a funnel plot of

population estimates plotted against their standard error (Light & Pillemer 1984). In addition,

statistical measures were applied to confirm evidence of funnel plot asymmetry, whereby the

standardised effect size is regressed against the inverse of the standard error (Egger et al

1997).
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No Fixed Model
OR [95% CI]

Random Model
OR [95% CI]

I2 [P-value]
Heterogeneity

Egger Bias
P-value

All Studies 43 1.023 [1.013, 1.034] 1.028 [1.006, 1.051] 59% [<0.01] 0.779
Without PEACE Studies 17 1.035 [1.023, 1.047] 1.055 [1.032, 1.078] 56% [<0.01] 0
Trim-and-Fill Estimate 24 1.028 [1.016, 1.039] 1.035 [1.012, 1.058] 61% [<0.01]

TABLE 2.3: Associations between PM10 exposure and clinician diagnosed asthmatic symptoms,
summarised by change in odds ratio (OR) per 10μg/m3 increase in pollutant under fixed and random
effects models (Adapted from Weinmayr et al 2010)

When all studies were considered, Weinmayr et al (2010) found no evidence of publication

bias; however, bias was noted to arise on the exclusion of the generally inconclusive PEACE

studies. Whilst research contained within the wider PEACE project provides the only

multicentre set of investigations conducted with a unified protocol (limiting the presence of

bias), concern exists that an influenza epidemic confounded the entire study series.  To

address such issues a trim-and-fill procedure was applied (Duval & Tweedie 2000), which

caused the random-effects estimate excluding PEACE studies to decrease from 5.5% to 3.5%

asthmatic episodes per 10μg/m3 of PM10 (Table 2.3). Whilst this meta-analysis found clear

evidence of effects of PM10 on the occurrence of asthmatic episodes, despite underestimations

from the PEACE project, some concern was raised involving the proportion of variation in

estimate due to heterogeneity caused by the lack of a standardised study design.

In contrast to the literature summarised in the meta-analyses above, the strength of

association between particulates and respiratory-based hospital admissions in children

appears ill defined. Recently, Anderson et al (2004) published the findings of a meta-analysis

conducted by the St. George’s Hospital Medical School Group, documenting the weight of

PM10 on hospitalisation cases across individual age groups. Time-series and panel studies were

identified through a search of three bibliographic databases (Medline/Embase/Web of

Science) up until 2003, with search strings tested against known literature. The St. Georges

research group concluded that >3 studies were required to justify a meta-analysis, with studies

included only on meeting the following criteria: The use of single-pollutant models (1-day lag)

conducted in a European setting, only supplemented by North American studies where

necessary. The investigation concluded that an insufficient number of respiratory hospital

admission studies had been conducted on children age 0-14 years and adult’s age 15-64 years,

for a meaningful meta-analysis (Table 2.6). In contrast, a sufficient numbers of estimates (6

originate from the APHEA 2 project) were available only for the ≥65 year age group, whom

recorded a 7% rise in respiratory hospitalisations per 10μg/m3 increase in PM10 (Table 2.4).
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Age Group Study Design Number of estimates Relative Risk [95% CI]
0-14 years Standard 3 (Insufficient) 1.010 [0.998, 1.021]

15-64 years Standard 3 (Insufficient) 1.008 [1.001, 1.015]
≥65 years Standard 8 (Satisfactory) 1.007 [1.002, 1.013]

Trim-and-fill 10 (Satisfactory) 1.006 [1.000, 1.011]

TABLE 2.4: Original and revised summary relative risk estimates per 10μg/m3 increase in PM10 and
respiratory hospital admissions (Adapted from Anderson et al 2004)

Barnett et al (2005) offer some solace towards seeking a suitable association between outdoor

air pollution and hospital admissions in children, through their multicentre case-crossover

study of Australia and New Zealand. Here, daily hospital and central monitoring pollution data

were collected for the period 1998-2001, across the 5 largest cities in Australia (Brisbane,

Canberra, Melbourne, Perth, and Sydney) and 2 largest cities in New Zealand (Auckland,

Christchurch), respectively accounting for 53% and 44%  of each country’s population. Unlike

previous hospital inquiries, which traditionally quantify a single pollutant outcome for children

of all ages (0-15 years), Barnett et al (2005) decided to examine three individual age bands so

as to differentiate the lung functions and immune systems of infant and teenage children.

Following traditional cohort designs, a case-crossover analysis was conducted to look

at the effects of factors thought to increase the risk of children’s respiratory health in the short

term. Here, exposure information is obtained for the individual whom acts as their own

control, comparing the presence of risk factors immediately prior to onset with reference

periods of good health (across a 28-day-window prior to onset). Covariates also applied to

control for the day-of- week and a plethora of meteorological variables. To obtain an average

dose-response outcome, city estimates were combined using a random effects meta-analysis.

Out of the individual pollutants evaluated, statistically significant increases were found for

PM2.5, PM10, NO2 and SO2, but not for CO or O3. Typical of urban environments, Barnett et al

(2005) observed strong correlations between certain pollutants, which is unsurprising

considering their likelihood of originating from a common emission source (primarily motor

vehicles). Given these correlations, matched pollutant models were run to identify whether

pollutant impacts differed or were related to each other.

Barnett et al’s (2005) multicentre study demonstrated statistically significant

associations between outdoor air pollution and children’s respiratory hospitalisations to exist

across Australia and New Zealand, at levels generally below those found in European and

North America cities. Within this multisite investigation, a 2.3% and 2.5% increase in

respiratory hospitalisations per 10µg/m3 increment in PM10 were respectively recorded for

children aged 1-4 years and 5-14 years (Barnett et al 2005). Interestingly, significant

association with PM10 disappeared for children aged 5-14 after matching with NO2, indicating
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that the two pollutants could not be separated. In contrast, the health associations per

interquartile shift in NO2 remained after matching with PM10, identifying this gaseous pollutant

to have a far wider source of origins (Barnett et al 2005). Interestingly, respiratory admissions

in children aged 1-4 years rose to 7.3% when the effects of PM10 and PM2.5 were matched,

showing that the different particulate combustion and wear components provide separate

health effects; reconfirming how important it is to explore the entire spectrum of airborne

particulates (Barnett et al 2005).

However perhaps it is far too simplistic and potentially misleading for investigations to

summarise the effects of pollutants across the entire spectrum of respiratory conditions, which

have resulted in cases of hospitalisation. It is far more realistic that episodic exposures are to

be followed by equally acute responses, and that through including chronic conditions, the

actual involvement of environmental agents are reported at a somewhat diminished value. As

such, stricter legislation is less likely to materialise, despite the fact that respiratory infections

account for over half of all respiratory hospitalisations. Whilst of a shorter duration, and thus

reduced cost, one should still consider that reoccurring episodes during developmental stages

might initiate the later onset of conditions more chronic in nature. In light of this, I conducted

a narrower systematic search of the literature from 1955 through to 2013, which focused on

the short-term effects of outdoor PM10 on hospitalisations attributed to infections of the

respiratory tract. Using the ‘Web of Science Interface’, major bibliographic databases were

searched using the broad strings of “respiratory infection”, “PM10 OR PM (10)” and “children”.

A total of 1,030 results were returned, and the abstracts of potential articles of interest were

checked for relevance.



Footnotes:
*Study of General Practitioners surgeries (primary health care) rather than hospital datasets (secondary care)

[A] Time-Series: GAM (Poisson Link); [B] Time-Series: GAM (Quasi-Poisson Link); [C] Bidirectional Case-Crossover Design

TABLE 2.5: Literature review of the associations between PM10 exposure and children’s hospitalisations relating to infections of the upper or lower respiratory tract (URTI,
LRTI), as summarised by change in odds ratio per 10μg/m3 increase in pollutant

Authors Study Setting Study Period Outcome Age Group
[Pediatric Cases] 24-hr PM10 µg/m3 Study

Design Odds Ratio (95% CI)

Amarillo & Carreras (2012) Cordoba, Argentina Jan 2005 - Dec 2008 LRTI 0-15y [46,902] 65.6 [26.7 - 122.0] [B] 1.019 [1.015, 1.024]

Le et al (2012) Saigon, Vietnam Jan 2003 - Dec 2005 LRTI 0-5y [15,717] 73.2 [19.3 - 195.7] [A] 1.003  [0.991, 1.015]

Wong et al (2010) Hong Kong, China Jan 1996 - Dec 2002 LRTI 0-14y [32,473] 51.6 [13.5 - 188.5] [B] 1.007 [1.001, 1.014]

Moura et al (2009) Rio de Janero, Brazil Apr 2002 - Mar 2003 LRTI 0-12y [6,801] 34.7 [11.2 - 79.0] [A] 1.013 [0.970, 1.057]

Hernandez-Cadena et al (2007) Ciudad Juarez, Mexico Jul 1997 - Dec 2001 LRTI 0-16y [11,448] 38.7 [6.8 - >150.0] [A] 1.021 [0.963, 1.086]

Farhat et al (2005) Sao Paulo, Brazil Aug 1996 - Aug 1997 LRTI 0-13y [5,555] 62.6 [25.5 - 186.3] [A] 1.017 [0.985, 1.050]

Romero-Placeres et al (2004) Havana City, Mexico Oct 1996 - Mar 1998 LRTI 0-14y [44,029] 59.2 [7.6 - 201.9] [B] 1.008 [1.000, 1.018]

Hajat et al (1999)* Greater London, UK Jan 1992 - Dec 1994 LRTI 0-14y [N/A] 28.5 [15.8 - 46.5] [B] 1.012 [1.000, 1.025]

Lin et al (2005) Toronto, Canada Jan 1998 – Dec 2001 URTI/LRTI 0-14y [6,782] 20.4 [4.0 - 73.0] [C] 1.064 [0.992, 1.152]

Amarillo & Carreras (2012) Cordoba, Argentina Jan 2005 - Dec 2008 URTI 0-15y[34,667] 65.6 [26.7 - 122.0] [B] 1.008 [1.002, 1.014]

Wong et al (2010) Hong Kong, China Jan 1996 - Dec 2002 URTI 0-14y [153,675] 51.6 [13.5 - 188.5] [B] 1.003 [1.000, 1.007]

Hernandez-Cadena et al (2007) Ciudad Juarez, Mexico Jul 1997 - Dec 2001 URTI 0-16y [28,461] 38.7 [6.8 - >150.0] [A] 1.021 [0.981, 1.063]

Romero-Placeres et al (2004) Havana City, Mexico Oct 1996 - Mar 1998 URTI 0-14y [99,441] 59.2 [7.6 - 201.9] [B] 0.998 [0.990, 1.007]

Hajat et al (2002)* Greater London, UK Jan 1992 - Dec 1994 URTI 0-14y [N/A] 28.5 [15.8 - 46.5] [B] 1.007 [0.999, 1.014]

Hernandez-Cadena et al (2000) Ciudad Juarez, Mexico Jul 1997 - Dec 1998 URTI 0-15y [12,721] 34.5 [6.8 - 167.5] [A] 1.023 [1.004, 1.042]
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In total 11 studies of interest were revealed (Table 2.5), most of which had been produced in

the years following the meta-analyses of Anderson et al (2004) and Barnet et al (2005). PM10

hospitalisation coefficient estimates for the LRT and URT were respectively provided in 7 and 5

of the studies, all of which were based in a South American or Asian setting. Equal weighting of

these study estimates provided within Table 2.5, respectively inform of a 1.3% and 1.1% rise in

children’s LRTI and URTI admissions per 10µg/m3 increment of PM10. Whilst some respiratory

infection studies had been conducted within a European setting, measurements only existed at

a primary care level. For a western setting, one Canadian study was noted to collectively

examine the particulate impact of on upper and lower respiratory infections, recording

children’s hospitalisations as rising by 6.4% per 10µg/m3 increment of PM10 (Lin et al 2005)

From this body of research, one may conclude that at present there is a limited

amount of available research quantifying how particulate pollutants influence cases of

children’s respiratory hospitalisations; despite evidence firmly supporting the likelihood of

such unfavourable outcomes across this most susceptible age group.

2.3.2. ROAD-TRANSPORT & CHILDRENS RESPIRATORY HEALTH

A concern towards the involvement of air pollutants on public health has been widely

publicised by a series of epidemiology studies since the 1970’s, but few studies have

successfully distinguished source specific impacts, with pollutants in the urban environment

often originating from a plethora of sources. In particular, traffic-related sources constitute the

predominant source of outdoor air pollution within the urban arena, emitting a concoction of

air quality objective pollutants and carcinogenic hydrocarbons within close proximity to

residential districts.

The most direct approach towards distinguishing each community’s unique air

pollution exposure has involved the utilisation of surrogate measures, such as residential

proximity to major road links (Appendix A6). An initial body of research founded upon such

practices appeared in the early 1990’s, predominantly focusing on self/clinician-reported

minor respiratory ailments by children and adolescents housed along streets with high levels

of road-transport activity (Appendix A6). Selected on the principles that the young spend a

greater proportion of time at or within close proximity to their place of residence, and that

they are unlikely to have experienced any other significant lifetime exposure events. Likewise,

some investigations have been conducted on elderly populaces, although prior exposure

events make their causative conclusions less definitive (Garshick et al 2003, Lipfert et al 2008).
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The earliest of these minor ailment studies chose to focus purely on the level of

vehicles passing directly through the child’s residential street, in relation to self-reported

wheeze, with symptoms rising by 94-147% when comparing European streets with limited and

constant levels of truck traffic (Duhme et al 1996, Keil et al 1996). Later studies have since

explored the spatial extent of minor respiratory ailments associated with road-transport

pollutants through the examination of artificially created response buffers, traditionally set

across a range of subjective distances from specified major road links (Appendix A7). Likewise,

a noteworthy selection of studies exists examining the reduced performance of lung responses

with respect to source proximity. The most prominent followed lung development within

Californian children across an 8-year period, observing respective declines in Forced Vital

Capacity (FVC) of -63ml and -19ml for residents housed ≤500m and 1000-1500m away from

freeways (Gauderman et al 2007). As before, investigations have also targeted specific

components of the vehicle fleet recognised as primary polluters, with one such study

identifying truck-traffic pollutants to diminish the FVC of Dutch Children residing 300m and

1000m from motorways by -3.6% and -2.0% respectively (Brunekreef et al 1997).

Yet, surprisingly few studies have formally quantified distance based exposure

thresholds, with respects to more severe respiratory outcomes amongst children. In-fact only

six investigations were identified to use hospitalisation cases across the period 1999-2011, all

limited to the evaluation of asthma (Wilkinson et al 1999, Lin et al 2002, Maantay 2007,

Newcomb & Li 2008, Chang et al 2009, Li et al 2011). In their investigation, Lin et al (2002) used

a study population of 417 asthma hospitalisation cases within Erie County, USA during 1990-

1993, verified spatially independent from non-respiratory hospital markers of poor-health.

Through an initial control distance of 600m and a near distance of 200m, asthma

hospitalisation odds ratios were reported at 1.24 [CI: 0.87, 1.77] (Lin et al 2002). Yet perhaps

the findings of most interest were observed when a distance of 200m was held to compare

roads of low and high traffic density, resulting in an odds ratio of 1.93 [CI: 1.13, 3.29] (Lin et al

2002). This highlights the shortcomings of certain studies in only investigating proximity as a

marker of spatial influence, revealing a need to use a variable that characterises the multitude

of geographic traits associated with transport (i.e. proximity, flow, vehicle classification)

Furthermore, Li et al (2011) recently reported health-exposure relations to remain

across buffers zones previously considered to be distant in nature (Figure 2.9), showing the

fundamental limitation of arbitrary buffers in presenting critical thresholds for health

managers to focus on.
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FIGURE 2.9: Estimated odds ratios reporting children’s asthma hospital visitations with respect to
distance from a primary road, through a conditional logistic regression case-control analyses in
Detroit, USA: 2004-2006 (Li et al 2011)

An alternative means to evaluate distance thresholds, involves the use of boundary statistics,

which are widely used within the fields of genetics and ecology to detect and quantify overlap

between naturally occurring geographic frontiers (Barbujani et al 1989, Hall 2008). However,

until now, their potential for distinguishing critical transport thresholds has yet to be

evaluated, despite offering an unbiased selection of response buffers and road inclusion, if

suitable measures of transport are to be used. While surrogate measures, have been related to

hefty health effects, it should still be considered that such techniques are highly prone to

exposure misclassification. These issues may be mitigated through Geographic Information

System (GIS) techniques, which offer a more sophisticated assessment of road traffic

pollutants across vast populations, to provide the additional explanatory power required for a

more traditional regression based analysis.

In one such study, Gehring et al (2002) utilised Land Use Regression (LUR) models to

evaluate the effects of traffic related air pollution and respiratory health during the first 2yrs of

life, within a sample of 1,757 infants located in the German city of Munich during the period

1995-1998. LUR is based on the principle that pollutant concentrations at a given location

depend on the environmental characteristics of the surrounding area that influence or reflect

emission intensity and dispersion efficiency. To achieve this concentrations measured at road-

side monitoring locations were regressed against relevant environmental variables, with the

resulting equation used to predict concentrations at unmeasured locales based on those

predictor variables. Within their investigation, Gehring et al (2002) applied the LUR model

constructed by the SAVIAH project using measurements of altitude, land cover and traffic

volume (Briggs et al 2000), to provide a model fit  (R2=0.67) comparable with sophisticated

dispersion models. After adjusting for social factors, an odds ratios of 1.32 [1.10-1.59] and 1.03
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[0.90-1.18] were respectively reported per 1.5μg/m3 incremental in PM2.5, for prevailing

symptoms of cough without infection and respiratory infections in the first year of life; with

such effects appeared to attenuate during the infant’s second year of life (Gehring et al 2002).

Brauer et al (2002) conducted a comparable inquiry into the onset of pediatric asthma

across a Dutch cohort of 4,135 infants aged 2 years, after designing a national PM2.5 transport

focused LUR model determined by land cover, traffic volume and region (R2=0.73). After

adjusting for social factors, odds ratios of 1.14 [0.98-1.34] and 1.20 [1.01-1.42] were

respectively reported for self-reported infections of the upper respiratory tract and wheeze,

per 3.2μg/m3 increase in PM2.5 (Brauer et al 2002). In addition, odds ratios of 1.12 [0.84-1.50]

and 1.04 [0.85-1.26] were respectively reported for cases of doctor-diagnosed asthma and

bronchitis, per 3.2μg/m3 increase in PM2.5 (Brauer et al 2002).

In a unique GIS study of Continental Europe, Kunzli et al (2009) acquired detailed

industrial and road-transport 1x1km emission release inventories from Austrian, French and

Swiss national agencies to assess the individual public-health impacts of outdoor and traffic-

related air pollution components. In this context, PM10 was deemed the most appropriate

indicator of fossil-fuel combustion sources, as a pollutant-by-pollutant estimate would grossly

overestimate health impacts. Residential levels were linked to 1x1km PM10 emission grids for

1996, and the subsequent population exposure distributions were provided with appropriate

meta-analytical exposure-response functions, calculated as the variance weighted average

across the results of preceding epidemiological inquiries. Levels of outdoor air pollutants

recorded by PM10 were annually associated with 48,000, 450,000 and 45,000 bronchial

episodes in children aged 0-15 years, respectively residing in Austria, France and Switzerland;

with contributions from road-transport held responsible in 43.75%, 55.55% and 53.33% of such

cases (Kunzli et al 2000). Whilst the use of external coefficients fails to provide a conclusive

assessment, the widespread coverage of emission inventory datasets and their uniform

measures of environmental assignment, are considered to offer great potential in future

explorations of environmental contributions specific to the transport sector.

2.4. ENVIRONMENTAL INJUSTICES OF AIR POLLUTION

A substantial quantity of published literature examining the short-term effects of air pollution

on health events tends to derive from an abundance of time series, case-crossover and panel

studies, which traditionally utilise average citywide ambient pollutant concentrations in order

to estimate population exposure solely on a temporal scale. While ideal for assessing the
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impacts of geographically wide pollution episodes and long-term general population ambient

exposure, such studies overlook the fact that air pollutant concentrations often exhibit strong

spatial patterns across the various micro environments located within the urban arena. Failure

to consider these spatial variations at the sub-city level can lead to exposure misclassification

and subsequent bias. Such considerations are of particular importance, especially when

assessing the levels of personal exposure to environmental impacts. Therefore, it should be of

little surprise that important questions even for the well-established short-term health effects

of air pollutants prevail; the most important of which relate to the precise characterisation of

the exposure-response relations generally and within specific population groups.

Conventionally vulnerable social groups comprising of the young and elderly, have

been targeted for aiding in the definition of air quality standard exposure thresholds. However

recent interest into the field of ‘Environmental Justice’ (EJ) by researchers and policymakers

has highlighted an increased social patterning of society’s vulnerable groups, with people of

lower socioeconomic status often found living within areas experiencing elevated

environmental burdens. The current US EPA definition of EJ originates from their 1995

‘Environmental Justice Strategy’, and remains the basis on which the US government may

provide legal assistance:

“Environmental Justice is the fair treatment and meaningful involvement of all people

regardless of race, colour, national origin, or income with respect to the development,

implementation, and enforcement of environmental laws, regulations, and policies. Fair

treatment means that no group of people should bear a disproportionate share of the negative

environmental consequences resulting from industrial, governmental and commercial

operations or policies. Meaningful involvement means that: [1] people have an opportunity to

participate in decisions about activities that may affect their environment and/or health; [2]

the public’s contribution can influence the regulatory agency's decision; [3] their concerns will

be considered in the decision making process; and [4] the decision makers seek out and

facilitate the involvement of those potentially affected.”

(US EPA 1995/2013 - Online)

Two important dimensions contained within this definition relate to the ‘fair

treatment’ and ‘meaningful involvement’, which were considered in detail by the Scottish

Executive (now Scottish Government) to form the first EU integration of EJ concerns in social

policy. Within this debate, a distinct separation is made between the distributional and

procedural aspects of this phenomenon:
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“[1] The ‘distributive justice’ concern that no social group, especially if already deprived in other

socio-economic respects, should suffer a disproportionate burden of negative environmental

impacts;

[2] The ‘procedural justice’ concern that all communities should have access to the information

and mechanisms to allow them to participate fully in decisions affecting their environment”

Scottish Executive 2004, p16

Whilst both definitions highlight distributional and procedural aspects, the European

outlook places eminence on how social conditions produce injustice, with American

approaches focusing on the racial dimension of discrimination and exclusion during decision-

making. These general dissimilarities in underlying philosophy relate to the geographically

differences in public policy, determined by historic issues of class conflict (the need to correct

overlying social processes) or civil rights movements (the need to uphold an individual’s

natural rights). In paraphrasing Cutter (1995), Environmental Justice (EJ) may be defined as a

principle guaranteeing the equal access to a clean environment and equal protection from

possible environmental harm, irrespective of one’s race, income and or class (socio-ethnic

status). Of significant importance is the fact that such equality measures embody mechanisms

for assigning culpability, therefore shifting the burden of proof of contamination to the

polluters not resident, a term coined as ‘The Polluter-Pays Principle’ (PPP). “Thus EJ research

seeks to determine whether marginal and/or minority groups bear a disproportionate burden

of environmental problems, and whether planning policy and practice affecting the

environment are equitable and fair” (Mitchell et al 2003, p909).

The environmental justice debate in the USA has been explored at length, with origins

in the civil rights movement regarding issues of landfills and polluting industries predominantly

located within black communities or indigenous people’s reservations. However, such

investigations have typically been plagued by difficulties of definition, assessment

methodology and interpretation. In a review of the historic EJ literature, Bowen (2002)

concludes that the empirical foundations are so underdeveloped, that little can be said with

scientific authority concerning geographical patterns of inequality; with the direct use of

existing literature potentially resulting in the creation of poorly conceptualised and harmful

managerial decisions. Still, even where evidence has clearly pointed towards discrimination,

court cases have often been unsuccessful in proving intentional conduct on the part of those

held accountable (Hershenberg 2001). Nonetheless, EJ is now an important part of

environmental and public health policy assessment in the USA, mandated by a presidential

executive order in addition to a growing body of research (Clinton 1994). Conversely, the issue
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is less developed in the UK, with significant research and policy interest only appearing at the

turn of the millennium in the wake of investigations conducted by environmental pressure

group Friends of the Earth; who assessed the proximity of deprived communities to industrial

facilities regulated by the Environment Agency (McLaren et al 1999).

The existence of a social gradient in health is a well-established concept, recently

reassessed via a meta-analysis of 155 relevant papers, of which 70% suggest that health is less

good in societies where vast income differences exist (Wilkinson et al 2006). However despite

the numerous socioeconomic factors already identified to affect health, some of these

inequalities remain unexplained, leading to the hypothesis that environmental nuisances may

also contribute to social health inequalities (Deguen & Zmirou-Navier 2010). “Increasingly, it

has come to the attention of researchers and policy makers that the distribution of exposure

to air pollution is not equitable, but this inequity has until recently received little formal

epidemiologic attention” (Naess et al 2007, p686). Traditionally, epidemiological based studies

of air pollution have treated socioeconomic positioning as a confounding influence, removable

by any available indicator in an attempt to achieve burden estimates independent of the social

environment. Conversely, few studies have looked carefully at how these factors interact with

one another. Subsequently in recent times, researchers have taken particular interest in

examining the associated double burden of deprivation and exposure to air pollution in

relation to respiratory health (Crouse et al 2009, Kingham et al 2007, Naess et al 2007,

Namdeo & Stringer 2008, Wheeler & Ben-Shlomo 2005).

In a paper aspiring to advancing the theory and methods surrounding the concept of

health, wealth and air pollution, O’Neill et al (2003), outline three possible mechanisms to

explain how exposure to air pollution may contribute to greater health effects among

individuals of lower Socioeconomic Status (SES):

1) Lower SES may increase susceptibility to air pollution-related health risks directly

through increased levels of psychosocial stress, limited access to health care, or

increased likelihood of living in lower quality housing;

2) Some health conditions (e.g. asthma, diabetes, and cardiovascular diseases),

behaviours (e.g. smoking) and genetic traits that increase susceptibility to effects of air

pollution are distributed differentially by SES

3) Populations with low SES may have more frequent or more intense exposures to air

pollution than those with high SES due to environmental inequalities.
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At present, it is suggested that disparities in exposure by SES are conceivably the least studied

of the three outlined mechanisms through which air pollutants may contribute towards a

social gradient in health outcomes (Crouse et al 2009, O’Neill et al 2003). Nevertheless, such

issues are rapidly attaining recognition in the policy domain; with the Environment Agency’s

position statement on environmental inequalities declaring that those living in the most

deprived parts of England experience the worst air quality (Environment Agency 2004). Such

statements stipulate the need for further research investigating the current state of affairs of

environmental inequity, thus opening the possibility for improving policy guidelines for tackling

the associated double burden of deprivation and environmental hazards.

2.4.1. CONTEMPORARY STUDY DESIGNS & PROTOCOLS

Although the environmental justice movement in relation to air pollution has received

increased attention in recent years, it should be noted that a majority of the early literature

has tended to focus around the inequalities associated with industrial pollutants, particularly

within a North American context (Morello-Frosch et al 2001, Hipp et al 2010). More recently,

there has been increased attention paid to traffic pollution’s role on defining urban air quality,

likely brought about by attempts to incorporate issues of environmental equity into the

sustainable transport debate (Feitelson 2002).

A significant proportion of the emerging literature assessing air pollution, social

deprivation and health outcomes now follows the widely accepted environmental

epidemiology time-series techniques (HEI 2003), focusing on the use of generalized additive

models (GAMs). A Norwegian study, conducted by Naess et al 2007 utilised GAMs to combine

monthly dispersion model pollutant estimates (1992-95), mortality figures (1992-98) and 1992

cohort SES data for elderly residents aged 50-74 within the municipality of Oslo. The derived

statistical models were subsequently stratified across relevant sex and age adjusted bands, for

analysis with both singular and a combination of SES covariates, with and without the

associated air pollution concentrations. Findings from this study revealed deprivation at both

the individual and neighbourhood level to be associated with air pollution, accounting for

some of the excess mortality associated with air pollution in these neighbourhoods.

Lin et al 2004 employed non-parametric GAMs with natural cubic splines, to evaluate

the associations between gaseous air pollutants and asthma hospitalisations (1987-98), for

children aged 6-12 years, stratified by sex and SES, in the city of Vancouver, Canada. This

particular investigation identified nitrogen dioxide (males only) and sulphur dioxide (females

only) to be significantly and positively associated with asthma in the low SES group, but not in

the high SES group. Conversely, an identically designed investigation across Strasbourg, France
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(2000-05) revealed positive but not significant associations between asthma attacks and

modelled PM10, NO2 and SO2 concentrations, to be influentially independent of small-area

variations in deprivation (Laurent et al 2008). Here, discrepancies between comparably

designed studies only act to emphasise the continued requirement to consider such questions

across additional study settings, through a more expansive range of modelling concepts.

Recently, Deguen & Zmirou-Navier (2010) conducted a review of papers assessing the

relationship between social inequality and health risks linked to ambient air quality, within a

European setting. In total 129 papers were identified to explore  inequalities in exposure

according to some measure of socio-economic status, of which only 23 investigated the extent

to which such factors modified relationships between air pollution and some health event,

often comprising of mortality rates. In general, the studies imply that poorer people

experienced elevated exposures to air pollution, bar a few exceptions. Nevertheless overall

patterns, irrespective of exposure, identified subjects of low SES to experience consistently

greater health effects in relation to air pollution. To conclude, the authors identify two

plausible directions for future research to address shortcomings in both localised and

international research assessing the double burden of SES and air quality on health status.  It

was suggested that the most prolific observable improvements in future studies, could be

attained through the application of improved personal exposure classification, a concept

consistently recognised within a plethora of other contemporary research articles (Mitchell

2005, Wheeler & Ben-Shlomo 2005, Crouse et al 2009, Barcelo et al 2009). Secondly, in a

forthcoming research ventures the researchers propose to address issues relating to a

shortage of childhood-based studies detailing issues of SES, environmental pollutants and

health. Such issues are of considerable importance, considering that poverty and deprivation

at an early age may potentially cause adverse health consequences throughout a person’s

entire life (Deguen & Zmirou-Navier 2010).

In recent times, focus has started to shift to the inability of temporal and conventional

multivariate regression techniques to efficiently measure localised variations of environmental

equity. This is of particular concern, when considering that EJ is an explicitly spatial problem,

concerning geographic elements rarely distributed in a uniform manner (Gilbert & Chakraborty

2011). In a distinguished EJ analysis on the health risks from automobiles, Chakraborty (2009)

presents a selection of global regression models that can account for spatial dependence (if

detected in the residuals of conventional multivariate models), through the addition of a

spatial lag or error component. The spatial lag model assumes that autocorrelation is only in

the dependent variable, resulting in an assessment focusing on the existence and strength of

spatial interaction. In contrast, spatial error models consider residual formation to involve a
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previously unmeasured geographical explanatory parameter, included to prevent modelling

bias induced by spatial autocorrelation. Compared to the conventional regression models that

indicated R2 values of 0.35-0.40, spatial error model R2 values ranged from 0.59-0.68,

suggesting a considerable improvement in overall fit. In terms of environmental justice

implications, Chakraborty (2009) observed persistent patterns of racial inequity involving the

distribution of estimated health risks from vehicular emissions, across Tampa Bay, Florida. In

contrast, a more complex relationship materialised for markers of poverty, with most models

reporting no significant relation to cancer risk, or negative associations with respiratory risk

that ceased to be significant under spatial schemes. Such observations emphasise the need for

future investigations to consider the effect of spatial autocorrelation in environmental equity

studies, in avoiding fictitious conclusions.

McLeod et al (2000) applied another class of global models incorporating spatial

elements, known as multilevel models, in the first study of its kind to investigate the

relationship between social class and air pollution concentrations in the UK, with specific focus

on regional variation. Here, social class index (SCI) scores, population density and broad ethnic

compositions were derived from the 1991 UK census, and combined  with PM10, SO2, and NO2

levels interpolations of the 1997 1x1km UK National Atmospheric Emissions Inventory (NAEI)

dataset, for 401 districts nested within 10 administrative regions. Initially a model was

constructed from a fixed intercept representative of mean pollutant levels, and two random

intercepts representative of district and regional level variations.

FIGURE 2.10: Predicted relationship across the UK between localised pollutant and social class index [-
40 Deprived; +40 Affluent] by region (Adapted from McLeod et al 2000)

For all three pollutants, a greater degree of variability was observed at the regional level, with

a strong urban bias between PM10 and NO2 through their mutual source association, road-

transport. A measurement of social status was then added, represented by a fixed parameter

and a random slope parameter to describe regional variations. Negative associations between
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social class index and pollutant concentrations were unanimously, with those most affluent

experiencing lower levels of pollutants, although the magnitude of this relationship differed

between each region. Interestingly, the higher the regional concentration of PM10 the greater

the social divide, whereas for NO2 an equitable distribution of regional emissions was observed

(Figure 2.10).

A third set of models also incorporating generalised shifts in ethnicity and population

density, found positive relationships between pollutants and ethnic minorities. However,

through individually exploring ethnic diversity, persons of higher social status now appeared

more likely to be exposed to higher pollutant concentrations. McLeod et al (2000) concluded

that whilst wealthier inhabitants consider a range of property characteristics prior to purchase,

only a limited quantity of stock displays the required environmental and cultural amenities,

with the latter option appearing most preferential. Thus, sweeping measures to improve air

quality across urban locations, might actually decrease current levels of equity and produce

injustice within certain regions.

More recently, a multilevel model approach was used to better assess the national

cumulative health risk of public exposure from chemicals unique to industrial processes, across

65,166 census tracts (99.6% total) housed within 3,121 US counties (Young et al 2012). Here

socioeconomic deprivation respectively increased a community’s estimated cancer and

respiratory exposure risk level by 6-20% and 12-27%, after adjustment for regional population,

regional economic activity and local population density (Young et al 2012). Whilst the

aforementioned spatial modelling approaches favour the removal of potentially confounding

spatial elements from global relationships, others have actively looked to embrace these

problematic localised variations, developing non-stationary relationships through a somewhat

underused EJ technique known as Geographically Weighted Regression (GWR). Under this

system individual ordinary least square models are conducted for each observation, with the

influence of surrounding observations in each model weighted by proximity (adhering to

Tobler’s (1970) first law of geography), to provide geographically unique parameter estimates.

Most significantly, GWR allows for a geographic disaggregation of community attitudes and

characteristics to provide a greater sense of individuality, which is of importance considering

that various sub-divisions of socio-ethnic class are often grouped into broad census categories.

Through locating pockets of burdened communities, one may still identify global trends but

through a means not limited to producing sweeping and potentially misleading conclusions.

Mennis & Jordan (2005), demonstrate the first application of GWR within an

environmental equity analysis, in their assessment of the spatial distribution of air toxic

release facilities across New Jersey, USA. Here, the density of toxic release inventory (TRI)
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facilities within each census tract (theoretical exposure) described a level of hazard attributed

to airborne toxic releases. The findings revealed a positively global and local relationship

between ethnicity and air toxin release facilities, whereas the positive relationships of

hazardous facilities with socioeconomic status appear to exist only in selective pockets; thus

illustrating the importance of GWR in environmental equity assessments. To date, Gilbert &

Chakraborty (2011) present the only EJ GWR study to assess the influence of social and

environmental elements on areal health, indirectly defined as the risk of cancer from TRI

exposures. Thus, it would be of interest for future GWR to develop upon such studies, applying

measurements of actual health events and through exploring a wider range of

cardiorespiratory conditions influenced by short-term exposures.

2.4.2. CONTEMPORARY TRANSPORT BASED ENVIRONMENTAL JUSTICE STUDIES

One of the earliest transport based environmental justice studies was conducted by Bae 1997,

through the assessment of equity impacts brought about by Los Angeles' Air Quality

Management Plan (AQMP). This remains one of the few studies to consider the net welfare

impacts of air quality regulations, highlighting the direct health benefits to poorer members of

society. In this methodology both beneficial (e.g. health improvements, housing costs) and

detrimental (e.g. unemployment, transport taxation) impacts were weighed, in monetary

terms, starting from the imposition of several uniform federal clean air acts from 1970

(amended in 1990) until their expected attainment date in 2010. Measures of statistical

dispersion over 21 cities (population >100,000) in the form of Gini coefficients, respectively

averaged pre and post AQMP values of 0.364 and 0.347, equating to a 4.7% improvement in

the distribution of income after environmental intervention (Bae 1997). The generated models

thus provided an alluring conclusion for policy makers, suggesting that a full implementation of

the air quality standards outlined within AQMP could produce progressive benefits throughout

the Los Angeles region, dismissing established preconceptions.

Recent UK based studies, investigating the relationship between policy driven air

pollution changes on health and social deprivation in Leeds, have come in the form of two

complementary studies conducted by Mitchell (2005) and Namdeo & Stringer (2008). In their

study, Namdeo & Stringer (2008), examine how the relationship between air pollution, social

deprivation and health would hypothetically alter through distance-based road user charging

(RUC) scenarios. Under the base scenario, deprived (75th percentile) and affluent (25th

percentile) communities on the Cumulative Deprivation Index were respectively exposed to

NO2 levels of 20.52 and 19.21µg/m3, indicating an unjust distribution of urban air quality. For
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these two groups, a RUC set at 2 pence/km produced reductions of 3.4-3.6%, however it was

not until a severe 10 pence/km scheme was implemented that a just situation materialised,

with respective reductions of 10.9% and 14.3% in affluent and deprived locales (Namdeo &

Stringer 2008). However, despite a strong relationship existing between social deprivation and

general health status (R2 0.47), only a weak study relationship was observed between air

quality and health status, contradictory to the overall opinion of prior epidemiology studies.

Mitchell (2005) also reports social inequities to exist in relation to NO2 distribution

across Leeds, while assessing a plethora of alternative transport strategies. Nevertheless, in

both cases the researchers agree that such findings cannot be used to state categorically that

deprived communities bear a greater air quality dependent health burden, as other factors

determining exposure are at present ignored. These include, the negligence of future land use

and infrastructure in policy development, and the possibility of certain target groups (e.g.

children) being more sensitive to pollutants that the general population. Yet, opportunities

exist to improve exposure assessments, to address a wider range of transport measures

affecting urban air quality, and to assess the generality of the findings reported here through

extension to other cities (Mitchell 2005).

Through an appraisal of the London Congestion Charge Scheme (LCCS) Tonne et al

2008, directly calculated whether a fair distribution of air pollution and mortality benefits

associated with the experimental transport scheme was achievable. Modelled pre (2003) and

post (2007) LCCS concentrations assumed meteorology and vehicle fleet compositions to

remain constant, allowing for the isolation of traffic flow and speed influences. The LCCS was

identified to be responsible for a decrease in daily traffic levels of cars by 26% and heavy goods

vehicles by 7% within charging zone wards, with no systematic change in traffic occurring

across local roadways surrounding the zone (Tonne et al 2008). Across London, the greatest

reductions in modelled pollutant concentrations occurred within the most deprived populace.

For instance since the implementation of the LCCS, those most deprived communities were

found to experience 0.24µg/m3 reductions in residential NO2 levels, causing approximately 60

Years-of-life-gained per 100,000 persons over a 10-year period (YLG10); meanwhile those least

deprived only experienced a 0.02µg/m3 reduction in NO2 equating to 5 YLG10 (Tonne et al

2008).

In contrast, Cesaroni et al’s (2012) evaluation of two low-emission zones established in

Rome across the period of 2001-2005, revealed well-off residents as experiencing the greatest

level of health gains from zoning implementation. Here, residential reductions in NO2

concentrations were observed to provide 687 YLG10 for communities of high socioeconomic

position, compared to benefits of only 163 YLG10 experienced by residents of the most
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deprived quintile (Cesaroni et al 2012). Whilst it should be the attention of policy workers to

minimise pre-existing societal gradients, the Rome LEZ fails potentially introduces new issues,

when considering that access to a car reflects social standing (see Carstairs Index). Transport

surveys have consistently demonstrated those poorest and most socially disadvantaged within

society to experience transport inequality. Within the 2012 UK National Travel Survey average

levels of car ownership rests at around 75%, yet only 48% of the lowest income quintile

households own private vehicles (DfT 2013). Furthermore, per person low-income households

make 46% fewer trips and travel only 38% of the distance conducted by affluent households

each year (DfT 2013). Pairing this information with the outputs from Cesaroni et al (2012),

would suggest that Rome’s LEZ has not only widened the gap in social health, but also

increased the ability of the rich to shift their environmental contributions onto those most

vulnerable members of society. In future it would be wise to place focus on locating and

defining specific communities of interest (in terms of pollutant creation and exposures), in

order to improve the ethical efficiency of future traffic management schemes, prior to

implementation.

Taking a different approach, Mitchell & Dorling (2003) present the results of the first

national study of air quality in Britain to consider the implications of its distribution over ten

thousand local communities in terms of potential environmental injustice. Here, quintile plots

of appropriate demographic data revealed community SES to be strongly related to NOx

emissions and ambient NO2 concentrations (Figure 2.11). Interestingly, the study also signalled

that communities with access to the fewest cars tended to suffer from the highest levels of air

pollution, whereas those in which car ownership is greatest enjoy the cleanest air. Mitchell &

Dorling (2002) note that UK air quality is predicted to improve further over the next decade or

so, however the spatial distribution of pollution will remain much as it is now and hence

inequity patterns are also likely to remain largely unchanged. If such a statement were to be

true, it is of the utmost interest to develop these preliminary investigations, to advance our

knowledge and avoid the environmentally unjust future we currently face. I believe this may

be partially achieved through advanced spatial modelling techniques, utilising improved

estimates of personal-transport emission contributions in conjunction with measures of

personal exposure and social positioning. Through this approach, it becomes possible to locate

and characterise patterns of mobility, which favour the development of localised solutions

tailored to the needs of individual communities.
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FIGURE 2.11: Poverty rate by NOx emission and ambient air quality for 10 444 British wards in 1999
(Mitchell & Dorling 2003)

In terms of financial constraint, issues of mobility and the encouragement of ‘green’

transport are typically achieved through subsidies and concessionary fare schemes, whose cost

and overall efficiency could be increased from a targeted approach. Here, Social exclusion

becomes a useful term when discussing transport policy, with the success of schemes

determined not only by affordability, but also through engaging marginalised groups to

provide a local transport system that serves their needs (Hodgson & Turner 2003). Still, issues

of poverty and social exclusion in transport policy are often entwined, with the availability,

unreliability, high cost and time consuming nature of public transport (especially for local

travel), reinforcing other dimensions of social exclusion to create ‘no go’ and ‘no exit’

communities (Kenyon et al 2002). Yet, the concept of developing neighbourhood transport

systems challenges the traditional design philosophy, which seeks to maintain network

integrity across the largest possible geographic scale. Nevertheless, Hodgson & Turner’s (2003)

practical implementation of neighbourhood policies for pockets of extreme poverty across

Stockport, provide a template from which communities of socially excluded groups can be

involved in the construction and management of future local transport systems. However,

priority should initially focus on finding tools to locate and characterise community’s, to

understand the relation between mobility and local socio-environmental-health gradients;

ultimately providing knowledge from which to better target and craft local policy.

In summary, to date there have been few investigations of the health effects of

reduced air pollution resulting from policy interventions, with a significant proportion of

current investigations consistently focusing on industrial operations. Furthermore, few

intervention studies exist which focus on real world traffic management programmes, and
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where conducted hypothetical rather than ground-truthed evidence exists quantifying the

health benefits associated with reductions in traffic pollutants (Tonne et al 2008, Cesaroni et al

2012). Perhaps the use of more sensitive health measurements, consisting of localised hospital

databases rather than modelled mortality ratios, will allow for a clearer assessment of current

and impending air quality action plans.

2.5. CONCLUSIONS

Upon conducting this literature review, it has become apparent that there is a requirement for

additional research within the emerging fields of environmental epidemiology, concerning the

exposure inequities of particulate air pollution during childhood. To date, inquiries in this field

have widely reported the existence of a ‘double burden’, in which mechanisms involving

deprivation and exposure to air pollutants entwine to impede respiratory health. Yet this

concept exists largely in a theoretical manner (Crouse et al 2009, Kingham et al 2007), with

ground-truthed outcomes tending to involve crude indicators of health, recording levels of

general well-being (Namdeo & Stringer 2008), modelled risk (Chakraborty 2009, Gilbert &

Chakraborty 2011), or mortality (Naess et al 2007, Tonne et al 2008). Cases where sensitive

measures of respiratory health are applied almost exclusively focused on asthma

hospitalisations, and have reported contradictory results on the potential existence of a

double burden (Lin et al 2004, Laurent et al 2008). These inadequacies stem from a much

wider problem, concerning the general lack of epidemiological evidence reporting the relations

between particulates and sensitive yet clinician diagnosed respiratory outcomes amongst

children.

In terms of specific respiratory outcomes, perhaps focus should be shifted away from

asthma in favour of a broader analysis of acute respiratory infections, which represent 74.6%

of the overall respiratory burden; of which 77.7% occurs in the URT (Fry & Sandler 1993).

Interestingly, it has been established that children in their first 10-years of life are most

susceptible to suffer from a wide spectrum of frequent acute respiratory infections, caused by

the heightened response of a developing immunological system. Yet in spite of their

frequency, the causes of ‘Childhood Cataract Syndrome’ (CCS) remain uncertain and unproven,

only partially explained by viral activity with underlying social factors likely at play (Fry 1993).

In this project, it is considered that through analysing the spatial outbreak of URT and LRT

infections, one may be able to shed light on the perceived involvement of various socio-
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environmental stimuli on CCS, which until now have only been theorised in an extensive body

of anecdotal research.

Whilst pollutants may directly aggravate the human respiratory tract, a wealth of

laboratory based research has also linked exposure to an immunosuppressive response,

leaving the host open to further damage from bacterial and viral infection (Gilmour et al 2001,

Mushtaq et al 2011). Following this logic, one should therefore consider the possibility of

socio-environmental stimuluses’ largely acting to weaken the URT where contact is greatest,

priming these locations for pathogenic colonisation. Subsequent exposures are then either

likely to facilitate the passage of these pathogens towards the lungs, or have direct impact in

the lower regions themselves caused by the hosts reduced immunosuppressive response.

Prolonged or reoccurring exposure of the LRT during childhood is likely to stunt the

development of vital cardiorespiratory organs, potentially inducing ailments that prevail into

adulthood (Grigg 1999, Stick 2000). It is thus of interest for this research project, to also

examine the role of socio-environmental stimuli in the decline of respiratory health along this

infectious pathway within a real-world setting. This is in contrast to the majority of existing

literature, which looks directly at the severest of acute LRT outcomes (asthma/bronchitis) and

its links with chronic illness, without considering its initial onset.

Whilst a concern towards the involvement of air pollutants on public health has been

widely publicised, few studies have successfully defined source specific impacts within the

urban environment. Here, road-transport is of particular concern, emitting a concoction of air

quality objective pollutants and carcinogenic hydrocarbons within close proximity to

residential districts. Surrogate measures, in the form of residential proximity to major road

links, have been previously used to explore outcomes most often at specific locations of

extreme exposure; yet those same interactions across naturally occurring geographic frontiers

of the entire cityscape remain unquantified.  A void this project intends to fill through a

boundary analysis approach, which is widely used within the fields of genetics and ecology to

evaluate the geographic frequency and magnitude of intertwined processes on specified

outcomes (Barbujani et al 1989, Hall 2008). A procedure, which appears to provide promising

applications within the field of EJ, whose conclusions in the past have been plagued by

inappropriate assessment practises.

In terms of a regression based approach, the use of temporal and conventional

multivariate regression techniques have previously failed to evaluate localised variations of

environmental equity in an effective manner. This is of particular concern, when considering

that EJ is an explicitly spatial problem, regarding geographic elements rarely distributed in a

uniform manner. As the application of spatial models is still in its infancy, Gilbert &
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Chakraborty (2011) present the only GWR EJ study to assess the local influence of social and

environmental elements on areal health, indirectly defined through risk. To date, Chakraborty

(2009) present the sole EJ based spatial analysis of the respiratory burden specific to

automobiles, once more restrained through its use of modelled risk rather than real-world

health outcomes. It is therefore the intention of this project to extend the use of global and

local spatial regression techniques into the largely theoretical EJ debate, through combining

geographically detailed social, environmental and pediatric admission databases. In order to

derive source specific outputs the project will follow in the steps of Kunzli et al (2009), whose

direct use of emission inventories based on monitored vehicle flows, are considered to offer

great potential in future explorations of environmental contributions specific to the transport

sector. Primarily due to the vast geographic coverage of such environmental monitors, and the

ease to which modelled outcomes may be transferred.
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CHAPTER 3

PROJECT DESIGN & DATA COLLECTION

OVERVIEW

This chapter opens with a description of the study area of Leicester UA, in terms of its

geographic location and demographic characteristics, so that the reader may understand the

relevance of such environmental inquiries. Following on from here the chapter describes the

methodological approach adapted for this research based on findings presented within the

preceding literature review, providing an overview of the project’s design and data collection

methods.
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3.1. STUDY POPULATION AND SETTING

Leicester is a city of some 280,000 inhabitants spread across an area of 73.32km2, located

within the East Midlands of England. It is regarded as the British prototype for an ethnically

harmonious multicultural city (Bonney & Le-Goff 2007, Vidal-Hall 2003). Population

demographics from the 2001 UK Census reveal a relatively young population to inhabit

Leicester, with 22.29% of residents under the age of 16 years (ONS 2003). Furthermore,

47.09% of children aged 0-15 years are from ethnic minority groups, of which 63.71% are

identified to be of Indian ethnicity (ONS 2003). The city’s other clearly defined ethnic minority

groups are representative of contemporary UK migration trends, including children of Afro-

Caribbean (5.69%), White Non-British (3.17%), and Other South Asian (12.49%) ethnicities

(ONS 2003). In general Leicester is considered a relatively poor city, ranked as the 31st poorest

out of 354 Local Authorities in England under the 2007 Indices of Multiple Deprivation (ONS

2008a). Such ethnically integrated yet deprived cities provide perhaps one of the greatest

challenges for modern urban planners.

FIGURE 3.1: Definition of Leicester UA’s major residential boroughs, as identified by CAS WARDS from
the 2001 UK Census

The subsequent research project was conducted across Leicester Unitary Authority’s (UA) 187

Lower Level Super Output Areas (LLSOA).  LLSOA’s are a new national geography unit for

reporting statistics,  containing on average 1,500 residents, and are of a higher spatial
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resolution than traditionally explored Census Area Statistics (CAS) Wards. Across Leicester UA,

7-14 LLSOA’s typically nest within each CAS Ward. LLSOA and CAS Ward maps were obtained

through the ONS Census Geography Data Unit’s access facilities provided by UKBORDERS (ONS

2001a, 2001b). Throughout this research project, model outputs are to be geographically

referenced based upon the cities CAS Ward Structures (Figure 3.1), so as to simplify the

reader’s identification of key processes. Where information relating to the current land use of

an area becomes of interest, further reference will involve the OS 1:50,000 Map of Leicester

(Figure 3.2). Therefore, one is to advise the reader to take note of Figures 3.1 and 3.2 for

future reference.

FIGURE 3.2: Ordnance Survey 1:50,000 scale Landranger Map for the City of Leicester (Adapted with
permission from the EDINA Digimap supply service: © Crown copyright 2012)
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3.2. KEY DEMOGRAPHIC AND ENVIRONMENTAL DATASETS

3.2.1. HOSPITAL ADMISSION DATABASE

A geocoded respiratory subset of NHS hospital admissions for children aged 0-15 years,

residing within Leicester UA’s 187 LLSOA’s from 2000-09, was obtained through the Leicester

City Primary Care Trust (PCT). The geocoded dataset was based on residential address, and

contains details of admissions for patients regardless of whether they were admitted to a

hospital within or outside of the Leicester UA catchment area.

During the 10-year study period, 24,556 visits to NHS hospitals were made by Leicester

UA residents aged 0-15 years, whose primary diagnosis was recorded under the WHO

International Classification of Diseases (ICD) as ‘Diseases of the respiratory system’ (ICD-10

J00-99). The greater proportion of these cases were classified as ‘J00-06: Acute upper

respiratory infections’ (41.65%), ‘J40-47: Chronic lower respiratory diseases’ (25.92%), and

‘J20-22: Other acute lower respiratory infections’ (16.87%).

ICD10 Respiratory Subset Hospital
Admissions

% J00-99
Admissions

Cases Per
1,000 Children

ICD10: J00-06 [Acute URTI] 10,228 41.65 163.94
ICD10: J09-18 [Influenza & Pneumonia] 1,667 6.79 26.72
ICD10: J20-22 [Other Acute LRTI] 4,142 16.87 66.39
ICD10: J30-39 [Other Diseases URT] 3,627 14.77 58.14
ICD10: J40-47 [Chronic LRT Diseases] 6,364 25.92 102.01
ICD10: J60-70 [Lung Diseases By External Agents] 50 0.20 0.80
ICD10: J80-84 [Diseases Of The Interstitium] 17 0.07 0.27
ICD10: J85-86 [Suppurative/Necrotic LRT Disorder] 52 0.21 0.83
ICD10: J90-94 [Other Diseases Of The Pleura] 180 0.73 2.89
ICD10: J95-99 [Other Respiratory Diseases] 1,242 5.06 19.91
Note: Multiple respiratory symptoms may be responsible for an individual’s hospital admission

TABLE 3.1: Aggregated children’s respiratory hospital admissions (ICD-10: J00-99) experienced across
Leicester UA, with patient symptoms indexed into major respiratory subsets: 2000-09

Routine UK hospital statistics classifying patients on discharge are generally thought to be of a

high standard, which is maintained through a considerable expenditure of NHS resources on

quality assurance activities.  A systematic review of 12 studies comparing hospital episode

statistics with medical records identified a median coding accuracy rate of 91% for diagnostics

within England & Wales (Campbell et al 2001). Furthermore, in this review there appeared to

be no significant differences in coding accuracy over time, condition type or rarity of codes

being assessed. Similarly an assessment of multiple NHS hospitals during 2009/10 identified

diagnosis and procedure coding errors to exist in only 11.3% patient records (Audit

Commission 2010). Such levels of reported accuracy would suggest that the Leicester PCT

dataset is sufficiently robust in supporting research and managerial decision-making processes.
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However, in using NHS hospital episode statistics one should consider that children of

affluent families might favour the use of privatised health care, although within the UK medical

insurance remains viewed as a luxury rather than a necessity. A single private hospital exists

within the city of Leicester, which is part of the ‘Nuffield Health’ group. Whilst, it remains

‘good’ practice and is expected of all medical partitions to record patient record updates,

private health groups are not legal obliged to inform NHS trusts of any changes. Within the

medical literature, no records currently exist exploring the scale to which medical procedures

are perhaps under-reported in this manner. However, any under-reporting of health

outcomes, in a few of the most affluent communities has the potential to mask the

explanatory weight of an EJ investigation. Still, the use of private healthcare is perhaps of

greater relevance to planned surgical care, in combatting patient waiting times, rather than

emergency respiratory admissions where patient care occurs in a prompt fashion at national

medical facilities. In terms of children’s respiratory complaints, an absence of private health

care is likely restricted to the primary care level, where insurance encourages the treatment of

minor complaints to prevent any further deterioration. For this investigation, any confounding

influence caused by the absence of admission records made to private services, is considered

minimal, but remains of interest for future enquires.

For the purpose of this study, annual average LLSOA respiratory admissions were

calculated by pooling together case counts across a 10-year period, with this number dividing

by the number of respective years included and number of persons aged 0-15 years residing

within each census area. Following this procedure a series of 1-year standardised hospital

admission rates were obtained for specific subset and overall diseases of the respiratory

system. In the construction of the regression models, select years within the middle of this 10-

year period were omitted in-order to further evaluate model performance via R2 cross-

validation measures.

A major benefit of drawing case data from an extensive range of years in the

construction of an annual admission rates, is the removal of potential temporal confounding

influences, be they annual or seasonal specific events (i.e. disease outbreaks, viral epidemics).

Still concern may arise in the evaluation of children’s hospital cases across a decade, relating to

the use of population count data, with marginal expansions or contractions potentially

impeding ones analysis. On the 16th September 2010, the Office for National Statistics (ONS)

released an online series of mid-year population estimates for LLSOA’s across England and

Wales, during 2002-2008 (ONS 2010). Across Leicester as a whole, levels of children age 0-15

years appear to have remained relatively stable, recorded at a figure of 62,387 in the 2001 UK

Census and a level of 61,837 in the 2008 mid-year population estimates (ONS 2003, ONS 2010).
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To evaluate the magnitude in which localised shifts in population levels might

influence the dependent variables, a series of annual LLSOA J00-99 admission rates per 1,000

children were constructed using ground-truthed population counts from the 2001 UK Census

and mid-year population estimates (Appendix B4). Upon comparing these surfaces one

observes an exceedingly strong correlation between census and mid-year derived rates across

the first half of the study period (R2 ≥0.90), appearing to slightly diminish yet remain at a

significant level towards the tail end of the study period (R2 ≥0.77) (Appendix B4). This would

suggest that the use of census counts across a 10-year period is a viable option, with

population changes providing minimal influence on the overall trends captured.

One should also note that the ONS mid-year estimates are only experimental statistics,

which as of yet do not meet the required quality standards of the National Statistics (ONS

2010). Whilst such theoretical demographic changes based upon information gathered at a

national level may be of use in the provision of regional and or local authority decisions, a high

level of uncertainty is expected to exist where interpretation occurs at a local level. Based on

the information detailed above, it was decided that ground-truthed population counts from

the 2001 UK Census were the most favourable option for the calculation of standardised

admission rates across Leicester UA.

3.2.2. EXPLORING THE SMALL NUMBERS ISSUE IN HEALTH DATA

Continued improvements in the performance and availability of computing resources have

fuelled our need to better understand the local relations between behaviour, environment and

health; often exclusively experienced by specific subgroups of the post-industrial populace.

Yet, this upsurge in demand for information about small populations is at odds with the need

to preserve privacy and data confidentiality. Furthermore, the evaluation of small numbers

may raise statistical issues concerning the accuracy, and thus usefulness, of the data. Whilst

rates based on a full population count are not subject to errors in sampling variability, the

influence of random variation may become substantial when a small number of events define

the numerator. Typically, rates based on large numbers provide stable estimates of the true

underlying rate, whereas rates based on small numbers may fluctuate dramatically spatially or

temporally, even where no meaningful differences exist.

To explore the potential influence of random variation, one should view the raw

annual hospital admission data in a temporal manner. A sample of which is provided for all

respiratory cases and the two subsets of interest (Appendix’s B1-B3). In terms of overall

trends, citywide respiratory hospitalisation rates would appear to be at a comparable level at
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the start and end of the 10-year study period. Yet, interestingly levels of respiratory

hospitalisations would appear to have slightly diminished around 2004, a year which was

subsequently selected to form part of the omitted data from the GWR models, so as to allow

for a more critical cross-validation measure.

Specific to the small numbers issue, a standard deviation was calculated for each of

the 187 LLSOA’s as a measure of dispersion, summarising the amount to which 10-years of

annually recorded case counts varied from the expected value of a specific locale. In terms of

J00-99 admissions, a Leicester LLSOA was expected to experience 13.13 cases per annum,

deviating temporally by 4.65 cases across the 10-year period. More importantly, standard

deviation values <4 and >4 were respectively associated with a 10-year mean J00-99 case

count of 8.09 and 16.29; indicating that a series of relatively stable temporal measurements

are in existence. For J00-06 admissions, the expected LLSOA case count was recorded at 5.47

with a temporal deviation of 2.59. Here, a standard deviation of <2 and >2 were respectively

associated with expected J00-06 case counts of 3.24 and 6.33. Finally, expected LLSOA J20-22

case counts were recorded at 2.22 with a temporal deviation of 1.69. Here, a standard

deviation of <1 and >1 were respectively associated with expected J20-22 case counts of 0.9

and 2.5. This once again demonstrates that temporal fluctuations appear proportional to the

magnitude of cases recorded within that area; therefore a minimal level of temporal random

variation is to be expected.

Whilst one may note that annual case counts for J00-99 (2.1 - 32.8), J00-06 (0.8 - 16.9)

and J20-22 (0.3 - 7.2) occur across a small-moderate range, a greater sense of variation is

introduced to the data once weighted in relation to children’s population levels. Across

Leicester, each LLSOA is expected to house 333 children, potentially differing by a standard

deviation value of 101 children. However, through this procedure an aspect of random

variation may be spatially introduced if a small populace is introduced to define the

numerator. As such, statistical smoothing algorithms in the form of ‘Bayesian nearest

neighbour’ and ‘Poisson kriging’ are often implemented to filter local small-scale variations

from mapped health rates, enhancing the larger-scale regional trends.

Bayesian methods depend on the prior distribution of the disease rates (from the data

itself) multiplied by a likelihood function, to produce a posterior distribution from which the

Bayesian rates are determined. Here, observed rates are shrunk towards a global or local mean

in the case of a nearest neighbour approach, resulting in an estimate of the ‘true’ value

through borrowing the strength of other spatial units. If a raw rate estimate has a small

variance (based on a large population at risk) then it will remain essentially unchanged. In

contrast to traditional smoothers, geostatistical techniques go beyond the filtering of noise
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allowing for an intuitive decomposition of structured variability according to spatial scale, as

modelled by the semivariogram. For the Leicester dataset, Pearson’s R measures of 0.82, 0.75

and 0.73 respectively measured the level of association between raw admission rates and their

outputs under a Bayesian first-order nearest neighbour scheme (P≤0.01). Comparable values

of 0.79, 0.72 and 0.70 were also respectively produced when correlating these raw rates with a

Poisson smoother (P≤0.01). Whilst some local change in the hospital rates had occurred, these

measures demonstrate that the presence of random spatial variation has a minimal impact on

the overall trend of the datasets.

Although these smoothing approaches are recommended for use by medical

professionals distinguishing community health in a purely cartographic sense, their application

within this body of research was deemed unnecessary for evaluating dose-response relations;

where the applied models actively incorporated the spatial variation of both dependent and

independent parameters. In reality, any spatial smoothing treatment may falsely increase the

spatial nature of the independent datasets, forcefully causing aspects of over-interpretation

particularly by the GWR models. Furthermore, reducing the spatial gradient of health

outcomes not only removes one’s ability to evaluate how transitions in socio-environmental

determine boundaries in health, but also opens the possibility for a concealment of exclusively

local information (i.e. outlying hot-spots in health marking junction specific areas of traffic

congestion).

3.2.3. SOCIAL COVARIATES

Population counts, ethnic composition and variables of deprivation recorded within the 2001

UK Census were accessed from Casweb, hosted by the MIMAS data centre as part of the ESRC

census programme. Ethic minority groups of interest were selected to represent the major

post war migration trends experienced within Leicester from Commonwealth and European

Countries, as described in Table 3.4. Here, children classified as [Indian] exclusively

represented Leicester’s ‘Indian’ group; with [Pakistani] and [Bangladeshi] children forming the

city’s ‘Other South Asian’ category; and children of [White Irish] and [Other White] origins

recording populations of ‘White Non-British’ children. Under a traditional classification,

persons of Afro-Caribbean ethnicity are residents of the United Kingdom who are of West

Indian background and whose ancestors were primarily indigenous to Africa. However, as

immigration to the United Kingdom from Africa increased in the 1990s, the term has been

used to also include UK residents solely of African origins (Cappuccio et al 1998, Reeves et al

2001); thus allowing for a more mobile account of this ethnic grouping. Looking from a
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technical standpoint, the subjective criteria used within the 1991 and 2001 census coding,

means that families with parental links to the Caribbean may still choose to define themselves

in their census as Black African. It is on this basis that ‘Afro-Caribbean’ children study group, is

constructed from both the [Black Caribbean] and [Black African] divisions of the 2001 UK

census.

Measures of Deprivation were recorded using Carstairs Index scores of unweighted UK

Census variables exploring unemployment, overcrowding, car ownership and defined levels of

social class (Carstairs & Morris 1991).

Variable 2001 UK
Census Table LLSOA Component Calculation (x100) LLSOA

Mean
LLSOA

Std.
Unemployment KS09b (Males 16-74 years / Unemployed Males) 6.39 3.02
Mobility UV062 (Households No Vehicle / All Households) 37.45 13.93
Overcrowding UV058 (1.0+ Person Per Room / All Households) 4.10 3.57
Low Social Class UV050 (Social Class D & E / All Persons) 45.67 13.17

LLSOA Carstairs Index Score: Summation of Z-Scores for the four variables

TABLE 3.2: Calculation of Leicester UA’s LLSOA Carstairs Index Scores through the use of appropriate
ONS 2001 UK Census demographic variables

Carstairs Index scores have been extensively applied within spatial epidemiology (Maheswaran

& Elliott 2003, Gregory 2009), and were favoured over the more detailed and frequently

recorded Indices of Multiple Deprivation (IMD) due to these indices containing health and

pollutant measurements within their calculation. Carstairs Index scores at the LLSOA level

within Leicester UA range from -7.19 (affluent) to 9.14 (considerably deprived), and show good

levels of correlation with IMD 2007 measurements (R2=0.80), thus suggesting that patterns of

deprivation in Leicester remain broadly unchanged from 2000-2009.

To account for confounding measurements of overall population health, levels of

smoking prevalence and obesity for persons 16 years and older were obtained via the Office

for National Statistics (ONS 2008b) ‘Healthy Lifestyle Behaviours: Model Based Estimates,

2003-2005’ geocoded to the LLSOA (Table 3.4).

Passive smoking in the family home is considered to pose a major risk to young

children’s health. Jones et al (2011) in an updated systematic review and meta-analysis of 60

studies identified smoking by one parent (OR: 1.22), both parents (OR: 1.62) or other

household members (OR: 1.54) to significantly increased the risk of childhood LRI’s. Under a

WHO modelling framework, the annual global burden of disease from exposures to second-

hand smoke for children is calculated at a value of 6,614,900 disability-adjusted life-years; a

figure equal to 61% of the overall population’s burden from second-hand smoke (Oberg et al

2011). Likewise obesity is considered to be a well-known burden on respiratory health, as
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recorded in relation to the onset of asthma (Beuther & Sutherland 2007, Chen et al 2013).

Here, a recent 6 study meta-analysis of 18,760 children reported a dose-response effect of

elevated BMI on asthma incidence, when comparing normal-weight subjects (BMI <25) to

those deemed overweight (OR: 1.19) or obese with a BMI >30 (OR: 2.02) (Chen et al 2013).

However, one should consider that these modelled based estimates of obesity are only

representative of the adult population, extrapolated in this study as a marker of childhood

rates. Still, this is deemed to be a suitable proxy with parental obesity often identified as the

predominant risk factor for childhood obesity, probably owing to a combination of genetic,

social and environmental factors. For instance, a 16-year follow-up study of 4,788 mother-

father-child trios from a Finnish birth cohort reported a strikingly high risk of becoming

overweight for boys (OR: 5.66) and girls (OR: 14.84) where both parents were classified as

exhibiting long-term weight issues (Jaaskelainen et al 2011).  In terms of a hereditary link,

quantitative genetic modelling within a UK sample of 5,092 twin pairs aged 8-11 years born

during the current obesity pandemic, identified substantial heritability (77%) for BMI (Wardle

et al 2008). Subsequently, it has been established that children with two copies of lower-risk

alleles from the FTO genotype respectively eat 20.9% and 24.9% less in the absence of hunger

than those with one or two higher risk alleles (Wardle et al 2009).

Yet, in following a US cohort of 2,913 normal-weight children over a 6-year period,

Strauss & Knight (1999) also demonstrate the key role of community and household socio-

environmental influences in the development of childhood obesity. Whilst an obese mother

(OR 3.62) appeared the driving demographic factor; a low family income (2.91) and reduced

cognitive stimulation at a child’s residence (2.64) also posed substantial risks (Strauss & Knight

1999). Current research from the US examining the influence of obesogenic environments on

730 families, identify reduced levels of childhood obesity within neighbours that scored highly

for metrics associated with ‘physical activity’ and ‘healthy eating’ when compared to

neighbourhoods low on both measures (OR: 0.41); after adjusted for parent weight status and

demographic factors (Saelens et al 2012). Likewise, a reduced level of adult obesity was

detected within neighbourhoods supportive of physical activity and healthy eating (OR: 0.57)

compared to neighbourhoods low on both measures (Saelens et al 2012). Based upon the

knowledge that obesity is predominantly a hereditary phenomenon, and that the obesogenic

environment influences adult and childhood weight in a similar manner, one may conclude the

ONS adult obesity estimates offer a suitable proxy for this investigation.

The modelled healthy lifestyle estimates (ONS 2008b), were constructed from a

pooling of individual respondent information contained within the 2003, 2004 and 2005 Health

Surveys for England (HSfE). The project was commissioned by the NHS Information Centre for
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health and social care, to meet user requirements for local level measurements in health

domains where no suitable administrative sources exist. In total 28,993 adults provided a valid

smoking status, with 7,024 participants reporting that they were current smokers; and 24,974

adults provided valid height and weight data, from which it was calculated that 5,874 were

obese (Scholes et al 2007).

As the methodology used to produce estimates of local health remains relatively new,

and is subject to further consultation, modification and development, one is advised to adopt

these datasets with caution. Whilst it is strongly recommend that users view the model-based

estimates in light of their broad confidence intervals, analysis has shown that the datasets

remain suitable for distinguishing areas of high/low values (Scholes et al 2007). Still, they are

unlikely to precisely mirror any available measures from local studies or surveys, and as such

do not represent an estimate of the actual prevalence; although several validatory documents

have documented high levels of correlation (Scholes et al 2008a, 2008b).

Here, internal validation of local model outputs was achieved through: (I) Direct

estimate comparison, (II) Residual analysis, (III) Calibration diagnosis, and (IV) Stability analysis

(Scholes et al 2008a). In the 549 output areas containing >15 HSfE respondents, Pearson’s

correlation coefficients between the modelled and direct 2003-2005 HSfE estimates were

respectively recorded at 0.37 and 0.61 for obesity and smoking. Modelled residuals were also

observed to be randomly and evenly scattered around their expected mean value 0, indicating

that no important relationships had been omitted. In their final construction stages, model-

based estimates were locally calibrated so that a population-weighted output measure

equalled previously published direct estimates for each Strategic Health Authority (SHA).

Across England ratio adjustment factors of 1.00 and 1.02 were respectively reported for

smoking and obesity, with the East Midlands adjustments of 1.02 were recorded for both

lifestyle choices. The minimal amount of scaling required to directly match SHA surveys, thus

demonstrates a substantial level of quality assurance. Finally, to check for the presence of

spurious relations within the model the dataset was split into two halves at random, allowing

for the re-estimation of model parameters. Here, respective correlations of 0.99 and 0.92 were

respectively recorded for smoking and obesity, providing confidence in the robustness of the

estimates.

External validation was initially achieved through comparing model-based estimates

with records from the: (I) 2000-2002 HSfE, and (II) 2003 Merseyside Health Survey (Scholes et

al 2008a). In the 577 output areas containing >15 HSfE respondents, correlation coefficients

between the modelled and direct 2000-2002 HSfE estimates were respectively recorded at

0.41 and 0.55 for obesity and smoking. Yet in providing this independent test of quality, it
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should be noted that comparisons over a different timeframe may confound results where

changes have occurred. More suitably, the 2003 Merseyside Health Survey of 72 output areas

containing >15 respondents, respectively record strong correlations of 0.50 and 0.55 for

obesity and smoking. Overall this demonstrates that whilst the healthy lifestyle datasets are

unable to record actual prevalence levels, they are capable of capturing the overall trends,

allowing for this investigation to suitably account for the impact of such phenomenon.

3.2.4. ROAD-TRANSPORT EMISSIONS

In correlating measures of pollution with census data, an assumption is made that an

individual's exposure occurs entirely within the relevant census unit, thus potentially causing a

significant exposure bias. The Department for Transport (DfT) National Travel Survey: 2009,

identifies that primary school pupils (aged 5-10)  on average travel only 1.5 miles to school

(DfT 2010). Therefore one may assume for the most part that outdoor exposures experienced

by children at school would be similar to those experienced at their place of residence due to

proximity.

Residential exposure to particulate matter up to 10µm in diameter generated by road-

transport (TPM10) was determined through the interpolation of 2,157 datum points contained

within the ‘2008 1x1km Road Transport PM10 Emission’ map of Leicestershire, provided by the

UK National Atmospheric Emissions Inventory (NAEI) (AEA Technology & DEFRA 2010). The

NAEI emission models are derived through combining emission factors with annual average

daily flows, which are obtained from direct counts of vehicle compositions along sections of

major roads (A-roads and motorways), and through modelled flows along minor roads.

Incremental amendments to the emission models methodology since its implementation,

restricts the direct comparison of previous years models. Therefore data from the latest

version of the ‘2008 1x1km Road Transport PM10 Emission’ map was implemented to broadly

represent traffic emission levels during 2000-2009.

Here, fuel consumption and emission factors are expressed in grams of emissions per

kilometre driven for each detailed vehicle class, derived from vehicle emission test data over

different drive cycles (TRL 2009). Hot exhaust emission and the related fuel consumption

estimates are calculated within the NAEI across 6 major vehicle classes, based on fleet

composition contained within the DVLA’s licensing database (Tsagatakis et al 2010). Vehicle

fleet age profiles and fuel mix are fixed at a national level, whereas fleet mix varies

geographically (urban, rural and motorway settings). Estimates of the distance travelled by

vehicles whilst operating under cold start conditions are derived from the 2001 UK Census,
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locating the origin and destination of trips conducted between residence and place of work,

with levels of car ownership defining the level of trips from the home to other locations. These

geographic trip distributions are reconciled with the outputs from Department for Transports

TEMPro (Trip End Model Presentation Program) model (DfT 2009), and are provided with

emissions estimates based on the COPERT III model for cold-starts (Ntziachristos & Samaras

2000). Finally, non-exhaust PM10 contributions involving brake and tyre wear, in addition to

the abrasion and general deterioration of road surfaces, are incorporated in the NAEI road-

transport models (Tsagatakis et al 2010). Any national map like this will incorporate a number

of assumptions that may influence its absolute local accuracy, which pose as a potential

limitation for this study; although it should be recognised that this is currently the best

available data source for this model input.

LLSOA centroid estimates of experienced road transport emissions were obtained

through Ordinary Kriging (OrK) interpolation function within SpaceStat 3.5.6. The kriging

process (Krige 1966) constructs an optimal interpolator for the variable of interest by

minimizing the variance of the estimation error as enumerated by the spatial covariance,

subject to unbiased conditions. The degree of spatial dependence of a spatial variable Z (e.g.

TPM10 emissions) is described by the variogram function, 2γ, where the semivariance γ is

defined by (Goovaerts 1997):

( ) = ( ) [ ( ) − ( + )]( )
(Eq.1)

Where h is a vector presenting the distance and relative position of the two

observations ( ) − ( + ), and N(h) is the number of such paired observations for the

distance band in question. Thus the variogram is a measure of the average dissimilarity

between data as a function of their separation in geographical space.  A variograms search

vector h may be defined in terms of purely distance (omnidirectional) or, alternatively across

set distances limited by direction if a degree of anisotropy and knowledge of such trends exist

(directional). In this analysis an omnidirectional variogram was favoured, on the basis that road

traffic at an individual and or higher level, is likely to branch off from major routes in all

directions in a relatively even manner, so as to maximise trip efficiency. Furthermore more

sample pairs are used within the construction of an omnidirectional than any directional

variogram, thus increasing the likelihood of creating a clearly interpretable structure. In the

construction of Leicestershire’s TPM10 emission omnidirectional variogram, 40 lag counts

(number of bins) separated by a lag distance of 600m (width of classes) and a lag tolerance of
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300m, were used to define individual classes of data pairs. It should be noted that if a point

pair falls within the tolerance of two lag bins, then the pair is excluded from the semi-variance

calculation.

FIGURE 3.3: Graphical representation of the search strategy used by the omnidirectional variogram

TPM10 emission semivariogram values γ across Leicestershire, for paired localities separated by

a distance h, were approximated by the following equations (Webster & Oliver 2007):

( ) = ⎩⎪⎨
⎪⎧ + [ − (− ⁄ )] < ≤+ + . ( ⁄ ) − . ( ⁄ ) < ≤+ + >

(Eq. 2)

Where the sill (c1 = 0.082) and threshold (a1 = 1428.944m) of the short-range component of the

variation are represented by a negative exponential model, and the sill (c2 = 0.125) and

threshold (a2 = 18462.269m) of the long-range component are described through a spherical

model. The level of spatially uncorrelated noise within the modelled semivariogram, known as

the nugget effect (C0 = 3.141x10-10), was noted to have an insignificant influence on calculated

levels of semivariance. The mathematical models (Eq.2) were identified to suitably fit the

TPM10 emission variogram (R2 = 0.99), thus suggesting that the spatial structure of the data

was sufficiently captured by the OrK interpolation. These fitted semivariogram model outputs

in combination with a Lagrangian parameter were subsequently used to determine the optimal

kriging weights , under unbiased constraints; a procedure described in greater detail within

the successive section.

OrK LSOA centroid estimates of road-traffic emissions Z*(u), were obtained through

calculating the linear weighted moving averages of the n(u) observations of the road-traffic

emission datum ( ) plus the constant local mean m(u) within a given neighbourhood

centred on an unsampled locality u (Goovaerts 1997):
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∗( ) = ( ) ( ) . ( ) + − ( )( ) ( )
(Eq. 3)

Ordinary Kriging (OrK) is the most widely applied kriging method as it required neither

awareness nor stationarity of the mean over the entire area. As such, the unknown local mean

m(u) is filtered from the linear estimator through forcing the kriging weights to sum to 1,

leading to an OrK estimator of (Goovaerts 1997):

∗( ) = ( ) ( ) . ( ) ( ) =( )
(Eq. 4)

Through forcing the kriging weights to sum to 1, it is thus possible to minimise the estimation

of error variance under the unbiased constraint common across kriging methods

(Goovaerts 1997): ( ) = { ∗( ) − ( )}= { ∗( ) − ( )}
(Eq. 5)

The minimisation of the error variance under the unbiased constraint calls for the definition of

a Lagrangian L, which is a function of the data weights and a Lagrangian parameter 2µ(u),

under the following constraints (Goovaerts 1997):

= ( ) + μ( ) . − ( )( )

. ( )μ( ) = − ( )( ) =
(Eq. 6)

In the case of the OrK system of equations, expressed in terms of the variogram, the kriging

weights turns out to be (Goovaerts 1997):

⎩⎪⎪⎨
⎪⎪⎧ ( ) ( ) . − − ( ) = ( − ) = , . . . , ( )

( ) =( )
(Eq. 7)
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The left hand side of the system describes the dissimilarities between the data points α and β,

while the right hand shows the dissimilarities between each data point and the estimation

point u. Thus, the OrK system is solved through a standard linear optimisation approach to

approximate the solution of over determined systems, by minimising the sum of the squares of

the errors made in solving every single equation. Once the kriging weights (and Lagrange

parameter) are obtained, the ordinary kriging error variance is given by (Van-Groenigen 2000):

( ) = ( ) .( ) ( − ) + ( )
(Eq. 8)

In theory, no other interpolation procedures can produce better estimates (being unbiased,

with minimum error) than kriging techniques, if founded upon an accurately modelled

variogram. Geostatistical methods with weights derived through a variogram provide a more

accurate interpolation estimate than deterministic methods (i.e. Inverse Distance Weighting or

Nearest Neighbour interpolation), as weights are not constructed as an arbitrary and uniform

function of distance. Furthermore, deterministic methods unlike kriging techniques do not

provide prediction standard error outputs, therefore justifying the use of such models may be

problematic.

Model performance was validated through predicting an omitted proportion of the

Leicestershire 1x1km NAEI dataset to directly compare with their real-world values (Appendix

B5). Table 3.3 indicates over-smoothing to have only a minor impact on modelled outputs, and

that an acceptable model performance may be achieved where datum is sparse. Thus it is

believed that the model is an acceptable means of deriving TPM10 emission levels at a more

localised level than the 1x1km NAEI grid that data values currently exists in. OrK outputs

defined through the theoretical two model semivariogram, accounting for the 8 nearest NAEI

road transport emissions measurements, produced TPM10 kriged estimates for Leicester UAs

LSOA centroids ranging from 0.333-2.648 tonnes/year with a small average variance of 0.026

(Appendix B6).

R2: Real vs. Predicted Values of Omitted NAEI Locations (%)
10% Data 20% Data 30% Data 40% Data 50% Data

4 NAEI Observations 0.91 0.83 0.76 0.73 0.66
8 NAEI Observations 0.90 0.82 0.75 0.71 0.64

12 NAEI Observations 0.89 0.82 0.75 0.72 0.65

TABLE 3.3: OrK model validation achieved through comparing real-world with predicted TPM10 levels
accounting for different degrees of spatial smoothing and sampling intensities.
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3.3. DATASET DISTRIBUTIONS

Table 3.4 provides a statistical summary of the social-lifestyle, health and environmental

variables of interest previously discussed, with respect to their original sources. All variables

are to be comprehensively incorporated within the projects spatial modelling strategy, with

the exception of markers for ‘White British’ children, which are discussed with relation to

pattern based analyses.

Min. Max. Mean Std. Dev. Skewness Kurtosis
LEICESTER CITY PCT DATASET: 2000-09
Annual Hospital Admissions Per 1,000 Children [Age 0-15 Years]:
 ICD10 J00-99 13.89 147.83 39.43 15.05 2.59 14.54
 ICD10 J00-06 5.08 95.65 16.82 8.59 4.79 38.34
 ICD10 J20-22 1.58 34.78 6.68 3.89 2.83 15.61

ONS 2001 UK CENSUS
Children’s Ethnic Groups [Age 0-15 Years]:
 % White British 4.41 93.71 53.69 30.72 -0.31 -1.44
 % White Non-British 0.00 7.07 1.56 1.45 1.23 1.40
 % Indian 0.00 90.07 28.80 26.57 0.71 -0.91
 % Other South Asian 0.00 35.71 5.74 6.87 1.81 3.66
 % Afro-Caribbean 0.00 33.33 2.82 3.85 4.19 25.69

Deprivation Scores Across Leicester UA:
 Carstairs Index -7.19 9.14 0.00 3.16 0.15 -0.48

ONS HEALTHY LIFESTYLE BEHAVIOURS [AGE 16+ YEARS]: 2003-05
 % Smoking Prevalence 11.10 53.50 27.11 11.50 0.50 -1.01
 % Obesity Prevalence 12.10 30.30 24.30 4.72 -1.13 0.48

UK 1x1KM NAEI [INTERPOLATED]: 2008
 TPM10 Emissions (t/yr.) 0.33 2.65 1.04 0.38 1.41 3.03

TABLE 3.4: Descriptive statistics for social-lifestyle, health and environmental factors recorded across
Leicester UA

Of traditional statistical interest are measurements of skewness and kurtosis, which are

fundamental in comparing dataset distributions to those experienced under normal

circumstances. Here, skewness is a measure of symmetry or more precisely the lack of

symmetry within the dataset. Meanwhile, kurtosis measures whether the data in question is

peaked or flat relative to that of a normal distribution. Both of these are considered important

credentials under classical statistical requirements governed by normality assumptions. Table

3.4 shows an excessive level of kurtosis (>3) to be particularly strong within the hospital

admission datasets and, for markers of ‘Other South Asian and ‘Afro-Caribbean’ children’. For

these five variables in question, a positive measure of skewness also indicates that their
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distributions are skewed to the right. To better understand the collective distributions of all

twelve variables, a series of Box-Whisker plots were subsequently constructed, following the

normalisation of each individual distribution on a scale of 0-1 (Appendix B7).

Favourably, Box-Whisker plots are capable of providing a measure of central location

(median) and two measures of spread or variation (range and inter-quartile range), in addition

to visually identifying the orientation of the median relative to the quartiles (skewness). More

specifically, the box itself represents the middle 50% of the data bounded by the first and third

quartiles, which respectively mark where 25% of the data fall below and above.

As indicated by the statistical summary of Table 3.4, all three measures of respiratory

health are associated with a strong positive skew, following a Leptokurtic distribution

(consisting of a tall thin peak). Here 25% of the data is distributed along a heavy right tail,

some of which are traditionally deemed to be extreme outliers under traditional definitions

(Appendix B7). Similar trends are to be found for markers of ethnic minorities, with the

exception of ‘Indian’ children whose distribution remains defined by a positive skew, but

across a considerably larger spread. Still one should note that high outliers are present across

all ethnic minority groups, in-line with those distributions for children’s respiratory hospital

admissions. Values of deprivation appear relatively normally distributed, as one might expect

from a summation of z-scores. Levels of adult smoking prevalence are also defined by a

relatively centralised box, but one should note that a mild positive skew is present here. Only

measures of obesity and ‘White British’ children are characterised by a strong negative

distribution.

From these traditional statistical summary measures one can conclude that the

datasets in question appear represented by relatively unique distributions, affected by outlying

values. However, perhaps of far greater importance is the manner in which traditional

distribution measures are unable to consider the spatial arrangements of the dataset. Thus the

decision to discard extreme values must be made with particular care, especially when

evaluating interactions of a spatial nature, as these values are typically of greater interest. In

some circumstances the spatial location of extreme values may be helpful in detecting

erroneous data if values are isolated, although one would consider this a highly unlikely

situation, in view of the high sense of scrutiny that census and medical statistics experience

within the UK. Thus, if there is no physical reason for discarding extreme values or treating

them separately, one may wish to reduce their influence via a data transformation procedure.

Unfortunately, when dealing with data of a spatial nature the user is unlikely to be

fully aware of the consequences of such transformations. In reality, the back-transform may

erase most of the benefits of satisfying more robust statistics, with such actions requiring
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careful consideration, calling for far more than a simplistic desire to meet traditional

distribution measures (Goovaerts 1997). In the literature review it was also shown that EJ is an

explicitly spatial problem. On this basis the spatial distribution of variables is considered to be

of primary importance, something which the transformation of datasets may potentially

distort. For these reasons, the use of regression strategies specifically designed to either

account for or filter out the spatial components of a dataset (inclusive of GWR and Multilevel

models), were favoured over traditional transformations.

To confirm the spatial distribution of the Leicester UA dataset, a series of variograms

were constructed to determine the rate and nature of change in citywide levels of spatial

continuity, amongst the aforementioned variables. Here, the variogram is shown to be of

interest in its own right, as well as a component of the kriging procedure. To provide a direct

comparison of spatial distributions a standardised variogram model, rescaling the magnitude

of dissimilarity terms of variance at specified lags (h) was favoured, so as to correct for the

preferential sampling of high values. The rescaling accounts for the large change in variance

from one lag to the next, minimising the likelihood for erratic fluctuations to occur in addition

to providing a more accurate estimate of the short-range variability (Goovaerts et al 2005):

( ) = ( ) . ( ) [ ( ) − ( + )]( )
(Eq.9)

Upon viewing the variogram plots (adjusted for intra lag variation) one may observe that a

common degree of spatial continuity, and thus distribution, exists between the health and

socio-environmental factors of interest across Leicester UA (Figure 3.4). This mutually strong

sense of spatial continuity may be verified through the plotting of theoretical model

estimations against those real-world measurements of all other variables across Leicester

(Appendix B8). Generally theoretical models were found to accurately describe their

variograms original data points, with R-square values ranging from 0.88-0.99. Theoretical

models for children’s J00-99 admissions were observed to fit moderately well to those

variogram plots describing the spatial distributions of socio-environmental influences across

the city (R2 ≥0.54).

FIGURE 3.4 [PAGE 86]: Variogram plots (adjusting for intra lag variation), each fitted with a singular
spherical theoretical model describing the variables rate of spatial continuity across Leicester UA.
Omnidirectional variograms were characterised to include 40 lags, each separated by 320m.



- CHAPTER 3 -

86



- CHAPTER 3 -

87

3.4. COMMUNITY CREATED PRIVATE-TRANSPORT EMISSIONS

Annual LLSOA estimates of private road-transport PM10 emissions created from individual

communities were derived by combining vehicle fleet compositions with workforce trips,

which were assumed to represent the significant proportion of population movements. Such a

procedure was applied within the later sections of the projects analysis; exploring the

environmental accountability and general social attitudes of specific communities (non-

regression based enquiry).

Vehicle compositions (%) within each LLSOA were derived from a summary of privately

owned vehicles registered with the Driver Vehicle Licensing Agency (DVLA) in 2010, provided

by Callcredit Information Group. Vehicle counts were disaggregated into their corresponding

LLSOA’s, from 4 postal sectors for vehicles older than Euro III, and 22 postal districts for

vehicles Euro III onwards (Appendix B9). This disaggregation procedure was achieved through

the use of the Postcode Best Fit (PBF) Methodology, developed by the ONS to produce

population estimates for a range of different geographies which are entirely consistent with

each other, regardless of whether target estimates may be formally aggregated into their

respective source geographies (non-overlapping). The online facilities to conduct the PBF

methodology were accessed through the MIMAS service GeoConvert, as part of the ESRC

census programme.

The PBF methodology involves a population weighted ratio transformation, founded

on the initial apportionment of LLSOA census population measurements (approximately 1,560

persons) to an individual postcode (approximately 40 persons), using age and sex information

contained within NHS GP postcode level patient registers (ONS 2011). A preliminary enquiry of

the PBF methodology assessing the transferability of population geographies from 11,103

Wards (1991 census) to 2,780 Postal Districts (1999), recorded a high degree of fit (91.4%)

despite the low degree of spatial hierarchy (46.5%) in the datasets (Simpson 2002). Meanwhile

respective levels of hierarchy and fit of 17.2% and 78.8% were recorded for the conversion of

11,103 Wards into 9,252 Postal Sectors (Simpson & Yu 2003). Although the PBF methodology

has been formed with demographic principles in mind, the project also encourages a wider

level of uptake, facilitating the use of more innovative and historical datasets.

An early application of such procedures is recorded by Debenham et al 2001, who

combined 1991 census data with updated postal sector unemployment claimant records, to

explore workplace-based characteristics and commuting linkages across Yorkshire and the

Humber. More recently, Norman et al 2011 transformed pseudo postcode sector (Scotland)

and ward (rest of UK) vital statistic records as well as 1991 census data for the Townsend

Index, into their updated 2001 boundary units, when examining the relationship between
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rising premature mortality and persistent deprivation. In a UK exploration of pathways to

obesity, Stafford et al 2007 converted ward based National Health Survey (1994-1999)

registers across England to postal sector units, conforming to their Scottish counterparts. In

addition, records of social disorder (crime, policing, physical dereliction) were converted from

a Local Authority level, for use alongside potential explanatory measures of local infrastructure

and physical characteristics sourced at post sectors. Thus demonstrating how population-

weighted restructuring procedures may be applied to match demographic and environmental

datasets with loose ties to population structures, sourced across several spatial scales.

As car-ownership is thought to share a noteworthy tie with elements of population

structuring, the PBF methodology was considered the most appropriate method for

disaggregating the Leicestershire DVLA summary dataset. In its initial data preparation the

DVLA data summary was split into 25 vehicle groups defined by vehicle age (Pre-Euro, Euro I,

Euro II, Euro III, Euro IV, Euro V) category (car, commercial vehicle, motorcycle) and fuel type

(petrol, diesel). Motorcycles were uniformly classified due to low levels of ownership. The 25

designated vehicle groups were taken to account for a proportion of 2001 UK Census recorded

LLSOA trips to work, by mode of transport for persons aged 16-74 in employment (ONS 2003).

Each group was assigned a distance based PM10 emission factor (g/km) for urban driving

conditions, taken from the Department for Transport (DfT) Emission Factors 2009. These

emission rates were then combined with a commissioned ONS 2001 UK Census dataset,

detailing the daily method of travel to work by the average Euclidean distance (km) travelled

within each LLSOA.

3.5. MODELLING STRATEGY

Quantitative modelling techniques used within this research project to describe the influence

of socio-environmental stimuli on respiratory outcomes, fall into three broad categories, which

include: (I) Pattern detection, (II) Dose-response evaluation, and (III) Distance-response

evaluation (Figure 3.5).

Initially indicators of statistical association are used to determine whether linear or

non-linear relations exist, so as to assist with the selection of independent variables in the

successive stages of model development. Here two suitable test were identified, Pearson’s R

which measures linear relations within the raw data, or Spearman’s Rho which ranks

observations so that monotonic relations may subsequently be explored.
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FIGURE 3.5: Proposed quantitative spatial modelling strategy for describing the influence of socio-
environmental stimuli on respiratory outcomes

The second stage of this modelling strategy intends to develop upon this exploratory data

analysis through the use of global indicators of spatial association, which define a variable’s

magnitude of spatial continuity across the entire study area of interest. Here, the variogram

uses a graphical format to describe the measures in variance as a function of distance between
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all pairs of sampled locations. Meanwhile, the Moran’s I and Getis-Ord General G return a

single index measure  of clustering, across user defined sets of census units deemed to be

neighbouring. If conducted in an incremental manner (i.e. first-order, second-order, etc.) test

index measures may be plotted in the form of a correlogram to describe the relation as a

function of distance. The Moran’s I is purely a global pattern detector informing whether

clustering, dispersion or random spatial distributions exist, and therefore was favoured over

the General G test which only detects spatial clustering. If spatial structuring is deemed to be

absent or minimalistic at a global level, traditional regression methods are recommended for

conducting a dose-response evaluation. Where linear statistical association is observed

between dependent and independent variables in stage one an OLS model may prove

favourable.

If spatial structuring is recorded at a global level, this may be handled in two ways at

stage three of this modelling strategy; the first of which involves the application of spatial

regression methods of a global nature. These models supplement the OLS and link-function

(GLM) models with an additional term that incorporates the spatial autocorrelation structure

of a given dataset to uphold the assumption that independent observations exist. The spatial

lag model assumes that autocorrelation is only present in the dependent variable, addressed

through the inclusion of an nth-order neighbourhood weight matrix as an independent

parameter. This method is most appropriate when the focus is on the assessment of the

existence and strength of spatial interaction. In contrast, the spatial error model assumes that

regression errors are spatially dependent and that the included explanatory variables do not

fully explain spatial autocorrelation. Here, a residual spatial matrix at the nth-order

neighbourhood acts to improve the precision of regression coefficients. However a more

flexible way of accounting for spatial autocorrelation at a global model may be achieved via

multilevel models. Rather than being restricted by an nth-order approach, weight matrixes are

classified by potentially more appropriate user defined geographical distributions (Jephcote &

Chen 2013). Whilst GAM’s have also been demonstrated to offer a flexible approach to

incorporating the influence of a spatial surface (Vieira et al 2005), this project decided against

the use of such a modelling procedure in light of the previously documented time-series

controversies (see chapter 1).

The second block of analysis conducted at stage 3 involves the use of local indicators

of spatial association, which allow the user to geographically locate, distinguish and match

(between variables) individual processes of a spatially dependent nature. The two tests of

interest here appear in the form of the Local Moran’s I and Getis-Ord GI*, and are

deconstructions of their global counterparts. For each observational point, an individual test is



- CHAPTER 3 -

91

conducted which measures the magnitude of similarity or dissimilarity to its neighbours. Here,

the local mean used within the Local Moran's I test only includes neighbouring features,

whereas the local mean for Getis-Ord Gi* includes neighbouring features in addition to the

locale in question. As such the GI* statistic may only be used to detect geographically unique

hot and cold spots, whereas the Local Moran’s I is capable of identifying such clusters as well

as high/low spatially outlying features. Still, the computational differences of the GI* statistic

serve for a suitable cross-validatory measure in the detection of local patterns (Anselin 1995,

Burra et al 2002).

Stage four of this modelling strategy offers two different approaches of analysis, to

handle datasets in the presence of local spatial structures. Here, a dose-response evaluation

involves a recently developed local regression technique, known as GWR, which generates a

separate regression equation for each feature analysed in a sample dataset as a means of

addressing spatial variation. Beneficially this allows for a much more flexible capture of

numerical and geographical trends, in the presence of non-stationarity. To complement this

analysis it is also possible to conduct a distance-response evaluation, viewed as an

intermediate between pattern and dose-response evaluators of a local nature. Under this type

of modelling falls the widely utilised buffer analysis procedure, which maps coordinate

referenced self/clinician diagnosed ailments, to obtain the level of respiratory risk associated

at incremental distances from a major roadway after adjusting for social covariates (see

chapter 2.3.2). However, such an analysis is unfeasible across Leicester UA, where respiratory

case files are geocoded at a census unit level, to preserve patient confidentiality.

Still, it is possible to achieve an alternative approach within this block of statistics,

known as a boundary analysis. This series of statistical measures share closer ties with pattern

detection approaches, and as such, do not define a level of risk within each zone. Rather they

provide a singular unbiased critical distance threshold (not restricted to a predefined locale),

which may be used to uniquely asses both environmental and social factors. Of further benefit

is the manner in which these measures can explore how health and theoretical boundaries

constructed from multiple socio-environmental influences interact. Subsequently, it becomes

possible to locate and measure in terms of proximity how individual stimulus-responses

interrelate, to cause a health response of greater magnitude (Pearce et al’s 2010). As such,

boundary analysis approaches are a means of validating how the different stimulus-response

relations defined by GWR modelling interact, under a difference branch of statistics. For

ecological datasets, a combination of GWR and boundary approaches allows for a more

complete image of the dataset, meeting and potentially surpassing the outputs of a traditional

buffer analysis (which is not a current option).
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3.6. INDICATORS OF STATISTICAL ASSOCIATION

The identification of statistical dependency refers to the presence of a relationship, in which

two variables fluctuate in a proportionate manner throughout the dataset. Whilst such

relations are often suspected and visually observed, correlation indices are a means of

definitively quantifying the direction and strength of this covariation. The two most popular of

these traditional measures consist of the Pearson’s product-moment (Pearson 1985) and

Spearman’s rank correlation (Spearman 1904) coefficient.

3.6.1. PEARSON’S CORRELATION COEFFICIENT

The Pearson product-moment correlation coefficient (r) is a dimensionless statistical

measurement of the correlation between two variables, invariant to linear transformations of

either variable. Subsequently it is widely used in the sciences as a method of measuring of the

strength of linear dependence between two variables. The Pearson’s correlation test may

provide outputs ranging from +1 to -1, with a correlation of +1 meaning that there is a perfect

positive linear relationship between the variables. A value of 0 indicates there to be no

significant linear relationship between the variables.

If we have a series of n measurements of X and Y written as Xi and Yi where i = 1, 2... n,

and sample means of X and Y denoted as and , then the Pearson product-moment

correlation coefficient (r) between X and Y is portrayed as (Rodgers & Nicewander 1988):

= ∑ − −∑ − ∑ −
(Eq.10)

A t-test is required to test the significance of the correlation, where the calculated t-value is

compared to a standard table for a two-tailed Students t; here the critical value for 187

observations with a 95% confidence interval is 1.97 (Mitchell 2004):

= ( − ) ( − )⁄
(Eq.11)

3.6.2. SPEARMAN’S RANK COEFFICIENT

In contrast, the Spearman’s rho coefficient is a nonparametric (distribution-free) rank statistic

proposed as a measure of the strength of the association between two variables. It is a

measure of a monotone association that is used when the distribution of data (non-linear)
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makes Pearson’s correlation coefficient misleading. It assesses how well an arbitrary

monotonic function can describe the relationship between two variables, without making any

assumptions about the frequency distribution of the variables. In principle, the Spearman’s rho

is simply a special case of Pearson’s product-moment coefficient in which the data is converted

to ranks prior to calculation (Mitchell 2004):

= − . ∑−
(Eq.12)

Here, recorded values are ranked from highest (1) to lowest (n) for each individual variable,

with D representing the difference between a pair of rank values recorded at each feature.

Like the Pearson’s r, coefficient values range from 1 (perfect direct correlation) to -1 (perfect

inverse correlation), with significance recorded by a t-test output.

3.7. INDICATORS OF SPATIAL ASSOCIATION

The ability to visualise spatial data beneficially allows for the quick identification of any

obvious patterns, which may be classified as regular, random or clustered, with the term

‘clustered’ used to describe a spatial aggregation of events. Besag & Newell (1991) initially

classified the different methods for analysing clusters as either specific or non-specific, with

such terms later being coined by epidemiologists as ‘local’ and ‘global’ cluster analyses. Global

(non-specific) clustering methods are used to assess whether clustering is apparent throughout

the study region but do not identify the location of clusters, rather such methods produce a

single statistic measuring the extent of general spatial association. In contrast, local (specific)

methods of cluster detection define the locations, extent and nature of such spatial

associations, which may vary across the study area in question.

3.7.1. GLOBAL INDICATORS OF SPATIAL ASSOCIATION: MORAN’S I

The Moran’s I coefficient (Moran 1948) is a well-known test for spatial autocorrelation of

aggregated data, providing the user with an estimate of the degree of spatial similarity

observed among neighbouring values of a specified attribute across the entire study area. A

fundamental aspect of all autocorrelation statistics is the weights matrix, which is used to

define the spatial relationships of the regions so that those in close spatial proximity are given

greater weight in the calculation than those that are distant.
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The Moran’s I coefficient of autocorrelation is similar to Pearson’s correlation

coefficient which measures correlation (linear dependence) between two variables X and Y,

giving a value between +1 and −1 inclusive. However the Moran’s I coefficient differs from this

test through quantifying the similarity of an outcome variable among areas that are defined as

spatially related (Moran 1948). The Moran’s I statistic is given by (Mitchell 2004):

= ∑ ∑ ( − )( − )(∑ ∑ ) ∑ ( − )
(Eq.13)

Here the mean of the variable is subtracted from the value of the target feature Xi and the

value of its neighbour Xj, the differences are multiplied by each other and by the weight of that

pair Wij, where they are added to form the sum of all features. A value divided by the variance

σ2 defined as [ ( − ) / ] multiplied by the sum of the weights.

The Moran’s I coefficient is approximately normally distributed and has an expected

Several disadvantages of such autocorrelation tests are identified by Moran (1948),

including, that the test assumes that the population at risk is evenly distributed within the

study area and that the correlation or covariance is the same in all directions (isotropic). Such

factors are of particular concern especially when observing clusters across both geographically

large and demographically diverse areas, where local effects may be obscured. Such

disadvantages may be overcome through the use of local statistics which scan the entire

dataset measuring dependence across user specified portions of the study area, thus aiding in

the identification of a clusters locality, dimension and intensity.

value of −1 / (N − 1), when no correlation exists between neighbouring values. Consequently 

the expected value of the coefficient is expected to approach 0 as the number of spatial units

(N) increases. Although the Moran’s I coefficient generally lies between +1 and -1, it is not

bound by these limits unlike Pearson’s correlation coefficient. A Moran’s I output of zero

indicates the null hypothesis of no clustering to be true, whereas a positive Moran’s I result

signals that a positive spatial autocorrelation exists within the dataset i.e. clustering of areas of

similar attribute high or low values. In contrast a negative coefficient indicates negative spatial

autocorrelation resulting in the neighbouring areas tending to demonstrate characteristically

dissimilar attribute values.
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3.7.2. LOCAL INDICATORS OF SPATIAL ASSOCIATION: ANSELIN’S LOCAL MORAN’S I

A localised version of the Moran’s I test was initially devised by Anselin (1995) in order to

detect local levels of spatial autocorrelation within aggregated data. This was achieved

through separating the Moran’s I statistic, so that it could review individual contributions for

each area within a selected study region. Anselin’s Local Moran I statistic is one of several

developed Local Indicators of Spatial Association (LISA), and is specifically used to detect

spatial patterns that compare (cluster) or deviate (spatial outlier) extremely from neighbouring

elements (Anselin 1995):

= − . −
= . ≠

(Eq.14)

Where, is the z-score value for the attributed of interest at the ego location i, and is the z-

score value for the attributed of interest at neighbouring observations j. For the Leicester UA

datasets, spatial weights indicating the strength of connection between the paired LLSOA

features of i and j are represented by . Only immediate adjacent geographic features were

defined to have spatial weighting which were standardised by neighbour count, thus

preventing individual areal units from having a greater impact than any other neighbouring

features. Univariate Local Moran’s I statistics were conducted on the annual rates of children’s

respiratory hospital admissions and potentially influential social-ethnic and environmental

factors of interest. Tests for spatial patterning across two variables within the same time

period were also conducted though the Bivariate Local Moran’s I statistic, where the ego

(location i) is defined by variable 1 and its neighbours (locations j) by variable 2.

The significance of the Local Moran statistic values were obtained through 9999

Monte Carlo conditional randomisations, with the resultant p-values  experiencing an

adjustment in the form of the Simes correction (Simes 1986):

= ( + − )
(Eq.15)

Here n is the number of p-values being considered (the number of neighbours and the central

location pi), and a is the index (lowest value starting at 1) indicating the location in the sorted

vector of the p-values for a location and its neighbours. The Simes adjustment is a less

conservative form of the Bonferroni correction, and is a procedure often used when
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conducting tests of multiple significance to minimise the extent of Type I (false positives) and

Type II errors (false negatives).

In a preliminary exploration of conflict patterns in Africa, Anselin (1995) fully verified

the effectiveness of the local Moran test, through the identification of the same four countries

recognised by another popular local clustering technique, in the form Getis-Ord Gi* statistic.

Common conception proclaims that the two techniques are best used in a complementary

fashion, for validatory purposes.

3.7.3. LOCAL INDICATORS OF SPATIAL ASSOCIATION: GETIS-ORD LOCAL GI*

The Getis-Ord local statistics are an indicator of local clustering that measure the

concentration of a spatially distributed attribute variable (Getis & Ord 1992, Ord & Getis 1995).

This is of particular contrast to the previously mentioned Moran’s I and Anselin’s local I

statistics, both of which solely measure the correlation between the characteristics of interest

in adjacent areas, without investigating the clusters magnitude.

The Getis and Ord local statistics are additive in nature, focusing on the sum of the j

values in the vicinity of i in the form of two statistics, thus allowing the researchers to choose

hypotheses based on proximity (Gi) or on clustering (Gi*). The Getis-Ord Gi* is written as (Ord

& Getis 1995):

∗ = ∑ − ∗. ∗ − ∗ ( − )⁄
(Eq.16)

Where the sum of the weights including that of the ego ∗ and the sum of the squared

weights including ego ∗ are defined by (Ord & Getis 1995):

∗ = + ∗ =
(Eq.17)

Akin to the Local Moran statistic, the output of the Gi* function is presented in the form of a z-

score for each feature based on the process of Randomisation Null Hypothesis computation.

The subsequent z-score values are associated with a normal distribution thus attaching them

with levels of significance and confidence. As previously, significance was obtained through

9999 Monte Carlo conditional randomisations, with the resultant p-values experiencing an

adjustment in the form of the Simes correction (Simes 1986).
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To summarise, when given a set of weighted features, the Gi* statistic identifies the

presence of statistically significant hot and cold spots inclusive of the target locale. In contrast,

the Local Moran's I statistic is capable of providing an image of greater detail, recognising not

only hot and cold spots, but also the presence of spatial outliers. Under the Gi* statistic it is

conceivable that a high valued target feature can show up as a hot-spot even when

surrounded by low values. Still one drawback of the local Moran’s analysis is that the focal

point of prospective elements of clustering are not accounted for. Despite its simplistic spatial

description, the GI* statistic has been successfully implemented to predict 86.1% of all new

landslide occurrences (Chu et al 2009) and work well in conjunction with the Global Moran's I

to analyse health care hotspots (Tsai et al 2009), across Taiwan. As such validation of more

advanced pattern recognition techniques is recommended through the use of the GI* statistic.

3.8. SPATIAL REGRESSION ANALYSIS

Ordinary Least Squares (OLS) regression methods are traditionally used to define the variation

of a dependant variable in terms of a fixed response gradient for each individual explanatory

variable: = + + + … +
(Eq.18)

Where y is the dependent variable (Hospital Admissions), X1, X2...XN are the independent

variables (TPM10, Carstairs Index, etc.), ε is the residual value, β0 is the intercept, and β1, β2...βN

are regression coefficients relating to their respective independent variables. As such, OLS

models describe average (or global) parameter estimates, which are assumed to operate

uniformly across space. Yet, the assumption of a uniform modelled relationship over space

would be quite misleading, if such relationships being are intrinsically different across space, as

is the case in Leicester. Following on from the literature review, presented in chapter 2, it was

decided that the spatial elements within the study area of Leicester UA should be addressed

and/or accounted from through the use of global (Multilevel) and local (GWR) spatial

regression procedures.

3.8.1. MULTILEVEL MODELLING

Global regression procedures, in the form of multilevel modelling were initially conducted in-

order to explore the chief factors influencing children’s respiratory health across Leicester.

Multilevel regression models are a class of statistical models developed for the analysis of data
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structures with nested (hierarchical) sources of variability. Observations made within a cluster

are usually assumed to be dependent, whereas clusters themselves are assumed to be

independent of one another. The general idea of a multilevel model is that this hierarchy is

taken into account, through the addition of random affects to traditional regression models, so

as to define the covariance structure of the data. In essence, the random effects remove

unmeasurable population subset influences (white noise) away from the fixed parameter

estimates.

To address issues of spatial nonstationarity, Leicester’s 187 Lower Level Super Output

Areas (LLSOA’s) (i) were first nested into quantiles (j) of J00-99 children’s hospital admissions

(dependent variable). This was conducted under the assumption that LLSOA observations

experiencing similar hospital rates contain populations with comparable disease tolerance

levels. In this two-level response model the unmeasured disease tolerance effect was included

through the addition of a second intercept which differed only across each quantile. The linear

random intercept multilevel model of Leicester is defined as:

= ∗ + ∗ + = ( )= ( )
(Eq.19)

Where, Y represents the dependent variable recorded as children’s respiratory hospital

admissions, X0, X1, X2...XN are the fixed independent variables (e.g. Intercept, Carstairs Index,

TPM10 etc.) with correspondent fixed effects parameter estimates β0, β1, β2...βN. The random

effects occurring at the upper community level are described through the variable Z, which has

a random effect parameter estimate b. In this instance a single random effect is included in the

form of a random intercept, which is allowed to change across quantiles, in effect accounting

for the influence of white noise across similar outcome values. Residual values of the complete

model are recorded as ε.

It is assumed that b and ε are uncorrelated random variables with zero means and

covariance matrices G and R, respectively. Thus, the expectation and variance V of the

observation vector Y are (Brown & Prescott 2006):

[ ] =[ ] = = +
(Eq.20)

Unbiased estimates of variance and covariance parameters were obtained through the

restricted maximum likelihood (REML) estimation procedure (Brown & Prescott 2006, Section
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2.2.1, p47), optimised through iterations of the Newton-Raphson expectation-maximisation

algorithm. Upon defining suitable variance and covariance parameters it is possible to

obtain which is the ‘best linear unbiased estimator’ of β, and the ‘best linear unbiased

predictor’ of b (Brown & Prescott 2006):

= ( )= ( − )
(Eq.21)

Whilst multilevel methods are traditionally used for predictive purposes, their application

within this project is to be viewed more as a descriptive measure; through the placement of

greater focus on respiratory outcomes restricted to the study period, rather than that of the

explanatory influences. As such this global modelling strategy of incorporating broad yet

localised spatial structures based on respiratory outcomes is considered conservative in

nature. In this respect, where strong socio-environmental signals prevail, one may conclude

their presence as a considerable driving force of health. The outcomes of which, are to be fully

quantified through the use of local regression measures.

3.8.2. GEOGRAPHICALLY WEIGHTED REGRESSION (GWR)

As previously discussed, OLS models describe average (or global) parameter estimates, which

are assumed to operate uniformly across space. However in reality non-stationary

relationships are likely to exist as a consequence of: (I) Sampling variations within the data; (II)

Contextual issues that produce spatially differing responses to the same stimuli; and or (III)

Model misspecification (Fotheringham et al 1998). Such datasets thus pose a significant

dilemma for traditional regression models, which assume observations to be independent of

one another. Thus the nature of a model must alter over space to reflect the structure within

the data.

Rather than calibrating a single regression equation (Eq.18), GWR generates individual

regression equations for each of Leicester UA’s 187 LLSOA census units, applying different

weightings for the observations contained within the dataset (Fotheringham et al 1998):

= ( ) + ( ) + ( ) + … ( ) + ( )
(Eq.22)

Where ( ) represents the location of observation i, and thus ( ) indicates that the

regression coefficient β1 defines a relationship specific to location i. The weight assigned to all

other observations is based on a distance decay function, centred on the centroid of LLSOA
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observation i. The calculation of the GWR model coefficients may be expressed as

(Fotheringham et al 1998):

( ) = ( ( ) ) ( )
(Eq.23)

Where the superscript T denotes the transposition of a matrix, and ( ) is the weight to be

applied to locality i, derived from a proximity based geographical weight matrix of locality i and

its neighbouring elements J1...N Through placing higher weightings based on proximity, GWR

clearly adheres to the first law of geography, which states “everything is related to everything

else, but near things are more related than distant things” (Tobler 1970, p236). Under this

premise, sampling variations, issues of independence between observations, and response

variations are likely to be addressed.

The distance decay function, which may take several mathematical forms, is modified

by a bandwidth setting, allocating a distance at which the weight assigned rapidly approaches

zero (Appendix B10). The GWR model weighting is computed through the use of either a fixed

or adaptive kernels setting the value for any observation whose distance is greater than the

bandwidth to zero, thus excluding them from the local calibration. The bi-square weighting of

observation i and its neighbour j can be expressed as a function of the distance d between

localities and the applied bandwidth b (Fotheringham et al 2002):

= − ⁄ <= ≥
(Eq.24)

One may argue that the kernels should always be allowed to vary spatially. For instance, if a

fixed spatial kernel is applied where data is sparse, locally calibrated models will provide

parameter estimate surfaces which are under-smoothed, defined by high levels of local

variation and large standard errors. Whereas across densely sampled areas, fixed spatial

kernels may cause over-smoothing, to provide a series of parameters similar in value, once

more failing to realistically incorporate spatial elements of particular study areas (see

Appendix B10).

GWR models exploring the respiratory subsets of interest were created within

SpaceStat 3.5.6, using bi-square adaptive bandwidths, to allow for optimal weighting

adjustment in accordance to the density of available data at each regression location. Models

were constructed using various adaptive bandwidth schemes, defined by the consistent

inclusion of the nearest 20, 40, 60 or N nearest neighbours in each local model. Model

performance was identified to improve through the use of adaptive kernels, an issue which has
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been observed in other studies dealing with census areas of variable size (Mennis 2006, Gilbert

and Chakraborty 2011). Localised GWR parameter estimates and their correspondent p-value

outputs were subsequently used to explore the intra-urban relationship between children’s

respiratory hospitalisations caused by residential exposure to traffic emissions, after

adjustment to various social factors.

Traditionally GWR regression parameter standard errors are calculated using the

global error variance, defined as the Residual Sum-of-Squares (RSS) at each of the target points

(Fotheringham et al 2002). However, SpaceStat uses the local variance defined as the RSS from

the regression calculation at the source points to calculate local standard errors, and hence

local p-values for the regression parameters. It is believed that this approach should more

accurately reflect the degree of non-stationarity encapsulated in the geographical weighted

calculation.

Primary validation of GWR models was therefore achieved by conducting three

ANOVA based generalised degrees of freedom F-tests using the ‘spgwr 0.6-14’ [R] package. The

FBC-F derived by Fotheringham et al (2002) uses the effective degrees of freedom derived

from the models RSS to calculate an approximate likelihood ratio test to compare GWR and

OLS model abilities of reproducing the original dataset. The F-value is obtained via the OLS-

RSS/GWR-RSS ratio with (df1, df2) denoting the respective OLS and GWR models degrees of

freedom.

= ( − )= ( − ( ) −
(Eq.25)

The effective number of parameters in GWR is given by ( ) − , where the hat

matrix S describes the influence of each observed y on each fitted of the GWR model

through the notation: =Sy. The effective number of parameters in a GWR is often not an

integer but varies between the traditionally defined number of parameters k (when the

bandwidth tends to infinity) and n (when the bandwidth tends to zero); In many cases, tr(S) is

very close to tr(STS) so an approximate value for the effective number of parameters is tr(S)

(Fotheringham et al 2002).

Models received additional validated through the use of Leung et al’s (2000) LMZ-F1

and LMZ-F2 tests, which apply different techniques to obtain the F-ratio and GWR effective

degrees of freedom. One should also note that 2-3 years of children’s respiratory admissions

were omitted from the calculation of average annual admission rates experienced across the

10-year period. This additional validation step was incorporated to take account of R2 cross-
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validation, and is therefore considered a more comprehensive measure of performance across

spatial models.

3.9. BOUNDARY ANALYSIS

3.9.1. BOUNDARY DETECTION: CRISP AREAL WOMBLING

Areal wombling is interested in the exploration of whether two adjacent census areas with a

common border, defined as a Candidate Boundary Element (CBE), experience dramatically

different observed response values. Methods for delineating boundaries of difference are

collectively coined as wombling techniques, after Womble’s (1951) initial quantification of

spatial surface gradients in raster structures. Substantial differences between values of

neighbouring localities are thus thought to denote the edge of homogeneous areas, such as

the introduction of a pollution plume or group of persons with heightened susceptibility to

health issues. In terms of health outcomes, boundaries are of particular importance in

understanding whether the presence or disappearance of extreme values in influential socio-

environmental phenomenon(s) may drastically increase levels of risk. Magnitudes of difference

are derived through the assignment of a Boundary Likelihood Value (BLV) to each CBE using a

Euclidean dissimilarity metric: = ( − )
(Eq. 26)

Where records the magnitude of dissimilarity between the two LLSOA census units, and Z is

a measurement of the attribute value of interest at the LLSOA census units i and j. It should be

noted that the raw dataset values recorded at each LLSOA observation are normalised on a

scale of 0-1, prior to calculating the Squared Euclidean dissimilarities of the applicable CBE’s.

As a result, levels of dissimilarity for a univariate boundary analysis may never exceed a value

of 1, with such a procedure allowing for a direct comparison of dissimilarity strength across

multiple variables.

CBE’s form an official boundary, known as a Boundary Element (BE), when their BLV’s

exceed established thresholds. A stringent BLV cut-off value was selected in accordance to

prior wombling studies which traditionally define the upper 5th percentile as representing

boundaries (Barbujani et al 1989, Fortin & Drapeau 1995). Some recent studies of boundary

analysis have set BLV thresholds at the 20th percentile (Hall 2008, Jacquez & Greiling 2003),

which would propose the detected boundaries within this study to be conservative in nature.
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Univariate crisp polygon wombling techniques as detailed above were applied to

detect boundaries across children’s respiratory hospital admissions, traffic emissions and to

other individual social variables within BoundarySeer 1.3.13. Multivariate boundaries were

obtained through equally weighting the variables dissimilarity metric surface-gradients. Within

the Leicester UA dataset approximately 25 out of the 508 CBE’s were defined as BE’s for each

individual or set of socio-environmental variables examined.

3.9.2. OVERLAP ANALYSIS

Overlap statistics were subsequently employed to establish whether the boundaries defined

by areal wombling across different variables, occupied similar localities at a level greater than

what would occur by chance. The extent and likelihood of boundary overlap was evaluated via

the application of four overlap statistics based on the average minimum distance from

boundaries in one variable to the nearest boundary in the other variable of interest (Jacquez

1995, Jacquez & Greiling 2003).

Assume two variables G (i.e. TPM10 emissions) and H (i.e. J00-99 hospital admission

rates) with and representing their corresponding boundary elements (BE). As detailed

earlier BE’s within this study were classified to only include the top 5% of candidate boundary

elements (CBE’s), representing the highest magnitudes of dissimilarity between two directly

adjacent LLSOA’s. Upon defining the existence and location of the total boundary locations

and , it is then possible to construct a distance matrix, with elements representing

the distances between location i in the boundary for location G and location j in the boundary

for variable H. Within the constructed distance matrix ( . ) defines the smallest distance

in column j of the matrix and ( . ) represents the smallest distance in row i of the matrix.

The overlap statistics may therefore be described as (Jacquez 1995):

= ( ∩ )
= ∑ ( . )
= ∑ ( . )

= ∑ ( ) + ∑ ( )+
(Eq. 27-30)
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The overlap statistic OS measures the frequency of which boundaries within two datasets

intersect, and is thus defined as the number (cardinality count) of elements that are located

within in both boundary sets G and H. OG is the mean distance from any location in the

boundaries for G to the nearest location in the boundaries for H. OH is the mean distance from

any location in the boundaries for H to the nearest location in the boundaries for G. OGH is the

average distance from the location in the G or H boundaries to the nearest location in the

other (G or H as appropriate) boundary.

The p-values of the four overlap statistics were defined through comparing observed

values to their null distributions as generated by 499 Monte Carlo randomisations. Upper and

lower p-values provide a sense of how extreme the observed values of the overlap statistics

are compared to the reference distribution of values obtained by randomisation (Jacquez &

Greiling 2003). The combined runtime of the boundary creation process and these four

statistics, testing the strength of overlap between each pair of variables G and H, totalled

approximately 16.5 hours on a PC with the following specifications: Windows XP, Intel Pentium

Dual Core 1.8GHZ Processor, 4GB DDR2 Ram.



105

CHAPTER 4

ENVIRONMENTAL INJUSTICES OF CHILDREN’S RESIDENTIAL EXPOSURE
TO ROAD-TRANSPORT EMISSIONS: LEICESTER UA 2000-09

OVERVIEW

This chapter concentrates on the first stage of this research project, which examines the

beneficial impacts and/or burdens placed on a child’s overall respiratory health by influential

socio-environmental factors. Global and Local Indicators of Spatial Autocorrelation (GISA, LISA)

statistically describe and illustrate the spatial nature of such socio-environmental influences

and average annual hospital admission rates associated with a respiratory condition (ICD-10:

J00-99) experienced by children residing within Leicester UA from 2000-09. Spatially

appropriate modelling procedures, accounting for underlying geographical structures within

the datasets, were then applied to define the extent to which socio-environmental variables of

interest individually influenced respiratory health during childhood at global and local scales.

This chapter covers objectives 1, 2, 3 and 4 of this project outlined in Chapter 1.
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4.1. INTRODUCTION

The significant contribution of road-transport to air pollution within the urban arena is widely

acknowledged, and traditionally explored in relation to health outcomes across a temporal

scale. However, the structure of the urban environment is also of importance in dictating the

existence of extremely variable traffic pollutant levels, which often tend to be linked with

social disparities. Nevertheless ‘Environmental Justice’ studies have rarely tackled the adverse

health implications of exposures from mobile sources (Chakraborty 2009), or have applied

statistical techniques that are appropriate for such spatial data (Mennis & Jordan 2005,

Chakraborty 2009, Gilbert & Chakraborty 2011).

Childhood is a critical period for the development and maturation of the delicate

spongy organs of the cardiorespiratory system, which are particularly susceptible to the

absorption of external environmental agents experienced within the urban arena. Compared

to adults, a child’s lung surface area is also considerably larger in relation to their body mass,

with children potentially breathing up to 50% more air per kilogram of body weight (Schwartz

2004). Another factor that makes children more sensible to air pollution by comparison to

adults is their tendency to spend longer periods outside, especially in evenings, over the

summer months, and to be highly active during these periods (Cooper et al 2010, Steele et al

2010).

An assessment of residential exposures to traffic pollutants and 8-year lung

development within Californian children using proximity to major road links as a surrogate to

exposure, identified a decline in FVC of -63ml in residents ≤500m from freeways, diminishing

to -19ml at distances of 1000-1500m (Gauderman et al 2007). Similar studies have also

indicated self-reported respiratory conditions to increase among children and adolescents

residing along streets with high road-transport activity (Duhme et al 1996, Oosterlee et al

1996). While surrogate measures have been related to hefty health effects, it should still be

considered that such techniques are highly prone to exposure misclassification. Such issues

may be mitigated through Geographic Information Systems (GIS), which offer a means of

estimating personal exposures to traffic pollutants across vast populations (Kunzli et al 2000,

Gehring et al 2002).

Increasingly, it has come to the attention of researchers and policy makers that the

distribution of exposure to air pollution is not equitable, but this inequity has until recently

received little formal epidemiologic attention (Naess et al 2007, p686). Traditionally,

epidemiological based studies of air pollution have treated socioeconomic positioning as a

confounding influence, with relatively few studies looking carefully at how these factors

interact with one another, specifically with relation to mobile pollutant sources (Kingham et al
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2007, Tonne et al 2008). The importance of such socio-environmental interactions are detailed

within Environmental Justice (EJ) research, which consistently report the  ‘double-burden’ of

deprivation and air pollutant exposure as a key explanatory factor in defining health disparities

(Crouse et al 2009, Kingham et al 2007, Naess et al 2007, Wheeler & Ben-Shlomo 2005).

Enhancing upon this concept, Pearce et al 2010, describe area level health across UK CAS

Wards to degrade with measurements of multiple environmental disamenities, an effect most

pronounced within severely deprived localities. Such findings act to highlight the importance

of the physical environment in shaping health, with the recommendation of future research

considering this ‘triple jeopardy’ of social, health and environmental inequalities (Pearce et al

2010).

Traditionally EJ research has faced a plethora of challenges in causally associating

environmental pollutants with adverse health outcomes, yielded through the absence of

standardised assessment techniques and a tendency of measuring exposure via proximity to

source rather than through actual pollutant distributions. Furthermore, conventional

multivariate regression techniques are unable to account for non-stationary relationships, and

are therefore prone to obscure local variations of environmental equity. This is of particular

concern, when considering that EJ is an explicitly spatial problem, concerning geographic

elements rarely distributed in a uniform manner (Gilbert & Chakraborty 2011).

In a distinguished EJ analysis on the health risks from automobiles, Chakraborty (2009)

presents the application of global regression models that can account for issues of spatial

dependence, through the addition of a singular spatial lag or error component. While ethnic

differences were identified as a persistent explanatory role in the distribution of health risks,

relationships between socioeconomic statuses appeared complex in nature, highlighting the

need for consideration of spatial autocorrelation in future environmental equity studies. In

addition, the implementation of a singular spatial component may capture contextual factors

but it is more likely that the generalisation of such elements will inherently under-report

localised variations within the dataset, specific to individual variables across a defined area. It

is recommended that such issues be addressed through the application of locally weighted

models which directly assign weight structures to the individual variables of interest, therefore

allowing for their relationships to independently alter where elements of non-stationarity are

observed. Logic would therefore dictate that the localised variation associated with the

complex relationships between health, social and environmental factors should be explored

through an underused EJ technique known as Geographically Weighted Regression (GWR). To

date, Gilbert & Chakraborty (2011) present the only EJ GWR study assessing the influence of

social and environmental elements on areal health, defined as the risk of cancer from
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exposure to US EPA modelled TRI emissions. Thus, it would be of interest for future GWR

investigations to advance such practices through applying measurements of actual health

events and by exploring a wider range of cardiorespiratory conditions influenced by short-term

exposures.

This chapter addresses the aforementioned research gaps, through exploring the

association between residential exposures to road-transport emissions (TPM10), and the

incidence of children’s respiratory hospital admissions within an EJ context, across Leicester

from 2000-09. Unlike traditional epidemiological studies, such issues will be tackled in a spatial

manner through the application of geospatial tools, thus providing a global and local analysis

of Leicester’s communities. Initially, ‘Exploratory Spatial Data Analysis’ (ESDA) techniques,

consisting of global and local indicators of spatial association, will statistically evaluate the

spatial arrangements of respiratory health and potentially associated socio-ethnic and

environmental features.  Potential relationships are then summarised at a global level through

the application of multilevel models, which incorporate broad upper-level nesting structures to

account for common elements of clustering found across Leicester. GWR models will then be

used to locate and define local variations in complex relationships, illustrating whether

multiple burdens are interrelated within specific inter-urban locations. To the authors

knowledge this is the first time that GWR techniques have been applied to investigate the

impacts of road-transport on health. It is anticipated that GWR model outputs will assist within

the development of the first dose-response relationship between children’s health and local

road-transport emissions.

4.2. EXPLORATORY SPATIAL DATA ANALYSIS (ESDA)

In the 1970’s, American statistician John Tukey originally formulated the concept of conducting

‘Exploratory Data Analysis’ (EDA) procedures as a means of statistically analysing a datasets

principle characteristics, thus removing the necessity of conducting statistical modelling or

formulating preconceived hypotheses (Tukey 1977). Developing upon such ideologies,

‘Exploratory Spatial Data Analysis’ (ESDA) represents a fundamental approach towards the

statistical description of phenomena distributed within a spatial context, placing focus upon

geographic arrangement and the proximity of interactions.

Location may cause two specific spatial effects of interest, coined as spatial

dependence (auto-correlation) and spatial heterogeneity. Spatial dependence, illustrates the

direct application of the ‘First Law of Geography’: in which “everything is related to everything
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else, but near things are more related than distant things” (Tobler 1970, p236). From a

geographic perspective, the clustering of similar elements is the rule rather than the exception,

yet such formations violate the requirements of standardised statistical techniques, which

assume independence amongst observations (Anselin 1993). Locational effects may also

manifest in the form of spatial heterogeneity, which represents the variation of a process (non-

stationarity) with respect to location. Unless a space is uniform, each location will have some

degree of intrinsic uniqueness relative to its neighbours. The magnitude of spatial

heterogeneity determines whether parameters estimated for the entire system may

adequately describe the process at any given location.

4.2.1. CHILDREN’S RESPIRATORY HEALTH & COMMUNITY INFLUENCE

Global Indices of Spatial Association (GISA), in the form of the Global Moran’s I coefficient of

spatial autocorrelation (Moran 1948), were conducted upon datasets containing respiratory

hospitalisation rates and socio-environmental influences of interest across Leicester UA. Akin

to the Pearson Product-Moment Correlation Coefficient test values range from 1 (clustered) to

-1 (dispersed), with 0 indicating that the feature of interest has a poorly defined spatial

relationship (random positioning). The magnitude of global autocorrelation was explored

across several row standardised contiguity weighting schemes, the first of which placed

weighting solely on first order neighbours (1 Queens Ring), with later tests placing weights up

to and including fifth order observations (5 Queens Rings). To position these contiguity weights

into context, Euclidean metrics observed nearest neighbour observations to be on average

separated by a distance of 455m. One may approximate that this measurement represents the

sequential increase in radial distance between each Queens order, weighting scheme.

Subsequently, the Global Moran’s I outputs are presented in a manner that allows one

to estimate the strength of correlation between observations as a function of distance

(Correlogram). This has been achieved in-order to (a) score citywide levels of autocorrelation

amongst immediately neighbouring LLSOA’s; (b) define the spatial extent to which

autocorrelation amongst observations occurs, if applicable; and (c) to assist in selecting

appropriate spatial weighting schemes for the proceeding ‘Local Indicators of Spatial

Association’ (LISA) analysis.

A Global Moran's I value of 0.39 (P<0.001) was recorded for children’s respiratory

hospitalisation rates (ICD-10: J00-99) during 2000-09 under a first order weighting scheme,

identifying moderate citywide levels of spatial correlation between directly adjacent LLSOA

communities. Test values reveal comparable children’s respiratory hospitalisation rates to

occur at a fairly localised scale (Figure 4.1), with noticeable clustering appeared to exist up to
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second-order LLSOA communities, recorded at a far weaker level (I=0.14, P<0.001). As

previously mentioned in Chapter 3, test significance was evaluated via 9999 Monte Carlo

permutations, to produce a comparable reference distribution from which a pseudo

significance level is computed. For a significance level of 0.05, the derived Z-Score would have

to be less than -1.96 (dispersed) or greater than 1.96 (clustered). Global Moran’s Z-Score’s for

children’s respiratory admissions confirms the existence of significant spatial clustering to

exist, when placing weighting on observations separated by a second order distance or lower

(Figure 4.1). From this combined information, children’s respiratory cases are shown to be

location specific within Leicester UA, with their radius of spatial dependence following a rapid

exponentially decaying relationship across a distance of approximately <910m.

It would appear that community based measurements of healthy lifestyle choices

share this theme of spatial dependence, albeit at a far greater magnitude. Levels of smoking

prevalence in adults, symbolising the likelihood of a child experiencing frequent passive

smoking events, recorded strong spatial dataset clusters at first order observations (I=0.65,

P<0.001) which gradually decline but maintain a degree of spatial dependence even across

fifth order LLSOA neighbours (I=0.22, P<0.001). Although levels of correlation are relatively low

amongst fifth order observations, Monte Carlo simulations dictate that the likelihood of such

relations to occur by chance is negligible. Thus, a broad community influence appears to

determine the residential uptake and exposure to the effects of passive smoking. Levels of

adulthood obesity, used to record a child’s likelihood of receiving a balanced diet, appear to

show strong spatial trends across first order LLSOA neighbours (I=0.75, P<0.001), with spatial

dependence declining in a linear manner reaching relative insignificance after third order

observations (radius of 1365m). Still, it should be noted that elements of clustering are of

significance across all of the spatial scales explored (Figure 4.1).

In terms of socio-environmental influences of interest, PM10 road-transport emissions

(TPM10) and levels of ‘White British’ children, once more show strong levels of spatial

dependency deteriorating moderately with distance in a linear fashion. Under a first order

weighting scheme TPM10 emissions and levels of ‘White British’ children produce

correspondent Global Moran's I values of 0.83 and 0.82 (P<0.001), which respectively decline

to values of 0.28 and 0.40 when exploring levels of spatial autocorrelation across LLSOA

observations separated up to and including a fourth order distance (P<0.001). Levels of

deprivation, scored by the Carstairs Index of Leicester, show signs of moderate spatial

dependency across immediately neighbouring observations (I=0.56, P<0.001), with the

magnitude of correlation mildly decaying in an exponential style losing substance beyond third

order LLSOA’s (I=0.22, P<0.001). As with obesity prevalence, the Global Moran’s Z-Score’s
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recorded for deprivation, TPM10 emissions and levels of ‘White British’ children recorded

significantly greater clustering than expected by chance across locations of moderate

proximity. Noteworthy levels of spatial dependency for TPM10 emissions were observed to

exist up to and including third order observations (radius ≥1365m), with dependency occurring

at fourth order observation for levels of ‘White British’ children (radius ≥1820m). For

deprivation, a substantial level of location dependency existed for LLSOA observations of the

second order (radius ≥910m).

FIGURE 4.1: Spatial correlograms of Global Moran's statistical outputs, portraying the level of decay in
autocorrelation between neighbouring LLSOA community’s health, social and environmental
influences, as a function of distance.
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To summarise, Global Moran’s I statistics individually identified significantly noteworthy levels

of spatial autocorrelation to exist across children’s respiratory admission rates, healthy

lifestyle choices and socio-environmental influences. Children’s J00-99 hospital admission rates

portrayed moderate levels of spatial dependency with first order neighbouring LLSOA’s

(450m). All influential factors of interest shared a strong sense of location dependency with

adjacent LLSOA communities, with moderate correlation remaining up to third order

observations for measures of obesity prevalence and deprivation (1350m). Moderate

correlation was found to persist within fourth order observations for levels of smoking

prevalence, TPM10 emissions and ‘White British’ Children (1820m). While such lifestyle, social

and environmental influences share common characteristics across wide areas of Leicester UA,

it should be recognised that a considerably greater magnitude of correlation occurs across

directly adjacent LLSOA communities. It is this first order correlation that is of particular

importance when investigating the presence of an association between children’s respiratory

hospitalisation rates, which exclusively operates across localised bands of distance.

As a composite index, the Global Moran I coefficient is the measurement of overall

clustering of the aforementioned data, used to evaluate the overall extent of spatial

association within the study area of interest. In yielding a singular coefficient to define the

entire study area, GISA’s operate under the assumption of spatial homogeneity, which is a

false assumption to hold when understanding that structural change across space (spatial

heterogeneity) is a known feature of geographical research. Favourably, ‘Local Indices of

Spatial Association’ (LISA) such as the Local Moran’s I coefficient (Anselin 1995), dissect their

global counterparts thus allowing for one to explore such previously hidden local variations.

Furthermore, it is possible to observe clusters at a local level using LISA techniques where

global autocorrelation was previously unreported, particularly in cases where homogeneous

pockets diverge from the global trend. LISA’s therefore allow for the identification of spatial

outliers, in addition to locating and describing the direction of influence individual

homogeneous areas exhibit in relation to surrounding observations (i.e. hot-spots or cold-

spots). In essence, the Local Moran’s I statistic allows for a comprehensive location specific

analysis of the dataset, complementing its global counterpart and therefore providing an initial

understanding of the spatial structures in play.

LISA’s placing a row standardised weight solely upon first order observations were

subsequently employed as part of this ESDA of respiratory hospital admissions and potentially

associated social-ethnic and environmental influences of interest (Figure 4.2).
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FIGURE 4.2: Local Moran's I cluster and outlier analysis of 2000-09 annual average children's
respiratory admissions (ICD-10: J00-99), socioeconomic status and levels of TPM10 emissions

The Local Moran’s I statistical test identified the existence of a significantly high clustering of

average annual respiratory hospital admissions (ICD-10: J00-99) across inner city children aged

0-15 (Figure 4.2). Observed annual J00-99 hospitalisation rates within this zone of high

clustering range from 49.39 to 147.83 admissions per 1,000 children, which is considerably
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higher than Leicester UAs average rate of 39.43 admissions. Notably similar patterns of

clustering may be observed across yearly average output area levels of residentially

experienced TPM10 emissions and Carstairs Index measured levels of deprivation, thus

presenting the potential for a double burden of social and environmental issues collectively

influencing a person’s wellbeing (Figure 4.2). This highlighted area of interest contains the

cities inner ring road (A594) and several key arterial roads linked to the cities outer ring road

(A563) and the national road network. Residents within these respective inner city clusters

were identified to on average experience an extra 0.78 tonnes/year of PM10 road-transport

emissions, and be subject to Carstairs Index deprivation values 4.17 scores above typical

citywide values.

The case for environmental equity may be further brought into question upon

examining the distribution of Leicester’s ‘White British’ ethnic group, which is identified to

heavily populate the cities southern and western peripheries (Appendix C1). Significantly low

levels of clustering for persons of ‘White British’ origin within and adjacent to the east of the

city centre, present a potential scenario in which ethnic minority groups bear a

disproportionate burden of environmental and social problems. Compared to Leicester’s

citywide ethnic demographics, it is observed that children of ‘Afro-Caribbean’, ‘Indian’, ‘Other

South Asian’ and ‘White Non-British’ origins respectively constitute an additional 13.11%,

7.29%, 5.61% and 1.41% of the children’s population within the designated inner city

respiratory zone of concern. In contrast, across Leicester 52.91% of all children are identified

as ‘White-British’, however this ethnic group only forms 23.13% of the designated inner city

respiratory zones respective populace.

The Local Moran’s I statistical test on children’s respiratory admissions also identified

the existence of two individual outlying LLSOA’s experiencing elevated children’s respiratory

hospital rates, numerically distant from those at surrounding localities. Interestingly the outlier

to the east of Leicester incorporates the incomplete section of Leicester's outer ring road

known as the proposed ‘Eastern District Distributor Road’, which is yet to materialise despite

the routes continued safeguarding within local transport plans (LCC 2009). At present traffic

has to leave the outer ring road and join onto a single carriageway, thus causing regular

congested at peak hours (Appendix C2). The location of nearby important private services in

the form of the Nuffield Health Leicester Hospital may also contribute to local traffic

disruption.

Similarly the northern outlier also identifies the existence of a major road junction for

a primary radial corridor (A47: Melton Road) intersecting the outer ring road. This particular

radial corridor contains a diverse range of retail stores and restaurants, indicative of Leicester's
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multicultural heritage, that attract both locals and tourists to the area. Once again this hot-

spot is observed across a section of the roadway which changes from a dual to a single

carriageway as traffic heads towards the city centre, potentially designated the site as a

second bottleneck in the flow (Appendix C2). Thus, it is of little surprise that this corridor is

recognised in ‘Leicester’s Local Transport Plan' for 2011-26 as a key problem area, frequently

experiencing both general traffic and bus delays. Such localised areas of congestion and their

associated increase in traffic emission levels appear to have gone undetected by the 1x1km

resolution modelled traffic flows of the NAEI PM10 road-transport emission dataset.

Areas experiencing high levels of smoking prevalence, presented as likely candidates

for passive smoking amongst children, tended to exist along the cities western periphery

predominantly occupied by the ‘White British’ populace (Appendix C1). Similarly, obesity hot-

spots are observed to exist towards the cities peripheries predominantly occupied by children

of ‘White British’ ethnicity, whom reside far away from the inner city area of concern for

respiratory complaints. It should be noted that low smoking and obesity rates are found within

and around the aforementioned respiratory hot-spot of concern. This would suggest that these

healthy lifestyle measures, either have a limited influence on respiratory health during

childhood, or they are overshadowed by greater socio-environmental forces at play.

4.2.2. LEICESTER’S ETHNIC MINORITY GROUPS

The demographic characteristics of residents within Leicester UA reveal that approximately

60.54% of children aged 0-15years are of ‘White British’ ethnicity, at the time of the 2001 UK

Census. Other key ethnic groups for this age range include children of ‘White Non-British’

(3.32%), ‘Indian’ (25.73%), ‘Other South Asian’ (4.18%), and ‘Afro-Caribbean’ (2.87%) ethnicity.

The remaining 3.36% of children are either from ethnic groups that are undefined, or are of

other minor ethnic factions relatively unrecognisable within Leicester UA.

When applying first order weighting schemes, a common Global Moran's I value of

0.78 (P<0.001) was observed for LLSOA community levels of ‘Indian’ and ‘Other South Asian’

children, indicating that the selection of residency amongst such groups is of particular

importance (Appendix C3). In contrast, low levels of global spatial patterning by children of

‘White Non-British’ and ‘Afro-Caribbean’ ethnicity, illustrates a limited importance of

residential location when observing their distribution at a citywide scale (Appendix C3). Yet,

respective Global Moran's I values of 0.16 and 0.29 under a first order weighting scheme

(P<0.001), would suggest that homogeneous pockets are likely to exist, particularly relating to

the residential patterning of ‘Afro-Caribbean’ children. It should also be recalled that
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structures of autocorrelation may be unreported at the global scale, particularly in cases

where homogeneous pockets divergence from global trends.

As previously mentioned, children’s respiratory cases are particularly location specific

across Leicester UA, with moderate levels of correlation occurring only with directly adjacent

LLSOA communities.  A similar exponentially decaying relationship would appear to define the

distribution of ‘Afro-Caribbean’ children, whereas spatial patterning for the residency of

‘White Non-British’ children appears relatively inconsequential despite its recorded

significance level (Appendix C3). Similar to the spatial distribution of ‘White British’ children,

residential levels of ‘Indian’ and ‘Other South Asian’ children declines in a linear fashion with

distance, maintaining a moderate degree of correlation with observations separated by

distances of up to four orders (radius ≥1820m). Likewise, Global Moran’s Z-Score’s for ‘Indian’

and ‘Other South Asian’ children recorded significantly greater clustering than expected by

chance across locations of moderate proximity.

LISA’s placing a row-standardised weight solely upon first order observations were

subsequently conducted on Leicester’s primary ethnic minority groups in order to detail the

strongest elements of spatial positioning provided by each social group (Figure 4.3). In

exploring the spatial distribution of ethnic minority groups, one may once again question the

potential existence of environmental equality because ‘Afro-Caribbean’ and ‘Other South

Asians’ tend to reside within inner city areas experiencing elevated levels of deprivation and

TPM10 emissions. Interestingly the Local Moran’s I statistical test identified hot-spots of ‘Indian’

residents exclusively across eastern Leicester, well outside of the respiratory hot-spot of

interest, with this ethnic group appearing to fringe locations heavily populated by children of

‘Other South Asian’ and ‘Afro-Caribbean’ ethnicity. Furthermore, cold-spots of ‘Indian’

residency appear across southern Leicester and along the cities western periphery. Following

this statement, one may presume that the lifestyle choices of Indian residents may have a role

to play in maintaining a good level of respiratory health.
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FIGURE 4.3: Local Moran's I cluster and outlier analysis of Leicester UA’s key ethnic minority groups,
drawn from the 2001 UK Census
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4.2.3. NUMERICAL COMPARISON OF SPATIAL EXTREMES

LLSOA’s contained within the inner city respiratory hot-spot were observed to experience

annual average J00-99 admission rates of 80.65 cases per 1,000 children, whereas

communities positioned within cold-spots appeared to experience 1.9 times fewer respiratory

hospitalisation rates (27.64 cases per 1,000 children). Substantial socio-environmental

differences appear to occur between the inner city hot-spot and cold-spots, with residents

from the respiratory pocket of concern experiencing Carstairs Index deprivation scores 4.24

higher, in addition to being exposed to an extra 1.06 t/yr. of TPM10 emissions than their cold-

spot counterparts. On average an extra 15.14% of residents in J00-99 hot-spot LLSOA’s were

recorded to smoke, with such communities respectively housing 6.90% and 11.33% more

children of ‘Other South Asian’ and ‘Afro-Caribbean’ ethnicity. In contrast, 32.78% fewer

children of Indian ethnicity occupied hot-spot localities, with such children tending to reside

within areas where levels of reported respiratory complaints are lower. It would therefore

appear that deprivation, exposure to road-transport emissions and the lifestyle of some (not

all) ethnic minorities increases the likelihood of respiratory hospitalisations during childhood

(Appendix C4, C5). It is plausible that the lifestyle choices of the ‘Indian’ minority group actively

prevent the occurrence of respiratory hospitalisations, /or that this social group has the

relevant knowledge to access public services, mitigating the severity and extent of such

complaints.

Upon exploring respiratory admission rates across all socio-environmental influences

and ethnic minority groups of interest, it would appear that hot-spots of deprivation, TPM10

emissions, obesity, and children of ‘White British’ and ‘Afro-Caribbean’ ethnicities are to a

certain extent associated with adverse respiratory outcomes (Appendix C4, C5). In particular,

hot-spots of deprivation, TPM10 emissions and smoking prevalence were detected to

respectively experience an extra 20.05, 18.63 and 16.06 admissions per 1,000 children. Such

figures correspond to respiratory rates 0.65, 0.48 and 0.51 greater than their equivalent cold-

spot localities.  In contrast, LLSOA’s described as hot-spots of ‘Indian’ and ‘White Non-British’

children were respectively identified to experience 13.00 and 9.17 fewer admissions per 1,000

children. Such figures provide corresponding respiratory rates, which are 0.29 and 0.24 lower

than what is experienced in LLSOA’s which are sparsely populated by children of such ethnic

groups. Negligible differences in respiratory outcomes were reported across LLSOA’s either

densely or thinly populated by children of ‘Other South Asian’ ethnicities.

Positioned within the centre of the inner-city respiratory hot-spot lies a LLSOA

community of particular interest, as revealed by a potentially outlying Local Moran’s Z-score of

7.22, which is substantially greater than its mean neighbouring LLSOA value of 1.48 (Figure
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4.2). It would appear that this locality is the only LLSOA to be encased entirely by the inner-city

ring-road. Here, other respiratory hotspots directly surround this location, with exception to an

adjacent north-westerly site. Such locations of interest clearly follow a dispersion gradient in

accordance to the UK’s prevailing south-westerly wind direction, identifying the importance of

road-side emissions on a child’s respiratory incidents. Meteorological conditions recorded by

Leicester University on a daily basis from 1996-2006 at their land-surface station (MIDAS

Station ID: 24942) would appear to be in agreement with the prior statement, with wind

speeds averaging 5.07 knots along an  trajectory of 200.50 degrees (UK Meteorological Office

2006). Leicester’s wind speed values confirm a widespread understanding of Midlands’s area

being one of the more sheltered parts of the UK, thus offering explanation to why the

potential health effects of roadside pollutants only carry across to directly adjacent

communities; in cases where considerable quantities of pollutants are emitted. This sharp

dispersion gradient may offer some explanation to why an annual respiratory rate of 147.83

admissions per 1,000 children occurs within the inner-city hot-spots focal point, rapidly

declining to 49.39-97.96 within the immediately surrounding vicinity. Earlier within this

section, it was previously recognised that other unfavourable social influences also have strong

elements of spatial dependency, with these influences tending to peak across mutual inner-

city localities. Therefore, it is highly likely that multiple burdens collectively impede children’s

respiratory health within certain residential districts of Leicester.

Residents of TPM10 hot-spots are on average burdened with an additional 1.06t/yr. of

TPM10 emissions than their corresponding cold-spot LLSOA’s; a figure almost twice the value of

citywide average residential exposure levels (Appendix C4, C5). TPM10 hot-spots would also

appear to house deprived communities (+4.72 Carstairs Index scores), and respectively house

3.42 and 3.40 times more children of ‘Other South Asian’ and ‘Afro-Caribbean’ ethnicities.

Such knowledge presents the case of inequalities in exposure prevailing within the post-

industrial cityscape. Carstairs Index hot and cold-spot clusters were observed to differ by 8.17

scores of deprivation, with substantially deprived communities experiencing elevated TPM10

emissions (+0.77 t/yr.), in addition to ‘choosing’  an unhealthy lifestyle (+7.27% smoking

prevalence, +8.21% obesity prevalence). Deprivation would also appear to have a strong

association with ethnic minorities, with 46.51% fewer ‘White British’ children residing in hot-

spot localities. In contrast, children of ‘Indian’, ‘Other South Asian’ and ‘Afro-Caribbean’

ethnicity were found to be 1.69, 3.05 and 2.38 times more likely to reside in a deprived rather

than relatively affluent area. Although this relationship is not exclusive, as illustrated by the

existence of a deprivation hot-spot within Leicester’s western periphery predominantly

housing children of ‘White British’ ethnicity. Elevated levels of smoking were associated with
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an increase in deprivation (+3.01 Carstairs Index scores), with smoking prevalence hot-spots

housing considerably more children of ‘White British’ ethnicity (+62.44%). Pockets

experiencing elevated community smoking prevalence levels were found to correspondingly

house 0.94, 0.92 and 0.22 times fewer children of ‘Indian’, ‘Other South Asian’ and ‘Afro-

Caribbean’ ethnicities. Similarly, fewer ethnic minority groups appeared to show associations

with obesity prevalence, although the condition appears less exclusive to ‘White British’

residents (+15% in obesity hot-spots) than what was observed for smoking prevalence.

In exploring Leicester’s ethnic minorities (Appendix C4, C5), it was observed that LLSOA

communities classified as hot-spots of ‘Afro-Caribbean’ residents, housed 12.91 times more

children of such ethnic origins (+7.87%), than what was observed across their respective cold-

spot localities. Extreme differences in community composition levels for this ethnic group

appeared related to sizeable changes in TPM10 exposures (+0.70t/yr.), whereas only moderate

discrepancies in deprivation (+1.00 Carstairs Index score) were associated with increased levels

of ‘Afro-Caribbean’ residency. Nevertheless, deprivation levels were recorded 2.06 and 3.06

scores above expected citywide values within this social group’s respective cold and hot-spots,

would imply that ‘Afro-Caribbean’ citizens are universally afflicted with issues of deprivation.

LLSOA ‘Afro-Caribbean’ hot-spots also appeared to be accompanied by considerable declines

in ‘White British’ residency levels (-48.73%), thus resulting in such LLSOA communities to

beneficially experience relatively fewer cases of obesity and smoking.

In contrast, communities densely populated by ‘Afro-Caribbean’ residents tended to

contain 0.50 and 14.53 times more children of ‘Indian’ (+14.15%) and ‘Other South Asian’

(+23.78%) ethnicities. Meanwhile, hot-spots of ‘Other South Asian’ were recorded to house

16.01 times more children of such ethnic origins (+20.00%) than their cold-spot counterparts.

Areas densely populated by children of ‘Other South Asian’ ethnicity were also identified to

experience slightly elevated levels of deprivation (+1.77 Carstairs Index score) and TPM10

emission burdens (0.48t/yr.) at their place of residency. However, deprivation levels

experienced by ‘Other South Asian’ residents were generally lower than those experienced by

children of ‘Afro-Caribbean ethnicity’. Once again, ‘Other South Asian’ residents were

associated with a considerable fall in ‘White British’ residency levels (-69.09%), with such

locations housing 7.11 and 1.94 times more children of Indian (+46.40%) and ‘Afro-Caribbean’

(+3.69%) ethnicities.

As with Leicester’s other key ethnic minority groups, communities coined as hot-spots

of ‘Indian’ residents by and large remained constructed from minorities (+63.40%),

reconfirming the importance of spatial dependency amongst Leicester’s ethnic groups. Hot-

spots of ‘Indian’ children are surprisingly associated with mild to moderate increases in
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deprivation (+1.51 Carstairs Index score) and residentially experienced TPM10 (+0.25t/yr.). Both

factors have previously appeared to be considerably detrimental to respiratory health during

childhood, yet ‘Indian’ residents are associated with providing a beneficial influence on a

community’s respiratory health. Out of all the key ethnic minority groups, ‘Indian’ residents

appear to have the strongest disassociation with Leicester’s indigenous population, with LLSOA

hot-spot communities housing 73.92% fewer children of ‘White British’ origins.

Subsequently areas densely populated by ‘Indian’ residents have considerably lower

smoking prevalence levels (-21.60%). Nevertheless, low levels of smoking prevalence in

communities densely populated by Indian’s (17.11%) are unlikely to provide substantial

reasoning for this group’s beneficial influence on a community’s respiratory health, with

comparatively low levels of smoking also being connected to hot-spots of ‘Other South Asian’

(19.53%) and ‘Afro-Caribbean’ (17.86%) ethnicities.  Therefore, as previously thought, it would

appear that the social lifestyle choices potentially have a significant role to play in actively

preventing and/or mitigating the onset of severe respiratory complaints. Upon comparing the

extreme spatial distributions, hot-spots of ‘Indian’ residents appear to have close ties with the

‘Other South Asian’ populace. In-fact localities densely populated by ‘Indian’ residents housed

12.72 times more children of ‘Other South Asian’ (+12.72%) heritage, whereas only a minor

rise in ‘Afro-Caribbean’ residency levels was reported (+1.71%) between such areas.

Interestingly, the interactions between ‘Afro-Caribbean’, ‘Other South Asian’, and

‘Indian’ ethnic groups and their relationships with respiratory admissions, potentially illustrate

a three-stages of the social climb that migrant groups face. For instance, a substantial

proportion of Leicester’s ethnic minority groups have traditionally occupied low skilled manual

labour jobs, with an influx of migrants from the Afro-Caribbean and Asian colonies originally

occurring during Britain’s post-war reconstruction. These migrant communities settled in the

older inner-city areas, where cheap housing was available in the wake of the departure of

English residents offered the chance to escape the decay by moving to council estates around

the city. (Vidal-Hall 2003). It is conceivable that the collapse of Leicester’s manufacturing

industries in the 1970’s and 1980’s would have significantly affected these migrant

communities, potentially explaining any long-term residency within deprived areas.

Furthermore, a sizeable level Afro-Caribbean migration has also occurred within the last

decade through the movement of Somalis from the Netherlands, as low skilled economic

migrants (Bonney & Le Goff 2007). These economically disadvantaged and recently arrived

ethnic groups characteristically possess a limited knowledge of and access to public services,

which would be of importance in explaining adverse health outcomes (COMPAS 2006, DCLG

2006). Although, outputs from the ESDA for ‘Other South Asian’ communities would suggest
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that later generation families of post war migrants have acquired some of the relevant skills to

improve their social standing and wellbeing.

In contrast, Leicester’s Indian migrants largely comprise of ‘twice migrants’, whose

families previous emigrated from India to East Africa, where they had occupied positions as

businessmen and entrepreneurs. Although expelled under ‘Africanisation’ policies in the

1970’s, this wave of Indian migrants were professionally skilled and had prior knowledge on

how to successfully integrate, bypassing many of the socio-economic complexities migrants

tend to experience (Bonney & Le Goff 2007). ESDA outputs reveal this group as financially able

to reside within relatively affluent districts of the city, chose healthy lifestyle choices, and

possibly have an advanced knowledge of both public and private services. However, it would

be beneficial to err on the side of caution upon interpreting observations constructed from

community characteristics that are not representative of the individual, to avoid any ecological

fallacy. Still, these somewhat crude social structures open an interesting forum exploring the

complexities of societal integration, requiring exploration in successive research.

It would appear that a certain degree of fluidity occurs between these three stages of

a migrant’s societal climb, occurring in an incremental manner (Appendix C4, C5). For instance,

‘Afro-Caribbean’ residents respectively represent 8.48%, 5.60% and 2.47% of the children

within their own, ‘Other South Asian’ or ‘Indian’ LLSOA hot-spot communities. Meanwhile,

‘Indian’ residents respectively represent 67.31% and 41.60% of the children within their own,

or ‘Afro-Caribbean’ LLSOA hot-spot communities. Whilst ethnic minority groups fluidly move

between shared residential locations, a strong sense of segregation with the ‘White British’

population is still in existence.

Outside research, reveals a widening gap in health inequalities across England and

Wales least and most deprived areas during 1971-91; primarily caused by healthier individuals

migrating away from deprived areas, whereas persons with poor health show tendencies of

sliding into socially disadvantaged communities (Norman et al 2005). Within Leicester it is

believed that relocating to a new area constructed from residents whom have increased social

and financial choice, would increases ones social ambitions and places peer pressure to ‘Keep

up with the Jonses’. Yet research has shown that upwardly mobile adults in England and Wales

appear to exhibit increased risks of mortality, by comparison to that observed within socially

stable demographics who already occupy their class of destination (Blane et al 1999).  It was

concluded that health gradient constraints continue to prevail, and that social mobility allows

one to only moderate, rather than create or amplify, social class differences in health (Blane et

al 1999).  This same information is likely to hold for exposures during childhood, whereby if

social and environmental burdens are allowed to persist then a child may be burdened with
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long-term health issues, which can only be mitigated at a later date. This may provide

reasoning for why ‘Other South Asian’ children are associated with a relatively insubstantial

influence on community’s respiratory admissions, despite their gradual positioning within

LLSOA’s predominantly occupied by ‘Indian’ residents.

The ethnic minority group defined as ‘White Non-British’ were found to predominantly

reside within areas experiencing lower levels of deprivation (-5.32 Carstairs Index scores), and

experiences TPM10 emissions of 1.23 t/yr.  This ethnic group appears associated with good

levels of respiratory health, with a tendency of sharing locations predominantly occupied by

children of ‘White British’ origins (52.00%). Furthermore, hot-spots were identified to house

1.00, 0.57 and 0.50 times fewer children of ‘Afro-Caribbean’, ‘Other South Asian’ and ‘Indian’

ethnicities. This ethnic group would therefore appear to have integrated into Leicester, via an

alternative route, exhibiting similar positive characteristics to ‘Indian’ residents. Nevertheless

the mild spatial dependency of this ethnic group would suggest that comparisons between

extreme pockets of residential occupancy are not be taken at face value.

Pearson’s R-values identified several moderate linear correlations to exist between

children’s J00-99 hospitalisations and deprivation (R=0.40), TPM10 emission (R=0.37) and

residents of ‘Afro-Caribbean’ ethnicity (R=0.39), with significance at the 99% confidence level.

Moderate levels of non-linear correlation were also observed to occur between J00-99

admissions and levels of ‘Indian’ children (Rho=0.38) and smoking prevalence (Rho=0.48), as

denoted by Spearman’s Rho values recorded at the 99% confidence level.  Carstairs Index

values of deprivation across Leicester were observed to solely yield significant linear

correlations of interest with TPM10 emissions (R=0.40), obesity rates (R=0.51) and community

levels of ‘Afro-Caribbean’ children (R=0.30). TPM10 emissions also exhibited linear correlations

with residents of ‘Afro-Caribbean’ (R=0.42) and ‘Other South Asian’ (R=0.43) ethnicities.

4.2.4. BIVARIATE CORRELATION OF SOCIO-ENVIRONMENTAL INFLUENCES & HEALTH

Traditional dataset correlation tests were conducted to statistically determine whether

relationships between individual socio-environmental influences and cases of children’s

respiratory hospitalisations (ICD-10: J00-99) exist within Leicester’s LLSOA communities. The

Pearson’s Correlation statistic is computed on true values and depicts linear relationships,

whereas the Spearman’s Rho is computed on ranks and so depicts monotonic relationships.

Both tests can vary in magnitude from −1  to 1, with 0 indicating no  relationship,  and values 

above 0.3 and 0.7 respectively indicating moderate and strong positive associations between

the two variables in question.



Correlation
Statistic

J00-99
Admissions

Carstairs
Index

TPM10

Emissions
Smoking

Prevalence
Obesity

Prevalence
White

Non-British Indian Other
South Asian

Children’s J00-99 Admissions Pearson R
Spearman's Rho

Carstairs Index (Leicester)
Pearson R 0.40**
Spearman's Rho 0.39**

TPM10 Emissions
Pearson R 0.37** 0.40**
Spearman's Rho 0.09 0.37**

Smoking Prevalence
Pearson R 0.36** 0.33** 0.04

Spearman's Rho 0.48** 0.31** 0.00

Obesity Prevalence
Pearson R 0.11 0.51** -0.27** 0.35**
Spearman's Rho 0.30** 0.51** -0.20** 0.46**

White Non-British Children
Pearson R 0.05 -0.12 0.11 0.06 -0.27**
Spearman's Rho 0.03 -0.15* 0.05 0.06 -0.18*

Indian Children
Pearson R -0.29** 0.17* 0.17* -0.68** 0.01 -0.24**
Spearman's Rho -0.38** 0.06 0.22** -0.75** -0.236** -0.16*

Other South Asian Children
Pearson R 0.17* 0.29** 0.43** -0.41** -0.14 -0.08 0.52**
Spearman's Rho 0.00 0.22** 0.36** -0.50** -0.246** -0.08 0.73**

Afro-Caribbean Children
Pearson R 0.39** 0.30** 0.42** -0.04 -0.03 0.25** -0.01 0.35**
Spearman's Rho 0.17* 0.15* 0.28** 0.01 -0.14 0.12 0.13 0.31**

Significance Levels: *P ≤0.05, **P ≤0.01

TABLE 4.1: Traditional linear (Pearson’s R) and non-linear (Spearman’s Rho) dataset correlations of children’s respiratory health and socio-environmental influences,
experienced by residents of Leicester UA: 2000-09
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Meanwhile children of ‘Other South Asian’ origins shared a strong non-linearly

correlation with ‘Indian’ children (Rho=0.73), yet followed a linear correlation with levels of

‘Afro-Caribbean’ residency (R=0.35). Such correlation statistics would appear to broadly

complement the aforementioned outputs of the Local Moran’s I statistics.

Bivariate Local Moran’s I statistics were conducted in a manner, which held children’s

J00-99 admissions at ego locations (i) and  placed individual influences of interest at

neighbouring LLSOA’s (j). With test outputs therefore highlighting the spatial relationship

between respiratory cases and surrounding social-environmental influences, recorded across

first-order locations. Relationships of particular spatial interest appear to involve respiratory

cases and levels of deprivation (R2=0.29), TPM10 emissions (R2=0.35), smoking prevalence

(R2=0.30), ‘Indian’ (R2=0.18) and ‘Afro-Caribbean’ (R2=0.46) ethnicities.

Local Moran’s Statistic
R2 I Value P Value

Carstairs Index (Leicester) 0.29 0.22 0.00
TPM10 Emissions (t/yr.) 0.35 0.28 0.00
% Smoking Prevalence 16yrs+ 0.30 0.24 0.00
% Obesity Prevalence 16yrs+ 0.05 0.08 0.04
% 0-15y White Non-British 0.01 -0.01 0.52
% 0-15y Indian -0.18 -0.17 0.00
% 0-15y Other South Asian 0.15 0.11 0.01
% 0-15y Afro-Caribbean 0.46 0.21 0.00

TABLE 4.2: Summary of the Bivariate Local Moran's I analysis, revealing the spatial associations
between children's respiratory admissions and surrounding socio-environmental influences

It would appear, as previously discovered, that levels of deprivation encompass and inhabit

inner city LLSOA’s within the central portion of Leicester’s respiratory hot-spot (Figure 4.4).

Furthermore, relatively affluent areas towards the cities south and eastern periphery’s,

particularly around the Knighton district, would appear spatially associated with reduced levels

of severe respiratory symptoms.  Likewise, substantial positive correlations between

respiratory symptoms and TPM10 emission levels appear to inhabit inner city LLSOAs,

encompassed and adjacent to the inner city ring road and its northern arterial roads. With

correlation, occurring in a less focused spatial manner to that observed in the relationship

between relative poverty and respiratory admissions.

Interestingly, low respiratory incidents accompany reduced TPM10 emission levels

along Leicester’s eastern periphery, within the wards of Evington and Thurncourt, which house

the missing link in the cities outer ring road. Consequently, traffic is forced to leave the outer

ring road and enter the heart of the city, producing a bottleneck to the north of these wards.
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However, emissions associated with localised areas of congestion appear to have gone

undetected by the 1x1km resolution traffic flows of the NAEI PM10 road-transport emission

dataset; thus offering some form of explanation for the outlying cases of high respiratory rates

within the wards of Humberstone and Hamilton.

FIGURE 4.4: Bivariate Local Moran's I cluster and outlier analysis of 2000-09 annual average children's
respiratory admissions (ICD-10: J00-99) and neighbouring socio-environmental influences of interest

As previously discussed, children of Indian ethnicity seem to be negatively associated with

severe respiratory incidents across inner-city areas. Here, Bivariate Local Moran’s tests for this

ethnic group would also appear to show a strong disassociation with high respiratory
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admission rates along Leicester’s west and southern peripheries, where ‘White British’

residency is high. Whilst an extremely low level of ‘Indian’ residency is behind the formation of

these peripheral patterns, the moderately high admission rate (averaging 49.66 per 1,000

children) of these communities is still 10.23 cases above the citywide average.

The substantial relationship between smoking prevalence and residents of white

ethnicity would appear to shed light on why children within Leicester’s western periphery

experience just above the expected quantity of respiratory admissions. One may observe that

children of ‘Afro-Caribbean’ ethnicity also tend to reside away from these localities on the

cities western periphery, which experience above average levels of respiratory complaints

associated with smoking prevalence and minor deprivation pockets. However, it would appear

that this ethnic group has strong ties with adverse respiratory outcomes, through tending to

reside within and around LLSOA’s at the focal point of the inner-city hotspot of interest.

4.3. GLOBAL REGRESSION: MULTILEVEL MODELLING

In the previous section, measurements of social, environmental and health were individually

observed to primarily form localised pockets of a homogeneous nature, confirming that spatial

structures are in operation across the City of Leicester. Furthermore, bivariate spatial

comparisons of respiratory health outcomes and specific socio-environmental influences

reveal the presence of heterogeneous pockets within certain city sectors. It is likely that such

spatially deviating responses to the same stimuli are a manifestation of contextual issues

within individual intra-urban communities.

However, traditional regression procedures are grounded in the implicit assumption

that the variables contained within the model are of a stationary disposition. Yet, the

assumption of a uniform modelled relationship over space would be quite misleading, if such

relationships were intrinsically different across space, as is the case in Leicester. While

Geographical Weighted Regression is perhaps the most promising spatial method in

attempting to explain local variation in complex relationships, one may still favour the familiar

summarised outputs of a global regression model to ascertain initial knowledge of the study

area in question.

Multilevel regression models are a class of global models developed for the analysis of

data structures with nested (hierarchical) sources of variability. Observations made within a

cluster are usually assumed to be dependent, whereas clusters themselves are assumed
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independent of one another. To address dataset issues of spatial nonstationarity, Leicester’s

LLSOA communities (Level 1: Observations), were nested into quantiles (Level 2: Classification)

of the dependent variable J00-99 children’s hospital admissions. This was conducted under the

assumption that LLSOA observations experiencing similar hospital rates contain populations

with comparable disease tolerance levels. In this two-level response model, the unmeasured

disease tolerance effect was included through the addition of a level 2 intercept, which

differed only across each quantile. By nesting the data points via their respective differences in

disease tolerance levels it should be possible to capture the spatial structures associated with

admission rates, previously identified by ESDA statistics. As expected, cartographic displays of

the quantile J00-99 admission groups identified neighbouring observations to share common

nesting structures. Multilevel models, capturing fluctuating levels of susceptibility to

respiratory conditions during childhood, were therefore deemed appropriate in addressing

issues of spatial dependency amongst the Leicester dataset (Appendix C6).

In the construction of the multilevel models, children's respiratory admissions from

2004-05 were omitted from the calculation of average annual admission rates experienced

across the 10-year period of 2000-09. Such a procedure was conducted in order to evaluate

model performance through cross-validation measures. Two-tier multilevel regression models,

including all 187 LLSOA observations and an upper level structure constructed from 4, 5, or 6-

quantile group classification of hospitalisation rates, were applied to globally examine the

contemporaneous effect of socio-environmental constraints on children’s respiratory

admissions. Traditional OLS (Model A) and multilevel (Model B, C, D) linear regression results

are summarised in Table 4.3. From here, an identical series of spatial models (E-H) were

constructed using 186 locations, omitting the potentially outlying community at the focal point

of the inner-city respiratory hot-spot (Table 4.4).



Model A: OLS Linear
Level 1: 187 Observations

Model B: Linear Multilevel
Level 1: 187 Observations

Level 2: 4-Quantiles

Model C: Linear Multilevel
Level 1: 187 Observations

Level 2: 5-Quantiles

Model D: Linear Multilevel
Level 1: 187 Observations

Level 2: 6-Quantiles
Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error

I. Fixed Effects (Normalised 0-1):
Intercept 28.81*** 4.20 34.41*** 6.22 33.73*** 5.82 34.42*** 5.47
Carstairs Index (Leicester) 19.03** 7.98 2.90 5.51 3.69 5.15 2.96 5.04
TPM10 Emissions (t/yr.) 20.59** 8.14 24.13*** 5.53 23.17*** 5.17 21.56*** 5.13
% Smoking Prevalence (16+yrs) 1.82 6.47 -3.87 4.45 -1.67 4.11 -1.22 4.10
% Obesity Prevalence (16+yrs) 2.01 5.35 0.53 3.63 0.27 3.41 0.24 3.33
% White Non-British Children -6.96 4.81 -2.59 3.29 -2.89 3.08 -3.59 3.06
% Indian Children -24.07*** 5.60 -5.62 4.06 -3.38 3.86 -2.57 3.72
% Other South Asian Children 13.91** 6.51 -1.41 4.58 -3.12 4.35 -4.70 4.26
% Afro-Caribbean Children 21.07** 9.77 9.36 6.72 5.61 6.28 6.84 6.19

II. Covariance Parameters:
Intercept 121.94* 88.00 133.42* 86.09 136.81** 80.76
Variance 66.82*** 6.99 58.53*** 6.14 56.17*** 5.91

III. Fit Statistics:
Akaike (AIC) 1474.10 1356.30 1335.97 1332.06
Schwarz(BIC) 1506.41 1349.55 1331.68 1329.77
R2 0.40 0.72 0.76 0.77
Cross-Validation R2 (2004-05 Admins) 0.35 0.48 0.48 0.50
Significance Levels: *P ≤ 0.1, **P ≤ 0.05, ***P ≤ 0.01

TABLE 4.3: Linear OLS and multilevel models of annual J00-99 hospital admissions per 1,000 children aged 0-15 years within Leicester UA: 2000-09



Model E: OLS Linear
Level 1: 186 Observations

Model F: Linear Multilevel
Level 1: 186 Observations

Level 2: 4-Quantiles

Model G: Linear Multilevel
Level 1: 186 Observations

Level 2: 5-Quantiles

Model H: Linear Multilevel
Level 1: 186 Observations

Level 2: 6-Quantiles
Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error

I. Fixed Effects (Normalised 0-1):
Intercept 29.77*** 3.32 34.90*** 5.46 34.37*** 5.06 35.10*** 4.68
Carstairs Index (Leicester) 17.80*** 6.31 2.82 3.34 3.81* 1.94 3.03* 1.74
TPM10 Emissions (t/yr.) 1.85 6.69 7.18** 3.49 6.62** 3.07 4.89* 2.90
% Smoking Prevalence (16+yrs) 0.81 5.12 -4.35 2.70 -2.52 2.35 -2.25 2.23
% Obesity Prevalence (16+yrs) 5.29 4.24 3.35 2.21 2.88 1.95 3.03* 1.81
% White Non-British Children -2.37 3.83 1.28 2.01 1.06 1.77 0.63 1.67
% Indian Children -21.66*** 4.44 -4.23* 2.47 -2.21 2.21 -1.83 2.02
% Other South Asian Children 13.67*** 5.15 -1.04 2.78 -2.57 2.48 -4.16* 2.31
% Afro-Caribbean Children 34.76*** 7.84 22.75*** 4.15 18.69*** 3.65 20.26*** 3.42

II. Covariance Parameters:
Intercept 107.22* 76.48 116.36* 74.16 119.01** 69.24
Variance 24.56*** 2.58 19.08*** 2.01 16.56*** 1.75

III. Fit Statistics:
Akaike (AIC) 1379.03 1166.55 1125.45 1104.42
Schwarz(BIC) 1411.28 1159.80 1121.15 1102.13
R2 0.48 0.86 0.89 0.90
Cross-Validation R2 (2004-05 Admins) 0.41 0.51 0.51 0.53
Significance Levels: *P ≤ 0.1, **P ≤ 0.05, ***P ≤ 0.01

TABLE 4.4: Linear OLS and multilevel models of annual J00-99 hospital admissions per 1,000 children aged 0-15 years within Leicester UA: 2000-09 (Outlier Removed)
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Traditional multivariate OLS linear regression procedures constructed from all 187 LLSOA

communities (Model A) were deemed to provide a moderate goodness-of-fit to the Leicester

dataset (R2 0.40), with ANOVA F-test’s indicating the complete model to be of statistical

significance (P<0.01). Model A appears to be fashioned from a particularly high intercept value,

which would advocate that citywide base levels of respiratory health are accountable for a

substantial proportion of children’s respiratory hospitalisation cases. Such background levels of

respiratory health are shown to be annually accountable for 1,797 (71.74%) children’s J00-99

admissions across Leicester UA. Parameter estimates indicate that average output area rates

of PM10 road-transport emissions and deprivation are positively associated with children's

respiratory hospital admissions.  Furthermore, regression estimates for Leicester's major

ethnic minority groups indicate the proportion of Indian residents within an area to be

significantly and negatively related to risk of respiratory-based hospital admissions, whereas

elevated levels of Afro-Caribbean and Other South Asian residents are significantly and

positively associated with such admissions.

Across Leicester, deprivation was annually associated with 558 admissions (+22.29%),

TPM10 emissions with 378 cases (+15.10%) and levels of ‘Afro-Caribbean’ and ‘Other South

Asian’ residency were recorded to respectively influence 106 (+4.23%) and 142 (+5.67%)

children’s respiratory hospitalisations across Leicester UA (Appendix C8). In contrast, elevated

levels of ‘Indian’ residency were associated with substantial respiratory benefits, resulting in

498 fewer children’s annual J00-99 admissions (-19.89%). Traditional multivariate regression

analysis thus provides strong evidence to support ESDA concepts, which suggested that

cumulative respiratory-based hospitalisation incidences are distributed disproportionately

with respect to socioeconomic status (SES), specific ethnic minorities and environmental

exposures within Leicester UA's 0-15 year age group.

Covariance parameters of the multilevel models exploring all 187 of Leicester’s

LLSOA’s (Models B-D) were identified to capture common intra-urban structures of spatial

dependency caused by alterations in levels of childhood disease prevalence, below the 90%

significance level. Model D, constructed from a 6-Quantile upper level structure of J00-99

admissions, best captured the general magnitude of spatial dependency experienced within

pockets of comparable respiratory status distributed throughout Leicester. It is believed that

the constructed upper level nesting structures account for the variations in respiratory disease

tolerance across higher population sub-sets. Under a scheme incorporating six levels of

tolerance, disease susceptibility influenced annual respiratory episodes by -16.26 to 20.88

hospitalisation cases per 1,000 children (Model D). Across Leicester, the random intercept of
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the multilevel model, representing unmeasured structures of disease prevalence, accounted

for 21 respiratory cases per year (0.85%).

An R-squared value of 0.77 indicates a satisfactory goodness-of-fit for Model D, as

confirmed through cross-validation measures with the 2004-05 annual average J00-99

hospitalisation rates omitted from the models construction (CV-R2 = 0.50). Furthermore,

respective reductions in AIC and BIC test scores of -148 and -177, compared to its OLS

counterpart (Model A), would confirm that multilevel modelling procedures add an element of

increased accuracy despite the increasing the level of model complexity. Through

incorporating an upper level spatial structure representative of disease tolerance, the

multilevel models appear to place a greater emphasis on the responsibility of background

levels (fixed intercept) in determining a LLSOA community’s respiratory health. For instance,

Model D shows that 2,148 admissions (85.72%) are accountable by citywide background levels,

a shift of +13.98% above the base rate calculated in Model A. As with the OLS counterpart

model, normalised increases in TPM10 emission levels were observed to be the driving

explanatory force of socio-environmental related respiratory outcomes, causing up to 21.56

admissions per 1,000 children. In comparison, the maximum influence of other socio-

environmental variables of interest ranged from only -4.70 to 6.84 admissions per 1,000

children.

On a citywide scale, multilevel modelling of all 187 LLSOA communities identified

TPM10 emissions to contribute 396 (15.81%) respiratory hospitalisations per annum (P≤0.01), a

figure 0.71% above its counterpart OLS model (Appendix C8). Meanwhile, the impact of other

detrimental influences in multilevel models would appear to have severely diminished from

their values recorded by traditional multivariate modelling procedures. Levels of deprivation

and ‘Afro-Caribbean’ residency correspondingly influenced 3.47% and 1.37% of children’s

citywide J00-99 admissions, with such rates respectively initiating 18.82% and 2.86% fewer

citywide cases than predicted by Model A. However, the respiratory impact of such social

influences was found to not be of significance at the 90% confidence level. Placing lower

responsibility on socio-environmental influences also dramatically reduced the beneficial

influence of Indian and White Non-British residency, which respectively prevented 17.76% and

1.76% fewer citywide hospitalisations than Model A; although significance was above the 90%

confidence level. Nevertheless, multilevel regression estimates for Leicester’s major ethnic

minority groups would once again indicate the divisive role that community construction has

on respiratory health, with some minority groups associated with significantly positive health

risks, while others seem to diminish such levels.
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Distribution plots of the residuals produced from Models A-D consistently indicate the

presence of an outlying location contributing a particularly high residual value, thus causing

the distributions to skew to the left (Appendix C9). Furthermore, Kolmogorov-Smirnov (K-S)

test scores of the multilevel models (Models B-D) were found to reject the presence of a

normal distribution at the 99% significance level (Table 4.5). Meanwhile the K-S score rejected

the likelihood of a normal distribution describing the residuals produced from the OLS model

(Model A) at the 95% significance level. The lack of normality occurring within the residuals of

the multivariate OLS linear regression model (Model A) may raise questions regarding overall

model performance, and/or appropriateness, as the ANOVA F-test used for validation is

sensitive to the presence of non-normality. However the Central Limit Theorem (CLT) states

that given a sufficiently large sample size (e.g. n=30), the mean of all samples from the same

population will be approximately equal to the mean of the population, following an

approximate normal distribution pattern, with all variances being approximately equal to the

variance of the population divided by each sample's size (Urdan 2005). In applying the CLT, one

may therefore use probabilities associated with the normal curve to answer questions about

the means of sufficiently large samples, as are contained in Models A-D.

Arguably, when dealing with datasets of a spatial nature it is of a far greater

importance, when necessary, to produce spatially independent residuals. Thus, indicating that

spatial structures within the dataset have been sufficiently captured from a correctly specified

model. Furthermore, the presence of spatial autocorrelation within the residuals is considered

a violation of one of the fundamental assumptions of OLS models, which assume observations

to be independent of one-another (Longley & Tobon 2004, Ibeas et al 2012). Global Moran’s I:

Z-scores identify clustering within the OLS model residuals (Model A), confirming that

traditional regression techniques are in appropriate for modelling the non-stationary

processes occurring across Leicester. In contrast, Global Moran’s I: Z-scores identify no

significant spatial patterning for multilevel models B-D, suggesting that elements of spatial

dependency amongst observations have been removed. Nevertheless, a new range of linear

multivariate OLS and multilevel models were also constructed (Models E-H) in-order to explore

the magnitude of such socio-environmental influences upon the removal of the outlying city

centre LLSOA.
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Kolmogorov-Smirnov (K-S) Statistic:
Residuals Normal Distribution

Global Moran’s I:
Residuals

K-S Value P ≤ 0.05 P ≤ 0.01 Z-Score Spatial Pattern
Model A (OLS) 0.11 Reject Accept 3.66 Clustered

Model B 0.16 Reject Reject 1.83 No Pattern
Model C 0.17 Reject Reject 1.12 No Pattern
Model D 0.17 Reject Reject 1.24 No Pattern

Model E (OLS) 0.08 Accept Accept 2.28 Clustered
Model F 0.09 Accept Accept 0.32 No Pattern
Model G 0.09 Accept Accept -0.81 No Pattern
Model H 0.10 Accept Accept -0.42 No Pattern

TABLE 4.5: Empirical and spatial assessments of normality in residuals from Models A-H

Traditional multivariate OLS linear regression procedures constructed from 186 out of

Leicester’s 187 LLSOA communities (Model E) were deemed to provide a moderate goodness-

of-fit to the Leicester dataset (R2 0.48), with ANOVA F test’s indicating the complete model to

be of statistical significance (F=10.27, P<0.01). A slight improvement in goodness-of-fit was

observed through excluding the city centre focal point of elevated respiratory concern, as

denoted through respective R2 and CV-R2 values +0.08 and +0.06 above the outputs recorded

by Model A. As with prior models, citywide base levels of respiratory health would appear to

account for a substantial proportion of children’s respiratory hospitalisation cases. Such

background levels of respiratory health are shown to be annually accountable for 74.20% of

children’s J00-99 admissions across Leicester UA; a value 2.46% above what was recorded via

the OLS model constructed from all 187 LLSOA communities.

In removing the one outlying community, normalised incremental increases in levels of

TPM10 emissions considerably reduced from 20.59 to 1.85 admissions per 1,000 children.

Furthermore, TPM10 emissions were no longer deemed to alter a child’s respiratory status in a

manner deemed to be of global significance (P>0.1). Across Leicester, Model E holds TPM10

accountable for only +1.36% of children’s total annual respiratory admissions, a figure

markedly beneath the rate of +15.10% recorded in Model A. This would imply that TPM10

emissions have a major role to play on the deteriorating health of inner city communities,

particularly within the excluded LLSOA that was previously noted to be contained by

Leicester’s inner-city ring-road. In conducting local spatial regression procedures, issues of

outlying observations are addressed through applying location specific weighting rather than a

singular or several generalised schemes; consequently one may maintain all observations

positioned within the study area of interest. Logic would therefore dictate that such localised

relationships should be explored in further detail within the ensuing sections of this chapter.
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Model E parameter estimates assigned to all other socio-environmental influences

barely digress from those estimates of Model A, with the exception of respiratory rates

associated with normalised increments of Afro-Caribbean residency rising from 21.07 to 34.76

admissions per 1,000 children (P≤0.05). ESDA had previously located a pocket of elevated

levels of ‘Afro-Caribbean’ residency within inner-city localities, which would suggest that

hospitalisation influence transferred from TPM10 emissions to the lifestyle of this ethnic

minority. Across Leicester, deprivation was annually associated to increase the number of

respiratory cases by 20.87% (P≤0.01), and levels of ‘Afro-Caribbean’ and ‘Other South Asian’

residency were recorded to respectively influence 6.99% (P≤0.01) and 5.58% P≤0.01) of

children’s respiratory hospitalisations (Table 4.4, Appendix C8). These citywide values only

deviate from corresponding estimates contained within Model A by -1.42%, +2.76% and -

0.09%. Levels of ‘Indian’ residency within a LLSOA community were once again associated with

substantial benefits to health, reducing admission levels across Leicester by 17.91% (P≤0.01).

Covariance parameters of the multilevel models exploring 186 out of Leicester’s 187

LLSOA’s (Models F-H) were shown to capture common intra-urban structures of spatial

dependency caused by alterations in levels of childhood disease prevalence, below the 90%

significance level. As before, a multilevel model constructed from a 6-Quantile upper level

structure of J00-99 admissions (Model H) was found to provide the best account of previously

unmeasured variations in disease tolerance experienced by upper level population sub-sets. In

comparing the random intercept values of multilevel models constructed from mutual nesting

structures, one may see that the outlying datum point omitted from Models F-H has a limited

influence in determining the impact of disease prevalence experienced by upper level

population sub-sets. Across Leicester, unmeasured structures of disease prevalence defined by

a 6-Quantile J00-99 nesting structure (Model H) were estimated to influence 0.86% of all

annual respiratory cases affecting children.

An R-squared value of 0.90 indicates a satisfactory goodness-of-fit for Model H, as

confirmed through cross-validation measures with the 2004-05 annual average J00-99

hospitalisation rates omitted from the models construction (CV-R2 = 0.53). Model H appears to

provide a noteworthy level of improvement upon it corresponding OLS model, producing

superior R2 and CV- R2 values by respective magnitudes of +0.42 and +0.12 above what Model

E’s diagnostic tests provided. Furthermore, a reduction in the AIC test score value of Model E

by -274.61 again confirms that multilevel modelling procedures add an element of increased

accuracy despite the increasing the level of model complexity. Multilevel models omitting the

outlying inner-city LLSOA, also appear to provide marked improvements on models containing
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all 187 LLSOA’s constructed from mutual upper level nesting schemes. As demonstrated by the

corresponding improvements in R2, CV-R2 and AIC values of +0.13, +0.03 and -227.64 between

Model’s D and H. As before, through incorporating an upper level spatial structure

representative of disease tolerance, the multilevel models appear to place a greater emphasis

on the responsibility of background levels (fixed intercept) in determining a LLSOA

community’s respiratory health. Model H indicates that 87.50% of children’s admissions can be

accounted by citywide background levels of respiratory health, a level +13.30% above the base

rate calculated by its equivalent multivariate OLS model (Model E). In removing the outlying

LLSOA community, background respiratory levels of Model H also appeared to explain 1.78%

more admission cases than what was previously calculated under the same nesting scheme

(Model D).

Model H, displays proportional increases in levels of ‘Afro-Caribbean’ residency as

having the greatest influence on a child’s respiratory health (P≤0.01), 3.14 times greater than

the next major influence detrimental to respiratory health, identified as TPM10 emissions. In

addition, incremental increases in the levels of TPM10 emissions, obesity and residential levels

of ‘Other South Asian’ children were identified to have minor influences of respiratory health

at the 90% significance level. Across Leicester UA, levels of Afro-Caribbean and ‘Other South

Asian’ residency were found to influence the total amount of respiratory cases by +4.07% and -

1.70% respectively. Meanwhile, TPM10 emissions were though to contribute to 3.57% of cases,

with levels of obesity influencing 5.44% of Leicester’s respiratory hospitalisations during

childhood. Compared to multilevel Model D, respiratory cases associated with TPM10

emissions, obesity, ‘Afro-Caribbean’ residency, and ‘Other South Asian’ residency were found

to correspondingly differ by -12.24%, +5.01%, +2.70% and -1.70%. Although levels of ‘Indian’

residency were not found to be of significance (P>0.1), this ethnic minority group was still

associated with reducing respiratory hospital admissions by 1.52%, suggesting a similar

influence to what was previously portrayed in Model D.

Distribution plots of residuals formed from the OLS and multilevel models with the city

centre outlier removed (Models E-H) appeared to be of a normal distribution as confirmed by

K-S scores at the 95% significance level.  However Global Moran’s I Z-scores reveal the OLS

residuals from Model E to cluster, confirming the belief that traditional regression techniques

are inappropriate for modelling the non-stationary processes occurring across Leicester. Global

Moran’s I Z-scores identified no signs of significant spatial patterning for multilevel models

omitting the aforementioned city centre outlier (Model’s F-H).



- CHAPTER 4 -

137

To summarise, both traditional OLS and multilevel regression analyses provide strong

evidence to support ESDA concepts, which suggested that cumulative respiratory based

hospitalisation incidences are distributed disproportionately with respect to socioeconomic

status (SES), specific ethnic minorities and environmental exposures of children residing within

Leicester. Furthermore, improvements in modelling performances gained through the

incorporation of spatial elements indicate the likely presence of non-stationary processes

across Leicester, reconfirming the inappropriateness of traditional non-spatial statistics. While

TPM10 emissions appeared to be a substantial driving force behind a child’s poor respiratory

health in global spatial models incorporating all of Leicester’s LLSOA communities, its effects

appeared to severely diminish upon the removal of an outlying community. At the same time

respiratory cases attributed to residency levels of ‘Afro-Caribbean’ children and deprivation

appeared to increase, which would suggest that multiple burdens are likely interrelated at a

local level.

In conducting local spatial regression procedures, one applies location specific

weighting schemes instead of a single (OLS model) or generalised spatial (multilevel model)

schemes that provide average citywide responses. Favourably this enables one to identify and

measure potentially unique relations for each observation within the study area of interest.

Although the multilevel models produced here provide a global summary of the influential

effects of socio-environmental variables in a manner that addresses generalised spatial

structures, one should recall the ESDA outputs which revealed homogeneous and

heterogeneous pockets to occur across relatively minor distances of ≤455m (first order

neighbours). While nesting LLSOA’s based upon common levels of disease prevalence accounts

for the spatial dependency of respiratory responses, such categorisations are too broad in

nature. These classifications are fine when LLSOA’s share common non-stationary processes.

However in certain instances an upper level collection of LLSOA’s may experience many

specific non-stationary processes, some of which will inevitably be smoothed away. Logic

would therefore dictate that the localised variation associated with the complex relationships

between health, social and environmental factors should be explored in further detail using a

technique known as Geographical Weighted Regression.
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4.4. LOCAL REGRESSION: GEOGRAPHICALLY WEIGHTED REGRESSION (GWR)

The preceding sections of this chapter have established that the relationship between a child’s

respiratory health and likely socio-environmental influences (spatial predictors) appears to

vary as a function of a communities geographical positioning within the City of Leicester. A

summary of such effects has been provided via global regression strategies accounting for a

range of broad spatial structures solely concerning the geographical relationship of respiratory

outcomes.

In a broad sense multilevel models offer a structurally appropriate solution,

particularly in the capturing of poor respiratory health across inner city locales experiencing

elevated levels of deprivation, TPM10 emissions and occupancy from certain ethnic groups. Yet

in other circumstances these associations appear less pronounced. For instance, Univariate

Local Moran’s statistics demonstrate looser spatial ties amongst cold-spots of health and the

aforementioned socio-environmental influences of interest. Furthermore, bivariate

correlations of community respiratory hospitalisations and socio-environmental measures

across first order neighbours occasionally deviate from their typically well-defined trend of

influence (Figure 4.4: see outlying locales). Here, areas that are fringing the inner-city

respiratory hot-spot record reduced J00-99 admission rates despite TPM10 emission and

deprivation levels remaining unanimously high across adjacent communities. In terms of Indian

residency, Bivariate Local Moran’s correlations generally agree with this social group reduces

community respiratory hospitalisation incidences, yet situations arise where high levels of this

population are associated with locales with high visitation rates. Likewise, bivariate plots of

Afro-Caribbean residency are shown in rare circumstances to be associated with reduced

respiratory hospitalisation rates; thus highlighting the importance of local variations in

relationships (non-stationarity) experienced within particular spaces, which are predetermined

by spatially autocorrelated socio-physical aspects of the environment.

Local regression techniques, such as GWR provide a means for integrating and

exploring multiple non-stationary relationships within a traditional regression model, therefore

allowing for a realistic calculation of parameters across space. In certain cases the presence of

non-stationarity may produce a mosaic like pattern, whereby the distribution is reflective of

the magnitude of spatial deviation between predictor and response components. Yet,

circumstances may arise to cause these mosaics to portray scale dependent patterns, which

Openshaw (1984) labels as the Modifiable Areal Unit Problem (MAUP). Under its initial

premise, MAUP details how the aggregation of raw areal data alters inferences, which may

consequently provide a different set of conclusions, thereby raising questions of modelling
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uncertainty. With GWR, one may ask the same questions, not at the Leicester datasets spatial

resolution as this contains a relatively comprehensive sample of intra-urban communities, but

rather placing focus upon the resolution and therefore detail of the spatial interactions that

that one would wish to capture.

In some aspects, the flexible nature of GWR may be seen as beneficial, with models

constructed from decreasing kernel bandwidths allowing for an increasingly local analysis,

which reveal additional geographical details like some sort of spatial microscope

(Fotheringham et al 2002). Therefore, larger bandwidths will offer solutions closer to that of

global OLS models, whereas small bandwidths will characterise parameter estimates that are

increasingly depend on observations of close proximity, but as a result have increased levels of

variance. The problem is therefore how to select an appropriate bandwidth to address this

bias-variance trade-off. Fortunately, several GWR failsafe (or model critique) measures exist to

help select an appropriate window of bandwidths, which accurately capture the occurrences of

spatial processes unique to each dataset.

Validation of appropriate GWR spatial weighting structures was primarily achieved

through conducting three ANOVA based generalised degrees of freedom F-tests, using the

‘spgwr 0.6-14’ [R] package. Outputs from the three generalized degree of freedom ANOVA F-

tests (Fotheringham et al 2002, Leung et al 2000) collectively identified GWR models

constructed from a 40-80NN weighting scheme as significantly improving upon the RSS of OLS

models (Table 4.6) in respect of increased model complexity (P≤0.05). Akaike Information

Criterion (AIC) scores describing the relative goodness-of-fit in relation to the degrees of

freedom, following a correction for observation sample size (AICc), would appear broadly in

agreement with the previously designated lower range of appropriate weighting schemes. For

GWR models placing weight upon their 60-180NNAICc scores remaining relatively stable, 0.99-

1.30% below their OLS counterpart value (Figure 4.5, Table 4.6). AICc scores for 50NN and

40NN schemes mildly deviated from the OLS test score by -0.14% and +2.24% respectively,

marking the point before trade-offs in model complexity and performance become

problematic.

As previously discussed, it is possible for GWR models to provide a near-perfect model

fit when placing an increased dependency on observations of close proximity; as observed by a

R2 value of 1.00 when conducting a GWR model with a 10NN scheme. Yet such traditional

goodness-of-fit coefficients are inappropriate as standalone measures of performance because

of their inability to account for bias-variance trade-offs associated with spatial modelling

approaches. A more appropriate application of traditional goodness-of-fit approaches was
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accomplished through a cross-validation (CV) of GWR models with omitted children’s

respiratory admission rates from 2004-05. Under these circumstances CV-R2 values were

observed to meet critical values of ≥0.50, for weighting schemes containing fewer than

70NN’s; which once again broadly complement the upper threshold weighting schemes

identified via the three F-tests (Figure 4.5, Table 4.6). CV-R2 values also indicate that a

sufficient level of model robustness exists for schemes inclusive of and containing more than

40NN’s, with such coefficients diverging from their modelled R2 by <30%.

Once again one should recall that the presence of spatial autocorrelation within the

residuals is considered a violation of one of the fundamental expectations of traditional

modelling strategies, which assume observations to be independent of one-another. Global

Moran’s Z-Scores observe significant clustering (P≤0.05) amongst residuals from the OLS model

and GWR models containing schemes placing weigh on more than 160NN’s, which offer

solutions close to that of the traditional global model. While weighting schemes placing

emphasis upon 160-70NN contain no signs of spatial patterning deeming them eligible for use,

one may notice that schemes inclusive of and below 60NN contain significantly dispersed

residuals (P≤0.05); therefore implying that such models optimally define detailed localised

spatial structures present within Leicester UA (Figure 4.5, Table 4.6). Finally, in constructing a

ratio of AICc and CV-R2 scores, it becomes possible to combine measurements of model

complexity vs. accuracy with external dataset validation values. Such a ratio score portrays

GWR model performances to gradually increase as greater emphasis is placed upon proximal

localities, with optimal weighting schemes ranging from 30-60NN (Figure 4.5). Meanwhile

GWR schemes including fewer than 30NN appeared to reveal characteristics of over-fitting.
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FIGURE 4.5: Statistical evaluation of the GWR spatial weighting schemes

Based on satisfying the three GWR F-tests, minimising the AICc score and avoiding the spatial

autocorrelation of residuals it was decided that GWR weighting schemes entailing 80-40NN

would offer valid solutions to the spatial processes operating within Leicester UA. From this

window of plausible local weighting structures, it was decided that GWR models placing spatial

emphasis upon their 80NN, 60NN and 40NN would be examined in further detail in-order to

accurately ascertain the impact of the predetermined socio-environmental influences on a

child’s respiratory health. Furthermore, in examining a range of spatially suitable models, it

becomes possible to determine whether scale dependent interactions exist and, if so, to extent

do such additional geographical details influence a models conclusions.



Footnote: [A] Moran’s I: * P ≤0.05 (Significant Dispersion); [B] GWR F-Tests: * P ≤0.05

TABLE 4.6: Statistical evaluation of the GWR spatial weighting schemes

Regression Model:
Weighting Structure

Goodness-Of-Fit
Measures

Relative Goodness-Of-Fit:
Accuracy Vs. Complexity

Global Moran’s I:
Residual Patterning

F-Test: Relative Improvement
GWR Vs. OLS

R2 CV-R2 RSS AIC AICc Moran’s
I

Z-Score FBC-F LMZ-F1 LMZ-F2

OLS Model: 187 0.40 0.35 26086.13 1474.10 1475.35 0.15 3.76
GWR 180 0.48 0.39 22763.49 1443.65 1463.90 0.10 2.53 1.15 0.92 2.37*
GWR 170 0.49 0.40 22146.64 1440.09 1462.59 0.09 2.30 1.18 0.91 2.30*
GWR 160 0.51 0.40 21478.56 1435.86 1460.55 0.08 1.88 1.21 0.89 2.29*
GWR 150 0.52 0.41 21014.59 1433.39 1460.55 0.07 1.56 1.24 0.88 2.18*
GWR 140 0.53 0.42 20389.00 1429.37 1459.10 0.05 1.31 1.28 0.87 2.15*
GWR 130 0.54 0.42 19942.10 1426.94 1459.45 0.04 1.08 1.31* 0.86 2.06*
GWR 120 0.56 0.43 19282.01 1422.65 1458.54 0.03 0.85 1.35* 0.85 2.01*
GWR 110 0.58 0.44 18508.40 1417.43 1457.61 0.02 0.64 1.41* 0.83 1.97*
GWR 100 0.59 0.45 17753.26 1412.73 1458.67 0.01 0.33 1.47* 0.82 1.87*
GWR 90 0.62 0.46 16644.00 1403.96 1456.41 0.00 0.01 1.57* 0.79 1.86*
GWR 80 0.65 0.48 15411.31 1394.09 1456.24 -0.03 -0.44 1.69* 0.76* 1.81*
GWR 70 0.68 0.49 14046.07 1382.21 1457.24 -0.05 -1.01 1.86* 0.73* 1.74*
GWR 60 0.72 0.51 12353.85 1365.67 1460.79 -0.09 -1.96* 2.11* 0.69* 1.67*
GWR 50 0.76 0.53 10514.55 1345.64 1473.24 -0.13 -2.76* 2.48* 0.65* 1.56*
GWR 40 0.80 0.56 8693.49 1323.86 1508.39 -0.16 -3.68* 3.00* 0.63* 1.42*
GWR 30 0.86 0.60 6192.52 1281.53 1595.88 -0.19 -4.14* 4.21* 0.60* 1.27
GWR 20 0.93 0.64 2962.37 1176.92 1929.46 -0.22 -4.81* 8.81* 0.53* 1.13
GWR 10 1.00 0.63 83.98 564.35 42979.82 -0.12 -2.92* 310.64* 0.49 1.00
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As previously reported, a single OLS linear regression model was initially applied to examine

the concurrent effects of eight explanatory socio-environmental variables on children's

respiratory health, the results of which are summarised in Table 4.7. OLS parameter estimates

indicate that average output area rates of TPM10 emissions and deprivation are positively

associated with children’s respiratory hospital admissions. Furthermore, regression estimates

for Leicester’s primary ethnic minority groups indicate the proportion of Indian residents

within an area to be significantly and negatively related to risk of respiratory-based hospital

admissions, whereas elevated levels of ‘Afro-Caribbean’ and ‘Other South Asian’ residents are

significantly and positively associated with respiratory-based hospital admissions. While the

ANOVA F-test indicates model significance at the 95% confidence level, reported R2 (0.40) and

CV-R2 (0.35) values for the OLS model indicate only a moderate goodness-of-fit to the dataset

(Table 4.7). Furthermore, OLS model residuals were identified to have significant spatial

clustering (P<0.05), which suggests that the models assumed uniform relationships between

respiratory hospitalisations and individual explanatory variables are invalid, thus reconfirming

the presence of local or regional dataset variations.

GWR models with an 80NN, 60NN and 40NN ‘Bi-Square Adaptive’ weighting scheme

were subsequently constructed to quantify the extent to which localised relationship

variations influence respiratory outcomes. As previously discussed, adaptive kernels were

favoured over a fixed distance spatial kernel scheme in-order to prevent issues of poor model

calibration, caused by restricted data point counts in areas where LLSOA’s are spatial

expansive. Tables 4.7, 4.8 and 4.9 display the summarised numerical results respectively

associated with the 80NN, 60NN, 40NN GWR models alongside their Aspatial regression

counterparts.

The R-square scores for all three of the investigated GWR models (80NN=0.65,

60NN=0.72, 40NN=0.80) indicate a marked improvement on the OLS (Aspatial) models

performance (0.40). This improvement can be further observed by a 40.92%, 52.64% and

66.67% reduction from the OLS mean squared errors value within the 80NN, 60NN and 40NN

GWR models, respectively. Yet, in targeting the parameter estimates indicated as significant

within the OLS regression model it is possible to observe that the overall relationship between

factors of ethnicity, deprivation and TPM10 emissions produce broadly similar outcomes on

respiratory hospital admissions. While the global regression model may misrepresent local

conditions and yield weaker relationships than the GWR model, such techniques in reality are

of a complementary nature; with global models defining significant attributes across a study

area, whose interactions and likelihood may then be explored spatially by GWR.



Independent Variable:
(Normalised 0-1)

OLS (Aspatial) Linear Regression Linear 80 Nearest Neighbours Bisquare-Adaptive GWR

β Value Std. Error P Value Min. β Med. β Max. β Std. Error
% Census Areas P≤0.05

Detrimental (+) Beneficial (-)
Intercept 28.81 4.20 0.00* -8.01 26.37 66.80 1.18 --- ---
Carstairs Index 2001 19.03 7.98 0.02* -25.31 14.65 83.67 1.87 31.55 1.60
TPM10 Emissions (t/yr.) 20.59 8.14 0.01* -37.36 27.02 95.09 1.74 54.01 0.00
% Smoking Prevalence (Age 16yrs+) 1.82 6.47 0.78 -23.38 12.92 41.70 1.35 25.13 8.02
% Obesity Prevalence (Age 16yrs+) 2.01 5.35 0.71 -42.43 -2.28 25.91 1.21 12.83 6.42
% 0-15y White Non-British -6.96 4.81 0.15 -12.10 -1.52 18.49 0.63 0.00 0.00
% 0-15y Indian -24.07 5.60 0.00* -62.00 -23.44 2.68 0.97 0.00 56.68
% 0-15y Other South Asian 13.91 6.51 0.03* -6.25 12.37 95.85 2.04 37.43 0.00
% 0-15y Afro-Caribbean 21.07 9.77 0.03* -33.99 15.95 68.92 1.74 27.81 0.00

R-Square 0.40 0.65
Residual Sum Of Squares (RSS) 26086.13 15411.31
Mean Squared Error (MSE) 139.50 82.41
AIC 1474.10 1394.09
AICc 1475.35 1456.24
F-Test 15.01* 1.69*

R-Square Cross-Validation:
2004-06  J00-99 Hospital Admissions 0.35 0.48

* P ≤ 0.05

TABLE 4.7: 80NN Geographically Weighted Regression (GWR) model of annual average J00-99 hospital admissions per 1,000 Children, 2000-09



Independent Variable:
(Normalised 0-1)

OLS (Aspatial) Linear Regression Linear 60 Nearest Neighbours Bisquare-Adaptive GWR

β Value Std. Error P Value Min. β Med. β Max. β Std. Error
% Census Areas P≤0.05

Detrimental (+) Beneficial (-)
Intercept 28.81 4.20 0.00* -16.61 28.08 98.62 1.39 --- ---
Carstairs Index 2001 19.03 7.98 0.02* -42.63 15.57 116.11 2.24 32.09 5.35
TPM10 Emissions (t/yr.) 20.59 8.14 0.01* -86.18 13.07 116.00 2.19 19.79 6.42
% Smoking Prevalence (Age 16yrs+) 1.82 6.47 0.78 -29.69 12.59 49.61 1.53 25.13 14.44
% Obesity Prevalence (Age 16yrs+) 2.01 5.35 0.71 -84.37 -0.84 29.85 1.53 10.70 5.88
% 0-15y White Non-British -6.96 4.81 0.15 -15.07 -3.04 23.65 0.76 1.60 0.00
% 0-15y Indian -24.07 5.60 0.00* -67.59 -20.11 11.24 1.21 0.00 41.18
% 0-15y Other South Asian 13.91 6.51 0.03* -18.53 23.20 119.63 2.31 39.04 0.00
% 0-15y Afro-Caribbean 21.07 9.77 0.03* -48.95 15.99 67.29 2.06 22.46 3.74

R-Square 0.40 0.72
Residual Sum Of Squares (RSS) 26086.13 12353.85
Mean Squared Error (MSE) 139.50 66.06
AIC 1474.10 1365.67
AICc 1475.35 1460.79
F-Test 15.01* 2.11*

R-Square Cross-Validation:
2004-06  J00-99 Hospital Admissions 0.35 0.51

* P ≤ 0.05

TABLE 4.8: 60NN Geographically Weighted Regression (GWR) model of annual average J00-99 hospital admissions per 1,000 Children, 2000-09



Independent Variable:
(Normalised 0-1)

OLS (Aspatial) Linear Regression Linear 40 Nearest Neighbours Bisquare-Adaptive GWR

β Value Std. Error P Value Min. β Med. β Max. β Std. Error
% Census Areas P≤0.05

Detrimental (+) Beneficial (-)
Intercept 28.81 4.20 0.00* -33.87 27.28 138.20 1.77 --- ---
Carstairs Index 2001 19.03 7.98 0.02* -62.11 19.63 181.31 2.77 32.09 4.28
TPM10 Emissions (t/yr.) 20.59 8.14 0.01* -134.61 5.32 147.04 2.78 5.35 10.16
% Smoking Prevalence (Age 16yrs+) 1.82 6.47 0.78 -39.30 12.05 63.70 1.83 13.90 12.83
% Obesity Prevalence (Age 16yrs+) 2.01 5.35 0.71 -133.05 2.46 41.79 2.14 3.21 3.74
% 0-15y White Non-British -6.96 4.81 0.15 -21.67 -2.32 32.23 0.92 4.81 0.53
% 0-15y Indian -24.07 5.60 0.00* -106.80 -16.06 28.06 1.86 0.00 28.34
% 0-15y Other South Asian 13.91 6.51 0.03* -34.39 24.69 182.48 2.77 25.13 2.14
% 0-15y Afro-Caribbean 21.07 9.77 0.03* -71.01 11.27 102.97 2.71 15.51 5.88

R-Square 0.40 0.80
Residual Sum Of Squares (RSS) 26086.13 8693.50
Mean Squared Error (MSE) 139.50 46.49
AIC 1474.10 1323.86
AICc 1475.35 1508.39
F-Test 15.01* 3.00*

R-Square Cross-Validation:
2004-06  J00-99 Hospital Admissions 0.35 0.56

* P ≤ 0.05

TABLE 4.9: 40NN Geographically Weighted Regression (GWR) model of annual average J00-99 hospital admissions per 1,000 Children, 2000-09
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The spatial distributions of local R-square values generated by the GWR analysis across the

three scales of interest are depicted in Figure 4.6. Geographic variations in these values

demonstrate how the combined statistical effect of the explanatory variables on respiratory

hospitalisations in the 0-15year age group differs across output areas in Leicester. It may be

observed that local regression models contained within their corresponding 80NN, 60NN and

40NN weighting schemes provided an improvement upon the R-square value obtained from

the global regression model within 90.37%, 89.98% and 92.51% of Leicester’s output areas,

respectively. The following section of this chapter will place descriptive focus on the 60NN

GWR outputs, based upon the understanding that sufficient model improvements were

obtained whilst also retaining a certain degree of smoothing to assist in the description of local

variation trends. Where necessary, deviations or omissions in spatial processes between the

other explored weighting schemes will also be discussed in further detail.

FIGURE 4.6: Local model goodness-of-fit scores contained within each GWR scheme
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The strongest model performances for a 60NN scheme are to be found around the north-

western section of the city centre, across LLSOA’s surrounding and contained within the upper

section of high hospital clustering denoted within the LISA analysis (Figures 4.2 and 4.6). In

particular LLSOA’s contained within the wider wards of Latimer (R2=0.78), Charnwood

(R2=0.69) and Spinney Hills (R2=0.66) were observed on average to provide the highest levels of

performance. Within the respiratory hot-spot of interest R2 vales ranged from 0.58-0.73, with a

coefficient value of 0.64 for the focal LLSOA of particular interest. However, in other output

areas, specifically towards the eastern fringes of Leicester, respiratory hospital admission rates

are not explained adequately by our set of explanatory variables. Specifically, LLSOAs

contained within the wider wards of Humberstone (R2=0.22), Thurncourt (R2=0.18) and

Evington (R2=0.43) were observed on average to exhibit particularly low performance levels.

Interestingly LLSOAs experiencing the highest residual admission rates appear to be

located around the incomplete eastern section of Leicester's outer ring road, whose congested

traffic flows exist at a higher resolution than that captured within the NAEI modelled road-

traffic emission dataset (Figure 4.7). This might imply that the spatial resolution of the

emission dataset captures broad trends too ill defined for a select few locales where relatively

localised interactions take place. However, on the grander scale of things, the NAEI emission

dataset is capable of capture the primary interactions of interest and is readily accessible to

the wider population. It is also likely that common epidemiological study issues concerning

inter-individual population differences are involved in reduced model performances. Such a

statement is made more likely by the relatively low average annual J00-99 admission rates

experienced by LLSOAs contained within Humberstone, Thurncourt and Evington (37.33 per

1,000 children), which are 7.35% below average citywide LLSOA levels. These generally high

levels of well-being make it highly unlikely that an unknown malicious socio-environmental

factor is at play. LLSOAs contained within these three wards also experienced relatively low

levels of deprivation, smoking adults, obesity prevalence and ethnic minority groups which

were not of Indian ethnicity. Such an amalgamation of ‘good’ socio-physical community

characteristics and relatively few respiratory cases reinforce the likelihood of an individual’s

actions influencing health to an unmeasurable and minor extent, which only becomes

apparent across communities with few health issues.

Upon comparing the performance of localised regressions across the three different

weighting schemes of interest it becomes apparent that similar areas consistently model

better than others, and that incremental improvements in the fitting of the dataset occur from

the additional detail of localised weighting schemes (Figure 4.6). Under a 40NN scheme,
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LLSOAs contained within the wider wards of Latimer (R2=0.86), Charnwood (R2=0.71) and

Spinney Hills (R2=0.77) were once again observed on average to exhibit  a best fit, improving

slightly upon the 60NN model. It would appear that the greatest improvements in

performance between the 60NN and 40NN models arises along a section of Leicester’s

western periphery, as observed via average LLSOA R2 values in Braunstone rising from 0.60 to

0.74. As weighting schemes become increasingly localised, performance generally improves

with emphasis placed on capturing the processes occurring across the cities southern and

western peripheries, previously skewed from a focus on inner-city locales. However, reduced

levels of model performance remain under a 40NN scheme across LLSOAs located within the

cities eastern periphery, where relatively few respiratory cases are experienced. Perhaps an

individual’s rather than community actions are the primary mechanism for poor health in

relatively privileged communities, with such noise elements providing a restricted degree of

influence elsewhere.

FIGURE 4.7: Spatial distribution of OLS/GWR residual J00-99 hospitalisations per 1,000 children
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An assessment of the GWR model residuals (Figure 4.7) confirms this notion of a generally

favourable model performance, which cumulatively improves upon the fit of the dataset

provided by OLS models with increased localisation. However, it should be noted that high

residuals exist within the focal point of the central cluster zone of high respiratory admissions.

This is indicative of a reduction in performance of the city centre model (60NN R2=0.64),

combined with the area experiencing the highest rate of annual children’s respiratory

admissions within Leicester UA (147.83 per 1,000 children). Nevertheless, GWR residuals for

the inner-city point of focus were found to reduce drastically from the OLS value (90.61), with

respective recordings of 55.92, 48.99 and 39.91 residual admissions per 1,000 for 80NN, 60NN

or 40NN models, respectively. This would imply that extremely localised socio-environmental

interactions are at play, which likely account for the elevated hospital admissions specifically

within this census area. The OLS model also records substantial residual clusters across

Leicester’s western periphery within the wards of Humberstone and Thurncourt, which appear

to reside under the implementation of localised modelling techniques. Nevertheless, a small

band of LLSOA’s within Thurncourt, running from the eastern fringe towards the inner-city

consistently under or overestimate GWR modelled respiratory outcomes. Upon recalling the

ESDA, such problem locales follow an arterial road feed by Leicester’s Outer Ring road (A563),

which terminates at this area of interest, forcing traffic from a dual to a single carriageway

towards the city centre. The impact of which becomes apparent for 4 LLSOAs under 60NN and

40NN GWR weighting schemes, but may potentially be alleviated if higher resolution traffic

data were to be applied.

Kolmogorov-Smirnov scores for the 80NN, 60NN and 40NN GWR schemes indicated

that residuals were distributed in a normal fashion (P≤0.05), with Global Moran’s I outputs

statistically recognising the 80NN, 60NN and 40NN scheme residuals to significantly contain no

elements of spatial autocorrelation (P>0.05) (Table 4.10). Such findings reveal a satisfactory

model performance, indicating that localised regression techniques are capable of dealing with

extreme spatial outliers.

Kolmogorov-Smirnov (K-S) Statistic:
Residuals Normal Distribution

Global Moran’s I:
ResidualsK-S Value P ≤ 0.05 P ≤ 0.01 Z-Score Spatial Pattern

OLS 0.11 Reject Accept 3.76 Clustered
GWR 80NN 0.07 Accept Accept -0.44 No Pattern
GWR 60NN 0.08 Accept Accept -1.96 Dispersed
GWR 40NN 0.08 Accept Accept -3.68 Dispersed

TABLE 4.10: Empirical and spatial assessments of normality in OLS and GWR residuals
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In comparing the GWR parameter estimates of the 80NN, 60NN and 40NN GWR models it is

possible to ascertain the extent to which spatial interactions are influenced by scale across the

statistically selected structural schemes of interest (Table 4.11). By comparing the upper

(80NN) and lower (40NN) thresholds of valid GWR schemes it is possible to confirm that overall

model estimates are comparable (R2=0.90), and that applying additional geographic detail acts

to sharpen such conclusions, akin to a spatial microscope. Furthermore, Pearson’s R

correlation coefficients indicate strong correlations for parameter estimates relating to

deprivation (0.87), TPM10 emissions (0.81) and smoking prevalence (0.83). Between the upper

and lower thresholds noteworthy differences were only observed between levels of obesity

prevalence (R2=0.27, Pearson’s R = 0.52) and background admission rates recorded via the

Intercept (R2=0.36, Pearson’s R = 0.60). One may therefore perceive that the models within the

weighting band of interest were already calibrated to a required standard, and that fine-tuning

was primarily achieved through these two variables. It is therefore unlikely that scale

dependent interactions, if present, will vastly alter inferences derived from the critiqued GWR

outputs.

R2: Model A Coefficient Vs. Model B
Coefficient

Pearson’s R Correlation (P≤0.05)
80, 60NN 60, 40NN 80, 40NN 80, 60NN 60, 40NN 80, 40NN

Intercept 0.78 0.67 0.36 0.82 0.82 0.60
Carstairs Index 0.93 0.89 0.75 0.94 0.94 0.87
TPM10 Emissions 0.90 0.81 0.65 0.90 0.90 0.81
Smoking Prevalence 0.92 0.84 0.69 0.92 0.92 0.83
Obesity Prevalence 0.71 0.63 0.27 0.80 0.80 0.52
White Non-British 0.91 0.76 0.64 0.87 0.87 0.80
Indian 0.79 0.71 0.39 0.84 0.84 0.63
Other South Asian 0.84 0.73 0.44 0.86 0.86 0.66
Afro-Caribbean 0.83 0.76 0.50 0.87 0.87 0.71
Residuals 0.97 0.92 0.84 0.96 0.96 0.92
Model Estimate 0.98 0.96 0.90 0.98 0.98 0.95

TABLE 4.11: Comparison of GWR coefficient estimates across multiple spatial schemes

Targeting the parameter estimates indicated as significant within the Aspatial regression

model it is possible to observe that the overall relationship between factors of ethnicity,

deprivation and TPM10 road-transport emissions generally produce similar outcomes on

respiratory hospital admissions within the GWR models of interest (Table 4.7, 4.8, 4.9). Such

observations confirm the complementary nature of traditional models within a local analysis,

whereby global regression methods solely identify key influences across a study area, whose

interactions and likelihood may then be accurately defined in a spatially detailed fashion via
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GWR. A summary of GWR modelled citywide annual children’s respiratory cases resulting in

hospitalisation (Table 4.12) reveals levels of deprivation (17.96-21.74%), smoking (3.82-4.27%)

and residential levels of ‘Afro-Caribbean’ children (1.32-2.88%) as detrimentally influencing

such outcomes in a relatively stable manner. Meanwhile levels of ‘Indian’ (-14.98 to -16.70%),

‘White Non-British’ (-0.55 to -0.72%) residency and obesity (-4.22 to -9.91%) were found to

beneficially reduce the number of J00-99 hospitalisation cases across Leicester during 2000-09.

In terms of total respiratory cases only background respiratory levels, recorded via the

Intercept (69.21-89.04%), and admissions related to TPM10 emission levels (7.09-21.74%)

produced a noteworthy spread between the explored GWR model schemes. The discrepancy

between GWR intercept values described in the previous paragraph, relates to the fine-tuning

of model weighting schemes focusing on these unique LLSOA background rates. To understand

the spread of TPM10, one should recall the performance of localised regression models. Here,

as weighting schemes become localised, attention shifted towards capturing processes across

the cities southern and western peripheries previously skewed by a modelling focus upon

extreme inner-city observations, particularly within the global model. Modelled residuals also

provide the impression that extremely localised socio-environmental interactions are at play

within the inner-city respiratory hot-spots, which would now appear to predominantly revolve

around interactions with TPM10 emissions. However, because of this strong connection to

‘poor’ respiratory health, global and more generalised spatial models would appear to have

overestimated the influence of this environmental factor across other districts of the Leicester.

Int. Carst.
Index

TPM10 Smoking
Prev.

Obesity
Prev.

White
N-Brit.

Indian Other
S. Asian

Afro-
Car.

Resid.

OLS 71.74 22.29 15.10 1.79 3.62 -3.63 -19.89 5.67 4.23 -0.92
80NN 68.21 17.96 21.74 4.34 -4.22 -0.72 -14.98 5.41 2.88 -0.62
60NN 76.18 17.93 15.66 4.37 -6.08 -0.55 -14.98 5.93 2.40 -0.85
40NN 89.04 21.41 7.09 3.82 -9.91 -0.71 -16.70 5.69 1.32 -1.04

TABLE 4.12: Percentage of citywide annual children's J00-99 hospital admissions associated with GWR
modelled background and socio-environmental influences

Overall, GWR 60NN model estimates recognise residentially experienced road-traffic emissions

(TPM10) after adjustment for social covariates, as accountable for 392 children’s respiratory

admissions per annum (15.66% of all children’s respiratory admissions) across Leicester during

2000-09. Median values of the normalised TPM10 parameter estimates were observed to

decline from 27.02 (80NN) to 5.32 (40NN), whereas maximum parameter estimates positioned

within inner-city locales rose from 95.09 to 147.04 J00-99 hospitalisations per 1,000 children as

a greater emphasis was placed on localisation. Cartographic GWR model outputs of TPM10
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emissions were produced to specifically explore the spatial influence of environmental

pollutants on respiratory health (Figure 4.9). Under a relatively smooth 80NN weighting

scheme, TPM10 emissions were observed to solely provide a detrimental influence to a

communities respiratory health during childhood across the 54.01% of LLSOAs deemed to be

of significance (P≤0.05). The majority of adverse health impacts may be observed to focus

upon inner-city residents. In contrast, a relatively detailed 40NN scheme was observed to

associate a mixture of detrimental and beneficial health impacts with TPM10 emissions, across

5.35% and 10.16% of Leicester’s LLSOAs respectively (P≤0.05).

The 40NN scheme would appear to clarify the inner-city zone of detrimental influence,

focusing exclusively upon LLSOAs associated with the J00-99 admission hot-spot. Outputs from

a 40NN scheme also significantly highlight a beneficial impact of reduced TPM10 emissions

across the somewhat rural north-eastern suburbs of Leicester (Rushey Mead and

Humberstone). Areas previously associated with low admission rates, but in a non-significant

way under wider weighting schemes. Similarly, the southern suburb of Eyres Monsell also

appears to link low TPM10 emissions with improved respiratory health (P≤0.05). On a final

point, the 40NN model illustrates the emergence of a minor TPM10 related respiratory hot-spot

following an arterial road into the city centre, which is situated on the fringe and partially

within the comparatively affluent south-easterly ward of Knighton (Figure 4.2). One may recall

that the car ownership plays a pivotal role in the construction of the Carstairs Index, whereby

affluent communities are highly mobile and thus have the potential to create high levels of

traffic emissions, some of which will inevitably be emitted at the trip origins. Yet their

residentially experienced level of TPM10 emissions might only account for a fraction of their

total outputs, as observed by the Knighton emission trail which is suggestive of such residents

entering the city centre for work or leisure related pursuits. The extent to which such

environmental injustices prevail will be explored in a successive chapter focusing upon

localised ‘Polluter Pays Principles’ (PPP).

Across Leicester, GWR 60NN model estimates identify Carstairs Index records of

deprivation to annually contributing towards 449 children’s respiratory admissions per annum

(17.93% of all children’s respiratory admissions) during 2000-09. Under all of the explored

weighting schemes significant parameter estimates (P≤0.05) were observed to only drive

hospitalisation rates within the direction of deprivation (i.e. affluence was never causally

linked to declining respiratory health during childhood). Median values of the normalised

deprivation parameter estimates were observed to slightly increase from 14.65 (80NN) to

19.63 (40NN), reflective of the increasing maximum parameter estimates from localised
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weighting schemes. The upper parameter estimates were associated with deprived inner-city

locales, positioned adjacent to the southern side of the city centre LLSOA. Subsequently,

cartographic GWR model outputs of Leicester’s LLSOA Carstairs Index deprivation scores were

produced to specifically explore the spatial influence of socio-economic status on respiratory

health (Figure 4.8).

For either a relatively smooth or detailed spatial weighting scheme, deprivation was

observed to detrimentally impact 31.55-32.09% of LLSOAs, consistently placing significant

focus upon the central locations positioned within the southern section of the J00-99

respiratory hot-spot (P≤0.05). However, a hot-spot analysis of children’s respiratory admissions

associated with deprivation reveals a much wider spread of influence encompassing all of the

overall inner-city respiratory hot-spot. These findings clearly indicate that a ‘double burden’ of

environmental exposure and deprivation operates across inner-city communities to

collectively impede respiratory health during childhood. Furthermore, reduced levels of

deprivation towards the north of the J00-99 inner-city hotspot would appear to significantly

reduce communal health burdens, thereby buffering the spatial spread of such collective

health burdens.

However, it would appear that this mutual relationship might have an element of

exclusivity to inner city locales, as a second deprivation cluster of concern along Leicester’s

southern periphery (Eyres Monsell) records relatively low TPM10 emission levels. Eyres Monsell

is a former council estate, therefore one would expect housing stock to be of a relatively

reduced standard to the cities other suburban areas. Nevertheless, average Carstairs Index

scores for LLSOAs contained within Eyres Monsell (1.09) are not drastically different to the

citywide average (0.00) and are substantially better than LLSOAs contained within the J00-99

hot-spot (4.11). This highlights the importance of allowing for non-stationary relationships, as

it would appear that deprivation takes precedent in explaining respiratory outcomes along

Leicester’s southern periphery.
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FIGURE 4.8: GWR modelled children’s J00-99 hospital admission rates associated with Leicester UA’s
Carstairs Index scores of deprivation
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FIGURE 4.9: GWR modelled children’s J00-99 hospital admission rates associated with residentially
experienced TPM10 emissions
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Concerning Leicester’s key ethnic minority groups, the lifestyle choices of children of ‘White

Non-British’ Ethnicity seem to have a limited impact on respiratory admissions, whereas

elevated levels of ‘Afro-Caribbean’ and ‘Other South’ residents are associated with a slight

increase in respiratory hospitalisations (Tables 4.7 - 4.9). In-fact the lifestyle choices of ‘Afro-

Caribbean’ residents after adjustment for social-environmental covariates under a 60NN

scheme were held accountable for only 60 children’s respiratory admissions per annum across

Leicester. Such a response is believed to be partially due to low residency levels as median

values of Afro-Caribbean normalised parameter estimates range from 15.99 (60NN) to 11.27

(40NN), suggestive of generally detrimental social lifestyle choices. Whilst tending to reside

within inner-city LLSOAs surrounding and partially contained within the overall J00-99 hot-spot

of concern, it would appear that Afro-Caribbean lifestyle choices here would actually have a

low influence on respiratory outcomes.

Local models (Appendix C15) reveal the groups largest detrimental influences to be

found around the eastern ward of Charnwood (≤11.14%) and south-eastern wards of Freemen

(≤4.42%) and Knighton (≤4.14%) where ‘Afro-Caribbean’ LLSOA compositions are moderate to

low. GWR 60NN normalised parameter estimates for LLSOAs within Charnwood, Freemen and

Knighton correspondingly provide average values of 33.40, 40.11 and 31.94 per 1,000 children,

whereas average LLSOA estimates within the overall J00-99 hot-spot of concern show that the

group provides a beneficial influence (-13.66 per 1,000). This would explain why annual

citywide J00-99 admission counts attributed to the ethnic group fall from 4.22% in OLS models

to 2.40% under a 60NN GWR scheme. Nevertheless, cartographic plots of admission rates

attributed to ‘Afro-Caribbean’ residence levels clearly show strong associations with increased

respiratory admissions (Appendix C15), as indicated by all 27.81% of the significant 80NN GWR

modelled outputs acting in a detrimental manner (P≤0.05).

Whether the lifestyle choices of ‘Afro-Caribbean’ residents within inner city locales

actually mitigate other detrimental influences remains questionable, as all three local models

providing insignificant coefficients within such areas. Furthermore, such beneficial outputs fly

in the face of the overall citywide trends. Yet, one possibility is that social groups may be

forced to positively alter their traditional lifestyle choices, when exposed to an excessive

combination of social-environmental burdens that provide recognisable health impacts.

Alternatively, the unfavourable lifestyles of ‘Afro-Caribbean’ residents within inner-city locales

may have been overshadowed by the far greater health impacts brought about by the ‘double

burden’ deprivation and air pollutant exposure. In either case, it would appear that this ethnic
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minority group unfairly experiences a ‘triple jeopardy’ of social, health and environmental

inequalities.

Lifestyle choices of ‘Other South Asian’ residents after adjustment for social-

environmental covariates under a 60NN scheme were identified to annually influence149

children’s respiratory admissions across Leicester. Like ‘Afro-Caribbean’ residents, the lifestyle

choices of this ethnic minority group are predominantly associated with increased respiratory

admissions during childhood, as observed by all 39.04% of the significant 60NN GWR modelled

outputs acting in a detrimental manner (P≤0.05). Under a broader 80NN scheme, significantly

modelled burdens for these residents exclusively operate within the western and northern

districts of Leicester (Appendix C14), heavily populated by White British residents containing

on average only 2.48% of ‘Other South Asian’ residents. It would therefore appear that

respiratory problems prevail in-spite of the social mobility that has enabled later generation

families of ‘Other South Asian’ migrants to relocate away from problematic inner-city areas.

This may be due to persevered lifestyle choices, which potentially break down to an

insufficient understanding of how to access basic public services. Alternatively, if young

families have recently relocated away from inner-city areas then their children may experience

a health gradient constraint, whereby social mobility allows for one only to moderate existing

health issues (Blane et al 1999).

Through examining the ‘Other South Asian’ respiratory spatial processes in further

detail (60NN scheme), it became possible to significantly define a section of the central ‘Other

South Asian’ hot-spot called Stoneygate, where 12.28-35.71% of children are recorded as

‘Other South Asian’. Despite the ethnic groups substantial community composition here, it

would appear that their lifestyles are only associated with moderate respiratory impacts.

Nevertheless under the 40NN scheme, a singular LLSOA at the edge of the overall J00-99 hot-

spot attributes ‘Other South Asian’ residency with improved respiratory health. Perhaps these

favourable lifestyle choices are a result of increased knowledge and access of public services,

through recognition of the extreme TPM10 and financial burdens this community faces.

In stark contrast, 60NN GWR model estimates across Leicester identified the Lifestyle

choices of ‘Indian’ residents to substantially decrease the number of children’s respiratory

admission by 375 cases per annum. Median values of the normalised ‘Indian’ ethnic

composition parameter estimates were observed to slightly increase from -23.44 (80NN) to -

16.06 (40NN), in a manner reflective of the greater emphasis being placed upon the beneficial

impacts of specific LLSOAs from localised weighting schemes. Under all of the explored

weighting schemes, significant parameter estimates (P≤0.05) were observed to exclusively
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reduce hospitalisation rates. Cartographic plots of GWR outputs consistently indicate that the

Lifestyle choices of ‘Indian’ residents actively reduces the number of respiratory

hospitalisations within the J00-99 inner-city hot-spot, acting in a manner which mitigates the

spatial spread of such symptoms to the wider city centre community (Appendix C13). In

particular the ward of Spinney Hills is densely populated by ‘Indian’ children, of which 3

LLSOAs are encompassed within the ‘double burden’ zone of deprivation (7.81 points) and

TPM10 emissions (2.01t/yr.) experiencing on average 76.67 J00-99 admissions per 1,000

children. Here the beneficial nature of ‘Indian’ lifestyles is present but obscured by greater

burdens. Within Spinney Hills 10 other LLSOAs, average levels of deprivation (3.11 points) and

TPM10 emissions (1.30 t/yr.) diminish but still prevail at magnitudes of concern, even so Indian

residency remains high resulting in a rate of only 37.60 J00-99 admissions per 1,000 children.

This corresponds to 2.69 admissions below Leicester’s average LLSOA rate, thus highlighting

the importance of social decision making alongside the ease to which public services may be

accessed by groups whom have fully integrated into the wider society.

In terms of healthy lifestyle choices, community levels of smoking prevalence

previously shown by OLS models to have an unclear insignificant impact on a child’s respiratory

health, would appear to significantly influence respiratory admissions across 39.57%  of

LLSOAs under a local model using a 60NN scheme. In total, 60NN GWR model estimates

recognised passive smoking during childhood after adjustment for socio-environmental

covariates, as accountable for 109 children’s respiratory admissions per annum across

Leicester during 2000-09. Interestingly, cold-spots of passive smoking hospitalisation rates are

positioned throughout southern Leicester and parts of the lower inner-city centre (Appendix

C10) where LLSOAs on average record moderate adult smoking rates (35.80%). Furthermore,

LLSOAs within the northern and eastern passive smoking hot-spots are also associated with

moderate adult smoking rates of 35.80% and 32.88%, respectively. This would indicate that

adult smoking does not directly influence the extent to which a child is affected by its

associated carcinogens. Rather, it would appear that attitudes to smoking would be of greater

importance, including whether the adult is informed or takes action in shielding their children

from such risks.

Likewise, OLS models defined adult obesity prevalence as a relatively unclear

insignificant impact on children’s respiratory outcomes, yet a select number of LLSOA localised

models report this lifestyle to mildly impact respiratory admissions, in a significant manner. In-

fact, 60NN GWR model estimates recognised childhood diets and activities inferred from

parent’s obesity levels, to influence 152 fewer citywide respiratory cases per annum.
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Cartographic plots of the 80NN scheme appear to best depict the generalised respiratory

admission patterns related to obesity, with local cluster analysis outputs coinciding with

significant GWR coefficients (Appendix C11). Children’s obesity hot-spot respiratory admission

rates are positioned throughout western Leicester, where LLSOAs on average house a

reasonably high proportion of obese adults (26.50%). However, like smoking, LLSOAs within

the north-eastern obesity admission cold-spot would appear to house a similar rate of

overweight adults (26.10%). Upon closer inspection it would appear that respiratory issues

related to obesity would affect ethnic groups in different ways, with LLSOAs within the

western hot-spot and eastern cold-spot respectively containing on average 82.48% and 33.38%

‘White British’ children. It would therefore appear that obesity related respiratory issues

during childhood are a concern predominantly related to persons of a ‘White British’ ethnicity.

While such details are of importance it should be remembered that GWR outputs are

founded from localised regression models, each producing individual LLSOA parameter

estimates and probability values; therefore, a parameter is unlikely to be of global significance.

Subsequently, locations identified to produce significant parameter estimates variables from

GWR modelling (P≤0.05) were selected for the construction of universal stimulus-response

models, specific to each independent socio-environmental variable, which account for spatial

interference (Table 4.13). The stimulus-response models constructed from 80NN, 60NN and

40NN datasets generally identified each socio-environmental variable to individually influence

overall respiratory outcomes via a common function. This would indicate that issues of scale

dependent relationships are somewhat trivial when exploring weighting schemes deemed

suitable by GWR model selection procedures. Rather, it would appear that such relationships

are fine-tuned across the range of suitable weighting schemes. Stimulus-response models

constructed from significant GWR parameter estimates (P≤0.05) were considered to produce

suitable relationships for future reference if constructed from a minimum of 25 LLSOA’s, which

demonstrated an R2 ≥0.5. In certain circumstances it was also benificial to  produce stimulus-

response models constructed from harsher GWR parameter estimates (P≤0.01), whereby

relationships became clouded or needed further validation (Appendix C16).



TABLE 4.13: Stimulus-response models describing the relationship between socio-environmental variables and their specific GWR modelled hospital admissions rates per 1,000
children (If coefficient P≤0.05)

Independent Variable GWR Model Observations
(P<0.05)

Optimum Model
(P<0.05)

R2 Constant
(B0)

B1 B2 B3

TPM10 Emissions (t/y)
80NN 101 Quadratic 0.90 0.275 -1.452 11.340
60NN 49 Quadratic 0.87 -15.691 10.394 11.223
40NN 29 Quadratic 0.93 11.084 -60.585 42.357

Carstairs Index (Score for Leicester)
80NN 62 Quadratic 0.27 21.123 2.151 -0.226
60NN 70 N/A
40NN 68 Quadratic 0.10 25.827 -0.087 -1.040

(%) Smoking Prevalence
80NN 62 N/A
60NN 74 Cubic 0.20 69.952 -8.125 0.299 -0.004
40NN 50 Cubic 0.31 60.272 -7.753 0.318 -0.004

(%) Obesity Prevalence
80NN 36 Quadratic 0.33 1082.217 -86.173 1.699
60NN 31 N/A
40NN 13 Quadratic 0.82 -153.568 21.354 -0.693

(%) White Non-British Children
80NN 0 N/A
60NN 4 N/A
40NN 10 Cubic 0.96 -0.045 -2.379 5.510 -0.844

(%) Indian Children
80NN 106 Cubic 0.87 0.508 -0.539 0.009 -7E-05
60NN 77 Cubic 0.87 0.508 -0.642 0.014 -1E-04
40NN 53 Cubic 0.71 1.477 -1.272 0.036 -4E-04

(%) Other South Asian Children
80NN 70 Cubic 0.88 -0.026 2.320 -0.349 0.021
60NN 73 Cubic 0.88 0.126 1.808 -0.104 0.002
40NN 51 Cubic 0.69 0.754 1.235 -0.038 0.001

(%) Afro-Caribbean Children
80NN 52 Cubic 0.89 0.072 1.232 0.003 0.002
60NN 49 Cubic 0.18 0.272 0.501 0.324 -0.049
40NN 40 N/A
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Of noteworthy interest, is the relatively consistent manner in which TPM10 emissions and

‘Other South Asian’ residents appear to detrimentally affect overall respiratory outcomes via

their respective quadratic (R2 ≥0.87) and cubic (R2 ≥0.69) relationships, obtained from multiple

weighting schemes and coefficient significance levels. In contrast, beneficial responses appear

associated with high levels of Indian residency, as denoted by cubic functions from several

significant weighting schemes (R2 ≥0.71). Detrimental stimulus-responses attributed to levels

of ‘Afro-Caribbean’ residency were observed to only produce suitable relationships under a

60NN scheme (≤0.01) and two 80NN schemes (P≤0.05, P≤0.01). Likewise, Carstairs Index

deprivation scores of Leicester only produced appropriate relationships when using GWR

coefficients with P≤0.01, under 60NN and 80NN schemes (Appendix C16). The drastic drop in

model-fit between P≤0.01 and P≤0.05 coefficient values would suggest that deprivation is a

complex issue, which is unlikely to be adequately modelled by a single input relationship.

Stimulus-response models for levels of smoking and obesity prevalence, and ‘White Non-

British’ residency produced insubstantial and ultimately unclear associations of interest (Table

4.13), and were thus not investigated any further.

The socially adjusted effects of TPM10 emissions on respiratory cases can be clearly

observed to yield a quadratic relationship, upon modelling significant parameter estimates

(P≤0.05) ascertained from all three spatial schemes of interest (Figure 4.10). Furthermore, the

overall quadratic trends would appear to vary little from relationships constructed from

restrictive GWR parameter estimate sets (P≤0.01), thereby suggesting that a stable affiliation

has been established. The trend derived from 49 TPM10 coefficients (P≤0.05) under a 60NN

scheme (R2=0.87) was shown to represent a median admission rate estimate and was

subsequently deemed the universal TPM10 emission response model of choice (Appendix C17).

Within this relationship, LLSOAs experienced TPM10 emissions of 1 t/yr. were annually

identified to experience an additional 5.92 respiratory hospitalisations per 1,000 children

across 2000-09 (P<0.05). Using this trend, LLSOA TPM10 emission levels were reported to

average 8.79 admissions per 1,000 children, which amounts to a rate 1.29 admissions above

the corresponding 60NN GWR model parameter estimates of mixed significance. Overall,

TPM10 emissions across Leicester would be recognised to influence 475 children’s respiratory

admissions per annum (p<0.05), which amounts to 18.96% of the total J00-99 respiratory

burden; a figure slightly larger than the 60NN GWR model estimate of 15.66%.

This relationship could prove to be an effective measure for quantifying the health

benefits of reducing traffic emissions within an intra-urban environment. Within Leicester it is

calculated that a 5% reduction in residentially experienced LLSOA TPM10 emissions would
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amount to 110 fewer children’s respiratory admissions per annum (P<0.05), reducing the total

amount of respiratory hospital incidents by 4.39%. Furthermore, it is estimated that a

negligible amount of TPM10 related hospital admissions could be achieved if LLSOA emission

levels could be maintained around 0.81t/yr.

FIGURE 4.10: Universal J00-99 stimulus-responses associated with residentially experienced TPM10

emissions, and residential levels of ‘Other South Asian’, ‘Indian’ and ‘Afro-Caribbean’ ethnicities. As
constructed from local GWR model outputs of significant (P≤0.05; P≤0.01)

The individual influence of ‘Other South Asian’ residency on respiratory admissions would

appear to follow a positive cubic trend, which remains relatively consistent unless >10% of a

LLSOA community is constructed from this ethnic group (Figure 4.10). After this point the

80NN scale relationships appear to increase rapidly, yet it would appear that relationships
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constructed from 60NN and 40NN coefficients (P<0.05), are constrained within a tight

envelope producing similar values. This would suggest that elements of scale dependency are

likely associated with this social influence, whereby details are not adequately captured from

spatial schemes >60NN. Trends from both 60NN (R2=0.88) and 40NN (R2=0.69) GWR parameter

estimates where P<0.05 equally estimate lifestyles of ‘Other South Asian’ residency as annually

influencing 331 children’s respiratory cases across Leicester (Appendix C17). Such figures

equate to 13.21% of children’s citywide J00-99 burdens, a figure almost twice as high as what

was calculated by the complete set of significant and non-significant GWR estimates.

In contrast, the individual influence of ‘Indian’ residency on respiratory admissions

follows a stable negative cubic trend which becomes fine-tuned when including values of

P≤0.05 rather than restricting suitable inputs to significance of P≤0.01 (Figure 4.10). In-fact the

overall cubic trend would appear to scarcely differ from relationships constructed from GWR

parameter estimate sets of P≤0.05 unless a LLSOA community is constructed from >80%

‘Indian’ residents. A trend derived from 77 ‘Indian’ residency coefficients (P≤0.05) under a

60NN scheme (R2=0.87) was shown to represent a central estimate of the envelope in

question, and was subsequently deemed the universal response model of choice. Overall,

‘Indian’ residency across Leicester was associated with the prevention of 699 children’s

respiratory admissions per annum (P<0.05), reducing the total J00-99 respiratory burden by

27.90%. However, this stimulus-response output is approximately twice the size of the 60NN

GWR model citywide estimate of -14.98%.

As previously mentioned, the individual influence of ‘Afro-Caribbean’ residency on

respiratory admissions would appear to follow a positive cubic trend with linear tendencies,

which was observed to only act in a significantly consistent nature under the two modelled

80NN scheme trends (Figure 4.10). As with the other ethnic minority groups, it would appear

that uncertainty arises in the rare cases whereby an individual minority groups constitute the

majority of a LLSOA’s population (with exception to levels of Indian residency), due to the

limited set of comparable data points for validation. The 52 locations within the 80NN GWR

model where P<0.05, estimated that the lifestyle choices of ‘Afro-Caribbean’ residents would

annually influencing 240 children’s respiratory cases across Leicester during 2000-09 (Appendix

C17). Such figures equate to 9.58% of children’s citywide J00-99 burdens, a figure almost three

times as high to that calculated by the complete set of significant and non-significant GWR

estimates.

In terms of deprivation, the universal stimulus-response models would appear to

provide a somewhat obscured relationship, with only the 80NN (P≤0.01) and 60NN (P≤0.01)
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trends deemed to adequately capture their locational values (Appendix C16). In statistical

terms, the best fit was found from an 80NN (P≤0.01) scheme (R2=0.80), which recognised

deprivation as contributing to 1714 children’s respiratory admissions per annum. Upon this

understanding, deprivation would be associated to influence 68.41% of the total J00-99

respiratory burden, which is a figure substantially larger than the 80NN GWR model estimate

of 17.96%. The lack of uniformity between deprivation trends and the wildly differing trend

estimates from GWR model outputs would indicate that deprivation is a complex issue,

perhaps constructed from a plethora of relationships associated with different elements of

social-economic burdens. Upon closer inspection of significant and non-significant 80NN GWR

model outputs, it would appear that three different types of deprivation influence respiratory

outcomes during childhood (Figure 4.13, Table 4.14).

FIGURE 4.11: Universal 3-Trend J00-99 stimulus-responses associated with Leicester UA’s Carstairs
Index of deprivation, created from all local GWR model outputs

Carstairs Index
(Leicester)

LLSOA
Observations

Optimum Model
(P<0.05)

R2 Constant
(B0)

B1 B2 B3
Trend 1 (Upper) 80 Linear 0.80 23.520 4.242
Trend 2 (Middle) 125 Cubic 0.51 4.187 0.623 0.088 0.011
Trend 3 (Lower) 44 Cubic 0.68 -7.081 -1.967 0.235 0.057

TABLE 4.14: Universal 3-Trend J00-99 stimulus-responses associated with Leicester UA’s Carstairs
Index of deprivation, created from all local GWR model outputs
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Carstairs Index Components
White British
Children (%)

Unemployed
Males (%)

No Car/Van
(%)

1.0+ Persons
Per Room (%)

Social Class
D/E (%)

Trend 1 (Upper) 66.77 4.88 33.18 1.83 36.62
Trend 2 (Middle) 53.72 6.48 35.47 4.10 44.69
Trend 3 (Lower) 32.17 5.83 30.86 5.95 44.41

TABLE 4.15: Universal 3-Trend J00-99 stimulus-responses associated with Leicester UA’s Carstairs
Index of deprivation, created from all local GWR model outputs

‘Trend 1’ follows a moderate linear relationship, whereby rising deprivation increases

respiratory admission rates. ‘Trend 2’ comprises of a relatively flat cubic function, with

deprivation only 3-points above the citywide average influencing respiratory outcomes in a

notable fashion. Interestingly ‘Trend 3’ portrays moderately deprived communities as

experiencing beneficial respiratory responses, which are below responses experienced via

relatively affluent communities in respect to this particular type of deprivation. However after

a Carstairs Index value of 5 (heavily deprived), children experiencing ‘Trend 3’ type deprivation

appear to exhibit characteristics of rapidly diminishing respiratory health.

LLSOAs typical of ‘Trend 1’ would appear to predominantly house ‘White British’

children that experience relatively low levels of overcrowding. Such candidates appear

affected by a broad range of deprivation related issues, which as individual components are of

only mild-moderate concern (Table 4.15). ‘Trend 2’ is representative of a moderate range of

deprivation influenced health impacts, with such communities housing an even split between

minority and ‘White British’ residents, whom experience the highest rates of unemployment

(Table 4.15). Financial deprivation would appear the main force driving the respiratory issues

experienced by this subset. LLSOAs contained within ‘Trend 3’ seem to predominantly house

ethnic minorities, who are likely to be from low social class families which experience the

highest levels of overcrowding out of the three subsets (Table 4.15). This subset appears

chiefly influenced by issues of financial deprivation combined with residing within the city’s

poorest housing stock. Yet the increased level of mobility may play some role in evading

residentially related aspects of deprivation, possibly offering reason for why moderately

deprived communities following this trend have a reduced respiratory burden. After

accounting for such observations, it was judged that the appropriate deprivation subset trend

should be applied on the following basis:

TREND 1: >50% ‘White British’ Children & <3% Overcrowding
TREND 3: <40% ‘White British’ Children & >5% Overcrowding
TREND 2: All Other LLSOA’s
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On this basis the 3-trend universal deprivation-response model (Table 4.14) was found to

associate deprivation as annually influence 486 children’s respiratory cases across Leicester.

This equates to 19.40% of the total J00-99 respiratory burden, a figure that more closely

matches its corresponding 80NN GWR model estimate of 17.96%.

4.5. CONCLUSIONS

Geographically detailed population and road-transport emission datasets across the intra-

urban arena indicate that children’s environmental inequities currently exist within the

prototypical British multicultural city of Leicester. In general, children from lower social class

households tended to reside within areas experiencing relatively high levels of road-transport

emissions, thought to be substantially created by external affluent communities. Such findings

appear to be in agreement with Pearce et al’s (2010) ‘triple jeopardy’ of social, health and

environmental inequalities.

Traditional global multivariate regression results recorded each tonne of residentially

experienced TPM10 emissions within Leicester to be accountable for an annual increase of 7.78

J00-99 hospital admissions per 1,000 children over a ten year period (P<0.05), after controlling

for socioeconomic characteristics. Community measures of deprivation and ethnic composition

were also identified as significant predictors of children’s respiratory hospitalisation incidence,

indicating that social inequalities do indeed exist. Multilevel models were constructed to

address certain dataset issues of spatial nonstationarity through the incorporation of a

generalised set of spatial structures (5-quantiles) exploring variations in disease tolerance.

Multilevel models similarly identified a 1 t/yr. increment of TPM10 to annually account for an

additional 8.75 J00-99 hospital admissions per 1,000 children (P≤0.05). However, after

removing an outlying city centre LLSOA of interest, global rates associated with TPM10

emissions fell to 2.50 J00-99 admissions per 1,000 children (P≤0.05). Thus highlighting the

spatial dependence of certain socio-environmental burdens, of which inner-city children would

appear to experience an overwhelming detrimental impact caused by TPM10 emissions. Under

the same model, a 10% rise in the levels of Afro-Caribbean residency provided 5.61 J00-99

admissions per 1,000 children (P≤0.05), a figure consistent with OLS outputs for all 187

LLSOA’s. Therefore, one may also infer that social lifestyle choices, including knowledge of and

access to public services, has a role to play in preventing relatively severe respiratory

outcomes during childhood.
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These disparities among rates of respiratory hospital admissions within specific ethnic

minority groups may partially be explained by migration patterns within Leicester. During

Britain’s post-war reconstruction, migrants from the Afro-Caribbean and Asian colonies were

actively encouraged under the British Nationality Act 1948 to assist with the reconstruction of

the British economy. Within Leicester, a substantial influx of these initial migrants arrived from

the South Asian states of India, Pakistan and Bangladesh. Chain migration within these groups

continued as vacancies in low skilled factory jobs abandoned by the local population appeared

in the post-war boom years (Vidal-Hall 2003). However, the collapse of Leicester’s

manufacturing industries in the 1970’s and 1980’s  would have significantly impacted the

South Asian migrant communities, potentially explaining why the Pakistan and Bangladesh

sections of this group continues to reside within deprived areas. In contrast, Leicester’s Indian

migrants largely comprise of ‘twice migrants’, whose families previous emigrated from India to

East Africa, where they had occupied positions as businessmen and entrepreneurs. Although

expelled under ‘Africanisation’ policies in the 1970’s, this wave of Indian migrants were

professionally skilled and had prior knowledge of successful integration, potentially bypassing

many of the socio-economic complexities migrants tend to experience (Bonney & Le Goff

2007). Thus providing reasoning for why traditional and spatial models of both a global and

local nature consistently identify the lifestyle of Indian residents as exclusively influencing a

community’s respiratory health in a beneficial manner.

Similar discrepancies in respiratory admissions across UK ethnic minorities were

reported by a postal questionnaire of 6,080 Leicestershire children aged 1-4 years, which

identified odds ratios for cases of multiple wheeze and viral wheeze to be 2.21 and 1.43 times

greater respectively in children of South Asian ethnicity (Kuehni et al 2007). A 2004-2007 study

of 56,616 infant admissions to Paediatric Intensive Care Units within England and Wales

identified acute respiratory failure risk-adjusted mortality to be 1.76 times greater in South

Asian infants compared with the rest of the population (O'Donnell et al 2010). Furthermore, a

1990-1991 study exploring the influence of ethnic group on asthma treatment of 5,494 English

and Scottish primary school children, identified children of Afro-Caribbean and Indian

subcontinent origin to less likely to receive β2 agonists (Duran-Tauleria et al 1996). This

indicates that a limited knowledge of and access to public services, by certain ethnic groups,

may be of importance in mitigating adverse health outcomes.

This chapter has also shown the importance of local regression techniques for the

integration and exploration of multiple previously unidentified non-stationary relationships,

when exploring datasets with a spatially dependency. In contrast to the conventional
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regression analysis, GWR indicated that many of the observed statistical associations between

respiratory admissions and specific explanatory variables are not uniform across Leicester.

Despite the differences in regression methodology, the GWR results consistently indicate the

pervasive effect of traffic emissions, deprivation and ethnicity in explaining the geographic

distribution of children’s respiratory admissions. Local GWR models indicate residentially

experienced TPM10 emissions after adjustment for social covariates, as accountable for 178-

545 children’s respiratory admissions per annum (7.09-21.74% of all children’s respiratory

admissions) across Leicester during 2000-2009. Furthermore, areas of elevated respiratory

hospitalisation cases from road-transport emissions appeared to coincide with cases for

deprivation, typically across inner city localities housing high levels of ethnic minority groups.

Across Leicester UA, deprivation was estimated to account for 449-536 children’s respiratory

admissions per annum (17.93-21.41% of all children’s respiratory admissions).

Kingham et al (2007) reported the occurrence of similar social gradients in exposures

to vehicle pollution and variations in exposure among different ethnic groups across

Christchurch, New Zealand. Furthermore, the greatest disparities appeared to exist across low-

income households ($0 to $30,000), with mean vehicle pollution levels differing by

approximately 1.5–2.0 times in quintiles at opposing ends of this spectrum (Kingham et al

2007). In an assessment of the Health Survey dataset for England, Wheeler & Ben-Shlomo

(2005) identify low social class and poor air quality to be independently associated with

decreased lung function, but not asthma prevalence, after adjustment for a number of

potential confounders. Within this study, urban lower social class households were generally

prone to be located in areas of reduced air quality, but if anything, the association in rural

areas became reversed. Thus highlighting the importance of future EJ studies to adopt

statistical techniques, like GWR, which consider the importance of localised interactions.

The GWR model outputs also allowed for the creation of a road-transport emissions

dose-response relationship from the localised regression models with significance P≤0.05.

Using the trend captured for a 60NN GWR model, LLSOA TPM10 emission levels were reported

to average 8.79 admissions per 1,000 children, causing 475 children’s respiratory admissions

per annum across Leicester (18.96% of the total J00-99 respiratory burden). The threshold for

the occurrence of hospitalisation was also identified to occur within areas experiencing annual

TPM10 emission rates above 0.81 tonnes (P<0.05). Furthermore, it is calculated that a 5%

reduction in residentially experienced LLSOA TPM10 emissions across Leicester would amount

to 110 fewer children’s respiratory admissions per annum (P<0.05), reducing the total amount
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of respiratory hospital incidents by 4.39%. To the authors knowledge this is the first time a

dose-response relationship has been specifically associated with road-transport emissions.

While, GWR modelling produced generally favourable outputs, it should be noted that

particularly high residuals were identified within the focal point of elevated inner city

respiratory admissions. As described earlier, extremely localised environmental and intra-

individual population variables, may account for elevated hospital admissions observed within

this census area. It is very likely that localised congestion and their associated increase in

traffic emission levels have a prominent role to play in this relationship, as observed by other

model residuals tending to exist along road junctions of concern. Another solution may reside

within the creation of a multiple environmental deprivation index (Pearce et al 2011), which

considers other pathogenic factors such as temperature and density of industrial facilities, in

addition to factors supporting human well-being including access to green-space and UV

radiation. In exploring the local intra-urban relationships of a post-industrial city, such

pathogenic factors are of limited importance; however, salutogenic factors such as access to

green-space and UV radiation can measure environmental content and magnitudes of

psychosomatic illness. Such factors are also likely proxies of periods spent indoors, thus

allowing for the accommodation of indoor exposures in future research.

The study’s findings concerning local transport planning indicate that the completion

of Leicester’s outer ring road would likely reduce the severity of children’s respiratory

outcomes within a small community near the eastern periphery. Furthermore, Leicester’s

2011-2026 Local Transport Plan indicates that the completion of the outer ring road, included

in a package of over £2million in road improvements, would likely reduce the number of

vehicles presently entering the city centre (Leicester City Council 2011). However, it is unlikely

that such policies will be of priority, taking into account the current balancing of Local

Authorities budgets and the fact that road building is generally not on the current

government’s agenda. In addition, a substantial carbon impact would have to be

accommodated for during the improvement and construction of such road networks.

Like all spatial epidemiological studies exploring the impacts of air pollutants, this

research has limitations, specifically involving exposure assessments. First, by international

standards, Leicester is a relatively small city and the absolute levels of air pollution are not

particularly high. Nevertheless, this study has identified the existence of significant spatial

variations in exposure to traffic emissions associated with social patterning. Secondly,

estimates of annual vehicle emissions were obtained through modelled vehicle flows of

national and regional vehicle compositions, which although vary spatially, do not account for
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the actual dispersion of vehicle pollutants. Nonetheless, it should be remembered that studies

based around monitored pollutant concentrations and dispersion modelling often assumed the

overall contribution from traffic sources, whereas the application of emission data allows for

the direct assessment of the road transport component on health outcomes. Thirdly, it has

been assumed that people's exposure to vehicle emissions can be approximated by

residentially experienced levels, despite the fact that people often spend substantial quantities

of time away from home. Although it is reasonable to claim that children spend a larger

proportion of time around home or attending educational facilities within close proximity, thus

lending credibility to the application of residential emission levels as an exposure proxy.
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CHAPTER 5

THE EFFECT OF SOCIO-ENVIRONMENTAL MECHANISMS ON
DETERIORATING RESPIRATORY HEALTH ACROSS URBAN COMMUNITIES
DURING CHILDHOOD: LEICESTER UA 2000-09

OVERVIEW

Spatial modelling techniques incorporating the social and physical structures of urban

environments, previously established a ‘triple jeopardy’ of social, general respiratory health

(ICD-10: J00-99) and environmental inequalities as operating within the multicultural UK City of

Leicester. This chapter aims to expanding upon these initial findings, through exploring

whether spatial relationships exist between specific relatively minor and severe respiratory

conditions, and if so, what is the extent to which socio-environmental mechanisms play in the

decline of a child’s respiratory health.

Specific focus was placed upon respiratory infections of the upper (ICD-10: J00-06) and

lower (ICD-10: J20-22) respiratory tract, which are recognised as the primary influence of

children’s respiratory related complaints (58.52%) and portray  a progressive decline in

respiratory health. Global and Local Indicators of Spatial Autocorrelation (GISA, LISA)

statistically describe and illustrate the spatial nature of socio-environmental influences and

average annual hospital admission rates associated with upper and lower respiratory

conditions experienced by children residing within Leicester UA from 2000-09. Spatially

appropriate modelling procedures, accounting for underlying geographical structures at a

common spatial resolution, were then applied to define the extent to which socio-

environmental variables of interest individually influenced relatively minor and severe

respiratory complaints during childhood via shared pathways. This chapter covers objectives 1,

2, 4 and 5 of this project outlined in Chapter 1.
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5.1. INTRODUCTION

Road-transport accounts for a substantial proportion of the air quality objective

pollutants experienced within the Post-industrial cityscape, attributed to the movement of

labour forces and physical merchandise often within close proximity to residential districts.

Across England substantial demographic disparities are reported in relation to PM10 exposure,

with 20.3% of the most deprived decile residing within locations experiencing the highest 10%

of PM10 concentrations, compared to only 2.0% of the country’s most affluent decile

experiencing such burdens (DEFRA 2006). Furthermore, the relationship between deprivation

and exposure would appear most prolific across the 0-14y age group, with population-

weighted PM10 exposures per child of 29.1µg/m3 and 22.8µg/m3 experience by England’s most

deprived and affluent demographics respectively (DEFRA 2006).

In the preceding chapter, I explored the influence of several socio-environmental

factors on the complete respiratory burden experienced by children, applying spatial modelling

techniques to incorporate the social and physical structures present within an urban

environment. The findings indicated significant global relationships to exist between children’s

hospitalisation rates and social-economic-status, ethnic minorities, and PM10 road-transport

(TPM10) emissions within Leicester. Furthermore, Local Indicators of Spatial Association (LISA)

and Geographically Weighted Regression (GWR) models identified several important localised

variations within the dataset, specifically relating to a double-burden of residentially

experienced road-transport emissions and deprivation increasing inner-city children’s

respiratory cases. Such findings are summarised within a research article published in Science

of The Total Environment (Jephcote & Chen 2012). Prior to this, ‘Environmental Justice’ studies

had rarely tackled the adverse health implications of exposures from mobile sources

(Chakraborty 2009), or had applied statistical techniques appropriate for spatial health

datasets (Gilbert & Chakraborty 2011).

Nevertheless the description of geographic phenomenon, often involves a somewhat

naive and subjective selection of weighting structures, potentially constructing models that are

unable to capture the underlying spatial interactions in an appropriate form. “The problem is

that, unlike the simple notion of a time series lag, the spatial lag is a very fluid and complex

entity open to multiple definitions within a single study” (Arbia & Fingleton 2008). Yet, LeSage

& Pace’s (2010) recent in-depth exploration of how to account for spatial structures dispels

such universally held beliefs, through demonstrating that the sensitivity of estimates and

inferences over a moderate range of spatial weighting structures provides a negligible impact

on modelled outcomes.
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For a generated dataset of 1,000 observations, levels of correlation between first

order row-stochastic weighting schemes were observed to range from 0.37-0.72, yet effects

estimates continued to exhibit high levels of correlation (0.92-0.96) across schemes containing

5-30 nearest neighbours (LeSage & Pace 2010). Furthermore, estimates and inferences of both

Spatial Auto-Regression (SAR) and Spatial Durbin Model’s (SDM) demonstrated a level of

collectively stability in analysing influences on voter turnout across 3,107 counties US counties,

across weighting schemes constructed from several neighbour choices and distant decay

variables. In conclusion, LeSage & Pace (2010) dismiss the necessity of fine-tuning spatial

weight scheme, placing greater emphasis on a well-specified spatial model. Such conclusions

would appear to be confirmed within Chapter 4, by GWR models examining the influence of

spatially dependent parameters on respiratory admissions. Whereby effect estimates generally

appeared of a stable nature within the statistically critiqued threshold of appropriate

weighting schemes.

Wall (2004) identified potential topics of further interest to this subject matter, in her

extensive exploration of the covariance structures used to define elements of spatial

dependence, within SAR and Conditional Autoregressive (CAR) models. Whilst implied

correlation between a pair of neighbouring areas was negatively associated to the number of

neighbours, this relationship appeared complex with much variability left unexplained, existing

in a non-uniform manner. For these global spatial data models, Wall (2004) concluded that the

implied spatial correlation between different sites using the SAR and CAR models did not seem

to follow an intuitive or practical scheme; with such issues to be addressed through direct

geostatistical (rather than artificial) modelling of the underlying spatial structures. Once more,

such findings favourably lend themselves towards a continued application of GWR modelling

practices, constructing an optimum local weighting structure for each individual observation.

It is intended that this chapter will expand upon ones initial discussion of the

disparities in children’s overall respiratory cases (J00-99), through exploring the extent to

which socio-environmental influences sway the development of specific respiratory conditions.

This would appear to be a timely question, considering that residential exposures to traffic

pollutants (≤500 m from freeways) have been recorded to impede lung development, reducing

a child’s Forced Vital Capacity (FVC) by −63ml over an 8-year period (Gauderman et al 2007).

Furthermore a UK study of 3,911 women aged 60-79 years, revealed a range of social and

material influence experienced during childhood to negatively impact adult FEV1 rates, after

adjusting for lifestyle choice (Lawlor et al 2004). In particular this chapter will explore whether

a spatial relationship exists between relatively minor and relatively severe respiratory

conditions, and if so, then to what extent do socio-environmental mechanisms play in the
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decline of children’s respiratory health within Leicester. Spatially appropriate modelling

procedures, accounting for underlying geographical structures at a common spatial resolution,

will define the extent to which socio-environmental variables of interest individually influenced

relatively minor and severe respiratory complaints during childhood via shared pathways.

Classical correlation procedures were initially conducted across the subset conditions

accounting for >10% of children’s respiratory hospitalisations (ICD-10:J00-99) across Leicester

UA, in order to determine whether communities face a multitude of respiratory issues

affecting their overall quality of life. Table 5.1, identifies a tendency for different respiratory

conditions to have poor spatial associations, with the exception of strong linear connection

between the respiratory subsets J00-06 and J20-22 (Pearson’s R = 0.80). The compositions of

these two subsets are of notable importance, with J00-06 recording acute Upper Respiratory

Tract Infections (URTI) [i.e. common cold, acute sinusitis and acute tonsillitis etc.] and J20-22

defining the acute Lower Respiratory Tract Infections (LRTI) of bronchitis and bronchiolitis. The

strong spatial ties between these respiratory issues likely infer a common causality to exist

between relatively severe and mild respiratory complaints (Appendix D1). Therefore, the focus

of this chapter is to examine to extent to which socio-environmental mechanisms play in the

decline of respiratory health, as denoted by the respiratory subsets J00-06 and J20-22.

Test ICD10:
J00-06

ICD10:
J20-22

ICD10:
J30-39

ICD10:
J40-47

ICD10: J00-06
Pearson Correlation
Spearman's Rho

ICD10: J20-22
Pearson Correlation 0.80**
Spearman's Rho 0.66**

ICD10: J30-39
Pearson Correlation 0.20** 0.22**
Spearman's Rho 0.40** 0.33**

ICD10: J40-47
Pearson Correlation 0.24** 0.30** 0.25**
Spearman's Rho 0.39** 0.41** 0.33**

*P ≤0.05, **P ≤0.01

TABLE 5.1: Correlation of ICD-10 respiratory subset conditions accounting for >10% of children’s
respiratory hospitalisations, across Leicester UA: 2000-09

5.2. EXPLORATORY SPATIAL DATA ANALYSIS (ESDA)

5.2.1 SPATIAL AUTOCORRELATION OF CHILDHOOD RESPIRATORY INFECTIONS

Global Moran’s I coefficients of spatial autocorrelation (Moran 1948), were initially applied to

examine the existence of spatial autocorrelation within the J00-06 and J20-22 respiratory

subsets at a citywide scale (Appendix D2). As within Chapter 4, global autocorrelation was
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explored across several row standardised contiguity weighting schemes, the first of which

placed weighting solely on first order neighbours (1 Queens Ring), with later tests placing

weights up to and including sixth order observations (6 Queens Rings).

Global Moran's I values of 0.40 (P<0.01) and 0.35 (P<0.01) under a first order

weighting scheme, correspondingly indicate that moderate levels of positive spatial correlation

exist for children’s J00-06 and J20-22 respiratory admissions. For both respiratory subsets a

rapid decrease in Moran’s I coefficient values may be observed across larger contiguity

weighting schemes, with I values flat-lining around 0.00 in tests accounting for fourth order

neighbours onwards (Appendix D2). This would imply that predominantly localised clusters of

hospital admissions likely exist across Leicester UA, spreading across observations separated

by a distance band of up to 3-Queens Rings (approximately 1365m). Similar observations were

identified for the Bivariate Global Moran's I test, depicting the overall spatial strength and

direction of the relationship between the two respiratory subsets.

However, Moran’s I values alone can only infer a possibility of spatial autocorrelation

to exist. A more accurate measurement can be obtained via Monte Carlo simulations, to

produce a comparable reference distribution, from which a pseudo significance level is

computed. For a significance level of 0.05, the derived Z-Score would have to be less than –

1.96 (dispersed) or greater than 1.96 (clustered). Z-Score’s from the Univariate and Bivariate

Global Moran’s I tests indicate significant spatial clustering to exist, when placing weighting on

observations separated by a third order distance or lower (Appendix D2). Uniquely for the J20-

22 subset, significant clustering albeit at a far weaker magnitude appeared to resurface in tests

placing weighting on distant localities. While multi-distant spatial clustering is present, it would

appear that this secondary cluster effect has a relatively low influence on the spatial

determination of this phenomenon, as portrayed by the relatively insignificant Moran’s I

values of distant weighting schemes. A plausible explanation for such distant clustering effects,

is offered and discussed later upon exploring localised elements of spatial autocorrelation.

From these combined global measures, it would appear that relatively mild and severe

cases of children’s respiratory infections are location specific within Leicester UA, with the

radius of spatial dependence following a rapid exponentially decaying relationship across a

distance of approximately <1365m. Although it should be stated that noteworthy levels of

spatial dependency were only detected in relation to first order neighbouring LLSOAs (450m),

as indicated by respective second order J00-06 and J20-22 Global Moran's I values of 0.17

(P<0.01) and 0.12 (P<0.01). As previously discussed in Chapter 4, all of the primary socio-

environmental factors of interest would appear to share a strong sense of location

dependency with proximal LLSOA communities. However their range of influence would
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typically be expressed over a wider scale as illustrated by moderate levels of spatial correlation

(0.3 to 0.6) remaining amongst third order observations for measures of obesity prevalence

and deprivation (1350m). Extending upon such distances, moderate levels of correlation were

observed to persist within fourth order observations for levels of smoking prevalence, TPM10

emissions and ‘White British’ Children (1820m).

Concerning Leicester’s key ethnic minority groups, residential levels of ‘Indian’ and

‘Other South Asian’ children decline in a linear fashion with distance, maintaining a moderate

degree of correlation with observations separated by distances of up to four orders (radius

≥1820m). Nevertheless, while such lifestyle, social and environmental influences appear to

smoothly share common characteristics across wide areas of Leicester UA, it should be

recognised that a considerably greater magnitude of correlation occurs across directly adjacent

LLSOA communities. It is this first order correlation that is of particular importance, when

investigating the presence of an association between children’s respiratory infection rates,

which exclusively operate across localised bands of distance. Meanwhile children of ‘Afro-

Caribbean’ ethnicity would appear to favour residing within very specific locales of the city

(<450m), with residency levels plummeting in a manner comparable to the exponentially

decaying relationships of children’s respiratory infection rates.

While as a composite index, the Global Moran I coefficient is an informative

measurement of the overall spatial clustering of the respiratory subsets, its assumption of

spatial homogeneity and an inability to determine whether parameters dissipate in magnitude

across locales of a mutual positioning, mean that it fails as an analytical tool of local variation.

In dissecting the global coefficient, the Local Moran’s I statistic (Anselin 1995) allows for a

comprehensive location specific analysis of the dataset which complements its global

counterpart, yet allows for one to unearth elemental pockets of collective interest. A Local

Moran’s I analysis of the J00-06 and J20-22 subsets, with weighting placed solely upon first

order neighbours, identified mutual clustering of elevated hospital admission rates across

inner city districts (Figure 5.1), akin to what was observed with the overall respiratory burden

(J00-99). LLSOAs contained within the J00-06 and J20-22 hot-spots respectively experienced

annual average admission rates of 42.43 and 18.25 cases per 1,000 children. In contrast,

LLSOAs outside of the inner city centre hotspots experience hospitalisation rates 1.7 and 1.9

times lower for the J00-06 (15.82 per 1,000 children) and J20-22 (6.30 per 1,000 children)

respiratory subsets.
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FIGURE 5.1: Local Moran's I cluster and outlier analysis of 2000-09 annual average children's URT (ICD-
10: J00-06) and LRT (ICD-10: J20-22) infection hospital admissions
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For the J20-22 subset, three High-Low (H-L) outliers are to be observed (Figure 5.1). These

outliers are thought to be responsible for the minor clustering effect observed between distant

localities (Appendix D2), due to these peripheral LLSOAs classifying inner-city localities found

within the J20-22 hot-spot, as neighbours for weighting schemes >5 Queens Rings. The

northern H-L outlier, situated within Belgrave, was identified to experience 7.22 admissions

per 1,000 children, a rate 0.9 times higher than the mean of its first orders neighbours. Within

this LLSOA, a Carstairs Index score of 2.92 and residentially experienced TPM10 levels of

1.61t/yr. appear marginally above their respective approximations of 2.42 and 1.03t/yr.,

recorded at first order neighbours.

Interestingly this is the same northern outlier identified in relation to the overall

respiratory burden (J00-99), thought to be caused by a bottleneck in the flow of traffic along a

primary radial corridor (A47: Melton Road) during peak hours (Appendix C2). Leicester’s Local

Transport Plan for 2011-2026 also recognises this particular corridor as a key problem area,

frequently experiencing delays via buses and general traffic. Such localised areas of congestion

and their associated increase in traffic emission levels appear to have gone undetected by the

1x1km resolution modelled traffic flows of the NAEI PM10 road-transport emission dataset.

Furthermore, only 16.76% of children within the community are of White British ethnicity,

compared to levels of 23.91% in adjacent neighbourhoods. In line with the previous chapter, it

is likely that the lifestyle choices of certain ethnic minorities are partially responsible for

avoiding such respiratory outcomes.

A second H-L outlier appears within the district of Knighton, situated towards the

South-eastern periphery of Leicester. Here an admission rate of 7.88 per 1,000 children is

approximately 1.9 times greater than that of its adjacent neighbours. In terms of LLSOA

characteristics, 68.60% of the children are of ‘White British’ ethnicity, with residents

experiencing Carstairs Index scores of -6.03 and TPM10 levels of 0.78t/yr. These socio-

environmental factors are closely mimicked by neighbouring localities, which contain only

3.67% more children of ‘White British’ ethnicity, record mean Carstairs Index values of -6.37,

and experience only 0.02t/yr. less TPM10. Furthermore, the structures of ethnic minority

groups and overall health of communities also appear comparable, and offer no solution to

areas respiratory concerns. Such issues of non-stationarity likely exist because of community

specific contextual factors causing spatially differing responses to the same stimuli.

Community specific factors may also be responsible for the third H-L cluster located in

Evington towards the cities eastern periphery, which akin to its neighbours experiences

relatively low Carstairs Index (-3.47) and TPM10 levels (0.52t/yr.). Notable social differences

compared to neighbouring locations, include a decrease in children of ‘Indian’ (-16.44%) and
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‘Other South Asian’ (-5.97%) ethnicities, and an increase in children of White British ethnicity

(+6.47%).  One possible explanation is that the lifestyle choices of some ethnic minority groups

may be associated with good respiratory health. Once again, community specific contextual

factors are also likely at play.

Bivariate Local Moran’s I analysis of the J00-06 and J20-22 subsets, with weighting

placed solely upon first order neighbours, would appear to confirm the existence of a strong

spatial tie between children’s infections of the upper and lower respiratory tracts. When the

URTI subset is held at ego locations (J00-06), one may observe that inner-city locales are

exclusively encased by communities whom also experience elevated levels of childhood LRTI’s

(J20-22). Furthermore, LLSOAs experiencing low levels of URTI’s would also appear to be

surrounded by communities experiencing reduced LRTI rates along the affluent south-eastern

peripheral suburban wards of Knighton and Evington (Figure 4.2), and within the northern

wards of Latimer and Belgrave. Such northern wards are positioned just outside of the Melton

Road’s (A47) culturally diverse business district, in locales appearing to favour the housing of

‘Indian’ residents (Figure 4.6), whose lifestyle choices were previously recognised to reduce

the effect of unfavourable health burdens.

In holding the LRTI subset at ego locations (J20-22), one may conclusively observe that

the same inner-city locales also experience elevated levels of childhood LRTI’s (J20-22). As

reported in Chapter 4, such neighbourhoods would appear to predominantly house certain

ethnic minorities whom are forced to experience a ‘double burden’ of deprivation and

pollution emitted from mobile sources. Once more LLSOAs experiencing low levels of LRTI’s

characteristically appear bordered by communities experiencing reduced URTI rates, across

the northern wards of Latimer and Belgrave. However, one exception to this rule exists, as

denoted by the J20-22 hot-spot which harbours a potential bottleneck restricting the flow of

traffic along the Melton Road (A47). Children housed within this LLSOA would appear

vulnerable to LRTI’s, yet unusually bear an elevated level of resistance to experiencing URTI’s.

However, in both cases children’s J00-06 and J20-22 admissions were respectively identified to

be 0.26 and 0.43 times lower than the citywide average LLSOA rate, which would suggest that

this communities respiratory health is of a relatively high standard. Interestingly the eastern

outlier of overall respiratory burdens (J00-99), positioned around a terminal link of the outer

ring-road which funnels traffic towards Leicester’s central districts, is also deemed to house

children whom are vulnerable to LRTI’s yet are somewhat resistance to URTI’s. Within this

particular outlier a J00-06 rate of 15.53 and J20-22 rate of 73.01 admissions per 1,000 children,

were respectively identified to only differ from citywide average LLSOA rates by -1.29 and

+0.62 admissions.
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The two other LLSOA outliers recording high LRTI’s whilst positioned adjacent to

communities experiencing reduced URTI rates, would also appear to be situated alongside key

arterial roads linking the cities inner and outer ring-roads. The eastern outlier contained within

the ward of Knighton, experiences a J00-06 rate of 13.28 and J20-22 rate of 7.88 admissions

per 1,000 children, which are respectively identified to be 0.21 times lower and 0.18 times

higher than the citywide average LLSOA rate. It should be noted that this particular LLSOA

contain the University of Leicester’s campus, therefore one might expect that localised

congestion to be partially responsible for such elevated LRTI’s. Meanwhile the western outlier

contained within the ward of Braunstone, was observed to contain a plethora of educational

facilities including Ellesmere College, Fullhurst Community College and St Marys Fields Infant

School. Here, J00-06 and J20-22 rates of 14.87 and 9.59 admissions per 1,000 children, are

correspondingly recorded as 0.12 times lower and 0.43 times higher than their citywide

averages. Once more, it is highly plausible for elements of localised congestion to uniquely

occur within this LLSOA across peak hours of the network. One may conclude, that whilst

elevated cases of both LRTI and URTI appear to coincide with polluted zones of the city, it has

become apparent that LRTI’s share a heightened sensitivity to extremely localised spatial-

temporal periods in which elevated TPM10 emission exposures are residentially experienced. In

contrast, URTI’s appear to thrive in locales where moderate-high socio-environmental

influences remain constant.

5.2.2. NUMERICAL COMPARISON OF SPATIAL EXTREMES

A direct comparison of hot-spots and cold-spots contained within the J00-06 and J20-22

Univariate Local Moran’s I outputs, indicate some potentially interesting socio-environmental

factors which are likely to reciprocally influence the onset of URT and LRT infections in children

(Appendix’s D3-D6).

J00-06 LLSOA hot-spots are on average recorded to experience 42.43 J00-06

admissions and 17.60 J20-22 admissions per 1,000 children, which respectively correspond to

such areas experiencing 2.50 and 2.72 times more cases than their cold-spot counterparts

(Appendix D3). Several socio-environmental factors were observed in hot-spot locations to be

noticeably above their cold spot counterparts, including residentially experienced TPM10

(+1.24t/yr.), Carstairs Index scores (+4.47), smoking prevalence (+14.76%) and levels of obesity

(-4.60%). In exploring the distribution of Leicester’s major ethnic minority groups, hot-spot

communities were recorded as housing substantially more children of ‘Afro-Caribbean’

(+11.42%) and ‘Other South Asian’ ethnicities (+6.00%), and markedly fewer children if ‘Indian’
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ethnicity (-25.82%). In regards to magnitude, such values portray J00-06 hot-spots as housing

11.53 times more ‘Afro-Caribbean’ residents, 1.08 times more ‘Other South Asian’ residents,

and 1.03 times fewer ‘Indian’ residents. This would reinforce the earlier notion, which stated

that the lifestyle of certain ethnic minority groups has a beneficial impact on adverse

respiratory outcomes. It should be also noted that whilst levels of ‘White British’ children

appeared to decline across cold-spots (-4.46%), this ethnic group is generally associated with

relatively average-good levels of respiratory health; as denoted by areas of no significant

spatial patterning predominantly housing such children (56.19%). Rather it would appear that

as levels of ‘Indian’ residency rises, then levels of ‘White British’ residents decline (Figure 4.6).

Likewise, J20-22 LLSOA hot-spots are on average experienced 43.13 J00-06 admissions

and 18.25 J20-22 admissions per 1,000 children, which respectively correspond to 3.08 and

3.86 times more cases than what was expected within their cold-spot counterparts (Appendix

D4). Whilst no substantial differences in obesity appeared to exist between such extremes,

levels of TPM10 (+1.26t/yr.), Carstairs Index scores (+5.76) and smoking prevalence (+17.71%)

once again appeared elevated in hot-spot communities. Such incremental increases in these

levels of detrimental socio-environmental influences upon what was recorded by J00-06 hot-

spot locales, likely explain why respiratory infections in J20-22 hotspots diverge further from

their cold-spot locales.

As before, J20-22 hot-spots were observed to predominantly house ethnic minorities,

of which there are 12.59 times more ‘Afro-Caribbean’ residents, 0.57 times more ‘Other South

Asian’ residents, and 1.08 times fewer ‘Indian’ residents. Interestingly, Univariate J20-22

outlier locations exhibit comparative J00-06 rates to those recorded at their cold-spot

locations, whereas J20-22 are recorded as 0.99 times higher at a rate of 7.46 cases per 1,000

children. Yet, inhabitants of these J20-22 outliers experience levels of smoking prevalence,

TPM10 emissions and deprivation below what is recorded in cold-spot LLSOAs. Furthermore,

such areas house 11.07 times fewer ‘Afro-Caribbean’ residents, and 0.42 times fewer ‘Indian’

residents. As previously discussed, it is most likely that LRTI’s share a heightened sensitivity to

rare localised spatial-temporal episodes of elevated TPM10 exposures, which have remain

undetected from the 1x1km resolution NAEI emission database.

5.2.3. BIVARIATE CORRELATION OF SOCIO-ENVIRONMENTAL INFLUENCES & HEALTH

Traditional dataset correlation tests were conducted to statistically determine whether

relationships between individual socio-environmental influences and cases of children’s URT
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(J00-06) and LRT (J20-22) infection hospitalisations, exist within Leicester’s LLSOA communities

(Table 5.2).

For the J00-06 subset, Pearson’s R-values identified several important linear

correlations to exist between children’s hospitalisations and deprivation (R=0.34), TPM10

emission (R=0.47) and residents of ‘Afro-Caribbean’ ethnicity (R=0.39), with significance at the

99% confidence level. Meanwhile moderate levels of non-linear correlation were also

observed to occur between J00-06 admissions and levels of ‘Indian’ children (Rho=0.31) and

smoking prevalence (Rho=0.43), as denoted by Spearman’s Rho values recorded at the 99%

confidence level.  In all cases, similar relationships were reported when exploring the overall

respiratory burden experienced by children (J00-99). However it would appear that URTI

infections have a weaker associations with deprivation (-0.06), ‘Indian’ residency (-0.07) and

levels of smoking prevalence (-0.04), while having a stronger dependency on TPM10 emissions

(+0.10) than what was accounted for by the complete respiratory set.

For the J20-22 subset, Pearson’s R-values observed weaker but still important linear

correlations to exist in relation to TPM10 emissions (R=0.38) and residents of ‘Afro-Caribbean’

ethnicity (R=0.34), while stronger ties were reported in relation to deprivation (R=0.38), all at

the 99% confidence level. Meanwhile moderate levels of non-linear correlation were

significantly (P≤0.01) observed to occur between J20-22 admissions, ‘Indian’ residency

(Rho=0.46) and levels of smoking prevalence (Rho=0.56). Furthermore, it would appear that

such non-linear influences have a stronger association to LRTI’s that what was reported for

URTI’s.

As Chapter 4 previously reported, Carstairs Index values of deprivation across Leicester

were observed to solely yield significant linear correlations of interest with TPM10 emissions

(R=0.40), obesity rates (R=0.51), and community levels of ‘Afro-Caribbean’ children (R=0.30).

Additional correlations were observed in a linear format between levels of TPM10 emissions

and residents of ‘Afro-Caribbean’ (R=0.42) and ‘Other South Asian’ (R=0.43) ethnicities.

Meanwhile children of ‘Other South Asian’ origins shared a strong non-linearly correlation with

‘Indian’ children (Rho=0.73), yet followed a linear correlation with levels of ‘Afro-Caribbean’

residency (R=0.35). Such correlation statistics would appear to broadly compliment the

aforementioned outputs of the Local Moran’s I statistics.



Significance Levels: *P ≤0.05, **P ≤0.01

TABLE 5.2: Traditional linear (Pearson’s R) and non-linear (Spearman’s Rho) dataset correlations of children’s respiratory infections and socio-environmental influences,
experienced by residents of Leicester UA: 2000-09

Correlation
Statistic

J00-06 J20-22 Carstairs
Index

TPM10 Smoking
Prevalence

Obesity
Prevalence

White
Non-British

Indian Other
South Asian

J00-06 Per 1,000 Children Pearson R
Spearman's Rho

J20-22 Per 1,000 Children Pearson R 0.80**
Spearman's Rho 0.66**

Carstairs Index (Leicester) Pearson R 0.34** 0.38**
Spearman's Rho 0.33** 0.36**

TPM10 Emissions Pearson R 0.47** 0.38** 0.40**
Spearman's Rho 0.18* 0.11 0.37**

Smoking Prevalence Pearson R 0.27** 0.45** 0.33** 0.04
Spearman's Rho 0.43** 0.56** 0.31** 0.00

Obesity Prevalence Pearson R -0.02 0.06 0.51** -0.27** 0.35**
Spearman's Rho 0.21** 0.25** 0.51** -0.20** 0.46**

White Non-British Children Pearson R 0.07 0.15* -0.12 0.11 0.06 -0.27**
Spearman's Rho 0.08 0.17* -0.15* 0.05 0.06 -0.18*

Indian Children Pearson R -0.21** -0.36** 0.17* 0.17* -0.68** 0.01 -0.24**
Spearman's Rho -0.31** -0.46** 0.06 0.22** -0.75** -0.24** -0.16*

Other South Asian Children Pearson R 0.24** 0.02 0.29** 0.43** -0.41** -0.14 -0.08 0.52**
Spearman's Rho 0.07 -0.14* 0.22** 0.36** -0.50** -0.25** -0.08 0.73**

Afro-Caribbean Children Pearson R 0.39** 0.34** 0.30** 0.42** -0.04 -0.03 0.25** -0.01 0.35**
Spearman's Rho 0.26** 0.15* 0.16* 0.28** 0.01 -0.14 0.12 0.13 0.31**
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Bivariate Local Moran’s I statistics were initially conducted in a manner, which held children’s

J00-06 admissions at ego locations (i) and  placed individual influences of interest at

neighbouring LLSOAs (j). Test outputs therefore display the spatial relationship between

respiratory cases and surrounding social-environmental influences, recorded across first-order

locations. In viewing the global summaries of the Bivariate Local Moran’s I statistics (Table 5.3),

one may observe two definitive relationships of particular spatial interest, appear to involve

levels of TPM10 emissions (R2=0.22) and ‘Afro-Caribbean’ residency (R2=0.32). To a lesser extent

deprivation would also appear to influence children’s URT hospitalisations, as indicated by a

global coefficient I-value of 0.21. Nevertheless such spatial ties with socio-environmental

influences appear to generally occur on a substantially weaker level to what was observed

when examining the complete respiratory hospital burden (Table 4.2); with the exception of

the TPM10 emission bivariate model whose global coefficient was found to rise from 0.28 (J00-

99) to 0.37 (J00-06). Unlike the local bivariate J00-99 models, community levels of smoking

prevalence did not appear to share spatial ties to J00-06 admission rates.

Bivariate Moran’s I:
(i) J00-06; (j) …

Bivariate Moran’s I:
(i) J20-22; (j) …

R2 I Value P-Value R2 I Value P-Value
Carstairs Index (Leicester) 0.09 0.21 0.00 0.06 0.19 0.00
TPM10 Emissions (t/yr.) 0.22 0.37 0.00 0.12 0.29 0.00
% Smoking Prevalence 16yrs+ 0.05 0.17 0.00 0.13 0.29 0.00
% Obesity Prevalence 16yrs+ -0.00 -0.01 0.47 0.00 0.04 0.16
% 0-15y White Non-British 0.00 0.02 0.31 0.01 0.05 0.10
% 0-15y Indian -0.01 -0.11 0.00 -0.05 -0.23 0.00
% 0-15y Other South Asian 0.05 0.18 0.00 0.00 0.00 0.53
% 0-15y Afro-Caribbean 0.32 0.26 0.00 0.15 0.18 0.00

TABLE 5.3: Summary of the Bivariate Local Moran's I analysis, revealing spatial associations between
children's J00-06 or J20-22 admissions and surrounding socio-environmental influences

It would appear, as previously discovered, that elevated levels of deprivation encompass and

inhabit LLSOAs within focal point of Leicester’s inner-city J00-06 hot-spot (Figure 5.2).  Raised

levels of deprivation continue to prevail east of the inner-city hot-spot, yet such areas would

appear to only resemble problem zones where interactions with environmental hazards occur.

Meanwhile, relatively affluent areas towards the cities and eastern and periphery’s,

particularly around the Knighton district, would appear spatially associated with reduced levels

of J00-06 respiratory symptoms. Likewise, substantial positive correlations between

respiratory symptoms and TPM10 emission levels appear to inhabit inner city LLSOAs,

encompassed and adjacent to the inner city ring road and its northern arterial roads. However

one may observe that TPM10 emissions broadly encompass Leicester’s central district, with
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severe outbreaks of J00-06 admissions (Figure 5.2) occurring only in locales experience a

‘double burden’, which entails issues of deprivation.

Interestingly, LLSOAs recording moderate J00-06 admission rates within the eastern

peripheral ward of Humberstone are deemed to be of a highly outlying nature, caused by their

decidedly affluent portrayal and considerably low exposures to TPM10 under the provided

emission inventory. It would appear that these outlying communities are situated along the

north-easterly section of Leicester’s outer-ring road prior to and inclusive of its terminal

junction. During peak hours in the network, the terminal outer ring-road junction experiences

periods of localised congestion (Appendix C2), which from this evidence is likely to influence

traffic movements across the preceding outer ring-road exits. As previously discussed, such

localise flows have evaded the 1x1km TPM10 emission grids, yet these excess emissions which

have been smoothed out would appear to contribute to only a minor portion of the cities

respiratory burden. Reduced J00-06 hospitalisation cases accompany insignificant TPM10 levels

along Leicester’s eastern periphery, are marked via a missing section of the outer ring-road

which subsequently forces traffic to enter the heart of the city. In one aspect, the peripheral

wards of Evington and Thurncourt may therefore be deemed to have unfairly shifted their

allocated respiratory burdens onto central districts of the city. The same findings would appear

to be individually observed for LRTI’s (J20-22) and across the entire respiratory set (J00-99).

In terms of ‘Afro-Caribbean’ residency, one may observe that children of this ethnic

group are associated in a spatial manner to inner-city communities experiencing severe URTI’s.

However, one exception to this rule exists in a north-easterly inner city LLSOA on the fringe of

the ‘double-burden’ zone, which experiences reduced J00-06 admissions yet remains spatially

connected to ‘Afro-Caribbean’ residencies. Fascinatingly, this is one of the communities on the

inner-cities fringe, where the positive influence of ‘Indian’ lifestyles appears to provide a

recognisable force in mitigating respiratory impacts. As discussed in Chapter 4, there is a

possibility that other minority groups residing within the same community have partially

adopted these beneficial social lifestyle choices. One may also observe that the southern

peripheral ward of Eyres Monsell experiences moderate J00-06 admission rates, yet is strongly

disassociated to ‘Afro-Caribbean’ residency levels. It would appear that this ward comprises of

a ‘White British’ majority, and that raised URTI’s are associated with issues of obesity and

smoking, which appear to uniquely affect ‘White British’ children.
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FIGURE 5.2: Bivariate Local Moran's I cluster and outlier analysis of 2000-09 annual average children's
URTI admissions (ICD-10: J00-06), and neighbouring socio-environmental influences of interest

Bivariate Local Moran’s I statistics were subsequently conducted in a manner, which held

children’s J20-22 admissions at ego locations (i) and  placed individual influences of interest at

neighbouring LLSOAs (j). In viewing the global summaries of the J20-22 Bivariate Local Moran’s

I statistics (Table 5.3), one may observe R2 values as denoting substantially weaker

relationships to what was observed by the J00-06 bivariate outputs. Upon viewing the actual

tests summary coefficient of global autocorrelation, one may detect minor-moderate positive

J20-22 connections occur in relation to deprivation (0.19), TPM10 emissions (0.29), smoking

prevalence (0.29) and ‘Afro-Caribbean’ (0.18) residency. Minor-moderate negative associations
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were found with ‘Indian’ (-0.23) residency levels. In all circumstances, the global summary

coefficients were recorded to have weaker associations that to what was recorded in the J00-

06 bivariate tests, with the exception of variables recording ‘Indian’ residency and smoking

prevalence.

Upon exploring the spatial distributions (Figure 5.3), it would once again appear that

when elevated levels of deprivation and TPM10 emissions combine, they produce J20-22

burdens of a far greater magnitude than what would be produced by such components if they

were to be assessed individually. Furthermore, upon comparing the spatial interactions of

socio-environmental factors of interest independently on J00-06 and J20-22 outcomes, one

may observe that localised pockets and trends of interest are broadly of a similar nature;

despite the reduced global associations with J20-22 cases. Such observations would imply that

certain socio-environmental mechanisms are perhaps culpable for a gradual decline in

children’s respiratory health, as denoted by the onset of URT and LRT infections across the City

of Leicester.

Nevertheless, minor differences between the positioning of URT and LRT infections in

relation to deprivation are detected within a select few LLSOAs positioned across the cities

western district. Previously under the J00-06 bivariate model, two of these communities were

considered low health outliers, whereas in the J20-22 model such areas were classified to be

deprived and experience comparatively higher admissions to other nearby locales. In addition,

a Knighton community at the heart of the south-easterly J00-06 healthy-affluent pocket was

found to experience J20-22 admission 0.18 times above the average LLSOA rates. This LLSOA is

thought to represent localised congestion from the university campus at peak periods, and

thus highlights the heightened susceptibility of LRTI’s to air pollutants. Through comparing the

models, one may confirm that ‘Indian’ social lifestyle choices provided a greater beneficial

impact on J20-22 outcomes, as denoted by the replacement of J00-06 ‘Indian’ residency cold-

spots with J20-22 outliers along the cities western periphery. Such J20-22 outliers would also

appear to explain the weakened association between ‘Afro-Caribbean’ residency levels, to

what was previously recorded in relation to J00-06 incidents. It would also appear that healthy

lifestyle choices including passive smoking and obesity specifically amongst ‘White British’

children have a greater say in LRT rather than URT infections.
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FIGURE 5.3: Bivariate Local Moran's I cluster and outlier analysis of 2000-09 annual average children's
LRTI admissions (ICD-10: J20-22), and neighbouring socio-environmental influences of interest
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5.3. SPATIAL MODELLING: GEOGRAPHICALLY WEIGHTED REGRESSION (GWR)

5.3.1. GWR MODEL VALIDATION

Ordinary Least Squares (OLS) regression models were initially applied to examine the

concurrent effects of eight explanatory socio-environmental variables on children's URT and

LRT infections across the period of 2000-09. Despite the global models misrepresentation of

local conditions, such a procedure was nevertheless conducted in-order to summarise the

relative importance of each attribute, whose interactions and likelihood, where of interest,

may then be explored in a spatially detailed manner via GWR. While ANOVA F-tests indicated

model significance at the 95% confidence level, the R-Squared values for the J00-06 (0.37) and

J20-22 (0.42) OLS models portrayed only a moderate goodness-of-fit to the data. The J00-06

OLS model residuals were identified to have significant spatial clustering (P≤0.05), whereas the

J20-22 OLS model residuals were neither significantly dispersed nor clustered. This lack of

dispersion amongst regression model residuals in conjunction with earlier Local Moran’s plots

indicating a clustering of dependent variables within inner city localities, reinforce the

application of GWR models to account for the spatial nature of the dataset. Furthermore, the

presence of spatial autocorrelation within the residuals is considered a violation of one of the

fundamental assumptions of OLS models (Longley & Tobon 2004, Ibeas et al 2012).

As previously discussed, GWR models constructed with a sharp cut-off bandwidth scheme,

placing weight on a few proximal observations, may offer a near perfect fit but at a cost of

increased model complexity. In practice, the simplest model is preferred if the later offers little

improvement, as a result there must be always be a trade-off between bias and variance when

selecting an appropriate GWR weighting scheme. In addressing such issues, I propose a four

point scheme to assist future researchers in selecting an optimally weighted GWR model:

I. Three generalized degree of freedom ANOVA F-tests (Fotherington et al 2002, Leung

et al 2000) should collectively identify GWR models as significantly improving upon the

Residual Sum-of-Squares (RSS) produced from their corresponding OLS model. To

establishing whether improved model performance has occurred in the presence of

increased model complexity.

II. AIC and AICc tests describing the relative goodness-of-fit in relation to the degrees of

freedom, when acceptable should yield GWR test values preferably of a lower, or

similar nature to their OLS model counterpart.

III. Residuals should be spatially dispersed in a significant manner, as indicated by the

Global Moran’s I Z-Score. Thus indicating that the study areas spatial processes have

been adequately captured.
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IV. The cross-validation R-Square value (CV-R2) of predicted model outputs vs. 2004-06

admission rates must not substantially differ from the GWR R2 value, in order to certify

overall model robustness.

Basic GWR model performance tests were applied to weighting schemes ranging from 180NN

to 20NN, and are summarised in the graphical format of Figure 5.4. Global Moran’s I tests

examining the spatial distribution of residuals, identify all of the explored GWR scheme

residuals as displaying no significant elements of geographical clustering (Z-Score ≤1.96).

However, significantly dispersed residuals were observed for both respiratory infection subsets

when applying weighting schemes, which explored fewer than 60NN’s (P≤0.05). Such test

outputs would suggest that a satisfactory calibration of the datasets spatial components has

been achieved. AICc tests describing the relative goodness-of-fit in relation to the degrees of

freedom after correcting for sample size, identify the arrival of model complexity issues at a

50NN weighting scheme, with such issues becoming a major concern for weighting schemes

less than 30NN.

A Cross-Validation (CV) of GWR model predictions with 2004-06 respiratory admission

rates, detect a satisfactory level of performance when a weighting of 70NN or fewer is used to

investigate the J00-06 respiratory subset (R2 ≥0.5).  For the J20-22 subset the optimum

weighting scheme appears to be around 50-40NN as indicated by no further improvements in

CV-R2 values. Ratio scores combining the AICc and CV-R2 values, indicate optimum model

performance at 50NN for the J20-22 subset, whereas an optimum weighting window of 30-

50NN was observed for the J00-06 subset. Further analysis of candidate GWR weighting

schemes, was subsequently focused around the 50NN mark.
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FIGURE 5.4: Statistical evaluation of the J00-06 and J20-22 GWR spatial schemes

For the respiratory subset J00-06, GWR models with weighting schemes placed upon the 60

Nearest Neighbours (NN), 50NN and 40NN were identified to pass the three GWR F-tests,

indicating improved model performance over OLS models in relation to modelling complexity

(Appendix D7). For the respiratory subset J20-22, only the 50NN and 40NN GWR models

produced significant GWR F-test values. To effectively cross-examine the extent to which

socio-environmental mechanisms play in the decline of respiratory health, J00-06 and J20-22

GWR models should share weighting schemes in-order to directly compare the influence of

independent variables across a common spatial resolution. Under this premise, the 50NN and

40NN weighting schemes were explored in greater detail to confirm the most suitable option.

The AIC scores corrected for observation sample size (AICc), identify small percentage

dissimilarity’s between J00-06 GWR and OLS models on weighting schemes placed up to 50NN

(+0.71%). For the J20-22 subset, dissimilarities between GWR and OLS models are seen to

rapidly increase for models with fewer weighted observations; as observed under the 50NN

(+3.09%), 40NN (+5.92%) and 30NN (14.41%) schemes. Cross-validation of J00-06 and J20-22

GWR models with 2004-06 admission rates met critical CV-R2 values of ≥0.50, for both the
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50NN and 40NN weighting schemes. For the J20-22 subset GWR discrepancies (%) between

GWR model R2 and CV-R2 values appeared to exist at a stable level from 80NN (29.09%) up

until the 50NN (30.15%) weighting scheme, after which a sharp decline can be noticed indicate

potential model over-fitting. On this basis and under the constraints of minimising the AICc

score, a weighting scheme of 50NN was deemed most appropriate for exploring the influence

of socio-environmental influences on the J00-06 and J20-22 subsets.

On a final validatory point, it has been noted that spatial modelling techniques have

previously paid only a limited amount of attention to standard diagnostic techniques,

especially relating to issues of multicollinearity. In a paper addressing these concerns, Wheeler

& Tiefelsdorf (2005) identified a potential for local regression coefficients to yield collinear

relationships, even when variables in the data generating process appeared uncorrelated. In

numerous cases, coefficient estimate movements in one direction were demonstrated to force

at least one coefficient in the other direction, thus invalidating any interpretation of individual

GWR parameter estimates. Issues of multicollinearity for the J00-06 and J20-22 Bi-square

Adaptive 50NN GWR models were explored through the Variance Inflation Factor (VIF)

diagnostic tool within SPSS 20.0. VIF values <5 were deemed to indicate no collinearity issues,

VIF’s between 5 and 10 indicated moderate collinearity, and VIF’s 10 or greater indicated a

serious issues (Schuenemeyer & Drew 2011). For both respiratory subsets no issues of

multicollinearity were detected amongst GWR coefficients, with VIF values respectively

averaging 1.93 and 2.43 for the J00-06 and J20-22 models.

5.3.2. GWR MODEL PERFORMANCE

GWR models with a 50NN ‘Bi-Square Adaptive’ weighting scheme were subsequently

constructed, to quantify and compare, the extent to which socio-environmental variables of

interest locally influenced relatively minor and severe respiratory complaints during childhood.

As previously discussed, adaptive kernels were favoured over a fixed distance spatial kernel

scheme in-order to prevent issues of poor model calibration, caused by restricted data point

counts in areas where LLSOAs are spatial expansive. The R-square scores for both the 50NN

J00-06 (0.73) and J20-22 (0.72) subset GWR models symbolise a marked improvement upon

their respective OLS regression models performances of 0.37 and 0.42. This improvement can

be further observed through the corresponding 57.21% and 52.29% reductions on OLS mean

squared errors values produced by the J00-06 and J20-22 subset GWR models.

The spatial distributions of local R-square values generated by the GWR analysis of the

J00-06 and J20-22 subsets of interest are depicted in Figure 5.5. Geographic variations in these
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values demonstrate how the combined statistical effect of the explanatory variables on upper

and lower respiratory hospitalisations in the 0-15 year age group differs across output areas in

Leicester. It may be observed that local regression models contained within the J00-06 and

J20-22 GWR models, recorded respective improvements upon their specific global regression

model R-square value across 82.89% and 70.59% of Leicester’s output areas.

FIGURE 5.5: Local model goodness-of-fit scores contained within each GWR scheme

The strongest model performances for the J00-06 subset are to be found around the western

portion of the city centre, across LLSOAs housing elevated levels of ethnic minority groups,

fringing the URTI hot-spot of concern identified within the LISA analysis. In particular LLSOAs

contained within the wider wards of Charnwood (R2=0.79), Latimer (R2=0.73), Coleman

(R2=0.72), Spinney Hills (R2=0.72) and Stoneygate (R2=0.72) were observed on average to

provide optimum levels of performance. Within the J00-06 respiratory hot-spot of interest R-

square values ranged from 0.46-0.74, with a coefficient value of 0.52 for the focal LLSOA of

particular interest. Yet, towards the eastern and to a lesser extent the southern fringes of

Leicester, respiratory hospital admission rates appear inadequately explained by the selected
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explanatory variables. Specifically, LLSOAs contained within the wider wards of Humberstone

(R2=0.21), Thurncourt (R2=0.22) and Aylestone (R2=0.30) were observed to provide particularly

low performance levels.

As with the wider respiratory condition set, LLSOAs providing the poorest levels of

model performance were typically located around the incomplete eastern section of

Leicester's outer ring road, where congested traffic flows exist at a higher resolution than what

could be captured through the NAEI modelled road-traffic emission dataset. It is quite likely

that these micro-scale peak flows during certain times of the day are solely responsible for

such respiratory burdens, considering that Humberstone and Thurncourt typically display

relatively low LLSOA J00-06 admission rates (16.52 per 1,000 children), 6.77% below average

citywide levels. Such generally high levels of well-being make it highly unlikely that an

unknown malicious socio-environmental factor is at play. Alternatively, inter-individual

population differences may provide some reasoning for reduced model performance, whereby

an individual’s actions influence health to an unmeasurable and minor extent, which only

becomes apparent across communities rarely troubled by health burdens.

In contrast, the southern ward of Aylestone shows no signs of experiencing such

unrecorded high-resolution interactions with any of the examined socio-environmental

influences, in this or the preceding chapter. One should note that urban sprawl has only

recently encroached upon the semi-rural ward of Aylestone, which remains characterised by

an expanse of water-meadows running alongside a corridor of the River Soar and Grand Union

Canal. Due to the wards position upon the fringes of the urban heat in combination to

containing several bodies of open, one might expect the cooler damper outdoor environment

to perhaps be responsible for URTI’s experienced here. Nevertheless, one should understand

that typical LLSOA J00-06 admission rates of 17.67 per 1,000 children within Aylestone remain

0.05 cases beneath the citywide LLSOA average figures, indicating that these uncharted rural

respiratory issues are only of minor concern. On the other hand, such outputs would show that

GWR techniques should be examined in a more critical manner in future study areas, where

drastic spatial shifts in environmental phenotypes consistently occur.

The strongest model performances for the J20-22 subset are to be found around the

north-western portion of the city centre, across LLSOAs contained within the wider wards of

Latimer (R2=0.74), Belgrave (R2=0.67) and Spinney Hills (R2=0.64) and Stoneygate (R2=0.72). It

would appear that the J20-22 GWR model offers a more spatially even distribution of model

performance, in contrast to the J00-06 GWR model, which tended to provide either a very

strong or an acceptable local level of fit. Within the J20-22 respiratory hot-spot of interest R-

square values ranged from 0.60-0.80, with a coefficient value of 0.69 for the focal LLSOA of
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particular interest. As before, respiratory hospital admission rates towards the eastern fringes

of Leicester are inadequately described by the selected explanatory variables, as recorded via

poor LLSOA performance levels within the wider wards of Thurncourt (R2=0.23)  and

Humberstone (R2=0.24).

Specifically relating to the J20-22 subset, one may observe that reduced levels of

modelling performance have expanded across the southern periphery, as indicated by local

model fits across the wards of Aylestone (R2=0.32) and Knighton (R2=0.32). Akin to URT

conditions, J20-22 admission rates per 1,000 children in the wards of Thurncourt (6.39),

Humberstone (6.02), Aylestone (6.81) and Knighton (4.64), were respectively recorded to exist

at a level 7.25%, 1262%, 1.16% and 32.65% below expected citywide LLSOA values. It is

believed that the newly identified poor performance ward of Knighton, relates to localised

traffic congestion occurring around the University of Leicester. As previously detailed within

the ESDA, it would appear that LRTI’s share a heightened sensitivity to spatiotemporal

pollutant episodes, whereas URTI’s appear dependent on prevailing pollutant levels of

moderate intensity.

An assessment of the J00-06 and J20-22 GWR model residuals (Figure 5.6) confirms

this notion of a generally favourable model performance, which with increased localisation,

cumulatively improves upon the dataset fit provided through their respective OLS models. For

the J00-06 subset it should be noted that high residuals remained within the focal point of the

central cluster zone of high respiratory admissions, which is indicative of a reduction in model

performance (60NN R2=0.52), combined with the area experiencing the highest rate of annual

children’s URTI admissions within Leicester UA (95.65 per 1,000 children). Nonetheless, J00-06

GWR residuals for the inner-city point of focus (34.50) were found to reduce drastically from

the OLS value (65.02), coinciding with the concept of their being extremely localised socio-

environmental interactions specifically operating inside this zone. Furthermore, it would

appear that the OLS model contains substantial issues of residual clustering across Leicester’s

western periphery within the wards of Humberstone and Thurncourt, which reside under the

implementation of localised modelling techniques. Nevertheless, two LLSOAs within

Thurncourt would appear too consistently under or overestimate GWR modelled respiratory

outcomes. If one harkens back to the ESDA, such problem locales would appear to mark the

junction upon which Leicester’s Outer Ring road (A563) terminates, forcing traffic on a single

carriageway heading towards the city centre.
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FIGURE 5.6: Spatial distribution of OLS and GWR residual J00-06 and J20-22 hospital admissions per
1,000 children

Kolmogorov-Smirnov (K-S) Statistic:
Residuals Normal Distribution

Global Moran’s I:
Residuals

K-S Value P ≤ 0.05 P ≤ 0.01 Z-Score Spatial Pattern
J00-06: OLS 0.13 Reject Reject 3.29 Clustered
J00-06: 50NN 0.11 Reject Accept -2.95 Dispersed
J20-22: OLS 0.08 Accept Accept 1.33 No Pattern
J20-22: 50NN 0.08 Accept Accept -2.05 Dispersed

TABLE 5.4: Spatial distribution of OLS and GWR residual J00-06 and J20-22 hospital admissions per
1,000 children

Likewise, for the J20-22 subset, residuals would appear to remain high under spatial modelling

techniques within the focal point of the inner-city hot-spot, however this is more of a case of

an exceedingly high LRTI admission rate (34.78 per 1,000 children) rather than reduced model

performance (60NN R2=0.69). As illustrated in Figure 5.6, J20-22 GWR residuals for the inner-
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city point of focus (7.49) were found to reduce drastically from the OLS value (18.42), once

again suggestive of there being extremely localised interactions enforced across inner-city

locales.  Spatial modelling of the J20-22 subset would also appear to mitigate issues of under-

prediction around Western Park, and over-prediction within Humberstone. Kolmogorov-

Smirnov scores of the both the J00-06 and J20-22 GWR models identified the residuals to be

distributed in a normal fashion (P≤0.01), with Global Moran’s I outputs statistically recognising

such residuals to significantly contain no elements of spatial autocorrelation (P>0.05) (Table

5.4). Such findings reveal a satisfactory model performance, indicating that localised regression

techniques are capable of dealing with extreme spatial outliers.

5.3.3. SUMMARY OF MODELLED OUTPUTS

Global regression modelling of the J00-06 respiratory subset identified relative rises in

residentially experienced TPM10 emissions to have the most prolific health impact on children,

out of all explored socio-environmental influences (Table 5.5). In exploring the role Leicester's

major ethnic minority group’s play of community construction, one may observe that

increased proportions of ‘Indian’ residents are associated with substantially lower levels of

children’s respiratory hospitalisations. Potentially the social attitudes and or response to

stimuli within ‘Indian’ residents may have a role in offsetting major detrimental socio-

environmental community burdens. In contrast, elevated levels of ‘Other South Asian’

residents were significantly and positively associated with J00-06 respiratory hospital

admissions.

These findings are in agreement with the J00-06 Univariate Local Moran’s I outputs,

which indicate there to be 1.1 times more ‘Other South Asian’ children, and 1.0 times fewer

‘Indian’ children, residing within inner-city hot-spots (Appendix D3). What's more, Bivariate

Local Moran’s I outputs revealed J00-06 inner-city hot-spots situated within the immediate

vicinity of J20-22 problem areas, to house 1.7 times more ‘Other South Asian’ children and 1.9

times fewer ‘Indian’ children (Appendix D4). Such increased levels of association between

communities experiencing both URT and LRT infections, present the likely case for such ethnic

minority groups as having a noteworthy role in shaping  a child’s respiratory functions.

Children of ‘Afro-Caribbean’ backgrounds were accredited to the greatest relative risk of

experiencing a J00-06 hospital admission out of all of the ethnic minorities investigated,

although one was unable to credibly confirm such findings at a global scale (P=0.09).

J00-06 50NN GWR model outputs appear to broadly compliment the OLS regression

outputs, identifying TPM10 emissions and community levels of ‘Indian’ children estimates as
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the two most spatially significant factors (Table 5.5). Highly positive median TPM10 parameter

estimates portray a distribution favouring a broadly detrimental impact on J00-06 respiratory

health citywide. The strong beneficial influences of ‘Indian’ residents on community health

may also be observed through (a) strong negative median parameter estimate, (b) all 25.13%

locations deemed to provide significant GWR outputs (P≤0.05) contain negative coefficients. A

tendency for J00-06 risks to prevail amongst ‘Other South Asian’ children was also observed,

reconfirming OLS outputs. Modelling differences may be observed through examining the role

of deprivation and ‘Afro-Caribbean’ residents, which now appear significantly detrimental on

J00-06 outcomes within certain localities.

Cartographic plots of GWR modelled J00-06 admission rates directly associated with

TPM10 emissions (Figure 5.7), almost exclusively identify children residing within Leicester’s

central locations to be impacted by such a burden, with the severest outcomes affecting inner

city children housed within the previously identified J00-06 hot-spot. Specifically within the

focal LLSOA of interest, encased within the inner-city ring-road, TPM10 related hospitalisations

were recorded to peak at a rate of 64.27 admissions per 1,000 children (P≤0.05). After which,

TPM10 admission rates were observed to rapidly decline across first order neighbouring LLSOAs

to an average rate of 22.89 admissions per 1,000 children, thus reconfirming the highly

localised influence of environmental afflictions within Leicester. While elevated TPM10 URTI

admission rates exist across the overall J00-06 hot-spot of interest, one should note that

significant GWR parameter estimates are only derived within the areas central and wider

range of nearby communities to the north.

Interestingly, issues of deprivation would also appear to provide the greatest

detrimental impacts upon inner-city communities contained within the overall J00-06 hot-spot

(Figure 5.7). However, while a common burden is felt across this area, it would appear that

such concerns are most prominent within the pockets southern LLSOAs. Average levels of

deprivation within these four LLSOAs are record to create an additional 34.90 J00-06

admissions per 1,000 children, and are coincidently the only LLSOAs within the inner-city zone

to provide significant GWR estimates (P≤0.05). Within the focal LLSOA of interest, deprivation

related hospitalisations were at a rate of 29.99 admissions per 1,000 children (P=0.12). While,

socio-environmental factors are inclined to affect J00-06 outcomes in one direction, these

relationships do not remain spatially uniform, with such affects appearing more pronounced in

some areas and non-existent in others. In particular, one should note that a beneficial URTI

response surprisingly occurs in relation to increased levels of deprivation across LLSOAs

located alongside the north-eastern border of the J00-06 hot-spot, within the wards of Latimer

and Charnwood (P≤0.05).
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Such observations would indicate that a rather complex set of interactions govern the

nature and extent to which a specific division of socio-economic status influences upper

respiratory health during childhood. In-fact, J00-06 outcomes accredited to social positioning,

were determined to only operate in the direction of a communities respective socio-economic

status across 52.69% of the cities LLSOAs (i.e. deprivation increases, whereas affluence

decreases risk likelihoods). Meanwhile 11.30% of deprived areas found within the wards of

Latimer and Charnwood were accredited with a beneficial response, while in 36.01% of the

cities LLSOAs affluence was considered to detrimentally influence URT outcomes. Yet it should

be noted that this section of relatively affluent communities only marginally influence a child’s

upper respiratory health in an undesirable fashion, with such communities principally

occupying western radial segments categorised to experiencing only ‘-5 to 5’ J00-06 cases per

1,000 children (Figure 5.7).

Cartographic plots of GWR outputs illustrates that the Lifestyle choices of ‘Indian’

residents actively reduces the number of respiratory hospitalisations within the J00-06 inner-

city hot-spot, acting in a manner which mitigates the spatial spread of such symptoms to the

wider city centre community (Figure 5.7). In particular LLSOAs within the ward of Spinney Hills

are densely populated by ‘Indian’ children, whose social lifestyle is observed to on average

prevent 18.56 J00-06 cases per annum, which are likely to occur from their residentially raised

deprivation (3.87) and TPM10 emission (1.50t/yr.) levels. Therefore, one should not discount

the importance of social decision making alongside the ease to which groups whom have fully

integrated into the wider society may access public services.



Independent Variable:
(Normalised 0-1)

Aspatial Linear Regression (OLS) Linear 50 Nearest Neighbours Bisquare-Adaptive GWR

β Value Std. Error P Value Min. β Med. β Max. β Std. Error
% Census Areas P≤0.05

Detrimental (+) Beneficial (-)
Intercept 11.16 2.51 0.00* -9.09 9.11 51.18 0.80 --- ---
Carstairs Index 2001 6.58 4.76 0.17 -25.04 8.12 95.92 1.18 17.65 3.21
TPM10 Emissions (t/yr.) 17.98 4.86 0.00* -39.35 10.24 64.27 1.31 23.53 3.21
% Smoking Prevalence (Age 16yrs+) 1.72 3.86 0.66 -16.10 4.34 28.53 0.61 8.02 0.00
% Obesity Prevalence (Age 16yrs+) -0.03 3.20 0.99 -45.57 1.00 34.89 0.97 6.95 4.81
% 0-15y White Non-British -4.22 2.88 0.14 -18.48 -0.66 17.26 0.44 4.81 1.60
% 0-15y Indian -11.73 3.35 0.00* -46.04 -7.36 9.83 0.72 0.00 25.13
% 0-15y Other South Asian 8.60 3.89 0.03* -9.22 9.05 72.77 1.03 18.72 0.00
% 0-15y Afro-Caribbean 10.04 5.83 0.09 -30.76 5.84 50.63 1.25 23.53 0.00

R-Square 0.37 0.73
Residual Sum Of Squares (RSS) 9302.40 3980.84
Mean Squared Error (MSE) 49.75 21.29
AIC 1279.28 1164.01
AICc 1282.53 1291.61
F-Test 13.24* 2.34*

R-Square Cross-Validation:
2004-06  J00-06 Hospital Admissions 0.34 0.56

* P ≤ 0.05

TABLE 5.5:  Linear Aspatial and Geographically Weighted Regression (GWR) models of annual average J00-06 hospital admissions per 1,000 persons aged 0-
15yrs within Leicester UA: 2000-09
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FIGURE 5.7: GWR modelled children’s J00-06 hospital admission rates instigated through interactions
with an individual socio-environmental influence of interest

In total, both global and local model estimates mutually recognised background respiratory

statuses (or base rate), recorded via the Intercept, to be accountable for a similar and sizable

portion (64.52-69.54%) of the expected 1,079 annual children’s URTI hospital admissions,

experienced across Leicester UA (Table 5.6). Noteworthy differences between the two

modelling techniques were only to be observed in relation to cases determined by TPM10

emissions and ‘Afro-Caribbean’ residency levels, whereby GWR outputs respectively depicted

such factors as influencing 6.98% and 2.94% fewer URTI cases (Table 5.6). Once more, these
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findings are indicative of their highly localised natures, suggesting that a majority of Leicester’s

communities are disassociated with such social and environmental burdens. Out of the

explored socio-environmental influences, levels of TPM10 emissions (+23.62%), deprivation

(+19.2%) and ‘Indian’ residency (-23.27%) were observed to influence the greatest quantity of

children’s citywide J00-06 cases, under a local modelling scheme. Meanwhile the lifestyle

choices of ‘Afro-Caribbean’ (+1.74%) and ‘Other South Asian’ (+7.42) residents, were

associated to barely influence citywide J00-06 health burdens, primarily due to their relatively

low levels of residency across Leicester UA.

Int. Carst.
Index TPM10

Smoke
Prev.

Obese
Prev.

White
N-Brit. Indian Other

S. Asian
Afro-
Car. Resid.

J00-06 OLS 64.52 17.89 30.60 3.94 -0.12 -5.11 -22.50 8.14 4.68 -2.04
J00-06 GWR 69.54 19.20 23.62 3.37 1.05 -0.51 -23.27 7.42 1.74 -2.17
J20-22 OLS 55.63 35.03 22.23 14.32 -11.60 0.76 -21.64 0.69 5.82 -1.23
J20-22 GWR 79.61 42.77 4.79 17.73 -35.69 4.02 -14.40 0.90 2.44 -2.18

TABLE 5.6: Percentage of citywide annual children's J00-06 and J20-22 hospital admissions associated
with global and locally modelled background and socio-environmental influences

Akin to the J00-06 outputs, global regression modelling of the J20-22 subset recognised the

significantly detrimental impact of TPM10 emissions and beneficial influence of ‘Indian’

residents on a community’s respiratory health (Table 5.7, Figure 5.8). Yet unique to the J20-22

subset, levels of Afro-Caribbean residents and deprivation were shown to significantly increase

children’s respiratory risks at the citywide level. Once again, parameter estimates from GWR

modelling appear to broadly compliment OLS modelling outputs. However, it should be noted

that GWR modelling has acted to drastically reduce the influence of TPM10 on J20-22 health

outcomes, as denoted by a negative median parameter estimate (Table 5.7).

In-fact, TPM10 effects would appear particularly pronounced within inner city localities

where children experiencing the greatest health burdens (Figure 5.8), yet such impacts appear

hardly evident in other areas. Normalised increases in Carstairs Index deprivation levels were

identified to have the most prolific impact on children’s J20-22 admissions rates, out of all

explored influences across a global and localised scale. The overwhelming influence of

deprivation may be further observed by all 32.62% of areas deemed to produce significant

GWR deprivation coefficients (P≤0.05) resulting in a detrimental health impact, in-line with

their respective socio-economic status (i.e. deprivation increases risk likelihood). This would

suggest that deprivation impacts LRT outcomes in a far more simplistic manner, yet one may

observe that deprivation typically burdens communities in a fashion which mutually elevates

children’s cases of both URT and LRT infections.



Independent Variable:
(Normalised 0-1)

Aspatial Linear Regression (OLS) Linear 50 Nearest Neighbours Bisquare-Adaptive GWR

β Value Std. Error P Value Min. β Med. β Max. β Std. Error
% Census Areas P≤0.05

Detrimental (+) Beneficial (-)
Intercept 3.79 1.04 0.00* -9.10 4.49 21.27 0.31 --- ---
Carstairs Index 2001 5.08 1.98 0.01* -8.44 6.43 30.26 0.40 32.62 0.00
TPM10 Emissions (t/yr.) 5.15 2.02 0.01* -29.03 -1.09 31.63 0.58 5.35 6.42
% Smoking Prevalence (Age 16yrs+) 2.47 1.61 0.13 -8.42 4.25 11.89 0.30 17.65 1.07
% Obesity Prevalence (Age 16yrs+) -1.10 1.33 0.41 -18.67 -2.64 4.27 0.29 0.00 8.02
% 0-15y White Non-British 0.25 1.20 0.84 -4.44 2.69 9.41 0.27 13.37 10.16
% 0-15y Indian -4.45 1.39 0.00* -19.28 -4.01 2.96 0.29 0.00 15.51
% 0-15y Other South Asian 0.29 1.61 0.86 -7.36 0.89 23.47 0.65 19.25 0.00
% 0-15y Afro-Caribbean 4.92 2.42 0.04* -15.87 3.48 18.57 0.55 15.51 4.28

R-Square 0.42 0.72
Residual Sum Of Squares (RSS) 1605.70 766.13
Mean Squared Error (MSE) 8.59 4.10
AIC 950.77 855.85
AICc 954.02 983.46
F-Test 16.10* 2.10*

R-Square Cross-Validation:
2004-06  J20-22 Hospital Admissions 0.27 0.50

* P ≤ 0.05

TABLE 5.7:  Linear Aspatial and Geographically Weighted Regression (GWR) models of annual average J20-22 hospital admissions per 1,000 persons aged 0-
15yrs within Leicester UA: 2000-09
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FIGURE 5.8: GWR modelled children’s J20-22 hospital admission rates instigated through interactions
with an individual socio-environmental influence of interest

In total, both global and local model estimates mutually recognised background respiratory

statuses (or base rate), recorded via the Intercept, to be liable for a sizable portion of the

expected 425 annual children’s J20-22 hospital admissions, experienced across Leicester UA

(Table 5.6). However, unlike J00-06 modelling, localised techniques appeared to place a far

greater accountability on J20-22 background respiratory levels (79.61%), when compared to

their global counterpart (55.63%). Consequently, several sizeable changes were observed

between the two modelling techniques, particularly in relation to the number of cases caused
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by levels of TPM10 emissions and obesity prevalence, which respectively induced 17.44% and

24.09% fewer J20-22 hospitalisations under localised models (Table 5.6). As a result of such

changes, childhood activity and dietary intake construed from GWR model estimates of

parent’s obesity levels, appeared to now provide the primary force in mitigating citywide J20-

22 outcomes. Out of the explored socio-environmental influences, levels of deprivation

(+42.77%) and obesity prevalence (-35.69%) were observed to influence the greatest quantity

of children’s citywide J20-22 cases, under a local modelling scheme. Meanwhile, residentially

experienced TPM10 emissions (+4.79) and the lifestyle choices of ‘Afro-Caribbean’ (+2.44%)

residents, due to their restricted nature of elevation, provided a minimal influence upon

citywide J20-22 health burdens.

Cartographic plots of the relative J20-22 admission rates confirm these findings,

identifying smoking and obesity prevalence as the main explanatory factors for LRTI’s

outcomes in children residing outside of the inner-city hot-spot of interest (Figure 5.8). In

LSOA’s where dietary intake and activity were believed to instigate >2.5 (high) and <-2.5 (low)

J20-22 admissions per 1,000 children, levels of adult obesity prevalence were recorded at the

respectively comparable rates of 25.14% and 25.21%. While this may at first appear confusing,

additional exploration of the raw data reveals beneficial obesity responses (<-2.5 admissions)

to typically occur in communities where 50.99% of children are of ‘White British’ ethnicity,

whom experiencing an indifferent Carstairs Index score of 0.58. In contrast, detrimental

obesity responses (>2.5 admissions) were generally observed across somewhat affluent areas

(Carstairs Index -2.02), housing similar levels of ‘White British’ children (57.03%).

Cartographic plots subsequently indicate both obesity responses to be somewhat

exclusively experienced by Leicester’s ‘White British’ inhabitants, therefore explaining why this

lifestyle indicator governs a considerable proportion of citywide J20-22 responses.

Furthermore, these observed trends in the native populace are to a certain degree what one

would hope for, with the typical family household appearing to take a proactive stance if their

child shows LRT symptoms. However, one may observe that smoking prevalence, depicted as

the second leading explanatory factor outside of the J20-22 inner city hot-spot, would

generally appear to offset the overwhelming beneficial influences recorded via levels of

obesity prevalence. For instance, in locales where smoking prevalence were displayed to be of

detriment (Figure 5.8), community levels of obesity and smoking prevalence were typically

recorded to respectively prevent 5.66 or stimulate 4.16 annual J20-22 admissions per 1,000

children. If taken together, the overall beneficial response recorded via obesity prevalence (-

35.69%) appears visibly moderated, presenting a 17.96% reduction in the number of potential

citywide J20-22 cases.
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Meanwhile, the impact of TPM10 emissions on LRTI’s would appear more localised than

what was previously recorded in relation to URTI’s, restrictively operate around the core of the

inner city hot-spot and immediate north-eastern communities (Figure 5.8). One should note

that these LLSOAs are positioned in-line with prevailing winds from the inner-city ring-road, in

addition to accommodation several key arterial road connections. Specifically within the focal

LLSOA of interest, encased within the inner-city ring-road, TPM10 related hospitalisations were

recorded to peak at a rate of 36.19 admissions per 1,000 children (P≤0.05), under a residential

exposure of 2.65t/yr. After which, TPM10 admission rates were observed to rapidly decline

across first order neighbouring LLSOAs, averaging 11.98 admissions per 1,000 children under a

2.01t/yr. exposure, thus reconfirming the highly localised influence of environmental

afflictions within Leicester. This reduced zone of impact would suggest that long-term (annual)

exposure is a less effective means of initiating LRTI’s unless a critical value is reached, and that

perhaps LRTI’s are driven in a more episodic fashion (i.e. determined via seasonal weather

conditions and or localised traffic flows throughout the day). This heightened sensitivity of J20-

22 cases to daily episodes, perhaps alludes to a previously identified outlying southern LLSOA

community encompassing the University of Leicester campus, which experiences traffic flow

issues only during peak hours of the day. Yet significant convergence of such outputs here and

at the three other J20-22 outliers has failed, likely due to the previously described resolution

limitations of the 1x1km NAEI dataset.

Compared to the aforementioned J20-22 socio-environmental influences, deprivation

would appear to operate in a relatively smooth universal manner, with beneficial responses

only observed within the cities 16 LLSOAs (8.56%) deemed to exhibit Carstairs Index scores

below 0. This consistent nature explains how socio-economic positioning is deemed to

encourage 42.77% of children’s J20-22 cases within Leicester UA. Nevertheless, spatially

elevated rates would appear to once again occur across the inner city zone of interest, with

admissions per 1,000 children peaking at a rate of 5.34 towards the most western part of the

J20-22 hotspot (P=0.13). However, deprivation may only defined to significantly burden a

child’s LRT health across two LLSOAs contained within the J20-22 hot-spot, averaging a modest

1.71 admissions per 1,000 children (P≤0.05).

Akin to the J00-06 models, levels of ‘Indian’ residency were once again observed to

provide a consistently beneficial influence towards children’s J20-22 outcomes. In-fact, only 30

LLSOAs (16.04%) recorded levels of ‘Indian’ residency as providing a detrimental influence, and

even then such an influence on average only resulting in 0.42 additional admissions per 1,000

children. Once again, the full force of ‘Indian’ residency may be observed across inner-city

locales, with 4 particular LLSOAs of the J20-22 hot-spot, on average describing their 27.29% of
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Indian residents as actively preventing an additional 4.03 admissions per 1,000 children

(P≤0.05). However one should also note that the lifestyle choices of ‘Indian’ residents, is not an

advantageous phenomenon restricted to inner city locales, as observed by low ‘Indian’

residency levels within the LLSOAs of Braunstone (4.09%) preventing on average 0.47 J20-22

admissions per 1,000 children (P≤0.05).

5.3.4. SOCIO-ENVIRONMENTAL MECHANISMS OF DETERIORATING RESPIRATORY HEALTH

Under the premise of examining the extent to which socio-environmental mechanisms play in

the decline of respiratory health, GWR coefficients were used to derive specific admission

rates for independent variables, for both the J00-06 and J20-22 subsets. Two possible

scenarios have been imagined: Socio-environmental factors (a) have no common mechanism

in the decline of respiratory health; (b) weaken the upper respiratory system initially causing

minor upper respiratory tract complaints (J00-06), with prolonged exposure(s) leaving the

lower respiratory tract vulnerable to conditions (J20-22) which may prevail throughout

childhood.

Simple X-Y plots of J00-06 vs. J20-22 admission rates for each individual socio-

environmental factor (Table 5.8), indicated levels of TPM10 and Carstairs Index deprivation as

likely causalities for a decline in children’s respiratory health (R2 ≥0.5). In terms of community

compositions, levels of White Non-British and Indian ethnic minority groups were detected to

operate in a spatially nature which influenced both children’s J00-06 and J20-22 admission

rates in a mutual manner (R2 ≥0.5). Pearson’s R Correlation statistics confirm such findings,

with admission rates for the aforementioned socio-environmental factors scoring from +0.7 to

+1.0, indicating the existence of strong positive global associations. Spearman’s Rho values

were observed at a lower level than their Pearson’s R counterparts for the four factors of

interest, which would imply that their individual influences on hospital admissions for

relatively severe and mild respiratory complaints are linearly dependant in nature.

With the Moran's I global index reflecting a spatially weighted form of Pearson's

correlation coefficient, it was deemed appropriate to apply a derivative of the global index

known as the Local Bivariate Moran’s I, for the exploration of spatial patterning. The spatial

influence of ‘White Non-British’ residents was not investigated further, due to the group’s

relatively low associations towards respiratory risk combined with their being only a limited

number of areas possessing significant GWR coefficients. Bivariate Local Moran’s I R2 plots

indicative of global spatial associations between an ego location (i) and directly neighbouring

localities (j), display a good amount of spatial correlation between J00-06 and J20-22
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admission rates associated with TPM10 levels, when either subset was held as the ego (Table

5.8). Citywide J20-22 admission rates attributed to deprivation also appeared to have good

correlations with deprivation related J00-06 admissions in neighbouring localities. Only a

moderate goodness-of-fit was observed relating to the global benefits on respiratory health

brought by ‘Indian’ residents.

R2 Spearman’s Rho
P≤0.05

Pearson’s R
P≤0.05

Bivariate Local Moran’s: R2

I=J00-06; J= … I=J20-22; J= …
TPM10 Emissions 0.72 0.60 0.85 0.58 0.54
Carstairs Index 0.58 0.67 0.76 0.43 0.52
Smoking Prevalence 0.01 0.27 0.11 0.00 0.00
Obesity Prevalence 0.11 0.10 0.33 0.04 0.05
White Non-British 0.50 0.54 0.71 0.22 0.22
Indian 0.52 0.58 0.72 0.43 0.33
Other South Asian 0.05 0.29 0.22 0.00 0.00
Afro-Caribbean 0.48 0.63 0.69 0.24 0.33

TABLE 5.8: Global correlation statistic outputs of J00-06 vs. J20-22 GWR modelled hospital admissions
per 1,000 children attributed to specific socio-environmental factors

One should note that GWR models exploring the respiratory conditions of interest were

created within SpaceStat 3.5.6, which produces identical outputs to alternative statistical

packages, while offering a more stringent check for significance. Traditionally GWR regression

parameter standard errors are calculated using the global error variance, defined as the

Residual Sum-of-Squares (RSS) at each of the target points (Fotheringham et al 2002).

However, SpaceStat uses the local variance defined as the RSS from the regression calculation

at the source points to calculate local rather than global standard errors, and hence local p-

values for the regression parameters.  It is believed that this approach should more accurately

reflect the degree of non-stationarity encapsulated in the geographically weighted calculation.

Cartographic plots of Bivariate Local Moran’s I outputs (Figure 5.9), identify TPM10 as a

significantly responsible factor for both J00-06 and J20-22 admissions within the city centre

hot-spots previously identified for both condition sets (P≤0.05). Hospitalisations attributed to

deprivation levels also appeared high for both conditions within inner city localities, however

GWR deprivation coefficients were only deemed of mutual significance by locally modelled p-

values (SpaceStat 3.5.6), within a small southern portion of these inner city neighbourhoods

(Figure 5.10). In contrast the wider inner-city hot-spot of modelled deprivation admissions was

noted to be of significance, when interpreting the less strict Fotheringham et al (2002) GWR

coefficient p-values, constructed from the global error variance.
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FIGURE 5.9: Bivariate Moran’s I cluster analysis of GWR modelled J00-06 and J20-22 admission rates
attributed to socio-environmental factors of importance
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FIGURE 5.10: Local and global significance levels of GWR modelled J00-06 and J20-22 admission rates
attributed to socio-environmental factors of importance
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Interestingly levels of ‘Indian’ residents appear to mitigate the influence of detrimental socio-

environmental factors, and in part reduce the potential spatial extent of such respiratory

issues around other centric localities (Figure 5.10). In particular, Indian residents provide

substantially low respiratory admission rates towards the eastern fringes of the previously

identified inner city hotspots (Figure 5.1). However, it is only the global GWR coefficient p-

values, which record the significance of this social group in influencing overall respiratory

mechanisms across common inner-city locations (Figure 5.10). Locally modelled p-values were

only able to confirm this social group’s beneficial influence on J20-22 cases within inner city

localities, which were neighboured by areas experiencing a similar beneficial influence on J00-

06 outcomes.

In another point of noteworthy interest, it may be observed that a few pockets exist

whereby J00-06 and J20-22 admission rates rise as a consequence of ‘Indian’ residency. The

most prominent of which occurs within Eastern Leicester, when the J00-06 subset is held at

the ego location (i). However, under closer inspection these so called hot-spots are only

relative to the dataset, with respective average J00-06 and J20-22 annual rates of -0.15 and

0.49 in hot-spots, compared to -17.13 and -3.72 admissions per 1,000 children in cold-spots. In

accordance with earlier observations, it is possible to confirm that, ‘Indian’ residents generally

have a substantially beneficial impact on community respiratory health, with the exception of

a few locations where their influence on health appears insignificant. Such findings highlight

the potential for non-uniform relationships, especially when examining broad social groups,

which may share common traits yet still make different lifestyle choices based on the

community they reside within.

The findings presented here would indicate that road-traffic emissions and levels of

deprivation are likely candidates responsible for a communities deteriorating respiratory

health. Nevertheless, it would appear that lifestyle choices, such as those seen by ‘Indian’

residents, could mitigate the onset of such conditions.

5.3.5. GWR STIMULUS-RESPONSE MODELS

Locations identified to produce significant parameter estimates variables from GWR modelling

(P≤0.05), were selected for the construction of stimulus-response models specific to each

independent socio-environmental variable, while accounting for spatial interference (Table

5.9). The stimulus-response models, in general identify each socio-environmental variable to

individually influence the different respiratory subsets via a common function. This supports

the concept of socio-environmental factors operating under specific mechanisms, potentially
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resulting in a range of respiratory conditions, which become more detrimental provided

adequate exposure occurs. Of noteworthy interest, is the manner in which TPM10 emissions

and ‘Other South Asian’ residents appear to detrimentally affect upper and lower respiratory

conditions via their respective quadratic (R2=0.95) and cubic (R2 ≥0.89)  relationships. In

contrast, substantially beneficial influences on both upper and lower respiratory health appear

to be associated with high community levels of ‘Indian’ residents, as denoted by a cubic

function (R2 ≥0.60).

TABLE 5.9: Stimulus-response models describing the relationship between socio-environmental
variables and their specific GWR modelled hospital admissions rates per 1,000 children (If P ≤0.05)

In modelling the significant GWR parameter estimates (P≤0.05), one may observe that the

socially adjusted effects of TPM10 emissions affects both upper and lower respiratory health

through similar shaped quadratic relationships (Appendix D8). As one might expect the URTI

trend is transposed to a higher magnitude of admission rates that what was recorded for

LRTI’s, indicative of their increased frequency; in addition to representing that likely

relationship between URT conditions increasing the hosts susceptibility to LRT complaints. For

the J00-06 GWR derived stimulus-response model, LLSOAs experienced TPM10 emissions of

1.5t/yr. were annually identified to experience an additional 16.79 hospitalisations per 1,000

children across 2000-09 (P≤0.05). Using the following trend, LLSOA TPM 10 emission levels were

reported to average 7.76 admissions per 1,000 children, amounting to a rate of 6.40

admissions above the corresponding 50NN GWR model parameter estimates of mixed

Independent Variable: Subset LLSOAs
(P<0.05)

Model Selection
(P<0.05) Parameter Estimates

Optimum R2 β0 β1 β2 β3

TPM10 (t/yr.)
URTI 50 Quadratic 0.95 -0.86 -4.18 10.63
LRTI 22 Quadratic 0.95 -1.57 -4.95 6.56

Carstairs Index:
Leicester

URTI 39 N/A
LRTI 61 Cubic 0.43 5.57 0.75 -0.11 -0.01

(%) Adult Smoking
URTI 16 Quadratic 0.83 -7.09 0.80 -0.01
LRTI 35 Cubic 0.48 -3.70 0.46 -0.01 0.00

(%) Adult Obesity
URTI 22 N/A
LRTI 15 N/A

(%) White Non-British
URTI 12 Cubic 0.88 -0.31 6.31 -5.24 0.88
LRTI 44 Cubic 0.31 -0.13 0.97 -0.36 0.02

(%) Indian Children
URTI 47 Cubic 0.60 0.34 -0.45 0.01 0.00
LRTI 29 Cubic 0.83 0.08 -0.17 0.00 0.00

(%) Other South Asian
URTI 35 Cubic 0.89 0.21 0.80 -0.06 0.00
LRTI 36 Cubic 0.92 -0.01 0.64 -0.07 0.01

(%) Afro-Caribbean
URTI 45 Linear 0.86 -0.11 0.90
LRTI 37 Cubic 0.41 -0.12 0.65 -0.11 0.00
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significance. Overall, TPM10 emissions across Leicester would be recognised to influence 436

children’s J00-06 admissions per annum (P≤0.05), or 40.40% of the total J00-06 respiratory

burden. One should recognise that this figure is approximately double the size of the 50NN

GWR model estimate of 23.62%. Across Leicester it is calculated that a 5% reduction in

residentially experienced LLSOA TPM10 emissions would amount to 61 fewer children’s J00-06

admissions per annum (P≤0.05), reducing the total amount of respiratory hospital incidents by

5.65%. Furthermore, it is estimated that a negligible amount of TPM10 related hospital

admissions could be achieved if LLSOA emission levels could be maintained around 0.55t/yr.

For the J20-22 stimulus-response model, LLSOAs experienced TPM10 emissions of

1.5t/yr. were annually identified to experience an additional 5.76 hospitalisations per 1,000

children across 2000-09 (P≤0.05). Using the following trend, LLSOA TPM10 emission levels were

reported to average 1.29 admissions per 1,000 children, which is of a comparable nature to

the figure of 0.63 provided via the complete set of GWR parameter estimates of mixed

significance. Overall, TPM10 emissions across Leicester would be recognised to influence 54

children’s respiratory admissions per annum (P≤0.05), which amounts to 12.69% of the total

J20-22 respiratory burden; a figure deviating somewhat from the complete 50NN GWR model

estimate of 4.79%. In following this proposed trend, it is estimated that a 5% reduction in

residentially experienced LLSOA TPM10 emissions would amount to 24 fewer children’s J20-22

admissions per annum (P≤0.05), reducing the total amount of respiratory hospital incidents by

5.64%. Furthermore, it is estimated that a negligible amount of TPM10 related hospital

admissions could be achieved if LLSOA emission levels could be maintained around 1.00t/yr.

In-fact if a universal 14% reduction on present LLSOA TPM10 emissions levels would collectively

provide the general populace with a ‘safe’ level of exposure in relation to LRT conditions,

potentially stunting the development of URTI’s into conditions of increased severity.

In contrast, the individual influence of ‘Indian’ residency is shown to affect upper and

lower respiratory health via two negative cubic functions of a similar trend where the group

defines <50% of a LLSOAs children, after which a far grander beneficial response is provided

towards URT rather than LRT conditions (Appendix D9). Such findings are unsurprising,

considering that this social group’s lifestyle was previously recorded to prevent health issues

across the entire spectrum of respiratory conditions (J00-99), with one expecting more URTI’s

to be substantially reduced due to their increased frequency and preventative nature.

Nevertheless the J20-22 negative cubic function, would also suggest that ‘Indian’ residents are

capable of inhibiting a child’s respiratory health from deteriorating further in cases where

URTI’s have become established.
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Such outcomes likely relate to the social empowerment of this minority group, whom

are thought to have the knowledge of and access to the correct medical services. One should

also note that a typical URT cases is unlikely to develop into a LRT condition, and that perhaps

social lifestyle choices have a far weaker direct influence upon deteriorating respiratory health;

as indicated by the limited reduction in J20-22 cases where >50% of a LLSOAs children are of

‘Indian’ ethnicity. Across Leicester, ‘Indian’ residency was recognised to prevent 415 children’s

J00-06 admissions per annum (P≤0.05), amounting to -38.46% of the cities J00-06 cases

experienced by children. In addition, such residency levels were recognised to prevent 145

children’s J20-22 admissions per annum (P≤0.05), or -14.40% of all children’s J20-22

admissions. These J00-06 and J20-22 estimates are of a somewhat more advantageous nature

that what was provided by GWR estimates of mixed significance, which correspondingly

recorded ‘Indian’ residency as preventing 23.27% and 14.40% of children’s citywide cases.

The individual influence of ‘Other South Asian’ residency on URT and LRT health would

appear to follow a positive cubic trend, which exists in somewhat of a uniform manor until

>10% of a LLSOAs community is constructed from this ethnic group (Appendix D10). After this

point J20-22 admissions are observed to rapidly increase in relation to ‘Other South Asian’

residency levels, at a magnitude substantially greater than what is recorded for J00-06 rates. If

this depiction is considered accurate, then one might hold the opinion that ‘Other South Asian’

lifestyles contribute to severe, potentially long-lasting respiratory conditions, which

periodically exacerbate the host’s respiratory status through the instigation of URT episodes.

However a detailed exploration of significant and non-significant estimates, signals a

considerable level of uncertainty in the tail of the ‘Other South Asian’ J20-22 response model,

primarily due to a lack of usable data points where residency levels >10%; with non-significant

locales appearing to flat-line around zero.

In contrast, the J00-06 response model contains significant data points in locales

where 25% of the children are of ‘Other South Asian’ ethnicity. Furthermore, model validity is

preserved through the values presented at non-significant locales, which tend to broadly

follow the defined J00-06 trend. Upon understanding this information, it is highly likely that

‘Other South Asian’ lifestyles may initiate URT complaints which if remain unaddressed may

develop into LRT complaints, akin to what has been observed within the other socio-

environmental influences. J00-06 GWR parameter estimates where P≤0.05, estimate the

lifestyles of ‘Other South Asian’ residents as annually influencing 185 children’s respiratory

cases across Leicester during 2000-09, or 17.14% of children’s J00-06 admissions. This value is

almost twice as high as what was calculated by the complete set of significant and non-

significant GWR parameter estimates (7.42%). Meanwhile, J20-22 GWR parameter estimates
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where P≤0.05, recorded such residency levels to annually influence a staggering 416 children’s

respiratory cases, a figure which wildly deviates from the 4 cases recorded via GWR estimates

of mixed significance. Further highlighting the inappropriate nature of the J20-22 trend across

LLSOAs where the ethnic group no longer exists as a minority. One would hope to further

develop the social group lifestyle stimulus-response models in future research, through

expanding the study field to encompass several urban municipalities.

In terms of deprivation, the universal stimulus-response models would appear to once

again provide a somewhat clouded relationship, with only the J20-22 subset trend capturing a

viable explanatory relationship (R2=0.43). In light of this uncertainty and the previous chapter’s

findings, it is quite feasible that deprivation once again influences upper and lower respiratory

infections via several pathways associated with different elements of experienced social-

economic burdens. Such thoughts are confirmed through a closer inspection of the complete

set of significant and non-significant J00-06 and J20-22 GWR model outputs, with potential

deprivation pathways of influence resembling a common trident structure (Appendix D11,

D12), as previously observed when modelling the complete respiratory set (Figure 4.11). One

should note that although the respiratory subsets share a mutual form, the scale of the

tridents operation for the J00-06 subset occurs across a magnitude twice the size of what is

recorded in regard to J20-22 hospitalisation rates. As previously discussed within Chapter 4,

appropriate deprivation subset trends were applied on the following basis:

TREND 1: >50% ‘White British’ Children & <3% Overcrowding
TREND 3: <40% ‘White British’ Children & >5% Overcrowding
TREND 2: All Other LLSOAs

On these grounds the J00-06 3-trend universal deprivation-response model (Appendix D13),

was found to associate deprivation as annually influence 241 children’s respiratory cases

across Leicester. This equates to 22.31% of the citywide J00-06 respiratory burden, a figure

which effectively captures its corresponding 50NN GWR model estimate of 19.20%. For the

J00-22 3-trend universal deprivation-response model (Appendix D14), 168 children’s

respiratory cases were annually attributed to factors of deprivation across Leicester. This

equates to 39.53% of the citywide J20-22 respiratory burden, a figure broadly capturing its

corresponding 50NN GWR model estimate of 42.77%.

The general findings from the GWR stimulus-response models indicate that socio-

environmental factors influencing the outcome of URT and LRT infections operate through

connected pathways, confirming earlier beliefs that prolonged exposures may wear down a

child’s respiratory system. In particular road-traffic emissions and levels of deprivation are
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likely candidates responsible for severely exacerbating a communities deteriorating respiratory

health. Nevertheless it would appear that lifestyle choices, such as those seen by Indian

residents, can also mitigate the onset of such conditions.

5.4. CONCLUSIONS

Across a 10-year period, acute upper (J00-06) and acute lower (J09-22) respiratory infections

were respectively observed to influence 41.65%  and 23.66%, of respiratory hospital incidents

experienced by children residing within Leicester UA. Such findings are relatively unsurprising,

considering that the average person is likely to suffer from 5-7 episodes of acute respiratory

infection per annum, with acute upper respiratory infections accounting for 30-35% of all new

complaints presented to GP’s (Cummings & Semple 1980).

Traditional dataset correlation tests, in the form of the Pearson's R (0.80) and

Spearman’s Rho (0.66), identified a substantial degree of linear association to exist between

relatively severe (J20-22) and mild (J00-06) respiratory infections at the 95% significance level.

Only limited associations were observed between the other major subsets affecting children’s

respiratory health across Leicester’s LLSOA communities. Global Moran’s I statistics indicated

significant spatial autocorrelation to exist within the J00-06 and J20-22 respiratory subsets, up

to and including third order LLSOA communities (approximately 1365m). Local Moran’s I

statistics detected major hot-spots to occur for both respiratory subsets within common inner-

city localities, and some common cold-spots towards Leicester’s northern and eastern

peripheries. Several socio-environmental factors were observed to differ between hot-spots

and their cold-spot counterparts, including residentially experienced TPM10 (+1.30 t/yr.),

Carstairs Index scores (+6.13), smoking prevalence (+18.16%), and levels of Afro-Caribbean

(+11.93%) or Indian children (-25.82%).

The significant spatial correlations of community J00-06 and J20-22 incidents

presented within this study, likely represent the severest fraction of respiratory conditions (or

iceberg of disease) attributed to ‘Catarrhal Child Syndrome’ (CCS). Such patient’s repeatedly

experience episodes of coughs and colds, as well as infections of the chest, ear and throat,

thought to be caused by an immature immunological system responding to various external

stimulants. As many as 80% of children consult general practitioners (GPs) with CCS from 5-6

years of age, with even the most debilitating symptoms (i.e. wheeze) tending to disappear

once a sufficient level of natural immunity is established, typically within the first 10 years of

life (Fry & Sandler 1993). In spite of the frequency of CCS, its causes have remained uncertain.

With cases rarely isolating specific pathogens and only tentative links with allergens existing,
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Fry & Sandler (1993) propose that underlying social and genetic factors likely govern the

disproportionate burdens experienced in specific families.

Independent J00-06 and J20-22 OLS models, defining the concurrent effect of several

socio-environmental variables on children's respiratory health, provided only a moderate

goodness-of-fit to the data. Global regression modelling of both subsets recognised the

significantly detrimental impact of TPM10 emissions and beneficial influence of Indian residents

on a community’s respiratory health. Yet unique to the J20-22 subset, levels of Afro-Caribbean

residents and deprivation were shown to significantly increase children’s respiratory risks at

the citywide level.  OLS models identified relative rises in residentially experienced TPM10

emissions to have the most prolific health impact on children, out of all explored socio-

environmental influences. Localised regression modelling accounting for the spatially

dependent nature of the dataset, substantially improved upon the goodness-of-fit reported by

OLS modelling for the J00-06 (R2=0.73, CV-R2=0.56) and J20-22 (R2=0.72, CV-R2=0.50)

respiratory subsets. This highlights the importance of contextual issues in producing spatially

differing responses in magnitude or direction, to the same stimuli, across an urban

environment. Nevertheless, median parameter estimates from GWR modelling appear to

broadly compliment OLS outputs, indicating that global models have a complimentary role in

summarising the general relationships of spatially dependent datasets.

The next step of this investigation involved the correlation of localised J00-06 and J20-

22 admissions influenced by specific socio-environmental factors, as defined via GWR

modelling. Pearson's R tests identified a substantial degree of linear association between

modelled URTI and LRTI hospitalisations caused by TPM10 emissions (0.85), deprivation (0.76),

and community levels of Indian (0.72) children. Bivariate Local Moran’s I tests identified TPM10

emissions and levels of deprivation as likely candidates responsible for a communities

deteriorating respiratory health. Exacerbations of J00-06 and J20-20 admissions associated

with these two factors appeared to solely affect inner city communities, confirming the

previously reported ‘triple jeopardy’ of social, health and environmental inequalities within

Leicester (Jephcote & Chen 2012). Lifestyle choices, such as those seen by Indian residents,

were also shown to mitigate the influence of detrimental socio-environmental factors, and in

part reduce the potential spatial extent of such respiratory issues around other centric

localities. Reasoning for the positive lifestyle choices of Indian residents, and the ability of

certain ethnic minority groups to adapt better than others within Leicester, was discussed

within Chapter 4.

Particulate induced health effects are understood to predominantly involve the

destruction of cellular DNA via oxidative stress, followed by a natural inflammatory response,
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which isolates then attacks both the foreign entity and surrounding area affected by its

presence (Risom et al 2005). Yet, it has also been shown that exposure to pollutants can alter

the hosts defence mechanisms, increasing the likelihood for infections to occur following an

exposure episode. This secondary mechanism may be of far greater importance, when

considering that a 3-year Australian Cohort of 263 infants detected viruses in 69% of non-

hospitalising acute respiratory illnesses (Kusel et al 2006). Of these viral incidents, rhinoviruses

were detected in 51.8% URTI’s and 40.7% LRTI’s, and respiratory syncytial virus (RSV) were

detected in 8.6% URTI’s and 15.2% LRTI’s (Kusel et al 2006). A 2-year Finish Cohort exploring

293 children hospitalised with acute expiratory wheezing, detected a causative viral agents in

88% of cases (Jartti et al 2004). RSV was found in 54% of viral related infant admissions,

whereas picornaviruses (including rhinoviruses) were detected in 82% of viral admissions for

children age >3 years (Jartti et al 2004). Focusing on the lower respiratory tract illness, Psarras

et al (2004) also reported the predominant influence of RSV on LRTI’s in children <3 years of

age, with the virus accounting for 50-90% bronchiolitis and 10-30% tracheobronchitis

hospitalisations. Meanwhile in schoolchildren aged 9-11 years, Johnston et al (1995) detected

upper respiratory viral infections in 80-85% of exacerbations of asthma, with picornaviruses

(mostly rhinoviruses) accounted for two thirds of the viral infections.

The literature, would therefore suggest that age-specific viruses have a likely role in

initiating, prolonging or exacerbating the detrimental effects of certain socio-environmental in

establishing a child’s respiratory infection.  The seasonal decomposition of children’s URTI’s

(J00-06) and LRTI’s (J20-22) within Leicester from 2000-09, reveal nearly a 50-50 split for URTI’s

occurring within the hot and cold seasons (Appendix D15). This seasonal independence would

indicate that socio-environmental factors, rather than viral uptake, are more likely to initiate a

URTI episode. In contrast, 77.0% of LRTI’s (J20-22) appear within the cold season when RSV

and picornaviruses are most abundant (Appendix D15). For children residing within Leicester, it

is proposed that exposure to detrimental socio-environmental factors may initiate URTI

episodes, with prolonging recovery times likely occurring from sustained exposures. If a

sufficient level of recovery is not reached in time for the cold season, then the child may

become host to a viral infection exacerbating previous respiratory complaints, potentially

resulting in lower respiratory tract conditions of greater severity.

Animal toxicology studies have consistently identified the immunosuppressive

influence of pollutants in host susceptibility to viral and bacterial infections. Mice challenged

with the influenza virus, ensuing a 6 month exposure period to diesel engine emissions

(2mg/m3), were shown to experience significantly higher levels of lung consolidation (61.5%)

than their air-exposed counterparts (33.3%) (Hahon et al 1985). Rats infected with a strain of S.
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pneumoniae, exposed to a 5-hour dose of concentrated ambient particulates (65-150µg/m3),

have also displayed bacteria burdens 300% above air-exposed subjects (Zelikoff et al 2003).

Human in-vitro investigations have indicated alterations in proinflammatory cytokine

production of cultured bronchial epithelial cells following diesel exhaust particulate

concentrations of 0.077 - 0.33 mg/mL (up to 39x control value), potentially upsetting the

immune homeostasis of the lung (Steerenberg et al 1998). Becker & Soukup (1999) record a

50% decrease in the uptake of RSV in human alveolar macrophages (AM) in the presence of

PM10, with PM10 exposure in the absence of infection significantly increasing the production of

macrophage inflammatory proteins. This would imply that exposure to PM10 alters AM-

regulated inflammatory responses to viruses, enhancing the spread of infection. Jaspers et al

(2005) identify solutions comprising of 25µg/cm2 diesel exhausts to increase viral RNA levels in

bronchial epithelial cells 80% above samples that had only been infected with the influenza

virus. Yet in contrast to previous studies, levels of inflammatory proteins appeared unchanged,

thus suggesting that oxidative stress generated by diesel exhausts acts as the primary

mechanism for increases host susceptibility to viral infection. An investigation of 2,604

Washington State infants hospitalised with RSV-Bronchiolitis matched with a case-control

cohort dataset, provides evidence for this immunosuppressive influence to occur within areas

experiencing low ambient air pollution levels. A 10µg/m3 increase in PM2.5 was associated with

a 14% and 4% rise in bronchiolitis hospitalisations in RSV infected and non-infected infants

respectively; residing within 150m of a freeway was also identified to increase the likelihood of

bronchiole episodes by 7% in non-infected, compared to 17% in RSV infected infants (Karr et al

2009)

Previous investigations have reported childhood deprivation to have a long-lasting

influence on adult lung function, thus corroborating with our findings of a causal link for

deprivation and declining respiratory health during childhood. In a study of 3,911 women aged

60-79 years, material and social childhood socioeconomic influences on urban families

including manual labour(-0.12l), limited car access (-0.10l) and shared bedrooms (-0.03l) were

associated with reduced adult FEV1 rates after adjustment for present lifestyles (Lawlor et al

2004). Spencer et al’s (1996) inquiry of Sheffield’s 1989/90 RSV outbreak identified 307

children with clinically suspected bronchiolitis. Children from the most deprived electoral

wards were reported as 1.5 times more likely to be admitted and 1.4 times more likely to

require medical intervention, than those living in other parts of the city.

The consequence of poverty is attributed to an amalgamation of material and social

factors, which collectively play a central role towards explaining geographical variations in life

expectancy at birth, across England and Wales (Woods et al 2005). Furthermore, it would
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appear that inequalities in health have widened between the least and most deprived areas

since 1971, through healthier individuals tending to migrate away from deprived areas

whereas less healthy individuals are drawn into such areas (Norman et al 2005). It is believed

that the housing stock of deprived communities plays a noteworthy role in declining health,

with children residing in damp and mouldy dwellings experiencing an elevated prevalence of

respiratory symptoms (Hopton & Hunt 1996, Platt et al 1989). However, improvements to

living conditions have been shown to only prevent a further deterioration in health rather than

bringing about health benefits (Hopton & Hunt 1996). Research exploring the financial aspects

of deprivation indicates that social mobility may also only moderate, rather than create or

amplify, social class differences in health (Blane et al 1998). This would suggest that if

conditions are established, then they might prevail throughout adulthood.

Deprivation would also appear to have an influential role in the accessibility of

appropriate healthcare to intervene the establishment of such respiratory issues, despite the

fact that the NHS provides care based on need rather than ability to pay. A study of 284

wheezy children residing in London, identified a general lack of treatment for wheezing illness,

yet marked differences in the uptake of anti-asthmatic drugs were still prevalent between the

most affluent (41%) and deprived (10%) households (Anderson et al 1981). Furthermore, the

effect of social class seemed to be explained by its association with the mother’s mental

health, thus providing an argument for a more ‘holistic’ approach to family medicine.

‘The inverse care law’, whereby the availability of good medical care tends to vary

inversely with the need for it in the population served, likely explains healthcare issues within

deprived communities. In a questionnaire of 3,044 NHS patients in Scotland, Mercer & Watt

(2007) identified patients from deprived areas as having more issues to discuss (especially

psychosocial), yet clinical encounter lengths were generally shorter. Furthermore, GP stress

was higher because of high workloads and patient enablement was lower in encounters

dealing with psychosocial problems in the most deprived areas, indicating that an inverse care

law continues to operate within the NHS confounding attempts to narrow health inequalities

(Mercer & Watt 2007). Patient’s views on primary care in deprived areas have also indicated a

need for holistic GPs who are competent, genuinely caring and understand the realities of life

in such areas, in order  to not be viewed as socially distant and emotionally detached (Mercer

et al 2007).  A report of 689 asthmatic subjects aged 11–59 years residing within Birmingham’s

deprived inner city wards, revealed the uptake and delivery of preventative health care to be

of a poor standard, which worsened with gender and ethnicity (Moudgil & Honeybourne

1998). Only 45.4% persons understood the mechanisms behind the condition, 68.9% reported

full drug compliance, and only 16.3% carried out self-management measurements. The lack of
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tailored visits and an erosion of a doctor-patient relationship, previously reported offer one

plausible explanation for this poor uptake of preventative care. Furthermore, future proposals

for a centralisation of NHS critical care services have been shown to disproportionately affect

poorer individuals, whereas increased investment in telephone services will predominantly

benefit affluent populations, widening inequities in access to emergency care (Shah & Cook

2008).

The significant spatial correlations of community J00-06 and J20-22 incidents

presented within this study, likely portray the severest fraction ‘Catarrhal Child Syndrome’

(CCS) cases, involving the susceptibility of a developing immunological system to respiratory

infections. From this investigation, it is suggested that exposure to detrimental socio-

environmental factors may initiate URI episodes, with prolonging recovery times likely

occurring from sustained exposures. If a sufficient level of recovery is not reached in time for

the cold season, then the child may become host to a viral infection exacerbating previous

respiratory complaints, potentially resulting in lower respiratory tract conditions of greater

severity.  The findings presented here indicate that road-traffic emissions and levels of

deprivation are likely candidates responsible for a communities deteriorating respiratory

health. In contrast lifestyle choices, such as those seen by Indian residents, may potentially

mitigate the onset of such conditions.

In spite of the frequency of CCS, its causes have remained uncertain; however it was

previously believed that underlying social and genetic factors likely govern the

disproportionate burdens experienced by certain families (Fry & Sandler (1993). The findings of

this investigation would appear to confirm the existence of a link between extreme cases of

CCS and certain socio-environmental influences. Additional research is recommended to

confirm such findings.
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CHAPTER 6

ANALYSIS OF NATURALLY OCCURRING BOUNDARIES IN CHILDREN’S
RESPIRATORY HEALTH AND ASSOCIATED SOCIO-ENVIRONMENTAL
INFLUENCES: LEICESTER UA 2000-09

OVERVIEW

Chapters 4 and 5 previously established that certain segments of society uniquely experienced

a ‘triple jeopardy’ of social, environmental and respiratory burdens, throughout childhood.

Furthermore, a particular set of socio-environmental variables were identified to individually

influence relatively minor and severe respiratory complaints through a shared  spatial and

arithmetic pathway, indicative of a mechanised decline in health from continued exposures.

Upon defining such dose-response relationships, this chapter moves onto the second stage of

the research project, which will entail the examination of spatial field’s in-order to define the

prevalence of critical distance-response connections between respiratory and socio-

environmental phenomenon.

Health boundaries are of intrinsic medical interest, in that they reflect the geographic

extent and intensity of underlying physical and or social processes, identifying populations

whom are most likely to be at risk from a fluctuating health front. Traditionally, the spatial

extent of health impacts associated with road-transport pollutants have been explored

through the examination of artificially created buffers, defined by subjective distances from

specified major road links. Within this chapter an alternative approach is presented using

boundary statistics, which describe naturally occurring shifts of magnitude in socio-

environmental and health outcomes across the wider urban area. To date, distance-threshold

techniques have solely explored the response environmental attributes, without considering

the combined influence of additional social burdens. This chapter covers objectives 1, 2 and 6

of this project outlined in Chapter 1.
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6.1. INTRODUCTION

Across the urban environment, road-transport constitutes as the predominant source of

outdoor air pollution, emitting a concoction of air quality objective pollutants and carcinogenic

hydrocarbons within close proximity to residential districts. Simplistic approaches towards

distinguishing unique community exposures to traffic pollutants, commonly involve the

utilisation of surrogate measures such as residential proximity to major road links, with

questionnaires or spirometry tests measuring diminishing respiratory functions in relation to

distance (Oosterlee et al 1996, Brunekreef et al 1997). A recent proximity based study

inspecting 8-years of lung development within Californian children, identified residents ≤500m

from freeways to experience a decline in Forced Vital Capacity of -63ml, diminishing to -19ml

by 1000-1500m (Gauderman et al 2007).

Maantay (2007) investigated the occurrence of asthma hospitalisations in relation to

air pollution across the Bronx, NY, through applying established environmental agency

proximity standards to construct environmental hazard buffers. Approximately 66% of the

Bronx’s land mass fell within the buffers, which were predominantly occupied by ethnic

minorities (88%) and persons living below the federal poverty level (33%). Children residing

inside these pollutant buffers were also 11-17% more likely to be admitted to hospital

(Maantay 2007). Within a European context, the Health Survey for England datasets nationally

identified respiratory outcomes across 6,015 children aged 7-15 years to become exacerbated

across extremely localised distance bands from main roads after adjustment for sex and

deprivation. Here, Adjusted Odds Ratios (AOR) using the 120-150m band as a benchmark,

identified wheeze, asthma and allergic rhinitis symptoms to progressively increase with

proximity, reaching respective AOR’s of 1.62, 1.35, and 1.14 for children residing <30m from

major roads (Pujades-Rodriguez et al 2009).

Thus, it is well documented that exposure to elevated levels of air pollution causes

acute respiratory distress, with such effects tending to become exacerbated within artificially

created buffers that are of closest proximity to specified major roadways. However, it remains

unclear whether exposure in the every-day environment to naturally occurring zones of rapid

change in pollutants, considerably contribute towards the spatial existence of marked

boundaries in respiratory health (Jacquez 1995). Health boundaries are of intrinsic medical

interest, in that they reflect the geographic extent and intensity of underlying physical and or

social processes (i.e. pollutant plumes, social attitudes etc.), identifying populations whom are

most at risk of developing new conditions from a fluctuating health front in light of a particular

socio-environmental event. This chapter intends to address such issues through the application

of geographic boundary analysis techniques, which define the natural occurrence and
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magnitude of objects across spatial fields. After which, the degree of overlap between

variables of interest is accomplished by null spatial models, which unlike pattern recognition

techniques, are able to ascertain whether such thresholds of spatial influence are in some way

statistically unusual.

Studies involving the detection and overlap of naturally occurring geographic

boundaries have been widely applied within the fields of genetics and ecology (Barbujani et al

1989, Fortin & Drapeau 1995, Hall 2008), for the evaluation of locations portraying an

amalgamation of biological, physical and social processes at work. However, few studies have

explored the tools application within the wider fields of epidemiology and public health, with

applicable studies tending to focus solely on issues concerning the late-stage diagnosis and

mortality rates of cancer patients (Jacquez & Greiling 2003).

Boundary analysis methods are favoured over conventional proximity studies because

such techniques determine the exact critical distance threshold between substantial gradient

shifts in air pollutants and health outcomes without the user testing relationships across

arbitrary distances. Furthermore, traditional proximity studies of pollutants on health

outcomes have treated supplementary social circumstances purely as cofounding

measurements, for which populaces may require necessary adjustments. In contrast, boundary

analysis methods can be used to define zones of rapid change across multiple socio-

environmental variables of interest, which may then be compared to health boundaries. This is

of particular importance when considering that specific communities tend to experience a

‘triple jeopardy’ of social, health and environmental inequalities (Pearce et al 2010). Finally,

such techniques should be viewed as a more appropriate form of analysis across urban

environments, which contain vast road networks and experience complex transport flows. In

some cases, congestion on minor roads close to residential areas perhaps poses a higher

respiratory health risk than what would be experienced along fast-flowing major roads.

Therefore it would be of greater interest to explore naturally occurring urban pollutant

gradients rather than focusing on a specific major roadway.

6.2. UNIVARIATE BOUNDARY DETECTION & VALIDATION

Polygon wombling is interested in the exploration of whether two adjacent census areas,

separated by a common border (CBE), portray dramatically dissimilar responses for the

individual or set of particular variables in question.  In terms of health outcomes, boundaries

are of particular importance in understanding whether the presence or disappearance of
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extreme values in influential socio-environmental phenomenon(s) may drastically increase

levels of risk. Univariate crisp polygon wombling techniques described within Chapter 3 were

applied to detect boundaries across children’s respiratory hospital admissions, traffic

emissions and the other individual social variables within BoundarySeer 1.3.13. Within the

Leicester dataset, approximately 25 out of the 508 CBEs were defined as BEs for each

respiratory and socio-environmental variable of interest. Upon viewing Figures 6.1 and 6.2,

one may see that that BEs for all of the explored socio-environmental and health variables fall

well within the right tail of their respective BLV distributions, which would suggest that that

the detected boundaries are of an appropriate nature.

For children’s J00-99 admission rates, boundary elements were characterised to

contain a BLV ranging from 0.06 to 0.58 (Figure 6.1). It should be noted that the raw dataset

values recorded at each LLSOA observation are normalised on a scale of 0-1, prior to

calculating the Squared Euclidean dissimilarities of the applicable CBE’s. As a result, levels of

dissimilarity for a univariate boundary analysis may never exceed a value of 1, with such a

procedure allowing for a direct comparison of dissimilarity strength across multiple variables.

For children’s J00-99 admission rates, the six largest levels of dissimilarity were found to

encase the southern, eastern and western faces of the focal inner-city LLSOA identified to be

of prior interest in Chapters 4 and 5. In-fact these six boundaries were recorded to provide an

average BLV of 0.47, with all eight boundaries encircling this particular LLSOA providing a BLV

≥0.14. One may note that adjacent to the north-eastern face of this community lie two LLSOAs,

which may be viewed as an extension of this primary respiratory health front. Within this

secondary cluster the six containing boundaries exhibit an average BLV of 0.18, which is well

above the criteria threshold, yet somewhat diminished upon the values recorded around the

inner-city focal point. This would suggest that a spill-over of the immediate detrimental

influences appears focused in a north-westerly direction. One may also notice that a staged

transition in deteriorating respiratory health appears to occur towards the south of the inner-

city focal point, whereby a second set of three weaker boundary’s record an average BLV of

0.06 in marking a transition from moderately high to low symptom outbreaks outside of the

city centre.

Meanwhile, boundaries in the spatial spread of children’s J00-06 admissions were

classified through a comparatively weaker threshold (BLV ≥0.03). Yet at the same time, such

boundaries exhibited a range of more extreme dissimilarities, reaching a maximum BLV of

0.73. The largest set of dissimilarities were found to entirely surround the inner-city LLSOA of

prior interest, of which BLV values for these eight boundaries were ≥0.30, providing an average

BLV value of 0.52 (Figure 6.1). In contrast, two of the northern boundary faces of this LLSOA
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were associated with BLV’s as low as 0.23 and 0.14 when exploring the J00-99 spatial field. As

before, two LLSOAs adjacent to the north-eastern side of this focal point appeared entirely

encased via six boundaries exhibiting an average BLV of 0.17. Likewise, a staged transition in

deteriorating URT health appears to occur towards the south of the inner-city focal point,

whereby a second set of four boundaries provide a weaker but still substantial average BLV of

0.06. Unique to the J00-06 subset, the outer shell of this step-wise transitional zone also

reveals itself along the eastern face of the inner-city, of which four boundaries providing a

somewhat weaker average BLV of 0.05. Additional deviations from objects relating to the

complete respiratory set, involve the addition of two boundaries running along a LLSOA within

the ward of Western Park, which contains several education facilities.  Of particular note is the

disappearance of three J00-99 boundaries around a single northern LLSOA positioned adjacent

to the Melton road, which appears represent a high outlier for J00-99 cases but not for the

individual J00-06 or J20-22 subsets.

Children’s J20-22 admission rate BEs were associated with a BLV’s ranging from 0.06 to

0.78, of which the five largest dissimilarities were found to encase the eastern and western

faces of the inner-city LLSOA of prior interest (Figure 6.1). BLV values ≥0.10 were associated

with this LLSOA, representative of a weaker rate of change than what was observed for URT

conditions. Nevertheless, the entire eight boundaries of this LLSOA produced an average BLV

of 0.45, a value marginally below prior health evaluation figures. Two LLSOAs adjacent to the

north-eastern side of this focal point are once more of interest, of which the six boundaries

encasing the cluster provided BLV’s ranging from 0.10-0.38, averaging a value of 0.21.

As with prior respiratory complaints, a staged transition in deteriorating LRT health

appears to occur towards the south of the inner-city focal point. However, this time the outer

zone encompasses the wider southern portion of the outer city centre, with the five

boundaries in question also providing a somewhat grander average BLV of 0.08. In contrast,

the J20-22 subset differs from the overall respiratory set through the addition of four

boundaries towards the cities eastern periphery, in locales somewhat representative of the

terminal and major junctions preceding the missing link of the cities outer ring-road. These

boundaries support the findings of Chapter 5, which show that LRT cases are particularly

influenced by regular spatiotemporal pollutant episodes that occur at peak times.
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FIGURE 6.1: Maps illustrating the top 5% of Boundary Elements (red) across respective decile
distributions of annual average children’s respiratory admissions (J00-99, J00-06, J20-22): Leicester
2000-09
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FIGURE 6.2 [PAGES 229-231]: Maps illustrating the top 5% of Boundary Elements (red) across
respective decile distributions of environmental and socioeconomic-ethnic independent variables
previously identified to be of interest of via spatial regression models

TPM10 emission boundaries were associated with BLV’s of 0.04-0.27, with their distribution

once again focusing upon Leicester’s inner city locales (Figure 6.2). One may note that a

primary set of boundary’s containing the respiratory LLSOA of interest and two other adjacent

southern communities, separates extremely high from high pollutant zones. It would then

appear that several fragmented outer boundaries represent a shift from high to moderate

pollutant zones, suggesting that a two-phase boundary process operates across Leicester’s

central district. Such a system was just reported in relation to respiratory outbreaks, which

would imply that spatial transitions in pollutant levels are a key influence in determining

respiratory health gradients.

The largest reported TPM10 BLV (0.27) may be found on the north-western face of the

central LLSOA denoting a shift from extremely high to high pollutant zones. The second and

third highest BLV’s exist within the inner (0.13) and outer (0.12) boundary sets towards the

south of this locale, marking smaller differences in residential TPM10 exposure levels. It may be

noted that the normalised differences between pairs of LLSOA TPM10 emission exposures are

of a slightly reduced value compared to other socio-environmental and health variables (Table

6.1). A certain degree of smoothing was inadvertently introduced through the spatial

interpolation of the 1x1km NAEI emission dataset to the LLSOA level. Nevertheless, the

distribution of BLV’s would suggest that the reported boundary elements clearly represent

rapid transitions, in the wake of plausible instances of over-smoothing.

In contrast, Carstairs Index boundaries provided BLVs of a consistently moderate

strength ranging from 0.18-0.48. Furthermore, there is a less centric focus, with boundaries in

relative levels of deprivation appearing to exist predominantly in several key pockets across

the cities western periphery (Figure 6.2). Some minor formations are also observed extending
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out from the inner city focal area and across the eastern fringes of Leicester’s central district.

The highest deprivation related BLV (0.48) was identified along the border of Western Park and

New Parks, with the second highest BLV (0.46) also located within the western district, this

time along the border of Braunstone and Western Park. However, the third highest BLV (0.46)

is located in the inner city, where Spinney Hills and Abbey meet, in the area identified as a

direct extension of the city’s leading respiratory health problems. Meanwhile the fourth (0.36)

and fifth highest deprivation BLVs (0.35) were identified along a minor cluster of northern

LLSOAs along the border of Beaumont Leys and Abbey, which appear to coincide with

respiratory health gradients outside of the crucial inner-city zone. It would therefore appear

that determinants of socio-economic status unlike other key burdens are not location

restricted, but they rather operate throughout the city in a way that regulates moderate shifts

in respiratory health.

Boundaries in levels of adult smoking prevalence, representative of passive smoking

exposures during childhood, appear to operate almost exclusively across peripheral areas

positioned within the western half of city (if one was to split the city into two).  These

boundaries contain moderate-high BLV’s of 0.30-0.65, which form in relation to the visually

clear-cut spatial contrasts of alternate extremes in the variables decile structuring. The largest

differences in smoking prevalence are identified to occur across Leicester’s western periphery,

where Braunstone separates from New Parks. Here two boundaries produce a substantially

high average BLV of 0.65, representative of the obvious difference between third order and

tenth order smoking deciles. Meanwhile, the third to sixth largest magnitude boundaries are

positioned towards Leicester’s northern periphery, where they produce an average BLV of

0.42. Once more, such high dissimilarities are produced by sharp spatially extensive differences

between second and ninth order deciles.

Likewise, adult obesity boundaries thought to be indicative of childhood activity and

dietary intake, appear to exist between neighbourhoods exhibiting a sharp contrast in decile

classification, as indicated by BLV’s of  0.18 - 0.57. The six largest shifts in magnitude are

recorded along the north, eastern and western faces of the inner-city focal point, which itself

experiences extremely low obesity levels (second decile) compared to the adjacent

communities (seventh+ decile); therefore it is of little surprise that the average BLV of these six

boundaries is logged as 0.56. The second most striking transition between two homogeneous

clusters of low and high obesity rates may be observed across Leicester’s southern periphery,

however this occurs at a far lower magnitude as observed by an average BLV of 0.37 across the

six boundary elements in question.
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Children of ‘White British’ ethnicity are observed to predominantly reside within the

cities western and southern quarters, with transitional zones typically occurring across central

regions of Leicester (Figure 6.2).  In particular, one may note that a section of boundaries run

from north-to-south through inner city locales almost to create an interlocking structure,

segmenting the eastern half of the city from the west. This structure consists of thirteen

boundary elements, which provide an average BLV of 0.40. Furthermore, four of these

boundaries are logged as containing the highest BLV’s recorded for this particular ethnic

group. Meanwhile, in this partitioned eastern zone a second peak of ‘White British’ children

may be observed along the city limits, around the missing link of the cities outer ring-road. This

reoccurrence of ‘White British’ residents would appear to form a banded structure, in which

rapid transitions in minority groups are universally observed as one moves towards inner city

locales. Overall, boundaries in ‘White British’ children were recorded to range from 0.21 to

0.60.

In contrast, levels of ‘White Non-British’ children were observed to be high across

multiple pockets of minor clustering, typically in the form of a singular LLSOA positioned

outside the inner-city. Because of such high outliers, BLV’s for ‘White Non-British’ children

were recorded to start from 0.39, in some circumstances reaching the maximum value of 1.00.

In particular, a high residency cluster across a portion of Western Park contains six out of the

top eight BLV’s for this social group, producing an overall average BLV of 0.72. Around the

inner-cities fringes, three minor transitional pockets may be observed, of which the two

northern boundary zones provide average BLV’s of 0.52 and 0.46, with the southern cordon

providing an average BLV of 0.49.

For ‘Indian’ children, one may note that a section of boundaries run from north-to-

south around inner city locales almost matching the dividing structure between ‘White British’

residents and ethnic minorities. This arrangement is constructed from twelve ‘Indian’

boundary elements, which together provide an average BLV of 0.31. Such a value is noticeably

smaller to what was recorded in relation to shifts in ‘White British’ residency levels, indicative

of the selective integration between ‘Indian’ and other ethnic minority groupings discussed

with Chapters 4 and 5. In this respect, these boundaries in ‘Indian’ residency represent a clear

separation between ‘White British’ and ethnic minority children. However one should note

that ten boundaries illustrate fluctuating levels of ‘Indian’ residency across the eastern half of

the city of a similar magnitude, as recoded in an average BLV of 0.29. Yet such boundaries

would tend to relate to interactions between other ethnic groups, thus suggesting that aspects

of segregation are also likely to occur between minority groups. Overall, boundaries in ‘Indian

children were recorded to range from a low 0.18 to a moderate 0.49.
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Boundaries in ‘Other South Asian’ children’s residency levels were associated with

BLV’s of 0.08-0.56. These boundaries are shown to almost exclusively mark the fringe of the

south-eastern section of Leicester’s inner-city, with minor boundaries also capping the

northern section of this ethnic group’s residential areas of choice throughout Stoneygate.

These five northern boundaries provide an average BLV of 0.12, which would imply that whilst

reductions in ‘Other South Asian’ residency levels occur in relation to other minority groups,

such changes are relatively minor and occur in a relatively smooth fashion. Two other minor

transitions in ‘Other South Asian’ residency levels may be observed around a northern LLSOA

within Belgrave (BLV ≤0.1), and within a LLSOA east of the inner-city focal point of prior

interest (BLV=0.08).

Meanwhile, boundaries in ‘Afro-Caribbean children’s residency levels were also

defined in relation to low BLV’s of 0.06, yet in some circumstances displayed extreme

dissimilarities in neighbouring residency levels reaching the maximum univariate BLV value of

1.00. Specifically, a cluster of two LLSOAs recognised to represent the northern extent of

respiratory boundaries is observed to be completely encased by this groups top six boundary

elements, which deliver an average BLV of 0.67. Interestingly levels of Afro-Caribbean

residency are recorded to be 0.00% within the inner city focal point, which would suggest Afro-

Caribbean residents to be strongly removed from the main driving forces behind a child’s

debilitated respiratory responses. In particular, chapters 4 and 5 previously established TPM10

emissions to cause a localised burden of an extreme magnitude unique to this specific LLSOA.

Despite this the two adjacent north-western LLSOAs housing large numbers of ‘Afro-

Caribbean’ children, falls well within the general pollutant zone of concern, in addition to

sharing common elevated boundaries with all respiratory conditions under investigation.

Still, a secondary spatial expanse of ten boundaries is observed towards the southern

fringes of the outer-city centre, recording an average BLV of 0.12 in relation to ‘Afro-

Caribbean’ residency levels centrically increasing from a first to tenth order decline. One may

recall that such a boundary is in-line with the staged transition in deteriorating respiratory

health and elevated pollutant levels. Collectively, these observations reveal that although

‘Afro-Caribbean’ children are not exposed to extreme values of TPM10 fallout, yet their

residency remains strongly associated with unfavourable exposure levels. Furthermore, one

should not rule out that the lifestyle of this social group may also have a minor role in

influencing the extent to which these respiratory outcomes occur.

Local indicators of spatial autocorrelation (LISA) in the form of a first order neighbour

Getis-Ord Gi* statistic were subsequently conducted, in-order to externally cross-validate

whether the edges of spatially homogeneous pockets correspond to our detected boundaries
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(Figure 6.3, Appendix E1). Unlike the Local Moran’s statistic which detects regions of homo and

heterogeneity, the Getis-Ord Gi* statistic simply categorises spatial clusters to represent either

‘hot’ or ‘cold’ spots dependant on the direction in which the local statistics substantially

deviates from the global statistic; In contrast, the Local Moran’s statistic compares the local

situation to that of its neighbours. It is believed that the less descriptive Getis-Ord Gi* statistic

presents a more conservative approach for upper  tier boundary validation, in that the

prominence of local outliers will often be restricted by its global threshold.

The Gi* statistic identified the existence of a significantly high clustering of children’s

J00-99 respiratory hospital admissions within the city centre of Leicester, which closely mimic

the outer range of wombled boundaries (Figure 6.1, 6.3). In-fact, observed annual J00-99 rates

across the inner city zone of high clustering averaged 76.01 admissions per 1,000 children,

which is distinctly higher than Leicester’s LLSOA global average of 39.43 admissions per 1,000

children. Furthermore, the south-eastern cold-spot located within Knighton is marked by a

boundary on its northern face; whilst the Westcotes cold-spot appears to represent a central

low point, for which a proximal boundary falls neutrally in-between this and the inner-city hot-

spot of concern. Nevertheless the northern boundary sections around Belgrave and Beaumont

Leys, appear to have gone undetected by the Gi* analysis, which might suggest that the 5%

threshold could be restricted further.

Yet if one was to recall the Local Moran’s J00-99 outputs (Figure 4.2), they would

notice that the Belgrave boundaries define a highly outlying locale, and are therefore of an

appropriate nature. Such observations just confirm ones earlier opinion that the Gi* analysis

offers a stricter inquiry for spatial objects. As with the entire respiratory set, Gi* outputs for

the individual J00-06 and J20-22 subsets successfully illustrated their respective inner-city

expanses of homogeneity, in-line with the main polygon wombling analysis. Yet one may note

that other external boundaries for both subsets have remained undetected, yet from the

quantile plots still represent exceptionally localised spatial shifts albeit of a reduced

magnitude.
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FIGURE 6.3 [PAGES 236-237]: Getis-Ord Gi* hot-spot analysis (P≤0.05) of annual average children’s
admissions of the complete respiratory set (J00-99), and other socio-environmental independent
variables explored by the boundary analysis

Of particular spatial importance is the distribution of PM10 road-transport emissions (TPM10),

which also exist at elevated levels within the inner city, extending slightly beyond the eight

LLSOAs coined as hot-spots for children’s respiratory cases (Figure 6.3). This area of interest

contains the cities inner ring-road (A594) and several key arterial roads linked to the M1 and

the cities outer ring-road (A563). Residentially experienced TPM10 emissions levels within the

hot-spot of respiratory cases were identified to occur at levels 49-154% higher than average

citywide emission rate of 1.04t/yr. It would seem as if the primary components of the inner-

city TPM10 emission boundaries closely depict the circular extent of Leicester’s inner ring-road.

Meanwhile the Gi* cold-spots have not been represented by boundary detection, due to their

smooth transitional nature as depicted in Figure 6.2’s TPM10 decile plots.
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As previously reported in Chapters 4 and 5, a crossover between children’s respiratory

cases and TPM10 emissions, with Carstairs Index deprivation levels may also be observed from

the hot-spot analysis; thus presenting the potential avenue for a double burden of social and

environmental issues collectively impacting on a child’s wellbeing. In particular affluent areas

along the cities south and eastern peripheries averaging Carstairs Index scores of -4.06,

experience TPM10 emission levels approximately 0.11t/yr. below typical citywide rates, and

record 30.42 J00-99 admissions per 1,000 children. Whereas the central deprivation hot-spot

presents an average Carstairs Index score of 4.62 and TPM10 emissions 0.60t/yr. above typical

residential exposures, which coincide with a J00-99 burden of 50.27 admissions per 1,000

children. However in contrast to the two other described elements, a comparison of boundary

and Gi* analysis outputs would imply that issues of deprivation present themselves across a

much smoother and expansive spatial scale (Figure 6.2, 6.3). Here boundaries appear within

the nearby vicinity of the north-eastern and south-eastern cold-spots, which are thought to

not represent the edge of homogeneous areas, but rather the heart of these smooth spatial

shifts in magnitude. The construction of polygon boundaries along Leicester’s western

periphery, whilst not clearly defined, also remain plausible in that minor central elements of

alternative homogeneous clusters are documented by the Gi* analysis. Nevertheless, several

north-western boundary elements remain unconfirmed by hot/cold spot outputs.

The potential existence of environmental inequalities may be further brought into

question upon examining the distribution of Leicester’s ethnic minority groups, with ‘Afro-

Caribbean’, ‘Indian’ and ‘Other South Asians’ tending to reside within inner city areas denoted

to experience elevated deprivation and traffic emissions levels. Across Leicester, ‘Afro-

Caribbean’, ‘Indian’ and ‘Other South Asian’ residents aged 0-15 years, respectively account for

2.67%, 30.00% and 5.88% of this age groups citywide populace. However within their

individual inner city double-burden hot-spots, ‘Afro-Caribbean’, ‘Indian’ and ‘Other South

Asian’ children correspond on average, to 10.27% 55.59% and 20.49% of each LLSOAs

residential populace. Furthermore, children of White-British ethnicity, on average only explain

15.52% of the residential populace across inner city LLSOAs defined by the hot-spot analysis as

experiencing elevated deprivation and TPM10 emission levels. Although regression modelling

indicated children from ‘Indian’ communities to globally experience fewer respiratory

admissions, spatial analysis identified a tendency for this community to reside within areas

experiencing overruling adverse socio-environmental influences. These observations would

imply that certain ethnic minority groups experiencing environmental injustices possess

favourable social abilities to mitigate such health outcomes.
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The previously reported ‘White British’ boundaries describing sharp transitions in

relation to levels of ethnic minority residency appear to be clearly recognised by the Gi*

analysis (Figure 6.2, 6.3). In-fact, boundary locations appear positioned precisely along the

fringes of the ethnic enclave band, which runs from north-to-south, cutting through sections of

central Leicester’s problem area. The Gi* statistic confirms that this banded structure largely

relates to increased levels of ‘Indian’ residency. Likewise, this ethnic groups strongest

boundary structures closely mimic both sides of this residency band, with a minimal detection

of magnitude shifts around residential cold-spots. One may notice that several ‘Indian’

boundaries also exist within this band principally relating to shifts in ‘Afro-Caribbean’

residency. Gi* outputs describing the residential tendencies of ‘Other South Asian’ and ‘Afro-

Caribbean’ residents, would also appear to confirm the positioning of boundary elements. Yet,

areas deemed to house low levels of ‘Other South Asian’ children, as with other ethnic

minority groups, were found to inadequately differ from neighbouring locales to warrant a

boundary placement. This would confirm that ethnic minority children have a strong

residential disassociation with ‘White British’ children, whereby they almost universally reside

within the eastern quadrant the city. However, the one exception to this rule involves the

settlement of ‘White Non-British’ residents whom appeared scattered on the western edge of

central Leicester.

Areas experiencing high levels of smoking prevalence, presented as likely candidates

for passive smoking amongst children, tended to exist along the cities western periphery

predominantly occupied by the White British populace. Locations of elevated smoking

prevalence appeared spatially unrelated to the respiratory hot-spot and the plethora of

detrimental socio-environmental factors identified to be of significance through regression

modelling in Chapters 4 and 5. In-fact, J00-99 GWR models only identified levels of smoking

prevalence to influence 3.82- 4.37% of children’s citywide cases. It was only in relation to J20-

22 spatial models that passive smoking presents itself as a thorn of concern, for cases outside

of the central zone. Yet, it is quite possible that the benefits of avoiding second-hand smoke

have been masked, due to the strong dissociations between passive smoking and children of

Indian ethnicity, whom are less likely to be admitted to hospital for respiratory symptoms.

Once should note that the wombled boundaries identified to represent sufficient levels of

rapid change for smoking prevalence, almost uniquely exist towards the western periphery in

relation to hot-spots. Likewise, levels of adult obesity thought to be indicative of childhood

activity and dietary intake, appear elevated in peripheral areas of limited respiratory concern,

predominantly housing ‘White British’ children. Gi* outputs also confirm the presence of

boundaries across inner city locales, inclusive and south of the respiratory focal point of
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concern. Yet, these boundaries would appear to closely mimic those defining transitions in

‘White British’ residency levels, which would imply that the beneficial and detrimental impacts

of obesity during childhood is purely a ‘White British’ problem.

Table 6.1, collectively summarises the comparative strength of the aforementioned

boundaries relevant to each individual variable, in addition to linking their main transitional

shifts to a specific classification of homogeneity.

Normalised 0-1

Squared Euclidean BLV
(Maximum = 1)

Boundary Associated
Getis-Ord Gi* Outputs

Min. Med. Max. Primary Fringes Primary Locales
Children’s J00-99 Admissions 0.06 0.09 0.59 Hot-Spot Inner-City
Children’s J00-06 Admissions 0.03 0.06 0.73 Hot-Spot Inner-City
Children’s J20-22 Admissions 0.06 0.10 0.78 Hot-Spot Inner-City
TPM10 Emissions 0.04 0.07 0.27 Hot-Spot Inner-City
Carstairs Index 0.18 0.23 0.48 Mixed Various
Adult Smoking Prevalence 0.30 0.37 0.65 Hot-Spot West Periphery
Adult Obesity Prevalence 0.18 0.30 0.57 Cold-Spot South Central
White Non-British Children 0.39 0.51 1.00 Mixed Various
Indian Children 0.18 0.26 0.49 Hot-Spot Eastern
Other South Asian Children 0.08 0.11 0.56 Hot-Spot Central
Afro-Caribbean Children 0.06 0.11 1.00 Hot-Spot Inner-City

TABLE 6.1: Descriptive summary of the comparative strength and favoured positioning of social,
environmental and health boundaries

6.3. BOUNDARY OVERLAPS OF THE COMPLETE RESPIRATORY SET (ICD10: J00-99)

Overlap statistics were subsequently employed to establish whether the boundaries defined

by areal wombling across different variables, occupied similar localities at a level greater than

what would occur by chance. The extent and likelihood of boundary overlap was evaluated via

the application of four overlap statistics based on the average minimum distance from

boundaries in one variable to the nearest boundary in the other variable of interest (Jacquez

1995, Jacquez & Greiling 2003). The overlap statistic OS measures the frequency of which

boundaries within two datasets intersect, and is thus defined as the number (cardinality count)

of elements that are located within in both boundary sets G and H. OG is the mean distance

from any location in the boundaries for G to the nearest location in the boundaries for H. OH is

the mean distance from any location in the boundaries for H to the nearest location in the

boundaries for G. OGH is the average distance from the location in the G or H boundaries to the

nearest location in the other (G or H as appropriate) boundary.



- CHAPTER 6 -

241

Boundary overlap analysis techniques were subsequently used to determine whether

boundaries in children’s respiratory hospitalisation incidents (ICD-10: J00-99) existed closer

than one would expect to influential socio-environmental regression variables. In effect the

boundary overlap analysis aims to determine whether factors significantly affecting health

operate intensely across spatial pockets, or smoothly at a global scale unaffected by spatial

positioning. Of particular interest are the univariate distributions of TPM10 emissions, ‘Afro-

Caribbean’ children, ‘Other South Asian’ children and J00-99 respiratory incidents, all of which

appear to experience significant spatial gradient shifts almost exclusively across inner city

centre locations (Figures 6.1 - 6.3). It should also be noted that boundaries across children of

‘Indian’ ethnicity also appear to occur just outside of the inner city zone, perhaps acting as a

buffer between the ‘White British’ and other ethnic minority groups. Meanwhile, boundaries

of deprivation denoted by the Carstairs Index appear to be dispersed throughout the city, thus

suggesting that the variables effects on children’s respiratory health potentially has a weaker

spatial dependency than other influential factors.

Statistically significant overlap was identified to occur between boundaries in TPM10

The overlap statistics of respiratory health boundaries alongside ‘Indian’ ethnicity,

‘Other South Asian’ ethnicity and Carstairs Index deprivation measures, suggest corresponding

areas of rapid change across such variables to be of limited significance (Table 6.2). The

previously reported importance of deprivation within the citywide prediction of children’s

respiratory health but limited presence of coinciding localised magnitude shifts, suggest that

this influential factor operates relatively smoothly across the city. Meanwhile, whilst ‘Indian’

and ‘Other South Asian’ residency exhibits strong signs of spatial dependency, such groups are

not purely restricted to inner-city locales experiencing health, social and environmental

emissions  and  children’s  respiratory  health  (Table  6.2),  with  the  two  variables  sharing  an 

additional 10 Boundary Elements than what would be expected by chance (OS P↑ <0.01). The 

indicated  average  minimum  distance  of  283m  from  a  boundary  in  TPM10  emissions  to  a 

children’s respiratory health boundary (OG P↓ <0.01),  was identified to be of a significantly 

smaller distance than expected under a null  hypothesis of no spatial  patterning. In addition, 

the mean distance from locations in either boundary to the nearest location in the opposing 

boundary was identified to occur across a significantly small distance of 471m (OGH P↓=0.03),

 thus  acknowledging  the  presence  of  significant  boundary  overlap.  Conversely  the  average 

minimum  distance  from  boundaries  of  children’s  respiratory  health  to  boundaries  of  traffic 

emissions  lacked  statistical  significance,  thus  indicating  that  additional  attributes  are  likely 

responsible for a proportion of the spatial dissimilarities experienced in children’s respiratory 

health. 
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burdens. In-fact, several minority boundaries of relevance exist throughout eastern Leicester in

accordance to intra-minority relationships and the reappearance of ‘White British’ residencies.

In particular, boundaries in ‘Indian’ residency generally align with those of the ‘White British’,

which collectively run north-to-south, demonstrating the strong residential separation

between children of ethnic majority and minority groups. Nevertheless, both ‘White British’

and ‘Indian’ residents appear to decline within inner-city locales of concern, suggestive of the

appearance of another minority group to whom ‘Indian’ residents are disassociated with.

Children of ‘Afro-Caribbean’ ethnicity were the only social group to experience

significant overlap with boundaries in respiratory health, which both variables rising across

inner-city locales (Table 6.2). These two variables were identified as sharing an additional 11

Boundary Elements than what would be expected by chance (OS P↑ <0.01). Zones of rapid

change in population levels of ‘Afro-Caribbean’ children were designated to occur at an

average minimum distance of 296m from a respiratory health boundary (OG P↓ <0.01), thus

rejecting the null hypothesis of no spatial patterning. Furthermore, mean distances from

locations in either boundary to the nearest location in the other boundary were identified to

exist across a modest distance of 556m (OGH P↓=0.05).

Interestingly, the boundary overlap statistics identified smoking prevalence shifts

within the adult populace to occur at significantly distant localities for boundaries in children’s

respiratory  health  (OGH P↑=0.04).  Perhaps  a  hefty  proportion  of  smokers  recognise  the

detrimental effects of second hand smoking and thus take suitable actions around children,

and/or levels of smoking prevalence are under-recorded or overshadowed by other

detrimental factors within certain segments of society. Such matters will be discussed in

greater detail within the concluding sections of this chapter.
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Boundaries Overlapped (G,H)
H= J00-99 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 OG 283 893 (±285) 1.00 0.00*
OH 658 902 (±327) 0.75 0.25
OGH 471 898 (±255) 0.97 0.03*
OS (count) 14 3 (±2) 0.00* 1.00

(G) Carstairs Index of Deprivation OG 1100 893 (±255) 0.20 0.80
OH 580 703 (±265) 0.64 0.36
OGH 840 798 (±211) 0.36 0.64
OS (count) 5 4 (±2) 0.31 0.83

(G) Smoking Prevalence OG 1352 891 (±249) 0.05* 0.95
OH 904 690 (±232) 0.17 0.83
OGH 1132 792 (±189) 0.04* 0.96
OS (count) 3 4 (±2) 0.68 0.51

(G) Obesity Prevalence OG 885 904 (±274) 0.47 0.53
OH 997 716 (±262) 0.13 0.87
OGH 939 811 (±212) 0.24 0.76
OS (count) 7 4 (±2) 0.10 0.94

(G) White British Children OG 1136 906 (±255) 0.18 0.82
OH 580 664 (±240) 0.60 0.40
OGH 858 785 (±202) 0.28 0.72
OS (count) 4 3 (±2) 0.43 0.75

(G) White Non-British Children OG 777 900 (±304) 0.64 0.36
OH 869 869 (±314) 0.42 0.58
OGH 823 884 (±256) 0.55 0.45
OS (count) 7 4 (±2) 0.13 0.93

(G) Indian Children OG 690 870 (±261) 0.76 0.24
OH 512 707 (±241) 0.77 0.23
OGH 601 788 (±202) 0.83 0.17
OS (count) 6 4 (±2) 0.18 0.90

(G) Other South Asian Children OG 707 908 (±336) 0.69 0.31
OH 877 978 (±338) 0.61 0.39
OGH 792 943 (±274) 0.68 0.32
OS (count) 5 3 (±3) 0.33 0.79

(G) Afro-Caribbean Children OG 296 902 (±355) 1.00 0.00*
OH 817 42 (±371) 0.71 0.29
OGH 556 971 (±298) 0.95 0.05*
OS (count) 15 4 (±3) 0.01* 1.00

* P≤0.05

TABLE 6.2: Univariate boundary overlap analysis with annual average children’s admissions of the
complete respiratory set (J00-99)
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Multivariate boundaries of evenly weighted TPM10 emissions and individual socioeconomic-

ethnic factors were subsequently formed, in order to assess the influence of social attributes

on the relationship between road-transport emissions and health boundaries (Appendix E2,

Table 6.3). Such bivariate BLV’s were simply constructed from the summation of Squared

Euclidean dissimilarities for the two individual normalised components X1 and X2 across

locations i and j (i.e. [X1i – X1j] 2 + [X2i – X2j] 2). Under such a premise the maximum BLV will

never exceed the number of variables used within the boundaries construction for variables

normalised 0-1.

In general, the addition of TPM10 emission transitions appeared to provide only a

limited impact towards BLV consistencies recorded by social influences in their univariate

format (Tables 6.1, 6.3). A consequence, primarily attributed to the highly localised nature of

TPM10 emissions which may only raises BLV’s found around inner-city locales, and secondly

due to the somewhat smoothed nature of TPM10 boundaries which may have a reduced

influence alongside other spatially pronounced variables. Nevertheless, the combination of

TPM10 emissions and ‘Afro-Caribbean’ residency levels was observed to markedly raise the

ethnic group’s univariate minimum and maximum BLV’s from 0.06 to 0.10, and 1.00 to 1.09

respectively. It would appear that the combination of these two factors has strengthening

their classification of the outer extent of the inner-city problem zone, with only a few

boundaries placing focus upon the transitional shifts occurring inside (Appendix E2).

2X Normalised 0-1
Squared Euclidean BLV (Maximum = 2)
Minimum Median Maximum

TPM10 Emissions & Carstairs Index 0.18 0.24 0.49
TPM10 Emissions & Smoking Prevalence 0.34 0.40 0.66
TPM10 Emissions & Obesity Prevalence 0.19 0.37 0.78
TPM10 Emissions & White British Children 0.24 0.35 0.60
TPM10 Emissions & White Non-British Children 0.40 0.53 1.00
TPM10 Emissions & Indian Children 0.20 0.30 0.50
TPM10 Emissions & Other South Asian Children 0.11 0.15 0.56
TPM10 Emissions & Afro-Caribbean Children 0.10 0.15 1.09

TABLE 6.3: Descriptive summary of the comparative strength of bivariate boundaries recording the
combined spatial dissimilarities of TPM10 emissions and social variables

Levels of obesity prevalence were the only other variable to see drastic changes from its

univariate BLV, which when combined with TPM10 emissions caused an increase in maximum

BLV from 0.57 to 0.78. However, these changes in the maximum value would appear more

coincidental, in that a select few common boundary’s exist across inner city locales, with

overall boundary patterning unmoved from what was defined by obesity as a singular factor.
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One should also note that these common boundaries around the focal LLSOA represent

alternate responses between these two factors of interest, which combine to create an

extreme BLV that conveys a mixed message; in that low obesity levels unlike TPM10 emissions

are not thought to be disadvantageous. Such findings would therefore suggest obesity

prevalence to be highly detached from TPM10 issues.

In terms of visual changes, only recordings of deprivation, ‘Other South Asian’ and

‘Afro-Caribbean’ residency levels, experience substantial alterations to aspects of their

boundary positioning when combined with TPM10 spatial surfaces (Figure 6.2, Appendix E2).

Univariate ‘Other South Asian’ boundaries, previously established that particularly high

residency levels were favoured inside of the inner-city respiratory hot-spots exterior transition

zone, where moderate-high burdens are experienced. In combining ‘Other South Asian’ and

TPM10 gradient surfaces, the resulting boundary outputs would appear to clearly define the

southern extent of our previously established respiratory, social and environmental burdens. A

similar consolidation was previously observed in regards to ‘Afro-Caribbean’ residency.

On another note, ‘Other South Asian’ residency levels were not previously associated

to provide sufficiently strong boundaries towards the north of our inner-city focal point,

despite decile plots here also indicating moderate-high levels of residency. Yet, when

combined with TPM10 spatial surfaces, their bivariate boundary outputs may firmly establish

the northern cap of Leicester’s zone of concern, due primarily to the overwhelming change in

TPM10 emissions experienced here. It is believed that the northern extent of this respiratory

hot-spot is almost entirely caused by elevated TPM10 emissions at the plumes point of origin, in

that other explanatory variables are unable to clearly define this transitional zone. The

magnitude of change is at such a level, that it is consistently adopted into all of the bivariate

boundary models, even where social influences are in strong disagreement throughout the

city.

As with the previous variables, bivariate boundaries relating to Carstairs index levels of

magnitude appeared to generally occupy the same locales to what was recorded for its

univariate counterpart boundaries (Figure 6.2, Appendix E2). In-fact all of the broad

deprivation boundary structures were maintained except within one area of eastern Leicester,

positioned well away from the inner ring-road. The only major change brought about by the

combination with TPM10 surfaces, consists of the addition of five boundaries around the city

centre, in an area where only two deprivation boundaries had previously existed. The average

bivariate BLV across these seven inner-city boundaries was recorded at 0.29, a level

substantially above the average BLV of 0.18 recorded by univariate Carstairs Index boundaries

across the same locales. These boundaries are thought to represent the interior transition
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zone of the inner-city respiratory hot-spots, where very elevated respiratory effects are

induced through the double burden of deprivation and TPM10 emissions.

Elsewhere in the city boundaries in deprivation appear to have experienced little

additional influence from gradients in TPM10, which suggest that such a double burden is only

apparent across inner-city locales. For example, the six boundaries within the vicinity of

Western Park, representative of some of the highest deprivation gradients, were observed to

have average BLV’s only change from 0.29 to 0.30 under a bivariate scheme. Yet, in combining

TPM10 and deprivation gradient shifts, one may observe that the designated bivariate

boundaries adequately capture the majority of inner and outer city respiratory transitions,

signalling the importance of both elements. It may be noted that the greatest health risks are

to be found where the two factors centrally coincide, high risks occur where TPM10 operates

independently on the fringes of the inner-city, and moderate risks occur are driven where

deprivation exclusively functions in peripheral locales.

The bivariate overlap analysis statistically identified boundaries of the combined

elements of road-transport emissions and ‘Afro-Caribbean’ ethnicity, to transpire within

significantly closer distances to children’s respiratory boundaries than taking both components

individually (Table 6.4). It was observed that ‘Afro-Caribbean’ ethnicity reduced the distance of

TPM10 emission boundaries to rapid changes in respiratory incidents by 38m (OG P↓<0.01).

Likewise, TPM10 emissions were observed to reduce the distance to which boundaries in either

‘Afro-Caribbean’ residency or J00-99 symptoms coincide, by 15m (OGH P↓=0.05). However it

should be noted that boundaries in all J00-99 admissions (OG) still do not fall within a proximal

distance of significance. Although levels of TPM10 emissions and ‘Afro-Caribbean’ lifestyle

choices instigating the bulk of respiratory complaints across inner-city locales, such outcomes

would suggest that, other factors have an influential role in determining the cities wider

respiratory issues.
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Boundaries Overlapped (G,H)
H= J00-99 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 & Carstairs Index OG 871 897 (±294) 0.45 0.55
OH 334 831 (±296) 0.99 0.01*
OGH 602 864 (±239) 0.89 0.11
OS (count) 9 3 (±2) 0.03* 0.99

(G) TPM10 & Smoking prevalence OG 1334 891 (±281) 0.08 0.92
OH 626 778 (±277) 0.69 0.31
OGH 980 835 (±228) 0.25 0.75
OS (count) 4 4 (±2) 0.49 0.67

(G) TPM10 & Obesity prevalence OG 894 879 (±268) 0.43 0.57
OH 990 753 (±268) 0.17 0.83
OGH 942 816 (±221) 0.24 0.76
OS (count) 6 4 (±2) 0.19 0.89

(G) TPM10 & White British Children OG 994 888 (±253) 0.28 0.72
OH 463 627 (±224) 0.76 0.24
OGH 729 757 (±190) 0.50 0.50
OS (count) 6 3 (±2) 0.17 0.91

(G) TPM10 & White Non-British Children OG 777 886 (±298) 0.61 0.39
OH 869 850 (±303) 0.42 0.58
OGH 823 868 (±245) 0.50 0.50
OS (count) 7 3 (±2) 0.11 0.95

(G) TPM10 & Indian Children OG 621 880 (±252) 0.88 0.12
OH 355 703 (±257) 0.95 0.05*
OGH 488 791 (±209) 0.96 0.04*
OS (count) 8 4 (±2) 0.05* 0.97

(G) TPM10 & Other South Asian Children OG 478 884 (±328) 0.93 0.07
OH 910 936 (±331) 0.45 0.55
OGH 694 910 (±272) 0.80 0.20
OS (count) 9 4 (±3) 0.05* 0.97

(G) TPM10 & Afro-Caribbean Children OG 245 924 (±358) 1.00 0.00*
OH 837 1116 (±402) 0.71 0.29
OGH 541 1020 (±322) 0.96 0.04*
OS (count) 14 3 (±3) 0.00* 1.00

* P≤0.05

TABLE 6.4: Bivariate boundary overlap analysis of TPM10 emissions and an individual social parameter,
with annual average children’s admissions of the complete respiratory set (J00-99)

The grouping of TPM10 emissions with Carstairs Index values revealed the factors to not be

within significant proximity of respiratory admission boundaries (OG P>0.05), thus reflecting

the smooth distribution of deprivation (Table 6.4). However zones of extreme changes in

children’s respiratory admissions share a considerable amount of BEs (OS P↑=0.03) and arise

within close proximity to areas marking substantial disparities of environmental and economic

influence (OH = 334m, P↓<0.01). This would indicate that these two factors have substantial
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explanatory power in defining the locations of children’s respiratory health across the city.

Significantly similar trends were also noted to exist when unifying the variables of traffic

emission and ‘Indian’ ethnicity for overlapping with respiratory boundaries (OH = 355m,

P↓=0.05). Upon viewing the univariate ‘Indian’ boundaries (Table 6.2), one may see that this

ethnic group itself has no associations with poor respiratory health (P>0.1), as previously

confirmed via spatial modelling in Chapters 4 and 5. As formerly detailed, persons of Indian

ethnicity tend to reside within areas fringing the inner city, thus marking respiratory risk zones

of elevated traffic emission inhabited by other ethnic minority groups. It is believed that ‘Afro-

Caribbean’ residents are the minority group at greatest risk to such burdens, although to a

lesser degree some other ‘Other South Asian’ residents may also be placed at risk; as observed

though their bivariate TPM10 boundaries sharing a significant proportion of J00-99 boundaries

(OS P↑=0.05).

In constructing trivariate boundary sets containing readings of TPM10, deprivation and

another final social influence, one may observe four every-day socio-environmental exposure

candidates that are collectively responsible for the spatial existence of marked boundaries in

respiratory health (Appendix E3, Table 6.5). The two-trivariate boundary sets of interest

contain ‘Afro-Caribbean’ or ‘Other South Asian’ residency levels as their final component, both

of which visually resemble the layout of univariate J00-99 health boundaries (Figure 6.1,

Appendix E3). One should note that the ‘Afro-Caribbean’ trivariate boundary would appear to

continue to segregate the inner and outer gradient stages of the city centre hot-spot, whereas

the ‘Other South Asian’ trivariate boundary set purely defines the central zones outer limits.

Both of these trivariate sets of interest are identified to share a substantially high

number of BE’s with J00-99 outcomes (OS P↑≤0.02), with such health boundaries also

appearing to fall within a short distance of these combined socio-environmental influences (OH

≤343m, P↓=0.01). Furthermore, a significantly close OGH score of 528m (P↓=0.03) for the

‘Afro-Caribbean’ trivariate set, would suggest that this combination of socio-environmental

factors somewhat consistently result produce a detrimental health gradient. In contrast, the

‘Other South Asian’ trivariate set neither provided a significant OGH or OG score, which would

indicate that health gradients are not universally associated with such socio-environmental

influences.
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Boundaries Overlapped (G,H)
H= J00-99 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 , Carstairs Index &
Smoking Prevalence

OG 1248 884 (±280) 0.11 0.89
OH 562 696 (±239) 0.68 0.32
OGH 905 789 (±205) 0.23 0.77
OS (count) 4 4 (±2) 0.48 0.67

(G) TPM10 , Carstairs Index &
Obesity Prevalence

OG 965 901 (±275) 0.35 0.65
OH 776 699 (±253) 0.34 0.66
OGH 870 800 (±218) 0.31 0.69
OS (count) 7 4 (±2) 0.11 0.95

(G) TPM10 , Carstairs Index &
White British Children

OG 904 889 (±255) 0.43 0.57
OH 434 667 (±229) 0.86 0.14
OGH 669 778 (±189) 0.69 0.31
OS (count) 7 4 (±2) 0.10 0.96

(G) TPM10 , Carstairs Index &
White Non-British Children

OG 897 900 (±297) 0.45 0.55
OH 878 784 (±283) 0.31 0.69
OGH 887 842 (±239) 0.40 0.60
OS (count) 7 4 (±2) 0.12 0.94

(G) TPM10 , Carstairs Index &
Indian Children

OG 985 874 (±277) 0.31 0.69
OH 406 671 (±243) 0.90 0.10
OGH 696 772 (±208) 0.58 0.42
OS (count) 6 4 (±2) 0.21 0.90

(G) TPM10 , Carstairs Index &
Other South Asian Children

OG 813 892 (±309) 0.52 0.48
OH 318 878 (±311) 0.99 0.01*
OGH 565 885 (±257) 0.92 0.08
OS (count) 10 3 (±2) 0.02* 0.99

(G) TPM10 , Carstairs Index &
Afro-Caribbean Children

OG 714 888 (±303) 0.70 0.30
OH 343 947 (±332) 0.99 0.01*
OGH 528 918 (±255) 0.97 0.03*
OS (count) 13 4 (±3) 0.00* 1.00

* P≤0.05

TABLE 6.5: Trivariate boundary overlap analysis of TPM10 emissions, Carstairs Index measurements of
deprivation and an individual social parameter, with annual average children’s admissions of the
complete respiratory set (J00-99)

6.4. URTI BOUNDARY OVERLAPS (ICD10: J00-06)

For children’s URTI’s, statistically significant overlap was once again identified to occur

between boundaries in TPM10 emissions (Appendix E4), with the two variables sharing 11

additional  Boundary  Elements  to  what  would  be  expected  by  chance  (OS  P↑  <0.01).  The 

indicated  average  minimum  distance  of  257m  from  a  boundary  in  TPM10  emissions  to  a 

children’s respiratory health boundary (OG P↓ <0.01), was identified to be of a significantly 
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smaller distance than expected under a null hypothesis of no spatial patterning. In addition,

the mean distance from locations in either boundary to the nearest location in the opposing

boundary was identified to occur across a significantly small distance of 315m (OGH P↓ <0.01),

thus acknowledging the presence of significant boundary overlap.

One should note that critical thresholds in TPM10 emissions show closer spatial ties

with URTI’s, than what was recorded in relation to children’s outcomes of the complete

respiratory set (J00-99). This may be observed through the respective reduction in the critical

OG and OGH distances of 26m and 156m. Upon previously establishing the importance role of

TPM10 emissions on localised dose-response relationships in respiratory health during

childhood, it should come of little surprise that its impact has a more immediate influence on

the most minor of respiratory complaints. The strength of such associations are firmly

cemented through overlap scores which record URT health boundaries to be universally

located within close proximity to TPM10 emission gradients of interest (OH = 372m, P↓=0.03).

Such findings were not previously observed for the complete respiratory set, and would

suggest that TPM10 emissions have an aspect of involvement within all major URT outbreaks

across Leicester.

Interestingly, the boundary overlap statistics identified obesity prevalence shifts within

the adult populace to share a significant number of Boundary Elements with children’s URT

health (OGH P↑=0.05). Despite this influence also occupying a number of mutual J00-99

boundary locales, their spatial connection was statistically defined to not be of importance.

As before, deprivation boundaries on their own were generally shown to have no

statistical significance with URTI gradients (Appendix E4), despite prior regression models

recognising such exposures as substantially influencing respiratory health throughout

Leicester. This lack of association amongst spatial surfaces once again portrays the relatively

smooth nature in which deprivation pockets form across the city. Yet, unlike its associations

with J00-99 health gradients, deprivation was identified to share 5 more BEs with URTIs than

to be expected by chance (OS P↑ =0.04); potentially identifying deprivation as having a more 

influential role on URT outcomes, when combined with rapids transitions in other socio-

environmental exposures. As before, such concepts will be explored via the constructed

bivariate and trivariate boundary outputs (Appendix E2, E3). Unlike the univariate J00-99

overlaps, elevated levels of smoking prevalence were not observed to occur in locales distant

from URT complaints, instead recording no significantly correlated spatial patterning. A lack of

significant spatial patterning was also recorded in relation to univariate boundaries in ‘Indian’

and ‘Other South Asian’ residency, in line to prior outputs for the complete respiratory set

(Appendix E4).
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Placing focus back on the URT subset, these common boundaries around the focal LLSOA and

eastern side of the inner-city zone of concern are a source of some confusion, in that low

obesity levels are associated with poor URT health. Perhaps these low levels of obesity mark

communities whom have an inadequate dietary intake, or more likely is that the actual

beneficial influences of a healthy diet are overshadowed by a plethora of arduous socio-

environmental burdens.

Unique to the J00-06 subset, is the proximal association with Leicester’s ‘White Non-

British’ residents, whom appear to reside within 313m of such health fronts (OG P↓ <0.01).

Furthermore, the mean distance of 373m separating opposing boundary locations, was

deemed to be of a significantly smaller distance than expected under a null hypothesis of no

spatial  patterning (OGH P↓ <0.01).  Such close ties  have likely  been influenced through the 

sharing of respiratory boundary elements solely related to the J00-06 subset, towards the

cities western periphery around Western Parks, and on the east-central outskirts of

Charnwood (Figures 6.1, 6.2). Whilst both sets of boundaries depict these two specific locales

as experiencing mutual gradient transitions from low to high levels, one should recall that

Chapter 5 found limited evidence of ‘White Non-British’ lifestyles influencing URT outcomes.

This mixed response becomes apparent on investigating ‘White Non-British’ boundaries

located along the southern fringes of the inner-city, which depict an inverse response with URT

outcomes. Therefore, it is most likely that sections of this ethnic group are at a higher risk of

exposed to other detrimental socio-environmental influences, rather than the groups lifestyle

choices bearing a noteworthy impression on URT health.

As with the complete respiratory set, children of ‘Afro-Caribbean’ ethnicity were

recorded to experience significant overlap with boundaries in URT health (Appendix E4). These

two variables were identified as sharing an additional 14 Boundary Elements than what would

be expected by chance (OS P↑ <0.01), a figure 3 elements above what was recorded in the

J00-99 boundary analysis. Furthermore, zones of rapid change in population levels of ‘Afro-

Caribbean’ children were designated to occur within 245m from a URTI health boundary (OG

P↓  <0.01),  with  an  average  distance  of  391m  also  separating  opposing  boundary  locations 

(OGH P↓=0.01). Such values reflect a reduction on the complete respiratory sets critical OG and

OGH distances by 51m and 165m, respectively. What's more, a universal proximity of URT

health boundaries to this ethic minority group (OH = 391m, P↓=0.05), would suggest that such

outcomes are not solely based upon the groups expected, but not exclusive residence, within

neighbourhoods facing a heightened risk to detrimental socio-environmental exposures.

Previously, the lifestyle choices of ‘Afro-Caribbean’ residents were believed to moderately

influence respiratory health during childhood (Chapters 4 and 5). Therefore, it should come of
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little surprise that such lifestyles provide a greater influence on the most minor of respiratory

complaints, as presented via a reduction in the group’s proximity to URTI health fronts.

As with the complete respiratory set, a bivariate overlap analysis statistically identified

collective TPM10 emission and ‘Afro-Caribbean’ residency boundaries, to transpire within a

reduced proximity of children’s URT boundaries when compared to their individual

contributions (Appendix E5). It was observed that ‘Afro-Caribbean’ ethnicity reduced the

distance of TPM10 emission boundaries to rapid changes in respiratory incidents by 48m (OG

P↓<0.01). One should also note that bivariate TPM10 emission and ‘Afro-Caribbean’

boundaries appear to exist 36m closer to URTI health fronts than to those of the complete

respiratory set (J00-99). Yet unlike their individualistic boundaries, transitions in URT health

are revealed to no longer fall within a proximal distance of significance to areas marking a

mutual excess of both TPM10 and ‘Afro-Caribbean’ levels (OH). This would suggest that

although communities characterised by these two components are positively associated with

URT health gradients, such areas only represent a portion of the cities zones of concern.

Although it should not be forgotten that such areas are thought to occur alongside health

gradients of the highest magnitude.

Once more, trends were also noted to exist when unifying the variables of traffic

emission and ‘Indian’ ethnicity for overlapping with respiratory boundaries (OS = 8, P↓=0.04).

It would appear that while the combination of these socio-environmental variables had limited

influence on establishing URT health fronts (OG, OGH, P↓>0.05), such influences would appear

to broadly mark zones of respiratory risk (OH = 304m, P↓=0.03). As previously discussed the

‘Indian’ ethnic itself has no associations with poor respiratory health, yet marks transition

zones between ‘White British’ and ethnic minorities, in addition to certain intra-ethnic

minority transitions around central locales. In combining with TPM10 surfaces, structural focus

is placed on marking the fringes of these central locales, predominantly housing other minority

groups whom experience elevated socio-environmental burdens. Interestingly, bivariate TPM10

It would therefore appear that communities characterised by these two components

are through to clearly and positively determine spatial transitions in children’s URT health,

and ‘Other South Asian’ boundaries would appear to share a substantial proportion of

boundary elements and fall within significant proximity of selective URT health transitions (OG,

OGH,  P↓<0.05).  Whereas before, their associations in a bivariate manner with the complete 

respiratory set were weak, in that only a selective amount of boundary elements were shared.

These increased associations are likely representative of the increased structural presence of

J00-06 surfaces, which consolidate the southern and uniquely define the eastern face of the

centre respiratory hot-spots outer limits, where this group predominantly resides.
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levels. Identical findings are recorded to those of the univariate ‘White Non-British’ surfaces.

Finally, the grouping of TPM10 emissions with Carstairs Index values revealed the

In constructing trivariate boundary sets containing readings of TPM10, deprivation and

another final social influence, one may observe that this double burden has interesting

interactions with all five of the explored ethnic groups (Appendix E6). Following on from prior

knowledge obtained within this project, one may observe that the trivariate boundary sets of

‘Indian’ and ‘White British’ residency clear define east-west divisions between ethnic minority

and majority groups; in addition to outlying aspects of segregation between other minority

groups across inner city locales (Figure 6.3, Appendix E3). Consequently, the addition of these

ethnic groups only act to assist in describing the outer limits of this inner-city problem zone,

which affects Leicester’s most vulnerable minority groups. URT health transitions are indicated

to fall within 277m (OH P↓≤0.02) of trivariate boundaries relating to both ‘Indian’ and ‘White

British’ residency.

however this combination of factors is not the main driving force behind Leicester’s URT fronts

(OH P↓>0.05).  On a final  note relating to the bivariate ethnic  minority  boundaries,  it  would 

appear as if the addition of TPM10 emissions hardly affects the univariate elements

representative of ‘White Non-British’ surfaces. Here moderate ethnic elements coincide with

dissimilarities along the outer limits of the central TPM10 area, whilst westerly boundaries

representative of strong residential dissimilarities prevail despite experiencing reduced TPM10

factors to not be within significant proximity of respiratory admission boundaries (OG P>0.05),

thus reflecting the smooth distribution of deprivation. However zones of extreme changes in

children’s respiratory admissions share a considerable amount of BEs (OS P↑=0.03) and arise

within close proximity to areas marking substantial disparities of environmental and economic

influence (OH = 79m, P↓<0.01). This would indicate that these two factors have substantial 

explanatory power in defining the locations of children’s respiratory health across the city. One

should also note that bivariate TPM10 and deprivation boundaries appear to exist a staggering

256m closer to URTI health fronts than to comparable elements of the complete respiratory

set (J00-99). This somewhat spatially immediate response would indicate that URTI’s are

initiated based upon relatively clear thresholds of socio-environmental exposures.

Interestingly, in exploring the three other ethnic minority groups whose lifestyles

hypothetically contribute to such burdens (Appendix E6), one may observe that URT health

transitions are recorded within a significantly close distance to trivariate boundaries in ‘White

Non-British’ residency (OH = 410m, P↓=0.03). Yet such a separation distance is actually 133m 

greater than the outer limits of the socio-environmental ethnic problem areas denoted by

‘Indian’ and ‘White British’ residents. Although this should be of limited surprise when
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considering that ‘White Non-British’ residency is sporadically focused outside of the key inner-

city zone of concern, to which transitions in ‘Indian’ and ‘White British’ are thought to define

such outer limits. In-fact, ‘White Non-British’ residency appears only associated with minor

transitions in URT health, to which an unclear direction of influence was previously shown by

the univariate boundary analysis of this group. Trivariate ‘White Non-British’ boundaries may

therefore only define minor URT health gradients, without offering a descriptive element of

such interactions.

6.5. LRTI BOUNDARY OVERLAPS (ICD10: J20-22)

For children’s LRTI’s, statistically significant overlap was once again identified to occur

between boundaries in TPM10 emissions (Appendix E7), with the two variables sharing 12

The two minority trivariate boundary sets of particular interest contain ‘Afro-

Caribbean’ or ‘Other South Asian’ residency levels as their final component, both of which to a

certain extent visually resemble the citywide layout of univariate URTI boundaries (Figure 6.1,

Appendix E3). One should note that ‘Afro-Caribbean’ trivariate boundary would appear to

continue to segregate the inner and outer gradient stages of the city centre hot-spot, whereas

the ‘Other South Asian’ trivariate boundary set purely defines the central zones outer limits.

Interestingly the transitions between these two ethnic groups would appear to share

associations with the structured gradients of respiratory health, which rapidly decreases with

increased centricity. In-fact, spatial transitions in URT health are indicated to respectively fall

within 67m and 50m (OH P↓<0.01) of trivariate boundaries relating to both ‘Other South 

Asian’ and ‘Afro-Caribbean’ residency. In exploring a more citywide stance of these

interactions, boundaries in ‘Other South Asian’ ethnicity appear to sway URT outcomes within

a distance of 429m compared to 309m for ‘Afro-Caribbean’ residents (OGH P↓<0.01). ‘Afro-

Caribbean’ residents are thus show to experience the brunt of the cities socio-environmental

burdens, with ‘Other South Asian’ residents experiencing moderate burdens and the lifestyle

choices of ‘Indian’ residents appearing to acting to actively inhibit such burdens. Such

interactions have previously been touched upon within chapter 4.

additional Boundary Elements to what would be expected by chance (OS P↑ <0.01). The

indicated average minimum distance of 185m from a boundary in TPM10 emissions to a

children’s respiratory health boundary (OG P↓ <0.01), was identified to be of a significantly 

smaller distance than expected under a null hypothesis of no spatial patterning.  Such a

distance reveals that elevated TPM10 emission levels stimulate LRT outcomes within a range
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72m closer than the pollutants critical response for URT outcomes. These findings would

appear to be in-line with conclusions drawn from chapter 5, which state that LRTI’s only occur

where persistently high exposures exist or short sharp episodes occur; whereas URTI’s may

operate across moderate and persistent exposures, hence the TPM10 emissions smoother

associations with URT health outcomes. However, unlike URT outcomes, the average minimum

distance of children’s LRT health boundaries to those of traffic emissions lacked statistical

significance, thus indicating that additional attributes are likely responsible for a proportion of

the spatial dissimilarities experienced in children’s LRT health. One may note that a similar

conclusion was drawn from boundaries relating to the complete respiratory set (J00-99).

exposures, which state that LRTI’s only occur where high magnitudes of exposure exist. As

portrayed through the short distance of socio and environmental causes and LRT effects

compared to the somewhat gradual causal-effect scheme for URT outcomes. Akin to the

Deprivation boundaries on their own were generally shown to have no statistical

significance with LRTI gradients, despite exposures influencing such health outcomes

throughout Leicester (Appendix E7). Yet, unlike  its associations with J00-99 health gradients,

deprivation was identified to share 6 more Boundary Elements with LRTIs than to be expected

by chance (OS P↑ =0.01).  As  with the URT subset,  this  outcome may identify  deprivation a

having a considerably influential role on LRT outcomes, when combined with rapids transitions

in other socio-environmental exposures. A lack of significant spatial patterning was also

recorded between LRT and ethnic minority univariate boundaries representative of ‘White

Non-British’, ‘Indian’ and ‘Other South Asian’ residency, in line to prior outputs for the

complete respiratory set. In addition, the boundary overlap statistics identified smoking

prevalence shifts within the adult populace to occur at significantly distant localities for

boundaries in children’s LRT health (OGH P↑=0.02). As before, perhaps matters of smoking 

prevalence are under-recorded or overshadowed by other detrimental factors within certain

segments of society.

As with the complete respiratory set, children of ‘Afro-Caribbean’ ethnicity were the

only social group to experience significant overlap with boundaries in LRT health (Appendix

E7). These two variables were identified as sharing an additional 11 Boundary Elements than

what would be expected by chance (OS P↑ <0.01), a figure identical to what was recorded in 

the J00-99 boundary analysis. Furthermore, zones of rapid change in population levels of ‘Afro-

Caribbean’ children were designated to occur within 214m from a URTI health boundary (OG

P↓  <0.01),  with  an  average  distance  of  464m  also  separating  opposing  boundary  locations 

(OGH P↓=0.01). This reduced proximity of elevated ‘Afro-Caribbean' levels to LRT rather than

URT outcomes by a distance of 31m (OG P↓ <0.01), falls in-line with the classification of TPM10
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complete respiratory set, but unlike the URT subset, health boundaries in children’s LRT

outcomes universally lacked significant proximity to those of ‘Afro-Caribbean’ residency; which

would suggest that several other attributes of considerable strength command this respiratory

subset.

As with the previously explored respiratory conditions, a bivariate overlap analysis

statistically identified collective TPM10 emission and ‘Afro-Caribbean’ residency boundaries, to

transpire within a reduced proximity of children’s LRT boundaries when compared to their

individual contributions (Appendix E8). It was observed that ‘Afro-Caribbean’ ethnicity reduced

the distance of TPM10 emission boundaries to rapid changes in respiratory incidents by 89m

(OG P↓<0.01). One should also note that bivariate TPM10 emission and ‘Afro-Caribbean’

boundaries appear to exist 113m closer to LRTI health fronts than to those of the URT set (J00-

06), further highlighting the immediate and somewhat spatial more restricted area of influence

of agents on LRT conditions. As with their individual boundaries, transitions in LRT health were

recorded to still lack substantial associations with areas marking mutual excesses of TPM10 and

‘Afro-Caribbean’ levels (OH), despite habitually occurring alongside health gradients of the

highest magnitude. Likewise, locations describing a sizable shift in the level of ‘Other South

Asian’ residents were observed to share a considerable amount of BEs (OS P↑=0.01) and arise

within close proximity to children’s LRTI health fronts (OG = 344m, P↓<0.01).

Meanwhile, the grouping of TPM10 emissions with Carstairs Index values revealed the

factors to not be within significant proximity of respiratory admission boundaries (OG P>0.05),

children’s LRT cases were recorded to share a considerable amount of BEs (OS P↑<0.01).

Whilst the combined burden of deprivation and TPM10 emissions were found to not always

manifest reductions in children’s LRT health, it would appear that Leicester’s existing LRTI

boundaries unanimously arise within close proximity to areas exhibiting such characteristics

(OH = 264m, P↓=0.01). It is believed that this double burden of exposure to environmental

pollutants and deprivation is the main driving force behind severely reduced respiratory health

within Leicester.

Reasoning for why boundaries of this double burden lacks consistent acquaintances

with LRTI structures, are thought lie within the nature of their bivariate boundaries

construction; in that suitable elements were able to exist across western Leicester where only

disparities in deprivation were high. The definition of these elements has been strongly

influenced by the unavoidable use of interpolated TPM10 surfaces, which characteristically

depict somewhat smoothed dissimilarity values compared to other factors (Table 6.1).

Consequently, normalised TPM10 emission BLV’s have a severely reduced ability to sway the

vote in multivariate boundary constructions where extremely sharp transitions in additional
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factors occur. Following this concept it is possible to suggest that some of the peripheral

boundaries are not ‘true’ representatives of this double burden, and that in reality spatial

shifts relating to levels of both TPM10 and deprivation do comprehensively define respiratory

outcomes across Leicester.

In constructing trivariate boundary sets containing readings of TPM10, deprivation and

another final social influence, one may observe that this double burden has interesting

interactions with only three of the explored ethnic groups (Appendix E9). Unlike URT

complaints, only shifts in ‘Indian’ residency would appear to define the outer limits of the

inner-city problem zone relating to LRTI’s, which primarily impacts upon Leicester’s most

vulnerable minority groups. Here LRTI health transitions may be found on the other side of

trivariate boundaries relating to ‘Indian’ residency (OS P↑=0.05), and are typically indicated to

fall within 359m of such multivariate transitions (OH P↓=0.05). The two trivariate boundary

sets of particular interest once more involve ‘Afro-Caribbean’ and ‘Other South Asian’

residency levels as their final component. As previously observed, the ‘Afro-Caribbean’

trivariate boundary lies within the inner and outer gradient stages of the city centre hot-spot,

whereas the ‘Other South Asian’ trivariate boundary set purely defines the central zones outer

limits. These observations are to a certain extent shown through spatial transitions in LRT

health, which respectively fall within 248m and 217m (OH P↓<0.01) of trivariate boundaries

relating to both ‘Other South Asian’ and ‘Afro-Caribbean’ residency. Furthermore, the distance

separating either a causal or effect boundary from the nearest opposing boundary, for

trivariate ‘Other South Asian’ and ‘Afro-Caribbean’ structures, respectively occurred within the

significantly proximal distances of 505m and 264m (OGH P↓ ≤0.05); thus acknowledging the

presence of significant and influential boundary overlap.

6.6. SOCIO-ENVIRONMENTAL BOUNDARY OVERLAPS

On a final point of interest, overlap statistics were employed to statistically summarise the

spatial interactions and associations between the individual socio-environmental variables

(Appendix E10 – E17). As expected elevated levels of ‘Afro-Caribbean’ residency are to be

found within close proximity to TPM10 emissions and vice versa, both of which were recorded

in a spatially significant manner (Appendix E10). In-fact out of Leicester’s core ethnic groups,

‘Afro-Caribbean’ residents were observed to reside within the closest proximity to TPM10

boundaries (OG = 351m, P↓=0.02). In contrast, ‘White British’ residents were overall shown to

favour residing within peripheral locales away from detrimental TPM10 surfaces (OG = 1397m,
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P↑=0.05). Although there would appear to be cases where a subset of this ethnic group, most

likely comprising of the most vulnerable individuals, falls within close proximity to TPM10

exposures (OH = 384m, P↑>0.05). Yet, whilst this distance is similar to that displayed through

Afro-Caribbean residency, one should note that such findings are not of statistical significance.

Meanwhile, spatial transitions in ‘White Non-British’ residency were themselves not

universally related to TPM10 emissions (OG P>0.05), yet central pollutant boundaries were

observed to show a tendency of existing within close proximity to this particular minority

group (OH = 258m, P↓<0.01). However, where this occurs elevated ‘White Non-British’

residency levels are found to fall outside of the core TPM10 zone of respiratory burdens. For

this ethnic group, similar or inconclusive exposures exist involving the collective range of

Leicester’s socio-environmental influences (Appendix’s E10, E11, E12, E14), which when

combined with the groups lifestyle choices, produces an indistinguishable direction of

respiratory sway. Neither ‘Indian’ nor ‘Other South Asian’ residency levels globally shared

associations with TPM10 surfaces (OG, OH P>0.05). This lack of spatial significance is something

of a surprise particularly for ‘Other South Asian’ residency boundaries, which positively

combine with the outer-city centre TPM10 boundaries in a bivariate fashion to share

associations with URT and LRT health fronts. Likewise, surfaces in deprivation were neither

found to significantly occur at proximal or distant locations to TPM10 boundaries, despite

previously signalling that their combination of effects provide a substantial double burden on

respiratory health. Although this lack of significance likely relates to the fact that this double

burden only influences inner-city communities, whereas issues of deprivation are not spatially

restricted and occur throughout the city.

Elevated community levels of smoking prevalence, in-line with earlier findings, are

found to occur in distant locations from the high levels of inner-city TPM10 emissions (OGH =

1313m, P↑=0.02), which are one of the main driving forces behind the predescribed

respiratory hot-spot. It is therefore most likely that the minor to moderate health burdens of

smoking have been overshadowed, rather than non-existent, as local regression analysis

reveals smoking as an influential factor behind respiratory health outside of this zone (Chapter

5). In contrast, obesity prevalence boundaries overall appear unrelated to TPM10 emissions

(OG, OGH P>0.05), although central TPM10 boundaries would appear to have some associations

(OS P↑=0.02). Such observations have previously been discussed, in that both factors were

shown to present alternative surface responses, and therefore do not cooperate to diminish a

child’s respiratory health.

Upon exploring the interactions of social variables with levels of deprivation, on may

observe that elevated levels of smoking prevalence spatially coincide with unfavourable socio-
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economic situations particularly around western peripheral locales, which house ‘White

British’ residents (Appendix’s E11, E12). Yet the proximity of smoking prevalence to

deprivation, asks questions regarding the under-reporting of such health lifestyle influences

amongst certain minority groups; as to accurately report such lifestyles one would have to

initially access the relevant public services, and secondly feel comfortable in discussing such

matters. In following this concept, it is likely for measurements of deprivation to capture

general attitudes towards smoking, and therefore inadvertently act as a proxy for the effects

of passive smoking. Lakshman et al (2010) have previously reported similar observations in

their assessment of the 2008 East of England Lifestyle Survey. Following on from this line of

investigation, Appendix E12 indicates transitions in smoking prevalence to be comprehensively

distant from ‘Afro-Caribbean’ and ‘Other South Asian’ communities (OH P↑≤0.05). Yet such

observations are in conflict to findings from the Health Surveys for England 2006-08, which

report smoking uptake to be high amongst these two specific ethnic groups (Better Health

2011). Such factors are to be explored within greater detail throughout the conclusion section

of this chapter.

One should note that while issues surrounding deprivation (Figure 6.2) affect many

‘White British’ communities, such boundaries have a tendency to fall away from the fringes of

these spatial blocks (Appendix E11), which would suggest that the general lifestyle choices of

the ethnic majority are not the main cause behind socio-economic transitions. Interestingly,

boundaries in deprivation were typically observed to occur within distant locations from

transitions in ‘Afro-Caribbean’ and ‘Other South Asian’ residency levels (OH P↑<0.05), while no

significant global associations in spatial surfaces were observed in the opposite direction. Yet,

cluster analysis has consistently identified both of these ethnic minority groups to reside

within deprived neighbourhoods (Figure 6.4). Again such observations would suggest that

detrimental socio-environmental influences are typically detached across Leicester as a whole,

yet when such influences do combine then serious respiratory impacts have been felt.

Overlap analysis confirms the previously discussed strong segregation that occurs

between ethnic majority and minority groups, within an earlier section of this chapter. In

particular, the expanse of north-to-south running boundaries in ‘Indian’ and ‘White British’

residency are shown to occur within proximal distance, reflective of these short sharp ethnic

transitions (Appendix E14). From here, communities comprised of predominantly of ‘Indian’

residents are found to share central and eastern wards with other minorities, as indicated by

the earlier hot-spot analysis outputs (Figure 6.3) and close boundary proximity (Appendix E16).

Nevertheless, intra-minority divisions would also appear to exist, as indicated by the reverse

residential gradients of centrically focused ‘Afro-Caribbean’ and ‘Indian’ residents.  Meanwhile
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transitions in ‘Other South Asian’ residency levels tend to occur within ‘Indian’ strongholds,

representative of a far greater level of residential coalescence. In-fact, the societal integration

between ethnic minorities appears to represent how individual group’s lifestyles impact upon

respiratory health; with isolated ‘Afro-Caribbean’ communities experiencing and perhaps

contribute to a wealth of burdens whereas ‘Indian’ community’s lifestyles actively thwart

respiratory issues.

6.7. CONCLUSIONS

In this chapter, I set out to spatially analyse intra-urban patterns of environmental and social

risk, through applying techniques conventionally applied within the fields of genetics and

environmental conservation to define how objects naturally shift in magnitude across spatial

fields. Traditionally, the distance-threshold impact of pollutants emitted from mobile sources

on respiratory health are explored through comparing measurements of health amongst

external and internal inhabitants of arbitrarily defined buffer zones placed upon locations

predetermined in response to their social or environmental attributes. Boundary analysis

techniques remove the selection bias of traditional applied proximity methods, through the

exploration of pollutant and health gradient shifts across an entire cityscape in the

construction of a distance-threshold relationship. Furthermore, such tools uniquely provide a

means to quantify the extent to which certain social groups modify such thresholds, an issue

previously left unexplored through their treatment of confounding factors. However the

technique should not be viewed as a direct replacement of subject-level proximity based

enquiries, but rather means of identifying priority areas for intervention that require

exploration at a more individualistic level.

Cluster analysis techniques validating constructed boundary sets, identified a

disproportionate distribution of children’s respiratory hospital admissions across Leicester, of

which inner city children experiencing considerably greater respiratory health burdens.

Noticeable hot-spots of residentially experienced road-transport emissions, deprivation and

certain ethnic groups appeared to also coexist across such inner city localities in general

agreement with multilevel modelling. Such findings appear to be in agreement with Pearce et

al.'s (2010) ‘triple jeopardy’ of social, health and environmental inequalities. Naturally

occurring boundaries of TPM10 emissions marking significant changes in magnitudes of

environmental pollutant levels, were identified to occur within 283m of children’s J00-99

hospital admission boundaries across Leicester UA (OG P↓<0.01). Substantial shifts in the
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percentage of ‘Afro-Caribbean’ children at the LLSOA were also identified to exist within close

proximity to boundaries in children’s overall respiratory health (OG=296m, P↓<0.01).

Meanwhile, the overlap statistics of J00-99 respiratory health boundaries alongside ‘Indian’

ethnicity, ‘Other South Asian’ ethnicity and Carstairs Index deprivation measures, seem to

suggest corresponding areas of rapid change across such variables to be of limited significance.

However in evaluating spatially aggregated health and socio-environmental exposure datasets,

lies the potential for ecological fallacy, in assuming that associations observed at the

community level universally hold for individuals residing within such areas. Whilst ecological

studies cannot be used as substitutes for individual correlation studies, this does not indicate

that ecological studies are etiologically useless, rather ecological variables are to be viewed as

a necessity in the examination of structural, contextual, and sociological influences of disease

development (Schwartz 1994). Therefore, these results may only indicate whether boundaries

formed from TPM10 and social structures modify distance to health boundaries compared to

those of TPM10 boundaries alone. Yet, in establishing critical distance-response thresholds, our

research provides an intuitive foundation for future investigations on an individualistic basis.

A recent meta-analysis of 33 peer-reviewed studies identified average distance decay

values for mobile sources to generally exist in the order of 100-400m for elemental carbon or

particulate matter mass concentration, 200-500m for NO2, and 100-300m for ultrafine particle

counts (Zhou et al 2007). Epidemiological investigations of proximity to major road links,

defined by arbitrary distance buffers, would appear to agree with the suggested distance

threshold of 283m separating elevated children’s respiratory admissions in relation to naturally

occurring boundaries in traffic emissions. Furthermore, a study appraising the impact of truck

traffic pollutants on the lung functionality of 1,092 Dutch Children living along motorways,

reported Forced Vital Capacity (FVC) and Peak Expiratory Flow (PEF) 300m from motorways to

diminish by -3.6% and -7.7% respectively, compared to reductions of only -2.0% and -1.7% at

1000m (Brunekreef et al 1997). Residential exposure to traffic and 8-year lung development

across 3,677 Californian children has also identified substantial variations in relation to

freeway proximity, with resident’s ≤500m and 1000-1500m experiencing declines in FVC of -

63ml and -19ml respectively (Gauderman et al 2007). Meanwhile an asthma survey of 1,080

Californian children residing at distances below 300m of major freeways identified odds ratios

of 1.25 at a distance buffer of >150m and ≤300m, increasing to 3.80 at distances ≤75m (Kim et

al 2008). This would indicate that although traffic pollutants may operate across wider

geographical areas, significantly detrimental health effects occur within relatively close

distance to emission sources as defined by the threshold of this study.
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Substantial shift in magnitudes of ‘Afro-Caribbean’ children were identified to reduce

the distance between TPM10 boundaries and respiratory incidents by 38m (P↓<0.01), thus

implying that these two independent variables operate across spatially similar

neighbourhoods. Whilst bivariate boundaries of TPM10 emissions and ‘Afro-Caribbean’ lifestyle

choices share links with a majority of inner-city respiratory hospitalisations, J00-99 health

fronts were not uniformly located within proximal distances to such features (OH P↓>0.01).

This would indicate that additional influences have a role in determining the cities wider

respiratory issues. In combining surfaces of deprivation with TPM10 emissions, one would

appear to be able to adequately capture J00-99 health fronts caused by such a double burden,

in addition to minor peripheral health fronts triggered solely by issues involving community

deprivation levels (OH=334m, P↓=0.01). Yet bivariate boundaries in deprivation and TPM10

were found to not universally trigger a J00-99 health front (OG, OGH P↓>0.05), a phenomenon

possibly introduced by an over-smoothed TPM10 dataset being unable to restrict deprivation

driven boundary placements.

In constructing trivariate boundary sets containing readings of TPM10, deprivation and

either ‘Afro-Caribbean’ or ‘Other South Asian’ residency levels as their final component, a close

visual resemblance of the J00-99 health boundaries was obtained (OH ≤343m, OS ≥10 BEs). One

should note that ‘Afro-Caribbean’ trivariate boundary would appear to continue to segregate

the inner and outer gradients of the city centre respiratory hot-spot, whereas the ‘Other South

Asian’ trivariate boundary set purely defines the zones outer limits. Furthermore, a

significantly close OGH score of 528m (P↓=0.03) unique to the ‘Afro-Caribbean’ trivariate set,

would suggest that this combination of socio-environmental factors somewhat consistently

result produce a detrimental health gradient. It would therefore appear that Pearce et al.'s

(2010) ‘triple jeopardy’ of social, health and environmental inequalities, operates across

Leicester in a distinct and spatially measurable manner.

A substantial proportion of Leicester’s ethnic minority groups have traditionally

occupied low skilled manual labour jobs, with an influx of migrants from the Afro-Caribbean

and Asian colonies originally occurring during Britain’s post-war reconstruction. However, the

collapse of Leicester’s manufacturing industries in the 1970’s and 1980’s would have

significantly affected these migrant communities, potentially explaining their tendency to

reside within deprived areas. Sizeable Afro-Caribbean migration has also occurred within the

last decade through the movement of Somalis from the Netherlands, as low skilled economic

migrants. The economically disadvantaged and recently arrived ethnic groups are thought to

characteristically possess a limited knowledge of and access to public services, which would be

of importance in explaining adverse health outcomes.
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Such conclusions have previously been observed within a UK study of 5,494 primary

school children, which identified children of Afro-Caribbean and South Asian subcontinent

origins as less likely to receive asthma treatments in the form of β2 agonists (Duran-Tauleria et

al 1996). In an examination of health care access across 6,648 English children and young

adults aged 2-20, Saxena et al (2002) identified that certain ethnic minority groups appeared

able to access primary care, but rarely receive secondary care which could aid manage severe

health conditions. For instance, children of Indian ethnicity scored respective AOR’s for

hospital and GP visitations of 0.72 and 1.86, whereas Afro-Caribbean children produced

corresponding values of 1.19 and 1.09 (Saxena et al 2002). This would concur that a certain

element of confusion likely exists with regards to accessing the early tiers of the health care

system amongst certain individuals.

Collectively localised regression, hot-spot and boundary overlap statistics

predominantly identified smoking prevalence within the adult populace to occur across

significantly distant localities from areas experiencing high children’s respiratory health issues.

Perhaps a hefty proportion of smokers recognise the detrimental effects of second hand

smoking and thus take suitable actions around children. Alternatively, the impacts of smoking

may be clouded by stronger influences on health in the form of deprivation and ethnicity,

which are often linked to smoking rates. An analysis of 25,739 adults aged over 16 years who

participated in the 2008 East of England Lifestyle Survey, identified neighbourhoods with the

highest rates of deprivation to experience respectively low Odds Ratios (OR) for non-smoking

(0.45) and 5+days/week of fruit and vegetable consumption (0.70) (Lakshman et al 2010).

Interestingly, a recent report by the Equality and Human Rights Commission (EHRC)

identifies poverty, defined as persons earning 60% beneath the median income after

accounting for housing costs, to be higher among minority ethnic groups in the UK during

2006-08. In-fact only 19% of White and 26% of Indian ethnicities were classified to be

disadvantaged, whereas levels of deprivation appeared substantial within Black (37%) and

Pakistani/Bangladeshi (56%) communities (EHRC 2011). Furthermore age-standardised

assessments of men’s smoking prevalence from the Health Surveys for England 2006-08,

identify particularly high rates amongst Black Caribbean’s (37%) and Bangladeshi’s (36%),

moderate rates across White English (27%) and Pakistani’s (25%), and low rates for persons of

Indian (15%) ethnicity (Better Health 2011). This would imply that a group’s socio-economic

position tends to act as a determinant of smoking prevalence, particularly for groups whom

feel unable to discuss such issues in confidence. Relating to this piece of research it was

observed that smoking prevalence cold-spots typically occurred within areas containing an

elevated proportion of Indian residents, whom are associated with experiencing fewer
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respiratory hospital incidents. However, the seemingly crude spatial variations of modelled

obesity and smoking prevalence sets, which exist in blocks of comparable rates, would allude

to the presence of ecological fallacy. Therefore, caution is advised in extrapolating information

on these variables to an individual level.

One should note that subtle changes to the distance-response measures were

observed between the URT and LRT subsets, when compared to those of the overall

respiratory system. For instance, critical thresholds in TPM10 emissions displayed closer spatial

ties with URTI’s than outcomes of the complete respiratory set, as observed through the

respective reduction in the critical OG and OGH distances by 26m and 156m (P↓<0.01).

Likewise, boundaries in ‘Afro-Caribbean’ residency provided corresponding reductions on the

complete respiratory sets critical OG and OGH distances of 51m and 165m (P↓≤0.01) for URT

health fronts. Upon establishing their significant interaction across a collective spectrum of

respiratory illnesses, it should come of little surprise that such socio-environmental factors

deliver a greater influence on the most minor of respiratory complaints, as presented via a

reduction in the group’s proximity to URTI health fronts.

Like all epidemiological studies exploring the impacts of air pollutants, this work has

limitations, specifically involving exposure assessments assumed to be constant across each

census units. However, it is reasonable to claim that children spend a larger proportion of time

around home or attending educational facilities within close proximity, thus lending credibility

to the application of residential emission levels as an exposure proxy. Secondly, estimates of

annual vehicle emissions were obtained through vehicle flow models, which although vary

spatially, do not account for the actual dispersion of vehicle pollutants. Nonetheless, the

application of such datasets is superior to utilising distance from road links as a measurement

of exposure. It should also be remembered that studies based around monitored pollutant

concentrations and dispersion modelling often assume the overall contribution from traffic

sources, whereas the application of emission datasets allows for the direct assessment of the

road transport component.

Thirdly, within boundary analysis it is widely recognised that selecting a boundary

threshold value (BLV) is subjective in nature. Nevertheless, through stringently classifying

boundaries as the top 5% of BLVs, it was anticipated that any boundary preconceptions were

minimal. Furthermore, the utilisation of naturally occurring boundaries is thought to offer a

more realistic approach for determining the spatial impacts of motor-vehicle pollutants than

traditionally applied artificial proximity buffers. This is of importance when considering the

complexity of a cityscapes transport network, which likely contains several minor roads close

to residential districts experiencing higher pollutant levels through congestion, than what
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would be experienced at a predetermined major road. What's more, boundary analysis

techniques can include supplementary social factors, thus exploring their influence within the

modification of critical distance thresholds of pollutants on health outcomes.

In conclusion, this chapter has shown naturally occurring boundaries in road-transport

emissions to result in elevated children’s respiratory admissions within a distance of 283m

(P<0.05). These findings appear to be in accordance with peer-reviewed studies of average

distance decay values for mobile sources at major freeways (Zhou et al 2007), but are

noticeably greater than the US Environmental Protection Agency (EPA) buffer analysis

threshold of 150m used by Maantay (2007). Additional boundary overlap analysis, identified

the designated emission-health threshold to reduce in relation to certain ethnic groups, thus

suggesting environmental injustices likely prevail within the model British multicultural City of

Leicester. It is believed that this research presents the first study to define local social and

environmental critical distance thresholds for factors effecting children’s respiratory health.

Furthermore, this research presents such findings within the context of a European urban

environment, whereas distance-decay and buffer analysis research in the past has tended to

be conducted within an American setting. The chapter’s findings are considered to have

promising applications within healthcare management for locating vulnerable populaces and

for minimising health risks in future road network designs.
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CHAPTER 7

LOCALISED POLLUTER PAYS PRINCIPLES (PPP)

OVERVIEW

Spatial modelling, object identification and gradient association techniques have confirmed

the existence of underlying structural patterning, whereby persons of minority and or lower

socioeconomic status habitually reside within intra-urban areas experiencing elevated

environmental burdens. In particular, a seemingly unjust 'double-burden’ of deprivation and

air pollutant exposure was identified as a key explanatory factor across a range of

unfavourable respiratory outcomes. At its core ‘Environmental Justice’ seeks to provide equal

access to a clean environment and equal protection from possible environmental harm

irrespective of socioeconomic factors (Cutter 1995), both of which appear somewhat lacking

across this multicultural British urban environment.

Thus, it is the intention of this chapter to examine the extent of such injustices in

further detail, through a largely unexplored line of research, in which levels of environmental

accountability are gauged to assess the extent to which one pays for ones actions (Polluter-

Pays Principles). Whilst traditionally applied to international cases, this chapter intends to

develop upon a localised implementation of such principles (Mitchell & Dorling 2003) across a

collection of spatially detailed intra-urban communities, within the context of social,

environmental and health outcomes. Upon conducting such procedures, this body of research

as a whole, can confidently say that it has geographically located and measured (in a numerical

and proximal form) those vulnerable intra-urban populations, whilst distinctively holding select

communities to account in an environmental context. To conclude, a few partial solutions are

offered to these prescribed problems of the post-industrial cityscape. In particular, this chapter

covers objectives 7, 8 and 9 of this project outlined in Chapter 1.
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7.1. INTRODUCTION

Contemporary research into the field of ‘Environmental Justice’ by scholars and policymakers

has highlighted underlying structural patterning of society’s vulnerable groups, whereby

persons of minority and or lower socioeconomic status habitually reside within areas

experiencing elevated environmental burdens. In particular, the seemingly unjust 'double-

burden’ of deprivation and air pollutant exposure is consistently identified as a key

explanatory factor in defining health disparities throughout urban environments of the

developed world (Crouse et al 2009, Kingham et al 2007, Naess et al 2007). Cutter (1995)

defines ‘Environmental Justice’ (EJ) as a principle which guarantees equal access to a clean

environment and equal protection from possible environmental harm irrespective of

socioeconomic factors such as race, income and or class. Of significant importance is the fact

that such equality measures embody mechanisms for assigning culpability, therefore shifting

the burden of proof of contamination to the polluters not resident, a term coined as ‘The

Polluter-Pays Principle’ (PPP). “Thus EJ research seeks to determine whether marginal and/or

minority groups bear a disproportionate burden of environmental problems, and whether

planning policy and practice affecting the environment are equitable and fair” (Mitchell &

Dorling 2003, p909).

Under the OECD council’s preliminary 1972 and ensuing 1974 recommendations, “the

Polluter-Pays Principle means that the polluter should bear the costs of pollution prevention

and control measures, the latter being measures decided by public authorities to ensure that

the environment is in an acceptable state" (OECD 1992, p5). Yet, fundamentally the Polluter-

Pays Principle is not a concept of equity, but rather a measure for ensuring economic efficiency

and minimising distortions in international trade, by incorporating environmental costs in the

decision-making process; thus optimising the use of natural resources and ending the cost-free

use of the environment as a receptacle for pollution (Vicha 2011). At an international level,

such concepts exist in the trading of greenhouse gas emission allowances, in that pollution

costs are internalised (efficiency), but also that producers buy their allowances before they

pass on those costs to consumers (equity) (Woerdman et al 2007).

Although the principle’s precise legal definition for the purposes of practical

application remains largely elusive, ironically the Polluter-Pays Principle often exists in practice

without necessarily existing in theory, with enforcement agencies on a practical level simply

applying the specificity of rules to a particular legal problem (Mann 2009). In this regard,

corporate accountability in international environmental law has been traditionally dealt with,

whether with a conscious nod to the Polluter-Pays Principle or otherwise, from taxation

charges on toxic substances and dangerous goods, or more commonly through imposing
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compensation to the victims of environmental harm typically from developing nations (Luken

2009, Luppi et al 2012).

Yet, a largely unexplored tangent of EJ literature is the focus towards whether a

‘Localised' Polluter-Pays Principle (PPP) exists, whereby the community responsible for

producing pollutants experiences proportional environmental and social burdens. This is

somewhat of a surprise, when considering that personal mobile rather than corporate owned

point sources account for a substantial proportion of detrimental pollutants found within the

Post-industrial cityscape. To-date the focus of EJ research has commonly focused purely upon

describing or quantifying how the socio-physical structures of the urban environment shapes

health, with limited attention paid towards the origins, of the albeit complex environmental

contributions imposed by personal sources. Recently, either a conscious nod to the Polluter-

Pays Principle or simply a fortuitous offshoot from other policy, have brought aspects of local

environmental responsibility to the average citizen, in the form of urban zoning charges.

In 2003, the London Congestion Charging Scheme (LCCS) became operational, in an

attempt to alleviate traffic congestion throughout the cities central districts. Modelled

repercussions, identified wards located within the congestion charging zone to experience a

1.3% reduction in NO2 concentrations, amassing to 183 Years-of-life-gained per 100,000

persons over a 10-year period (YLG10), compared to only 18 YLG10 among the remaining wards

(Tonne et al 2008). Whilst, the most deprived quintile recorded the greatest benefit,

experiencing 60 YLG10 through a 0.5% reduction on Pre-LCCS NO2 concentrations of

46.77µg/m3, such outcomes were found to insufficiently reduce the socioeconomic

inequalities of air pollution (Tonne et al 2008). In-fact, Pre-LCCS concentrations across affluent

wards were already of a substantially lower magnitude (38.15µg/m3), prior to experiencing a

further 0.05% reduction from the LCCS (Tonne et al 2008).

In contrast, Cesaroni et al’s (2012) evaluation of two low-emission zones established in

Rome across the period of 2001-2005, revealed well-off residents as experiencing the greatest

level of health gains from zoning implementation. Here, residential reductions in NO2

concentrations were observed to provide 687 YLG10 for communities of high socioeconomic

position, compared to benefits of only 163 YLG10 experienced by residents of the most

deprived quintile (Cesaroni et al 2012). Whilst it should be the attention of policy workers to

minimise pre-existing societal gradients, here the Rome LEZ fails potentially introduces new

issues, one should not rule out the ever so unrealistic scenario that perhaps the poor emit the

most and thus the polluter is paying. If this is the case then perhaps an ethical approach

beyond that of the Polluter-Pays Principle is required. Yet both zoning studies are unable to

quell such concepts, in that they fail to provide information regarding the origin of residentially
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experienced road-transport pollutants. Therefore, under an ideal scenario I recommend that

focus should be placed on locating and defining communities of interest (in terms of pollutant

creation and exposures), in order to improve the ethical efficiency of future traffic

management schemes.

Mitchell & Dorling (2003), in an environmental justice analysis of British air quality

across 10,444 electoral districts, uniquely explored the role of locally generated vehicle

emissions in the air-quality poverty relationship to assist in the further understanding of such

principles. Levels of NOx contributed by each community were derived from ‘static’ modelling

techniques combining, 1991 UK Census recordings of car ownership categorised into vehicle

type by local DVLA fleet overviews, with emission factors and typical travel distances

respective of vehicle age obtained from European Commission documents. While following a

comprehensive method for calculating community contributions, such models are still

restricted by their ‘static’ nature, in that they fail to account for actual population movements

in favour of a uniform vehicle-age distance function. Still, the study revealed that although

people residing within the areas of poorest air quality contributed the most emissions per car,

a clear pattern emerged in which wards emitting the least NOx, experience the greatest NO2

concentrations and experienced higher levels of deprivation. These findings would suggest that

strong socio-environmental inequalities prevail throughout modern Britain, igniting the

previously highlighted need for ethical groundwork prior to the implementing traffic

management schemes of the future. Whilst Mitchell & Dorling (2003) establish this tangent of

EJ research, further research is required, as localised PPP issues have yet to be explored within

the context of health outcomes, or across smaller intra-urban communities, which have highly

variable demographics.

Therefore the primary intention of this chapter is to develop upon Mitchell & Dorling’s

(2003) concept of local PPP’s, through exploring the interaction between intra-urban

community generated vehicle emissions on residentially experienced levels of transport

pollution, deprivation and respiratory health. The methodological enhancements are described

within chapter 3, which relate to the incorporation of actual intra-urban workforce travel

patterns, rather than assigning each community with a universal travel function. Additional

study improvements are to be found through assessing local PPP’s at a higher resolution

census unit, and through incorporating health outcomes into the relationship.
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7.2. CREATION-EXPOSURE RELATIONSHIP OF PERSONAL TRANSPORT SOURCES

Annual LLSOA estimates of road-transport PM10 (TPM10) emissions created from individual

communities were derived through combining personal vehicle fleet composition counts with

daily workforce trips, which were assumed to represent the significant proportion of

population movements. This was achieved through the use of datasets and procedures of

calculation outlined in Chapter 3. Cartographic plots of the total TPM10 emissions created from

personal transport modes, by the workforce within each local community across Leicester, are

displayed in Figure 7.1.

FIGURE 7.1: Cartographic plots of the total TPM10 emissions created from personal transport modes,
by local community workforces within Leicester UA

With the assistance of the Local Moran’s I statistical test, one may notice that a moderately

positive level of spatial structuring exists across Leicester (R2 =0.44) with respect to community

emission contributions. In particular the 11 LLSOAs contained within the south-eastern ward of

Knighton were found to create the greatest quantities of TPM10 emissions from personal

transport modes (0.022 - 0.046 t/yr.), yet experienced low annual average residential TPM10

emissions of 0.92t/yr. In addition, children from such communities were largely of ‘White

British’ ethnicity (61.54%) and from relatively affluent families (Rank of -4.70), whom typically

experience reduced J00-99 admission rates (29.96 per 1,000). In contrast, residents from the

13 LLSOAs contained within the east-central ward of Spinney Hills were on average attributed

with only creating 0.010t/yr. whilst experiencing TPM10 emissions of 1.53t/yr. Meanwhile

deprivation levels appeared raised (Rank of 4.20), proportions of ‘White British’ children fell

(10.37%), and moderate J00-99 admission rates prevail (46.02 per 1,000). The cities greatest

polluters appear to reside predominantly around the ward of Knighton and several other
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satellite communities located around the cities periphery. However, those creating the least

emissions reside in central locations, which experience the greatest socio-environmental

burdens (Chapters 4 and 5). Although one may note that inhabitants of select inner-city locales

contribute moderate levels of personal transport emissions, and in a certain respect pay for

their consequences. Even so, such contributions are substantially outweighed by those made

from external communities, whom do not appear to pay socially, environmentally or

physically. The cities present traffic management strategy would therefore appear to be

operating in an ethically unjust manner.

Bivariate Local Moran’s I statistics were subsequently conducted, as to define the

spatial relationships between community created transport emissions and surrounding

respiratory health or social-environmental influences, recorded at first-order locations (Figure

7.2, Table 7.1). Upon exploring the connections between respiratory health and pollutant

contributions from personal modes of transportation, one may once more view inner-city

locales with interest.  In-fact it would appear that the most central communities

environmentally contribute towards their decline in respiratory health, whereas their adjacent

communities emit relatively low levels yet are highly burdened by the contributions of others.

For instance, the focal point of prior interest experiences the cities highest annual rates of

children’s J00-99 admissions (147.83 per 1,000), with its inhabitants contributing 0.022t/yr. in

personal TPM10 emissions; a figure ranking this community in the upper 35th percentile of

Leicester’s polluters. Meanwhile, its 3 north-eastern surrounding LLSOAs continue to exhibit

high J00-99 admissions rates (77.18 per 1,000), yet they universally fall within the lowest 15th

percentile of polluters, on average creating only 0.007t/yr. in personal TPM10 emissions.

Similarly the focal points 2 south-western surrounding LLSOAs experience moderate-high J00-

99 admissions rates (58.77 per 1,000), whilst being amongst the lower 5th percentile of

polluters in personal transportation terms (≤0.004t/yr.).

Whilst the south-eastern peripheral communities were shown to be the primary

contributors of personal TPM10 emissions (Figure 7.1), their creation-respiratory relationship is

less apparent, with minor interactions possibly caused by the passage of vehicles away from

their places of residence. As previously indicated, by children from these affluent areas

experiencing low-moderate levels of respiratory hospital admissions attributed to TPM10

emissions (Figure 4.9) offset by other more favourable attributes. Nevertheless, a singular

Knighton LLSOA community was identified as a high polluting-low respiratory outlier by the

Bivariate Moran’s I analysis, emitting 0.040t/yr. of personal TPM10 emissions whilst

experiencing a J00-99 admission rate of only 29.24 per 1,000 children; a value noticeably

below the expected LLSOA rate of 39.43. In a minor deviation, the spatial significance of these
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communities within Knighton and its adjacent peripheral locales appears somewhat expanded

upon for LRTI incidence rates (J20-22). In terms of residents emitting low levels of TPM10

emissions and reaping the respiratory benefits, one should view the 7 LLSOAs between the

wards of Belgrave and Latimer, situated just off one of the cities arterial roads. Here such

communities typically emit only 0.013t/yr. of TPM10 and experience J00-99 rates (26.70 per

1,000) below the citywide average.

If one may refer back to the cluster detection analysis presented in chapter 4 (Figure

4.2), they should recall the existence of two High-Low J00-99 admission outliers, which have

interestingly reappeared within this section of the analysis. Here, the northern outlier

identifies the existence of a major road junction, whereby a primary radial corridor containing

multiple restaurants and retail outlets (A47: Melton Road) intersects the cities outer ring-road.

Subsequently this LLSOA was thought to represent a bottleneck in the flow, which only

becomes noticeable during peak hours, and thus appears to have gone undetected by the

1x1km resolution NAEI model. This reasoning explains why children’s respiratory health seems

unusually impeded (55.37 per 1,000), when compared to average incident levels recorded by

first order neighbours (24.25 per 1,000). Although Leicester’s Local Transport Plan recognises

this corridor for 2011-26 as a key problem area, frequently experiencing delays via buses and

general traffic, one should also note that personally created TPM10 emissions for this particular

community (0.026t/yr.) are slightly above those of its immediate neighbours (0.020t/yr.). It

would therefore appear that the direct actions of this community has a role to play within the

extent to which such environmental burdens are felt, further exacerbating existing problems

within the cities transport network.

In direct contrast, the previously exposed eastern High-Low J00-99 outlier marking the

terminal junction of the outer ring-road (Figure 4.2), would appear to follow trend with its

neighbours and emit low levels of personally created TPM10 emissions. In-fact, at this easterly

outlying respiratory location, personally created transport emissions (0.017t/yr.) are

somewhat lower to those recorded by its first order neighbours (0.021t/yr.). Yet, the eastern

target area experiences J00-99 admission rates of 46.12, whilst surrounding locales only record

on average incident levels of 24.25 per 1,000 children.  Further highlighting the unjust health

response felt by this community, albeit at a substantially lower level to what is experienced by

the previously discussed inner-city communities. Nonetheless, one might conclude that that

the effects of this second bottleneck are therefore unfairly placed upon this community,

though they could potentially be reduced through completion of the missing link of the outer

ring-road. In addition to increasing the flow here, traffic would also be discouraged from enter
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the inner city, potentially mitigating the environmental burdens felt by those most vulnerable

communities.

A second Bivariate Local Moran’s I statistical test was then applied to compare

workforce created TPM10 emissions to neighbouring residentially experienced TPM10 emissions

(Figure 7.2).  Within the previously explored city centre cluster of high respiratory admissions

(Figure 4.2), it is possible to observe that residents within the heart of the cluster experience

and create high levels of emissions, thus exacerbating their own environmental problems.

Therefore, for this area it may be deemed that a polluter pays situation is already in operation

for the socially vulnerable, who reside within areas of high traffic emissions and contributing

the most emissions per vehicle.  However output areas towards the fringes of this high

respiratory admissions cluster, experience real environmental equity issues, with such areas

producing low levels of private transport emissions, yet they still experience high levels of

residential TPM10 emissions. For instance, residents from the 12 east-central LLSOAs of

relevance are found to be relatively deprived (Rank 4.97) and experience residential TPM10

emissions 0.59t/yr. above the citywide average (1.04t/yr.), whilst only emitting 0.009t/yr. from

personal transport modes. Meanwhile, socially content communities along Leicester UA’s

eastern periphery are identified to create high levels of traffic emissions yet experience

disproportionately low TPM10 emissions. Here 11 LLSOAs found across Evington and

Humberstone on average, portray a deprivation rank of -2.64, and personally contribute

0.027t/yr. of TPM10 whilst residentially experiencing only 0.60t/yr. of TPM10 emissions. This

would support the prior notion of environmental injustices existing within intra-urban areas.

Bivariate: Local Moran’s Statistic
R2 Pearson’s R I Value Z-Score

Children’s J00-99 Admissions 0.08 -0.28 -0.17 -3.82
Children’s J00-06 Admissions 0.07 -0.24 -0.16 -3.46
Children’s J20-22 Admissions 0.07 -0.27 -0.16 -3.43
TPM10 Emissions 0.11 -0.30 -0.26 -5.83
Carstairs Index 0.34 -0.59 -0.42 -9.42
Adult Smoking Prevalence 0.02 -0.14 -0.11 -2.38
Adult Obesity Prevalence 0.11 -0.34 -0.28 -6.27
White British Children 0.07 0.25 0.22 5.17
White Non-British Children 0.02 0.16 0.08 1.94
Indian Children 0.05 -0.22 -0.19 4.19
Other South Asian Children 0.07 -0.26 -0.23 -4.94
Afro-Caribbean Children 0.04 -0.19 -0.09 -2.00

TABLE 7.1: Summary of the Bivariate Local Moran's statistical analysis, revealing the spatial
associations between created TPM10 emissions from the workforce’s personal transportation modes
(i) and health/socio-environmental influences experienced by surrounding locales (j)
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FIGURE 7.2 [PAGES 274-275]: Bivariate Local Moran's I cluster and outlier analysis exploring the first-
order relations involving community created transport emissions, and surrounding respiratory or
social-environmental measurements
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Following on from this, the Bivariate Local Moran’s I statistical test was then applied to

compare local workforce created TPM10 emissions with neighbouring levels of deprivation

(Figure 7.2).  Once again, in focusing on the previously explored cluster of high respiratory

admissions within the city centre, it is possible to observe that the eastern section of the

cluster produces relatively low levels of private traffic emissions and is within an area

experiencing elevated levels of deprivation. Meanwhile the focal LLSOA of continued interest is

exclusively representative of a deprived community, generating a substantial amount of

unfavourable environmental pollutants from personal transportation choices. Another zone of

importance is the cluster towards the south-eastern sector of the city, within the ward of

Knighton, which consistently experiences low levels of deprivation yet creates significantly high

road-transport emissions. As previously discussed, it would appear that the consequences of

these elevated personal transportation emissions are not sufficiently felt in a physical or

environmental manner by these peripheral communities.

In viewing Table 7.1, the Bivariate Local Moran’s I Z-scores indicate that the health,

social and environmental indicators of interest, on the whole represent a significant negative

relationship (P≤0.05) with respect to community created TPM10 emission levels (with the

exception of White-British, White Non-British and Indian residencies). For instance, as personal

transportation emissions increase one may observe a decline in respiratory hospitalisations

and community levels of deprivation. Whilst of significance, a majority of these relationships

would appear to yield weak structures at a global scale, with the exception of the somewhat

clear-cut spatial relationship associated with community deprivation levels (I-Value -0.41). To a

lesser extent, similar negative global interaction structures of a weak-moderate strength may

also be observed with regards to residentially experienced TPM10 (I-Value -0.26) and levels of

obesity prevalence (I-Value -0.28). Nevertheless for the most part one is to accept that the

relationships between emission creation and various societal classifications are not universal

but rather localised to specific residential pockets.

The Bivariate Local Moran’s I analysis of locally created TPM10 emissions from a

communities workforce with neighbouring levels of adulthood obesity (Figure 7.2), identifies a

substantial clustering of highly polluting yet physically healthy inhabitants, comprising of 16

south-easterly LLSOAs from Knighton and aspects of Castle. Here typical levels of adult obesity

prevalence of 14.61% are substantially beneath expected citywide rates of 24.30%, yet these

communities created on average 0.033t/yr. of TPM10 emissions from personal transport. In-

fact, this cluster contains five out of the city’s top 10 polluting communities, with all cluster

observations falling within the upper 35th percentile of polluters in personal transportation

terms. One should also note that this affluent cluster (Rank of -4.22) also typically experiences
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low levels of TPM10 emissions (0.97t/yr.), and reduced annual rates of children’s J00-99

admissions (32.78 per 1,000).

In contrast to this pocket and the overall global trend (Table 7.1), a second minor

cluster of 4 physically healthy inner-city communities (15.10% obesity prevalence) are

observed to emit low levels of personal TPM10 emissions (0.003t/yr.). Such communities

broadly portray the cities expected level of socio-economic status (Rank of 0.22), yet are

burdened by substantially high levels of residentially experienced TPM10 emissions (2.13t/yr.),

and face high rates of children’s J00-99 admissions (54.08 per 1,000). Within this Low-Low

bivariate cluster, levels of commuting to work via private transport are thought to be low,

perhaps coinciding with a favouring of physical transportation measures by populaces with a

slightly below par socioeconomic status, hence their low obesity rates. If this is the case, then

one might expect these inhabitants to face elevated exposure periods with the environmental

burdens placed on to them by others, which appears to be captured by the reduced

respiratory health of vulnerable community members (i.e. children).

As previously discussed, local cluster detection would indicate that a somewhat weak-

moderate global trend would exist in explaining that as obesity decreases level of private

transport emissions increase. However, this relationship would appear mainly driven by the

affluent and healthy south-eastern communities of the city. Towards the cities southern limits

of Eyres Monsell, exist 6 LLSOAs experiencing high levels of adult obesity (29.00%). Yet, out of

these noteworthy communities, only two are denoted to be high polluters from personal

transportation modes (0.021-0.024t/yr. TPM10). In-fact, the rest of these communities were

deemed to be low emitters, averaging only 0.003t/yr. of personally created TPM10 emissions. It

is somewhat unlikely that obese communities would regularly partake in physical modes of

transport; therefore, it is highly probably that the obese favour the use of public transport.

Bivariate Local Moran’s I outputs comparing workforce created TPM10 emissions to

neighbouring residential levels of ‘White British’ inhabitants, is once again representative of

the clear divide between western majority and east-central minority groups (Figure 7.2). In

viewing Table 7.1, the Bivariate Local Moran’s I Z-scores labels ‘White British’ residency to

share a significant positive global relationship (P≤0.05) with respect to community created

TPM10 emissions, at an albeit weak level. In that, as personal transportation emissions increase

so does the community composition level of White British residents. An expansive section of

low ‘White British’ residency and low creation of personal TPM10 emissions may be observed,

particularly across the east-central wards of Latimer, Spinney Hills and Stoneygate.

In Stoneygate, 6 out of its 11 LLSOAs were positioned within this cold spot of interest,

in which the workforce personally created approximately 0.016t/yr. of TPM10 yet unfairly
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experienced 1.12t/yr. of TPM10 emissions. Levels of ‘White British’ children (10.42%) appeared

to be replaced by those of ‘Indian’ (54.50%), ‘Other South Asian’ (22.09%) and ‘Afro-Caribbean’

(6.14%) ethnicities. In Spinney Hills, 11 out of a possible 14 LLSOAs were of interest, whereby

the workforce personally created only 0.009t/yr. of TPM10 yet unfairly experienced 1.50t/yr. of

TPM10 emissions. As before, levels of ‘White British’ children (7.08%) typically appeared

replaced by those of ‘Indian’ (66.80%), ‘Other South Asian’ (17.28%) and ‘Afro-Caribbean’

(3.51%) ethnicities. Across Latimer, 4 out of 8 LLSOAs were signalled to be of importance, in

that the workforce normally created around 0.012t/yr. of TPM10 yet unfairly experienced

1.40t/yr. of TPM10 emissions. Once more, average levels of ‘White British’ children (8.85%)

appeared substituted by those of ‘Indian’ (75.49%), ‘Other South Asian’ (6.83%) and ‘Afro-

Caribbean’ (1.53%) ethnicities. One may also note that children’s J00-99 admission rates were

observed to decline in response to Indian residency in-spite of residential TPM10 exposures, as

observed by rates of those explored communities in Stoneygate (43.80 per 1,000) and Latimer

(23.32 per 1,000).

However, communities predominantly constructed from White British families are not

necessarily to blame for the majority of personal transportation emissions created by the cities

workforce. For instance, upon exploring the ‘White British’ stronghold towards the cities

southern limits, one may observe that the 13 LLSOAs contained within this pocket of interest

evenly represent low emitting (7/13) and high emitting (6/13) communities. Here, the 7 Low-

High LLSOAs predominantly housing children of ‘White British’ ethnicity (88.33%), created only

0.013t/yr. and residentially experienced 0.91t/yr. of TPM10 emissions. Such communities were

typically of a somewhat deprived nature (Rank of 1.63), with high levels of smoking (40.30%)

and obesity (28.04%) characteristically prevailing amongst residents. Meanwhile, the 6 High-

High LLSOAs contained comparable levels of ‘White British’ children (87.28%), yet they created

0.024t/yr. whilst residentially experienced a measly 0.95t/yr. of TPM10 emissions. These

communities appeared of a similar somewhat deprived nature (Rank of 1.38), once more

exhibiting high levels of smoking (40.30%) and obesity (28.04%) prevalence. A similar story of

high and low emission creation would appear to occur for ‘White British’ communities around

the wards of Braunstone and New Parks, representative of the cities western outer limits.

Whilst these observations are of a contradictory manner, in that many characteristics

are shared between the alternate responses, one should note in terms of ethnicity, that the

test highlights the cities slightly deprived ‘White British’ residents to be of particular interest.

In that financially they can afford personal transportation modes, however this is most likely to

consist of ageing stock that exhibit less stringent emission standards. Perhaps their choice of

vehicle is limited by other financial strains relating to healthy lifestyle choices, causing such
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communities to teeter on the edge of choosing between either persisting with public transport

or purchasing their own poor vehicle stock. Furthermore, these privately run vehicles would

appear to not directly impact their own suburban communities, but it is quite possible that

such a fleet would become an issue within the more compact central urban environments that

are travelled through. Within the city’s traffic management plans it could be of future interest

to target such a social group in a strategic manner, through adopting schemes which improve

and or encouraging the use of public transportation, or through providing assistance towards

the maintenance of their vehicle stock.

However, it would appear that it is not race but deprivation, which is the key driving

factor behind the creation on personal TPM10 emissions; although elements of race, appear

involved in determining affluence. For instance, Leicester’s most affluent communities (Lower

10% of Carstairs Index), personally created a hefty 0.035t/yr. of TPM10, yet residentially

experiencing only 0.85t/yr. of TPM10 emissions. Whilst, the composition of children from such

communities remains predominantly of ‘White British’ origin (70.34%), these areas are also

representative of elements of successful integration with the ‘Indian’ community (17.30%).

Furthermore, J00-99 admissions were on average recorded at the low rate of 32.88 per 1,000

children, 6.55 cases bellow expected. These 10% most affluent areas were primarily located

around the wards of Knighton and Humberstone, with some minor pockets around Western

Park, and a single element existing at the top section of Beaumont Leys. In exploring all LLSOA

communities within the ward of Knighton, one may observe that a far greater level of

integration has occurred, whereby ‘White British’ and ‘Indian’ ethnicities respectively account

for 61.53% and 22.20% of the child inhabitants. Overall, this would suggest that the most

affluent communities in terms of health, financial, environmental and cultural terms, are

accountable for creating a substantial proportion of environmental issues that affect those less

fortunate. In conclusion, the greatest polluters are currently not adhering to the PPP’s. In

contrast to prior recommendations, a stronger more direct action would be most preferential

across those communities, whom are financially able to alter their mode of travel, if such

services are sufficient.

Bivariate Local Moran’s I outputs comparing workforce created TPM10 emissions to

neighbouring residential levels of ethnic minorities, would also appear to unanimously

highlight those modestly deprived ‘White British’ communities along western and southern

peripheral areas of ethnic interest. It was previously discussed that the financial strains in such

areas, seemingly worsened by participation in unhealthy lifestyle activities, left these

inhabitants open to purchasing low-cost environmentally unfavourable vehicle stock rather

than travelling via public modes. As such, communities are not the city’s main cause for
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concern, but rather they represent a preventable future burden of minor-moderate force; it

was recommended that travel choices within these financially strained swing communities be

addressed by a cautious approach, as to not restrict their human rights to freely travel.  In

focusing on the distribution of ‘Indian’ children, one may see that the emission creation

relationship portrays a strong mirror opposite to that described by families of ‘White British’

origins. As described in prior chapters, ‘Indian’ residency is particularly high across the east-

central (outer-city centre) wards of Latimer, Spinney hills and Stoneygate, which have been

associated with creating low emission levels from personal transportation. However, select

eastern peripheral communities towards Evington and Rushey Mead, located along the

northern and southern tips of this ‘Indian’ cluster, uphold these high levels of ‘Indian’

residency (63.25%) yet contrastingly emit high levels of personal TPM10 (0.023t/yr.).

Interestingly, these High-High communities’ face up to the city’s most affluent and polluting

wards of Knighton and Humberstone, which characteristically represent a successfully

integration of the cities elite ‘White British’ and ‘Indian’ families. Perhaps such locales mark

the next wave of ethnic minority families to move up the social ladder, encouraging further

integration with the surrounding affluent ‘White British’ populaces.

Upon examining the ‘Other South Asian’ communities of high residency around

Stoneygate, it would appear that this minority group also tends to emit relatively low levels of

pollutants from personal modes of transportation.  Across this groups 15 LLSOAs of low TPM10

creation (0.012t/tr.) and high residency (20.52%), both deprivation levels (Rank of 2.88) and

residential TPM10 exposures (1.38t/yr.) were recorded at a moderately high magnitude.

However, 5 nearby LLSOAs with similar ethnic residency levels (20.40%) were identified to

create substantial TPM10 emissions (0.012t/tr.), whilst residentially experiencing noticeably

reduced rates of deprivation (Rank of -0.05) and TPM10 emission exposures (1.33t/yr.). This

would appear to provide further strength to the argument that, communities on the threshold

of affording personal forms of transportation perhaps require additional measures of

assistance in maintaining vehicle upkeep, or incentives to switch to public modes of travel.

From the Bivariate Moran’s I plot comparing workforce created TPM10 emissions to

neighbouring residential levels of ‘Afro-Caribbean’ inhabitants, it is hard to define how this

social group participates in the creation of personal transportation emissions; as made evident

by its global measures (Table 7.1). Whilst low levels of ‘Afro-Caribbean’ spatially typically

coincide with low emission creation, a much more diverse response may be observed around

central locales where high residency levels occur. One may note that the inner-city focal

community of interest is deemed to be a hot-spot on both accounts, deemed to be within the

upper 35th percentile of personal TPM10 contributors (0.022t/yr.) whilst being the most
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polluted of Leicester’s LLSOA communities. However, ‘Afro-Caribbean’ residency within this

spot is recorded at 0.00%; rather the locale spatially signifies the group’s high residency level

at its 9 immediate surrounding neighbours (10.28%).

Spatial patterns of environmental injustices are illustrated in further detail through a

set of contour plots, simultaneously examining created and residentially experienced TPM10

emissions against a measurement of respiratory or social status (Figure 7.3). In assigning

children’s overall respiratory hospital admissions (J00-99) as the final factor, one may observe

from the bottom right quadrant that highly polluting communities whom residentially

experience relatively low levels of TPM10 emissions, typically experience fewest respiratory

issues. As previously shown in the spatial regression analysis (Chapters 4-5), children’s

respiratory cases rise in relation to increased residentially experience TPM10 emissions, the

effects of which generally appear to be felt in a more meaningful manner by those

communities which emit lower levels of pollutants from personal modes of transportation.

One should note that children with severely reduced respiratory health (≥80 J00-99 admissions

per 1,000), tended to be housed within communities contributing modest amounts of

transport related pollutants, which in a just situation would result in only moderate health

implications. However, at present these residents appear unfairly plagued by the contributions

of external communities, whom health wise pay very little. Similar respiratory health patters

emerge in relation to the spread of both URT and LRT infections during childhood.

Contour plots holding deprivation as a third factor, clearly reveal a socially banded

structure to be in existence within the City of Leicester; identifying affluent residents to

generally contribute the highest levels of private transport emissions whilst residing in areas

experiencing low levels of road-transport emissions (Figure 7.3). The social bands, whilst

remaining visually present, would appear to represent a wider range of creation-exposure

scenarios as one reaches expected citywide socio-economic levels, indicating that a smooth

deprivation gradient is in operation. Meanwhile, those most deprived are found almost

exclusively within the upper left quadrant, experience elevated environmental burdens whilst

personally emitting few TPM10 emissions. Interestingly the deprivation contour plot reveals a

minor pocket of modestly affluent residents whom both emit and experience few TPM10

emissions, however it would appear that only a singular LLSOA within the ward of Freeman at

present sufficiently follows suit. In raising environmental awareness amongst the city’s most

affluent residents, it would be hoped that many of the cities transport related burdens could

be reduced. At present, strong inequalities seemingly occur with respect to road-transport

emissions across this British intra-urban environment.
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FIGURE 7.3 [PAGES 282-285]: Contour plots, simultaneously examining created and residentially
experienced TPM10 emissions against a measurement of respiratory or social characteristic

In exploring whether lifestyle choices determine the thought process behind a communities

environmental contribution, one may observe that the contour plots have detected some

rather broad structural bands in relation to smoking prevalence (Figure 7.3). Here low levels

off smoking tend to occur within those communities whom residentially experience low levels

of TPM10 emissions, whilst heavily contributing towards the cities wider TPM10 emissions

problems. In particular, these relatively affluent and healthy communities are to be found

around Leicester’s south-eastern periphery. Although these communities are self-conscious in

mitigating the level of risk placed on their children (i.e. passive smoking), they appear unaware

or simply uninterested in how they shift their transport burdens onto others; perhaps a case of
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out of sight out of mind. A careful targeting of information towards these communities,

informing one of their actions may in the short term, raise answerable questions on their

preferential mode of transportation. Meanwhile the banding structure defining elevated levels

of smoking prevalence appears less clear, as this diagonal band concentrating on low emitting

yet highly exposures communities is split by an expansive pocket that conflictingly to the prior

statement, chose not to smoke. These non-smoking, deprived inhabitants, who are unfairly

burdened by others private transport pollutants, are typically representative of minority

communities residing around central Leicester. In general, this contour plot would indicate

that smoking prevalence is highest amongst those communities which contribute moderate

levels of TPM10 emissions, with such levels rising in accordance to other environmental

exposures at their place of residence.

In terms of obesity prevalence, one may observe that a clear pattern emerges,

identifying those most obese as emitting the fewest pollutant from personal transportation

measures (Figure 7.3). In addition, LLSOA communities residentially experiencing TPM10

emission levels beneath expected citywide exposures (≤1.04t/yr.) are also more likely to be

classified as obese. To a certain extent this is an unexpected outcome (on the understanding

that obese persons are less likely to travel via physical modes), as an increased use of public

transport would potentially be associated with moderate residential exposure rates, caused by

an increase in the frequency of heavy vehicles entering such residential neighbourhoods. It is

thought that these observations represent both deprived and affluent suburban communities,

whereby public transport facilities are positioned away from the place of resident, and as such

are unable to accumulate within residential street canyons (which are typically less confined

within suburban areas). If this is indeed the case, then those environmentally unexposed to

the TPM10 problem, are also to an extent impacting external communities through their use of

public transport, while unfairly feeling relatively few environmental burdens themselves.

To conclude this section, contour plots were created in order to further explore the

pollutant interactions between the cities majority and key minority groups of interest (Figure

7.3). Typically ‘White British’ families reside within communities experiencing moderate to low

residential TPM10 exposures. In particular LLSOA communities housing >70% of children

classified to be of ‘White British’ origins, are residentially exposed to <1.5t/yr. in TPM10

emissions. However, communities constructed from predominantly ‘White British’ families are

not fundamentally accountable for Leicester’s environmentally unjust predicament, as only a

small segment of this societal group highly pollute and residentially experience few discharges.

Nevertheless it should be noted that the top left quadrant, denoting low contributions and

high exposures, typically house few children of ‘White British’ origins (0-50%). This quadrant
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appears to be primarily occupied by those families of ‘Afro-Caribbean’ and ‘Other South Asian’

ethnicity. In addition, graphical outputs reveal that a full if not slightly excessive force, of

environmental burdens are felt by these two ethnic minority groups, when they are found to

inhabit communities providing moderate-high contributions of personal TPM10 emissions. In

contrast, other social groups across the city look as if they either completely avoid or

experience only a mild impact in relation to their actions. Such findings would appear to

confirm that sections of the cities ethnic minority groups are comprehensively burdened, in a

socially unjust manner, by the contributions of others.

Whilst families of ‘Indian’ origins maintain a graphical distribution of communities,

whom emit little yet face the environmental effects of others, such unjust burdens are of a

reduced scale within these communities; marked by this ethnic subsets standing in-between

the upper and lower TPM10 exposure quadrants. However, unlike the two preceding ethnic

minority groups, families of ‘Indian’ origins have a second key distribution across communities,

which face few but emit moderate-high quantities of personal TPM10 emissions. To a lesser

extent, persons of ‘White Non-British’ residency mimic these two distributions portrayed by

the ‘Indian’ populace. From these findings, it is possible to conclude, that those accountable

for the major environmental burdens felt by inner city communities, are of affluent

communities representative of a successful integration of the ethnic majority with persons of

‘Indian’ and ‘White Non-British’ origins. The outputs of these contour plots are in agreement

with those of the Bivariate Moran’s I cluster analysis, which primarily identified the ward of

‘Knighton’ as housing residents whom do not presently adhere to the PPP’s.

7.3. RE-EXAMINATION OF THE ‘DOUBLE BURDEN’

In examining the collective influence of socio-environmental influences on the complete set of

respiratory conditions, Chapter 4 found environmental inequities to prevail selectively across

sections of the model British multicultural city of Leicester. In particular, children from lower

social class households tended to reside within areas experiencing relatively high levels of

road-transport emissions, thought to be substantially created by external affluent

communities. Such interactions are in accordance with a preceding body of EJ  research, which

have consistently reported the  ‘double-burden’ of deprivation and air pollutant exposure as a

key explanatory factor in defining health disparities (Crouse et al 2009, Kingham et al 2007,

Naess et al 2007). Following on from this, an in-depth exploration of specific respiratory

conditions within Chapter 6, documented the combined accountability of deprivation and
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road-transport emissions in the decline of children’s respiratory health across entire

communities. It was proposed that certain socio-environmental factors were particularly adept

at infiltrating a child’s undeveloped immunological system, often resulting in the initiation of

an URTI episode, with prolonging recovery times likely occurring from sustained exposures. If a

sufficient level of recovery was not reached in time for the cold season, then the child may

then become host to a viral infection, exacerbating previous respiratory complaints, potentially

resulting in LRT conditions of greater severity. Thus underlining how this ‘double burden’

affects all aspects of respiratory health during childhood.

Within the above section of this chapter, graphical plots of deprivation against

intensities of residentially created and experienced TPM10 emissions, clearly identified

elements of social banding across the City of Leicester. Here affluent residents contributed the

highest levels of private transport emissions whilst residing in areas experiencing low levels of

road-transport emissions, whereas the reverse of this relationship occurred in large across

those communities of a deprived nature. To further investigate this ‘double burden’ a new set

of contour plots were constructed, simultaneously examining levels of deprivation and

residentially experienced TPM10 emissions against a third measurement of respiratory or social

status (Appendix F1). In assigning children’s overall respiratory hospital admissions (J00-99) as

the final factor, one may observe that the bottom left quadrant representative of decidedly

affluent communities whom residentially experience relatively low levels of TPM10 emissions,

typically experience the fewest respiratory issues. In contrast, children residing within

communities represented by the top right quadrant, which are characteristically deprived and

residentially experience relatively high levels of TPM10, were identified to exclusively

experience the most severe reductions in respiratory health (≥80 J00-99 admissions per 1,000).

Prior contour plots (Figure 7.3), indicated that these children tended to be housed within

communities contributing modest amounts of transport related pollutants, which in a just

situation would result in only moderate health implications. However, at present these

residents appear unfairly plagued by the contributions of external communities, whom health

wise pay very little. Respiratory health would appear to decline as either deprivation or

residential pollutant exposure increases, with the worst effects felt when both influences

combine.

In terms of lifestyle choices, the contour plots would occur to confirm that by enlarge

those most affluent and least polluted, through shifting their personal transportation burdens

onto others, generally exhibit low smoking rates (Appendix F1). As before, central locales

containing some of the most deprived communities, whom face moderate-excessive

residential levels of TPM10, also displayed low levels of smoking uptake; perhaps in recognition
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of the multitude of burdens already thrust upon them. Peaks in smoking prevalence may be

found across those most deprived communities where residentially experienced TPM10 is low,

representative of the cities western suburbs primarily occupied by ‘White British’ families. A

second peak is also observed across highly polluted communities, whereby smoking

prevalence exists irrespective of socio-economic status. Overall, this lifestyle choice appears

somewhat detached from the ‘double burden’ driving children’s respiratory outcomes.

With respect to levels of obesity prevalence, it was previously shown that those most

obese communities emitted the fewest pollutants from personal transportation measures. This

remark is reconfirmed here, as those deprived communities (Rank of >0) are typically the most

obese; with the exception of half of the upper right quadrant (representative of inner city

inhabitants), which displays low levels of obesity across considerably deprived and polluted

locales (Appendix F1). Overall those least obese would tend to reside within residentially

polluted settings, irrespective of social status. Perhaps it is the highly active nature of some

deprived communities, which magnifies their environmental exposures. Here the low cost (if

any) of physical transportation measures promote physical wellbeing, at the expense of

increasing roadside exposure periods, which could go some way in explaining why children’s

respiratory health is substantially diminished across these communities.

Contour plots, identified that ‘White British’ residents by enlarge do not face this

‘double burden’, with deprived communities from this ethnic majority typically residing across

suburban areas, experiencing low levels of transport pollutants (Appendix F1). In addition, it

would seem as though affluent ‘White British’ families characteristically experience moderate

pollution exposures, and as such some of these communities partially pay for their

contribution of personal transport emissions. As previously discussed, it was observed that the

most prosperous communities characterised by the successful social integration of select

minority groups with a prevailing ‘White British’ majority, were observed to highly pollute

shifting such burdens onto other communities. Social status rather than ethnicity would

therefore appear to define a community’s environmental attitude and attributes, although the

two mechanisms are often intertwined.

As before, peaks in ‘Indian’ residency form across two residential distributions

(Appendix F1). The minor distribution is located within the bottom left quadrant,

representative of those that have socially integrated with certain affluent ‘White British’

communities, whom emit high levels yet unjustly experience few environmental burdens. A

second rather extensive distribution mode is defined by moderately social and environmental

burdens, although this distribution does in part expand into the upper right quadrant

indicative of the ‘double burden’. However when this occurs, ‘Indian’ communities would
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appear less effected by such burdens (<80 J00-99 admissions per 1,000) compared to other

inhabitants (≥80 per 1,000). In examining the cities other ethnic minority groups, no clear

pattern emerged in relation to those children of ‘White Non-British’ origins. Meanwhile,

contour plots identified ‘Other South Asian’ and ‘Afro-Caribbean’ children as comprehensively

occupying those most polluted communities, of which their greatest distributions are to be

found within locales experiencing a ‘double burden’ of deprivation and pollution.

In a concluding thought, when examining the four conceivable quadrants individually

associated with a spectrum of ‘double burden’ interactions, questions may arise asking

whether severely environmentally burdened affluent communities actually exist within

Leicester. On closer inspection of the dataset, one should note that only 4 LLSOAs exist which

portray characteristics of highly polluted neighbourhoods (TPM10 >1.5) containing inhabitants

whom are not socially deprived (Rank >0). These communities are to be found around the

southern fringes of the city centre, three of which are located within the ward of Westcotes

and one within Castle. Each observation respectively experiences residential TPM10 emission

levels of 1.96, 1.67, 1.54 and 1.87t/yr., whilst recording corresponding deprivation ranks of -

0.25, -0.39, -2.02 and -0.02. In comparison to the three other quadrants, observations are

extremely sparse, and where available they are confined to only the upper left quartile.

Therefore, an element of caution should be taken when drawing conclusions from the bottom

left quadrant, with explanatory outputs for an environmentally disadvantaged yet socially

affluent community existing in purely a theoretical manner (derived from distant contours).

Such findings relating to these theoretical communities therefore require further scrutiny, with

further research conducted across additional intra-urban environments to confirm their

existence.

7.4. BOUNDARY ANALYSIS OF COMMUNITY CREATED TRANSPORT EMISSIONS

Following on from the procedures set out in Chapter 6, univariate crisp polygon wombling

techniques were applied to detect boundaries in community created transport emission levels

(from private modes). This was conducted in order to establish whether significant proximity

based thresholds exist in relation to emission production, and spatial gradients in children’s

respiratory outcomes or social-environmental influences. If such thresholds indeed exist, then

they are of interest for (a) confirming preceding statements, and (b) determining whether

locally created TPM10 emissions burden proximal or distant residents.
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Boundaries in community created TPM10 emissions were associated with BLV’s ranging

from 0.18-0.61. The sharpest transitions were observed to occur around the upper section of

the city’s most northerly ward of Beaumont Leys, marking its border with Abbey (Figure 7.4).

Here, three boundaries separating an individual LLSOA from Beaumont Leys from communities

contained within Abbey, were shown to record an average BLV of 0.43. In-fact, two of these

boundaries fell within the cities top five community transitions in personally created transport

emissions. Within the Beaumont Leys LLSOA deprivation levels (-5.26), created TPM10

(0.058t/yr.) and experienced TPM10 (0.58t/yr.) emissions were registered to exist at noticeably

distinct levels, to those corresponding values of 1.80-2.73, 0.014-0.019t/yr. and 0.64-0.69t/yr.

recorded across Abbey’s LLSOA communities. From these readings, boundary detection

techniques would appear to confirm the previously explored, distinguishing community

characteristics, involved within the creation of pollutants from personal transportation modes.

One may also note that additional boundaries are to be found between Beaumont

Leys intra-ward communities, specifically this relates to moderate levels of TPM10 creation

within the wards core facing up to a sharp singular reoccurrence of high TPM10 creation at the

wards base. Here, deprivation levels (-3.32), created TPM10 (0.040t/yr.) and experienced TPM10

(0.85t/yr.) emissions recorded by the wards lower LLSOA, once again noticeably differed from

those corresponding values of 3.49-5.71, 0.010-0.017t/yr. and 0.76-0.96t/yr. recorded within

the heart of Beaumont Leys. These observations highlight a rather complex set of localised

shifts in pollution dynamics by Leicester’s northern communities (relating to minor pockets of

affluence), which starkly contrast to the broader somewhat uniform intra-ward contributions

of the cities south-easterly communities.

FIGURE 7.4: Map illustrating the top 5% of Boundary Elements (red) across respective decile
distributions of community created transport emission levels (from private modes)
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Whilst the south-easterly ward of Knighton is universally representative of high TPM10

contributions, one may note that the adjacent northerly communities track a gently

diminishing transition in personal pollutant contributions (Figure 7.4). It is not until the inner-

city communities are reached that a noticeable cut-off is witnessed, as determined by three

boundary elements providing an average BLV of 0.28. In addition, all three elements fall within

the cities top ten community transitions in personally created transport emissions. It would

appear that two of these elements form a wider extent of six boundaries (BLV 0.23-0.32),

which focus on the partitioning off of Castles southern section of moderate-high polluters from

those whom contribute little along the outer-city centre wards of Westcotes and Freemen

(Figure 7.4). Here, Castles three southern LLSOA communities respectively record average

deprivation, TPM10 creation and TPM10 exposure levels of -2.55, 0.031t/yr. and 1.43t/yr.,

compared to their opposing community values of approximately -0.31, 0.002t/yr. and 1.66t/yr.

Whilst the distinguishing features of polluting communities remain, they are of a slightly

blurred nature when compared to those along the northern created emission boundaries. As

explained this is an outcome of a geographically smoother transition between polluting

communities in southern Leicester; created primarily in accordance to a more gradual change

in social class.

It is down to such smooth transitions that the northern edge of Knighton is not

partitioned off in this boundary analysis; this follows on from the cluster detection outputs

recognition of a transition from low to moderately polluting ‘Indian’ communities inhabiting

these adjacent locales (Figure 7.2), which has arose on account of increased affluence. In-fact

this gradual geographic transition in affluence and pollution may be observed across the

LLSOAs contained in Spinney Hills (Carstairs Index = 4.24, Created TPM10 = 0.009t/yr.,

Experienced TPM10 = 1.53t/yr.), Stoneygate (Carstairs Index = 0.22, Created TPM10 = 0.018t/yr.,

Experienced TPM10 = 1.17t/yr.), and Knighton (Carstairs Index = -4.70, Created TPM10 =

0.033t/yr., Experienced TPM10 = 0.92t/yr.) as one enters more peripheral locales. Similar

trends may be observed in and around Humberstone, which also marks a staged transition in

socioeconomic status matched by an integration of ‘Indian’ families into ‘White British’

communities.

On a final descriptive note, there would also appear to be eight fragmented

boundaries of interest outlining the westerly ward of Western Park, which on average provide

a BLV of 0.24 (Figure 7.4). This ward consists of 7 LLSOAs, typically housing persons of

moderate affluent (Rank of -3.29) who create high levels of personal TPM10 (0.028t/yr.), yet

residentially face environment burdens close to expected intensities (1.09t/yr.). What makes

this unique from the previously explored emission contribution clusters, is that levels of ‘White
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Non-British’ children are substantially raised (≥7.07%) above that of Leicester’s standard LLSOA

profile (1.56%). Overall, one may conclude that the detected boundaries are of a comparative

description to those presented via contour plots and within the spatial cluster analysis. Where

it was revealed that affluent communities, representative of a successful integration of the

ethnic majority with families of ‘Indian’ or (to a lesser extent) ‘White Non-British’ origins, were

accountable for generating and passing on excessive levels of personal TPM10 emissions to

other communities.

For children’s URTI’s (J00-06), statistically significant overlap was once again identified

to occur between boundaries in TPM10 emissions (Table 7.2), with the two variables sharing 8

additional Boundary Elements than expected by chance (OS P↑≤0.01). However, unlike the

complete respiratory set, an average minimum distance of 248m from a boundary in TPM10

Overlap statistics were subsequently employed to establish whether boundaries in

community created transport emission levels (from private modes), spatially corresponded to

geographic gradients in children’s respiratory outcomes and social-environmental influences of

interest outlined in Chapter 6. In examining the relationship between created TPM10 emission

boundaries and the entire range of children’s respiratory outcomes (J00-99), it would appear

that none of the distance based overlap metrics provide any information of particular interest

(Table 7.2). Although a significant amount of boundary elements were shown to overlap,

indicative of some interaction, with the two variables sharing an additional 6 Boundary

Elements than what would be expected by chance (OS P↑=0.03). Of particular interest are the

three common boundary locations separating an individual LLSOA of Beaumont Leys from

communities contained within Abbey (Figures 6.1, 7.4). At these locations the emission and

health gradients are reversed, in that when personal TPM10 contributions are high J00-99

admissions are low (22.86 per 1,000), whereas the adjacent low contributing communities are

found to experience a sharp elevation in the amount of J00-99 cases (57.05-65.04 per 1,000).

These outputs build a strong case for the select existence of relatively localised shifts in

environmental burdens, passed onto neighbouring communities by the frequent passage of

vehicles en-route to work along a standard set of road links. Meanwhile the limited collection

of mutually corresponding inner-city boundaries, would infer that these residents are unable

to successfully shift their burdens onto neighbouring communities to the same extent.

emissions to a children’s URT health front (OG P↓≤0.01), was identified to be of a significantly

smaller distance than expected under a null hypothesis of no spatial patterning. Furthermore,

the mean distance from locations in either boundary to the nearest location in the opposing

boundary were recognised to occur across a significantly small distance of 489m (OGH
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P↓=0.02), thus acknowledging the presence of significant boundary overlap between both

factors.

As with the complete respiratory set, a common boundary was observed to separate a

highly polluting community with low URT rates (10.80 per 1,000) in Beaumont Leys, from a

LLSOA in Abbey, which emits fewer TPM10 emissions yet registers a higher quantity of

children’s URT cases (29.81 per 1,000). In contrast to the boundary analysis of the entire

respiratory set, URT boundaries are detected to replicate such inverse relationships in personal

TPM10 production and respiratory outcomes, across first-order communities throughout the

city of Leicester. A more comprehensive inclusion of the community created TPM10 boundary

set has also seen the emergence of significant distance based overlap metric outputs, clarifying

ones observations in a more descriptive fashion and recognising that a global rather than

locally restricted interaction is in operation (Table 7.2). Other key first-order interactions

(Figures 6.1, 7.4) involve the separation of a highly polluting community (0.033t/yr.) with low

URT rates (13.03 per 1,000) in Western Park, from a LLSOA in New Parks, which emits fewer

TPM10 emissions (0.007t/yr.) whilst once more registering a higher quantity of children’s URT

cases (30.73 per 1,000). With respect to inner-city locales, these interactions are not so

apparent due, as it would appear that such locales experience an accumulation of

environmental burdens from multiple distant communities. Nevertheless, a clear common

boundary was observed to separate a highly polluting inner-city LLSOA (0.031t/yr.) with

modest URT rates (22.09 per 1,000) in Abbey, from a community in Spinney Hills, whom emit

some of the lowest levels of TPM10 (0.005t/yr.) whilst recording substantial magnitudes of

children’s URT cases (38.97 per 1,000).

As with children’s URTI cases, a global rather than locally restricted relationship would

appear to link the community created TPM10 boundary set with the occurrences of some LRTI

health fronts. Here, the indicated average minimum distance of 410m from a boundary in

community created TPM10 emissions to a children’s LRTI health front (OG P↓=0.04), was

identified to be of a significantly smaller distance than expected under a null hypothesis of no

spatial patterning. The mean distance from locations in either boundary to the nearest

location in the opposing boundary, also occurred across a significantly small distance of 541m

(OGH P↓=0.05), thus acknowledging the presence of globally significant boundary overlap. One

may note that these metric based overlap statistics relating TPM10 creation to LRT health

fronts were recorded to occur at a greater distance, than what was recorded in relation to URT

complaints. However, this is of little surprise, as one may expect a smooth emission dispersion

gradient along the route of travel from a person’s place of residence, only occasionally

amassing at junctions, and or when stretches of congestion occur. As understood previously,
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severe LRT complaints required a persistently moderate-high level of residential contact, or

exposure to particularly sharp episodes typically found around junctions during peak traffic

flows. Meanwhile URT complaints, with their reduced severity, are often found to be the initial

response towards the introduction of detrimental socio-environmental influences. Hence, the

excessive sharing of boundaries and reduced proximity between created TPM10 emissions and

outer city URTI health fronts

Boundaries Overlapped (G,H)
H= Created TPM10 Emissions

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) J00-99 Admissions Per 1,000 Children OG 512 790 (±278) 0.86 0.14
OH 827 889 (±296) 0.54 0.45
OGH 669 840 (±235) 0.76 0.24
OS (count) 9 3 (±2) 0.03* 0.99

(G) J00-06 Admissions Per 1,000 Children OG 248 798 (±298) 0.99 0.01*
OH 729 1018 (±333) 0.83 0.17
OGH 489 908 (±256) 0.98 0.02*
OS (count) 11 3 (±2) 0.01* 0.99

(G) J20-22 Admissions Per 1,000 Children OG 410 802 (±300) 0.96 0.04*
OH 673 910 (±288) 0.79 0.21
OGH 541 856 (±235) 0.95 0.05*
OS (count) 8 4 (±2) 0.06 0.97

* P≤0.05

TABLE 7.2: Univariate boundary overlap analysis of community created transport emission levels
(from private modes) and children’s respiratory outcomes

Following on from these outputs, overlap statistics were then implemented as a means of

statistically summarising the spatial interactions and associations, between community levels

of created TPM10 emissions and individual socio-environmental factors of interest (Appendix

F2). Whilst, spatial transitions in residentially experienced TPM10 emission levels were

themselves, identified to universally occur within close proximity to those from highly polluting

As with the other collective and individually explored respiratory conditions, LRTI

health fronts were not unanimously shown to correspond in a significant manner to

community  contributions  in  TPM10 (OH P↓>0.05).  This  should  be  of  little  surprise  when 

considering that spatially detached peripheral communities are thought to provide the

majority of environmental burdens felt across inner-city locales; which contradict the lower

magnitude health gradients, described above, occurring amongst first-order neighbours

positioned away from central locales. Interestingly, the transitions in community created

TPM10 emissions would appear to explain the weaker health fronts not sufficiently captured by

the residentially experienced TPM10 dataset, due to the overshadowing recordings across

inner-city locales.
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communities (OG=293m, P↓≤0.01), no such global associations were reciprocated by reverse

positioned boundary tests (OGH, OH P>0.05). Despite this, it is highly likely that a range of more

subtle residentially experienced TPM10 transitions are in existence near to those communities

whom sufficiently contribute, as indicate by the inverted association with minor health

gradients. Plausible reasoning for their concealment shows this as a consequence of the steep

localised pollutant gradients occurring across central locales, which have overshadowed any

minor transitions in pollutant exposures across other parts of the city.

Furthermore, the spatial peaks in residentially experience levels of TPM10 are shown to

be produced primarily by sizeable pockets of affluent communities, whom shift their burdens

onto deprived communities located nearby; but far enough away to not feel the full force of

these affects themselves. Furthermore, those residents residing along the fringes of this

affluent zone typically provide only moderate burdens to those nearby inner-city communities,

whilst those residing within the distant and most affluent communities (at the heart of this

pocket) are found to emit the highest amounts of TPM10 and experience the smallest impacts.

It would therefore appear that health, social and environmental gradients truly operate in an

aligned manner within an intra-urban setting.

emissions problems. Although these communities are self-conscious in mitigating the level of

In accordance to the cluster analysis and contour plots, the overlap statistics identified

boundaries in deprivation as sharing a significant number of elements with those marking

community created TPM10 outputs (OS P↑=0.05, Appendix F2). Furthermore, zones of rapid

change in socioeconomic status were designated to occur within a proximal 305m from a

polluting community boundary (OG P↓≤0.01), with an average distance of 375m also

separating opposing boundary locations (OGH P↓≤0.01). In combining such information with 

the conclusions of the preceding chapters, one may understand that the Leicester’s major

respiratory health fronts, typically located within the inner-city, are considerably defined by

the contributions of pollutants emitted from the motor-vehicle.

In exploring whether lifestyle choices determine the thought process behind a

communities environmental contribution (Appendix F2), one may observe that spatial

transitions in relation to smoking prevalence comprehensively occur within close proximity to

those boundaries in community created levels of TPM10 from personal transportation modes

(OG=461m, P↓=0.05). In addition, the boundary analysis outputs identify these two factors as 

sharing 9 additional boundary elements than expected by chance (OS P↑=0.04), further

cementing such ties. As highlighted by the contour plots (Figure 7.3), boundaries typically

distinguish low levels off smoking within those communities whom residentially experience

low levels of TPM10 emissions, whilst heavily contributing towards the cities wider TPM10
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risk placed on their children (i.e. passive smoking), they appear unaware or simply

uninterested in how they shift their transport burdens onto others.

Through investigating the spatial influence of ethnic profiles (Appendix F2), it was

uncovered that spatial transitions in ‘White British’ residency were located in significantly

distant locations of the city, when compared to boundaries in levels of community created

TPM10 (OG=1292m, P↑=0.04), and vice versa (OH=1071m, P↑=0.04). To a certain extent this

confirms that the ethnic minority is not unanimously responsible for the majority of TPM10

burdens, as if this was the case, one would expect a mutual emergence of high polluting

communities with increased residency. Rather the polluting communities, typically well within

this ‘White British’ domain, have been shown to represent affluent communities that are

positively integrating with ‘Indian’ residents. Similarly, boundaries in ‘Indian’ residency were

located in significantly distant locations of the city to transitions in community created TPM10

(OG=1195m, P↑=0.05), and vice versa (OH=1204m, P↑=0.03). This is because ‘Indian’ residents

are primarily located within the eastern sector of the city, where personal TPM10 contributions

are low.

In terms of boundaries in obesity, one may once again observe that those most obese

emit the fewest pollutant from personal transportation measures (Figures 6.2, 7.4). In

particular, the highly polluting affluent pocket inclusive of Knighton and sections of Castle are

cordoned off by a fragmented expanse of boundaries in obesity. Statistically such observations

are confirmed by universally close proximity of obesity boundaries to those outlining

community created TPM10 emissions (OG = 332m, P↓≤0.01),  in addition to a common 

positioning of an additional 10 boundaries than expected by chance (OS P↑=0.04) (Appendix

F2). In confliction to these observations, transitions in community created emissions were

recorded to occur far away from obesity boundaries (OH=1294m, P↑=0.04). However, upon

inspecting the spatial occurrences of both boundary sets, such disassociations have arose not

through a fundamental disagreement of the previous statements. Simply put, boundary

formation for obesity was less sensitive to its moderate transitions across northern Leicester,

which would have coincided boundaries in community created emissions (Figures 6.2, 7.4).

In contrast, spatial transitions in ‘White Non-British’ residency were found to be

universally positioned within reach of polluting communities (OG=340m, P↓≤0.01), in addition

to sharing an additional five boundary elements that expected by chance (OS P↑=0.05). As

previously discussed, a substantial section of ‘White Non-British’ residents are found to peak

around the polluting and affluent communities of Western Park; replicating the successful

integration of some ‘Indian’ residents with those of the ethnic majority. On a final note of

interest, one should note that communities whom emit substantial proportions of TPM10 are
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typically located within distant communities to those somewhat exclusively housing children of

‘Afro-Caribbean’ ethnicity (OH=1690m, P↑=0.04). This would coincide with the earlier concept,

which understood that whilst some environmental burdens of polluting (and usually

peripheral) communities are unfairly passed onto their immediate neighbours, the most unjust

burdens tend to be drawn to, and accumulate around central locales housing those socially

vulnerable communities.

Boundaries Overlapped (G,H)
H= Created TPM10 Emissions

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Carstairs Index  &
Experienced TPM10 Emissions

OG 276 802 (±266) 0.99 0.01*
OH 376 830 (±278) 0.98 0.02*
OGH 326 816 (±223) 1.00 0.00*
OS (count) 15 4 (±2) 0.00* 1.00

* P≤0.05

TABLE 7.3: Bivariate boundary overlap analysis of community created transport emission levels (from
private modes) with deprivation and residential TPM10 exposures

In pursuing the investigation of recurrent themes within this research project,

boundary overlap procedures were subsequently applied to explore the connections between

the ‘double-burden’ of deprivation and TPM10 exposure, with community created transport

emission levels (from private modes). Table 7.3, informs the reader that a strong universal

association exists between both factors, with polluting communities typically shifting their

environmental burdens onto communities separated by a small distance threshold (OG=276m,

P↓≤0.01). This buffer zone of approximately 300m between a common creation source and 

an accumulation of transport emissions,  is further strengthened by outputs quantifying 

the reverse (OH=376m, P↓=0.02) and collective boundary (OGH=326m, P↓=0.01) relations.

Through the inclusion of a third social or lifestyle factor to this ‘double burden’ relationship

(use of the trivariate boundaries presented within Chapter 6), one should note that transitions

in ‘White British’, ‘White Non-British’ and ‘Indian’ children substantially weaken the uncovered

bonds of the double burden (Appendix F3); further signalling their disassociation of

experiencing a combination of these undesirable impacts. Whilst, the inclusion of obesity

prevalence displaced the existence of a universal connection between boundaries in emission

creation levels and transitions of the ‘double burden’ (OH P↓>0.05); those of the trivariate set

were found to comprehensively reside within a reduced distance to these polluting

communities  (OG=156m,  P↓≤0.01).  This  reduction  in  distance  has  occurred  through  a 

strengthening of markers around those most affluent and polluting areas (i.e. Knighton and

Western Park), whom also exhibit low levels of obesity. In general terms, those most obese
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were previously identified as emitting the fewest pollutant from personal transportation

measures, typically residing within the most deprived communities. However, low levels of

obesity are also recorded across inner-city communities, where the ‘double burden’ is most

rampant. Such complex undertones offer reasoning for the lack relationship in the opposing

direction.

7.5. A FAIR DISTRIBUTION OF POLLUTER RESPONSIBILITIES

From the preceding sections of this chapter, it has become apparent that several of the most

affluent and environmentally least burdened of Leicester’s communities, are responsible for

the release of large quantities of pollutants from personal modes of transportation. In

contrast, those socially vulnerable communities, whilst occasionally contributing to their own

environmental degradation, consistently experience a disproportionate level of environmental

burdens. In conclusion, one may observe that an environmentally unjust situation currently

prevails across the city of Leicester. However, simply pointing the finger at those affluent

communities does not allow for a fair assessment of the current state of environmental affairs,

without accounting for a number of other circumstances. For instance, the level of

employment will determine some variations in pollutant contributions purely though an

increase in required trips. Under these circumstances, it would be socially unfair to place a

raised environmental accountability onto these communities, as in many ways these

inhabitants are already paying societal contributions (collected via taxation), which benefit

those in vulnerable situations. Rather it is of interest to place environmental accountability on

excessive travel distances and the use of certain transportation measures, which should be

viewed after existing societal contributions are accounted for.

To explore whether a fair distribution of polluter responsibilities exists, this section

initially presents a series of contour plots, describing how a communities socio-environmental

On a concluding note, those trivariate boundaries including either the ‘Other South

Asian’ or ‘Afro-Caribbean’ ethnic minority group as the final component, barely deviate from

the spatially strong affiliations recorded between magnitudes of emission production and the

‘double burden’ (Table 7.3, Appendix F3). Out of these two ethnic minorities, persons of ‘Afro-

Caribbean’ origins would appear to feel the highest magnitude of the environmental aspects of

this double burden, on average residing 25m closer to boundaries in emission creation than

‘Other South Asian’ residents (OG P↓<0.05). Such observations are in-line with the conclusions

drawn from Chapter 6.
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characteristics may influence their overall mobility and uptake of particular transportation

modes, after adjusting for levels of employment. All of this was conducted in fashion, which

provides a greater understanding of the favoured modes of transportation used by Leicester’s

communities across different spectrums of the previously discussed ‘double burden’ of

interest. Contour plots of employment levels appear to follow anticipated distributions

(Appendix F4), with those socially and environmentally favourable communities containing the

largest economically active populations (>70%). Therefore, it is of little surprise, that this lower

left quadrant contributes a high proportion of TPM10 emissions levels experienced by residents

across the wider urban area of Leicester (Appendix F4). In contrast, the top right quadrant

identified the communities represented here to by enlarge only display employment levels of

<40% amongst persons aged 16-74 years (a figure well below the citywide average of 55.99%).

Typically the communities positioned here on the socio-environmental spectrum are observed

to emit low levels of TPM10 (<0.015t/yr.), yet are burdened by high levels of environmental

burdens. Upon examining those deprived (Rank >0) and affluent (Rank <0) communities as two

individual components, one may observe that those communities with higher employment

rates tend to contribute high levels of TPM10, whilst experiencing reduced levels of residential

exposures.

From previous plots one may recall a small pocket of communities contained within

the upper right quadrant, indicating where the impact of the ‘double-burden’ was most felt

(Appendix F1). Children housed here had severely reduced respiratory functions (≥80 J00-99

admissions per 1,000), most likely induced by a combination of deprivation levels 5 ranks

above the citywide average and residential TPM10 exposures <2.0t/yr. Unlike surrounding

communities, employment levels here are found to persist around 40-45%, rather than falling

below 40% (Appendix F4). Consequently, these communities would appear to experience

increased levels of mobility and favour personal forms of transportation (Figure 7.5), which are

thought to be of a poor condition due to their financial constraints. The moderate

contributions from this fleet are likely the reason behind driving the respiratory health effects

of these communities from high to severe. Therefore the implementation of a small but

targeted strategy providing assistance with vehicle maintenance and or encouraging

alternative transportation modes could have a noticeable impact.

In fairly examining the polluter responsibilities (Figure 7.5), one may observe that

employed persons from affluent communities are likely to commute greater distances to work

compared to their socially disadvantaged counterparts. In general, those deemed of affluence

travelled >15km per day on their return commute to work, whereas the workforce from

deprived communities only travelled reduced 6-15km. This follows the concept that districts of
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work are located close to deprived communities, and as such affluent communities have

further to travel, which encourages the use of more environmentally unfriendly modes of

transportation. In addition, a common district of destination is likely to create an accumulation

of pollutants, which may be further added to by the shorter trips of those less privileged

residents living within the nearby vicinity.

In viewing the graphical representation of distances travelled per employed person

(PEP) via their preferred mode of transportation, one may observe a very low use of ‘green’

transportation modes (on foot, bicycle or carpool) by those communities in the bottom left

quadrant of the ‘double burden’ relationship (Figure 7.5). Here, typically only 4-16% of the

total distance travelled PEP was completed via a ‘green’ form of transport. It would appear

that ‘green’ transport use dramatically increases with respect to residentially experienced

levels of TPM10, regardless of social status. In-fact once a residential TPM10 level of ≥2.5t/yr. is

reached, >28% of residents are found to travel by a ‘green’ mode of transport. Although one

should note that levels also increase with deprivation, though not to be of personal choice but

out of necessity.

It has already been acknowledged that an increase in physical exercise across polluted

neighbourhoods, whilst keeping additional vehicles off the road, may not actually decrease

respiratory cases due to increased periods of exposure. Nevertheless, one may observe that

communities feeling the brunt of the ‘double burden’ share broadly similar socio-

environmental attributes, yet have a much lower use of ‘green’ transport (16-28%). Here it has

been shown that an increased use of poor vehicle stock, increased levels of respiratory

admissions from high to severe (Figure 7.5). Therefore, the encouragement of green modes

may be viewed as a means of mitigation (akin to those communities with comparable

attributes) rather than an out and out solution. Even if such actions were in operation, further

measures are still required to limit external communities from shifting their share of pollutants

onto these inhabitants.



- CHAPTER 7 -

302

FIGURE 7.5: Contour plots, exploring Leicester’s ‘Double Burden’ in relation to levels of personal
emission creation and commute distances completed by a range of transportation measures, after
adjusting for the number of persons employed within each community
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Upon inspecting the contour plot of communally emitted TPM10 PEP (from personal

transportation modes), one should observe that the broad structures contained within the

graphical representation excluding workforce counts, remain largely unchanged (Appendix F4,

Figure 7.5). Critically, the lower left quadrant still contains communities that excessively

contribute to the cities TPM10 problem from personal modes of transportation, and should

thus remain the focus of the solution. In truth, the only major change to be observed between

the two plots centre’s around these highly polluting communities, which now appear to extend

into those extremely affluent communities experiencing moderate environmental burdens

(approximately 1.5t/yr.) compared to the expected LLSOA TPM10 level (1.04t/yr.). Within this

zone of extension, communities are found to move from the third highest polluting interval of

the contour plot (when not accounting for population counts) to that of the most polluting

category. As with other affluent areas, elevated emission contributions are not thought to be

caused by vehicle condition, but rather by excessive commute distances.

As previously discussed, those communities within this extension typically house ≥80%

children of ‘White British’ origins, and as such are less ethnic integrated than most polluting

areas. However, unlike other highly polluting affluent communities, these communities, to a

certain respect, are already paying for aspects of their environmental contributions through

moderate residential exposures. It is from this information, that the ethnic majority group

could not be directly blamed for the city’s environmental burdens, with class acting as the

ruling factor. Meanwhile, the top right quadrant still contained deprived inhabitants whom

contributed little in proportion to their experienced environmental burdens. However, taking

into account personal travel emission outputs per worker did clarify and considerably extend

the volume of socially and environmentally deprived communities, contributing towards the

environmental burden confronting them. Whilst pollution contributions remained at the

fourth highest interval across both contour schemes, the area recording those severest

respiratory conditions was now found to be fully incorporate by the pollution plots.

In addition, little change was observed across the lower right quadrant, which

theoretically characterises an affluent populace exposed to a sizeable magnitude of

environmental burdens (as only 4 LLSOAs loosely abide to such trends). In this form the

quadrant is essentially a hypothetical reactionary scenario of affluent communities, if they

were not to pass on their burdens to those external and often deprived locales (i.e. a just

situation). Under this scenario communities are observed to personally emit low levels of

TPM10, despite the fact that a large subset of this distribution was shown to commute

considerable distances per worker (>21km/PEP), on a daily basis. However, one should note

that this subset corresponds to a peak in the uptake of green transportation modes (>28%),
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showing that it is perhaps possible to reduce personal emission contributions across

communities whom tend to commute across large distances. This approval of ‘green’

transport, would likely occurred in recognition of their residential exposure to high pollutant

levels (or the visual impact of vehicles), thus raising the environmental awareness of these

inhabitants.

Whilst larger trips remain undertaken by public transportation, as approximately two

thirds of the distance commuted is still eaten up by mechanical measures, it is likely that

‘green’ modes are favoured for those frequent, shorter trips. However, this increased use of

public transport, raises questions relating back to those high residential exposure levels, with

larger vehicles travelling close to residential areas on a more frequent basis, if of a certain age

are likely to cause more harm than good. Thus highlighting the delicate balance faced by

planners in aiming to providing a high quantity of public transportation whilst maintaining the

quality of their fleet. It should also be recalled, that suburban communities around the

expected socioeconomic baseline are most likely to travel via bus, yet they were found to

reside within low pollution zones; likely caused by the open nature of such areas. It would be

likely that these hypothetical affluent communities are also to be found in suburban areas,

thus avoiding an intense accumulation of pollutants through the urban canyon effect.

Therefore under such a scenario environmental conditions at their place of residence would

likely improve, however their movements may still impact others dependent on the

maintenance of the public transport fleet.

After summarising a range of practical as well as theoretical community mobility and

personal emission distribution  structures in relation to socio-environmental influences (in a

manner deemed ‘fair’ to societal contributions), a series of Univariate Local Moran’s I statistics

were subsequently applied to locate where the key uptake of individual forms of

transportation has occurred (Appendix’s F5, F6). Through taking into account a range of

transport measures, one should also understand (in a rather crude manner) the extent to

which communities with a high uptake of personal transport modes contribute towards the

overall environmental burden. For instance, these same communities may also have a high use

of public transport, identifying themselves as inconveniencing external communities through a

spectrum of mechanical measures. If this is indeed the case, then the extent to which

environmental disparities exist within Leicester, occur across a far wider range then explored

here. Another extreme scenario is that those poorer communities actually have a high use of

public transport, and in a certain respect are involved at a higher level in fabricating their own

environmental problems. If this scenario is found to be accurate, it is not truly the fault of
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vulnerable communities, with the real payment lying with the supplier of such services, for the

provision of an environmentally inadequate fleet to the consumer.

Collectively across Leicester, LLSOAs were found to on average exhibit employment

levels of 55.99% for persons aged 16-74 years. The proportion of an areas workforce typically

commuting to work via Car/Van, Bus or ‘Green’ modes of transport were respectively recorded

at 44.41%, 15.63% and 28.09%  [Green: Walking=16.34%, Cycling =4.03%, Carpool=7.72%].

Spatial plots of favoured mobility forms reveal personal transport use to be particularly high

around those affluent areas, which were found to emit the highest quantities of personally

created transport emission levels (Appendix F5). This statement confirms that the majority of

detrimental emission outputs are not a result of vehicle age, but rather vehicle use. In-fact

levels of Car use for commutes to and from work were recorded to exist at 57.99% in Knighton

and 58.68% within Humberstone, both of which were characterised by the respectively high

employment levels of 63.69% and 64.39%. In stark contrast, the uptake of public transport

would appear to be particularly low across the LLSOA communities of Knighton (10.91%), as

confirmed via cluster analysis outputs (Appendix F5). Whereas, residents within Humberstone

use of public transportation (14.75%) appeared low yet only just beneath the citywide rate,

and as such remained undetected by the cluster analysis outputs to be of particular

significance. This would suggest that an element of class may be involved in relation to public

transport use, an issue which would be of interest for urban planners to address.

Meanwhile, personal transport levels were recorded to exist at a low level around

central locales, with the ward of Spinney Hills recording Car/Van use at only 36.79%. In

addition, Bus use was also observed at a low level (13.00%), indicating that this community has

a limited use of mechanical forms of transportation in their daily commutes (Appendix F5).

However, across these areas residentially experienced TPM10 is typically recorded as high

(1.54t/yr.), in line with the communities deprived nature as recorded by the Carstairs Index

(4.20) and low employment levels (43.67%). As many of the workers are likely to have recently

re-entered the job market or reside in low skilled placements, it would appear that ‘Green’

transport measures (38.43%) are favoured most likely out of necessity rather than choice. As

confirmed by 28.59% of the workforce commuting to work on foot, which is deemed the most

economically sensible measure. In contrast, the overall uptake of ‘Green’ measures is

considerably reduced amongst those affluent communities contained within the wards of

Knighton (20.23%) and Humberstone (17.18%).

If one is to refer back to the Bivariate Moran’s I analysis comparing a locations created

to those experienced TPM10 emissions of its neighbouring communities (Figure 7.2), one may

recall that select inner city communities were accountable for a proportion of their
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environmental burdens. Across these 6 High-High inner-city LLSOAs average levels of car use

were recorded at 37.30%, with such residents characterised to experience mild levels of

deprivation (0.19), high levels of TPM10 (1.82t/yr.) and high J00-99 hospitalisations amongst

children (65.19 per 1,000). In contrast, the 16 Low-High inner-city LLSOAs who pollute little,

have a slightly lower uptake of car use (32.26%) perhaps as a result of their increased

deprivation (3.78). Whilst remaining geographically positioned on the trail of a substantial

proportion of trips to central business districts, their own travel actions may be observed to

ease those persistently high levels of experienced TPM10 (1.75t/yr.) and J00-99 hospitalisation

rates (51.94 per 1,000). One should note that levels of ‘Green’ transport measures are popular

across both High-High (40.27%) and Low-High (43.07%) inner-city communities, whereas the

uptake of public transportation for both remains respectively low at 12.76% and 15.02%; thus

highlighting the important of community contributions from personal transportation modes

across vulnerable communities.

However, levels of employment were shown to be considerably elevated within High-

High (55.34%) compared to those Low-High (41.29%) inner city communities, in part explaining

the dissimilarities between their typical LLSOA recorded total daily commute distances (H-H =

12,609km; H-L = 6,184km), of which around half was completed via Car by both community

types (H-H = 64.17%; H-L = 55.26%). Hot-Hot communities are thus shown to travel around

double the distance by car to that of their inner-city counterparts, which seems excessive

when allowing for shifts in employment levels. Upon factoring in levels of employment, one

may still observe drastic differences between the distances commuted in total (H-H =

18.11km/PEP; H-L = 13.26km/PEP) and individually by Car (H-H = 11.52km/PEP; H-L =

7.31km/PEP). In-fact residents from High-High inner-city locales were even deemed to

commute over a greater distance in total and by Car than those of the city average, which

were respectively documented at 14.79km/PEP and 9.95km/PEP.

These findings tie in with two prior thought processes, the first of which appears to

confirm that the travel actions of certain inner-city communities pushes them over a health

threshold, resulting in severe rather than high respiratory burdens. Such health burdens are

thought to materialise through an increase in the use and distance travelled by an inexpensive

and thus poorer quality personal transport fleet, with reduced emission standards. Secondly,

increased mobility appears to have a role in improving social status (even across the lower end

of the spectrum as documented here), with private modes allowing for more direct, flexible

and perhaps rapid movements across the city, thus opening up new job opportunities but at

the cost of environmental outcomes. However, whilst affluent communities should be viewed

as having a moral obligation for mitigating the effects of their transport emissions, is it correct



- CHAPTER 7 -

307

to place such obligations on deprived yet socially rising communities (whom in the grander

scale contribute relatively little)? In some aspects this is similar to the dilemma faced at a

global scale, involving the moral obligations of developed nations to fiscally and thus

environmentally assist (e.g. carbon production, industrial operations) rather than prevent the

social climb of other nations, whom are presently experiencing their own industrial

revolutions. A balance must thus be found between distinct stages of development and

environmental responsibility.

Maintaining focus on Leicester’s bivariate TPM10 emissions inner-city clusters (Figure

7.2), one should note a universally high participation in ‘Green’ forms of transportation exists

(H-H = 4.47km/PEP; H-L = 3.78km/PEP) compared to the typical rate of uptake (2.73km/PEP).

Here, these hotspot communities even appear greener than their neighbours do, but any

increased levels of physical activity across such highly polluted residential areas may also

inadvertently diminish respiratory functionality. In exploring the uptake of other mechanical

forms, one may observe that distance commuted by bus (H-H = 1.91km/PEP; H-L =

2.05km/PEP) hovers between low to near that of the expected standardised citywide rate

(1.94km/PEP).

Such a prosaic use of public services is rather surprising, considering that the central

bus depot and thus the core of the transport network is located inside of the inner-city ring

road, at the heart of these communities. Consequently these locales would experience an

accumulation of public transport pollutants (in addition to the high volumes of personal

transport emissions), yet at present such services are not extensively used by local inhabitants,

perhaps caused by a tailoring of services for the greater influx rather than outflux of passenger

trips during key periods of the day. Furthermore, incoming routes would tend to start from

residential and terminate in employment zones, and thus the reverse route would be of

limited use for those inner-city residents looking for a direct conduit to more distant

commercial/industrial premises. Perhaps further encouragement and or a greater set of public

services is required to remove the necessity of some inner-city communities from adding

additional vehicles to the roads, as the framework for public services is already in existence

here.

Upon exploring the citywide uptake of Buses (Appendix F5), which act as the major

and somewhat exclusive public transport service operating across Leicester, one may observe

that a main cluster of high use exists across 5 LLSOAs around the cities southern peripheral

ward of Eyres Monsell. These communities were characterised as housing predominantly

‘White British’ children (87.36%), whom experience low TPM10 levels (0.96t/yr.), and moderate

intensities of deprivation as indicated by Carstairs Index rank (1.90) and employment levels
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(48.66%). Here the uptake of Bus services amongst those employed was on average recorded

at 21.70% (+6.07% on citywide estimates), while the uptake of Car/Van (42.81%) and ‘Green’

(26.22%) transportation modes were close to the city average. Their dependency on

mechanical modes may be further observed by particularly low rates of foot travel (11.95%),

recorded 4.39% beneath citywide uptake estimates. This lack of physical transportation is

perhaps further represented by the communities elevated levels of obesity (29.82%) and

smoking (45.14%) prevalence’s during adulthood.

To add additional context, at present these LLSOAs travel 8.89km/PEP by bus,

7.06km/PEP by car and 1.67km/PEP via ‘Green’ modes of transport, compared to their

respective city average levels of 1.94km/PEP, 9.95km/PEP and 2.73km/PEP. Furthermore, one

should note that these mechanically reliant LLSOA communities typically commute a rather

modest total daily distance (6,704km), which upon factoring in levels of employment equates

to 13.22km/PEP, a figure 1.57km/PEP beneath the city average. This questions the need for

mechanical transportation forms by such communities, considering the reduced commute

distances and reduced physical health of some inhabitants.

One should recall that these same communities represent a set of suburban

inhabitants whom appeared on the verge of choosing to travel via Car or Bus, and when

personal transportation was favoured by nearby communities emission rates appeared

particularly high (as financial restrictions were thought to result in poor vehicle stock).

Therefore a balance needs to be found between encouraging physical transportation modes

without encouraging a shift from public to personal transportation measures. Interestingly, the

frequent passage of large public vehicles throughout these suburban locations has not caused

a substantial rise in TPM10 emissions, in a way confirming that it is right for this study to place

focus upon those contributions from personal transportation modes. However, a common

centrically focused bus destination, questions whether a larger and more important impact

occurs across inner city communities, which remain largely unexplored by this study.

The next stage of this section follows on from the above findings, cartographically

displaying a spatially complete range of personal, public, ‘green’ and total distances travelled

PEP, in order to allow for a fairly critique of transportation measures based upon societal

contributions (Figure 7.6, Appendix F7). For distributions of Car/Van commute distances PEP,

13 highly polluting hotspots were recorded to be of interest under this balanced analysis. In

particular, a cluster comprising of 9 LLSOAs may be observed to remain focused around

Knighton, reconfirming the excessive personal environmental contributions of these residents.

Although after accounting for workforce levels a number of eastern LLSOA communities were

noted to disappear under this fairer assessment of emissions from personal transportation
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modes. Nevertheless, some aspects of Humberstone were still located to be of significance as

was a minor localisation around Beaumont Leys.

Characteristically these 13 hotspot communities travelled a total daily distance of

22.27km/PEP, of which 16.11km was undertaken via Car/Van, 2.08km by Bus and 3.92km by

‘Green’ modes. Such a total travel distance equates to almost double the distance travelled by

a typical LLSOA community, and whilst distances of personal transportation rose

proportionately, those completed via Bus and ‘Green’ modes were not scaled up to an

acceptable level. As previously established these communities are of an affluent nature (Rank

of -4.42), whom residentially experience very few TPM10 emissions (0.82t/yr.) yet contribute

quite heavily from personal modes of transportation (0.035t/yr.); in-fact 8 out of the 13LLSOAs

are contained within the upper 10% most privately polluting private communities of the city.

Meanwhile, 11 LLSOAs recording low levels of Car/Van travel PEP were found to

remain around eastern areas of the inner and outer city centre, under this fairer assessment

(Figure 7.6). However a number of focal inner-city communities had disappeared, indicating

that they were starting to favour personal transport use. In these disappearing cases, emission

outputs were now representative of citywide values (despite vehicle uptakes generally

remaining moderate-low), as increased mobility sometimes allowed for more distant

employment opportunities, which have become more noticeable by prevailing financial

restrictions limiting residents to poorer quality vehicle stock. Characteristically the 11 cold-spot

communities of significance, travelled a total daily distance of 10.23km/PEP, of which 5.86km

was undertaken via Car/Van, 1.71km by Bus and 2.46km by ‘Green’ modes.

From the comparison of cold and hot-spots it would appear that Car/Van use is heavily

linked towards an excessive use of travel, whereas the uptake of other forms of mechanical

transport do not appear linked to increased mobility. Cartographic plots further confirm this,

showing that the magnitude of uptake and distance travelled via Bus is evenly distributed

throughout the city (Figure 7.6). On a final note relating to Car/Van travel, one may observe

that a high outlier exists within the aforementioned central cold-spot, however when

compared to values across the wider city travel is not deemed excessive (+0.09km/PEP above

the expected).
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FIGURE 7.6: Local Moran's I cluster and outlier analysis, describing the spatial structures of those
commute distances travelled per employed person (km/PEP) in total and by individual transportation
forms
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Interestingly for distributions of commute distances PEP completed via Bus, a single Low-High

outlier is observed to exist along the most peripheral edge of Knighton (Figure 7.6). Here,

created TPM10 emissions are recorded at 0.040t/yr. (upper 5% polluters) whereas residentially

experienced levels exist at an exceptionally low 0.78t/yr. Furthermore, commute distances

undertaken via Bus (0.43km/PEP) and ‘Green’ (1.25km/PEP) modes are deemed somewhat

insignificant. Meanwhile its five neighbouring communities are also typically associated with

high levels of emission creation (0.036t/yr.), while also experiencing low residential emission

(0.86t/yr.). Importantly, one may note that these communities are also more open to

transportation via Bus (3.65km/PEP) and ‘Green’ (5.58km/PEP) modes. It would therefore

appear that the 10% increase in personally created transported emissions of this outlier has

directly relates to a decline in public and ‘Green’ transportation modes. Furthermore,

environmental disparities are shown to even exist between affluent communities, albeit at a

minor level. The focus of any measures should remain targeting at those poorest and socially

vulnerable communities.

Distances commuted via ‘Green’ transportation measures PEP, were observed to exist

at distinctly low levels across eastern Leicester (Figure 7.6). In particular, residents from the

ward of Humberstone were recorded to only commute 1.54km/PEP via such modes, which is

an insignificant fraction of their overall commute distance of 17.55km/PEP. Whilst foot travel is

not a feasibly possibility for travelling over these large commute distances, cycling offers some

potential. However a more reasonable form of travel in communities travelling across large

distances where personal vehicles are favoured over public transport, involves carpooling. It

would be advised that future carpooling schemes target those most affluent communities,

whom current that have a low uptake of public services perhaps in part founded by negative

stigmatisms. Here carpooling could have a reasonable effect on the number of vehicles

entering the road, if effectively implemented.

At present carpooling only accounts for 7.72% of trips undertaken by a typical LLSOA

within Leicester, therefore there is significant room for improvements. In constructing a ratio

of the travel distances undertaken via Car/Van (km/PEP) Vs. Carpooling (km/PEP), it is possible

to obtain a standardised ratio of implementation and to view the possible gains to be

obtained. Across Leicester, a typical LLSOA was observed to record a distance of 8.33km/PEP

travelled via Car/Van for each 1km/PEP completed via carpooling. Interestingly this ratio was

found to increase across those communities with the greatest level of personal transportation

use, as shown by LLSOA communities exclusively contained within Knighton (12.94km: 1km)

and Humberstone (15.76km: 1km). In contrast, levels of carpooling increased across those
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most deprived communities conducting the fewest and smallest trips via Car/Van, as observed

by Stoneygate’s ratio of 6.64km: 1km.

In conclusion, public transport appears evenly distributed across Leicester at a

moderate-low level of uptake, with no evidence existing for assigning an excessive use of such

services to any particular community. Furthermore, where some suburban communities favour

public transport, road-transport emissions remain low. As such, there is no direct evidence

that the frequency of Buses passing near to residential areas act as a key driving force behind a

city’s environmental issues. However one should note that such areas represent open

environment s, and that perhaps a different set of conclusions may be drawn from confined

inner city areas, especially where accumulation of terminating services occur. Here, public

transportation contributions are thought to be exclusively high, combining with those of

personal modes whom are also thought to heavily contribute here, resulting in an

environmental effect of volatile proportions.

Whilst the majority of travel distance remains completed via personal transport,

communities favouring this mode of transportation, characteristically of an affluent nature,

share high disassociations with an uptake of public travel services. Affluent communities

therefore do not inconveniencing external communities through a spectrum of mechanical

measures. Yet, those poorest inner-city communities are not observed to have a raised level of

public transport use, and are thus not involved in fabricating their own environmental

problems from other unexplored mechanical modes. However, a low uptake of public services

here is perhaps an issue of concern, as some inner-city communities have started to favour the

use of inexpensive and often poor private vehicles, with this newfound mobility seemingly

resulting in increased social standing, but at the cost of environmental attributes. To tackle

such issues, perhaps these central communities require further incentive to use public modes,

rather than adding vehicles onto the road network where services already exist. In addition,

the likely negative stigma of public services amongst affluent communities also requires

further investigating, yet a more likely and immediate response for mitigating their

environmental contributions involves the use of carpooling. Here, the convenience and luxury

of personal transportation is likely to be favoured, and could mark a substantial reduction in

the volume of vehicles which enter inner-city areas.
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7.6. LESSONS FROM EXTERNAL IMPLEMENTATIONS OF ZONE BASED POLICY

Affluent communities represent those most mobile residents within the City of Leicester. Of

concern are the high levels of disassociation between affluent residents and ‘green’ forms of

transport, including the uptake of public travel services, which potentially offer a greener

alternative to personal modes of motorised for long-distance urban travel. Yet airing on the

side of caution, the encouragement of public transport is not necessarily advisable, especially

looking at the predicament that the proactive, similarly sized City of Oxford currently faces.

For over 30 years, Oxford has been a pioneer in the promotion of bus use in the UK,

implementing the countries first park-and-ride scheme in 1973. Most recently, the high-profile

local environment policy of the 1998 ‘Bus Quality Partnership’ (BQP), resulted in the

retrofitting of particulate traps to around half of the city’s fleet, so that vehicles on high

frequency routes met Euro II Standards (Oxford City Council, 2006). Yet in-line with the

national picture, the major source of transport emissions in Oxford originate from diesel

powered heavy vehicles (64% NOx) despite only accounting for 18% of traffic movements, as

unlike the modernising car fleet, public services with subpar emission standards are

infrequently updated (Oxford City Council, 2006). In 2001, Oxford City Council designated an

AQMA, covering part of the city centre where the predicted annual mean objective for

nitrogen dioxide of 40µg/m3 would not be met by the target date of December 2005. It was

recognized that an average reduction in NOX emissions by 68% was required in order to meet

the air quality objective, although the amount varied significantly from street to street (32-

90%) as a result of differing transport trends (Oxford City Council 2006).

After a series of in-depth consultation with local service providers and various

governmental bodies (e.g. DEFRA, Primary Health Trust) a series of realistic solutions became

integrated into the Oxford Transport Strategy (OTS), prioritising air quality as a key agenda

within the development of the city. Rarely is such a proactive and integrated stance taken at a

local level within the UK. Three schemes were found to provide moderate benefits, with

improvements to traffic signal phasing minimising congestion around hotspots, to cut citywide

NOx levels by 12% (Oxford City Council 2006). Secondly, a ‘Bus Gate Enforcement’ restricting

traffic from entering the High street between 07.30 and 16.30, although not formally enforced,

resulted in a 20% reduction of NOx across inner-city streets (Oxford City Council 2006).

However, strategies such as this do not directly reduce the amount of pollutants emitted, as

they only act to spread such contaminants over a wider area. Nevertheless, the

implementation of a similar scheme across central Leicester could be quite effective, perhaps

encouraging the use of existing park and ride infrastructures amongst peripheral communities

entering central locales. Here environmental balances would be addressed, as vehicles
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entering the inner-city reduce whilst the number of trips within peripheral locales increases.

Thirdly, whilst the BQP intended to upgrade the public fleet to a minimum of Euro II standards,

this only consisted of a voluntary and hence partially fulfilled agreement with two main bus

operators, which was only partially fulfilled. However, if this deal could be fully implemented

and extended to all operators, a 20% citywide reduction in NOx was deemed attainable

(Oxford City Council 2006).

A range of other more generic solutions were also proposed, include the

encouragement of carpools, work place travel plans, cycling and walking schemes, which

collectively achieved only 1% reductions (Oxford City Council 2006). Thus casting doubt on

whether existing protocols for such schemes could actually encourage the uptake of more

sustainable personal transportation modes by Leicester’s highly mobile communities. Perhaps

a more targeted approach is required in which policy is more locally tailored to those

characteristics and needs of such residents. Whilst increased roadside emission testing also

provided minimal reductions (0.5%), it did appear a useful public exercise as a statement of

Oxford City Councils intent to tackle environmental issues. Controversially, even a £20 fixed

penalty for not idling ones engine once stationary were proposed, to achieve a modest 1%

reduction in emissions (Oxford City Council 2006). However, enforcement was deemed

unrealistic and new revenues of income could be viewed negatively, thus highlighting the

delicate balance planner’s face. Ambitiously, the Action Plan also investigated scrappage

schemes of those worst emitting vehicles (Pre-Euro), however this was considered unviable

unless financial incentives were provided at a national level.

Interestingly, NOx levels across Oxford’s central AQMA were recorded to fall 4% year-

on-year from 1995-2000, this trend was surprisingly replaced by a 1.3% annual rises across

2000-2004, at the time the aforementioned schemes were implemented (Oxford City Council

2006). In-fact, the retrofitting of particulate traps across part of the bus fleet was shown

accountable for inadvertently increasing NOx levels, a measure the council considered

acceptable, with the health benefits from reduced particulates outweighing those from an

increase in NOx (Oxford City Council 2006). At the time, a trial of Selective Catalytic Reduction

(SCR) devices fitted to a local bus were found to reduce NOx emissions by 70% (equivalent to

Euro IV standards), however the cost of this technology in its current format was deemed

unfeasible for a broader uptake (Oxford City Council 2006). Speed restrictions across central

Oxford for public safety, reducing traffic speeds from 30 to 20 mph, were also thought to have

increased NOx emissions by 27% (Oxford City Council 2006). Thus highlighting how vulnerable

air quality action plans are to financial constraints and the necessity of more immediately

visible safety policies.
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Recently the implementation of Low Emission Zone’s (LEZ) have been seen as one of

the more promising options to introduce greater numbers of cleaner vehicles and reduce the

numbers of older more polluting vehicles on the road networks of capital cities (Tonne et al

2008, Cesaroni et al 2012). Whilst a theoretical application of comparable road user charging

schemes has been seen to provide appropriate results across the considerably smaller UK

municipal centre of Leeds (Mitchell 2005, Namdeo & Mitchell 2008), in practice the overall

outcome of such measures remain unclear. For instance, is the draw of smaller commercial

centres sufficient to retain business and a viable flow of consumers, if such a charge was in

operation at a local rather than regional or national scale? Perhaps it would be more viable for

a city the size of Leicester to adopt a style of LEZ, known as ‘Environmental Zones’, which have

been in operational force across the Swedish city centres of Stockholm, Gothenburg and

Malmo since 1996. These zones aim to improve air quality and reducing noise through

requiring all diesel engine heavy-duty vehicles >3.5 tonnes to meet the Euro I emission

standard. Older vehicles retrofitted with a certified emissions control device or new engine are

also allowed to operate in the zone. In contrast to London’s LEZ, such schemes are passive in

nature (low cost) with zone enforcement of older vehicles existing through a permit system

(windscreen stickers), with vehicles driving illegally subject to a fee enforced by police

authorities. Furthermore, the self-governance of such zones would appear a success with

compliance rates in Stockholm, Goteborg and Malmö in 1997 (94%) and 2004 (96%) recorded

at a similar level (Goteborg’s Stad Trafikkontoret, 2006).

The Goteborg Environmental Zone covers approximately 15km2, containing 100,000

inhabitants whom live and work within the area. In 2004, the actual distribution of fuel types

for Buses were recorded at 71.5% diesel and 28.5% gas, whereas without the Environmental

Zone rates were predicted to respectively exist at 95.7% and 4.3% (Goteborg’s Stad

Trafikkontoret, 2006). This shows that operators were not only meeting emission standards,

but also actively engaging in the uptake of greener vehicle stock, to future-proof themselves

for stricter criteria. Goteborg’s Environmental Zone has seen the greatest impact on

particulate emissions, in terms of percentage reduction (-33.2%), with moderate reductions

also occurring in relation to NOx (-7.8%) (Goteborg’s Stad Trafikkontoret, 2006). This is of huge

importance, as the health effects of particles are probably the major significant health effect if

all emission components are taken into consideration. Similar reductions in for particulates in

the form of PM2.5 (-33%) and NO2 (-5%) have been recorded when comparing 2001 levels to

theoretical models where an Environment Zone is non-existent within the City of Stockholm

(Rapaport 2002). As such, the Environmental Zone may be clearly viewed as an effective

measure to force new technology on the market, encouraging the purchase of cleaner or
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upgrading of vehicles. A particular advantage to such schemes is that a large portion of the

operation cost is placed upon the polluter, aka the bus operators, and as such, Environmental

Zone’s follow the Polluter Pays Principle.

In order to provide a traffic management scheme across Leicester, which reduces the

level of air pollutants and adheres to the PPP, one should collectively address both personal

and public contributions. A central ‘Bus Gate Enforcement’ zone would likely curb the

magnitude of environmental burdens placed on vulnerable inner-city residents, from

peripheral communities with high levels of personal mobility, as existing park and ride

infrastructures become more widely used. However unless the entire city was also governed

by a scheme similar to that of the Environmental Zones (perhaps with stricter emission

standards), environmental situations for those most vulnerable may remain if not worsen with

the excessive use of poor public transport stock. Under this scheme, the regulation of the PPP

is almost exclusively in the hands of an intangible entity (the bus operators), rather than an

actual community of people. Whilst this may be easier to regulate, it presents a worrying

scenario, as any sense of responsibility may be lost within the system. However, this is likely a

catch-22 situation, in that adequate retrofitting solutions and new vehicle stock may only

become economically viable, once those services become adequately used. As such, both

schemes require a high level of integration to provide optimal outputs. Relating back to

previous discussions, the completion of the outer-city ring road should be viewed as a

necessity in the prevention of traffic entering central locales regardless of whether these

schemes come into fruition, although it would assist with the schemes enforcement.

7.6. CONCLUSIONS

Whilst Polluter-Pays Principles are traditionally theorised at an international level, this chapter

sought to develop upon a localised implementation of such principles through exploring a

collection of spatially detailed intra-urban communities, within the context of social,

environmental and health outcomes. Although, Mitchell & Dorling (2003) successfully

formulated such a procedure, their enquiry was limited to only aspects of deprivation and

pollution, and the spatial resolution of their nationwide study failed to adequately outline

intra-urban interactions. In particular, intra-urban areas are thought to represent some of the

most extreme disparities in socio-environmental attributes, and as such it is conceivable that

their responses were previously smoothed out by this broader spatial analysis.
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To address such issues, annual LLSOA estimates of road-transport PM10 (TPM10)

emissions created from individual communities throughout Leicester, were derived from

combining vehicle fleet composition counts with workforce trips, assumed to represent the

significant proportion of population movements. The Local Moran’s I test, identified a

moderate and positive level of spatial structuring to exists across Leicester (R2 =0.44) in terms

of community emission contributions. Overall, these outputs revealed the cities greatest

polluters to reside predominantly within affluent communities located along the cities

periphery, whereas those creating the least emissions resided in central locations,

experiencing a range of socio-environmental health burdens. Whilst some inner-city

communities moderately contributed towards their environmental demise, these

contributions were substantially outweighed by those made from external communities,

whom appear to avoid the social, environment and physical cost of their actions. In its current

state, the city’s traffic management strategy seemingly operates in an ethically unjust manner.

Contour plots, simultaneously examining created and residentially experienced TPM10

emissions against a third attribute, confirmed children’s respiratory cases to rise in relation to

residential pollutant levels. However, the effects of this generally materialised in a more

meaningful manner across those communities whom emit lower levels of pollutants from

personal modes of transportation. Children with severely reduced respiratory health tended to

be housed within inner-city communities contributing modest amounts of transport related

pollutants. In a just situation their outputs would result in only moderate health implications,

however at present these residents are also unfairly plagued by the contributions of external

communities, whom health wise pay very little.

Overlap statistics cross-examining transitions in community created transport

emissions (from private modes) with children’s collective or specific respiratory conditions,

revealed an immediate spatial association between both elements (OS P↑<0.05). These shared

boundaries depict an inverse relationship between TPM10 production and moderate-mild

respiratory outcomes across first-order communities, located away from the previously

highlighted central zone of concern. In contrast, the limited collection of mutually

corresponding inner-city boundaries, would infer that these residents are unable to

successfully shift their burdens onto neighbouring communities to the same extent. Whilst the

pure volume of vehicles commuting from Leicester’s affluent peripheral communities are

shown to impact all en-route, the full force of such burdens in relation to children’s URT and

LRT health were respectively recorded to occur between 248-489m and 410-541m outside of

these polluter pockets (OG, OGH P↓<0.05). Such measurements approximately mark the

reaccumulation of vehicles originating from Knighton (collection of peripheral communities
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most at fault) on approach to common central destinations of commerce, located near those

socially and environmentally disadvantages communities. As discussed previously, respiratory

symptoms of reduced severity appear to be the initial response towards the introduction

environmental influences.

Typically, ‘White British’ families resided within communities experiencing moderate

to low residential TPM10 exposures. However, ‘White British’ families are not fundamentally

accountable for Leicester’s environmentally unjust predicament, as only a small segment of

this societal group highly pollute and residentially experience few discharges. In-fact, overlap

statistics recorded spatial transitions in ‘White British’ residency to be located across

significantly distant locations of the city, when compared to boundaries in levels of community

created TPM10 (OG=1292m, P↑=0.04), and vice versa (OH=1071m, P↑=0.04). To a certain

extent this confirms that the ethnic majority is not unanimously responsible for the city’s

environmental burdens, as if this was the case, one would expect a sharp mutual emergence of

both conditions.

It would appear that it is not race, but deprivation, which is the key driving factor

behind the creation on personal TPM10 emissions; although elements of race, appear involved

in determining affluence. For instance, Leicester’s most affluent 10% of communities,

predominantly located around the wards of Knighton and Humberstone, personally created a

hefty 0.035t/yr. of TPM10, yet residentially experiencing only 0.85t/yr. of TPM10 emissions.

Whilst, the composition of children from such communities remains predominantly of ‘White

British’ origin (70.34%), these areas are also representative of elements of successful

integration with sections of the ‘Indian’ community (17.30%). Contour plots of deprivation

versus pollutant scenarios reinforce this point, revealing a structure of strong social banding to

exist throughout the City of Leicester; whereby affluent residents generally contributed the

highest levels of private transport emissions whilst residing in areas experiencing low levels of

road-transport emissions. Yet, simply pointing the finger at those communities is not a

particularly fair assessment of the current state of environmental affairs. For instance, it was

deemed socially unfair to raise the environmental accountability of those communities with

high employment rates, where travel becomes a necessity. In many ways these inhabitants

already pay societal contributions (collected via taxation), which benefit those in vulnerable

situations. Rather it became of interest to place environmental accountability on excessive

travel and the use of certain transportation measures, after existing societal contributions are

accounted for. Even after adjusting for levels of employment, persons from affluent

communities appeared more likely to commute greater distances to work on their daily return

commute (>15km/PEP) compared to their socially disadvantaged counterparts (0-15km/PEP).
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This increased travel distance of affluent communities encouraged the use of more

environmentally unfriendly modes of transportation (96-84% km/PEP). Furthermore, such trips

seemingly terminated at common destinations, causing an accumulation of pollutants

potentially exacerbated by the shorter trips of those less privileged residents living within the

nearby vicinity. Meanwhile, increased residential awareness towards an areas environmental

predicament, was shown by an uptake of ‘green’ transportation measures across polluted

communities (>28% km/PEP), regardless of social status.

Although one should note that levels of ‘green’ transportation also increased with

deprivation, though not to be of personal choice but out of necessity. Whilst the

encouragement of physical forms of travel is seen to reduce obesity, for central communities

these benefits are likely offset by movements across polluted districts. Interestingly,

communities feeling the brunt of the ‘double burden’ have a reduced use of ‘green’ transport

(16-28% km/PEP), offset by the acquisition of low-grade vehicles thought accountable for

exacerbating such burdens. Therefore, the encouragement of ‘green’ modes should be viewed

as a means of mitigation rather than an out-and-out solution. Yet, even if such actions were in

operation, further measures are still required to limit external communities from shifting their

share of pollutants onto these inhabitants.

Through exploring the wider spectrum of transport measures in use across Leicester, it

became possible to understand (in a rather crude manner) the extent to which communities

with high levels of personal transport modes contributed towards the overall environmental

burden. Public transport appeared evenly distributed throughout the city at a moderate-low

level of uptake, with no evidence existing for assigning an excessive use of such services to any

particular community. Furthermore, where some suburban communities residential favoured

public transport, road-transport emissions remained low. As such, there is no direct evidence

that the frequency of Buses passing near to residential areas act as a key driving force behind a

city’s environmental issues. However, the confined nature of the inner-city acting to contain

pollutants (urban canyon effect), combined with the pure volume of public services

terminating at a central hub, is likely to be problematic. Here, exclusively high public and

private transportation contributions are thought to combine, resulting in an environmental

effect of volatile proportions. As such, future research should aim at conducting a wider

transportation enquiry, inclusive of the travel contributions from public services, whose

environmental accountability is with the individual service providers.

Whilst the majority of travel distance remains completed via personal transport,

communities favouring this mode of transportation, characteristically of an affluent nature,

share high disassociations with an uptake of public travel services. Affluent communities
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therefore do not inconveniencing external communities through a spectrum of mechanical

measures. In addition, those poorest inner-city communities are not observed to have a raised

level of public transport use, and are thus not involved in fabricating their own environmental

problems from other unexplored mechanical modes. However, a low uptake of public services

here is perhaps an issue of concern, as some inner-city communities have started to favour the

use of inexpensive and often poor private vehicles; with this newfound mobility seemingly

resulting in increased social standing, but at the cost of environmental attributes. To tackle

such issues, perhaps these central communities require further incentive to use public modes,

rather than adding vehicles to the road network. However any measures should not be

conducted in a manner which impedes the social climb of such communities, with public

transportation services in their current format potentially offering little towards the access of

new job markets (i.e. out of town industrial/distribution centres).

Similarly, action is required across several suburban deprived and physically unhealthy

‘White British’ communities, whom may be easily swayed between public or private

transportation modes (typically the later action occurs with increased social standing).

However, the small commute distances and reduced physical health of these inhabitants,

questions their need for mechanical transportation forms. Therefore, in certain cases a

balance needs to be found between encouraging physical transportation modes, without

prompting a shift from public to personal transportation modes. In addition, the likely negative

stigma of public services amongst affluent communities requires further investigation. For

these communities, a more likely and immediate response for mitigating their environmental

contributions involves the use of carpooling. Here, the convenience and luxury of personal

transportation is likely to be favoured, and could mark a substantial reduction in the volume of

vehicles which enter inner-city areas. However, at present, the uptake of carpooling appears

most favourable across those most deprived communities conducting the fewest and smallest

trips via personal modes, and thus offers few benefits.

The use of contour plots and LISA to model the intra-urban PPP have respectively

allowed for the exploration of global structures and detection of individual communities at the

heart of the local environmental debate. The wider implementation of these practices will

benefit the development of future local transport policy. Through focusing the consultation

process, ‘green’ initiatives may be tailored towards the needs of local populaces, potentially

increasing the success of such initiatives where prior uptake has been low.
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CHAPTER 8

CONCLUSIONS & FUTURE RESEARCH

OVERVIEW

The overall aim of this thesis was to gain a greater understanding and insight of the respiratory

health burdens attributed to transport derived air pollutants, across diverging sub-city

communities within an Environmental Justice (EJ) context. In reviewing the literature,

conventional modelling strategies of a temporal nature were recognised as an effective means

of deriving a citywide risk from pollutant exposure; yet were considered wholly inadequate in

the wider evaluation of health equity, in which social and physical environmental stimuli are

considered locally entwined. As such, emerging modelling techniques incorporating the spatial

structures of urban environments were implemented (after undergoing a process of extensive

statistical verification), to establish the magnitude to which a ‘triple jeopardy’ of social, health

and environmental inequalities actually exist. In focusing on the prototypical multicultural UK

City of Leicester, a substantial ethnic mix was explored across a setting deemed to experience

conceivably minimal localised socio-ethnic disparities. It is believed that the holistic nature of

the presented spatial models is capable of providing a more comprehensive overview of and

insight into this topic than has previously been offered.

In this chapter, the conclusions from the thesis are detailed relating back to the initial

research objectives set in chapter 1. Ultimately, suggestions for further research are made to

conclude the thesis. It should be emphasised that in spite of the fact that the models are

purely discussed in a socio-environmental context, validation procedures highlight a potential

use in many other contexts examining events of a spatial nature; perhaps uncovering further

ties previously left unexplored by temporal techniques.
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8.1. PRIMARY CONCLUSIONS

The modelling and prediction of health disparities with respect to pollutants emitted from

road-transportation across the urban environment is a formidable task, concerning a series of

spatially entwined social and physical stimuli. Thus, a requisite for the development, validation

and implementation of spatially inclusive methods to evaluate multiple rather than single

component burdens has long been emphasised. However, prior to exploring the extent to

which socio-environmental influences collectively impede health, a sense of focus was

traditionally placed on solely quantifying the influence of localised variations in road-transport

on health during childhood (chapter 1.3):

I. To consider spatial variations in respiratory health, establishing their affiliations

with airborne pollutants emitted from mobile sources, across the City of

Leicester’s high-resolution Lower Level Super Output Area (LLSOA) census blocks.

AIM I: HIGHLIGHTS

 Localised Indices of Spatial Association (LISA) identified a significant clustering of children’s

respiratory hospitalisations across inner city locales (P≤0.05), with rates 30-270% above the citywide

average

 A ring road encircles inner-city residential areas, producing annual TPM10 emission levels 75% above

the citywide average

 Bivariate correlation measures identified moderate global and first-order (inner-city) associations

between children’s respiratory hospitalisations and TPM10, where P≤0.05

 Heightened respiratory risks exist within close proximity to zones of rapid change in TPM10 (283m,

P≤0.01), providing a European exposure -proximity threshold in agreement with American literature

 Local regression models accounting for spatial relationship structures indicate that TPM10 influences

475 children’s respiratory admissions per annum across Leicester (18.96% of the total burden)

In the understanding of this question, one may initially refer back to objective 1 (chapter 1.4)

involving the use of exploratory data analysis techniques to geographically determine and

quantify the magnitude of correlation between road transport emissions and NHS hospital

records. In chapter 4, a spatial composite index known as the Global Moran’s I coefficient

(Moran 1948) was applied to measure the extent of overall clustering of the aforementioned

parameters. Here, a Global Moran's I value of 0.39 was recorded for children’s overall

respiratory hospitalisation rates during 2000-09 under a first-order weighting scheme,

identifying moderate citywide levels of spatial correlation between directly adjacent LLSOA

communities (P<0.01). For PM10 road transport emissions (TPM10) a looser sense of spatial
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dependency was observed, as shown by a first-order value of 0.83 moderately deteriorating to

a value of 0.28 for observations separated by a fourth-order distance (P<0.01).

Localised Indices of Spatial Association (LISA) in the form of the Local Moran’s I

coefficient (Anselin 1995), subsequently dissected these global coefficient values allowing for a

geographic exploration of variation across first-order observations. The Local Moran’s I

statistical test identified the existence of a significantly high clustering of average annual

respiratory hospital admissions across inner city children. Observed hospitalisation rates within

this zone of high clustering range from 49.39 to 147.83 admissions per 1,000 children, which is

considerably higher than Leicester UAs average rate of 39.43 admissions. Furthermore, this

highlighted area of interest was noted to contain the city’s inner ring road and several key

arterial roads linked with the city’s outer ring road, and national road network. Residents

within these respective inner city clusters were identified to annually experience an extra 0.78

t/yr. of TPM10.

Traditional bivariate correlation measures, in the form of Pearson’s R, confirmed the

existence of an important and linear correlation between children’s respiratory

hospitalisations and TPM10 emissions (0.37, P<0.01). Bivariate Local Moran’s I statistic

conducted in a manner, which held children’s J00-99 admissions at ego locations (i) whilst

placing the influence of TPM10 at first-order LLSOAs (j), also demonstrated this positive

relationship to continue into neighbouring locales. Here, substantial positive correlations

between respiratory symptoms and TPM10 emission levels appear to almost exclusively inhabit

inner city LLSOAs. Meanwhile, low levels of respiratory incident were accompanied by reduced

TPM10 emissions across Leicester’s eastern periphery, which harbours the missing section of

the city’s outer ring road. As such traffic is diverted towards the inner-city, and these eastern

communities are thus viewed as passing on their share of residentially expected environmental

burdens.

Objective 6 (chapter 1.4) continues with this theme of spatial pattern recognition, in

seeking to describe and analyse the existence of geographic boundaries between transport

emissions and hospital admissions; involving a tangent of boundary detection procedures

(Womble 1951) known as polygon wombling (Jacquez & Greiling 2003). Health boundaries are

of intrinsic medical interest, in that they reflect the geographic extent and intensity of

underlying physical and or social processes, identifying populations whom are most likely to be

at risk from subsequent fluctuations. Traditionally, the spatial extent of health impacts

associated with road-transportation has been explored through the quantification of effects

within artificial buffers, defined by subjective distances from specified major road links; a

process which has established a critical threshold of 100-400m in relation to particulate matter
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concentrations (Zhou et al 2007). In constructing naturally occurring health and emission

boundaries across Leicester (unrestricted to specific road-links), chapter 6 has shown unbiased

markers of extreme environmental pollutant levels to construct children’s J00-99 health fronts

283m away from these sources of emission (OG P↓<0.01). An exposure-proximity threshold

which appears to verify those critical benchmarks set by traditional measures, thus

encouraging the wider uptake of boundary statistics which to-date have received few

demographic applications.

In seeking to account for these seemingly spatial dependent relations between

respiratory health and airborne pollutants emitted from mobile sources, a series of

quantitative models were constructed to provide a dose-response evaluation. Initially this was

conducted in line with objective 3 (chapter 1.4), as presented in chapter 4’s construction of

spatially suitable global regression models. Here, traditional global multivariate regression

results indicated each tonne of residentially experienced TPM10 emissions within Leicester to

be associated with an annual increase of 7.78 J00-99 hospital admissions per 1,000 children

(19.66% of the overall respiratory burden, p<0.05), after controlling for socioeconomic

characteristics. Conservative multilevel models, addressing certain dataset issues of spatial

nonstationarity through the incorporation of a generalised set of spatial structures in disease

tolerance (5-quantiles), similarly identified a 1 t/yr. increment of TPM10 to annually account for

an additional 8.75 J00-99 hospital admissions per 1,000 children (P≤0.05). However after

removing an outlying city centre LLSOA of interest, global admission rates associated with

TPM10 emissions were observed to fall to 2.50 hospitalisations per 1,000 children (P≤0.05).

Thus highlighting the magnitude of extremely localised spatial dependence found within an

urban setting, of which inner-city children would appear to experience an overwhelming

detrimental impact caused by TPM10 emissions.

As such, the use of localised regression techniques for the integration and exploration

of multiple previously unidentified non-stationary relationships are preferential evaluator

mechanisms (objective 4, chapter 1.4). Geographically Weighted Regression (GWR) modelling

practices indicate residentially experienced TPM10 emissions after adjustment for social

covariates, to influence 178-545 children’s respiratory admissions per annum (7.09-21.74% of

all children’s respiratory admissions) across Leicester during 2000-2009. The GWR model

outputs also allowed for the creation of an annual road-transport emissions dose-response

relationship from localised regression models with significance at the 95% confidence interval:

J00-99 cases per 1,000 children = -15.691 + (10.394 * TPM10) + (11.223 * TPM10^2)



- CHAPTER 8 -

325

Using this trend captured from a 60NN GWR model, LLSOA TPM10 emission levels were

reported to average 8.79 admissions per 1,000 children, influencing 475 children’s respiratory

admissions per annum across Leicester (18.96% of the total J00-99 respiratory burden). The

threshold for the occurrence of hospitalisation was identified to occur within areas

experiencing annual TPM10 emission rates above 0.81 tonnes (P<0.05). Furthermore, it is

calculated that a 5% reduction in residentially experienced LLSOA TPM10 emissions across

Leicester would amount to 110 fewer children’s respiratory admissions per annum (P<0.05),

reducing the total amount of respiratory hospital incidents by 4.39%. To the authors

knowledge this is the first time a dose-response relationship has been specifically associated

with road-transport emissions.

The second aim of this research project is closely related, and as such shares many of

the objectives discussed in the section above:

II. To investigate how spatial variations in social-ethnic status relate to and interact

with airborne pollutants emitted from mobile sources, across the model British

multicultural City of Leicester. Thus, understanding the failure of temporal

models in capturing Pearce et al’s (2010) ‘triple jeopardy’, within a setting where

environmental injustices are considered minimalistic.

AIM II: HIGHLIGHTS

 Inner city children experience disproportionately large socio-environmental respiratory burdens

in line with Pearce et al’s (2010) ‘triple jeopardy’

 Inner city neighbourhoods tend to house greater numbers of children from ethnic minorities,

questioning the environmental equity of Leicester

 LISA identified a mutual clustering of deprivation and TPM10 emissions across inner city locales,

indicating that a double-burden collectively influences a child’s respiratory status (P≤0.05)

 Respiratory risks universally appear within close proximity to zones of rapid change in

deprivation and TPM10, recording an exposure-threshold of 334m (P≤0.01)

 Local regression models measured LLSOA community levels of deprivation to annually influence

+17.96% of citywide J00-99 cases

 It is theorised that exposure to detrimental socio-environmental factors may initiate URTI

episodes, with sustained exposure causing an immunosuppressive response, encouraging the

onset of viral infection manifesting as LRTI episodes

In the understanding of this question, one may initially refer back to objective 2 (chapter 1.4),

which seeks to determine whether ethnic minorities and/or deprived communities reside
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within locations experiencing reduced levels of air quality. Similar to objective 1 this was to be

achieved through an exploratory spatial data analysis, primarily contained within chapter 4.

Here, Global Moran’s I statistics identified substantial levels of spatial autocorrelation

amongst first-order observations (<450m separation) of deprivation (0.56) and levels of ‘White

British’ children (0.82), where P<0.01. Akin to TPM10 emissions, a looser sense of spatial

dependency existed than to what was presented by hospitalisation rates which are exclusively

of a first-order phenomenon; with moderate magnitudes of spatial correlation respectively

persisting across third and fourth-order observations for measures of deprivation (0.22) and

‘White British’ children (0.40), where P<0.01. In dissecting these spatial composite indices,

Local Moran’s I coefficients founded upon a first-order row standardised weighting system,

notably identified similar patterns of clustering for levels of residentially experienced TPM10

emissions and Carstairs Index measures of deprivation across inner city locales; highlighting

the potential avenue for a double burden of social and environmental issues collectively

influencing a person’s wellbeing. The case for environmental equity may be further brought

into question upon examining the distribution of Leicester’s White British ethnic group, which

is identified to heavily populate the city’s southern and western peripheries. Significantly low

levels of clustering for persons of White British origin, within and adjacent to the east of the

city centre thus instigate a potential scenario in which ethnic minority groups bear a

disproportionate burden of environmental and social problems.

LLSOAs contained within the inner city respiratory hot-spot were observed to

experience annual average J00-99 admission rates of 80.65 cases per 1,000 children, whereas

communities positioned within cold-spots reported an average rate 1.9 times smaller.

Substantial socio-environmental differences appear to occur between the inner-city hot-spots

and those external cold-spots, with residents from the respiratory pocket of concern

experiencing Carstairs Index deprivation values 4.24 ranks higher, in addition to being exposed

to an extra 1.06 t/yr. of TPM10 emissions than their cold-spot counterparts. Interestingly, J00-

99 hotspot communities respectively housed 6.90% and 11.33% more children of ‘Other South

Asian’ and ‘Afro-Caribbean’ ethnicity than their cold-spot counterparts. Meanwhile, 32.78%

more children of Indian ethnicity were found to occupy Leicester’s respiratory cold-spots.

Here, It is plausible that the lifestyle choices of this particular minority group uniquely prevents

the onset of poor health, and, or that such social groups have the knowledge to access

relevant public services to mitigate the severity and extent of such complaints.

As with TPM10, traditional statistical bivariate correlation measures (Pearson’s R)

confirmed the existence of an important and linear correlation between children’s respiratory

hospitalisations and deprivation (0.40) or ‘Afro-Caribbean’ residency (0.39), where P<0.01.
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Moderate levels of negative non-linear correlation (Spearman’s Rho) were also observed to

occur between J00-99 admissions and levels of ‘Indian’ children (-0.38, p<0.01), reconfirming

the beneficial influence associated with ‘Indian’ lifestyle choices. Furthermore, Carstairs Index

values of deprivation across Leicester were observed to yield significant linear correlations of

interest with TPM10 emissions (0.40), and community levels of ‘Afro-Caribbean’ children (0.30).

Linear correlations were also observed between levels of TPM10 emissions and residents of

‘Afro-Caribbean’ (0.42) and ‘Other South Asian’ (0.43) ethnicities. Such correlation statistics

broadly compliment the aforementioned Local Moran’s I outputs, appearing in agreement with

Pearce et al’s (2010) ‘triple jeopardy’ of social, health and environmental inequalities. Bivariate

Local Moran’s I statistics comparing children’s respiratory admissions to social markers across

first-order neighbouring locales, confirm that these elements of spatial correlation are upheld

for deprivation (0.22), ‘Indian’ (-0.17) and ‘Afro-Caribbean’ (0.21) ethnicities, where P<0.05.

Whilst bivariate boundaries of TPM10 emissions and ‘Afro-Caribbean’ lifestyle choices

were observed to instigating the bulk of respiratory admission cases across inner-city locales,

J00-99 health fronts were not uniformly located within proximal distances to such features (OH

Upon establishing that deprived communities and select minority groups reside within

locations experiencing reduced levels of air quality, objective 6 (chapter 1.4) looked to quantify

the magnitude in which these spatial relations operate. Within chapter 6, extreme shifts in the

proportion of ‘Afro-Caribbean’ children housed at the LLSOA level were identified to occur

within close proximity to boundaries in children’s overall respiratory health (OG=296m,

P↓<0.01).  Meanwhile,  overlap statistics  for  respiratory  health  boundaries  alongside ‘Indian’ 

ethnicity, ‘Other South Asian’ ethnicity and deprivation measures, revealed corresponding

areas of rapid change to be of limited significance. Interestingly, substantial spatial shifts in

‘Afro-Caribbean’ residency were identified to reduce the distance between TPM10 boundaries

and respiratory incidents by 38m (P↓<0.01), thus implying that these two independent

variables operate across spatially similar neighbourhoods.

P↓>0.1),  indicating  that  additional  influences  have  a  role  in  determining  the  city’s  wider

respiratory issues. In combining surfaces of deprivation with TPM10 emissions, one would

appear to be able to adequately capture respiratory health fronts caused by such a double

burden (OH=334m, P↓=0.01). Yet bivariate boundaries in deprivation and TPM10 were found 

to not universally trigger a J00-99 health front (OG, OGH P↓>0.05), a phenomenon possibly

introduced by an over-smoothed TPM10 dataset being unable to restrict deprivation driven

boundary placements. Nevertheless, in constructing trivariate boundary sets containing

readings of TPM10, deprivation and either ‘Afro-Caribbean’ or ‘Other South Asian’ residency
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levels as their final component, a close visual resemblance of respiratory health boundaries

was obtained (OH ≤343m, OS ≥10 BEs).

The next stage of analysis falls in-line with objective 3 (chapter 1.4), and refers back to

chapter 4’s series of quantitative models which provide appropriate global dose-response

relations for social as well as environmental stimuli. Here, traditional multivariate OLS linear

regression procedures revealed deprivation to be annually associated with 558 respiratory

children’s cases (+22.29%), and TPM10 emissions with 378 cases (+15.10%). Meanwhile levels

of ‘Afro-Caribbean’ and ‘Other South Asian’ residency respectively influenced 106 (+4.23%)

and 142 (+5.67%) cases (P<0.05). In contrast, levels of ‘Indian’ residency were associated with

substantial respiratory benefits, resulting in 498 fewer children’s annual J00-99 admissions (-

19.89%). A traditional multivariate analysis thus provides strong evidence to support the

concept that an accumulation in respiratory risk is distributed disproportionately with respect

to socioeconomic status (SES), specific ethnic minorities, and environmental exposures within

Leicester UA's 0-15 year age group.

Multilevel models accounting for quantile variations in respiratory outcomes prior to

the examination of socio-environmental stimuli, provided extremely conservative estimates

which were only able to confirm a strong prevailing signal with respect to TPM10. However,

upon the removal of the focal LLSOA of interest, signals for TPM10, deprivation, Indian

residency and ‘Afro-Caribbean’ residency were observed to remerge, albeit at the respectively

diminished levels of 5.26% (P<0.05), 3.30 (P<0.1), -3.50% (P<0.05) and 4.7% (P<0.1) of citywide

J00-99 cases. Still such values should not be taken at face value, but rather as signals of the key

underlying mechanisms operating across the city; in the face of multilevel models which have

discounted a high level of explanatory variation from such processes (trend validation

modelling).

From here, localised regression techniques were applied in order to collectively

integrate and explore the presence of multiple non-stationary socio-environmental

relationships on respiratory outcomes (objective 4, chapter 1.4). For the key socio-

environmental factors of interest, GWR modelling practices indicated LLSOA community levels

of deprivation as annually accountable for +17.96% (17.93-21.41%) of citywide J00-99 cases,

TPM10 for +15.66% (7.09-21.74%), ‘Other South Asian’ residency for +5.69% (5.41-5.93%),

‘Afro-Caribbean’ residency for +2.40 (1.32-2.88%), and ‘Indian’ residency for -14.98% (-16.70 to

-14.98%). GWR model outputs for TPM10 significantly confirm that the brunt of their associated

health impacts are focused upon inner-city residents (P<0.05). Likewise, the upper parameter

estimates for deprivation are found to coexist across inner-city locales. These findings clearly

indicate that a ‘double burden’ of environmental exposure and deprivation operates across



- CHAPTER 8 -

329

inner-city communities, to collectively impede respiratory health during childhood. Still, it

would appear that this mutual relationship may have an element of exclusivity to inner city

locales, as a second deprivation cluster of concern is observed along Leicester’s southern

periphery where relatively low TPM10 levels are reported.

Whilst ‘Afro-Caribbean’ families tending to reside within inner-city locales, partially

contained within the respiratory zone of concern, it would appear that Afro-Caribbean lifestyle

choices here actually have a low influence on respiratory outcomes. Whether the lifestyle

choices of ‘Afro-Caribbean’ residents within inner-city locales actually mitigates other

detrimental influences remains questionable, as all three local models providing insignificant

coefficients within such areas. Furthermore such beneficial outputs fly in the face of citywide

trends, with ‘Afro-Caribbean’ residence levels associated with reduced respiratory health

across Leicester’s north-easterly sector (P<0.05). One possibility is that social groups may be

forced to positively alter their traditional lifestyle choices, when exposed to an excessive

combination of social-environmental burdens which provide recognisable health impacts.

Alternatively the unfavourable lifestyles of ‘Afro-Caribbean’ residents within inner-city locales

may have been overshadowed by the far greater health impacts brought about by the ‘double

burden’ deprivation and air pollutant exposure. In either case it would appear that this ethnic

minority group unfairly experiences a ‘triple jeopardy’ of social, health and environmental

inequalities.

Perhaps most interesting are the significantly modelled hospital burdens attributed to

the lifestyle choices of ‘Other South Asian’ residents, within the western and northern districts

of Leicester heavily populated by ‘White British’ residents. Here, respiratory hospitalisations

would appear to prevail, in-spite of the social mobility, which has enabled later generations of

the ‘Other South Asian’ group to locate away from problematic inner-city areas. The causes of

which may be due to persevered lifestyle choices, which potentially break down to an

insufficient understanding of how to accessing basic public services. Alternatively, if families

have recently relocated away from inner-city areas, children’s health gradient constraints are

likely to prevail, with social mobility only allowing one to moderate prior health issues (Blane

et al 1999). In stark contrast to the cities other minority groups, GWR model estimates confirm

that levels of ‘Indian’ residency substantially decrease the likelihood of children’s respiratory

admissions occurring. Furthermore, cartographic plots indicate that the lifestyle choices of

‘Indian’ residents actively reduces the number of respiratory hospitalisations across the inner-

city respiratory hot-spot, acting in a manner which mitigates the spatial spread of such

symptoms to the wider city centre communities.
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Upon establishing these foundations, objective 5 (chapter 1.4) sought to determine

whether spatial relationships exist between specific relatively minor and severe respiratory

conditions, and if so, what is the extent to which socio-environmental mechanisms play in the

decline of a child’s respiratory health. Pearson's R procedures identified a substantial degree of

linear association (0.80) to exist exclusively between relatively severe (J20-22) and mild (J00-

06) respiratory infections (P<0.01); the two conditions respectively involved within 41.65% and

23.66% of children’s respiratory hospitalisations. Local Moran’s I statistics also detected major

hot-spots within common inner-city localities, and some common cold-spots towards

Leicester’s northern and eastern peripheries (P<0.05)

From here, GWR models disseminated localised J00-06 and J20-22 admissions to

specific socio-environmental factors, to determine whether common mechanisms are

accountable for a decline in children’s respiratory health. Pearson's R tests identified a

substantial degree of linear association between modelled upper respiratory and lower

respiratory tract infection (URTI, LRTI) hospitalisations caused by TPM10 emissions (0.85),

deprivation (0.76), and community levels of Indian (0.72) children. Bivariate Local Moran’s I

tests also spatially identified TPM10 emissions and levels of deprivation as likely candidates

responsible for a communities deteriorating respiratory health. Exacerbations of J00-06 and

J20-20 admissions associated with these two factors appeared to solely affect inner city

communities, confirming the previously reported ‘triple jeopardy’ of social, health and

environmental inequalities within Leicester. Lifestyle choices, such as those seen by Indian

residents, were also shown to mitigate the influence of detrimental socio-environmental

factors, and in part reduce the potential spatial extent of such respiratory issues around other

centric localities.

Interestingly, seasonal decompositions of children’s URTI’s show a 50-50 split across

hot and cold seasons within Leicester from 2000-09, whereas LRTI’s prevail during the cold

season (77.0%) when viral activity is most abundant. Thus, it is theorised that exposure to

detrimental socio-environmental factors may initiate URTI episodes, with prolonging recovery

times likely occurring from sustained exposures. If a sufficient level of recovery is not reached

in time for the cold season, then the child may become host to a viral infection exacerbating

previous respiratory complaints, potentially resulting in lower respiratory tract conditions of

greater severity.  To date, such immunosuppressive responses have been widely reported

within laboratory conditions (Becker & Soukup 1999, Gilmour et al 2001), with limited

supportive evidence existing across real-world settings (Karr et al 2009), until now.

Furthermore, the findings of this investigation appear to confirm an extensive body of

anecdotal research (Fry & Sandler 1993), which has previously suggested a connection
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between certain socio-environmental influences and cases of ‘Catarrhal Child Syndrome’ (CCS);

the common childhood condition collectively describing the frequent reoccurrence of acute

respiratory infections, only partially linked to viral activity. It is believed that the identified

socio-environmental mechanisms behind CCS have previously eluded health experts, as spatial

modelling techniques appear to be a necessary force in filtering geographical noise from the

signal.

Finally, the third aim of this research project is focused around the concept of a

localised polluter pays principle, and whether such principles are already in existence or in

requirement (chapter 1.3):

III. To dynamically assess the mobile polluting potentials of sub-city population

groups, in order to ascertain whether those contributing towards the

environmental degradation of the city, experience proportional environmental,

social and or health burdens.

AIM III: Highlights

 LISA measured moderate and positive level of spatial structuring across Leicester (R2 0.44) with

regards to community TPM10 contributions from personal transport (P≤0.05)

 The cities greatest polluters reside within affluent communities along the cities periphery and

are capable of shifting their personal TPM10 contributions onto others

 Those communities creating the least emissions resided in central locations unfairly plagued by

a range of social, environmental and health burdens

 Increased levels of personal mobility occur if inner-city communities purchase low-grade vehicle

stock, to the further detriment of their environmental positioning

 Intra-urban modelling of the PPP allows for the detection of individual communities at the heart

of environmental debate, with targeted consultation tailoring ‘green’ initiatives towards the

needs of local populaces

In accordance to objective 7 (chapter 1.4), community specific TPM10 contributions involving

the use of personal transportation were defined in a dynamic fashion, through the use of

workforce origin-destination matrices in combination with DVLA citations of vehicle

ownership. From here, it became possible to evaluate whether transport related pollutant

levels are caused by local communities or through the movement of external social groups

residing within another sector of the city (objective 8). Within chapter 7, Local Moran’s I

statistics identified moderate and positive level of spatial structuring to exists across Leicester

(R2 0.44) with regards to community emission contributions. Overall, these outputs revealed
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the cities greatest polluters to predominantly reside within affluent communities located along

the cities periphery, whereas those creating the least emissions resided in central locations,

experiencing a range of socio-environmental health burdens. Whilst some inner-city

communities moderately contributed towards their environmental demise, these

contributions were substantially outweighed by those made from external communities,

whom appear to avoid the social, environment and physical cost of their actions. In its current

state, the city’s traffic management strategy seemingly operates in an ethically unjust manner.

Contour plots, simultaneously examining created and residentially experienced TPM10

emissions against a third attribute, confirmed children’s respiratory cases to rise in relation to

residential pollutant levels. However, the effects of this generally appeared to be felt in a more

meaningful manner by those communities whom emit lower levels of pollutants from personal

modes of transportation. Furthermore, children with severely reduced respiratory health

tended to be housed within inner-city communities contributing modest amounts of transport

related pollutants. In a just situation their outputs would result in only moderate health

implications, however at present these residents are also unfairly plagued by the contributions

of external communities, whom health wise pay very little. Interestingly it would appear that it

is not race, but deprivation which is the key driving factor behind the creation on personal

TPM10 emissions; although elements of race would appear involved in determining affluence.

Whilst Leicester’s most affluent 10% of communities, predominantly house White British’

families (70.34%), these areas are also representative of elements of successful integration

with sections of the ‘Indian’ community (17.30%).

Even after adjusting for levels of employment, persons from affluent communities

appeared more likely to commute greater distances to work on their daily return commute

(>15km/PEP) compared to their socially disadvantaged counterparts (0-15km/PEP). This

increased travel distance of affluent communities was found to encourage the use of more

environmentally unfriendly modes of transportation (84-96% km/PEP). Meanwhile, increased

residential awareness towards an areas environmental predicament, was shown by an uptake

of ‘green’ transportation measures across polluted communities (>28% km/PEP), regardless of

social status. Whilst the encouragement of physical forms of travel is seen to reduce obesity,

for central communities these benefits are likely offset by movements across polluted districts.

Interestingly, communities feeling the brunt of the ‘double burden’ have a reduced use of

‘green’ transport (16-28% km/PEP), offset by the acquisition of low grade vehicles, thought

accountable for exacerbating such burdens. Here, the encouragement of ‘green’

transportation modes is as a means of mitigation rather than an out and out solution. Yet,
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even if such actions were in operation, further measures are still required to limit external

communities from shifting their share of pollutants onto these inhabitants.

Upon defining the extent to which such environmental inequalities exist, objective 9

(chapter 1.4) sought to provide a series of localised initiatives and more generalised transport

policies to readdress those imbalances. For instance, a low uptake of public services across

inner-city locales is an issue of concern, especially where such communities have started to

favour the use of inexpensive private vehicles. Interestingly this newfound mobility appears

associated with an increased level of social standing, to the further detriment of their local

environment. Within the city’s traffic management plan, it is of future interest to consult

inner-city communities in a strategic manner, to devise local schemes that improve and or

encouraging the use of public transportation. However, any measures should not impede the

social climb of such communities, considering that public transportation services in their

current centrically focused format, potentially offer little towards the access of new job

markets (i.e. out of town industrial/distribution centres). Therefore, the consultation process

should also explore whether it is economically feasible to provide assistance towards the

maintenance of vehicle stock within deprived inner-city communities. At the other end of the

social spectrum, a negative stigma towards the use of public services appears to present itself

within those affluent and subsequently most mobile communities. For these communities, a

more likely and immediate response for mitigating their environmental contributions involves

the use of carpooling. Here, the convenience and luxury of personal transportation is likely to

be favoured over public services, and could mark a substantial reduction in the volume of

vehicles which enter inner-city areas if correctly tailored to specific local communities.

In terms of short-term infrastructure development, a series of bottlenecks have been

observed in relation to the missing eastern section of the outer ring-road, which coincidently

falls within close proximity to some of those most affluent areas. If completed not only would

one expect problematic areas associated with congestion to be eliminated, traffic would also

be discouraged from entering the inner city, potentially mitigating the environmental burdens

felt by those most vulnerable communities. In the long term it is suggested that a central ‘Bus

Gate Enforcement’ zone would likely curb the magnitude of environmental burdens placed on

vulnerable inner-city residents, from peripheral communities with high levels of personal

mobility, as existing park and ride infrastructures become more widely used. However unless

the entire city was also governed by a scheme similar to that of the Scandinavian

Environmental Zones (perhaps with stricter emission standards), the environmental situations

for those most vulnerable may remain, if not worsen with the excessive use of poor public
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transport stock; thus demonstrating the complexity of issues currently faced by local transport

management.

8.2. ECOLOGICAL CONSIDERATIONS

In evaluating spatially aggregated health and socio-environmental exposure datasets, lies the

potential for ecological fallacy, by assuming that associations observed at the community level

universally hold for individuals residing within such areas. Whilst ecological studies cannot be

used as substitutes for individual correlation studies, this does not indicate that ecological

studies are etiologically useless, rather ecological variables are to be viewed as a necessity in

the examination of structural, contextual, and sociological influences of disease development

(Schwartz 1994). Thus, ecological studies are useful epidemiologic tools for public health

surveillance where careful interpretation of their limitations and results has occurred. As such,

ecological studies often assist in the generation of hypotheses but rarely provide a strong test

of a causal hypothesis. In particular, ecological limitations are well documented throughout

the research project, concerning the use of healthy lifestyle choices constructed from

modelled outputs, and how inferences for ethnic minority derive from a small proportion of

community residents.

Still, the research conducted within the project has successfully highlighted how

structures of socio-environmental phenomenon individually and cooperatively influence

respiratory outcomes, the latter of which is much harder to evaluate without the use of spatial

modelling techniques for ecological data. In addition, through establishing critical distance-

response thresholds, this research provides an intuitive foundation for future investigations on

an individualistic basis targeting those considered most at risk. However, realistically health

datum is unlikely to be made available at an individual level due to confidentiality clauses, and

even if this was available, such outputs would still remain restricted by the resolution of socio-

environmental databases. Here, the use of ecological datasets will have continued relevance

within health surveillance, however in the future if highly localised health databases became

available, it would become possible to verify structural findings between communities and

neighbourhoods to minimise fallacy.
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8.3. FURTHER RESEARCH

Whilst the ever evolving connections between social, environmental and health disparities

experienced during childhood makes research into this field an on-going pursuit, eight specific

future areas of research are highlighted that have arisen as a direct result of the current

research. Initially, four improvements were suggested with respect to the general limitations

found within the overall epidemiological evidence.

In the air quality literature it is widely documented that the fundamental strength of

any epidemiological evidence, is that it evaluates health outcomes for real people, whom are

living in normal environments, exposed to natural magnitudes of exposure. Yet, unfavourably

there are at least four fundamental limitations inherent to the use of observational studies,

where people reside in uncontrolled environments exposed to fluctuating doses of

environmental stimuli. Firstly, the epidemiological evidence provides limited information with

respect to those underlying biological mechanisms, despite biological plausibility existing

within the historically coherent cascade of respiratory evidence. Still, the epidemiological

evidence is clearly limited on this subject, with an element of reliance placed on laboratory and

panel based investigations. As such, linkages between acute and chronic effects in terms of

biological mechanisms have remained unclear. To an extent, this project has partially satisfied

such limitations, through identifying common pathways between minor and severe respiratory

outcomes recorded in the form of hospital admissions. Yet, the pathway between everyday

respiratory health issues and hospital visitations remains largely unexplored. [1] Future

research should therefore aim to address the early stages of respiratory deterioration,

involving the association between diagnosed respiratory issues at a primary care level and

hospital visitations during childhood.

A second basic limitation relates to coherence between ambient and personal

exposures. As previously discussed, in correlating measures of pollution with census data, it

was assumed that an individual's exposure occurred entirely within the relevant LLSOA. This is

an assumption that future work should address with the aim of getting a better understanding

of exposure. Still, children like the elderly favourably spend a majority of time close to their

place of residence, with external exposures almost exclusively occurring at schools within the

nearby vicinity. Here broadly similar exposures are expected to occur, but in reality, these

micro-transitions in pollutants remain unaccounted for. To an extent, this is where

anonymised census blocks may appear beneficial over precisely mapped patient outcomes, as

geographically averaged outputs are less prone to errors in exposure caused by an individual’s

movements. As with the majority of preceding investigations, outdoor exposures were

assumed representative of those values recorded indoors, and although children spent a
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considerable amount of time outdoors this remains a secondary micro-environment of

exposure to consider. However, to an extent the burdens found at home would relate to the

quality of housing stock, and are thus likely quantified by the Carstairs Index of deprivation.

Furthermore, accurate measurements of personal exposure to air pollutants for population-

based studies are viewed as impractical and, for some applications unnecessary, considering

that public policy and abatement strategies focus purely on ambient concentrations. Still,

unlike the adult population, children’s movements and thus additional exposures appear

simpler, in that they are restricted to a singular common environment. [2] It is recommended

that future investigations seek to implement broadly geo-link communities and attended

schools, with pollutant magnitudes recorded there correcting residential exposures.

A third basic limitation of epidemiological studies involves the difficulty of

disentangling independent effects or potential interactions between highly correlated risk

factors. To a certain extent, the use of spatial techniques goes a long way in answering this

question, through the incorporation or removal of influences based on spatial proximity,

something which has been previously ignored by temporal techniques. Furthermore, all socio-

environmental and health factors investigated here shown sense of spatially dependency,

which when evaluated provided a clear image of the intertwined socio-environmental

processes. [3] Still, future research should look towards the use of spatial-temporal models, to

also account for temporal fluctuations. However, their application is currently limited by the

frequency in which census data is recorded, in addition to changing the way such criteria are

recorded over time; thus a stricter standardisation of datasets is required. Interestingly, a

number of mid census datasets are starting to emerging, which could better facilitate such

approaches in the future, potentially allowing for the correction of annual fluctuations.

A fourth basic limitation of epidemiological studies is the inability to explore in full,

the relative health impacts of the various constituents of particulate pollution. Whilst

biological evidence has traditionally suggested that combustion-source particulate pollution

has a larger impact on respiratory health than comparable exposure to non-combustion

related particles, rarely have the individual components been explored in a real-world setting;

with the available monitoring equipment often unable to differentiating source specific

components. Within this research, the use of emission inventories offers a partial solution,

filtering out non-toxic background sources. Still, the 1x1km model resolution of this dataset

unfavourably restricts the full inclusion of the various intra-urban microenvironments, yet on-

the-other-hand beneficially provides a national coverage (model transferability). [4] For

further validation, future research intends to construct a series of detailed local models,

capturing micro-traffic outputs and atmospheric dispersion parameters. Even though
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particulate dispersion is conceivably minimal for a landlocked city, and is thus unlikely to have

significantly altered exposure gradients across LLSOA census blocks.

[5] In terms of external developments, this research demonstrates the valuable

application of spatial modelling practices within the field of environmental epidemiology.

Although we are aware of the health effects from PM10 and PM2.5, a substantial amount of

laboratory-based research has moved towards the health effects of nanoparticles at a cellular

level. Urban monitoring networks are only just starting to accurately record levels of PM2.5,

with the widespread measurement of the extremely localised spatiotemporal ultrafine fraction

likely appearing in the somewhat distant future. Until then a series of spatial techniques are

ready and waiting to investigate this phenomenon at a demographic level.

With respect to the specific findings of the research project, three new areas of future

research were proposed:

[6] Whilst effective dose-response relations were constructed across a range of intra-urban

TPM10 emission levels after accommodating for spatial and social confounders, the precision of

the constructed stimulus-response models remain debatable. For instance, with deprivation a

rather complex relation was uncovered linking various health pathways to three specific

subdivisions of the phenomenon; requiring further validation across wider range urban

settings. Also for the various ethnic groups, bar the Indian populace, stimulus-response models

only provide meaningful results where these groups for <10% of a community’s residents. It is

suggested that this methodology is rolled out to wider range of UK cities, using either a single

model or meta-analysis approach, to better define such trends. Thus, the research presented

here should be viewed as a preliminary strategy, displaying the potential application and value

of spatial modelling practices.

[7] In spite of the frequency of ‘Catarrhal Child Syndrome’, its causes have previously remained

uncertain, with anecdotal evidence suggesting the involvement of underlying social and

genetic factors alongside viral activity. In exploring a spectrum of respiratory admission cases,

this project has indicated that certain socio-environmental stimuli are accountable for an initial

decline in children’s respiratory health, to create a state favouring the onset of viral activity,

which may further deteriorate respiratory health.. To-date, only one other epidemiological

study exists, specifically exploring those interactions between exposure burdens and viral

activity (Karr et al 2009). As such, additional research is recommended to confirm such

findings.



- CHAPTER 8 -

338

[8] Finally, future research should follow on from those initial outputs provided by the

localised Polluter Pays Principle analysis of Leicester. Primarily, this new research should

explore the economic viability of the three proposed transport schemes including the:

Completion of the cities outer-ring road, a Bus Gate Enforcement zone, and Environmental

Zone. This research should also look at the short-term local transport schemes discussed here,

in terms of formulating cost effective measures for those influential geographic communities.

In the past carpooling has been by enlarge a unsuccessful measure, however through tailoring

these measures to the needs of local communities, a beneficial response is more likely to be

achieved. In addition, the overall methodology for this tangent of the research project may be

further improved through the incorporation of emissions from public transport, to explore the

full spectrum of environmental contributions made by each community.
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APPENDIX A

APPENDIX A1: Daily air pollution and deaths during the 1952 London episode (Boubel et al 1994)

APPENDIX A2:  A correlation of daily nitrogen dioxide mixing ratios recorded by urban networks
(background sources) and equipment fitted to public transport (traffic sources) in Copenhagen. Strong
linear relations were also identified for half-hour measurements of roadside particulates and NOx

(Hertel et al 2001)
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APPENDIX A3: Tropospheric Photochemical cycle of NO, NO2, O3 and free radicals (Boubel et al 1994)

APPENDIX A4: Annual patient consulting rates for various respiratory complaints within a Greater
London general practice, depicting the rich amalgamation of conditions that occur almost exclusively
during childhood (Adapted from Fry & Sandler 1993)

APPENDIX A5 [PAGE 368]: Descriptive overview of the studies identified for inclusion within Ward &
Ayres (2004) review of particulate pollutants impact on children’s lung function, as measured by peak
expiratory flow (PEF)



* All models include the following parameters: linear trend, temperature, autocorrelation

Footnotes: [A] Participant daily mean PEF deviation; [B] Participants daily mean PEF: z-scores; [C] Two-stage Approach: Subject specific PEF, Weighted polling
[D] Participant daily mean % change in PEF x300; [E] Meta-analysis of panel participant daily mean PEF deviation

[I] Day-of-study; [II] Quadratic trends; [III] Weather variables; [IV] Weekend indicator

Authors Study Setting Age Group
[Sample]

Symptomatic
Participants

24-hour
PM10 µg/m3

Time-series:
Linear Model

Analytical
Approach

Model
Parameters*

Pope et al (1991) Utah Valley, USA
Dec 1989 - Mar 1990

9-11 years
[41]

Unselected Max: 195
Mean: 46

Single Pollutant [A]

Pope & Dockery (1992) Utah Valley, USA
Dec 1990 - Mar 1991

9-11 years
[79]

49% Max: 251
Mean: 76

Single Pollutant [A]

Hoek & Brunekreef (1994) The Netherlands
Nov-Feb 1987/88/89/90

9-11 years
[225-351]

Unselected Max: 126
Mean: 45

Single Pollutant [B] [I]

Roemer et al (1993) The Netherlands
Nov 1990 – Feb 1991

6-12 years
[73]

100% Max: 113
Mean: 42

Single Pollutant [B] [I]

Romieu et al (1996) Mexico City
Apr 1991 - Feb 1992

5-13 years
[71]

100% Max: 363
Mean: 167

Multi-Pollutant: O3 [B]

Peters et al (1996) Eastern Europe [3 Cities]
Sept - Mar 1990/91/92

7-15 years
[163]

100% Max: 171 - 247
Mean: 55 - 64

Single Pollutant [A] [I, II, IV]

Gielen et al (1997) The Netherlands
Apr - Jul 1995

7-13 years
[61]

77% Max: 60
Mean: 31

Single Pollutant [C] [IV]

Vedal et al (1998) Vancouver, Canada
May 1990 - Mar 1992

6-13 years
[206]

64% Max: 159
Mean: 27

Single Pollutant [C]

Gold et al (1999) Mexico City
Jan - Nov 1991

8-11 years
[40]

53% Max: 87
Mean: 49

Multi-Pollutant: O3 [A] [II, III]

Neas et al (1999) Philadelphia, USA
Jul - Sept 1993

6-11 years
[156]

Unselected Max: 50
Mean: 32

Single Pollutant [D]

Jalaludin et al (2000) Sydney, Australia
Feb - Dec 1994

7-10 years
[125]

100% Max: 123
Mean: 23

Multi-Pollutant: O3 [D] [II, III]

Roemer et al (1998) PEACE Project [14 European Cities]
Nov 1993 - Feb 1994

7-11 years
[2,010]

100% Max: 29 - 242
Mean: 11 - 99

Single Pollutant [E] [II, IV]

Ward et al (2002) West Midlands, UK
Jan - Jul 1997

9-10 years
[132]

24% Max: 46
Mean: 20

Single Pollutant [A] [III, IV]



Author Location Age:
Years

Year/Condition:
Last 12 Months

Total
Participants

Control-Road
Distance Near-Road Distance Odds Ratio

Wjst et al (1993) Munich, Germany 9-11 1989: [G] 6,537 ≤2km
≥25,000 vehicles/day

≤2km
≥50,000 vehicles/day

1.08
[1.01, 1.16]

Duhme et al (1996) Munster, Germany 12-15 1994: [G] 3,703 Residential Street
No Truck Traffic

Residential Street
Constant Truck Traffic

2.47
[1.74, 3.52]

Keil et al (1996) Bochum, Germany 12-15 1991: [G] 2,050 Residential Street
No Truck Traffic

Residential Street
Constant Truck Traffic

1.94
[1.26, 2.99]

Oosterlee et al (1996) Haarlem, Netherlands 0-15 1991: [G] 291 Residential Street:
≥10,000 vehicles/day

Residential Street:
≥30,000 vehicles/day

2.1
[0.99, 4.40]

Ciccone et al (1998) Italy 6-14 1994: [D] 10,955 Residential Street Residential Street
HGV Route

1.29
[1.15, 1.45]

Venn et al (2001) Nottingham, UK 4-11 1995: [G] 6,147 150m <30m 1.34
[0.93, 1.89]

Venn et al (2001) Nottingham, UK 11-16 1995: [G] 3,709 150m <30m 1.82
[1.06, 3.22]

Janssen et al (2003) Netherlands 7-12 1997: [B] 2,037 400m:
Highway 100m 1.21

[0.87, 1.68]

Janssen et al (2003) Netherlands 7-12 1997: [B] 2,037 400m:
Highway 100m 1.18

[0.60, 2.31]

Shima et al (2003) Japan 6-9 1992-95: [E] 640 Rural Area <50m Highway 3.77
[1.00, 14.16]

Gauderman et al (2005) California, USA 10 1993-2000: [A] 208 Minor Roads Freeways 2.22
[1.36, 3.36]

Ryan et al (2005) Cincinnati, USA ≤1 2003: [G] 446 400m <100m:
Bus/HGV Route

2.50
[1.15, 5.24]

McConnel et al (2006) California, USA 5-7 2003: [A] 4,742 300m <75m 1.50
[1.16, 1.95]

McConnel et al (2006) California, USA 5-7 2003: [A] 1,856 300m
Life-term residents

<75m
Life-term residents

1.64
[1.10, 2.44]



Author Location Age:
Years

Year/Condition:
Last 12 Months

Total
Participants

Control-Road
Distance Near-Road Distance Odds Ratio

Kim et al (2008) California, USA 8-10 2001: [F] 1,080 300m <300m
Downwind-Highway

1.42
[0.87, 2.33]

Kim et al (2008) California, USA 8-10 2001: [F] 1,081 300m <300m
Upwind-Highway

1.13
[0.66, 1.95]

Pujades-Rodriguez et al (2009) England 2-6 1995/96, 2001: [E] 3,500 150m <30m 1.17
[0.71, 1.93]

Pujades-Rodriguez et al (2009) England 7-15 1995/96, 2001: [E] 6,015 150m <30m 1.35
[0.95, 1.91]

Middleton et al (2010) Nicosia, Cyprus 7-8 1999: [G] 1,917 300m <50m 1.30
[0.86, 1.97]

Miyake et al (2010) Neyagawa, Japan ≤1 2001-03: [A] 756 200m <50m 4.01
[1.44, 11.24]

Andersson et al (2011) Lulea, Sweden 7-8 2006: [A] 1,357 200m
≥100 HGV’s/Day <200m 1.29

[0.80, 2.08]

Andersson et al (2011) Lulea, Sweden 7-8 2006: [A] 1,357 200m
≥250 HGV’s/Day <200m 1.74

[1.06, 2.87]

MacIntyre et al (2011) Vancouver, Canada 0-2 1999: [C] 45,513 150m
Highway <50m 1.11

[0.97, 1.25]

Footnotes:
[A] Doctor-diagnosed asthma; [B] Doctor-diagnosed Bronchitis; [C] Doctor-diagnosed Otitis Media;

[D] Parent-reported Acute Respiratory Disease; [E] Parent-reported Asthma; [F] Parent-reported bronchitis; [G] Parent-reported wheeze

APPENDIX A6 [PAGES 369-370]: Literature review of the associations between proximity based exposures to road-transport and children’s self/clinician diagnosed minor
ailments of the respiratory system
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APPENDIX B

ROW LABELS
ANNUAL LLSOA J00-99 ADMISSION COUNTS: 2000-09

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 MEAN
E01013761 21 17 27 34 29 42 46 35 41 36 32.8
E01013600 36 47 33 23 36 20 21 22 37 19 29.4
E01013755 14 18 23 25 25 31 56 33 32 31 28.8
E01013691 25 28 35 23 19 29 38 27 31 20 27.5
E01013640 14 29 19 19 23 35 26 32 38 34 26.9
E01013652 31 28 23 34 24 27 12 30 30 29 26.8
E01013701 18 21 9 12 10 28 33 37 47 38 25.3
E01013620 24 26 17 25 20 16 30 29 31 34 25.2
E01013748 28 25 24 30 23 25 14 26 28 24 24.7
E01013632 28 21 14 20 23 26 26 32 23 33 24.6
E01013676 26 42 21 18 23 28 19 21 15 33 24.6
E01013731 39 30 34 22 22 22 23 16 17 18 24.3
E01013754 24 14 25 21 30 21 20 16 32 26 22.9
E01013638 15 21 27 25 19 24 22 21 31 23 22.8
E01013619 11 32 31 16 21 18 20 31 29 18 22.7
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---

E01013609 6 6 8 3 2 6 2 5 11 4 5.3
E01013650 5 7 8 2 4 6 1 7 6 5 5.1
E01013784 8 4 2 6 5 4 5 5 6 6 5.1
E01013666 7 7 7 3 2 4 3 4 6 7 5
E01013774 3 5 6 7 2 5 2 6 6 7 4.9
E01013779 2 4 7 2 13 1 5 6 4 3 4.7
E01013710 7 3 5 1 4 6 3 5 5 7 4.6
E01013776 4 1 4 2 4 3 3 2 6 13 4.2
E01013782 3 1 3 7 8 2 1 7 6 4 4.2
E01013781 8 4 1 4 3 2 3 3 4 5 3.7
E01013644 4 1 2 0 1 5 5 6 4 6 3.4
E01013649 2 4 4 1 1 4 8 4 4 2 3.4
E01013711 3 3 4 7 2 3 2 4 2 2 3.2
E01013712 3 1 1 7 5 0 3 2 3 5 3
E01013645 0 1 1 0 0 3 3 2 6 5 2.1

TOTAL 2555 2614 2617 2424 2096 2416 2277 2360 2612 2584 2455.5

APPENDIX B1: A sample of LLSOA raw hospital admission counts, showing the upper and lower tails of
the spectrum for ICD-10: J00-99 respiratory conditions
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ROW LABELS
ANNUAL LLSOA J00-06 ADMISSION COUNTS: 2000-09

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 MEAN
E01013761 8 9 11 19 16 23 23 21 20 19 16.9
E01013755 8 6 9 10 13 12 31 16 15 16 13.6
E01013600 13 17 13 12 17 10 9 8 18 8 12.5
E01013640 7 13 9 10 15 10 13 18 13 17 12.5
E01013748 17 13 9 14 9 16 9 13 12 13 12.5
E01013676 10 25 9 7 9 14 7 8 11 14 11.4
E01013652 11 16 12 11 9 10 8 15 14 7 11.3
E01013654 8 13 13 14 12 9 12 13 7 11 11.2
E01013754 8 7 13 8 10 11 6 8 21 14 10.6
E01013701 4 10 6 6 6 10 8 14 21 20 10.5
E01013679 12 15 16 12 11 7 10 4 9 6 10.2
E01013651 17 4 10 15 6 6 10 7 12 10 9.7
E01013602 7 11 12 6 7 11 5 9 13 12 9.3
E01013621 3 15 9 13 13 3 7 15 4 11 9.3
E01013658 11 8 6 9 8 12 8 5 10 16 9.3
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
E01013609 1 2 1 1 1 3 2 3 6 2 2.2
E01013644 3 1 1 0 0 3 3 4 4 3 2.2
E01013666 2 2 4 0 1 2 2 3 2 4 2.2
E01013715 1 5 3 6 1 1 1 0 2 2 2.2
E01013641 3 3 7 0 1 2 3 0 1 1 2.1
E01013711 2 3 1 5 1 1 2 2 2 1 2.0
E01013781 4 1 0 1 3 1 3 2 3 2 2.0
E01013782 1 0 2 5 2 1 1 2 2 3 1.9
E01013710 2 1 1 1 1 4 1 1 3 3 1.8
E01013734 0 2 1 3 1 4 1 2 4 0 1.8
E01013636 3 2 4 1 0 1 0 2 0 3 1.6
E01013649 1 2 1 1 1 4 1 3 1 1 1.6
E01013735 1 2 0 5 1 1 0 2 1 3 1.6
E01013712 0 0 0 4 1 0 3 1 2 3 1.4
E01013645 0 0 1 0 0 1 2 0 1 3 0.8

TOTAL 931 1042 1038 1034 761 888 1025 1101 1215 1193 1022.8

APPENDIX B2: A sample of LLSOA raw hospital admission counts, showing the upper and lower tails of
the spectrum for ICD-10: J00-06 respiratory conditions
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ROW LABELS
ANNUAL LLSOA J20-22 ADMISSION COUNTS: 2000-09

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 MEAN
E01013755 1 6 9 7 4 8 10 9 8 10 7.2
E01013640 0 4 3 4 7 15 5 6 14 10 6.8
E01013632 5 4 0 3 9 8 9 10 10 7 6.5
E01013652 7 4 2 7 7 9 0 7 9 13 6.5
E01013761 5 1 10 5 6 8 7 3 8 8 6.1
E01013731 5 3 4 3 8 7 9 9 6 4 5.8
E01013676 3 3 3 6 7 7 6 8 1 11 5.5
E01013701 4 4 2 3 0 10 6 12 10 4 5.5
E01013600 5 5 5 3 8 5 3 6 6 6 5.2
E01013620 6 5 2 1 4 5 6 5 9 7 5.0
E01013621 4 1 6 6 9 6 2 6 7 3 5.0
E01013691 3 4 8 1 4 6 5 4 6 6 4.7
E01013754 9 2 4 2 9 3 5 3 4 5 4.6
E01013637 5 2 7 2 0 7 4 3 8 5 4.3
E01013692 4 9 1 4 6 2 2 2 6 6 4.2
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
--------- --- --- --- --- --- --- --- --- --- --- ---
E01013645 0 1 0 0 0 2 0 1 2 1 0.7
E01013669 1 0 0 0 1 1 0 0 4 0 0.7
E01013710 0 1 0 0 1 0 1 1 1 2 0.7
E01013609 0 1 1 0 0 0 0 1 2 1 0.6
E01013672 0 0 0 0 0 1 2 1 2 0 0.6
E01013700 1 0 0 1 0 0 0 2 1 1 0.6
E01013712 0 0 0 3 2 0 0 0 0 1 0.6
E01013783 0 0 0 0 1 1 1 3 0 0 0.6
E01013606 0 0 1 0 0 2 0 2 0 0 0.5
E01013735 0 0 0 1 1 1 1 0 0 1 0.5
E01013779 0 0 2 0 0 0 0 2 0 1 0.5
E01013666 1 1 1 0 0 0 0 0 1 0 0.4
E01013711 0 0 1 0 0 1 0 2 0 0 0.4
E01013643 0 1 0 1 0 0 1 0 0 0 0.3
E01013649 1 1 0 0 0 0 1 0 0 0 0.3

TOTAL 357 377 362 307 361 485 318 422 574 579 414.2

APPENDIX B3: A sample of LLSOA raw hospital admission counts, showing the upper and lower tails of
the spectrum for ICD-10: J20-22 respiratory conditions
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J00-99 Admissions Per 1,000 Children Year Children’s J00-99
Admission Count R2

2001 UK Census Vs. 2002 Mid-Year Estimate 2002 2,617 0.96
2001 UK Census Vs. 2003 Mid-Year Estimate 2003 2,424 0.93
2001 UK Census Vs. 2004 Mid-Year Estimate 2004 2,096 0.92
2001 UK Census Vs. 2005 Mid-Year Estimate 2005 2,416 0.90
2001 UK Census Vs. 2006 Mid-Year Estimate 2006 2,277 0.84
2001 UK Census Vs. 2007 Mid-Year Estimate 2007 2,360 0.79
2001 UK Census Vs. 2008 Mid-Year Estimate 2008 2,612 0.77

APPENDIX B4: Discrepancies in Leicester UA LLSOA J00-99 admissions per 1,000 children caused by
standardisation in the form of ONS 2001 UK Census population counts and ONS mid-year population
estimates: 2002-2008

APPENDIX B5: Progressively omitted fraction of the 2,157 datum points used by the validatory kriging
models, interpolating the 2008 1x1km PM10 road-transport emission grid of Leicestershire
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APPENDIX B6: Display of the fit between the Leicestershire theoretical 2008 TPM10 emission model
and traditional variogram plot, alongside the interpolated output for Leicester UA

APPENDIX B7: Box-Whisker plots of social-lifestyle, health and environmental factors recorded across
Leicester UA



Y: THEORETICAL MODEL

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L]

X:
 P

LO
TT

ED
 V

AR
IO

GR
AM

 P
O

IN
TS

J00-99 Admissions  Per 1,000 Children [A] 0.92 0.92 0.91 0.78 0.56 0.65 0.67 0.47 0.91 0.48 0.60 0.92
J00-06 Admissions Per 1,000 Children [B] 0.94 0.94 0.93 0.82 0.59 0.68 0.71 0.48 0.93 0.49 0.63 0.94

J20-22 Admissions Per 1,000 Children [C] 0.89 0.90 0.90 0.75 0.57 0.63 0.65 0.50 0.90 0.51 0.60 0.90
Carstairs Index: Leicester [D] 0.81 0.79 0.73 0.93 0.79 0.87 0.89 0.66 0.73 0.66 0.83 0.77
TPM10 Emissions [E] 0.65 0.63 0.55 0.90 0.99 0.98 0.97 0.96 0.55 0.96 0.99 0.59
Adult Smoking Prevalence [F] 0.67 0.65 0.59 0.83 0.91 0.88 0.87 0.94 0.59 0.94 0.90 0.63

Adult Obesity Prevalence [G] 0.73 0.70 0.63 0.96 0.96 0.98 0.98 0.90 0.63 0.90 0.97 0.67
White British Children [H] 0.54 0.52 0.45 0.81 0.98 0.93 0.91 0.99 0.45 0.99 0.96 0.49
White Non-British Children [I] 0.90 0.90 0.92 0.76 0.65 0.69 0.71 0.59 0.92 0.60 0.67 0.91
Indian Children [J] 0.60 0.58 0.52 0.83 0.97 0.93 0.92 0.99 0.52 0.99 0.96 0.55

Other South Asian Children [K] 0.68 0.66 0.59 0.93 0.99 0.99 0.99 0.95 0.59 0.95 0.99 0.63
Afro-Caribbean Children [L] 0.91 0.92 0.93 0.75 0.61 0.67 0.68 0.53 0.93 0.54 0.64 0.93

APPENDIX B8: Comparing the goodness-of-fit (R-squared) of an individual variables constructed theoretical model to real-world spatial continuity measurements provided by
variograms of itself and all other variables across Leicester UA



APPENDIX B9: Cartographic portrayal of how postal district and postal sector outputs correspond to the LLSOA’s of Leicester UA
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APPENDIX B10: Construction of spatial kernels describing how weighting is distributed to observations
based on proximity within the local regression models of a GWR analysis (Adapted from
Fotheringham et al 2002)
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APPENDIX C

APPENDIX C1: Local Moran's I cluster and outlier analysis of ‘White British’ residency, and levels of
smoking and obesity prevalence
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APPENDIX C2: Estimated traffic flow conditions across Leicester UA during September 2012, based
upon past conditions. (Upper Left): Monday 15:30, (Upper Right) Monday 17:30, (Lower Left): Friday
15:30, (Lower Right): Friday 17:30. ©Google Maps UK, 2012

APPENDIX C3: Spatial correlograms of Global Moran's statistical outputs, portraying the level of decay
in autocorrelation between neighbouring LLSOA community ethnic minority levels, as a function of
distance



APPENDIX C4 (ABOVE): Overview of children’s respiratory health and residentially experienced socio-environmental influences within Local Moran’s hot-spots (H-H)
APPENDIX C5 (BENEATH): Overview of children’s respiratory health and residentially experienced socio-environmental influences within Local Moran’s cold-spots (C-C)

Health Socio-Environmental Adult Healthy Lifestyle (%) Children’s Social Lifestyle (%)
J00-99

Admissions
Carstairs Index

[Leicester]
TPM10

(t/yr.)
Smoking

Prevalence
Obesity

Prevalence
White
British

White
Non-British

Indian Other
S. Asian

Afro-
Caribbean

J00-99 Admissions [N=7] 80.65 4.11 2.19 33.11 20.67 34.38 2.08 26.95 11.58 12.41
Carstairs Index [N=15] 50.97 3.90 1.60 23.92 26.10 20.21 1.33 53.30 13.13 5.64
TPM10 Emissions [N=20] 57.15 2.68 1.82 27.70 22.46 30.49 2.22 35.21 12.92 7.58
Adult Smoking [N=14] 47.46 2.23 0.89 45.16 28.02 86.63 1.30 3.50 0.72 1.47
Adult Obesity [N=12] 43.68 1.26 0.99 37.11 28.97 74.51 0.87 15.06 2.26 1.69
White British [N=24] 47.41 0.73 0.88 39.46 27.33 86.21 1.67 3.85 0.93 1.53
White Non-British [N=5] 29.78 -2.24 1.31 27.12 17.66 51.96 3.35 25.49 5.36 4.72
Indian [N=34] 32.61 1.94 1.15 17.11 25.53 12.63 0.95 67.31 11.31 2.47
Other South Asian [N=19] 44.68 2.25 1.38 19.53 23.56 12.59 1.09 52.92 21.25 5.60
Afro-Caribbean [N=5] 49.18 3.06 1.53 17.86 23.58 13.43 1.42 41.60 25.41 8.48

Health Socio-Environmental Adult Healthy Lifestyle (%) Children’s Social Lifestyle (%)
J00-99

Admissions
Carstairs Index

[Leicester]
TPM10

(t/yr.)
Smoking

Prevalence
Obesity

Prevalence
White
British

White
Non-British

Indian Other
S. Asian

Afro-
Caribbean

J00-99 Admissions [N=10] 27.64 -0.12 1.14 17.97 21.73 26.12 2.08 59.73 4.68 1.07
Carstairs Index [N=15] 30.92 -4.27 0.83 16.65 17.89 66.71 1.84 19.76 3.24 1.32
TPM10 Emissions [N=19] 38.52 -2.04 0.59 24.57 26.34 63.05 1.11 24.18 2.92 1.72
Smoking Prevalence [N=28] 31.40 -0.78 0.96 15.04 22.27 24.19 1.25 57.75 9.17 1.88
Obesity Prevalence [N=26] 35.66 -2.83 1.26 23.54 15.55 59.41 2.59 19.19 5.37 2.56
White British [N=36] 35.46 2.40 1.24 17.63 25.43 11.24 1.01 65.62 13.31 3.12
White Non-British [N=4] 38.94 3.08 1.23 25.53 26.93 28.51 0.91 50.87 12.34 2.36
Indian [N=26] 45.61 0.44 0.90 38.71 26.84 86.55 1.40 3.91 0.82 1.44
Other South Asian [N=19] 44.78 0.49 0.90 39.25 26.77 81.68 1.92 6.52 1.25 1.91
Afro-Caribbean [N=6] 40.96 2.06 0.83 34.28 28.55 62.17 1.29 27.44 1.64 0.61
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APPENDIX C6: Quantile distribution plots of 2000-09 annual average children's respiratory admissions
(ICD-10: J00-99)



J00-99 Admission Rate Quantiles
Upper Level: Random Effect Intercept Value (Disease Prevalence)

Model A Model B Model C Model D Model E Model F Model G Model H
1 (Low) -13.66 -15.37 -16.26 -13.27 -14.67 -15.38

2 -4.98 -6.08 -7.57 -4.32 -6.18 -8.07
3 2.36 -1.76 -4.19 2.57 -1.13 -3.05
4 16.28 4.06 1.42 15.02 4.55 1.20
5 19.15 5.72 17.43 6.42

6 (High) 20.88 18.90

APPENDIX C7: Estimates of the unmeasured spatial component associated with disease prevalence, recorded within upper level nesting struc tures

Fixed Intercept
(Baseline)

Carstairs
Index

TPM10

Emissions
Smoking

Prevalence
Obesity

Prevalence
White

Non-British
Indian Other

South Asian
Afro-

Caribbean
Random

Intercept:
Prevalence

Residuals

Model A 71.74 22.29 15.10 1.79 3.62 -3.63 -19.89 5.67 4.23 N/A -0.92
Model B 85.69 3.40 17.69 -3.82 0.95 -1.35 -4.64 -0.57 1.88 1.38 -0.60
Model C 83.98 4.32 16.99 -1.64 0.49 -1.51 -2.80 -1.27 1.13 0.89 -0.58
Model D 85.72 3.47 15.81 -1.20 0.43 -1.87 -2.13 -1.92 1.37 0.85 -0.53
Model E 74.20 20.87 1.36 0.80 9.51 -1.24 -17.91 5.58 6.99 N/A -0.14
Model F 86.99 3.30 5.26 -4.29 6.03 0.67 -3.50 -0.43 4.57 1.33 0.06
Model G 85.68 4.46 4.85 -2.48 5.17 0.55 -1.83 -1.05 3.76 0.83 0.05
Model H 87.50 3.55 3.59 -2.21 5.44 0.33 -1.52 -1.70 4.07 0.86 0.09

APPENDIX C8: Percentage (%) of citywide annual children's respiratory admissions associated with background and socio-environmental influences recorded within Leicester
UA: 2000-09
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APPENDIX C9: Frequency plots of residuals from Models A-H, fitted with normal distributions
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APPENDIX C10: GWR modelled children’s J00-99 hospital admission rates associated with levels of
passive smoking as recorded via adult smoking prevalence
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APPENDIX C11: GWR modelled children’s J00-99 hospital admission rates associated with children’s
exercise levels and dietary intake as recorded via adult obesity prevalence
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APPENDIX C12: GWR modelled children’s J00-99 hospital admission rates associated with the social
lifestyle of ‘White Non-British’ residents
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APPENDIX C13: GWR modelled children’s J00-99 hospital admission rates associated with the social
lifestyle of ‘Indian’ residents
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APPENDIX C14: GWR modelled children’s J00-99 hospital admission rates associated with the social
lifestyle of ‘Other South Asian’ residents
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APPENDIX C15: GWR modelled children’s J00-99 hospital admission rates associated with the social
lifestyle of ‘Afro-Caribbean’ residents



APPENDIX C16: Stimulus-response models describing the relationship between socio-environmental variables and their specific GWR modelled hospital admissions rates per
1,000 children (If coefficient P≤0.01)

Independent Variable GWR Model Observations
(P<0.05)

Optimum Model
(P<0.05)

R2 Constant
(B0)

B1 B2 B3

TPM10 Emissions (t/y)
80NN 46 Quadratic 0.92 3.043 -2.339 11.808
60NN 19 Quadratic 0.96 -5.593 -2.738 17.620
40NN 14 Quadratic 0.99 9.650 -55.783 41.159

Carstairs Index (Rank for Leicester)
80NN 42 Cubic 0.80 26.437 4.097 -0.068 -0.024
60NN 41 Cubic 0.63 29.759 4.462 -0.357 -0.045
40NN 37 Cubic 0.32 35.682 4.783 -1.517 -0.264

(%) Smoking Prevalence
80NN 7 Cubic 0.99 -24.857 2.256 0.000 -0.002
60NN 20 Cubic 0.98 -8.971 0.895 -0.003 0.000
40NN 9 Cubic 0.99 -29.216 2.385 0.000 -0.001

(%) Obesity Prevalence
80NN 16 N/A
60NN 8 N/A
40NN 3 N/A

(%) White Non-British Children
80NN 0 N/A
60NN 0 N/A
40NN 0 N/A

(%) Indian Children
80NN 64 Cubic 0.82 -0.425 -0.229 -0.009 1E-04
60NN 34 Cubic 0.90 -0.041 -0.459 -0.004 -9E-05
40NN 27 Cubic 0.91 -0.347 -0.580 -1E-04 -5E-05

(%) Other South Asian Children
80NN 53 Cubic 0.97 -0.096 2.628 -0.377 0.022
60NN 49 Cubic 0.90 0.072 2.213 -0.151 0.003
40NN 30 Cubic 0.98 0.319 1.979 -0.080 0.001

(%) Afro-Caribbean Children
80NN 33 Cubic 0.94 0.078 1.439 -0.001 -2E-04
60NN 27 Cubic 0.96 -0.063 2.167 -0.443 0.075
40NN 18 N/A
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APPENDIX C17: Best fitted universal J00-99 stimulus-responses associated with residentially
experienced TPM10 emissions, and residential levels of ‘Other South Asian’, ‘Indian’ and ‘Afro-
Caribbean’ ethnicities.
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APPENDIX C18: Universal J00-99 stimulus-responses associated with Leicester UA’s Carstairs Index of
deprivation, created from local GWR model outputs of significant (P≤0.05; P≤0.01)
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APPENDIX D

APPENDIX D1: Quantile Plot of annual LLSOA levels of children’s J00-06 admission rates Vs. J20-22
admission rates, across Leicester UA: 2000-09

APPENDIX D2: Spatial correlograms of Global Moran's statistical outputs, portraying the level of decay
in autocorrelation between neighbouring LLSOA community’s URT and LRT health, as a function of
distance.



APPENDIX D3: Summary of mean community characteristics for areas classified by the J00-06 Local Moran’s I statistic

APPENDIX D4: Summary of mean community characteristics for areas classified by the J20-22 Local Moran’s I statistic

Local Classification:
J00-06 Moran’s I

Adult Lifestyle
Choices (%)

Socio-Environmental
Issues

Ethnic Composition (%) Admissions Per
1,000 Children

Smoking
Prevalence

Obesity
Prevalence

Carstairs
Index

TPM10

(t/yr.)
White
British

White
Non-British Indian

Other
South Asian

Afro-
Caribbean J00-06 J20-22

Hot-Spot (H-H) 33.11 20.67 4.11 2.19 34.38 2.08 26.96 11.58 12.41 42.43 17.60
Cold-Spot (L-L) 18.35 24.07 -0.36 0.95 29.92 1.55 54.76 5.58 0.99 12.11 4.72
Not Signif. (P >0.05) 27.49 24.47 -0.15 1.00 56.19 1.54 27.03 5.51 2.55 16.09 6.37

Local Classification:
J20-22 Moran’s I

Adult Lifestyle
Choices (%)

Socio-Environmental
Issues

Ethnic Composition (%) Admissions Per
1,000 Children

Smoking
Prevalence

Obesity
Prevalence

Carstairs
Index

TPM10

(t/yr.)
White
British

White
Non-British Indian

Other
South Asian

Afro-
Caribbean J00-06 J20-22

Hot-Spot (H-H) 32.00 21.65 4.80 2.25 32.29 1.90 29.18 10.04 12.91 43.13 18.25
Cold-Spot (L-L) 14.29 21.54 -0.96 0.99 25.14 1.24 60.77 6.37 0.95 10.58 3.75
High Outlier (H-L) 12.80 20.60 -2.20 0.82 40.98 2.57 41.52 4.39 1.07 13.11 7.46
Not Signif. (P >0.05) 27.72 24.57 -0.09 1.00 55.83 1.54 27.26 5.59 2.58 16.22 6.39



APPENDIX D5: Summary of mean community characteristics for areas classified by the Bivariate Local Moran’s I statistic, where (i) = J00 -06 and (j) = J20-22

APPENDIX D6: Summary of mean community characteristics for areas classified by the Bivariate Local Moran’s I statistic, where (i) = J20-22 and (j) = J00-06

Local Classification:
Bivariate Moran’s I

(i) J00-06; (j) J20-22

Adult Lifestyle
Choices (%)

Socio-Environmental
Issues

Ethnic Composition (%) Admissions Per
1,000 Children

Smoking
Prevalence

Obesity
Prevalence

Carstairs
Index

TPM10

(t/yr.)
White
British

White
Non-British Indian

Other
South Asian

Afro-
Caribbean J00-06 J20-22

Hot-Spot (H-H) 32.00 21.65 4.80 2.25 32.29 1.90 29.18 10.04 12.91 43.13 18.25
Cold-Spot (L-L) 13.84 21.26 -1.33 0.94 29.89 1.64 55.00 5.78 0.98 11.34 4.86
Not Signif. (P >0.05) 27.72 24.57 -0.09 1.00 55.83 1.54 27.26 5.59 2.58 16.22 6.39

Local Classification:
Bivariate Moran’s I

(i) J20-22; (j) J00-06

Adult Lifestyle
Choices (%)

Socio-Environmental
Issues

Ethnic Composition (%) Admissions Per
1,000 Children

Smoking
Prevalence

Obesity
Prevalence

Carstairs
Index

TPM10

(t/yr.)
White
British

White
Non-British Indian

Other
South Asian

Afro-
Caribbean J00-06 J20-22

Hot-Spot (H-H) 33.11 20.67 4.11 2.19 34.38 2.08 26.95 11.58 12.41 42.43 17.60
Cold-Spot (L-L) 16.00 24.75 -0.14 0.98 16.90 0.93 68.32 6.37 0.86 29.88 11.07
High Outlier (H-L) 23.05 22.70 -0.79 0.90 55.96 2.78 27.63 4.01 1.27 14.19 8.00
Not Signif. (P >0.05) 27.49 24.47 -0.15 1.00 56.19 1.54 27.03 5.51 2.55 16.09 6.37



Footnote: Moran’s I: * P ≤ 0.05 (Significant Dispersion); (b) GWR F-Tests: * P ≤ 0.05

APPENDIX D7: Diagnostics of the J00-06 and J20-22 respiratory subset GWR models containing a bi-square adaptive weighting scheme

Goodness-Of-Fit
Measures

Relative Goodness-Of-Fit:
Accuracy Vs. Complexity

Global Moran’s I:
Residual Patterning

F-Test: Relative Improvement
GWR Vs. OLS

R2 CV-R2 RSS AIC AICc Moran’s I Z-Score FBC-F LMZ-F1 LMZ-F2

J00-06 Admissions:
OLS 0.37 0.34 9302.33 1279.28 1282.53 0.13 3.29
GWR 80 NN 0.59 0.48 6058.16 1219.49 1281.64 -0.03 -0.64 1.54* 0.84 1.54*
GWR 70 NN 0.63 0.50 5485.24 1206.37 1281.41 -0.05 -1.12 1.70* 0.80 1.55*
GWR 60 NN 0.68 0.53 4812.37 1189.37 1284.49 -0.09 -2.02* 1.93* 0.76* 1.53*
GWR 50 NN 0.73 0.56 3980.79 1164.01 1291.61 -0.13 -2.95* 2.34* 0.69* 1.50*
GWR 40 NN 0.78 0.58 3206.82 1137.36 1321.89 -0.15 -3.57* 2.90* 0.65* 1.39*
GWR 30 NN 0.85 0.61 2173.13 1085.71 1400.06 -0.19 -4.31* 4.28* 0.59* 1.28
GWR 20 NN 0.93 0.63 980.24 970.24 1722.77 -0.19 -4.51* 9.48* 0.49* 1.14

J20-22 Admissions:
OLS 0.42 0.27 1605.69 950.77 954.02 0.05 1.33
GWR 80 NN 0.61 0.43 1074.96 896.15 958.30 -0.04 -0.84 1.49* 0.87 1.46*
GWR 70 NN 0.64 0.45 992.82 886.74 961.78 -0.06 -1.14 1.62* 0.84 1.44*
GWR 60 NN 0.68 0.48 889.43 873.65 968.77 -0.08 -1.65 1.81* 0.81 1.41*
GWR 50 NN 0.72 0.50 766.12 855.85 983.46 -0.10 -2.05* 2.10* 0.77* 1.37*
GWR 40 NN 0.78 0.51 606.65 825.99 1010.52 -0.11 -2.42* 1.85* 0.71* 1.32*
GWR 30 NN 0.85 0.51 417.28 777.13 1091.48 -0.15 -3.16* 3.85* 0.65* 1.23
GWR 20 NN 0.92 0.50 223.18 693.38 1445.92 -0.18 -3.92* 7.19* 0.65* 1.10
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APPENDIX D8: Universal J00-06 and J20-22 stimulus-responses associate to residentially experienced
TPM10 emissions, created from local GWR model outputs (P≤0.05)
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APPENDIX D9: Universal J00-06 and J20-22 stimulus-responses associated to levels of ‘Indian’
residency, created from local GWR model outputs (P≤0.05)
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APPENDIX D10: Universal J00-06 and J20-22 stimulus-responses associated to levels of ‘Other South
Asian’ residency, created from local GWR model outputs (P≤0.05)
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APPENDIX D11: Universal 3-Trend J00-06 stimulus-responses associated with Leicester UA’s Carstairs
Index of deprivation, created from all 187 local GWR model outputs

APPENDIX D12: Universal 3-Trend J20-22 stimulus-responses associated with Leicester UA’s Carstairs
Index of deprivation, created from all 187 local GWR model outputs
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Carstairs Index
(Leicester) LLSOA’s Optimum Model

(P<0.05) R2 Constant
(B0) B1 B2 B3

Trend 1 (Upper) 66 Cubic 0.77 21.224 10.479 1.762 0.100
Trend 2 (Middle) 141 Cubic 0.48 3.823 0.617 0.051 0.013
Trend 3 (Lower) 58 Quadratic 0.72 -3.589 -1.297 -0.112

APPENDIX D13: Universal 3-Trend J00-06 stimulus-responses associated with Leicester UA’s Carstairs
Index of deprivation, created from all 187 local GWR model outputs

Carstairs Index
(Leicester) LLSOA’s Optimum Model

(P<0.05) R2 Constant
(B0) B1 B2 B3

Trend 1 (Upper) 36 Cubic 0.94 8.615 3.801 0.727 0.053
Trend 2 (Middle) 132 Cubic 0.58 3.181 0.517 -0.001 -0.001
Trend 3 (Lower) 68 Quadratic 0.62 0.334 -0.573 -0.097

APPENDIX D14: Universal 3-Trend J20-22 stimulus-responses associated with Leicester UA’s Carstairs
Index of deprivation, created from all 187 local GWR model outputs

APPENDIX D15: Leicester UA Admission Count, including seasonal decomposition: 2000-09

Total Hot Season (%)
MAY - OCT

Cold Season (%)
NOV - APR

J00-06: Acute Upper Respiratory Infections (URI) 10228 43.4 56.6
 J00: Acute Nasopharyngitis [Common Cold] 263 39.9 60.1
 J01: Acute Sinusitis 30 60.0 40.0
 J02: Acute Pharyngitis 316 48.4 51.6
 J03: Acute Tonsillitis 3081 47.9 52.1
 J04: Acute Laryngitis [Croup] & Tracheitis 22 27.3 72.7
 J05: Acute Obstructive Laryngitis/Epiglottitis 798 45.4 54.6
 J06: Acute URI - Multiple/Unspecified Sites 5882 40.7 59.3

J20-22: Other Acute Lower Respiratory Infections (LRI) 4142 23.0 77.0
 J20: Acute Bronchitis 26 23.1 76.9
 J21: Acute Bronchiolitis 2548 15.1 84.9
 J22: Unspecified Acute LRI 1581 35.7 64.3
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APPENDIX E

APPENDIX E1: Getis-Ord Gi* hot-spot analysis (P≤0.05) of annual average children’s admissions of the
complete respiratory set (J00-99), in addition to rates relating to the URTI (J00-06) and LRTI (J20-22)
subsets
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APPENDIX E2: [PAGES 404-505]: Maps illustrating the top 5% of bivariate Boundary Elements (red)
across respective decile distributions describing normalised TPM10 emissions (0-1) combined with a
normalised social parameter (0-1).
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APPENDIX E3 [PAGES 406-407]: Maps illustrating the top 5% of Trivariate Boundary Elements (red)
across respective decile distributions describing normalised TPM10 emissions (0-1) and Carstairs Index
measures of deprivation (0-1), combined with a normalised social parameter (0-1).
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Boundaries Overlapped (G,H)
H= J00-06 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 OG 257 1009 (±321) 1.00 0.00*
OH 372 902 (±330) 0.97 0.03*
OGH 315 956 (±269) 1.00 0.00*
OS (count) 14 3 (±2) 0.00* 1.00

(G) Carstairs Index of Deprivation OG 1063 987 (±288) 0.35 0.65
OH 409 699 (±271) 0.88 0.12
OGH 736 843 (±227) 0.65 0.35
OS (count) 8 3 (±2) 0.04* 0.98

(G) Smoking Prevalence OG 1019 993 (±285) 0.40 0.60
OH 728 693 (±270) 0.37 0.63
OGH 876 845 (±223) 0.41 0.59
OS (count) 5 3 (±2) 0.29 0.83

(G) Obesity Prevalence OG 859 1023 (±307) 0.67 0.33
OH 552 730 (±282) 0.72 0.28
OGH 712 878 (±244) 0.74 0.26
OS (count) 8 3 (±2) 0.05* 0.98

(G) White British Children OG 1370 1004 (±271) 0.10 0.90
OH 559 635 (±237) 0.59 0.41
OGH 964 819 (±210) 0.23 0.77
OS (count) 4 3 (±2) 0.43 0.75

(G) White Non-British Children OG 313 1003 (±332) 1.00 0.00*
OH 433 836 (±302) 0.93 0.07
OGH 373 920 (±265) 1.00 0.00*
OS (count) 13 3 (±2) 0.00* 1.00

(G) Indian Children OG 964 1007 (±290) 0.52 0.48
OH 504 699 (±242) 0.79 0.21
OGH 734 853 (±221) 0.68 0.32
OS (count) 6 3 (±2) 0.15 0.92

(G) Other South Asian Children OG 707 899 (±306) 0.71 0.29
OH 877 970 (±346) 0.55 0.45
OGH 792 934 (±265) 0.70 0.30
OS (count) 5 4 (±3) 0.35 0.77

(G) Afro-Caribbean Children OG 245 1019 (±376) 1.00 0.00*
OH 537 1062 (±396) 0.95 0.05*
OGH 391 1040 (±323) 0.99 0.01*
OS (count) 17 3 (±3) 0.00* 1.00

* P≤0.05

APPENDIX E4: Univariate boundary overlap analysis with annual average children’s admissions of the
URT (J00-06)
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Boundaries Overlapped (G,H)
H= J00-06 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 & Carstairs Index OG 834 1001 (±293) 0.68 0.32
OH 78 825 (±279) 1.00 0.00*
OGH 456 913 (±229) 0.99 0.01*
OS (count) 11 3 (±2) 0.00* 1.00

(G) TPM10 & Smoking prevalence OG 1015 1039 (±326) 0.47 0.53
OH 458 774 (±281) 0.89 0.11
OGH 736 907 (±246) 0.75 0.25
OS (count) 6 3 (±2) 0.16 0.91

(G) TPM10 & Obesity prevalence OG 855 1032 (±308) 0.71 0.29
OH 544 745 (±272) 0.76 0.24
OGH 700 888 (±239) 0.79 0.21
OS (count) 7 3 (±2) 0.08 0.96

(G) TPM10 & White British Children OG 1245 1033 (±308) 0.20 0.80
OH 459 661 (±259) 0.79 0.21
OGH 852 847 (±237) 0.45 0.55
OS (count) 6 3 (±2) 0.13 0.93

(G) TPM10 & White Non-British Children OG 313 1002 (±311) 1.00 0.00*
OH 433 825 (±327) 0.92 0.08
OGH 373 914 (±259) 0.99 0.01*
OS (count) 13 3 (±2) 0.00* 1.00

(G) TPM10 & Indian Children OG 863 1023 (±290) 0.69 0.31
OH 304 706 (±263) 0.97 0.03*
OGH 584 864 (±229) 0.91 0.09
OS (count) 8 3 (±2) 0.04* 0.99

(G) TPM10 & Other South Asian Children OG 448 1036 (±367) 0.99 0.01*
OH 562 955 (±355) 0.90 0.10
OGH 505 996 (±293) 0.98 0.02*
OS (count) 10 3 (±2) 0.01* 1.00

(G) TPM10 & Afro-Caribbean Children OG 209 1005 (±377) 1.00 0.00*
OH 509 79 (±395) 0.96 0.04*
OGH 359 1042 (±318) 1.00 0.00*
OS (count) 15 3 (±3) 0.00* 1.00

* P≤0.05

APPENDIX E5: Bivariate boundary overlap analysis of TPM10 emissions and an individual social
parameter, with annual average children’s admissions of the URT (J00-06)
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Boundaries Overlapped (G,H)
H= J00-06 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 , Carstairs Index &
Smoking Prevalence

OG 1110 1028 (±309) 0.35 0.65
OH 396 722 (±294) 0.91 0.09
OGH 753 875 (±251) 0.66 0.34
OS (count) 6 3 (±2) 0.18 0.91

(G) TPM10 , Carstairs Index &
Obesity Prevalence

OG 965 987 (±280) 0.47 0.53
OH 435 699 (±248) 0.85 0.15
OGH 700 843 (±216) 0.76 0.24
OS (count) 9 3 (±2) 0.02* 0.99

(G) TPM10 , Carstairs Index &
White British Children

OG 1066 994 (±281) 0.35 0.65
OH 277 666 (±248) 0.98 0.02*
OGH 671 830 (±215) 0.76 0.24
OS (count) 9 3 (±2) 0.01* 0.99

(G) TPM10 , Carstairs Index &
White Non-British Children

OG 316 1017 (±322) 1.00 0.00*
OH 410 808 (±286) 0.97 0.03*
OGH 363 912 (±255) 1.00 0.00*
OS (count) 13 3 (±2) 0.00* 1.00

(G) TPM10 , Carstairs Index &
Indian Children

OG 1148 1013 (±282) 0.26 0.74
OH 277 696 (±236) 0.99 0.01*
OGH 713 854 (±203) 0.74 0.26
OS (count) 7 3 (±2) 0.08 0.96

(G) TPM10 , Carstairs Index &
Other South Asian Children

OG 791 993 (±318) 0.71 0.29
OH 67 862 (±317) 1.00 0.00*
OGH 429 927 (±263) 0.99 0.01*
OS (count) 11 3 (±2) 0.01* 0.99

(G) TPM10 , Carstairs Index &
Afro-Caribbean Children

OG 567 1017 (±345) 0.93 0.07
OH 50 960 (±360) 1.00 0.00*
OGH 309 988 (±296) 1.00 0.00*
OS (count) 14 3 (±3) 0.00* 1.00

* P≤0.05

APPENDIX E6: Trivariate boundary overlap analysis of TPM10 emissions, Carstairs Index
measurements of deprivation and an individual social parameter, with annual average
children’s admissions of the URT (J00-06)
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Boundaries Overlapped (G,H)
H= J20-22 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 OG 185 935 (±325) 1.00 0.00*
OH 657 907 (±337) 0.76 0.24
OGH 421 921 (±279) 0.99 0.01*
OS (count) 16 4 (±3) 0.00* 1.00

(G) Carstairs Index of Deprivation OG 956 927 (±279) 0.38 0.62
OH 427 694 (±246) 0.89 0.12
OGH 691 810 (±213) 0.68 0.32
OS (count) 9 3 (±2) 0.01* 0.99

(G) Smoking Prevalence OG 1602 911 (±272) 0.02* 0.98
OH 1011 723 (±261) 0.13 0.87
OGH 1312 818 (±216) 0.02* 0.98
OS (count) 1 4 (±2) 0.95 0.17

(G) Obesity Prevalence OG 1222 924 (±289) 0.13 0.87
OH 1108 728 (±270) 0.09 0.91
OGH 1167 827 (±231) 0.08 0.92
OS (count) 6 3 (±2) 0.16 0.90

(G) White British Children OG 947 921 (±262) 0.42 0.58
OH 552 638 (±233) 0.60 0.40
OGH 749 780 (±200) 0.52 0.48
OS (count) 4 4 (±2) 0.48 0.70

(G) White Non-British Children OG 742 942 (±320) 0.73 0.27
OH 930 858 (±301) 0.35 0.65
OGH 836 900 (±252) 0.57 0.43
OS (count) 5 3 (±2) 0.32 0.80

(G) Indian Children OG 660 914 (±281) 0.82 0.18
OH 558 720 (±258) 0.72 0.28
OGH 609 817 (±223) 0.83 0.17
OS (count) 6 3 (±2) 0.15 0.93

(G) Other South Asian Children OG 488 909 (±310) 0.94 0.06
OH 870 974 (±360) 0.54 0.46
OGH 679 942 (±279) 0.84 0.16
OS (count) 8 4 (±3) 0.09 0.95

(G) Afro-Caribbean Children OG 214 939 (±358) 1.00 0.00*
OH 713 1069 (±377) 0.83 0.17
OGH 464 1004 (±304) 0.99 0.01*
OS (count) 14 3 (±3) 0.00* 1.00

* P≤0.05

APPENDIX E7: Univariate boundary overlap analysis with annual average children’s admissions of the
LRT (J20-22)
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Boundaries Overlapped (G,H)
H= J20-22 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 & Carstairs Index OG 880 935 (±325) 0.51 0.49
OH 264 808 (±295) 0.99 0.01*
OGH 572 872 (±256) 0.88 0.12
OS (count) 11 3 (±2) 0.00* 1.00

(G) TPM10 & Smoking prevalence OG 1578 910 (±276) 0.03* 0.97
OH 817 757 (±276) 0.35 0.65
OGH 1198 833 (±222) 0.05* 0.95
OS (count) 3 3 (±2) 0.63 0.54

(G) TPM10 & Obesity prevalence OG 1247 918 (±287) 0.12 0.88
OH 1093 756 (±266) 0.11 0.89
OGH 1170 837 (±229) 0.07 0.93
OS (count) 6 3 (±2) 0.19 0.91

(G) TPM10 & White British Children OG 874 919 (±264) 0.52 0.48
OH 430 638 (±221) 0.84 0.16
OGH 652 779 (±195) 0.71 0.29
OS (count) 6 3 (±2) 0.16 0.92

(G) TPM10 & White Non-British Children OG 744 935 (±302) 0.74 0.26
OH 929 834 (±298) 0.31 0.69
OGH 837 885 (±241) 0.55 0.45
OS (count) 5 3 (±2) 0.28 0.83

(G) TPM10 & Indian Children OG 619 927 (±268) 0.89 0.11
OH 408 685 (±244) 0.88 0.12
OGH 513 806 (±201) 0.95 0.06
OS (count) 7 4 (±2) 0.09 0.96

(G) TPM10 & Other South Asian Children OG 344 934 (±337) 0.99 0.01*
OH 885 943 (±333) 0.51 0.49
OGH 614 939 (±277) 0.89 0.11
OS (count) 12 4 (±3) 0.01* 0.99

(G) TPM10 & Afro-Caribbean Children OG 96 934 (±379) 1.00 0.00*
OH 860 58 (±412) 0.67 0.33
OGH 478 996 (±322) 0.98 0.02*
OS (count) 17 4 (±3) 0.00* 1.00

* P≤0.05

APPENDIX E8: Bivariate boundary overlap analysis of TPM10 emissions and an individual social
parameter, with annual average children’s admissions of the LRT (J20-22)
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Boundaries Overlapped (G,H)
H= J20-22 Admissions Per 1,000 Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) TPM10 , Carstairs Index &
Smoking Prevalence

OG 1344 922 (±285) 0.08 0.92
OH 457 703 (±239) 0.86 0.14
OGH 900 812 (±217) 0.30 0.70
OS (count) 6 4 (±2) 0.18 0.88

(G) TPM10 , Carstairs Index &
Obesity Prevalence

OG 1319 942 (±302) 0.11 0.89
OH 868 703 (±250) 0.23 0.77
OGH 1093 822 (±224) 0.10 0.90
OS (count) 6 3 (±2) 0.18 0.89

(G) TPM10 , Carstairs Index &
White British Children

OG 838 924 (±254) 0.60 0.40
OH 374 684 (±239) 0.93 0.07
OGH 606 804 (±201) 0.84 0.16
OS (count) 8 3 (±2) 0.02* 0.98

(G) TPM10 , Carstairs Index &
White Non-British Children

OG 840 918 (±332) 0.54 0.46
OH 879 789 (±275) 0.34 0.66
OGH 860 853 (±245) 0.46 0.54
OS (count) 6 4 (±3) 0.20 0.87

(G) TPM10 , Carstairs Index &
Indian Children

OG 716 930 (±271) 0.79 0.21
OH 359 676 (±239) 0.95 0.05*
OGH 538 803 (±200) 0.95 0.05*
OS (count) 8 3 (±2) 0.05* 0.99

(G) TPM10 , Carstairs Index &
Other South Asian Children

OG 762 915 (±295) 0.66 0.34
OH 248 848 (±306) 0.99 0.01*
OGH 505 882 (±250) 0.95 0.05*
OS (count) 12 3 (±2) 0.01* 0.99

(G) TPM10 , Carstairs Index &
Afro-Caribbean Children

OG 511 919 (±326) 0.93 0.07
OH 217 958 (±353) 1.00 0.00*
OGH 364 938 (±276) 1.00 0.00*
OS (count) 15 3 (±3) 0.00* 1.00

* P≤0.05

APPENDIX E9: Trivariate boundary overlap analysis of TPM10 emissions, Carstairs Index
measurements of deprivation and an individual social parameter, with annual average children’s
admissions of the LRT (J20-22)
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Boundaries Overlapped (G,H)
H= TPM10 Emissions

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Carstairs Index of Deprivation OG 1308 895 (±271) 0.08 0.92
OH 771 682 (±238) 0.30 0.70
OGH 1039 788 (±203) 0.11 0.89
OS (count) 5 5 (±3) 0.45 0.65

(G) Smoking Prevalence OG 1574 905 (±266) 0.02* 0.98
OH 1041 711 (±268) 0.12 0.88
OGH 1313 810 (±220) 0.02* 0.98
OS (count) 1 4 (±2) 0.94 0.19

(G) Obesity Prevalence OG 1044 895 (±269) 0.25 0.75
OH 288 699 (±227) 0.99 0.01*
OGH 681 798 (±203) 0.69 0.31
OS (count) 10 4 (±2) 0.02* 0.99

(G) White British Children OG 1397 898 (±248) 0.05* 0.95
OH 384 632 (±214) 0.90 0.10
OGH 890 765 (±18) 0.21 0.79
OS (count) 7 5 (±3) 0.23 0.86

(G) White Non-British Children OG 811 924 (±298) 0.62 0.38
OH 258 853 (±289) 1.00 0.00*
OGH 535 889 (±242) 0.96 0.04*
OS (count) 14 4 (±3) 0.00* 1.00

(G) Indian Children OG 1108 901 (±266) 0.18 0.82
OH 705 723 (±257) 0.47 0.53
OGH 906 812 (±213) 0.29 0.71
OS (count) 7 4 (±3) 0.22 0.86

(G) Other South Asian Children OG 649 930 (±329) 0.81 0.19
OH 619 982 (±331) 0.88 0.12
OGH 634 956 (±278) 0.90 0.10
OS (count) 5 3 (±2) 0.27 0.83

(G) Afro-Caribbean Children OG 351 892 (±335) 0.98 0.02*
OH 302 1035 (±355) 0.99 0.01*
OGH 326 963 (±288) 1.00 0.00*
OS (count) 12 3 (±3) 0.00* 1.00

* P≤0.05

APPENDIX E10: Univariate boundary overlap analysis of TPM10 emissions
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Boundaries Overlapped (G,H)
H= Carstairs Index of Deprivation

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Smoking Prevalence OG 368 692 (±195) 0.98 0.02*
OH 604 699 (±205) 0.65 0.35
OGH 484 696 (±164) 0.92 0.08
OS (count) 11 5 (±2) 0.01* 0.99

(G) Obesity Prevalence OG 444 684 (±192) 0.92 0.08
OH 1253 708 (±192) 0.01* 0.99
OGH 833 696 (±156) 0.20 0.80
OS (count) 12 5 (±2) 0.00* 1.00

(G) White British Children OG 1102 689 (±187) 0.02* 0.98
OH 989 635 (±179) 0.03* 0.97
OGH 1046 662 (±150) 0.02* 0.98
OS (count) 5 5 (±2) 0.52 0.66

(G) White Non-British Children OG 548 680 (±231) 0.67 0.33
OH 1214 865 (±254) 0.08 0.92
OGH 881 772 (±206) 0.28 0.72
OS (count) 7 4 (±2) 0.14 0.91

(G) Indian Children OG 830 693 (±224) 0.23 0.77
OH 921 705 (±211) 0.13 0.87
OGH 875 699 (±179) 0.13 0.87
OS (count) 9 5 (±2) 0.06 0.96

(G) Other South Asian Children OG 895 671 (±226) 0.16 0.84
OH 1598 958 (±285) 0.04* 0.96
OGH 1247 814 (±212) 0.04* 0.96
OS (count) 0 3 (±2) 1.00 0.07

(G) Afro-Caribbean Children OG 550 697 (±258) 0.70 0.30
OH 1918 1052 (±296) 0.01* 0.99
OGH 1234 874 (±225) 0.06 0.94
OS (count) 3 3 (±2) 0.52 0.62

* P≤0.05

APPENDIX E11: Univariate boundary overlap analysis of Carstairs Index ranks  of deprivation across
Leicester



- APPENDIX E -

416

Boundaries Overlapped (G,H)
H= Smoking Prevalence

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Obesity Prevalence OG 518 707 (±205) 0.84 0.16
OH 656 721 (±233) 0.57 0.43
OGH 586 714 (±169) 0.77 0.23
OS (count) 13 4 (±2) 0.00* 1.00

(G) White British Children OG 1218 706 (±204) 0.02* 0.98
OH 1083 643 (±196) 0.03* 0.97
OGH 1149 674 (±158) 0.00* 1.00
OS (count) 8 5 (±2) 0.14 0.93

(G) White Non-British Children OG 571 715 (±239) 0.70 0.30
OH 797 869 (±265) 0.56 0.44
OGH 686 793 (±213) 0.68 0.32
OS (count) 9 4 (±2) 0.03* 0.98

(G) Indian Children OG 836 702 (±225) 0.23 0.77
OH 1018 704 (±198) 0.07 0.93
OGH 929 703 (±173) 0.11 0.89
OS (count) 9 4 (±2) 0.06 0.96

(G) Other South Asian Children OG 709 691 (±241) 0.43 0.57
OH 1536 958 (±294) 0.05* 0.95
OGH 1130 825 (±212) 0.09 0.91
OS (count) 5 4 (±2) 0.30 0.82

(G) Afro-Caribbean Children OG 689 711 (±260) 0.49 0.51
OH 2121 1022 (±313) 0.01* 0.99
OGH 1419 868 (±233) 0.02* 0.98
OS (count) 2 3 (±2) 0.81 0.39

* P≤0.05

APPENDIX E12: Univariate boundary overlap analysis of adult smoking prevalence



- APPENDIX E -

417

Boundaries Overlapped (G,H)
H= Obesity Prevalence

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) White British Children OG 1224 715 (±203) 0.02* 0.98
OH 677 650 (±193) 0.38 0.62
OGH 940 683 (±165) 0.07 0.93
OS (count) 12 5 (±2) 0.02* 0.99

(G) White Non-British Children OG 446 732 (±236) 0.91 0.09
OH 564 879 (±256) 0.92 0.08
OGH 507 806 (±204) 0.95 0.05*
OS (count) 11 4 (±2) 0.01* 1.00

(G) Indian Children OG 1112 717 (±203) 0.04* 0.96
OH 839 712 (±218) 0.23 0.77
OGH 971 715 (±175) 0.07 0.93
OS (count) 12 4 (±2) 0.00* 1.00

(G) Other South Asian Children OG 507 719 (±251) 0.80 0.20
OH 1231 974 (±308) 0.19 0.81
OGH 883 848 (±234) 0.42 0.58
OS (count) 7 3 (±2) 0.11 0.93

(G) Afro-Caribbean Children OG 552 733 (±277) 0.74 0.26
OH 1347 1044 (±318) 0.16 0.84
OGH 965 890 (±246) 0.34 0.66
OS (count) 7 3 (±2) 0.07 0.96

* P≤0.05

APPENDIX E13: Univariate boundary overlap analysis of adult obesity prevalence
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Boundaries Overlapped (G,H)
H= White British Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) White Non-British Children OG 1114 635 (±213) 0.03* 0.97
OH 1303 857 (±241) 0.05* 0.95
OGH 1201 746 (±185) 0.02* 0.98
OS (count) 2 4 (±2) 0.89 0.27

(G) Indian Children OG 171 636 (±188) 1.00 0.00*
OH 371 708 (±199) 0.98 0.02*
OGH 271 672 (±160) 1.00 0.00*
OS (count) 19 5 (±2) 0.00* 1.00

(G) Other South Asian Children OG 369 658 (±237) 0.90 0.10
OH 917 950 (±270) 0.49 0.51
OGH 643 804 (±203) 0.79 0.21
OS (count) 10 4 (±2) 0.00* 1.00

(G) Afro-Caribbean Children OG 370 653 (±245) 0.92 0.08
OH 1061 1062 (±317) 0.44 0.56
OGH 716 857 (±224) 0.73 0.27
OS (count) 6 3 (±2) 0.13 0.94

* P≤0.05

APPENDIX E14: Univariate boundary overlap analysis of ‘White British’ residency levels

Boundaries Overlapped (G,H)
H= White Non-British Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Indian Children OG 967 848 (±256) 0.28 0.72
OH 1123 705 (±220) 0.04* 0.96
OGH 1045 776 (±195) 0.09 0.91
OS (count) 4 4 (±3) 0.58 0.57

(G) Other South Asian Children OG 920 855 (±278) 0.36 0.64
OH 1013 952 (±317) 0.37 0.63
OGH 966 904 (±252) 0.37 0.63
OS (count) 0 4 (±3) 1.00 0.11

(G) Afro-Caribbean Children OG 409 855 (±307) 0.96 0.04*
OH 1143 1060 (±357) 0.35 0.65
OGH 776 957 (±281) 0.72 0.28
OS (count) 10 3 (±2) 0.01* 0.99

* P≤0.05

APPENDIX E15: Univariate boundary overlap analysis of ‘White Non-British’ residency levels
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Boundaries Overlapped (G,H)
H= Indian Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Other South Asian Children OG 312 715 (±269) 0.97 0.03*
OH 821 1052 (±309) 0.79 0.21
OGH 566 883 (±244) 0.91 0.09
OS (count) 8 3 (±2) 0.04* 0.99

(G) Afro-Caribbean Children OG 357 1038 (±353) 0.99 0.01*
OH 569 968 (±381) 0.89 0.11
OGH 463 1003 (±306) 0.99 0.01*
OS (count) 11 3 (±3) 0.02* 1.00

* P≤0.05

APPENDIX E16: Univariate boundary overlap analysis of ‘Indian’ residency levels

Boundaries Overlapped (G,H)
H= Other South Asian Children

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Afro-Caribbean Children OG 569 967 (±381) 0.89 0.11
OH 357 1038 (±353) 0.99 0.01*
OGH 463 1003 (±306) 0.99 0.01*
OS (count) 11 3 (±3) 0.02* 1.00

* P≤0.05

APPENDIX E17: Univariate boundary overlap analysis of ‘Other South Asian’ residency levels
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APPENDIX F1 [PAGES 420-423]: Contour plots, exploring Leicester’s ‘Double Burden’ through
simultaneously plotting levels of deprivation and residentially experienced TPM10 emissions against a
third measurement of respiratory or social status
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Boundaries Overlapped (G,H)
H= Created TPM10 Emissions

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Experienced TPM10 Emissions OG 293 794 (±263) 1.00 0.00*
OH 1183 908 (±287) 0.17 0.83
OGH 738 851 (±225) 0.69 0.31
OS (count) 8 4 (±2) 0.07 0.95

(G) Carstairs Index of Deprivation OG 305 786 (±224) 1.00 0.00*
OH 446 701 (±243) 0.87 0.13
OGH 375 743 (±194) 0.99 0.01*
OS (count) 14 5 (±3) 0.00* 1.00

(G) Smoking Prevalence OG 461 791 (±237) 0.95 0.05*
OH 996 696 (±231) 0.11 0.89
OGH 723 744 (±191) 0.50 0.50
OS (count) 9 4 (±2) 0.04* 0.98

(G) Obesity Prevalence OG 332 789 (±235) 0.99 0.01*
OH 1294 714 (±246) 0.04* 0.96
OGH 795 752 (±197) 0.37 0.63
OS (count) 14 4 (±2) 0.00* 1.00

(G) White British Children OG 1292 797 (±235) 0.04* 0.96
OH 1071 648 (±216) 0.04* 0.96
OGH 1182 722 (±183) 0.02* 0.98
OS (count) 6 5 (±3) 0.32 0.79

(G) White Non-British Children OG 340 795 (±247) 0.99 0.01*
OH 1173 872 (±294) 0.15 0.85
OGH 756 833 (±218) 0.61 0.39
OS (count) 9 4 (±2) 0.05* 0.97

(G) Indian Children OG 1195 783 (±241) 0.05* 0.95
OH 1213 723 (±249) 0.04* 0.96
OGH 1204 753 (±201) 0.03* 0.97
OS (count) 4 5 (±3) 0.64 0.51

(G) Other South Asian Children OG 861 785 (±288) 0.34 0.66
OH 1316 961 (±305) 0.12 0.88
OGH 1089 873 (±243) 0.17 0.83
OS (count) 3 3 (±2) 0.62 0.56

(G) Afro-Caribbean Children OG 593 788 (±277) 0.75 0.25
OH 1690 1035 (±322) 0.04* 0.96
OGH 1142 911 (±247) 0.18 0.82
OS (count) 5 3 (±2) 0.24 0.87

* P≤0.05

APPENDIX F2: Univariate boundary overlap analysis of community created transport emission levels
(from private modes) and social-environmental influences of interest
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Boundaries Overlapped (G,H)
H= Created TPM10 Emissions

Statistic Observed
(meters)

Expected
(meters)

P↑ P↓

(G) Carstairs Index, Experienced TPM10

Emissions & Smoking Prevalence
OG 369 777 (±235) 0.99 0.01*
OH 639 690 (±225) 0.55 0.45
OGH 504 733 (±183) 0.92 0.08
OS (count) 13 4 (±2) 0.00* 1.00

(G) Carstairs Index, Experienced TPM10

Emissions & Obesity Prevalence
OG 156 758 (±222) 1.00 0.00*
OH 842 692 (±215) 0.21 0.79
OGH 499 725 0.93 0.07
OS (count) 18 4 (±2) 0.00* 1.00

(G) Carstairs Index, Experienced TPM10

Emissions & White British Children
OG 809 806 (±242) 0.43 0.57
OH 626 664 (±211) 0.52 0.48
OGH 717 735 (±179) 0.48 0.52
OS (count) 12 4 (±2) 0.00* 1.00

(G) Carstairs Index, Experienced TPM10

Emissions & White Non-British Children
OG 265 793 (±259) 1.00 0.00*
OH 1144 819 (±268) 0.11 0.89
OGH 705 806 (±218) 0.65 0.35
OS (count) 14 4 (±3) 0.00* 1.00

(G) Carstairs Index, Experienced TPM10

Emissions & Indian Children
OG 700 780 (±225) 0.61 0.39
OH 589 688 (±216) 0.64 0.36
OGH 645 734 (±179) 0.71 0.29
OS (count) 12 4 (±2) 0.00* 1.00

(G) Carstairs Index, Experienced TPM10

Emissions & Other South Asian Children
OG 352 784 (±265) 0.98 0.02*
OH 380 874 (±285) 0.98 0.02*
OGH 366 829 (±230) 0.99 0.01*
OS (count) 15 4 (±3) 0.00* 1.00

(G) Carstairs Index, Experienced TPM10

Emissions & Afro-Caribbean Children
OG 325 795 (±282) 0.98 0.02*
OH 380 951 (±310) 1.00 0.00*
OGH 353 873 (±246) 1.00 0.00*
OS (count) 14 4 (±3) 0.00* 1.00

* P≤0.05

APPENDIX F3: Trivariate boundary overlap analysis of community created transport emission levels
(from private modes) with deprivation, residential TPM10 exposures and a final social parameter
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APPENDIX F4: Contour plots, exploring Leicester’s ‘Double Burden’ in relation to levels of employment
and then community created transport emissions (from personal modes)
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APPENDIX F5: Local Moran's I cluster and outlier analysis, representing the uptake of specific modes
of transportation (%) by communities on their daily commute to work
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Bivariate: Local Moran’s Statistic
R2 Pearson’s R I Value Z-Score

Public Transport 0.47 0.68 0.46 10.36
Personal Transport 0.71 0.84 0.64 14.77
Green Modes 0.77 0.88 0.72 16.27

APPENDIX F6: Summary of the Local Moran's statistical analysis [Appendix F5], describing the spatial
uptake of individual transportation forms (%) by community residents on their daily commute

Bivariate: Local Moran’s Statistic
R2 Pearson’s R I Value Z-Score

Total 0.40 0.63 0.43 9.75
Public Transport 0.05 0.21 0.09 2.08
Personal Transport 0.50 0.71 0.48 10.93
Green Modes 0.28 0.53 0.33 7.68

APPENDIX F7: Summary of the Local Moran's statistical analysis [Figure 7.6], describing the spatial
structures of those commute distances travelled per employed person (km/PEP) in total and by
individual transportation forms
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