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t Abstract

This thesis considers a real massive free quantum scalar field propagating with ar-

bitrary coupling to n-dimensional anti-de Sitter space.

Analytical expressions are found for the field modes and Feynman Green function.

The condition for the equivalence of rotational vacuum states is also established.

The rotational and thermal anti-commutator functions are then derived.

A method is developed for computing the Hadamard renormalised vacuum and ther-

mal expectation values of the quadratic field fluctuations and the stress-energy ten-

sor. Results are obtained for n = 2 to n = 11, satisfying Wald’s axioms and

exhibiting the trace anomaly.
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t Preface

The review of the geometry of n-dimensional anti-de Sitter space (AdSn) in chapter 2

draws heavily on material from a number of authors in the discussions of: conformal

structure [9] [77]; maximal symmetry [67]; extremisation of path length [10]; the

theory of hyperspherical harmonics [37] [61]; and the hypergeometric function [2].

Chapters 3 and 4 involve the independent verification of the scalar field modes [16]

[25] and propagator [4] [16]. The explicit construction of the Hadamard form in

section 4.4 applies the general method of [31]. Much of the introductory material on

the Hadamard renormalisation of the stress-energy tensor in section 5.2.1, as well as

the discussion of its ambiguity in section 5.2.3 is also adapted from [31].

For the case of vacuum expectation values (see chapter 5), the original contributions

of the author are: the generalisation of Camporesi’s expression for the n = 4 scalar

field propagator [19] to n ≥ 2; the Hadamard renormalisation of the quadratic

fluctuations and the stress-energy tensor for n ≥ 2 with explicit analytical results

obtained for n = 2 to n = 11.

The author has also: established the condition for the AdSn vacuum state of a rigidly

rotating observer to coincide with that of an inertial observer in chapter 6; and in

chapter 7, obtained thermal expectation values of the quadratic fluctuations and the

stress-energy tensor for n ≥ 2 with explicit numerical results for n = 3 to n = 11.

The author would like to acknowledge the help and support of his supervisor, Prof.

E. Winstanley, as well as the financial support of the EPSRC.
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1 t Introduction

1.1 Quantum gravity

One of the main goals of theoretical physics is to establish a self-consistent frame-

work describing all four fundamental interactions. Currently, there are essentially

two extremely successful physical theories of fundamental interactions. On the one

hand, the interactions of the standard model of particle physics: the electromag-

netic, the weak and the strong nuclear interactions, are described by quantum field

theories (qfts). On the other hand, the gravitational interaction is described by

general relativity which is a classical field theory. Both theories have consistently

demonstrated immense predictive power.

There are many examples of this ability. Among them, in the case of quantum

electrodynamics (qed), the fine structure constant α, can be derived from other

experimental measurements and is found to agree with theory with an accuracy

of 10−9 [40]. The mass of the Z-boson (a particle that mediates the weak inter-

action) matches predictions and has been determined to an accuracy of 3 × 10−3

(see for example [1]). The predictions of the quark model by Gell-Mann [44] and

Zweig [80] continue to be observationally confirmed. Very recently, the predictions of

Brout, Englert, Guralnik, Hagen, Higgs and Kibble concerning the Higgs boson, the

symmetry-breaking agent responsible for endowing gauge bosons, (and thus other

particles) with mass has been famously verified [8].

In the case of general relativity, a topical yet often understated point is that theo-

retical predictions concerning the gravitational redshift are essential considerations

1



2 Chapter 1 – Introduction

in the design of the Global Positioning System (GPS) (see [7] for more). Another

predictive success of general relativity is highlighted by the observed decay of the

Hulse-Taylor binary pulsar system’s orbital period. Theoretically, this decrease arises

from energy loss due to gravitational wave emission and agrees with observations to

within 2× 10−3 [69].

Despite many efforts to construct a single theory in which all four interactions can

be represented, it is not yet reality. Gravity is notoriously difficult to quantise. It

is also a challenge to accommodate gravity within a universal framework because

traditionally, it is inextricably connected with the very space-time on which qfts

are defined.

A fully quantised theory of gravity implies a description of nature where micro-

scopic, relativistic and gravitational effects are all equally signficant. The appropri-

ate regime for such a theory is defined in a natural way at the Planck scale, in terms

of the fundamental constants implicit in the very theories that decribe these effects.

These are respectively: Planck’s reduced constant, ~; the speed of light in vacuo, c;

and Newton’s gravitational constant, GN. Accordingly, the Planck scale corresponds

to masses (and equivalently energies) of the order of the Planck mass,

mP :=

√
~c
GN

= 2.18× 10−8 kg = 1.99× 1019 GeV c−2, (1.1)

and sizes of the order of the Planck length,

lP :=

√
~GN

c3
= 1.62× 10−35 m. (1.2)

The most developed and widely accepted formulation of a full quantum theory of

gravity is string theory (see e.g. [65] for an introductory review). As well as quan-

tising gravity, it describes the four fundamental interactions as facets of a single
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unified interaction. This is a fundamental theory of nature in which the most basic

physical entities are one-dimensional extended objects referred to as ‘strings’. String

theory is an umbrella term comprising several variants, in particular its modern-day

incarnation M-theory [65].

A relatively small proportion of the research effort in quantum gravity focuses on

non-stringy approaches. Perhaps the most well-known of these is loop quantum

gravity (see [64] for an in-depth review) which is constructed using the canonical

quantisation scheme.

Another route involves theories where the gravitational interaction remains classical.

The justification in trying to construct a physical theory that admits all fundamental

interactions consistently while not requiring gravity to be quantised is twofold.

Firstly, even if gravity were quantisable, it is unlikely that the predictions of such

a theory could be observationally verified in the foreseeable future (barring the ex-

istence of extra dimensions – see section 1.3 below). This is due to the current

highest collider energies (∼ 8 TeV) lagging some fifteen orders of magnitude below

the Planck scale.

Secondly, the expectation that gravity be quantised is largely due to a desire for

consistency and unification. It is natural to consider the successful microscopic

description of the standard model interactions as a template for the gravitational

interaction. More generally, there is a pervading sense in theoretical physics that

progressively fundamental theories will not only look increasingly elegant, but also

the mathematical forms describing them will tend towards simpler and more generic

forms. However strictly speaking, past experience aside, this expectation is naïve,

given that there is no a priori requirement that suggests gravity should be quantised.
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1.2 Quantum field theory on curved space-time

A framework that includes all fundamental interactions while not requiring that

gravity be quantised is generically referred to as a qft on a curved space-time.

A defining trait of these theories is that the concept of a vacuum state is some-

what abstruse, which inevitably affects any subsequent quantisation procedure. As

pointed out in [60], the idea of a vacuum state is ambiguous and it follows therefore

that the idea of a particle is too. However, it is not only the ambiguity of the vac-

uum state that poses a difficulty for the development of qfts on curved space-times.

The expectation values of operators quadratic in the fields and their derivatives with

respect to the vacuum state are formally divergent at short distances. Unlike qft

in flat space, these divergences cannot be removed by a straightforward redefinition

of the vacuum through normal-ordering. Instead, in the case of qfts on curved

space-times, a more sophisticated class of techniques is required in order to extract

the physically meaningful renormalised expectation values.

The dynamics of such theories are encoded in the semi-classical Einstein equations

Gµν(x) =
8πGN

c4
〈ψ|Tµν(x) |ψ〉ren , (1.3)

where Gµν(x) is the Einstein tensor, representing the geometry of the background

space-time, and 〈ψ|Tµν(x) |ψ〉ren is the renormalised expectation value of the stress-

energy tensor, embodying the matter content associated with some quantum state

|ψ〉. A feature of these renormalised expectation values is that they consist of a

purely geometry-dependent part and a state-dependent part [31], a property evident

from the classical-quantum split apparent on either side of (1.3).

A number of interesting predictions using qft on curved space-times have already



1.2 Quantum field theory on curved space-time 5

been made, most notably the thermal emission from a black hole known as Hawk-

ing radiation [49] [50]. This hypothetical phenomenon is currently experimentally

relevant, as it forms the basis for simulating the expected detection signatures of

microscopic black holes in high-energy collisions (see section 1.3). There are other

physical effects such as the Unruh effect (described by Fulling [42], Davies [27] and

Unruh [72]), the Casimir effect [21], and various negative energy conditions (see as

an example [41]) which are used for instance to constrain models of wormholes (see

for example [39]).

Qft on curved space-time requires a physical regime in which the influence of gravity

on the propagation of quantum fields is significant but its own microscopic descrip-

tion is irrelevant. The domain of applicability of such a theory would be in regions

of extremely high spatial curvature such as in the vicinity of a black hole or in the

very early stages of the universe. Such a regime would occur when the characteristic

length-scale of a highly curved space-time becomes comparable to the wavelength of

quantum modes propagating on it [11].

As a result qft on curved space-times is not a fundamental physical theory but a

higher-level approximation valid in a particular regime. Its rôle complements fun-

damental theories such as string theory through its capacity to predict and describe

emergent phenomena that are not otherwise directly addressed. String theory is

intended as a fundamental theory building from the foundations upwards. How-

ever, qfts on curved space-times look at the problem from the other end, and

can potentially inform the development of fundamental theories and validate other

approaches.

Generally speaking the construction of semi-classical quantum theories singles out

a particular type of quantum field (representing the matter content) on a particular

space-time (representing the geometry) with a particular coupling between the two.
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The research and associated background theory presented in this thesis relate to a

quantum field of the simplest type, namely a free, electrically-neutral scalar field.

This is a field that represents non-interacting spin-0 particles. Moreover, the back-

ground space-time involved is pure therefore the scalar field corresponds to vacuum

fluctuations predicted by Heisenberg’s uncertainty principle.

1.3 Extra dimensions

The motivation for considering space-times of n dimensions stems from an open

question in particle physics. It is a particular ‘hierarchy problem’ and is the absence

of a physical explanation for the extreme relative weakness of gravity, some 1032

times weaker than the weak nuclear interaction.

There are currently several frameworks investigating possible explanations for this

anomaly that invoke the existence of extra dimensions.

One such approach is the ADD model (due to Arkani–Hamed, Dimopoulos and

Dvali [6]) . It proposes that the electroweak scale is, in fact, the fundamental energy

scale and accounts for the hierarchy phenomenon by positing the existence of dc

additional spatial dimensions of a characteristic scale rc. This scale is sufficiently

large that it also allows gravitational interactions to take place within these extra

dimensions, but sufficiently small that the effect of other interactions are excluded –

see [53] for a nice introduction. As a result, in the n−dc = 3+1 space-time dimensions

of everyday experience, gravity appears extremely weak as it is effectively diluted in

these hidden dimensions whereas other interactions retain their true intensity.

In this model, assuming a gravitational interaction between two test masses over a
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distance r � rc, the gravitational potential

Vgrav ∝
(
m
dc+2
P (n)r

dc
c r
)−1

, (1.4)

using Gauss’ law and (1.1), which should appear as

Vgrav ∝
(
m2

Pr
)−1

, (1.5)

in four dimensions.

Following [6], a simple constraint on the value of dc and that of rc can be found by

setting

m
dc+2
P (n) ' mew, (1.6)

where mew is the electroweak energy scale,and demanding that mP retain its usual

value. The key result of this approach is that dc ≥ 2 for rc < 1 mm.

As far as the ability to test models of hidden extra dimensions is concerned, given

the Planck scale (1.1) and (1.2), and the fact that the Schwarzschild radius is given

by

rS :=
2GNmP

c2
, (1.7)

quantum gravitational effects are expected to arise when the Compton wavelength

of a particle

λC =
~
mPc

, (1.8)

i.e. when λC ' rS.

Thus the existence of extra dimensions could enable the signatures of transient mi-

croscopic black holes in collider experiments with beam energies ∼ TeV to be de-

tectable [52]. As mentioned in section 1.2, simulations of microscopic black hole
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events in the Large Hadron Collider (LHC) experiment at CERN rely on higher -

dimensional qft on curved space-times in order to accurately compute the corre-

sponding Hawking radiation signatures.

1.4 Anti-de Sitter space

In principle, research on the behaviour of quantum fields coupled to any curved

space-time could be attempted. At first glance, AdSn looks a bit risky though.

On the one hand, it is off-putting as it does not naturally respect causality [36] (see

section 2.2). But on the other hand it has the promising practical feature of maximal

symmetry (see section 2.3).

Perhaps the most compelling reason to study AdSn is that it is of great interest to

high-energy physics. In particular, it features in a remarkable result arising from

string theory called the AdS/CFT correspondence [55]. This is a conjecture that a

theory of quantum gravity on AdSn is equivalent to a conformal field theory; that

is, a qft without gravity on its (n−1)-dimensional conformal boundary (see section

2.2 for more). Given the difficulties in integrating the gravitational interaction into

a full quantum theory, a duality between a qft with gravity and one without offers

a potentially insightful perspective on the problem.

In the past, particularly in the 1970s and 1980s, research into qft on curved space-

times boomed. As Padmanabhan [62] points out ‘there was a large industry comput-

ing [a suitable 〈ψ|Tµν(x) |ψ〉] in the hope that it has something to do with quantum

gravity ’. However, with the advent of more modern approaches such as string theory,

it became a less popular area of research.

This evolution has resulted in the establishment of fundamental and conceptual

frameworks for developing matter content, but leaving many calculations unat-
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tempted. Anti-de Sitter space is a case in point as solid foundations have already

been laid [9] for the understanding and management of the causal structure of AdSn,

such that subject to certain restrictions (also discussed in section 2.2), it is a viable

background for qft.

Reflecting this state of affairs, although there is much guidance in the literature on

how to compute objects such as 〈ψ|Tµν(x) |ψ〉ren, in the case of AdSn at least, pub-

lished results tend to have focused on special cases. In addition, higher-dimensional

calculations have only come into vogue relatively recently.

The study of AdSn in general is therefore an important aspect of the research effort

into quantum gravity. More specifically, in the context of qft on curved space-

time, although AdSn is ‘badly-behaved’, its behaviour is well-understood and man-

ageable, and as space-times go, it is relatively straightforward to work with. As the

ingredients for rigorously calculating more general, and higher-dimensional cases of

〈ψ|Tµν(x) |ψ〉ren exist (see [31] for an excellent recipe), the symmetry of AdSn pro-

vides an excellent testbed for explicit higher-dimensional Hadamard renormalisation

(see chapter 5).

Finally, although qft on AdSn has inherent points of interest, the choice of AdSn is

also partly due to at least one ulterior motive. The results of this work are expected

to contribute to ongoing research [12] into the behaviour of the analytical part of

scalar field modes at spatial infinity in Schwarzschild-anti-de Sitter space (SAdS).

1.5 Outline

In broad terms, the goal of the research presented in this thesis is to determine some

specific expectation values of the stress-energy tensor. The vacuum expectation value

is the first to be investigated as it is from the vacuum state |0〉 that other quantum



10 Chapter 1 – Introduction

states can be constructed. Vacuum expectation values of qfts on curved space-times

exhibit the characteristic short-distance singularity structure (mentioned in section

1.2) that calls for renormalisation techniques. Determining the renormalised vacuum

expectation value of the stress-energy tensor 〈0|Tµν(x) |0〉ren is a little involved.

Accordingly, its computation hogs much of the material in this report, and rightly

so. The scheme for developing the matter content relating to vacuum fluctuations

is summarised in figure 1.1 below.

Scalar field
wave equation

Φj(x)

Scalar
field modes

G(x, x′)

Green functions

〈0|Φ2(x) |0〉ren
Renormalised

vacuum expectation
value of the quadratic

field fluctuations

〈0|Tµν(x) |0〉ren
Renormalised

vacuum expectation
value of the

stress-energy tensor

.

Figure 1.1 – Order of vacuum state calculations from field dynamics to matter content

The essential progression is depicted by the solid arrows running diagonally. One be-

gins with the equations of motion, obtains a Green function solution G(x, x′) whose

form exposes its singularity structure readily, and then implements a renormalisa-

tion procedure culminating in an expression for the renormalised vacuum expectation
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value of the stress-energy tensor.

The dashed arrows represent optional detours one may take, either to derive an

expression for the Green function solution G(x, x′) from expressions obtained for

the field modes, or to study renormalisation in the simpler context of the vacuum

expectation value of the quadratic field fluctuations 〈0|Φ2(x) |0〉ren.

The scheme illustrated in 1.1 is dealt with in chapters 3 – 5.

Finding the Green function and extracting its divergences is not only necessary for

the computation of 〈0|Tµν(x) |0〉ren, but also provides the starting-point for deter-

mining rotational and thermal expectation values of the field. These are discussed

in chapters 6 and 7.

The particular method studied in this thesis is known as Hadamard renormalisation.

It is important to point out that Caldarelli [17] has already obtained expressions for

〈0|Φ2(x) |0〉ren and 〈0|Tµν(x) |0〉ren using the zeta function method. Futhermore,

Wald [76] has shown the equivalence between these two methods. It is therefore

expected that the results obtained in this thesis should agree with those published

in [17]. In addition, Moretti [58] has shown this equivalence is a general result for

finite-temperature field states and for compact spatial sections of a static space-

time.1

The chapter-by-chapter development of this thesis is summarised below.

� Following this outline, having already motivated the research presented in this

thesis, Chapter 1 ends by introducing some notation conventions. The next two

chapters explain some relevant background theory.

� Chapter 2 is devoted to the geometry of the background space-time. After
1The author is grateful to A. Higuchi and V. Moretti for respectively bringing the references [76]

and [58] to his attention.
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a basic description of AdSn, two of its properties that unavoidably affect the

mathematical treatment of systems coupled to it are discussed: peculiarities in its

causal structure and its behaviour at spatial infinity. Following this, its symmetries

are discussed. Lastly, in preparation for appropriately handling the scalar field and

its propagation, elements of the theory of hyperspherical harmonics and properties

of the hypergeometric function are also covered.

� Chapter 3 sets about solving the scalar field equations of motion. An expression

for the normalised field modes is then independently verified, settling a source of

disagreement in the literature.

� Chapter 4 considers the propagation of the field with respect to |0〉 in terms

of Green functions. Two methods for computing the Feynman Green function

GF(x, x′) (representing the scalar field propagator) are reviewed. Its Hadamard

form GH(x, x′) is also constructed. The divergences of both GF and GH are then

both carefully uncovered.

� Chapter 5 addresses the Hadamard renormalisation of the expectation values of

the quadratic field fluctuations and the stress-energy tensor, detailing the method

of computation. The results for the renormalised vacuum expectation values,

〈0|Φ2(x) |0〉ren and 〈0|Tµν(x) |0〉ren can be found here as algebraic expressions

and various plots.

� Chapter 6 studies the consequences of introducing rotation into the theory de-

veloped previously for vacuum states. The states of interest are the rotational

vacuum states |0〉Ω, corresponding to the irrotational vacuum state seen from the

point of view of a rigidly-rotating observer with some fixed angular speed Ω 6= 0.

� Chapter 7 looks at the thermal states |β〉 examining the effects of the pres-

ence of an inverse temperature β on expectation values. Calculations are carried
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out numerically and plots of the thermal expectation values, 〈β|Φ2(x) |β〉 and

〈β|Tµν(x) |β〉 appear in this chapter.

� Chapter 8 briefly summarises what has been covered in this thesis and what has

been achieved by the associated research. In addition, some ongoing unfinished

business is mentioned as well as potential directions for this work.

1.6 Notation

For simplicity, the system of units used throughout the remainder of this thesis is

the Planck unit system. It amounts to setting the constants

~ = c = GN = kB = 1, (1.9)

where kB is Boltzmann’s constant.

On occasions it will also be helpful to use a notation distinguishing clearly between

the numbers of space-time dimensions n, and the numbers of purely spatial and

temporal dimensions d and d0 respectively, via the simple relation

n = d+ d0, (1.10)

with n ≥ 2 and where (thankfully) d0 = 1 in AdSn.

The metric signature convention used in this thesis is spacelike: see Misner, Thorne

andWheeler [56] for details. This choice corresponds to the d space-space eigenvalues

of a metric tensor taking on a plus sign and its d0 time-time eigenvalues assuming a
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minus sign as follows:

sgn diag gµν = (+,+, . . . ,+︸ ︷︷ ︸
d entries

,−,−, . . . ,−︸ ︷︷ ︸
d0 entries

). (1.11)

The signature itself is then given by d − d0 [36] which is n − 2 for gµν , the metric

tensor on AdSn.

The following notation conventions have been adopted:

� The set of natural numbers, strictly positive natural numbers, and strictly negative

integers are respectively

N := {0, 1, 2, . . .}, (1.12)

N0 := {1, 2, . . . }, (1.13)

Z− := {0,−1,−2, . . .}. (1.14)

� The symbols i, j, h, l, p and q ; x and z ; f and b; are reuseable placeholders,

respectively denoting: integer indices; real and complex variables; a scalar function

of one or more variables and a biscalar function.

� x also denotes a general space-time coordinate, x a general spatial coordinate and

t a general time coordinate. Coordinates are distinguished using primes e.g. x, x′.

� Lowercase Greek letters are used to indicate the space-time index of a coordinate

e.g. xµ where µ = 0, 1, . . . , n. Lowercase Latin letters are used to indicate the

spatial index of a coordinate e.g. xi where i = 1, 2, . . . d.

� The appearance of the same space-time or spatial index as a subscript and a

superscript in a product implies the Einstein summation convention. This is a
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summation over the repeated index, for example:

xµx
′µ :=

∑
µ

xµx
′µ = x0x

′ 0 + x1x
′ 1 + · · ·+ xnx

′n. (1.15)

� The ordinary and partial derivative operators are respectively denoted as follows:

dkz :=
dk

dzk
,

∂ kz :=
∂ k

∂zk
. (1.16)

� To avoid confusion with the usage of primes to distinguish coordinates, the prime

notation for derivatives is not used. Instead, partial and covariant derivatives

appear respectively in the forms:

f,µ := ∂µf :=
∂f

∂xµ
, (1.17)

V σ
;µ := ∇µ V σ = V σ

,µ + Γσµν V
ν , (1.18)

Vσ ;µ := ∇µVσ = Vσ,µ − ΓνσµVν . (1.19)

� As is commonplace, the tilde is used to indicate an object that has undergone

some transformation, e.g.

f → f̃ . (1.20)

The exact transformation will be clear from the context in which the tilde appears.

Its main use is in chapter 6 to denote the coordinate transformation appropriate

for a rigidly-rotating observer.

� Many of the calculations presented here rely on the application of formulae from

external references. These formulae are cited using their native formula number

prefixed by the symbol §.
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� The symbols α, β, γ and ε are reserved as reusable placeholders for the orders

and degrees of special functions. This notation has been introduced in a spirit

of kerbing the population of an already abundant nomenclature. In tandem with

this reuse, the binary relation

z
(N)7−−→ z′, (1.21)

signifying that a correspondence has been made from the z in equation number N

to z′ appearing elsewhere, allows this without the need for a later redefinition of

z.

By way of illustration, consider the application of the definition of the Pochham-

mer symbol in terms of gamma functions (§6.1.22 in [2]),

(α)j =
Γ (α + j)

Γ (α)
, α ∈ C\Z−, j ∈ N, (1.22)

to some expression

(
µ+

n− 1

2

)
k

, µ > 0, n ≥ 2, k ∈ N, (1.23)

implies the application of the mappings

α 7→ µ+
n− 1

2
,

j 7→ k, (1.24)

leading to the expression
Γ
(
µ+ n−1

2
+ k
)

Γ
(
µ+ n−1

2

) . (1.25)

As there are many quite separate operations of this kind appearing in this work,
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rather than making the definitions,

α := µ+
n− 1

2
,

j := k, (1.26)

(meaning that a further set of symbols (or adornments to existing ones) will be

required for the application of any subsequent formulae), allowing the reuse of α

and j, the notation (1.21) applied to the above example gives

α
(1.22)7−−−→ µ+

n− 1

2
,

j
(1.22)7−−−→ k, (1.27)

translating as ‘the α and j in (1.22) correspond [respectively] to µ + n−1
2

and k’.

The relations (1.27) therefore imply

(
µ+

n− 1

2

)
k

=
Γ
(
µ+ n−1

2
+ k
)

Γ
(
µ+ n−1

2

) . (1.28)

� The study of the singularity structure of Green functions goes hand-in-hand with

the renormalisation prescribed in sections 5.1 and 5.2. Typically, once expanded

these functions contain a formal Laurent series (fls).

Consider, for example the fls

f(z) =
+∞∑
j=p

Xp−jz
j, z > 0, p < 0. (1.29)

Then as z → 0, f(z) diverges. In later calculations, it will be necessary to isolate

the terms of f(z) that do not vanish as z → 0. Accordingly, the non-vanishing
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part of f(z) as z → 0 is defined as

fF(z) :=
0∑
j=p

Xp−jz
j, z > 0, p < 0. (1.30)

� By the same token, in later calculations, it is also helpful to introduce a way of

denoting a truncation of a fls to a second-order polynomial

f II(z) :=
2∑
j=p

Xp−jz
j, z > 0, p < 0. (1.31)



2 t Geometry of AdSn

An anti-de Sitter space of n-dimensions (AdSn) can be understood as the isomet-

ric immersion of a single-sheeted n-dimensional hyperboloid (see figure 2.1 in sec-

tion 2.1) in some (n+ 1)-dimensional Euclidean space [10], [36], [59]. The embedding

space is represented by the set of coordinates

E(2, n−1) = {ζα}, α = 0, 1, 2, . . . , n, (2.1)

with the metric

ηαβ = diag(−1, 1, 1, . . . , 1,−1). (2.2)

Coordinates on AdSn are given by the constraint

{xµ} = {ζα}, ηαβζ
αζβ = −a2, (2.3)

with

a > 0 (2.4)

being the radius of curvature of AdSn corresponding to the radius of the ‘waist’ of

the hyperboloid.

The notation for the coordinates {x; ζ} and index labels (µ, ν, . . . ;α, β, . . . ) is a

deliberate choice designed to distinguish between events restricted to AdSn and

anywhere within E(2, n−1) respectively.

A suitable set of intrinsic dimensionless coordinates for AdSn and their respective

19
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domains is the set of hyperspherical coordinates,

τ, a timelike coordinate, −π ≤ τ ≤ π,

ρ, a radial coordinate, 0 ≤ ρ < π
2
,

θj, polar coordinates, 0 ≤ θj ≤ π, j = 1, 2, . . . , n− 3,

ϕ, an azimuthal coordinate, 0 ≤ ϕ < 2π, (2.5)

where for later convenience the following definition has been made:

ϕ := θn−2. (2.6)

Coordinates in the embedding space of points in AdSn are then parametrised as

follows:

x0 = a cos τ sec ρ,

x1 = a tan ρ cos θ1,

x2 = a tan ρ sin θ1 cos θ2,

...

xn−2 = a tan ρ sin θ1 sin θ2 · · · sin θn−3 cosϕ,

xn−1 = a tan ρ sin θ1 sin θ2 · · · sin θn−3 sinϕ,

xn = a sin τ sec ρ. (2.7)

The metric induced on AdSn is

gµνx
µxν = −a2 (sec ρ)2 [dτ 2 − dρ2 − (sin ρ)2 dS2

]
, (2.8)
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where

dS2 = dθ2
1 +

n−2∑
i=2

i−1∏
j=1

(
sin θj

)2
dθ2

i (2.9)

is the square of the line element on a unit (n− 2)-sphere, S. Equivalently,

gµν = a2 (sec ρ)2

× diag
{
−1, 1, (sin ρ)2

[
1, (sin θ1)2 , (sin θ1 sin θ2)2 , . . . ,

(
sin θ1 · · · sin θn−3

)2
]}

.

(2.10)

The non-zero Christoffel connections, Γλµν , are found to be

λ = τ, Γτρτ = tan ρ, (2.11)

λ = ρ, Γρττ = Γρρρ = tan ρ, (2.12)

Γρθiθj = −δij tan ρ

j−1∏
l=1

(sin θl)
2 , (2.13)

λ = θi, Γ
θi
ρθj

= δij sec ρ cosec ρ, (2.14)

Γ
θi
θiθj

= cot θj, (2.15)

Γ
θi
θjθj

= − cot θi

j−1∏
l=i

(sin θl)
2 . (2.16)

The space-times E(2, n−1) and AdSn are pseudo-Riemannian spaces as their metrics

contain both spacelike and timelike directions. The metric of AdSn is a special case

of pseudo-Riemannian metrics as it has a single timelike direction. Such metrics

are known as Lorentzian metrics and naturally give rise to three classes of event

separations:
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gµν∆x
µ∆xν < 0, timelike,

gµν∆x
µ∆xν = 0, lightlike or null,

gµν∆x
µ∆xν > 0, spacelike, ∆xµ := xµ2 − x

µ
1 . (2.17)

2.1 Basic geometry and topology

A careful consideration of figure 2.1 below is a useful starting point in appreciating

the nature and subsequent peculiarities of AdSn. Several key ideas that arise from

this discussion are treated more rigorously a little later in the sections on conformal

structure (section 2.2) and maximal symmetry (section 2.3).

Figure 2.1 – A single-sheeted 2-hyperboloid representing AdSn
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For a fixed radius a, with θ1 = 0 for example, and suppressing x1, . . . , xn−1, the

local coordinate system (2.7) reduces to just x0, x1 and xn and describes the upper

half of a single-sheeted 2-hyperboloid. On this surface the transverse sections are

parameterised by τ , and the longitudinal sections are parameterised by ρ. These

appear as the fine grey lines in figure 2.1.

The suppressed local coordinates θj and ϕ are hyperspherical coordinates on the

(n − 2)-sphere of unit radius, S. These label the n − 3 angles of inclination and

the azimuthal angle respectively. As a result AdSn is affected by n − 2 possible

coordinate singularities associated with the degeneracy at ρ = 0 and the n − 3

possible polar degeneracies. For n ≥ 4 each point on the hyperboloid corresponds

to a hyperhemisphere of radius a tan ρ with positive θj to the right of the waist in

figure 2.1 and negative θj to the left. Sign aside, the values of these variables are not

detectable from figure 2.1 as these dimensions have been suppressed. Forn = 3, the

only angular variable is the azimuth ϕ, meaning that there is no notion of ‘left’ or

‘right’ of the waist in this case. For n = 2, as there are no angular variables, ρ ≷ 0

corresponds respectively to the left and right of the waist.1

The topology of this space-time is S1×Rn−1 which means the space-time has closed

timelike curves. This periodicity is reflected in the parameterisation of the time

coordinate τ and equivalently by the circular symmetry of the hyperboloid. The

remedy to this is discussed in section 2.2. The choice of parametrisation of the

radial coordinate allows spatial infinity to be represented by a finite value of ρ.

These features are scrutinised in the next section.

For the time being, the consideration of AdSn is restricted to spatially finite regions

with a single natural period of 2π. Here, purely timelike geodesics trace out circles

in the embedding space, and can be imagined as the transverse sections of the

1The author is grateful to A. Higuchi for clarification regarding the n = 2 and n = 3 cases.
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hyperboloid in figure 2.1. Null geodesics are the only straight lines of the embedding

space shared with AdSn. The pair of null geodesics (Γ1,Γ2) passing through the

origin O appears in figure 2.1. Such pairs mark out the light cones of events on

the space-time. Timelike geodesics emanating from any point on the space-time

appear as ellipses in the embedding space and are represented by the set of all

sections passing through the hyperboloid at the point of origin and the corresponding

antipode, defined by

xa := xa(τ + π, ρ, π − θj, ϕ+ π) for x = x(τ, ρ, θj, ϕ). (2.18)

Two such geodesics γo and γ′o are shown in figure 2.1. These pass through the origin

O and its antipode Oa.

Equation (2.18) is one indication of the homogeneity of AdSn. In particular, one

may (without loss of any generality) fix the origin at any point of the space-time.

Equivalently there are no privileged events in AdSn (see section 2.3 for more details).

An interesting physical feature is suggested by the space-time topology. Given an

initial point on the space-time and some initial velocity in a fixed direction, there is

a corresponding maximum radial value for timelike geodesics. This is reminiscent of

the influence of gravity on the trajectory of a projectile fired vertically away from the

surface of a massive body. As such a null geodesic would correspond to a projectile

with escape velocity. This comparison is consistent at least over a half-period. In

any case the analogy hints at gravity-like effects induced by the topology on timelike

geodesics.
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2.2 Conformal structure

As mentioned previously in section 2.1, AdSn is periodic in time which discounts it

as a physically viable space-time. Visually, AdSn may be thought of as space-time

that has been ‘rolled up’ along a timelike dimension of infinite extent. Points on the

surface of the roll relate to points on the embedding space. However, each such point

is also identified with an infinity of other points in AdSn each sitting in consecutive

layers of the roll.

This multi-valued nature of time in AdSn can be avoided by moving to the universal

covering space of AdSn [9] [36]. This space-time is denoted by CAdSn and has

topology Rn. As a result, the domain of the timelike coordinate of CAdSn is now

−∞ < τ < +∞. This corresponds to effectively ‘unrolling’ AdSn, and removing the

closed timelike curves inherent to AdSn in the process.

The parameterisation (2.5) allows both spatial and temporal infinity of AdSn to

be represented by a finite value [9] [46]. It follows that the entire space-time can

therefore be represented by a region of finite extent. However, for such a representa-

tion to be physically meaningful, the global causal structure of the space-time would

also need to be preserved [46]. Geometrically, this requires that the angle of the

light-cone be the same throughout the representation without exception.

An equivalent requirement is that the metric of AdSn be conformal everywhere to

the metric of some other space-time with metric gcµν , which is possible for any

space-time [46]. Stated mathematically:

gcµν = Ω2(x)gµν , (2.19)

where Ω is an arbitrary function known as the conformal factor. For (2.19) to be
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valid at spatial infinity,

Ω(ρ)→ 0, ρ→ π
2
. (2.20)

In this particular context, spatial infinity is referred to as conformal infinity and

denoted by I [36].

The equations (2.19) and (2.20) now allow AdSn to be ‘conformally compactified’,

that is to be represented as a finite region while preserving its global causal structure.

Such representations are referred to as Carter-Penrose (CP) diagrams.

Figure 2.2 shows a CP diagram of AdSn where θ1 and ϕ have been suppressed [9],

which is the conformally compactified version of the space-time represented in figure

2.1. By convention, the timelike direction in these diagrams is vertical on the page.

Conformal infinity (conventionally denoted by I) is represented by the two vertical

lines. The spacelike hypersurfaces at τ = 0 and τ = 2π are identified. Causal

trajectories emanating from ρ = 0 are confined to the diamonds shown. Their

outline is defined by null geodesics from ρ = 0.

As discussed in section 2.1, a peculiarity of AdSn is that an initially radially outward

trajectory from ρ = 0 will begin to reconverge to its starting point following a period

of π
2
. Two timelike geodesics γ, and γ′ are also shown in figure 2.2 to demonstrate

this.

Figure 2.2 also shows the same trajectories on CAdSn. It serves to reinforce the

fact that although the problem of the multi-valued nature of time in AdSn has been

cured, a ‘residual effect of the time periodicity ’ persists [9].
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Figure 2.2 – CP diagram of AdSn and CAdSn with θ1 and ϕ suppressed

Despite this, CAdSn is still not a physically acceptable space-time. To explain why,

it is necessary to introduce some background theory on the causal structure of space-

times. The following theory can be found in [77].

Two distinct events {x, x′} in a space-time are causally related if one event lies in or

on the light-cone of the other. If x′ is causally related to x and occurs in the future

of x then x′ is said to lie in the causal future of x, denoted by J +(x). Similarly, if
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x′ is causally related to x and occurs in the past of x, then x′ is said to lie in the

causal past of x denoted by J −(x).

For an arbitrary spacelike hypersurface H ⊂ AdSn, the set of all events in AdSn

that are causally related to events on H is the union of past and future light-cones

of all events on H.

J (H) = J −(H) ∪ J −(H). (2.21)

It is worth pointing out that although an event in J ±(H) may be causally influenced

by or causally influence events on H, there are possible pasts and futures of these

events which may not be.

Fortunately, there is a more restricted causal region relating to the hypersurface H

which defines those events in AdSn which are entirely causally related to events on

H. By entirely, it is meant that all possible causal pasts of an event in the causal

future of H intersect with H. Similarly, all possible causal futures of an event in the

causal past of H intersect with H.

These causal regions are respectively defined as the future domain of dependence of

H, denoted by D+(H), and the past domain of dependence of H, denoted by D−(H).

The future domain of dependence therefore is a region of the space-time in which

events are inevitably causally influenced by events on H. As a result, events on H

form a set of initial data from which events in D+(H) may always be predicted.

Likewise, the past domain of dependence is a region of the space-time whose events

inevitably causally influence any event on H. As a result, events on H form a set of

final data from which events in D−(H) may always be ‘retrodicted’.
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Figure 2.3 – Causally-dependent regions associated with the spacelike hypersurface H

Figure 2.3 illustrates a spacelike hypersurface H of finite extent and the accompa-

nying causal regions J −(H), J +(H), D−(H) and D+(H).

The set of events that is entirely determined by events on H is

D(H) := D−(H) ∪ D+(H), (2.22)

and is called the full domain of dependence of H.

If H determines all events in AdSn then D(H) = AdSn and H is called a Cauchy

hypersurface, HC. A space-time that admits a Cauchy hypersurface is called globally

hyperbolic.

Having set out the theory from Wald [77], from figures 2.2 and 2.3, it can be gleaned

that for the spacelike hypersurface at τ = 0, there are events occuring at future times

which are not influenced by any event in H. There are therefore future regions in

AdSn for which a knowledge of events in H does not allow any prediction. These
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regions are shown in figure 2.2 for a geodesic emanating from ρ = 0 as the four

shaded triangles surrounding a single unshaded diamond between some τ and τ +π.

Therefore, CAdSn remains unphysical as it is not globally hyperbolic. The reason

for this is that spatial infinity in AdSn and CAdSn is a timelike hypersurface.

Given this feature, any photon emitted from H in AdSn will reach spatial infinity

in a finite parameter time τ . Consequently, once the photon reaches spatial infinity,

its past can no longer be traced back to H (as it no longer lies in D+(H)). In this

way, information has been ‘lost’ from H to spatial infinity.

Equally, AdSn allows information to be introduced from spatial infinity. A lone,

radially inward photon will eventually strike H, and its past would then be retrod-

ictable up to spatial infinity. This lack of global hyperbolicity remains following the

move to CAdSn and can be attributed to the ‘leakage’ of information to and from

spatial infinity.

Heuristically, the leak can be sealed by patching this conformal boundary with par-

ticular conditions. These need to ensure that given knowledge on some spacelike

hypersurface H, all futures and pasts of events on H are determinable. As futures

and pasts lose their respective predictability and retrodictability on reaching I, a

reflection is recommended. These reflective boundary conditions are discussed in

detail for the n = 4 case in [9] and amount to requiring that there is ‘no net flux

across [spatial infinity ]’ [9]. They are given as

Φ2
j(x) = Φ2

j (xa) , (2.23)

implying that

Φ2
j(x) sec ρ→ 0, ρ→ π

2
, (2.24)

where Φ2
j(x) are the modes of the scalar field (introduced in section 3.5), and xa is
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the antipodal point to x on AdSn defined in (2.18).

2.3 Maximal symmetry

A space-time can be pictured as being interwoven by families of integral curves

associated with vector fields. If the metric of the space-time is invariant along the

direction of such a curve, then the related vector field χ is called a Killing vector

field. An arbitrary space-time will have a (possibly empty) set of Nχ Killing vector

fields

{χµq }, q = 1, 2, . . . , Nχ, (2.25)

with

Nχ = 0, 1, . . . , Nχ,max. (2.26)

These Killing vectors are the tangent vectors along directions associated with isome-

tries (i.e. distance-preserving symmetries) of the space-time.

Stephani [67] expresses this idea in a more rigorous way, as follows. Consider the

infinitesimal coordinate transformation

x̃µ = xµ + δxµ. (2.27)

The infinitesimal change has been made along the vector field χ at xµ and is directed

toward xν . This is given by

δxµ := χµ (xν) dp, (2.28)

where p is a parameter along the integral curve of χ through xµ.

Similarly, the change of the metric with respect to the coordinate transformation
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along this curve is given by

δgµν =
∂gµν
∂xρ

χρdp. (2.29)

Then, for distance to remain unchanged between xµ and x̃µ,

δs2 = δ
(
gµνdx

µdxν
)

=
(
gµν,ρχ

ρ + gρνχ
ρ
,µ + gµρχ

ρ
,ν

)
dxµdxνdp

= 0, (2.30)

which gives rise to the condition

gµν,ρχ
ρ + gρνχ

ρ
,µ + gµρχ

ρ
,ν = 0. (2.31)

Therefore any vector field that satisfies this condition is a Killing vector field of

the space-time. The condition (2.31) is covariant, and the promotion of partial

derivatives to covariant derivatives allows the isometry of the metric to be neatly

encapsulated in the form

-Lχgµν := χµ;ν − χν;µ = 0, (2.32)

known as Killing’s equation, where -Lχgµν is the Lie derivative of the metric along

the Killing vector field χµ.

From the Killing equation (2.32), exploiting the symmetries of the Riemann tensor,

it can be shown [67] that in an n-dimensional space, the maximum possible number

of linearly independent Killing vectors is

Nχ,max =
n(n+ 1)

2
. (2.33)
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A space possessing Nχ,max Killing vectors is known as a maximally symmetric space.

A defining feature of such a space is that the Riemann tensor may be expressed in

the following way [67]:

Rµνρσ = a−2
(
gνσgµρ − gνρgµσ

)
, (2.34)

where a is the radius of curvature in (2.3) and

R = a−2n(n− 1). (2.35)

It follows that the radius of curvature of a maximally symmetric space is given by

a =

√
n(n− 1)

R
. (2.36)

Classically AdSn is a solution to the vacuum Einstein equations, that is

Gµν(x) = Rµν(x)− 1

2
R(x)gµν(x) + Λgµν(x) = 0, (2.37)

where Rµν(x) is the Ricci tensor, R(x) is the Ricci scalar and Λ is the cosmological

constant.

Using (2.37) the Ricci scalar can be found by contracting with the metric tensor

yielding

R =
nΛ
n
2
− 1

, (2.38)

where Λ may be positive, zero or negative. These cases correspond respectively to

n-dimensional de Sitter space-time (dSn), Minkowski space-time (Mn) and anti -de

Sitter space-time (AdSn). Thus, in view of (2.36), AdSn is the vacuum solution to

Einstein’s equations of constant negative scalar curvature.
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Many quantities of interest to studies of qft on general space-times involve series

expansions containing Riemann tensor polynomials. This a collective term for com-

binations of products, contractions and derivatives of the Riemann tensor and its

contractions with the metric. Detailed studies have been carried out on the prop-

erties of these objects; see in particular [26] and also [30]. The most basic of the

quantities involving Riemann tensor polynomials are the Hadamard series involved

in renormalising the vacuum expectation value of the quadratic field fluctuations

discussed in section 5.1. One benefit of maximal symmetry is that the relation

(2.34) simplifies such expansions significantly, for example the covariant derivatives

of all curvature tensors vanish. There are two Riemann tensor polynomials of direct

relevance to later calculations. These are the Kretschmann scalar

K := RµνρσRµνρσ, (2.39)

and the contraction of the Ricci tensor with itself

RµνRµν . (2.40)

These are calculated here for later reference. Firstly,

RµνρσRµνρσ = a−4
(
gµρgνσ − gµσgνρ

)
(gµρgνσ − gµσgνρ)

= a−4
(
gµρg

µρgνσg
νσ − gµσgνρgµρgνσ − gµρgνσgµσgνρ + gµσg

µσgνρg
νρ
)

= 2a−4
(
gµρg

µρgνσg
νσ − gµσgνρgµρgνσ

)
= 2a−4n(n− 1), (2.41)

where the indices ρ and σ have been swapped in the third and fourth terms of the
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second line. Similarly,

Rνσg
µρRµνρσ ⇒ RνσRνσ = a−4

(
δρρgνσ − δ

ρ
σgνρ

) (
δλ
λgνσ − δλσgνλ

)
= a−4

(
δρρδλ

λδν
ν − 2δλ

λδρ
ρ + δρλδ

λ
ρ

)
= a−4n(n− 1)2. (2.42)
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2.4 Geodetic interval — s(x, x′)

A further key simplification due to the maximal symmetry of AdSn arises in the

computation of the geodetic interval. Given a pair of distinct events {x, x′} sharing

a geodesic in a maximally symmetric space, any invariant biscalar quantity b(x, x′)

dependent on this event-pair may be expressed without loss of generality as b(0, s)

where

s = s(x, x′) (2.43)

is the geodetic interval separating events x and x′. In particular biscalars are re-

ducible to scalars in such settings [4]. Equivalently,

b(x, x′)
maximal symmetry−−−−−−−−−−−→ b(s). (2.44)

It is commonplace in the literature to use a related quantity

σ (x, x′) =
1

2
[s (x, x′)]

1
2 . (2.45)

This is also an invariant distance originally due to Synge [68] which he named the

‘world function’. Authors use the term ‘geodetic interval’ interchangeably between

the two. Confusingly, some authors, e.g. [19] use σ to denote s.

Both AdSn and E(2, n−1) are maximally symmetric. Consequently, a geodetic interval

separating points on AdSn may be associated with a geodesic lying in either space.

When exploiting maximal symmetry in AdSn, it is therefore advisable to carefully

distinguish in which space the geodesics in question lie.

Below, distances along geodesics in the embedding space se and σe, are treated

first. Following this, the approach required to constrain geodesics to lie in AdSn
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is discussed. Expressions for distances along these geodesics locally, s and σ are

then derived. Finally, the relationship between geodesic distances in both spaces is

defined.

To begin with, consider a geodesic γ in E(2, n−1) parametrised by p, and passing

through two distinct points ζα and ζ ′α. The geodesic distance, se (ζα, ζ ′α), between

these points is the interval along γ separating them. It is given by the integral of

the line element between these points along γ. Accordingly

se =

∫ ζα

ζ′α
dse =

∫ 1

0

(
ηαβ ζ

α
,pζ

β
,p

) 1
2 dp, (2.46)

where

ζα := ζ(0),

ζ ′α := ζ(1). (2.47)

Given (2.46), the equation (2.45) is written

σe (ζ, ζ ′) =
1

2
ηαβ (ζ ′α − ζα)

(
ζ ′β − ζβ

)
. (2.48)

Specialising to events lying on AdSn, the geodetic interval on the embedding space

is now

σe (x, x′) =
1

2
ηµν (xµ − x′µ) (xν − x′ν) . (2.49)

In order to describe the geodetic interval in terms of the coordinates intrinsic to

AdSn, it is helpful to define the decomposition,

σe (x, x′) :=
∑
µ

σµ, (2.50)
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where

σ0 + σn = a2

{
sec ρ sec ρ ′ (cos τ cos τ ′ + sin τ sin τ ′ )− 1

2

[
(sec ρ)2 + (sec ρ ′)

2
]}

(2.51)

and

σk := a2

[(
xk
)2

2
+

(
x′k
)2

2
− xkx′k

]
, k = 1, 2, . . . , n− 1. (2.52)

Therefore

n−1∑
k=1

σk = a2

[
(tan ρ)2 + (tan ρ ′)2

2
+ tan ρ tan ρ ′

×

(
n−2∑
i=1

[
cos θi cos θ ′i

i−1∏
j=1

sin θj sin θ ′j

]
+

n−2∏
l=1

sin θl sin θ
′
l

)]
.

(2.53)

Combining (2.51) and (2.53) using (2.50) results in

σe (x, x′) = a2

[
sec ρ sec ρ ′ (cos τ cos τ ′ + sin τ sin τ ′)− 1 + tan ρ tan ρ ′

×

(
n−2∑
i=1

[
cos θi cos θ ′i

i−1∏
j=1

sin θj sin θ ′j

]
+

n−2∏
l=1

sin θl sin θ
′
l

)]
,

(2.54)

and hence

σe (x, 0) = a2 (sec ρ cos τ − 1) . (2.55)

which is in agreement with [9] and [16].

Following Bengtsson’s treatment in [10], suitable geodesics on the embedded space
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AdSn can be found by extremising the path length in E(2, n−1) subject to the con-

straint (2.3). The method of finding the form of these geodesics is a straightforward

variational problem where the action is the path length. The definition of the embed-

ded hyperboloid appears as an undetermined Lagrange multiplier term constraining

the extremisation to paths on AdSn.

Using the coordinates {ζα} of the embedding space of an appropriate Lagrangian

for this treatment is [10], with and p a geodetic parametrisation,

LB :=
1

2

(
ζ,p
)

2 + κB

(
ζ2 + a2

)
, (2.56)

where

ζ2 = ζαζ
α,(

ζ,p
)

2 = −1

2

(
ζαζβ,p − ζβζα,p

)(
ζαζβ,p − ζ

βζα,p

)
, (2.57)

and where κB is the undetermined constant Lagrange multiplier.

Applying the Euler-Lagrange equations

∂LB
∂ζα

= ∂p
∂LB

∂
(
ζα,p
) (2.58)

to (2.56), the following equations of motion for the coordinates and their derivatives

with respect to xµ are obtained:

ζα,pp = 2κBζα. (2.59)

Now that these equations are confined to AdSn using (2.3), equation (2.59) may be

written as

xµ,pp = 2κBxµ. (2.60)
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It can be shown [10] that the Lagrange multiplier of (2.56) is determined as

κB =
1

2a2

(
x,p
)2
, (2.61)

and so the equation of motion to be solved is reduced to the set of second order

linear differential equations

xµ,pp =
(
x,p
)2
xµ, (2.62)

with constant coefficients.

The solutions to (2.62) are [10]

xµ = κ1µ exp

(
i

√(
x,p
)2
ς

)
+ κ2µ exp

(
−i
√(

x,p
)2
ς

)
, for timelike geodesics,

xµ = κ1µ exp

(√(
x,p
)2
τ

)
+ κ2µ exp

(
−
√(

x,p
)2
τ

)
, for spacelike geodesics,

(2.63)

at a fixed spatial location ς := ς(ρ, θj, ϕ) and fixed time τ respectively, and where

the constants κ1µ and κ2µ satisfy the following conditions [10]:

κ1µ κ1
µ = κ2µ κ2

µ = 0,

κ1µ κ2
µ = −1

2
. (2.64)

The solution for null separations [10] is simply

xµ,pp = 0, (2.65)

which describes straight lines in Euclidean spaces.

In this treatment, the vectors xµ are most usefully thought of as vectors pointing to
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some location on AdSn. Distances along geodesics restricted to lie in AdSn between

events xµ and x′µ can then be found by applying the scalar product

gµνx
µx′ν , (2.66)

to (2.63), where

xµ := xµ(ς), x′µ :=xµ(ς ′), for timelike separations,

xµ := xµ(τ), x′µ:=xµ(τ ′), for spacelike separations. (2.67)

Bearing in mind that for events confined to AdSn there is now an analogous equation

to (2.46) which may be expressed as

s =

∫
γ

ds =

√(
x,p
)2

(ς ′ − ς), (2.68)

for timelike separations, and as

s =

∫
γ

ds =

√(
x,p
)2

(τ ′ − τ), (2.69)

for spacelike separations, the expression (2.66) equates to

gµνx
µx′ν =


− cos

(s
a

)
for timelike separations, (2.70a)

− cosh
(s
a

)
for spacelike separations. (2.70b)

Therefore, both timelike and spacelike separations may be expressed as (2.70b) if

the separation s is purely imaginary for timelike separations.

The classification of event separations along geodesics in AdSn may now be sum-



42 Chapter 2 – Geometry of AdSn

marised in terms of criteria involving the value of s. In particular

s2 < 0, timelike,

s2 = 0, lightlike or null,

s2 > 0, spacelike. (2.71)

Geometrically, the invariant distances se and σe may be thought of as chordal dis-

tances between points in AdSn through E(2, n−1) subtended by the angle s
a
. Similarly,

from the point of view of the embedding space, s and σ may be thought of as arc

lengths separating events on the embedded surface.

Recalling (2.49), (2.50) and (2.3), the world-function on the embedding space can

be expressed as:

σe = −a2
(
1 + ηαβζ

αζ ′β
)
. (2.72)

Given (2.70b) and (2.45) the invariant measures of distance s and σ between events

in AdSn along geodesics in both E(2, n−1) and AdSn are related as follows:

cosh
(s
a

)
= 1 +

s2
e

2a2

cosh

(√
2σ

a

)
= 1 +

σe
a2
. (2.73)

Events in any pseudo-Riemannian space are not necessarily geodetically separated

[4]. Given an event at the origin x = 0, and defining H(0) to be the spacelike

hypersurface at τ = 0, then the set of all events x′ that are not geodetically separated
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from x is given for

AdSn by x′ ∈ {AdSn − [J (H(0)) ∪H(0 + 2πk)]} , k ∈ Z,

CAdSn by x′ ∈ {AdSn − [J (H(0)) ∪H(0)]} . (2.74)

In other words, {x′} in these circumstances is the set of all events outside J (H(0))

and off H(0). It appears in figure 2.2 as the shaded areas of AdSn and CAdSn.

Despite this, non-geodetic event separations can be described via analytic continu-

ation [4]. Defining a dimensionless parameter

z1 :=
[
cosh

( s
2a

)]2

, (2.75)

specifically for separations along a geodesic, allows the description of any event

separation [4] to be written as

z1 =
1

2

[
1 + cosh

(s
a

)]
. (2.76)

Finally, for completeness, the explicit relation between σe and σ is as follows:

σe = a2

[
cosh

(
1

a

√
σ

2

)
− 1

]
, (2.77)

2.5 Hyperspherical harmonics — Yl (θ, ϕ)

The theory of hyperspherical harmonics is covered in depth by Erdélyi in [37] and by

Müller in [61]. A basic knowledge of hyperspherical harmonics is relevant to three

aspects of the research presented in this thesis:
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� The separation and normalisation of scalar field modes (in sections 3.3 and 3.6).

� The study of the effect of rotation on the vacuum in CAdSn (in chapter 6).

� The study of the effect of thermal radiation (in chapter 7).

To begin with, the unit hypersphere S is defined here for n ≥ 3 as the (n−2)-sphere

of unit radius, of area

AS =
2π

n−1
2

Γ
(
n−1

2

) . (2.78)

Each of the n − 2 angular coordinates, θj, ϕ, (j = 1, 2, . . . , n − 3) is exclusively

associated with one of the n− 2 angular quantum numbers,

mi = m0,m1, . . . ,mn−3, m0 ≥ m1 ≥ . . . ≥ mn−3 ≥ 0. (2.79)

It is convenient to single out the quantum number associated with the polar angle

θ1, which is present in the definition of S for all n ≥ 3, with the label

l := m0, (2.80)

as well as the azimuthal quantum number with the label,

m := mn−3. (2.81)

The degree l labelling the harmonics collectively, actually denotes a set of values of

mj, with the understanding that for a given l there is more than one possible set of

corresponding values. For completeness, the multiplicity of l [25] [37] [61] is given

by

Ml = (2l + n− 3)
(l + n− 4)!

l !(n− 3)!
. (2.82)
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The Y̆l (θ, φ) are the complex unnormalised hyperspherical harmonics of order n− 2

and degree l = 0, 1, . . . n − 2. They form a complete set {Y̆ p
l (θ, φ)}, with p =

1, 2, . . .Ml .

Any two distinct Y̆ p
l (θ, ϕ) are orthogonal on S, i.e.

∫
S

dS Y̆ p
l (θ, ϕ)Y̆ q

l (θ, ϕ) = 0, ∀ p 6= q, (2.83)

unless they are complex conjugate, in which case

∫
S

dS
∣∣∣Y̆ p

l (θ, ϕ)
∣∣∣2 = Nm i . (2.84)

Therefore, the hyperspherical harmonics of degree l on S, normalised to unity are

Y p
l (θ, ϕ) :=

1√
Nm i

Y̆ p
l (θ, ϕ). (2.85)

A form of these normalised harmonics expressed explicitly in terms of all the n− 2

angular coordinates is useful in the study of rotational and thermal states considered

in chapters 6 and 7 respectively. The expression used is given in [37] by

Y l (θ, ϕ) =
1√
Nm i

e±imϕ
n−4∏
j=0

(
sin θj+1

)m j+1 C
m j+1+n−j−3

2
m j−m j+1

(
cos θj+1

)
, (2.86)

where Cm j+1+n−j−3
2

m j−m j+1

(
cos θj+1

)
are Gegenbauer polynomials [2] [45], and where

Nm i := 2π
n−4∏
j=0

Ej+1 (m j,m j+1) , (2.87)

with

Ej+1 (m j,m j+1) =
π4−(m j+1+n−3−j

2
− 1

2)Γ (m j + m j+1 + n− 3− j)(
m j + n−j−3

2

)
(m j − m j+1)!

[
Γ
(

m j+1 + n−j−3
2

)]2 . (2.88)
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Temporarily dropping the arguments of the harmonics for clarity, a real orthonormal

basis can be constructed from the Y p
l by defining the set of real hyperspherical

harmonics of unit norm on S,

Ȳl =
{
Ȳ q

l ∈ R, q = 1, 2, . . . 1
2
Ml

}
, (2.89)

to be for example,

Ȳ q
l :=

1√
2

{
Y q

l + (Y q
l )∗
}

=
√

2 ReY p
l , m > 0, (2.90)

or as another example,

ˆ̄Y q
l :=

i√
2

{
(Y q

l )∗ − Y q
l

}
=
√

2 ImY p
l , m > 0, (2.91)

remarking that,

Ȳ q
l = ˆ̄Y q

l = Y q
l = (Y q

l )∗ , m = 0. (2.92)

It is convenient in what follows to define the further shorthand notation,

Ȳ q := Ȳ q
l (θ, ϕ), Ȳ q′ := Ȳ q

l (θ′, ϕ′), Y q := Y q
l (θ, ϕ), Y q′ := Y q

l (θ′, ϕ′),

(2.93)

such that (2.92) leads to

Ȳ qȲ q′ =
1

2

{
Y q(Y q′)∗ + (Y q)∗ Y q′

}
, m = 0, (2.94)

and (2.90) gives

Ȳ qȲ q′ =
1

2

{
Y qY q′ + Y q(Y q′)∗ + (Y q)∗ Y q′ + (Y q)∗ (Y q′)∗

}
, m > 0. (2.95)
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Then it follows that

1
2
Ml∑
q=1

Ȳ qȲ q′ =
1

2

1
2
Ml∑
q=1

{
Y q(Y q′)∗ + (Y q)∗ Y q′

}
, m = 0, (2.96)

and

1
2
Ml∑
q=1

Ȳ qȲ q′ =

1
2
Ml∑
q=1

{
Ȳ qȲ q′ |m>0 + Ȳ qȲ q′ |m=0

}

=

1
2
Ml∑
q=1

{
Y q(Y q′)∗ + (Y q)∗ Y q′

}
, (2.97)

by adding (2.94) and (2.95) resulting in the disappearance of the first and last terms

in braces in (2.95).

Therefore
1
2
Ml∑
q=1

Ȳ qȲ q′ =

1
2
Ml∑
q=1

εm

{
Y q(Y q′)∗ + (Y q)∗ Y q′

}
, ∀m , (2.98)

where

εm :=


1
2
, m = 0, (2.99a)

1, m > 0. (2.99b)

Now,

1
2
Ml∑
q=1

Ȳ qȲ q′ =
l∑

m1=0

m1∑
m2=0

· · ·
mn−4∑

mn−5=0

mn−4∑
m=0

εm

{
eim(ϕ−ϕ′) + e−im(ϕ−ϕ′)

}
Θmi

Θ′mi (2.100)

=
l∑

m1=0

m1∑
m2=0

· · ·
mn−4∑

mn−5=0

mn−4∑
m=0

εme
±im(ϕ−ϕ′)Θmi

Θ′mi (2.101)

=
∑

mi

eim(ϕ−ϕ′)Θmi
Θ′mi , (2.102)
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where

Θmi
:=

1√
Nm i

n−4∏
j=0

(
sin θj+1

)m j+1 C
m j+1+n−j−3

2
m j−m j+1

(
cos θj+1

)
, (2.103)

such that (2.86) may be written as

Y p
l (θ, ϕ) = e±imϕΘmi

(θ), (2.104)

and where ∑
mi

f =
l∑

m1=0

m1∑
m2=0

· · ·
mn−4∑

mn−5=0

mn−4∑
m=−mn−4

f. (2.105)

Therefore,
1
2
Ml∑
q=1

Ȳ qȲ q′ =

Ml∑
p=1

Y p(Y p′)∗. (2.106)

For n ≥ 4, the addition theorem for real normalised hyperspherical harmonics

Ȳ q
l (θ, ϕ) (§11.4.2 and §11.4.3 in [37]) states that

C
n−3
2

l (x̂ ··· x̂′)

C
n−3
2

l (1)
= ASMl

1
2
Ml∑
q=1

Ȳ q
l (θ, ϕ)Ȳ q

l (θ′, ϕ′), (2.107)

where x̂, x̂′ are unit vectors on S.

Using (2.106), equation (2.107) is given by

Ml∑
p=1

Y p
l (θ, ϕ)

(
Y p

l (θ′, ϕ′)
)∗

=
Ml

AS

C
n−3
2

l (x̂ ··· x̂′)

C
n−3
2

l (1)
. (2.108)

From §11.1.28 in [37] and §22.4.2 in [2],

C
n−3
2

l (1) =
(l + n− 4)!

l !(n− 4)!
, n ≥ 4. (2.109)
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Therefore, from (2.82)

Ml∑
p=1

Y p
l (θ, ϕ)

(
Y p

l (θ′, ϕ′)
)∗

=
1

AS

2l + n− 3

n− 3
C

n−3
2

l (x̂ ··· x̂′) , n ≥ 4, (2.110)

which reduces to

Ml∑
p=1

Y p
l (θ, ϕ)

(
Y p

l (θ′, ϕ′)
)∗

=
1

AS
(2l + 1)Pl (x̂ ··· x̂′) , n = 4, (2.111)

where Pl (x̂ ··· x̂′) is a Legendre polynomial. The addition theorem (2.108) extends to

n = 3 [61], using Ml = 2. From §22.5.28 in [2],

C0
l (x̂ ··· x̂′) =

2

l
Tl (x̂ ··· x̂′) , l > 0, (2.112)

where Tl (x̂ ··· x̂′) is a Chebyshev polynomial, and from §22.2.3 in [2] where,

C0
l (1) =

2

l
, l > 0, (2.113)

and

C0
0(z) = 1, ∀ z ∈ R, (2.114)

it follows that,

2∑
p=1

Y p
l (θ, ϕ)

(
Y p

l (θ′, ϕ′)
)∗

=
1

π
Tl (x̂ ··· x̂′) , n = 3. (2.115)

The result (2.115) is therefore true for l > 0 using (2.113) and (2.112) and for l = 0

using (2.114). Moreover, from §22.3.15 in [2],

Tl (x̂ ··· x̂′) = cos (l θ1) . (2.116)
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2.6 The hypergeometric function — F [α, β; γ; z]

Owing to its frequent use throughout this thesis, it is worthwhile stating the basic

features of the Gaussian hypergeometric function that are relevant to later calcu-

lations. The hypergeometric function plays a significant rôle in the construction of

the radial scalar field modes in section 3.4 and also in the study of Green functions

in section 4.1. The following description is heavily adapted from chapter 15 in [2].

The hypergeometric series is given by [2]

F [α, β; γ; z] :=
Γ (γ)

Γ (α) Γ (β)

+∞∑
j=0

Γ (α + j) Γ (β + j)

Γ (γ + j)

zj

j!
. (2.117)

The series (2.117) can also be expressed in terms of Pochhammer symbols (z)j, given

by §6.1.22 [2]

(z)0 := 1

(z)j := z (z + 1)(z + 2) · · · (z + j − 1) =
Γ (z + j)

Γ (z)
, j ∈ N0, (2.118)

as

F [α, β; γ; z] :=
+∞∑
j=0

(α)j (β)j
(γ)j

zj

j!
. (2.119)

The convergence criteria of the hypergeometric function F (z) generated by the hy-

pergeometric series, are determined by the behaviour of its series representation on

the latter’s circle of convergence of radius |z| = 1.
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Accordingly, if:

|z| < 1, F converges absolutely ; (2.120)

|z| = 1, z = 1, F converges absolutely , 0 < Re(γ − α− β), γ /∈ Z−; (2.121)

|z| = 1, z 6= 1, F converges absolutely , 0 < Re(γ − α− β), (2.122a)

F converges conditionally , −1 < Re(γ − α− β) ≤ 0, (2.122b)

F diverges, Re(γ − α− β) ≤ −1; (2.122c)

|z| > 1, F diverges. (2.123)

A point of interest concerning the analyticity of the hypergeometric function (2.117),

visible from (2.120) is that F is cut in the complex plane along z ≤ 1.

Solutions F (z) to the hypergeometric differential equation [2]

z(z − 1)F ,zz + [γ − (α + β + 1)z]F ,z − αβF = 0, (2.124)

are comprised of many possible linear pairings of hypergeometric functions. The

specific form of these solutions depends partly on the the properties of α, β and γ

and how these parameters interrelate. In addition, equation (2.124) possesses three

regular singular points at z = 0, 1,∞, the vicinity of which also characterises the

choice of solutions – see section 15.5 in [2] for details of the make-up of F .
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3 t Scalar qft coupled to AdSn

3.1 Field dynamics

The action for a free, real quantum scalar field Φ(x) coupled to AdSn is,

S[Φ, gµν ] = −1

2

∫
AdSn

dnx
√
g
(
gµνΦ;µΦ;ν +m2

ξΦ
2
)
, (3.1)

where g is defined as

g :=
∣∣det gµν

∣∣ , (3.2)

with the effective mass-squared term

m2
ξ(x) := m2 + ξR(x), (3.3)

where m is the mass of the field quanta, the constant ξ is the coupling strength

between the scalar and classical gravitational fields and R(x) is the Ricci scalar

curvature of the background space-time.

The related equation of motion is the Klein-Gordon equation,

(
�−m2

ξ(x)
)

Φ(x) = 0, (3.4)

where � is the Laplace-Beltrami operator.

The equation (3.4) admits a complete set of solutions Φj(x) that obey the Klein-

53



54 Chapter 3 – Scalar qft coupled to AdSn

Gordon inner product [11]

〈Φj,Φj′〉KG = −
∫
H

dn−1x
√
gg00Φ∗j

←→
∂0 Φj′ = δjj′ , (3.5)

evaluated on some spacelike hypersurface of simultaneity H.

Therefore the field may be represented by

Φ(x) =
∑
j

ajΦj + a†jΦ
∗
j , (3.6)

where j labels the field mode operators and aj and a
†
j are the expansion coefficients

of the field modes and their hermitian conjugates respectively.

The construction of the qft associated with the equation of motion (3.4) relies on

a vacuum state, a state of lowest energy, defined as

aj |0〉 := 0, (3.7)

from which a Fock space may be populated through the operations of the expansion

coefficients a†j and aj corresponding to creation and annihilation operators respec-

tively.

The field modes Φj and their complex conjugates Φ∗j are said to be positive and

negative frequency modes, Φ
(±)
j respectively, if

ω ≷ 0 ⇔ ‖Φ(±)
j ‖KG ≷ 0. (3.8)

In general, the possibility of distinguishing the field modes Φ
(±)
j relies on the sym-

metries of the background space-time, if indeed there are any. Fortunately, the
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symmetries of AdSn do admit a timelike Killing vector ∂0 such that

∂0Φ
(±)
j ∝ ∓iωΦ

(±)
j , ω > 0, (3.9)

thus constraining the distinction of modes Φ
(±)
j unambiguously (see section 3.3 for

the explicit form of these field modes). Obtaining this split is fundamental to this

research as its existence ensures the usual commutation relations, allowing in turn

for a qft to be defined on the background. This is particularly relevant in the case

of the vacuum state from the point of view of a rigidly-rotating observer. These

rotational vacuum states are the subject of later research, presented in chapter 6.

Returning now to the equation of motion, there are some special cases of (3.4)

that are of interest for any smooth, globally hyperbolic, pseudo-Riemannian, space-

time [36] primarily due to the fact that they give rise to certain simplifying features.

These are:

� The minimally-coupled case

ξ = 0⇒
(
�−m2

)
Φ(x) = 0. (3.10)

� The conformally-coupled case, characterised by the value of the conformal cou-

pling, given by:

ξ = ξc :=
(n− 1)

4(n− 2)
⇔ m2

ξ = m2 +
n(n− 1)

2
Λ. (3.11)

It is possible for CAdSn to be conformally mapped into a region of a globally

hyperbolic space-time known as the Einstein static universe (ESU) [36] via the

transformation

gesu
µν = Ω2gµν , (3.12)
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where

Ω = cos ρ, 0 ≤ ρ < π
2
. (3.13)

In addition, when a scalar field is present, the subsequent equations of motion are

conformally invariant for m = 0 and with the field taking on the conformal weight

of −1 [9]:

Φesu = Ω−1Φ. (3.14)

As ESU is globally hyperbolic, quantisation is well-established and therefore the

field theory can be done there in a more straightforward manner. Avis, Isham and

Storey [9] first studied this case for n = 4 and then mapped the results back to

AdS4 as a way of avoiding dealing with the problems associated with the ‘leaks’

in AdS4 (described in section 2.2) directly.

� For any coupling to the curvature, the massless, i.e. m = 0 case may also be

considered.

The focus of the work detailed in this thesis is on a massive field with a general

coupling.

3.2 The Laplace-Beltrami operator — �(x)

The Laplace-Beltrami operator in (3.4) can now be recast in terms of the local

hyperspherical coordinates (τ, ρ, θ, ϕ) where

θ := {θj}, j = 1, 2, . . . , n− 3. (3.15)
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The coordinate transformation is most usefully applied by taking into account the

following dependencies from the metric (2.10):

gττ , gρρ and gθ1θ1 depend on ρ only, whereas

gθiθi (with i = 2, 3, . . . , n− 2) depends on ρ and θ only, and

gϕϕ does not depend on ϕ; (3.16)

and also that from (3.2), √g is given by

√
g = an (sec ρ)n (sin ρ)n−2

n−3∏
j=1

(
sin θj

)
n−2−j. (3.17)

The action of the box operator on a scalar field on a general space is equivalent to

that of the Laplace-Beltrami operator. It is given by the identity:

�Φ =
1
√
g

(√
ggµνΦ,ν

)
,µ. (3.18)

This allows the box operator acting on the scalar field in (3.4) to be written as

�Φ =

gττ∂ 2
τ +

1
√
g

∂ρ (√ggρρ∂ρ)+ ∂θj

(√
ggθjθj∂θj

)
︸ ︷︷ ︸
sum over n− 3 terms

+ gϕϕ∂ 2
ϕ

Φ. (3.19)

The terms in τ and θj can be found in a straightforward manner by using (2.10).

However the evaluation of the terms in ρ and ϕ is complicated by the action of the

derivatives on √g. In the case of the ρ-indexed term

1
√
g

[
∂ρ
(√

ggρρ∂ρ
)]

Φ =
[
Γµρµg

ρρ + ∂ρg
ρρ + gρρ∂ρ

]
∂ρΦ, (3.20)
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where the connections Γµρµ are given by

Γµρµ = Γτρ τ + Γρρ ρ + Γ
θk
ρ θk︸︷︷︸
sum over n-2 terms

, (3.21)

as only the diagonal elements of the metric contribute. An expression for Γ
θk
ρ θk

in

n-dimensions is obtained using

gθkθk = a2 (tan ρ)2
k−1∏
j=1

(
sin θj

)2 (3.22)

⇒ ∂ρgθkθk = 2a2 (sec ρ)2 tan ρ
k−1∏
j=1

(
sin θj

)2
, (3.23)

resulting in

1
√
g

[
∂ρ
(√

ggρρ∂ρ
)]

Φ = (n− 2) cot ρ ∂ρΦ + (cos ρ)2 ∂ 2
ρΦ. (3.24)

The transformation of the θj-indexed terms into local coordinates follows the same

procedure as for the ρ-indexed terms. Hence

1
√
g

[
∂θj

(√
ggθjθj∂θj

)]
Φ =

[
Γµθj µg

θjθj + ∂θjg
θjθj + gθjθj∂θj

]
∂θjΦ. (3.25)

The connections over the index Γ
θi
θj θi

are

Γ
θi
θj θi

=
1

2
gθiθi∂θjgθiθi . (3.26)

Thus the full scalar field wave equation on AdSn (3.4) can be written in terms of
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the local coordinates as follows:

(
�−m2 − ξR

)
Φ

= −a−2

{
(cot ρ)2

[
(sin ρ)2 ∂ 2

τ − (n− 2) tan ρ ∂ 2
ρ − (n− 2)

n−3∑
j=1

cot θj ∂θj

−
n−3∑
j=1

j−1∏
p=1

(
cosec θp

)2
∂ 2
θj
−

n−3∏
j=1

(
cosec θj

)2
∂ 2
ϕ

]}
Φ−

(
m2 + ξR

)
Φ.

(3.27)
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3.3 Separation of the scalar field wave equation

Owing to the maximal symmetry of the space-time, the solutions to (3.27) are hy-

perspherically separable. Setting

Φ(τ, ρ, θ, ϕ) = T (τ)R̃(ρ)Y (θ, ϕ), (3.28)

the following expression is obtained:

− (cos ρ)2 T−1d 2
τ T + (n− 2) cot ρ R̃−1dρR̃

+ (cos ρ)2 R̃−1d 2
ρ R̃ + (cot ρ)2 Y −1∆S Y − a2

(
m2 + ξR

)
= 0,

(3.29)

where (3.27) was multiplied through by a2Φ−1 and where

∆S = (n− 2)
n−3∑
j=1

cot θj ∂θj +
n−3∑
j=1

j−1∏
p=1

(
cosec θp

)2
∂ 2
θj

+
n−3∏
j=1

(
cosec θj

)2
∂ 2
ϕ, (3.30)

is the Laplace-Beltrami operator on the unit (n− 2)-sphere.

The separation of variables is achieved by isolating τ -dependent terms first and

keeping angular variables together. This procedure yields the following ordinary

differential equations:

ω2 = −T−1T,ττ ;

λ = −(n− 2) (tan ρ) R̃−1R̃,ρ− (sin ρ)2 R̃−1R̃,ρρ+ a2(m2+ξR) (tan ρ)2− ω2 (sin ρ)2 ;

λ = Y −1∆S Y ; (3.31)

where ω2 and λ are separation constants.
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The solutions for T (τ) and Y (θ, ϕ) can be found in a straightforward manner. Hence,

T (τ) = e±iωτ , (3.32)

corresponding respectively to the negative and positive frequency parts of the field

Φ(x).

The field modes considered in this research are chosen to be just the positive-

frequency solutions, i.e.

Φj := Φ
(+)
j ∝ e−iωτ , ω > 0. (3.33)

In the case of the angular part, having identified ∆S, then

λ := −l (l + n− 3), l = 0, 1, 2, . . . . (3.34)

3.4 Radial modes — Rr l (ρ)

There are three sources in the literature for an expression for the full scalar field

modes on AdSn. The first result published by Avis, Isham and Storey [9] gives an

expression for n = 4. Burgess and Lütken in [16] extended this to general n > 2.

More recently however, Cotăescu [25] derived a slightly different expression for the

full n-dimensional modes to that published in [16]. Moreover, Cotăescu’s expression

reduces to the earlier result in [9] for n = 4 whereas Burgess and Lütken’s does not.

The source of the discrepancy detailed in [25] lies in the form of the radial functions

and that of the normalisation constant of the full field modes.

Having an accurate expression for the full modes is very important for this research.
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As indicated in figure 1.1, the field modes can be used to construct Green functions

directly (see section 4.2.1) that are fundamental to the calculation of other objects

relating to the matter content of qfts on curved space-times.

The general method for deriving the radial modes is not explicitly stated in [9]

or [16]. In [25] it is mentioned that the final expression for the radial modes relies on

recognising that the radial equation is in fact a hypergeometric differential equation

(2.124). However, establishing this equivalence is not immediately obvious. Fortu-

nately, in [24], Cotăescu highlights the main steps in this method which have guided

the development presented below.

To begin with, the form of the radial equation obtained immediately after separa-

tion in (3.31) is a second order linear differential equation with varying coefficients.

Muliplying through by − (cosec ρ)2 yields

R̃,ρρ +AR̃,ρ + BR̃ = 0. (3.35)

The coefficients

A := (n− 2) sec ρ cosec ρ, (3.36)

B := −a2m2
ξ (sec ρ)2 + λ (cosec ρ)2 + ω2, (3.37)

have been temporarily included for simplicity and result in (3.35) being singular for

ρ = 0.

The form of (3.35) can be rendered into a Schrödinger equation by eliminating the

coefficient of the first-derivate term via the substitution

R̃ := RC̆R. (3.38)
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This yields

R,ρρ +

(
2
RC̆,ρ

RC̆

+A

)
R,ρ +

(
RC̆,ρρ

RC̆

+A
RC̆,ρ

RC̆

+ B

)
R = 0. (3.39)

Setting

2
RC̆,ρ

RC̆

+A = 0 (3.40)

gives

RC̆ = (cot ρ)
n−2
2 (3.41)

and the canonical form

R,ρρ + BR−
(
A2

4
+
A,ρ
2

)
R = 0. (3.42)

Reinstating A and B, the radial equation is now

{
d 2
ρ − λ (cosec ρ)2 − a2m2

ξ (sec ρ)2 + ω2 − (n− 2)2

4
(sec ρ cosec ρ)2

+
(n− 2)

2

[
(cosec ρ)2 − (sec ρ)2]}R = 0.

(3.43)

Expressing the fourth term as

−(n− 2)2

4

[
(cos ρ)2 + (sin ρ)2]

(cos ρ sin ρ)2 , (3.44)

gives

R,ρρ −

[
P

(sin ρ)2 +
Q

(cos ρ)2

]
R = −ω2, (3.45)
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with

P := −λ− (n− 2)

2
+

(n− 2)2

4
,

Q := m2
ξa

2 +
(n− 2)

2
+

(n− 2)2

4
, (3.46)

such that

P,Q > 0. (3.47)

The form of the coefficient of R on the left-hand side of (3.45), i.e.

P

(sin ρ)2 +
Q

(cos ρ)2 (3.48)

defines a Pöschl-Teller potential [63].

The method of solution of such Pöschl-Teller problems (see for example [70]) typically

involves introducing a change of variable such as

z2 := (sin ρ)2 (3.49)

which recasts the radial equation as

4 (1− z2)R,z2z2
+ 2 (1− 2z2)R,z2

−
[
P (z2)−1 +Q (1− z2)−1 − ω2

]
R = 0. (3.50)

Next, the method of solution involves the substitution

R (z2) = (z2)p (1− z2)q F (z2) , p, q ∈ R. (3.51)
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Applying (3.51) to (3.50) yields the expression

z2 (1− z2)F,z2z2 +

[
2p+

1

2
+ (2q − 2p− 1)z2

]
F,z2 +

(
2pq − p2 − q2 +

ω2

4

)
F = 0,

(3.52)

which follows from setting

P = 2p (2p− 1),

Q = 2q (2q − 1). (3.53)

The form of the equation (3.52) is now readily identifiable with that of the hyperge-

ometric equation (2.124) in F (z2). An appropriate choice of solution is the following

linear combination of Gaussian hypergeometric functions [2], F [α, β; γ; z]:

F (z2) = CFF [α, β; γ; z2] +DF (z2)1−γ F [α− γ + 1, β − γ + 1; 2− γ; z2] (3.54)

(see §15.5.3 and §15.5.4 in [2]), where

α
(3.54)7−−−→ p+ q − ω

2
,

β
(3.54)7−−−→ p+ q +

ω

2
,

γ
(3.54)7−−−→ 2p+

1

2
, (3.55)

and where CF and DF are arbitrary constants.

As a result of the associations (3.55), the general solution for the radial equation
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(3.43) is now

R(ρ) = CF (sin ρ)2p (cos ρ)2q F

[
p+ q − ω

2
, p+ q +

ω

2
; 2p+

1

2
; (sin ρ)2

]

+DF (sin ρ)1−2p (cos ρ)2q F

[
1

2
− p+ q − ω

2
,
1

2
− p+ q +

ω

2
;
3

2
− 2p ; (sin ρ)2

]
.

(3.56)

Given that n ≥ 2 in this treatment, a regular solution to (3.43) at ρ = 0 requires

the positive solutions to (3.53), that is

2p = l +
n− 2

2
,

2q = µ+
1

2
, (3.57)

where

µ :=

√
m2a2 + ξR+

(n− 1)2

4
. (3.58)

Consequently, a singularity at ρ = 0 arises in the second term of (3.56) due to the

(sin ρ)1−2p factor. This applies for n > 2, ∀l and for n = 2, ∀l > 1. For these cases,

setting

DF := 0 (3.59)

eliminates this unphysical term.

Recalling that CAdSn is globally hyperbolic subject to the reflective boundary con-

ditions (2.23), it follows that the radial modes should also die off at spatial infinity.

This is rather like a wavefunction spanning an infinitely wide potential well. How-

ever, the criteria (2.120) reveal there is a branch point at z2 = 1 for the remaining

hypergeometric function. To avoid this singularity, the series can be terminated by

fixing α or β to take on a negative integer value. Following Cotăescu, a suitable
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quantisation condition is established, namely

ω := 2(p+ q + r ), r = 0, 1, 2, . . . , (3.60)

where r is the ‘radial quantum number’ [16].

The periodic nature of time in AdSn affects the modes despite (2.23) as in general

the full field modes are multivalued. Setting ω to an integer w (ensuring a consis-

tent notation for quantised variables) cures this problem. This extra quantisation

condition is reserved for AdSn and is obtained by defining

k := µ+
n− 1

2
, k ∈ N0, (3.61)

where k is known is the ‘conformal dimension of the field theory on Mn−1’ [79] (cited

in [24]). The quantisation condition is

w = k + l + 2r , (3.62)

and implies that

m2
ξa

2 = k (k − n− 1). (3.63)

For ‘regular modes’ [14], i.e. solutions to (3.4) where the mass term respects the

condition

m2
ξ >

(
1− (n− 1)2

4

)
m2, (3.64)

and requiring that k is an integer, such that k > n − 1 results in a ‘discrete mass

spectrum’ [9] being induced from the quantisation condition (3.62).

In the remainder of this thesis, unless stated otherwise, AdSn can be taken to mean

CAdSn, with the understanding that when this is assumed the condition in (3.61) is
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relaxed such that

k → k := µ+
n− 1

2
, k ∈ R0. (3.65)

For AdSn, for n > 2, it is now possible to convert the remaining hypergeometric

function of the radial mode to a Jacobi polynomial using §15.4.6 [2]. Accordingly,

F

[
−r , 2p+ 2q + r ; 2p+

1

2
; (sin ρ)2

]
=

r !(
l + n−3

2

)
r

Pr
(l +n−3

2
,k−n−1

2 ) (cos 2ρ) , (3.66)

where the Pochhammer notation (2.118) has been used.

The physically acceptable solution to (3.43) is now

Rr l (ρ) = Nr l (sin ρ)2p (cos ρ)2q Pr
(l +n−3

2
,k−n−1

2 ) (cos 2ρ) (3.67)

where

Nr l := CF
r !(

l + n−3
2

)
r

, (3.68)

is a normalisation constant and is to be determined in section 3.6.

3.5 Field modes — Φnl (x)

In order to label the individual overall quantum modes, Cotăescu [25] defines the

main quantum number

n := 2r + l . (3.69)

This combines the radial quantum number r and the angular quantum number l

into a total quantum number and allows a numbering of field modes n = 0, 1, 2, . . .

such that the parity of n and l always match.
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In addition, given (3.60) a total energy level naturally arises:

wn = k + n , (3.70)

albeit generally degenerate owing to the multiplicity of l in (2.82).

Finally, using the results (3.32), (3.41) and (3.67), the full (positive frequency) modes

can now be stated as:

Φ
(+)
nl (x) = Nr l e

−iwnτYl (θ, ϕ) (sin ρ)l (cos ρ)k Pr
(l + d−2

2
,k− d

2) (cos 2ρ) , (3.71)

where for convenience in the following section, the expression is given in terms of the

number of spatial dimensions d, where d = n− 1 and n is the number of space-time

dimensions.

For completeness, it is worthwhile mentioning that the overall multiplicity of energy

levels [25] is the sum over the multiplicity of each angular quantum number, hence

Mn =
∑

l

Ml =
(n + d− 1)!

n !(d− 1)!
. (3.72)

3.6 Normalisation

Bearing in mind (3.33) and (3.64), to ensure the modes (3.71) form an orthonormal

basis of a Hilbert space [9], they are subject to the relativistic scalar product (3.5)

〈Φnl ,Φn ′l 〉KG = −
∫
H

ddx
√
gg00Φ∗nl

←→
∂0 Φn ′l = δnn ′ , Φnl = Φnl (x, t), (3.73)

evaluated on some spacelike hypersurface of simultaneity H.

To compute (3.73) it is useful to try and convert the integrand into a purely spatially-
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dependent expression. This can be achieved via the following steps.

Defining,

Φnl (x) := e−iwnτRC̆(ρ)φnl (ρ, θ, ϕ),

φnl (x) := Rr l (ρ)Yl (θ, ϕ), (3.74)

for a given l , suppressing arguments, and using (3.41) gives

Φ∗n
←→
∂0 Φn ′ = Φ∗n(∂0Φn ′)− (∂0Φ∗n)Φn ′

= − (wn + wn ′) e
i(wn−wn ′)τ (cot ρ)d−1 φ∗nφn ′ . (3.75)

From (3.17),

g = a2d+2 (tan ρ)2d−2 (sec ρ)4 gS, (3.76)

where gS is the determinant of the purely angular part of the metric on the unit

(d− 1)-sphere given by

gS :=
∣∣∣det gθiθi

∣∣∣ = (sin θ1)2d−4 (sin θ2)2d−6 · · ·
(
sin θd−2

)2
. (3.77)

Therefore, on the hypersurface

√
gg00 = −ad−1 (tan ρ)d−1√gS. (3.78)

Using the expressions (3.74–3.77) yields

〈Φnl ,Φn ′l 〉KG = ad−1(wn + wn ′)e
i(wn−wn ′)τ

∫
H

ddx
√
gSφ

∗
nl φn ′l = δnn ′ . (3.79)
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Recalling that the spatial modes are separable in the hyperspherical variables, it is

reasonable to seek to recast (3.73) in terms of a product of scalar products over each

integration variable.

This is achieved by defining

dθ := dθ1dθ2 · · · dθd−2, (3.80)

where for notational simplicity

ddx := a
√
gS dρ dθ dϕ. (3.81)

Suppressing arguments the integral (3.73) now becomes

ad−1(wn + wn ′)e
i(wn−wn′)τ

∫ 2π

0

dϕ

∫ π

0

dθ gSY
∗

l Yl

∫ π
2

0

dρR∗r l Rr ′l = δnn ′ . (3.82)

The normalisation of the radial functions can be achieved by introducing the change

of variable

y = cos 2ρ. (3.83)

As a result,

(sin ρ)q =

(
1− y

2

) q
2

and (cos ρ)q =

(
1 + y

2

) q
2

, (3.84)

for any q and therefore

dρ = −(1 + y)−
1
2 (1− y)−

1
2 dy. (3.85)
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The integral of the radial functions is now

∫ π
2

0

dρR∗r l Rr ′l =
|Nr l |

2

2k +l

×
∫ 1

−1

dy (1− y)l + d
2
−1(1 + y)k− d

2Pr
(l + d−2

2
,k− d

2) (y)Pr ′
(l + d−2

2
,k− d

2) (y) ,

(3.86)

which is the form required for the normalisation formula for Jacobi polynomials,

§22.2.1 in [2]. Applying this and reinserting in (3.82) gives the following equality

|Nr l |
2 = a1−d 2r + l + k

wn

r ! Γ (r + l + k )

Γ
(

r + l + d
2

)
Γ
(

r + k − d−2
2

) . (3.87)

Finally, simplifying by inspection and using (3.70), the expression for the normali-

sation constant of the full modes is found to be

Nr l = a
1−d
2

√
r ! Γ (r + l + k )

Γ
(

r + l + d
2

)
Γ
(

r + k − d−2
2

) (3.88)

which is in exact agreement with Cotăescu’s result [25] for the full modes (3.71) and

for the associated normalisation constant (3.88). In addition, the results reduce in

the n = 4 case to the expressions given in [9]. There is a misprint in the results

published in [16] for the expression for these modes.
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4.1 Green functions

The matter content of qfts on curved space-times is described by expectation values

of operators that are quadratic in the fields and their derivatives evaluated at the

same space-time point. However, these objects are not simply expectation values of

originally classical expressions whose field variables have been promoted to operators,

as such operator-valued expressions are formally divergent and therefore make no

physical sense.

The central practical question facing qfts on curved space-times seems therefore

to be how to uncover sensible physics from physical nonsense (in a mathematically

justifiable way).

In simple terms, these formally divergent expectation values have a part that is

regular when x′ → x (the ‘coincidence limit’), and a part that is singular. The latter

is construed as unphysical and therefore to be discarded. In curved space-time, the

normal-ordering prescription of flat-space qft is no longer applicable. The reason

for this failure, and the methods used to renormalise on curved space-times are

discussed in more detail in chapter 5.

The method used to resolve these regular and singular parts is known as regularisa-

tion in the context of qft. A pragmatic regularisation approach is to first consider

a version of the divergent operator of interest whose constituent operators are evalu-

ated at nearby points {x, x′} along a geodesic. By way of a simple example, consider

73
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the relationship between the following formal equalities,

〈0|Φ(x)Φ(x′) |0〉 → 〈0|Φ2(x) |0〉 , x′ → x, (4.1)

⇒ 〈0|Φ2(x) |0〉 = 〈0|Φ2(x) |0〉reg + 〈0|Φ2(x) |0〉sing , (4.2)

⇔ 〈0|Φ(x)Φ(x′) |0〉 = 〈0|Φ(x)Φ(x′) |0〉reg + 〈0|Φ(x)Φ(x′) |0〉sing , x′ → x. (4.3)

This method is originally due to DeWitt [33] and is known as the ‘covariant geodesic

point-separation’ method, or more simply as ‘point-splitting’. In this approach there-

fore, the matter content of qfts on curved space-times relies fundamentally on a

knowledge of the interplay between the background and the propagation of the fields

on it. The essence of point-splitting is that this information can be borne out of the

study of the singularity structure of two-point correlation functions of field operators

and their derivatives.

To this end, it is reasonable to consider members of the set of two-point Green

function solutionsG(x, x′) of (3.4) and the inhomogeneous scalar field wave equation

(
�x −m2

ξ(x)
)
G(x, x′) = −δn(x, x′), (4.4)

where

δn(x, x′) = − 1√
g(x)

δn (x− x′) . (4.5)

The vacuum state on curved space-time is ambiguous (see e.g. sections 3.2 and 3.3

of [11] for a detailed explanation), and the final step in order to obtain a physically

acceptable expectation value of the stress-energy tensor with respect to this state

involves ‘bringing the split-points back together’, the Green functions of relevance

to the development of the matter content of a qft are the state-dependent Green
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functions. These are the Wightman functions,

G+(x, x′) := 〈0|Φ(x)Φ(x′) |0〉 , (4.6)

G−(x, x′) := 〈0|Φ(x′)Φ(x) |0〉 , (4.7)

the anti-commutator function,

G(1)(x, x
′) := 〈0| {Φ(x),Φ(x′)} |0〉 , (4.8)

and the Feynman Green function,

GF(x, x′) := i 〈0| T (Φ(x)Φ(x′)) |0〉 , (4.9)

where T denotes the time-ordering of the application of the field operators. Explic-

itly, this requirement corresponds to

T (Φ(x)Φ(x′)) :=


Φ(x)Φ(x′), t < t′,

Φ(x′)Φ(x), t > t′. (4.10)

As a result of (4.10), (4.9) can be written as

GF(x, x′) = i 〈0| [Θ(t− t′)Φ(x)Φ(x′) + Θ(t′ − t)Φ(x′)Φ(x)] |0〉 , (4.11)

where Θ(t− t′) is the Heaviside or ‘step’ function

Θ(t− t′) :=


0, t < t′,

1, t > t′. (4.12)

The Feynman Green function is the sole vacuum-state-dependent Green function to

satisfy (4.4); the others satisfy (3.4). Explicit expressions for the Feynman Green
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function can be found using Schwinger’s ‘proper time’ method [66], later generalised

by Feynman and DeWitt (see e.g. [32]) to curved space-times [20] [22].

Accordingly, for timelike separations, the Feynman Green function GF(x, x′) can be

thought of as representing the probability amplitude for a virtual scalar particle to

propagate from x′ to x, i.e. to be created at one event x′ and then annihilated

at another event x within the space-time. In the case of spacelike separations,

GF(x, x′) 6= 0 either and so it should br pointed out that its interpretation as a

probability amplitude in this case breaks down as it would imply a violation of

causality.

A crucial point is that the fact that these state-dependent Green functions are so-

lutions to one or both of the scalar field wave equations (3.4) or (4.4) does not

automatically lead to a specification of the vacuum state [11] [20] [43] (unlike in

Minkowski space). Thus more information than just the choice of contour deforma-

tion needs to be supplied in order to specify the vacuum or equivalently to define a

Green function G(x, x′) to be GF(x, x′), G(1)(x, x
′), or G±(x, x′).

The Wightman functions are the building blocks of the anti-commutator and Feyn-

man Green functions and crucially, all four are constructed from the modes of the

field with respect to the vacuum state. These modes are constrained by the way in

which their field operator is decomposed into positive and negative-frequency modes

(3.8) as well as any boundary conditions.

In AdSn this latter requirement is especially pertinent in view of its reflective bound-

ary conditions (2.23). Mathematically, the modes are sensitive to the metric through

the definition of the Laplace-Beltrami operator (3.18) and through the coupling

ξ [20].

The field modes are therefore global objects as they are defined everywhere on the
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space-time. Through this chain of associations, the state-dependent Green functions

are themselves global objects.

Physically, sealing the timelike boundary of CAdSn allows it to admit a Cauchy sur-

face ensuring the space-time’s status as a globally hyperbolic. This in turn permits

a notion of causality and therefore time-ordering on which the definition (4.9) of the

Feynman Green function relies.

The ‘proper-time’ method [32] is based on a matrix representation of GF(x, x′).

Both the reason that GF(x, x′) is undefined in the coincidence limit and its natural

interpretation as a transition amplitude can be understood from intermediate steps

in the method. In particular, defining,

0+ := lim
ε→0

ε, ε > 0, (4.13)

Therefore, there is a tacit understanding that the Feynman Green function GF(σ)

is actually the limiting case of a function that is analytic in the upper complex

half-plane of σ so that GF(σ) := GF(σ + i0+).

The matter content developed in the research presented here exploits the point-split

nature of GF(x, x′) and G(1)(x, x
′). Any of the remaining three state-dependent

Green functions can be obtained from GF(x, x′). The Feynman Green function is

used here as a tool for the purposes of renormalisation, and the anti-commutator

function in the analysis of thermal states.

The Feynman Green function is related to the anti-commutator function via the

relation

GF(x, x′) =
1

2
[Θ(t− t′)−Θ(t′ − t)]G(x, x′) +

i

2
G(1)(x, x

′), (4.14)
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where G(x, x′) is the commutator function, given by

G(x, x′) = 〈0| [Φ(x),Φ(x′)] |0〉 = [Φ(x),Φ(x′)] . (4.15)

This is state-independent as the commutation relations for the free scalar field mean

that the associated commutator function is a c-number. With this in mind, the

relation (4.14) gives the first glimpse of a characteristic division of expectation values

in qfts in curved space-times into state-independent and state-dependent parts.

Since it is the study of the singularity structure of these functions that is of relevant

interest here, note that as x′ → x, G is finite, therefore

GF(x, x′) ∼ i

2
G(1)(x, x

′), x′ → x. (4.16)

In the case of the Feynman Green function on AdSn, the maximal symmetry of the

background allows (4.4) to be written as

(
�−m2

ξ

)
GF(s) = −δn(s), (4.17)

without any loss of generality.

4.2 Feynman Green function — GF(x, x′)

There are two methods for deriving an expression of the Feynman Green function in

the literature. One technique involves summing over the expression for the full field

modes (3.71) which is dealt with in section 4.2.1 below. The alternative technique,

detailed in section 4.2.2, solves (4.17) directly.
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4.2.1 Mode sum construction

The self-confessed ‘brute force’ sum-over-modes approach by Burgess and Lütken

appears in [16]. Their method [16] begins with the standard definition of the Feyn-

man Green function (4.11). Bearing this definition in mind, for some GF(x′, x′′), the

maximal symmetry of AdSn means that if s(x′, x′′) = s(x, 0) then this property can

be exploited by translating x′ 7→ x, x′′ 7→ 0. Thus by translating one of its points to

the origin, and recalling both the split (3.6) and the definition of the vacuum state

(3.7), it follows that

GF(x, 0) = i

(
Θ(x, 0)

∑
nl

Φnl (x)Φnl (0) + Θ(0, x)
∑

nl

Φnl (0)Φnl (x)

)
. (4.18)

Given the (sin ρ)l factor in the radial mode expression (3.67), for ρ = 0, the only

non-zero contribution from the radial modes at the origin will be from the l = 0

mode. Bearing this in mind,the misprint in Burgess & Lütken’s expression for the

field modes does not affect their construction of the propagator. Hence

GF(x, 0) = i
Γ
(

1
2
(n− 1)

)
2π

1
2

(n−1)
e−ik |τ |

∑
r

RBLr 0(ρ)RBLr 0(0)e−2ir |τ |, (4.19)

where the overall factor comes from the l = 0 hyperspherical harmonic and is effec-

tively the normalised density of the (n− 2)-sphere (i.e. the inverse area, A−1
S of the

unit (n− 2)-sphere), and where

RBLr l (ρ) = Nr l Pr
(l +n−3

2
,k−n−1

2 ) (cos 2ρ) , (4.20)

using (3.38) with (3.41) and (3.67). For l = 0

|Nr 0|
2 = a2−n r ! Γ (k + r )

Γ
(

r + 1
2
(n− 1)

)
Γ
(

k − 1
2
(n− 3) + r

) , (4.21)
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and when ρ = 0

RBLr 0(0) = Nr 0Pr
(n−3

2
,k−n−1

2 ) (1) . (4.22)

Applying the formula §22.4.1 from [2] on the Jacobi polynomial gives

Pr
(n−3

2
,k−n−1

2 ) (1) =

(
r + n−3

2

r

)
. (4.23)

This can then be transformed into an expression involving gamma functions, which

is useful for later simplification. This is done using the formulae §6.1.21 and then

§6.1.15 from [2] and yields,

Pr
(n−3

2
,k−n−1

2 ) (1) =
Γ
(

r + 1
2
(n− 1)

)
r ! Γ

(
1
2
(n− 1)

) . (4.24)

The Feynman Green function (4.19) can now be written as the sum

GF(x, 0) = i
a2−n

2π
1
2

(n−1)
e−ik |τ | (cos ρ)k

×
∑

r

Γ (k + r )

Γ
(

k + r − 1
2
(n− 3)

)e−2ir |τ |Pr
(n−3

2
,k−n−1

2 ) (cos 2ρ) . (4.25)

The final summation can be performed as directed in [16] using formula §45.1.4 from

Hansen [48]:

+∞∑
j=0

(α + β + 1)j
(α + β)j

εjPj
(α,β) (y)

= (1 + ε)−(α+β+1)F

[
α + β + 1

2
,
α + β + 2

2
; β + 1; 2ε(y + 1)(1 + ε)−2

]
,

(4.26)
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recalling (3.83), and having made the associations:

α
(4.26)7−−−→ n− 3

2
,

β
(4.26)7−−−→ k − n− 1

2
,

ε
(4.26)7−−−→ e−2i|τ |,

j
(4.26)7−−−→ r .

(4.27)

Therefore applying (2.118) to the Pochhammer quotient term of the summation in

(4.26) gives
(α + β + 1)j

(β + 1)j

(4.26)7−−−→
Γ
(

k − n−3
2

)
Γ (k )

Γ (k + r )

Γ
(

k + r − n−3
2

) . (4.28)

Considering next the right-hand side of (4.26):

(1 + ε)−(α+β+1) (4.26)7−−−→
(
1 + e−2i|τ |)−k

, (4.29)

which, multiplied with the e−ik |τ | outside the summation in (4.25) gives

e−ik |τ |
(
1 + e−2i|τ |)−k

= 2−k (sec τ)k . (4.30)

The remaining (cos ρ)k factor outside the summation in (4.25) yields

2−k (cos ρ)k (sec τ)k = (2z0)−k . (4.31)

where,

z0 :=
[
cosh

(s
a

)]2

, (4.32)
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the Feynman Green function is then found to be:

GF(s)= i
a2−n

2k +1π
1
2

(n−1)

Γ (k )

Γ
(

k − 1
2
(n−3)

) (z0)−k F

[
1

2
k ,

1

2
(k +1); k − 1

2
(n−3); (z0)−1

]
,

(4.33)

based on Cotăescu’s results for the normalised mode expansions (3.71).

4.2.2 Direct solution of the inhomogeneous wave equation

There are two key sources in the literature that derive an expression for the Feynman

Green function by solving (4.17) directly. Allen & Jacobson [4] published such a

method allowing GF(s) to be calculated for n > 2. Later, Camporesi [19] specialised

to n = 4 following a slight variation of the approach set out in [4]. This section begins

by reviewing the general method of solution set out by these authors. Camporesi’s

method is then generalised to n ≥ 2 in a straightforward manner, agreeing with

Allen & Jacobson’s results for n > 2.

I. Allen & Jacobson’s method

Allen & Jacobson show that the inhomogeneous scalar field wave equation (4.17) is

a function of s only. The resulting ordinary differential equation for the Feynman

Green function is

GF,ss +
(n− 1)

a
coth

(s
a

)
GF,s −m2

ξGF = 0, s2 < 0. (4.34)

The result (4.34) then identified with a hypergeometric differential equation (2.124)

z1 (1− z1)GF,z1z1
− n

(
z1 −

1

2

)
GF,z1

+m2
ξa

2GF = 0, 0 ≤ z1 < 1, (4.35)
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where

z1 :=
[
cosh

( s
2a

)]2

, (4.36)

The linearly independent solutions to (4.34) in the vicinity of z1 = ∞ are given by

§15.5.7 and §15.5.8 in [2]. Accordingly, applying §15.5.7 from [2] to (4.35) yields,

GF(s) = J (z1)−α F
[
α, α− γ + 1;α− β + 1; (z1)−1]

+K (z1)−β F
[
β, β − γ + 1; β − α + 1; (z1)−1] , (4.37)

where the associations

α
(4.37)7−−−→ n− 1

2
+ µ,

β
(4.37)7−−−→ n− 1

2
− µ,

γ
(4.37)7−−−→ n

2
, (4.38)

have been made and where J and K are arbitrary constants.

For GF(s) to represent a physically reasonable propagator, it must remain finite as

s→∞. However, z1 →∞ as s→∞, leading the second term in (4.37) to diverge.

To ensure a physically acceptable solution, this boundary condition requires that

K = 0. (4.39)

Therefore,

GF(s) = J (z1)−α F
[
α, α− γ + 1;α− β + 1; (z1)−1] . (4.40)

As s → 0 (and therefore as z1 → 1), the expression (4.40) is singular. However,

an infinitessimally small region of AdSn will be isomorphic to an infinitessimally
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small region of any maximally symmetric space. Accordingly, the flat-space Feyn-

man Green function GMn

F , shares the same singular behaviour in this region, and a

comparison of the two expressions is used to determine the constant J in [4].

An alternative approach to determining J is used here, and the result matches those

of [4]. The exact singularity structure of any Feynman Green function in a general

space-time of arbitrary dimension is given by its ‘Hadamard form’ GH(s), (4.156),

discussed in detail in section 4.4.1. Considering (4.156) and bearing in mind the

boundary conditions (4.167 – 4.168b),

Gn=2
H (s) ∼ − i

2π
ln s̄, s→ 0, (4.41)

Gn>2
H (s) ∼ i

4π
n
2

Γ
(
n
2
− 1
)
s2−n, s→ 0, (4.42)

where

s̄ := Ms, (4.43)

is a version of the geodetic interval that is dimensionless due to the presence of

a parameter of this theory known as the ‘mass renormalisation scale’, M , in its

definition. Similarly, other quantities have dimensionless versions appearing later as

logarithmic arguments. These are

σ̄ := M2σ, (4.44)

and

ā := Ma. (4.45)

This freedom of choice is a manifestation of a fundamental feature of qfts on curved

space-times in general, and is discussed in sections 5.1 and 5.2.

To verify that this leading-order behaviour matches that of Gn>2
F (s), it is necessary
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to transform (4.40) using §15.3.3 in [2]. This yields

GF(s) = J (z1)−α (1− z1)γ−β−α F
[
1− β, γ − β;α− β + 1; (z1)−1] . (4.46)

As s→ 0, (z1)−1 → 1. Using §15.1.20 from [2] gives

F [1− β, γ − β;α− β + 1; 1] =
Γ (α− β + 1) Γ (α + β − γ)

Γ (α) Γ (α− γ + 1)
, (4.47)

which from (2.120) is valid as Re (α + β − γ)
(4.37)7−−−→ n−2

2
> 0, n > 2.

Recalling that separations z1 are described by (2.75), and bearing in mind that given

(z1)−α (1− z1)γ−β−α =
[
sech

( s
2a

)]n−1+2µ
{
−
[
sinh

( s
2a

)]2
}1−n

2

, (4.48)

then

(z1)−α (1− z1)γ−β−α ∼ (−1)n
s2−n

22−na2−n , s→ 0. (4.49)

Matching the leading-order divergent behaviour of Gn>2
F (s) to that of Gn>2

H (s) fixes

J = i(−1)n
a2−n

π
n
2 2n

Γ (α) Γ (α− γ + 1)

Γ (α− β + 1)
. (4.50)

Therefore (for n > 2), the Feynman Green function resulting from Allen & Jacob-

son’s treatment [4] is thus

GF(s) = i
a2−n

π
n
2 2n

Γ (α) Γ (α− γ + 1)

Γ (α− β + 1)
(z1)−α F

[
α, α− γ + 1;α− β + 1; (z1)−1] .

(4.51)
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Explicitly, using (4.38) the expression is:

GF(s) = i
a2−n

π
n
2 2n

Γ
(
n−1

2
+ µ
)

Γ
(

1
2

+ µ
)

Γ (2µ+ 1)

×
[
sech

( s
2a

)]n−1+2µ

F

[
n− 1

2
+ µ,

1

2
+ µ; 2µ+ 1;

[
sech

( s
2a

)]2
]
.

(4.52)

II. Camporesi’s method

Camporesi [19] follows Allen & Jacobson’s approach [4] specialising to n = 4. Ac-

cordingly, a matching form for the equation (4.34) is obtained for n = 4. Its identi-

fication with the hypergeometric differential equation (4.35) also follows naturally.

However the change of variable used by Camporesi to achieve this is

z3 := −
[
sinh

( s
2a

)]2

, (4.53)

rather than (2.75).

Observing that in (4.38)

α + β + 1 = 2γ, (4.54)

an acceptable solution to the hypergeometric equation in z = z(s) near z = 0 for

any n ≥ 2 can be found from §9.153.7 of [45] to be

GF (s) = GF(C) (s) +GF(D) (s) , (4.55)

where

GF(C) (s) := CF

[
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
; z

]
, (4.56)
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is the ‘C-term’ of the Feynman Green function,

GF(D) (s) := DF

[
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
; 1− z

]
, (4.57)

is the ‘D-term’ of the Feynman Green function, with C and D undetermined coeffi-

cients.

A useful examination of (4.55) as s → ∞ is achieved by the successive use of the

pair of linear transformations

F [α, β; γ; z] =
Γ (γ) Γ (β − α)

Γ (β) Γ (γ − α)
(−z)−αF

[
α, α + 1− γ;α + 1− β; z−1

]
+

Γ (γ) Γ (α− β)

Γ (β) Γ (γ − β)
(−z)−βF

[
β, β + 1− γ; β + 1− α; z−1

]
,

(4.58)

(§2.10.2 in [38]) and

F
[
α, β; γ; z−1

]
=
(
1− z−1

)−α
F

[
α, γ − β; γ;

z−1

z−1 − 1

]
, (4.59)

(§2.9.3 in [38]), on both the C andD-terms (equations (4.56) and (4.57) respectively),

where

α
(4.59)7−−−→ α,

β
(4.59)7−−−→ α + 1− γ,

γ
(4.59)7−−−→ α + 1− β, (4.60)
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for the first term in (4.58) and

α
(4.59)7−−−→ β,

β
(4.59)7−−−→ β + 1− γ,

γ
(4.59)7−−−→ β + 1− α, (4.61)

for the second term in (4.58).

The result of the application of (4.58) to (4.55), further transformed by (4.59) yields

the expression

GF(s) = (C + (−1)
n−1
2

+µD)
Γ
(
n
2

)
Γ (−2µ)

Γ
(
n−1

2
− µ

)
Γ
(

1
2
− µ

)(−z)−
n−1
2
−µ

×F
[
n− 1

2
+ µ,

1

2
+ µ; 2µ+ 1; (z)−1

]

+(C + (−1)
n−1
2
−µD)

Γ
(
n
2

)
Γ (2µ)

Γ
(
n−1

2
+ µ
)

Γ
(

1
2

+ µ
)(−z)−

n−1
2

+µ

×F
[
n− 1

2
− µ, 1

2
− µ; 1− 2µ; (z)−1

]
.

(4.62)

Following [4], the behaviour of GF (s) is considered at spatial infinity and then in

the coincidence limit.

As s→∞, for z = z3, the first term of (4.62) tends to zero whereas the second term

is divergent. For a physically reasonable propagator, finite as s→∞,

C + (−1)
n−1
2
−µD = 0. (4.63)
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Therefore

GF (s) = κDE (−z3)−
n−1
2
−µ F

[
n− 1

2
+ µ,

1

2
+ µ; 2µ+ 1; (z3)−1

]
, (4.64)

where

κ := (−1)
n−1
2
−µ+1 + (−1)

n−1
2

+µ (4.65)

= 2in sin (πµ) , (4.66)

and

E :=
Γ
(
n
2

)
Γ (−2µ)

Γ
(
n−1

2
− µ

)
Γ
(

1
2
− µ

) . (4.67)

In the case of the ‘C-term’, for some z(s)→ 0 as s→ 0, only the zeroth summation

index of the hypergeometric series expansion (2.117) contributes, hence

lim
s→0

GF(C)(s) = C. (4.68)

In the case of the hypergeometric function in the ‘D-term’, the convergence criteria

(2.120) for z = 0 require that

1− n

2
> 0, (4.69)

which means that

GF(D)(s) diverges, s→ 0, n ≥ 2. (4.70)

Therefore, the singularity structure of GF(s) as s → 0 lies only within the D-term,

GF(D)(s). It follows that to extract the singularity structure of GF(D)(s) as s → 0,

it is necessary to determine the factor D.

Following [4], and abbreviating the hypergeometric function appearing in (4.64)
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momentarily to F (z), it is desirable to apply a linear transformation

F (z) 7→ h(z)F (z̃(z)) , (4.71)

such that 
z̃ → 1, s→ 0, (4.72a)

F (z̃) converges, s→ 0, (4.72b)

in order to make use of the relation §15.1.20 [2], allowing the result to be expressed

independently of z̃ and solely in terms of gamma functions of n and µ.

This step is intended to displace the source of divergences to a hyperbolic function

h(z) in the prefactor of the resulting transformation, allowing the divergent structure

to be subsequently exposed via a straightforward series expansion in s.

To achieve this, applying the transformation §15.3.4 [2] to the hypergeometric func-

tion in (4.64) gives

F

[
n− 1

2
+ µ,

1

2
+ µ; 2µ+ 1; z−1

]
=
(
1− z−1

)−n−1
2
−µ

×F
[
n− 1

2
+ µ,

1

2
+ µ; 2µ+ 1; z̃

]
,

(4.73)

where

z̃ :=
z−1

z−1 − 1
. (4.74)

However the convergence criteria (2.120) show that although z̃ → 1 as s → 0 as

desired in (4.72a), F (z̃) remains undefined for z̃ = 1 for all n ≥ 2.

A further linear transformation overcomes this remaining obstacle. Applying the

transformation §15.3.3 from [2] to the hypergeometric function on the right-hand
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side of (4.73) gives

F

[
n− 1

2
+ µ,

1

2
+ µ; 2µ+ 1; z̃

]
= (1− z̃)1−n

2 F

[
µ− n− 3

2
,
1

2
+ µ; 2µ+ 1; z̃

]
,

(4.75)

where F
[
µ− n−3

2
, 1

2
+ µ; 2µ+ 1; z̃

]
is convergent for all n > 2.

Therefore, for z = z3, combining (4.64), (4.73) and (4.75), gives

Gn>2
F (s) = κDE

[
sech

( s
2a

)]n−1+2µ [
tanh

( s
2a

)]2−n

×F
[
µ− n− 3

2
,
1

2
+ µ; 2µ+ 1;

[
sech

( s
2a

)]2
]
. (4.76)

Now the singularity structure of Gn>2
F (s) is contained within the

[
tanh

(
s

2a

)]2−n
factor. This will allow a direct way of determining the coefficient D for n > 2

as the leading-order divergence exhibited by the Hadamard form for separations

approaching coincidence in (given by (4.42)) is identical.

Turning now to the n = 2 case, the equation (4.52) yields the associations

n− 1

2
+ µ

(4.52)7−−−→ α, (4.77)

1

2
+ µ

(4.52)7−−−→ β, (4.78)

2µ+ 1
(4.52)7−−−→ γ, (4.79)

⇒ α
(4.52)←−−→ β, (4.80)

γ
(4.52)←−−→α + β. (4.81)

These relations allow the transformation §15.3.10 from [2] to be applied to the hy-
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pergeometric function on the right-hand side of (4.73) yielding

F

[
1

2
+ µ,

1

2
+ µ; 2µ+ 1; z̃

]

=
Γ (2µ+ 1)[
Γ
(

1
2

+ µ
)]2 +∞∑

k=0

[(
1
2

+ µ
)
k

k!

]2 [
Ψn=2

(1) (µ, k)− ln (1− z̃)
]

(1− z̃)k ,

(4.82)

where:

Ψn=2
(1) (µ, k) := 2

[
ψ (k + 1)− ψ

(
1
2

+ µ+ k
)]
, (4.83)

(with the subscript (1) distinguishing this function from another object also involv-

ing sums of psi functions appearing in the following section); and is valid because

|1− z̃| → 0 as s→ 0.

So, given (4.82) and (4.73), equation (4.64) becomes

Gn=2
F (s) = κDE

[
sech

( s
2a

)]2µ+1 Γ (2µ+ 1)[
Γ
(

1
2

+ µ
)]2

×
+∞∑
k=0

[(
1
2

+ µ
)
k

k!

]2(
Ψn=2

(1) (µ, k)− ln

{[
tanh

( s
2a

)]2
})[

tanh
( s

2a

)]2k

.

(4.84)

The behaviour of the expressions (4.84) and (4.76) are now examined respectively for

separations approaching coincidence and then compared with their Hadamard-form

counterparts (4.41) and (4.42) in order to determine D in each case.

The following useful relations between gamma and trigonometric functions are used
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in the calculations for D.

Γ
(

1
2

+ µ
)

Γ
(

1
2
− µ

)
= π sec(πµ), §1.2.7 [38], (4.85)

Γ (−2µ) Γ (2µ+ 1) = −π
2

sec(πµ) cosec(πµ), §6.1.17 [2]. (4.86)

Dn=2

For n = 2, as the k = 0 terms are the only contributors to the summation in

(4.84) when s = 0, the form of the sum tends to − ln
{[

tanh
(
s

2a

)]2} as s → 0.

Furthermore,

ln

{[
tanh

( s
2a

)]2
}
∼ 2 ln s̄, s→ 0, (4.87)

Combining (4.41), (4.84) and (4.87),

D = Dn=2(µ) = − i

8π sin(πµ)

[
Γ
(

1
2

+ µ
)

Γ
(

1
2
− µ

)]2
Γ (−2µ) Γ (2µ+ 1)

(4.88)

is obtained.

This expression is further simplified using (4.85) on the numerator, and (4.86) on

the denominator, allowing (4.88) to be written as

Dn=2(µ) =
i

4
sec(πµ). (4.89)
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Dn>2

When n > 2, D = Dn>2, and the leading-order divergence of GF(s) as s→ 0 is that

of the
[
tanh

(
s

2a

)]2−n factor in (4.76) and so

Gn>2
F (s) = 2in sin(πµ)Dn>2(µ)

×
Γ
(
n
2

)
Γ (−2µ)

Γ
(
n−1

2
− µ

)
Γ
(

1
2
− µ

) Γ
(
n
2
− 1
)

Γ (2µ+ 1)

Γ
(
n−1

2
+ µ
)

Γ
(

1
2

+ µ
)

×(2a)n−2s2−n +O(sn) , s→ 0,

(4.90)

as the criteria (2.120) for the hypergeometric function in (4.76) show that conver-

gence is satisfied for n > 2.

The comparison of (4.90) with the leading-order divergence of the corresponding

Hadamard form (4.42), yields

Dn>2(µ) =
i1−n

2n+1π
n
2

+1an−2

×
Γ
(
n−1

2
− µ

)
Γ
(
n−1

2
+ µ
)

Γ
(

1
2
− µ

)
Γ
(

1
2

+ µ
)

Γ (µ) Γ (1− µ)

Γ
(
n
2

)
Γ (−2µ) Γ (2µ+ 1)

,

(4.91)

where the sin(πµ) has been converted into gamma functions using (4.86).
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It is convenient for later calculations to split the result (4.91) into versions for n odd

and n even. For p = 1, 2, . . ., these expressions are:

Dn=2p+1(µ) =
(−1)p

4p+1πp+
3
2a2p−1

Γ (p− µ) Γ (p+ µ) Γ
(

1
2
− µ

)
Γ
(

1
2

+ µ
)

Γ (µ) Γ (1− µ)

Γ
(
p+ 1

2

)
Γ (−2µ) Γ (2µ+ 1)

;

(4.92)

Dn=2p+2(µ) =
i(−1)p+1

4p+
3
2πp+2a2p

×
Γ
(
p+ 1

2
− µ

)
Γ
(
p+ 1

2
+ µ
)

Γ
(

1
2
− µ

)
Γ
(

1
2

+ µ
)

Γ (µ) Γ (1− µ)

Γ (p+ 1) Γ (−2µ) Γ (2µ+ 1)
,

(4.93)

respectively.

The remaining step in Camporesi’s treatment applies (4.91) for n = 4 to the hyper-

geometric function in (4.64) and then transforms the result using §2.11.4 from [38]:

F [α, β; 2β; z] =
(

1− z

2

)−α
F

[
α

2
,
α + 1

2
; β +

1

2
;

(
z

z − 2

)2
]
, (4.94)

together with §6.1.18 from [2] to yield

Gn=4
F (s) = i

a−2Γ(µ+ 3
2
)

π
3
2 2µ+ 5

2 Γ(µ+ 1)

[
sech

(s
a

)] 3
2

+µ

×F
[

1

2

(
µ+

3

2

)
,
1

2

(
µ+

5

2

)
;µ+ 1;

[
sech

(s
a

)]2
]
, (4.95)

where from (3.58),

µ =

√
9

4
+m2

ξa
2, (4.96)

which is in agreement with the result in [19] and also agrees with (4.52) (for n = 4).
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4.2.3 Comparison of results

The expressions for the n-dimensional Feynman Green functions using the mode

sum method of Burgess & Lütken (4.33) and the Green function method of Allen

& Jacobson (4.52) are found to agree. In addition, for the n = 4 case Camporesi’s

expression (4.95) also matches (4.33) and (4.52).

A further check was carried out on another independently derived expression for the

n-dimensional Feynman Green function by Burges, Davis, Freedman & Gibbons [15],

and this was also found to agree.

In summary, an expression for the n-dimensional Feynman Green function on AdSn

is given by:

GF(s) = i
a2−nΓ(µ+ n−1

2
)

π
n−1
2 2µ+n+1

2 Γ(µ+ 1)

[
sech

(s
a

)]n−1
2

+µ

×F
[

1

2

(
µ+

n− 1

2

)
,
1

2

(
µ+ 1 +

n− 1

2

)
;µ+ 1;

[
sech

(s
a

)]2
]
.

(4.97)
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4.3 Singularity structure of GF(x, x′)

4.3.1 Introduction

Having calculated expressions for the Feynman Green function in section 4.2, the

next quantity to be calculated following the scheme in figure 1.1 is the renormalised

vacuum expectation value of the quadratic field fluctuations,

〈Φ2(x)〉ren := 〈0|Φ2(x) |0〉ren . (4.98)

In simple terms, renormalisation is a procedure that removes divergent parts of

mathematical objects in order to allow them a physical interpretation. The nature

of the divergences that characterise qfts on curved space-times, and the subject of

renormalisation in such theories is discussed in more detail later on, in sections 5.1

and 5.2.

The object 〈Φ2(x)〉ren is the simplest renormalised object of a qft. For this reason,

and as renormalisation is somewhat tricky, computing 〈Φ2(x)〉ren first makes for a

very insightful precursor to renormalising expectation values of the stress-energy

tensor.

In order to renormalise, it is first necessary to regularise. Recalling from section

4.1, regularisation is the identification of convergent and divergent terms within an

expression. Bearing in mind the definition of the Feynman Green function (4.9), the

unrenormalised vacuum expectation value of the quadratic field fluctuations may be

defined as

“〈Φ2(x)〉 := −i lim
x′→x

GF(x, x′)”, (4.99)

using DeWitt’s point-splitting method [33]. In keeping with the related discussion in



98 Chapter 4 – Scalar field propagation on AdSn

section 4.1, the equation (4.99) represents a formally divergent object, as GF(x, x′)

is undefined in the limit involved, hence the quotation marks.

Accordingly, the focus of this section is the extraction of the singularity structure of

the Feynman Green function (4.55) as s → 0. In principle, alternative expressions

such as (4.97) could be used as a starting-point for this treatment. However, as

highlighted in (4.70), it is only the D-term that harbours the divergences sought.

Therefore, the very definition (4.55) affords a clear separation into a known regular

part (4.56) and a known singular part (4.57) from the outset.

Exploiting properties of the hypergeometric functions in (4.55) and expressions of the

coefficient D in (4.88), (4.92) and (4.93), section 4.3.2 expands the ‘D-term’ of the

Feynman Green function (4.57) exposing both its singularity structure in z = z3 and

any finite terms present. In a similar way, section 4.3.3 expands the purely regular

‘C-term’ of the Feynman Green function (4.56). Section 4.3.4 then reconstructs the

full Feynman Green function (4.55) as an expansion in z = z3.

Finally, section 4.3.5 examines the behaviour of the newly expanded Feynman Green

function as an explicit function of s as s → 0. Recalling (1.30), it is convenient for

later calculations of 〈Φ2(x)〉ren to also define a non-vanishing regular part, GFF, reg(s)

of the Feynman Green function as s → 0; and a non-vanishing singular part,

GFF, sing(z) as s→ 0. As discussed later in section 5.1, when calculating 〈Φ2(x)〉ren, it

is crucial to not lose sight of the fact that for even n with n > 2, the non-vanishing

singular part Gn=2p+2F
F, sing (s), p = 1, 2, . . ., s→ 0, also contains finite terms.

It turns out that for n > 2, there is no obvious way to expressGFF, reg(s) andG
F
F, sing(s)

as closed-forms, either for arbitrary n, or for n even and n odd separately. As a

result, such expressions are computed using code for specific numbers of space-time

dimensions. This step and the renormalisation of GF(s) as s → 0 are dealt with in

section 5.1.
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4.3.2 The ‘D-term’ — GF(D)(x, x
′)

Having derived expressions for the coefficientD in equations (4.88), (4.92) and (4.93),

it is necessary to expand the hypergeometric function in (4.57) that houses the

divergent behaviour of the Feynman Green function with the aim of exposing its

singularity structure for later renormalisation.

Expansions of the D-term of GF(z) for n = 2, n = 2p + 2 and n = 2p + 1 (with

p = 1, 2, . . .) are respectively given below using the definition (4.57).

I. n = 2

In this case, the hypergeometric function present in (4.57),

F

[
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
; 1− z

]
= F

[
1

2
+ µ,

1

2
− µ; 1; 1− z

]
. (4.100)

Therefore, formula §15.3.10 from [2] can be applied to (4.100) yielding

F

[
1

2
+ µ,

1

2
− µ; 1; 1− z

]
=

1

Γ
(

1
2

+ µ
)

Γ
(

1
2
− µ

)
×

+∞∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k

(k!)2

[
Ψn=2

(2) (µ, k)− ln z
]
zk,

(4.101)

where

Ψn=2
(2) (µ, k) := 2ψ(k + 1)− ψ

(
1
2

+ µ+ k
)
− ψ

(
1
2
− µ+ k

)
, (4.102)

and where equation (4.101) is valid as s→ 0.
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The results (4.88) and (4.101) yield

Gn=2
F(D)(z) =

i

4π

+∞∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k

(k!)2

[
Ψn=2

(2) (µ, k)− ln z
]
zk, (4.103)

revealing a logarithmic singularity as s→ 0.

II. n > 2, n even

When n = 2p+ 2 with p = 1, 2, . . ., the hypergeometric function present in (4.57),

F

[
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
; 1− z

]
= F

[
p+

1

2
+ µ, p+

1

2
− µ; p+ 1; 1− z

]
.

(4.104)

Therefore, formula §15.3.12 from [2] can be applied to (4.104) yielding

F

[
p+

1

2
+ µ, p+

1

2
− µ; p+ 1; 1− z

]

=
Γ (p) Γ (p+ 1)

Γ
(
p+ 1

2
+ µ
)

Γ
(
p+ 1

2
− µ

)z−p p−1∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k

k! (1− p)k
zk

−(−1)p
Γ (p+ 1)

Γ
(

1
2

+ µ
)

Γ
(

1
2
− µ

) +∞∑
k=0

(
p+ 1

2
+ µ
)
k

(
p+ 1

2
− µ

)
k

k!(k + p)!

× zk
[
Ψn=2p+2(µ, k) + ln z

]
, (4.105)

with

Ψn=2p+2(µ, k) := −ψ(k+ 1)−ψ(k+ p+ 1) +ψ
(
p+ 1

2
+ µ+ k

)
+ψ

(
p+ 1

2
− µ+ k

)
,

(4.106)

and where equation (4.105) is valid as s→ 0.
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The results (4.93) and (4.105) combine to give

Gn=2p+2
F(D) (z)

=
i(−1)p+1

4p+
3
2πp+2a2p

Γ (µ) Γ (1− µ) Γ
(

1
2
− µ

)
Γ
(

1
2

+ µ
)

Γ (−2µ) Γ (2µ+ 1)

×

{
Γ (p) z−p

p−1∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k

k! (1− p)k
zk − (−1)p

(
1
2

+ µ
)
p

(
1
2
− µ

)
p

×
+∞∑
k=0

(
p+ 1

2
+ µ
)
k

(
p+ 1

2
− µ

)
k

k!(k + p)!

[
Ψn=2p+2(µ, k) + ln z

]
zk

}
,

(4.107)

exhibiting poles in the first term and a logarithmic divergence in the second term as

s→ 0.

III. n > 2, n odd

When n = 2p+ 1 with p = 1, 2, . . ., the hypergeometric function in (4.57)

F

[
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
; 1− z

]
= F

[
p+ µ, p− µ; p+

1

2
; 1− z

]
. (4.108)

Therefore, formula §15.3.6 from [2] can be applied to (4.108) yielding

F

[
p+ µ, p− µ; p+

1

2
; 1− z

]

=
Γ
(
p+ 1

2

)
Γ
(

1
2
− p
)

Γ
(

1
2

+ µ
)

Γ
(

1
2
− µ

)F [p+ µ, p− µ; p+
1

2
; z

]

+z
1
2
−pΓ

(
p+ 1

2

)
Γ
(
p− 1

2

)
Γ (p+ µ) Γ (p− µ)

F

[
1

2
− µ, 1

2
+ µ;

3

2
− p; z

]
, (4.109)

which is valid as s→ 0.



102 Chapter 4 – Scalar field propagation on AdSn

The expressions (4.92) and (4.109) combine to give

Gn=2p+1
F(D) (z) =

(−1)p

4p+1πp+
3
2a2p−1

Γ (µ) Γ (1− µ)

Γ (−2µ) Γ (2µ+ 1)

×
{

Γ
(

1
2
− p
)

Γ (p− µ) Γ (p+ µ)F

[
p+ µ, p− µ; p+

1

2
; z

]

+ Γ
(
p− 1

2

)
Γ
(

1
2
− µ

)
Γ
(

1
2

+ µ
)
z

1
2
−pF

[
1

2
+ µ,

1

2
− µ;

3

2
− p; z

]}
.

(4.110)

The recurrence formulae §6.1.15 and §6.1.16 in [2] imply that

Γ (p± µ+ k) = (p± µ)k (±µ)p Γ (±µ) , (4.111)

and the reflection formula §6.1.17 in [2] implies that

Γ (µ) Γ (−µ) = −π
µ

cosec (πµ) . (4.112)

Applying the results (4.111) and (4.86) to (4.110) allows the latter to also be written

in the form,

Gn=2p+1
F(D) (z)

=
(−1)p

4p+
1
2πp+

3
2a2p−1

{
Γ
(

1
2
− p
) (µ)p (−µ)p

µ
π cot(πµ)F

[
p+ µ, p− µ; p+

1

2
; z

]

−πΓ
(
p− 1

2

) +∞∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k(

3
2
− p
)
k

zk+ 1
2
−p

k!

}
, [2pt]

the imaginary part of which is hidden in the z
1
2 factor in the sum over k (recalling

(4.53)).
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Now, applying (4.86)

Γ
(

1
2
− p
)

=
1

Γ
(
p+ 1

2

)π cosec
(
π
(
p+ 1

2

) )

=
(−1)p

Γ
(
p+ 1

2

)π. (4.113)

Therefore

Gn=2p+1
F(D) (z)

=
(−1)p

(4π)p+
1
2a2p−1

{
(−1)p

Γ
(
p+ 1

2

) (µ)p (−µ)p
µ

π cot(πµ)F

[
p+ µ, p− µ; p+

1

2
; z

]

−Γ
(
p− 1

2

) +∞∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k(

3
2
− p
)
k

zk+ 1
2
−p

k!

}
.

(4.114)

4.3.3 The ‘C-term’ — GF(C)(x, x
′)

Recalling from (4.63) that the coefficient C in (4.55) is given by

C = (−1)
n+1
2
−µD, (4.115)

expansions of the C-term of GF(z) for n = 2, n = 2p + 2 and n = 2p + 1 (with

p = 1, 2, . . .) are respectively given below using the definition (4.56).

Expressions for GF(C)(z) are simplified with the help of the relations:

Γ (µ) Γ (1− µ)

Γ (−2µ) Γ (2µ+ 1)
= −2 cos(πµ), (4.116)

obtained by applying (4.112) to the numerator and denominator, for n > 2; and for
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n ≥ 2:

(−1)−µ = cos(πµ)− i sin(πµ), (4.117)

obtained from Euler’s formula.

I. n = 2

The result (4.88) and the hypergeometric function in (4.56) combine to give

Gn=2
F(C)(z) =

(−1)−µ

4π

+∞∑
k=0

Γ
(

1
2

+ µ+ k
)

Γ
(

1
2
− µ+ k

)
(k!)2 zk, (4.118)

which can also be written in terms of Pochhammer symbols as

Gn=2
F(C)(z) =

(−1)−µ

4
sec(πµ)

+∞∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k

(k!)2 zk. (4.119)

Given (4.117),

Gn=2
F(C)(z) =

1

4
[1− i tan(πµ)]

+∞∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k

(k!)2 zk. (4.120)

II. n > 2, n even

The result (4.93) and the hypergeometric function in (4.56) give

Gn=2p+2
F(C) (z) =

(−1)1−µ

4p+
3
2πp+2a2p

Γ (µ) Γ (1− µ) Γ
(

1
2
− µ

)
Γ
(

1
2

+ µ
)

Γ (−2µ) Γ (2µ+ 1)

×
+∞∑
k=0

Γ
(
p+ 1

2
+ µ+ k

)
Γ
(
p+ 1

2
− µ+ k

)
k!(p+ k)!

zk,

(4.121)
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which can also be written

Gn=2p+2
F(C) (z) =

(−1)−µ

(4π)p+1a2p

+∞∑
k=0

Γ
(
p+ 1

2
+ µ+ k

)
Γ
(
p+ 1

2
− µ+ k

)
k! (p+ k)!

zk, (4.122)

using the results (4.116) and (4.85).

The recurrence formulae §6.1.15 and §6.1.16 in [2] imply that,

Γ
(
p+ 1

2
± µ+ k

)
=
(

1
2
± µ+ p

)
k

(
1
2
± µ

)
p

Γ
(

1
2
± µ

)
. (4.123)

Given the results (4.85) and (4.117) and (4.123),

Gn=2p+2
F(C) (z) =

π [1− i tan(πµ)]

(4π)p+1a2p

(
1
2

+ µ
)
p

(
1
2
− µ

)
p

×
+∞∑
k=0

(
p+ 1

2
+ µ
)
k

(
p+ 1

2
− µ

)
k

k! (p+ k)!
zk. (4.124)

III. n > 2, n odd

The expressions (4.92) and the hypergeometric function in (4.56) yield

Gn=2p+1
F(C) (z) =

(−1)1−µ

4p+1πp+
3
2a2p−1

Γ (µ) Γ (1− µ) Γ
(

1
2
− µ

)
Γ
(

1
2

+ µ
)

Γ (−2µ) Γ (2µ+ 1)

×
+∞∑
k=0

Γ (p+ µ+ k) Γ (p− µ+ k)

Γ
(
p+ 1

2
+ k
) zk

k!
, (4.125)

which can also be written

Gn=2p+1
F(C) (z) =

(−1)−µ

(4π)p+
1
2a2p−1

+∞∑
k=0

Γ (p+ µ+ k) Γ (p− µ+ k)

Γ
(
p+ 1

2
+ k
) zk

k!
, (4.126)

using the results (4.116) and (4.85).
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Applying (4.111) and (4.112) to (4.126) allows it also to be written in the form

Gn=2p+1
F(C) (z) =

i

(4π)p+
1
2a2p−1Γ

(
p+ 1

2

) (µ)p (−µ)p
µ

[iπ cot(πµ) + π]

×F
[
p+ µ, p− µ; p+

1

2
; z

]
. (4.127)

4.3.4 The series expansion

This section details the construction of the full Feynman Green function (4.55) as a

series expansion for n = 2, n > 2, with n even and n > 2, with n odd. The procedure

essentially adds the expressions in sections 4.3.2 and 4.3.3 for the ‘C-term’ and ‘D-

term’ respectively.

The relations involving psi functions

ψ (k + 1) = −γ +
k∑
l=1

1

l
, §8.365.3 [45], (4.128)

ψ
(
p+ 1

2
± µ+ k

)
= ψ

(
1
2
± µ

)
+

p+k−1∑
l=0

1
1
2
± µ+ l

, §8.365.4 [45], (4.129)

π tan(πµ) = ψ
(

1
2

+ µ
)
− ψ

(
1
2
− µ

)
, §8.365.9 [45], (4.130)

(where γ is the Euler-Mascheroni constant), are referred to in the calculations that

follow.
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I. n = 2

Combining the C and D terms of the Feynman Green function (using (4.103) and

(4.119) respectively) yields

Gn=2
F (z) =

1

4π

+∞∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k

(k!)2 Zn=2
log (µ, k, z) zk, (4.131)

where

Zn=2
log (µ, k, z) := (−1)−µ π sec(πµ) + iΨn=2

(2) (µ, k)− i ln z. (4.132)

Inserting the result (4.117) and the definition for Ψn=2
(2) (µ, k) (4.102),

Zn=2
log (µ, k, z) = π−i

[
π tan(πµ)− 2ψ (k + 1) + ψ

(
1
2

+ µ+ k
)

+ ψ
(

1
2
− µ+ k

)
+ ln z

]
,

(4.133)

which is simplified by applying (4.129) and (4.128) to the third term and both the

fourth and fifth terms respectively giving

Zn=2
log (µ, k, z) = π − i

[
π tan(πµ) + 2γ − 2

k∑
l=1

1

l
+ ψ

(
1
2

+ µ
)

+ ψ
(

1
2
− µ

)

+
k−1∑
l=0

{
1

1
2

+ µ+ l
+

1
1
2
− µ+ l

}
+ ln z

]
.

(4.134)

The expression for Zn=2
log (µ, k, z) above can be further simplied by applying (4.130)
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on the π tan(πµ) term such that

Zn=2
log (µ, k, z) = π − i

[
2ψ
(

1
2

+ µ
)

+ 2γ − 2
k∑
l=1

1

l

+
k−1∑
l=0

{
1

1
2

+ µ+ l
+

1
1
2
− µ+ l

}
+ ln z

]
. (4.135)

II. n > 2, n even

Adding the C-term (4.124) and the D-term (4.107) gives

Gn=2p+2
F (z)

=
1

(4π)p+1 a2p

[
Zn=2p+2

fls (µ, k, z) +
(

1
2

+ µ
)
p

(
1
2
− µ

)
p

×
+∞∑
k=0

(
p+ 1

2
+ µ
)
k

(
p+ 1

2
− µ

)
k

k! (p+ k)!
Zn=2p+2
log (µ, k, z) zk

]
,

(4.136)

where:

Zn=2p+2
log (µ, k, z) := π − i

[
π tan(πµ) + Ψn=2p+2 (µ, k) + ln z

]
; (4.137)

and

Zn=2p+2
fls (µ, k, z) := i (−1)p Γ (p)

p−1∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k

k! (1− p)k
zk−p. (4.138)

The object (4.137) is simplified using formula (4.130) and recalling the definition

(4.106), applying (4.129) and (4.128) yielding

Zn=2p+2
log (µ, k, z) := π − i

[
2ψ
(

1
2

+ µ
)

+ 2γ + L(p, k) + ln z
]
, (4.139)
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where

L(p, k) :=

p+k−1∑
l=0

{
1

1
2

+ µ+ l
+

1
1
2
− µ+ l

}
−

k+p∑
l=1

1

l
−

k∑
l=1

1

l
. (4.140)

III. n > 2, n odd

Adding the C-term (4.127) and D-term (4.114) gives

Gn=2p+1
F (z)

=
(−1)p

(4π)p+
1
2a2p−1

{
iπ

Γ
(
p+ 1

2

) (µ)p (−µ)p
µ

F

[
p+ µ, p− µ; p+

1

2
; z

]
+ Zn=2p+1

fls (µ, k, z)

}
,

(4.141)

where

Zn=2p+1
fls (µ, k, z) := − (−1)p Γ

(
p− 1

2

) +∞∑
k=0

(
1
2

+ µ
)
k

(
1
2
− µ

)
k(

3
2
− p
)
k

zk+ 1
2
−p

k!
. (4.142)

4.3.5 The singular part — GF, sing(x, x′)

The expressions (4.131), (4.136) and (4.141) for the full series expansions of the

Feynman Green function in (4.55) for n = 2, n > 2 for n even and n odd respec-

tively, reveal clear singularity structures. This is good news for the point-splitting

regularisation procedure as divergent terms can be easily gleaned. The focus of this

section is extracting the singular parts of the Feynman Green function in preparation

for later renormalisation.
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I. n = 2

Recalling that s̄ and ā are the dimensionless versions of the radius of curvature a and

geodetic interval s multiplied by the mass renormalisation scale M , then as s→ 0,

ln z → 2 ln s̄− 2 ln 2− 2 ln ā+ i csgn
(
is2
)
π +O

(
s2
)
, (4.143)

where

csgn z′ =

{
1, Re z′ > 0, or Re z′ = 0, Im z′ > 0, (4.144a)

−1, Re z′ < 0, or Re z′ = 0, Im z′ < 0, (4.144b)

is the generalisation of the signum function to complex numbers (see e.g. [23]). For

timelike intervals s2 < 0, therefore, the term in π inside the expansion of ln z cancels

out the iπ in Zn=2
log (4.133).

As s→ 0, only the k = 0 terms in (4.131) contribute. Therefore, the non-vanishing

(indicated by the F in the superscript) part of the Feynman Green function as s→ 0

(see (1.30)) is

Gn=2F
F (s) = − i

2π

[
ln s̄− ln ā− ln 2 + ψ

(
1
2

+ µ
)

+ γ
]
. (4.145)

Accordingly, the non-vanishing regular part of the Feynman Green function as s→ 0

is:

Gn=2F
F, reg (s) = − i

2π

[
ψ
(

1
2

+ µ
)

+ γ − ln ā− ln 2
]
, (4.146)

and the non-vanishing singular part of the Feynman Green function as s→ 0 is

Gn=2F
F, sing(s) = − i

2π
ln s̄. (4.147)
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II. n > 2, n even

As s → 0, only the k = 0 terms of the sum over the quantity Zn=2p+2
log (µ, k, z) in

(4.136) contribute.

Therefore, the non-vanishing part of the Feynman Green function as s→ 0 is

Gn=2p+2F
F (z) =

1

(4π)p+1a2p

[
Zn=2p+2F

fls (µ, 0, z)

+

(
1
2

+ µ
)
p

(
1
2
− µ

)
p

p!
Zn=2p+2F
log (µ, 0, z)

]
,

(4.148)

where from (4.139)

Zn=2p+2
log (µ, 0, z) = π − i

[
ln z + 2ψ

(
1
2

+ µ
)

+ 2γ + L(p, 0)
]
, (4.149)

with (4.140) giving

L(p, 0) =

p−1∑
l=0

{
1

1
2

+ µ+ l
+

1
1
2
− µ+ l

}
−

p∑
l=1

1

l
. (4.150)

Therefore, recalling (4.143), the non-vanishing regular part of the Feynman Green

function as s→ 0 is

Gn=2p+2F
F, reg (s) =

−i
4p+

1
2πp+1a2pp!

(
1
2

+ µ
)
p

(
1
2
− µ

)
p

×
[
ψ
(

1
2

+ µ
)

+ γ +
1

2
L(p, 0)− ln 2− ln ā

]
,

(4.151)
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and the non-vanishing singular part of the Feynman Green function is

Gn=2p+2F
F, sing (z) =

1

4p+
1
2πp+1a2p

×

[
−i

(
1
2

+ µ
)
p

(
1
2
− µ

)
p

p!
ln s̄+

1

2
Zn=2p+2F (µ, 0, z)

]
.

(4.152)

III. n > 2, n odd

Referring to (4.141), as s→ 0, the hypergeometric function F
[
p+ µ, p− µ; p+ 1

2
; z
]
→

1.

As a result, the non-vanishing Feynman Green function as s→ 0 is

Gn=2p+1F
F (z) =

1

(4π)p+
1
2a2p−1

[
iπ

Γ
(
p+ 1

2

) (µ)p (−µ)p
µ

+ Zn=2p+1F
fls (µ, k, z)

]
. (4.153)

Therefore, the non-vanishing regular part of the Feynman Green function as s→ 0

is

Gn=2p+1F
F, reg (s) =

i

4p+
1
2πp−

1
2a2p−1Γ

(
p+ 1

2

) (µ)p (−µ)p
µ

, (4.154)

and the non-vanishing singular part of the Feynman Green function as s→ 0 is

Gn=2p+1F
F, sing (z) =

1

(4π)p+
1
2a2p−1

Zn=2p+1F
fls (µ, k, z). (4.155)
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4.4 The Hadamard form — GH(x, x′)

4.4.1 Introduction

It is fortunate for renormalisation that there is a theorem due to Hadamard [47]

which states exactly the form of the singularity structure of the Feynman Green

function as the coincidence limit is approached in any space-time.

Generally, the Hadamard form is dependent on biscalar quantities. However, in

the case of AdSn and other maximally symmetic space-times calculations are sig-

nificantly simplified. In particular, the key ingredients of the Hadamard expansion

depend only on the geodetic interval s (or equivalently on the invariant distance σ).

Accordingly, the Hadamard form of the Feynman Green function for AdSn is [31]

GH(σ) = iν(n)
[
U(σ)σ1−n

2 + V (σ) ln σ̄ +W (σ)
]
, n ≥ 2, (4.156)

with

ν(n) =


1

4π
, n = 2, (4.157a)

Γ
(
n
2
− 1
)

2(2π)
n
2

, n > 2, (4.157b)

recalling that σ̄ is a dimensionless variable (4.44) related to σ, through the mass

renormalisation scale M , and where the Hadamard functions U(σ), V (σ) and W (σ)

are all regular in the coincidence limit.

The conventional Ansatz for the Hadamard functions are formal Laurent series (fls)
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expansions [31],

U(σ) =



0, n = 2, (4.158a)

+∞∑
l=0

Ul(σ)σl, n odd, (4.158b)

n
2
−2∑
l=0

Ul(σ)σl, n > 2, n even, (4.158c)

V (σ) =


0, n odd, (4.159a)

+∞∑
l=0

Vl(σ)σl, n even, (4.159b)

W (σ) =
+∞∑
l=0

Wl(σ)σl, ∀n. (4.160)

The Hadamard coefficients are given by [31]

Ul(σ) = ul(x) +
+∞∑
k=1

(−1)k

k!
ul(k), ul(k) := ulp1 ···pk

(x)σ;p1 · · ·σ;p
k , (4.161)

Vl(σ) = vl(x) +
+∞∑
k=1

(−1)k

k!
vl(k), vl(k) := vlp1 ···pk

(x)σ;p1 · · ·σ;p
k , (4.162)

W (σ) = w(x) +
+∞∑
k=1

(−1)k

k!
w(k), w(k) := wp1 ···pk

(x)σ;p1 · · ·σ;p
k , (4.163)

and also behave as regular scalar functions in the coincidence limit.

The Hadamard expansion (4.156) provides remarkable information on how the geom-

etry of background space-time and the quantum state of the field propagating there

separately influence the virtual particle population. In fact, the terms of (4.156) can

be neatly separated into purely geometrical parts U and V and a state-dependent
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part W .

Mathematically, this occurs due to the Ansatz (4.158a – 4.160) and the following

recursion relations that respectively determine the Hadamard coefficients Ul, Vl and

Wl [29] [31]:

0 = (2l + 4− n)
[
(l + 1)Ul+1 + Ul+1;µσ

;µ − Ul+1∆−
1
2

(
∆

1
2

)
;µσ

;µ
]

+
(
�x −m2

ξ

)
Ul,

(4.164)

0 = (l + 1)
[
(2l + n)Vl+1 + 2Vl+1;µσ

;µ − 2Vl+1∆−
1
2

(
∆

1
2

)
;µσ

;µ
]

+
(
�x −m2

ξ

)
Vl,

(4.165)

0 = (l + 1)
[
(2l + n)Wl+1 + 2Wl+1;µσ

;µ − 2Wl+1∆−
1
2

(
∆

1
2

)
;µσ

;µ
]

+ (4l + 2 + n)Vl+1

+2Vl+1;µσ
;µ − Vl+1∆−

1
2

(
∆

1
2

)
;µσ

;µ +
(
�x −m2

ξ

)
Wl, (4.166)

with the associated boundary conditions for Ul and Vl [29] [31]:

U0 = ∆
1
2 , n > 2, (4.167)

V0 =



−∆
1
2 , n = 2, (4.168a)

1

n− 2

[
−2V0;µσ

;µ + 2V0∆−
1
2

(
∆

1
2

)
;µσ

;µ −
(
�x −m2

ξ

)
Un−4

2

]
,

n > 2, (4.168b)

where the conditions on l and n stated in (4.158a – 4.160) remain in force and where

∆ is a quantity known as the Van Vleck-Morette determinant discussed in the next

subsection.

Using these relations, the coefficients Ul and Vl can be determined by integrating

along the unique geodesic separating the events x and x′ [29]. The coefficients Wl
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do not rely solely on the geometry nor are they uniquely defined. Once a solution

for W0 is picked, the remaining coefficients Wl are unambiguous.

4.4.2 The Van Vleck-Morette determinant — ∆(x, x′)

The Van-Vleck Morette determinant [57] [73] is defined in [74] as

∆(x, x′) := −
det
(
−σ;µν′(x, x

′)
)√

(−g(x))(−g(x′))
. (4.169)

This quantity is a measure of the rate of geodetic convergence (or divergence) be-

tween fixed events {x, x′} sharing a geodesic [32]. As AdSn is maximally symmetric

this measure depends only on σ, therefore,

∆ = ∆(σ). (4.170)

An expression for the Van Vleck-Morette determinant as a function of σ on AdSn

may be calculated by first taking into account that it satisfies a partial differential

equation [29],

�xσ = n− 2∆−
1
2

(
∆

1
2

)
;µσ

;µ, (4.171)

with the boundary condition

lim
σ→0

∆ = 1. (4.172)

In addition, a property of the geodetic distance that is useful in this calculation is

2σ = σ;µσ;µ. (4.173)

Using the chain rule, the right-hand side of (4.171) may be written as

n− 4∆−
1
2

(
∆

1
2

)
,σσ. (4.174)
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Moving now to the left-hand side of (4.171), the following relationship has been

established by Allen & Jacobson [4]:

�xs =
(n− 1)

a
coth

(s
a

)
. (4.175)

Given the definition of the d’Alembertian acting on s and that s is a biscalar,

�xs = gµνs
;µν

=
√

2 gµν
(√

σ
);µν

=
√

2

(
1

2
σ−

1
2σ;µ

);µ

=
√

2

(
−1

4
σ−

3
2σ;µσ;µ +

1

2
σ−

1
2σ;µ

;µ

)
=

1√
2σ

(�xσ − 1) . (4.176)

It follows that

�xσ =
√

2σ�xs+ 1. (4.177)

Hence the left-hand side of (4.171) can be stated as

�xσ =
√

2σ
(n− 1)

a
coth

(√
2σ

a

)
+ 1. (4.178)

An explicit form for the Van Vleck-Morette determinant may now be found by

solving the first order ordinary differential equation

√
2σ

(n− 1)

a
coth

(√
2σ

a

)
+ 1 = n− 4∆−

1
2

(
∆

1
2

)
,σσ (4.179)
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for ∆
1
2 . The solution is

∆ =

[
κ∆

√
2σ

a
cosech

(√
2σ

a

)]n−1

(4.180)

where κ∆ is the constant of integration. To fix κ∆, the behaviour of ∆ in the

coincidence limit is examined. Using the boundary condition (4.172),

κ∆ = 1, (4.181)

as

cosech

(√
2σ

a

)
=

a√
2σ

+O
(√

σ
)
, σ → 0. (4.182)

Therefore the Van Vleck-Morette determinant on AdSn is given by

∆ =

[√
2σ

a
cosech

(√
2σ

a

)]n−1

, (4.183)

and is found to agree with the result of Allen, Folacci and Gibbons [3] for n = 4.
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4.4.3 The singular part — GH, sing(s)

Expressions for the singular part of the Hadamard expansion of the Feynman Green

function (4.156), GH, sing(σ) are given below for n = 2 and n > 2, (for n even and

then n odd). For later ease, GH, sing(σ) is also expressed as a function of s in each

case.

I. n = 2

Gn=2
H, sing(σ) =

i

4π
V (σ) ln σ̄, (4.184)

Gn=2
H, sing(σ(s)) =

i

2π
V (s)

[
ln s̄− 1

2
ln 2

]
. (4.185)

II. n > 2, n even

Gn=2p+2
H, sing (σ) = iν(n)

{
U(σ)σ−p + V (σ) ln σ̄

}
, (4.186)

Gn=2p+2
H, sing (s) = iν(n)

{
2pU(s)s−2p + 2V (s)

[
ln s̄− 1

2
ln 2

]}
. (4.187)

As the Hadamard functions U(s) and V (s) respectively multiply poles and logarith-

mically divergent terms in s, it is convenient to split Gn=2p+2
H, sing (s) into parts exhibiting

these different behaviours. Accordingly,

Gn=2p+2
H, sing (s) = Gn=2p+2

H(U) (s) +Gn=2p+2
H(V ) (s), (4.188)
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where

Gn=2p+2
H(U) (s) := iν(n)2pU(s)s−2p, (4.189)

Gn=2p+2
H(V ) (s) := 2iν(n)V (s)

[
ln s̄− 1

2
ln 2

]
, (4.190)

are the respective definitions of the ‘U -part’ and ‘V -part’ of the Hadamard expansion

of the Feynman Green function.

III. n > 2, n odd

Gn=2p+1
H, sing (σ) = iν(n)U(σ)σ

1
2
−p, (4.191)

Gn=2p+1
H, sing (s) = iν(n)2p−

1
2U(s)s1−2p. (4.192)

4.4.4 The Hadamard function U(x, x′)

I. n = 2

From the definition of the Hadamard expansion of the Feynman Green function

(4.158a),

U = 0. (4.193)

II. n > 2, n even

From (4.158c), the Hadamard function U(s) has the Taylor series expansion

U =

p−1∑
l=0

2−lUls
2l. (4.194)
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For n = 4, (i.e. p = 1),

U = U0 = ∆
1
2 , (4.195)

from the boundary condition (4.167).

For this case, the dependence of the ‘U -part’ of the Hadamard expansion on s is

found by expanding the cosech function in the definition of ∆ (4.183) as a power

series in s giving

Gn=4
H(U)(s) ∼ ∆

1
2 s−2 ∼

[
s cosech

(s
a

)] 3
2
s−2, s→ 0, (4.196)

=
+∞∑
j=0

δn=4
2j s2j−2, (4.197)

where the δn=4
2j are the expansion coefficients of ∆

1
2 with

δn=4
0 := 1. (4.198)

For n > 4, (i.e. p > 1), it is necessary to calculate the Hadamard coefficients Ul

(with l > 0) exploiting the relevant recurrence relations (4.164) in σ:

(l + 1)(2l + 4− n)Ul+1 + Ul+1;µσ
;µ

−(2l + 4− n)Ul+1∆−
1
2

(
∆

1
2

)
;µσ

;µ +
(
�x −m2

ξ

)
Ul = 0, (4.199)

with l = 0, 1, 2, . . . , n
2
− 3 (for n even with n > 4).

Defining

Ũl(σ) := −�x −m
2 − ξR

2l + 4− n
Ul(σ), (4.200)
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and making use of (4.173), the recurrence relation may be written as

(l + 1)Ul+1 + 2Ul+1,σσ − 2Ul+1∆−
1
2

(
∆

1
2

)
,σσ = Ũl. (4.201)

The recurrence relation can then be recast in s as

(l + 1)Ul+1 + Ul+1,ss− Ul+1∆−
1
2

(
∆

1
2

)
,ss = Ũl. (4.202)

Multiplying through by ∆−
1
2 sl, the left-hand side of (4.202) can be written as

(Ul+1∆−
1
2 sl+1),s and so the determination of each Ul (with l > 0) reduces to the

integration along the geodesic between 0 and s

Ul+1∆−
1
2 sl+1 =

∫ s

0

Ũl∆
− 1

2 śldś+ κU (4.203)

⇒ Ul+1 =
κU∆

1
2

sl+1
+

∆
1
2

sl+1

∫ s

0

Ũl∆
− 1

2 śldś, (4.204)

where the dummy integration variable is denoted as ś.

As Ul is regular as s→ 0, ∀ l, but, in general ∆
1
2 s−(l+1) is not, then the constant of

integration

κU = 0. (4.205)

Therefore

Ul+1 =
∆

1
2 (s)

sl+1

∫ s

0

Ũl∆
− 1

2 śldś, s > 0, ∀ l. (4.206)

III. n > 2, n odd

From (4.158b), the Hadamard function U has the Taylor series expansion
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U =
+∞∑
l=0

2−lUls
2l. (4.207)

For n = 3, (i.e. p = 1), just as for the n = 4 case, the dependence of the ‘U -part’

of the Hadamard expansion on s is found by expanding the cosech function in the

definition of ∆ (4.183) as a power series in s giving

Gn=3
H(U)(s) ∼ ∆

1
2 s−1 ∼

[
s cosech

(s
a

)]2

s−1, s→ 0, (4.208)

=
+∞∑
j=0

δn=3
2j s2j−1, (4.209)

where the δn=3
2j are the expansion coefficients of ∆

1
2 with

δn=3
0 := 1. (4.210)

For n > 3, (i.e. p > 1), it is necessary to calculate the Hadamard coefficients Ul (with

l > 0) using the relevant recurrence relations (4.164) where for n odd, l = 0, 1, 2, . . ..

Following the procedure outlined for n even with n > 4 above, these coefficients are

also determined by the integration (4.206).

It is worth pointing out at this stage that the Hadamard coefficients Ul are even

Taylor series in s ∀ n, l. This can be seen by considering the first recurrence relation

(l = 0), leading to an expression for U1. In this case

Ũ0 = −�x −m
2 − ξR

4− n
∆

1
2 . (4.211)

Now,

�x
(

∆
1
2

)
=
(

∆
1
2

)
,ss +

(
∆

1
2

)
,s�xs, (4.212)

so �x(∆
1
2 ) is an even Taylor series in s, and it follows that Ũ0 and the integrand
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Ũ0∆−
1
2 are also expanded as even Taylor series in s . Finally, the power of s gained

from the integration is then lost by the s−1 factor outside the integral, therefore the

expansion of U1 is also an even Taylor series in s.

By the same reasoning, in the second recurrence relation (l = 1), the integrand

Ũ1∆−
1
2 ś is expanded as an odd Taylor series in ś. However, the power of s gained

by integration is cancelled by the s−2 outside the integral.

By induction, the integrand Ũ1∆−
1
2 śl gains a power of s which is then cancelled by

the s−(l+1) outside the integral leaving an even power series for all l. Therefore, the

Hadamard coefficients Ul possess an even Taylor series in s ∀ n, l,

Ul =
+∞∑
j=0

ujls
2j, (4.213)

with the expansion coefficients, ujl.

4.4.5 The singular part of the ‘U-part’ — GH(U), sing(s)

I. n = 2

Given (4.158a),

Gn=2
H(U)(s) = 0. (4.214)

II. n > 2, n even

Given (4.156), (4.194) and (4.213),

Gn=2p+2
H(U) (s) ∼

p−1∑
l=0

+∞∑
j=0

2−lujls
2j+2l−2p, s→ 0. (4.215)
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In this case, the Laurent series is even. Therefore, as s→ 0, Gn=2p+2
H(U) (s) diverges due

to the principal part and will also always contain some finite non-vanishing terms

of this Laurent series. These latter (i.e. zeroth-order) terms stem from powers of s

in the expansion of the Hadamard coefficient (4.213) of 2j = 2p− 2l.

The non-vanishing, singular part of the ‘U -part’ of the Hadamard expansion of the

Feynman Green function is therefore

Gn=2p+2F
H(U), sing(s) := iν(n)2p

p−1∑
l=0

p−l∑
j=0

2−lujls
2j+2l−2p. (4.216)

So, for each possible value of l = 0, 1, . . . , p − 1, the values j = p, p − 1, . . . , 1

contribute to the finite regular terms contained in Gn=2p+2
H(U), sing(s).

III. n > 2, n odd

As Gn=2p+1
H (s) has no logarithmic singularity, given (4.156), (4.207) and (4.213),

Gn=2p+1
H (s) ∼

+∞∑
l=0

+∞∑
j=0

2−lujls
2j+2l+1−2p, s→ 0. (4.217)

In this case, as the Laurent series is odd, there are no finite non-vanishing terms.

Therefore as s→ 0, Gn=2p+1
H (s) diverges solely due to the terms in the principal part

of this Laurent series. Such terms stem from powers of s in the expansion of the

Hadamard coefficient (4.213) of 2j ≤ 2p− 2l − 2.

The non-vanishing, singular part of the Hadamard expansion of the Feynman Green

function is therefore

Gn=2p+1F
H, sing (s) := iν(n)2p−

1
2

p−1∑
l=0

p−l−1∑
j=0

2−lujls
2j+2l+1−2p, s→ 0. (4.218)
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4.4.6 The Hadamard function V (s)

Given (4.17), the Feynman Green function GF(s) is a solution to the homogenous

scalar field wave equation

(
�−m2 − ξR

)
GF(σ) = 0, σ < 0, (4.219)

and may be expressed as the linear combination of hypergeometric functions in

(4.55).

From [31], as the Hadamard function V is also a solution to the homogenous scalar

field wave equation (
�−m2 − ξR

)
V = 0, ∀ s, (4.220)

it may also be expressed as a different linear combination of the same hypergeometric

functions in (4.55), with constant coefficients A and B,

V = AF

[
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
;−
[
sinh

( s
2a

)]2
]

+BF

[
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
;
[
cosh

( s
2a

)]2
]
.

(4.221)

As s → 0, the hypergeometric function in the second term of the solution above

diverges ∀n ≥ 2. This behaviour and the equation (4.220) impose a boundary

condition

B = 0, ∀ s. (4.222)

Therefore

V = AF

[
n− 1

2
+ µ,

n− 1

2
− µ;

n

2
;−
[
sinh

( s
2a

)]2
]
, ∀ s. (4.223)
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4.4.7 The singular part of the ‘V -part’ — GH(V ), sing(s)

The Hadamard function V (s) may be expressed as the Taylor series (4.159b)

V =
+∞∑
l=0

2−lVls
2l. (4.224)

Therefore

Gn even
H(V ) (s) ∼

+∞∑
l=0

2−lVls
2l ln s̄, s→ 0. (4.225)

Bearing in mind the left-hand side of (4.223) and (4.159b)

Gn evenF
H(V ), sing(s) ∼ V0 ln s̄, s→ 0. (4.226)

Given (4.223)

A = lim
s→0

V0, ∀n even. (4.227)

I. n = 2

The Hadamard coefficient V0 is obtained from the boundary condition (4.168a)

V0 = −∆
1
2 . (4.228)

Therefore

A = −1, (4.229)

and so

Gn=2F
H(V ), sing(s) = − i

2π

[
ln s̄− 1

2
ln 2

]
. (4.230)
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II. n > 2, n even

The Hadamard coefficient V0 is obtained from the recurrence relation in σ

(n− 2)V0 + 2V0;µσ
;µ − 2V0∆−

1
2

(
∆

1
2

)
;µσ

;µ +
(
�x −m2

ξ

)
Un−4

2
= 0. (4.231)

Exploiting (4.173), the equation may be written as

(n− 2)V0 + 4V0,σσ − 4V0∆−
1
2

(
∆

1
2

)
,σσ +

(
�x −m2

ξ

)
Un−4

2
= 0, (4.232)

which can then be recast in s as

(n− 2)V0 + 2V0,ss− 2V0∆−
1
2

(
∆

1
2

)
,ss+

(
�x −m2

ξ

)
Un−4

2
= 0. (4.233)

Therefore

A = − lim
s→0

{
�x −m2 − ξR

n− 2
Un−4

2

}
, (4.234)

and so

Gn evenF
H(V ), sing(s) = A ln s̄, s→ 0. (4.235)
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5.1 Renormalisation of the quadratic fluctuations

In AdSn, the Hadamard renormalised vacuum expectation value of the quadratic

field fluctuations is defined as

〈Φ2(x)〉ren := −i lim
s→0

{
GF(s)−GH, sing(s)

}
. (5.1)

It amounts to the subtraction of divergent and vanishing terms in the expansion

of the Feynman Green function. For even n, with n > 2, the definition (5.1) also

involves the subtraction of some finite non-vanishing terms, resulting in ‘finite renor-

malisation terms’ (frts),

GF, frt(s) := lim
s→0

{
GF, sing(s)−GH, sing(s)

}
. (5.2)

As mentioned in section 4.3.1, the unrenormalised vacuum expectation value of the

quadratic field fluctuations ‘〈Φ2(x)〉’ (although undefined) can be formally viewed

as special case of the Feynman Green function when x = x′. However, as this object

is undefined, it is unphysical. For it to relate to a physical observable, divergences

must be removed via the renormalisation scheme (5.1). Crucially, the divergences

that appear in the full Feynman Green function must cancel exactly with those of

GH, sing(s), stipulated by the Hadamard theorem (4.156).

The renormalised vacuum expectation value of the quadratic field fluctuations is an

object of great significance to the physical content of any qft. It is the prototype

129
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of all physical observables as all such objects are quadratic in the fields and their

derivatives, evaluated at the same space-time point. When s = 0, the loose inter-

pretation of the Feynman Green function as a ‘transition amplitude’ of a virtual

particle created at some event and destroyed at another is no longer appropriate.

Instead, the coincidence limit brings with it an expectation value associated with

the scalar field fluctuation population at some event x.

The regularisation of the full Feynman Green function GF(s) carried out in section

4.3 and the Hadamard expansion (4.156) of the Feynman Green function dealt with

in section 4.4 give the ingredients required to calculate 〈Φ2(x)〉ren using the definition

(5.1).

5.1.1 Computation of 〈Φ2(x)〉ren

A program has been written in maple to compute expressions for 〈Φ2(x)〉ren for

n = 2 to n = 11 inclusive. In principle, with sufficient processing power and available

time, the code could be easily altered to compute expressions of 〈Φ2(x)〉ren for higher

dimensions. The code for this program consists of four parts.

� Part 1 computes expansions of the non-vanishing part of the Feynman Green

function in s from the expressions (4.147), (4.152) and (4.155) for n = 2, and

n > 2 with n even and n odd respectively. The key labour-intensive computations

involved in this part are: that of the formal Laurent series in s in the expressions

for Zn=2p+2
fls (4.138) and for Zn=2p+1

fls (4.142) (for n > 2 with n even and n odd

respectively); and for n even with n > 2, the product of Pochhammer symbols in

the coefficient of the term exhibiting logarithmic divergence in s̄ in (4.152).

� Part 2 computes the Hadamard expansions of the non-vanishing part of the

Feynman Green function in s from the expressions (4.216) and (4.235) with (4.234)



5.1 Renormalisation of the quadratic fluctuations 131

for n > 2 with n even, and (4.218) for n > 2 with n odd. The bulk of processing

in this part of the code is devoted to the computation of series expansions of

the Hadamard functions U(s) using the recurrence relation scheme outlined in

section 4.4.4.II. To highlight the analogy with the development of previous part

of the code, these U(s) are then used to construct the formal Laurent series that

comprise at least part of the singularity structure of the Feynman Green function

for n > 2. Completing this analogy, for even n with n > 2, the coefficient A, of

the term exhibiting logarithmic divergence in s̄, in (4.190) is also computed.

� In part 3 of the code, the different expansions of non-vanishing parts of the

Feynman Green function are used to evaluate the frts using (5.2).

5.1.2 Results

The results generated by parts 1 – 3 of the code are as follows:

I. n = 2

Gn=2F
F, sing(s) = − i

2π
ln s̄, (5.3)

Gn=2F
H, sing(s) = − i

2π

{
ln s̄− 1

2
ln 2

}
, (5.4)

⇒ Gn=2
F, frt(s) = − i

2π

{
−1

2
ln 2

}
. (5.5)
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II. n = 3

Gn=3F
F, sing(s) =

i

4π

{
1

s

}
, (5.6)

Gn=3F
H, sing(s) =

i

4π

{
1

s

}
, (5.7)

⇒ Gn=3
F, frt(s) = 0. (5.8)

III. n = 4

Gn=4F
F, sing(s) =

i

4π2

{
1

s2
+

[
1

2
m2 + (1− 6ξ)

1

a2

]
ln s̄− 1

12a2

}
, (5.9)

Gn=4F
H, sing(s) =

i

4π2

{
1

s2
+

[
1

2
m2 + (1− 6ξ)

1

a2

]
ln s̄− 1

4a2

}
(5.10)

Gn=4
F, frt(s) =

i

4π2

{
1

6a2

}
. (5.11)

IV. n = 5

Gn=5F
F, sing(s) =

i

8π2

{
1

s3
+

(
−1

2
m2 − 2

a2
+ 10ξ

1

a2

)
1

s

}
, (5.12)

Gn=5F
H, sing(s) =

i

8π2

{
1

s3
+

(
−1

2
m2 − 2

a2
+ 10ξ

1

a2

)
1

s

}
, (5.13)

⇒ Gn=5
F, frt(s) = 0. (5.14)
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V. n = 6

Gn=6F
F, sing(s)

=
i

4π3

{
1

s4
+

(
−1

4
m2 − 5

3a2
+

15

2
ξ

1

a2

)
1

s2

+

[
− 1

16
m4 +

(
−5

8
+

15

4
ξ

)
m2

a2
+

(
−3

2
+

75

4
ξ − 225

4
ξ2

)
1

a4

]
ln s̄

+
1

48

m2

a2
+

(
101

720
− 5

8
ξ

)
1

a4

}
, (5.15)

Gn=6F
H, sing(s)

=
i

4π3

{
1

s4
+

(
−1

4
m2 − 5

3a2
+

15

2
ξ

1

a2

)
1

s2

+

[
− 1

16
m4 +

(
−5

8
+

15

4
ξ

)
m2

a2
+

(
−3

2
+

75

4
ξ − 225

4
ξ2

)
1

a4

]
ln s̄

+
5

48

m2

a2
+

(
173

288
− 25

8
ξ

)
1

a4

}
, (5.16)

⇒Gn=6
F, frt(s)

=
i

4π3

{
− m2

12a2 +

(
−221

480
+

5

2
ξ

)
1

a4

}
. (5.17)



134 Chapter 5 – Hadamard renormalisation

VI. n = 7

Gn=7F
F, sing(s)

=
3i

16π3

{
1

s5
+

(
8

3a4
+

1

24
m4 +

2

3

m2

a2
− 28ξ

1

a4
− 7

2
ξ
m2

a2
+

147

2
ξ2 1

a4

)
1

s3

+

(
− 5

3a2
− 1

6
m2 + 7ξ

1

a2

)
1

s

}
, (5.18)

Gn=7F
H, sing(s)

=
3i

16π3

{
1

s5
+

(
8

3a4
+

1

24
m4 +

2

3

m2

a2
− 28ξ

1

a4
− 7

2
ξ
m2

a2
+

147

2
ξ2 1

a4

)
1

s3

+

(
− 5

3a2
− 1

6
m2 + 7ξ

1

a2

)
1

s

}
, (5.19)

⇒Gn=7
F, frt(s) = 0. (5.20)
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VII. n = 8

Gn=8F
F, sing(s)

=
i

2π4

{
1

s6
+

(
−1

8
m2 − 7

4a2
+ 7ξ

1

a2

)
1

s4

+

(
1

64
m4 +

35

96

m2

a2
+

259

120a4
− 7

4
ξ
m2

a2
− 245

12
ξ

1

a4
+ 49ξ2 1

a4

)
1

s2

+

[
1

384
m6 +

(
7

96
− 7

16
ξ

)
m4

a2
+

(
21

32
− 49

6
ξ +

49

2
ξ2

)
m2

a4

+

(
15

8
− 147

4
ξ +

686

3
ξ2 − 1372

3
ξ3

)
1

a6

]
ln s̄

− 1

768

m4

a2
+

(
− 11

360
+

7

48
ξ

)
m2

a4
+

(
−11027

60480
+

77

45
ξ − 49

12
ξ2

)
1

a6

}
,

(5.21)

Gn=8F
H, sing(s)

=
i

2π4

{
1

s6
+

(
−1

8
m2 − 7

4a2
+ 7ξ

1

a2

)
1

s4

+

(
1

64
m4 +

35

96

m2

a2
+

259

120a4
− 7

4
ξ
m2

a2
− 245

12
ξ

1

a4
+ 49ξ2 1

a4

)
1

s2

+

[
1

384
m6 +

(
7

96
− 7

16
ξ

)
m4

a2
+

(
21

32
− 49

6
ξ +

49

2
ξ2

)
m2

a4

+

(
15

8
− 147

4
ξ +

686

3
ξ2 − 1372

3
ξ3

)
1

a6

]
ln s̄

− 7

768

m4

a2
+

(
− 721

3840
+

49

48
ξ

)
m2

a4
+

(
−1373

1440
+

5047

480
ξ − 343

12
ξ2

)
1

a6

}
,

(5.22)



136 Chapter 5 – Hadamard renormalisation

n = 8 (continued)

⇒ Gn=8
F, frt(s) =

i

2π4

{
m4

128a2
+

(
1811

11520
− 7

8
ξ

)
m2

a4
+

(
46639

60480
− 12677

1440
ξ +

49

2
ξ2

)
1

a6

}
.

(5.23)

VIII. n = 9

Gn=9F
F, sing(s)

=
15i

32π4

{
1

s7
+

(
− 1

10
m2 − 28

15a2
+

36

5
ξ

1

a2

)
1

s5

+

(
1

120
m4 +

4

15

m2

a2
+

98

45a4
− 6

5
ξ
m2

a2
− 96

5
ξ

1

a4
+

216

5
ξ2 1

a4

)
1

s3

+

(
− 1

720
m6 − 1

18

m4

a2
− 11

15

m2

a4
− 16

5a6
+

3

10
ξ
m4

a2
+ 8ξ

m2

a4
+

264

5
ξ

1

a6

− 108

5
ξ2m

2

a4
− 288ξ2 1

a6
+

2592

5
ξ3 1

a6

)
1

s

}
, (5.24)

Gn=9F
H, sing(s)

=
15i

32π4

{
1

s7
+

(
− 1

10
m2 − 28

15a2
+

36

5
ξ

1

a2

)
1

s5

+

(
1

120
m4 +

4

15

m2

a2
+

98

45a4
− 6

5
ξ
m2

a2
− 96

5
ξ

1

a4
+

216

5
ξ2 1

a4

)
1

s3

+

(
− 1

720
m6 − 1

18

m4

a2
− 11

15

m2

a4
− 16

5a6
+

3

10
ξ
m4

a2
+ 8ξ

m2

a4
+

264

5
ξ

1

a6

− 108

5
ξ2m

2

a4
− 288ξ2 1

a6
+

2592

5
ξ3 1

a6

)
1

s

}
, (5.25)

⇒Gn=9
F, frt(s) = 0. (5.26)
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IX. n = 10

Gn=10F
F, sing (s)

=
3i

2π5

{
1

s8
+

(
− 1

12
m2 − 2

a2
+

15

2
ξ

1

a2

)
1

s6

+

(
1

192
m4 +

7

32

m2

a2
+

47

20a4
− 15

16
ξ
m2

a2
− 315

16
ξ

1

a4
+

675

16
ξ2 1

a4

)
1

s4

+

(
− 1

2304
m6 − 3

128

m4

a2
− 203

480

m2

a4
− 3229

1260a6
+

15

128
ξ
m4

a2
+

135

32
ξ
m2

a4

+
609

16
ξ

1

a6
− 675

64
ξ2m

2

a4
− 6075

32
ξ2 1

a6
+

10125

32
ξ3 1

a6

)
1

s2

+

[
− 1

18432
m8 +

(
− 5

1536
+

5

256
ξ

)
m6

a2

+

(
− 109

1536
+

225

256
ξ − 675

256
ξ2

)
m4

a4

+

(
− 761

1152
+

1635

128
ξ − 10125

128
ξ2 +

10125

64
ξ3

)
m2

a6

+

(
−35

16
+

3805

64
ξ − 73575

128
ξ2 +

151875

64
ξ3 − 455625

128
ξ4

)
1

a8

]
ln s̄

+
1

27648

m6

a2
+

(
271

138240
− 5

512
ξ

)
m4

a4

+

(
51601

1451520
− 271

768
ξ +

225

256
ξ2

)
m2

a6

+

(
262349

1209600
− 51601

16128
ξ +

4065

256
ξ2 − 3375

128
ξ3

)
1

a8

}
, (5.27)
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n = 10 (continued)

Gn=10F
H, sing (s)

=
3i

2π5

{
1

s8
+

(
− 1

12
m2 − 2

a2
+

15

2
ξ

1

a2

)
1

s6

+

(
1

192
m4 +

7

32

m2

a2
+

47

20a4
− 15

16
ξ
m2

a2
− 315

16
ξ

1

a4
+

675

16
ξ2 1

a4

)
1

s4

+

(
− 1

2304
m6 − 3

128

m4

a2
− 203

480

m2

a4
− 3229

1260a6
+

15

128
ξ
m4

a2
+

135

32
ξ
m2

a4

+
609

16
ξ

1

a6
− 675

64
ξ2m

2

a4
− 6075

32
ξ2 1

a6
+

10125

32
ξ3 1

a6

)
1

s2

+

[
− 1

18432
m8 +

(
− 5

1536
+

5

256
ξ

)
m6

a2

+

(
− 109

1536
+

225

256
ξ − 675

256
ξ2

)
m4

a4

+

(
− 761

1152
+

1635

128
ξ − 10125

128
ξ2 +

10125

64
ξ3

)
m2

a6

+

(
−35

16
+

3805

64
ξ − 73575

128
ξ2 +

151875

64
ξ3 − 455625

128
ξ4

)
1

a8

]
ln s̄

+
1

3072

m6

a2
+

(
97

6144
− 45

512
ξ

)
m4

a4

+

(
48481

193536
− 1455

512
ξ +

2025

256
ξ2

)
m2

a6

+

(
464981

358400
− 242405

10752
ξ +

65475

512
ξ2 − 30375

128
ξ3

)
1

a8

}
, (5.28)
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n = 10 (continued)

⇒ Gn=10
F, frt(s) =

3i

2π5

{
− m6

3456a2
+

(
− 3823

276480
+

5

64
ξ

)
m4

a4

+

(
− 624013

2903040
+

3823

1536
ξ − 225

32
ξ2

)
m2

a6

+

(
−2091139

1935360
+

624013

32256
ξ − 57345

512
ξ2 +

3375

16
ξ3

)
1

a8

}
.

(5.29)

X. n = 11

Gn=11F
F, sing (s)

=
105i

64π5

{
1

s9
+

(
− 1

14
m2 − 15

7a2
+

55

7
ξ

1

a2

)
1

s7

+

(
1

280
m4 +

4

21

m2

a2
+

13

5a4
− 11

14
ξ
m2

a2
− 440

21
ξ

1

a4
+

605

14
ξ2 1

a4

)
1

s5

+

(
− 1

5040
m6 − 1

72

m4

a2
− 103

315

m2

a4
− 164

63a6
+

11

168
ξ
m4

a2
+

55

18
ξ
m2

a4

+
2266

63
ξ

1

a6
− 605

84
ξ2m

2

a4
− 3025

18
ξ2 1

a6
+

33275

126
ξ3 1

a6

)
1

s3

+

(
1

40320
m8 +

1

504

m6

a2
+

37

630

m4

a4
+

16

21

m2

a6
+

128

35a8

− 11

1008
ξ
m6

a2
− 55

84
ξ
m4

a4
− 814

63
ξ
m2

a6
− 1760

21
ξ

1

a8

+
605

336
ξ2m

4

a4
+

3025

42
ξ2m

2

a6
+

44770

63
ξ2 1

a8

−33275

252
ξ3m

2

a6
− 166375

63
ξ3 1

a8
+

1830125

504
ξ4 1

a8

)
1

s

}
, (5.30)
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n = 11 (continued)

Gn=11F
H, sing (s)

=
105i

64π5

{
1

s9
+

(
− 1

14
m2 − 15

7a2
+

55

7
ξ

1

a2

)
1

s7

+

(
1

280
m4 +

4

21

m2

a2
+

13

5a4
− 11

14
ξ
m2

a2
− 440

21
ξ

1

a4
+

605

14
ξ2 1

a4

)
1

s5

+

(
− 1

5040
m6 − 1

72

m4

a2
− 103

315

m2

a4
− 164

63a6
+

11

168
ξ
m4

a2
+

55

18
ξ
m2

a4

+
2266

63
ξ

1

a6
− 605

84
ξ2m

2

a4
− 3025

18
ξ2 1

a6
+

33275

126
ξ3 1

a6

)
1

s3

+

(
1

40320
m8 +

1

504

m6

a2
+

37

630

m4

a4
+

16

21

m2

a6
+

128

35a8

− 11

1008
ξ
m6

a2
− 55

84
ξ
m4

a4
− 814

63
ξ
m2

a6
− 1760

21
ξ

1

a8

+
605

336
ξ2m

4

a4
+

3025

42
ξ2m

2

a6
+

44770

63
ξ2 1

a8

−33275

252
ξ3m

2

a6
− 166375

63
ξ3 1

a8
+

1830125

504
ξ4 1

a8

)
1

s

}
, (5.31)

⇒ Gn=11
F, frt(s) = 0. (5.32)
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Décanini & Folacci have published expressions for the Hadamard expansion of the

non-vanishing part of the Feynman Green function for a general space-time for n = 2

to n = 6 inclusive [29] [31]. Although the computation of expansions for n > 6 are

possible, the expressions grow greatly in length and complexity and have not been

published explicitly.

Typically, for a general space-time the form of Hadamard expansions published by

Décanini & Folacci involve biscalar functions and are rife with Riemann tensor poly-

nomials. However, the maximal symmetry of AdSn simplifies the task yielding ex-

pressions involving scalar functions only and reducing the possible types of Riemann

tensor polynomials significantly.

The results for the non-vanishing part of the Hadamard expansion of the Feynman

Green function for n = 2 to n = 6 above, (equations (5.4), (5.7), (5.10), (5.13) and

(5.16)) agree with the corresponding expansions published by Décanini & Folacci

[31].

It is crucial that the short-distance divergences in the counterpart expressions gener-

ated in the first two parts of the code do indeed cancel for each number of space-time

dimensions. This requirement ensures that given the definition (5.1), 〈Φ2(x)〉ren is

finite and real and can therefore be associated with some physical quantity. It is

particularly important to guarantee finiteness and reality for 〈Φ2(x)〉ren as its deter-

mination acts as a basic template for the calculation all physical observables in a

qft.

Careful examination of these results reveals that for n odd with n > 2, the expres-

sions for the expansion of the non-vanishing part of the Feynman Green function

generated in parts 1 and 2 of the code are entirely singular and more importantly,

identical. For n even, the expressions are seen to differ by finite terms only.
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Returning to the final part of the code:

� Part 4 computes expressions for 〈Φ2(x)〉ren. Given that GF(s) can be written as

the sum

GF(s) = GF, reg(s) +GF, sing(s), (5.33)

using definition (5.1), and the definition of frts (5.2), the computation of 〈Φ2(x)〉ren

then boils down to

〈Φ2(x)〉ren = −i lim
s→0

GF, reg(s), (5.34)

for n odd; and

〈Φ2(x)〉ren = −i
{

lim
s→0

GF, reg(s) +GF, frt(s)
}
, (5.35)

for all n even.

Expressions for (5.34) are therefore computed using (4.154) for n odd. Similarly,

for n = 2 and n even with n > 2, expressions for (5.35) are generated using (4.146)

and (4.151) respectively combined with the finite renormalisation terms GF, frt(s)

computed in part 3 of the code.

The results of part 4 follow overleaf.
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XI. 〈Φ2〉ren for n = 2 to n = 9

〈Φ2〉n=2
ren = − 1

2π
Υ(µ,M, a), (5.36)

〈Φ2〉n=3
ren = − 1

4πa
µ, (5.37)

〈Φ2〉n=4
ren =

1

8π2a2

{(
µ2 − 1

4

)
Υ(µ,M, a)− 1

2
µ2 − 1

24

}
, (5.38)

〈Φ2〉n=5
ren =

1

24π2a3

{
µ3 − µ

}
, (5.39)

〈Φ2〉n=6
ren = − 1

64π3a4

{(
µ4 − 5

2
µ2 +

9

16

)
Υ(µ,M, a) (5.40)

− 3

4
µ4 +

29

24
µ2 +

107

960

}
,

〈Φ2〉n=7
ren = − 1

240π3a5

{
µ5 − 5µ3 + 4µ

}
, (5.41)

〈Φ2〉n=8
ren =

1

768π4a6

{(
µ6 − 35

4
µ4 +

259

16
µ2 − 225

64

)
Υ(µ,M, a)

−11

12
µ6 +

313

48
µ4 − 2471

320
µ2 − 11969

16128

}
, (5.42)

〈Φ2〉n=9
ren =

1

3360π4a7

{
µ7 − 14µ5 + 49µ3 − 36µ

}
, (5.43)
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XII. 〈Φ2〉ren for n = 10 to n = 11

〈Φ2〉n=10
ren = − 1

12288π5a8

×
{(

µ8 − 21µ6 +
987

8
µ4 − 3229

16
µ2 +

11025

256

)
Υ(µ,M, a)

−25

24
µ8 +

461

24
µ6 − 87983

960
µ4 +

3854941

40320
µ2 +

288563

30720

}
,(5.44)

〈Φ2〉n=11
ren = − 1

60480π5a9

{
µ9 − 30µ7 + 273µ5 − 820µ3 + 576µ

}
, (5.45)

where for even n,

Υ(µ,M, a) := ψ
(

1
2

+ µ
)

+ γ − 1

2
ln 2− ln ā, (5.46)

with ā the dimensionless version of the radius of curvature resulting from the mass

renormalisation scale M in (4.45).

Overall, the expressions for 〈Φ2〉ren for n = 2 to n = 11 inclusive are essentially

even or odd-powered polynomials in µ of leading-order n− 2. Physically interesting

properties of these results include the fact that 〈Φ2〉ren on AdSn is constant through-

out the space-time. Moreover, 〈Φ2〉ren can be negative. Additionally, an immediate

consequence of the Υ factor present in expressions for even n is that the scalar field

fluctuations in AdSn of even n are non-zero for µ = 0.

Expressions for 〈Φ2〉ren in AdSn have already been computed using zeta-function reg-

ularisation methods by Caldarelli in [17], the results of which agree with the results

(5.36) – (5.45) inclusive, up to the addition of a constant. The Euler-Mascheroni
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constant γ and a term in ln 2 is present in the expressions of 〈Φ2〉ren for even n

(equations (5.36), (5.38), (5.40), (5.42) and (5.44)). However these terms do not

appear in Caldarelli’s expressions. This difference may be interpreted as being due

to the freedom in the choice of renormalisation mass scale. Therefore Caldarelli’s

effective choice of scale MC is related to that arising naturally from the Hadamard

renormalisation of the Feynman Green function, M by

MC =
√

2e−γM. (5.47)

It follows that the appearance of such constants in expressions for even n is not a

death-knell for validating the Hadamard renormalisation (or zeta-function regulari-

sation for that matter) as these terms can be absorbed via a redefinition of M .

The results (5.36) – (5.45) are plotted below in figures 5.1 and 5.2 as functions of µ.

To simplify the comparison of behaviour for different n, the radius of curvature of

AdSn, a has been set to unity and the renormalisation mass scale is fixed at

M =
eγ√

2
, (5.48)

so that the only remaining term in the Υ factor in equations (5.36), (5.38), (5.40),

(5.42) and (5.44) is the (µ-dependent) psi function.

Figure 5.1 shows for different n, how the probability density of scalar fluctuations in

the vacuum varies with the mass-coupling configuration, for relatively ‘low’ values of

0 ≤ µ ≤ 4.5. Each coloured curve in the plot describes this behaviour for a specific

n. The curves associated with consecutive pairs of consecutive numbers of space-

time dimensions alternate as to whether they are ultimately decreasing or increasing

functions of µ.

Similarly, figure 5.2 displays the same relationships over a slightly extended range of
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0 ≤ µ ≤ 7.5. Although the fate of the curves for n = 2 to n = 11 (i.e. their respective

polarity as µ increases) has already been determined by µ = 4.5, the extended range

in figure 5.2 reflects the rapidity of the predominance of the leading-order term as

µ increases.
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Figure 5.1 – 〈Φ2〉ren as a function of 0 ≤ µ ≤ 4.5 for varying n with a = 1, M =
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In the case of the results for n even, the plots in figures 5.3 – 5.7 inclusive examine

how the behaviour of 〈Φ2〉ren is influenced for varying values of µ by different values

of the mass renormalisation scale M(j) =
eγ√

2
10j−6 with j = −5,−4, . . . , 5 and

a = 1.

The behaviour for n = 2 is unique, and can be expected from the form of the

corresponding expression (5.36). In this situation,

〈Φ2〉n=2
ren ∝ −

[
ψ
(
µ+ 1

2

)
− (j − 6) ln 10

]
. (5.49)

The parallel arrangement of curves can therefore be understood as a straightforward

addition of a constant. Each curve above (or below) the j = 0 curve reflects succes-

sive increments (or decrements) to the value of j. The shape of the curves visible

in the plot are due to the psi function being asymptotically logarithmic (see e.g.

§6.3.18 [2]).

The dependence of 〈Φ2(x)〉ren for n even with n > 2 on M is shown in figures 5.4

– 5.7 inclusive. These plots share a common behaviour, namely a rapid ‘fanning’

following a stretch of ‘hugging’ the 〈Φ2〉ren = 0 axis. The ‘idle’ phase, corresponds

to the passage of the curves through their zeroes. The growth phase follows once

the last zero is passed. For increasing values of n therefore, the wrapping is increas-

ingly tighter round the 〈Φ2〉ren = 0 axis, the initiation of the fanning is increasingly

delayed, increasingly sudden and displaying a more rapid growth to infinity.

For n = 2p + 2, p = 1, 2, . . ., the j = 0 curve will tend to (−1)p+1∞ as µ increases.

Consequently, the curves corresponding to j ≷ 0 will tend to ±(−1)p∞.



148 Chapter 5 – Hadamard renormalisation

5.2 Renormalisation of the stress-energy tensor

5.2.1 Introduction

The defining mathematical object of a qft on a curved space-time is the renor-

malised expectation value of its stress-energy tensor. When evaluated with respect

to the vacuum state,

〈Tµν(x)〉ren := 〈0|Tµν(x) |0〉ren . (5.50)

This object encapsulates all the information relating to the matter content of such

theories, encoding the distribution and flows of energy of the associated fields prop-

agating on the background space-time. By extension, 〈Tµν(x)〉ren also provides a

local physical description of the matter fields at a given event x [36]. Be it global

or local, as 〈Tµν(x)〉ren is computed from the Green function solution to (4.4), its

physical description is influenced by the background geometry via the field equation

(1.3). This influence is inevitable due to the presence of the background metric in

the definition of the Laplace-Beltrami operator (3.18) and additionally through any

non-minimal coupling (ξ 6= 0) present between the field and the space-time.

The renormalised expectation value of the stress-energy tensor is constructed from

its classical counterpart. For a free classical scalar field Φ(x), the stress-energy tensor

Tµν(x) can be derived from the functional differentiation of the action S[Φ, gµν ] (3.1)

with respect to the background metric (see e.g. [11]) through the definition,

Tµν :=
2√
−g

δ

δgµν
S[Φ, gµν ], (5.51)
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2
10j−6

resulting in the expression

Tµν = (1− 2ξ)Φ;µΦ;ν +

(
2ξ − 1

2

)
gµνg

ρσΦ;ρΦ;σ − 2ξΦΦ;µν + 2ξgµνΦ�Φ

+ξ

(
Rµν −

1

2
gµνR

)
Φ2 − 1

2
gµνm

2Φ2. (5.52)

It is interesting to note, as Fulling remarks [43] for the n = 4 case, that given the

Lagragian density L[Φ, gµν ] associated with the action S[Φ, gµν ] (3.1), in flat-space

(5.52) is compatible with the definitions of the canonical stress-energy tensor and

the ‘new-improved stress-energy tensor’ [18],

TM4

µν := Φ,µΦ,ν − gµνL, ξ = 0, (5.53)

T̄M4

µν := TM4

µν − ξ
(
∂µ∂ν − ηµν�

)
Φ2, ξ = ξc, (5.54)

respectively. This observation applies for all n ≥ 2.

The procedure for computing expressions of the Hadamard renormalised vacuum
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expectation value of the stress-energy tensor is very similar to that employed in the

case of the quadratic field fluctuations. Practically, the difference for 〈Tµν(x)〉ren lies

in the action of a second-order linear differential operator,

Tµν(x, x
′) = (1− 2ξ)gν

ν′∇µ∇ν′ +

(
2ξ − 1

2

)
gµνg

ρσ′∇ρ∇σ′ − 2ξgµ
µ′gν

ν′∇µ′∇ν′

+2ξgµν∇ρ∇ρ + ξ

(
Rµν −

1

2
gµνR

)
− 1

2
gµνm

2, (5.55)

to be applied to the Green function before renormalisation, and hence its point-split

form (see e.g. [22] for a sketch of its derivation).

For a general space-time this leads to the definition [31]

〈Tµν(x)〉ren := ν(n) lim
x′→x

{
Tµν(x, x

′)W (x, x′)

}
+ Θ̃µν(x). (5.56)

The presence of the tensor Θ̃µν(x) is due to an ambiguity in the definition of

〈Tµν(x)〉ren that is a general characteristic of qfts on curved space-times. This

issue is discussed later in this section.

Recalling (4.156), the Hadamard function W (x, x′) takes the form

W (x, x′) = − i

ν(n)

[
GF(x, x′)−GH, sing(x, x

′)
]
. (5.57)

It follows that given (5.55) and (5.56), the evaluation of 〈Tµν(x)〉ren will require ex-

pressions for the formal Laurent series expansions of GF, reg(x, x
′), GF, sing(x, x

′), and

GH, sing(x, x
′) truncated to second order in s inclusive. These truncated expansions

are respectively denoted by GII
F,reg(x, x

′), GII
F,sing(x, x

′) and GII
H,sing(x, x

′) .
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From (5.56), Décanini & Folacci [31] outline the derivation of the convenient form,

〈Tµν(x)〉ren = ν(n)

{
−wµν +

1

2
(1− 2ξ)w;µν

+
1

2

(
2ξ − 1

2

)
gµν�w + ξRµνw − gµνv1

}
+ Θµν .

(5.58)

Equation (5.58) simplifies the computation of 〈Tµν(x)〉ren as it only relies on the five

following coincidence limits of Hadamard functions, coefficients and their derivatives

w(x) = lim
x′→x

W (x, x′), (5.59)

wµν(x) := lim
x′→x

W (x, x′);µν , (5.60)

v0(x) = lim
x′→x

V0(x, x′), (5.61)

v0µν(x) := lim
x′→x

V0(x, x′);µν , (5.62)

v1(x) = lim
x′→x

V1(x, x′), (5.63)

noticing from (5.57) that in fact, in the case of (5.59),

w(x) = − i

ν(n)
〈Φ2(x)〉ren. (5.64)

The maximal symmetry of AdSn makes life easier still as (5.36 - 5.45) state that w

is independent of x, resulting in their derivatives vanishing from (5.58). This gives

〈Tµν(x)〉ren = ν(n)
[
−wµν + ξRµνw − gµνv1

]
+ Θµν , (5.65)

remembering from (4.159a) that for n odd, the term in v1 will disappear.



154 Chapter 5 – Hadamard renormalisation

5.2.2 Second-order expansions of GF(s)

I. n = 2

The second-order expansion in s of Gn=2
F (s) involves the k = 0 and k = 1 terms of

the summation in (4.131). Using (4.135), these terms are,

Zn=2
log (µ, 0, z) = π − 2i

[
ψ
(

1
2

+ µ
)

+ γ +
1

2
ln z

]
, (5.66)

Zn=2
log (µ, 1, z) = π − 2i

[
ψ
(

1
2

+ µ
)

+ γ +
1
4

+ µ2

1
4
− µ2

+
1

2
ln z

]
.

(5.67)

As s→ 0,

z → − s2

4a2
+O

(
s4
)
, (5.68)

ln z → 2 ln s̄− 2 ln 2− 2 ln ā− iπ +
s2

12a2
+O

(
s4
)
. (5.69)

The truncation of the expansion of the Feynman Green function to second order in

s is therefore given by,

Gn=2 II
F (s) = − i

2π

{[
ψ
(

1
2

+ µ
)

+ γ + ln s̄− ln 2− ln ā+
s2

24a2

](
1− s2

4a2

)

−
( 1

4
+ µ2

1
4
− µ2

)
s2

4a2
− s2

48a2

}
.

(5.70)
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II. n > 2, n even

To expand Gn=2p+2
F (s) to second order in s, it is convenient to split the expression

(4.136) into a part containing the logarithmically divergent terms and another con-

taining the formal Laurent series, and to examine them separately first. These parts

are respectively defined as

Gn=2p+2
F, log (z) :=

1

(4π)p+1 a2p

(
1
2

+ µ
)
p

(
1
2
− µ

)
p

×
+∞∑
k=0

(
p+ 1

2
+ µ
)
k

(
p+ 1

2
− µ

)
k

k! (p+ k)!
Zn=2p+2
log (µ, k, z) zk, (5.71)

and

Gn=2p+2
F, fls (z) =

1

(4π)p+1 a2p
Zn=2p+2

fls (µ, k, z) . (5.72)

For the summation present in (5.71), only the k = 0 and k = 1 terms contribute

to a second-order expansion in s. From (4.139) and (4.140), the Zn=2p+2
log (µ, k, z) in

these terms are

Zn=2p+2
log (µ, 0, z) = π − 2i

[
ψ
(

1
2

+ µ
)

+ γ − 1

2

p∑
l=1

1

l
+

1

2
ln z

+
1

2

p−1∑
l=0

(
1

1
2

+ µ+ l
+

1
1
2
− µ+ l

)]
, (5.73)

and

Zn=2p+2
log (µ, 1, z) = Zn=2p+2

log (µ, 0, z)− L̃, (5.74)
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where

L̃ := i

(
1

1
2

+ µ+ p
+

1
1
2
− µ+ p

− 1

p+ 1
− 2

)
. (5.75)

The logarithmic part is therefore given by,

Gn=2p+2
F, log =

1

(4π)p+1a2p

(
1
2

+ µ
)
p

(
1
2
− µ

)
p

×
(p+ 1)Zn=2p+2

log (µ, 0, z) + Zn=2p+2
log (µ, 1, z) z

(p+ 1)!
. (5.76)

Defining the second-order truncation

Zn=2p+2 II
log (µ, 0, z) := Zn=2p+2

log (µ, 0, z)−O(s4), s→ 0, (5.77)

whilst being careful to note that the cancellation of terms in π arising from (5.68)

and (5.69) gives,

Zn=2p+2
log (µ, 0, z) = −2i

[
ψ
(

1
2

+ µ
)

+ γ +
1

2

p−1∑
l=0

(
1

1
2

+ µ+ l
+

1
1
2
− µ+ l

)

−1

2

p∑
l=1

1

l
+

1

2
ln s̄− ln 2− ln ā+

s2

4a2

]
, s→ 0, (5.78)

leads to

Zn=2p+2 II
log (µ, 1, z) = Zn=2p+2 II

log (µ, 0, z)

[
s2

4a2
− s4

96a4

]
− L̃ s2

4a2
. (5.79)

Recalling (4.138), the part (5.72) containing the Laurent series, Zn=2p+2
fls is a finite

sum whose kth summands (k = 0, 1, . . . , p−1) are respectively formal Laurent series

of leading order s−2p, s2−2p, . . . , s2. Therefore

Zn=2p+2 II
fls := Zn=2p+2

fls −O(s4), s→ 0. (5.80)
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Given (5.76) and (5.80), the truncation of the expansion of the Feynman Green

function to second order in s is therefore given by,

Gn=2p+2 II
F (s) =

1

(4π)p+1 a2p

{(
1
2

+ µ
)
p

(
1
2
− µ

)
p

(p+ 1)!

[
p+ 1 +

s2

4a2

(
1− s2

24a2

)]

× Zn=2p+2 II
log (µ, 0, z)− L̃ s2

4a2
+ Zn=2p+2 II

fls

}
.(5.81)

III. n > 2, n odd

To expand Gn=2p+1
F (s) in (4.141) to second order in s, recall that (4.142), Zn=2p+1

fls is

an infinite sum whose kth summands (k = 0, 1, . . .) are respectively formal Laurent

series of leading order s1−2p, s3−2p, . . .. Therefore,

Zn=2p+1 II
fls := Zn=2p+1

fls −O(s3), s→ 0, k = 0, 1, . . . p, (5.82)

where the optional condition on k sets an upper bound on the sum.

Given (5.82), the truncation of the expansion of the Feynman Green function to

second order in s is therefore given by,

Gn=2p+1 II
F (z)

=
(−1)p

(4π)p+
1
2a2p−1

{
iπ

Γ
(
p+ 1

2

) (µ)p (−µ)p
µ

F

[
p+ µ, p− µ; p+

1

2
; z

]
+ Zn=2p+1 II

fls (µ, k, z)

}
.

(5.83)

5.2.3 The validity of 〈Tµν(x)〉ren

The algebraic expressions generated for 〈Tµν(x)〉ren (5.98 – 5.107) are finite – a

promising start towards representing any physically acceptable matter content.



158 Chapter 5 – Hadamard renormalisation

However, there was some debate in the infancy of qfts on curved space-times as

to how to rigorously stipulate what makes for a physically reasonable 〈Tµν(x)〉ren.

The viewpoint that is now widely accepted is that 〈Tµν(x)〉ren must satisfy a set of

axioms established by Wald [75].

� 1. Conservation (5.84)

Given the semi-classical Einstein equations (1.3), and the fact that the Einstein

tensor Gµν(x) is covariantly divergenceless, it is logical that a physically sensible

〈Tµν(x)〉ren should exhibit divergencelessness too.

� 2. Causality (5.85)

In the case of space-times that are asymptotically static in the remote past and

remote future of x, the value of 〈Tµν(x)〉ren (with respect to a fixed in-state) should

be immune to metric disturbances outside its causal past J −(x) and (with respect

to a fixed out-state) powerless to influence events outside its causal future J +(x).

Since AdSn can be managed by way of the reflective boundary conditions (2.23)

and moving to its covering space, the above requirement is satisfied. Moreover,

AdSn is maximally symmetric and therefore its metric is static.
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� 3. Finite orthogonal matrix elements (5.86)

Despite the unrenormalised stress-energy tensor Tµν(x) being a formal object, it

can be shown [75] that it gives finite results when used to compute matrix elements

between orthogonal states, i.e.

〈ψ′|Tµν(x) |ψ〉 ∈ R⇔ 〈ψ′|ψ〉 = 0, (5.87)

which appears to be one way of literally ‘making some sense’ of Tµν(x) without

renormalising it.

Nevertheless, since this type of computation does not feature in this research, it

is a redundant criterion.

� 4. Normal-ordering on Mn (5.88)

This is the requirement that 〈Tµν(x)〉ren computed on Minkowski space should

coincide with the normal-ordered vacuum expectation value of the stress-energy

tensor,

〈Tµν(x)〉Mn

ren = : 〈Tµν(x)〉 : . (5.89)

� Uniqueness theorem

Finally, there is a fundamental consequence of Wald’s axiomatic approach [75]

which in turn serves as a defining feature of qfts on curved space-times. In

particular, given two renormalised vacuum expectation values of the stress-energy

tensor, 〈Tµν(x)〉ren A and 〈Tµν(x)〉ren B that both satisfy axioms 1 – 3 above, then

it follows that

Θµν = 〈Tµν(x)〉ren A − 〈Tµν(x)〉ren B, (5.90)

where Θµν is a local, conserved purely geometrical tensor.

Thus (5.90) implies a 〈Tµν(x)〉ren that satisfies (5.84 – 5.86) is unique, that is, it is
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the only object that will fulfil Wald’s axioms. However, a caveat follows naturally

from (5.90) too, namely that the uniqueness of 〈Tµν(x)〉ren is only guaranteed up to

the addition of a local conserved purely geometrical tensor Θµν(x).

From this it follows that if different renormalisation schemes are applied to the same

curved space-time qft yielding different results 〈Tµν(x)〉ren A and 〈Tµν(x)〉ren B, and

if version A satisfies Wald’s axioms, then version B will only satisfy Wald’s axioms

if both versions satisfy (5.90). In this way, Wald’s axioms act therefore as criteria

for determining the suitability and uniqueness of the renormalisation prescription.

This general ambiguity manifests itself very specifically in Hadamard renormalisa-

tion. Firstly the direct computation of 〈Tµν(x)〉ren using the Hadamard recursion

relations for Wl is not possible as they do not possess a boundary condition.

Secondly, the ambiguity is revealed by the freedom of choice that exists for the mass

renormalisation scale M (for even n). This is noticeable from the results for Θµν(x)

(5.108 – 5.111) which are non-zero only for even n. Therefore to rid the Hadamard

〈Tµν(x)〉ren of these ambiguities, the W0 coefficient would need to be fixed, as would

M .

This link between the ambiguity of M and the indeterminacy of W is explained

clearly by Décanini & Folacci [31]. Following their discussion, for GH(x, x′) to remain

sensible for even n then (4.156) must be equivalent to

GH(σ) = iν(n)
{
U(σ)σ1−n

2 + V (σ)
[
ln
(
M2
)

+ lnσ
]

+W (σ)− V (σ) ln
(
M2
)}
.

(5.91)

In other words, introducing M to render the even-n logarithmic argument dimen-

sionless,

σ → σ̄ ⇒ W → W + 2V lnM, (5.92)

especially since W is not uniquely determined.
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Furthermore, the connection between this ‘mass renormalisation ambiguity’ asso-

ciated with Hadamard renormalisation and the general statement of ambiguity by

(5.90) is now apparent by considering that (5.56) and (5.92) result in the equality

Θµν = −ν(n) lim
x′→x

{
Tµν(x, x

′)V (x, x′) ln
(
M2
)}

. (5.93)

The definitions (5.59 – 5.63) and (5.92) mean that

w → w − v0 ln
(
M2
)
, (5.94)

wµν → wµν −
(
v0µν + gµνv1

)
ln
(
M2
)
. (5.95)

It follows naturally therefore that a convenient formula

Θµν = −ν(n)

{
−
(
v0µν + gµνv1

)
+

1

2
(1− 2ξ)v0;µν

+
1

2

(
2ξ − 1

2

)
gµν�v0 + ξRµνv0

}
ln
(
M2
)
, (5.96)

akin to (5.56) can then be obtained for Θµν , which also benefits from the maximal

symmetry of AdSn, resulting in the formula

Θµν = ν(n)
[(
v0µν + gµνv1

)
− ξRµνv0

]
ln
(
M2
)
. (5.97)
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5.2.4 Computation of 〈Tµν(x)〉ren

Another program has been written in maple to compute expressions for 〈Tµν(x)〉ren

for n = 2 to n = 11 inclusive. It has a similar structure to the code discussed in

section 5.1.1 used to generate the expressions for 〈Φ2(x)〉ren (5.36 – 5.45), and it too

can be easily extended to generate expressions for n > 11 if necessary.

The code used to compute expressions for 〈Tµν(x)〉ren differs from the previous code

due to the presence of the differential operator T µν(x, x
′) (5.55) in (5.56), and the

consequent requirement to compute the quantities in (5.57) to second order in s.

The code consists of four parts:

� Part 1 computes expansions of the Feynman Green function truncated to second

order, GII
F (s) based on the results in section 5.2.2.

� Part 2 computes expansions of the singular part of the Hadamard form of the

Feynman Green function truncated to second order, GII
H,sing(s). As before, the

recurrence relations (4.164) and (4.165) are used to obtain expansions of the U(s)

and V (s) respectively. With a knowledge of the Hadamard coefficients generated

in the process of constructing these expansions, the quantities v0, v0µν , and v1, in

equations (5.61 – 5.63) are also computed at this stage in order to assemble the

ingredients required for the computation of Θµν(x) later.

� Part 3 performs the subtraction (5.57) of the second-order expressions generated

in the preceding parts of the code.

� In part 4, the objects w and wµν are computed from (5.59) and (5.60). Finally,

expressions for 〈Tµν(x)〉ren and Θµν(x) are generated using (5.65) and (5.97).

The results of this code follow overleaf.
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I. 〈Tµν〉ren for n = 2 to n = 7

〈Tµν〉n=2
ren = − 1

8πa2

{[
−2µ2 − 4ξ +

1

2

]
Υ(µ,M, a) + µ2 +

1

12

}
gµν + Θn=2

µν . (5.98)

〈Tµν〉n=3
ren = − 1

12πa3

{
µ3 + (6ξ − 1)µ

}
gµν . (5.99)

〈Tµν〉n=4
ren =

3

128π2a4

{[
−4

3
µ4 −

(
16ξ − 10

3

)
µ2 + 4ξ − 3

4

]
Υ(µ,M, a)

+ µ4 +

(
8ξ − 29

18

)
µ2 +

2

3
ξ − 107

720

}
gµν + Θn=4

µν . (5.100)

〈Tµν〉n=5
ren =

1

120π2a5

{
µ5 + (20ξ − 5)µ3 − (20ξ − 4)µ

}
gµν . (5.101)

〈Tµν〉n=6
ren = − 11

4608π3a6

{[
−12

11
µ6 −

(
360

11
ξ − 105

11

)
µ4

+

(
900

11
ξ − 777

44

)
µ2 − 405

22
ξ +

675

176

]
Υ(µ,M, a)

+ µ6 +

(
270

11
ξ − 313

44

)
µ4 −

(
435

11
ξ − 7413

880

)
µ2

− 321

88
ξ +

11969

14784

}
gµν + Θn=6

µν . (5.102)

〈Tµν〉n=7
ren = − 1

1680π3a7

{
µ7 + (42ξ − 14)µ5 − (210ξ − 49)µ3 + (168ξ − 36)µ

}
gµν .

(5.103)
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II. 〈Tµν〉ren for n = 8 & n = 9

〈Tµν〉n=8
ren =

25

147456π4a8

×
{[
−24

25
µ8 −

(
1344

25
ξ − 504

25

)
µ6

+

(
2352

5
ξ − 2961

25

)
µ4 −

(
21756

25
ξ − 9687

50

)
µ2 + 189ξ − 1323

32

]

× Υ(µ,M, a)

+ µ8 +

(
1232

25
ξ − 461

25

)
µ6 −

(
8764

25
ξ − 87983

1000

)
µ4

+

(
51891

125
ξ − 3854941

42000

)
µ2 +

11969

300
ξ − 288563

32000

}
gµν + Θn=8

µν .

(5.104)

〈Tµν〉n=9
ren =

1

30240π4a9

×
{
µ9 + (72ξ − 30)µ7 − (1008ξ − 273)µ5

+ (3528ξ − 820)µ3 (2592ξ − 576)µ

}
gµν . (5.105)
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III. 〈Tµν〉ren for n = 10 & n = 11

〈Tµν〉n=10
ren = − 137

14745600π5a10

×
{[
−120

137
µ10 −

(
10800

137
ξ − 4950

137

)
µ8 +

(
226800

137
ξ − 65835

137

)
µ6

−
(

1332450

137
ξ − 1296075

548

)
µ4 +

(
2179575

137
ξ − 15858315

4384

)
µ2

− 7441875

2192
ξ +

13395375

17536

]
Υ(µ,M, a) + µ10

+

(
11250

137
ξ − 20605

548

)
µ8 −

(
207450

137
ξ − 481133

1096

)
µ6

+

(
3959235

548
ξ − 161437505

92064

)
µ4 −

(
57824115

7672
ξ − 418944187

245504

)
µ2

− 12985335

17536
ξ +

262292845

1543168

}
gµν + Θn=10

µν . (5.106)

〈Tµν〉n=11
ren = − 1

665280π5a11

×
{
µ11 + (110ξ − 55)µ9 − (3300ξ − 1023)µ7

+ (30030ξ − 7645)µ5 − (90200ξ − 21076)µ3

+ (63360ξ − 14400)µ

}
gµν , (5.107)

where for even n, Υ(µ,M, a) is given by (5.46).
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The expressions for 〈Tµν〉ren for n = 3 to n = 11 inclusive (5.99 – 5.107) are even or

odd-powered polynomials in µ of leading-order n, with an additional linear depen-

dence on ξ.

Furthermore, these polynomials are proportional to the metric. It follows that

〈Tµν〉ren is conserved, which satisfies the remaining criterion (5.84) required to ensure

its uniqueness.

As in the computation of 〈Φ2〉ren, expressions for 〈Tµν〉ren in AdSn have already been

computed using zeta-function regularisation methods by Caldarelli, the results of

which corroborate those here bearing in mind (5.47). The simplifications made in

the case of the plots for 〈Φ2〉ren, namely that a = 1 and M =
eγ√

2
also apply to the

plots below.

The results (5.98 – 5.107) are plotted below in figure 5.8 as functions of µ. Since

〈Tµν〉ren depends on ξ as well as µ, ξ has been fixed (at ξ = 0) in order to allow

an effective comparison of profiles. As before in the case of the plots of 〈Φ2〉ren in

figures 5.1 and 5.2, each coloured curve in figure 5.8 describes how the stress-energy

varies with the mass-coupling configuration for a distinct value of n.

The distinction between profiles for even n and odd n is clear from this plot. Profiles

for even n all decrease with increasing µ, whereas profiles for odd n alternate with

increasing values of n as to whether they are ultimately increasing or decreasing

functions of µ. In addition, profiles for even n have a slower rate of change with

respect to µ. From the expressions for even n, it can be understood that the descent

of their profiles is slowed by the ψ
(

1
2

+ µ
)
-term present in Υ(µ,M, a). Therefore,

the profiles for even n are seen to occupy the right-hand side of the plot. The profiles

for odd n exhibit rapid change with respect to µ and appear bunched towards the

left-hand side of the plot.
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In general, the order of final departure of each curve from the µ axis corresponds

to increasing values of n. As the curves depict polynomials in µ, it follows that

prior to their departure from the µ axis, they will have criss-crossed the the axis

according to the function’s number of zeroes. Figures 5.9 – 5.18 respectively display

-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20

n
−

1
〈T

ν
ν
〉 re

n

µ

n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9
n = 10
n = 11

Figure 5.8 – n−1〈Tν
ν〉ren as a function of µ for ξ = 0 and varying n with a = 1 and M =

eγ√
2

the behaviour of each curve in figure 5.8 separately and now with ξ varying. These

surface plots share a common footprint defined by the fixed ranges µ ∈ [0, 7.5] and

ξ ∈ [−0.25, 0.25]. The order of departure from the n−1〈Tνν〉ren = 0 plane determines

the range of values covered by the vertical axis in the surface plots. Consequently,

absolute values of 〈Tνν〉ren are progressively smaller with increasing values of n.

Conversely, surface plots for odd n show increasingly rapid growth with increasing n

and this is reflected by the much larger ranges of values available on the n−1〈Tνν〉ren

axis.

The influence of ξ in the expressions (5.98) – (5.107) is particularly visible by the

intersection of the plot’s surface with the µ = 7.5 plane, revealing the linear depen-

dence on µ. For the ranges of values chosen, this dependence appears to strengthen

with increasing n. Finally at lower values of µ, each plot seems to start off fairly
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‘level’ (in the sense of its degree of parallelism with a constant 〈Tνν〉ren-planes), de-

scending or ascending as µ increases, but also twisting as it does (and increasingly

so with increasing n). The surface plots from about n = 9 upwards towards the

ξ = −0.25 plane reveal regions of the surface whose dependence on µ differs in sign

to that of higher values of ξ. From the point of view of figure 5.8, this is just a

statement of the fact that the location of zeroes of the polynomials in µ depend on

ξ.
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0.00

1 2
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n

ξ
µ

1 2
〈T

ν
ν
〉 re

n

Figure 5.9 – 1
2 〈Tν

ν〉ren as a function of µ and ξ for n = 2 with a = 1 and M =
eγ√

2
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Figure 5.10 – 1
3 〈Tν

ν〉ren as a function of µ and ξ for n = 3 with a = 1
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Figure 5.11 – 1
4 〈Tν

ν〉ren as a function of µ and ξ for n = 4 with a = 1 and M =
eγ√

2
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Figure 5.12 – 1
5 〈Tν

ν〉ren as a function of µ and ξ for n = 5 with a = 1
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Figure 5.13 – 1
6 〈Tν

ν〉ren as a function of µ and ξ for n = 6 with a = 1 and M =
eγ√
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Figure 5.14 – 1
7 〈Tν

ν〉ren as a function of µ and ξ for n = 7 with a = 1
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Figure 5.15 – 1
8 〈Tν

ν〉ren as a function of µ and ξ for n = 8 with M =
eγ√
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Figure 5.16 – 1
9 〈Tν

ν〉ren as a function of µ and ξ for n = 9 with a = 1
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Figure 5.17 – 〈Tνν〉ren as a function of µ and ξ for n = 10 with a = 1 and M =
eγ√
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Figure 5.18 – 1
11 〈Tν

ν〉ren as a function of µ and ξ for n = 11 with a = 1

Finally, figure 5.19 shows a plot of 1
4
〈Tνν〉ren as a function of µ for a massive,

conformally-coupled field for n = 4 and with varying M . The pattern of behaviour

is qualitatively identical to the description given for the plots of 〈Φ2〉ren in figures

5.3 – 5.7.
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Figure 5.19 – 1
4 〈Tν

ν〉ren as a function of µ for ξ = 1
6 , n = 4, a = 1 with M(j) =

eγ√
2

10j−6
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IV. Θµν for n = 2, 4, 6, 8 & 10

From (5.97), results for the geometric tensor, Θµν are listed below.

Θn=2
µν = − 1

8πa2

{
µ2 + 2ξ − 1

4

}(
lnM2

)
gµν . (5.108)

Θn=4
µν =

1

64π2a4

{
µ4 +

(
12ξ − 5

2

)
µ2 − 3ξ +

9

16

}(
lnM2

)
gµν . (5.109)

Θn=6
µν = − 1

768π3a6

{
µ6 +

(
30ξ − 35

4

)
µ4 +

(
−75ξ +

259

16

)
µ2

+
135

8
ξ − 225

64

}(
lnM2

)
gµν .

Θn=8
µν =

1

12288π4a8

×
{
µ8 + (56ξ − 21)µ6 +

(
−490ξ +

987

8

)
µ4 +

(
1813

2
ξ − 3229

16

)
µ2

− 1575

8
ξ +

11025

256

}(
lnM2

)
gµν . (5.110)

Θn=10
µν = − 1

245760π5a10

×
{
µ10 +

(
90ξ − 165

4

)
µ8 +

(
−1890ξ +

4389

8

)
µ6

+

(
44415

4
ξ − 86405

32

)
µ4 +

(
−145305

8
ξ +

1057221

256

)
µ2

+
496125

128
ξ − 893025

1024

}(
lnM2

)
gµν . (5.111)
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V. 〈Tmc µ
µ〉ren for n = 2 to n = 11

Finally, results are given for the trace anomaly acquired through renormalisation for

a conformally-invariant scalar field in even n.

〈Tmc µ
µ〉n=2

ren = − 1

12a2π
. (5.112)

〈Tmc µ
µ〉n=3

ren = 0. (5.113)

〈Tmc µ
µ〉n=4

ren = − 1

240a4π2
. (5.114)

〈Tmc µ
µ〉n=5

ren = 0. (5.115)

〈Tmc µ
µ〉n=6

ren = − 5

4032a6π3
. (5.116)

〈Tmc µ
µ〉n=7

ren = 0. (5.117)

〈Tmc µ
µ〉n=8

ren = − 23

34560a8π4
. (5.118)

〈Tmc µ
µ〉n=9

ren = 0. (5.119)

〈Tmc µ
µ〉n=10

ren = − 263

506880a10π5
. (5.120)

〈Tmc µ
µ〉n=11

ren = 0. (5.121)
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6 t Rotational vacuum states

6.1 Non-vacuum states

Having successfully renormalised the expectation value of the stress-energy tensor of

the free scalar field with respect to its vacuum state, a foundation (albeit carrying

an ambiguity in tow) is now available for research into ‘other’ states of the field.

A natural progression is to consider certain well-defined classes of states associated

with an ‘observer’ or ‘detector’. Such states are of key interest to qfts in curved

space-times as generally speaking, observers in different reference frames will disagree

on their local descriptions of the state in question.

The remainder of the research presented in this thesis relates to the special case of

the AdSn vacuum state defined by a non-inertial observer. In fact, it could be said

that such states are of interest to qfts in curved space-time because of the ambiguity

in the definition of the vacuum state.

Further weight is lent to this statement by the fact that when a discrepancy exists

between observers’ descriptions of the vacuum state, it implies that non-vacuum-like

properties are observed, i.e. ‘particle-like’ descriptions.

The issue of what a particle is in this context is deliberately not broached here, as

it is currently sufficient for the purposes of this research to use this terminology to

heuristically distinguish vacuum states from non-vacuum states. Excellent formal

discussions on aspects of the ‘particle issue’ in qfts in curved space-times can be

found for example (among many others) in the classic texts [11] [33] [78].

177
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Nevertheless, there is a consequence of this ‘particle’ production induced by the

background curvature that is of great significance to studies concerning states. The

reflective boundary conditions on AdSn (2.23) allow the space-time and the scalar

field coupled to it to be considered as a closed thermodynamic system.

For example, the state of the scalar field described from the reference frame of a

rigidly-rotating observer in pure AdSn may also be interpreted as the description

of the effects of a closed rotating system on a freely-falling observer’s description

of the irrotational vacuum state. Likewise, the state described from the reference

frame of a uniformly accelerating (but not free-falling) observer may be perceived

by a freely-falling observer’s description of the vacuum state as a system at finite

temperature.

A useful general starting-point that embodies this connection for all such states is

how the dependent Green functions are related to their irrotational vacuum coun-

terpart.

The present and following chapter (chapters 6 – 7 inclusive) respectively consider:

� Rotational vacuum states
∣∣0Ω

〉
;

� Irrotational thermal states
∣∣β〉;

� Rotational thermal states
∣∣βΩ

〉
.

When considering the matter content developed from these states, given that it is

only the vacuum expectation values that diverge in the coincidence limit, there is

no need to renormalise ever again. However, this blessing comes at a cost as these

classes of states are accompanied by their own brand of problems. These difficulties

and their management are discussed separately in each relevant chapter.

As mentioned in [28], significantly more attention has been given in the literature
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to the study of the effects on a detector that is linearly accelerating than to the

investigation of the effects on a rigidly-rotating detector.

6.2 Rotational anti-commutator function— GΩ
(1)(x, x

′)

Since this study of rotational vacuum states is intended to lead to rotational thermal

states, it is convenient to develop the matter content from the anti-commutator

Green function (4.8) in keeping with common practice in the literature on thermal

states.

The explicit form of the anti-commutator function for the irrotational vacuum state

can be found by first inserting the field mode expansion (3.6) into the definition of the

anti-commutator function (4.8). Dropping the space-time dependence temporarily

for clarity, and defining

Φj′ := Φj(x
′), (6.1)

it follows that,

G(1)(x, x
′) =

∑
j,j′

〈0|
(
ajΦj + a†jΦ

∗
j

)(
aj′Φj′ + a†j′Φ

∗
j′

)

+
(
aj′Φj′ + a†j′Φ

∗
j′

)(
ajΦj + a†jΦ

∗
j

)
|0〉

=
∑
j,j′

〈0| ajΦja
†
j′Φ
∗
j′ + aj′Φj′a

†
jΦ
∗
j |0〉

=
∑
j,j′

〈0| aja
†
j′ΦjΦ

∗
j′ + aj′a

†
jΦj′Φ

∗
j |0〉

=
∑
j,j′

〈0| [aj, a
†
j′ ]ΦjΦ

∗
j′ + a†j′ajΦjΦ

∗
j′ + [aj′ , a

†
j]Φj′Φ

∗
j + a†jaj′Φj′Φ

∗
j |0〉 ,

(6.2)
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where the factors annihilating the vacuum are discounted in the second line, and

where the commutation relations

[aj, a
†
j′ ] = δjj′ , (6.3)

have been applied to the fourth line.

Reinstating space-time dependence explicitly yields

G(1)(x, x
′) =

∑
j

Φj(x)Φ∗j(x
′) + Φj(x

′)Φ∗j(x). (6.4)

Relaxing the requirement that k (and therefore also that wn) be an integer (see

(3.61) and (3.71) respectively), results in the positive-frequency field modes

Φnl (x) = Nr l e
−iωτYl (θ, ϕ) (sin ρ)l (cos ρ)k Pr

(l +n−3
2
,k−n−1

2 ) (cos 2ρ) , (6.5)

that may be defined on CAdSn. The omission of the quantisation condition (3.62) is

reflected in the change of notation from the AdSn field modes (3.71). In (6.5), the

integers k , wn have been replaced with k, ω, where

ω = k + l + 2r . (6.6)

At this stage, it proves convenient to make the following definition:

r(ρ) := (sin ρ)l (cos ρ)kPr
(l +n−3

2
, k−n−1

2 ) (cos 2ρ) . (6.7)

Therefore the expressions (3.38), (3.41), (3.57) and (3.67) from section 3.4 show that

r = (Nr l )
−1 R̃. (6.8)
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where

r := r(ρ). (6.9)

Finally, defining

r′ := r(ρ′), Yl := Yl (θ, ϕ) Y ′l := Yl (θ
′, ϕ′), (6.10)

allows (6.5) to be written more compactly as

G(1)(x, x
′) =

∑
l, r

|Nr l |
2
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
rr′
∑

mi

Yl (Yl )
∗ , n ≥ 3, (6.11)

recalling (2.105).

A set of coordinates appropriate for an observer rotating rigidly with angular speed

Ω in pure AdSn is obtained via the transformation of (2.5) as

τ 7→ τ̃ , (6.12)

ϕ 7→ ϕ̃ := ϕ−Ωaτ. (6.13)

Recalling (2.86) and (2.103), the set of modes in this coordinate system look like

Φ̃nl (x) = Nr l e
−iω̃τ̃reimϕ̃Θm i

. (6.14)

Defining

ω̃ := ω −Ωam , (6.15)

and bearing in mind (6.12) and (6.13), it is clear that the expressions (6.5) and

(6.14) are formally equivalent under the exchange of tildes.
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It is tempting to assume that because of this formal equivalence, the irrotational and

rotational vacuum states coincide, and that an equivalent qft can thus be defined

based on either of the mode expansions. However, it is wise to heed something of a

mantra in the literature on rotational states: ‘it is the modes not the frequencies that

determine the commutation relations ’ [28] [34] (based on material in [54]). Accord-

ingly, as indicated in the discussion in section 3.1, identical qfts require identical

commutation relations. To verify whether this is the case here, it is now necessary

to check whether

ω̃ ≷ 0 ⇔ ‖Φ(±)
nl ‖KG ≷ 0, (6.16)

holds.

Given that k > 0 and l , r = 0, 1, . . ., it follows from (6.6) that

ω > 0. (6.17)

Also, recalling (2.79),

l ≥ m , m = 0, 1, . . . . (6.18)

Therefore

ω > m . (6.19)

From (6.15),

ω̃ > 0⇔ ω > Ωam . (6.20)

Therefore,

ω̃ > 0⇔


Ωa < 1, m > 0, (6.21a)

Ωa ∈ R, m = 0. (6.21b)
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The conditions for (6.21a – 6.21b) constrain the candidate modes for a rigidly-

rotating observer (6.14) to,

ΦΩ
nl := Nr l e

−iωτ̃reimϕ̃Θm i
, Ωa < 1, m > 0, (6.22)

effectively confirming the existence of a timelike Killing vector ∂τ̃ associated with

the symmetries of the coordinate transformation (6.12) such that

∂τ̃Φ
Ω(±)
nl ∝ ∓iωΦ

Ω(±)
nl , ω > 0. (6.23)

The anti-commutator function with respect to a rotational vacuum state (in terms

of the coordinate transformations (6.12), (6.13) and the definition (6.15)) can be

found by inserting the modes (6.22) into the definition (6.4) and evaulating the sum.

This results in the now unsurprising expression

GΩ
(1)(x, x

′) =
∑

l, r

|Nr l |
2
(
eiω̃(τ−τ ′) + e−iω̃(τ−τ ′)

)
rr′
∑

mi

Yl (θ, ϕ̃)
(
Yl (θ

′, ϕ̃′)
)∗

n ≥ 3,

(6.24)

and thus that

GΩ
(1)(x, x

′) = G(1)(x, x
′), Ωa < 1; ω̃, ϕ̃↔ ω, ϕ. (6.25)

In summary, the notion of the vacuum state for an observer rigidly-rotating with

angular speed Ω < a−1 coincides with that of a static observer. Ultimately therefore,

the associated field theory can be defined in view of the fact that the renormalised

rotational vacuum expectation value of the stress-energy tensor,

〈Tµν〉Ωren :=
〈
0Ω

∣∣Tµν ∣∣0Ω

〉
ren = 〈Tµν〉ren, Ωa < 1. (6.26)
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7 t Irrotational thermal states

7.1 Introduction

The consideration of thermal states is of intrinsic interest to qft in curved space-

time, as their characterisation is connected to the ambiguity in the definition of the

vacuum state. In short, a uniformly accelerated observer may describe the vacuum

state (as described by an inertial observer) as a finite, non-zero temperature thermal

state.

Thermal states are also particularly significant in the treatment of black-hole space-

times due to the thermal (Hawking) radiation [49] [50] that emanates naturally

from their horizons. Therefore, as black holes are inherently thermal objects, the

study of thermal states on AdSn is a sensible foundation for intended research into

asymptotically-AdSn black-hole space-times mentioned in section 1.4.

This chapter concentrates on irrotational thermal states of the scalar field on AdSn.

This state of affairs can be interpreted as pure AdSn filled with a free bosonic

radiation field at finite temperature [3].

In order to set the scene for the discussion of the calculation of expectation values

with respect to thermal states later in the chapter, it is useful to first review some

basic theory. Much of the background material presented in this section and the

next (sections 7.1 and 7.2) can be found in Birrell & Davies [11] and the seminal

work by Allen, Folacci & Gibbons [3], who studied the effects of finite temperature

associated with a conformally-invariant scalar field on AdS4.

185
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The associated presence of a non-zero finite temperature introduces a degree of

disorder to the space-time. Accordingly, a key consequence of the thermalisation

of AdSn is a symmetry-breaking. Tolman’s investigations of thermal equilibrium in

gravitational fields [71] [35] revealed that the inverse temperature measured by a

local observer βT depends on the gravitational field at the site of measurement [71].

For a static metric, this relationship gives the Tolman relation

βT (−g00)
1
2 = K, (7.1)

where K is a constant. Therefore for AdSn, (7.1) implies that

βT ∝ cos ρ, (7.2)

breaking the maximal symmetry previously enjoyed by the vacuum state, by clearly

distinguishing a privileged origin [3] at which radiation will pool. The resulting dis-

tribution of radiation in thermal equilibrium vanishes at spatial infinity and therefore

does not require the imposition of the reflective boundary conditions (2.23) [51] to

prevent leakage at spatial infinity.

The thermal expectation values computed in this chapter are expectation values

relative to the vacuum expectation values discussed in chapter 5

7.2 Thermal Green functions

Thermal Green functions are the state-dependent Green functions of the scalar field

in thermodynamic equilibrium, with inverse (non-zero) temperature β. The form

of such thermal expectation values hinges on the fact that the related field config-

uration is appropriately described by a Bose-Einstein distribution of states
∣∣βj〉,
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(j = 1, 2, . . .). Since the particle number for fluctuations is not conserved, this

distribution is simplified as the chemical potential vanishes.

The Hamiltonian H of the thermal state space has the spectrum {ωj} which may be

obtained via the usual eigenvalue equation,

H
∣∣βj〉 = ωj

∣∣βj〉 . (7.3)

The explicitly indexed notation of the energy eigenvalues ωj appears temporarily for

clarity, with the understanding that ωj = ω.

Given their statistical nature, thermal states are represented by mixed states |β〉,

which may be thought of as probability distributions of all possible pure states

weighted by %j forming a partition of unity. The probability of the field lying in the

state
∣∣βj〉 is therefore

%j = Z−1e−βωj , (7.4)

where

Z =
∑
j

e−βωj , (7.5)

is the canonical partition function.

In view of (7.3), the probability (7.4) is also the diagonal matrix element of the

operator representation of the mixed state |β〉, i.e.

%j = 〈βj |%|βj〉, % = Z−1e−βH. (7.6)

It then follows that the thermal expectation value of an operator O is the ensemble
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average

〈O〉β := 〈β |O|β〉 = Z−1
∑
j

%j〈βj |O|βj〉

= Z−1 tr{%O}. (7.7)

Thus the thermal Wightman functions Gβ±(x, x′), may be expressed as

Gβ+ (t′, x′; t, x) = 〈β|Φ (t, x) Φ (t′, x′) |β〉 = Z−1 tr
{

Φ (t, x) Φ (t′, x′) e−βH
}
, (7.8)

Gβ− (t, x; t′, x′) = 〈β|Φ (t′, x′) Φ (t, x) |β〉 = Z−1 tr
{

Φ (t′, x′) Φ (t, x) e−βH
}
. (7.9)

Exploiting Heisenberg’s equations of evolution

Φ (t, x) = eiH(t−t′′)Φ (t′′, x) e−iH(t−t′′), (7.10)

and the cyclic property of the trace in (7.8) and (7.9) leads to

Gβ± (t, x; t′, x′) = Gβ∓ (t± iβ, x; t′, x′) . (7.11)

For the discrete case of CAdSn the respective Fourier decompositions of the commu-

tator (4.15), the anti-commutator (4.8) and the thermal Wightman functions (7.8 –

7.9) are

iG(x, x′) =
∑
ω>0

{
c(+)e−iω(τ−τ ′) + c(−)eiω(τ−τ ′)

}
, (7.12)

G(1)(x, x
′) =

∑
ω>0

{
c(1)(+)e−iω(τ−τ ′) + c(1)(−)eiω(τ−τ ′)

}
, (7.13)

Gβ±(x, x′) =
∑
ω>0

{
cβ±(+)e−iω(τ−τ ′) + cβ±(−)eiω(τ−τ ′)

}
, (7.14)
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with respective Fourier coefficients c(±), c(1)(±), and cβ±(±) where,

f(±) := f(±ω;x, x′), (7.15)

and the notation ω for the energy levels has been reinstated.

Applying the addition theorem (2.110) to the expansion of the anti-commutator

function (6.4) gives

G(1)(x, x
′) =

∑
l, r

N
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
rr′Cα

l (z) , n ≥ 3, (7.16)

where

z
(7.16)7−−−→ x̂ ··· x̂′, (7.17)

α
(7.16)7−−−→ n− 3

2
, (7.18)

and

N :=


Γ
(
n−1

2

)
2π

n−1
2

2l + n− 3

n− 3
|Nr l |

2 , n ≥ 4, (7.19a)

1

π
|Nr l |

2 , n = 3. (7.19b)

It follows that the thermal commutator function given by,

G(x, x′) = −i 〈β| [Φ(x),Φ(x′)] |β〉 , (7.20)

may also be expressed explicitly as

G(x, x′) = −i
∑

l, r

N
(
eiω(τ−τ ′) − e−iω(τ−τ ′)

)
rr′Cα

l (z) , n ≥ 3. (7.21)
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Since the commutation relations for the free scalar field mean that the associated

commutator function is a c-number and is therefore state-independent, then

G(x, x′) = Gβ(x, x′). (7.22)

As

iG(x, x′) = G+(x, x′)−G−(x, x′), (7.23)

G(1)(x, x
′) = G+(x, x′) +G−(x, x′), (7.24)

then

iGβ(x, x′) = Gβ+(x, x′)−Gβ−(x, x′), (7.25)

Gβ(1)(x, x
′) = Gβ+(x, x′) +Gβ−(x, x′). (7.26)

Therefore,

ic = cβ+ − c
β
−. (7.27)

cβ(1) = cβ+ + cβ−. (7.28)

Furthermore, given (7.11),

ic(±) = ±
(
eβω − 1

)
cβ∓(±). (7.29)

Therefore we have

cβ(1) =
c(1)

eβω − 1
. (7.30)

which finally gives the thermal anti-commutator function, defined as the difference
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between the anti-commutator functions of zero and finite temperature states:

Gβ(1)(x, x
′) =

∑
l, r

Nβ
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
rr′Cα

l (z) , n ≥ 3, (7.31)

where

Nβ :=
N

eβω − 1
. (7.32)

7.3 Thermal quadratic field fluctuations

The thermal expectation value of the quadratic field fluctuations is found by evalu-

ating (7.31) in the coincidence limit, yielding

〈Φ2(x)〉β = lim
x′→x

Gβ(1)(x, x
′)

= 2
∑

l, r

Nβr2Cα
l (1) , n ≥ 3. (7.33)

The expression on the right-hand side of (7.33) has been evaluated numerically using

code written in mathematica. In summary, the objects evaluated are approxima-

tions based on explicit forms of (7.33). Recalling (3.58), (3.88) and (3.61) (with

k 7→ k), these expressions are given by

〈Φ2(ρ)〉β =
Γ
(
n−1

2

)
(n− 3)!π

n−1
2 an−2

∑
l

(2l + n− 3)(l + n− 4)!

l !

×
∑

r

1

eβ(k+2r+l ) − 1
|Nr l |

2 r2(ρ), n ≥ 4; (7.34)

〈Φ2(ρ)〉β =
2

πa

∑
l

εl

∑
r

1

eβ(k+2r+l ) − 1
|Nr l |

2 r2(ρ), n = 3, (7.35)
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where the definition

εl :=


2
l , l > 0, (7.36a)

1, l = 0, (7.36b)

has been made to reflect the properties of the Gegenbauer polynomial in the coinci-

dence limit (see (2.113) and (2.114)).

Essentially, the numerical approximation of (7.34) and (7.35) relies on the determi-

nation of the upper bounds lmax and rmax of the infinite summations over l and r

respectively, such that precision reaches a user-defined, predetermined threshold δ.

The Planck factor present in thermal expectation values inhibits simplification by

mixing the summation variables in the exponential term, such that (7.34) and (7.35)

are inseparable in these variables. This represents a double-edged sword. Inevitably,

this mixing forces a numerical approach that is overwhelmingly sensitive to β. By

the same token though, the Planck factor furnishes a single, overriding agent for a

rapid (and stable) convergence, which in turn ensures tractable evaluation.

With this in mind, preliminary analyses revealed an approximate practical working

range of β ∈ [1, 10], which is more than sufficient to gain some useful qualitative

insight into the behaviour of 〈Φ2(ρ)〉β as a function of the parameters ρ, µ, β, n and

specific combinations of interest. Accordingly a representative selection of profiles

follows, accompanied by discussion/observations.

Figure 7.1 gives the radial profiles of 〈Φ2(ρ)〉β for different values of n with µ corre-

sponding to the massless, minimally-coupled case

µmm := µ, m = 0, ξ = 0. (7.37)

The effect of the Planck factor and the Tolman relation (7.2) is evident from the
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plot. For a given n, the value of 〈Φ2(ρ)〉β is strictly positive and maximal at the

origin. Physically, this profile is expected as it suggests an accumulation of thermal

radiation at the origin, and a vanishing field at spatial infinity.
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Figure 7.1 – 〈Φ2(ρ)〉β for varying n with µ = µmm, a = β = 1

Figures 7.2 and 7.3 are semi-log plots showing the effect of varying β on radial

profiles for n = 6 and n = 7 respectively. Once again, the maxima at the origin and

the vanishing at spatial infinity are suggestive of the Tolman relation (7.2).
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Figure 7.2 – ln
(
〈Φ2(ρ)〉β

)
for n = 6 with µ = µmm, and varying β



194 Chapter 7 – Irrotational thermal states

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0

0 π
6

π
3

π
2

ln
( 〈Φ2

(ρ
)〉
β
)

ρ

β = 1
β = 2
β = 3
β = 4
β = 5
β = 6
β = 7
β = 8
β = 9
β = 10

Figure 7.3 – ln
(
〈Φ2(ρ)〉β

)
for n = 7 with µ = µmm, and varying β

Finally figure 7.4 overleaf displays the dependence of 〈Φ2(ρ)〉β on µ, (for the partic-

ular value of ρ = π
4
). The general behaviour is an exponential decay from µ = 0,

which is expected from the presence of µ in the Planck factor. The value of 〈Φ2(ρ)〉β

is seen to increase with increasing n, a feature most visible at µ = 0.



7.3 Thermal quadratic field fluctuations 195

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 1 2 3 4 5 6

〈Φ
2
(π

4
)〉
β

µ

n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9
n = 10
n = 11

Figure 7.4 – 〈Φ2(π4 )〉β for varying n and µ with a = β = 1
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7.4 Thermal stress-energy tensor

7.4.1 Components

A scalar field in AdSn in thermal equilibrium suffers from a broken radial symmetry.

Therefore the thermal expectation value of the stress-energy tensor is no longer

simply proportional to the metric. Therefore, to verify that 〈Tµν(ρ)〉β is conserved,

it is necessary to explicitly compute its components.

The calculations throughout section 7.4 can apply to vacuum or thermal states. To

allow for this fact and for clarity, the following temporary notation is adopted.

if |ψ〉 =


|0〉 , then N := N, Tµν := 〈Tµν〉ren, (7.38a)

|β〉 , then N := Nβ, Tµν := 〈Tµν〉β, (7.38b)

Given (5.65) and the fact that

W (x, x′) =
1

2ν(n)
G(1)(x, x

′), (7.39)

the components of Tµν are constructed as linear combinations of w and the compo-

nents of w;µν , gµν�w, wµν and Rµν . Each of these ingredients is derived respectively

below, leading to expressions for Tττ , Tρρ and Tθiθi .

From (5.59)

w =
1

ν(n)

∑
l, r

NCα
l (1) r2, (7.40)

which only depends on ρ. Therefore, its double covariant derivative has the form

w;µν = w,µν − Γρµνw,ρ, (7.41)
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resulting in

w;ττ = −Γρττw,ρ, (7.42)

w;ρρ = w,ρρ − Γρρρw,ρ, (7.43)

w;θiθi
= −Γρθiθiw,ρ. (7.44)

Now

w,ρ =
2

ν(n)

∑
l, r

NCα
l (1) rr,ρ , (7.45)

w,ρρ =
2

ν(n)

∑
l, r

NCα
l (1)

[(
r,ρ
)2

+ r,ρρr
]
. (7.46)

Therefore the definition,

C := r,ρr
−1, (7.47)

gives the expressions,

w,ρ =
2

ν(n)

∑
l, r

NCα
l (1) r2 C, (7.48)

w,ρρ =
2

ν(n)

∑
l, r

NCα
l (1) r2

[
C 2 + r,ρρr

−1
]
. (7.49)

Furthermore, recalling (3.35 - 3.37) and with (6.7) in mind, it follows that

r,ρρ +Ar,ρ + Br = 0, (7.50)
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leading to the results,

w,ρρ =
2

ν(n)

∑
l, r

NCα
l (1) r2

[
C 2 −AC − B

]
, (7.51)

w;ττ = − 2

ν(n)

∑
l, r

NCα
l (1) r2 C tan ρ, (7.52)

w;ρρ =
2

ν(n)

∑
l, r

NCα
l (1) r2

[
C 2 −AC − C tan ρ− B

]
, (7.53)

w;θiθi
= − 2

ν(n)

∑
l, r

NCα
l (1) r2 C tan ρ

i−1∏
l=1

(sin θl)
2 . (7.54)

Turning now to the calculation of gµν�w,

�w = gµνw;µν

= gττw;ττ + gρρw;ρρ + gθiθiw;θiθi

= −gττΓρττw,ρ + gρρw,ρρ − gρρΓρρρw,ρ − gθiθiΓ
ρ
θiθi
w,ρ

= gρρw,ρρ − gθiθiΓ
ρ
θiθi
w,ρ

= gρρw,ρρ + (n− 2)gθiθi tan ρ
i−1∏
l=1

(sin θl)
2w,ρ, (7.55)

given that

gττ = −gρρ, (7.56)

Γρττ = Γρρρ. (7.57)
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Hence,

gττ�w = −w,ρρ −Aw,ρ

= − 1

ν(n)

∑
l, r

NCα
l (1) r2

[
C 2 − B

]
, (7.58)

gρρ�w = −gττ�w, (7.59)

gθiθi�w = (sin ρ)2
i−1∏
l=1

(sin θl)
2w,ρρ + (n− 2) tan ρ

i−1∏
l=1

(sin θl)
2w,ρ

=
2

ν(n)

∑
l, r

NCα
l (1) r2

{
(sin ρ)2 [C 2 −AC − B

]

+ (n− 2) C tan ρ
} i−1∏
l=1

(sin θl)
2 ,

=
2

ν(n)

∑
l, r

NCα
l (1) r2 (sin ρ)2 [C 2 − B

] i−1∏
l=1

(sin θl)
2 . (7.60)
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From (7.39):

W,τ =
1

2ν(n)

∑
l, r

Niω
(
eiω(τ−τ ′) − eiω(τ−τ ′)

)
rr′Cα

l (z) (7.61)

W,ττ = − 1

2ν(n)

∑
l, r

Nω2
(
eiω(τ−τ ′) + eiω(τ−τ ′)

)
rr′Cα

l (z) , (7.62)

W,ρ =
1

2ν(n)

∑
l, r

N
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
r,ρr

′Cα
l (z) (7.63)

W,ρρ =
1

2ν(n)

∑
l, r

N
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
r,ρρr

′Cα
l (z) , (7.64)

W,θi
=

1

2ν(n)

∑
l, r

N
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
rr′Cα

l (z),z z,θi (7.65)

W,θiθi
=

1

2ν(n)

∑
l, r

N
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
rr′

×
[
Cα

l (z),zz (z,θi)
2 + Cα

l (z),z z,θiθi

]
. (7.66)
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Before calculating the components of wµν , the angular derivatives ofW require some

extra care before proceding to take limits. Considering,

z = cos θ1 cos θ ′1 + sin θ1 sin θ ′1 cos θ2 cos θ ′2 + sin θ1 sin θ ′1 sin θ2 sin θ ′2 cos θ3 cos θ ′3

+ . . .+ sin θ1 sin θ ′1 . . . sin θk−1 sin θ ′k−1 cos θk cos θ ′k

+ . . .+ sin θ1 sin θ ′1 . . . sin θn−3 sin θ ′n−3

×
(
cos θn−2 cos θ ′n−2 + sin θn−2 sin θ ′n−2

)
, (7.67)

z,θk = sin θ1 sin θ ′1 · · · (− sin θk cos θ ′k + cos θk sin θ ′k

×
(
cos θk+1 cos θ ′k+1 + sin θk+1 sin θ ′k+1 (· · ·

×
(
cos θn−2 cos θ ′n−2 + sin θn−2 sin θ ′n−2

))))
, (7.68)

z,θkθk = sin θ1 sin θ ′1 · · · (− cos θk cos θ ′k − sin θk sin θ ′k

×
(
cos θk+1 cos θ ′k+1 + sin θk+1 sin θ ′k+1 (· · ·

×
(
cos θn−2 cos θ ′n−2 + sin θn−2 sin θ ′n−2

))))
, (7.69)

it follows that

lim
x′→x

z,θi =
i−1∏
l=1

(sin θl)
2 (cos θk sin θk(1− 1(1(· · · (1))))) = 0,

lim
x′→x

z,θiθi = −
i−1∏
l=1

(sin θl)
2 (1(1(· · · (1)))) = −

i−1∏
l=1

(sin θl)
2 . (7.70)

Also, the Gegenbauer polynomials obey the second-order linear differential equation
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given by formula §22.6.5 in [2],

(
1− z2

)
Cα

l (z),zz − (2α + 1)zCα
l (z),z + l (l + 2α)Cα

l (z) = 0, (7.71)

yielding

Cα
l (z),z = DCα

l (z) , x′ → x, (7.72)

where

D :=
l (l + 2α)

2α + 1
. (7.73)

Therefore,

lim
x′→x

W,τ = 0, (7.74)

lim
x′→x

W,ττ = − 1

ν(n)

∑
l, r

NCα
l (1) r2ω2. (7.75)

lim
x′→x

W,ρ =
1

ν(n)

∑
l, r

NCα
l (1) r2 C, (7.76)

lim
x′→x

W,ρρ = − 1

ν(n)

∑
l, r

NCα
l (1) r2[AC + B ]. (7.77)

lim
x′→x

W,θi
= 0, (7.78)

lim
x′→x

W,θiθi
= − 1

ν(n)

∑
l, r

NCα
l (1) r2D

i−1∏
l=1

(sin θl)
2 . (7.79)

Now given that

wµν = lim
x′→x

[
W,µν − ΓσµνW,σ

]
, (7.80)

where

Γτττ = Γ
θi
ττ = Γτρρ = Γ

θi
ρρ = Γτθiθi = Γ

θi
θiθi

= 0, (7.81)
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it follows that

wττ = lim
x′→x

[
W,ττ − ΓρττW,ρ

]
= − 1

ν(n)

∑
l, r

NCα
l (1) r2

[
ω2 + C tan ρ

]
. (7.82)

wρρ = lim
x′→x

[
W,ρρ − ΓρρρW,ρ

]
= − 1

ν(n)

∑
l, r

NCα
l (1) r2 [AC + B + C tan ρ] . (7.83)

wθiθi
= lim

x′→x

[
W,θiθi

− ΓρθiθiW,ρ

]

= − 1

ν(n)

∑
l, r

NCα
l (1) r2 [D − C tan ρ]

i−1∏
l=1

(sin θl)
2 . (7.84)

Finally, the Ricci tensor components can be found using

Rµν = −a−2(n− 1)gµν , (7.85)

where the metric components can be found from (2.10) to give

Rττ = (n− 1)(sec ρ)2, (7.86)

Rρρ = −Rττ , (7.87)

Rθiθi
= −(n− 1)(tan ρ)2

i−1∏
l=1

(sin θl)
2 . (7.88)
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Now let

Tττ =
∑

l, r

NCα
l (1) r2tττ , (7.89)

Tρρ =
∑

l, r

NCα
l (1) r2tρρ, (7.90)

Tθiθi =
∑

l, r

NCα
l (1) r2tθiθi

i−1∏
l=1

(sin θl)
2 , (7.91)

where

tττ = ω2 + C tan ρ− (1− 2ξ)C tan ρ−
(

2ξ − 1

2

)[
C 2 − B

]
+ ξ(n− 1)(sec ρ)2

= 2ξ

[
C tan ρ− C 2 + B +

n− 1

2
(sec ρ)2

]
+ ω2 +

1

2

[
C 2 − B

]
, (7.92)

tρρ = AC + B + C tan ρ+ (1− 2ξ)
[
C 2 −AC − C tan ρ− B

]
+

(
2ξ − 1

2

)[
C 2 − B

]
− ξ(n− 1)(sec ρ)2

= 2ξ

[
AC + C tan ρ− n− 1

2
(sec ρ)2

]
+

1

2

[
C 2 + B

]
, (7.93)

tθiθi = D − C tan ρ+ (1− 2ξ)C tan ρ

+

(
2ξ − 1

2

)
(sin ρ)2

[
C 2 − B

]
− ξ(n− 1)(tan ρ)2

= 2ξ

{
(sin ρ)2

[
C 2 − B

]
− C tan ρ− n− 1

2
(tan ρ)2

}

+D − 1

2
(sin ρ)2

[
C 2 − B

]
. (7.94)
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7.4.2 Conservation

The conservation of Tµν is a direct consequence of the scalar field wave equation

(3.4). As a supplementary consistency check this property can be verified explicitly

by evaluating the right-hand side of each of the n equations,

Tµν
;µ = gµλ

(
Tµν,λ − ΓσµλTσν − ΓσνλTσµ

)
, (7.95)

individually. To do so requires a knowledge of the metric elements in (2.10), the

non-zero Christoffel connections (2.11 - 2.16), and the components of Tµν (7.89 -

7.94), stated at the end of the previous section.

With these relations in hand, when ν = τ

Tµτ
;µ = gµλ

(
Tµτ,λ − ΓσµλTστ − ΓστλTσµ

)
= gττTττ,τ − gµλΓτµλTττ − gµλΓστλTσµ

= gττTττ,τ , (7.96)

and as tττ depends on ρ alone,

Tµτ
;µ = 0. (7.97)
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When ν = ρ,

Tµρ
;µ = gµλ

(
Tµρ,λ − ΓσµλTσρ − ΓσρλTσµ

)
= gρρTρρ,ρ − gµλΓ

ρ
µλTρρ − g

µλΓσρλTσµ

= gρρTρρ,ρ − gττΓρττTρρ − gρρΓρρρTρρ

− gθiθiΓρθiθiTρρ − g
ττΓτρτTττ − gρρΓρρρTρρ − gθiθiΓ

ρ
θiθi
Tθiθi , (7.98)

and given the relations (7.56) and (7.57),

gρρTµρ
;µ = Tρρ,ρ + Γρρρ

(
Tττ − Tρρ

)
− gρρgθiθi

(
ΓρθiθiTρρ + ΓρθiθiTθiθi

)
. (7.99)

Recalling (7.47), consider

(
r2tρρ

)
,ρ

= 2rr,ρtρρ + r2tρρ,ρ (7.100)

= r2
[
2Ctρρ + tρρ,ρ

]
, (7.101)

and so, from (7.99), each summand in (7.90) (multiplied by r−2gρρ) can be written

as

r−2gρρtµρ
;µ = tρρ,ρ + 2Ctρρ +

(
tττ − tρρ

)
tan ρ

−(n− 2)(cosec ρ)2
[
−tρρ tan ρ+ tθiθi sec ρ cosec ρ

]

= tρρ,ρ + 2Ctρρ +
(
tττ − tρρ

)
tan ρ+A

[
tρρ + tθiθi cosec ρ

]
. (7.102)

The terms in tρρ,ρ and (tττ − tρρ) on the right-hand side of (7.102) are now found
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from the relations (7.92) and (7.93), as the first steps towards the simplification of

Tµρ
;µ. To begin with,

tρρ,ρ = 2ξ
[
A,ρC +AC,ρ + C(sec ρ)2 + C,ρ tan ρ− (n− 1)(sec ρ)2 tan ρ

]
+CC,ρ +

1

2
B,ρ .

(7.103)

From the definitions of C and r, (equations (7.47) and (6.7) respectively),

C,ρ = r,ρρr
−1 −

[
r,ρr

−1
]2

= −AC − B − C 2. (7.104)

Therefore,

tρρ,ρ = 2ξ
[
A,ρC − A2C − AB −AC 2 + C(sec ρ)2 −AC tan ρ− B tan ρ− C 2 tan ρ

−(n− 1)(sec ρ)2 tan ρ
]

+AC 2 − BC − C 3 +
1

2
B,ρ . (7.105)

Subtracting (7.93) from (7.92),

tττ − tρρ = 2ξ
[
−C 2 −AC + B + (n− 1)(sec ρ)2

]
+ ω2 − B, (7.106)

equation (7.102) now becomes

r−2gρρtµρ
;µ = tρρ,ρ + 2Ctρρ +

(
tττ − tρρ

)
tan ρ+A

[
tρρ − tθiθi(cosec ρ)2

]

= 2ξ
[
A,ρ C − (n− 2)C(sec ρ)2 +AC sec ρ cosec ρ−AC tan ρ

]
+ ω2 tan ρ− B tan ρ+

1

2
B,ρ −AD(cosec ρ)2. (7.107)
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Next, recalling (3.36) and (3.37)

A,ρ = (n− 2)
[
(sec ρ)2 + (cosec ρ)2

]
, (7.108)

B,ρ = −2a2m2
ξ(sec ρ)2 tan ρ− 2λ(cosec ρ)2 cot ρ. (7.109)

Therefore

r−2gρρtµρ
;µ = 2ξ(n− 2)C(sec ρ)2

{[
1− (cot ρ)2

]
− 1 + (cosec ρ)2 − 1

}
+ω2 tan ρ+ a2m2

ξ(sec ρ)2 tan ρ− λ(cosec ρ)2 tan ρ− ω2 tan ρ

−a2m2
ξ(sec ρ)2 tan ρ− λ(cosec ρ)2 cot ρ−AD(cosec ρ)2

= −(cosec ρ)2 [λ(tan ρ+ cot ρ) +AD]

= − sec ρ cosec ρ
{
λ
[
1 + (cot ρ)2

]
+AD (cot ρ)

}
. (7.110)

Using (3.34) and

D (7.17)7−−−→ l (l + n− 3)

n− 2
, (7.111)

results in

r−2gρρtµρ
;µ = −

{
−l (l + n− 3)

[
(1 + cot ρ)2

]
+ l (l + n− 3)(cosec ρ)2

}
sec ρ cosec ρ

= −l (l + n− 3)
[
1 + (cot ρ)2 − (cosec ρ)2

]
sec ρ cosec ρ

= 0. (7.112)
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Therefore, given (7.90)

Tµρ
;µ = 0. (7.113)

Finally, when ν = θi,

Tµθi
;µ = gµλ

(
Tµθi,λ − ΓσµλTσθi − ΓσθiλTσµ

)

= gθiθiTθiθi,θi − g
µλΓ

θi
µλTθiθi − g

µλΓσθiλTσµ.

= gθiθiTθiθi,θi − g
θjθjΓ

θi
θjθj

Tθiθi − g
θjθjΓ

θi
θiθj

Tθjθj . (7.114)

Recalling (7.94) and that tθiθi only depends on ρ,

−gθjθj tµθi
;µ = (n− 2)

[
− cot θi

j−1∏
l=1

(sin θl)
2 tθiθi + (cot θi) tθjθj

]
. (7.115)

where

tθjθj =

j−1∏
l=1

(sin θl)
2 tθiθi . (7.116)

Therefore from (7.91),

Tµθi
;µ = 0. (7.117)

7.4.3 Trace

In the massless, conformally coupled case,

m2
ξ := m2

ξ, mc = −n(n− 2)

4a2
, (7.118)

B := Bmc =
1

4
n(n− 2)(sec ρ)2 + λ(cosec ρ)2 + ω2, (7.119)
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(where the subscript ‘mc’ denotes ‘massless, conformally-coupled’). Defining

t̃mcµν := 2a2(n− 1)tmcµν , (7.120)

˜̃tmcµ
µ := t̃mc τ

τ + t̃mc ρ
ρ +

i−1∏
l=1

(sin θl)
2 t̃mc θi

θi , (7.121)

Examining each term on the right-hand side of (7.121), the following expressions are

obtained:

t̃mc τ
τ = −(n− 2)C sin ρ cos ρ− C 2(cos ρ)2 − 1

4
(n− 2)2

+λ(cot ρ)2 − (2n− 3)ω2(cos ρ)2, (7.122)

t̃mc ρ
ρ = (n− 1)(cos ρ)2C 2 + (n− 2)2C cot ρ+ (n− 2)C cos ρ sin ρ

+(n− 1)λ(cot ρ)2 + (n− 1)ω2(cos ρ)2 +
1

4
(n− 1)(n− 2)2,

(7.123)
i−1∏
l=1

(sin θl)
2 t̃mc θi

θi = −(n− 2)(cos ρ)2C 2 − (n− 2)2C cot ρ+ (n− 2)(cot ρ)2λ

+(n− 2)(cos ρ)2ω2 + 2(n− 1)(n− 2)(cot ρ)2D − 1

4
(n− 2)3.

(7.124)

Bearing in mind (7.89 – 7.91) and the relations (7.120 – 7.124),

Tµ
µ =

∑
l, r

NCα
l (1) r22a2(n− 1)˜̃tµ

µ
, (7.125)

and therefore that

˜̃tmcµ
µ = 2(n− 1)(cot ρ)2[λ+ (n− 2)D]. (7.126)
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Finally, recalling (3.34) and (7.111)

Tmc µ
µ = 0. (7.127)

This is as expected – the conformal anomaly for a thermal expectation value relative

to the vacuum is zero.

7.4.4 Results

Plots of the physically meaningful components 〈Tτ τ (ρ)〉β, 〈Tρρ(ρ)〉β and 〈Tθi
θi(ρ)〉β

using (7.89 – 7.91) have been generated using code written in mathematica. Fig-

ures 7.5 – 7.7 show radial profiles of each component for n = 4 to n = 11. Figures

7.5 and 7.6 for 〈Tτ τ (ρ)〉β and 〈Tρρ(ρ)〉β display the expected decay with increasing

ρ.

For these plots the dependence on n is of interest. In the case of 〈Tτ τ (ρ)〉β, there is

a progression in the shape of each curve with increasing n. For low values of n, the

minima are relatively low values compared with those at high n. Also this increase

in values at the origin is monotonic with increasing n. As the profiles taper to zero,

the lower their minima, the more rapid are their ascents to the 〈Tτ τ (ρ)〉β = 0 axis.

For the radial profiles of 〈Tρρ(ρ)〉β, the description of their behaviour with increasing

n can be made in similar terms. Here the pattern is slightly different. The maxima

at the origin start off relatively high, but this time for low values of n with modest

points of inflection. As n increases the maxima at the origin decrease until settling

around n = 8 before beginning to rise again. As they do so, the points of inflection

become more prominent.

The next set of plots in figures 7.8 – 7.10 show the behaviour of the components

with respect to µ with a fixed value of ξ at a fixed value of ρ. In the cases of the
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plots of 〈Tρρ(ρ)〉β and 〈Tθi
θi(ρ)〉β, it is simply the overwhelming effect of the Planck

factor on everything else inside the respective summations (7.90) and (7.91). For the

angular component for n = 3, there appears to be a slight dip into negative values

between approximately µ = 2 and µ = 3.5.

In the case of figure 7.8, the situation is qualitatively similar, with the exception

that the profiles suggest that

d

dµ

∣∣∣∣
µ=0

〈Tτ τ (ρ)〉β > 0, (7.128)

briefly.

Finally, figures 7.11 – 7.13 show the behaviour of 〈Tνν(ρ)〉β for n = 4, a = 1,

µ = µmc with varying β – a case also studied by Allen, Folacci & Gibbons [3].

The data for each component are presented in semi-log plots; all of which exhibit

the Tolman relation through the observed decay from the origin and vanishing at

spatial infinity.

In the case of 〈Tτ τ (ρ)〉β and 〈Tθi
θi(ρ)〉β, the data have been manipulated to aid

comparison of behaviour at different β by taking the logarithm of the absolute

values of these components. In the angular case, there are noticeable discontinuities

in each of the profiles. The ‘bounces’ that follow these discontinuities correspond to

when the decay of 〈Tθi
θi(ρ)〉β dips briefly into negative values before rising again to

zero at spatial infinity.
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Figure 7.6 – 〈Tρρ(ρ)〉β for varying n with µ = µmc and a = β = 1
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8 t Conclusions

This thesis covers recent research into a free, massive quantum scalar field generally-

coupled to AdSn. Accordingly, the practical goals of this effort have been to deter-

mine:

� the Hadamard renormalised vacuum expectation values of the quadratic fluctua-

tions 〈Φ2〉ren and stress-energy tensor 〈Tµν〉ren;

� the Hadamard renormalised rotational vacuum expectation values of the quadratic

fluctuations 〈Φ2〉Ωren and stress-energy tensor 〈Tµν〉Ωren;

� the thermal expectation values of the quadratic fluctuations 〈Φ2(x)〉β the stress-

energy tensor 〈Tµν(x)〉β;

� the rotational thermal expectation values of the quadratic fluctuations 〈Φ2(x)〉Ωβ

and stress-energy tensor 〈Tµν(x)〉Ωβ.

Analytical expressions for the Hadamard renormalised vacuum expectation values

〈Φ2〉ren and 〈Tµν〉ren have been obtained explicitly using code written in maple for

n = 2 to n = 11 – see (5.36 – 5.45) and (5.98 – 5.107) respectively. In principle

this code can be extended to any n with sufficient computational power. Since there

appears to be no published results on higher-dimensional Hadamard renormalised

expectation values, the results present in this thesis are possibly the first examples

of such work.

Before renormalising, a significant amount of time and effort was spent on verifying

the published methods for the calculation of the n-dimensional Feynman Green func-

tion on AdSn – see chapters 3 and 4. Allen & Jacobson’s method (see section 4.2.2.I.)

217



218 Chapter 8 – Conclusions

solves the scalar field wave equation on AdSn (4.4) by exploiting maximal symmetry,

reducing the problem to a second-order ODE given by (4.17). The other method

(see section 4.2.1) constructs the Feynman Green function, GF(s) by summing over

the field modes.

The verification of these results was motivated by a slight discrepancy in the lit-

erature between Burgess & Lütken and Cotăescu [16] [25] relating to the form of

the modes. Since Hadamard renormalisation is performed with GF(s), which may

be constructed directly by summing over the field modes, it has been necessary to

resolve this discrepancy first.

Having validated Cotăescu’s modes [25] (see (3.71)), the expression for GF(s) in [4]

has been found to agree with its counterpart in [16] (when summing over Cotăescu’s

modes).

Camporesi’s derivation of GF(s) for n = 4 [19], has then been generalised to n ≥ 2

(see 4.2.2.II.), having noticed its form lends itself well to renormalisation by affording

a clear singularity structure. Properties of hypergeometric functions present in the

expression (4.55) have then been exploited to generate expansions in s (or some

function z(s)) near s = 0 for the regularisation of GF(s) (see section 4.3).

The Hadamard form of GF(s) has also been obtained explicitly following Décanini

& Folacci [31] (see section 4.4). The subsequent Hadamard renormalisation (see

chapter 5) has resulted in expressions for 〈Tµν〉ren in (5.98 – 5.107) that are shown

to satisfy Wald’s axioms for uniqueness (5.90) and to exhibit the trace anomaly for

even n – see (5.112 – 5.121).

In the case of rotational vacuum states, a condition has been established on the

angular velocity of the rigidly rotating reference frame to ensure that the associated

rotational modes (6.22) are consistent with the commutation relations determined by
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the irrotational modes. Under this constraint, the rotational anti-commutator func-

tion GΩ
(1)(s) has been found to coincide formally with the anti-commutator function

for a static observer G(1)(s) (7.16).

The irrotational thermal anti-commutator function, Gβ(1)(x, x
′) has been found using

standard results (see e.g. [11]). Finite temperature breaks the radial symmetry

of AdSn and furnishes a Planck factor which renders it necessary to evaluate the

thermal expectation values numerically.

Explicit results for 〈Φ2(x)〉β and 〈Tµν(x)〉β have been plotted for n = 3 to n = 11

inclusive, for a variety of parameters (see figures 7.1 – 7.9) and corroborate results

in [3] for the massless, conformally-coupled case for n = 4. The data used was

generated by code written in mathematica.

At present, work on rotational thermal expectation values is ongoing. The preced-

ing studies of rotation and temperature suggest a straightforward extension of the

numerics used to obtain the irrotational thermal expectation values.

Since each expectation value of the stress-energy tensor obtained relates to the mat-

ter content of a free field theory, it follows that they each determine the semi-classical

Einstein equations (1.3) completely, effectively defining a self-consistent theory of

quantum gravity by providing the necessary ‘one-loop’ quantum correction to the

cosmological constant.

This research is intended in part as a precursor to research into asymptotically AdSn

black hole space-times, focusing at first on Schwarzschild black holes, with the aim

of introducing rotation as a further complication.

In particular, it is known that for a scalar field propagating on some static, spher-

ically symmetric space-time that is asymptotically equivalent to some maximally

symmetric space-time, 〈Φ2(x)〉ren has a part which can be expressed analytically
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and a part which has to be evaluated numerically.

Breen & Ottewill have developed numerical techniques for calculating 〈Φ2(x)〉 for

general spherically symmetric black holes [13], a refinement of an approach due to

Anderson, Hiscock & Samuel [5]. However, these techniques fail for asymptotically

AdSn black holes, because at spatial infinity all modes of the scalar field contribute.

It is therefore hoped that the research presented in this thesis will contribute to the

study of the analytical part of renormalised objects in Schwarzschild-anti de Sitter

space-time.
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