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ABSTRACT 

In this thesis, a systematic Monte Carlo simulation study of confined nematic and 

cholesteric systems is carried out. A simple off-lattice model is developed to explore a 

range of confined systems. Double emulsion nematic shells are investigated with planar 

anchoring which is then extended to solid particles of different geometries with nematic 

coatings before progressing to single and n-fold toroidal droplets. 

 For shells and coatings with planar anchoring the total topological charge on both surfaces 

must be +2. A bipolar structure is found in thick shells and four s=+1/2 defects are found 

for thin nematic shells. A metastable defect configuration comprising of two s=+1/2 and 

one s=+1 defects is occasionally observed for intermediate thicknesses. With the addition 

of chirality, a transition to a twisted bipolar director configuration is observed at all 

thicknesses. 

A single toroidal droplet with planar anchoring has a defect free ground state. Previous 

work has predicted the presence of a twisted director configuration ground state. The 

relative stabilities of the twisted and untwisted configurations are investigated here. It was 

found that, for all the systems investigated, the twisted director configuration is only stable 

for a cholesteric torus. For multiple tori system, with each additional handle the total 

topological charge on the surface decreases by 2. In a non-chiral nematic system the 

constraint on the topological charge on the surface is fulfilled by the required number of 

s=-1 defects located at either the innermost surface of a handle or the join between two 

tori. With increasing chirality, the s=-1 defects detach from the surface and migrate to form 

s=-1/2 disclination lines through the cholesteric. In handled droplets with homeotropic 

anchoring, two s=+1/2 disclination lines are found that, with the addition of chirality form a 

helical structure around the tube. 
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 INTRODUCTION 1

 LIQUID CRYSTAL MESOPHASES 1.1

The term liquid crystal is used to describe a state of matter that flows like a liquid but 

possesses some degree of orientational order; it covers a large range of mesophases which 

can be formed by a wide variety of materials.  Molecules that form liquid-crystalline 

phases, known as mesogens, can be broadly divided into two categories; thermotropic and 

lyotropic liquid crystals. In this work, we focus on thermotropic liquid crystals whose phase 

behaviour is dependent on the temperature of the system[1] and tend to be water 

immiscible. Indeed, the nematic shells that occur in double emulsion droplets and other 

systems that are studied in this thesis often depend on their immiscibility with water.  

A liquid crystal phase arises due to anisotropic interactions between the molecules which 

can include intermolecular interactions such as π-stacking and hydrogen bonding, however 

the most common reason that molecules form a liquid crystal phase is thought to be shape 

anisotropy. The simplest case of shape anisotropy is when one molecular dimension differs 

from the other two, e.g.      . When      , the molecule is rod shaped, or 

Figure 1.1.1 Examples of common a) calamitic and b) discotic molecules 

x 

z 

y 

x 

y 
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a) b) 
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calamitic (Figure 1.1.1a) and when       , the molecule is disc shaped or discotic 

(Figure 1.1.1b).  Other, more complicated molecular shapes also form liquid crystalline 

phases including board shaped molecules (      ) and bent-core or banana-shaped 

molecules[2].  

In this thesis the two simplest mesophases formed by calamitic liquid crystals are focused 

on, the nematic phase and its chiral analogue, the chiral nematic phases. Calamitic liquid 

crystals also form other phases, such as the smectic phase that include positional order 

where the molecules pack into two dimensional layers. Similarly, discotic molecules form 

columnar mesophases in which the molecules stack in one-dimensional columns.  

 THE NEMATIC MESOPHASE 1.1.1

In a nematic mesophase, there is local orientational order but no local positional order, 

meaning that the molecules are free to diffuse through the phase; they tend to point in a 

single direction (Figure 1.1.2). The molecules are free to rotate about both their long and 

short molecular axes, although the relaxation time for rotations about the short axis is 

much longer (         times per second) than the relaxation time for rotations about 

the long molecular axis (            times per second)[3]. 

 

Increasing 

T 

Increasing 

T 

Figure 1.1.2 A schematic showing the phase progression with increasing temperature from 

a) a solid crystal to b) a nematic liquid crystal and c) an isotropic liquid 

a) b) c) 
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1.1.1.1 Order in Nematics 

The direction that the long molecular axis of the molecule statistically favours is known as 

the director and is usually represented by the unit vector  ̂, where  ̂     ̂  as the 

nematic phase is non-polar (Figure 1.1.3a).   The degree of orientational order present with 

respect to a given axis, e.g. the director in a nematic phases is quantified by the order 

parameter,  

   〈  (    )〉   〈
 

 
       

 

 
〉 (1.1.1) 

where   is the angle between the long axis of the molecule and the local director (Figure 

1.1.3b). The second Legendre polynomial is used rather than the first because the director 

is a headless vector and the quadratic term in the second Legendre polynomial is 

independent on the sign of  . The first Legendre polynomial, 

 〈  (    )〉  〈    〉 (1.1.2) 

is a measure of polarity of the system and is equal to zero for a nematic phase. Other even 

terms of the Legendre expansion can also be employed and the fourth and sixth Legendre 

polynomials are; 

   ( )   
 

 
(           ) (1.1.3) 

   ( )  
 

  
(                   ) (1.1.4) 

D
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D
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r 
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Figure 1.1.3 Schematics of a) the director of a nematic phase and b) the angle between the 

local director and the long axis of the molecule. 

a) b) 
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where        and are often used to measure the amount of order in mesophases as the 

Legendre polynomials,   , are part of an infinite sum in the expansion of the orientational 

distribution which gives the probability of finding a molecule at the angle   to the director. 

The order parameter can be measured from a macroscopic quantity, i.e. optical 

birefringence or measured using a wide range of analytical techniques including nuclear 

magnetic resonance[4] or Raman scattering[5]. 

1.1.1.2 Elasticity in Nematics 

Due to the fluid nature of the nematic phase, it can be deformed which increases the 

energy per unit volume of the system from a non-deformed state by 

 

    
 

 
  [     ̂]   

 

 
  [ ̂  (     ̂)]   

 

 
  | ̂    (     ̂)| 

 (      )[  ( ̂   ̂   ̂     ̂)]

    [  ( ̂   ̂)] 

(1.1.5) 

which is known as the Frank elastic energy[6] and  ̂ is the director of unit length and   is the 

Laplace operator,      ̂
 

  
   ̂

 

  
   ̂

 

  
. There are three types of bulk-like distortions 

and two surface-like distortions. The three bulk-like  deformations are the splay, twist and 

the bend, measured using elastic constants   ,     and    respectively (Figure 1.1.4) and 

the two surface-like distortions are             or the saddle-splay and splay-bend. The 

surface-like terms in (1.1.5) are often ignored in bulk systems as the contribution to the 

total energy for the surface is much smaller than that of the bulk. 
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The elastic constants decrease with increasing temperature. At      the three bulk-like 

elastic constants decompose to one elastic constant. For a common mesogen, 5CB  (Figure 

1.1.1a) when 18 ⁰C below     ,                                         

               which decrease to                                          

              at 2 ⁰C below      [7]. Note that the magnitudes of              are 

similar which often leads to the one elastic constant approach in theoretical calculations 

where           . 

 CHIRAL SYSTEMS 1.1.2

1.1.1.3 The Chiral Nematic Phase 

With the introduction of chirality into a nematic, a helical twist perpendicular to the 

director is introduced and the symmetry of the phase is reduced from     to    (Figure 

1.1.5). The chiral nematic phase is also known as a cholesteric phase as historically the first 

chiral nematic was seen in derivatives of cholesterol[1].  

Figure 1.1.4  A schematic representation of a) the splay, b) the twist and c) the bend 

deformations 

a) b) c) 
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A chiral nematic phase can be formed by either a chiral mesogen or doping a non-chiral 

nematic phase with a small amount of a chiral dopant. The pitch length of a chiral nematic 

is defined as the length for the director to rotate by 360⁰, which decreases with increasing 

concentration of the chiral dopant. In general, the pitch length of a system decreases with 

increasing temperature[8] which has many applications in thermochromic devices. 

Whilst the pitch length of a chiral nematic is heavily dependent on the both the 

composition of the bulk and the temperature, the pitch length tends to be similar to the 

wavelength of visible light (400-700nm)[9].  The presence of the inherent helix with a pitch 

length similar to that of visible light has been widely used for display purposes[10]. 

1.1.1.4 Blue phases 

Blue phases are examples of a frustrated phase. Blue phases referred to in this thesis are 

known as cholesteric blue phases as they are found between a chiral nematic and an 

isotropic phase. Smectic blue phases also exist but are not considered here. Blue phases 

consist of double twist cylinders (Figure 1.1.6a) which pack together in one of three ways to 

form distinct blue phases (BP). In BPI the cylinders pack in a face centred lattice and in BPII 

as a simple cubic lattice (Figure 1.1.6b). The cubic arrays cannot completely fill space and 

Figure 1.1.5 A schematic of a chiral nematic phase showing a rotation of a quarter of a 

pitch length 

Director 

¼ Pitch Length 
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defects are formed where three double twist cylinders meet (Figure 1.1.6c) in a cubic array. 

The third blue phase,  BPIII, the packing structure of the double twist cylinders is not known 

and it possesses the same symmetry as the isotropic phase[11].   

 The temperature range that a blue phase exists over is very small, between 0.5-2⁰C and 

research to stabilise and increase the temperature range in which blue phases occur is on-

going and polymer networks[12] have been employed to stabilize the cubic lattice as well as 

the fabrication of new exotic molecules that form a blue phase over a wide temperature 

range[13]. 

Blue phases are of technological interest as the presence of a cubic array of defects means 

that a photonic crystal[14]  (see section 1.2.4) is formed on the with a selective wavelength 

similar to that of visible light, indeed blue phases got their name as early examples 

appeared blue when in thin films[15].  

 

 

 

 

Figure 1.1.6 Schematics of a) a blue phase double helix, b) the packing of double helix 

cylinders in BPII and c) a defect between three double helix cylinders 

a) b

) 

c) 
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 DEFECTS IN LIQUID CRYSTALS 1.1.3

Due to the fluid nature inherent in a nematic, areas where the director is undefined occur 

due to frustration between opposing regions of order. These isotropic regions where the 

order parameter is approximately zero are known as defects. Defects can be either point 

defects (zero dimensional), disinclination lines (one dimensional) or sheets/planes (two 

dimensional). Sheet defects are considered unstable and not discussed here[16].  The 

geometry of the system may impose the presence of defects in the lowest energy ground 

state of the system, as in the nematic shells formed in a double emulsion investigated in 

this thesis.  Additional defects may also be formed due to the kinetics of the transition from 

the isotropic to the nematic phase and may or may not remain present when the system 

has reached equilibrium.   

Both disclination lines and point defects can be classified by the amount that the director 

rotates on circling the defect core in a clockwise rotation. The strength (s) of a point defect 

is measured by the angle at which the director rotates about it, or 2sπ. For example, if the 

director rotates clockwise by 360 degrees, it has strength +1, whereas if the director 

rotates by 180 degrees anti-clockwise, it has strength -1/2 (Figure 1.1.7). 

 

 

 

 

 

s =-1/2 s = +1/2 s = +1 

Figure 1.1.7 Defects of varying strengths around an axial defect, viewed down the defect 

   
 

 

  

 

   

 



34 
 

Due to the distortion in the director field, the presence of defects increases the energy of 

the system with respect to a defect free state. The free energy per unit length for an axial 

disclination line being proportional to s2[1]. For example, a disclination line with s=+1 is 

unstable with respect to two s=+1/2 disclination lines. For a s=+1 disclination of length L 

the energy is proportional to L, however, for two s=+1/2 the energy is proportional L/2. 

Defects of the same sign repel each other, minimising the elastic energy of the system and 

defects of opposing signs attract one another and annihilate on contact, reducing the 

energy of the system.  

Point defects can be thought of as disclinations that have escaped into the third dimension 

and, whilst are uncommon in a bulk system can be found in confined systems and at 

surfaces. A classic example of a confined system in which a defect can escape into the third 

dimension is of a nematic in a capillary tube with strong homeotropic anchoring. In this 

case due to the boundary conditions imposed by the surface, a s=+1 axial disclination line 

can form in the centre of the tube (Figure 1.1.8a). A s=+1 point defect that has escaped into 

the third dimension (Figure 1.1.8b) may be formed instead in order to decrease the region 

of disorder and minimise the energy of the system. 

Figure 1.1.8 a) and b) show a cross section of a nematic in a capillary with homeotropic 

anchoring with a  s=+1 disclination line and a s=+1 point defect that has escaped into the 

third dimension respectively. c) and d) show a radial and hyperbolic hedgehog. 

  

 

  

 

 

  

 

a) b) c) d) 
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Only defects with a strength of    have been seen experimentally as escaped structures. 

These defects are also known as hedgehog defects[17] and can be found either on the 

surface or in the bulk nematic. There are two distinct hedgehog defects, the radial 

hedgehog and the hyperbolic hedgehog corresponding to a s=+1 and s=-1 defect 

respectively (Figure 1.1.8c and d).  

Related to hedgehog defects are boojums, a term first coined by Mermin taken from a 

Lewis Carroll poem[18]. A boojum is a pair of half-hedgehog type defects located at the 

surface (e.g. Figure 1.2.2a).  and unlike hedgehog defects, a boojum cannot be found in the 

bulk.  

 CONFINEMENT OF NEMATIC AND CHIRAL NEMATIC MESOPHASES 1.2

 MOLECULAR ALIGNMENT AT SURFACES 1.2.1

Due to the inherent anisotropic nature of molecules that form a nematic or chiral nematic 

phase, when confined there are three distinct ways the molecules can orient with respect 

to the interface, either parallel, perpendicularly or at a tilted angle. In this thesis, systems 

with planar or perpendicular anchoring are considered. The interface can be between a 

nematic and a solid (e.g. between two glass slides), the air-nematic interface (e.g. a free 

standing film) or between the nematic phase and an immiscible liquid, as shown in Figure 

1.2.1. 

 

  

 

 

 

 

 

 
 

 

 
 

  

 
   

 

 

 

 
 

  
a) b) 

Figure 1.2.1 Schematic of nematic (ellipsoids) - water (circles) interface showing a) planar 

anchoring and b) homeotropic anchoring 
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When the long molecular axis of the mesogens is at right angles to the surface normal, the 

anchoring type is described as tangential or planar anchoring (Figure 1.2.1a). If there is no 

preferred orientation of the mesogens on the surface it is known as planar degenerate 

anchoring. When the long molecular axis is parallel to the surface normal the anchoring 

type is described as normal or homeotropic anchoring (Figure 1.2.1b). The type of 

anchoring favoured can be controlled by the mesogens used or by the addition of a 

surfactant[19] or ions into the aqueous solution to promote one type of anchoring over the 

other. For example, in the aqueous phase nematic droplets of 5CB favour planar anchoring. 

The anchoring at the surface of the nematic droplets may be switched to homeotropic 

anchoring by the addition of iodides or thiocyanate anions into the aqueous solvent[20].   

The diagrams shown in Figure 1.2.1 and the anchoring discussed previously is known as 

strong anchoring, that is all the molecules lie in the preferred orientation with respect to 

the surface normal. Weak anchoring may occur when the interactions at the surface are 

insufficient to drive all the molecules at the surface to lie in the preferred orientation. The 

potential interactions used throughout this work is at the strong anchoring limit, that is all 

the mesogens are parallel to the surface in systems with planar anchoring or perpendicular 

to the surface in systems with homeotropic anchoring. 
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 NEMATIC AND CHIRAL NEMATIC DROPLETS  1.2.2

The most simple confined nematic system is that of a sphere or single droplet. Much work 

has been done on nematic droplets both experimentally and theoretically with both planar 

and homeotropic anchoring.  Nematic droplets have been made using a wide range of 

techniques including templating[21], photopolymerisation[22] and micro fluidics[23]. One of 

the most challenging aspects of fabricating nematic spheres is controlling the size 

distribution of the sample as for many applications a monodisperse system is desired.  

There are four typical director configurations for nematic droplets (Figure 1.2.2), two found 

with homeotropic anchoring and two found with planar anchoring. The director 

configuration formed depends on both the strength of the surface anchoring and the ratio 

of the elastic constants[24].  

For nematic droplets with planar anchoring, the total topological charge on the surface is 

equal to +2 in all cases. It is not geometrically possible to coat a sphere with rods without 

forming defects with a total topological charge of +2, this is known as the Poincaré-Hopf 

theorem[25].   

 

     

  

     
  

 
 

  

    

  
  

  

Figure 1.2.2 Four typical director configurations found in nematic droplets.  a) The bipolar 

and b) axial director configurations are found in droplets with planar anchoring whereas c) 

the radial and d) equatorial director configurations are found for droplets with 

homeotropic anchoring. 

a) b) c) d) 
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Chiral nematic droplets with planar anchoring have also undergone much research and the 

director configuration was found  to be highly dependent on both the ratio of the pitch 

length and the diameter of the droplet[26]. In systems where the pitch length is much longer 

than the droplet diameter, a twisted bipolar director configuration is observed (Figure 

1.2.3), whereas for highly chiral systems where the pitch length is smaller than the droplet 

diameter a Frank-Pryce defect structure is found (Figure 1.2.3). A Frank-Pryce defect 

structure is characterised as a s=+2 disclination line attached to a central hedgehog defect.  

 NEMATIC SHELLS 1.2.3

A slightly more complex case than a nematic droplet is when either a water droplet or 

spherical colloidal particle is encased in a nematic droplet producing a nematic shell. The 

presence of four =+1/2 defects was first proposed by Lubensky and Prost[27], however, 

recent interest into spherical shells has been sparked by Nelson’s[28] seminal paper 

predicting that a tetrahedral defect arrangement may be seen for nematic shells with 

planar anchoring which in turn may be employed to form tetrahedral arrays of the shells. 

It has been found that if the radius of the nematic droplet is much larger than the radius of 

the water droplet, the system acts in a similar way to a pure nematic droplet without the 

inclusion of the inner water droplet (Figure 1.2.4b), however in thin nematic shells a rich 

Figure 1.2.3 A schematic representation of two possible director configurations for a of 

nematic droplet with planar anchoring showing a) the twisted bipolar director 

configuration and b) the Frank-Pryce structure 

                 

a) b) 
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variety of director configurations can be seen, including four s=+1/2 defects in a tetrahedral 

arrangement as shown in Figure 1.2.4a.  Nematic shells have been made experimentally[29] 

via microfluidics in which the diameter of the nematic shells are approximately 200 microns 

with the shell thicknesses ranging from approximately one hundred to ten microns. 

 

Figure 1.2.4 a) Four s=+1/2 defects and the corresponding baseball director configuration  

found for thin nematic shells and b) a bipolar defect configuration found for thick nematic 

shells. Taken from Vitelli and Nelson[30] 

 

In nematic shells with homeotropic anchoring, it is possible to form a defect-free ground 

state, similar to the radial configuration of a nematic droplet (Figure 1.2.5) with the inner 

surface taking the place of the central hedgehog defect.  

In nematic shells with planar anchoring, as stated earlier, the total topological charge on 

the surface of a sphere must be equal to +2. In a nematic shell, there are two spherical 

surfaces, the inner surface and the outer surface both of which must obey the constraint 

Figure 1.2.5 Schematic of a nematic shell with homeotropic anchoring 

a) b) 
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on the total topological charge. In equilibrated systems, three defect configurations were 

seen consisting of; 1) four     
 

 
 defects, 2) two    

 

 
 and one      or 3) two 

     defects. In nematic shells that have not yet reached equilibrium, a larger number of 

defects some with negative topological charge may be present and the total topological 

charge is conserved, i.e. equal to +2, with the addition of corresponding positively charged 

defects to balance the negatively charged defects.  

It has been found experimentally that for thick nematic shells, a bipolar defect 

configuration consisting of a boojum at each pole is seen (Figure 1.2.4a), whereas for thin 

shells four s=+1/2 axial disclination lines are seen (Figure 1.2.4b). At intermediate 

thicknesses, a third defect configuration was seen, consisting of one s=+1 and two s=+1/2 

defects[31](Figure 1.2.6). It has been suggested theoretically that the switch over between 

thick shell behaviour and thin shell behaviour is dependent on the elastic constant ratios[30], 

with the bipolar structure being favoured in pure splay or bend systems and within the one 

elastic constant approach occurs at[32] 

  
 ⁄       (1.2.1) 

where h is the shell thickness and R is the outer shell radius. 

 

Figure 1.2.6 Cross polarized images of a nematic shell with planar anchoring showing a) two 

b) three and c) four defects. Taken from Fernandez-Nieves et al[29] 

 

a) b) c) 
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Due to the potential application of nematic shells relying on the tetrahedral arrangement in 

thin shells, work has focussed on systems in the thin shell regime, indeed, many published 

results have ignored the influence of thickness and investigated a two-dimensional nematic 

on the surface of a sphere[33, 34]. Whilst for a one elastic constant approach a tetrahedral 

defect is expected, maximising the distance between defects of the same sign[35], this is not 

the case when      . Both Bates[33] and Shin et al[35] found that when the elastic 

constants were not equal, a defect configuration in which all the defects are located 

around the great circle of the sphere is seen. Dhakal et al[34] have also found that the 

tetrahedral arrangement is preferable at higher temperatures and the great circle 

arrangement at low temperatures.  

The great circle defect configuration can be thought of as bisecting the bipolar 

configuration seen in director configuration of pure splay (
  

  
⁄   ) system. In these 

systems, there is no energy penalty associated with splitting the s=+1 defects, creating two 

s=+1/2 defects with an uninterrupted nematic region between them. These two 

hemispheres can then be rotated to form an infinite number of defect configurations in 

which all the defects are located on the great circle of the sphere.  

 

Figure 1.2.7 a) At the limit of 
  

  
⁄    the separation of a s=+1 into two s=+1/2 defects 

has no energy penalty. b) and c) two examples of a great circle defect configuration. a) and 

b) are taken from Shin et al [35] and c) from Bates[33] 

a) b) c) 
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Nematic shells produced experimentally are of inhomogeneous thickness due to the slight 

difference in density between the nematic phase and the inner water droplet. The defect 

configurations observed in the non-uniform thickness shells differ from those predicted in 

uniform thickness nematic shells. For bipolar defect configurations with two s=+1 defects 

the effect of shifting the inner water droplet was investigated and a transformation from 

the bipolar defect structure seen in uniform thickness shells to a defect configuration with 

both defects at the thinnest part of the nematic shell[36]  was found. The transition from a 

bipolar, or deconfined structure to a confined defect configuration where both defects are 

confined to one hemisphere is dependent on both the average thickness and the relative 

amount shifted.  

Seyednejad et al[32] propose that the three defect configuration is stabilised by shifting the 

central water droplet, with the boojum found at the thinnest part of the nematic shell 

splitting to form two s=+1/2 defects. In thin shells of inhomogeneous thickness the defects 

are not located in a tetrahedral arrangement but rather are located at the thinnest part of 

the nematic shell, minimising the length of the disclination lines as the energy of a defect is 

proportional to the length of the defect.  

The behaviour of nematic shells in the presence of an external electric field[37] and nematic 

shells with different boundary conditions at the inner and outer surfaces have also been 

investigated[38]. For thin nematic shells, that form four s=+1/2 defects with no external 

electric field, when a homogenous external electric field is applied the bipolar configuration 

is stabilised, with the poles in the direction of the electric field. Higher order and 

inhomogeneous external electric fields result in more complex defect configurations 

containing both positive and negative strength defects. For nematic shells in which planar 

anchoring is favoured at the inner surface and homeotropic anchoring at the outer surface, 
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a hybrid director configuration is seen with two s=+1 defects on the inner surface and a 

defect free outer surface.  

 Smectic shells and the transition from the nematic phase to the smectic phase have also 

been investigated in double emulsion systems[39, 40]. At temperatures just above the 

nematic-smectic transition temperature,      and the great circle defect configuration 

is observed, as found in the simulations of an infinitely thin shell of hard rods[35]. 

Only very recently have chiral nematic shells been fabricated[41]. A single s=+2 defect is 

observed in the shells, indicating a similar director configuration as those found for filled 

chiral droplets in which the radius of the droplet is much smaller than the pitch length of 

the cholesteric phase. The chiral nematic shells were fabricated via microfluidics used to 

encapsulate dyes. The monodisperse nature of the resulting chiral nematic shells allowed 

for a close packed array to be formed, however the position of the defect was different in 

each shell.  

Little work has been done into non-spherical nematic shells produced by encapsulating a 

non-spherical colloidal particle with research focussing on spheres that have been 

deformed by elongating in one or two directions[42, 43] that form four s=+1/2 defects. For 

uniaxial prolate ellipsoidal particles (i.e.     ), the defects form in pairs at the ends of 

the longest particle axis, merging and forming a single s=+1 defect for very long 

ellipsoids[43]. For uniaxial oblate ellipsoidal particles (i.e.      ) the defects tend to 

locate around the waist of the particle rather than the relatively flat faces of the particle, 

however Bates et al[42] found that the defects were off-set and found slightly on the faces.  
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 APPLICATIONS OF NEMATIC SHELLS 1.2.4

Nematic shells with planar anchoring have many different applications due to the presence 

of defects in the ground state. Double emulsion systems are predicted to self-assemble 

through the defects and when a solid particle is encapsulated with a nematic shell, it is 

possible to selectively functionalise the surface of the particle through the defect sites. 

It is predicted that two or more nematic shells will interact with each other through the 

defect sites[28], leading to an ordered system on the micrometre scale. For bipolar droplets, 

this would lead to strings of droplets. Such behaviour is also seen with colloidal particles[44] 

or water droplets suspended in a bulk nematic phase[45]. For nematic shells with four 

defects in a tetrahedral arrangement this would lead to a three-dimensional lattice similar 

to that found in diamond and the regular array of nematic shells around water droplets 

acts as a photonic crystal. Recently, chiral nematic shells have been shown to act as a 

photonic crystal and used to modulate light produced by a laser[41]. 

A photonic crystal is a material consisting of a periodic array of nanostructures of differing 

dielectric permittivity[46]. These nanostructures can be formed from a wide variety of 

building blocks, including silica as found in opals, block copolymers[47] and the nematic 

shells discussed here. The periodicity of the crystal can be in one, two or three dimensions. 

One-dimensional photonic crystals are relatively simple to fabricate whereas three-

Figure 1.2.8 Photonic crystals periodic in one, two and three directions 
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dimensional photonic crystals with a complete photonic band gap are much more complex 

(Figure 1.2.8) and have only recently been fabricated on a large scale[48]. 

The periodic array means that wavelengths of light approximately equal to twice the 

distance between the nanostructures cannot propagate through the material due to 

destructive interference from scattering. The wavelengths that pass through the crystal are 

known as modes and form bands and the disallowed wavelengths form band gaps. This 

leads to a band structure similar to the electronic band structure in semiconductors such as 

amorphous silicon (Figure 1.2.9).  

With the ability to selectively manipulate the flow of light, the main use of photonic crystals 

is in display devices. One-dimensional photonic crystals have commercial applications 

including optical coatings (e.g. anti-reflective coatings) and spatial filters. Two-dimensional 

photonic crystals have recently been used commercially as photonic crystal fibres. Possible 

commercial applications of three-dimensional photonic crystals, include optical computers. 

When three-dimensional photonic crystals are used in conjunction with wave guides they 

can be used to manipulate light including guiding light round sharp bends and splitting 

light[49]. 

Figure 1.2.9 Three dimensional diamond structure and schematic of a band diagram for a 

photonic crystal 
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The defect configurations seen for nematic shells with planar anchoring can be thought of 

as atom-like structures, i.e. the bipolar structure seen for thick shells is analogous to an     

sp hybridised carbon whereas the tetrahedral defect configuration seen for thin shells is 

analogous to an sp3 hybridised carbon atom. These atom-like structures can be used to 

investigate the self-assembly found on a microscopic scale in biological systems [50].  

For solid particles encapsulated within a nematic shell, it is proposed that the addition of 

foreign media into the nematic shell, such as polymers or DNA linkers, would lead to a 

selective functionalization on the inner particle through the defects. The added non-

mesogenic molecules migrate to the defects to maintain the nematic ordering in the 

spherical shell[28]. These selectively functionalised colloids can be used in catalysis, for 

example, by attaching one linker to a planar substrate leaving a three-valent colloidal 

particle[28, 51]. 

 COLLOIDAL PARTICLES IN A BULK NEMATIC PHASE 1.2.5

There has been a plethora of research into spherical colloidal particles in a bulk nematic 

system, with both planar and homeotropic anchoring, however there has been relatively 

little research into non-spherical particles and faceted particles in a bulk nematic.  

Figure 1.2.10 Schematics of a spherical colloidal particle in a nematic with a) planar 

anchoring or b) and c) homeotropic anchoring, with a dipole and Saturn ring defect 

respectively. 

a) b) c) 
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For a spherical colloidal particle with planar anchoring in a bulk nematic a boojum is 

formed around the colloidal particle[52] (Figure 1.2.10a). For spherical colloidal particles 

with homeotropic anchoring in a bulk nematic, there are two limiting defect structures[53], 

either a dipole (Figure 1.2.10b) or a Saturn ring (Figure 1.2.10c).   

As with the nematic shells discussed in section 1.2.3, the colloidal particles in a bulk 

nematic self-assemble through the defects. For colloids with planar anchoring, the self-

assembly process occurs through the boojums to two-dimensional arrays of colloidal 

particles, whereas particles with homeotropic can self-assemble through the defects to 

form both chains[54] and two-dimensional arrays[55] . Recently, work has focussed on defect 

lines surrounding two or more spherical colloidal particles in a bulk cholesteric[56] or 

nematic liquid crystal, forming many intricate defect line “knots” around the colloidal 

particles[57]. 

Whilst work has primarily focussed on spherical colloidal particles in a bulk liquid crystal 

phase, it is possible to fabricate colloidal particles in a variety of geometries[58] and only 

recently have non-spherical colloidal particles been considered. Faceted nanoparticles that 

are cubic or triangular prisms have been investigated with homeotropic anchoring[59], as 

have larger, two-dimensional squares[60]. The defect lines surrounding the cubic and 

triangular prisms were shown to form along the edges, with the triangular prisms aligning 

with the director.  

Other, non-spherical geometry particles have been considered with planar anchoring, 

including platelets with three to five sides[61, 62], star-shaped particles[63] and more complex 

colloidal particles which possess handles[64]. The ground state of both polygonal platelets 

and the star-shaped particles are dependent on the number of edges, or arms in the case 

of the star shaped particles. For systems with an odd number of sides/arms, e.g. triangular 

platelets or five-armed stars, the particles orient with one side/arm aligning parallel the 
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director, whereas particles with an even number of sides/arms, e.g. a square platelet orient 

with each side/arm at 45⁰ to the director. In all cases, the defects are located at the 

vertices of the platelets.  

 

Figure 1.2.11 a) and b) show a triangular and square platelet respectively, taken from 

Lapointe et al[61]. c) and d) show star shaped particles with four and five arms respectively. 

All show an optical microscopy image under crossed polarisers and a schematic of the 

director configuration and are taken from Lapointe et al[63] 
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 NEMATIC AND CHIRAL NEMATICS CONFINED IN NON-SPHERICAL GEOMETRIES 1.2.6

Whilst a sphere minimises the surface area and is the ground state for a liquid droplet, 

there are many other possible geometries of droplets possible, such as a torus. A torus is a 

doughnut-like shape and is the product of two circles (Figure 1.2.12). 

Unlike an ellipsoid or even a cube it is not possible to transform a sphere into a torus 

without cutting it, this is because a torus has a different Euler characteristic to that of a 

sphere. The Euler characteristic (χ) of a sphere is 2, whereas for a single torus    . The 

Euler characteristic of a body with handles is 

    (   ) (1.2.2) 

where g is the number of handles. For example, the Euler characteristic of a system with 

two handles (g = 2), otherwise known as a double torus is  

    (   )     (1.2.3) 

 

The Euler characteristic for a polygon is given by 

         (1.2.4) 
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a) b) 

𝑟𝑚𝑖𝑛 

𝑟𝑚𝑎𝑥  

𝑟𝑚𝑎𝑥  

𝑟𝑚𝑖𝑛  

Figure 1.2.12 Parameters used to define a torus. a) Shows the torus from above and b) 

shows a cross section of the torus 
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where V, E and F are the number of vertices, edges and faces respectively. From (1.2.4), it is 

possible to see that a cube has the same Euler characteristic as a sphere, which can be 

considered as having no handles, i.e.     . 

             (1.2.5) 

A cube is in fact one of five platonic solids[65], the others being a tetrahedron (four sided), 

an octahedron (eight sided) a dodecahedron (twelve sided) and an icosahedron (twenty 

sided). A platonic solid is a regular (i.e. all edges and angles are equal), convex polyhedron 

with     . 

Although toroidal droplets are unstable, they can be stabilised by external force and are 

found in nature, e.g. in raindrops[66] or the packing of DNA in sperm[67] . Both isotropic[68] 

and nematic[69] tori have been created experimentally by stabilising the toroidal droplet in a 

gel matrix, as have multiple handled bodies (e.g. double and triple tori).  

 

Figure 1.2.13 A linear and triangular triple torus with planar anchoring showing four s=-1 

defects, equal to the Euler characteristic for a body with three handles (    ). 

 Taken from Pairam et al [69] 

 

In nematic droplets with handles with planar anchoring, the total topological charge on the 

surface is equal to the Euler characteristic meaning that a defect-free ground state is 

expected for a nematic torus with planar anchoring and the total topological defect charge 

on the surface to decrease by -2 for each additional handle. Pairam et al[69] found that a 

a) b) 
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single torus does have a defect-free ground state and that a double torus has two s=-1 

defects at the join between two of the tori. For a toroidal colloidal particle in a nematic, Liu 

et al[64] found  both a defect-free structure and one where two s=+1 defects and two s=-1 

defects located on the outer and innermost surfaces respectively were introduced, 

corresponding to a total topological charge on the surface of torus of 0.   

For a single nematic torus with planar anchoring, the director in fat tori (large     ) was 

seen to spontaneously twist whereas thinner tori (small     ) the director runs axially along 

the tube of the torus. Kulic et al[70] proposed that the presence of the twisted state is 

dependent on the on the ratio of the twist and bend elastic constants, 
  

  
⁄ , with the 

twisted director configuration found when 
  

  
⁄  is small. Further work by Pairam et al[69] 

however, suggests that  the director configuration is dependent on the saddle-splay elastic 

constant,     (Figure 1.2.14).  

 

Figure 1.2.14 The regimes where the twisted and untwisted axial director configurations for 

a nematic torus with planar anchoring are seen. ξ is the aspect ratio of    
    

    
⁄ . 

Taken from Pairam et al[69] 

 

There has been very little research into nematic tori with homeotropic anchoring, however 

Stelzer and Bernhard[71] performed a finite element study into the stability of three possible 

director configurations both with and without the presence of an external magnetic field. 
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The three director configurations considered were; a s=+1 disclination line along the centre 

of the tube, two s=+1/2 disclination lines along the tube or an escaped s=+1 defect 

structure. It was found that with no external magnetic field the director configuration with 

two s=+1/2 defects running along the tube was favoured.  

 COMPUTER SIMULATION OF LIQUID CRYSTALS 1.3

Computers were first used to simulate liquid crystals in the 1970s, although prior to this 

theoretical work was done, including work by Onsager[72] in the 1940s based on hard rods, 

and Maier and Saupe[73] using mean field theory in the 1960s. It was not until the 1990s 

when the power of computers had increased significantly that real progress in liquid crystal 

simulations has occurred.  Atomistic simulations model each atom separately. Due to the 

large computational cost atomistic modelling can only be used for small systems. To 

overcome this problem, coarse-grained modelling is used. In this technique, groups of 

atoms, or whole molecules are modelled as single particles[74] (Figure 1.3.1). The particles in 

coarse-grained modelling can be of any shape, generally for liquid crystal mesogens either 

rods, spherocylinders (cylinders with spherical ends), ellipsoids or discs[75]. Three examples 

of coarse grained simulations, hard rods and spherocylinders, the Gay-Berne[76] model and 

the Lebwohl-Lasher[77] model, are discussed below. 
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The Maier-Saupe mean field theory for a nematic phase is based on the long range 

dispersion forces and ignores shorter range forces treating surrounding particles as one, 

known as the molecular mean field approximation. The Maier-Saupe mean field theory has 

the form 

  (    )     ̅̅ ̅  
̅̅ ̅  (    ) (1.3.1) 

where   is the angle between the long molecular axis and the director (Figure 1.1.3b) and 

   is the second Legendre polynomial (1.1.1).   
̅̅ ̅ is the ensemble average of    and   ̅̅ ̅ is 

the averaged anisotropic interaction parameters. There is only one unknown,   , in (1.3.1) 

and the Maier-Saupe theory successfully predicts the order properties and order-disorder 

(e.g. nematic-isotropic) transition observed in many experimental systems[78]. 

Unlike the Maier-Saupe mean field theory, Onsager considered a three-dimensional gas of 

hard spherocylinders which ignores the long-range dispersion interactions however takes 

into account the short-range anisotropic interactions. Onsager theory states that the phase 

transition from an isotropic to a nematic phase with increasing pressure is entropically 

driven. There are two coupled contributions to the entropy, the orientational order found 

in a gas and the translational entropy from the excluded volume of two rods found parallel 

to one another. At low densities, the orientational contribution to the entropy is dominant 

and an isotropic phase is formed, however at higher densities the translational contribution 

to the entropy is dominant and a nematic phase is seen.  

 or 

Figure 1.3.1 An example of coarse graining 
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Whilst Onsager theory is only valid for infinitely long rods (  ⁄   ) computer simulations 

of hard rods, spherocylinders, and hard ellipsoids have found that both a nematic and 

smectic phase[79] may be formed and the phase diagram for hard spherocylinders has been 

mapped by Bolhuis and Frenkel[80]. The relative simplicity of systems of hard rods has lent 

itself to the investigation of many different systems, including two-dimensional 

nematics[81], confined systems[82], binary mixtures[83] and polydisperse systems[84]. 

The Gay-Berne[76] model is an anisotropic form of the Lennard-Jones potential that has 

been widely used to investigate the nematic phase and takes into account both short- and 

long-range interactions.   The potential is based on ellipsoidal particles of length l and 

breadth d where, for prolate particles l>d ,    and    are the end-to-end and the side-to-

side diameters respectively and    and    the end-to-end and side-to-side well depths. The 

potential is given by [76];  

 

 (         )    (       ̂  ) [(
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  (
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(1.3.2) 

 

Where    and   are unit vectors representing the orientations of the molecules and     the 

separation between the molecules. The orientation dependent part of the Gay-Berne 

potential is;  
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(1.3.3) 

For spherical particles this reduces to    which is the spherical diameter, or √  [85]. 

  (       ̂  ) affects the well depths in the potential. 
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where    
  

  
 and    

  

  
.  

In the original paper, values of                        or GB(3,5,2,1) where 

GB(κ,κ’,μ,ν), were used and both a nematic and isotropic phase is seen in bulk systems. 

Whilst simulations using GB(3,5,2,1) form an ordered liquid phase, the length-to-breadth 

ratio is much smaller than that found for many mesogens. Luckhurst and Simmonds[86] 

proposed a set of parameters, GB(4.4,20,1,1), based on the dimensions of p-terphenyl, 

which although not mesogenic in itself, has a similar molecular structure to many common 

calamitic mesogens. For GB(4.4,20,1,1) )[87] a smetic phase is observed in addition to the 

isotropic and nematic phases found using the original parameters. 

The final model for nematics discussed here is the Lebwohl-Lasher model[77] . The Lebwohl-

Lasher model is a lattice-based version of the Maier-Saupe mean-field model discussed 

previously. The Lebwohl-Lasher model consists of a cubic lattice of uniaxial particles which 

are free to rotate. The particles interact with the nearest neighbours and that the pair 

potential 

         (      ) (1.3.8) 

where     is the angle between nearest neighbours i and j and ε is a positive coupling 

parameter. In the bulk[88], a nematic phase is formed at temperatures below       ⁄  
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     . It is possible to introduce interfaces with specific alignment by using a layer of ghost 

particles located at the interface[89]. 

 THE MONTE CARLO METHOD (MC) 1.3.1

The Monte Carlo technique was developed in the 1940's by Metropolis et al[90] and is so 

called due to the random numbers used in the calculations. However, similar techniques 

had been used long before the invention of computers and employed various techniques to 

generate random numbers, e.g. a pack of cards or throwing a dart at a board. Today 

however, a random number generator program is used.  

Calculate Energy,  𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

Perform Trial Move 

Recalculate Energy, 𝑈𝑓𝑖𝑛𝑎𝑙 

Is the new state lower in 
energy? 

(

∆𝑈   𝑈𝑓𝑖𝑛𝑎𝑙   𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

 
Accept Trial 

Move 

Accept Trial 
Move 

Reject Trial 
Move 

Generate a random number, X 

Is X smaller 
than 

𝑒(∆𝑈 𝑘𝐵𝑇⁄ )? 

Yes 

Yes 

No 

No 

Figure 1.3.2 Flow chart of a Monte Carlo move 
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Monte Carlo is an importance sampling technique that works by setting up a Markov chain 

of states which satisfy the conditions that each trial belongs to a finite set of outcomes 

which is only based on the outcome of the trial that immediately precedes it.  An 

importance sampling technique means that the function evaluation is concentrated in 

regions of the state space that make important contributions to the integral being 

investigated. 

After a trial rearrangement has occurred, if the energy has decreased then the move is 

accepted, this is known as a downhill move. If the energy of the system is increased, then a 

random number is generated and compared to the Boltzmann factor of the energy 

difference of the two states. 

  (∆    ⁄ )       ∆                  (1.3.9) 

If the random number is smaller than the Boltzmann factor, then the move is accepted as 

an uphill move, if not the move is rejected (Figure 1.3.2) and the state recounted.  An MC 

cycle is N trial move attempts, where N is the number of particles in the simulation. 

 TRIAL MOVES 1.3.2

The trial move selected in a MC simulation can be; a change in volume (isothermal-isobaric 

systems or NPT), a particle exchange or a particle displacement (a constant number, 

volume and temperature system or NVT).  In this research, all simulations are a NVT type 

simulation and so moves are either particle exchange or displacement. 

In this thesis, there are four types of trial move are attempted for mesogens; 

1. A translation by a random amount along a random vector 

2. A rotation by a random vector on a sphere 

3. A new random orientation 

4. A combination of 1. and 2. 
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For water particles, trial moves were a translation by a random amount along a random 

vector (1 above). The resulting position (  ) of the particle after a random translation (as in 

1 and 4 above) is 

           (1.3.10) 

where     is the initial position of the particle and for both     and     where         is 

between zero and the simulation box length.   is a random vector in a cube and   is a 

constant between 0.01 and 0.5, i.e. the maximum translational displacement is 0.5σ and 

the minimum translational displacement is 0.01σ. 

The resulting orientation (  ) of a particle after a random rotation (as in 2 and 4 above) 

may be written in a similar way as  

       
   

 
 (1.3.11) 

where    is the initial orientation of the particle and   is again a random vector on a sphere 

with length t.    is a constant between 0.1 and 5. 

For simulations of mesogens surrounding a solid particle, an additional type of trial move 

was made in which the positions of a randomly chosen mesogen and water particle were 

exchanged and the orientation of the mesogen was replaced by a random vector. 

 ACCEPTANCE RATIO 1.3.3

In a Monte Carlo simulation, the number of accepted trial moves is optimised via the 

parameters    and   . For large values of   , resulting in large displacements, the 

simulation may be advanced faster than with a lower value of   . However, large 

displacements are more likely to be rejected, e.g. a large displacement may cause a 

mesogen in the centre of the bulk to be displaced into the bulk water which would be very 

unfavourable and result in the move being rejected. Conversely small displacements lead 

to a large number of trial moves being accepted however the number needed to 
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equilibrate the system is much greater than for a larger value of   . In order to optimize 

the Monte Carlo simulation, the acceptance ratio, 

      
    

      
 (1.3.12) 

where      and        are the number of trial moves accepted and attempted respectively, 

is calculated and    is altered to maintain     between 0.4 and 0.6. Note that, in (1.3.13), 

both      and      refer to only those trial moves in which a translation has taken place 

(moves 1 and 4). An analogous ratio is calculated for trial rotations by a random vector on a 

sphere and    is varied to maintain an acceptance ratio between 0.4 and 0.6. 

 PERIODIC BOUNDARY CONDITIONS 1.3.4

In all simulations cubic periodic boundary conditions were used (Figure 1.3.3). By utilising 

periodic boundary conditions, surface effects may be avoided by replicating the simulation 

cell to form an infinite lattice. When a particle moves out of the simulation cell, a copy of 

the particle enters the simulation cell from the opposite face. This removes the ‘walls’ of 

the simulation cell and so removes any surface effects[91].   

 

 

 

Figure 1.3.3 Schematic of periodic boundary conditions in two dimensions 
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 NEIGHBOUR LIST 1.3.5

A linked cell neighbour list is used to greatly reduce the simulation time.  When no 

neighbour list is used, in each trial it is necessary to calculate the energy between one 

particle every other particle (even if that energy is zero as it is beyond the cut off distance), 

meaning the time taken per MC cycle scales as    where N is the number of particles in the 

system. Using a neighbour list means that a much smaller number of interactions need to 

be calculated for each trial.  

A linked cell neighbour list works by dividing the simulation cell into smaller cubic cells[91]. 

These smaller analysis cells must have sides equal to or larger than the potential energy cut 

off used (Figure 1.3.4a), meaning that a particle in one cell can only interact with other 

particles in that cell or one of the neighbouring 26 cells. 

At the start of a simulation, the position and cell that each particle is in is stored. The cell 

each particle is in is tracked and updated throughout the simulation. The highest number 

particle in each analysis cell is placed in the HEAD array. This states the position of the next 

particle number in the LIST array, which in turn states the position of the next particle in 

Figure 1.3.4 a) A diagram showing simulation cell split into smaller analysis cells and the 

numbered particles that are linked in b). The potential energy cut off for particle 7 is also 

shown. b) shows the linked list table corresponding to the dotted arrow shown in a).  

a) 
b) 
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the LIST array and so on. When all the particles in each cell are accounted for, a ‘0’ is used 

to donate the end of the cell (Figure 1.3.4b).  

 ANALYSIS OF SIMULATIONS 1.4

Once the simulations have reach equilibrium, the systems were analysed in a variety of 

ways. By monitoring the energy of the simulation, it was possible to tell when a system had 

reached equilibrium as the energy of the simulation was constant. For example, simulations 

started from an isotropic phase showed a sharp decrease in energy on the formation of a 

nematic phase whereas simulations started from a perfect crystal showed an increase in 

energy as the order of the system was lost on the formation of a nematic. For bulk systems, 

other parameters such as the nematic order parameter,  ̅ , can be monitored to 

investigate equilibration. 

 BULK ORDER PARAMETER  1.4.1

The bulk order parameter (1.1.1) was calculated over the simulation box to classify the 

phase in some of the systems investigated. The order parameter was calculated for each 

analysis cell and also a global order parameter was calculated for bulk mesogen-only 

systems, ‘slab’-like systems and confined cylinders. The global bulk order parameter was 

not calculated in the majority of the confined systems as it is meaningless due to the 

spherical or toroidal geometry of the system.  

The  bulk order parameter was calculated by calculating the a Q-tensor over all of the 

mesogens in the system; 

    ( )   
 

 
∑(        

 

 
   ) 

 

   

 (1.4.1) 

where           and      is the Kronecker delta. The Q-tensor is then diagonalised  
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        (

    
    
    

) (1.4.2) 

so that              and the bulk order parameter is taken to be 

 〈  (    )〉        (1.4.3) 

 VISUALISATION 1.4.2

For many of the confined geometries investigated, as stated previously, the bulk order 

parameter does not provide any meaningful information. For these geometries a measure 

of the local order is required to locate the defects. To do this, the simulation cell is split into 

cubic analysis cells that are set to be the same as the cubic cells used in the neighbour list. 

The size of the analysis cells was a balance between two main factors; smaller analysis cell 

size meaning the visualisation and position of the defects is of higher resolution whilst a 

larger analysis cell size means there are more particles in each analysis cell and so less MC 

cycles are need in order to gain any statistical data about the local order and direction of 

the director. 

In order to visualise the systems simulated and locate the defects, the method proposed by 

Callan-Jones et al[92] was employed and then visualised using Paraview version 3.10.1. This 

method uses a modified order parameter tensor to calculate three Westin Metrics which 

are used to represent the linear, planar and spherical order[93]. 

In each analysis cell a Q-tensor was calculated for each analysis cell (1.4.1)and diagonalised 

to give a matrix in the form 

        

(

 
 
 

 

 
   

  
 

 
     

   
 

 
   )

 
 
 

 (1.4.4) 
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where S is the order parameter and η is the biaxiality parameter (in a uniaxial nematic, η=0) 

and is equivalent to that shown in (1.4.2). In order to visualise the simulations, the tensor 

used must be greater than or equal to zero at all points. To achieve this, a modified tensor 

is used; 

                
 

 
   (

    
    
    

) (1.4.5) 

where              and                From       , the three Westin metrics, 

      and   , can be calculated. 

                 (1.4.6) 

     (      )     (1.4.7) 

               (1.4.8) 

The three Westin metrics must all have values between 0 and 1, and                  In 

a well ordered uniaxial nematic phase,            and        In an isotropic phase 

(             ),             and so        and        which is equivalent to a 

sphere. In reality,    is always slightly above zero for a small system due to the presence of 

some degree of orientational order in a liquid. The same is true for  ̅  for an isotropic 

phase in a small system.In this thesis only uniaxial molecules were investigated, i.e.        

(as    is a measure of biaxiality), and so        .   

 DIRECTOR VISUALISATION 1.4.3

The director was visualised using stream lines whose trajectory sweeps along the 

eigenvector field corresponding to   . The streamlines were started from random points in 

the simulation cell and were chosen so they passed through all regions where there is a 

non-zero density of mesogens. The director stream lines were used to detect the locations 

of any escaped defects with s=+1 that were not found using the method below. The stream 
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lines were also used to distinguish between defects of s= 
 

 
 and s= 

 

 
 by studying how the 

director rotates around the defects (Figure 1.1.7). 

 DEFECT DETECTION 1.4.4

The defects were defined as areas where there was density of mesogens, but    is less than 

a threshold value. The threshold value was chosen as it showed a surface in the defect 

locations but not at the nematic-water interface. The threshold value used was dependent 

on the temperature of the system. For simulations run at  
 

    
 ⁄        , a threshold of 

        was used unless otherwise stated. For simulations run at a higher temperature a 

much lower threshold value was used as the system was much more disordered and the 

reverse is true for systems at a lower temperature.  

Using this method to detect the defects was very successful for defects of strength  
 

 
, it 

was not always possible to detect defects of strength s= 1. The s=+1/2 defects were easier 

to detect due to the different nature of the s= 
 

 
 defects and the s= 1. The half strength 

defects are axial disclination lines through the nematic whereas the s= 1 defects are 

escaped defects on the surface. The defects on the surface are point-like in two dimensions 

and so tend to have a smaller region of disorder than the axial s= 
 

 
 defects.  
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 THE INTERACTION POTENTIAL 2

In this chapter the basic features of the mesogen-mesogen interaction used in this thesis 

are given, as well as the mesogen-water and water-water interactions used for studying 

nematic shells. A simple model based on hard spheres with an embedded orientation 

vector allows for large system sizes of approximately 100,000 particles to be investigated. 

The chapter then goes on to discuss some preliminary results testing the behaviour of our 

proposed model with bulk systems and slab-like systems with flat interfaces. An off-lattice 

model allows for deformation of the spherical shell to occur. By using an off-lattice model, 

unlike the lattice based analogues, it is also possible to vary the elastic constant ratios. 

 MESOGEN-MESOGEN INTERACTION POTENTIAL 2.1

The key feature of any interaction potential used to model a liquid-crystalline phase is that 

the interaction between a pair of particles that are parallel is more favourable than for a 

pair of non-parallel particles, suggesting a simple model 

       (     )  {

     

               (     )

        

 (2.1.1) 

where     and     are unit vectors embedded at the centre of particle i and j respectively 

(Figure 1.4.1). 

  

𝒑𝒊 

  𝒓𝑖𝑗 

𝒑𝒋 

ith particle jth particle 

Figure 1.4.1 A schematic of two mesogen particles where 𝒑𝒊  and 𝒑𝒋  are unit vectors along 

the direction of the particle and 𝒓𝒊𝒋 is the unit vector between the centre of particles i and j. 
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 Particles i and j are hard spheres with a diameter of σ and r is the distance between the 

centres of i and j and  

       (     )     (     )
 

 (2.1.2) 

with    .       (     ) is an off-lattice version the Lebwohl-Lasher[77] model. By using 

spherical cores as opposed to elongated particles such as spherocylinders or rods the 

system will equilibrate much faster as rotational trial moves are not rejected due to 

overlap. The mesogen-mesogen potential used is also a simple model, allowing for large 

system sizes to be investigated. In (2.1.2), (     )
 

  (    )  where   is the angle 

between orientation vectors and is lowest in energy when       and the particles are 

aligned. The square is used as there is no polarity in a nematic, .i.e. ↑↑=↑↓=↓↓.  In 

order to make this potential more general an expanded form with terms up to   ( )
  is used. 

Note that only the even powers are used as, due to the lack of polarity in a nematic phase, 

the terms with odd powers are all equal to zero.  

 

      (         )

    [  (     )
 
    (     )(    ̂  )(    ̂  )

   (    ̂  )
 
(    ̂  )

 
] 

(2.1.3) 

Where            are constants, allowing the potential to be based on the orientation of 

the intermolecular vector,     (Figure 1.4.1).  
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Table 2.1.1   ,   and    values for potentials used.  

Potential          

1 1.00 0.00 0.00 

2 1.00 0.50 1.00 

A1 1.00 0.125 0.00 

A2 1.00 0.25 0.00 

A3 1.00 0.375 0.00 

B1 0.75 -0.125 0.00 

B2 0.50 -0.25 0.00 

B3 0.25 -0.375 0.00 

 

The range of parameters used is chosen so that the interactions between two mesogens 

are always attractive and the energy at the most favoured particle interaction is -1.  

Based on the values of        and   , there are three main classes of       (         ); 

1. Side-side interactions are equal to end-end interactions (       )  e.g. potential 1 

and 2. 

2. Side-side interactions are  favoured over end-end interactions (       ) e.g. 

potentials A1-A3 

3. Side-side interactions are less favoured than end-end interactions (       ) e.g. 

potentials B1-B3 
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The difference in energy between side-side interactions and end-end interactions for 

parallel particles, i.e. (     )
 

  , can be illustrated by plotting the graphs of    ( ) vs. 

      (         ) ,where   is the angle between   and  ̂   where  ̂   
   

 ⁄    (Figure 

2.1.2). In both potentials 1 and 2, side-side interactions and end-end interactions are equal, 

however in potential 2 there is a barrier to rotation between a side-side and end-end 

arrangement that is not present in the simpler potential 1 and       (         )     

for all values of  .  
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Figure 2.1.2 Graphs of mesogen-mesogen potential interactions vs.   𝜙 for a) potential 2, 

b) potential A1-3 and c) potential B1-3 
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 THE CHIRAL INTERACTION POTENTIAL 2.1.1

It is possible to take into account the chirality of a molecule to investigate the chiral 

nematic phase. In chapters 4, 6 and 7 chiral shells and toroidal systems are investigated. In 

order to do this, an additional chiral term[94] was added to the mesogen – mesogen 

interaction potential (2.1.3), 

 

      (         )

 {

     

               (         )         
     (         )

        

 
(2.1.4) 

Where 

        
     (         )      [ ̂    (     )][(     )] (2.1.5) 

And      where    is the chiral strength parameter. When    and    are in the same 

plane, the cross product (     ) is orthogonal to  ̂  , meaning that the resulting dot 

product ( ̂    (     )) is zero. Conversely, when    and    are not in the same plane, the 

potential causes a helical twist to be favoured [95].  

 WATER-WATER INTERACTION POTENTIAL 2.2

In the following two chapters, shells formed as a double emulsion of liquid crystals in water 

will be investigated and so a water-water interaction and the cross mesogen-water 

interaction need to be defined. Unlike mesogen particles, water particles do not have any 

orientation dependence as the resulting liquid phase is isotropic. The potential used was a 

simple square well potential; 

     (   )  {
     

            

        
 (2.2.1) 

Where      and is the potential well depth. Preliminary simulations of nematic shells 

and flat surfaces were run varying   from 0.0 to -0.5. Importantly, no crystallisation of 
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water occurs at the reduced temperatures studied and it was found that for all interaction 

potential well depths less than 0.0 gave very similar configurations for the defects in the 

droplet shell. The magnitude of the water-water interaction is not influential on the 

structure of the water.  

 

 

 

 

 

 

 

 

 

 MESOGEN-WATER INTERACTION POTENTIAL 2.3

The mesogen-water interaction governs the anchoring type and strength at the interfaces. 

We take the mesogen-water potential to have a similar square well form 

      (      )  {

     

              (      )

        

 (2.3.1) 

where  

     (      )          (    ̂  )
 

 (2.3.2) 

 𝑟𝑖𝑗  

𝑈
𝑊

 
𝑊

(𝒓
𝒊𝒋
) 

Figure 2.2.1 Graph of 𝑈𝑊 𝑊(𝒓𝑖𝑗) where 𝜀𝑊       
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     (      )  (        )    (    ̂  )
 

 (2.3.3) 

 For planar and homeotropic anchoring respectively.    and       are both positive 

constants, where    is the anchoring strength and       the repulsion between the 

mesogen and water particles that induces phase separation.  As in the mesogen-mesogen 

interaction potential,  (    ̂  )
 

 (    )   and θ is the angle between   and  ̂   where 

 ̂   
   

 ⁄ . By using the interaction potentials (2.3.2) and (2.3.3), the energy of the 

interaction varies from       to          (Figure 2.3.1).   

 PRELIMINARY BULK SIMULATIONS 2.4

 BULK TRANSITION TEMPERATURES 2.4.1

For each potential, a series of simulations of 10368 mesogens in a cubic simulation cell of 

sides 24, corresponding to         where 

    
   

 
 (2.4.1) 

were run at different reduced temperatures,   , where 

     
   

 
 (2.4.2) 

to calculate the nematic – isotropic transition temperature,     
 . 

Figure 2.3.1 Graphs of the angle between 𝒑𝑖and 𝒓̂𝑖𝑗  vs. 𝑈𝐿𝐶 𝑊(𝒑𝑖 𝒓𝑖𝑗) for 𝜀𝐿𝐶 𝑊    and 

𝜀𝐴    for a) planar and b) homeotropic anchoring 

a) b) 
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The density of         was used as this corresponds to a dense liquid phase for hard 

spheres, just below the density of liquid-solid coexistence (  
        )[96] and was used 

to ensure that a liquid phase with no voids were formed in the simulation. By fixing the 

density, it is assumed the density at the nematic-isotropic transition does not change 

significantly.  

The simulations were run from both a cubic lattice and an isotropic phase and the bulk 

order parameter was calculated throughout the simulation. The bulk order parameter, 

     , is 

        〈  (    )〉   〈
 

 
       

 

 
〉 (2.4.3) 

For a nematic phase at a temperature much lower than the nematic-isotropic transition 

temperature, the order parameter is relatively constant during a simulation, for simulations 

at  
 

    
 ⁄      using the models described previously,           . However, as the 

temperature approaches the transition temperature S decreases until at      it drops to 

zero for an isotropic liquid (Figure 2.4.1).  

Figure 2.4.1 A graph showing the change order parameter, 𝑆𝑏𝑢𝑙𝑘, with increasing 

temperature for all models 

𝑇 

𝑇𝑁 𝐼
 ⁄  

𝑆𝑏𝑢𝑙𝑘 
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Table 2.4.1 Nematic - isotropic transition temperatures (  ) for each potential used 

Potential     
  

1 1.46 

2 1.17 

A1 1.33 

A2 1.21 

A3 1.08 

B1 1.21 

B2 0.97 

B3 0.72 

 

 ELASTIC CONSTANT CALCULATIONS 2.4.2

To calculate the elastic constants the method developed previously by Allen et al[97] was 

employed, allowing for the calculation of  
  

  
⁄  and 

  
  

⁄ . By calculating the ratios, any 

fluctuations in the absolute values are removed. The method is briefly summarised below; 

An ordering tensor in real space (2.4.4) is first calculated, as is the Fourier transform in 

reciprocal space (2.4.5), which is wave-vector dependent. 

    ( )   
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   ) (    )

 

 (2.4.4) 

  ̂  ( )   
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   )    (    )

 

 (2.4.5) 

Where    is a unit orientational vector for particle i (as before) and                   is 

the Kronecker delta. When the system is unperturbed, the orientation density is 

independent of position meaning that for an unperturbed system; 
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 〈 ( )〉   〈 〉  
〈 ̂(   )〉

 
          (2.4.6) 

where 〈 〉 indicated equilibrium ensemble averages. As in previous simulations, the order 

parameter, P2 is taken to be the highest eigenvalue of 〈 〉. Taking the director to be parallel 

with the z-axis, ( ̂   (     )), a new axis system 1,2,3  can be taken so that 〈 〉 is diagonal 

with the director.  A wave vector (k) is taken to lie in the 1-3 plane, so that    (       ). 

Static orientational fluctuations can be described in terms of  ̂ in the 1,2,3 coordinate 

system as; 
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These equations are only valid in the low limit of k, as the elastic constants are defined for 

long wavelength director fluctuations. It is not possible to directly calculate k  = 0, so it is 

necessary to extrapolate to this point using 
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In principle, these should be linear functions of   
  and   

  in the limit of    , however in 

practice at finite k, the higher order terms are not negligible. To account for this the 

polynomial 
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Is used where 
  

   ⁄   
  

  
⁄           . In order for the director to be parallel to the z-

axis, a small field was applied in this direction. This was achieved by including an extra term 

in the energy potential [98].  

       (      )         [   (    ) ] (2.4.12) 

Where        is the field strength and E is the field unit vector, in this case    (     ).  

The ratios 
  

  
⁄  and 

  
  

⁄  were calculated for all the potentials. Simulations of bulk 

nematics were run at             
  for values of                  and it was found 

that the elastic constant ratios were independent on the field strength used.  The 

simulations were run for a short time and both S and the total energy of the system were 

monitored. Once equilibrated, the simulations were run for        MC cycles to 

determine the elastic constant ratios (Table 2.4.2). 

As can be seen from Table 2.4.2, for potentials 1 and 2 the elastic constants are 

approximately equal,              . Both the A and B potential series have two 

elastic constants where,           , for A (     )      and for B (      )  

   .  

Although    is found to vary, it is important to note that  
  

  
⁄  is constant at 1 (i.e. 

     ). For simulations of non-spherical particles, e.g. hard rods or ellipsoids as found in 

the Gay-Berne model[97],       which is proposed effects the location of the defects in 

infinitely thin shells with four s=+1/2 defects[33, 35].  
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Table 2.4.2 Calculated values for 
  

  
⁄  and

  
  

⁄ , averaged over all simulations varying 

       at  
 

    
 ⁄     . 

Potential   
  

⁄  
  

  
⁄  

1 1.038 0.985 

2  1.005 1.095 

A1 1.014 1.064 

A2 1.056 1.151 

A3 0.968 1.232 

B1 1.012 0.933 

B2 0.993 0.860 

B3 0.998 0.717 

 

By including the higher terms in the potential, it was hoped that the elastic constant ratios 

would vary for the different potentials used, particularly the splay and bend ratio, 
  

  
⁄  to 

examine how the elastic constants affect the director configuration in nematic shells. 

Unfortunately, this is not the case and 
  

  
⁄    for all models studied. 

For              the temperature dependence of the elastic constants was investigated 

and a series of simulations were run at                                 
  and 

       . It was found that 
  

  
⁄  and 

  
  

⁄  were very similar for all    used. It was 

found that whilst the values for the constants in the polynomial used were dependent on 

the temperature of the simulation, the ratios 
  

  
⁄  and 

  
  

⁄  were independent of     
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Table 2.4.3  Calculated values for 
  

  
⁄  and 

  
  

⁄  for potential 1 with             

  

    
 ⁄    

  
⁄  

  
  

⁄  

0.75 1.016 1.011 

0.80 1.087 1.087 

0.85 0.976 1.016 

0.90 0.971 0.977 

0.95 1.025 1.020 

 

 PRELIMINARY SLAB SIMULATIONS 2.5

 NEMATIC SLAB SIMULATIONS 2.5.1

A system with two flat liquid crystal-water interfaces was initially investigated using the 

potentials detailed in Table 2.1.1 at  
 

    
 ⁄           in order to parameterise the 

anchoring potential. The simulation cell contained a slab of liquid crystal along the z-axis 

with water to the right and left (Figure 2.5.1).  

Figure 2.5.1 Schematic of slab simulations 

  

 

 

  

z-axis 

water 

water 

mesogens 
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To analyse the systems, the simulation cell was split into slices of 0.75 one along the z-axis. 

For each slice, the density of mesogens (   ) and water (  ) particles were calculated 

along with the bulk order parameter,       as given in (2.4.3) and the local order parameter 

with respect to the z-axis given by 

     〈  (    )〉   〈
 

 
   

   
 

 
〉 (2.5.1) 

where     is the z-component of the unit orientational vector of particle i. Two order 

parameters were calculated;        was calculated as it gave a measure of the bulk 

orientation (i.e. if a nematic was formed), whereas    gave a measure of the strength of the 

anchoring at the interfaces (i.e. if the nematic was aligned parallel or perpendicularly to the 

surface and how strongly). Both planar alignment and homeotropic alignment were run for 

several different anchoring strengths. The predicted value of    is that predicted for perfect 

alignment multiplied by      . For perfect planar anchoring,    is predicted to be 

                                                 (  ⁄   )   
 ⁄     

 ⁄  (2.5.2) 

whereas for perfect homeotropic anchoring    is predicted to be 

                                              (  ⁄   )   
 ⁄     (2.5.3) 

It was found that phase separation is maintained and that the slab does not drift 

significantly from its initial point in the centre of the simulation cell (Figure 2.5.2a). A small 

amount of mixing is seen at interfaces, but this is to be expected due to diffusion. The 

amount of mixing between the liquid crystal and solvent phases increases with increasing 

temperature as the particles have more thermal energy, however at all temperatures 

phase separation is seen. 



79 
 

It was found that the presence of the nematic-water interface did not significantly shift the 

nematic-isotropic transition temperature. Simulations run at  
 

    
 ⁄      all showed a 

nematic phase with            (Figure 2.5.2b and c), with    dependent on the anchoring 

at the surface. For planar anchoring,          whereas in systems with homeotropic 

anchoring,        , in agreement with that predicted. 

 

 

 

Figure 2.5.2 Graphs for a slab of thickness 30σ at 𝑇
 

𝑇𝑁 𝐼
 ⁄      showing a) the density of 

mesogens and water particles and b) and c) show the order parameters 𝑆𝑏𝑢𝑙𝑘 and 𝑆𝑧 for 

homeotropic and planar anchoring respectively 
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 CHIRAL NEMATIC SLABS 2.5.2

Simulations of the flat interface with planar anchoring were also run for the chiral nematic 

interaction potential (2.1.4) for  
 

    
 ⁄      for potentials 1 and B3. Both       and the 

angle between the director at both surfaces and the centre was calculated, in order to 

determine the pitch length of the chiral nematic. It is not possible to use bulk simulations 

to calculate the pitch of the chiral nematic as the periodic boundary conditions impose a 

constraint that the ends of the director at opposing boundaries must meet meaning that 

only half integer pitch lengths are possible in the simulation cell. Thus calculation of the 

chiral nematic pitch length is unfeasible unless incredibly large systems, of the dimensions 

of multiple pitch lengths, are used. 

A more direct route is to use a slab with planar degenerate anchoring at the surfaces. The 

chiral interaction potential used is known to have a linear relationship between the slab 

thickness and the twist angle[99] and it is possible to extrapolate to an infinite slab thickness 

to calculate the pitch length. Slabs of chiral nematic were run with planar anchoring varying 

both the thickness of the slab and    .  

For all chiral nematic slab simulations, as with the non-chiral slab simulations, the liquid-

crystalline slab did not significantly drift from the centre of the box, and a small amount of 

mixing is seen at the interfaces between liquid crystal phase and water. The inherent twist 

perpendicular to the director in the chiral nematic phase can be seen in Figure 2.5.3. 
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The first interface was taken as the first slab analysed with a mesogen density of above 0.4 

allowing for any diffusion or drifting of the slab, the second interface was taken to be the 

last slab analysed with a mesogen density of above 0.4. The angle with the centre of the 

slab is calculated to test if there was more than half a pitch length in the slab. These angles 

were calculated throughout the simulation and the mean value from an equilibrated 

system was used to calculate the final pitch length shown in Figure 2.5.4a. 

It was found that at high values of   , the planar anchoring was not preserved and a blue 

phase structure was formed. The value of    at which the loss of the desired surface 

anchoring occurred was highly dependent on both the slab thickness and the nematic 

potential used. For example, for potential B3, in a thin slab of thickness 10σ,         still 

produced planar alignment at both water-mesogen interfaces, however for potential 1 in a 

thicker slab of thickness 25σ, planar alignment was not conserved for        .  

Simulations were performed varying the anchoring strength with                   in 

(2.3.2) for potential 1 to investigate the effect of anchoring strength on the pitch length. 

The pitch length was found to be independent of the anchoring strength used as the helical 

twist is inherent to the chiral nematic and is a bulk property. The loss of planar anchoring at 

Figure 2.5.3 Slab thickness of 15σ for potential 1 with  𝜀𝑐       , showing a) director twist 

viewed down the x-axis and b) the director at the two interfaces. 

a) b) 
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the surfaces, however, occurred at lower    values for smaller anchoring strengths as the 

energy penalty for unfavourable surface interactions was lower. 

It is not possible to calculate the temperature at which the transition from a chiral nematic 

to an isotropic phase occurs for a bulk system as the periodic boundary conditions impose a 

constraint that there must be half integer values of pitch length in the system. Whilst the 

presence of the extra chiral term in the potential means that the transition temperature 

Figure 2.5.4 a) Twist angle vs. slab thickness for potential 1 for 𝜀𝑐       with a linear 

trend line from which the pitch is calculated. b) and c) show the calculated pitch lengths for 

potentials 1 and B3 respectively 
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will have altered from the non-chiral nematic case, it is assumed that the nematic-isotropic 

transition temperature does not deviate greatly from that of a non-chiral system.  

Slab type simulations were also performed at  
 

    
 ⁄                     for potential 

1 to investigate how the chiral pitch length varies with temperature. It was found that the 

chiral pitch length did not vary greatly with temperature (Figure 2.5.5). Experimentally, in 

general, the pitch length is dependent on temperature, with the pitch length decreasing 

with increasing temperature.[4]  

 PHASE SEPARATION 2.5.3

To ensure the pre-prepared slab geometry did not bias the phase separation observed, a 

simulation of a randomly distributed  mixture comprising of 10% mesogen particles and 

90% water particles were run in a cubic box with sides of 24σ where         and 

  

    
 ⁄      was run. For all potentials, the simulations very rapidly showed phase 

separation to form small nematic droplets which slowly condensed thus proving the 

selected parameters induce phase separation between the liquid crystal and the water.  
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Figure 2.5.5 A graph showing how the pitch lengths vary with 𝑇
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 NEMATIC SHELLS  3

 INTRODUCTION 3.1

Nematic shells are of interest as the confined geometry leads to unusual director 

configurations with the spherical geometry leading to the presence of defects in the ground 

state[100]. Experimentally, nematic shells produced are of inhomogeneous thickness due to 

the slight difference in density between the nematic and water droplet a thinning at the 

top of the nematic shell and a thickening of the nematic shell at the base is seen.  

Nematic shells with homeotropic anchoring at both surfaces can form a defect-free director 

configuration and are spherical in symmetry. Nematic droplets with homeotropic anchoring 

has a hedgehog defect located at the centre of the droplet[101], but the removal of the liquid 

crystal from the centre removes this defect, leaving the defect-free shell (section 1.2.2 and 

1.2.3). The defect-free nature and the spherical symmetry of nematic shells with 

homeotropic anchoring at both surfaces are relatively uninteresting in comparison with 

nematic shells with planar anchoring at both surfaces and so are only briefly considered.   

 For nematic shells with planar anchoring, it is geometrically impossible to form a defect-

free nematic on the surface. The Poincaré-Hopf theorem[25] states that the total topological 

defect charge on the surface of a sphere must equal +2. The presence of four s=+1/2 

defects to fulfil the constraint on the total topological charge on the surface of a sphere 

was first proposed by Lubensky and Prost[27], however recent work into spherical nematic 

shells with planar anchoring on both surfaces has been sparked by Nelson[28], who 

predicted the presence of a tetrahedral defect  arrangement analogous to an sp3 –

hybridised carbon atom on the micrometre scale, which can have applications as photonic 

displays and bioassays. These double-emulsion systems have been created 

experimentally[29] via micro-fluidics. Simulations have been performed of infinitely thin 
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shells of hard spherocylinders[33, 35] and of shells of finite thickness using the Lebwohl-

Lasher lattice-based model[37, 42].  

The defect configurations seen in nematics shells with planar anchoring are thought to be 

dependent on the relative magnitudes of   and   
[30, 35], with the bipolar defect 

configuration being favoured in pure bend or splay regimes. Previous computer simulations 

of nematic shells of finite thickness carried out using lattice-based models[37, 42] and 

numerical studies[32] have utilised a one elastic constant approach where            

  and have been unable to investigate the dependence of the defect configuration on the 

elastic constants. In contrast, previous computer simulations of an infinitely thin shell of 

hard spherocylinders have looked at the dependence of the defect configuration on 
  

  
⁄ . 

By using the model described previously it is possible to vary relative energies of end-to-

end and side-to-side interactions and slightly alter both 
  

  
⁄  and 

  
  

⁄  whilst taking into 

account the thickness of the shell. 

In this chapter simulations employing a Monte Carlo technique (MC) are performed of both 

uniform and non-uniform thickness nematic shells, utilising an off-lattice potential 

described in chapter 2. In this chapter the research focusses on systems with planar 

anchoring although some systems with homeotropic anchoring are also investigated in 

uniform thickness shells.  
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 SIMULATION PARAMETERS 3.2

All simulations were run from an initial isotropic phase at  
 

    
 ⁄      in a cubic 

simulation cell with sides 48σ and N=82944, corresponding to         unless otherwise 

stated.  

To recap, the systems have two types of particles - mesogens and water particles, leading 

to three interaction potentials discussed in chapter 2. The mesogen-mesogen interaction 

potential is 

       (         )  {

     

               (         )

        

 (3.2.1) 

where     and     are unit vectors embedded at the centre of particle i and j respectively, 

    is the intermolecular vector and 

 

      (         )

    [  (     )
 
    (     )(    ̂  )(    ̂  )

   (    ̂  )
 
(    ̂  )

 
] 

(3.2.2) 

where   is a positive constant and the values of   used in this chapter are given by Table 

2.1.1. The water-water interaction potential is 

     (   )  {
     

            

        
 (3.2.3) 

where         unless otherwise stated. The mesogen-water interaction for planar 

anchoring is 

      (      )          (    ̂  )
 

 (3.2.4) 

where         and      unless otherwise stated. Several preliminary simulations of 

uniform nematic shells with planar anchoring at both surfaces were run with values of 
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                         for a nematic shell thickness of 10σ and 6σ. As    increases, the 

repulsion between the mesogen and water particles increases leading to a small 

contraction of the nematic shell away from the surrounding water, however this 

contraction did not greatly alter the defect configurations seen.  

Table 3.2.1   ,   and    values for potentials used.  

Potential          

1 1.00 0.00 0.00 

2 1.00 0.50 1.00 

A1 1.00 0.125 0.00 

A2 1.00 0.25 0.00 

A3 1.00 0.375 0.00 

B1 0.75 -0.125 0.00 

B2 0.50 -0.25 0.00 

B3 0.25 -0.375 0.00 

 

 The starting configurations were produced in the following way. Firstly, the simulation cell 

was filled with hard spheres on a simple cubic lattice at         from which particles were 

removed at random so that        . A short simulation was then run in order to produce 

a bulk liquid state that filled the simulation cell uniformly. The shells were then created by 

carving out two spheres and assigning the particles between the spheres as mesogens.  

For the uniform nematic shells, both the spheres used to carve out the shell were centred 

in the simulation box (Figure 3.2.1a). For the non-uniform nematic shell, the outer largest 

sphere was still centred in the simulation box, but the centre of the smaller inner sphere 

was displaced along the z-direction (Figure 3.2.1b).  For all simulations, the radius of the 
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droplet (    ) was equal to 20σ. The thickness of the nematic shell was varied by varying 

the radius of the inner water droplet (   ).  

For uniform thickness nematic shells, the radius of the inner sphere (   ) was varied from 

6σ to 14σ, corresponding to a nematic shell thickness of 14-6σ. For non-uniform thickness 

nematic shells, the inner sphere was shifted so that 

               (3.2.5) 

as shells thinner than this ‘popped’ and formed a nematic droplet. 

To gain statistically accurate information, each scenario was run for ten simulations started 

using different random number seeds.  

  

 
  

 Water 

Water 

Mesogens 

𝑟𝑖𝑛 𝑟𝑜𝑢𝑡 
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Water 

Mesogens 

𝑟𝑖𝑛 

𝑟𝑜𝑢𝑡 
𝑟𝑠 𝑖𝑓𝑡 

Figure 3.2.1 A schematic representation of the starting configuration for a) uniform and b) 

non-uniform thickness nematic shells. 𝑟𝑖𝑛     𝑟𝑜𝑢𝑡 are the radii of the inner and outer 

spheres respectively. 𝑟𝑠 𝑖𝑓𝑡is the amount the centre of the inner sphere is shifted in the z-

direction in the non-uniform nematic shell systems. 

a) b) 
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 OPTIMIZING MC FOR NEMATIC SHELL SIMULATIONS 3.3

In the systems investigated, the nematic shell forms only a small part of the system and for 

the thinnest shells, only 20.4% of particles in the system are mesogens. Whilst the water 

particles near the interfaces play an important role in the simulation controlling the type 

and strength of anchoring, the water particles away from the interface have negligible 

effect on the nematic shell.  

Preliminary simulations of a nematic shell with planar anchoring that started from an 

isotropic phase, showed a rapid decrease in energy at the start of the simulation which may 

be due to the formation of the nematic phase. A similar initial fast decrease in energy was 

seen for all systems containing both mesogen and water particles when started from an 

isotropic phase. For preliminary simulations of uniform nematic shells, after in initial fast 

decrease in energy, the energy continued to decrease very slowly due to the slow 

movement of the defects through the nematic.  The progression of defects through the 

shells can be seen by looking at areas of disorder throughout the simulation. Within 5000 

MC steps after starting, four defects can be observed for all shell thicknesses. Then, as the 

simulation progresses, the defects move and in the case of the thicker shells, combine to 

form s=+1 defects. 

To decrease the time taken for the simulations to reach equilibrium, the water particles in 

the simulation were separated into two groups; those inside a biasing cut off radius of 23σ 

from the centre of the simulation cell, and those outside it. A radius of 23σ was used as this 

was considered large enough to comfortably encompass the whole nematic shell, allowing 

for any small movement fluctuations that may have occurred. Preliminary investigations 

into the percentage of trial moves attempted for the water particles in the outer spheres 

showed the outermost water particles could not be completely frozen. A value of p = 0.25 

in (3.3.2)and (3.3.3)was used. 
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 The MC sampling technique had to be adjusted to account for moves crossing the biasing 

cut off boundary to maintain the number of water particles inside the cut off sphere. The 

number of water particles within the cut off sphere would artificially decrease because the 

close particles have a higher probability of passing outside the cut off area than the outside 

particles passing into the cut off area. The acceptance factor for an uphill trial move was 

multiplied by α, which for in-in and out-out moves is[91]  

     (3.3.1) 

whereas for in-out moves, 

    
 

[  (   )   ⁄ ]⁄  (3.3.2) 

and for out-in moves 

     
 [  (   )   ⁄ ]⁄  (3.3.3) 

where        (   )    and      is the number of particles inside the cut off sphere 

in the initial state. Simulations were run using this modified technique  with 25% of trial 

moves attempted for water particles outside the cut off sphere with a radius of 23σ gave 

concordant results to those run using the slower unmodified technique.    
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 UNIFORM THICKNESS NEMATIC SHELLS 3.4

In preliminary simulations, the density of the mesogens in thin shells from the central point 

was analysed (   ( ))  

    ( )  
     

    
 (3.4.1) 

Where r is the distance from the centre of the simulation cell,     is the number of 

mesogens in a given shell and dr was taken to be 0.25σ. 

 All the simulations show that a spherical uniform nematic shell is maintained and that the 

spherical shell has not drifted from the starting position or been noticeably deformed 

(Figure 3.4.1). By maintaining a spherical uniform nematic shell the surface area of the 

nematic-water surface is minimised along with the repulsive interactions between the 

mesogen and water particles. Nematic shells of thicknesses less than 6σ were found to be 

unstable and ‘pop’, forming a bulk nematic droplet in the centre of the simulation cell.  

For uniform nematic shells with planar anchoring at both surfaces, shell thicknesses ranging 

from 14σ to 6σ were investigated for the potentials given in Table 2.1.1. 

Figure 3.4.1 A graph showing 𝑔𝐿𝐶(𝑟) for a shell of thickness 10σ for potential 1 after 5,000 

(red), 100,000 (green) and 250,000 (blue) MC cycles 

𝑟
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𝑔
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 UNIFORM THICKNESS NEMATIC SHELLS WITH PLANAR ANCHORING 3.4.1

In all uniform thickness nematic shells with planar anchoring, the total topological charge 

on the inner and outer surfaces was +2, fulfilling the Poincaré-Hopf constraint. The type, 

number and position of defects seen in nematic shells with planar anchoring are dependent 

on the thickness of the nematic shell and two thickness regimes are defined dependent on 

the number of defects formed, thick shells and thin shells. Note that a shell with a 

particular thickness can behave as either a thin or thick shell dependent on the potential 

used.   

 For thick shells, a bipolar structure with two s=+1 defects was seen (Figure 3.4.2a), 

whereas for thin shells four s=+1/2 defects were seen (Figure 3.4.2c). At intermediate shell 

thicknesses a third defect configuration was occasionally seen consisting of one s=+1 and 

two s=+1/2 defects (Figure 3.4.2b). The three different defect configurations seen for 

equilibrated nematic shells of uniform thickness with planar anchoring are discussed in 

detail in the following sections. Table 3.4.1 shows the regions of thick and thin shell 

behaviour for potentials 1,2, A1, A3, B1 and B3. 

 

 

Figure 3.4.2 Potential 1 nematic shell thicknesses of a) 12σ, b) 11σ and c)9σ 

a) b) c) 
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Table 3.4.1Thick and thin shell behaviour for systems investigated where red=thick, 

green=thin and amber=intermediate thickness 

Potential Nematic shell thickness/σ 

 14 13 12 11 10 9 8 6 

1         

2         

A1         

A3         

B1         

B3         

 

The switch in behaviour for potentials 1 and 2 occurred at a shell thickness of 9σ, or 

        where  

   
   

    
⁄  (3.4.2) 

And    is the threshold value below which a bipolar structure is formed and above which 

four s=+1/2 defects are seen. The calculated value of    for the systems in which the end-

end and side-side interactions are of equal energy is slightly below the value found by 

Seyednejad et al[32] who found         and that seen experimentally by Fernandez-

Nieves et al[29] who found        . The value of    is governed by the size of the defect 

core (  ) by[30] 

      √       (3.4.3) 

Which is when the energy of the boojums found in the thick shells and the four s=+1/2 

defects are equal. The deviation away from the value of    found experimentally could be 

due to the relative thickness of the nematic shell to the size of the particle. In the 

simulations performed here, the nematic shell is of the order of ten particles thick whereas 
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experimentally the nematic shells are tens of thousands of times thicker than the length of 

the mesogen, e.g. the thin shells of 5CB produced via microfluidics by Fernandez-Nieves et 

al[29]  are in the region of 50μm whereas the molecular length of 5CB is approximately 2nm 

in length. For the B series of potentials, the transition from a thick shell behaviour to a thin 

shell behaviour was seen for thicker nematic shells, increasing     and for potential B3 

        suggesting that the potentials favouring end-end interactions give slightly more 

realistic results. Conversely, the A series of potentials favoured side-side interactions and 

for potential A3        . 

 THICK NEMATIC SHELLS WITH PLANAR ANCHORING 3.4.2

For shells which exhibited thick shell behaviour, two s=+1 defects, known as boojums are 

located at the poles of the droplet. A boojum consists of two s=+1 defects on the surface 

that are half-hedgehog defects. In the case of nematic shells, the defects on the inner 

surface are hyperbolic half-hedgehog defects, whereas on the outer surface the s=+1 

defects are radial half-hedgehog defects[52]. The boojums are found at the poles of the shell 

as this maximises the distance between the defects, minimising the distortion of the 

director field between them.  

Figure 3.4.3 A schematic representation of a boojum showing a radial (top) and hyperbolic 

(bottom) half hedgehog defects  
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In a boojum there are only two regions of disorder at the centre of the two half hedgehogs 

on the surfaces, surrounded by a much larger region of some nematic order where the 

director is not planar to the surface. The small size of the disordered region means that the 

s=+1 defects were very hard to locate purely using a threshold of    and it was not possible 

to locate the hyperbolic half hedgehog defects on the inner in this manner. Using a 

threshold value of         did pick up the hyperbolic half hedgehog at the inner surface 

(Figure 3.4.4b), however the radial half hedgehog was then much wider. When a value of  

         (Figure 3.4.4c) was used regions on the outer surface away from the defects 

were also found possibly due to the lower liquid crystal density in some analysis boxes 

close to the surface leading to a lower order parameter than the analysis boxes further 

within the nematic shell. The local order parameter in the nematic shell was approximately 

0.6, which is similar to that seen in the preliminary simulations of a nematic confined 

between two flat interfaces (section 2.5.1). It was, however, easy to locate the boojums 

visually with the aid of the director streamlines. Due to the difficulty in locating both 

constituent half hedgehogs in a boojum, it was not possible to analyse the angles between 

the defects to verify the bipolar nature of the droplet seen by eye in the visualisations. 

Figure 3.4.4 A nematic shell of thickness 11σ showing two s=+1 defects with a) 𝑐𝑙      , 

b) 𝑐𝑙       and c) 𝑐𝑙       

a) b) c) 
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As shown in Table 3.4.1, For potentials 1 and 2, where the end-end and side-side 

interactions are equally favoured, the bipolar structure was only found for shells of with a 

thickness of 10σ or greater (Figure 3.4.2a). It was found that, for potentials where the side-

side interaction was favoured (potentials A1-3), the bipolar configuration was observed in 

thinner shells and for potential A3 where the difference in energy between the side-side 

and end-end interactions was the greatest, the bipolar defect configuration was seen in 

shells as thin as 8σ. Conversely, for potentials where the end-end interaction was favoured 

(potentials B1-3), the bipolar defect configuration was only seen in very thick shells. For 

potential B3 where the end-end interaction is much lower in energy than the side-side 

interaction, the bipolar configuration is only seen for shells of thickness 13σ and above. 

The lack of thick shell behaviour exhibited by the B potential series can be explained in the 

following manner. As shown in Figure 3.4.3, the boojum has a region between the two half 

hedgehogs on the surfaces where the director is perpendicular to the surfaces. As stated 

previously, the nematic shells are only a few particles thick meaning that the number of 

end-end interactions at the region between the half hedgehogs is much fewer than the 

side-side interactions. Conversely, the s=+1/2 disclination lines do not have this region 

where the director is perpendicular to the surfaces and so the cross over from a bipolar 

Figure 3.4.5 The Bipolar configuration in a nematic shell with planar anchoring for a) 

potential A3 with a shell thickness of 8σ and b)potential B3 with a shell thickness of 14σ 

a) b) 
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defect configuration to four s=+1/2 defects is seen much earlier in the potentials where 

end-end interactions are lower in energy than side-side interactions. 

 THIN NEMATIC SHELLS WITH PLANAR ANCHORING 3.4.3

For thin nematic shells with planar anchoring, four s=+1/2 defects (Figure 3.4.2c) were 

found. Unlike the boojums seen for thick nematic shells, the s=+1/2 defects are disclination 

lines running through the nematic bulk from the inner to the outer surface. Four s=+1/2 

defects were seen for simulations using potential 1 and 2 for shells of 10σ or thinner. As 

seen in section 3.4.2, for simulations where the side-side interactions were favoured, the 

switch from a bipolar structure in thick shells to four s=+1/2 defects occurred in thinner 

shells than those run with where the side-side and end-end interactions were equal in 

energy. For potential A3, only in the very thinnest shells of thickness 8σ or below were any 

s=+1/2 defects observed. The converse was true for systems that preferred end-end 

interactions and four s=+1/2 defects were seen in shells of thickness 13σ or thinner for 

potential B3. 

Due to the nature of the s=+1/2 defects, it was easy to locate the defects using a threshold 

of        . In order to minimise the distortion in the director and the elastic energy of 

the system, the defects repel each other. The configuration that maximises the distance 

between defects is when the defects are located at the vertices of a tetrahedron in an 

analogous arrangement to the hydrogen atoms around the central carbon atom seen in 

methane.  

It was possible to investigate the angles between s=+1/2 defects in order to quantify the 

defect configuration in thin shells with four s=+1/2 defects. Two different angles were 

calculated, the angle between two defects and the centre (Figure 3.4.6a) and the angle 

between three defects (Figure 3.4.6b). 
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The defects were located by defining any regions where four or more adjacent analysis cells 

with        . It was possible to calculate angle A between two defects and the centre in 

three ways; 

1. The position of the defect on the inner surface 

2. The position of the defect on the outer surface 

3. The inertia tensor of the defect 

The position of the defect on either surface was taken as the middle of the defect when 

looking at cubic analysis cells whose centre was less than 2σ away from the surface in 

question. For angle B between three defects it was only possible to use the positions on 

either surface but not using the inertia tensor. For each scenario investigated, ten 

simulations were run with a different initial random number seed. It was found that the 

resulting histogram of angles was very similar using all three defect definitions and the 

results reported here are from method 3 as the standard deviation tended to be slightly 

lower, e.g. for a nematic shell of thickness 9σ using potential 1 the standard deviation was 

23.7⁰, 22.8⁰ and 22.0⁰ using method 1 to 3 respectively. 

For each scenario investigated, a distribution of defect configurations was seen. Snapshots 

from a simulation of shell thickness 8σ for potential 1 are shown in Figure 3.4.7. For a 

tetrahedral defect configuration the angle between two defects and the centre is 109.5⁰ 

a) b) 

Figure 3.4.6 Diagram showing a) the internal angle between defects in a four s=+1/2 

configuration and b) the torsional angle between three defects (B). 
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and the angle between three defects is 60⁰ whereas for the great circle defect 

configuration, similar to that shown in Figure 3.4.7b it is expected that both angular 

distributions  ( )and  ( ) will peak at 90⁰. For uniform nematic shells with planar 

anchoring all the angle distribution seen for both the angle between two defects and the 

centre and between three defects gave a normal distribution, to which a Gaussian curve 

was fitted to calculate the mean angle. 

The resulting histograms of both  ( ) and  ( ) for a nematic shell thickness of 8σ for 

potential 1 show that the average defect configuration is roughly tetrahedral in nature. 

Similar results are seen for all thicknesses where thin behaviour (i.e. four s=+1/2 defects) is 

observed for all potentials. Previously, it has been observed that whilst the tetrahedral 

defect configuration is favoured when the elastic constants are equal, as 
  

  
⁄    at 

a) b) 

c) d) 

Figure 3.4.7 a) and b) show a uniform nematic shell of thickness 8σ with planar anchoring 

for potential 1 with four s=+1/2 defects in a tetrahedral and great circle arrangement 

respectively. c) and d) are the angle distributions for the angle between  two defects and 

the centre and three defects respectively. 

Angle/ Degrees Angle/ Degrees 

𝑓(𝐴) 𝑓(𝐵) 
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temperatures just above the nematic-smectic transition[40],  a great circle configuration in 

which all the defects are located at the ‘waist’ of the droplet is favoured[34]. It is likely that 

for the potentials employed in this chapter the difference between the elastic constants    

and    is not large enough to drive the defect configuration to favour an arrangement with 

the defects located on the great circle of the sphere.  

For all potentials investigated, the mean angle between two defects and the centre, angle 

A, (Figure 3.4.8a) and the mean angle between three defects, angle B, (Figure 3.4.8c) 

decreases  with decreasing thickness of the nematic shell whilst the standard deviation is 

nearly constant across the shell thicknesses investigated (Figure 3.4.8b). The decrease in 

the angle between two defects and the centre is most apparent in potential B3 which 

a) 

c) b) 

Figure 3.4.8 Graphs showing the variation of a) mean angle A b) the standard deviation of A 

and c) the mean angle B with shell thickness for each potential  
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shows thin shell behaviour over the widest range of nematic shell thicknesses. The 

decrease angle A could be due to the decreasing length of the defects as the nematic shell 

thins. The free energy of a disclination line is proportional to the length of the disclination 

meaning greater repulsion between pairs of defects is felt in thicker shells where the 

s=+1/2 defects are longer. 

 INTERMEDIATE THICKNESS NEMATIC SHELLS WITH PLANAR ANCHORING 3.4.4

In nematic shells with planar anchoring at both surfaces of thicknesses highlighted in 

amber in Table 3.4.1, a third defect configuration consisting of one s=+1 and two s=+1/2 

defects was occasionally seen along with both the bipolar and four defect configurations 

(Figure 3.4.2b). The third metastable defect configuration is only seen in thicknesses 

between thick and thin shell behaviour along with both the bipolar and four defect 

structures, highlighting the similarity in energy between two s=+1/2 and one s=+12 defect 

at these nematic shell thicknesses. 

 TEMPERATURE DEPENDENCE 3.4.5

In simulations run at  
 

    
 ⁄      all the nematic shells with planar anchoring regardless 

of thickness, when started from an isotropic system initially formed four s=+1/2 defects.  

The four defects either remained (in thin shells) or coalesced to form either one 

(intermediate thickness shells) or two (thick shells) s=+1 defects. The presence of the four 

s=+1/2 defects at the outset in shells of all thicknesses could indicate that the four s=+1/2 

defects are a metastable state of the thicker shells or it could merely be that s=+1/2 defects 

form faster than s=+1 defects but are less energetically favourable. In order to determine if 

four s=+1/2 defects are a metastable state in thick nematic shells  with planar anchoring, 

simulations were run at lower temperatures in an attempt to stabilise four defect 
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configuration in the thicker shells. Simulations were run for potentials 0, 19, A1, A3, and B1 

at  
 

    
 ⁄                 intervals for a nematic shell of thickness 10σ. 

At  
 

    
 ⁄      and above, four s=+1/2 defects are initially seen which then coalesce to 

form the expected bipolar configuration, suggesting that the four s=+1/2 defect 

configuration is not metastable. 

At  
 

    
 ⁄       a bipolar configuration was not seen unlike higher temperatures and 

the director lines do not align with the surface instead running straight through the shell. 

The lack of anchoring at the mesogen-water interface is due to the contraction of the 

mesogen away from the surface leaving a void surrounding the shell, as seen in preliminary 

simulations of systems with a large solid particle (section 5.2.3). The contraction away from 

the surface is not seen at higher temperatures as the kinetic energy of the mesogens 

overcomes the repulsion between the mesogen and water particles at the surface.  

 

 

 

Figure 3.4.9 Director configuration for potential 2 with a nematic shell of thickness 10σ at 

𝑇 

𝑇𝑁 𝐼
 ⁄       
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  HOMEOTROPIC ALIGNMENT 3.4.6

In sections 3.4.1 to 3.4.5 the anchoring at both surfaces of the nematic shell has been 

planar in nature. In this section, nematic shells with homeotropic anchoring at both 

surfaces are investigated. As noted earlier, homeotropic anchoring at both surfaces should 

lead to a hedgehog type director configuration with no defects and is spherical in 

symmetry. Simulations using  

      (      )  (        )    (    ̂  )
 

 (3.4.4) 

were performed with         and               for all potentials listed in Table 2.1.1 

for nematic shells thicknesses of 10σ and 6σ. The resulting director configuration was as 

expected and can be seen in Figure 3.4.10. 

 

 

 

 

 

 

Figure 3.4.10 A nematic shell with homeotropic anchoring at both surfaces showing a 

defect free director configuration for potential 1, nematic shell thickness of 10σ 
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 NON-UNIFORM THICKNESS NEMATIC SHELLS  3.5

In nematic shells created experimentally via microfluidics[29], the slight difference in density 

between the inner water droplet and the surrounding nematic shell causes the inner 

droplet to travel to the top of the nematic shell, which in turn causes a thickening at the 

base of the droplet and a thinning at the top of the nematic shell. In the non-uniform 

nematic shells produced, the four s=+1/2 defects observed in thin shells are no longer 

located at the vertices of a tetrahedron, rather they are all located at the thinnest part of 

the nematic shell. In order to investigate systems that are more akin to those seen 

experimentally, simulations of non-uniform nematic shells with planar anchoring at both 

surfaces were run.  

Simulations were run using potentials 1, 2, A1, A3, B1 and B3 for the systems with 

                              and                in addition to     

                 . Non-uniform nematic shells in which in which                

‘popped’.  As with the uniform nematic shell systems investigated, all simulations were 

started from an isotropic phase and run at  
 

    
 ⁄      unless otherwise stated. A 

schematic of the starting configuration can be seen in Figure 3.2.1b, where the thinnest 

part of the nematic shell is in the positive z-direction (at the ‘top’ of the simulation box) 

and the thickest part of the nematic shell in the negative z-direction (at the ‘bottom’ of the 

simulation box) .  
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 NON-UNIFORM THICKNESS NEMATIC SHELLS WITH PLANAR ANCHORING 3.5.1

It was found in all the simulation of non-uniform thickness nematic shells that, as in the 

uniform nematic shell simulations, the inner water droplet did not move significantly 

through the duration of the simulations. 

As with the uniform thickness nematic shells a transition from a bipolar defect 

configuration consisting of two s=+1, known as thick shell behaviour, to four s=+1/2 

defects, known as thin shell behaviour was seen for non-uniform thickness nematic shells. 

The type of behaviour exhibited for each scenario investigated is detailed in Table 3.5.1. 

Table 3.5.1 Thick and thin shell behaviour for systems investigated where red=thick, 

green=thin and amber=intermediate thickness 

Potential 
         

           

         

           

         

           

         

           

         

           

1      

2      

A1      

A3      

B1      

B3      

 

A similar trend in the stability of thin and thick behaviour across the interaction potentials 

is observed for non-uniform thickness nematic shells as in uniform thickness nematic shells 

with planar anchoring at both surfaces. For potentials 1 and 2 in which the side-side and 

end-end interactions are equal in energy, purely thin shell behaviour is seen for         

whereas for the B series of potentials where the end –end interactions are favoured four 

s=+1/2 defects were seen for all values of     investigated in non-uniform thickness 
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nematic shells. Conversely, the A series of potentials investigated where side-side 

interactions are favoured showed thick shell behaviour to a larger value of    , again in 

agreement with that shown in uniform thickness nematic shells. All the defect 

configurations seen in non-uniform thickness nematic shells with planar anchoring at both 

surfaces fulfil the constraint on the total topological charge located on the inner and outer 

surfaces, being equal to +2. 

Whilst in both uniform and non-uniform nematic shells with planar anchoring the A 

interaction potential series favoured the formation of s=+1 defects, by shifting the inner 

droplet away from the centre, the three defect director configuration was stabilised (Figure 

3.5.1b). Indeed, for potential A3, in uniform thickness nematic shells only shells of thickness 

6σ, corresponding                  , showed any s=+1/2 defects however in non-

uniform nematic shells with planar anchoring when                          the 

defect configuration with one s=+1 and two s=+1/2 defects were observed in 55% of the 

simulations. The three defect configuration is also stabilised with respect to both the two 

and four defect configuration in the case of                   compared to the un-

shifted shell,                  , for potentials 1, 2 and A1 (Table 3.5.2). 

 

Figure 3.5.1 Non-uniform nematic shells with planar anchoring for potential A3 for a) 

𝑟𝑖𝑛    𝜎     𝑟𝑠 𝑖𝑓𝑡   𝜎 and b) 𝑟𝑖𝑛    𝜎     𝑟𝑠 𝑖𝑓𝑡   𝜎 

a) b) 
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Table 3.5.2 The percentages of two, three or four defects observed for         in 

uniform and non-uniform nematic shells 

Potential 

% of two s=+1 

defects 

% of one s=+1 and 

two s=+1/2 defects 

% of four s=+1/2 

defects 

      

    

      

    

      

    

      

    

      

    

      

    

1 0 0 10 30 90 70 

2 10 0 30 50 60 50 

A1 20 10 20 50 60 40 

 

In systems with two s=+1 defects, the director configuration was very similar to that seen in 

uniform thickness nematic shells with planar anchoring where the defects are boojums 

located at the poles of the droplet (Figure 3.4.5). In all non-uniform nematic shells with 

planar anchoring that formed a bipolar defect configuration; one defect is located at the 

top of the simulation at the thinnest part of the shell and one at the thickest part of the 

nematic shell at the bottom of the simulation (Figure 3.5.1a).  

In a theoretical study by Koning et al[36] it is predicted that at some values of ∆, where 

 ∆  
      

    
⁄  (3.5.1) 

 the s=+1 boojum located at the thickest part of the nematic shell will migrate to the top of 

the simulation, producing what was termed the “confined configuration” as the two 

defects are confined to the thinnest hemisphere. The ∆ value at which the confined and 

deconfined, where the defects are not confined to one hemisphere i.e. a bipolar 

configuration, can be seen is dependent on h, where h is as defined in (3.4.2). In the 

systems investigated here,       for        , and the critical value of ∆ where only the 

deconfined (bipolar) configuration is predicted, ∆ , is approximately 0.7. The value of ∆   
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calculated is larger than ∆ for any systems investigated so only a deconfined (bipolar) 

defect configuration is predicted, and indeed no confined defect configurations were 

observed for any potentials.  

In systems with four s=+1/2 defects, the defects migrate away from a tetrahedral 

arrangement to the thinnest part of the nematic shell. The driving force of the migration to 

the thinnest part of the nematic shell is the minimisation of the total energy of the 

disclination lines as the energy of a disclination line is proportional to the length which 

overcomes the long range repulsion between the defects. As in systems with uniform 

thickness nematic shells with four s=+1/2 defects, the distribution of angles between two 

defects and the centre and between three defects was calculated. Whereas for uniform 

nematic shells the angle distribution between two defects and the centre was a normal 

Figure 3.5.2 Non-uniform thickness nematic shells with planar anchoring where a) 

𝑟𝑖𝑛    𝜎 𝑟𝑠 𝑖𝑓𝑡   𝜎 b) 𝑟𝑖𝑛    𝜎 𝑟𝑠 𝑖𝑓𝑡   𝜎 .c) and d) show the distributions of angles 

between two defects and the centre for a) and b) respectively. 

a) b) 

c) d) 

Angle/ Degrees Angle/ Degrees 

𝑓(𝐴) 𝑓(𝐴) 
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distribution centred on approximately the predicted angle for the defects located in a 

perfect tetrahedron, for non-uniform nematic shells this is not the case. Figure 3.5.2c and d 

clearly show an increasing peak for larger values for the angle between two defects and the 

centre, rather than the normal distribution seen in uniform thickness nematic shells with 

the same    , indeed when a Gaussian function is fitted to the non-uniform nematic shells, 

the standard deviation is approximately 35⁰ compared to 22⁰ for the uniform thickness 

nematic shells.  
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 CONCLUSIONS 3.6

In this chapter, both uniform and non-uniform thickness nematic shells have been 

investigated using an off-lattice model based on hard spheres with an embedded 

orientation vector. It has been shown that for nematic shells with homeotropic anchoring 

at both surfaces, a defect-free ground state similar to a hedgehog is observed in all 

systems. In nematic shells with planar anchoring at both surfaces defects much occur such 

that the total topological charge on both the inner and outer surface must be equal to +2, 

this is known as the Poincaré-Hopf constraint. 

For nematic shells with planar anchoring at both surfaces the type, number and position of 

defects seen is highly dependent on the thickness of the nematic shell, with two s=+1 

defects being seen for thick shells and four s=+1/2 defects being seen for thin shells. For 

nematic shells of intermediate thickness a third metastable defect configuration consisting 

of one s=+1 and two s=+1/2 defects is occasionally observed, in agreement with 

experimentally obtained results[30].  

For thick nematic shells with planar anchoring at both surfaces a bipolar configuration 

consisting of two s=+1 boojums are seen at the poles of the shell for both uniform and non-

uniform shell thicknesses. These boojums consist of a hyperbolic half hedgehog and a radial 

half hedgehog on the inner and outer surfaces respectively.  

For thin nematic shells with planar anchoring at both surfaces four s=+1/2 defects were 

found. These defects were disclination lines through the nematic shell. In uniform nematic 

shells, these defects tended to be found in a tetrahedral arrangement, although due to the 

fluid nature of the system other defect configurations were also occasionally seen, 

including a distorted tetrahedron and a great circle defect configuration in which the 

defects are located in one plane through the centre of the droplet. In non-uniform nematic 

shells, the four s=+1/2 defects migrated to the thinnest part of the nematic shell, in 
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agreement to that seen in experimental systems where the shells produced are of non-

uniform thickness.  The movement of the defects to the thinnest part of the nematic shell 

occurs as the reduction in energy due to the short length of the defects overcomes the 

repulsion felt between the defects.  

For nematic shells with planar anchoring for intermediate thicknesses a combination of thin 

(four s=+1/2 ) and thick shell (two s=+1) behaviour is seen, along with a  metastable hybrid 

defect configuration consisting of one s=+1 and two s=+1/2 defects. In non-uniform 

nematic shells, this intermediate defect configuration is stabilised, with the boojum at the 

thinnest part of the nematic shell splitting into two s=+1/2 defects. 

Eight different mesogen-mesogen interaction potentials were employed and whilst the 

interaction potentials gave broadly similar results, the thickness at which the transition 

from thick to thin behaviour in nematic shells with planar anchoring at both surfaces 

occurred was dependent on the potential used. In simulations run with potentials 1 and 2, 

where the end-end and side-side interactions are equally favoured, the bipolar defect 

configuration was seen for shells of thickness 10σ or greater, however for potentials A1-3 

which favoured the side-side interactions, the bipolar configuration was more stabilised 

with respect to the thin shell behaviour and for potential A3 was seen in shells as thin as 

8σ. Conversely, for potentials B1-3 where end-end interactions are favoured, thin shell 

behaviour was more stable and for potential B3 the bipolar defect configuration was only 

seen in shells of thickness 13σ and greater.  
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 CHIRAL NEMATIC SHELLS 4

 INTRODUCTION 4.1

A chiral nematic or cholesteric phase is the chiral analogue of the nematic phase and is 

produced from either a chiral molecule or doping a nematic phase with a small amount of a 

chiral dopant. In the cholesteric phase, the     symmetry of the nematic phase is reduced 

to    due to an inherent twist perpendicular to the director. The pitch length of a chiral 

nematic phase is defined as the length for the helix perpendicular to the director to rotate 

by 2π radians. 

There has been a wide range of research into the effect of chirality on the director 

configurations in liquid-crystalline filled droplets with planar anchoring[102]. It has been 

found that, at a low chirality where the pitch is much larger than the droplet radius, a chiral 

nematic droplet forms a twisted bipolar structure (Figure 1.2.3a) in place of the usual 

bipolar structure[26] (Figure 1.2.2a) due to the intrinsic twist present in the chiral nematic. 

At higher chirality, when the pitch is shorter than the droplet a Frank-Pryce structure is 

seen consisting of a s=+2 defect line connected to a hedgehog defect at the centre of the 

droplet (Figure 1.2.3b). All the director configurations seen in cholesteric droplets with 

planar anchoring have a total topological charge on the surface equal to +2, fulfilling the 

Poincaré-Hopf constraint[25].  

Only very recently have chiral nematic shells been fabricated by Uchida et al[41] via 

microfluidics and a number of different dyes have been encapsulated within the chiral 

nematic shells in order to investigate the photonic properties of an array of such systems. 

Uchida et al found a single disclination line of s=+2, similar to that seen in a Frank-Pryce 

structure seen in filled cholesteric droplets. 
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In this chapter the simple off-lattice model used in the previous chapters based on hard 

spheres with a centred orientation vector is employed with an additional chiral term. An 

off-lattice model is needed to investigate chiral nematic shells as, although it is possible to 

model chiral nematics using a lattice model, the direction of the helical twist is constrained 

to be along one of the three axes of the lattice. Whilst this constraint does not matter in 

bulk systems, in confined systems such as the shells investigated in this chapter and the 

toroidal droplets investigated in subsequent chapters the constraint on the direction of the 

helical twist could lead to a resulting unrealistic director configuration. An off-lattice model 

has no such constraints on the orientation of the twist. 

 SIMULATION PARAMETERS 4.1.1

The interaction potential used to simulate a chiral nematic phase is detailed in chapter 2, 

along with the calculated associated pitch lengths. To recap, an additional chiral term[94] 

was added to the mesogen – mesogen interaction potential used in the previous chapter 

for non-chiral nematic shells. 

 

      (         )
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               (         )         
     (         )

        

 
(4.1.1) 

Where 

 

      (         )
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    (     )(    ̂  )(    ̂  )
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(    ̂  )

 
] 

(4.1.2) 

In this chapter, both potentials 1 and B3 were investigated. Potential 1 is the simplest 

potential used with                    whereas potential B3 favoured end to end 

interactions with                             . In potential 1, the elastic constants 
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are approximately equal, whereas for potential B3,         . Potential B3 was 

investigated as it formed the tetrahedral arrangement of four s=+1/2 defects in much 

thicker nematic shells than the potentials (see chapter 3). 

The additional chiral term used in the interaction potential was 

        
     (       ̂  )     [ ̂    (     )][(     )] (4.1.3) 

When    and    are in the same plane, the cross product (     ) is orthogonal to  ̂  , 

meaning that the resulting dot product ( ̂    (     )) is zero. Conversely, when    and    

are not in the same plane, the potential causes a helical twist to be favoured [95].  

The water-water and mesogen-water interaction potentials used in this chapter are 

     (   )  {
     

            

        
 (4.1.4) 

      (      )  {

     

                 (    ̂  )
 

        

 (4.1.5) 

where       ,         and       unless otherwise stated. 

The same simulation parameters are used as for the non-chiral nematic shells (Chapter 3), 

that is, a cubic simulation cell with sides of 48σ and N=82944 corresponding to        . 

All simulations were run at  
 

    
 ⁄      from an isotropic phase unless otherwise stated. 

The starting configurations were produced as stated in section 3.2, with the radius of the 

outer sphere (    ) equal to 20σ and the thickness of the liquid-crystalline shell was altered 

by varying the radius of the inner sphere (   ). 

As in the previous chapter a biased Monte Carlo scheme was used so that the water 

particles in the outer region of the simulation cell were sampled less frequently than the 
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mesogens and water particles in the centre of the simulation cell and a biasing cut off of 

23σ was used (section 3.3).  

 TWIST ANALYSIS OF BIPOLAR SHELLS 4.2

As found for non-chiral nematic shells, the bipolar configuration is a common director 

configuration for cholesteric shells. For bipolar shells with 2 s=+1 defects located at the 

poles, the angle that the director twists around the droplet is of interest. The locations of 

the defects was found using the method as outlined in section 1.4.4, using a threshold 

value of        . The larger values of    threshold compared to that utilised previously 

(       ) due to the nature of the s=+1 defects. The s=+1 defects are boojums consisting 

of a hyperbolic and radial half hedgehog defect on the inner and outer surfaces 

respectively (Figure 3.4.3). The three-dimensional nature of the boojum means the director 

field near the defect is less disordered than that near an s=+1/2 disclination line. 

The hemispheres centred on each defect were treated separately as, in some cases, the 

two s=+1 defects are not directly opposite one another (Figure 4.2.1a). 

Figure 4.2.1 a) A schematic representation of the two hemispheres used in the twist angle 

analysis for the defects at the poles the defects off-set. b) A schematic representation of 

how the droplet is analysed for the twist angle analysis showing the shells viewed down 

the defect axis 

x 

y 
y 

z 

x 

b) a) 
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The analysis cells used are cubic cells of the same size as those used in the visualisations 

(section 1.4.2), with a side of length 1.5σ. For each analysis cell, the distance from the 

centre of the simulation box to the centre of the analysis cell was calculated and used to 

split the simulation cell into concentric shells (Figure 4.2.1b). By doing this it is possible to 

monitor the twist progression through the shell from the inner to outer surface. 

The analysis cells near the defect, as specified by the angle between the axis and the centre 

of the analysis cell (Figure 4.2.2a) are discarded as the presence of the defect caused the 

nematic order to become distorted and there is no longer planar anchoring at the surfaces.  

For each analysis cell within the hemisphere, a modified axis system was created using 

            .   is the vector between the centre of the analysis cell and the simulation 

cell,    is the vector running clockwise around the surface of the droplet is calculated and 

   is a vector tangential to the surface towards the defect, normal to both          

(Figure 4.2.2b).  

Finally, the director ( ̂) in each analysis cell is calculated along and from this two angles 

were calculated to analyse the twist. The angle α is defined as 

         (
( ̂    )

( ̂    )
) (4.2.1) 

which is used to monitor the twist of the director on the surface of the spherical cuts with 

respect to the meridian of the sphere. If α is zero then the director is parallel to the 

𝒗  

𝒗  

𝒗  

Figure 4.2.2 A schematic representation showing a) the area excluded from the twist angle 

analysis and b) the vectors 𝒗  𝒗      𝒗  

a) b) 
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meridian whereas when α is 90⁰, the director runs circularly around the sphere (Figure 

4.2.3). 

 

 

 

 

 

 The second angle,  , is defined as  

         (
( ̂    )

( ̂    )
) (4.2.2) 

which is used to monitor the twist of the director off the spherical surfaces. If   is zero then 

the director only twists along a direction parallel to the radius, i.e. between the two 

surfaces. 

For analysis cells with no mesogens present, the director is undefined leading to      . 

The inner and outer surfaces were taken to be the shell closest to the centre with 

       where            are the number of mesogen and water particles in the 

shells. 

 UNIFORM CHIRAL NEMATIC SHELLS 4.3

A series of simulations were initially performed of uniform nematic shells of thickness 

ranging from 6σ to 12σ for potential 1, for values of    = 0.05, 0.10, 0.15, 0.20, 0.25 and 

0.30 corresponding to pitch lengths ranging from approximately 240σ to 55σ (section 

2.5.2). The behaviour of the systems with increasing chirality can be split into three broad 

regimes dependent on the thickness of the shell, discussed separately below. 

   

  

   

 

 

 
 

Figure 4.2.3 A schematic representation of the director configuration when 

a) α = 0⁰ and b) α=90⁰ 

a) b) 
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The three regimes seen are: 

1. Very thin shells where four s=+1/2 defects are seen for all values of    

2. Thin shells which show a transition from four s=+1/2 defects at low values of    to 

two s=+1 defects at larger    

3. Thick shells that form two s=+1 defects at all values of   . 

 VERY THIN CHIRAL NEMATIC SHELLS 4.3.1

For the thinnest shells investigated (of thickness 6σ) four s=+1/2 defects were seen with 

director configurations very similar to those observed when     . The absence of the 

transition to a twisted bipolar structure could be due to the stabilisation of the s=+1/2 

defects due to the strong anchoring interactions at the surfaces. The energy of a s=+1/2 

disclination line is proportional to the length of the defect, i.e. the thickness of the nematic 

shell, whereas due to the escaped nature of the boojums, it is relatively independent of the 

thickness, being point-like on the surface. 

The director twisted slightly through the shell, as can be seen by the fact that the director 

streamlines at the outer surface in Figure 4.3.1b&c are not superimposed on the 

streamlines on the inner surface as seen in a non-chiral nematic shell when      (Figure 

Figure 4.3.1 A chiral nematic shell of thickness 6σ with a) 𝜀𝑐      , b) 𝜀𝑐       and 

c)𝜀𝑐      , showing four s=+1/2 defects 

a) b) c) 
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4.3.1a). However, due to the presence and slow motion of the defects through the shell 

due to the fluid nature, it was not possible to analyse this twisting angle quantitatively. 

 THIN CHIRAL NEMATIC SHELLS 4.3.2

Shells of thicknesses ranging from 10σ to 8σ formed four s=+1/2 defects in a tetrahedral 

arrangement for a non-chiral nematic shell (section 3.4). As the chirality of the system 

increased, a transition from four s=+1/2 to a bipolar configuration was seen (Figure 4.3.2). 

The value of    that the transition from four s=+1/2 to two s=+1 defect occurred at was 

dependent on the thickness of the chiral nematic shell (Table 4.3.1).  

Table 4.3.1 The chirality at which the switch from four s=+1/2 to two s=+1 defect occurs for 

chiral nematic shells of intermediate thickness for potential 1 

Chiral nematic shell thickness (σ) 
   and pitch length (σ) at which change from 

tetrahedral to bipolar configuration occurs 

10 0.06 (202) 

9 0.10 (109) 

8 0.13 (89) 

 

Figure 4.3.2 Chiral nematic shells of thickness 8σ with a) 𝜀𝑐       showing four s=+1/2 

defects and b) 𝜀𝑐       showing two s=+1 defects 

a) b) 
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For shell thicknesses of 8σ and 9σ, the switch between defect configurations occurs when 

the pitch length is approximately ten times the thickness of the nematic shell. For the 

slightly thicker shell (thickness of 10σ), the transition to a twisted bipolar configuration 

occurs much earlier, when the pitch length is approximately twenty times the thickness of 

the shell. The reason that the switch occurs much earlier in the thicker shell could be 

because this thickness is closer to the region where two s=+1 defects are formed for a non-

chiral nematic. Indeed, for lower anchoring strengths the bipolar configuration was found 

for non-chiral nematic shells of the same thickness (Table 3.4.1). 

For defect configurations with four s=+1/2 defects, the angle between two defects and the 

centre was calculated using the method described in section 3.4.3, in order to investigate if, 

before the transition to two s=+1 defects, the four s=+1/2 defects are distorted from the 

preferred tetrahedral arrangement seen in non-chiral thin nematic shells. To recap, the 

defects were identified as regions where four or more adjacent analysis cells have 

       . There are three ways to define the defects; by the position on the inner or outer 

surfaces or the inertia tensor of the defect. The results for all three ways of defining the 

defects are very similar and in this chapter, as with the previous chapter, the inertia tensor 

of the defect is used to calculate the angle between two defects and the centre. 

Figure 4.3.3 Histograms showing the distribution of angles between two defects and the 

centre for a) 𝜀𝑐       and b) 𝜀𝑐       

a) b) 

𝑓(𝐴) 𝑓(𝐴) 

Angle (A)/ degrees Angle (A)/ degrees 
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As can be seen in Figure 4.3.3, as    increases, the distribution of the angle between two 

defects and the centre broadens when compared to that seen in the non-chiral nematic 

shells. For a shell thickness of 8σ, the mean and standard deviation of a Gaussian function 

fitted to the distribution of angles between two defects and the centre for a non-chiral 

nematic shell is 101.8⁰ and 22.1⁰ respectively (Figure 3.4.7) whereas for        , the 

mean angle and standard deviation are 103.9⁰ and 29.5⁰. The mean angle is very similar for 

all values of   , indicating that the tetrahedral defect arrangement is most stable for all 

pitch lengths where four s=+1/2 defects are seen. The standard deviation for    

             is approximately equal, again suggesting that, below the threshold value for 

the transition to a bipolar defect configuration, the defect configuration is independent 

from the chirality of the system. The slight increase in the standard deviation with respect 

to that seen for the non-chiral system is due to the slightly different parameters used in the 

interactions potentials. 

For simulations with a very high chirality, additional defects were seen (Figure 4.3.4), 

however the total topological defect charge of +2 for both the inner and outer surfaces, as 

stated by the Poincaré-Hopf theorem, was conserved. The defects are geometrically 

ordered due to the formation of a cubic blue phase. As with the transition from four s+1/2 

defects to two s=+1 defects, the formation of a blue phase occurs at higher    for thinner 

a) b) 

Figure 4.3.4 A shell of thickness 10σ with𝜀𝑐       showing a blue phase with 

 a) four s=-1/2 defects and four s=+1 defects and b) six s=-1/2 defects and five s=+1 defects 
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shells. The blue phase is formed when the planar anchoring of the surface is overcome by 

the intrinsic helical twist perpendicular to the director. The transition to a blue phase was 

not investigated in depth however, for a shell of thickness 10σ a blue phase is observed for 

      , which corresponds to a pitch length of approximately 60σ (Figure 4.3.4). 

 

Figure 4.3.5 A histogram showing the distribution of α for a)the inner (red) and outer 

(green) surfaces for a shell of thickness of 8σ,𝜀𝑐       and b) the outer surface for a shell 

of thickness 10σ at 𝜀𝑐       (red) and 𝜀𝑐       (green). c) shows the distribution of β for 

a thickness of 9σ, 𝜀𝑐       

 

Angle (β)/ degrees 

Inner surface 
Outer surface 

Angle (α)/ degrees Angle (α)/ degrees 

0.10 
 0.15 𝜀   Inner surface 

Outer surface a) b) 

c) 

𝑓(𝛼) 𝑓(𝛼) 

𝑓(𝛽) 
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For the bipolar shells with two s=+1 defects, the twist angle between the director and the 

meridian of the spherical surface (α) and the out of plane twist from the spherical surface 

(β) were analysed with respect to distance from the centre of the simulation box (section 

4.2).  

For a non-chiral nematic shell in which a bipolar confiugration is observed,      at both 

the inner and outer surfaces. However, for a chiral nematic shell with two s=+1 defects at 

the poles, the director twists away from the meridian at both surfaces. It was found for all 

systems that formed a bipolar configuration that the twist angle α is greater at the outer 

surface than the inner surface, demonstrating that there is some twist through the shell. As 

the chirality (  ) increases, the twist angle α also increases, this is because as the pitch 

length decreases, the ratio of thickness to pitch length increases. For example, by fitting a 

Gaussian function to the histograms in Figure 4.3.5b, it can be seen that the mean twist 

angle between defects increases from 55.3⁰ at         to 75.3⁰ at          at the outer 

surface for a shell of thickness 10σ. 

To investigate if the increase in chirality causes the director to twist out of plane twist angle 

β is calculated. As can be seen in Figure 4.3.5c, away from the defect itself throughout the 

shell there is very little deviation in the director from the spherical surface. 

  THICK CHIRAL NEMATIC SHELLS 4.3.3

Nematic shells with planar anchoring at both surfaces of thickness 11σ and above all 

formed a bipolar structure for a non-chiral nematic shell and therefore no transition from a 

tetrahedral configuration was observed. With the addition of chirality to the system, the 

director twists around the waist of the shell between the two defects. The amount of twist 

observed increases with decreasing pitch length. In accordance with the behaviour seen in 

thin shells, at high values of    a chiral nematic phase is no longer formed and a cubic blue 

phase is observed.  
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 The presence of the bipolar configuration through a wide range of    values including 

     allows for a more detailed investigation into the twist angles α and β. In non-chiral 

nematic shells with planar anchoring, the director can be seen to run along the meridian 

between the two defects at the poles (Figure 4.3.6) meaning that the twist angle between 

defects (α) is approximately zero. 

As    is increased, the director twists away from the director configuration seen in non-

chiral nematic shells.  The twist angle between the director and the meridian of the 

spherical surface (α) is dependent on the thickness of the chiral nematic shell (Table 4.3.3).  

Angle (α)/ degrees 

Inner surface 
Outer surface 

Figure 4.3.6 a) A histogram showing the distribution of twist angle α for a shell thickness of 

12σ, 𝜀𝑐    and the associated visualisation (inset) b)-d) visualisations for a shell thickness 

of 12σ and b) 𝜀𝑐      , c) 𝜀𝑐       and d) 𝜀𝑐       

 

b) c) d) 

a) 
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As seen in thin shells that form two s=+1 defects, the twist angle α increases with 

increasing shell thickness (Figure 4.3.6). A Gaussian function was fitted to the histograms of 

angles produced and the mean twist angle at the inner and outer surface is shown in Table 

4.3.2. 

Table 4.3.2 A table showing the mean twist angle between defects (α) for a shell of 

thickness 12σ, corresponding to the visualisations in Figure 4.3.6  

   

Mean α at the 

inner surface 

(degrees) 

Mean α at the 

outer surface 

(degrees) 

Twist through 

the shell 

(degrees) 

0.00 -0.10 0.47 0.57 

0.05 12.80 30.48 17.68 

0.10 22.71 57.68 34.97 

0.15 24.78 78.46 53.68 

 

The twist through the shell may also be calculated by subtracting α at the inner surface 

from that at the outer surface, as shown in the last column in Table 4.3.2. The twist angle 

through the chiral nematic shell increases linearly with increasing   . The resulting graph of 

twist through the chiral nematic shell against the pitch length divided by the thickness is 

the same for all shell thicknesses investigated, indicating the main helical twist in the chiral 

nematic occurs from the inner to outer surface (Figure 4.3.7b).  
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The twist angle α at the inner and outer surfaces show the opposite behaviour with 

increasing shell thickness. The twist angle α at the inner surface increases with decreasing 

thickness, whereas at the outer surface it decreases with decreasing thickness (Table 4.3.3).  

Table 4.3.3 A table showing the mean twist angle between defects (α) for varying shell 

thicknesses at         

Shell thickness/σ Mean α at inner 

surface /degrees 

Mean α at outer 

surface /degrees 

12 24.8 78.5 

11 26.6 76.6 

10 27.1 75.3 

9 31.6 73.2 

8 36.4 71.9 

  

Again, the twist angle out of plane from the surfaces (β) was also measured. For the chiral 

nematic shell, the director is approximately perpendicular to both          meaning β is 

expected to be approximately zero. However, this is not the case for non-chiral nematic 

shells (    ) β does not favour any angle, this could be because ( ̂    ) and ( ̂    ) are 

Angle (α)/ degrees 

Inner surface 
Outer surface 

Figure 4.3.7 A histogram showing the distribution of twist angle between defects (α) for a 

thickness of 11σ,𝜀𝑐       and b) The linear relationship between the twist through the 

shell and the proportion of confined pitch length for a thickness of 12σ (red) and 11σ (blue) 

Midpoint of shell 

Pitch length

Thickness
/ σ 

a) b) 
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very small so any fluctuation between them would lead to a large change in 
( ̂   ) 

( ̂   ) 
 and 

consequently a large change in β. For systems where     , β is approximately zero 

showing that there is no twist out of the plane of the surface due to the strong anchoring 

strength (Figure 4.3.8). 

 END-END INTERACTIONS FAVOURED (POTENTIAL B3)  4.3.4

For non-chiral nematic shells with planar anchoring, thin shell behaviour consisting of four 

s=+1/2 defects were observed thicker shells for potential B3 than for potential 1. For 

example, the transition from thin (four defects) to thick (two defects) behaviour occurred 

at shell thicknesses of approximately 13σ and 10σ for potentials B3 and 1 respectively, with 

the parameters used in chapter 3.  Potential B3 allows for the investigation into the effect 

of chirality on the four-defect configuration seen in thin shells to be expanded. Two shell 

thicknesses were investigated, both of which form four s=+1/2 defects in a non-chiral 

nematic shell with planar anchoring.  The thicknesses investigated were; a thickness of 12σ 

Figure 4.3.8 A histogram of the twist angle out of the surface (β) for a shell of thickness 12σ 

for both an non-chiral (red) and chiral (green) shell 

0.00 
0.15 𝜀𝑐   

Angle (β)/ degrees 

𝑓(𝛽) 
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which is near the threshold value for thick behaviour and a thickness of 8σ which is well 

into the region where four s=+1/2 defects are observed for non-chiral nematic shells. 

As with potential 1, both shell thicknesses showed a transition from four s=+1/2 defects to 

two s=+1 as    is increased, as shown in Table 4.3.4. For the thick shell, this occurred at a 

similar chirality as the switch for the thickest shell (of thickness 10σ) for potential 1.  

Table 4.3.4 The chirality at which the switch from four s=+1/2 to two s=+1 defect occurs for 

chiral nematic shells for potential B3 

Chiral nematic shell thickness/σ 
   and pitch length in brackets at which 

transition from four to two defects occurs 

12 0.06 (160σ) 

8 0.18 (53σ) 

 

For the shell of thickness 8σ, the transition from four s=+1/2 to two s=+1 defects occurred 

at a much higher chirality for potential B3 (        compared to        ) than for 

potential 1. The difference in    at which the transition from four to two defects occurs 

could be due to the fact that, for a non-chiral nematic shell with planar anchoring, for 

potential B3 a shell of thickness 8σ is well inside the region where thin behaviour is 

observed, however for potential 1 8σ is very near the critical thickness where thick 

behaviour is seen.  
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Table 4.3.5 A table showing the mean twist angle α for a shell of thickness 8σ and 

        

        

Potential 1  

(pitch length = 79σ) 

Potential B3 

 (pitch length = 63σ) 

Mean α for inner surface 38.01 42.66 

Mean α for outer surface 71.86 86.08 

 

The two twist angles α and β were also calculated for simulations using potential B3. As 

seen with potential 1, it was seen that α increased from the inner to the outer surfaces. It 

was found that the twist angles between defects (α) for potential B3 were slightly larger 

than those for potential 1 (Table 4.3.5), as the associated pitch length for each    is slightly 

shorter for potential B3 than potential 1 (Figure 2.5.4) . The out of plane twist angle (β) was 

found to be approximately zero for all values of    that formed a chiral nematic phase, in 

agreement with those seen with potential 1. 

 PRELIMINARY STUDIES OF CONFINED CHIRAL NEMATIC SHELLS 4.4

In the water-liquid crystal-water double emulsions systems investigated in this chapter, 

there is a limit on the relative thickness of the chiral nematic shell and the pitch length 

because at high    the planar anchoring at the surface is lost and a cubic blue phase is 

formed. Whilst it would be possible to increase the relative thickness of the nematic shell 

to the pitch length by using a larger system size this drastically increases the computational 

cost of the simulation. In order to increase the thickness and hence the system size without 

significantly increasing the time taken, systems of confined mesogens without the presence 

of water were investigated. In these systems, the mesogens are confined to a volume 

between two spheres. In order to impose planar anchoring at the surfaces, the mesogen-

wall interaction took the form; 
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         (      )  {

        

                    (      )

        

 (4.4.1) 

where     is the minimum distance from the centre of the mesogen to the wall and 

         (      )           (      )
 

 (4.4.2) 

where       is a positive constant and    is as specified in (4.1.5). In a comparison to the 

interaction potential used in the double emulsion systems it was taken that         and 

     . The mesogen-mesogen interaction potential used was the same as that in the 

systems previously detailed in this chapter, with      and         (potential 1). 

The starting configurations were produced in a similar manner to that shown in section 

4.1.1, with the exception that particles not located within the volume between the two 

spheres were removed.  

Simulations were performed with          for 
   

    
⁄     , with      

                    at  
 

    
 ⁄     . By investigating systems with a shell thickness of 

24σ systems it was possible to consider systems in which the thickness was approximately 

half a pitch length, compared to the double emulsion systems where the shell thickness 

was in the region of a quarter of a pitch length. 

Figure 4.4.1 𝑟𝑜𝑢𝑡    𝜎 𝑟𝑖𝑛    𝜎 showing four s=+1/2 defects at a)𝜀𝑐       and 

b)𝜀𝑐       

a) b) 
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For          and         , the confined nematic system is analogous to the system 

investigated in the double emulsion systems and as such is predicted to show very similar 

results to that seen in section 4.3, with a transition from four s=+1/2 to two s=+1 defects at 

approximately         (Figure 4.3.2). However, at all values of    investigated, four 

s=+1/2 defects were seen and there was no transition to two s=+1 defects. Indeed, the 

transition from four s=+1/2 to two s=+1 defects was not observed in any of the systems 

sizes investigated with four s=+1/2 defects always observed except in the largest system 

investigated,          and         which formed one s=+1 and two s=+1/2 defects at 

                .  

The absence of the transition found in the water-liquid crystal-water systems could be due 

to the difference in boundaries. In systems with water particles, due to the particle-particle 

interactions the vector used at the surface may not be perfectly perpendicular to the 

interface, whereas in the confined systems, by definition the vector used to calculate the 

anchoring is perpendicular to the interface (Figure 4.4.2).  

For an s=+1 defect the surrounding director structure means that there is a greater 

distortion from planar anchoring than for a s=+1/2 defect and so the s=+1/2 defect is 

favoured in the confined systems rather than the systems with a water-liquid crystal 

surface which would allow for some small distortion in the locality of the defect. It may be 

Figure 4.4.2 A schematic representation of the vector used to induce planar alignment at 

the surface in a) a water-nematic interface and b) a confined nematic using a wall 

 

 

   

a) b) 

𝒑𝑖 
𝒑𝑖 

𝒓𝑖𝑗  

𝒓𝑖𝑘  

𝒓𝑖  
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possible to see the transition from four s=+1/2 to a bipolar structure with lower values of 

             as the energy penalty for the boojum will be lower.   

Whilst there is no transition from four s=+1/2 defects to two s=+1 defect observed, the 

director configuration observed in chiral nematic shells is not the same as that seen in the 

non-chiral nematic shells. In non-chiral nematic shells, both in the water-liquid crystal-

water simulations and the confined nematic shells, the director streamlines at the inner 

and outer surfaces are parallel. However, as    increases, a twist is observed through the 

nematic shell meaning the director streamlines on the inner surface are no longer parallel 

to those on the outer surface (Figure 4.4.3a). The twist seen through the nematic shell with 

the presence of four defects was similarly seen in the very thin shells in the water-liquid 

crystal-water systems (section 4.3.1). 

In the larger systems investigated, the s=+1/2 defects bend and distort away from the 

linear paths seen in the double emulsion systems investigated earlier in this chapter (Figure 

4.4.3b). In non-chiral nematic shells the s=+1/2 defects are straight lines through the 

nematic shell as this minimises the length and therefore the energy of the defect. In the 

Figure 4.4.3 a) the director streamlines on the inner (black) and outer (green) surfaces for 

𝑟𝑜𝑢𝑡    𝜎 𝑟𝑖𝑛    𝜎 𝜀𝑐      and b) four non-linear s=+1/2 defects seen for 𝑟𝑜𝑢𝑡  

  𝜎 𝑟𝑖𝑛    𝜎 𝜀𝑐       

a) b) 
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confined chiral nematic shells investigated here, the defects are now non-linear, in order to 

preserve the twist through the nematic shell. The distortion in the path s=+1/2 defects 

through the chiral nematic shell was not seen for the very thin double emulsion systems 

where no bipolar configuration shells were seen due to the small system size. For the very 

thinnest shells (thickness of 6σ), the size of the analysis boxes means that the shells were 

only four boxes thick and the resolution of the         contours was too low to see the 

bend in the defect path if it did occur in these systems.  

 CONCLUSION 4.5

By employing an off-lattice model of a finite thickness nematic shell, for the first time the 

effect of chirality on a nematic shell with planar anchoring at both surfaces has been 

simulated. A spontaneous transition from a four s=+1/2 defects in a tetrahedral 

configuration to two s=+1 defects at the poles of the shell was seen with increasing chirality 

(  ). The value of    at which the transition occurs at is dependent on the thickness of the 

nematic shell and the stability of the tetrahedral configuration. For very thin shells, the 

spontaneous change is not seen for the range of    investigated with the model used, 

however, it is likely that for systems with shorter pitch lengths this switch would occur.  

The range of values that    can take and the associated pitch length is limited by the 

breakdown of planar anchoring at the surfaces and the formation of a cubic blue phase. In 

shells where a blue phase has formed, there is a cubic array of s=+1 defects surrounded by 

s=-1/2 defects. In all cases the Poincaré-Hopf theorem was fulfilled, that is the total 

topological charge on both the inner and outer surfaces was equal to +2.  The limit on    

means that only relatively long pitch lengths compared to the shell thickness could be 

investigated, with a quarter pitch being the maximum confined to a chiral nematic shell.  

The Frank-Pryce like defect structure consisting of one s=+2 defect observed in chiral 

nematic shells produced by Uchida et al[41] were not observed in any simulations 
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investigated in this chapter. For filled chiral nematic droplets, the Frank-Pryce structure is 

only observed when the pitch length of the chiral nematic is shorter than the radius of the 

droplet[26]. The reason that the Frank-Pryce like structure is not observed in the systems 

investigated here is that the accessible pitch lengths using the simple model are much 

longer than both the radius of the droplet and the thickness of the shell. Future 

investigation into chiral nematic shells in which the pitch length is shorter than both the 

droplet radius and shell thickness may indicate a transition analogous to that seen in filled 

chiral droplets from the twisted bipolar structure to the Frank-Pryce like defect structure. 

In order to investigate a larger system, preliminary simulations of a chiral nematic confined 

between two spherical surfaces were run with 
    

    
⁄     , which formed four s=+1/2 

for a non-chiral nematic shell and showed a transition from four s=+1/2 to two s=+1 defects 

at approximately         for the double emulsion systems. Unlike the systems with a 

water-liquid crystal surface no transition from four s=+1/2 to two s=+1 defects was seen up 

to          in all sizes investigated, with four s=+1/2 defects primarily formed. The 

inherent twist in the chiral nematic phase was evident from the inner to outer surface and 

caused the s=+1/2 disclination lines to bend and distort from the linear defects seen in the 

non-chiral nematic shells. Whilst only preliminary work has been carried out into a chiral 

nematic confined between two spherical surfaces, it gives an interesting insight into the 

structure of the s=+1/2 defects that could not be observed in the double emulsion systems 

initially investigated. They also highlight the dependence on the surface interactions for the 

director configuration observed. It is possible, that for weaker mesogen-wall interaction 

potentials that the expected transition from four defects to a bipolar structure may be 

found.   

The director configuration seen for the bipolar shells is similar to that seen for twisted 

bipolar droplets (Figure 1.2.3b). The twist angle director and the meridian of the spherical 
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surface was measured (α) throughout the shell and found to be highly dependent on the 

pitch length (Table 4.3.2). 

 In this chapter only  uniform  thickness shells are investigated, however experimentally 

produced nematic shells tend to be non-uniform in thickness[29]. Non-uniform thicknesses 

with four s=+1/2 defects, the defects are not located on the vertices of a tetrahedron but 

rather all at the thinnest part of the shell (chapter 3). The distortion of the director 

configuration away from a tetrahedral arrangement could lead to the transition to two 

s=+1 defects to occur at a different   .    
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 SOLID SPHERICAL AND POLYHEDRAL PARTICLES WITH 5

NEMATIC COATINGS 

 INTRODUCTION 5.1

In this chapter, the research is expanded upon from nematic shells in double emulsion 

systems to solid particles with a nematic coating. Unlike systems with a nematic shell 

surrounding an inner water droplet, the solid particle may be of any geometry. A spherical 

particle of the same dimensions as the double emulsion systems in chapter 3 is initially 

investigated before extending to cubic, tetrahedral and octahedral particles with a nematic 

coating. It is expected that for spherical particles with a nematic coating, the resulting 

director configurations will be very similar to those seen for systems surrounding a liquid 

droplet[37].  

 

Figure 5.1.1 Taken from Dontabhaktuni et al [62]showing faceted platelets with planar 

anchoring and the defects formed at the corners 

 

Previous work involving on non-spherical solid particles has focussed on the inclusion of 

such particles in a nematic bulk with both planar and homeotropic anchoring at the surface 

of the particles. Cubic and triangular prisms[59] along with two dimensional platelets[62] have 

been investigated,  as have colloidal particles of a more complex geometry, such as a multi-
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handled body[64].  It has been found that for systems with planar anchoring, defects tend to 

form at the corners or vertices of the solid particle (Figure 5.1.1). 

In this chapter, systems with a nematic coating surrounding a solid polyhedral particle with 

four (tetrahedron), six (cube) and eight (octahedron) faces[65] is investigated. These three 

geometries are three of the five platonic solids, the fourth and fifth being a dodecahedron 

(12 faces) and an icosahedron (20 faces). A platonic solid is a regular, i.e. all the sides are 

the same length, convex polyhedron in which the same number of faces meet at each 

vertex.  In all platonic particles, the Euler characteristic is +2 and so the systems with planar 

anchoring in the nematic coating must have a total topological charge on the surface of the 

solid particle of +2. 

The boundary conditions at the nematic-water surface are also planar and so must possess 

a total topological charge of +2.  As the outer surface is formed at a liquid-liquid interface, 

it is expected to be spherical in nature to minimise the surface area and the unfavourable 

mesogen-water interactions. Indeed, preliminary experiments started from a uniform 

thickness coating around a cube show that this rapidly changes to become a sphere 

(section 5.2.2).  

 INTERACTION POTENTIALS 5.1.1

In this chapter, there are five different interactions to consider; mesogen-mesogen, water-

water and the cross mesogen-water interactions as in previous chapters and discussed in 

detail in chapter 2 and two additional interactions to consider due to the large solid particle 

in the centre; mesogen-particle interactions and water-particle interactions. As in previous 

chapters the mesogen-mesogen potential used was, 

       (         )  {

     

               (         )

        

 (5.1.1) 



138 
 

Where    and    are the unit orientation vectors for the particles I and j respectively,      is 

the vector between the centre of the two particles and       (         ) is 

 

      (         )

    [  (     )
 
    (     )(    ̂  )(    ̂  )

   (    ̂  )
 
(    ̂  )

 
] 

(5.1.2) 

In this chapter, the majority of simulations discussed are run with potential 1 where      

and        . The water-water potential is a simple square well potential where 

       . 

     (   )  {
     

            

        
 

 

(5.1.3) 

 

The mesogen-water interaction potential is as before 

      (      )  {

     

              (      )

        

 (5.1.4) 

where  

      (      )          (    ̂  )
 

 (5.1.5) 

which favours planar anchoring. Values of            and      were used unless 

otherwise specified.  

Figure 5.1.2 shows a schematic representation of the interaction between a mesogen and 

the large solid particle, which has the interaction potential 

      (      )  {   

        

              (      )

        

 (5.1.6) 
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where     is the smallest distance between the surface of the large particle and the centre 

of the mesogen and 

      (      )            (    ̂  )
 

 (5.1.7) 

where        and      are positive constants corresponding to the interaction between the 

solid particle and the mesogen and the anchoring strength at the surface of the particle. 

Unless otherwise specified,         and        or         in (5.1.5) were used. For 

mesogen-particle interactions, only mesogens close to the large particle interacted with it 

and the cut off for the mesogen- particle interaction potential was set to be 1.5σ. The 

potential cut off for the interaction between the mesogen and the solid particle is slightly 

longer than that of the particle-particle interactions as in preliminary simulations with the 

cut off of 1.0σ, the nematic did not condense onto the surface of the larger solid particle. 

For simplicity, water particles were set to not interact with the larger solid particle except 

through hard body repulsions,  

     (   )  {
        
         

 (5.1.8) 

 DEFECT ANALYSIS 5.1.2

The angles between defects has been analysed in a similar way to the defects in the 

nematic shells surrounding water droplets. However, unlike the systems surrounding a 

water droplet, due to the different geometries of the central particles, it was only possible 

  

𝒑𝒊 

𝒓𝒊𝒑 

mesogen 

 
θ = 90⁰ 

Figure 5.1.2 Diagram showing mesogen- solid particle interaction 
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to calculate the angle between defects using the defect location on the outer liquid crystal-

water surface. However, this allowed for the analysis of the s=+1 defects in nematic shells 

surrounding a solid particle. As previously, a threshold value of         was used to 

identify the defect positions. The position of the defect on the outer surface is used rather 

than the inertia tensor method (as used in chapters 3 and 4) as the geometries of the solid 

particles can lead to very thin regions of the nematic shell. The inhomogeneity of the 

thickness of the nematic coating leads to the defects being of similar length and width 

meaning the inertia tensor is hard to define.  

The defects are located and the number of defects present is calculated and systems with 

two, three and four defects are handled separately. If there are more than four defects 

present, the system is not yet equilibrated (or not yet formed a nematic) and no further 

analysis is performed.   

The angles between individual pairs of defects and the centre is then calculated and 

averaged across many simulations of the same systems with differing initial random 

number seeds (Figure 5.1.3). For bipolar structures only one angle is calculated whereas for 

the three defect structure three angles are calculated and in director configurations with 

four defects six angles are calculated. Although these angles are between two different 

types of pairs, a s=+1 and a s=+1/2 or two s=+1/2 defects and are not equivalent, they are 

Figure 5.1.3 Angles calculated in the defect analysis for defect configurations with a) two, 

b) three and c) four defects for different size tetrahedral particles 

a) b) c) 
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not distinguished between in this defect analysis. In systems that show four s=+1/2 defects, 

the angle formed between three defects is also analysed. 

 TRIAL MOVES 5.1.3

In addition to the particle translations and rotations detailed in section 1.3.2, an additional 

type of Monte Carlo trial move was employed in simulations in this chapter, in which one 

water and one mesogen particle are swapped. A water particle and a mesogen particle are 

selected at random and their respective positions are exchanged. A random orientation 

vector is generated for the mesogen particle and the new energy is calculated and the trial 

move accepted or rejected in the normal way. In this chapter, these particle swap trials 

accounted for 50% of the attempted Monte Carlo moves, with the other trial moves 

accounting for the same proportion as previously described.  

The additional trial move swapping a water and mesogen particle allows the nematic 

coating to deform in shape more quickly than the small trial translations otherwise taken. 

Preliminary experiments were run both with and without the particle swap trial moves and 

it was found that, as expected both methods had the same equilibrated structure and 

energy, however, by including the particle swaps the system reached equilibrium in less 

time. 
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 PRELIMINARY SIMULATIONS 5.2

 MESOGEN-WATER MIX 5.2.1

A series of preliminary simulations were run from a starting configuration where particles 

were randomly assigned as either water (90% of particles) or mesogens (10% of particles) 

creating a homogeneous water-mesogen mixture surrounding a cubic particle with sides of 

18σ in the centre of the simulation cell at  
 

    
 ⁄     . These systems were investigated 

to confirm that for a given set of interaction, parameters phase separation occurred 

between the water and mesogens and that the mesogens coated the solid particle (Figure 

5.2.1). 

Several different sets of parameters in both the mesogen-water and mesogen-particle 

interaction potentials were used. It was found that phase separation occurred for all 

mesogen-water interaction potentials investigated so long as the mesogen-water 

interaction was repulsive, i.e.        . Initially a value of         was used in the 

mesogen-particle interaction potential, however this was not strong enough to drive the 

nematic formed to condense on the surface of the cube. Therefore a stronger interaction is 

necessary. At the density of the system investigated (       ) the resulting phase is a 

Figure 5.2.1 a) The initial random positions of mesogens and b) and c) show the nematic 

phase formed on the surface of the cube after 500000MC cycles. Both the cube and water 

particles are excluded for clarity.  

a) b) c) 
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dense liquid with a similar short range structure to that of a FCC lattice. By considering an 

FCC lattice on average each particle has 12 nearest neighbours[103]. The presence of the 

larger solid particle takes the place of two of these nearest neighbours and so a value 

slightly larger than two was used. Simulations started from a homogeneous mesogen-water 

mixture run with         showed that the nematic formed now condensed onto the 

surface.  

 CUBE IN A CUBE 5.2.2

Simulations starting from a cube surrounded by a cubic shell of mesogens, forming a 

uniform thickness coating surrounding the solid particle, were also run. Two different 

thicknesses of coating were investigated, either a thick coating (thickness of 10σ) or a thin 

coating (thickness of 2σ) both with and without the additional swap trial moves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.2 A schematic showing the loss of nearest neighbours when moving adjacent to 

the large particle wall. Shown in two dimensions for clarity, there are three neighbours in 

the planes above and below the selected particle. 

Figure 5.2.3 a) The uniform coating and b) the spherical nematic coating formed after 

500000MC cycles.  

a) b) 
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It was found that, over the simulation, the nematic around the central cube collapsed from 

its initial shape into a sphere surrounding the solid particle (Figure 5.2.3). For both sizes of 

cubes, the uniform thickness coating decomposed to form a sphere, minimising the surface 

area and the unfavourable mesogen-water interactions. The spherical nematic droplet 

remained approximately centred in the simulation box. Both the simulations run with and 

without the additional swap trial moves showed the same behaviour, however the 

simulations in which the additional swap trial moves were included equilibrated in less 

time. 

 MESOGEN-WATER ANCHORING STRENGTH 5.2.3

Several simulations of spherical, cubic, tetrahedral and octahedral particles with a spherical 

nematic coating with planar anchoring at both surfaces were run varying the mesogen-

water interaction (5.1.5), varying       from 0.1 to 10 and    from 1 to 10. 

It was found that, for the spherical and cubic particles there was very little difference in the 

final director configurations for the different values of both       and    as long as they 

were both positive and still repulsive. However, the director configurations formed around 

the tetrahedral and octahedral particles were very sensitive to variations in       and   , 

Figure 5.2.4 Systems in which the nematic has contracted away from the water to reduce 

the unfavourable interactions for a) a tetrahedron and b) an octahedron. Note the lack of 

planar anchoring due to contraction at the liquid crystal-water surface 

a) b) 
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particularly variations in the repulsive term,      . For values of         the nematic 

contracts away from the water and a void is formed between the nematic and the water. 

The contraction away from the water means that the nematic does not have any preferred 

alignment, due to the lack of mesogen-water interaction on the outer surface and behaves 

as a bulk nematic system, with no defects on the outer surface. Therefore a value of 

           and       is used unless otherwise stated. 

 SIMULATION PARAMETERS 5.3

Simulations were run for 250000MC cycles, cooling slowly from the isotropic phase into the 

nematic phase and then equilibrated at  
 

    
 ⁄     .All simulations were run at 

        using cubic analysis cells with sides of 1.5σ. A cubic simulation cell of sides 48σ 

was used and unless otherwise stated, all simulations were started from an isotropic 

starting configuration. 

The starting configurations were produced in a similar manner to that described in section 

3.2 for the double emulsion systems. Initially the simulation cell was filled with hard 

spheres on a simple cubic lattice around the large solid particle. Particles are then removed 

at random to obtain the correct density (       ). These bulk systems were then run at 

high temperature for a short time to form a liquid phase. A sphere with a radius of 20σ 

centred in the simulation cell was then carved and particles outside the sphere are 

assigned as water particles and particles inside the sphere as mesogens (Figure 5.3.1). 
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Based on the results of the preliminary simulations discussed in section 5.2, the constant 

values in the interaction potentials used are as follows, unless otherwise stated. In the 

mesogen-water interaction potential            and     , in the mesogen-particle 

interaction potential         and          and finally the water-water interaction 

potential has a square well depth of          . 

 SPHERICAL PARTICLES WITH A NEMATIC COATINGS 5.4

A series of simulations were run with a large solid spherical particle with a nematic coating. 

These systems are analogous to the uniform nematic shells surrounding water droplets, 

and as such are used to confirm that the simulation parameters used in this chapter are 

consistent with the work done in earlier chapters. Solid spheres with radii (   ) of 

8,10,11,12 and 14σ were investigated which have an associated nematic coating thickness 

of 12σ to 6σ with          as in chapter 3. 

The defect configurations formed for thin coatings were very similar to those formed by 

the uniform nematic shells enclosing a water droplet, consisting of four s=+1/2 defects at 

the vertices of a tetrahedron. However, thick coatings around a solid spherical particle did 

not form a bipolar or three defect structure as were seen in nematics shells around a water 

droplet, but rather formed four s=+1/2 in a tetrahedral arrangement as seen in thinner 

shells, suggesting that the presence of a solid surface stabilises two s=+1/2 defects with 

respect to one s=+1, which is also seen in the chiral nematic systems confined between two 

spherical surfaces in section 4.4. The stabilisation of the two s=+1/2 defects with respect to 

𝜌      𝜌       

Cubic lattice Isotropic 

Water 

Mesogen 
Remove 

particles 

High 

T* 

Carve  

sphere 

Figure 5.3.1 A schematic of the process used to create the starting configurations 
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one s=+1 defect may be down to two reasons. The first is as outlined in the chiral nematic 

confined between two spherical surfaces, that is that at the liquid crystal-water interface 

the vector used (   ) to drive the anchoring may not be perfectly perpendicular to the 

surface whereas at the solid particle-liquid crystal interface the vector used (   ) is by 

definition perpendicular. The slightly longer range of the interaction may also cause the 

two s=+1/2 to become stabilised.  

In these systems with a large solid particle with a nematic coating, the interaction between 

the mesogens and the large particle is attractive. In s=+1 defects, the hyperbolic half 

hedgehog found at the inner surface may cause to contraction at the centre of the 

mesogens away from the surface. In the double emulsion systems this is favourable as the 

interaction is repulsive, however in the systems with the large solid particle this is 

disfavoured.  

Figure 5.4.1 a) A nematic coating of thickness 6σ around a spherical particle and the 

assoicated distribution of angles between b) pairs of defects and the centre and c) three 

defects 

a) 

b) 

c) 

Angle/ Degrees 

Angle/ Degrees 

𝑓(𝐴) 

𝑓(𝐴) 
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For a sphere of radius 14σ, corresponding to a nematic coating of thickness 6σ, the angle 

between defects was analysed over twenty simulations and a histogram produced (Figure 

5.4.1). A Gaussian function was then fitted to the histogram and the mean angle between 

defects was found to be the same as that observed for the double emulsion systems 

(101.8⁰). The standard deviation for the solid sphere with a nematic coating is similar to 

that as the comparable standard deviation calculated from the outer points of the defects 

in the double emulsion systems (25.4⁰ and 23.0⁰ respectively). The difference in the 

standard deviations calculated for the solid particle with a nematic coating and the double 

emulsion systems is likely to be statistical and disappear with increasing sample size. 

The angle between three defects was also analysed, as in chapter 2. In a tetrahedron, the 

angle between three vertices is equal to 60⁰. The mean angle from the simulations 

however is slightly smaller than this at 51.6⁰, however this is very similar to that seen in the 

double emulsion systems where the standard deviation calculated was equal to 53.1⁰.  
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 CUBIC PARTICLES WITH NEMATIC COATINGS 5.5

After investigating the spherical particles, which are analogues of the systems investigated 

in the previous chapters, systems of faceted particles with nematic coatings are 

investigated with planar anchoring at both the liquid crystal-water surface and the large 

solid particle surface. 

 A series of simulations were performed for cubic particles in a nematic droplet with sides 

(l) ranging from 10σ to 18σ. For cubic particles with sides above 18σ, the vertices of the 

cubes were found to pierce the nematic droplet and the cubic particles did not have a 

complete nematic coating. The distance from the centre of the cubic particle to the vertices 

(r) is 

   
 

√ 
 (5.5.1) 

All of the size cubes investigated formed four s=+1/2 defects. The smallest cube 

investigated with       can be compared to a sphere with a radius of     , which, 

again for a solid sphere using potential 1 also formed four s=+1/2 defects. In all cases 

where s=+1/2 disclination lines were observed, the s=+1/2 defects were located at the 

vertices of the cube. The disclination lines are located at the vertices as this is where the 

nematic coating is thinnest and the corresponding energy of the disclination line (which is 

proportional to its length) is minimised.  

   

Figure 5.5.1 A schematic representation of the cubic particle with a nematic coating, with 

the nematic coating in dark grey 

𝑙 

𝑟𝑜𝑢𝑡 
𝑟 
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In systems with four s=+1/2 defects there are six possible defect arrangements in which all 

the defects are located at the vertices of the cube (Figure 5.5.2). The defects with the same 

sign repel each other to minimise the increase in elastic energy and maximise the distance 

between one another with the maximum mutual defect separation being achieved by a 

tetrahedral arrangement. In a tetrahedral arrangement (Figure 5.5.3b), each face of the 

cube has a defect at two vertices. There is one other possible defect arrangement where 

each face has two defects located at the vertices, where the defects are diagonally 

opposite on two faces and adjacent on four faces and can be thought of in an analogous 

fashion as the great circle defect configuration shown by some nematic shells (Figure 

5.5.3a). Other defect arrangements are possible where one face has either three or four 

defects located at the vertices of one face are possible, although these are higher in energy 

due to the smaller defect separation. Indeed, no systems with defects at the four vertices 

of one face were seen in simulations with any potential and no systems with three defects 

on one face were observed for simulations run using potential 1. 

Figure 5.5.2 Six possible defect configurations found in a nematic coating surrounding a 

cubic particle assuming all defects are found on the vertices. 
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The energy difference between the tetrahedral and great circle configurations is very small 

and within the thermal fluctuations of the simulation and so not possible to measure. In 

systems that formed four s=+1/2 defects, the great circle configuration was formed 65.2% 

with the tetrahedral configuration being observed in 34.7% of the simulations. The reason 

that the great circle configuration is more prevalent than the thermodynamic tetrahedral 

arrangement is kinetic in origin and that once a defect has formed at a vertex of the cube 

the energy barrier for it to move through the nematic shell onto another vertex cannot be 

overcome at the temperature investigated. The energy barrier for the defect to move from 

one vertex to another is present due to the inhomogeneous thickness of the nematic 

coating. The defect would have to increase in length, and so increase the energy of the 

system on moving through the thicker part of the nematic coating surrounding the edge 

and face of the cube. The ratio of the great circle to the tetrahedral arrangement can be 

explained in the following manner. Assuming there are only two defects on each face and 

focussing on just one face which has one defect located at one of its vertices, there are two 

positions adjacent to the first defect that the second defect can form that will lead to the 

great circle arrangement but only one place diagonally opposite to the first defect where 

the second defect can form to lead to the tetrahedral arrangement (Figure 5.5.4a).   

Figure 5.5.3 A cube with four s=+1/2 defects in a) a great circle or b) tetrahedral 

arrangement  

a) b) 
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The angle between two defects and the centre was analysed for a cube with sides of 18σ. 

As previously noted, in a perfect tetrahedral defect configuration the angle between all 

defects is 109⁰, however in the great circle configuration, there are three different angles, 

the angle between adjacent defects, the angle between diagonal defects on a face and the 

angle between diagonally opposed defects, in a perfect arrangement these would be 71⁰, 

109⁰ and 180⁰ respectively (Figure 5.5.4b).  The angle distribution clearly shows three 

peaks of approximately the same height at 70⁰, 110⁰ and 160⁰ corresponding to the 

predicted angles. The function 

 
 ( )     [ 

 (    )    
 ⁄    (    )    

 ⁄    (    )    
 ⁄ ]

      (    )    
 ⁄  

(5.5.2) 

where     and     are the proportion of great circle and tetrahedral contributions to  ( ) 

respectively. The value of 
   

   
⁄  is approximately 0.2 which implies that the tetrahedral 

arrangement is only observed in a fifth of cases. The value calculated is differs from e 

number of observed cases as the histogram is averaged over the whole simulation run 

(after equilibrium is reached), whereas the observed cases are only snapshots. 

 

 

 

 

 

Adjacent site = Great 

circle configuration 

Opposite site = 

Tetrahedral configuration 

Defect 

Adjacent site = Great 

circle configuration 

Angle/ Degrees 

a) 

b) 

Figure 5.5.4 A schematic of the formation of the tetrahedral and great circle defect 

configurations and b) a histogram of the angle between defects for a cube (sides of 18σ). 

𝑓(𝐴) 
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The function shown in (5.5.2) does not take into account any defect configurations where 

there are three or four defects on one face or the possibility of the defects not being 

located on the vertices of the cube. The values             give the centres of each peak 

as 70.6⁰, 100.4⁰ and 163.3⁰, in concordance with the calculated values. The value of the 

peak at the highest angle, corresponding to the diagonally opposing defects in the great 

circle defect configuration is lower than expected and can be explained as the fact that this 

is the largest distance between defect pairs leaving the largest region for fluctuation of the 

defect centres. The angle between two defects and the centre is calculated by 

 (     )            (5.5.3) 

Where    is the vector between the centre of the simulation cell and the average point of 

defect  , where      , on the outer surface and    is the magnitude of   . The cosine of 

163⁰ and 180⁰ are very close, -0.956 and -1 respectively, so any fluctuations in the dot 

product will be amplified when looking at the angles. 

So far in this section on cubic particles with a nematic coating, the simulations have 

employed the simplest mesogen-mesogen interaction, potential 1. Whilst the general 

behaviour of the systems is the same for all the potentials investigated, the subtle 

differences between interaction potentials in which the end-end and side-side interactions 

Figure 5.5.5 A cubic particle with sides 10σ for a) potential A3, b) potential B1 and c) 

potential B3 showing two s=+1, one s=+1 & two s=+1/2 and four s=+1/2 defects 

respectively 

a) b) c) 
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are of differing energy are now discussed. For this section, values of               

                 were used along with         . Simulations were run using 

potentials 1,A1,A3,B1 and B3 with cubes with sides of 10σ to 18σ investigated. 

The smallest cubes investigated with potential 1 using the parameters described above 

showed two s=+1 defects, showing the dependence on the interaction potential 

parameters used and the resulting director configuration. As observed in the double 

emulsion systems, the A potential series, in which the side-side interactions are lower in 

energy to the end –end interactions, again favoured the formation of two s=+1 defects 

(Figure 5.5.5a), with the bipolar configuration seen in systems with cubic particles with 

sides up to 14σ for potential A3. The B potential series, in which the end-end interactions 

are lower in energy than the side-side interactions, favoured the formation of four s=+1/2 

defects (Figure 5.5.5c). There were very few occurrences of the intermediate defect 

configuration consisting of one s=+1 and two s=+1/2 defects, however they were 

occasionally observed for cubic particles with sides of intermediate length between those 

that tend to form two or four defects (Figure 5.5.5b).  

For thick coatings which form two s=+1 defects, the defects were located at two diagonally 

opposed vertices. As with the nematic shells surrounding a water droplet, four s=+1/2 

defects are initially formed at the vertices of the cube, minimising the length of the 

Figure 5.5.6 Four s=+1/2 defects initially formed after 5000MC cycles for potential A3 with 

𝑙    𝜎 
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disclination lines. Each pair of defects then combine to form two s=+1 defects still located 

at the vertices (Figure 5.5.6).As in the bipolar director configuration, in the intermediate 

defect configuration consisting of two s=+1/2 and one s=+1 defect, the two s=+1/2 defects 

are located at adjacent vertices of the cube. There are three different possible locations for 

the s=+1 defect, either on the opposing face, edge or vertex. Three different angles in three 

defect configurations are calculated α, β and γ (Figure 5.5.7d).  

The angle between the two s=+1/2 defects on adjacent vertices is α = 70.6⁰. In the case 

where the s=+1 defect is located on the face or the edge, β=γ= 125.3⁰ and 144.7⁰ 

respectively. If the s=+1 defect is located at a vertex, then β=109⁰ and γ=180⁰. By 

calculating the angle distribution for the angle between two defects and the centre for all 

occurrences of the three defect configuration it is possible to quantify the location of the 

Figure 5.5.7 a)-c) show three possible defect configurations in which the two s=+1/2 

defects are located at adjacent vertices d) A three defect configuration showing all the 

defects located at the vertices of the cube for potential B3 and a side of 16σ, and e) the 

distribution of angles between two defects and the centre calculated over all occurrences 

of three defect configurations 

d) e) 

Angle/ degrees 

𝑓(𝐴) 

a) b) c) 
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s=+1 defect. The distribution of angles between two defects and the centre clearly shows 

three peaks and by fitting the sum of three Gaussians, 

  ( )     [ 
 (    )    

 ⁄    (    )    
 ⁄    (    )    

 ⁄ ] (5.5.4) 

the three peaks are calculated to occur at 72⁰, 108⁰ and 161⁰ corresponding to the angles 

α, β and γ respectively, confirming that all defects are located at vertices of the cube. 

 SURFACE NEIGHBOUR LIST 5.6

For both the spherical and cubic particles there is a quick test to check if the mesogen or 

water particle interacts with the large solid particle. For a sphere it is merely the distance 

from the centre of the simulation cell to the centre of the mesogen or water particle (  ). 

For a cubic particle, a quick test to check for overlaps with the large particle is 

             
 

 
 (5.6.1) 

where             are the components of    in the x,y and z directions respectively and    is 

the vector between the centre of the simulation and the centre of particle i. A similar test 

can be made to check for interaction with the large cubic particle, 

             
 

 
      (5.6.2) 

where      is the potential cut off, in this case          . 

For systems of tetrahedral and octahedral particles with nematic coatings, unlike for 

spherical and cubic particles, there no quick test to calculate the minimum distance 

between the large solid particle and the selected mesogen or water particle exists. In order 

to optimize the simulations, an additional neighbour list was utilised based on the same 

cubic grid used in the original neighbour list, i.e. a cubic grid with sides of 1.5σ (section 

1.3.5).  



157 
 

At the start of each simulation, the position of the eight corners of each small cell was 

calculated with respect to the large solid particle and assigned with one of three indexes. 

These index environments were; all eight corners within the solid particle (index=1), some 

corners within the solid particle or with a minimum distance of less than the potential cut-

off (index=2) or no corners within either the solid particle or with a minimum distance of 

less than the potential cut-off (index=3) (Figure 5.6.1).  

In a simulation trial move, if any particle enters any small cell with index=1, the move is 

immediately rejected as the particle has moved within the large solid particle. If the particle 

is in a cell with index=3 then the particle is too far away from the large polyhedral particle 

and so the particle is not tested for overlap and interaction with the large solid particle is 

not calculated as the minimum distance between the centre of the particle and the large 

solid particle is greater than     . If any particle is in a cell with index=2, the interaction 

between the particle and the large solid particle is calculated, including checking if the 

mesogen/water has moved to within the large particle. Of course for particles in cells with 

an index of 2 or 3, the trial move may still be rejected due to overlap with other particles.  

Figure 5.6.1 A schematic of the surface neighbour list used  with index=1 (red) and index=2 

(green) in a) three dimensions and b) a magnified view in two dimensions. The cells with 

index = 3 have been omitted for clarity. 

a) b) 
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Preliminary simulations were performed of identical systems for both a tetrahedral and 

octahedral particle with and without the additional neighbour list. It was found that the 

energy at equilibrium was the equivalent for both simulations; however those with the 

additional neighbour list were faster than those run without the additional neighbour list. 

In simulations of tetrahedral particle, those run with the additional neighbour list were 

5.03% faster than those run without the additional neighbour list. Simulations of 

octahedral particles showed an even greater increase in speed, with simulations that 

employed the additional neighbour list running 5.74% faster than those run without the 

additional neighbour list. 

 TETRAHEDRAL PARTICLES WITH A NEMATIC COATINGS  5.7

 CENTRED TETRAHEDRAL PARTICLES 5.7.1

Simulations were also performed of tetrahedral particle with a nematic coating with planar 

anchoring at both surfaces. The size of the tetrahedral particle is not quoted as the length 

of the sides (as in the cubic particle systems) but rather in relation to the position of the 

vertices,  . In systems where the tetrahedron is not shifted, the vertices are located at: 

 

 

Figure 5.7.1 A schematic of the positions of the vertices of the tetrahedron (inside a cube 

for clarity). 

𝐴  ( 𝑥  𝑥  𝑥) 

𝐵  ( 𝑥  𝑥  𝑥) 
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The length of the sides ( ) of the tetrahedron are related to   by 

    √   (5.7.1) 

and values of                 were investigated. When      , the vertices of the 

tetrahedron pierce the spherical nematic coating (with a radius of 20σ) as the distance 

from the centre of the simulation cell to a vertex (    ) is related to   by, 

       √   (5.7.2) 

For small tetrahedrons (    ), a defect configuration with two s=+1 defects in was seen 

(Figure 5.7.2a). For a relatively large range of values, (      ) a defect configuration 

consisting of one s=+1 and two s=+1/2 defects is seen (Figure 5.7.2b) along with both the 

bipolar and tetrahedral defect configurations, and for      the three and four defect 

configurations were equally likely to be observed. Only for the very thinnest shells 

(     ) were only four s=+1/2 defects seen (Figure 5.7.2c).  

The small range of formation of the four s=+1/2 defects compared to spherical and cubic 

particles with nematic coatings may be due the inhomogeneity of the spherical nematic 

coating surrounding the tetrahedral particle. At the faces of the tetrahedron, the nematic 

coating is very thick and more bulk-like, causing the nematic coating to behave as a thick 

Figure 5.7.2 Un-shifted tetrahedral particles with a nematic coating showing a) two s=+1, b) 

one s=+1 & two s=+1/2 and c) four s=+1/2 defects located at the vertices of the 

tetrahedron 

a) b) c) 
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shell, forming a bipolar configuration.  The decrease in the volume of the large solid 

particle from a sphere to a tetrahedron can be calculated.  The volume of a sphere is  

          
 

 
    (5.7.3) 

where r is the radius of the sphere. Whereas the volume of a tetrahedron is 

          (5.7.4) 

leading to the difference in volume between a tetrahedron and a sphere with a radius of 

     is; 

              
 

 
     

         ( √    ) (5.7.5) 

It is also possible to calculate the approximate number of mesogens in each system, again 

illustrating the difference in the nematic coating thickness. For          where the radius 

of the spherical nematic coating is 20σ and        , there are approximately 4680 more 

mesogens in the system with a tetrahedral particle compared to a spherical particle, 

corresponding to an increase in the number of mesogens of almost 24% from the spherical 

to tetrahedral particle. The increase in the number of mesogens may account for the 

dependency of the type and number of defects formed on the geometry of the large solid 

particle. Indeed, for         , the spherical particle formed four s=+1/2 defects whereas 

the tetrahedral particle it is in the region where one s=+1 and two s=+1/2 defects are 

observed.  
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The angles between two defects and the centre were calculated separately for       for 

defect configurations with four s=+1/2 defects and a Gaussian function is fitted to the 

resulting histogram (Figure 5.7.3a). The mean angle from the fitted Gaussian function is 

104.2⁰, which is very close the angle in a perfect tetrahedron (109.5⁰) and occurs as the 

defects tend to form at the vertices of the large solid tetrahedral particle. The standard 

deviation of the fitted Gaussian function is much smaller than that found for a spherical 

particle, 6.1⁰ and 25.4⁰ for a tetrahedral particle with       and a spherical particle with 

        respectively. A similar histogram for the distribution of angles between two 

defects and the centre is seen for the slightly smaller tetrahedral particle when     , 

when looking at only those configurations with four s=+1/2 defects. 

For the intermediate defect configuration with one s=+1 and two s=+1/2 defects the two 

s=+1/2 defects were located on two the vertices of the large tetrahedral particle. On the 

assumption that the s=+1/2 are always located on two vertices of the tetrahedral particles, 

the angle between the two s=+1/2 defects and the centre is approximately 109.5⁰. There 

are three possible locations for the s=+1 defect (Figure 5.7.4): 

 

Angle/ Degrees Angle/ Degrees 

a) b) 

Figure 5.7.3 Distributions of the angle between defects for a) four s=+1/2 defects  

(𝑥    𝜎) and b) one s=+1 & two s=+1/2 defects (𝑥   𝜎) 

𝑓(𝐴) 
𝑓(𝐴) 
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1. on the edge between the two ‘empty’ vertices 

2. on a vertex 

3. on one of the a face of the tetrahedral. 

The third option for the location of the s=+1 defect is likely to be very high in energy as the 

separation between the s=+1 defect and one of the s=+1/2 disclination lines is much less 

than in option one or two and so is not expected to be found. In option one, the separation 

between the defects is maximised and the resulting distribution of angles between two 

defects and the centre would show two peaks with a 1:2 ratio at approximately 109⁰ and 

125.3⁰ corresponding to the angle between the two s=+1/2 and between the s=+1 and one 

s=+1/2, respectively. In option two, all the defects are located at the vertices of the large 

solid particle, which was found in cubic particles with three defects. The resulting 

distribution of angles between two defects and the centre would show one peak at 

approximately 109⁰. 

The defect configuration comprising of one s=+1 and two s=+1/2 defects was investigated 

for tetrahedral particles with      and the distribution of angles between two defects 

and the centre was analysed (Figure 5.7.3b). The resulting histogram showed one peak at 

107.5⁰ with a standard deviation of 7.86⁰, corresponding to option two where all the 

defects are located at the vertices of the solid particle. The standard deviation is very 

similar to that found in the four defect configuration for tetrahedral particles with a 

Figure 5.7.4 A schematic representation of the three possible configurations for a three 

defect system, assuming the two s=+1/2 defects are located on the vertices of the 

tetrahedron 
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nematic coating, indicating that the energy of defects formed away from the vertices is 

much higher than those formed at the vertices of the tetrahedron. 

 SHIFTED TETRAHEDRAL PARTICLES  5.7.2

Leading on from the centred tetrahedral particles, a series of simulations were performed 

in which the centre of tetrahedral particles (            ) were shifted with respect to 

the centre of the simulation cell along one of three vectors, shown in red in Figure 5.7.5. 

The three vectors are (0 0 1), (1 1 0) and (1 1 1) and correspond to shifting the tetrahedral 

particle along an edge, face and vertex respectively. For the shifts along (0 0 1) and (1 1 0), 

shifting the centre of the tetrahedral in either the positive or negative direction are 

equivalent due to the symmetry of the tetrahedral particle. However, this is not the case 

when the tetrahedron is shifted along the vector (1 1 1) corresponding to shifting the large 

particle along a vertex and so both positive and negative shift values are investigated. 

The tetrahedral particles were shifted by differing amounts, as shown in Table 5.7.1, for 

each vector as the magnitudes of the vectors are different. For example, when shifted by   

 

 

Figure 5.7.5 A schematic of the positions of the vertices of the tetrahedron (inside a cube 

for clarity). The red arrows show the vectors that the tetrahedron is shifted along 

(1 1 1) 

(0 0 1) 

(1 1 0) 

𝐴  ( 𝑥  𝑥  𝑥) 

𝐵  ( 𝑥  𝑥  𝑥) 

𝐶  ( 𝑥  𝑥  𝑥) 

𝐷  ( 𝑥  𝑥  𝑥) 
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amount, the magnitudes for the vectors (0 0 1), (1 1 0) and (1 1 1) would be 

  √       √   respectively.  

Table 5.7.1 The parameters used in shifted tetrahedral particles with nematic coatings 

 
Shifted amount along each vector/ σ 

 (0 0 1) (1 1 0) (1 1 1) 

     2.0,3.0,4.0 & 5.0 2.0,2.5,3.0 & 3.5 
 1.5,  2.0,  2.5 & 

 3.0  

     1.0 & 2.0 1.0 & 1.5  0.5 &  1.0 

 

To recap, in simulations with an un-shifted tetrahedral particle, when      , a bipolar 

defect configuration with two s=+1 defects is favoured. When     ,  the defect 

configurations comprising of three and four defects are equally likely to be observed with 

no bipolar configurations seen. It was not possible to investigate a shifted tetrahedron with 

      which only formed four s=+1/2 as shifting it would cause the nematic droplet to 

be pierced resulting in an incomplete nematic coating.  

Figure 5.7.6 Three defect configurations for 𝑥   𝜎  a) shifted by 2.5σ along (1 1 0), b) 

shifted by 2.5σ along (1 1 1) and c) shifted by -2.5σ along (1 1 1) 

a) b) c) 
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The percentage of two-, three- and four-defect configurations observed were calculated for 

all systems investigated and found to be very similar for all systems. For     , the defect 

configuration consisting of one s=+1 and two s=+1/2 defects was favoured for all shifted 

amounts along all vectors investigated and was observed  in approximately 50-70% of the 

simulations for each system. The number of occurrences of the two and four defect 

configurations was approximately equal and independent from the amount shifted. The 

most commonly seen defect configuration in systems with      was with the two s=+1/2 

defects at the thinner part of the nematic coating, minimising the length of the disclination 

line through the nematic coating (Figure 5.7.6). The stabilisation of the three defect 

configuration by shifting the inner particle towards the surface of the nematic droplet is 

similar to that shown in the non-uniform thickness nematic shells (section 3.5). In both 

cases, one of the s=+1 defects at the thinnest part of the nematic shell splits into two 

s=+1/2 disclination lines. 

In systems with     , for configurations with three defects, the distribution of angles 

between two defects and the centre of the simulation cell was calculated for all shifted 

values. For systems shifted by 2σ along (0 0 1), the distribution of angles between two 

defects and the centre is similar to that seen for a centred tetrahedral particle with three 

defects (Figure 5.7.3b) and has a mean angle of 112.5⁰ and a standard deviation of 13.0⁰, 

indicating that the defects are centred at the vertices of the tetrahedral particle (Figure 

5.7.7a) as found in the un-shifted tetrahedral particles with a nematic coating. The 

standard deviation is larger than that seen in for an un-shifted tetrahedral particle 

suggesting that the s=+1 boojum is less strongly anchored to the vertex of the tetrahedron 

than the two s=+1/2 disclination lines.  For systems shifted by 4σ and larger along (0 0 1), a 

very different angle distribution is seen with two distinct peaks, at 82.3⁰ and 124.4⁰(Figure 

5.7.7b), indicating that the defects may no longer be located at the vertices of the 

tetrahedron. The peak at approximately 80⁰ is due to the angle between the two s=+1/2 
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defects and is smaller than expected as the positions of the defects on the outer surface 

are closer together due to the shifted  position of the large particle. 

The deviation away from the three defects being located at verticex of a tetrahedron is 

even more pronounced when the tetrahedral particle is shifted along (1 1 0) or (1 1 1) with 

the angle distributions showing no favoured angle for many systems. 

For larger tetrahedrons (    ) it was possible to investigate the angle between four 

s=+1/2 defects. The distribution of angles between two defects and the centre of the 

simulation cell was calculated and showed very little change in the mean angle from that 

for the un-shifted tetrahedron with     , however this could be due to the relatively 

small shifting amount allowed in these systems (Table 5.7.2). The standard deviation of the 

Gaussian function fitted to the distribution of angles is much larger than that for the un-

shifted tetrahedral particle when shifted along both the (0 0 1) and (1 1 0) vectors, however 

Figure 5.7.7 Tetrahedral particles (𝑥   𝜎) shifted along (0 0 1) by a)2σ and b)4σ and their 

respective angle distributions. 

a) 

b) 

Angle/ Degrees 

Angle/ Degrees 

𝑓(𝐴) 

𝑓(𝐴) 
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it is similar to the unshifted value when shifted along the (1 1 1) vector. The similarity in 

both the mean angle and standard deviation observed for tetrahedral particles displaced 

along the (1 1 1) vector can be explained by the limit on the size of the shift possible before 

the nematic coating ‘pops’ limiting the maximum displacement possible when      

along (1 1 1) of 1σ, or 0.05    , compared with a possible maximum displacement for 

      along (0 0 1) of 5σ or 0.25    . 

Table 5.7.2 The mean angle and standard deviation calculated from a Gaussian function 

fitted to the distribution of angles between two defects and the centre of the simulation 

cell for the maximum shifted value for a tetrahedral particle with      along the vectors 

investigated 

     Mean angle / degrees 
Standard Deviation/ 

degrees 

Unshifted 107.5 7.9 

Shifted by 2σ along (0 0 1) 107.9 13.0 

Shifted by 1.5σ along (1 1 

0) 
112.6 12.4 

Shifted by 1σ along (1 1 1) 114.0 4.8 

Shifted by -1σ along (1 1 1) 108.4 7.2 
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 OCTAHEDRAL PARTICLES WITH NEMATIC COATINGS 5.8

The final platonic solid particle investigated with a nematic coating was an octahedral 

particle, centred at the centre of the simulation cell. The octahedral particle had vertices as 

shown in Figure 5.8.1. As in the tetrahedral systems, the size of the octahedral particle is 

reported as the location of the vertices,  . The octahedral particle has sides of length ( ) 

which are related to   by 

    √   (5.8.1) 

again the initial nematic shell is spherical in nature with a radius (    ) of 20σ. 

Simulations were performed with           with most sizes of octahedral particles 

with a nematic coating forming a bipolar defect configuration consisting of two s=+1 

defects. It was not possible to run simulations with larger octahedral particles as for 

      the nematic coating ‘popped’ and an incomplete coating was produced. Only the 

largest octahedral particle (     ) investigated were any s=+1/2 defects seen. The 

propensity for the formation of s=+1 defects can be explained by the additional bulk 

character in the nematic shell. The extra volume when an octahedral particle is enclosed in 

a sphere is even greater than that when a tetrahedral particle is enclosed .The volume of 

an octahedron is 
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Figure 5.8.1 A schematic of an octahedral particle showing the vertices used 
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   (5.8.2) 

By comparing the volume of the octahedron with a sphere of radius    (5.7.3) the 

difference in volume is clear, 

                
 

 
    

 

 
     (5.8.3) 

The increase in the thickness of the nematic coating means it behaves similarly to a bulk 

droplet (forming two s=+1 defects) with planar anchoring than a thin shell with planar 

anchoring (forming four s+1/2 defects). Indeed, for      , there are approximately 3700 

more mesogens in an octahedral particle with a nematic coating compared to a spherical 

particle with a radius of   with          and        . 

In order to investigate the four defect configuration, a series of simulations were run 

cooling slowly over 62500MC cycles from the isotropic to a nematic at  
 

    
 ⁄      were 

run for       and resulted in three main defect configurations being seen. One defect 

configuration formed one s=+1 and two s=+1/2 defects, the other two consisted of four 

s=+1/2 defects. 

In the configurations with three defects which were observed in 42% of the simulations 

performed for      , as in the cubic and tetrahedral particles with a nematic coating, 

the two s=+1/2 defects were located at adjacent vertices of the octahedral particle. 

Assuming the two s=+1/2 defects are always located at adjacent vertices and the s=+1 

Figure 5.8.2 Four idealised arrangements for three defects assuming the two s=+1/2 

defects are located on adjacent vertices 
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defect is located on the opposing side of the nematic coating, there are four possible defect 

configurations, one in which the boojum located on a face, one in which the boojum is 

located on the vertex and two with the boojum located on an edge (Figure 5.8.2).  

In order to quantify the preferred arrangement in the three defect configuration, the angle 

between two defects and the centre was investigated.  The predicted angles for the 

idealised defect configurations in Figure 5.8.2 are shown in Table 5.8.1. 

Table 5.8.1 The predicted angles between defects for the four idealised defect 

configurations shown in Figure 5.8.2 assuming the two s=+1/2 defects are located at 

adjacent vertices. α,β and γ correspond to the angles shown in Figure 5.5.7 for a cubic 

particle with three defects. 

Position of s=+1 

defect (l-r in Figure 

5.8.2) 

Predicted Angles / Degrees 

α β γ 

Middle of face 90 114 114 

Vertex 90 90 180 

Edge in plane 90 135 135 

Edge out of plane 90 90 135 

 

The resulting distribution of angles between two defects and the centre (Figure 5.8.3b) 

shows two peaks and by fitting the function 

  ( )     [ 
 (    )    

 ⁄    (    )    
 ⁄ ] (5.8.4) 

The peaks are found to be at 79.7⁰ and 135.7⁰ suggesting that the s=+1 defect is located on 

an edge of the octahedral particle, unlike in systems with a cubic or tetrahedral particle 

where the s=+1 defect is located at a vertex. By modifying the function fitted to the 

resulting histogram, it is possible to estimate the ratio of occurrences of both angles to 
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differentiate between the configurations where s=+1 defect located at the edge in plane 

and out of plane with the two s=+1/2 defects. The predicted value for the ratio 
   

    
⁄   for 

the in plane is 0.5, whereas for the out of plane it is 2.0. The calculated value was 

   
    

⁄      , indicating that the defect configuration with the s=+1 defect in plane was 

preferred, as shown in Figure 5.8.3a.  

The resulting defect arrangement for three defects in which the two s=+1/2 defects are 

located at adjacent vertices of the octahedral particle and the s=+1 defect is located on the 

opposing edge in the same plane again highlights the differing nature of the s=+1 and 

s=+1/2 defects. The s=+1/2 defects are located at the vertices as this corresponds the the 

thinnest region of the nematic coating, minising the energy of the disclination line, which is 

proportional to the length of the defect. Due to the three-dimensional character of the 

s=+1 defect, the energy of the boojum is not dependent on the length of the defect and so 

the energy penalty for the movement of the s=+1 defect away from a vertex is smaller than 

that for a s=+1/2 defect. The s=+1 defect is located at an edge rather than a face of the 

octahedral particle due to the hyperbolic half hedgehog on the surface of the large particle. 

Both the edge and the vertex of the octahedral particle serve to reduce the volume of the 

Angle/ Degrees 

a) b) 

Figure 5.8.3 a) A nematic coating on an octahedral particle with one s=+1 and two s=+1/2 

defects and b) the associated distribution of angles between defects 

𝑓(𝐴) 
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defect on the surface, minimising the associated energy cost due to the loss of nematic 

order in the defect.    

Systems with four s=+1/2 defects were also observed in 42% of simulations run. In the 

simulations with four s=+1/2 defects, the defects tended to form at the vertices of the 

octahedron, however it was not uncommon for a defect to be found partway along one of 

the edges of the solid particle. Defects that are located along the edges of the octahedral 

particles occurs are observed as, unlike in cubic and tetrahedral particles with a nematic 

coating, there is no natural low energy tetrahedral arrangement possible in which all the 

defects are located on a vertex.  

When the defects were all formed at vertices of the octahedron, there are fifteen ways to 

arrange four defects at the vertices of an octahedron, however due to the highly 

symmetrical nature of an octahedron, there are only the two distinct defect configurations. 

The defect configurations can be defined as the number of defects associated with each 

face and as such are: 

a) 

b) 

Figure 5.8.4 a) Idealised defect configurations for four s=+1/2 defects at the vertices of an 

octahedral particle. b) shows two visualisations corresponding to the suggested defect 

arrangements in a) 
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1. one in which each face had two defects at the associated vertices, shown at the 

top of Figure 5.8.4a;  

2.  one in which two faces had three defects, two had two defects and two had one 

defect at the associated vertices, shown at the bottom of Figure 5.8.4a. 

Defect configuration 1 is lower in energy than defect configuration 2 as the mean distance 

between defects is greater.  

 In a nematic, the defects form simultaneously along with additional defect pairs of 

opposite and equal strength which then annihilate to leave the equilibrated four defect 

structure seen. At all times, the total topological charge on the surface is conserved and 

equal to +2. As mentioned earlier, there are fifteen ways of forming four defects located at 

the vertices of an octahedral particle, three of these arrangements result in defect 

configuration 1 whereas twelve of these result in the formation of the defect configuration 

2.  

Angle/ Degrees 

Figure 5.8.5 The distribution function of angles between two defects and the centres of an 

octahedral particle with 𝑥    𝜎 

𝑓(𝐴) 



174 
 

It is possible to distinguish between the two defect configurations by calculating the 

distribution of angles between two defects and the centre of the simulation cell. For defect 

configuration 1, the resulting histogram will have two peaks, one at 90⁰ and one at 180⁰ in 

approximately a 2:1 ratio. For defect configuration 2, the resulting histogram will again 

have two peaks at 90⁰ and 180⁰ however with the ratio 5:1. By fitting the function 

  ( )      
 (    )    

 ⁄      
 (    )    

 ⁄  (5.8.5) 

it is possible to calculate the approximate ratio 
   

    
⁄ . 

The distribution of angles  between two defects and the centreshows two peaks as 

predicted at 93.4⁰ and 148.8⁰. The slightly lower value than expected for the peak at 180⁰ 

may be due to similar reasons as explained with the distribution of angles between two 

defects and the centre for cubic particles in section 5.5. Of course, the deviation from the 

predicted values may also be due to the defects moving away from the vertices in order to 

maximise the distance between them. The compulsion for the defects to be located on the 

edge rather than at the vertices can also be seen in the relatively large standard deviations 

for the two peaks,  16.1⁰ and 15.2⁰ compared to that for tetrahedral particles (6.1⁰ when 

     ), however the standard deviations are still smaller than that seen for the spherical 

particle (25.4⁰ for        ) where the only driving force for the defect arrangement is 

the minimisation of the elastic energy of the nematic. The calculated ratio 
   

    
⁄  from 

(5.8.5) fitted to the distribution of angles between two defects and the centre was 2.84, 

suggesting the preferred arrangement was defect configuration 1.  
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 CONCLUSION 5.9

In this chapter, systems of solid particles with a nematic coating and planar anchoring at 

both the liquid crystal-water and liquid crystal-particle surfaces were investigated. The use 

of a solid particle allowed for the investigation into different shaped particles and in 

particular, particles which were faceted and possessed vertices. Particles of three platonic 

solids, a cube, a tetrahedron and an octahedron were investigated in addition to a spherical 

particle, which is analogous to the nematic shells around a water droplet found in previous 

chapters. In all systems the total topological charge on the surface of the particle was equal 

to +2, as was the total topological charge on the outer nematic-water surface.  

The use of a solid particle introduced additional terms into the interaction parameters to 

take into account the interaction between mesogen and water particles and the large solid 

particle. Preliminary simulations confirmed that the nematic bulk formed around the solid 

particle and the alignment was maintained at both surfaces. Simulations also showed that 

the nematic coating formed a sphere, minimising the unfavourable mesogen-water 

interactions. 

Systems with a single spherical particle with nematic coating gave similar results to those 

shown by nematic shells enclosing a water droplet (e.g. Figure 3.4.2  and Figure 5.4.1). 

However, the presence of the solid surface stabilised the four s=+1/2 defect configuration 

with respect to the bipolar configuration and four s=+1/2 defects were seen in much thick 

shells than with the water-nematic-water systems. 

Simulations of the platonic solid systems showed that the defects tended to form at the 

vertices of the particle, with only cases of defects not located on a vertex in systems with 

an octahedral particle where there is no natural tetrahedral arrangement possible in which 

all the defects are located at a vertex.   
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In systems that showed four s=+1/2 defects, for both cubic and octahedral particle with a 

nematic coating two distinct defect configurations were observed, which were very similar 

in energy (Figure 5.5.3 and Figure 5.8.4). However, for tetrahedral particles with a nematic 

coating, there are only four vertices and so only one defect configuration is possible in 

which all the defects are located at the vertices of the large particle. The corresponding 

distribution of angles between two defects and the centre had a much smaller standard 

deviation than for spherical particles. By employing tetrahedral particles as opposed to 

spherical particles, it would increase the possibility of the formation of a three-dimensional 

colloidal array, as suggested by Nelson[28] which could have applications in forming a 

photonic crystal at the visible wavelength.  

For the tetrahedral and octahedral particles with a nematic coating, the four s=+1/2 defect 

configurations were only seen for very large particles due to the increased bulk-like 

behaviour of the nematic coating. Indeed, for most sizes of octahedral particles with a 

nematic coating investigated a bipolar defect configuration similar to that found in a 

nematic droplet was observed.  

The three defect configuration consisting of one s=+1 and two s=+1/2 defects was seen for 

a range of sizes of tetrahedral particles and all three defects were located at the vertices of 

the tetrahedron (Figure 5.7.1). The three defect configuration was also found in some 

systems with a cubic particle (Figure 5.5.7) and again all three defects were located at the 

vertices of the larger particle. In comparison, for the octahedral particle the three defect 

configuration was only seen for the largest size particle investigated and whilst the two 

s=+1/2 defects were located at the vertices of the octahedron, the s=+1 defect was located 

mid-way along the opposite edge (Figure 5.8.3).  

Systems in which the tetrahedrons that were shifted from the central position along one of 

three vectors, (0 0 1), (1 1 0) or (1 1 1) were also investigated.  Due to the large size of the 
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tetrahedron compared with the radius of the nematic coating for systems where four 

s=+1/2 defects were seen, only small shifts along these vectors were possible and all 

simulations showed very similar results to the un-shifted tetrahedrons. In systems with 

smaller tetrahedrons which formed a bipolar configuration when un-shifted, the three 

defect configuration were seen consisting of one s=+1 and two s=+1/2 defects was 

stabilised compared to the bipolar configuration.  
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 NEMATIC AND CHIRAL NEMATIC PHASES CONFINED IN A 6

TORUS 

 INTRODUCTION 6.1

The lowest energy geometry for a droplet is a sphere as it minimises the surface area, 

which in turn minimises the unfavourable interactions between the droplet and its 

surroundings, in this case the mesogens and the surrounding water. In this chapter, a 

different class of geometry droplets are investigated, namely toroidal or doughnut shaped 

droplets. Toroidal droplets can be seen in nature, in raindrops[66] and in self-assembly in 

DNA[67]. In the area of liquid crystals, toroidal droplets of both isotropic[68] and nematic[69] 

phases have also been formed experimentally  by confining the droplet in a gel matrix. By 

confining the fluid in a gel matrix, the torus is stabilised due to the yield stress of the gel 

matrix. The size and aspect ratio  , 

   
    

    
 (6.1.1) 

Where               are as shown in Figure 6.1.1 of toroidal droplets than can be made in 

this manner is dependent on the interfacial tension between the nematic and the 

surrounding medium.  

A torus is geometrically distinct from a sphere, in that it is not possible to continuously 

transform one into the other without breaking the system. Mathematically, a sphere and a 

torus are geometrically distinct as their Euler characteristics (χ) are different, for a sphere 

χ=2 whereas for a torus χ=0. The Euler characteristic is related to the number of handles in 

a system (g), where g=0 for a sphere and g=1 for a torus. 

    (   ) (6.1.2) 
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The Poincaré-Hopf theorem relates to the Euler characteristic of a system. It states that for 

an ordered system on a surface, the total topological defect strength on the surface is 

equal to its Euler characteristic. As seen in previous chapters, spheres have a total 

topological charge of s=+2 on the surface, as expected as for a sphere    . Of interest in 

this chapter is systems in which    , in which a defect free director configuration should 

be seen. Toroidal systems give the opportunity to investigate this case. 

Two different director configurations have been predicted by theory for toroidal nematic 

droplets with planar anchoring, an untwisted structure running axially around the torus or 

a twisted configuration. In general, the untwisted structure is seen for thin tori with a large 

aspect ratio (         ) and the twisted structure for thicker tori with a smaller aspect 

ratio[70]. The cause of the spontaneous twist for thick tori is not known and has been 

suggested to be due to the minimisation of the bend distortion around the torus by 

transforming into a twisted state as generally       for calamitic molecules.  More 

recently, it has been suggested that the saddle-splay elastic constant    ,[69] which is 

dependent on the surface of  the system has an effect on when the cross over from an 

untwisted state to a twisted state is seen. 

Little work has been done into nematic tori with homeotropic anchoring. A numerical study 

into nematic tori in magnetic fields[71] investigated three possible director configurations 

for a nematic tori with homeotropic anchoring, either one s=+1 defect or two s=+1/2 

defects running around the  torus or an escaped defect structure as seen in nematic 

capillaries[104]. Of these three director configurations, for a torus with homeotropic 

anchoring the two s=+1/2 defects was the most stable with no magnetic field due to the 

minimisation of elastic energy of the system. Indeed, for all magnetic field strengths, the 

two s=+1/2 defect configuration was lower in energy than either the s=+1 defect ring or the 

escaped defect configuration. 
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In this chapter, simulations of nematic tori and nematic cylinders which can be thought of 

as a toroidal system in the limit where       , are discussed. The nematic tori droplets 

are simulated by confining the liquid crystal inside a toroidal cavity. These simulations do 

not contain any water particles as in previous chapters concerning spherical nematic shells 

and coatings on solid particles (chapters 3 to 5) as this would result in the decomposition to 

one or more spherical droplets (as seen experimentally). It would be possible for the 

structure of the external water to be frozen in an analogous manner to the gel matrix used 

experimentally, however this would drastically increase the number of particles in each 

simulation, increasing the computational cost without providing any additional insight into 

the toroidal nematic systems. Indeed, for a typical system investigated with      

                , there are          at         which would increase to 

         with the inclusion of water particles.  

 THE GEOMETRY OF A TORUS 6.1.1

A torus can be obtained by moving a sphere with a radius of      along a ring with a radius 

of      (Figure 6.1.1). 

   

x 

y 

y 

z 

x 

   

a) b) 

𝑟𝑚𝑖𝑛  

𝑟𝑚𝑎𝑥  

𝑟𝑚𝑎𝑥  

𝑟𝑚𝑖𝑛  

Figure 6.1.1 Parameters used to define a torus. a) Shows the torus from above and b) 

shows a cross section of the torus 
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There are three main classes of tori depending on the aspect ratio, ξ (6.1.1) . These are the 

ring torus (          ) , the horn torus (          )  and the spindle torus (     

     ), as shown in Figure 6.1.2.  As the Euler characteristic is the same for all three tori 

classes (   ), only the ring torus is considered here and henceforth will be referred to 

simply as a torus. The symmetry axis of the torus is set to be in the z-direction. The volume 

for a ring torus is 

             
      (6.1.3) 

which is equal to the area of the cross-section of the tube (     
 ) multiplied by the length 

(circumference) of the path (      ). 

 

Figure 6.1.2 Examples of the three types of tori. Taken from mathforum.org[105] 

 

 INTERACTION POTENTIALS 6.1.2

In the systems investigated in this chapter, there are two types of interactions to take into 

account, mesogen-mesogen interactions and mesogen-wall interactions. The interaction 

potential used for mesogen-mesogen interactions is as detailed in Chapter2 . To recap, 

mesogens are modelled using an anisotropic hard sphere well with a unit vector 

representing the long molecular axis centred in each particle. In this chapter both non-

chiral and chiral nematic phases are investigated using the mesogen-mesogen interaction 

potential ; 
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      (         )

 {

     

               (         )         
     (         )

        

 
(6.1.4) 

where   and    are unit vectors defining the orientations of particles i and j and     is the 

vector between the centres of i and j. 

 

      (         )
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    (     )(    ̂  )(    ̂  )

   (    ̂  )
 
(    ̂  )

 
] 

(6.1.5) 

        
     (         )     [ ̂    (     )][(     )] (6.1.6) 

   is the chiral parameter and the pitch of the chiral nematic decreases with increasing   . 

For non-chiral nematic systems,     .  The pitch lengths associated with selected values 

of    are shown in section 2.5.2 with pitch lengths ranging from approximately 200σ to 60σ. 

In the simulations performed in this chapter, potential 1 is used with         

           unless otherwise stated.  

The interaction potential used for mesogen-wall interaction is similar to that used for 

mesogen-water interactions in previous chapters , 

         (     )  {

     

                 (     )

        

 (6.1.7) 

Where    is the vector between the particle and the closet point on the toroidal surface 

and  

         (     )     (    ̂ )
  (6.1.8) 

          (      )     (    ̂ )
  (6.1.9) 

corresponding to planar and homeotropic anchoring respectively. 

 SIMULATION PARAMETERS 6.1.3
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All simulations in this chapter were run at         using cubic analysis cells with sides of 

1.5σ. All simulations were started from an isotropic configuration and run at  
 

    
 ⁄      

unless otherwise stated. 

Isotropic starting configurations were made by filling the torus with a cubic lattice of 

     with     (     ), then removing particles at random to reach the required 

number of particles corresponding to        . These were then run for a short time at a 

high temperature (       ) to produce an isotropic phase. 

  NEMATICS CONFINED IN A CYLINDER 6.2

Cylinders can be considered as a toroidal system in the limit where        . Simulations 

were run varying both the radius, which is analogous to      in a torus, and length of the 

cylinder ( 

 

 

Figure 6.2.1 Schematic of cylinder simulations 
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Table 6.2.1) with both planar and homeotropic anchoring. The cylinder is set to run in the 

z-direction and there is a periodic boundary condition in the z-direction as shown by the 

red arrows in Figure 6.2.1. 

 

 

 

Table 6.2.1 Cylinder parameters used 

Radius (r)/σ Length (l)/σ 

12 48 

16 24,36,48,72,96 

20 48 

In all simulations of a cylinder with planar anchoring, a defect free director configuration is 

observed in which the director runs through the cylinder (Figure 6.2.2a). However, in a 

cylinder with homeotropic anchoring, unlike the cylinder with planar anchoring it is not 

possible for a defect-free director configuration to form. There are three possible defect 

Figure 6.2.2 A cylinder with a) planar anchoring and b) homeotropic anchoring where 

𝑇 

𝑇𝑁 𝐼
 ⁄      𝑟     𝜎 𝑙     𝜎  

a) b) 



185 
 

configurations, similar to those discussed briefly at the start of the chapter in relation to a 

torus with homeotropic boundary conditions. These are either one s=+1 (Figure 6.2.3a) or 

two s=+1/2 (Figure 6.2.3b) defect line(s) running the length of the cylinder or an escaped-

like director configuration in which the director escapes into the third dimension to remove 

the disclination line (Figure 6.2.3c). It has been found that the type of director 

configuration observed is dependent on both the radius of the cylinder and the elastic 

properties of the nematic[106]. The s=+1 disclination line tends to be found in small 

capillaries or close to the nematic-isotropic transition, but is unstable with respect to two 

s=+1/2 disclination lines at the radius increases. For large r, the escaped director 

configuration is most stable, however it is very rarely observed, instead manifesting as a 

periodic array of      defects with partially escaped domains between the defects[107]. 
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In all simulations performed of a nematic cylinder with homeotropic anchoring, two s+1/2 

defect lines were seen (Figure 6.2.2b).The energy of a disclination line is proportional to    

and so is less for two s=+1/2 disclination lines compared to one s=+1 disclination line. An 

escaped director configuration (Figure 6.2.3c) is not seen due to the periodic boundary 

conditions which do not allow the director to escape into the third dimension.  

 

 

 NEMATICS CONFINED TO A TOROIDAL GEOMETRY 6.3

 NEMATIC TORI WITH PLANAR ANCHORING 6.3.1

y 

x 

a) b) 

c) 

Figure 6.2.3 Idealised schematic representations of a) one s=+1 defect configuration and b) 

two s=+1/2 defects configuration and c) an escaped director configuration 
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For an ordered system, in this case a nematic with planar anchoring, the total topological 

charge on the surface must be equal to the Euler characteristic (χ) of the geometry 

investigated. For a single torus    , and so the ground state director configuration for a 

nematic torus with planar anchoring defect-free. A defect free director configuration was 

occasionally observed when started from an isotropic phase, however, this was not always 

the case. Director configurations with one or more boojum-like defects were also seen 

(Figure 6.3.1). The boojum-like defects consisted of one s=+1 and s=-1 hedgehog defect on 

the inner and outer regions respectively, thus conserving the total topological charge as 

required by the Euler constraint, and were stable and once formed remained for the rest of 

the simulation suggesting that the energy barrier for the defects of the opposing sign to 

meet and annihilate was larger than the thermal energy of the system. 

Previous work, by both experimentally by Pairam et al[69] and theoretically by Kulic et al[70] 

have found the presence of a twisted director configuration in nematic tori with planar 

anchoring. In order to investigate the spontaneous twisting of the director, a defect free 

system is needed. To form a defect free director configuration, the simulation was started 

from a perfect alignment around the torus by setting the orientation vector to; 

     
(          )

| |
 (6.3.1) 

Figure 6.3.1 A torus with planar anchoring with a director configuration with a) no defects 

and b) two boojums 

a) b) 
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where    is the position vector from the centre of the simulation cell. 

The spontaneously twisted director configurations was not observed in simulations run 

either from an isotropic or from a defect-free starting configuration for any values of 

             . To investigate the difference in energy between the twisted state and the 

axial state, systems were started from a twisted configuration and an axial configuration. 

The starting configurations were produced by applying a local field 

               [ ̂ (        

  
    

)   ̂ (      

  
    

)] (6.3.2) 

 ̂ is a unit vector around the torus and  ̂ is a unit vector perpendicular to both    and  ̂ 

(Figure 6.3.2a) and         is the field strength. The two limiting director configurations are 

          where the director is axial and           where the director goes round the 

tube of the torus on the surface and runs round the torus in the centre of the tube (Figure 

6.3.2b & c).  

Figure 6.3.2 a) A schematic showing 𝒓𝑐  𝒕̂     𝒔̂. 𝒔̂ is into the page and b) and c) show a  

torus with planar anchoring with 𝜀𝑡𝑤𝑖𝑠𝑡   and 𝜀𝑡𝑤𝑖𝑠𝑡    respectively 

   
𝒓𝑐  

𝒕̂ 
𝒔̂ 

a) 

b) c) 
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By running simulations at varying values of       , due to the linear relationship between 

mean energy per particle and the local field strength (Figure 6.3.3a), it is possible to 

extrapolate to          and estimate the energy difference between director 

configurations. Simulations were run with                                      for 

                  at  
 

    
 ⁄      .  

The calculated mean energy per particle for the different director configurations confirms 

that the untwisted director configuration where          is lowest in energy (Figure 

6.3.3b). 

Simulations were also performed potentials A1-3 and B1-3 detailed in chapter 2 to vary the 

energy between end-end and side-side interactions. The difference in energy between 

these interactions leads to a variation in the twist bend elastic constant ratio, 
  

  
⁄ .For 

example, 
  

  
⁄       and      for potentials A3 and B3 respectively. Tori with 

                              were run corresponding to        . For all 

cases, the director untwisted, showing that, for the potential based on hard sphere with 

orientation vectors, the twisted director configuration is unstable. The instability of the 

twisted director configuration may indicate that the potentials developed and utilised here 

Figure 6.3.3 a) shows the linear relationship between 𝜀𝑓𝑖𝑒𝑙𝑑 and the mean energy per 

particle for 𝜀𝑡𝑤𝑖𝑠𝑡   . b) shows the estimated energy at for each value of 𝜀𝑡𝑤𝑖𝑠𝑡 for 

𝑟𝑚𝑎𝑥    𝜎 𝑟𝑚𝑖𝑛    𝜎 

a) b) 

𝜀𝑓𝑖𝑒𝑙𝑑  𝜀𝑡𝑤𝑖𝑠𝑡 
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have a value of 
   

  
⁄  below the threshold calculated by Pairam et al[69] where     is the 

saddle-splay elastic constant. It is not possible to calculate     or  
   

  
⁄  from the 

simulations as     is a surface dependent elastic constant. The lack of the twisted director 

configuration can then lead to an estimation that 
   

  
⁄      for all potentials used. 

 NEMATIC TORI WITH HOMEOTROPIC ANCHORING 6.3.2

As with nematic cylinders with homeotropic anchoring (section 6.2), it is not possible for a 

nematic tori with homeotropic anchoring to form a defect free director configuration. All 

values of               showed the same defect configuration consisting of two s=+1/2 

defect lines on the surface of the torus, one running around the inside of the ring torus and 

one around the outside. 

There were two possible positions for the defects lines which maximised the distance 

between them, either running along the inside and outside (Figure 6.3.4a), or along the top 

Figure 6.3.4 Schematics of a torus with homeotropic anchoring with two s=+1/2 defect 

lines with the defect lines a) around the inside& outside and b) the top & bottom and c) a 

cut through showing the defect configuration. The director streamlines are removes for 

clarity 

a) b) 

c) 
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and the bottom (Figure 6.3.4b). Both possible defect positions have the same total defect 

length of        and the same distance between them,      . Only defect configurations 

with the disclination lines on the inside and outside were seen. It is likely that the elastic 

energy of the defect configuration in which the disclination lines run along the top and 

bottom of the torus are is higher than that for the defects at the inner and outer regions 

due to the intrinsic bend of the torus. When the defects are located at the top and bottom, 

there is a greater splay distortion in the nematic than when the defects are located on the 

inside and outside of the torus.  

 GAY-BERNE SIMULATIONS OF NEMATIC TORI WITH PLANAR ANCHORING 6.4

In section 6.3.1, it has been demonstrated that for the simple model the twisted director 

configuration observed experimentally and predicted by theory is not formed. Whilst it is 

not possible to calculate and vary the ratio 
   

  
⁄ , in an earlier paper by  Kulic et al[70] the 

formation of a twisted director configuration is dependent on the ratio 
  

  
⁄ . The simple 

model used previously does not allow a wide range of elastic constant ratios and so the 

Gay-Berne potential is employed. The elastic constants for the Gay-Berne potential have 

previously been calculated for both thick platelets[98] and ellipsoidal particles[97] and were 

found to be much larger than the simpler potential used previously.  

The Gay-Berne model is an anisotropic version of the Lennard-Jones potential and it takes 

into account both short- and long-range interactions.   The potential is based on ellipsoidal 

particles with length l  and breadth d where l>d ,    and    are the end-to-end and the side-

to-side diameters respectively and    and    the end-to-end and side-to-side well depths. 

The potential is given by [76];  
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(6.4.1) 

 

where    and   are unit vectors representing the orientations of the molecules and     the 

separation between the molecules. The orientation dependent part of the Gay-Berne 

potential is;  
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For spherical particles this reduces to    which is the spherical diameter, or √  [85]. 

  (       ̂  ) affects the well depths in the potential. 
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 (6.4.6) 

Where    
  

  
 and    

  

  
.  

In the original paper, values of                        or GB(3,5,2,1) where 

GB(κ,κ’,μ,ν), were used. Bulk systems using these parameters, form both a nematic and an 

isotropic phase. By varying the parameters κ, κ’, μ and ν, it is possible to tune both the 

position and relative depths of the potential wells for the four limiting particle interactions, 
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shown in Figure 6.4.1. Consequent work varying the parameters used found that more 

ordered mesophases may be formed using  the Gay-Berne potential, for example 

GB(4.4,20,1,1)[87]  forms a smectic phase in addition to a nematic and isotopic phases. 

 

 MESOGEN-WALL INTERACTION POTENTIAL 6.4.1

The anchoring potential used in simulations employing the Gay-Berne interaction potential 

were as shown in (6.1.7) and (6.1.8), corresponding the planar anchoring. To recap the 

mesogen-wall potential is 

         (     )  {

      

                   (     )

         

 (6.4.7) 

However, due to the elongated nature of the Gay-Berne particles, additional constraints to 

the mesogen-wall interaction were required, 

         (     )  {
|(          )|             (       ) 
|(          )|              (          )

 (6.4.8) 
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Figure 6.4.1 The dependence of the GB(4.4,20,1,1) for the scaled separation (𝑟  
𝑟𝑖𝑗

𝜎𝑠⁄ ) 

for the four limiting cases; side-side (red), cross (blue), side-end (purple) and end-end 

(green) 
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to ensure that the entirety of the mesogen is confined within the torus and that the ends 

cannot leave the toroidal cavity. 

 SIMULATION PARAMETERS 6.4.2

In this chapter, two sets of parameters were used to investigate the nematic phase when 

confined to a toroidal cavity; GB(3,5,2,1) and GB(4.4,20,1,1). GB(3,5,2,1) is using the 

original values proposed[76] and GB(4.4,20,1,1) is using values first proposed by Luckhurst 

and Simmonds[86]  as a more realistic model for a mesogen based on p-terphenyl. A 

potential cut-off distance (    ) of 4.5   and 5.5  were used for the GB(3,5,2,1) and 

GB(4.4,20,1,1) potentials respectively. The elastic constants for both models have been 

previously calculated by Allen et al[97]and were re-calculated for this work. The resulting 

elastic constant ratios are shown in Table 6.4.1 and Table 6.4.2. 

The Gay-Berne potential is much more computationally intensive than the previous model 

based on hard spheres so in order to investigate tori of comparable size to those run with 

the simpler potential only a small section of a torus was simulated, with both a quarter 

(Figure 6.4.3a) and an eighth (Figure 6.4.3b) of a torus investigated. There are periodic 

boundaries at both the x-axis and either the y-axis in quarter simulations, or along y=x in 

eighth of a torus simulations (Figure 6.4.3).  

  
   𝜎𝑠 

   𝜎𝑠 𝜎𝑠 

   𝜎𝑠 

   𝜎𝑠    𝜎𝑠 

Figure 6.4.2 A schematic representation of the ellipsoidal Gay-Berne particles showing the 

parameters for the additional constraint on the mesogen-wall interaction for a) GB(3,5,2,1) 

and b) GB(4.4,20,1,1) 

a) b) 
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Several different systems were investigated for both Gay-Berne models. There is a 

constraint on the system size investigated due to the arc of the inner surface (which has a 

radius of          ), 

 
 (         )

 
        (6.4.9) 

 Where M=4 for a quarter and M=8 for an eighth. When the arc is smaller than the 

potential cut-off used, the periodic boundary conditions could lead to an unrealistic result. 

The size of the tori investigated is                                  ,      

               and                     for both models and tori sections as long 

as the aforementioned constraint is met, e.g. no eighths of a torus where      

               were investigated as the inequality in (6.4.9) is not true. The tori 

parameters investigated correspond to varying the aspect ratio from        . 

The starting configurations were produced by gradually elongating spherical particles by 

gradually increasing κ at a high temperature above the nematic-isotropic transition. 

 

 

 

 

Figure 6.4.3 Schematics of the a) quarter and b) eighth of a torus simulations. The arrows 

show the movement of a particle out of the bottom of the simulation into the top 

a) b) 
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 GB(3,5,2,1) NEMATIC TORI WITH PLANAR ANCHORING  6.4.3

For the Gay Berne model with parameters                      simulations were 

run at a reduced density of         . The bulk properties were calculated using the same 

method as for the simpler potential in chapter 2 and can be seen in Table 6.4.1. 

Table 6.4.1 Bulk properties for GB(3,5,2,1) at         

         

    
      

  
  

⁄  At               

  
  

⁄  At       ,        

 

Simulations were run from an isotropic starting configuration for all tori sizes investigated.  

Additionally for                                             simulations were 

run from a series of aligned states.  The aligned stated were produced by applying a strong 

(           ) local field at a temperature much higher than the nematic-isotropic 

transition temperature. The local field used is identical to the one used for the simpler 

potential (6.3.2). Simulations were then run at        (       
 ) and for selected 

systems at         (       
 ) for                                       . Note that 

         corresponds to an untwisted director configuration.  

As with the simulations run using the simpler potential, no twisted director configurations 

were seen from those started from an isotropic configuration and those started from a 

twist configuration untwisted when the local field was removed. It is possible however, by 

calculating the mean energy per particle for different values of        to extrapolate 

backwards to estimate the energy difference between differing twist amounts due to the 

linear relationship between the field strength (      ) and the mean energy per particle 
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(Figure 6.4.4a). For an eighth of a torus with                     and      

              values of                                         where          

corresponds to an untwisted director configuration were run with a series of        values. 

The extrapolated mean energy per particle for different twist amounts is shown in Figure 

6.4.4b and c for                     and                      corresponding 

to an aspect ratio of       and     respectively. For both systems, the highly twisted 

director configuration is higher in energy than the untwisted director configuration, which 

is the most stable and lowest in energy for    . For the slightly thinner torus where 

                    however it appears that the slightly twisted director 

Figure 6.4.4 a) The linear relationship between the mean energy per particle and the local 

field strength and b) and c) the extrapolated energy with no field for different values of 

𝜀𝑡𝑤𝑖𝑠𝑡 for 𝑟𝑚𝑎𝑥    𝜎𝑠 𝑟𝑚𝑖𝑛    𝜎𝑠 and 𝑟𝑚𝑎𝑥    𝜎𝑠 𝑟𝑚𝑖𝑛    𝜎𝑠 respectively. 

a) b) 
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configuration with            is the lowest energy state. As shown in Table 6.4.1, for the 

GB(3,5,2,1) model 
  

  
⁄        . The cross over between a twisted and untwisted 

director configuration predicted by Kulic et al for this elastic constant ratio occurs at 

approximately       , which is very close to the aspect ratio where the slightly twisted 

director configuration was lowest in energy and may be the cause of the lowest energy 

configuration found for      .  

The previous work by Pairam et al allows for an estimation of the ratio 
   

  
⁄  as for     

the untwisted director configuration was the ground state. The cross over between an 

untwisted and twisted director configuration for     occurs at approximately 
   

  
⁄  

    indicating that for the GB(3,5,2,1) 
   

  
⁄     . 
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 GB(4.4,20,1,1) NEMATIC TORI WITH PLANAR ANCHORING 6.4.4

Unlike the original Gay-Berne model, GB(3,5,2,1), the GB(4.4,20,1,1) potential shows a 

transition from the nematic phase to a smectic phase that is dependent on the density and 

temperature of the system. All the reduced densities investigated below form a nematic 

phase. The bulk properties of the densities investigated are shown in Table 6.4.2. 

Table 6.4.2 Bulk properties for GB(4.4,20,1,1) 

                           

   
  1.6 2.2 2.7 

  
  

⁄  

At               

At               At               At               

At               

  
  

⁄  

At               

At               At               At               

At               

 

In total, five different points on the phase diagram for GB(4.4,20,1,1) were investigated. 

These were;                                                           . 

Simulations were run starting from an isotropic phase or from  a twisted or untwisted 

director configuration, produced as detailed for the GB(3,5,2,1) simulations (section 6.4.3). 

As with GB(3,5,2,1), no twisted director configurations found for all tori investigated. 

However, the lack of observation of the twisted director configuration does not agree with 

the findings of Kulic et al who state that for                  corresponding to  

  
  

⁄        , a twisted director configuration is predicted for      . The disparity 

between the simulation results and those predicted by Kulic et al suggests that the director 
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configuration is not solely dependent on the twist-bend ratio, rather there are more 

complicated factors influencing the director configuration seen.  

Due to the long time needed for these systems to reach equilibrium and the time 

constraints imposed, it was not possible to repeat the series of simulations run for the 

GB(3,5,2,1) model varying the local field strength in order to extrapolate the energy for 

each director configuration with no local field.   

 CHIRAL NEMATICS CONFINED IN A CYLINDER 6.5

As with the non-chiral nematic systems, preliminary simulations of a chiral nematic phase 

confined in a cylindrical cavity were run. The same size cylinders were investigated for a 

confined chiral nematic phase as for the non-chiral nematic phase, shown in  

 

 

Table 6.2.1, in order to investigate the dependence of the director configurations on both 

the length (l) and radius (r) of the cylinder whilst varying the chiral parameter,   (6.1.5). 

Simulations were run with both planar and homeotropic anchoring. 

  CHIRAL NEMATIC CYLINDERS WITH PLANAR ANCHORING 6.5.1

For systems with planar anchoring, a defect-free configuration was formed (Figure 6.5.1). In 

the centre of the cylinder, the director is running along the length of the cylinder, parallel 

to the surface as seen in the non-chiral nematic case (Figure 6.2.2a). However, as the 

distance from the centre of the cylinder increases, the director twists away from the 

vertical. For the highest chirality systems investigated, the director at the surface is nearly 

perpendicular to the director at the centre of the cylinder (Figure 6.5.1f) as half a pitch 

length is approximately equal to the diameter of the cylinder (30σ and 32σ respectively).  



201 
 

The twist in the director at the surface of the cylinder was independent on the length of the 

cylinder, however, as expected more twists were seen along the cylinder as   increases. As 

the radius of the cylinder was increased, the twist at the surface increases, as the distance 

from the centre of the cylinder increases so a greater amount of the chiral pitch is seen.  

 CHIRAL NEMATIC CYLINDERS WITH HOMEOTROPIC ANCHORING 6.5.2

It was found for chiral nematic cylinders with homeotropic anchoring that, as for the non-

chiral analogue, two s=+1/2 disclination lines were formed in all cases. For the chiral 

systems, the two s=+1/2 defect lines twist around each other in a helix. 

 Due to the periodic boundary conditions is was only possible to simulate cylinders of finite 

length and the defects in the simulation can only twist by nπ where n is an integer (Figure 

6.5.2b-e).  

Figure 6.5.1 A cylinder (with 𝑇
 

𝑇𝑁 𝐼
 ⁄      𝑟    𝜎 𝑙    𝜎) showing the change in 

director twist with increasing chirality, a) 𝜀𝑐      , b) 𝜀𝑐      , c) 𝜀𝑐      , d) 

𝜀𝑐       and e)𝜀𝑐      . f) shows views along  the cylinder  for 𝜀𝑐              

a) b) c) 

d) e) f) 
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Simulations run from an initial isotropic phase gave a range of different defect twist values 

in the final configuration, indicating that there was little or no energy difference between 

them. In order to investigate the different energies of the defect configurations and 

estimate the twist repeat unit, ten simulations were run at  
 

    
 ⁄       starting from 

each defect configuration with n=0 to 3 with                                . The 

mean energy per particle for each    can be seen (Figure 6.5.3a) for the longest cylinder 

investigated. By fitting a parabola to the resulting curve it is possible to estimate the lowest 

energy twist in each cylinder and from that the repeat length for the defect twist, that is 

the length for the defects to twist by 2π. (Figure 6.5.3b).  

In non-chiral nematic cylinders with homeotropic anchoring, the defect line configuration 

consisting of no twist was lowest in energy, as expected as there is no inherent twist 

present in a nematic. The value of n for the most stable state for each value of    

investigated was found to be independent of the diameter of the cylinder and over the 

three systems investigated (                 ) there was no clear trend in the defect 

twist repeat unit. The estimated defect twist repeat unit shows a similar trend to the pitch 

length of the chiral nematic with increasing    as both are governed by the intrinsic twist 

present in a chiral nematic, however the defect repeat unit is longer than the chiral 

nematic pitch length.  

Figure 6.5.2 Cylinders with 𝑟    𝜎 𝑙    𝜎 showing b) 0 c)π, d) 2π and e) 3π defect 

twists  

c) b) a) d) 
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 CHIRAL NEMATICS CONFINED TO A TOROIDAL GEOMETRY 6.6

Whilst nematic tori modelled using both the Gay-Berne potential (section 6.4) and the 

simpler potential (section 6.3.1) did not spontaneously twist, it is possible to impose a twist 

in the tori by the addition of a chiral term (6.1.6) in order to simulate a chiral nematic 

phase. Simulations of chiral nematic tori with both planar and homeotropic anchoring were 

run for                            from an isotropic configuration for tori of sizes 

                                                  corresponding to a 

range of aspect ratios from        . 

 CHIRAL NEMATIC TORI WITH PLANAR ANCHORING 6.6.1

Chiral nematic tori with planar anchoring showed a twist along the tube of the tori, forming 

a defect free structure. The director in the centre of the tube is running axially around the 

torus, as in the nematic tori with planar anchoring. As the distance increases from the 

centre of the torus the director begins to twist around the torus rather than running axially 

(Figure 6.6.1b inset), this is analogous to that seen in a chiral nematic cylinder with planar 

anchoring (Figure 6.5.1f).  

Defect twist in cylinder/ nπ 
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a) b) 

Figure 6.5.3 a) the mean energy per particle for a cylinder of 𝑟    𝜎 𝑙    𝜎. b) The 

calculated defect twist repeat unit for each 𝜀𝑐 value investigated 
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The amount of twist seen around the tori is greater for thicker tori with a small aspect ratio 

than thin tori with a large aspect ratio. The greater twist seen for thicker tori is due to the 

fact there is a greater distance between the centre of the torus ring where the director is 

running axially and the surface of the torus where the director is twisted.   

The pitch length of the chiral nematic can be much longer than both      and     and yet 

still show a twisted director configuration, indicating that these systems are very sensitive 

to the increasing chirality. Even very thin tori show a twisted director configuration at the 

lowest chiral parameter investigated, which has an associated pitch length of 

approximately 200σ, much larger than both      and     .  As the chirality of the system 

increased, the amount of twist around the tori increased, this is due to the decreasing pitch 

length (Figure 6.6.1). 

Figure 6.6.1 A torus where 𝑟𝑚𝑎𝑥    𝜎 𝑟𝑚𝑖𝑛    𝜎  with a) 𝜀𝑐      , b) 𝜀𝑐       with 

an inset  showing a cut through section of the torus and c)𝜀𝑐       

a) b) 

c) 
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 CHIRAL NEMATIC TORI WITH HOMEOTROPIC ANCHORING 6.6.2

In non-chiral nematic tori with homeotropic anchoring two s=+1/2 disclination lines 

running on the inside and outside of the torus are seen (section 6.3.2). In chiral nematic tori 

with homeotropic anchoring again s=+1/2 disclination lines are seen however, as seen in 

the chiral nematic cylinders with homeotropic anchoring (section 6.5.2), the disclination 

lines twist around one another to form a helix due to the intrinsic twist present in the chiral 

nematic, perpendicular to the director. The torus is a closed system with fixed length, and 

as such the defect lines must be continuous around the torus and so rotate by nπ where n 

is an integer. When n is even, two s=+1/2 defect lines are seen as interlocking rings where 

n> 0, however when n is odd, only one defect line is seen as the inner and outer 

disclination lines seen for a non-chiral nematic join one another. In systems with one 

s=+1/2 defect line the defect line circled the torus twice, once on the outer surface and 

once on inner surface (i.e. Figure 6.6.2c). 

A series of simulations were run at  
 

    
 ⁄      from an isotropic phase for the 

parameters specified in section 6.6. As with the chiral nematic cylinders with homeotropic 

anchoring, a variety defect configurations of differing twists around the torus were seen in 

different simulation runs for the same parameters, indicating that the energy difference 

between each defect configuration was small. In general, as the chirality of the system 

increased, the number of twists the defects make around the torus (n) increases.  
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To investigate the lowest energy value of n, simulations were started from idealised 

director configurations at  
 

    
 ⁄       for                               . 

These were produced by calculating the angle ( ) between the vector between the centre 

of the torus and the position of the particle (   ) and the vector  ̂   (     ) , shown in 

Figure 6.6.2a and setting the z-component of the orientation vector to        and the x- 

and y-components along    . The negative sign in the z-component is due to the 

handedness of the chiral potential. 

 

 
 

𝒓 𝑖 

𝒗̂ 
𝛼 

Figure 6.6.2 a) A schematic showing 𝒓 𝒊 𝒗̂     α used to created idealised director 

configurations and defect configurations for a torus with homeotropic anchoring showing 

defect twists of b) 0, c) π, d) 2π, e)3π, f)4π, g) 5π and  h)6π for 𝑟𝑚𝑎𝑥    𝜎 𝑟𝑚𝑖𝑛    𝜎 

a) b) 

d) e) f) 

g) h) 

c) 
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From the systematic study, it was found that for a non-chiral nematic the untwisted, i.e.      

n = 0, defect configuration was the most stable state, as seen in section 6.3.2. The lowest 

energy defect configuration for each tori size and chirality is given in Table 6.6.1. 

As    increases, the number of twists in the ground state defect configuration increases. 

The value of n for the lowest energy defect configuration for each value of    is a complex 

balance between the proportion of a chiral nematic pitch length across the tube of the 

torus and the length of the disclination lines. For low     as the aspect ratio decreases and 

the torus gets thicker, n increases as the diameter of the tube increases and a larger 

proportion of a pitch length of the chiral nematic can be found in the tube. For larger 

values of   , the opposite is true, with decreasing aspect ratio the lowest energy n 

Figure 6.6.3 A graph showing how the energy per particle varies with  
𝑛

 
 for  𝑟𝑚𝑎𝑥    𝜎 

and a)𝑟𝑚𝑖𝑛    𝜎, b) 𝑟𝑚𝑖𝑛    𝜎 and c) 𝑟𝑚𝑖𝑛    𝜎 
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decreases  as the length of the disclination lines increase with increasing n. The length of 

the disclination lines increase as n increase as the defects loop around the circumference of 

the tube and the circumference of the tube is proportional to      .  

Table 6.6.1 The lowest energy n for each system investigated 

   

n Ground state for each aspect ratio, ξ 

3 2.5 2 1.5 

0.06 0 1 1 2 

0.12 3 3 3 3 

0.18 5 5 4 4 

0.24 6 6 * * 

*= uncertain as high enough values of n were not run 

 CONCLUSION 6.7

In this chapter both chiral and non-chiral nematics confined within a single torus have been 

investigated with both planar and homeotropic anchoring. At the limit where       , a 

cylinder is formed and both non-chiral and chiral nematics confined within a cylindrical 

cavity were also investigated with both planar and homeotropic anchoring.  

Cylinders of a nematic with planar anchoring formed a defect-free configuration with the 

director running along the tube. A related structure was seen in nematic tori with planar 

anchoring where the director running axially along the tube of the torus. In some 

simulations of a nematic torus with planar anchoring started from an isotropic phase, one 

or more boojum-like defects consisting of a s=-1 and a s=+1 defect located on the inner and 

outermost regions of the torus respectively were formed. Once formed these defects were 

present for the remainder of the simulation as the thermal energy present was insufficient 

to overcome the energy barrier needed for these defects to annihilate.  
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Previous work[69] has shown that for a nematic torus with planar anchoring a spontaneous 

twisting of the director can be seen for fat tori, however this was not seen in simulations 

performed in this chapter. The presence of a twisted director configuration has been 

postulated by Kulic et al[70] to be due to the ratio of the twist and bend elastic 

constants,
  

  
⁄  however subsequent work by Pairam et al[69] suggests that the presence of 

a twisted director configuration is due to the ratio of the saddle-splay and twist elastic 

constants, 
   

  
⁄ . 

The lack of stable twisted director configuration  observed for a nematic tori with planar 

anchoring could be down two reasons, either all the tori investigated may be too thin or 

ratio of elastic constants (either 
  

  
⁄  or 

   
  

⁄  ) may not be in the region where it is 

predicted that a twisted director structure is seen. Future work with larger simulations, 

either of whole tori or sections of tori (as in section 6.4.2) could be performed. By 

employing a twisted local field it was possible to extrapolate back to the energy of different 

director configurations with no field present which confirmed that the untwisted director 

configuration was lowest in energy. From this, using the work by Pairam et al it is possible 

to estimate that  
   

  
⁄      for these systems. If, in future work the transition from an 

untwisted to a twisted director configuration can be observed, it could be used as a way to 

estimate    , which is otherwise not possible. 

In order to investigate a larger 
  

  
⁄ ratio, sections of a torus were simulation using the 

Gay-Berne potential for which the 
  

  
⁄  ratio has previously been calculated[97]. Again only 

non-twisted defect configurations were observed in all systems investigated and a local 

twisted field was employed to estimate the mean energy per particle for twisted director 
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configurations with no field present. It was found that, in agreement with Kulic et al a torus 

with an aspect ratio (ξ) of 2, the untwisted director configuration was the ground state.  

The addition of a chiral term to the potential causes a chiral nematic phase to be formed 

with an inherent twist perpendicular to the director. In systems with planar anchoring, the 

inherent twist causes the chiral nematic to twist along either the cylinder or the tube of the 

torus. The director in a chiral nematic torus runs axially at the centre of the tube and as the 

distance from the centre of the increases the director begins to twist until it reaches the 

maximum twist angle seen at the surface of the torus or cylinder.  

Nematic cylinders with homeotropic anchoring have three possible defect configurations; 

one s=+1 or two s=+1/2 defect line(s) running the length of the cylinder or an escaped 

structure where the s=+1 defect escapes into the third dimension. However in all 

simulations only two s=+1/2 disclination lines were observed, running the length of the 

cylinder. Nematic tori with homeotropic anchoring also showed  a defect configuration 

consisting of two s=+1/2 defects on the surface of the torus, with one circling the centre of 

the torus and one travelling around the outer surface of the torus. In all cases, these defect 

lines were seen midway through the torus, as opposed to the top and the bottom of the 

torus. 

In chiral nematic cylinders with homeotropic anchoring, the intrinsic twist in the plane 

normal to the director causes the two s=+1/2 defect lines seen to twist around one another 

and form a helical structure. Due to the boundary conditions, twist in the defects must be 

nπ where n is an integer. A series of simulations from the isotropic phase showed multiple 

possible values of n for each system investigated and so a series of simulations started from 

each value of n were run to calculate the twist repeat length (i.e. the length for one defect 

to rotate by 2π) for a range of values of   .  It was found that as the chirality increases the 
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defect twist repeat length decrease as it is clearly related to the associated pitch length of 

the chiral nematic which also decreases with increasing   .  

In chiral nematic tori with homeotropic anchoring as in the non-chiral analogues, s=+1/2 

defect lines are observed, however, unlike in the non-chiral case, the defect lines rotate 

around the tube of the torus by nπ where n is an integer. When n is even two interlocked 

s=+1/2 disclination rings are seen and when n is odd one s=+1/2 disclination line traversing 

both the inner and outer regions is formed.  

As with the chiral nematic cylinders with homeotropic anchoring, when started from an 

initial isotropic phase several values of n were seen for each system. In order to calculate 

the most stable value of n for each system, a series of simulations were run from idealised 

starting configurations. These series of simulations confirmed that for a non-chiral nematic 

(i.e.     ) an untwisted defect configuration with the defects located on the inner and 

outer regions was most stable. As    increased the value of n for the ground state also 

increases. The most stable value of n for each system is a complex balance of the 

proportion of the chiral nematic pitch length in the tube and the total length of the 

disclination lines traversing the surface of the torus. At low values of   , the increasing 

proportion of chiral nematic pitch length dominates and the value of n for the lowest 

energy state increases with increasing thickness, however at high values of   , the total 

length of the disclination lines dominates with the value of n for the lowest energy state 

decreasing with increasing thickness.  
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 CHIRAL NEMATICS IN N-FOLD TORI 7

 INTRODUCTION 7.1

The previous chapter considered the case of nematic and chiral nematic phases inside a 

toroidal geometry with both planar and homeotropic anchoring. Nematic tori with planar 

anchoring formed a defect free ground state with the director running axially around the 

torus. The addition of chirality caused the director to twist around the tube of the torus, 

with the director at the centre of the tube running axially along the tube and the director 

twisting away from the axial vector as the distance from the centre of the tube increased 

(section 6.6.1).  

Nematic tori with homeotropic anchoring all formed two s=+1/2 defect lines, one circling 

the inner ring and one running around the outermost surface of the torus. The addition of 

chirality caused the defect lines to twist around one another and form a helical structure 

with the twist of the defects in multiples of nπ where n is an integer. When n is even, two 

interlocking s=+1/2 disclination rings are formed however when n is odd, one disclination 

ring is seen traversing both the inner and outermost surfaces of the torus. 

In this chapter the study is extended from single torus systems to n-tori systems by 

combining two or more tori to create 2-, 3- and 4- genus handled bodies. As in chapter 6 all 

the multiple torus systems investigated here are created from ring tori (         ). 
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For nematic n-tori with planar anchoring, as for the single tori systems, the total topological 

defect charge on the surface is equal to the Euler characteristic[108], χ , 

    (   ) (7.1.1) 

 where g is the number of handles or genus of the system. The Euler characteristic for a 

single torus is zero, hence a defect-free director configuration is possible for a single torus.  

Table 7.1.1 The total topological charge on the surface of nematic n-tori systems with 

planar anchoring 

Number of handles (g) 
Euler Characteristic, χ and total topological charge on the 

surface 

0 (sphere) 2 

1 (single torus) 0 

2 -2 

3 -4 

4 -6 
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Figure 7.1.1  Previous work showing double tori with two s=-1 defects. a) shows computer 

simulations of  two director configurations b) and c)shows experimental results where the 

two s=-1 defects are located at the outermost surface where the two tori join. b) is the 

bright field view and c) the associated view under cross polarisers. (from Pairaim et al[69]) 

 

Previous research both experimentally and simulations employing a lattice-based model[69] 

have shown that the constraint on the total topological charge on the surface of a n-fold 

handled body is fulfilled with the required number of s=-1 defects based on the genus of 

the system . These s=-1 defects are hyperbolic in structure located on the surface located at 

areas of negative Gaussian curvature, either at the outermost region of the surface where 

two tori join or the inner ring of each torus (Figure 7.1.1).  Gaussian curvature (K) is defined 

as the product of two orthogonal planes of principle curvature (         ). 

         (7.1.2) 

The Gaussian curvature is negative at a saddle surface where the planes of principle 

curvature are of different signs (Figure 7.1.2).  

 

 

a) 

b) c) 
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There has been little or no previous research into nematic droplet systems with multiple 

handles with homeotropic anchoring. These systems with homeotropic anchoring are not 

held by the constraint that the total topological charge on the surface must equal the Euler 

characteristic of the system; however, it is not possible to create a defect-free director 

configuration in a n-fold torus system with homeotropic anchoring due to the boundary 

conditions.  

It is possible to predict the defect structure in the n-tori systems with homeotropic 

anchoring away from the join between tori as these behave as the single torus systems in 

the previous chapter. Utilising this idea, it is predicted that for a nematic n-fold handled 

body, away from the join that there will be two s=+1/2 defect lines, one running around the 

inner ring and one around the outer.  However, what occurs at the join between tori in n-

tori systems is unknown.  

In this chapter both nematic and chiral nematic phases confined in a n-torus cavity with 

both planar and homeotropic anchoring are investigated using the off-lattice model 

previously employed to investigated both shells and single torus systems. An insight into 

the effect of chirality on the director configurations observed in these systems is hoped to 

Figure 7.1.2 a) A schematic representation of a saddle surface with negative Gaussian 

curvature. The curves on the surface in the planes of principle curvature are shown in red. 

b) shows a s=-1 defect located at a region of negtive Gaussian curavture in a double torus 

a) b) 
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be gained and the behaviour of a nematic handled body with homeotropic anchoring 

investigated for the first time. 

 INTERACTION POTENTIALS 7.1.1

The same interaction potentials are used as previously detailed in section 6.1.2. To recap, 

there are two interaction potentials; a mesogen-mesogen interaction and a mesogen-wall 

interaction. The mesogen-mesogen interaction is, 

 

      (         )

 {

     

               (         )         
     (         )

        

 

(7.1.3) 

where   and    are unit vectors centred on the middle of particles i and j respectively and 

    is the vector between the centre of i and j and  

 

      (         )

    [  (     )
 
    (     )(    ̂  )(    ̂  )

   (    ̂  )
 
(    ̂  )

 
] 

(7.1.4) 

        
     (         )     [ ̂    (     )][(     )] (7.1.5) 

where ε and    are positive constants relating to the potential well depth and the chirality 

of the cholesteric phase. In this chapter, only the most simple mesogen-mesogen potential, 

potential 1 where                    is investigated as the resulting director 

configurations for a single torus system were very similar for all potentials investigated 

(section 6.3.1). 

The model can be used to simulate a chiral nematic with a pitch length ranging from 

approximately 200σ to 60σ before the planar surface anchoring is lost and a blue phase is 

formed. In this chapter, four values of    are investigated and the corresponding pitch 

lengths are shown in Table 7.1.2.  
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Table 7.1.2 A table showing the    values investigated and associated pitch length used 

throughout this chapter 

   Associated pitch length /σ 

0.00   (a regular nematic) 

0.06 202 

0.12 101 

0.18 62 

0.24 48 

 

The mesogen-wall interaction used was; 

         (     )  {

     

                 (     )

        
 (7.1.6) 

where    is the minimum distance between the wall and the centre of the mesogen and 

        (     ) takes the general form 

         (     )             (    ̂ )
  (7.1.7) 

         (     )  (           )    (    ̂ )
  (7.1.8) 

for planar and homeotropic anchoring respectively. In this chapter, as in the previous 

chapter,  

         (     )   (    ̂ )
  (7.1.9) 

 where   (    ̂ )
  corresponds to planar anchoring and  (    ̂ )

  corresponds to 

homeotropic anchoring. 
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 SIMULATION PARAMETERS 7.1.2

The simulations were run by placing the n-tori boundary inside a rectangular box. As with 

the single torus simulations in the previous chapter, the simulations were run at         

and  
 

    
 ⁄     using cubic analysis cells with sides of 1.5σ from an isotropic starting 

configuration unless otherwise stated. The isotropic starting configuration was produced 

using the method outlined in section 6.3.1. That is, the n-fold handled body was filled with 

a simple cubic lattice of mesogens with      and the orientation vectors of all the 

particles were set along the z-axis. 25% of the particles were then removed at random to 

gain the desired density of        . A short simulation at a high temperature (   

    ) was then run to produce an isotropic starting configuration. 

To confirm that the simulations were being run at the correct reduced density, the volume 

of the systems was calculated. Unlike single tori, there is no simple algebraic formula to 

calculate the volume of an n-fold torus, meaning the volume had to be calculated 

numerically. To calculate the volume, a MC simulation was performed using random trial 

insertions into the rectangular box containing the n-torus boundary system. The number of 

insertions found to be inside the toroidal volume (   ) divided by the total number of trial 

insertions (            ) gives the ratio of the volumes of the n-torus and the box. 

Multiplying this by the volume of the rectangular box (    ) gives the volume of the n-torus 

system (    ). 

       (
   

      
)     (7.1.10) 

From the calculated volume, it was confirmed that the simulations were performed at the 

correct density,        . 
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 GEOMETRY OF A DOUBLE TORUS 7.2

The first system considered in this chapter is the double torus (   ). To simulate a 

double torus four tori are needed, two are the tori joined together to form the system 

(Figure 7.2.1) and two are ghost tori used to control the curvature at the join between the 

two real tori. The two ghost tori are needed to provide a smooth region between the joined 

tori, as found in experimental systems (Figure 7.1.1). Without the ghost tori, a cusp is 

formed with a discontinuity on the surface. The use of the ghost tori allow for      to be 

larger than          , which is when the two tori are just touching (Figure 7.2.2a). The 

opposing limit to the cusp occurs when     tends to infinity, the curvature between torus 1 

and 2 decreases until it appears as a cylinder (Figure 7.2.2b).  

Figure 7.2.1 also shows the parameters used to assign the double tori. As in single torus 

simulations, there are two parameters used to describe the torus itself;      which is the 

radius of the circular path and      which is the radius of the tube. There are three 

   

   

       

 

 

 

𝑅𝑚𝑎𝑥 

𝑅𝑚𝑖𝑛 

𝑟𝑡 

𝑟𝑠 

𝑅𝑠𝑒𝑝 

Figure 7.2.1 A schematic of double torus simulations. 

Torus 1 Torus 2 
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additional parameters used in these simulations,     , which is the separation from the 

midpoint of each torus from the centre of the simulation cell. The minimum value that      

can take is      as any smaller would result in a hole in the centre. The last two 

parameters relate to the ghost tori. They are   , which is the circular path (     ) for the 

ghost torus and    which is the separation of the midpoint of each ghost torus from the 

centre of the simulation cell (    ).   

The variables used in this chapter are      and   , with, 

                       (
 

 
    ) (7.2.1) 

for both torus 1 and 2 for all systems. The values of              used are equal for torus 1 

and 2 in individual systems, meaning the distance between the centre of torus 1 and 2 is 

     . 

The value of    is dependent on     ,      and    and is; 

     √(        )
        

  (7.2.2) 

 

    is constrained to be above a minimum value (  
   ) due to the thickness of the central 

part between torus 1 and 2. For    below the threshold value,    would be small, meaning 

that the join between the two tori would have a thickness in the z-direction of less than 

      and for very small values of    when                 , the two tori would not 

                

Figure 7.2.2 A schematic of a double torus as a) 𝑟𝑡      and b) 𝑟𝑡      

a) b) 
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be joined at all. The threshold value for      can be calculated using the right angled 

triangle formed by             (       ) and setting        giving 

   
     

    
       

 

     
 (7.2.3) 

The maximum thickness of the double tori at the join is equal to the diameter of the tube,  

      which leads to a flat region on both the top and bottom of the system when 

     
   . 

 NEMATIC DOUBLE TORI WITH PLANAR ANCHORING 7.3

 PRELIMINARY STUDIES 7.3.1

A series of simulations were run with planar anchoring varying both      and    cooling 

slowly from the isotropic phase to the nematic phase at   
  

    
 ⁄      over a period of 

62500MC cycles. 

 

 

 

 

 

Figure 7.3.1 a)-d) show four possible defect configurations, e) and f) show the two defect 

configurations found 

a) b) 

c) d) 

f) e) 
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 In systems of all sizes, the total topological charge on the surface was equal to -2 and the 

resulting defect configuration consisted of two s=-1 defects, in agreement with previous 

research[69]. These defects were found on the surface of the double torus at the areas of 

negative Gaussian curvature [109](Figure 7.1.2b). The location of the s=-1 defects at points of 

negative Gaussian curvature agrees with theoretical studies of two dimensional curved 

nematics, where defects are attracted to regions with the same sign Gaussian curvature, 

.i.e. defects  with s<0 are attracted to locations of negative Gaussian curvature, and defects 

with s>0 are attracted to locations of positive Gaussian curvature[110].  

To preserve the director alignment around each handle, the defects must form at the join 

of the two tori. There are two distinct environments for the defects to form in, either the 

innermost surface of either torus, or the outer region at the join of the two tori. There are 

four possible defect configurations (Figure 7.3.1a-d). Of these four defect configurations, 

when cooled slowly from the isotropic phase into a nematic phase, only two configurations 

were seen; consisting of either one defect on the innermost surface of each torus (Figure 

7.3.1e) or one defect at each join between the tori (Figure 7.3.1f).  

For systems at the limit where     , there are no regions of negative Gaussian curvature 

on the outermost surface at the join between the two tori. Due to this, the defects are 

forced to be located on the innermost region of the surface on one or both of the tori. No 

Figure 7.3.2 A double torus with no regions of negative Gaussian curvature on the 

outermost region of the surface (𝑟𝑡      𝜎) showing the two s=-1 defects on-axis 
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defect configurations were seen when cooled from the nematic in which both defects were 

located around the same torus.  

For the defect configuration consisting of two defects on the inside edges of the double 

torus, the defects could either be on-axis (Figure 7.3.2) or off-axis (Figure 7.3.1e). The off-

axis configuration was more commonly seen for small values of      due to the smaller 

distance between defects meaning the defects repel each other until they are off-axis. 

Defects of the same sign repel each other due to the increase in elastic energy from the 

distortions of the director. At high values of     , the defects are on-axis as the increase in 

elastic energy is overcome by the preservation of nematic order seen between the defects 

when on axis. 

It was seen that at small    , the defects were more commonly found at the outermost 

region of the surface (Figure 7.3.1f) and as    increased the defects moved to the innermost 

region. Indeed, for         , only the defect configuration with the defects on the 

innermost surface was seen (Figure 7.3.2). 

 SYSTEMATIC STUDIES 7.3.2

In principle, many simulations cooling from an isotropic phase into a nematic phase could 

be run and count the number of each type of director configuration seen in order to 

calculate the differing stability of the four possible defect configurations. Here however, an 

alternative approach of starting from a known director configuration and calculating the 

mean energy per particle is used to allow for comparison of the stability of different defect 

configurations. Simulations were run at  
 

    
 ⁄       for the parameters shown in Table 

7.3.1. from initial defect configurations in which both defects are located on either the 

outermost or innermost regions of the surface.  
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Table 7.3.1 Parameters used to investigate energy between defects at the inner and outer 

edges 

            

25 (     ) 6.25 (
 

 
     ), 7,8,9,10,11,12.5(    ),15 

31.25 (       
 

 
    ) 8 (  

   ) ,9,10,11,12.5(    ),15,16 

37.5 (           ) 16(  
   ),16.5,17,17.5,18,18.5,19,19.5 

43.75 (       
 

 
    ) 26(  

   ),27,28,29,30 

 

Additionally, for             , the defect configuration with one defect on the 

innermost and one on the outermost surfaces was also investigated. For the values of    

shown, the defect configuration with two defects on the innermost region of one handle 

were unstable and a defect was found to migrate to either the outermost region or the 

opposing handle.  

For systems with intermediate      (                ) for small   , the director 

configuration with the defects at the join between the two tori (at the outermost surface) 

is lower in energy than the defect configuration in which the defects are located at the 

innermost region of the handles. As    increases the comparative stability between the two 

states decreases until for large    the defect configuration with the defects on the 

outermost surface is unstable and the defect configuration with one defect located on each 

handle is most stable (                       ) (Figure 7.3.3b & c). 
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For systems with small      (   ) , there is no such crossover in the most stable defect 

configuration, with the director configuration with the defects at the innermost surface 

more stable for all values of   . Above        the director configuration with the defects 

at the join between the two tori is unstable. The reduced stability of the defect 

configuration with the defects located at the join between the two tori at small separations 

could be due to the cusp-like nature at the outermost surface leading to a discontinuity on 

the surface. 

Figure 7.3.3 Graphs showing the relative stability of the director configurations with the 

defects located at the outermost surface (red) and the innermost surface (green) for 

a)𝑅𝑠𝑒𝑝    𝜎, b) 𝑅𝑠𝑒𝑝       𝜎, c) 𝑅𝑠𝑒𝑝      𝜎 and d) 𝑅𝑠𝑒𝑝       𝜎. b) also shows 

the relative stability of the director configuration with one defect at located the innermost 

surface and one defect located at the outermost surface (blue) 
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For systems where the two tori are not touching, i.e.               , (     

      ) the director configuration with the defects on the innermost surface always being 

most stable. The director configuration with the defects at the join between the two tori is 

relatively high in energy as the large value of       means the defects located here are very 

broad, with a larger core area of disorder compared to defects formed on the innermost 

surface. 

As can be seen in Figure 7.3.3b, the director configuration with one defect on both the 

innermost and outermost surface (Figure 7.3.4) is unstable with respect to both defects 

being located in the same environments. The relatively high energy of the defect 

configuration in which one defect is located on the innermost surface and one is located on 

the outermost surface at the join of the two tori can be explained by the relative 

orientation of the director to the vector between the two defects. In the both defect 

configurations where the defects are located in the same environment, the director is 

parallel to the vector between the two defects (Figure 7.3.1e and f), however in the defect 

configuration where the defects are in different environments, the director is 

perpendicular to the vector between defects, leading to a larger region of distortion around 

the defects (Figure 7.3.4).  

Figure 7.3.4 A double torus with planar anchoring showing one defect on the innermost 

surface and one defect on the outermost surface for 

 𝑅𝑠𝑒𝑝       𝜎 𝑟𝑡    𝜎 
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A series of simulations in which both defects are on the same handle were also run for 

            for the values of    shown in Table 7.3.1, however all were unstable and the 

defects migrated to form the defects on the outermost surface at the join of the two tori, 

showing that, due to the close proximity of the two defects, the defect configuration in 

which both defects are on the same handle is higher in energy than the other three defect 

configuration investigated. 

In order to investigate the relative stability of two defects located on one handle, a series 

of simulations with no regions of Gaussian curvature on the outermost surface,          

with            , were run from an initial defect configuration with  either one defect 

on each handle or both defects on one handle (Figure 7.3.5). 

 It was found that, for                         , the mean energy per particle for 

the director configuration was -2.0609 and -2.0587 for one defect on each handle and both 

defects located on the same handle respectively. The energy difference between the two 

director configurations is an order of magnitude greater than that seen in Figure 7.3.3 for 

the difference in energy between two defects located on the inner or outermost surfaces. 

  

 

Figure 7.3.5 A double torus with planar anchoring with no regions of negative Gaussian 

curvature on the outermost surface showing a) one defect on either handle and b) two 

defects on one handle 

a) b) 
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 CHIRAL NEMATIC DOUBLE TORI WITH PLANAR ANCHORING 7.4

Further to the nematic double tori discussed previously, the effect of chirality on the 

observed defect configuration is investigated. A series of simulations were run cooling 

slowly from the isotropic phase to a nematic phase at  
 

    
 ⁄      for       

      (          ), varying    and   . The values of    and the associated chiral 

nematic pitch lengths are detailed in Table 7.1.2. 

In chiral nematic double tori with planar anchoring, the director twists along the handles of 

the system. As seen in chiral nematic single tori with planar anchoring (section 6.6.1), at the 

centre of the tube the director is running axially along the tube and as the distance from 

the centre of the tube increases the director twists until the maximum twist is seen at the 

surface.  For both single and double tori systems, the amount of twist observed at the 

surface increases with increasing   , i.e. decreasing pitch length. 

In all the double tori systems with planar anchoring the total topological charge on the 

surface was equal to -2, in agreement with (7.1.1). For simulations of low chirality 

(                ) similar director configurations were seen as for the non-chiral 

nematic double tori with planar anchoring consisting of two s=-1 at either the innermost 

surface around the inner rings of the tori (Figure 7.4.1a) or the outermost surface at the 

join between the two tori (Figure 7.4.1b).  

Figure 7.4.1 Two chiral nematic double tori with 𝜀𝑐       showing two s=-1 defects at a) 

the outermost surface and b) the innermost surface 

a) b) 
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As   increases and the pitch length decreases, the defects become untethered from the 

surface and become axial defect lines of strength s=-1/2 through the chiral nematic bulk 

(Figure 7.4.2). The total topological surface defect charge in these systems is still -2 as each 

defect line has two points of strength s=-1/2 on the surface. These defects through the 

chiral nematic bulk appear wider at the surfaces than at the centre of the chiral nematic. As 

with the s=-1 defects, the two s=-1/2 defects in the centre were found to be either on-axis 

(Figure 7.4.2a) or off-axis (Figure 7.4.2b), however there was no obvious correlation to 

either    or     .  

For systems with no regions of negative Gaussian curvature on the outermost surface 

(        ) at the highest chirality investigated a defect configuration consisting of one 

escaped s=+1 defect surrounded by four s=-1/2 defects on both the top and the bottom 

faces of the double torus was seen (Figure 7.4.2c), again the total topological charge was 

equal to -2 as required by (7.1.1) .The s=+1 defect is the centre of a helix that is formed at 

right angles to the surface which has been created to fill the space between a helix running 

Figure 7.4.2 a) and b) show two s=-1/2 lines through the chiral nematic bulk on-axis and 

off-axis respectively. c) shows a system with no regions of negative Gaussian curvature on 

the outermost surface with one s=+1 and four s=-1/2 defects 

c) 

b) a) 
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around both the handles and the outer edge of the double torus. The extra helix in the 

centre of the double torus is not seen for systems with regions of negative Gaussian 

curvature on the outermost surface as there is not enough space for the two helices 

around the handles to join and form a loop.   

 NEMATIC AND CHIRAL NEMATIC DOUBLE TORI WITH HOMEOTROPIC 7.5

ANCHORING 

In this section, both nematic and chiral nematic double tori with homeotropic anchoring 

are investigated. A series of simulations were performed varying            , again cooled 

slowly over a period of 62500MC cycles from an isotropic to a nematic  or chiral nematic 

phase. As for the chiral nematic systems with planar anchoring, the pitch lengths 

investigated for chiral nematic systems are as shown in Table 7.1.2. 

For a single nematic torus with homeotropic anchoring two s=+1/2 disclination lines are 

observed on the outermost and innermost of the torus (section 6.6.2). In a nematic double 

Figure 7.5.1 A double torus with homeotropic anchoring showing where a)𝜀𝑐    with 

three s=+1/2 defect lines, b)𝜀𝑐       with three s=+1/2 defect lines and c) 𝜀𝑐       with 

two s=+1/2 defect lines 

a) 

b) c) 
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torus, three s=+1/2 disclination lines are also observed, one around the centre of each 

torus and a third around the outermost surface of the torus (Figure 7.5.1a). The resulting 

defect configuration for a nematic double torus with homeotropic anchoring can be 

thought of as the sum of two single tori where the outer disclination lines join in order to 

minimise the total defect length in the system.  

In a single torus, the addition of chirality into the system causes the two s=+1/2 disclination 

lines to twist around one another to form a helix. The finite length of the torus decrees that 

the disclination lines must twist by nπ, where n is an integer. For chiral nematic double tori 

systems with homeotropic anchoring, in an analogous manner the defects form a helix 

around both handles, again by multiples of nπ. There is no correlation between the number 

of twist amount around each torus in a double torus system and n may be the same (Figure 

7.5.1b) or different (Figure 7.5.1c). The value of n for each handle of the double tori 

systems for a given value of    is consistent with that observed for the single tori systems. 

 TRIPLE AND QUADRUPLE TORI 7.6

The following section now expands the research to triple and quadruple tori, or three and 

four handled systems. There are many ways of joining multiple tori and only four are 

considered here. The geometries considered are; a linear (Figure 7.6.1a) or triangular 

(Figure 7.6.1b) triple tori and a square or rectangular quadruple tori (Figure 7.6.1c).  

As with the double tori systems, ghost tori are required to produce a smooth surface 

between the joined tori. The number of ghost tori used is dependent on the geometry of 

the systems, for example the triangular triple tori requires three ghost tori whereas the 

linear triple tori and both the quadruple tori systems studied here require four ghost tori. 

The number of ghost tori is equivalent to the number of regions of negative Gaussian 

curvature on the outermost surface.  
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The parameters used for the triple and quadruple torus systems are analogous to those 

used in the double torus simulations earlier in this chapter and are shown in Figure 7.6.1 

for each system investigated. Again               are related to the single tori in each 

system and are 25σ and 12.5σ respectively.           are again related to the ghost tori 

with the same constraints on a    as shown in section 7.2. In the triple torus and square 

quadruple torus simulations,           are the same for all the ghost tori however in the 

rectangular quadruple torus simulations where      
      

 
 the pairs of ghost tori 

opposite each other have the same           but adjacent ghost tori do not. As in the 

double torus simulations the parameters are dependent upon one another and the 

variables used in this section are      ,     
          

 
 in the quadruple tori systems. 

In the triangular triple torus systems the separation from the centre of the simulation cell 

(     ) is not the separation between the centre of the single torus (     ) as it is in the 

linear system and is related by  

      

      

 
   

   
    

   

      

 
   

  

 
  

  

 

 

 

      

   

   

 
  

 
  

 
  

 
  

 

 

  

 

 

Figure 7.6.1 Schematics of a) a linear triple torus b) a triangular triple torus and c) a 

quadruple torus that when 𝑅𝑠𝑒𝑝
𝑥  𝑅𝑠𝑒𝑝

𝑦
is square and when 𝑅𝑠𝑒𝑝

𝑥  𝑅𝑠𝑒𝑝
𝑦

it is rectangular 

a) 

b) 

c) 
𝑅𝑠𝑒𝑝 

𝑅𝑚𝑎𝑥 

𝑅𝑚𝑖𝑛 
𝑟𝑠 
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𝑅𝑠𝑒𝑝
𝑥  

𝑅𝑚𝑖𝑛 

𝑅𝑚𝑎𝑥 
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𝑅𝑠𝑒𝑝
𝑦

 

𝑟𝑡  

𝑟𝑠 

𝑅𝑚𝑎𝑥 
𝑅𝑚𝑖𝑛 

𝑅𝑠𝑒𝑝 

𝑅 𝑠𝑒𝑝 
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√ 
  (7.6.1) 

In order for the triangular triple torus systems to be compared to the other systems 

investigated we shall report the systems in terms of      . In the quadruple torus systems 

there are two different separation variables,     
  and     

 
, which are the separation 

between the centres of two tori in the x and y direction respectively. In square 4-torus 

systems,     
      

 
     . 

Due to the large system size only the limits of   
    and      are investigated for two 

separations,         (    )           (         ) . In the rectangular quadruple 

torus systems,     
      (    )         

 
       (         ) was investigated. 

Simulations were run with both planar and homeotropic anchoring for the values of    

shown in Table 7.1.2, simulating both a chiral and non-chiral nematic. Simulations were 

cooled slowly over 62500MC cycles from the isotropic phase to a nematic phase at 

  

    
 ⁄     . 

 NEMATIC N-TORI WITH PLANAR ANCHORING 7.6.1

The Euler characteristic of the system is dependent on the number of handles (7.1.1), with 

each additional handle contributing -2 to the Euler characteristic. The change in Euler 

characteristic (χ) means that for systems with planar anchoring, with each additional 

handle the total topological charge on the surface increases by -2, i.e. for a triple torus the 

total topological charge on the surface must equal -4 and for a quadruple torus, both 

square and rectangular, it must be -6.  

Figure 7.6.2 Linear triple tori showing four s=-1 defects with 𝑟𝑡  𝑟𝑡
𝑚𝑖𝑛  
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For all nematic systems with planar anchoring it was found that there were χ s=-1 defects 

located at areas of negative Gaussian curvature, either at the innermost surface on the 

rings of the torus or at the outermost surface at the join between two tori. It was found 

that the regions of negative Gaussian curvature at the outermost surface could only 

contain one s=-1 defect however there could be two or more s=-1 defects at the innermost 

surfaces.  

For the linear triple tori systems with      
   , there were four areas that the defects 

could form on the outermost surface and defect configurations in which all four s=-1 

defects are located at the joins between tori were seen (Figure 7.6.2). 

For linear triple tori with no areas of negative Gaussian curvature on the outermost surface 

(    ), there are only three regions of negative Gaussian curvature meaning that one 

ring must have two (or more) defects present. There are five possible defect arrangements 

Figure 7.6.3 a) The five possible defect configurations for a linear triple torus where 𝑟𝑡    

with planar anchoring. b) and c) show the two most commonly observed defect 

configurations 

a) 

b) c) 
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in linear tori with     , with those in which two holes have one defect and one hole two 

defects being observed in 90% of the simulations. The other defect configurations 

predicted are higher in energy as in all the distance between two (or more) defects is much 

smaller. In the two defect configurations observed, with two defects located at the centre 

hole (Figure 7.6.2c) or at one of the edge holes (Figure 7.6.2b), the energy difference was in 

the range of the fluctuations of the simulations and so it was not possible to calculate. 

However, due to the larger distance between defects when two are located at the centre 

hole this is likely to be lower in energy and was observed in 60% of the simulations. The 

presence of more than one defect configuration suggests that, once formed there is not 

enough energy present in the system for the defects to migrate to the lowest energy 

configuration. 

For triangular triple tori and quadruple tori where      
    there are less regions of 

negative Gaussian curvature on the outermost surface than required to exclusively form 

the s=-1 defects at the join between tori. For the triangular triple torus, systems were seen 

with two (Figure 7.6.4a) or one (Figure 7.6.4b) s=-1 defects located at the outermost 

surface (leaving one or two joins between tori free) but there were no occurrences where a 

defect was located at each join as it is not possible to do this without introducing extra 

Figure 7.6.4 a) and b) show triangular triple tori showing two and one s=-1 defects at the 

outermost surface respectively and c) a square quadruple torus showing two s=-1 defects 

at the outermost surface 

a) b) c) 
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defects into the system. The same is true for the quadruple torus systems with defect 

configurations with two (Figure 7.6.4c) or three defects located at the join between tori, 

leaving two or one joins defect free respectively. 

For systems at the limit where     , the defects all form at the holes of the tori as there 

are no regions of negative Gaussian curvature on the outermost surface of the systems, 

leading to two or more defects being located at a single hole. Whilst no defect 

configurations with more than two defects at any one hole were observed in the 

simulations run, it is possible to form a defect configuration in which there are three 

defects located at a single hole. However, the possible defect configurations with three 

defects on one hole are significantly higher in energy due to the decreased distance 

between defects. In quadruple tori, six s=-1 defects are required to fulfil the constraint on 

the total topological charge. The defect configuration observed comprised of two holes 

with two defects and two holes with one defect. The holes with two defects may be either 

adjacent or at diagonally opposite. Both cases were observed and, and as with the linear 

triple tori the the energy difference between the two defect configurations was within the 

energy fluctuation of the simulation and could not be calculated. 
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 CHIRAL NEMATIC N-TORI WITH PLANAR ANCHORING 7.6.2

In chiral nematic systems with planar anchoring, as in the non-chiral nematic systems, the 

total topological charge was equal to the Euler characteristic, in triple tori χ=-4 and in 

quadruple tori χ=-6, in all cases. The effect of chirality on the triple and quadruple torus 

systems is similar to that seen for the chiral nematic double torus. For systems with low 

chirality (       ) and a long associated pitch length (202σ), similar defect configurations 

were seen as for the non-chiral nematic case. That is, the required number of s=-1 defects 

were seen at areas of negative Gaussian curvature at either the innermost or outermost 

surfaces. 

At         the defects become detached from the surface of the system and begin to 

move into the chiral nematic bulk as s=-1/2 lines. These lines conserve the total topological 

charge as each has two points of s=-1/2 at the surface of the system. In systems at this 

intermediate chirality, the defects are still slightly anchored to the surface and more defect 

configurations not seen for a non-chiral nematic are seen, including systems with three 

defects on one hole (Figure 7.6.5a) or defects at all regions of negative Gaussian curvature 

on the outermost surface (Figure 7.6.5b). 

Figure 7.6.5 Chiral nematic quadruple tori with 𝜀𝑐       showing a) three defects on two 

holes and b) four defects on the outermost surface 

a) b) 
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As    continues to increase, the defects become fully detached from the surface and form 

an ordered structure maximising the distance between defects (Figure 7.6.6). The defect 

structure formed is independent on      and    with the same defect configuration 

observed at both       
    and     . In the quadruple tori, the pair of defects at the 

centre can appear either on- or off- axis in an analogous manner to the defects observed in 

chiral nematic double tori with planar anchoring. Whilst it is not possible to calculate the 

energy difference between the on-axis and off-axis defect configurations, the configuration 

in which the defects off-axis was more commonly observed as the distance between the 

two defects is larger and so it is likely to be lower in energy than the on-axis defect 

configuration. 

In the quadruple tori systems, at high chirality (                 ) a novel defect 

configuration was seen with an additional s=+1 at the centre of the top and bottom of the 

surface surrounded by eight s=-1/2 defects, analogous to that seen in the double tori 

systems with         . The total topological charge was conserved by the addition of 

positive and negatively charged defects with the same total magnitude, leading to a total 

topological charge of -6.  The s=+1 defects are located in the centre of a helix that 

perpendicular to the top and bottom surface of the system. The arrangement of the s=-1/2 

defects around the centre differed in the square and rectangular quadruple tori. 

Figure 7.6.6 Chiral nematic systems with planar anchoring with s=-1/2 defects. 

a) A linear triple torus, b) a triangular triple torus and c) a square quadruple torus 

a) b) c) 
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The s=+1 defects were seen at lower chirality (       ) for systems where      and 

           in comparison to          and/or      
   due to the increase in the 

volume at the centre of the system. A similar defect configuration was also seen for the 

triangular triple torus when             but not for the linear triple torus, as in the 

linear arrangement there is no larger volume between the join of three or more tori. It can 

be expected that in a linear torus with a large enough separation between tori and     , 

at a high chirality two helices perpendicular to the top and bottom surfaces will form, one 

either side of the central hole in a manner analogous to that seen in double tori (Figure 

7.4.2c). 

 N-TORI WITH HOMEOTROPIC ANCHORING 7.6.3

Nematic and chiral nematic triple and quadruple tori systems were also investigated with 

homeotropic anchoring. As in the single and double torus systems, s=+1/2 disclination lines 

were observed in all systems investigated.  

In non-chiral nematic systems with homeotropic anchoring     s=+1/2 defect lines were 

observed where g is the number of handles. In all cases, one disclination line runs around 

the outside of the system with a disclination line circling each hole of the system (Figure 

7.6.7). Again all the defects were located midway through the system in the z-direction, as 

observed for the single tori. In an analogous manner to the nematic double tori systems 

Figure 7.6.7 Nematic systems with homeotropic anchoring showing g+1 s=+1/2 defect 

lines, a)linear triple torus, b) triangular triple torus and c) square quadruple torus 

a) b) c) 
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with homeotropic anchoring, the defect arrangements can be thought of as the 

combination of g single tori with homeotropic anchoring with the outer defect lines joined 

to minimise the energy of the system. 

Chiral nematic systems with homeotropic anchoring also show s=+1/2 defect lines. The 

intrinsic twist in the chiral nematic causes the disclination lines to twist around one another 

to form a helix which run round the handles of the system. The triple and quadruple tori 

systems can be thought of as joining of single tori components and as such, the defects 

must twist by nπ  where n is an integer in order for the ends of the defects to meet and a 

closed ring to form. If the defects twist by an amount that isn’t a multiple of π a 

discontinuity is produced which, due to the increased region of disorder, is much higher in 

energy.   

The value of n round each handle is independent from the value of n found for the other 

handles in the system and may be the same (Figure 7.6.8a) or different (Figure 7.6.8b & c). 

Figure 7.6.8 a) and b) are linear triple tori with homeotropic anchoring showing the same 

and differing values of n around each centre respectively. c) is a triangular triple torus with 

homeotropic anchoring. Inserts d) and e) the join between two tori and the defect line at 

𝑐𝑙                 respectively 

a) b) 

d) e) 

c) 
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Whilst the lowest value of n for each handle is the same as it is dependent on   , the 

energy difference between n and n 1 is very small (approximately 0.01 for single tori in 

section 6.6.2) and the energy needed to convert between n around each handle once the 

defects are formed is larger than the thermal energy of the simulation as, in order to 

convert between n, the disclination lines must break.  

 As observed in both single tori and double tori systems, as the pitch length of the chiral 

nematic decreases (i.e.    increases), the value of n around each hole increases. As with the 

triple and quadruple tori with planar anchoring, it was not possible to calculate the energy 

difference between different defect configuations for the same value of    as the energy 

difference was within the range of the energy fluctuations and could not be resolved. 

The number of disclination lines in a system depends on n around each single torus centre. 

A chiral nematic linear triple torus with homeotropic anchoring can be thought of as an 

expansion of a chiral nematic double torus with homeotropic anchoring and both show 

very similar defect configurations. For chiral nematic linear triple tori with homeotropic 

anchoring the number of s=+1/2 defect lines (    ) is equal to the number of s=+1/2 defect 

lines in a nematic system (i.e.    )minus the number of cases where n is odd. 

               (7.6.2) 

 For example, for in the linear triple tori in Figure 7.6.8, in a) the defect rotates by    

around each holes and so        and        whereas in b) the defects rotate by 

             when looking from left to right and so        and       .  

The formula for the number of s=+1/2 disclination lines only holds for linear triple tori but 

can be used as a guide for the other multiple tori systems investigated. In the triangluar 

triple torus systems with      
   , in the visualisations there appears to be a discontinuity 

in the defect lines at the areas of negative Gaussian curavature on the outermost surface 
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(Figure 7.6.8). By using a higher threshold for    (Figure 7.6.8e) it is possible to see that 

there is no break in the defect lines and the appearance may be due to the resoluation 

obtained using the cubic analysis cells with sides of 1.5σ. 

In chiral nematic square quadruple torus systems with homeotropic anchoring the defect 

configuration seen was dependent on     . In systems where         , the small 

distance between the holes leads to an ordered defect structure with the same value of n 

around each hole (Figure 7.6.9a-c). However, in systems where           , the larger 

distance between the holes meant that different values of n were seen in the same system.   

In the chiral nematic rectangular quadruple torus systems with homeotropic anchoring the 

defect loops that circled two holes tended to enclose the two separated by the smaller 

distance (Figure 7.6.9e&f)whereas in the analogous square quadruple torus systems 

diagonally opposed holes tended to be enclosed by one loop (Figure 7.6.9b&c). The 

difference in defect structure between the rectangular and square quadruple tori shows 

a) b) c) 

f) e) 

Figure 7.6.9 Chiral nematic quadruple tori with homeotropic anchoring showing s=+1/2 

defects. a)-d) are square quadruple tori and e)&f) are rectangular quadruple tori. 

d) 
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the competing contributions to the total energy of the system, in the rectangular case the 

length of the defect is the limiting factor whereas in the square case maintaining the helix 

of the director is the limiting factor.  

At high chirality, the s=+1/2 defects join to form a network at the centre of the systems 

(Figure 7.6.9d). The formation of a network is more pronounced in systems with 

           as there is a larger volume between the join of four tori in which this can 

occur. 

 CONCLUSION 7.7

In this chapter, the study has been expanded from a single torus in the previous chapter to 

systems comprised of two or more nematic and chiral nematic tori. Five different 

geometries were investigated; double tori, linear and triangular triple tori and square and 

rectangular quadruple tori, with both planar and homeotropic anchoring.  

It was found that multi-handled bodies with planar anchoring have a total topological 

charge on the surface equal to  (   ), i.e. -2,-4 or -6 for double, triple and quadruple tori 

respectively (7.1.1). 

 For nematic systems with planar anchoring, the constraint on the total topological charge 

on the surface is fulfilled with the required number of s=-1 defects found in regions of 

maximum negative Gaussian curvature of which there are two distinct regions; either on 

the innermost surface of each handle or the outermost surface at the join of two tori. The 

location of the defects at these two distinct regions is highly dependent on both 

            and systematic investigations with double tori systems showed a cross over in 

the most stable defect configuration from the two defects located at the join between two 

tori to the innermost surfaces for intermediate values of      with the increase in   . At 

both small and large values of     , the defects were more stable when located at the 
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innermost surface (section 7.3.2). The defect configuration with one defect located in 

either environment was unstable with respect to both the defects being located in the 

same environment.  

The dependence on              observed in double tori systems is likely to also apply to 

triple and quadruple tori systems, however the small energy difference meant it was not 

possible to investigate systematically in systems with more than two tori. In systems with 

no regions of negative Gaussian curvature on the outermost surface all the defects were 

located on the innermost surface (e.g. Figure 7.3.2 and Figure 7.6.2b & c). In double tori 

with no regions of negative Gaussian curvature on the outermost surface, the energy 

difference between one defect on either hole and two defects on one hole was 

investigated. The difference in energy was found to be an order of magnitude larger than 

that seen in the previous systematic study, explaining why for systems with regions of 

negative Gaussian curvature on the outermost surface, two defects on the same hole are 

not observed and unstable with one defect migrating to the other handle.  

In triangular triple tori and quadruple tori systems, more s=-1 defects are required to fulfil 

the constraint on the total topological charge than there are regions of negative Gaussian 

curvature on the outermost surface between the join of two tori. For nematic systems no 

defect configurations with a defect at each join were seen as this would create additional 

defects in the director configuration (Figure 7.6.4).  

For chiral nematic systems with a long associated pitch length (       ), similar defect 

configurations were seen as in the nematic systems. As the chirality of the system 

increases, the defects detach from the surface and move into the bulk as s=-1/2 defect 

lines. The s=-1/2 defect lines still contribute -1 to the total topological charge at the surface 

as there are two regions of s=-1/2, one on the top and one on the bottom of the system. At 

intermediate values of   , the defects are still weakly anchored to the surface and more 
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unusual defect configurations are found (Figure 7.6.5) that were not observed for a non-

chiral nematic system.  

For highly chiral systems investigated (       ) a new defect configuration was seen 

consisting of a s=+1 line through the bulk surrounded by s=-1/2 lines (e.g. Figure 7.4.2c) 

which occurs as the helical twist of the director is perpendicular to the surface, with the 

s=+1 line at the centre of the helix. In all simulations, the total topological charge was equal 

to the Euler characteristic of the system. 

Multi-handled nematic systems with homeotropic anchoring all formed     s=+1/2 

disclination lines, with one around each hole and one around the outside of the system 

(e.g. Figure 7.5.1a and Figure 7.6.7). 

 In chiral nematic systems with homeotropic anchoring the director rotates by nπ where n 

is an integer around each handle as seen in a single torus in the previous chapter. The value 

of n for each handle in the system is dependent on    but independent from the other 

handles in the system. The total number of defect lines in the systems varies with the 

director configuration and for linear multiple tori is equal to          (7.6.2) where 

     is the number of handles that n is an odd number. For triangular triple tori and 

quadruple tori systems this relationship does not hold true but can be used as a general 

guide.  In these systems, at high chirality (       ) the s=+1/2 defect lines join to form a 

network which is most apparent when            due to the increased volume at the 

join between three or four tori at centre of the system (Figure 7.6.9d). 

The work in this chapter forms a substantial basis for further investigation into nematic and 

chiral nematic multiple torus systems. The findings in this chapter agree with those found 

experimentally[69] and may be used to predict director configurations in future work. The 

systems investigated and the results obtained may be applied to larger multiples and 
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systems where the single tori are of different sizes. It may be possible in future work to 

employ boundary conditions that allow for the investigation of larger system sizes, e.g. half 

of a double torus. 
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 CONCLUSIONS 8

In this thesis, a simple off-lattice model was developed in order to investigate nematics 

with curved surfaces within confined geometries. The model was based on hard spheres 

with an embedded orientation vector at the centre of each particle. The simplicity of the 

developed model allows for large system sizes to be investigated.  

The first system investigated was nematic shells, in which a water droplet is encompassed 

in a slightly larger nematic droplet. Nematic shells were first made experimentally by 

Fernandez-Nieves et al. in 2007[29] after Nelson’s[28] paper proposed the presence of a 

tetrahedral arrangement of defects in systems with planar anchoring. For systems with 

planar anchoring, the total topological charge on the surface of the sphere must be equal 

to +2, as specified by the Poincaré-Hopf theorem. The nematic shells are thought to order 

through the defects, which for thin shells with a tetrahedral array of defects would lead to 

a lattice similar to that found in diamond on the micrometre scale. This would act as a 

photonic crystal and could find applications in light-modulating devices.   

 The research conducted in this thesis found that, for shells with planar anchoring at both 

surfaces, the number and position of the defects formed was highly dependent on the shell 

thickness. In thin shells where four s=+1/2 defects were observed which favoured a 

tetrahedral arrangement and for thick shells, a bipolar defect configuration was seen 

consisting of two s=+1 defects. A third defect configuration was occasionally observed for 

intermediate thickness shells consisting of one s=+1 and two s=+1/2 defects. The 

dependence of the defect configuration on the thickness of the nematic shell agrees with 

previous work, both experimental[31] and from simulation.[32] 

An extended potential was employed to vary the ratio of the elastic constants, in particular 

  
  

⁄ . It has been seen previously that as 
  

  
⁄   , which occurs at the transition to a 
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smectic phase[39,40] or for systems of infinitely long hard rods[35], in thin shells the four 

defects migrate to a great circle arrangement. Unfortunately, for all the models employed 

in this work, the elastic constants were very similar and the tetrahedral arrangement was 

observed for all potentials investigated. For the A series of potentials, which favoured side-

side interactions, the transition from thick to thin shell behaviour occurred in thinner shells 

than for potential 1. Conversely, for the B series of potentials, which favoured end-end 

interactions, the transition from thick to thin shell behaviour occurred in thicker shells than 

potential 1. The difference in the transition from thick to thin shell behaviour between the 

simpler potential and both the A and B series shows that it is not only the ratio of elastic 

constants that effects the defect configuration but also the subtle interactions between 

particles. 

Future work, utilising a more complex model, may be possible to vary 
  

  
⁄  in order to 

observe the prevalence of the great circle arrangement of defects in thin shells. A model 

the encompasses the transition from a nematic to a smectic phase would also be of 

interest, as whilst this has been observed experimentally, no such simulations have been 

performed.    

In experimental systems, due to a slight difference in density between the nematic and the 

inner water droplet, the nematic shells are not of uniform thickness and the inner droplet 

moves upwards, producing a thinning of the shell at the top of the system and a thickening 

at the bottom. Therefore, systems in which the inner water droplet was shifted were also 

investigated here.  In thin shells with four defects, the defects migrate to the thinnest part 

of the shell, minimising the total length of the defects, overcoming the repulsion between 

defects.  

 The intermediate defect configuration, consisting of one s=+1 and two s=+1/2 defects 

which was occasionally observed in uniform thickness shell was stabilised in the non-
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uniform thickness shells. The two s=+1/2 defects most commonly found at the thinnest 

part of the nematic shell. This finding is consistent with that found by Seyednejad et al.[32] 

and may explain the prevalence of the observed in experimental work.  

Koning et al.[36] discuss the effect of shifting the inner water droplet in thick shells that form 

two s=+1 defects and  suggest a transition from a ‘deconfined’ defect configuration  with 

one defect at each pole to a ‘confined’ defect configuration in which both defects are 

located at the thinnest part of the nematic shell. In all simulations where two s=+1 defects 

were observed the defects were located at the poles of the droplet i.e. the ‘deconfined’ 

defect configuration. However, all the systems investigated here fall within the region 

where only the ‘deconfined’ configuration is expected.  Future, larger simulations in which 

the inner water droplet is more shifted may show the predicted transition. 

By employing a non lattice-based model, it was possible to investigate the effect of chirality 

on the defect configuration observed in nematic shells with planar anchoring. Chiral 

nematic shells have only very recently been fabricated experimentally by Uchida et al.[41]. In 

thin shells where four defects are observed for a non-chiral nematic, at a threshold chirality 

a transition from four s=+1/2 to two s=+1 defects is observed and a twisted bipolar director 

configuration is seen. The twist bipolar configuration is similar to that found in filled chiral 

nematic droplets for chiral nematics with a long pitch length.[26] In the chiral nematic shells 

fabricated by Uchida et al., a single s=+2 defect is observed, which is similar to the Frank-

Pryce structure found for filled chiral nematic droplets in which the pitch length of the 

chiral nematic is much smaller than the radius of the droplet. In the systems investigated 

here, the shortest chiral pitch length possible is still much longer than the shell thickness 

due to the loss of surface anchoring, which may explain why the twisted bipolar structure is 

observed rather than one with s=+2 defects.  
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Future work in which the pitch-length-to-shell-thickness ratio is decreased may show a 

second transition to a structure similar to that found experimentally. To this end, 

preliminary simulations of a confined nematic and chiral nematic between two spherical 

surfaces were performed. By not including the water particles, the ratio of shell thickness 

to pitch length can be increased as larger system sizes can be run. It was found that the 

chiral nematic between two spherical surfaces forms four s=+1/2 defects rather than the 

twisted bipolar structure observed in the systems with the water molecules included. The 

absence of the transition from four s=+1/2 to two s=+1 defects is due to the intrinsic 

difference in anchoring strengths. Future work is likely to show the same transition from 

four to two defects as found in the systems with a liquid crystal-water interface. The 

transition from four to two defects with decreasing pitch length gives a way to control and 

vary the number of defects that previously has been done by external forces, such as an 

electric field[37]. 

The use of solid colloidal particles with a nematic coating were then investigated with 

planar anchoring, allowing for the investigation of non-spherical particles. Preliminary 

simulations from an initial, non-spherical coating found that the nematic droplet became 

spherical, minimising the surface area and repulsive interactions between the mesogens 

and the water particles. As expected, the defect configurations observed for solid, spherical 

particles with a nematic coating are similar to those found in nematic shells with an 

internal water droplet. Due to the difference in anchoring strength, the thin shell behaviour 

consisting of four s=+1/2 defects is stabilised. 

It was found that the defects form at the vertices of the large solid particle where the 

nematic coating is thinnest, thus minimising the length of the defects. For a tetrahedral 

particle, this leads to a stabilisation of the tetrahedral defect configuration seen in thin 

shells. However, due to the difference in the volumes of the spherical nematic droplet and 
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the large tetrahedral particle, four s=+1/2 were only seen for large tetrahedral particles. 

This behaviour suggests that by using tetrahedral particles with thin nematic coatings, the 

desired diamond-like lattice formed by self-assembly of the shells through the defects   

may be stabilised. Systems in which smaller tetrahedral particles were shifted from the 

centre of the nematic droplet were also investigated. It was found that, as with the non-

uniform nematic shells, the three-defect configuration was stabilised with two s=+1/2 

defects forming at the thinnest part of the nematic coating. Both the s=+1/2 defects and 

the s=+1 defect were found at the vertices of the tetrahedral particle.  

Cubic and octahedral particles with a nematic coating were also investigated. As observed 

with the tetrahedral particles, for octahedral particles the increased bulk-like nature of the 

nematic droplet meant that a bipolar configuration was observed for all but the largest 

particles. Unlike the case with cubic and tetrahedral particles, defects were observed along 

the edges of the particle as there was no way of arranging the defects in a tetrahedron on 

the vertices of the octahedron. 

For cubic particles with a nematic coating, four s=+1/2 defects were most commonly 

observed, with two defect arrangements in which each face has two defects associated 

with it. This may be thought of as analogous to the tetrahedral and great circle 

arrangements seen in nematic shells. Of these two defects arrangements, the great circle 

was observed approximately five times more often than the tetrahedral arrangement due 

to the high energy cost for the defects to move vertices once formed. Other defect 

arrangements with three defects associated with a face were occasionally observed but 

were higher in energy due to the closer proximity of the defects. 
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All the systems consisting of both mesogen and water particles highlight the sensitive 

nature of the resulting defect configuration on the mesogen-water potential. For all 

systems, the mesogen-water interaction is negative stabilising the nematic shells. Whilst 

for the nematic shells surrounding a water droplet the observed defect configuration was 

very similar for all anchoring strengths, for large solid particles with a nematic coating the 

resulting defect configuration was very sensitive to the constants used in the mesogen-

water potential. For the solid particles with a nematic coating, most noticeably for the 

tetrahedral and octahedral particles, for          the nematic contracts away from the 

liquid crystal-water interface and the preferred surface anchoring is lost. As such, the 

mesogen-water potential used in chapter 5 is different to the previous chapters.  

The resulting defect configuration is also highly dependent on the type of surface, i.e. 

whether the surface is solid, as found in the preliminary chiral nematic between confined 

between two spherical surface and between the large solid particle and the mesogens, or 

between water and mesogen particles. The different surfaces produce slightly different 

results, as evidenced by the solid sphere with a nematic coating or the confined chiral 

nematic shells. The solid surfaces have an intrinsic stronger anchoring due to the definition 

of the vector used to compute the dot product term in the anchoring potential. With solid 

surfaces, this vector is defined as the shortest distance between the centre of the mesogen 

particle and the wall, however for liquid crystal-water interfaces the vector used is the 

distance between the centre of the two particles. The difference in the defect 

configurations observed with solid or mesogen-water interfaces again highlight the 

sensitivity of the defect configurations on the type and strength of the surface anchoring. 

Finally, nematic and chiral nematic droplets with handles were investigated. Whilst a 

sphere is the lowest energy geometry as a sphere minimises the surface area of the droplet 

and so the unfavourable mesogen-water interactions, other geometries, such as a torus, 
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may be stabilised by external forces. A torus is geometrically distinct from a sphere, that is 

it is not possible to transform continuously between a sphere and a torus. For a droplet 

with planar anchoring, the total topological charge on the surface is equal to its Euler 

characteristic. The Euler characteristic for a single torus is zero and a defect-free director 

configuration may therefore be observed.    

Recently, Pairam et al.[69]  fabricated both single and multiple nematic tori via microfluidic 

means and stabilised the droplets in a gel matrix, finding that the director configuration in 

nematic tori with planar anchoring twists spontaneously for fat tori. Kulic et al.[70] suggest 

that the transition to a twisted director configuration from an untwisted defect 

configuration observed for thin tori is governed by the ratio 
  

  
⁄ , however the later 

paper by Pairam et al, suggests that the ratio of 
   

  
⁄ , where     is the saddle-splay 

elastic constant, is of importance. Finding the aspect ratio of the tori where the transition 

from an untwisted to twisted director configuration occurs lead to a method to estimate 

the saddle-splay elastic constant, which is otherwise not possible. In all the simulations 

performed using the simple potential based on hard spheres, a twisted director 

configuration was not observed. By employing an external field, it was possible to 

extrapolate to a zero field strength for a twisted configuration and it was confirmed that 

the twisted state was higher in energy for the systems investigated.  

In order to vary 
  

  
⁄ , the Gay-Berne[76] potential was employed. Due to the increased 

computational cost of the Gay-Berne potential compared to the simple potential 

developed, sections (a quarter and an eighth) of a torus were simulated. As with the 

simpler potential, it was found that the twisted director configuration was unstable and 

higher in energy than the untwisted director configuration. The lack of twisted director 

configuration observed may be due to the limited sizes of torusinvestigated. Further 
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simulations of fat tori with small aspect ratios are needed to detect the transition to a 

twisted director configuration; however a smaller aspect ratio leads to a larger system size 

which is computationally more expensive.  

For the first time the effect of chirality on the director configuration in both single and 

multiple tori was investigated. A twisted director configuration in nematic tori with planar 

anchoring was produced by the inclusion of chirality into the system.  

Both nematic and chiral nematic tori with homeotropic anchoring were also investigated. 

Unlike nematic tori with planar anchoring, a defect-free director configuration is not 

possible. For non-chiral nematic tori, two s=+1/2 disclination lines are observed running 

around the inner and the outermost surface of the torus. The presence of the defect lines 

again highlights the different nature between a toroidal droplet and spherical shell, as for 

spherical nematic shells with homeotropic anchoring a defect-free director configuration is 

observed. 

On the addition of chirality, the two disclination lines twist around one another to form a 

helical structure. Due to the closed nature of the system, the defect lines must twist by 

multiples of nπ where n is a positive integer. When n is even there are two s=+1/2 

disclination lines, however when n is odd, one disclination line circles both the innermost 

and outermost surface of the torus. 

Nematic and chiral nematic double, triple and quadruple tori were also investigated with 

both planar and homeotropic anchoring. With the addition of each handle, the Euler 

characteristic decreases by -2, as does the total topological charge on the surface of the 

droplet with planar anchoring. Therefore, the total topological charge on the surface is -2,   

-4 and -6 for double, triple and quadruple tori respectively. For non-chiral nematics with 

planar anchoring, the constraint on the total topological charge is fulfilled by the required 



255 
 

number of s=-1 at regions of negative Gaussian curvature, either at the join between two 

tori or the innermost surface of one of the handles. 

 For double tori, the relative stabilities of the locations of the two s=-1 defects were 

calculated. It was found that, for both small and large separations between the two tori, 

the defect configuration in which both defects are on the innermost surface was most 

stable. For intermediate separations between two tori, for small values of   , where    

controls the curvature on the outermost surface at the join between two tori, the defect 

configuration in which the defects at the outermost surface is most stable. As    increases, 

there is a crossover in stability until the defect configuration in which both defects are 

located at the innermost surface is lowest in energy. Both these configurations where the 

defects are located in the same environment are lower in energy than when the defects are 

located in different environments.  

For all n-fold chiral nematic tori with planar anchoring, as the pitch length decreases the 

defects detach from the surface and become s=-1/2 disclination lines through the bulk, 

linking the top and bottom of the system. The s=-1/2 disclination lines still fulfil the 

constraint on the total topological charge on the surface as each contributes two regions of 

s=-1/2 character on the surface. At very high chirality, a new defect configuration is often 

observed consisting of a s=+1 defect surrounded by the required number of s=-1/2 defects 

to fulfil the constraint on the total topological charge on both the top and bottom of the 

systems. The s=+1 defect is at the centre of a helix formed by the director.  

For n-fold nematic tori with homeotropic anchoring, the resulting defect configuration may 

be thought of as the combination of n tori, with one s=+1/2 disclination line circling each 

hole and one running along the outermost surface of the system. As in the single tori, with 

the addition of chirality, the disclination lines twist around one another to form a helix. The 

value of n around each handle is independent from the other handles in the system. 



256 
 

By investigating different geometry nematic droplets with planar anchoring, the 

dependence of the total topological charge on the surface can clearly be seen, with a total 

charge of +2 on both surfaces observed in all spherical shells and the presence of a defect-

free director configuration observed for a toroidal droplet. In all cases with defects present, 

the addition of chirality into the system causes a new, previously unobserved defect 

configuration to manifest. The new defect configurations observed for confined chiral 

nematic systems allow for the preservation of the chiral helix. At very high chirality, due to 

the potential employed, a transition to a more complex defect structure consisting of a 

s=+1 defect at the centre of the helix surrounded by the required number of s=-1/2 defects 

to fulfil the constraint on the total topological charge. The s=-1/2 defects are found 

between the helices of the liquid crystal phase.  
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ABBREVIATIONS AND DEFINITIONS 

5CB 4-Cyano-4'-pentylbiphenyl, a commonly used mesogen 

BP Blue phase 

   One of three Westin Metrics used to identify the location of defects 

   Reduced density, defined in (2.4.1) 

   Splay elastic constant of a nematic phase 

   Twist elastic constant of a nematic phase 

   Bend elastic constant of a nematic phase 

    Saddle-splay elastic constant of a nematic phase 

LC Liquid Crystal 

MC Monte Carlo 

MC cycle N Monte Carlo trial moves where N is the number of particles in the 

simulation 

N Number of particles in the simulation 

 ̂ The director  

σ Particle diameter 

   Reduced temperature, defined in (2.4.2) 

     The nematic-isotropic transition temperature 
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