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Thesis Abstract 

The impetus of this thesis is to ascertain the extent to which resting state neuroimaging reveals 

neuropsychologically relevant and clinically salient biomarkers to distinguish normal and abnormal 

ageing. 

Section 1. A literature review was undertaken to characterise the neuropsychological correlates 

of resting state networks in persons with Mild Cognitive Impairment (MCI). The results suggest 

episodic memory performance decreases as a function of decreased coherence of the spontaneous 

correlations between medial parietal, temporal and frontal regions of the default mode network and that 

the posterior cingulate cortex (PCC) may be the most salient biomarker for cognitive decline due to 

Alzheimer’s pathology. The conclusions suggest further work is needed to characterise the relationship 

between resting state imaging markers and semantic memory and to understand how semantic and 

episodic memory are mediated by resting state network connectivity in normal ageing. 

Section 2. Based on the conclusions of the literature review an empirical study was devised to 

ascertain if clinical and age related variance in semantic and episodic memory is associated with 

disrupted connectivity of the PCC. The results demonstrated that whilst semantic memory is sensitive 

and specific to abnormal ageing, episodic memory impairment is more sensitive and specific to PCC 

connectivity in normal ageing and disease. The correlates of PCC connectivity and episodic memory in 

MCI were associated with disrupted connectivity with posterior memory structures, whereas in healthy 

ageing the connections between these regions were preserved. In those ageing normally, the inverse 

association with PCC connectivity with the caudate and insula may suggest cognitive efficiency, the 

association with frontal regions is in line with the frontal theories of ageing.  These findings suggest the 

episodic memory correlates of PCC connectivity could indicate a clinically relevant biomarker for 

normal and abnormal ageing. 
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Literature Review 

 

Do functional connectivity studies of the default mode network in 

mild cognitive impairment reveal neuropsychologically 

meaningful biomarkers? A systematic review of the literature. 
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Does resting state variance in mild cognitive impairment reveal neuropsychologically 

meaningful biomarkers? A systematic review of the literature. 

Purpose: To characterise the neuropsychological correlates of resting state networks in persons 

with Mild Cognitive Impairment (MCI) through a systematically informed review of the empirical 

literature. 

Method: A systematic strategy comprised of four classifications of terms, Neuropsychology, Mild 

Cognitive Impairment, Resting State Networks and Functional Magnetic Resonance Imaging, was 

devised to identify all relevant papers. Systematic search of Web of Knowledge database revealed 

17 eligible studies. 

Results: Findings suggest the episodic memory impairment in persons with MCI is linearly 

dependent on the integrity of connections between medial parietal, temporal and frontal regions of 

the default mode network (DMN). Episodic memory performance appears to decrease as a function 

of decreased coherence of the spontaneous correlations between these regions. 

Conclusion: Despite methodological limitations, these exploratory findings offer insight into neural 

mechanisms which subserve the episodic memory impairment that characterises MCI. As the DMN 

devolves in a clinically relevant manner it may reflect an important marker of network pathology 

and organic cognitive decline. 

Practitioner Points: 

 May help clinical psychologists devise neuropsychological assessments to be more specific to 

the detection of functional markers of early neuropathological change.  

 Assessments designed to assess DMN function may improve the ability to separate organic 

memory dysfunction such as those caused by Alzheimer’s disease from functional episodic 

memory impairments that may arise from depression or anxiety.  
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 In order to improve early detection, the relationship between resting state imaging markers and 

semantic memory needs to be characterised. 

 Further longitudinal studies with larger samples are required to substantiate these findings. 

 Future studies would benefit from more statistically meaningful methods. 

Alzheimer’s disease (AD) is a neurodegenerative brain disease, in which progressive 

damage to the cerebral cortex results in the gradual loss of cognitive functions (Lopez & Becker, 

2004). AD is the most common cause of dementia (Cummings, 2003), as life expectancy increases, 

the number of individuals at risk of developing AD is escalating (Nestor, Sheltons & Hodges, 2004). 

There is no curative treatment for this increasingly important public health issue (Davatzikos, Fan, 

Wu, Shen & Resnick, 2008). Although pharmacological and cognitive treatments may prolong 

onset, as the effects of AD pathology cause irreversible cerebral damage, such treatments need to be 

initiated as early as possible.  

The onset of AD is commonly preceded by an interim phase identified as mild cognitive 

impairment (MCI; Petersen et al., 2001). MCI describes the onset and evolution of cognitive 

impairments which exceed those expected of an individual in consideration of their age and 

education despite being insufficient to interfere with activities of daily living (Peterson et al., 1999). 

MCI can be benign but frequently marks a transition between normal aging and dementia (Ganguli 

et al., 2004; Grundman et al., 2004; Geslani et al., 2005). Compared with cognitively normal 

persons, individuals with MCI have been found to have increased risk of developing AD (Petersen 

et al., 1999) and conversion rates of 6 – 25% per annum have been reported (Landau et al., 2010; 

Petersen 2009).  

Research to improve the early detection of prodromal AD has focused on cognitive and 

neuroimaging biomarkers. However, in order to identify a prodromal phase of AD, a biomarker 

must be sensitive and specific to the earliest biological and/or neuropsychological changes 

associated with AD (Nestor et al., 2004). Whilst the quintessential imaging hallmark of AD is 
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atrophy in medial temporal and parietal lobes, in order for disease modifying treatments to work, 

the preclinical indices of disease need to be recognised before damaged neuronal cells manifest on 

magnetic resonance imaging scans (MRI) as atrophy (Binnewijzend, et al., 2012). 

Functional markers may be detectable long before structural damage would be evident on 

MRI (Binnewijzend et al., 2012) and compared with task-based activation studies, task-free resting 

state imaging has been found to be a superior modality through which to detect prodromal 

pathological changes in the brain. Resting state imaging can be used to identify subtle functional 

abnormalities in the neural circuits that support the neuropsychological functions associated with 

MCI and AD (Agosta, Pievani, Geroldi, Copetti, Frisoni & Filippi, 2012).  

Numerous studies have applied resting state methods to understand the neural integrity of 

brain networks in patients with AD and AD pathology has been found to progress preferentially 

along certain neural networks (Greicus et al., 2004). Recently, resting state imaging methods have 

been applied to the study of MCI patients (Wang et al., 2012) results suggest alterations in key 

resting state brain networks in persons with MCI may reflect the presence of AD pathology. Thus 

alterations in resting state networks in persons with MCI could reflect clinically meaningful 

biomarkers of incipient or prodromal AD.  

The regions which demonstrate disrupted functional connectivity in those with MCI overlap 

considerably with regions which subserve the cognitive functions that are found to be most 

vulnerable to deterioration in the dementia prodrome. Most notably disconnections of the of the 

default mode network (DMN) are thought to subserve the early memory impairment in MCI and 

reflect the anatomical and cognitive processes involved in conversion to AD (Grecious et al., 2004). 

The DMN is comprised of parietal cortex including the precuneus and posterior cingulate, anterior 

cingulate, medial prefrontal cortex, hippocampus and thalamus. This network is associated with 

decreased activity in response to cognitive tasks which demand externalised attention (Grecious et 

al., 2004). The network is associated with internal processes such as episodic and autobiographical 
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memory, introspective cognition, past and future thinking, stream of consciousness, self referential 

processes, free association, monitoring internal and external environments, mind wandering  and 

considering the perspectives of others (Grecious et al., 2004). 

Most notably, the brain structures which are especially vulnerable to AD pathology and 

those which support the cognitive functions that characterise clinical symptoms of the disease, 

overlap with DMN structures (Buckner et al., 2008). Although variance in the DMN may represent 

the most salient biomarker for the cognitive sequelae of MCI and AD, relationships between DMN 

and non DMN structures and other distinct resting state networks may also reveal clinically 

meaningful relationships (Agosta et al., 2012). 

However, in order to be clinically relevant, the extent to which alterations in these networks 

are associated with early and mild signs of cognitive impairment must be reviewed. Whether these 

theoretical brain behaviour relationships are reflected in actual relationships between resting state 

networks and cognitive performance of patients with MCI has only very recently been explored. 

Whilst descriptive narrative reviews have outlined key resting state predilection sites in AD and 

more recently MCI (Grecious et al., 2004; Liu et al., 2008; Damasioux, 2012) none of these have 

been systematic. Furthermore no review has examined the relationship between alteration in resting 

state networks and impaired cognition in persons with MCI.  Therefore the purpose of the current 

review is to clarify whether the relationship between resting state functional connectivity in MCI is 

associated with the cognitive impairments which are neuroanatomically and behaviourally 

associated with this diagnosis. Understanding the relationship between connectivity in Resting State 

Networks (RSNs) and cognition in a prodromal phase of disease has important clinical implications 

for psychological and pharmacological assessment, early detection, intervention and outcome 

measures and will contribute to a theoretical understanding of the cognitive sequelae of prodromal 

neuropathology. 
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Rationale and aims of review 

The aim of the current review is to characterise the relationship between alterations in 

resting state networks and cognitive performance in persons with MCI. The main hypothesis is that 

the hallmark MCI symptom of episodic memory impairment will be associated with disruption 

between key memory structures in the DMN, especially between medial parietal and medial 

temporal lobes, whether episodic memory is associated with connectivity of non DMN regions will 

also be assessed. In line with the characterisation of the DMN as task deactiviating and its role in 

internal mentalisation processes is it is unlikely that cognitive domains which are not predominantly 

memory based will correlate with its network of connectivity. In addition, as most studies sought 

samples of amnestic rather than multi-domain MCI it is unlikely that variance in other 

neuropsychological domains will vary with the connectivity of other networks. 

Method 

A systematic search strategy was devised to access all papers which may contribute to the 

question; does resting state variance in mild cognitive impairment reveal neuropsychologically 

meaningful biomarkers?  

Search Strategy 

The searches for this review were undertaken in April 2013. As this is a relatively new area 

of investigation and no known study of resting state fMRI has been published prior to the year 2000, 

the search time frame encompassed papers from the year 2000 to the present up to and including 

those published in March 2013. As Web of Knowledge includes the Science Citation Index, the 

Social Sciences Citation Index and MEDLINE it was considered to cover sufficient breadth to be 

the sole search engine for the literature search. Subsequent coverage checks through PubMed 

(n=261) and PsycINFO (n=71) only revealed duplicates. The following search terms, combined 

with Boolean operators were entered into the database, (mild cognitive impairment* OR MCI* OR 
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age associated cognitive decline OR dementia prodrome OR incipient dementia) AND (resting state 

OR resting state network* OR task-free network* OR default mode network* OR default mode 

connectivity OR functional connectivity OR deactivation) AND (fMRI* OR functional magnetic 

resonance imaging* OR MRI) AND (cognitive* OR neuropsychology OR neuropsychological OR 

behavioural). 

Inclusion and exclusion criteria 

The search returned 419 papers. After reviewing titles and, when necessary abstracts, 39 

studies required full text assessment. Functional magnetic imaging studies (fMRI), employing 

resting state paradigms which directly assessed relationships between variance in resting state 

networks and specific measures of cognition in persons with MCI were retained. These criteria 

yielded 17 papers, a PRISMA diagram (Moher, Liberati, Tetzlaff & Altmann, 2009) of the filtering 

process can be found in Figure 1. 
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Figure 1. PRISMA diagram (Moher et al., 1998) detailing the review filtering process  

 

 



9 
 

 
 

Quality control 

The majority of studies were cross sectional, all used correlational analysis to identify 

relationships between variance in RSNs and cognitive performance either within a group of persons 

with MCI or across diagnostic groups of MCI, healthy controls (HC) and/or AD. Several studies 

were longitudinal although, typically behavioural correlations remained cross sectional as 

associations between RSN and cognition were only followed up in two studies (Bai et al., 2011; 

2011a). As variability in quality was evident, Downs and Black’s quality control checklist (1998) 

was adapted to quantify the key methodological issues inherent in these studies (Appendix 1). A 

second rater was asked to apply this checklist to half of the review papers. This individual was a 

Post Doctorial Research Fellow and Honorary Clinical Psychologist at the Royal Hallamshire 

Hospital in Sheffield. This individual has a PhD in neuropsychology and their clinical and research 

activities are in the field of ageing, dementia and neuropsychology. Papers were assigned a number 

based on their alphabetical appearance in the reference list, the RANDBETWEEN function in Excel 

was used to randomly select 9 papers for second rating. Pearson correlation revealed inter-rater 

reliability of quality scores was high (r=0.98, p<0.001). A Data Extraction Table summarising, 

critiquing and rating all pertinent study details can be found in Table 1. Whilst variability in quality 

was evident (M=20.59, SD=3.57, R=29-14), this bore no relevance to the consistency of findings 

across studies. Consequently, no study was excluded on the basis of quality scores, instead the 

relationship between methodological issues and the robustness of findings will be considered. 

Results 

The findings of the current review are presented in line with the neuropsychological 

domains which were found to be associated with variance in RSNs namely, Episodic Memory 

Retrieval in the DMN and Beyond, Episodic Memory Encoding, Executive Function and Other 

Associated Cognitive Domains. As several important methodological issues and limitations are 
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intrinsic to all studies, the implications of these on the findings will be critically appraised after the 

results section.  

 



 

Authors Sample MCI Criteria Resting State 
Imaging 
Analysis 

Cognitive Measures  Connectivity  & 
Cognitive Correlations 
Across Groups 

Connectivity  & 
Cognitive Correlations 
Separate Groups 

Control  
for  
GM in 
behavioural 
correlations? 

Correct 
 for  
MC 
RSN - NP 

Critique  Quality 
score  
(0-34) 

Binnewijzend 
et al., (2012) 

MCI(23) 
HC(43) 
AD(39) 

Petersen et 
al. (2001) 
 

ICA then dual 
regression  

Digit Span (DS: F & B) 
AVLT (I* & D*) 
VAT* 
Picture naming 
CF* 
TMT  (A & B) 
Stroop 
Rey Figure (C)  
 

Across AD,MCI,HC +ve r 
Lower FC in DMN lower 
performance on DS B, 
Stroop, TMT A&B, VAT, 
AVLT I & D  
CF & Rey Figure C 

No  r MCI  
No r HC 
+ve r AD FC & Rey copy 

Yes 
WB 

Yes  -  No Pros: Longitudinal follow-up 
identify stable & converting 
MCI 
Cons: Small MCI sample 
Sample heterogeneity 
Dual regression assumes 
commonality of maps 

29 

Xie et al., 
(2012) 

MCI(43) 
HC(33) 

Petersen, et 
al. (2004) 

ROI Insula RAVLT (D*) 
Rey Figure (I*) 
TMT (A*&B*) 
DS* 
DSMT* 
Created index scores  
For EM, EF, PS, WM from 
these tests 

N/A MCI +ve r insula coupling 
with L DMPFC, L DLPFC, L 
aTP, B a PFC and EM index 
score 
 
No r between insula 
couplings and HC 

Yes of the right 
posteria insula 
subregions 

No  -  No Pros: looked for ROI GM 
differences and controlled for 
these in regression 
Comparatively large MCI 
sample 
Index scores reduce random 
variability 
Computed separate regression 
in HC – so disease inferences 
can be made 
Cons: EM index score may be 
too non specific, verbal & visual 
I & D 
Did not assess WB GMV 

25 
 
 
 
 
 
 
 
 
 
 
 

Bai et al., 
(2011a) 

MCI(26) 
HC(18) 

Petersen 
(1999) 

Hippocampal 
ROIs 

AVLT (D)* 
Rey Figure (C & D*) 
TMT A*&B* 
SDMT* 
CDT 
DS 

N/A MCI +ve r lower HiP –PCC 
connectivity Lower AVLT-D 
 
No r in HC 

Yes for HiP Yes  -  No Pros: Control HiP GMV 
Longitudinal design 
Described and removed 
converters from baseline 
Undertook analyses for HC so 
disease inferences can be made 
Cons: Did not explain sample 
overlap with Bai et al., 2011 
 

24 
 

Liang, Wang, 
Yang, Jia & Li 
(2011) 

MCI(14) 
HC(14) 

Petersen et 
al. (2004) 

ROI B DLPFC CVLT (I*, SD*, LD*) 
CDT* 

N/A After control for GM +ve r 
MCI lower connectivity of 
right DLPFC R IPL & CVLT I & 
SD 
 
 

Yes Yes - Yes Pros: Controlled GM at 
behavioural level 
Looked for right and left DLPFC 
differences 
Covered episodic encoding and 
recall 
Cons: Small sample 
 
 

23 
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Authors Sample MCI Criteria Resting State 
Imaging 
Analysis 

Cognitive Measures  Connectivity  & 
Cognitive Correlations 
Across Groups 

Connectivity  & 
Cognitive Correlations 
Separate Groups 

Control  
for  
GM in 
behavioural 
correlations? 

Correct 
 for  
MC 
RSN - NP 

Critique  Quality 
score  
(0-34) 

Agosta et al., 

(2012) 

MCI(12) 

HC(13) 

AD(13) 

Petersen et 

al( 2001) + 1 

abnormal AD 

biomarker 

ICA  then ROI 

based on 

known RSN 

functional 

associations 

Babcock Story Recall (I & D) 

Rey’s word list (I & D) 

Rey figure (C & D) 

Trail Making (TMT) A & B 

Phonological fluency 

CF 

Token Test 

Combined select tests for 

index score approach  

Memory Z score* 

None found N/A Yes 

WB 

Yes  -  

Yes 

Pros: Index scores reduce 
floor/ceiling effects 
Biomarker improves certainty 
of  
AD pathology 
Included semantic measure 
Cons: Small sample 
No standardised protocol for 
limiting ICAs 

22 
 
 
 
 
 
 
 
 
 
 
 

Bai et al., 
(2011) 

MCI(26) 
HC(18) 

Petersen 
(1999) 

ICA to identify 
DMN 

AVLT (D)* 
Rey Figure (C & D*) 
TMT A*&B* 
SDMT* 
CDT 
DS  

N/A Baseline to Follow up MCI 
+ve r lower PCC PCu FC & 
mean DMN lower AVLT D 
scores 

No Yes - No Pros: Longitudinal design 
Described and removed 
converters from baseline 
Cons: Possible sample 
heterogeneity 26  stable MCI 
for 20 months  
Did not covary for GM in 
behavioural correlations 
No HC regressions 
 

22 
 
 
 
 
 
 
 
 

Bai et al., 
(2009) 

MCI(30) 
HC(26) 

Petersen  
(1999) 
 

ROI PCC AVLT (D*) 
Rey Figure 
DS 
SDMT* 
TMT (A & B*) 
CDT 

N/A +ve MCI 
lower FC between PCC L 
MTG and poorer 
performance In TMT B and 
SDMT 
 
No r HC 

No Yes  -  No Pros: Comparatively larger 
clinical sample 
Looked for associations in HC 
group 
Hypothesis driven ROI  
Cons: did not control for GM or 
MC  
Small range of episodic 
measures 
 

21 

Liang, Wang, 
Yang & Li, 
(2012) 

MCI(16) 
HC(16) 

Petersen et 
al., (2004) 

ROI of  B IPS, B 
AG, B SG 

CVLT (I*, SD*, LD*) 
CDT* 

N/A -ve r MCI higher 
connectivity differences  
AG & rPCu with assoc lower 
scores CVLT I & SD 
 

No Yes  - Yes Pros: Looked beyond DMN but 
still hypothesis driven 
Covered episodic encoding and 
recall 
Cons: Small sample 
Not controlled for GM atrophy 
in behavioural FC correlations 
No analysis of FC cognition in 
HC 

21 
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Authors Sample MCI Criteria Resting State 
Imaging 
Analysis 

Cognitive Measures  Connectivity  & 
Cognitive Correlations 
Across Groups 

Connectivity  & 
Cognitive Correlations 
Separate Groups 

Control  
for  
GM in 
behavioural 
correlations? 

Correct 
 for  
MC 
RSN - NP 

Critique  Quality 
score  
(0-34) 

Blautzik et 
al., (2013) 

MCI(13) 
HC(12) 

Petersen 
2001 

ICA Verbal Fluency 
Boston Naming 
Word List (Learning*, recall* 
& Recognition*) 
Constructional Praxis & recall* 
CDT* 

N/A None survived Bonferroni 
correction 

No Yes  - Yes Pros: Corrected for MCs 
Longitudinal design for RSN 
reliability 
Cons: Very small sample 
Did not control for GMV 
ICAs could be under or over 
inclusive  

20 
 
 
 
 
 
 
 

Wang et al., 
(2012) 

MCI(14) 
HC(14) 

Petersen 
1999 

ROI PCC CVLT (I*, SD*, D*) 
CDT** 
 

N/A +ve MCI lower FC 
L STG-PCC & D 
ACC-PCC  & I 

Yes Yes - No Pros: Longitudinal design 
Controlled for GM volume 
Cons: Did not compute brain 
behaviour correlations at follow 
up 
No MC control 
Only used MMSE for cognitive 
variable 
 

20 

Wang et al., 
(2012a) 
 

MC(30) 
HC(47) 

Used their 
own 
standardised 
battery and 
clinician 
interview 

Frequency-
dependent 
neural 
networks, 
wavelet based 
correlations  
 

CDT* 
AVLT (I*, D*, R*) 

N/A +ve MCI whole brain 
topological connectome and 
nodal strengths of AG, MTG, 
ITG MFG with AVLT I & R 
-ve fitted network path 
length & AVLT R 

No No - No Pros: Unbiased whole brain 
analysis  
Controlled cardiac and 
respiratory signal 
Comparably large sample 
Discusses consistency of 
findings across methods 
Cons: MMSE criteria for HC is 
unusually broad range 20-30 
low scores may suggest 
underlying pathology 
Did not correct for MC at nodal 
or behavioural level 
 

20 

Yao et al., 
(2013) 

MCI(27) 
AD(35) 
HC(27) 

Petersen et 
al., 1999 

ROI Amygdala AVLT (I & D*) MCI + AD 
+ve r Amygdala FC & L 
STG, PCG & AVLT-D 

Computed for separate AD 
and MCI not significant 

No Yes  -  No Pros: Novel but meaningful ROI 
Sound theoretical rationale  
Cons: Did not included HC in 
regression or compute separate 
HC analysis  
Did not account for Amygdala 
subregions  
Did not control for Amygdala or 
WB atrophy  
 

20 
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Authors Sample MCI Criteria Resting State 
Imaging 
Analysis 

Cognitive Measures  Connectivity  & 
Cognitive Correlations 
Across Groups 

Connectivity  & 
Cognitive Correlations 
Separate Groups 

Control  
for  
GM in 
behavioural 
correlations? 

Correct 
 for  
MC 
RSN - NP 

Critique  Quality 
score  
(0-34) 

Wang et al., 
(2013) 

MCI(18) 
HC(16) 
CC(23) 
 

In line with 
published 
criteria  

ICA to identify 
DMN 

CVLTtot* 
CVLT (SD*& LD*) 
 
 

Across MCI,CC,HC +ve r 
CVLT-tot/SD&LD 
DMN FC R HiC, R HiG & R 
Th 

N/A N/A no differences 
found 

Yes  -  No Pros: Tested for GM differences 
Unbiased approach 
Inclusion of possible pre MCI 
group 
Covaried for numerical non 
statistical demographic 
differences  
Cons: No control for MC 
More information about MCI 
criteria needed 
Limited cognitive measures 
 

18 

Zhang et al., 
(2012) 

MCI(19) 
AD(23) 
NC(21) 

Petersen et 
al.,(1999) 

ReHo WB AVLT (I, D*, Rec) MCI & AD 
+ve r lower ReHo in B 
PCC/PCu L IPL & AVLT-I & 
D 

-ve r MCI ReHo PCC/PCu & 
AVLT-I 

No No  -  No Pros: Original index of 
connectivity 
Considered consistency with 
other methods 
Considered r with GM and 
ReHo 
Cons: Did not include HC in 
regression or compute separate 
HC analysis  
Did not control for GM 
Did not correct for MC 

18 

Yan, Zhang, 
Chen, Wang 
& Liu, (2013) 

MCI(18) 
HC(18) 

In line with 
Petersen et 
al. 

ICA and 
causality 
analysis 

AVLT (I, D, Rec) N/A +ve r causal influence 
strength HiP to PCC/PCu  
and AVLT-I 
MTG to FG with AVLT-D 

No Yes  -  No Pros: Demonstrated causal 
directional relationships 
Cons: Did not control for GM or 
MC, limited behavioural 
measures 

17 

Jin et al., 
(2012) 

MCI(10) 
HC(8) 

Petersen 
2001 
 

ICA from slices 
perpendicular 
to long axis of 
hippocampus 

Boston Naming 
CVLT (D & T)* 
Logical Memory I & II 
Controlled Oral Word 
Association Test 
Animal naming 
TMT A & B 
SDMT 
Block Design 
Benton Visual Recognition 

Across MCI & HC +ve r 
lower FC between DMN 
and L PFC, L MTG and R 
AG with lower CVLT D & T  

N/A Yes 
MTL 

Yes  -  No Pros: Acquired slices to 
optimise detection of HiP 
Broad selection of cognitive 
measures 
Cons: Very small sample size 
only corrected for MTL GM  
did not correct for MC for FC 
cognition correlations 
May overestimate ICs 
 
 
 
 

16 
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Authors Sample MCI Criteria Resting State 
Imaging 
Analysis 

Cognitive Measures  Connectivity  & 
Cognitive Correlations 
Across Groups 

Connectivity  & 
Cognitive Correlations 
Separate Groups 

Control  
for  
GM in 
behavioural 
correlations? 

Correct 
 for  
MC 
RSN - NP 

Critique  Quality 
score  
(0-34) 

Chen et al., 
(2011) 

AD(20) 
MCI(20) 
HC(20) 

Petersen 
1999 

Automatic 
parcellation 
116 ROIs then 
Pairwise ROIs 

MMSE* 
RAVLT D* 

Combined AD,MCI,HC  
+ r MCI & HC increased & 
decreased connectivity 
index & RAVLT D 

N/A No No  - No Pros: Independent of DMN or 
MTL hypothesis  
Overall group discrimination 
good, moderate sample size 
Cons: Only one memory 
measure 
No control for GM or MCs 

14 

 

 

Abbreviations: GM=Grey Matter, MC=Multiple Comparisons, RSN=Resting-state network, NP=Neuropsychology, ICA=Independent Component Analysis, ReHo=Regional 

Homogeneity, F=forward, B=Back, I=immediate, D=Delay, SD=Short Delay, LD=Long Delay, AVLT=Auditory Verbal Learning Test, VAT=Visual Association Test, 

CF=Category Fluency, TMT=Trail Making Test, C=Copy, +ve=positive, -ve=negative, r=Correlation, FC=Functional Connectivity, DMN=Default Mode Network, WB=Whole 

Brain, GMV=Grey Matter Volume, GM=Grey Matter, ROI=Region of Interest, CDT=Clock Drawing Test, DSMT= Digit Symbol Modalities Test, EM=Episodic Memory, 

EF=Executive Function, PS=Processing Speed, WM=Working Memory, L=Left, R=Right, B=Bilateral, DMPFC=Dorsomedial Prefrontal Cortex, DLPFC=Dorsolateral Prefrontal 

Cortex, aTP=anterior Temporal Pole, PFC=Prefrontal Cortex, PCC=Posterior Cingulate Cortex, Hip=Hippocampus, HiG=Hippocampal Gyrus, PCu=Precuneus, MTG/L=Medial 

Temporal Gyrus/Lobe, IPS=Inferior Parietal Sulcus, AG=Angular Gyrus, SG=Supramarginal Gyrus, ACC=Anterior Cingulate Gyrus, Th=Thalamus, STG=Superior Temporal Gyrus, 

ALFF=Amplitude of Low Frequency Fluctuation. 

Table1. Data Extraction  
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Episodic Memory 

Episodic memory dysfunction is the characteristic and often earliest indication of incipient 

AD. All studies under review computed correlations between DMN and neuropsychological 

measures of episodic memory. Each study used well established neuropsychological tests of verbal 

episodic memory including California Verbal Learning Test (CVLT; Delis, Kramer, Kaplan & Ober, 

1987; 2000; n=5), Auditory Verbal Learning Test (Rey, 1958; AVLT; n=10), Word List Learning 

(Morris et al., 1989; n=1) and Babcock Story Recall (Babcock & Levy, 1940; n=1). Rey-Osterrieth 

(1993) Complex Figure delay scores were also included in several batteries as a measure of 

visuospatial episodic memory retrieval. Whilst all protocols included measures of episodic retrieval 

(delayed scores) fewer included measures of episodic encoding (immediate scores n=9) and 

recognition (n=4).  

  Episodic retrieval. Using an unbiased Independent Component Analysis (ICA) approach, 

across AD, MCI and HC groups, linear dependence was evident between lower functional 

connectivity FC in the DMN and episodic memory as measured by AVLT-D (Binnewijzend et al., 

2012). Whilst age and sex were covaried, there was no correction for multiple comparisons. 

However, as correlation strength was only slightly reduced after correction for GM volume, the 

results can only partially be attributed to structural density. Within individual groups, the only 

significant association between functional connectivity in the DMN was with the copy trial of Rey 

Complex Figure in the AD group. The longitudinal design revealed that MCI conversion rates were 

in line with published criteria which suggests a third of the MCI sample had AD pathology. This 

study attained a high quality rating although findings would be further strengthened with a longer 

follow-up period to trace differences between other stable and converting MCIs and through 

longitudinal study of brain behavioural correlations. 

After application of Regional Homogeneity (ReHo), to map regional activity across the 

whole brain, of persons with AD, MCI and HC, indices of significant difference between the groups 
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were regressed against cognitive performance of the AD and MCI groups (Zhang et al., 2012). After 

controlling for age, sex and grey matter volume (GMV), significant results were found between the 

ReHO of the DMN and episodic memory for the MCI group. Lower ReHo between bilateral 

posterior cingulate cortex (PCC) and precuneus (PCu) and left inferior parietal lobule was related to 

lower AVLT delayed recall scores.  

The PCC is an important correlate of episodic memory and is central to the DMN. Based on 

a priori hypotheses about such medial parietal dysfunctions a PCC region of interest (ROI) was 

found to be linearly dependent with cognition (Wang et al., 2012) and spatially distinct neural 

structures.  Correlation analysis in the MCI group revealed lower episodic memory scores were 

associated with decreased PCC FC with the left superior temporal gyrus (Wang et al., 2012).  

However, whilst the authors compared differences in PCC connectivity with and without GM 

control, it is unclear if they used the GM controlled connectivity scores in their cognitive 

correlations so the extent to which these findings precede structural deterioration cannot be 

determined.  

Further evidence about the role of PCC disconnectivity in episodic memory decline was 

found in the longitudinal study that assessed the differences in neuropsychological impairment and 

connectivity over time (Bai et al., 2011). In this study, ICA was used to identify the DMN at 

participant level, before comparing GM controlled differences in MCI and HC DMN at baseline 

and follow up. At baseline compared to controls, MCI patients had hyper connectivity between the 

DMN and the PCC and PCu, however after a 20 month follow up these regions reflected the most 

notable disruption in the form of significantly reduced DMN connectivity (Bai et al., 2011). In 

addition, across the baseline and follow-up period, decreasing DMN connectivity between the PCC 

and PCu was significantly positively associated with episodic memory impairments. Whilst HCs 

showed a small level of DMN change, the amplitude of DMN change in the PCC and its 

relationship with episodic memory impairment in MCI suggests abnormality may be rapidly 
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expressed through this network. The six individuals who converted from MCI to AD over the 20 

month period were excluded from baseline data and were not follow up scanned. Significant sample 

heterogeneity is likely to be evident in the sample of 26 MCI persons who did not convert in this 

period.    

It is apparent the same sample was also used in a separate study (Bai et al., 2011a). In this 

study, six hippocampal sub regions were used as seeds for ROI analysis. After control for 

demographic variables, longitudinal change in the sub-regional networks connected with these 

seeds and longitudinal change in neuropsychological scores revealed decreased FC between 

hippocampal subdivisions and the PCC were significantly associated with reduced episodic memory 

scores (Bai et al., 2011a). The lack of change in hippocampal sub-regional connectivity with the 

HCs suggests this reflects mechanisms of disease rather than ageing, although separate 

neurobehavioral correlation in this group would have further substantiated this evidence. Whilst 

sample overlap may confuse the generalisability of these results, that way in which two distinct 

analysis approaches revealed neurobehavioural correlation between PCC connectivity with regions 

of the DMN and episodic memory suggests the centrality of these relationships to the mediation of 

this memory domain. 

When cognitive test scores were correlated with DMN FC across MCI and HC participants, 

Jin, Pelak & Cordes (2012) found significant associations between left lateral PFC, right angular 

gyrus and left middle temporal gyrus with delayed recall CVLT delayed and learning efficiency 

scores. The association with the angular gyrus and DMN structures was also evident in the 

significant and near significant relationship between the angular gyrus and right PCu with CVLT 

short and long delay recall (p=0.058) respectively. Grey matter and multiple comparisons were 

corrected in these analyses, and given the small sample (n=16), the corrected significance suggests 

a robustness of these relationships. However, this study attained the lowest quality rating and 

therefore caution must be exercised when interpreting the findings. The relationship between 
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decreased FC of the angular gyrus and right PCu with lower episodic memory also approached 

statistical significance in another study (Liang, Wang, Yang & Li, 2012). Further studies 

considering effect size and power are needed to ascertain if these are indeed meaningful brain 

behaviour relationships. Indeed, the fact that no study under review reported effect sizes limits the 

extent to which the findings can be interpreted as indicating reliable or robust relationships and as 

such, all future studies would benefit from the use of more stringent data reporting standards. 

In a study which identified DMNs in a sample of MCI, HC and psychometrically normal 

individuals with subjective cognitive complaints (CC; Wang et al., 2013) increased disconnection in 

the DMN FC with the right hippocampus was expressed as a function of disease status with CC 

status being intermediary between MCI and healthy controls (Wang et al., 2013). Across all groups, 

memory performance measured by the CVLT-II was associated with DMN connectivity. Episodic 

memory scores for long and short delay and total scores were positively associated with higher 

DMN connectivity with the right hippocampus, right hippocampal gyrus and right thalamus (Wang 

et al., 2013). A subsequent right hippocampal ROI was identified from the difference between MCI 

and healthy controls and correlated with cognitive scores. Partial correlations revealed right 

hippocampal DMN connectivity was positively associated with episodic memory short and long 

delay and total scores. As there were no between group differences in GM atrophy in the DMN, 

these results suggest functional changes between brain network and cognition may precede 

structural atrophy. The findings also suggest pre MCI participants may represent an even earlier 

‘therapeutic opportunity’ (Wang et al., 2013, p.759). 

Episodic retrieval beyond the DMN. Xie et al. (2012) investigated the extent to which 

disrupted functional connectivity of the insula is associated with cognitive impairment in persons 

with MCI. For patients with MCI episodic memory impairment was significantly positively 

associated with decreased intrinsic connectivity of overlapping regions of the anterior and posterior 

insula networks with the bilateral anterior prefrontal cortex (PFC), left dorsomedial PFC (DMPFC), 
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left dorsolateral PFC (DLPFC) and left anterior temporal pole (aTP). The authors suggest their 

composite scores may have increased power through reduction of ceiling and floor issues and 

lowering random variability. However their episodic memory composite may be somewhat 

confounded by inclusion of a measure of immediate visual memory. As the study used insula ROIs 

only insula volume was covaried in analyses, although this does not rule out the effects atrophy in 

other regions may imply for connectivity. Additionally, no corrections were applied for the number 

of comparisons. As the lack of association between insula connectivity and HCs was reported, one 

can place more confidence in interpreting these findings as being relevant for pathology rather than 

ageing.  

The relationship of the DLPFC in distributed networks supporting episodic memory was 

also implied by the results of a frontal ROI study (Liang, Wang, Yang, Jia & Li, 2011). After 

controlling for GM, the connectivity between a DLPFC ROI and right parietal dysfunction was 

associated with CVLT short delay. In the only study to look at the FC of an amygdala ROI, 

regression across AD and MCI groups revealed amygdala FC of superior temporal gyrus and 

precentral gyrus was associated and AVLT delayed recall scores (Yao et al., 2013). However, these 

associations were not evident in either group when separated. 

Whilst many of the studies under review explored functional connectivity, one paper 

explored the causal direction of neural interactions. The strength of causal influence exerted from 

the middle temporal gyrus to the fusiform gyrus (FG) was positively associated with episodic 

memory (AVLT delayed scores; Yan et al., 2013).  The application of multivariate Granger analysis 

allowed the direction of effective connectivity to be characterised, the findings would be 

strengthened by GMV control, increased power and computation/reporting of brain behaviour 

correlations for the HC group in order to make ageing/ disease inferences. Similarly, a trend for an 

association with decreased FG FC in the DMN and lower delayed recall scores approached 

significance in a very small MCI sample (Jin et al., 2012).  
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Large scale network (LSN) analyses, sensitive to change across the whole brain, were able 

to differentiate between AD, MCI and HC (Chen et al., 2011). Across these groups the more the 

connectivity index was decreased, the more severe the episodic memory impairment. Such unbiased 

whole brain analysis circumvents confirmation biases associated with certain hypotheses and does 

not impose limits on number or region of neural connectivity. However, whilst the relationship with 

decreased connectivity indices appears useful at the level of classification between diagnostic 

groups they may be too unspecific to contribute to an understanding of the mechanisms of normal 

and abnormal ageing. Whilst it could be inferred that such findings counter the specificity 

hypothesis of the DMN, such a lack of specificity would be contrary to neuropsychological and 

neurological knowledge and theory about the regional specialisation between brain and behaviour in 

adulthood. The relationship between episodic memory impairment and the connectivity index is 

thus likely to be a reflection of disconnection between the DMN or other neuropsychologically 

relevant networks.  Further analyses are needed to control for the extent to which default mode 

network functional connectivity mediates the relationship between larger scale network signal and 

episodic memory. 

Episodic encoding. Immediate memory scores on neuropsychological tests are devised to 

approximate episodic encoding. Many of the studies which found associations between RSNs and 

measures of episodic encoding have already been discussed in relation to episodic retrieval, to avoid 

repetition, critical considerations will not be reiterated.  Of the 9 studies that regressed a measure of 

immediate memory against RSNs, seven found significant positive relationships.  

Zhang et al. (2012) reported distinct significant results between DMN and immediate 

memory for their MCI and AD groups. For the MCI group, lower ReHo between medial PFC, 

bilateral PCC and PCu and left inferior parietal lobule was related to lower AVLT immediate scores. 

These findings are somewhat convergent with the ROI study of PCC connectivity which found 

immediate memory was associated with PCC FC in the left anterior cingulate and right inferior 
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parietal lobe (Wang et al., 2012). Further evidence for the centrality of PCC dysfunction in 

immediate memory was reflected in the positive association between strength of connectivity 

between the PCC/PCu and hippocampus with AVLT immediate scores (Yan et al., 2013). When 

regressed across AD, MCI and HC groups, whole network default mode associations were 

demonstrated between the mean regional functional connectivity in the DMN and AVLT-immediate 

scores (Binnewijzend et al., 2012)  

In addition to the relationship of medial PFC connectivity, disruption of the DLPFC and the 

right inferior parietal lobule was significantly associated with the CVLT immediate recall (Liang et 

al., 2011), this relationship survived correction for GMV and multiple comparisons.  

Several studies demonstrated that disrupted connectivity in the angular gyrus was relevant 

for impaired episodic memory encoding.  Liang et al. (2012) found that after post-hoc correction for 

multiple comparisons, higher disconnection between the angular gyrus and the right PCu in the 

DMN was significantly associated with lower immediate recall. Similarly Wang et al., (2013a) 

found across the whole brain, the fitted nodal strength of the angular gyrus and inferior temporal 

gyrus were positively correlated with AVLT-immediate scores. 

Executive Function 

Whilst half the studies included measures of executive function, only two found associations 

with these scores and variance in RSNs. The connectivity between the left DLPFC and a cluster of 

voxels in the left thalamus was significantly correlated with the Clock Drawing Test (Liang et al., 

2011) and the connectivity of the PCC and left middle temporal gyrus was found to be significantly 

positively associated with the symbol digit modalities test and inversely associated with the Trail 

making test-B (Bai, Watson, Yu, Shi, Yuan, Zhang, 2009). Although the relationship reported by 

Liang et al (2011) survived Bonferoni correction the frontal-striatal associations between DPFC and 

thalamus and CDT did not remain significant after GM control. However, the associations 
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demonstrated by Bai et al (2009) must be interpreted with caution as they were not corrected for 

multiple comparisons and they would be unlikely to survive this threshold.  

Other Cognitive Domains  

Further evidence for medial parietal involvement in the DMN across a continuum of AD 

pathology was described by Binnewijzend et al. (2012). Across AD, MCI and HC groups, linear 

dependence between lower FC in the DMN and tests of disease severity and cognitive function was 

evident across varied of neuropsychological domains, backward Digit Span, Stroop Word and 

Colour Word, Verbal Association Test, Category Fluency and the copy trial of Rey Complex Figure 

scores.  

No Correlations 

Two of the studies under review found no significant correlations between 

neuropsychological impairment in MCI and variance in resting connectivity. Both were of 

intermediate quality. Agosta et al. (2012) investigated the connectivity of the DMN in patients with 

AD, MCI and HCs and found, when compared with controls, the connectivity of the precuneus 

(PCu) in the DMN was significantly reduced in persons with MCI. However this reduction was not 

correlated with neuropsychological impairment. In the other study, supplemental material suggests 

there were several positive correlations between neuropsychological tests and functional 

connectivity in resting state networks however none survived Bonferroni correction for multiple 

comparisons (Blautzik et al., 2013). Sample heterogeneity, perhaps introduced by MCI multi 

domain impairments at baseline and very small sample size may suggest the non corrected 

associations reflect interesting exploratory data.  

Methodological issues 

The majority of studies were cross sectional and correlational. The lack of experimental  
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design means that causality cannot be inferred and tertium quid explanatory factors cannot be 

excluded. Unfortunately not all studies extended their cross sectional designs to exploration of brain 

behaviour relationships. For studies which only regressed neuropsychological scores with RSNs in 

persons with MCI, one cannot attribute these relationships to disease process as they could reflect 

normal ageing processes. Additionally, as no study compared HCs with a younger control group, it 

was not possible to ascertain how these relationships vary with normal ageing. Future studies would 

need to include a younger comparison group in order to differentiate changes as a function of 

ageing and disease.  

Correlational designs also present the problem of multiple comparisons, the majority of 

studies used statistical means to correct for this. However, small sample sizes may have often led 

meaningful findings to be lost insufficient power. Therefore studies which did not control for this 

issue and significant trends have been reported with caution. 

Whilst all studies used RS fMRI, several different methods of analysis were employed, each 

with their own advantages and limitations. The majority of studies employed an a priori region of 

interest (ROI) or un-biased hypothesis free independent component analysis (ICA) other studies 

combined approaches. Three studies analysed frequencies at the whole brain level through nodal 

strength, ReHO and Amplitude of Low Frequency Fluctuation (ALFF). For a more detailed review 

of RSN imaging methods see (Liu et al., 2008). Convergence of results with the contents of this 

review and other relevant studies suggest these methods produce comparable results. However, 

within-study comparison between different analysis techniques are needed in order to obtain 

confidence that results are solely attributable to disease status rather than artefacts of analysis 

methodologies. 

Despite methodology, all brain behaviour correlations were computed by correlating the 

behavioural score with the z value of the connectivity between significantly temporally correlated 

brain regions between or across groups. The results would be more ecologically valid if they were 
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obtained from multiple regression analysis where behavioural scores can be understood in line with 

the variance of the full-scale information of the brain rather than statistically extracted Z scores.  

The concept of MCI has been the source of much controversy. Whilst the term is now 

considered meaningful in clinical and research contexts (Petersen, 2004), sample heterogeneity 

continues to confound results as individuals with MCI may not have AD pathology. This issue was 

manifest across all studies and adherence to published standards of MCI diagnosis was universally 

respected, several also employed longitudinal design to document proportion of sample conversion 

(i.e. Petersen et al, 1999; 2001; Petersen, 2004).  

As atrophy could affect the interpretation of results in functional imaging studies (He et al., 

2007) several studies controlled for grey matter atrophy in their functional connectivity analyses at 

the level of their imaging data or as a covariate in the behavioural imaging regressions. Without 

control for atrophy it is not possible to ascertain whether variance between regions is independent 

from structural volume loss (Wang et al., 2012).  

Perhaps the main limitation of resting state studies is that there is no reliable control for 

subconscious thought and uncontrolled cognitive processing (Liang et al., 2011). It is therefore not 

possible to exclude the interpretation that group differences may reflect between group differences 

in spontaneous thought rather than RSN differences (Bai et al., 2009). A further fundamental issue 

could be reflected in the assumption that relationships between neuropsychological scores and 

RSNs are linear. Whilst consistent evidence for linear dependence was found, perhaps RSNs also 

confer other subtle complex capacities than are not typically measured by neuropsychological tests.  

Discussion 

Despite limitations, patterns of findings converged across review studies that are consistent with  
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brain behaviour relationships reported in studies using different imaging modalities, analyses and 

neuropsychological measures in health and disease. 

In line with the hypothesis, impaired episodic memory was frequently significantly 

associated with disruption of key DMN structures, most notably between the PCC and medial 

temporal and parietal structures. The PCC is a key node in the DMN (Grecious et al., 2004) and 

structural and functional imaging findings attest to the role of PCC in AD and MCI 

pathophysiology (Shiino, Watanabe, Maeda, Kotanin, Akiguchi & Matsuda 2006; Liang et al. 2008; 

Bai et al., 2011) in studies of atrophy (Jones et al., 2006) hypometabolism, (Minoshima et al., 1997), 

amyloid deposition (Frisoni et al., 2009), activation (Lustig et al., 2003), functional connectivity 

( Greicius et al., 2004) and with FC cognitive correlates in the present review.  

Disconnection between the PCC and PCu was frequently associated with episodic memory 

retrieval and may reflect a reliable alteration in disease progression (He et al., 2007; Bai et al., 2008; 

Bai et al., 2009; Qi et al., 2010). Apart from episodic memory, connectivity between these regions 

is thought to subserve self reference (Fox & Raichle, 2007; Greicius, et al., 2004) internal mentation, 

functions of self, awareness and personal memory (Andrews-Hana, Reidler, Huang & Buckner, 

2010; Buckner & Carroll 2007), all of which have been found compromised in persons with MCI 

and may be amongst the earliest signifiers of underlying pathology. These more subtle cognitive 

alterations would not have been directly detected by the more cognitive based tests included in the 

studies under review but such subjective contents which will likely vary as a function of episodic 

memory integrity.  

The connectivity between the PCC and key nodes of the DMN including frontal, parietal 

and temporal regions connectivity again reflects the predominantly episodic memory deficits in 

patients with MCI, the lower connectivity between these regions appears to be related to early 

cognitive deficits. The regions correlated with delayed and immediate memory were remarkably 

convergent and attest to the role of DMN in episodic retrieval and encoding. The association with 
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medial parietal disconnection and cognitive impairment (Wang et al., 2012; Binnewijzend et 

al.,2012; Zhang et al., 2012) in MCI is in line with the sites of early amyloid deposition (Buckner et 

al., 2009) and metabolism abnormality (Sperling et al., 2010) described in AD. This region has also 

been shown to be compromised in task related imaging studies of AD (Petrella, Prince, Wang, 

Hellegers, & Doraiswamy, 2007).  

The finding of hippocampal involvement in delayed and immediate memory is not 

surprising but the connection with the PCC suggests decreased cooperation between medial 

temporal lobes and PCC are a meaningful index for the earliest symptoms of cognitive decline in 

the memory domain. The association of hippocampal DMN connectivity and measures of episodic 

memory is functionally and anatomically in line with the pathogenesis and clinical manifestations 

of memory decline. It is also in line with that fact that hippocampal atrophy is one of the earliest 

indications of MCI and AD. However it appears the functional changes mediate cognitive 

alterations before structural deterioration is present because these relationships survive grey matter 

correction (Zhang et al., 2012). Findings related to thalamic functional connectivity may reflect a 

more general mechanisms of a large scale distributed network which supports memory function. 

Thalamic abnormality may mediate decreased connectivity of the key hubs of the DMN (Jones, 

Mateen, Lucchinetti, Jack & Welker, 2011) perhaps through decreased communication with the 

PCC (Vogt & Laureys 2005). 

Associations between the DMN and cognitive function were only found to be relevant for 

other cognitive domains in one study (Binnewijzend et al., 2012). It is interesting that tests which 

measure such varied functions (visuospatial processing and memory, semantic and episodic 

memory and executive functions) were associated with lower FC of PCu, cuneus and PCC in the 

DMN. This may reflect the well known functions of these regions in multi-modal processing and 

integration (Cavanna & Trimble, 2006) and anatomical and functional connections to the 

hippocampus and functional links with the PFC and thalamus (Bai et al., 2009) may subserve these 
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relationships. It is surprising and limiting that only three studies assessed the resting state correlates 

of semantic memory as this has been found to be more sensitive and specific to early 

neurodegeneration than episodic memory (Gardini et al., 2013). 

Taken together the findings suggest rather than reliance on distinct neural regions, higher 

order cognition requires large scale neural circuits to interact dynamically (Mesulam, 2009). 

Beyond the DMN, connectivity between other important regions was also reflected in variance in 

memory performance in MCI and across diagnostic groups. The centrality of the angular gyrus to 

episodic memory encoding and retrieval was suggested by several studies, this may be due to its 

multifunctional role in language and memory retrieval (Gardini et al., 2013). The FG is also 

frequently identified as a key component of memory circuits in the resting state (Buckner 2004) and 

several studies found dysfunctional FG connectivity was associated with episodic memory in the 

current review. The FG is reliably associated with memory operations especially recognition 

memory (McCarthy, Puce, Gore & Allison, 1997). The effect on the FG could also suggest a 

cascading effect of medial temporal lobe damage due to its communications with the hippocampus 

(Preston & Wagner 2007). As these regions are highly relevant for semantic memory (Binder, Desai, 

Graves, Conant, 2009) their association with episodic measures may also reflect significant shared 

variance between these domains.   

The anatomical and functional relationships of the amygdala may explain its functional 

relationship with cognition. The amygdala is implicated in attention, perception and declarative, 

explicit and emotional memory (LeDoux, 2007) and mediates memory processes in brain structures 

such as the hippocampus and PFC (LaBar & Cabeza, 2006) it is also well connected to sensory 

areas. The insula also has important anatomical connections with key cortical, limbic and 

paralimbic regions and is, like the amygdala, well placed to mediate numerous functions from 

higher order cognitive ability, emotion to autonomic and sensory processes (Allen, Emmorey, Bruss 

& Damasio, 2008). The insula has also been associated with episodic memory (Fletcher, Shallice, 
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Frith, Frackowiack & Dolan, 1998) and it’s connectivity with the right DLPFC is especially 

relevant for distributed mediation of episodic memory.  

Executive function impairment can sometimes be associated with early MCI. The trends of 

positive correlation for executive function that lost statistical power after controlling for grey matter 

atrophy may be cautiously interpreted to be in line with the relationship between frontal-striatal-

thalamic disconnection and issues with executive function frequently described by structural and 

functional imaging studies (Alvarez & Emory, 2006).  

All correlations fundamentally reflected that abnormality in RSN connectivity was linearly 

associated with impaired cognition. The few inverse correlations reflected times when higher scores 

indicated higher impairment or higher network abnormalities. Whilst several studies found evidence 

for compensation, denoted by increased connectivity between certain regions in persons with MCI 

or AD most frequently in prefrontal regions, such increases were not directly associated with 

cognitive performance. As increases in connectivity may reflect compensation for impairment it is 

not surprising that these relationships are not detected in the general linear model and the 

vulnerability of the cognitive functions fostered by these increases will only become evident as a 

baseline impairment when the compensations mechanisms fails. This process was illustrated in the 

longitudinal study of Bai et al. (2011). 

Conclusions 

Frequently, lack of statistical power hampered the extent to which findings can be 

interpreted with confidence and more studies with larger groups are required in order for effect 

sizes to survive and statistical rigour to be preserved. Nevertheless, the current review suggests the 

findings of resting state studies of MCI patients are clinically meaningful.  

Whilst methodological limitations are associated with all studies, these exploratory findings 

offer insight into neural mechanisms which subserve the episodic memory impairment that 
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characterises MCI. This suggests impaired anatomical functional integration impacts on memory 

performance in the early course of pathogenesis. Understanding more about the mechanisms that 

subserve the neuroanatomical and functional connections with aspects of cognition that mark 

disease progression is key to understanding how to improve early detection of MCI, mechanisms of 

conversion to AD and how and where to target treatment. More rigorous longitudinal studies are 

needed to investigate whether these functional and cognitive correlates are indeed related to AD 

progression.  Further investigation of semantic memory in this context is a clear priority and all 

relationships should be regressed against the full-scale variance of the whole brain not extracted z 

scores. 

Relationships, primarily between DMN especially the PCC, and episodic memory, 

tentatively suggest the clinical relevance of the DMN as a substrate that devolves in disease in a 

clinically relevant manner. Its involvement in episodic memory retrieval and encoding suggests it is 

an important marker of network pathology and cognitive decline. Therefore neuropsychological 

assessments, devised to assess the integrity of the DMN may improve dissociation of organic and 

functional episodic memory impairments. Based on what is known about the optimal function of 

this network such assessments are likely to include features of mentalisation, theory of mind and 

more ecologically valid measures of episodic memory such as autobiographical memory. In 

addition, this finding also suggests neuropsychological interventions such as cognitive stimulation 

and neurofeedback should be targeted to reinforce connectivity between substrates in the DMN. 

Additionally, the DMN could represent a valuable biomarker for assessing outcomes of 

neuropsychological and pharmacological interventions.  

Apart from episodic memory, the DMN supports a range of important functions such as 

autobiographical memory, meta-cognition, theory of mind, self reference etc. which have been 

found to be vulnerable in prodromal AD pathology but are typically not included in 

neuropsychological assessment of persons with possible MCI. Dysfunction of a network supporting 
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such processes may explain the subjective experience of MCI as a partial disconnection from or loss 

of self (Clare et al., 2012), unfortunately such features are infrequently investigated and often seen 

as emotional sequelae of memory anxiety. However, they may reflect the early disruption of a 

network which subserves personal memory and representations of self and other. In light of this, 

neuropsychological measures could be developed to be more sensitive and specific to the range of 

cognitive and emotional functions supported by this network. This behavioural relevance of this 

network may therefore play an important role in early detection, predicting progression, targeting 

behavioural and pharmacological amelioration and measuring outcomes. 
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Table of Abbreviations 

 

AD = Alzheimer’s disease, MCI = Mild Cognitive Impairment, OHC = Older Healthy Controls, 

YHC = Younger Healthy Controls, fMRI = Functional Magnetic Resonance Imaging, MRI = 

Magnetic Resonance Imaging, RSN = Resting State Network, DMN = Default Mode Network, FC 

= Functional Connectivity, ICA = Independent Component Analysis, ROI = Region of Interest, 

PFC = Prefrontal Cortex, PCC = Posterior Cingulate Cortex, MMSE = Mini Mental State 

Examination, SPM = Statistical Parametric Mapping, FDR = False Discovery Rate, BA = 

Brodmann area, L = Left, R = Right. 
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The neuropsychological correlates of posterior cingulate resting state connectivity in normal 

and abnormal ageing 

 

Objectives. The posterior cingulate cortex (PCC) plays a central role in episodic memory, may 

subserve some semantic memory functions and is considered one of the earliest imaging markers of 

Alzheimer disease (AD) pathology.  The objective of this thesis was to ascertain if clinical variance 

in semantic and episodic memory is associated with disrupted connectivity of the PCC in Mild 

Cognitive Impairment (MCI) in comparison with age matched and younger controls to ascertain 

whether PCC associations with semantic and episodic memory are modulated by normal and 

abnormal ageing.    

Design and methods. In this cross sectional study, resting state functional magnetic resonance 

imaging was used to acquire functional brain images for 22 patients with MCI, 21 age matched 

healthy controls and 20 younger healthy controls. PCC regions of interest (ROI) were defined for 

each participant and separate multiple linear regressions were computed for each group to detect 

associations between the whole brain connectivity of right and left PCC ROIs and measures of 

episodic and semantic memory performance.  

Results. Behaviourally, episodic scores were sensitive to the effects of abnormal ageing however 

semantic scores were both sensitive and specific as they were robust to normal ageing. Inverse 

associations were evident for PCC connectivity with semantic and episodic memory for age 

matched controls, whereas positive correlations were demonstrated with just the episodic index and 

PCC connectivity for MCI patients and younger controls. As expected, MCI was associated with 

lower connectivity between the PCC and posterior default network regions which subserve memory 

functions whilst connections between the PCC and posterior memory regions were maintained in 

normal ageing.  
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Conclusions. The results suggest the episodic correlates of PCC connectivity are meaningful 

biomarkers of normal and abnormal ageing. The association with MCI is in line with hypotheses of 

the early episodic memory impairment being associated with reduced connectivity between the PCC 

and posterior default mode network (DMN) regions. In normal ageing the negative correlates of 

episodic memory and PCC connectivity may be in line with cognitive efficiency and frontal theories 

of ageing. 

Practitioner points 

 The results suggest, alongside episodic memory assessment, measurement of semantic memory 

is important for early detection of abnormal ageing 

 The anatomical, functional and physiological meaning of the relationship between the PCC and 

episodic memory suggest a biomarker for cognitive assessment, longitudinal follow-up and for 

measuring treatment outcomes 

 The relevance of including further DMN relevant measures such as autobiographical memory 

or indications of self reference for assessment purposes should be investigated in future work   

 Future studies with larger samples are needed to explore these results in a higher powered 

context 

 Due to the earliness, sensitivity and specificity of semantic memory to abnormal ageing studies 

with combined analyses methods are needed to ascertain whether variance in semantic memory 

is reliably associated with other nodes and resting state networks 

Neuropsychology in the context of normal and abnormal ageing is concerned with 

understanding the way in which both physiological and psychological factors interact to result in 

cognitive performance (Woodruff-Pak, 1997). In order to understand normal and abnormal ageing 

in meaningful ways, physiological and psychological function must be assessed.  
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Amongst the multidisciplinary professions that have converged to further an understanding 

of normal and pathological ageing, neuropsychology continues to be the forerunner in the clinical 

assessment and detection of possible neurodegeneration (Weintraub, Wicklund & Salmon, 2012). In 

the continuing search for biomarkers it is easy to forget that as cognitive symptoms are always the 

first indication of possible underlying neuropathology, emerging cognitive impairment continues to 

reflect the most important marker of disease (Weintraub et al., 2012). However, cognitive 

symptoms are only of diagnostic meaning in the context of what they may imply about the integrity 

of the neural mechanisms which are known to subserve that aspect of cognition (Venneri et al., 

2011). It is therefore the interface of brain and behaviour that reflects the most salient markers of 

health and illness. This interface forms the basis of neuropsychological assessment to identify when 

altered memory reflects neuropsychological impairment and whether this deficit is mediated by 

functional or organic aetiology (Morris, Worsely & Matthews, 2000). 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and it 

increasingly represents one of the most important and concerning public health issues (Nestor, 

Sheltons & Hodges, 2004). The emotional and financial costs of this disease are personally and 

systemically devastating and as the ageing population increases, the incidence of this disease is 

predicted to rise dramatically (Cummings, 2003). The effects of AD are irreversible and inevitably 

AD neurodegeneration results in extensive damage of the cerebral cortex. Progression of this 

damage is clinically manifest as increasing cognitive impairments and behavioural disturbances 

(Lopez & Becker, 2004). In the absence of a cure for this disease, the most promising areas of 

intervention are neuropsychologically (Jelcic et al., 2012; Sitzer, Twamley & Jeste, 2006; Olazaran 

et al., 2010) or pharmacologically based (Birks, 2010). However, due to the irreversible neural 

damage caused by the pathogenesis of AD, intervention needs to be undertaken as early in the 

course of disease as possible (Wang et al., 2012).  
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Mild cognitive impairment (MCI) is thought to reflect incipient AD pathology (Petersen, 

2001). As MCI has been characterised as a transitional phase residing between normal ageing and 

dementia of the Alzheimer type it represents an important target for early treatment (Petersen, 2009). 

However, individuals with MCI only convert to AD if they have underlying AD pathology (Dubois 

et al., 2010). Individuals with MCI that is not mediated by AD may improve, remain stable or 

progress to a neurodegenerative disorder of another aetiology (Petersen et al., 2001). It is therefore 

difficult to identify the persons who would benefit from the cognitive or pharmacological 

treatments that are specifically targeted for the brain regions and networks that are most vulnerable 

to AD pathology and progression. Early pharmacological interventions have already proven 

beneficial for some persons with AD (Birks, 2010). However, these medications may be ineffective 

or may even worsen the symptoms when administered to patients with no underlying organic 

pathology or whose MCI is related to other dementia pathologies (Balster et al., 2011). 

The most promising line of recent research suggests that specific non pharmacological 

behavioural interventions such as cognitive stimulation (Sitzer, et al., 2006; Olazaran et al., 2010) 

may slow the progression or the onset of AD. However, such interventions need to be based on the 

neuropsychological function of the brain regions that are involved in the cognitive symptoms of AD 

and MCI and their effectiveness must also be assessed in relation to relevant neurobiological as well 

as cognitive markers (DeMarco et al., 2012). Stability or improvement in neuropsychological scores 

alone may not be sufficient evidence that cognitive stimulation programmes are effective, without 

comparing a relevant hypothesis driven brain structure or network at baseline and follow-up, any 

changes in behavioural data could merely reflect practice effects or compensation.  

Compensation can mask the extent of pathogenesis and may lead to an underestimation of 

progression (Bai et al., 2011). An individual whose neuropsychological profile suggests signs of 

early MCI may have much further progressed neuropathology if they have the cerebral reserve or 

plasticity to compensate for cognitive alterations. Compensation refers to a process whereby 
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damage in cognitive circuits leads to cerebral reorganisation of function (Kolb, 1995). When an 

individual compensates in response to loss or impairment, they must be using available brain 

substrate and mechanisms which allow accommodation to structural (Kolb, 1995) or functional (Bai 

et al., 2011) loss which can preserve or adapt behavioural function. However, this has important 

implications for early detection and diagnosis of neurodegenerative disorders and for measuring 

intervention outcomes. If an individual is compensating neurologically, the underlying impairments 

may not be evident or fully expressed in behavioural performance (Staff et al., 2004). In such cases, 

combined neuropsychological and neuroimaging methods are required to identify the extent to 

which neuropsychological markers are in line with the underlying disease process. 

Whilst MCI previously represented an important at-risk status for clinical follow-up and 

monitoring of possible progression (Petersen et al., 2001), now viable treatment options are 

available it is increasingly important to identify persons with MCI whose symptoms are related to 

incipient AD pathology (Agosta et al., 2012). Whilst there are now many reliable candidate genetic, 

histological, radiological and imaging markers of AD, such as the apoliopoprotein E 4 allele, 

medial temporal lobe atrophy, temporo-parietal hypometabolism, abnormal amyloid or tau cerebral 

spinal fluid concentration (Dubois et al., 2010) which may be identified in persons with MCI 

(Agosta et al., 2012), these markers are rarely assessed in clinical settings and are often associated 

with or not detected until cognitive impairment is more severe. Moreover, once certain markers 

such as regional atrophy are clearly detectable in the brain on an individual level, the damage may 

be too progressive for treatment to be effective. Whilst cognitive impairment reflects damage to the 

tissue that supports that function (Rodriguez-Ferreiro, et al., 2012), certain neuropsychological 

alterations appear to precede structural atrophy (Bai et al., 2011; Binnewijzend et al., 2012), and 

this context presents an ideal treatment opportunity, especially if these early changes are associated 

with functional markers of AD pathology. 
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Episodic Memory 

In line with a transition to AD, the earliest and most frequent clinical feature of MCI is 

typically an impairment of episodic memory (Collie & Maruff, 2000); this is especially evident in 

the impaired learning of new episodic memories (Fox, Warrington, Seiffer, Agnew & Rossor, 1998). 

Such deficits are consistent with the established relationship between the anterograde amnesia with 

the hippocampus and entorhinal cortex and the well known vulnerability of these regions to very 

early AD pathogenesis (Rodriguez-Ferreiro et al., 2012).  

In terms of the neuropsychological markers which may be indicative of MCI, measures of 

verbal episodic memory tests appear to be most sensitive to early change. Consistency in 

performance across a range of episodic memory measures has been implied as essential to defining 

amnestic MCI (Lonie, Hermann, Donaghey & Ebmeier, 2008). Episodic memory impairment has 

been identified as the most reliable predictor of conversion to AD (Mitchell, Arnold, Dawson, 

Nestor, & Hodges, 2009) and episodic memory tests can contribute to differential diagnosis of MCI 

(Irish, Lawlor, Cohen & O’Mara, 2011). Delayed recall paradigms have been noted as important 

assessment modes to discriminate individuals with MCI who may be most vulnerable to convert to 

AD (Backman, Jones, Berger, Laukka, & Small, 2005; Dubois & Albert, 2004). Detailed 

longitudinal evaluation of neuropsychological performance in MCI and questionable dementia 

suggests visuospatial functions tend to fail secondarily to episodic memory (Hodges, Erzinclioglu & 

Patterson., 2006). In addition, processing speed impairments may be more indicative of sub cortical 

or cerebrovascular pathology (Zhou & Jia, 2009) and tests of attention and spatial and temporal 

orientation are also thought to be too susceptible to the effects of normal ageing to reliably 

discriminate MCI from healthy controls (Gardini et al., 2013). 

However, whilst neuropsychological assessment of episodic memory impairment is 

sensitive to pathogenesis it is not specific to this, episodic memory alterations can also be associated  
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with normal ageing, functional disorders such as depression or with non AD pathology. 

Semantic Memory 

In addition to episodic memory, semantic memory impairment may be an equally important 

clinical feature of MCI (Cuetos, Rodriguez-Fernando & Menendez, 2009; Venneri et al., 2011). 

Semantic memory refers to culturally shared knowledge that is acquired over a lifetime; it includes 

knowledge about the world, people and objects, word meanings and facts (Gardini et al., 2013). 

Unlike episodic memory, semantic memory is more temporally stable across the lifespan, robust to 

the effects of ageing (Venneri et al., 2011) and sensitive to neurodegeneration (Venneri et al., 

2011b). Whilst semantic memory impairments have been associated with the development and 

progression of dementia (Venneri, et al., 2011) as deterioration in semantic memory precedes 

dementia onset by many years (Gardini et al., 2013) it also represents one of the earliest signs of 

cognitive impairment (Amieva et al., 2008). Tasks such as confrontation naming, semantic 

associations and category fluency have been used to detect semantic memory impairment in persons 

with MCI (Duong, Whitehead, Hanratty & Chertkow, 2006). Verbal fluency for categories has been 

found to discriminate between persons with MCI and age matched controls (Nutter-Upham et al., 

2008). 

However, whilst semantic memory impairment may be equally sensitive and more specific 

than episodic memory impairment in discriminating MCI from healthy older adults, increasing 

evidence suggests that rather than using a unimodal strategy to assess and diagnose MCI, there is 

great clinical advantage to be gained from using a combined neuropsychological and neuroimaging 

approach (Venneri et al., 2011). Combining these methods will also allow evidence of 

compensation to be assessed. Furthermore, such a multidisciplinary approach is especially 

necessary to improve detection of individuals with MCI who may be at risk for conversion into AD 

(Venneri et al., 2011).  



52 
 

 
 

Resting State Imaging Biomarkers 

Due to the shift in focus onto early detection and the need to find sensitive ways to assess 

treatment efficacy (Matsuda, 2007), biomarkers, as identified by neuroimaging methods, have 

become increasingly important in improving diagnostic reliability (Zamrini, McGwin & Roseman, 

2004). Originally, imaging techniques designed to understand complex relationships between the 

brain and behaviour in health and illness were solely focused on detecting neural activation with 

task performance. However, recently the relevance of regions that deactivate during tasks and the 

spontaneous neural activity observed when an individual is at rest have become a major focus of 

attention (Greicius et al., 2004).  

Resting-state describes a situation in which the activity of the brain is imaged in the absence 

of external stimulation. The participant simply lies still in the scanner with their eyes closed (Bai et 

al., 2009). In such studies, spontaneous correlations between and within regions of the brain can be 

characterized in an individual who is not engaged in a cognitive task or motoric response to a task 

(Damoiseux et al., 2007). Synchronized neural activity can thus be detected between regions that 

are spatially separate but temporally associated (Esposito et al., 2006).   

Task free resting states may be equally or even more important for understanding the 

mechanisms which subserve health and disease than task induced neural systems (Broyd et al., 

2008). It is now apparent that when the brain is not engaged with external tasks, cerebral activity is 

coherently organised in different dynamic subsystems (Damoiseaux et al., 2008). In persons at rest, 

low-frequency spontaneous correlations are detectable across the brain with functional magnetic 

resonance imaging (fMRI). These correlations can be used to characterise the intrinsic architecture 

of large-scale brain systems. It is especially salient that the temporal organisation of these 

subsystems closely resembles structurally and functionally related neurophysiological and 

neuropsychological networks such as the motor cortex (Biswal, 1995), visual cortex, language 
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network, dorsal and ventral attention streams (Damoiseaux et al., 2006; Fox et al., 2006). These 

systemic connectivity data have contributed to an understanding of normal and pathological brain 

function (Buckner et al., 2008) as resting-state networks (RSNs) are thought to be intrinsically 

important to the organisation and maintenance of functional neural relationships, alterations to these 

networks will clearly have important clinical implications (Damoiseux, et al., 2007). Several studies 

have demonstrated that investigation of RSNs can reveal important information in clinical contexts 

suggesting the study of spontaneous brain activity could contribute to explanations of disease 

(Buckner, Andrews-Hanna & Schacter, 2008). 

The Default Mode Network 

The most recent and perhaps the most promising neuroimaging biomarker to be investigated 

in this context is the default mode network (DMN) of the brain (Fox & Raichle, 2007).  This 

network was originally noticed in the context of task related imaging studies, whereby despite the 

cognitive modality of a task, and the areas of activation induced by response to a paradigm, the 

DMN network was reliably deactivated (Binder et al., 1999; Shulman et al., 1997). Comparison of 

this consistent and robust finding across many studies led to the definition of this network (Greicius 

et al., 2003). The deactivation of the DMN in response to external tasks and its reliable appearance 

in resting state studies when an individual has no task, led to the concept that the DMN reflects key 

internal modes of cognition (Damoiseux et al., 2007). For such reasons, the DMN network is 

thought to reflect the universal baseline cognitive state. The clinical importance of this system, 

which is still somewhat novel, has only recently been appreciated (Buckner et al., 2008). 

It has been suggested that the source of the default mode of the brain lies in the spontaneous 

generation and manipulation of mental images, reminiscences of past experiences based on episodic 

memory, making plans, self reflection, self reference, mind wandering, theory of mind and 

automatic monitoring (Spreng, Mar & Kim, 2009; Spreng & Grady, 2010). The DMN is an 
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independent neurobiological system which represents a brain system (or closely interacting 

subsystems) involving anatomically connected and interacting brain areas. Anatomically the DMN 

involves the posterior cingulate cortex (PCC), precuneus, dorsal and ventral prefrontal cortex, 

medial temporal lobes and sometimes the thalamus (Greicius et al., 2003; 2004). The known 

functions of these anatomical substrates explain why the DMN mediates the above stated episodic 

memory, autobiographical and referential processes (Greicius et al., 2004; Spreng & Grady, 2010). 

The cognitive and emotional functions supported by substrates in this network further attest to the 

importance of the DMN in understanding relationships between personal memory, the self and the 

brain in health and illness (Bucker et al., 2008).  

In the healthy brain, changes in activity levels in the DMN are detected when an individual 

is engaged in an active cognitive task in normal ageing (Grady, Springer, Hongwanishkul, 

McIntosh, & Winocur, 2006) in states of meditation (Jang et al., 2011), hypnosis (McGeown, 

Mazzoni, Venneri & Kirsch, 2007) and anaesthesia (Deshpande, Kerssens, Sebel & Hu, 2010; 

Nallasamy &  Tsao 2011). Moreover, such alterations have been associated with diseases including 

neurodegenerative diseases such as Alzheimer’s disease (Greicius, Srivastava, Reiss, & Menon, 

2004), Lewy Body dementia (Galvin, Price, Yan & Morris, 2011) and Parkinson’s disease (van 

Eimeren, Monchi, Ballanger & Strafella, 2009), developmental and psychiatric disorders such as 

schizophrenia (Garrity et al., 2007) and autism (Iacoboni, 2006) and psychiatric diagnoses such as 

obsessive compulsive disorder (Fitzgerald et al., 2010), depression (Sheline, Price, Yan & Mintun, 

2010) and substance misuse. 

It is of note that in normal ageing the DMN has been found to be less efficient at 

deactivating during tasks in fMRI conditions and this reduced deactivation has been associated with 

lower task performance (Grady et al., 2006). In abnormal ageing, individual circuits in the default 

network appear to be targeted by specific neurodegenerative diseases (Seeley et al., 2009) 

especially AD. DMN regions comprise the typical early predilection sites of AD (Mosconi, 2005) 
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and AD pathology appears to continue to progress preferentially in the DMN (Greicius et al., 2004). 

More specifically, decreases in activity within the DMN have been found to parallel increases in 

atrophy and map consistently with the regions of amyloid deposition in Alzheimer’s disease 

especially in the medial temporal lobes and PCC (Greicius, et al., 2004). The considerable overlap 

between the DMN and the brain regions which subserve the cognitive functions that are found to be 

most vulnerable to deterioration in AD and MCI is in line with the hallmark episodic memory 

impairment.  It is this overlap with cognition that suggests that rather than just reflecting a proxy for 

disease, DMN dysfunction is likely to be expressed in a cognitively meaningful impairment. 

This evidence is in line with the ‘Metabolism Hypothesis of Alzheimer’s disease’ (Buckner 

et al., 2005). This hypothesis suggests that the DMN would be a good predictor of 

neurodegenerative disease because AD pathology appears to aggregate preferentially within the 

network and this explains the neuropsychological sequelae of the disease. Prospective studies have 

demonstrated that non clinical individuals who later develop AD do not deactivate their DMN in the 

same manner as persons who are not at risk (Buckner et al., 2008). The hypothesis would suggest 

that for these persons these regions are overworked to the extent that their resistance to the 

neuropathological process is limited. This would also explain why episodic memory is so 

vulnerable to early AD and MCI because these systems are anatomically and functionally 

dependent on the resting state of the default network that is being overused. Thus amyloid beta 

could initiate a cascade of events beginning in synaptic dysfunction and ending in cell death within 

this essential network (Buckner et al., 2008). In this respect, impairments in the DMN may actually 

facilitate disease. Similarly, when an overextended, compensation mechanism in the DMN fails, the 

functional disruption and accelerated cognitive decline can be more dramatic than in those who do 

not compensate (Bai et al., 2011). Excessive DMN activity may therefore increase amyloid 

production (Bero et al., 2011) and be causal in disease progression.  
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Following the first study to identify that DMN alterations in the resting state distinguished 

persons with AD from age matched controls (Greicius et al., 2003), fMRI of DMN brain activity 

during rest has gained much attention as a potential non invasive biomarker to diagnose incipient 

AD and recent studies have consistently found DMN disruption in persons with MCI (Binnewijzend 

et al., 2012; Petrella, Sheldon, Prince, Calhoun & Doraiwamy, 2011; Sorg et al., 2007). Differences 

in DMN disruption have also been found between persons with stable MCI and those who later 

converted to AD (Petrella et al., 2011). DMN alteration has also been identified in persons carrying 

the most significant genetic factor of AD risk, the apoliopoprotein E 4 allele (Westlye, 

Lundervold, Rootwelt, Lunderveld & Westlye, 2011) and persons with a family history of AD 

(Fleisher et al., 2009).  

Very recently, several studies have combined this type of neuroimaging endophenotype with 

cognitive markers of prodromal AD and found that in persons with MCI, decreased connectivity in 

the DMN is associated with impaired cognition and as these relationships are independent of 

atrophy, they appear to suggest that functional alterations in the DMN is sufficient to mediate 

impaired cognition at an early stage of pathology. The previous thesis literature review investigated 

studies that explored the neuropsychological correlates of the DMN and other resting state 

networks. The predominant finding suggested the episodic memory impairment in persons with 

MCI is linearly dependent on the integrity of connections between medial parietal, temporal and 

frontal regions of the DMN. Episodic memory performance appears to decrease as a function of 

decreased coherence of the spontaneous correlations between these regions. The most consistent 

finding was that decreased connectivity between the PCC and other DMN regions appeared to be 

the most robust correlate of episodic memory impairment in persons with MCI. 

Posterior Cingulate Cortex 

The PCC is an important part of the DMN, it has been identified as a functional and 

structural core of this network (Fransson & Marrelec, 2008; Honey et al., 2007). It is also proposed 
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to be one of the most important regions in the pathogenesis of AD and MCI (Bai et al., 2009; 2011). 

According to studies of histopathology (Rowe et al., 2007), structural integrity (Shiino et al., 2006), 

functional imaging studies (Liang et al., 2008) and resting state studies of AD (He et al., 2007; 

Greicius et al., 2004) and MCI (Bai et al., 2008) PCC abnormality is central to pathology of the AD 

type across the continuum of disease progression (Bai et al., 2009).  

The PCC may reflect a relevant marker for neuropsychological and neurological impairment 

(Bai et al., 2009). The associations between the PCC and impaired episodic memory and decreased 

connectivity in the DMN suggest potential for a combined brain behaviour biomarker for incipient 

AD.  

Whilst the known brain behaviour relationships of the DMN attest to its importance for 

episodic memory, several regions of the DMN have also been associated with semantic memory in 

structural and task based functional imaging studies (Binder, Desai, Graves & Conant, 2009). 

Similarly, several of the main functions associated with the DMN such as episodic memory, 

autobiographical memory and internal reflections of self and other are likely to rely to some extent 

on a semantic store and will therefore share a level of variance with aspects of semantic memory. 

Whilst several studies have assessed the structural substrates of semantic memory impairment in 

MCI (Gardini et al., 2013; Rodriguez-Ferreiro et al., 2012) there is little known about whether 

variance in semantic memory is associated with functional connectivity in the resting state.  

Whilst no study has formulated a specific hypothesis about resting state connectivity and 

semantic memory, a limited number have included measures of semantic memory in correlations 

with resting state network connectivity (Agosta et al., 2012; Jin et al., 2012 and Binnewijzend et al., 

2012). Whilst Agosta et al. (2012) and Jin et al. (2012) found no relationships between their 

measures of semantic memory and resting state connectivity, Binnewijzend et al. (2012) found that 

impaired category fluency scores were positively associated with  lower connectivity between the 
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PCC and precuneus of the DMN. These studies were underpowered and only looked for 

behavioural associations as a secondary aim. The lack of hypotheses led to the inclusion of 

numerous neuropsychological tests, which in combination with small samples meant that findings 

must be cautiously interpreted. Additionally, Jin et al. (2012) used a measure of semantic 

association which may be a less sensitive and specific measure than tests such as category fluency 

(Gardini et al., 2012). 

A recent meta-analysis, across one hundred and twenty functional imaging studies, revealed 

semantic memory relies on a network of brain regions. The three main neural circuits associated 

with semantic memory storage and retrieval included structures that are either part of the DMN or 

highly functionally and/or anatomically connected with this network (Binder et al., 2009). The 

heteromodal frontal network included dorsal and ventromedial prefrontal cortex (PFC), a paralimbic 

circuit included regions with connections to the parahippocampus and PCC and the posterior 

heteromodal association cortex included the angular gyrus, middle temporal gyrus and the fusiform 

gryrus (Binder et al., 2009). Whilst the dorsal and ventromedial PFC and connections of the 

paralimbic circuit with the PCC and parahippocampus are intrinsic to the DMN, the previous thesis 

literature review revealed that disrupted DMN connectivity with structures in the association cortex 

are also associated with impaired episodic memory.  Decreased DMN connectivity or lower 

network strength between the angular gyrus and middle temporal gyrus was associated with 

episodic memory impairment (Jin, Pelak & Cordes, 2012; Wang et al., 2013) and an association 

between decreased connectivity between the precuneus and angular gyrus and episodic memory 

impairment approached significance in two further studies (Jin et al., 2012; Liang, Wang, Yang & 

Li, 2012). The strength of causal influence exerted from the middle temporal gyrus to the fusiform 

gyrus was also positively associated with episodic memory (Yan et al., 2013) and a trend for 

decreased fusiform connectivity in DMN was nearly significantly associated with impaired episodic 

memory (Jin et al., 2013). As these regions are more robustly associated with semantic than 
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episodic memory, these correlations may be detecting a degree of overlap between episodic and 

semantic memory associated or varying with measures of episodic memory. Additionally, one may 

expect a level of shared variance between regions that support episodic memory and internal 

mentation with semantic memory. However, whatever explanation, the fact that explorations of 

behavioural correlates of DMN connectivity was able to detect associations between the DMN and 

regions which typically subserve semantic memory suggests the anatomical and functional breadth 

of DMN connectivity ought to detect theoretically and clinically meaningful functional correlates of 

semantic memory.  

Whilst the PCC connectivity with the DMN appear highly sensitive to episodic memory, 

PCC relationships with non DMN structures may also reveal other relevant relationships that may 

explain the earliness and the sensitivity and specificity of the semantic memory marker of 

neurodegeneration.  

Aims, Hypotheses and Research Questions 

The aims of the proposed study are to characterise the way in which PCC connectivity is 

reflected in indices of cognitive performance which are associated with early MCI. Understanding 

how the PCC relates to behavioural markers of pathology such as cognitive performance will 

inform the clinical utility of pursuing these brain behaviour relationships as markers of MCI with 

AD pathology. Using a hypothesis driven approach to the neuropsychological tests used should also 

limit the problem of multiple comparisons which confounded more exploratory studies of 

behavioural correlates of resting state networks. Index scores will be used to reduce random 

variability and limit floor and ceiling effects. 

Brain regions are not discrete units, they participate dynamically to create highly 

interconnected cerebral networks (Bai et al., 2009) and in order to be clinically meaningful the 

relevance of the connectivity between regions of these networks for cognition should be explored 
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(Venneri et al., 2011). Therefore, the purpose of the current study was to investigate the relationship 

between resting state whole brain connections of the PCC and the two most valid 

neuropsychological markers of incipient AD, episodic and semantic memory across and between 

groups of persons with MCI, an age matched control group and a young control group. This is 

therefore the first cross sectional study to employ a design that will be able to differentiate age 

related associations from those related to disease processes. It is also the first to regress behavioural 

and connectivity associations against the full-scale variance of the whole brain as opposed to 

statistically extracted z scores. 

Based on the behavioural evidence, it is predicted that episodic scores will be sensitive to 

the difference between MCI and healthy age matched controls, but will not be specific to this as 

they will be susceptible to an ageing effect as young healthy controls will obtain significantly 

higher scores than older healthy controls. Whereas semantic memory is only predicted to differ 

between MCI and age matched controls as it is not thought to be susceptible to the effects of normal 

ageing. 

Due to the predicted disruption of the hippocampus with the DMN, the effect of disease is 

hypothesised to be reflected in lower PCC connectivity with anterior memory structures. It is 

expected that disrupted functional connectivity between the PCC and medial temporal and medial 

parietal lobes will be evident in persons with MCI compared with healthy age matched controls. 

Connectivity between the PCC DMN is not predicted to be significantly different between healthy 

older adults and younger individuals although the older group may demonstrate some signs of 

cognitive efficiency (Sperling et al., 2009).  

Within the separate MCI group, lower PCC connectivity with regions of the posterior DMN 

is predicted to be associated with episodic memory impairment. Further research questions pertain 

to whether PCC connectivity will be associated with semantic memory in MCI or control groups.  
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Method 

Design 

The data in the current study are secondary, and were obtained from a database that is 

currently under development in a department of clinical neuroscience within a private hospital in 

Northern Italy. The database includes pooled demographic, physiological, neuroimaging, genetic 

and neuropsychological data for both patients and controls.  The patient data has been collected 

through routine clinical diagnostic work and clinical research, the participant data has been 

provided by a group of hospital staff and local volunteers who have specifically volunteered to 

provide norms and controls for clinical standardisation and future research. Additionally, as the data 

used in the current thesis are secondary, an explanation of the author’s personal role in the design of 

the study and analyses can be found in Appendix 2. The cross sectional design allowed hypotheses 

to be investigated about whether the effects of abnormal (MCI compared to OHC) and normal 

ageing (OHC compared to YHC) modulate the relationship between regional PCC connectivity and 

episodic and semantic memory.  

Power analysis 

Due to the recent emergence of this area, it was not possible to conduct a power analysis. 

Consequently, sample size was based on the numbers used in the empirical papers included in the 

thesis literature review. In this literature review, significant relationships were found in studies with 

as few as eight participants per group to a maximum of 35. Without knowing the effect sizes of 

these relationships, an average of 20 participants per group appears to be consistent with good 

quality studies in this area.  

Participants 

Out of an original 71 participants a final total of 63 were included in this study, all were  
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recruited from the San Camillo Hospital, Lido, Venice. The neuroimaging and neuropsychological 

data for the MCI group was baseline data of an earlier intervention study (DeMarco et al., 2012) 

which had been added to the research database described above. Under Italian law apart from study 

specific consent forms all participants must complete a general consent form. This form includes a 

section whereby participants can make informed consent for their data to be used in future research. 

All the patient and control participants included in this retrospective study had signed this section of 

the general consent form. The data for the age matched healthy controls and for the young healthy 

control groups was obtained from the research database that is being developed at San Camillo. 

This database is comprised of hospital staff and friends and relatives of patients. These individuals 

provided consent for their neuroimaging and neuropsychological data to be placed on the database 

for use in future clinical research studies on the same general consent form. A copy of this form can 

be found in Appendix 7.  

All participants underwent diagnostic evaluation, clinical interview and demographic 

inventory. Exclusion criteria included history of stroke, cardiovascular disease, substance misuse, 

psychotropic medicine, head injury, Parkinson’s disease, other neurological or psychiatric illness, 

epilepsy or current major medical illness. No participant was excluded on the basis of these criteria. 

The T2 weighted images were screened for signs of cerebrovascular disease and other signs of brain 

disease including lacunae. Three MCI and two older healthy controls (OHCs) were excluded due to 

extensive white matter changes.   

Twenty two MCI patients (mean age 75.33, SD 6.96, mean education 9.95, SD 4.21, 8 males) 

were assessed by experienced clinical neuropsychologists. All patients met published criteria for 

MCI of the amnestic type (Petersen, et al., 2001). These patients had no evidence of dementia, no 

deficits in other cognitive domains and intact daily living skills. In line with Petersen (2001) criteria, 

three patients with Mini Mental State Examination (MMSE: Folstein, Folstein & Mchugh, 1989) 

less than 24 were excluded from the study. All controls were required to have MMSE of 28 or 
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higher, no participant was excluded on this basis. As the twenty one OHCs (mean age 66.36, SD 

7.45, mean education 10.86, SD 4.89, 11 males), were significantly younger than the MCI patients, 

age was controlled in all analyses. The young healthy control group (YHC) was comprised of 

twenty people (mean age 38.25, SD 8.24, mean education 16, SD 3.23, 8 males) as education was 

significantly different between the YHC and MCI and YHC and OHC, it was included as a 

covariate in all models. 

Ethical Approval 

Ethical approval for the retrospective use of patient and control data was granted by San 

Camillo Hospital, Lido, Venice, Italy. A copy of this letter can be found in Appendix 3. Scientific 

approval was granted by the department of Clinical Psychology, University of Sheffield and 

Clinical Governance was sponsored by the University of Sheffield Copies of these letters can be 

found in Appendices 5 and 6.  

Procedure 

Although the data was obtained from a previous clinical study and participant database, the 

procedure was uniform across all participants. 

Neuropsychological Assessment 

Experienced clinical psychologists undertook the neuropsychological assessment with 

patients and controls. Each participant had undertaken the same battery of neuropsychological tests 

comprised of cognitive tests which are routinely used for diagnosis of neurodegenerative disorders 

in clinical practice. As the battery is part of routine clinical practice, an active research database and 

an extensive standardisation study, certain test may not be the most recent version. However, each 

test within this battery  is known to be a reliable and valid measure of the domain for which it was 

intended to assess and in order to circumvent the Flynn effect the original norms are not utilised. In 
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the current study, all scores were standardised against the mean scores of the young healthy control 

group. The MMSE was used to assess disease severity through global cognitive functioning. 

Episodic and semantic tests were chosen from the patients and participants’ batteries.  

 Episodic Index Score. An episodic memory index score was derived from the 

following tests of episodic memory. Logical Memory Immediate and Delayed Recall (Wechsler, 

1997a), in this test individuals are read a short story and asked to recall as much as possible 

immediately after it was read and after a ten minute delay; answers are scored as individual story 

items and thematically. Rey Complex Figure - Delayed recall (Osterreith, 1944), the participant is 

shown a picture of a complex figure and asked to copy it, for the delayed scores, participants are 

asked to reproduce the figure after a ten minute delay. Verbal Paired Associates (Wechsler, 1997a) 

is a test of verbal learning; participants are presented with the same eight word pairs in different 

orders over three trials, half of the words are easily paired, the other half are more difficult. The 

score is the total number of pairs learnt over the three trials. In the Corsi Visual Span test (De Renzi 

& Nichelli, 1975) the patient is presented with a board with nine 3D blocks, the examiner taps a 

sequence on these blocks and the participant is required to replicate this sequence, there are three 

trials for each sequence and participants are required to achieve two correct sequences before 

progressing. Visual Supraspan (Capitani, Gross, Lucca, Orsini & Spinnler, 1980) using the same 

apparatus, the examiner taps a complex sequence of nine blocks and the participant is asked to 

replicate this, this demonstration and replication continues for 18 trials or until the participant 

achieves two consecutive accurate trials.  

 Semantic Index Score. A composite score for semantic ability was derived from 

Confrontational Naming (unpublished) and Semantic Fluency (Lezak, Howieson, & Loring, 2004). 

In Confrontational Naming, participants are shown twenty line drawings and asked to name them 

(Snodgrass & Vanderwart, 1980). In the Semantic Fluency task participants are asked to name as 

many exemplars as possible from a given category in one minute, the categories used in the current 
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study were animals, fruits and clothing.  Similarities (Wechsler, 1997b) scores were not included as 

they were not found to be significantly different between the MCI and OHC groups. Similarities is a 

test of semantic association and abstract verbal reasoning, in this task participants are given two 

items and are asked to identify the way in which they are similar, items progress from easily 

associated pairs such as fork and spoon to more abstract relationships such as poem and statue. The 

separate semantic and episodic index scores were obtained by using the mean and standard 

deviation of the YHC performance on each test as the normative baseline upon which each raw test 

score was converted to a Z score. The final composites were comprised through averaging the 

individual Z scores across each domain.  

MRI Acquisition 

Structural and resting state functional MRI images were acquired on the same1.5 Tesla 

Philips® Achieva MRI system. The three dimensional T1-weighted scan was acquired with a Turbo 

Field Echo sequence. The Voxel dimensions were 1.1 X 1.1 X 0.6 mm and field of view was 250 

mm with a matrix size of 256 X 256 X 124. Total acquisition time was 4 minutes 27 seconds 

(repetition time, RT: 7.4 ms, echo delay time, TE: 3.4 ms and flip angle 8 degrees). For resting state 

scan echo planar T2* weighted MRI images were acquired on the same 1.5T Philips® Achieva 

system (TR=2s, TE=50ms, flip angle 90◦, voxel dimensions 2.00x2.00x3.00mm
3
, field of view 230 

mm). Two hundred and forty volumes of 20 contiguous axial slices were acquired in ascending 

order. Acquisition time lasted approximately 8 minutes. Prior to proper scans acquisition 20s of 

dummy scans were acquired to allow the scanner to reach equilibrium. During the scans, no specific 

instruction was given to the participants. They were only asked to remain as still as possible and 

with their eyes closed for the full duration of the scan and avoid any movements. Additionally a 

fluid-attenuated inversion recovery (FLAIR) coronal scan and an axial T2-weighted structural scan 

were also acquired to evaluate vascular burden in detail. A safety buzzer was provided in case 

participants required assistance.  
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MRI analysis 

All postprocessing was undertaken by an experienced clinician. The MRIs were examined 

for abnormalities through visual inspection by this individual. The resting state fMRI preprocessing 

was undertaken with Statistical Parametric Mapping (SPM8) image analysis software (Wellcome 

Centre for Neuroimaging, London, UK). All volumes from each subject were re-aligned. After 

creating a mean as a reference they were subsequently re-sliced using 4th Degree B-Spline 

interpolation methods to adjust for residual motion related signal changes. Images were spatially 

normalized to the standard EPI template available in SPM8 using non-linear estimation of 

parameters. Normalized images were then spatially smoothed with an 8 mm full width at half 

maximum isotropic Gaussian kernel to compensate for any residual variability after spatial 

normalization. Image data were high-pass filtered with a set of discrete cosine basis functions with a 

cut-off period of 550 s. Additionally, head motion was included as a regressor in the first level 

analyses.  

In order to co-vary for grey matter volume, the structural scans of each participant were 

preprocessed with SPM8. Segmentation of grey matter, white matter and cerebrospinal fluid 

allowed statistical computation of the proportion of grey matter for each participant to be 

calculated. As expressing this value as a proportion takes between subject variability in head size 

into account, it may reflect a more accurate covariate compared with grey matter volume alone.   

Definition of Region of Interest  

Previously published PCC foci (Talairach coordinate right 8 -50 12, left -8 -50 12) were 

used to identify right and left PCC seed region spheres of 5mm diameter for each individual 

participant. The blood oxygen level dependent time series of the voxels within these spheres was 

averaged to generate a reference time series. 
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Data Analysis 

Neuropsychological Analyses. Demographic, clinical and semantic and episodic 

neuropsychological features were analysed with between group analyses of variance. Bonferroni 

correction for multiple comparisons was applied to post hoc contrasts. Analyses were undertaken in 

Statistical Package for Social Sciences (SPSS; version 18). 

Functional Connectivity Analyses. A series of analyses in the general linear model were 

undertaken in SPM8 to regress the spontaneous regional correlates of right and left PCC with 

episodic and semantic index scores. Age, sex, education and proportion of grey matter were 

included in each model as covariates. Sex was included as a control for gender differences in head 

size. These right and left PCC, episodic and semantic regression analyses were run for each separate 

group.  

Two further models were built to test the effect of age and the effect of disease (MMSE) 

across all participants. Sex, education and proportion of grey matter were included in the age model 

as covariates and the disease model also co-varied for age. 

To correct for multiple comparisons and avoid false rejection of true positives in addition to 

false positives for all analyses statistical significance was set a threshold of p < 0.05, false discovery 

rate (FDR).   

Anatomical regions that were significantly correlated with PCC connectivity and were 

identified using the Talairach Daemon Client (http://ric.uthscsa.edu/projects/tdc/) following 

conversion of the Montreal Neurological Institute coordinates extracted from the SPM analyses into 

Talairach coordinates. 
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Results 

Participant Characteristics  

 The demographic, clinical variables and neuropsychological scores for each group can be found 

in Table 2. As discussed in the methods section, due to the significant differences in age between all 

groups and education between the YHC with MCI and OHC, these variables were included in the 

regression analyses as covariates. In line with detecting global cognitive decline and disease 

severity MMSE scores were only significantly different between the MCI group and both control 

groups. 

 Similarities scores were the only measure that did not distinguish persons with MCI from OHC 

and YHC participants. The other two semantic measures and subsequent semantic index scores 

were sensitive to abnormal ageing as persons with MCI had significantly different scores to OHCs 

and YHCs. The semantic measures did not differ between OHCs and YHCs.  

 Similarly Spatial Span and Visual Supraspan were only sensitive to abnormal ageing as MCI 

patients’ scores were significantly lower than OHCs and YHCs and there were no differences 

between the scores of control groups. However, whilst all episodic memory scores were sensitive to 

abnormal ageing, as demonstrated by differences between MCI and control groups, they were not 

specific as Verbal Paired Associates, Logical Memory Total, Rey Delay and the episodic index 

revealed significant differences between the OHC and YHC. 
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 MCI  

(n =22) 

OHC  

(n = 21) 

YHC 

(n = 20) 

f/ x2 Partial 
eta 
squared 

p Post hoc comp 
(p<0.05*) 

Age 75.33, 6.96  66.36 7.45 38.25 8.24 133.07 0.816 0.001 MCI>OHC, OHC>YHC,  

MCI > YHC 

Education 9.95, 4.21 10.86, 4.89 16, 3.23 12.34 0.29 0.001 YHC  > OHC, YHC > MCI 

Gender 
(M:F) 

8:14 11:10 8:12 1.22  0.542 NS 

MMSE 27.01, 2.26 29, 1.51 29.4, 0.75 11.79 0.28 0.001 MCI < OHC, MCI < YC 

Semantic Memory        

Semantic 
Fluency 

30.62, 8.94 44.45, 
10.71 

48.2, 6.72 21.97 0.42 0.001 MCI < OHC, MCI < YHC 

Similarities 19.19, 4.97 20.27, 5.66 20.2, 3.09 0.34 0.01 0.711 NS 

Confrontatio
n Naming 

18.67, 1.43 19.59, 0.80 19.6, 0.82 5.4 0.15 0.007 MCI < OHC, MCI < YHC 

Semantic 
Index mean 
Z score 

-1.88, 1.35 -0.28, 0.75 0.00, 0.68 22.40 43 0.001 MCI < OHC, MCI < YHC 

 

Episodic Memory       

Verbal 
Paired 

11.05, 3.51 13.93, 4.00 16.33, 3.52 10.52 0.26 0.001 MCI < OHC, MCI < YHC, 
OHC < YHC 
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 MCI  

(n =22) 

OHC  

(n = 21) 

YHC 

(n = 20) 

f/ x2 Partial 
eta 
squared 

p Post hoc comp 
(p<0.05*) 

Associates 

Logical 
Memory 
Total 

15.42, 7.26 22.39, 6.38 31.8, 8.49 25.25 0.46 0.001 MCI < OHC, MCI < YHC, 
OHC < YHC 

Rey Delay 9.29, 5.40 15.70, 5.90 21.98, 6.92 22.25 0.43 0.001 MCI < OHC, MCI < YHC, 
OHC < YHC 

Spatial Span 4.33, 0.73 5.00, 0.76 5.50, 1.00 10.14 0.25 0.001 MCI < OHC, MCI < YHC 

Visual 
Supraspan 

15.25, 8.10 21.02, 5.57 23.20, 6.02 7.95 0.29 0.001 MCI < OHC, MCI < YHC 

Episodic 
Index Z 
score 

-1.54, 0.65 -0.65, 0.64 - 0.00, 0.67 29.05 0.49 0.001 MCI < OHC, MCI < YHC, 
OHC < YHC 

 

 

*p < 0.05 with Bonferroni Correction 

 

Table 2. Means, Standard Deviations, ANOVA (F) and Chi Square for demographic and neuropsychological variables for MCI, OHC and YHC groups 
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Relationship between semantic and episodic memory performance and PCC connectivity 

At the FDR corrected threshold, voxel-wise regression analysis revealed clusters of 

significant positive associations between the episodic memory index and bilateral PCC connectivity 

in the MCI group and left PCC connectivity in the YHC group. No associations between PCC 

connectivity and semantic index scores were evident for the MCI or YHC groups. The correlation 

strength, brain regions, Brodmann areas and Talairach coordinates for these relationships can be 

found in Table 3, the regions of regression can be seen in Figures 2 and 3. 

In detail, for the MCI group lower episodic memory was significantly positively associated 

with lower functional connectivity between the right PCC and right cuneus, left precuneus, left 

tuber, declive and bilateral culmen. Decreased connectivity of the left PCC with the right culmen 

and cerebellar tonsil of the cerebellum was significantly positively associated with episodic memory 

impairment.  

For the YHC group, significant positive associations were observed between right PCC 

connectivity with the right cingulate and caudate and episodic memory performance. 

A significantly inverse association was found for the connectivity of the right PCC with the 

right medial frontal, middle frontal, bilateral caudate nucleus and left insula and the with episodic 

memory index score. Similarly, negative correlations between lower left PCC connectivity with the 

bilateral insula and caudate nucleus, left lingual gyrus and left frontal sub gyral areas and higher 

episodic memory scores were evident for this group. The semantic index was also inversely 

associated with left PCC connectivity with the left claustrum, insula and caudate nucleus in the 

OHC sample.
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  +ve/-ve 

Correlati

on 

Brain area  Left/ 

Right  

Brodmann  

area (BA)  

Cluster 

size  

Z values at 

local 

maximum  

p values 

FDRcorr 

r 

values  

Talairach  

Coordinates 

   x        y        z  

Episodic Index Scores          

MCI Right PCC  + Cuneus 

Precuneus 

Cuneus 

Tuber 

Culmen 

Declive 

Culmen 

Declive 

Culmen 

R 

L 

R 

L 

L 

L 

R 

R 

R 

18 

31 

19 

1058 

 

 

806 

 

 

527 

4.42 

4.14 

3.99 

4.06 

3.94 

3.60 

3.84 

3.75 

3.60 

0.001 

 

 

0.001 

 

 

0.005 

0.87 

0.85 

0.83 

0.84 

0.83 

0.79 

0.82 

0.81 

0.79 

  0    -82     27 

 -18  -74     24 

 10  -82    -35 

 -36   -63   -24 

 -26   -44   -27 

 -18   -71   -18 

  28   -50   -24 

  28   -61   -21 

  22   -55   -19     

 Left PCC  + Culmen 

Culmen 

Cerebellar tonsil 

R 

R 

R 

 395 4.22 

3.82 

3.56 

0.046 0.86 

0.82 

0.78 

  26   -52   -22 

  32   -54   -27 

  28   -62   -31 
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  +ve/-ve 

Correlati

on 

Brain area  Left/ 

Right  

Brodmann  

area (BA)  

Cluster 

size  

Z values at 

local 

maximum  

p values 

FDRcorr 

r 

values  

Talairach  

Coordinates 

   x        y        z  

YHC  Right PCC + Cingulate 

Cingulate 

Caudate 

R 

R 

R 

24 

24 

471 3.86 

3.48 

3.40 

0.005 0.83 

0.70 

0.77 

   0      5      31 

   4     -0      37 

   6      24      8 

OHC  Right PCC  - Medial Frontal  

Caudate 

Middle Frontal 

Caudate 

Insula 

Caudate 

R 

R 

R 

L 

L 

R 

9 

 

10 

 

13 

 

408 

 

 

1565 

5.06 

4.91 

3.52 

4.04 

3.83 

3.75 

0.019 

 

 

0.001 

0.92 

0.91 

0.77 

0.83 

0.81 

0.80 

   18    44      15 

   20    21       3 

   34    37       7 

  -20   -20     27 

  -28   -36     25 

   12    -14    27  

 Left PCC  - Insula 

Caudate 

Lingual Gyrus 

Insula  

Caudate 

Frontal Sub-

R 

R 

L 

L 

L 

13 

 

18 

13 

 

1995 

 

 

634 

4.05 

4.05 

4.05 

3.68 

3.65 

0.001 

 

 

0.001 

0.84 

0.83 

0.83 

0.79 

0.79 

   38    -5      21 

   20    -10    26 

  -4     -70     -1 

  -24   -30     25 

  -18   -20     24 
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  +ve/-ve 

Correlati

on 

Brain area  Left/ 

Right  

Brodmann  

area (BA)  

Cluster 

size  

Z values at 

local 

maximum  

p values 

FDRcorr 

r 

values  

Talairach  

Coordinates 

   x        y        z  

Gyral L 6 3.46 0.77   -18     1      51 

Semantic Index          

OHC  Left PCC - Insula 

Claustrum 

Caudate 

L 

L 

L 

13 637 4.43 

3.38 

3.32 

0.002 0.87 

0.76 

0.75 

  -28   -28   22 

  -36   -8    -9 

   -24    -18   24 

 

Table 3. Areas of significant correlation with PCC connectivity and Episodic and Semantic Index Scores  

p < 0.01 (voxel level FDR corrected) 
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Figure 2. Regions significant positive correlation with PCC connectivity and episodic index 

scores.  a. Right PCC correlation with precuneus and cerebellum, b. Left PCC correlation with cerebellum, 

c. Right PCC association with the cingulate and caudate. Images are presented in neurological convention 

(R/R) 

 

 

 

 

Figure 3. Regions significant negative correlation with PCC connectivity and episodic and 

semantic index scores.  a. Right PCC correlation with medial and middle frontal and caudate, b. Left PCC 

correlation with caudate and lingual gyrus, c. Left PCC association with the insula d. Left PCC correlation 

with the caudate, e. Left PCC correlation with the claustrum. Images are presented in neurological 

convention (R/R) 



76 
 

 
 

Relationship between Age and Disease Severity with PCC Connectivity 

In order to explore the way in which PCC connectivity varies as a function of ageing and 

disease severity, separate regressions were computed across all participants. The same FDR 

correction was applied to all results. The correlation strength, brain regions, Brodmann areas and 

Talairach coordinates for these relationships can be found in Table 4, Figure 4. Displays the brain 

regions of significant correlation with age and disease. 

A significant positive correlation was found between increased connectivity between the left 

PCC and bilateral cingulate, left fusiform gyrys, right middle temporal and right superior occipital 

gyrus and older age. 

 Increased disease severity, as demonstrated by lower MMSE scores was significantly inversely 

associated with higher right PCC connectivity with the right precentral gyrus, claustrum and inferior 

frontal gyrus. Similarly, the connectivity of the left PCC with the left precentral gyrus, insula and 

parahippocampal grus was negatively associated with MMSE scores. 
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  +ve/-ve 

Correlation 

Brain area  Left/ 

Right  

BA  Cluster 

size  

Z values at 

local 

maximum  

p values 

FDRcorr 

r 

values  

Talairach  

Coordinates 

   x        y        z  

Age Left PCC + Posterior Cingulate 

Posterior Cingulate 

Fusiform Gyrus 

Middle Temporal 

Middle Temporal 

Superior Occipital 

L 

R 

L 

R 

R 

R 

29 

29 

19 

39 

39 

19 

1155 

 

 

394 

5.13 

4.27 

3.91 

3.82 

3.44 

3.38 

0.001 

 

 

0.05 

0.85 

0.79 

0.76 

0.75 

0.71 

0.70 

  -8     -46     14 

   6     -42     17 

 -22    -65    -9 

  34    -59     20 

  44    -71     16 

  38    -73     24 

MMSE Right PCC - Precentral Gyrus 

Claustrum 

Inferior Frontal 

R 

R 

R 

6 

 

47 

3142 5.17 

4.82 

4.64 

0.001 0.85 

0.83 

0.82 

  34      5      31 

  36    -2        7 

  38     33      2 

 Left PCC - Precentral Gyrus 

Insula 

Parahippocampal 

Gyrus 

L 

L 

L 

6 

13 

30 

9534 5.02 

4.83 

4.77 

0.001 0.84 

0.83 

0.83 

  -34    5       31 

  -40    14      6 

  -30   -52      9 

 

Table 5. Areas of significant correlation with PCC connectivity and years of age and MMSE scores 

p < 0.01 (voxel level FDR corrected)
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Figure 4. Regions significant positive and negative correlation with PCC connectivity age and 

MMSE.  a. Left PCC correlation with posterior cingulate b. Left PCC correlation with bilateral cingulate 

and superior occipital lobe, c. Left PCC association with  the right insula d. Left PCC correlation with insula 

and parahippocampal gyrus, e. Right PCC correlation with precentral gyrus and inferior frontal lobe. Images 

are presented in neurological convention (R/R) 

 

 

Discussion 

As predicted semantic scores were sensitive and specific to abnormal ageing as they were 

able to discriminate MCI from both control groups and were not susceptible to the effects of normal 

ageing. Visuospatial episodic memory tests were also invulnerable to effects of ageing. However, 

whilst the verbal measures of episodic memory were sensitive to the presence of disease as they 

differentiated MCI from OHC, this discrimination was nonspecific as this index also detected an 

ageing effect since the OHC scores were significantly lower than the YHC scores. These 

behavioural results are in line with the findings from neuropsychological studies of early markers of 

pathological alterations in prodromal AD (Gardini et al., 2013; Rodriguez et al., 2012) and support 

the inclusion of semantic measures in addition to measures of episodic memory in assessments to 

distinguish between normal and abnormal ageing (Venneri et al., 2011).  
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Investigation of the neuropsychological correlates of PCC connectivity revealed several 

interesting significant associations that may have clinical relevance. Whilst the episodic index was 

significantly associated with PCC connectivity with several important memory structures in all 

groups, semantic memory was only associated with the spontaneous correlations between the PCC 

and regions in the insula, claustrum and caudate nucleus in the OHC group. No significant 

relationships were detected between the semantic index and resting state activity of the PCC in the 

MCI or YHC groups.  

The lack of association between PCC connectivity and semantic scores in the MCI and YHC 

groups may suggest that the PCC is not an appropriate seed to detect the neural substrates that 

support semantic memory encoding and retrieval. However, the fact that semantic memory was 

significantly negatively associated with PCC connectivity in the OHC group suggests that 

anticorrelation of the PCC may reveal a potential mechanism of healthy ageing. Studies of the 

DMN in normal ageing have demonstrated that there are specific differences in properties of this 

network between older and younger individuals (Damoiseux et al., 2008; Jones et al., 2011). As 

resting state networks may also be modulated by learning through alterations in plasticity (Stevens, 

Buckner & Schacter, 2010) these circuits may demonstrate signs of cognitive efficiency in older 

persons. Contrary to a deficit hypothesis of ageing, healthy older persons can demonstrate increases 

in cognitive efficiency compared with younger persons (Rabbit, 1993). For instance, compared with 

younger controls, healthy older individuals have been found to recruit fewer brain regions whilst 

achieving at least an equal performance as younger comparison groups while performing a semantic 

association task under fMRI conditions (McGeown et al., 2009a).  

The structural associations with PCC connectivity and semantic memory are behaviourally 

and anatomically meaningful in this context. The claustrum has topographical connections with 

posterior and anterior hubs of the DMN and is important to multi modality sensory integration 

(Banati, Goerres, Tjoa, Aggleton, & Grasby, 2000) and integral for attaining conceptual congruency 
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(Naghavi, Eriksson, Larsson, & Nyberg, 2007). Volume change in this region has also been 

associated with impaired category fluency and confrontation naming in studies of AD and MCI 

(Gardini et al., 2013). Similarly the insula specialises in integrative functions, and is anatomically 

and functionally connected to paralimbic memory structures, although is not intrinsic to the DMN, 

it is functionally and anatomically associated with this network. The caudate nucleus is also 

characterised as an important integrative hub of semantic retrieval circuits and it may be especially 

important to the suppression of incorrect retrieval (Hart et al., 2013). The similarities across these 

systems in terms of associations with semantic and epsiodic memory, and their functional roles as 

integrative hubs and implications for mechanisms of surveilling/ monitoring of correct appropriate 

retreival suggests anticorrelation with these regions may be in line with an efficient memory 

retireval system which can bypass congruence, valence or fact checking.  By contrast, the positive 

assocation between PCC-caudate connectivity in the younger group may suggest these individuals 

still need to recruit integrative areas to supress and correct memory retreival (Hart et al., 2013). 

Whilst the hypothesis that semantic memory is sensitive and specific to abnormal ageing 

because it does not decline in normal ageing was in line with the neuropsychological results, the 

imaging data revealed that something more complex and interesting subserved the semantic ability 

of older persons who are neurologically healthy. This data suggested the functional connectivity 

supporting semantic memory is actually sensitive to normal ageing and semantic memory appears 

to stabilise in healthy ageing and semantic memory ability in healthy ageing has an important 

signature of neural efficiency. Similarly whilst episodic memory was found to be statistically but 

not clinically lower in normal ageing, there was also evidence of cognitive efficiency in the healthy 

older persons.  Such neural signatures, which are not detectable in neuropsychology alone further 

attest to the application of combined imaging and neuropsychological approaches to the 

investigation of normal and abnormal ageing. 
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This line of reasoning is consitent with the inverse correlations detected in the OHC group 

with right and left PCC connectivity with the caudate nucleus and insula and episodic index scores. 

The inverse association between the mediation of episodic memory by the connectivity between 

frontal regions and right and left PCC connectivity  is in line with the frontal hypotheses of ageing 

(Mittenberg, Seidenberg, O’Leary & DiGiulio, 1989). This would suggest that as the frontal lobes 

are less vulnerable to the effects of ageing and disease as individuals age normally and abnormally, 

the frontal lobes begin to assume more responsibility for anatomcial and cogntive losses. Evidence 

for this can be seen in the frequent finding that increased frontal connectivity is associated with 

disrupted PCC connectivity with the medial temporal lobes in persons with AD and MCI (Jones et 

al., 2011; Koch et al., 2012). Additionally, increased PCC connectiviy with the PCC in episodic 

memory encoding and retrieval may be an adaptive function of normal ageing which may protect 

amyloid vulnerable regions from the metabolistic consequences of overuse (Buckner et al., 2005; 

2008). 

Similarly evidence of frontal compensation was suggested by the inverse relationship 

between disease severity as measured by the MMSE and PCC connectivity with bilateral frontal 

regions. The known distibution of these scores between the MCI and contol groups suggests the 

higher MMSE scores of the YHC and OHC are associated with lower connectivity of frontal 

regions in episodic encoding and retrieval whereas the lower scores of the MCI group are associated 

with higher connecitivity between the PCC and frontal regions, suggesting a possible reliance on 

recruitment of additional compensatory support. Similalry, the healthy control groups are less 

dependent on claustrum and insula integration than the MCI group whose contribution to variance 

in the lower MMSE scores was correlated with higher linear dependance on these structures. 

In line with the main hypothesis, lower connectivity between PCC connectivity in posterior 

DMN regions was associated with episodic memory impairment. For the MCI group lower episodic 

memory index scores indicative of episodic memory impairment were significantly positively 
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correlated with lower connectivity between the PCC and the cuneus and precuneus. This pattern of 

findings appears to be especially robust and replicable across studies and disruption of connections 

between these regions may reflect a reliable alteration in disease progression (He et al., 2007; Bai et 

al., 2008; Bai et al., 2009). The positive association between episodic memory impairment and the 

connectivity between the PCC and regions of the cerebellum is anatomically and behaviourally 

interesting. Originally the cerebellum was thought to be primarily responsible for motor function, 

however it is now known to mediate several linguistically based higher order cognitive functions. 

Several studies have demonstrated associations between the cerebellum and episodic memory 

(Desmond & Fiez, 1998). In cognitively healthy individuals the cerebellum was found to be 

associated with silent recall of episodic autobiographical memory in a functional imaging study 

(Andreasen et al., 1999).  This task is convergent with the functions of the DMN in the spontaneous 

retrieval of episodic and autobiographical memories in the resting state and is in line with the 

association of PCC-cerebellar connectivity and episodic memory. Similarly the cerebellum has been 

found to mediate self referential episodic retrieval and maintenance of self concept (Fossati et al., 

2004) and such findings converge with cerebellar connections within a system that subserves these 

referential processes, the DMN. 

Across the whole group, older age was correlated with increased left PCC connectivity in 

the bilateral posterior cingulate, fusiform, middle temporal and superior occipital, as MMSE was 

controlled in the regression, these findings are statistically independent from the older age of the 

MCI group compared to the OHC sample. The association of higher age with higher connectivity in 

posterior cingulate, fusiform and middle temporal gyrus is opposite to the association with lower 

connectivity of these regions and memory impairment in MCI (Jin et al., 2012; Yan et al., 2013). 

This difference may reflect an important dissociation of connectivity in normal and abnormal 

ageing.    
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Normally the PCC and parietal lobes should deactivate when an individual needs to encode 

information (Duverne, et al., 2008) and activate when retrieving episodic and autobiographical 

recall (Svoboda, et al., 2006). Abnormal ageing is associated with a slower deactivating process or 

less deactivation all together. In the context of neurodegeneration, the burden of the constant 

switching between the encoding and retrieval demands of everyday life may become a metabolic 

issue (Sperling et al., 2009) which may increase amyloid production (Cirrito et al. 2005). This may 

explain why the PCC is so susceptible to early pathology and why this affects memory encoding 

and retrieval. The finding may also suggest the PCC is a better indication of early pathological 

processes than the medial temporal lobes and may also account for the way in which the PCC is 

more susceptible to amyloid deposition than medial temporal structures due to the PCC’s role as a 

memory hub which is in a constantly switching state (Sperling et al., 2009). Originally the memory 

impairment in AD was thought to be due to MTL pathology, however the current findings are in 

line with recent work which suggests that as the PCC is a hub in the distributed network which 

subserves memory in the resting state, it may be a better cognitive and imaging marker of amyloid 

insult (Sperling et al., 2009). 

Limitations 

There are several limitations to the current study. Whilst the sample is of an average size in 

comparison with similar studies it may not have had sufficient power for all relationships to remain 

significant in corrected models with appropriate covariates. However, the decision to correct with 

FDR rather than family wise error may have limited the loss of true positives. Another potential 

issue is the significant age difference between the MCI and OHC group and the significant 

difference in education between the YHC and MCI and OHC groups. However these issues should 

have no bearing on the results as they were controlled in the statistical analyses.  
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The decision to focus on the PCC as a seed ROI may also impose limitations on the findings. 

Whilst the results suggest that important indices of memory are associated with connectivity 

between the PCC and several other brain regions especially in the DMN, the PCC ROI means that 

only functional relationships that involve the PCC were detected. This implies there may be other 

functional relationships that subserve memory in normal and abnormal ageing that may not have 

been detected by the current methods. However, the decision to use the PCC was based on its 

important role in memory encoding and retrieval, its position as an anatomically and functionally 

central hub of the DMN and due to its susceptibility to early pathological change. Additionally, the 

current method allowed the functional relationships between key memory domains and PCC 

connectivity with any other region of the brain to be detected. Future work, combining hypothesis 

based ROI analyses with whole brain Independent Component Analysis, could allow the 

relationship with cognition and the full scale information of the whole brain to be observed in 

unbiased but subsequently theoretically constrained manner. 

  A main issue in resting state studies is the fact that it is not possible to control for the random 

subconscious thoughts of participants. A possible method to minimise this in future work would be 

to ask participants to recall the spontaneous and random thoughts after scanning and enter these 

factors into regression analyses (Bai et al., 2009). However, this approach is not without limitation 

as participant subjective self report may not be entirely accurate. Future work is needed in order to 

understand the contribution of spontaneous thought and processing to functional connectivity. 

Similarly, between-subject differences in processes like anxiety may also impact on functional 

connectivity and future studies are needed to investigate these potential relationships.  There may 

also be a level of interference from cardiac and respiratory artefacts. Whilst the sampling rate was 

chosen to minimise this, future studies could measure these rhythms during image acquisition and 

covary them out of analyses (Bai et al., 2009).  
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Although standardising all scores to the healthy control group will have made the data more 

normally distributed, a potential issue could have been introduced by the use of index scores. Whilst 

this approach was chosen to reduce random error, floor and ceiling effects and the issue of multiple 

comparisons, some test-specific brain-behaviour relationships may have been lost through 

combination in an index. Although the semantic and episodic tests that formed the indices are 

reliable and valid measures, as they measure subtly different aspects of these memory abilities in 

different domains the specificity that individual  neuropsychological tests may have for detecting 

abnormal neural relationships between certain brain regions (Rodriguez-Ferrerio et al., 2012) may 

be lost in a more general composite score. In future work whether individual scores or indices 

reveal the most salient differences in brain behaviour associations should be investigated in a series 

of exploratory analyses.  

In addition, future studies with longitudinal designs are needed in order to ascertain whether 

the relationships between the PCC and cognition are mechanistically associated with conversion to 

AD and if disrupted functional connectivity of the PCC is a meaningful biomarker of memory 

impairment. Follow up of this sample would also allow appraisal of sample heterogeneity to be 

made and subsequent analyses could investigate differences in PCC connectivity with cognition in 

persons with MCI who remain stable and those who convert to AD. It would also be of merit to 

understand how behavioural treatments such as cognitive stimulation are expressed in modulations 

of the neuropsychological correlates of the PCC and other resting state networks. In addition, as 

discussed in the literature review, PCC connectivity to important encoding and retrieval structures 

in the default mode may be sensitive to other important relationships that may distinguish persons 

with MCI from healthy controls of the same age such as self reference, autobiographical memory, 

awareness and theory of mind. The convergence of these complex cognitive functions with the PCC 

cerebellar connectivity demonstrated here suggests further investigation of these functions would be 

clinically meaningful. 
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Despite the limitations, this study has a number of strengths which attest to the reliability of 

the findings. As the proportion of each individual’s grey matter volume was statistically controlled 

in all analyses, the differences demonstrated in the analyses cannot be attributed to grey matter 

density or atrophy. This suggests these relationships are functionally mediated and may reflect 

earlier, potentially treatable biomarkers. The application of a conservative statistical correction and 

stringent statistical correction for important covariates suggests these findings can be considered 

reliable. Additionally the fact that these findings survived such correction and covariance in 

relatively small samples suggests a level of robustness. This is further corroborated by consistency 

with findings in previous work in cognitively healthy individuals and in AD and MCI research. 

This is also the first study to compute these regressions in a model which includes the 

variance of the functional connectivity with the whole brain in each sample. Typically studies have 

limited analyses to the regions that were found to be statistically different between patient and 

control groups. Additionally these studies have regressed variance in behavioural measures against 

the extracted Z score of the region of between group difference at the cluster level. This prohibits an 

understanding of within group brain behaviour relationships and may be unable to detect many 

important associations for understanding the full information of health and disease.    

Clinical implications  

The study of resting state and cognitive markers in normal and abnormal ageing may 

identify a multimodal and valid biomarker for early detection and classification of 

neuropathological processes. This information in combination with an understanding of the role of 

DMN in cognition may contribute to more sophisticated diagnostic protocols. Recording resting 

state activity is also less invasive, less time consuming and less stressful than other neuroimaging 

techniques and findings are not obfuscated with paradigmatic confounds. 
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Further understanding of the relationship between the PCC and memory in normal and 

abnormal ageing may also guide future behavioural and pharmacological treatment rationales, 

which may help to delay disease onset. Such neuroimaging endophenotypes may also be applied as 

potential markers for the occurrence of hidden cognitive processes and provide evidence in favour 

of, or against, particular cognitive neuropsychiatric models of symptoms. In addition, 

endophenotypic measures may help refine the distinction between symptoms that are very similar at 

the phenomenological level such as normal and abnormal ageing. 

As preventive strategies are developed and new cognitive enhancing therapies emerge, such 

results may also help improve definition of which domains are expected to improve in MCI 

populations (Traykov et al., 2007). Functional imaging results have influenced or even motivated 

various physical treatment approaches. For instance, apart from pharmacological intervention, the 

results of the proposed thesis could provide information about the pathophysiological nodes that 

may become the targets for physical interventions such as transcranial magnetic stimulation and 

deep brain stimulation. The results may also have implications for other non invasive behavioural 

therapies such as neurofeedback. Through this method patients can be trained in the self-regulation 

of brain networks, which may help overcome dysfunctional or impaired physiological processes. 

This technique consists in training participants to influence the neural signal from a target area 

while they receive online information about the amplitude of this signal (Johnston, Boehm, Healy, 

Goebel, & Linden, 2010). This translational technique has shown some preliminary success in 

chronic pain, whereby fMRI-neurofeedback, targeting the anterior cingulate cortex, has been found 

to significantly improve the perception of pain (deCharms et al., 2005).  

In addition to neurofeedback, very recent work suggests that other non-pharmacological 

strategies may also prove to be effective treatment. Such strategies may fulfil the urgent need to 

prevent and counteract the symptoms of AD. Behavioural techniques such as cognitive stimulation 

might slow down cognitive decline of AD patients at the MCI stage. The evidence thus far suggests 
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that even at the MCI stage there is potential for neuroplasticity and targeted non-pharmacological 

interventions may prevent or mitigate the negative effects of AD progression. Such interventions 

reside at the cutting edge of evidence based practice and will no doubt become central to the role of 

a clinical psychologist’s assessment and treatment work. Participation in cognitively stimulating 

activities may also be associated with reduced risk of developing AD (Landau et al., 2012). 

Recently, a targeted programme of intensive cognitive stimulation elicited specific improvements in 

controls and persons with MCI in the neural areas that are affected by AD neuropathology at a very 

early stage of the disease (De Marco, Meneghello & Venneri, 2012). Similarly, another recent study 

found that engagement in frequent cognitive stimulation may slow or even prevent deposition of 

beta amyloid which has been implicated in the onset and progression of AD (Landau et al., 2012). 

In line with the metabolism hypothesis of AD an important line of further investigation 

would be to assess whether it is possible to train people to deactivate the pathologically vulnerable 

over worked networks. 

Neuroimaging and cognitive markers may also represent more objective outcome measures. 

Treatment monitoring with functional neuroimaging has been successfully applied to studies of 

therapy (Furmark et al., 2002; Paquette et al., 2003; Straube, Glauer, Dilger, Mentze, & Miltner, 

2006). It may ultimately become possible to identify likely responders to different types of therapy 

by their baseline patterns of neural activation, allowing for an individualised therapy. However the 

method is iterative, the behavioural and imaging markers must first be understood 

endophenotypically in order to be used to monitor salient behavioural and physiological outcomes 

of therapeutic intervention.   

Conclusion 

The results of this thesis suggest that the strength and direction of the neuropsychological  
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correlates of PCC connectivity with DMN memory structures and other important integrative ‘hub’ 

structures reveals important biomarkers for normal and abnormal ageing.  
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Appendix 1: Modified Downs & Black, checklist for measuring study quality 

 

Question Scoring Score  

Max 32 

Reporting 

1. Is the hypothesis/aim/objective of the study clearly described? 

 

Yes=1  

No=0 
 

1a. Is a hypothesis/aim/objective of the study clearly related to brain behaviour 

relationships? 

Yes=1  

No=0 
 

2. Are the main outcomes to be measured clearly described in the Introduction or 

Methods section? If the main outcomes are first mentioned in the Results section, 

the question should be answered no. 

 

Yes=1  

No=0 
 

3. Are the characteristics of the patients included in the study clearly described?  

In cohort studies and trials, inclusion and/or exclusion criteria should be given. In 

case-control studies, a case-definition and the source for controls should be given. 

 

Yes=1  

No=0 
 

4. Are the distributions of principal confounders in each group of subjects to be 

compared clearly described?  

A list of principal confounders is provided. 

Yes=2  

Partially=1  

No=0 

 

5. Are the main findings of the study clearly described?   

  

Simple outcome data (including denominators and numerators) should be reported 

for all major findings so that the reader can check the major analyses and 

conclusions. (This question does not cover statistical tests which are considered 

below). 

Yes=1  

No=0 
 

6. Does the study provide estimates of the random variability in the data for the 

main outcomes?  

In non-normally distributed data the inter-quartile range of results should be 

reported. In normally distributed data the standard error, standard deviation or 

confidence intervals should be reported. If the distribution of the data is not 

described, it must be assumed that the estimates used were appropriate and the 

question should be answered yes. 

Yes=1  

No=0 
 

7. Have actual probability values been reported( e.g. 0.035 rather than <0.05) for 

the main outcomes except where the probability value is less than 0.001?  

Yes=1  

No=0 
 

External validity. All the following criteria attempt to address the representativeness of the findings of the study 

and whether they may be generalised to the population from which the study subjects were derived. 

8. Were the subjects asked to participate in the study representative of the entire 

population from which they were recruited?     

The study must identify the source population for patients and describe how the 

patients were selected. Patients would be representative if they comprised the 

entire source population, an unselected sample of consecutive patients, or a random 

sample. Random sampling is only feasible where a list of all members of the 

relevant population exists. Where a study does not report the proportion of the 

source population from which the patients are derived, the question should be 

answered as unable to determine. 

Yes=1  

No=0  

Unable to 

determine=0 

 

9. Were those subjects who were prepared to participate representative of the 

entire population from which they were recruited?     

The proportion of those asked who agreed should be stated. Validation that the 

sample was representative would include 

demonstrating that the distribution of the main confounding factors was the same 

in the study sample and the source population. 

Yes=1  

No=0  

Unable to 

determine=0 

 

Internal validity - bias 

10. If any of the results of the study were based on “data dredging”, was this made 

clear? 

Any analyses that had not been planned at the outset of the study should be clearly 

indicated. If no retrospective unplanned subgroup analyses were reported, then 

answer yes.  

Yes=1  

No=0  

Unable to 

determine=0 
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11. Were the statistical tests used to assess the main outcomes appropriate?  

The statistical techniques used must be appropriate to the data. For example 

nonparametric methods should be used for small sample sizes. Where little 

statistical analysis has been undertaken but where there is no evidence of bias, the 

question should be answered yes. If the distribution of the data (normal or not) is 

not described it must be assumed that the estimates used were appropriate and the 

question should be answered yes. 

Yes=1  

No=0  

Unable to 

determine=0 

 

12*. Were the main neuropsychological measures used accurate (valid and 

reliable)?  

For studies where the measures are clearly described, the question should be 

answered yes. For studies which refer to other work or that demonstrates the 

outcome measures are accurate, the question should be answered as yes. 

Yes=1  

No=0  

Unable to 

determine=0 

 

13*. Was the range of neuropsychological measures appropriate for hypotheses? 

 

Episodic 

Retrieval      = 1 

Encoding      =1 

Recognition =1 

Learning       =1 

Semantic      =1 

Executive     =1 

Visuospatial = 1 

Language      =1 

Working     

Memory       = 1 

Max              =9 

No                =0  

 

Internal validity - confounding (selection bias) 

14*. Was there adequate adjustment for confounding in the analyses from which 

the main findings were drawn? 

This question should be answered no if the effect of the main confounders was not 

investigated or confounding was demonstrated but no adjustment was made in the 

final analyses the question should be answered as no.  

Demographic 

confounds   =1 

Imaging 

Confounds  = 1 

Grey matter 

control whole 

brain           = 2 

Grey matter 

control ROI =1 

Brain behaviour 

confounds   =1 

Max            = 6 

No               =0  

Unable to 

determine    =0 

 

Power 

15*. As there are no studies with power analysis, did the sample appear to have 

sufficient power to detect a clinically important effect? 

 

Size of smallest 

MCI group 

A n5 – n10  = 0 

B n11–n15  = 1 

C n16–n20  = 2 

D n21–n25  = 3 

E n26–n30  = 4 

F n31+         = 5 
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Appendix 2: Context of secondary data and student’s personal role in identification of the 

research questions and analyses etc. 
  

As retrospective data was used in this thesis it is necessary to clarify the author’s personal and 

original input to the design of the study. The original study from which the MCI patient data was obtained 

was a within subjects design which only included the MCI patient group. This study only used the 

neuroimaging data and the patients’ disease severity scores. The reason why these patients have a full 

battery of neuropsychological data is because this is routinely collected clinically for assessment and 

diagnostic purposes. The site in which this data was collected is a specialist clinical and research facility 

and the patients provided consent for their clinical data to be used in future research, they also provided 

consent for their experimental fMRI data to be used for studies subsequent to the original experiments.  

It would be feasible to just use this patient group to look at the association between the DMN and 

neuropsychological cognitive impairment in abnormal ageing. However, in order to see how this is 

modulated by MCI, I decided that a control group of healthy age matched individuals was necessary. In 

addition, in order to understand how this is modulated by age, I also decided to select a younger control 

group. I selected the age matched and young control participants from a large volunteer database of 

neuropsychology and neuroimaging data which has been collated from many researchers over many 

studies and from participant drives. These participants are asked to undertake each neuropsychological test 

that comprises part of the patient diagnostic battery. The original study was a within subjects design which 

only included the MCI patient group. The context of the current thesis is the first time that these data have 

been put together in a study.  

In addition to choosing to undertake a cross sectional approach to the study design, I selected 

specific tests based on my hypotheses from a large battery of neuropsychological data that had been 

collected for the patients and participants. I could have chosen any number of neuropsychological 

domains to correlate with DMN connectivity, such as attention, executive function, working memory or 

visuospatial ability however, based on my review of the literature, I selected tests which measure episodic 

and semantic memory. Rather than looking at the relationship between the DMN and specific tests, I 

decided to create separate index scores devised from relevant components of certain tests in the battery, 

for episodic memory, semantic ability and executive function. In summary, whilst I was not involved in 

data collection, I was the first person to bring these participants together in this manner, I selected age 

matched and younger controls, I chose the cross sectional design so I could look at ageing as well as 

disease status and I made hypothesis driven and clinically relevant neuropsychological index scores. In 

addition, I chose the neuroimaging methodology, opting to take a region of interest hypothesis driven 

approach as opposed to a whole brain study.  Finally I used the literature to select the most salient region 
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of interest based on my hypotheses of neuropsychological performance in health and disease – the 

posterior cingulate cortex. 
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