
Atomistic Models of Magnetic Systems
with Combined Ferromagnetic and

Antiferromagnetic Order

JOSEPH BARKER

A Thesis Submitted for the Degree of Doctor of Philosophy

THE UNIVERSITY OF YORK

DEPARTMENT OF PHYSICS

September 2013



Abstract

There has long been an interest in the exploitation of novel magnetic behaviour
for practical applications such as magnetic storage devices. Some of the most
interesting dynamical behaviour occurs when a material contains both ferromagnetic
(FM) and antiferromagnetic (AF) characteristics. Many such systems have forgone
study due to practical difficulties of experimental observation of antiferromagnetic
order. In this work several systems of current interest which contain both AF and
FM order are studied. These materials and systems are used, or are candidates for,
technological applications, especially magnetic storage devices. The forefront in
this area is concerned with laser induce magnetisation reversal and there are many
unexplained phenomena, especially in ferrimagnetic and metamagnetic materials. A
combination of analytical and large scale numerical calculations are used, often with
comparison to experimental data where available. The approach used is generally
based around so-called atomistic spin dynamics, where the Landau-Lifshitz-Gilbert
equation, augmented with a Langevin term, is solved for each atomic moment. This
allows the description of magnetic materials at elevated temperatures and through
phase transitions. Semi-analytic formalisms are studied, comparing with atomistic
spin dynamics and micromagnetics, to inform multiscale modelling techniques. The
excitation of a localised mode an antiferromagnetic layer which is coupled to a ferro-
magnetic layer is studied. It is shown that this excitation leads to an enhanced damping
of the ferromagnet, an important consideration for the design and optimisation of spin
valves. The metamagnet FeRh which undergoes an antiferromagnetic-ferromagnetic
phase transition is also investigated. There is much debate about the origin of the
phase transition and a model is constructed in this work which demonstrates that an
all magnetic origin is possible if effective four spin exchange terms are considered.
This model is also capable of explaining the observed dynamics in femtosecond laser
heating experiments. Finally, the spin wave dynamics of the prototypical amorphous
ferrimagnet GdFeCo are considered. The thermally induced switching which has been
discovered in this material is explained as the excitation of a two-magnon state.
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CHAPTER 1

Introduction

1.1 Motivation

One of the primary uses for magnetic materials is for the storage of information in
computer devices. The increasing appetite for digital storage capacity has driven a
large part of the research in magnetism for the past 20 years. In general the aim is to
increase the information density of storage devices, so that a larger volume of data can
be stored on the same size of device every year. To overcome physical limitations on
storage density, new radical paradigms are needed periodically to change the way in
which magnetic materials are used to store the information reliably. The last major
change was the introduction of perpendicular media, where the orientation of the
magnetic poles storing the information was effectively changed by 90 degrees so that
smaller magnetic grains could be stored in a denser array.

Once again the limits of the current technology are being reached and without radical
change, it will not be possible to increase the data density of magnetic hard drives.
There is also now the competition of solid state hard drives which store information
using charge. Currently such devices are limited by the lithographic processes which
are used to create the circuits and solid state hard drives are considerably more
expensive than magnetic hard drives and have a limited lifetime, although solid state
devices have the advantage of speed and low power consumption. For magnetic hard
drives to remain relevant against such competition, they must continue to offer higher
storage densities and lower prices.

2
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Magnetic recording tri-lemma

Improvements in magnetic hard drives must continuously balance three competing and
contradictory requirements, a change in one aspect of the tri-lemma must be reconciled
with the other two facets1. The first of these requirements is that of longevity.
Magnetic hard drives must store information without corruption for long periods of
time, even when no power is being supplied, this is called non-volatile memory, and is
essentially the purpose of a hard drive within a computer. The competing processes
against this stability is thermal energy. Bi-stable magnetic systems can thermally
relax over the energy barrier which defines the orientation of the system. The energy
barrier which prevents thermal switching must be of a minimum height so that the
probability of thermal switching in a given time is low. In magnetic hard drives this
time scale is conventionally required to be ⇠ 10 years. The energy barrier utilised in
magnetic storage originates from the magnetic anisotropy energy of a material and the
probability of reversal follows the Arrhenius-Néel law

P = f0e
� �E

kBT (1.1)

where f0 is the attempt frequency (usually taken as 1 ⇥ 10

9s�1, �E is the anisotropy
energy barrier, kB is the Boltzmann constant and T is the temperature. The energy
barrier is approximately KV where K is the anisotropy per unit volume and V is the
volume of a magnetic grain. This leads to the second requirement, which is signal to
noise ratio (SNR). Information bits are stored on collections of magnetic grains. Each
collection must be made of enough grains that the transition between bits is quite sharp
so that the signal can be detected by the read head. This means that the grains must be
quite small compared to a bit, but because the energy barrier depends on the volume,
the anisotropy energy of the magnetic material must be higher if we reduce the size
of grains so that the storage density can be increased. This however conflicts with the
final aspect of the tri-lemma, write-ability. The maximum field that a write head can
generate is ⇠1.8T and this field must be sufficient to force the magnetisation over the
anisotropy energy barrier. If the anisotropy energy is too high then it will be impossible
to write information to the hard drive.

Hard drives have now reached the limit where the anisotropy energy required to reduce
the grain size is so great that it would not be possible to write the information. This has
led to a new paradigm known as heat assisted magnetic recording (HAMR). This idea is
centered on the fact that the effective anisotropy of a magnetic material is temperature
dependent. Therefore one can heat the magnetic grains upon writing, reducing the
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effective anisotropy, so making it possible to change the state with the write field. Upon
cooling the magnetic anisotropy recovers and so the thermal stability of the information
is ensured. The fundamental research behind HAMR is now mostly complete2 and the
implementation is underway3. So research has now turned to finding new ideas and
phenomena in magnetic materials to address densities and importantly, speeds, beyond
that which HAMR can provide. One of the most promising areas is that of all optical
magnetisation switching, where the writing would no longer require a write pole to
generate a field, but the laser itself could cause the switching. This research comes
from the area of sub-picosecond magnetism, where many novel experiments have been
performed, showing promise for data storage applications4.

1.2 Sub-picosecond magnetism

The pioneering work in the field of sub-picosecond magnetism was performed in 1996
by Beaurepaire et al.who demonstrated that Nickel could be significantly demagnetised
in less than one picosecond with the application of a 60 fs laser pulse (Fig. 1.1a)5. The
mechanism for this demagnetisation was well described in their original paper in terms
of three coupled thermal heat baths; lattice, electron and spin. It was proposed that the
laser primarily excites the electronic heat bath to extreme temperatures, with the spins
and lattice degrees of freedom coupling to this. This explanation has withstood the test
of time and is the accepted explanation of ultrafast demagnetisation on the picosecond
timescale.

In 2004 experiments using the Stanford Linear Accelerator (SLAC) were published
with the aim of finding the limit of deterministic switching in terms of short time, high
field pulses6. The authors used the magnetic field of an X-ray beam to create a radially
dependent magnetic field strength with a pulse duration of 2.3 picoseconds and applied
this to a CoCrPt granular medium. They found deterministic switching only to 1.7 T.
Beyond this the switching became randomised. The implied result is that for very short
timescales, high intensity magnetic fields excite non-uniform modes which means that
coherent reversal is no longer possible.

GdFeCo

Following this work, the group of Rasing at Radboud University in Nijmegen have
been leading the cutting edge of experimental research in sub-picosecond excitation
of magnetic materials. One of the early remarkable results from this group was the
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excitation of a high frequency precessional mode in DyFeO3. Intriguingly, the chirality
of the laser pulse also selected the phase of the mode7 (Fig. 1.1b). The result was
explained as the occurrence of a magnetic field induced within the material by the
laser, known as the inverse Faraday effect. The estimate of the size of such a field
was put at 5 T, a very large magnetic field. This result prompted further work in the
group to try an determine if the magnetic state of a material could be reversed with this
large induced field. In 2007 this aim was realised when Stanciu et al. demonstrated
helicity-dependent laser induced magnetisation reversal in GdFeCo using a 40 fs laser
pulse4 (Fig 1.1c).

1. Experimental observation of ultrafast demagnetization

Beaurepaire et al. were the first to use 60 fs laser
pulses to measure both the transient transmittivity and
the linear MOKE of 22 nm Ni films !Beaurepaire et al.,
1996", see Fig. 3. It was estimated from the transient
reflectivity that the electron thermalization time is about
260 fs and the electron temperature decay constant is
1 ps. In contrast, the spin temperature deduced from the
time dependence of hysteresis loops reached its maxi-
mum around 2 ps only. Thus, different electron and spin
dynamics were postulated. On the other hand, in the
following MSHG experiments by Hohlfeld et al., a simi-
lar electron thermalization time was obtained !280 fs",
but no delay between electron excitation and the loss of
magnetization was seen !Hohlfeld et al., 1997". In both
cases, the observed dynamics was much faster than what
could be expected on the basis of the spin-lattice relax-
ation time. In fact, ignoring a possible small difference
between electron and spin temperature, these results
showed that the excitation by an ultrashort laser pulse
leads to ultrafast heating of the electronic system. As a
result, the magnetization will decrease equally fast fol-
lowing its normal temperature dependence M=M!Te",
where Te is the electron temperature. In the two-photon
photoemission of Scholl et al., two different demagneti-
zation processes were observed, a fast one in less than
300 fs, and a very slow one around 500 ps which was
ascribed to the excitation of spin waves !Scholl et al.,
1997". Femtosecond demagnetization was also demon-
strated by Stamm et al. using XMCD !Stamm et al.,
2007".

While it has been generally accepted that the magne-
tization follows the electron temperature with a possible
delay between the electron excitation and the magnetic
breakdown of no more than 50 fs, questions arose about

the interpretation of the experimental results. For ex-
ample, is the magneto-optical response from a nonequi-
librium system indeed proportional to the magnetiza-
tion? A study on Cu/Ni/Cu wedges !Koopmans et al.,
2000" demonstrated that during the first hundreds of
femtoseconds the dynamical evolution of the Kerr ellip-
ticity and rotation do not coincide !see Fig. 4", breaking
down the proportionality between the magnetization
and the Voigt vector that is the basis of magneto-optics.
Such breakdown is indeed a consequence of the out-of-
equilibrium character of the electron system immedi-
ately after the femtosecond excitation. Only after the
electronic equilibration process can one reliably deduce
the change in the magnetization from changes in Fara-
day or Kerr rotation. Such arguments were used to cast
doubt on ultrafast !instantaneous" light-induced changes
in the magnetization !Koopmans et al., 2000".

Nevertheless, using laser pulses as short as 20 fs dura-
tion and carefully separating the dynamics of the diago-
nal and the nondiagonal elements of the time-dependent
dielectric tensor, it has been shown that a significant de-
magnetization can be obtained at a sub-100 fs time scale,
for example, in CoPt3 !Guidoni et al., 2002" !see Fig. 5".
Moreover, it has been shown by time-resolved photo-
emission that the exchange splitting between majority
and minority spin bands is affected at a similar time
scale !Rhie et al., 2003".

The breakdown between the magneto-optical re-
sponse and magnetization in ultrafast pump-probe ex-
periments has been also supported by ab initio calcula-
tion of the magneto-optical Kerr effect in Ni !Oppeneer
and Liebsch, 2004". By evaluating the complex conduc-
tivity tensor of Ni for nonequilibrium electron distribu-
tions, Oppeneer and Liebsch considered dichroic
bleaching and state-blocking effects. It was shown that
the conductivity tensor and therefore the complex Kerr
angle can be substantially modified so that the Kerr ro-
tation and ellipticity are no longer proportional to the
magnetization of the sample and the Kerr response at
ultrashort times can therefore not be taken as a measure
of demagnetization. For CoPt3, the role of dichroic
bleaching and state-blocking effects in ultrafast
magneto-optical pump-probe experiments has been veri-
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FIG. 3. Remanent MO contrast measured for a nickel thin film
as a function of time after exciting by a 60 fs laser pulse. The
results demonstrate ultrafast loss of the magnetic order of the
ferromagnetic material within a picosecond after laser excita-
tion. From Beaurepaire et al., 1996.

FIG. 4. Comparison of induced MO ellipticity !open circles"
and rotation !filled diamonds" for a Cu!111" /Ni/Cu epitaxial
film and Ni thickness and pulse energy as indicated. The inset
depicts the polar configuration with pump !1" and probe !2"
beams. From Koopmans et al., 2000.
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Ultrafast non-thermal control of magnetization by
instantaneous photomagnetic pulses
A. V. Kimel1, A. Kirilyuk1, P. A. Usachev2, R. V. Pisarev2, A. M. Balbashov3 & Th. Rasing1

The demand for ever-increasing density of information storage
and speed of manipulation has triggered an intense search for
ways to control the magnetization of a medium by means other
than magnetic fields1–5. Recent experiments on laser-induced
demagnetization6–8 and spin reorientation9 use ultrafast lasers as
a means to manipulate magnetization, accessing timescales of a
picosecond or less. However, in all these cases the observed
magnetic excitation is the result of optical absorption followed
by a rapid temperature increase. This thermal origin of spin
excitation considerably limits potential applications because the
repetition frequency is limited by the cooling time10. Here we
demonstrate that circularly polarized femtosecond laser pulses
can be used to non-thermally excite and coherently control the
spin dynamics in magnets by way of the inverse Faraday effect.
Such a photomagnetic interaction is instantaneous and is
limited in time by the pulse width (,200 fs in our experiment).
Our finding thus reveals an alternative mechanism of ultrafast
coherent spin control, and offers prospects for applications of
ultrafast lasers in magnetic devices.
The interaction of light with magnetized media is manifested

in various magneto-optical phenomena. A good example is the
Faraday effect, observed as a rotation of the polarization plane of
light transmitted through a magnetic medium11:

aF ¼
x

n
Mzk ð1Þ

where aF is the specific Faraday rotation,M is the magnetization, n
is the refractive index, k is the wave vector of light, and x is the
magneto-optical susceptibility, which is a scalar value in isotropic
media12,13. Various devices, such as magneto-optical isolators and
modulators, make use of large values of Faraday rotation in
transparent magnetic compounds.
Much less known is the inverse Faraday effect, where high-

intensity laser radiation induces a static magnetization M(0):

Mð0Þ ¼ x

16p
½EðqÞ£E*ðqÞ% ð2Þ

where E(q) and E*(q) are the electric field of the light wave and its
complex conjugate, respectively13–16. It follows from equation (2) that
circularly polarized light at frequency q should induce a magnetiza-
tion along the wave vector k. Note that symmetry considerations of
equation (2) indicate equivalence between photoexcitation by circu-
larly polarized light and action of an external magnetic field. More-
over, right- and left-handed circularly polarized waves should induce
magnetizations of opposite sign.
Equations (1) and (2) show that both these phenomena are

determined by the same magneto-optical susceptibility x
(refs 14, 15). In particular, in the case of the inverse Faraday effect,
x is the ratio between the induced magnetization and the laser
intensity. Therefore, optical control of magnetization is expected to

bemost efficient inmaterials with high values of the Faraday rotation
per unit magnetization. Another important property of the suscep-
tibility x is that it has no symmetry restrictions and is thus allowed in
all media, regardless of their crystallographic and magnetic struc-
tures. Moreover, the inverse Faraday effect does not require absorp-
tion, and is based on a Raman-like coherent optical scattering
process. This has the important consequence that the effect of light
on the magnetization is non-thermal and can be considered as
instantaneous because it takes place on a femtosecond timescale.
Indeed, if one stimulates an optical transition into a virtual state with
a strong spin–orbit interaction, the following relaxation into the
ground state may be accompanied by spin switching and re-emission
of a photon with a fixed phase shift and lower energy with respect to
that of the incident photon. In magnetically ordered materials, this
process is known as excitation of magnons by light17. Recent
theoretical work has indicated the possibility of laser-induced spin
reversal on a femtosecond timescale18. However, the experimental
demonstration of such non-thermal ultrafast optical control of
magnetization has remained an intriguing challenge until now.
The material of choice for our study was dysprosium orthoferrite

LETTERS

Figure 1 | Magnetic excitations in DyFeO3 probed by the magneto-optical
Faraday effect. Two processes can be distinguished: (1) instantaneous
changes of the Faraday effect due to the photoexcitation of Fe ions and
relaxation back to the high spin ground state S ¼ 5/2; (2) oscillations of the
Fe spins around their equilibrium direction with an approximately 5 ps
period. The circularly polarized pumps of opposite helicities excite
oscillations of opposite phase. Inset shows the geometry of the experiment.
Vectors dHþ and dH2 represent the effective magnetic fields induced by
right-handed jþ and left-handed j2 circularly polarized pumps, respectively.
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sents a viscous force with damping coefficient !; terms
dw!"" /d" and HD represent the restoring and driving
force, respectively; w!"" is a dimensionless function pro-
portional to the magnetic anisotropy energy; #0 is the
frequency of the lower antiferromagnetic mode.

A short magnetic field pulse should trigger an inertial
spin reorientation between two magnetic phases. To ob-
serve this, however, the pulse must be shorter than the
characteristic time of the magnetic eigenmodes, a few
picoseconds in the case of an antiferromagnet. Such
short pulses can be provided only by the inverse Faraday
effect.

To observe such inertial motion of spins in HoFeO3,
pump-probe experiments were performed with 100 fs
circularly polarized laser pulses. The pump-induced spin
dynamics was monitored by detecting the Mz compo-
nent of the magnetization via the magneto-optical Fara-
day effect in the probe pulse, measured as a function of
delay between the pump and probe pulses. The results
of such time-resolved measurements were in excellent
agreement with the results of simulations and thus dem-
onstrated the inertial motion of antiferromagnetically
coupled spins !Kimel et al., 2009".

4. All-optical magnetization reversal

In Sec. IV.G we showed how laser-induced heating of
GdFeCo in an external magnetic field, induced a subse-
quent ultrafast reversal !switching" of the magnetization.
As is obvious from the previous sections, circularly po-
larized femtosecond laser pulses act as equally short
magnetic field pulses via the inverse Faraday effect. This
naturally leads to the question: Can such optically in-
duced field pulses be used to completely reverse the
magnetization of a magnetic domain?

The experiments were performed by placing a sample
of the GdFeCo magnetic alloy under a polarizing micro-
scope, where domains with magnetization “up” and
“down” could be observed as white and black regions,

respectively. To excite the material, amplified pulses
from a Ti:sapphire laser were used at a wavelength of
$=800 nm, repetition rate of 1 kHz, and a pulse width
of 40 fs. The laser pulses were incident normal to the
sample surface, so that an effective optically generated
magnetic field would be directed along the magnetiza-
tion, similar to a conventional recording scheme.

In order to unambiguously determine whether excita-
tion by a single 40 fs laser pulse is sufficient to reverse
the magnetization, the laser beam was swept at high
speed across the sample so that each pulse landed at a
different spot; see Fig. 44. One can see that each of the
%+ pulses reversed the magnetization in the black do-
main but did not affect the magnetization of the white
domain. The opposite situation is observed when the
sample is exposed to %− pulses. Thus, during the pres-
ence of a single 40 fs laser pulse, information about the
photons’ angular momentum is transferred to the mag-
netic medium and subsequently recording occurs. These
experiments unambiguously demonstrate that all-optical
magnetization reversal can be achieved by single 40 fs
circularly polarized laser pulses without the aid of an
external magnetic field.

As a simple illustration of optomagnetic recording it is
shown in Fig. 45 how optically written bits can be over-
lapped and made much smaller than the beam waist by
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FIG. 43. !Color online" Noninertial and inertial scenarios to
transfer a point mass over a potential. The noninertial mecha-
nism !above" requires a continuous driving force that pulls the
mass over the potential barrier. A similar scenario is realized
in magnetization reversal via precessional motion in ferromag-
nets. In contrast, in the inertial mechanism !below", during the
action of the driving force the coordinate of the particle is
hardly changed, but the particle acquires enough momentum
to overcome the barrier afterwards. From Kimel et al., 2009.
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FIG. 44. The effect of single 40 fs circular polarized laser
pulses on the magnetic domains in Gd22Fe74.6Co3.4. The
domain pattern was obtained by sweeping at high-speed
!#50 mm/s" circularly polarized beams across the surface so
that every single laser pulse landed at a different spot. The
laser fluence was about 2.9 mJ/cm2. The small size variation in
the written domains is caused by the pulse-to-pulse fluctuation
of the laser intensity. From Stanciu, Hansteen, et al., 2007.
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FIG. 45. !Color online" Demonstration of compact all-optical
recording of magnetic bits. This was achieved by scanning a
circularly polarized laser beam across the sample and simulta-
neously modulating the polarization of the beam between left
and right circular. From Stanciu, Hansteen, et al., 2007.
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Following this discovery, many researchers, both experimental and theoretical, have
been attempted to shed light on what happens to magnetic systems in the sub-
picosecond regime. Ostler et al. then made the remarkable discovery that no external
magnetic field (from the laser or otherwise) was required to explain the reversal
in GdFeCo9. The reversal was shown to be deterministic both by modelling and
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experiment. A deterministic switching in a uniaxial magnetic system by heat alone
is both completely unexpected and beyond any existing explanation of magnetism.
This series of discoveries in GdFeCo has stimulated much of the work in this thesis,
especially with regard to the analysis of spin waves during laser heating.

FeRh

With femtosecond laser systems becoming more common, experiments have also been
performed on other interesting materials. One of the more novel examples is FeRh.
It has long been known that FeRh has an AF-FM phase transition with temperature,
but Ju et al. showed that FM order could be generated in less than a picosecond
by apply a 100fs laser pulse10. Such a fast transition between AF and FM origin
suggests a magnetic origin to the phase transition rather than originating from the
lattice expansion as previously believed. In FeRh also, attention was now paid to the
microscopic mechanisms which cause this behaviour.

All optical recording has the potential to extend magnetic storage technology beyond
the current limits. Crucially, because no applied field is required, the limit of the write
pole field no longer exists. With a magnetic write head, the stray magnetic fields must
be carefully managed to avoid altering adjacent bits of information. The fact that no
write pole is required also could simplify the design of write head transducers, greatly
simplifying the manufacture of hard rives, thus reducing cost.

1.3 Modelling Magnetic Materials

A large number of different models exist for magnetic materials. This is because
often the behaviour of magnetic materials is very different on differing length and time
scales. The origin of magnetic behaviours can also differ between materials. Recently
atomistic scale modelling has become a very active area of research as people wish to
investigate fast time scale, finite temperature effects in magnetic materials.† Research
in this area aims to answer both fundamental questions about the fast timescales of
magnetic processes and provide technological advances in areas such as magnetic
memory storage.

On the smallest length scales, around a few angstroms, magnetism can be modelled
within a quantum mechanical framework such as density functional theory (DFT) or

†See for example refs.11–15
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Korringa-Kohn-Rostoker scattering (KKR). These techniques allow one to calculate
the magnetic behaviour of materials arising from the electronic wavefunction. Such
first principles techniques are useful for understanding the origin of magnetism within
a given material and calculate magnetic moments and fundamental properties such
as the exchange energy or anisotropic energies. The limit of such first principal
techniques is that they can only be applied to small periodic unit cells or small finite
collections of atoms.† Furthermore, dynamic and finite temperature effects cannot
easily be included in such formalisms, especially if one wishes to consider non-
equilibrium scenarios.

Beyond a first principles approach, one may consider models of an atomistic scale
where model dimensions are measure in nanometres. These include models such as the
Hubbard model, Ising model and Heisenberg model. At this length scale we consider
discretized atomic sites and the energetic considerations of a moment associated with
each atomic site. Due to the simplified Hamiltonians employed in these models, the
statistical behaviour of large numbers of moments can be calculated. Techniques also
exist to include thermal effects in these models and in some cases an equation of
motion can be written for the moment. The statistical ensemble of many atomic sites
allows macrospin thermodynamic variables to be calculated and it is possible to model
magnetic phase transitions.

The largest length scales use a continuum approach, essentially solving Maxwell’s
equations to determine the magnetic state dependent on a materials geometry. This
is known as micromagnetics and is good on length scales of tens of nanometres to
micrometres. The limiting factor here is that the long wavelength approximation
does not allow high temperature effects to be modelled. Similarly, non-equilibrium
dynamics cannot be reproduced on short length and time scales. Overcoming such
limitations in micromagetics is an active field of research. Approaches such as the
Landau-Lifshitz-Bloch equation have been shown to be accurate for finite temperature
and non-equilibrium scenarios despite modelling materials using a macrospin of
dimensions much greater than an individual atomic site17,18. On the same length
scale as micromagnetics there are also techniques which allow the modelling of very
long term behaviour. Kinetic Monte-Carlo allows one to assess the probability of the
macroscopic magnetisation of particle moving between energy minima on very long
time scales and at finite temperatures19. While not a true dynamic formalism this does
allow access to long time regimes which cannot be assessed with any other modelling
technique.

†For example Gruner [16] does large scale calculations with 561 atoms.
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In studying the sub-picosecond laser excitation of magnetic materials it is atomistic
spin dynamics which is the most appropriate approach, due to the large temperatures
and non-equilibrium regimes that are accessed. Work by Schellekens and Koopmans
has shown that this approach is well justified from a theoretical point of view20. They
compare this approach with a band model approach21,22, and find that the atomistic
dynamics are the dominant contribution to the demagnetisation.



CHAPTER 2

Atomistic Spin Dynamics

To model dynamic, finite temperature magnetic systems the most common approach is
that of atomistic spin dynamics (ASD). This classical approach lies between quantum
mechanical first principles methods and the continuum approach of micromagnetism.
By using a canonical ensemble of classical spin vectors, coupled by the Heisenberg ex-
change interaction, and solving their equation of motion, finite temperature statistical
systems can be solved without the need to calculate the entire partition function. ASD
starts on the classical Heisenberg model, where the quantum mechanical exchange
interaction is reduced to a pairwise interaction between classical spin vectors which
rotate about the unit sphere rather than being quantised in size or direction. Even
so, the link between the quantum and classical Heisenberg models is strong as both
regimes share the same equation of motion. The Heisenberg model is often augmented
with additional terms to model other effects such as relativistic crystal field interactions
or the dipole-dipole interaction between the classical moments. Such models are called
extended Heisenberg models.

2.1 The Origin of Atomic Magnetic Moments

Atomistic magnetic moments originate from two sources, the orbital motion of
electrons about atomic nuclei and the intrinsic spin of the electrons. The orbital
contribution to the moment is created because of the movement of the electronic
charge about the nucleus. A current loop such as this induces a magnetic moment,
however in solid state materials and particularly metallic systems, this contribution is
negligible. The delocalisation of the electrons and the strong electrostatic interactions
with the crystal field reduces the orbital contribution significantly, this is known as

9
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quenching.23,24. The majority of the observed magnetic moment in bulk materials
results from the intrinsic spin of the electrons. In insulating materials an atomistic
spin moment forms when there is an excess of spin up (or down) electrons due to the
Pauli principle. This effect is largest in 3d and 4f species due to the large number
of states available in the outer, partially filled orbitals (Fig 2.2). However in metallic
systems the largely delocalised nature of the electronic wavefunction means that we
cannot easily describe the system in terms of discrete orbitals. This is apparent if
one considers the magnetic moment per atom of a material such as Fe. According to
the Pauli principle and Hund’s rules there should be six unpaired 3d electrons per Fe
atom, leading to a large moment which is an integer multiple of the Bohr magneton.
Experimentally Fe is found to have a moment of 2.21µB which is both smaller and
non-integer. The simplest model which takes into account the band structure of such
materials is the Stoner model where the Weiss field from the adjacent atoms in the
lattice causes a splitting of the electron band structure24,25. This leads to a difference in
the integrated density of states of the spin-up and spin-down states at the Fermi energy
(Fig. 2.1). The difference in these gives the net moment, thus one obtains a moment
which is not an integer of µB but is instead defined as

m = µB

�
N"

e

�N#
e

�
(2.1)

where N"
e

and N#
e

are the density of states of each spin channel integrated up to the
Fermi energy.

This still leaves the difficult concept of reconciling the band picture of magnetism
with the localised approximation we must use for atomistic spin dynamics so that the



The Origin of Atomic Magnetic Moments 11

E
n
er
gy

1s

2s

2p

3s
3p

4s

4p

3d

magnetism from the spin degrees of freedom can be discretised into classical spin
vectors. To do this an adiabatic approximation must be taken to separate the timescales
of magnetism into fast and slow processes. One can consider an atomic sphere with
a volume, ⌦, within which we attribute all of a wavefunctions spin moment, s, to a
particular atomic site. We need to know the timescale on which it is valid to say the
magnitude of the total magnetic moment is constant within this sphere. For a moment
to be persistent on some time scale, the correlation time of the spin orientation must be
shorter than the timescale on which the classical spin vectors move within the classical
Heisenberg model. Gyorffy, Pindor, Staunton, Stocks & Winter [26] study this issue
in detail and give approximate values of 1015 Hz for the intersite hopping frequency
of electrons and ⌫ = 10

13 Hz as a typical spin-wave frequency. Thus the moment
attributed to an atom is written as the time and space integral within which electrons
typically persist within the defined atomic sphere27

S(t) =
⌫

2

Z

⌦

d

3r

Z
t+

1
⌫

t� 1
⌫

dt0s(r, t0). (2.2)

From here, the term spin will generally refer to the atomic magnetic moment S(t). In
the context of atomistic spin dynamics, it is important that we do not draw strong
conclusions on timescales faster that the order of 10 femtoseconds beyond which,
electronic interactions will require a more rigorous treatment such as the calculation
of spin transport21. One must also keep in mind that the lack of spin quantisation in
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the ASD approach does not necessarily describe all magnetic materials well and other
approaches may be appropriate such as the Hubbard Model28.

2.2 The Exchange Interaction

Reducing our view of magnetism to isolated classical spin vectors we must consider
the interactions which exist between such moments. While we have discretised the
system with the atomic sphere approximation, we must include certain effects that
are quantum mechanical in origin which cause interactions across the system. In fact,
ordered magnetism is essentially quantum mechanical in origin and the most important
effect we must include is that of exchange.

The Origin of Exchange Energy

For ordered magnetic states to exist at all, it is necessary that the Coulomb energy
between two electrons on an atom is greater than the kinetic energy (hopping) of
electrons moving between atoms. If this were not the case then electrons are free to
move from spin-up to spin-down states, resulting in a nonmagnetic metal. The direct
exchange of electrons between two atoms can be calculated from the exchange matrix
elements

J
ij

=

Z
�⇤
(r � r

i

)�(r � r
j

)

e2

|r � r0|�
⇤
(r0 � r

j

)�(r0 � r
i

)drdr0 (2.3)

where �⇤
(r � r

i

)�(r � r
j

) is the overlap charge density, essentially the charge in the
overlap of electronic wave functions from adjacent atoms. These matrix elements
multiply the fermion field operators (a†, a) involved in the exchange of electrons
between atomic sites

H =

1

2

X

ij

J
ij

⇣
a†
i"a

†
j"ai"aj" + a†

i#a
†
j#ai#aj# + a†

i"a
†
j#ai#aj" + a†

i#a
†
j"ai"aj#

⌘
(2.4)

This can be cast in terms of spinors to give the Coulomb interaction energy29

E = �1

4

X

ij

J
ij

(1 + �
i

· �
j

) (2.5)

It is important to note however that J
ij

may only ever be positive, which means that
direct exchange gives rise to ferromagnetic ordering only (Fig. 2.3). Antiferromagnetic
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ordering arises due to virtual hopping between sites (a perturbation) where one must
consider both the direct Coulomb interaction, U , between the electrons and hopping
matrix elements b

ij

of the electrons

b
ij

=

Z
�⇤
(r � r

i

)H�(r � r
j

)dr (2.6)

The proper perturbation treatment of this integral gives the virtual hopping energy29

E =

1

2

X

ij

|b
ij

|2
U

(�
i

· �
j

� 1) (2.7)

Equations (2.5) and (2.7) can be combined to give the Heisenberg Hamiltonian

HHeisenberg = �
X

ij

J
ij

S
i

· S
j

(2.8)

where J
ij

is the effective exchange energy between classical spin vectors i and j.
This energy can be positive or negative, leading to ferro or antiferromagnetic ordering
respectively (Fig. 2.3). As a point of fact, the Heisenberg term is the first order
interaction energy between spins and higher order interactions can be derived by
considering the interaction of more than two electronic wavefunctions. In the majority
of magnetic systems, the higher order terms are orders of magnitude smaller in energy
than the Heisenberg term. However there are some materials30, where higher order
interactions must be considered to give the correct ground state and dynamics. In
chapter 6, we will consider a Hamiltonian for FeRh with a higher order effective four



The Exchange Interaction 14

spin interaction.

Magnetisation

In experiments it is usually not possible to resolve moment at an atomic level. Instead
what is observed is the magnetisation

M =

1

N

NX

i

S
i

(2.9)

At non zero temperatures the overall order of the system is reduced. This is due
to the competition between the thermal energy and the exchange energy, leading to
disorder in the spin lattice. In an antiferromagnet it is the staggered magnetisation
which gives the measure of order. This is calculated as the difference between the
sublattice magnetisations and is called the Néel vector

L =

1

N
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NAX

i

SA

i

� 1
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NBX

i
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i

(2.10)

As the thermal energy increases the order parameter reduces continuously until it
reaches zero. This point is called the Curie temperature (or Néel temperature for AF)
as illustrated in figure 2.4. This is a second order phase transition and the magnetic
system now becomes paramagnetic because the thermal energy exceeds the exchange
energy.

The application of femtosecond lasers to magnetic materials causes a rapid heating
which may be above the Curie temperature. This is why ASD is an appropriate method
to be used, as the micro-canonical ensemble of the spin degrees for freedom allows
a good approximation of phase transitions such as the ferromagnetic-paramagnetic
transition. Correctly modelling the behaviour close to this phase transition is vital
for the accurate description of ultrafast thermal magnetisation processes.

The Generalised Heisenberg Hamiltonian

The Heisenberg Hamiltonian can be written in a more general sense by including the
possibility of the exchange between atomic sites being non-isotropic. The exchange
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Hamiltonian can then be written in terms of a general exchange energy tensor

Hexc ({Si

}) = �1
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i 6=j
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J↵�
ij
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j

(2.11)

where J↵�
ij

is the where ↵, � = x, y, z. The exchange tensor may be broken down
into isotropic, symmetric anisotropic and antisymmetric anisotropic components. The
isotropic part determines the relative orientation of the spins. A positive value leads to
ferromagnetic order and a negative value gives antiferromagnetic order.

J
(iso)
ij

=

1

3

Tr(J
ij

) (2.12)

The symmetric anisotropic component is non-zero when there is some favourable
direction of alignment of spins, e.g. the z-components may be coupled more strongly
due to a two-ion exchange.

J
(sym)
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⇣
J
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I (2.13)

The antisymmetric anisotropic component implies a canting of spins. The origin of
this is usually the Dzyaloshinsky-Moriya interaction which is large in some magnetic
materials.

J
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ij

=

1

2

⇣
J
ij

� (J
ij

)

T
⌘

(2.14)

Anisotropic exchange can play an important role in some materials such as FePt, where
the layered L10 structure leads to a two-ion anisotropy and an anisotropic exchange
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tensor.

2.3 Magnetic Anisotropy

The exchange interaction determines the relative alignment between spins but does
not give any preferential spatial orientation. Yet it is usually the case that magnetic
materials have an anisotropic energy landscape in space. The origins of anisotropic
terms are numerous and generally the energy contributions are orders of magnitude
lower than the exchange energy in ordered magnetic systems. However spatially
anisotropic energies determine the ground state to which the magnetisation will
relax which is an important property for the technological applications of magnetic
materials. In magnetic recording systems it is the bistable orientation of magnetisation
which encodes the binary data which is stored.

Magnetocrystalline Anisotropy

Relativistic effects within the crystal lattice lead to an energy landscape which is not
homogeneous in space, so it is energetically favourable for the atomistic moments
to align to certain directions within the crystal lattice. In bulk materials the ‘easy’
lowest energy directions usually lie along symmetries in the lattice. In thin films this
symmetry is often broken by strains present due to the substrate or capping layer. This
can lead to a uniaxial contribution where the magnetisation has two well defined ‘easy’
directions. The crystal lattice can also contain exchange between different species
leading to an apparent anisotropy as is the case with two-ion and super-exchange
system.

The first order anisotropy interactions (uniaxial or easy plane) can be written as a self
interaction term

Hanistropy = �
X

i
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i

K↵�

ii

S�

i

(2.15)

where the anisotropic self interaction tensor is written for the unit vector axis ê as
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Writing the energy as a self interaction in this way allows the easy combination with
Eq.(2.11) when implementing ASD as shown in chapter 3.
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Shape Anisotropy

One of the most most complex effects in magnetisation dynamics which effects long
length and timescales is that of shape anisotropy. To obey Maxwell’s equations,
the magnetic field induced from the magnetisation of a magnet must not diverge, in
other words it must be flux closed. In mesoscopic magnetic materials it becomes
energetically favourable for this flux closure to cause the formation of oppositely
polarised magnetic domains. In smaller magnetic nanoparticles the energy required
for a domain wall (the intermediate region of spin reorientation between domains) to
form is usually large enough that the nanoparticle will retain a single domain wall but
still the spin moments will align with lines of flux in the material. In the atomistic
picture this can be expressed to a good approximation via a dipole-dipole interaction

Hdipole = �µ
s

µ0

4⇡a3

X

i 6=j

3 (S
i
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ij

) (ê
ij

· S
j

)� (S
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j

)

r3
ij

(2.17)

where r
ij

is the distance between spins i and j, ê
ij

is the unit vector and a is the lattice
parameter. In atomistic dynamics and especially on the sub-picosecond timescale, this
energy term is often ignored. The frequency of dipole-dipole interactions is orders of
magnitude lower than the exchange contributions and so the effect of dipole-dipole
interactions on very short timescales and at high temperatures is negligible.

2.4 Equation of Motion

Landau-Lifshitz Equation

The equation of motion for a classical spin vector was first written down by Landau
and Lifshitz31,32. It follows from the very simple physical argument that a moment in
an applied field will precess about the field. The frequency of precession in this case
is determined by the gyromagnetic ratio of an electron, � = 1.76 ⇥ 10

11 rad·s�1T�1.
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@t
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i

⇥H
i

) (2.18)

The effective field, H
i

, is considered as the effective field felt locally by a spin on a
site, i. This can be found from the relation

H
i

= �@H
@S

i

(2.19)



Energy Dissipation 18

where one must remember that the Hamiltonian is a function of {S
i

} thus equation
(2.18) is a coupled set of equations through the effective field.

2.5 Energy Dissipation

One of the main advantages of atomistic spin dynamics is the ability to represent
the effects of temperature, something which is very difficult to do from an ab-initio
or micromagnetic approach. When applying thermal energy to a system, we must
remember that this is not an isolated, closed system. There are extra degrees of freedom
within materials which we do not usually model in ASD but the energy dissipation to
these must be accounted for. This damping can be split into two groups; direct and
indirect27.

Direct damping is the energy transfer to external degrees of freedom such as phonons.
Indirect damping results from energy transfer occurring within the magnetic system.
This is the excitation of spin waves, which in themselves act as an energy reservoir.
The common energy transfer channels are shown in figure 2.5.
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Landau-Lifshitz-Gilbert (LLG) Equation

In ASD energy dissipation or damping is usually included empirically, by the inclusion
of a damping term into the Landau-Lifshitz equation (2.18). There are several different



Energy Dissipation 19

ways in which such damping can be included, the most commonly used was written
by Gilbert to be valid for both high and low damped regimes34,35.

The damping term may be included in a very general way by the inclusion of a
Rayleigh dissipation functional into the Lagrangian of the system35.
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�
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where ⇤

ij

(r, r0) is the dissipation tensor which is non-local in general. However, due
to the inability to measure anisotropic or non-local damping experimentally, it is usual
to simplify the dissipation to a local scalar. It is interesting to note that there have
been recent advances in the calculation of the dissipation tensor from first principle
techniques36–39. In the future it may be possible to improve the ASD modelling
and indeed multiscale modelling by using such techniques with a fully parameterised
dissipation tensor in the ASD equation of motion.

In this work we consider the usual case of scalar Gilbert damping which can be written
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This equation can be expanded into what is commonly called the Landau-Lifshitz-
Gilbert equation

@S

@t
= � �

(1 + ↵2
)µ

s

(S⇥H+ ↵S⇥ S⇥H) (2.22)

where ↵ is the dimensionless Gilbert damping parameter. This parameter is material
dependent but is often found to be quite small, of the order of 0.001. In some materials
it can be much larger, for example in FePt, a technologically important material, ↵ =

0.1 and in FeRh, a metamagnet, which will be discussed later in this thesis, some
measurements give ↵ = 0.3. Although it is important to note that the value of ↵

obtained from experimental measurements can vary depending on the technique used,
the reasons for this are still under scientific debate.



CHAPTER 3

Implementation

The practical implementation of atomistic spin dynamics contains many interesting
problems in itself. For any given problem there are different computational solutions
where often there is a trade-off between computational efficiency and the ability to
perform calculations in a very general way. Traditionally, long time scale atomistic
simulations have been very computationally expensive due to the short time steps
required for numerical stability of the underlying stochastic differential equation. Here,
atomistic spin dynamics are implemented on a graphical processing unit (GPU), a
type of inexpensive but extremely powerful vector processor. The performance this
implementation provides has allowed much of the work presented in this thesis to
become tractable where previously the calculation time would have been prohibitive.
This section details how atomistic spin dynamics have been implemented in a
very general but efficient way for computation on either a conventional CPU or a
GPU.

3.1 The Landau-Lifshitz Langevin Equation

One of the main advantages of simulations on an atomistic scale is that the statis-
tical ensemble of spins allows accurate sampling of the partition function even for
finite temperatures. In more macroscopic approaches such a micromagnetics, the
exchange approximation is used and spins are considered co-linear on a length scale
proportional to

p
K/J . At high temperatures, such an approach is invalid because

the magnetisation of each discrete volume cannot decrease. Thus for the temperature
regimes accessed by laser heating, an atomistic approach is well suited. In Monte-
Carlo simulations on an atomistic scale, the sampling of microstates is weighted by a

20
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Boltzmann factor which accounts for the thermal energy. i.e. Monte-Carlo moves are
accepted with a probability

P = exp

✓
��E

kBT

◆
(3.1)

where �E is the energy difference before and after the trial move, kB is the Boltzmann
constant and T is the temperature in Kelvin. However, Monte-Carlo approaches
do not give the dynamics of processes where the inclusion of thermal energy is
complicated because it is the resultant trajectories which must sample the Boltzmann
thermal distribution. One of the most common, empirical methods of including thermal
effects into dynamical equations is the use of a Langevin equation. This adds thermal
perturbations to the forces in the equation of motion approximating that the dynamics
of the heat bath are unimportant on the time scale of the dynamics. With this separation
of time scales it is only the statistical properties which are important40. The Langevin
equation is written into the field term of each spin as

H
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i
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where '(t� t0) is a memory kernel describing the autocorrelation function of the spin
with respect to time. This memory acts with a strength ⌘ and ⇠ is a stochastic term
which represents the agitating thermal forces. On short time scale the spin dynamics
are most effected by the electron heat bath and the separation of time scales between
atomic moments and electron dynamics has already been made in the Heisenberg
model. From the central limit theorem the stochastic term, ⇠, can be approximated
as a white noise term (uncorrelated in time and space) with a strength determined from
fluctuation dissipation theory41 with moments
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T⌘'(|t� t0|)�
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�
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(3.3)

where i and j are lattice sites; a and b are Cartesian components. The first moment
being zero means that there is no directional bias in the stochastic term. In the second
moment the delta function �

ij

defines the stochastic term to be local, so the thermal
perturbation on any given lattice site is uncorrelated with respect to the other lattice
sites. This is an approximation because only spin degrees of freedom are considered
and no attempt is made to simulate the phonon or electronic systems which may cause
spatial correlations between lattice sites. The delta function �

ab

defines the stochastic
term to be diagonal, that is to say there is no correlation between the spin components.
While it is possible that the thermal noise is correlated between Cartesian components,
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the difficulty in measuring such an effect means there has been no study of this, also
indicating that such effects are small. The coupling constant ⌘ is a single variable
encapsulating the strength of coupling between the spin degrees of freedom and the
effective external heat bath degrees of freedom. The memory convolution is non-linear
in the equation of motion and therefore allows energy dissipation and ⌘ is a damping
constant. From the Langevin equation (Eq.(3.2) and (3.3)) an equation can be derived
with coloured noise, meaning the memory kernel '(t� t0) has some time dependence.
In the work presented the white noise limit will be used, which reduces the memory
kernel to the Markovian limit '(t � t0) = �(t � t0). Including the field from the
Langevin equation into the Landau-Lifshitz equation (2.18), the LLG equation (2.22)
is recovered, where now the effective field felt by a spin includes the stochastic term
⇠(t). This is called the Landau-Lifshitz-Gilbert Langevin equation (LLG-L).

Mathematically, white noise is generated by a Wiener process41 which is simulated
numerically by generating pseudo-random numbers from a Gaussian distribution of
width

� =

s
2↵kBT

�µ
s

�t
(3.4)

The inclusion of the time step �t on the denominator is due to the inclusion of the
stochastic term within the effective field. A Wiener process in fact, scales with time
as

p
�t but numerical integration as discussed in the next section already includes a

factor �t so after the integration the scaling of the Wiener process will be correct with
the moments of the random variables corresponding to Eq. (3.3) where '(t � t0) =

�(t� t0).

The Ito-Stratonovich Dilemma

In the field of stochastic calculus, there are two main interpretations of integration,
Ito and Stratonovich calculus. The difference between these is in the choice of where
intermediate points are chosen along the path of integration. Considering an integral
as the limit of a series of Riemann sums
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where ⌧
i

are the intermediate points t
i�1  ⌧

i

 t
i

, then the result is dependent on the
choice of ⌧ because the continuous random process is being sampled at different points
in time41. In physics it is most common to use the Stratonovich interpretation which



The Landau-Lifshitz Langevin Equation 23

samples the random process at the starting point of each step. Using this interpretation
means stochastic integration is treated in a similar way to ordinary integration (with a
Riemann integral) and important in the physical sense is that causality is implied and
obeyed. The Ito interpretation involves sampling the random process at the midpoint
and usually results in a drift term which is not present in the Stratonovich solution. In
the case of atomistic spin dynamics it has been shown that as long as the spin vector
is of a conserved length, the Ito and Stratonovich solutions coincide42. This is because
in a Heisenberg model there can be no drift term in the solution meaning that the two
stochastic integrals coincide for both interpretations. Therefore this dilemma needs
consideration only in situations where the length of the spin vector is allowed to change
which is not considered in this work although has been considered by others43.

The Heun Method

One of the simplest integration schemes which can be applied to the stochastic LLG-L
equation is the Heun scheme. In fact, the Heun scheme is derived for deterministic
ODEs (see Kloeden & Platen [44, p.487]) but for SDEs the extension is trivial due
to its equivalence to the second order Runge-Kutta scheme which does have a form
derived for SDEs45. In the literature it has become common place to refer to the Heun
method for the integration of SDEs also. Two trial steps are made, one from the initial
state and a second from an Euler step (Fig. 3.1). The average of the two results gives
the result.
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@t
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There are several important considerations for the application of the Heun scheme.
First is that the effective fields He↵ must be updated for both the prediction and
correction steps. However by definition the stochastic term for both of these
calculations must be the same. The Heun scheme is non-conservative, meaning the
numerical error in the integration leads to an artificial drift in the length of the spin
vectors. It is important both for numerical stability and to represent the Heisenberg
Hamiltonian correctly, that |S

i

| = 1, therefore after each integration step the spin
magnitude must re-normalised to unity.
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Modelling Laser Heating

In this work the ability to model the heating effect of femtosecond laser pulses is
required. A large amount of energy is deposited into the material in a very short space
of time and so the different heat reservoirs are pushed out of equilibrium. The heat
reservoirs of most relevance are those of the spin, electron and phonon systems. The
spin heat bath is directly simulated by the ASD modelling. Energy is stored in spin
wave modes which vary with time and equilibrate with the other thermal reservoirs
via the stochastic fields and Gilbert damping. The electron and phonon heat baths are
not directly simulated but the temperature of the electronic and phonon heat baths can
be modelled in a so-called two-temperature model, where heat is initially deposited in
the electron heat bath from the laser and then equilibrates thermodynamically with the
phonon heat bath46,47. This is described by

C
e

dT
e

dt
= �G

ep

(T
e

� T
p

) + P (t) (3.8)

C
p

dT
p

dt
= G

ep

(T
e

� T
p

) (3.9)

Where T
e

and T
p

are the electron and phonon temperatures, C
e

and C
p

are the
heat capacities and G

ep

is the electron-phonon coupling. The value of G
ep

strongly
determines the rate at which thermal energy is dispated from the electron system to
the phonon heat bath. The electron heat bath is assumed to have a much smaller
heat capacity than the phonon heat bath, therefore on short time scales the electron
temperature can rapidly increase with the application of a laser pulse as shown in
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Fig. 3.2a. The spin system is effected most strongly by the electronic temperature on a
picosecond time scale48, therefore in simulations with a laser heat pulse spin system is
coupled to the electron temperature, which in turn is connected to the phonon system
(Fig. 3.2b).
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3.2 Interactions in Crystal Lattices

Atomic spin simulations are usually restricted to crystal lattices. Therefore it is
desirable to describe such lattices and the interactions between lattice sites with ease.
The definition of lattice vectors and motifs can be used to represent the lattice as a
set of integer four vectors49 . This allows interaction matrices to be calculated with
ease by integer operations which are much more efficient than real space vectors
translations.

The set of lattice vectors a,b and c can be defined in a matrix

L =

0

B@
a0 a1 a2

b0 b1 b2

c0 c1 c2

1

CA (3.10)

The positions of a lattice site r
i

within space is now given by

r
i

� p
n

= Lq
i

(3.11)
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where q is a set of integers and p is the position of a lattice site within the unit cell.
Making q

i

the subject, any lattice site can be mapped to an integer unit cell space.

q
i

= L�1
(r

i

� p
n

) (3.12)

Thus any lattice site can now be defined by an integer four vector

v
i

=

0

BBBB@

q
i,0

q
i,1

q
i,2

n

1

CCCCA
(3.13)

where n enumerates the lattice site within the unit cell, associating it with a certain
value of p.

Interactions between lattice sites can now be defined in real space vectors between
numbered sites within the motif. Application of the inverse lattice vectors to the
interaction vectors gives the integer translation vector q and n must be specified.

The Interaction Matrix

The interactions between lattice sites can be written in the form of an interaction matrix
(W

ij

) which is composed of 3 ⇥ 3 blocks of each interaction tensor (Eqs. (2.11) and
(2.15)). This gives a 3N⇥3N matrix which describes the tensorial interaction between
any two spins.

W
ij

= {J
ij

}+ {K
ii

} (3.14)

Using such a matrix the field on each site can be calculated easily from the matrix
vector product

H
i

=W
ij

S
j

(3.15)

where H
i

and S
j

are vectors of length 3N . Note thatW
ij

is symmetric only if the spin
and field vectors are ordered by index and then component, i.e.

({S
j

}) = (Sx

0 , S
y

0 , S
z

0 , · · · , Sx

N�1, S
y

N�1, S
z

N�1) (3.16)

Doing so means that only one half of the interaction matrix need be stored to calculate
all interactions. If dipole-dipole interactions were included in this matrix, then it
would be a dense matrix as every spin interacts with all others. However if this
interaction is disregarded, either because only fast time scales are of interest or
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because such interactions can be implemented efficiently with other methods, then
it is a sparse matrix which is formed. This is because the exchange interaction is
usually very limited in distance and often approximated to the nearest neighbour
contributions so the majority of elements of W

ij

are zero. This drastically reduces
the memory required to store the interaction matrix. Even for long range exchange
Hamiltonians such as FePt50 this interaction matrix will be reasonably sparse. How
sparse matrices are formed and computations involving them are performed is an
interesting computational problem which will be discussed below, especially in the
context of GPU computing.

Sparse Matrices

The structure of the sparse interaction matrix will depend on how the lattice sites
are numbered during the decomposition of the lattice into the matrix. For a logical
numbering of lattice sites such as labelling sequentially by the x, y, z translations
of the unit cell, a strongly diagonal matrix is obtained (Fig 3.3). It is possible to
choose alternative numbering algorithms which localise the labeling in 3 dimensional
space, effectively making the matrix denser along the leading diagonal (known as
bandwidth and profile reduction51). However any algorithm involves sudden jumps in
the numbering between some areas of space which leads to the sparse diagonals seen
in the matrix. Periodic boundary conditions cause the small diagonals in the corners
of the matrix which can have implications for the speed of the calculations, depending
on the format used to store the matrix (Fig 3.3).

3.3 GPU Parallel Acceleration

Graphics processing units (GPUs) are a specialised class of computer hardware that has
been aggressively developed in the recent past to render graphics for computer games.
This continuous, competitive development has led to hardware that is computationally
very powerful, but also very low cost. The GPU architectures which have developed
are very specialised to their task of rending 3-dimensional graphics, which involves
massive amounts of parallel floating point computation. They are essential massive
vector processors, an architecture which was popular in the 1970’s and 1980’s52.
In 2007 the existing GPU hardware was made accessible to software developers by
NVIDIA using their proprietary CUDA extensions to the C++ programming language.
Since then there has been a large interest in using GPUs to accelerate highly parallel
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parts of scientific calculations. The specialised architecture of a GPU means that
algorithms must be employed which can exploit the hardware to the maximum extent.
This section focuses on how GPU hardware can be exploited for atomistic spin
calculations and the increased performance this leads to.

GPU Architecture

GPUs contain large banks of processing cores connected via a high bandwidth bus
to a large amount of high speed memory (see Fig. 3.4 for a comparison with a
traditional CPU architecture). This arrangement means that large blocks of memory
can be moved onto the array of processors, where each processors would ideally
work on one element of that memory. Such a transaction is the most efficient
method of using a GPU or indeed a vector processor in general. Although the very
latest GPU architecture (Keplar) implements a full cache hierarchy, saturating the
very large memory bandwidth of the device will maximise computational through
by avoiding idle processing time. To maximise this performance, the underlying
algorithms must be analysed to ensure that the algorithm used is well suited to vector
computation.

A further consideration is that there is a large difference between the single-precision
and double-precision peak processing power due to both the limit of the bandwidth of
the memory bus and also there are more single precision units in each multiprocessor
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than double precision units. Therefore to utilise the hardware resources to the
maximum extent, some calculations which can be performed in single precision
without a loss of accuracy can be identified. It is important that these calculations
do not contain compound errors, so for example it would be unwise to implement a
single precision integration scheme due to the dependence of each new time step on
the previous time step. Within atomistic spin dynamics the field calculation can be
implemented in single precision because the interaction matrix elements are constant
for the duration of the calculation. By choosing an appropriate normalisation, it is
unlikely that the exponent will be overflowed. With regard to the mantissa, generally
the exchange and anisotropy energies, even when calculated from first principles, are
not more accurate than three or four significant figures.

GPU Numeric Integration

The numeric integration of the LLG equation is straightforward to parallelise on a
vector processor. The equation of motion of each spin depends only on its effective
field and the spin at the previous time step. The integration of the equation of motion
for each spin can therefore be performed independently and the memory can be read in
aligned blocks. The computational difficulty arises in the calculation of the effective
field which couples the system through the exchange interactions, thus requiring the
values for spin vectors from very different areas of the memory.

The effective exchange field is determined by the sparse matrix, vector product
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(SpMV) between the interaction matrix and the vector of all spin components
(Eq.(3.15)). Parallelising a SpMV product on a vector processor is not trivial. In fact,
different sparse matrix storage conventions can be more or less efficient depending
on the sparsity pattern of the matrix and the architecture on which it is performed.
Bell and Garland54 have studied the performance of different sparse matrix types on
GPUs for different sparsity patterns. Within atomistic spin simulations a lattice based
system is usually considered and interactions between lattice sites are of some regular
form, for example, nearest neighbour interactions. Furthermore the interaction matrix
is constant for the duration of the simulation as lattice sites are fixed. If the interaction
motif is decomposed into the sparse matrix in a regular manner, this will yield an
interaction matrix composed of diagonal bands (for example Figure 3.3). The memory
architecture of a GPU demands that that the very large memory bandwidth is saturated
in order to maximise calculations on the vector processor. Here, two common sparse
matrix schemes; compressed sparse row (CSR) and the diagonal (DIA) formats. These
formats allow only the non-zero values of the matrix to be stored, thus vastly reducing
the memory overhead. However the algorithms which must be used to calculate the
SpMV for these formats differ greatly.

Compressed Sparse Row (CSR)

The CSR format stores all of the non-zero elements of the matrix in a contiguous
block of memory. A second array is used to store pointers for every column, which
point to the first and last elements of each row in the storage matrix. Thus the memory
required is minimised by only storing non-zero elements and N+1 pointers. For serial
calculation, for example a single thread on CPU, the multiplication algorithm is very
efficient because the matrix memory is all read in order. This matrix format is used
in the cuSparse library by NVIDIA. In Fig. 3.5 shows that ASD implemented with a
CSR interaction matrix (for nearest neighbour interactions) gives a speedup of ⇠ 25⇥
for large systems when compared to an optimised CPU implementation. However the
diagonal format can give even better performance.

Diagonal (DIA)

The DIA format stores and calculates every matrix diagonal which contains non-zero
elements. Furthermore, each diagonal which is stored is N elements long (where N

is one dimension of the matrix). The implications of such a storage method are two
fold. Firstly, for diagonals other than the leading diagonal, calculations performed
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beyond the extent of the matrix must be discarded. Secondly, storing some zero
values increases the memory footprint of this method, although an array of pointers
is not needed, just the offset of each diagonal. For calculation on a serial CPU a DIA
implementation would be slower than a CSR implementation because it must perform
(or preemptively discard) calculations of zero elements and elements not within the
array. This means there will be jumps in the program control which are not beneficial
for caching. On a GPU however, the constant size of each diagonal and the inclusion
of zero elements on the diagonals means that all memory transactions are aligned and
large continuous blocks can be read thus saturating the large bandwidth of the memory
bus. Some calculations are still discarded, although for strongly diagonal matrices this
is minimal, but the large number of processing units means that this has less of an
impact on the net performance of the SpMV calculation. The results in Fig. 3.5 show a
speedup of over 65⇥ in comparison to the CPU CSR implementation for large systems
and a factor of ⇠ 2.5⇥ greater than the GPU CSR implementation. Implementing
caching by the use of special features such as texture memory and exploiting the
symmetric nature of our matrix, performance can be increased slightly.

3.4 Conclusions

Implementing ASD on a GPU achieves speedups of greater than 75⇥ verses that
of an optimised serial CPU implementation. Such a large increase in performance



Conclusions 32

allows the simulation of systems which would not previously have been possible on
a reasonable time scale. These problems may involve either extremely large systems
or very long time scales, or even be able to tackle both situations at once. Finite size
effects can cause markedly different behaviour in small systems, realtive to the bulk,
so for comparison of experimental and analytical work, the closer simulations can be
to the thermodynamic limit the more valid the comparison. The GPU implementation
developed within this thesis was used throughout the work presented. For example, in
simulating systems of GdFeCo, a random lattice model requires a large system, of the
order of millions of spins, to properly sample localised topological differences. The
ability to simulate long time scales to calculate equilibrium properties, even at high
temperature, to a high degree of accuracy for comparison with analytic methods is also
enhanced by use of a GPU enabled ASD.



CHAPTER 4

Spin Waves

Akin to phonons in mechanical lattice dynamics, spin lattices also possess elementary
excitations called magnons which describe the quantised excitation of the spin degrees
of freedom. Generally when a magnon is created, it is delocalised across the lattice
leading to a spin wave55,56. In the classical regime that which is considered in ASD,
spins are not quantised but can continuously deviate around the unit sphere. Even so,
the movement of a spin away from its ground state is an excitation which is delocalised
via the interactions within the spin lattice33. Thus spin waves still exist in the classical
regime and play an important role in the thermal and non-equilibrium behaviour of
magnetic materials.

4.1 Classical Spin Waves

A classical spin wave is a periodic variation in the orientation of spins, away from their
ground state, from one lattice site to the next. Spin waves can exist in both transverse
(acoustic) and longitudinal (optical) modes. Transverse modes exist as a phase shift
between adjacent spins leading to a variation of angle between each spin and its ground
state as shown in figure 4.1. In a transverse mode the projection of the spin onto the
ground state orientation is equal for all spins. Optical modes are the contrasting case
of a sinusoidal variation in the projection of a spin onto the ground state, for example
if the ground state is S

z

= 1 then a sinusoidal variation in S
z

is an optical mode.
Optical modes are usually only found in materials which contain antiferromangetic
or other non-trivial ordering resulting from interactions between spins which are not
collinear in the ground state. Optical modes are usually higher in frequency than
acoustic modes.

33



Classical Spin Waves 34

Spin waves can also exist on very long length and time scales, for example in Yttrium
Iron Garnet (YIG), spin waves can be observed with wavelengths on a µm scale with
life times of seconds in part due to the low damping in this material57. This type of spin
wave originates from magnetostatic forces, the propagation of magnetic fields through
the material and free space as described by Maxwell’s equations. The magnetostatic
field is given by

H(r) =

Z

S

(r� r0)M(r0) · n̂
|r� r0|3 dS �

Z

V

(r� r0)r ·M(r0)

|r� r0|3 dV (4.1)

where the first integral is over the surface and n̂ is a surface normal, the second
integral is over the volume of the magnet. From this equation it is clear that there
are long range interactions across the entire magnetic material. There is also a
strong shape dependence to this field which can be highly non-trivial. The study of
magnetostatic spin waves is usually restricted to micromagnetic length scales and will
not be considered in the following work.

Spin waves also provide a channel for energy dissipation within magnetic materials.
Direct damping, represented by the Gilbert damping in the atomistic LLG equation
results from spin waves scattering with non-magnetic degrees of freedom, transferring
energy and angular momentum out of the spin system58. Typically this would occur
via channels such as scattering with phonons and charge carriers. In some materials
spin-orbit coupling also plays a large role in energy dissipation33. There also exists an
indirect damping within the spin lattice. Energy and angular momentum is transferred
between spin wave modes within the lattice. The non-uniform spin wave modes act
as another energy and angular momentum reservoir. Energy losses can occur when
energy is transferred from the k = 0 mode to k 6= 0 modes, where nonlinear effects
dissipate the energy33,58.

The study of spin waves is especially important in ultrafast spin dynamics for several
reasons. The high level of heating caused by the femtosecond laser takes the spin
system close to or through the Curie temperature. In this regime nonlinear spin wave
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effects become large, meaning that there is a strong energy transfer between spin wave
modes in contrast to low temperatures where there is a superposition of linear modes.
Related to this is the fact that the heat is applied so quickly that the spin system
enters a non-equilibrium regime. Spin wave excitations exist outside of the equilibrium
distribution for a finite life time, in effect storing energy and angular momentum which
will be dissipated some time after the heat pulse.

4.2 Linear Spin Wave Theory

At low temperatures, T < 0.75TC, linear spin wave theory (LSWT) can be applied,
which assumes that interactions between spin waves are small and the dynamics are
dominated by the weighted superposition of the thermal distribution of independent
spin wave modes. At higher temperatures the non-linear terms of the Landau-Lifshitz
equation start to dominate causing energy transfer between different spin wave modes
which are considered in the next section.

To give a brief outline of LSWT a simple Hamiltonian can be considered

H = �
X

hiji

J
ij

S
i

· S
j

(4.2)

Ignoring direct damping the equation of motion can be written using the Landau-
Lifshitz equation

dS

dt
= S⇥

 
X

j

J
ij

S
j

!
(4.3)

which is a set of N non-linear equations. Writing the spins as the mean thermal value
plus some deviation from the ground state (�S

i

)

S
i

= hS
i

i+ �S
i

(4.4)

This implies a low temperature regime where spins will not be excited too far from the
equilibrium. Transforming into Fourier space allows the use of the lattice symmetry to
reduce the system of equations. The Fourier components of the spins can be defined
as

Sk =

1p
N

X

i

e

ik·riS
i

(4.5)
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and the mean field approximation now becomes

Sk = hSi�(k = 0) + �Sk (4.6)

The Fourier transform of the exchange term is written as

J
ij

=

X

k

e

ik·(ri�rj)Jk (4.7)

This term depends on the interactions and will differ between lattices due to the
interaction vector r

i

� r
j

. Thus the equation of motion is now written
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This can be rewritten in terms of spin raising and lowing operators.
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assuming wave like solutions
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�i!kt (4.11)
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the equation of motion is solved
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Thus the dispersion relation is found to be

!k = �(J0 � Jk)hSi (4.15)
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At low temperature this describes the spin wave spectrum, where hSi is the mean spin
value, effectively the magnetisation.

4.3 Dynamic Structure Factor

Using atomistic spin dynamics spin wave dispersion can be calculated directly. Such
a result includes spin wave-spin wave interactions therefore allowing comparison
between analytic methods and approximations. In ASD the spin wave spectrum is
calculated from the dynamic structure factor† (DSF)

S (q,!) =
1

Np
2⇡

X

r,r0

e

iq·(r�r0)

Z +1

�1
e

i!t C (r� r0, t) dt (4.16)

where C (r� r0, t) is the spin-spin space-time correlation function

C (r� r0, t) = hS+(r, t)S�(r
0, 0)i (4.17)

h· · · i denotes a thermal average and S±(r, t) = S
x

(r, t) ± iS
y

(r, t) are the usual spin
raising and lowering operators. Equation (4.16) is the scattering function which is
measured in Brillouin scattering experiments of spin waves59,60, thus it also gives a
direct link to experimentally observable results.

The DSF can be calculated in ASD by the space and time discrete Fourier transforms
of the spin lattice.

S (q,!) = FT(t)

⇥W(FT(r) [S+(r, t)S�(r, t)])
⇤

(4.18)

where W(t) is a Hamming windowing function in the time domain

W(t) = 0.54� 0.46 cos

✓
2⇡t

⌧ � 1

◆
(4.19)

and ⌧ is the total time of the time series. ASD is usually concerned with periodic
lattices which is therefore commensurate with the periodic nature of the Fourier
transform in the spacial domain. However the behaviour in the time domain is not
strictly periodic, primarily due to the stochastic Langevin term and also the arbitrary
truncation of the time series. Therefore a windowing function must be applied to
reduce spectral leakage from the sharp cut-off of frequencies which are not periodic

†Some literature refers to this as the dynamic scattering function.
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in the sampled time. Windowing functions weight the sampled data, reducing towards
zero at the edge of the sampled time. In this work the common Hamming windowing
function is used. The Hamming window aims to optimise the central lobe of the power
spectrum. This allows the relevant frequencies to be extracted accurately, although a
small error maybe introduced into the measured linewidths. The discrete measurement
made in ASD is therefore

˜S (q,!) =
1

⌧

1

Np
2⇡

X

r,r0

e

iq·(r�r0)
⌧�1X

t=0

e

i!t/⌧
[W(t) · C (r� r0, t)] (4.20)

The sampling time of the temporal Fourier transform gives the frequency cutoff
of the DSF with !max = ⇡/�t. The windowing function avoids any aliasing of
higher frequency modes. If the spin lattice is not periodic then a type of windowing
must also be performed in the spatial transform. This is usually performed by zero
padding whereby the lattice is doubled in all dimensions with the new sites taking zero
values, effectively using a crude vacuum to separate images of the lattice in Fourier
space.

Comparing LSWT and atomistic spin dynamics

The DSF is calculated for a prototypical material and compared with the LSWT result.
This allows the implementation of the DSF in calculating the spin wave dispersion
to be validated and also tests the limits of LSWT against a more complete thermal
description of the spin waves. BCC Fe is used as the prototype material with the
parameters listed in table 4.1.

Curie Temperature TC 1043K Ref. 23
Exchange Energy J

ij

6.92⇥10

�21J
Anisotropy Energy d

z

3.1⇥10

�24J Ref. 23
Moment µs 2.2µB Ref. 61
Lattice Parameter a 0.287nm Ref. 61
Gilbert Damping ↵ 0.0014 Ref. 62

After calculating the DSF from atomistic spin dynamics the spin wave dispersion can
be extracted by fitting a Lorentzian to the peak along each q-vector. As a single species
ferromagnet the band structure for BCC Fe shows a single band in the dispersion. In
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figure 4.2 the ASD calculated DSF is compared LSWT for decreasing magnetisation,
which is a measure of the magnon density in the lattice. In a classical Heisenberg
FM, the low temperature, linear regime is where the magnetisation decreases linearly
with temperature (Fig. 4.2a). Beyond this linear regime is where magnon-magnon
interactions become important and linear spin wave theory breaks down as shown in
Fig. 4.2 a and b. At the edge of the Brillouin zone the frequencies obtained from LSWT
are consistently lower than those calculated from ASD (Fig.4.2c). The reason for the
poor agreement is that neither LSWT or ASD in its current form are well suited to
represent such short wavelengths14,63. Therefore ASD cannot be used to benchmark
spin wave theories at high frequencies. In order to account for magnon-magnon
interactions, formalisms beyond linear spin wave theory must be considered.
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4.4 Beyond Linear Spin Wave Theory

To consider higher order interactions and therefore higher temperatures, a different
formalism must be used. For classical dynamical equations the classical spectral
density method (CSDM) can be used and indeed has been applied to magnetic systems
previously64–66. In this formalism the equation of motion of an ensemble of spins
is solved self consistently in the Fourier (spectral) domain assuming some form of the
spectral function, usually represented by a delta function64–66. There are still some open
questions the CSDM approach especially in how the longitudinal spin-spin correlation
function is determined. This is the issue considered here by comparing the results of
different methods with ASD.

The CSDM dispersion relation for a simple FM with uniaxial anisotropy is written64

!k = h+

1

N2

X

k

⇥
(�2k + Jk � Jp�k)hs+k s��ki+ 2(2k + Jk � Jp�k)hszksz�ki

⇤

(4.21)
where hs+k s��ki and hszksz�ki spin-spin correlation functions in Fourier space for
the transverse and longitudinal components respectively. The transverse correlation
function can be calculated from

hs+k (⌧)s��ki = T

Z 1

�1

d!

2⇡

⌦k,�k(!)

!
e

�i!⌧ (4.22)

assuming the spectral function is a delta function, and in the static case (⌧ = 0),
giving64

hs+k s��ki =
2mNkBT

!k
. (4.23)

The longitudinal correlation function, hszksz�ki, is more difficult to calculate because it
cannot be expressed simply in terms of the spectral density function ⌦k(!) but must
come from the solution of further expressions which depend on hs+k s��ki. The way in
which the longitudinal-transverse correlation is decoupled is somewhat arbitrary and
an analysis of the commonly used expressions will be the focus of the work in this
section. The spectral density is now written in the form

!k = h+m (2k + J0 � Jk) + ↵(m)

m

�N

X

p

�2k + Jp � Jk�p

!p
(4.24)

where it is the third term which incorporates magnon-magnon interactions. The
strength of this term is dependent on the magnetisation through the decoupling function
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↵(m) which approximates higher order spin-spin correlation. The magnetisation must
be calculated self consistently with Eq. (4.24). It has been shown that the correct high
and low temperature behaviour is given with the magnetisation written as64

m2
=

1� 3m⌦

1�m⌦

(4.25)

where ⌦ is the thermal sum of the spectral density

⌦ =

1

N

X

k

1

�!k
(4.26)

The simultaneous, self consistent solution of equations (4.24) and (4.26) gives the
equilibrium magnetisation and spin wave dispersion at an arbitrary temperature.

Decoupling Schemes

The derivation of the CSDM requires the decoupling of transverse and longitudinal
correlation functions. There is no exact way to do this and different decoupling
schemes exist within the literature, essentially performing the decoupling to higher
orders in a perturbation series. It is not clear a priori which decoupling scheme
produces the most physically correct results. In fact in different limits and for
different Hamiltonians the agreement may be better or worse for different schemes.
A typical Hamiltonian of exchange and uniaxial anisotropy is studied and the correct
reproduction of the macroscopically observable quantities such as the temperature
dependence of magnetisation, anisotropy and exchange stiffness are the quantities of
importance. This is due to the role CSDM plays in multiscale modelling, allowing
micromagnetic models to be constructed from first principles calculation without the
need to perform computationally expensive atomistic spin dynamics to obtain these
temperature dependant values [66].

In the classical limit, the decoupling schemes differ by their magnetisation dependence
of the magnon-magnon interactions (the third term in Eq.(4.24)) as follows

↵(m) = 0 RPA
↵(m) = m Callen Ref. 67
↵(m) = m3 Copeland and Gersch Ref. 68
↵(m) = m+m3 Swendsen Ref. 69
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Notice that in the RPA magnon-magnon interactions are not taken into account, yet
this differs from mean field theory because the magnetisation is calculated taking into
account the spectral density (Eq. (4.25)).

In reproducing the temperature dependence of the magnetisation, there are two main
features which should be reproduced as accurately as possible. The first is to calculate
the Curie temperature and the second is that the critical behaviour close to the Curie
temperature is well reproduced. This is where magnon-magnon interactions play a
dominant role. The CSDM is compared with different decoupling schemes to the LLG
Langevin equation which will include magnon-magnon interactions of all orders. This
does not measure the physical correctness of the CSDM for any given material as the
Heisenberg model implemented in the ASD approach is still subject to its own inherent
approximations. However the ASD provides a reference thermodynamical model of
the same Hamiltonian as the CSDM to benchmark against. The CSDM treats the spin
as a classical quantity and therefore magnetic materials that display a more quantum
characteristic behaviour (i.e. the quantisation of spin plays a strong role in the thermal
properties) should instead be modelled using a quantum approach such as a quantum
Green’s function technique [70]. However, in the quantum case, the same decoupling
schemes are still required.
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The self consistent magnetisation (Fig. 4.3) shows that the RPA underestimates TC

due to the lack of higher order terms that exist in the other schemes. The Callen
and Swendsen decouplings result in the same TC as each other, but overestimate
TC with respect to the ASD results. However, the inclusion of magnon-magnon
interactions with these decoupling schemes results in a much better approximation
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of the high temperature magnetisation than the RPA. The Swendsen overall gives the
closest agreement to the ASD approach. By studying the self consistent spectrum in
comparison to that obtained via the DSF (Eq. (4.20)) in the ASD approach more insight
can be gained into why the Swendsen scheme is superior in this region.
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In figure 4.4 the data shows that the Swendsen scheme best reproduces the ASD spin
wave spectrum across the majority of the Brillouin zone, even at high temperature.
Hence why the magnetisation is reproduced best in this decoupling scheme. Focusing
on long length scales close to the �-point (Fig. 4.5, the results show that the
Callen scheme is actually superior in this limit. It is length scales greater than the
exchange length (

p
(2A/µ0M2

s

) which is typically 3-10nm) which are important for
micromagnetics and so the accuracy of the Callen scheme in this limit has important
implications for multiscale modeling as shown below. At the highest frequencies at
the edge of the Brillouin zone, the agreement between the analytic results (LSWT
and CSDM) and ASD is quite poor. It is hard to draw strong conclusions in this
regime as to the correctness of any approach. At such high frequencies the time
scale approximations made by atomistic spin dynamics (chapter 2) are spurious, the
electronic time scales and the spin wave frequencies become close enough to question
the adiabatic approximation.
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Temperature Dependent Micromagnetic Parameters

The high temperature behaviour of magnetic materials has become more important
as hard drive companies attempt to exploit the temperature dependent magnetic
properties for applications such as HAMR. Device level modelling is typically done
through micromagnetics due to the relatively large length and time scales which
are of interest. Typical micromagnetic approaches using the LLG equation cannot
represent the high temperature effects of a material because the magnetisation is
kept constant in a discrete volume according to the exchange approximation. This
is valid at low temperature where the angle between neighbouring spins would be
small as the system is dominated by long wavelength modes. At high temperature
it is the disorder of the spins which leads to the phase transition at the Curie point
and there is no way for LLG micromagnetics to represent this. Newer formalisms
such as the Landau-Lifshitz-Bloch (LLB) equation are capable of representing high
temperature magnetism, through and even above the Curie temperature, by allowing
the length of the magnetisation vector to change in a given volume. Micromagnetism,
whether LLG or LLB based, requires the temperature dependent form of several
parameters which can include; the equilibrium magnetisation m

e

(T ), longitudinal
susceptibility �k(T ), transverse susceptibility �?(T ), anisotropy K(T ) and exchange
stiffness A(T ). These can be parameterised from experiment or in a mean field,
however to perform true multiscale modelling, these should be calculated on the basis
of ab initio calculations of the anisotropy energy and Heisenberg exchange constants.
In the past ASD has been used for the intermediate stage to calculate the micromagnetic
parameters from ab initio calculations, giving far superior results than mean field
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results71. The downside to this approach is that such atomistic simulations can be
very computationally expensive, especially in the case that the ab initio results indicate
that many neighbouring spins are involved in the exchange. Therefore it would be
preferable to use the CSDM to obtain the thermodynamic parameters from an ab-initio
calculation of the atomistic scale properties.

Exchange stiffness temperature scaling

The exchange stiffness, A(T ), can be calculated from the CSDM by fitting to the self
consistent spectrum !

k

. For a ferromagnet the dispersion relation is33

!k = �A(T )
(J0 � Jk)

J0
(4.27)

At low temperatures this form fits the spectrum very well. However at high
temperatures, approaching the Curie point, the fit across the Brillouin zone becomes
worse due to the increase in magnon-magnon interactions. In micromagnetics is the
longer length scales which are modelled, of the order of the exchange length. Therefore
the fitting is limited to this regime, close to the �-point.

In the CSDM the equation is derived assuming a delta function for the spectral density,
but in the ASD the complete spectrum including the line width which results from the
direct (Gilbert) and indirect damping is obtained. So a two stage fit must be performed,
firstly the peak of the spectrum must be extracted for each k-vector. This is done by
fitting a Lorentzian in the frequency domain along each k-vector. The maxima of all
the Lorentzians can be fitted to obtain the exchange stiffness. This fitting procedure
is demonstrated in Fig. 4.6 where the colour plot is the ASD calculated spectrum, the
white points are the maxima from the Lorentzian fitting and the red line is the range-
limited fitting of Eq. (4.27).

Performing this fitting procedure for different temperatures the exchange stiffness is
extracted as a function of temperature. This is compared to the exchange stiffness as
calculated from the CSDM for different decoupling schemes (Fig. 4.7). This is plotted
as a function of magnetisation to account for the difference in Curie temperatures
between the decoupling schemes and ASD. The Callen decoupling scheme is in
very good agreement with the ASD results across the whole magnetisation range.
At low temperature the Swendsen scheme does not agree well with the ASD, but
towards the higher temperature regime this also is in good agreement, possibly more
so than the Callen scheme. This is reflected also in the magnetisation where the
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Swendsen scheme reproduces the form of the magnetisation best as the Curie point
is approached (Fig. 4.3). The results echo what was seen in the comparison of the
spectrum from ASD and for the different decoupling schemes (Fig. 4.5) in that the
Callen scheme reproduces the the spectrum with increased accuracy over the other
decoupling schemes.

Anisotropy temperature scaling

The anisotropy field is typically of GHz in frequency and the discrete Fourier transform
used for the DSF gives a resolution which is too low to give an accurate value of the
anisotropy. Instead the value of the effective anisotropy, K(T ), is extracted by fitting
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to the ferromagnetic resonance of the magnetisation. The low Gilbert damping of Fe
(↵ = 0.02) means that the FMR mode is very well defined (small line width). There
are other novel techniques which can be used to calculate the anisotropy numerically
such as constrained Monte-Carlo72, however such methods cannot be constructed
experimentally. The magnetisation is fitted by

M
y

= a0 sin(2⇡f0 + '0) (4.28)

to find the FMR frequency which is then related to the anisotropy as f0(T ) =

2|�|K(T )/2⇡. The low FMR frequency means that the system must be integrated
for a long time, especially as K(T ) reduces as a function of temperature, so the FMR
frequency reduces also. Integration is performed for 1.5ns (after equilibration) for each
temperature. This long time scale is only tractable with the use of GPUs as described
in section 3. Example data and fitting is shown in Fig. 4.8. Even at high temperature
(|M | = 0.40 corresponds to ⇠ 0.92T

c

) the FMR frequency is well defined and the fit
is quite accurate.

In figure 4.9 the ASD results are compared for different decoupling schemes in the
CSDM. In the low temperature regime the Callen scheme reproduces the ASD results
reasonably well, but at high temperature this becomes less so. At high temperatures
the Swendsen scheme is closest to the ASD results, but the functional form is quite
dissimilar. A line of M3 scaling is plotted, which is the low temperature exponent
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of the Callen decoupling and the experimentally observed uniaxial anisotropy scaling
exponent73 . This scaling is identical to the ASD results, even very close to T

c

. The
same conclusions have been drawn for a lower temperature range with other methods
such as constrained Monte Carlo72.

4.5 Conclusions

Comparing macroscopic, thermodynamic functions from ASD and CSDM using
different decoupling schemes, the results show that the Callen decoupling scheme
is generally the most compatible in the micromagnetic length scale. The scaling of
the exchange stiffness is very well reproduced by the Callen scheme even though the
Swendsen decoupling gives a closer comparison with the magnetisation. This appears
to be because the Callen scheme produces a more accurate spin wave spectrum !

k

in
the low k vectors than the Swendsen scheme which better describes !

k

across the range
of k. Because micromagnetic properties are important on length scales ⇠ pK/J the
Callen scheme is more suited for calculating micromagnetic parameters. In calculating
the unaxial anisotropy scaling exponent, the Callen scheme only reproduced the
magnetisation scaling well in the low magnetisation regime. At high temperatures
none of the decoupling schemes gives a good reproduction of the anisotropy scaling.
The scaling is found to be M3 across almost the whole temperature range.

This chapter also confirms the correctness of the spin dynamics implementation used
within this thesis. Testing the implementation of a complicated method such as ASD is
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hard to do in general terms. The reproduction of the important observable parameters
from a system and the close agreement with the low temperature spin wave spectrum
in the linear spin wave limit are strong evidence that the implementation is correct in
the dynamical and stochastic aspects.



CHAPTER 5

Enhanced damping at ferromagnet -
antiferromagnet interfaces

The coupling of ferromagnetic (FM) and antiferromagnetic materials is extensively
used in devices. In constructions such as spin valves, the FM reference layer is
pinned by the strong anisotropy of the coupled AF. Interesting magnetic effects exist
in coupled FM/AF layers, for example exchange bias74. It has also been found that
there is an enhancement of the Gilbert damping in the FM layer of FM/AF coupled
devices75,76. This is surprising due to the large difference in the frequency of the
uniform modes between FM and AF materials. The precise mechanism for the
enhancement of the damping is not known. The increase in damping is shown to
be a result of the excitation of a local mode within the AF to which it is coupled.
This acts as an energy sink to which the FM can dissipate energy. The material
parameters which effect the strength of the additional damping are identified. The
insight provided will allow the tuning of the performance characteristics in spin valves
and other devices.

5.1 Background

Several experiments have shown that in FM-AF bilayers there is an enhanced damping
of the FM layer. Smith et al.76 measured the damping of each layer in a spin valve stack
(Fig. 5.1a). The pinned layer, which is a ferromagnet coupled an antiferromagnetic
layer, showed 10⇥ the effective damping of the free layer, a FM layer not strongly
exchange coupled to any other layers but of similar composition to the pinned FM
layer. Therefore the increase in damping was attributed to the coupling to the AF.

50
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Weber et al. performed MOKE measurements across an FM/AF bilayer, where the
AF layer was in the form of a wedge with an increasing thickness across the sample
(Fig. 5.1b). They found a larger FM damping with increasing thickness of the AF75.
These experiments cannot be explained in terms of a resonant coupling of the FM and
AF layers because in an FM the uniform mode is quite low frequency, depending only
on the anisotropy field, !0 = �Hani whereas in the AF, the exchange field plays a
role, !0 = �

p
Hani(2Hexc +Hani) which causes the uniform mode to be orders of

magnitude larger than that of a FM. In the study by Weber et al. the results may be
explained by the number of AF grains participating in the exchange bias due to the
polycrystalline nature of the sample77. Also in the study by Smith et al. thermal
activation in the AF may be a cause, due to the current being passed through the
devices. However in this work an alternative mechanism will be investigated which
is suggested in the conclusion of both studies.

Pinning Layer - AF

Reference Layer - FM

Spacer Layer - NM

Free Layer - FM

60nm

60nm

5nm

5nm

Thin Film - FM

a b

Wedge - AF

⇠ 10⇥

5.2 Analytic Model

A better understanding of this phenomenon is useful for two reasons. By understanding
the factors which are important in the energy transfer, devices may be tailored to have a
higher or lower rate of damping where beneficial. There is also the interesting potential
to probe the properties of the AF, where such experiments may be difficult to perform
without the use of the coupled FM. We study a simple FM/AF bilayer first from an
analytic description, where the AF is described in an atomistic sense78,79. This allows
energy to propagate through the AF from the interface. Such a description allows us to
go beyond a simple coherent spin model and allows non collinearity through the AF.
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We approximate the FM to be coherent and represent it as a single macrospin. Thin
films will generally have a large magnetostatic contribution to the energy, causing the
magnetisation to lie in-plane. We simplify this contribution to an in-plane anisotropy
term in the FM. The FM macrospin is coupled at the interface to the first of a ladder of
atomic AF spins. Each AF spin is then coupled to AF spins above and below as well
as having a uniaxial anisotropy aligned in the plane (see Fig. 5.2). The energy of this
system is described as

E =� ˜J(s0 ·m) + J [(s0 · s1) + (s1 · s2) + · · ·+ (s
N�1 · sN)]

+

¯K

2

m2
x

� K

2

⇥
s20,z + s21,z + · · ·+ s2

N,z

⇤ (5.1)

where ˜J is the FM/AF exchange coupling strength divided by the number of FM atomic
planes, ¯K is the FM hard axis energy, J is the AF exchange strength, K is the AF
uniaxial exchange anisotropy and N is the number of layers in the AF.
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) and so the energy of the interfacial
AF spin, s0 is written
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Now expressing the AF in terms of Holstein-Primakoff like operators
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(5.3)

where â and ˆb are used for even and odd AF layers respectively. The energy terms for
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s0 are written as
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+

˜J

2
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x

+m2
y

) giving

i

@

@t
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For the bulk AF layers the energy is written
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and the equations of motion are
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The spin on the bottom of the AF, the N th layer, is only coupled to one AF spin and
the equation of motion is

i

@

@t
ˆb
N

= (Js+Ks) ˆb
N

+ Jsâ†
N�1 (5.9)

For the FM the equations are written in terms of m
x

and m
y

because the hard axis
anisotropy will cause an elliptical, rather than circular, motion. Using the linearised
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expansion of m
z

the energy is written
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The equation of motion is described by the Landau-Lifshitz equation
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Again, to linear order this gives the coupled equations

� @

@t
m

x

=

˜Jsm
y

� i

˜J

r
s

2

⇣
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The resonant frequency of a ferromagnet is almost always much lower than that of an
antiferromagnet due to the exchange enhancement in the AF. Therefore, taking a quasi-
static approximation (QSA) for the AF spins and seeking attenuated solutions
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where Re(q) > 0 is required for solutions and A
q

/B
q

and C
q

/D
q

are determined by
the boundary conditions.

Addressing first the bulk equations equations (5.7) and (5.8)

(2Js+Ks)â2n + 2Js(ˆb†2n�1 +
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(5.14)

The solution of the secular equation restricts the value of q by the condition
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(5.15)

which is a localised mode in the AF. It immediately follows that â
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Solution of the interfacial AF spin Eq.(5.9)
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leads to the expressions for the amplitudes A
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and B
q
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For practical antiferromagnetic materials used for magnetic device applications the
anisotropy energy is orders of magnitude smaller than the exchange energy. From
Eq. (5.15) assuming K ⌧ J
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2

(5.20)

giving the q value as the exchange length of the material
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Applying the small q approximation to �+ and �� and expanding exp(q) ⇡ 1 + q,
which gives

�+ ⇡ q, �� ⇡ �q. (5.22)

This allows Eq. (5.19) to be written in the more compact form
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From the FM equations of motion Eq.(5.12) and assuming solutions of the form m
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where
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5.3 Damping

In general the frictional forces of a system are linear functions of the velocity and the
dissipative function of the AF system can be written as80
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and the dissipation of the FM system is
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Using Eq. (5.23) and performing the summation of the AF layers the total effective
energy dissipation, Qe↵ = QFM +QAF, is found as
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Hence the effective damping constant for the FM is

↵e↵ = ↵FM + ↵AF

˜J2s coth(q/2) (2N sinh(q) + sinh(2Nq))

2(

˜J cosh(Nq) + Jsq sinh(Nq))2
. (5.30)

5.4 Numeric validation

The analytic results can be verified by numeric simulations. An atomistic approach is
well suited to represent the AF because the microscopic moments can be resolved. This
is in contrast to micromagnetics where approximations of AFs are not well justified as
there is no net magnetisation on these length scales. The effective damping can be
calculated in the same way as a resonance experiment. The system is held fixed in a
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chosen direction by a strong direct current (DC) field and a small alternating current
(AC) field is applied in a direction perpendicular direction to the DC field. The power
absorption can then be measured as the overlap between the AC field and the motion
of the spins81

P (!) = � µ
s

⌧N

X

i

Z
S
i

(t) · @BAC(!, t)

@t
dt (5.31)

where ⌧ is the total time of the integral. In this system the pinning field from the
AF acts as the DC field, fixing the FM magnetisation in the x-direction and the AF
does not couple to the AC field due to the lack of a net magnetisation. The simulation
must be performed for different driving frequencies to resolve resonance peak where
the overlap integral becomes largest. A BCC lattice is used as a prototypical layered
antiferromagnet, ensuring a perfect interface and alternating AF sublattices through the
thin film. The system geometry is similar to that of the pinning and reference layers of
a spin valve. To find the effective damping from the FMR line width, the calculations
of Eq.(5.31) can be fitted by the approximate form76
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Examples of fitted curves are given in Fig. 5.3, where ↵e↵ and !e↵ can be extracted.
From the resonance profiles it is clear that higher interfacial coupling strengths ( ˜J)
leads to an increase in frequency and damping. The analytic solution can be validated
by a comparison between the simulations and the analytic theory. In Fig. 5.4 comparing
the frequency of the resonance peak with the eigenfrequency, predictions can be made
for a range of interfacial coupling strengths and AF anisotropy energies. The close
agreement validates the quasi-static approximation for the AF operators, showing
that it is the local mode in the AF the FM couples to, not the uniform mode of the
AF. A comparison between the measured damping (↵e↵) with the damping calculated
calculated analytically is shown in Fig. 5.5 and a good agreement is found. The choice
of a large damping in the AF (↵AF = 0.1) gives a large increase in the effective
damping of the FM as is seen in experiments. Observing a larger parameter space
of the analytic form for the frequency and damping in Fig 5.6, the results show that the
enhancement in the effective FM damping lies well within a tractable parameter range.
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Even if ↵AF is reduce significantly there is still an enhancement in the FM damping
for strong interfacial coupling.

5.5 Damping through rough interfaces

The analytic and numeric work above demonstrates the excitation of the local AF mode
through a perfectly coupled interface. In reality it is extremely costly to produce prefect
interfaces in devices such as spin valves, therefore some roughness always exists. It
is not clear a priori whether this damping mechanism will persist through a rough
interface, where there may be some frustration due to competing exchange interactions.
A rough interface can be modelled with an atomistic approach by creating a large
bilayer and randomly substituting FM sites into the interface layer of the AF. Increasing
the roughness of the interface reduces the effective interface coupling strength (h ˜Ji) as
the AF-FM coupling becomes compensated by interactions with both AF sublattices.
By increasing the microscopic exchange interaction to maintain a constant frequency
between systems of different roughness, it can be determined whether the strong local
coupling still allows the increased in damping.

The FMR line widths are shown in Fig. 5.7. The perfect interface (Fig. 5.7a
shows some enhancement in the damping above the intrinsic damping of the FM
(↵FM = 0.01). Increasing the interfacial roughness (Fig. 5.7b-c) requires a stronger
microscopic interfacial exchange to maintain the 30GHz FMR peak, however the
damping does not increase despite the large increase in the microscopic coupling
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strength. This suggests that the local coupling is not the only factor and the
average properties of the interface must be considered in determining the effective
damping.

To elucidate why this is the case, the AF spin dynamics is visualised during a weak
FMR excitation of the FM, comparing the perfect and rough interface. By colouring
the spins in terms of their displacement from the equilibrium position, it can be see
how the local mode in the AF is being excited across the lattice. In the perfect interface
(Fig. 5.8a) there is no spatial variation in the amplitude of excitation in the AF. The
microscopic mechanism identified above applies equally at all points on the lattice.
Fig. 5.8b) shows that this is not the case for the disordered interface. In some regions
of the lattice there is a greater amplitude of excitation than in the perfect interface due
to the increased microscopic exchange strength. Other regions of the lattice show no
displacement from the ground state (these appear white in the colouring scheme). This
indicates that the FM is not exciting the AF local mode within these regions. The
compensation of the FM-AF coupling in these regions, caused by the local coupling
of the FM to both AF sublattices, means that the local mode cannot be excited as the
interaction with one sublattice is countered by the other. Therefore it is the spatial
average of the effective coupling across the interface which determines the volume of
AF excitation and thus the enhancement in the damping of the FM.
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5.6 Conclusions

It has been shown that a local mode in the AF is excited from a coupled FM film.
This mode effectively damps energy transfered from the FM, increasing the effective
damping of the FM. This damping is relatively large for moderate and high interface
coupling strengths. This work includes only a single processes of the energy transfer
into the AF and as such supports other work which suggests this to be the primary
mechanism of enhanced damping in such systems. In large systems the increased
damping is often attributed to a large number of degenerate two-magnon scattering
modes due to interfacial roughness. For small, nanoscale devices this contribution is
likely to be significantly reduced and therefore the mechanism identified is a good
explanation for the experimental observations. Knowledge of this mechanism allows
both the tuning of device design, for example in spin valves and also has the potential
to shed light on the properties of antiferromagnets, which are hard to measure directly.
The blocking of the excitation by exchange frustration is intriguing and gives insight
into how interface roughness affects the so-called ‘pinning field’ which is used as a
measure of the AF properties. The results suggest that the disorder at the interface
reduces the area of the AF which couples effectively with the FM.



CHAPTER 6

Four Spin Interactions in FeRh

One of the more novel experiments in the area of ultrafast magnetism is the generation
of FM order in the metamagnet FeRh on a sub-picosecond time scale10. It has long
been known that FeRh is a metamagnet with an AF-FM phase transition at ⇠350K82,83,
but it is the speed at which this phase transition can occur which is astounding. The
phase transition also causes a lattice expansion, resulting in an increase in the volume
of the unit cell of ⇠1%84. It is still an open question as to whether the transition is
driven by magnetic or structural effects85. There is now a wealth of evidence both
theoretical and experimental supporting both points of view. The original explanation
for sub-picosecond response to laser heating was that a competition between magnetic
ordering energies causes the phase transition10,86, a theory which has not yet been
tested. The purpose of the work presented here is to develop a simple model based on
this hypothesis and to demonstrate that such a mechanism can lead to an AF-FM phase
transition and that it is possible for the phase transition to occur on a sub-picosecond
time scale.

6.1 FeRh Background

FeRh is a metallic alloy with a B2 structure, a BCC lattice where the central
site is occupied by a Rh atom and the surrounding sites are Fe atoms. The low
temperature ground state has been found experimentally82 and from first principles87

to be antiferromagnetic with two Fe sublattices in a chequer board fashion (Fig. 6.1a).
Each Fe site has a moment of ⇠ 3.15µB but the Rh ion has no net moment in this
phase due to the symmetry of the surrounding Fe moments. There is some evidence
that the strong hybridization of the Rh with the Fe significantly polarizes the electronic

63
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structure of the Rh site but that the spatial average of the spin moment is zero88. Above
the metamagnetic temperature, TM, FeRh becomes ferromagnetically ordered and all
Fe moments are aligned (Fig. 6.1b). The Rh site now also develops a moment of ⇠ 1µB

which is aligned with the Fe moments. In the FM state there is also a 1% expansion
of the lattice volume. The FM phase undergoes a ferromagnet-paramagnetic phase
transition at the Curie point, TC = 700K, in the same manner as a simple ferromagnetic
material.

Models of FeRh

There exist several proposed models of FeRh which show the AF-FM phase transition.
Gruner et al. (Ref. 89) combine a Blume-Capel Ising model90–92 with lattice dynamics
using Leonard-Jones molecular dynamics in a Monte-Carlo approach which includes
a distance dependent exchange J(r

ij

). The model is parameterised from ab initio
calculations and they conclude that the phase transition occurs due to the instability
of the Rh moment within the Blume-Capel Ising model. One of the key assumptions
in their model is that the fluctuations on the Rh moment are independent of the
fluctuations of the Fe moment, effectively saying that the thermal fluctuations on
the Rh site lead to the spontaneous formation of a Rh moment. This explanation is
challenged by ab initio calculations which show the formation of the Rh moment to be
strongly dependent on the Weiss field from the surrounding Fe86. A different empirical
model by Derlet (Ref. 93) considers a Landau-Heisenberg model. This model is built
from a free energy expression which is designed to fit the ab initio data existing in
the literature. The model includes fluctuations in the lattice volume and the transverse
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and longitudinal fluctuations of the moments. The conclusion is that both volume and
moment fluctuations play an equally important role in the occurrence of the phase
transition. However this is not a dynamical model and can give no indication of the
time scale on which the phase transition occurs. Moreover, the extensive Hamiltonian
covering lattice and magnetic degrees of freedom means it would always be hard to
identify if the phase transition originates in one system or the other.

A key aspects missing from these models is the ability to study the dynamics of
the phase transition which is important given the exceptional speed at which the
phase transition has been observed. While the models fit the first principles energy
calculations, it does not exclude that there are other possible models which also fit the
energetics but offer alternative explanations. Indeed, the Landau free energy approach
is a Hamiltonian which is written to match the energetics. The mechanism investigated
here has been suggested in the literature on the basis of experiments and first principles
calculations10,86. This is that the phase transition originates from the magnetic degrees
of freedom, where an effective four spin exchange interaction between the Fe moments
plays an important role†. This model was put forward by Mryasov on the basis of non-
collinear ab initio calculations. As the change in magnetic structure originates on an
electronic level, such a mechanism can be of much higher speed than a phase transition
driven by a lattice expansion. Thus this model may explain the high speed of the phase
transition during femtosecond laser heating10,86. The key difference of this approach to
that of Gruner et al. and Derlet is that the effect of the lattice expansion is not needed
to describe the phase transition and it is assumed the lattice expansion will result from
the change in the magnetic state. This explanation is supported by other first principles
calculations which identify thermal spin waves as having sufficient energy to alter the
magnetic structure from AF to FM88. Validating this approach offers an alternative
explanation for the phase transition in FeRh and by exploring this possibility in an
ASD approach the complex dynamics which cannot be observed experimentally are
available.

6.2 Induced moment model

First principles calculations show that the magnitude and direction of the Rh moment
is strongly dependent on the Weiss field from the surrounding Fe moments. They

†In his 2005 paper, Mryasov only included Hamiltonian terms up to biquadratic order, but the full
expansion should include terms up to four spin order, which proves to be important finding the phase
transition.
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also show the Fe moment to be stable regardless of the size and orientation of the Rh
moment (Fig. 6.2). Therefore the system can be described in terms of localised Fe
moments and delocalised Rh moments. Thus the Hamiltonian can be written as Fe and
Rh contributions as

H = HFe
({S

i

}) +HRh
({s

⌫

}) (6.1)

where S
i

is a localised, Heisenberg, Fe moment and s
⌫

is a delocalised Rh moment.
The dependence of the Rh moment on the Weiss field is non-linear and a higher order
term, beyond the Stoner model (see section 2), is needed to describe this behaviour.
This can be written in the form of a generalised susceptibility
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where �(1) and �(2) are susceptibilities and the Weiss field is normalised by its
maximum value h0⌫ =

P
⌫

h
⌫

. The Weiss field is written

h
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X

i
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(6.3)

where J
i⌫

is the exchange between the Fe site i and Rh site ⌫. The Hamiltonian can be
written in terms of only Fe degrees of freedom by expressing the Weiss fields in terms
of the interaction with the Fe moments. Thus the Rh contribution to the Hamiltonian
is expanded in terms of Fe degrees of freedom as
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Using the adiabatic approximation that the Rh moment is induced by the Weiss field
on faster time scale than the spin dynamics and neglecting any Rh-Rh exchange
interaction (which has shown from ab initio calculations to be very small compared to
all other interactions†), Eq. 6.1 can be written purely in Fe degrees of freedom

H =

X

i,j

J
ij

(S
i

· S
j

) +

X

i,j,k,l

D
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j
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) (6.5)

†Personal communication with O.N. Mryasov
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where J
ij

and D
ijkl

include both direct Fe-Fe exchange and a mediated Fe-Rh-Fe (and
higher order) exchange
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(6.6)

This is an extended Heisenberg model where the second term is a four spin interaction.
Such interactions can occur in materials where there is a significant contribution from
electrons moving between four atomic sites. In this case the four spin term is a
direct result of the non-linear behaviour of the induced Rh moment. The competition
between the Heisenberg term and the four spin term may lead to a change in the order
parameter94 which is investigated in this prototypical model.

6.3 Four Spin Heisenberg Model

Currently there are no first principles calculations of the four spin contributions to
the energy terms of Eq. 6.5. These calculations are complicated due to the mixing of
bilinear, biquadratic and four spin energy contributions. Therefore constructing the
simplest prototypical model of this Hamiltonian allows it to be assessed whether the
AF-FM phase transition can occur. This can be implemented in an ASD approach by
including an additional interaction matrix for the four spin interactions. In practical
terms this is a four dimensional sparse matrix running over the spin indices i, j, k, l

and the interaction strength D
ijkl

is assumed to be a scalar. One of the immediate
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complications is the choice of four spins over which to perform the sum. From the
ansatz that the phase transition occurs due to the competition between the Heisenberg
term and the four spin term it is assumed that one term is responsible for FM order
and the other for AF order. Considering a mean field like treatment of thermal spin
fluctuations, then the four spin term contains the product of four thermal spin averages
hSi, whereas the Heisenberg term contains the product of two such terms. Therefore
the temperature dependence of the four spin term is greater than that of the Heisenberg
term, leading to a crossover behaviour. Following this logic, the four spin term must
be responsible for the AF low temperature ground state and the Heisenberg term
should support FM ordering. This proposal is supported by first principles calculations
which show that although the Fe-Fe exchange interactions contain large AF energies
(J

ij

< 0), the Fe-Rh exchange strongly cancels this effect and the effective Heisenberg
exchange J

ij

is dominated by FM energies86. The strong hybridization shown in other
first principles calculations is also evidence that the Rh moment still plays a role despite
the lack of a net moment in the AF state88. Interactions are restricted to the nearest
inter- (J001) and intra- (J111) sublattice exchange interactions. The four spin term is
treated in the simplest way by the set of four spins in the basic quartet95 as shown in
Fig. 6.3. These closed quartets connect the two sublattices with three lattice sites from
one sublattice and one from the other. Therefore a negative value for D

ijkl

promotes
AF ordering. The energy from the four spin term must compete with a FM ordering
from the inter-sublattice exchange, J001, and in the ground state the four spin term must
be greater than the Heisenberg term for the system to be antiferromagnetic.

6.4 First Order Phase Transitions

The metamagnetic phase transition in FeRh is a first order phase transition according
to the Ehrenfest classification. This defines the order of a phase transition as the
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derivative of the free energy, with respect to a thermodynamic variable, which shows
a discontinuity at the phase transition. For example the Curie point is a second order
phase transition because it is the derivative of the magnetisation with respect to field,
the susceptibility, which is discontinuous. The magnetisation and susceptibility are
derivatives from the free energy (F ) with respect to a field (H)

M =

@F

@H
(6.7)

� =

@M

@H
=

@2F

@H2
(6.8)

The AF-FM phase transition in FeRh is a first order phase transition because it is the
magnetisation which is discontinuous at the transition. First order phase transitions
usually have interesting properties such as latent heat. There is also no critical
behaviour associated with a first order transition. In a magnetic material this means that
there is no divergence of the susceptibility and the spin-spin correlation length remains
finite through the phase transition. This gives rise to a mixed phase where both phases
coexist. In the case of FeRh this means that both FM and AF orders are observed at the
phase transition96. It is important when investigating the proposed model of FeRh that
the metamagnetic phase transition within the model is of first order. Care must be taken
about how the phase transition is approached, because the free energy will contain two
minima (one for each phase). At the phase transition both minima are equal, hence the
phase coexistence, but above or below the phase transition, one minimum is lower in
energy (Fig. 6.4). However if the system is prepared in an artificial state then the local
minimum may be observed and not the global minimum if the energy barrier between
the two is too high. Therefore the phase transition must be approached from both the
low and high temperature limits, passing through many temperatures, to ensure that
the true minimum is observed.
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Inter-sublattice exchange energy J001 0.40⇥10

�21J
Intra-sublattice exchange energy J011 2.75⇥10

�21J
Four spin exchange energy D

ijkl

0.23⇥10

�21J

6.5 Four Spin Model Equilibrium Results

The lack of detailed ab initio calculations of the effective four spin interaction means
the model must instead be parameterised from the available experimental data. Even
in this simple model, a set of exchange parameters can be found which reproduces
simultaneously the experimental T

M

and T
C

, thus identify the total intra-, inter-
sublattice and four spin exchange energies. While this is not necessarily an accurate
depiction of the precise microscopic interactions, which may extend further within the
lattice, it is a reasonable first approximation. Comparison is made to experimental
magnetometry results of Kouvel et al.83 and of Thiele et al.98, although both samples
are slightly Rh rich at Fe48Rh52. The parameters used use in the model are given in
table 6.1. A magnetisation curve is produced from two systems which are cubic with
linear dimension 9.55nm (32 ⇥ 32 ⇥ 32 unit cells, lattice parameter a = 0.2985nm)
and with periodic boundary conditions. One system is started at zero temperature in
the AF state and is heated in temperature steps of 10K until the Curie temperature,
T
C

. The other system is started above T
C

is a randomised state and is cooled to zero
temperature in 10K steps. At each step the system is allowed to equilibrate for 10ps
before a thermal average of the magnetisation and Neel vector is calculated for a further
40ps. By comparing both magnetisation curves it is confirmed that the high and low
temperature phases are indeed FM and AF, irrespective of how they are approached.
These results are compared with the experimental results in Fig. 6.5b. The magnitude
of the experimental results are normalised to match the reduced magnetisation of the
model model.

In comparison to the experimental measurements, the TM and TC from the parame-
terisation are very similar. Even the shape of the magnetisation is well reproduced
by the model, something which is not true of approaches based on an Ising model
where a much more critical behaviour is observed at the Curie point89. The primary
difference between the model Hamiltonian and the experimental results is in the width
of the hysteretic behaviour at T

M

where the simulations give �T = 50K and the thin
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film experiments show �T ⇠ 15K. The hysteresis is indicative of the mixed phase
and the associated latent heat of a first order phase transition. The reason for the
difference is likely to be the limited time and length scales within the model. Finite
size effects in first order phase transitions are highly non-trivial due to the lack of
critical behaviour. The limited length scales available in a finite simulation limits
the size of coherent regions in the mixed phase. Therefore surface effects, usually
expressed in terms of a surface energy or tension, play a more dominant role in smaller
systems99. The simulations are orders of magnitude smaller than experimental results
where even laser spots for MOKE measurements are 3µm diameter10. Experiments
on FeRh nanoparticles do show a very large broadening of the hysteresis with a width
of �T = 110K for nanoparticles with a mean diameter of 3nm100,101. By contrast the
simulations are of a 9.6nm system with periodic boundaries and the value obtained for
�T lies between the experimental nanoparticles and thin films. In terms of time scales,
hysteretic behaviour is generally a time dependent phenomenon and so the speed at
which the system is heated or cooled also plays a role in the width of the hysteresis.
Through T

M

the temperature was changed at an average rate of 20 ⇥ 10

9Ks�1, much
faster than magnetometry which is performed on the Ks�1 time scale.

The second set of experiments which are compared to, are those for the spin wave
spectrum. Within the model the spectrum is calculate from the DSF (see section
4.3) and compared to experiments by Castets et al. (Ref. 102). This comparison
is useful because in the low energy regime ferromagnets and antiferromagnets have
different characteristic dispersions of !

FM

(k) ⇠ k2 and !
AF

(k) ⇠ k respectively.
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The comparison between the model and experiment is shown in Fig. 6.6a and b. In
both the AF and FM phases there is a reasonable agreement between the model and
the measurements. The similarity in the magnitude of the largest frequencies means
the parameterisation of the terms in the model (table 6.1) is reasonable. In the FM
phase the low-k dispersion is quadratic in k. In the AF phase, the result appears more
complicated with linear dispersion apart from a small area at very low k (marked with
an arrow). This probably due to the fact that in the simple model the four spin and
inter-sublattice Heisenberg exchange are competing on the same length scale. A full
ab initio study of the interactions would be needed to determine the exact microscopic
interactions and the length scales on which they dominate. There is also a large
deviation at the edge of the Brillouin zone in the FM phase. This again can likely
be attributed to the limited range of the simplified Hamiltonian. However, the essential
physics is encapsulated, which appears both in experiments and is consistent with the
induced moment model put forward on the basis of ab initio calculations.

The contribution of the Heisenberg and four spin terms in Eq. 6.5 is calculated. The
results in Fig. 6.7 show that it is the competition between the four spin term and the
Heisenberg term which leads to the phase transition. The gradient of the four spin
contribution is much greater than that of the Heisenberg term due to the increased
effect of thermal fluctuations on the product of four spins. At the phase transition,
the change in ordering against the AF phase causes a frustration against the four spin
term. The result is that the total energy at the phase transition is actually larger than
at higher temperatures. This energy may dissipate into the lattice driving the lattice
expansion.

The existence of a mixed phase is demonstrated to confirm the first order nature of
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this phase transition. The spin structure is visualised through the phase transition and
regions of AF and FM order are differentiated by calculating the average magnetisation
and Neel vector within each unit cell. In Fig. 6.8 several snap shots of the spin structure
are shown at different points through the phase transition. The Neel and magnetisation
vectors are coloured red and blue respectively and the size and orientation is shown
by the arrows. Below the phase transition the lattice is entirely in the AF state. As
the hysteretic region of the phase transition is entered, some FM nucleation begins at
random points through the lattice. At T

M

a mixed phase is observed, where AF and
FM regions coexist within the lattice with approximately equal volumes. Once the
temperature is above the phase transition the lattice shows only FM order.

6.6 Laser induced FM state generation

A unique aspect of approach used here to modelling FeRh is that the dynamical
behaviour can be simulated. This is not possible with either Gruner et al. or Derlet’s
approaches89,93 which are solved using Monte Carlo techniques which are not time
quantified. Femtosecond laser heating experiments are simulated to observe the speed
at which the phase transition can occur. The time scale of the model will be strongly
influenced by the Gilbert damping parameter48. Different experimental observations
of the Gilbert damping in FeRh give orders of magnitude difference in the value from
the very large value of ↵ = 0.3 (Ref. 103) to the low value of ↵ = 0.0013 (Ref. 104).
The difficulty in measuring the Gilbert damping is due to the difficulty in identifying
direct and indirect damping in the inverse problem. For example the low value of
↵ = 0.0013 was obtained for the FM phase, but approaching the phase transition the
damping was observed to increase significantly. The changes in the lattice structure and
increased phonon excitation can increase the Gilbert damping, strong magnon-magnon
scattering during the reorientation and even the coupling between AF and FM domains
as in section 5 may contribute to indirect damping which is measured but should not
be included in the Gilbert term as these damping mechanisms are intrinsic to ASD
(see section 2.5). Therefore the dynamics are first studied as a function of the Gilbert
damping. In Fig. 6.9 a 100fs heat pulse (T

e,max =879K) is applied to three systems
with different Gilbert damping parameters. The time scale on which the FM order
saturates is strong dependent on the Gilbert damping. In the case of large damping
(↵ =0.100) the time scale for the initial growth of FM order is ⇠3ps (indicated by the
arrow). While this is certainly a fast time scale it is significantly longer than the sub-
picosecond time scale of ⇠500fs reported from experiments10,105. The dynamics are
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also different those observed in thin films, where the interplay between the randomly
formed FM domains causes a complex growth and decay of the FM order96,103. This is
primarily due to the small size of the simulations. From the visualisations in Fig. 6.8 it
can be seen that the mixed phase consists of two regions, an AF and a FM domain. This
system is too small for multiple FM domains to exist within an AF phase for a long time
scale. This presents two challenges for the future. First is for larger scale simulations to
be performed. The four spin term is quite computationally expensive, even on the GPU,
however optimisation techniques and utilising higher symmetries may make more bulk
like systems tractable. Secondly, it is a challenge for experimentalists to image smaller
thin film areas and particles of FeRh to allow a better understand of the microscopic
behaviour, not just the average properties of a sample. If such advances can be made,
then it will help to progress the understanding of the true mechanism behind the phase
transition.

The results may also be affected by the choice of parameters for the two temperature
model of laser heating. The choice of specific heat capacities (C

e

, C
p

) and the electron-
phonon coupling strength (G) affect the thermal profile in the simulations significantly.
In this model of FeRh the fact that the system passes through or near two phase
transitions (T

M

and T
C

), one of which can have a mixed phase and the other has critical
behaviour, means the dynamics will be strongly dependent on the temperature profile.
As an example three different regimes are studied, where the generation of FM order is
dependent on the time that T

e

< T
C

and where the final temperature lies with respect
to T

M

.

In the first regime (Fig. 6.10a) T
e

is above T
C

for just a few femtoseconds and so the
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AF order is not completely demagnetised. The final value of T
e

is within the hysteretic
region of the phase transition and so there is no energetic advantage for FM regions
to form, hence the FM order does not increase. For a higher laser fluence (Fig. 6.10b)
T
e

is above the curie temperature for a longer period of time and so there is a larger
reduction in AF order however this recovers within 5ps. Following this fast behaviour,
there is a slower behaviour where the FM order increases at the expense of the AF
order. Enough energy has been applied to overcome the latent heat and so the FM
phase is now favourable. A further increase in fluence means T

e

remains above T
C

for
long enough to destroy all order. On remagnetising, the temperature is above TM and
so the system restores in the FM phase.

6.7 Conclusions

It has been demonstrated that a first order AF-FM metamagnetic phase transition does
exist in the Heisenberg model with four spin interactions. The strongly hybridised,
induced moment picture of Rh within FeRh can be represented by such a Hamiltonian,
and this model gives some evidence for an all magnetic origin for the phase transition
observed in this material. The model model was parameterised from experimental data
and are able to reproduce the equilibrium properties. This is the first dynamical model
which has been used to show this phase transition and it allows comparison with optical
pump-probe experiments. The dynamics found in the model show the generation of
laser induced FM order on a picosecond time scale, slightly slower than is observed
experimentally. Furthermore, high values of Gilbert damping must be used to obtain
this behaviour, contrary to some experimental measurements. The existence of two
phase transitions in the material can lead to different dynamics depending on small
differences in the temperature profile applied. This may complicate the use of FeRh in
future applications.
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CHAPTER 7

Thermally Induced Magnetisation Switching

Thermally induced magnetisation switching (TIMS) occurs when an applied sub-
picosecond heat pulse causes the magnetic state of a system to deterministically switch
to the opposite state without any external or implicit magnetic field to determine the
final state9. In the literature to date, this reversal mechanism has only been observed
in the amorphous rare-earth ferrimagnets GdFeCo9 and more recently TbCo106. It has
not yet been explained why TIMS has only been observed in this class of materials and
there is no existing theory of the microscopic mechanism which causes the switching
behaviour. Understanding the reversal mechanism fully will help identifying other
materials in which this behaviour may be observed for use in technological applications
where use of rare-earth metals is decreasing due to the issues around sourcing these
materials107.

7.1 Background

It has been known for some time that the electric field of a high intensity laser can
cause changes in the magnetisation of a magnetic material through the inverse Faraday
effect (IFE)108,109. The induced magnetic field is

H =

�mo

16⇡
[E(!)⇥ E(!)⇤] (7.1)

where �mo is the magneto-optical susceptibility. The use of circularly polarised light
leads to an induced field, with opposite signs for left and right handed chiralities. Under
the action of unpolarised (linear) light, there is no net field.

78
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The optical excitation and control of magnetic materials using the IFE has been
demonstrated in materials such as DyFeO3 (Ref. 110) and TmFeO3 (Ref. 111).

In 2007 Stanciu et al. discovered than in GdFeCo, a ferrimagnetic system, the
magnetic state could be switched deterministically with circularly polarised light with
the chirality determining the final state4. This result indicated the GdFeCo may have an
exceptionally large IFE field of ⇠1-3 Tesla8,112. However this was called into question
by subsequent works where GdFeCo was show via atomistic spin dynamics to switch
deterministically without any applied field, only the application of ultrafast heating.
This was confirmed experimentally too by the use of unpolarised laser light and X-
ray magnetic circular dichrosim (XMCD) which allows the measurement of magnetic
species independently9. The helicity dependent switching shown by Stanciu et al.
was eventually explained in terms of magnetic circular dichroism causing a difference
in the energy absorbed by the material depending on the laser light helicity and the
relative orientation of the magnetisation113. Once this magneto-optical effect is taken
into account it is found that a minimum energy threshold needed for TIMS regardless
of the helicity of the light. The implication is that there is an intrinsic material property
which can be excited at this energy which leads to switching. However this mechanism
has so far remained elusive. Finding the microscopic mechanism is important both
for the fundamental understanding of this unexpected phenomenon and also to allow
technological exploitation. If the intrinsic mechanism is identified then it could allow
the materials to be optimised to improve switching or allow switching at lower laser
energies. Also, the use of rare-earth elements is being reduced due to issues over the
sourcing of the natural deposits107 and so if this type of switching could be found in
other materials or even manufactured in metamaterials this expand the potential for
application considerably.

There have been several attempts to explain TIMS, although so far these are almost
exclusively based on a macroscopic description of the magnetisation dynamics.
Mentink et al. described the reversal in terms of longitudinal relaxation via the
exchange interaction114. Such an explanation is contested by Atixita et al. who
find that the relaxation of the transverse magnetisation components must also be
considered115. Crucially though, neither work describes how the initial state is formed
that allows these relaxation paths. Schellenkens and Koopmans introduce a micro-
scopic Hamiltonian which describes the switching based on exchange scattering116.
Their Hamiltonian is for a quantised spin and also includes a Debye model to represent
the lattice coupling. They identify that exchange scattering leads to angular momentum
transfer between the sublattices, but don’t identify any clear criteria for the material
properties which are important for the switching.
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GdFeCo has ferrimagnetic ordering meaning that the Gd and Fe or Co moments are
antiparallel with each other, but because Gd has a much larger moment than Fe or Co,
the magnetisation from each sublattice does not necessarily cancel as it would in an
antiferromagnet. The lack of a complete cancellation in the magnetisation leads to a
measurable net magnetisation in the direction of the dominant sublattice. The different
species in a ferrimagnet are also coupled by different exchange energies and if only
nearest neighbour exchange interactions are considered, then there are possibilities for
inter- and intra-sublattice exchange energies resulting in three exchange parameters.
The net magnetisation can have a complex temperature dependence because of the
differing exchange energies. At the magnetisation compensation temperature (TComp)
the effective magnetisation, M(T ) of both sublattices cancel completely (Fig. 7.1)
and crossing through this point, the dominant sublattice changes. The compensation
point also leads to a divergence in the Gilbert damping of the material117. In much
of the literature, it is the traversal of the compensation point which is attributed to
TIMS106,118,119. However there is also contrary evidence where reversal is found to
occur in both simulations and experiments above the magnetisation compensation
temperature9 and also in compounds without a compensation point120. It is still
unknown what role, if any, the compensation point plays.

Gd
FeCo
Net

TCTComp

Temperature (K)

M
ag
ne
ti
sa
ti
o
n/
at
o
m
(µ
B
)

10008006004002000

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

TComp



GdFeCo Impurity Model 81

7.2 GdFeCo Impurity Model

As an amorphous material, GdFeCo has no underlying crystal structure. Moreover,
the large physical size of Gd atoms in comparison to Fe or Co atoms means that
the microstructure of such a material is very complex. Recent X-ray measurements
of GdFeCo samples show spatial inhomogeneity, where some areas are Gd rich and
other areas Gd poor121. Constructing a model which includes all of these structural
effects would make it difficult to interpret the important physics behind the switching.
Instead a prototypical model of GdFeCo is constructed which contains the minimum
complexity required to describe the physics of the system and which shows TIMS.
Specifically a two sublattice ferrimagnet on a lattice is created, but where the lattice
sites are randomly assigned as FeCo or Gd (Fig. 7.2). The Fe and Co moments are
combined into a single effective spin as a simplification because the Co content is low
(<10%) and is present only to introduce some uniaxial anisotropy into the material
for experimental reasons. While no account is taken for the physical size of the atomic
species within this model, different exchange constants are ascribed for inter- and intra-
sublattice exchange so that the Curie temperature and magnetisation compensation
points are similar to those observed experimentally122.

J
FeCo-FeCo

J
Gd-Gd

J
FeCo-Gd

The supercell created for the random impurity model means that for a small system the
results would be very sensitive to the random lattice configuration which is generated.
To minimise these effects and to ensure the results are relevant on experimental length
scales of tens of nanometers, very large systems are simulated where the super cell
contains over 2 million spins (128⇥ 128⇥ 128). Here the acceleration obtained from
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the GPU implementation becomes very important as the amorphous lattice does not
allow the use of Fourier methods to accelerate the calculation of interactions on the
lattice123. In small systems the spin wave spectrum also becomes highly discrete which
can substantially alter the physics of a system and has been shown in the study of
nanostructures in many areas of condensed matter physics. Such nanostructures and
the different physics that may occur will need to be considered in the future if TIMS
proves to be of technological use. The parameters used to represent GdFeCo in this
model are given in table 7.1. Note that in this model there is no angular momentum
compensation point which can occur if the two species posses different gyromagnetic
ratios.

FeCo-FeCo Exchange Energy J
ij

6.920⇥10

�21J
FeCo-Gd Exchange Energy J

ij

-2.410⇥10

�21J
Gd-Gd Exchange Energy J

ij

2.778⇥10

�21J
FeCo Anisotropy Energy d

z

8.072⇥10

�24J
FeCo Moment µs 1.92µB

FeCo Damping ↵ 0.02
FeCo Gyromagnetic Ratio ��

e

1.00
Gd Anisotropy Energy d

z

8.072⇥10

�24J
Gd Moment µs 7.63µB

Gd Damping ↵ 0.02
Gd Gyromagnetic Ratio � 1.00�

e

7.3 Intermediate Structure Factors

The deterministic reversal observed in TIMS implies that some order is being retained,
despite the almost complete demagnetisation of the spin system. To observe the
correlations between spins on all length scales present in the lattice, the intermediate
structure factor (ISF) can be calculated

S(k, t) = 1

N

X

r,r0

e

�ik·(r�r0)C(r� r0) (7.2)

where the equal time spin-spin correlation function is defined as

C(r� r0) = S+(r, t)S�(r
0, t) (7.3)

The ISF is a measure of the power in spin waves of wave vector k at a given
instance in time. A random lattice system is being considered, but it will be useful
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to express directions in the reciprocal lattice in terms of the simple cubic symmetry
points as shown in Fig. 7.3. For a ferromagnetic system in equilibrium the distribution
will be approximately Bose-Einstein (magnon excitations are approximate Bosons124).
However under the non-equilibrium conditions of fast laser heating this distribution
may be radically altered. In a ferrimagnet (or antiferromagnet) Holstein-Primakoff
(Eq. 7.4) transformation125 must be performed to express the excitations of both
sublattices in terms of a common set of normal modes. In practice this means inverting
the spins of one sublattice, whilst maintaining the handedness of the system

S
x

! S
x

; S
y

! �S
y

; S
z

! �S
z

(7.4)

The laser heating from the two temperature model increases the power in all spin
wave modes significantly, but it is the changes in the distribution of power that are
of most interest, rather than the absolute power which is roughly proportional to
the spin temperature of the system. Some changes to the ISF power distribution
with temperature are expected due to the softening of the spin wave spectrum and
higher order magnon processes (section 4.4) however the ! ⇠ k2 (ferromagnet) or
! ⇠ k (antiferromagnet) low energy regime is still dominant even very close to the
Curie temperature. So that the distribution can be observed regardless of the absolute
power, a normalisation is performed such that the peak power for any instant in time
is unity. This helps to maintain a good contrast despite the large change in system
temperature.

Ideally the frequencies as well as the wave vectors of the excited spin wave modes
would be calculated. However the time scale on which the demagnetisation and
switching occurs gives insufficient time for such a calculation to be meaningful. It
is sometimes possible to perform a study of these frequencies using a stroboscopic
frozen magnon approach126. This involves taking snapshots of the spin lattice at time
points of interest and evolving trajectories in the absence of Gilbert damping to observe
the modes present in the system. However in such a method there still exists indirect
damping, so spin wave modes can still decay (section 2.5). This damping will be
especially strong where the spin lattice in non-uniform as in the amorphous lattice
model. Instead the ISF is measured and the behaviour of the system is inferred from
the spin wave spectrum, S(k,!), under the adiabatic approximation that the laser
heating is so fast that the occupation of spin wave modes is significantly altered without
significantly changing the spin wave spectrum.

It is known from experiments and simulations that there is a threshold laser fluence
required to induce TIMS113 and so the ISF is studied both below and above the
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switching threshold fluence to observe if there is a difference in the distribution
of power in spin wave modes. In Fig. 7.4-7.6 laser heating of the spin system is
simulated with the two-temperature model using a Gaussian laser power profile with
a width of 50fs. The laser fluence is adjusted so that even with many replicates
the same qualitative behaviour is observed for switching with 25% Gd. A fluence
above and below the threshold is used for low Gd concentration (10%), the switching
concentration (25%) and high Gd concentration (35%). Note that the many replicates
cannot be averaged because the stochastic dynamics have slight differences in the time
scale of key features and the averaging of such data sets leads to a smearing of features
which are observable in each data set individually.

For the low Gd concentration there is no switching for low or high laser fluences
(Fig.7.4a,b). The magnetisation of each sublattice reduces but without any switching.
The ISF results show that the heating causes a redistribution of the magnons leading
to a peak in non-zero k modes. With such a low Gd concentration this system
is essentially a ferromagnet and this redistribution of modes is consistent with the
formation of randomly orientated unstable domains as previously observed in such
systems48,127. The degree of demagnetisation determines how long it takes for the
domains to annihilate.

In Fig. 7.5a,b the Gd concentration of 25% is used where switching is found. In
the upper pannel where the laser fluence is too low to induce switching it can be
seen that despite the large degree of demagnetisation the magnon distribution is still
centered on the �-point. Once the laser fluence is sufficiently high, switching occurs.
During the switching, spin waves are strongly excited at the same length scale as the
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physical correlation length. This excitation lasts only for the duration of the switching
and then decays back to the �-point. In this system there are a significant number
of antiferromagnetic interactions between the Gd and FeCo moments. However this
material can no be classified as a ferromagnet or antiferromagnet. Later DSF is studied
to find the nature of the excitations in this system.

At the higher Gd concentration of 35%, there is no switching observed. Instead the
system demagnetises significantly for both laser fluences (Fig. 7.6a,b). There the
excitations are short lived, consistent with the more antiferromagnetic nature of this
concentration.
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7.4 Magnon Band Structures

Dynamic Structure Factors

To interpret the ISF results and the nature of the magnons on different length scales
the spin wave spectrum of the impurity model must be calculated in a similar manner
to section 4.3. As well as windowing the temporal Fourier transform, a Gaussian
convolution of width �f ⇡ 0.95GHz is applied to reduce noise in the spectrum.
A normalisation along each k-vector is also performed, so that the maximum value
on any given k-vector is unity14 (see appendix A1). This allows the observation
of the dispersion relation and the width of the bands. The information about the
absolute amplitude of spin waves at equilibrium is therefore not represented, however
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the distribution of spin waves is already given from the calculated ISF (Fig. 7.4-7.6).
Therefore the distribution of power within the DSF at any given point in time is inferred
from the ISF.

It is well known that ferrimagnets contain two branches in the spin wave spectrum33.
This is due to the occurrence of both ferromagnetic and antiferromagnetic interactions
within the lattice. The relative amplitude of one branch to another is important,
especially within an amorphous lattice as it gives information about the length scales
on which these modes are found. Because this is a quantity of interest the combined
band amplitude is calculated as

A0
k = (Ak,1 +Ak,2)� 1 (7.5)

where Ak,1 and Ak,2 are the normalised amplitude on a given k-vector of each band
respectively. Thus A0 is unity when both bands have an equal amplitude and is zero
when one band has zero amplitude because the highest amplitude is always normalised
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to unity. The simple integration of the power on a given k-vector would distort the
results due to the linewidth of each band.

Figure 7.7 shows the DSF for different Gd concentrations as marked in the top left
of each colour panel. The white dashed curve on top of each DSF is the spin wave
dispersion as calculated from LSWT (discussed in the next section). The red panel
above each DSF is A0. The black arrows are calculated from a physical correlation
length as discussed later.

Linear Spin Wave Theory

To compare with the numerical calculations and introduce a predictive ability the
virtual crystal approximation is used within linear spin wave theory to calculate the
spin wave dispersion for an amorphous ferrimagnet. The equations were derived by U.
Atxitia at York University and is included here for completeness.

To treat the amorphous characteristic of GdFeCo the virtual crystal approximation is
used to weight the exchange parameters relative to the composition

J0,11 = (1� x)zJ11 J0,12 = xzJ12

J0,21 = (1� x)zJ21 J0,12 = xzJ22
(7.6)

where x is the Gd content, z is the coordination of the lattice, J
xx

are the bare
interactions between the moments of each sublattice and J0,xx are the mean field
interactions between the moments in the virtual crystal approximation. The LSWT
analysis can be performed in a similar manner to that in section 4.2. Linearising the
Landau-Lifshitz equation of motion gives

d
dt

 
s+k1
s+k2

!
= �i

 
Ak11 Bk12

Bk21 Ak22

! 
s+k1
s+k2

!
(7.7)

where

Ak11 =
�

µ1

(J0,11 � Jk11) hs1i+ �

µ1

J0,12hs2i

Bk12 =
�

µ1

Jk12hs2i

Ak22 =
�

µ2

(J0,22 � Jk22) hs2i+ �

µ1

J0,21hs1i

Bk21 =
�

µ2

Jk21hs1i (7.8)
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As with the calculation of the ISF and DSF where a Holstein-Primakoff transformation
was performed, equation (7.7) must also be transformed to a common set of spin
operators. This is done by a Bogolioubov transformation (which the Holstein-
Primakoff is a specific example of) which requires that the common operators retain
bosonic commutation relations124

s+k1 = uk↵k + vk�
†
k (7.9)

s+k2 = vk↵
†
k + uk�k (7.10)

So ↵k and �k are eigenstates of the system and the solution of Eq.(7.7) gives the
dispersion relations

!
↵

(k) =
1

2

q
(Ak11 +Ak22)

2 � 4Bk12Bk21 � (Ak22 �Ak11)

�
(7.11)

!
�

(k) =
1

2

q
(Ak11 +Ak22)
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where the coefficients of the transformation uk and vk read
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obeying the Bogolioubov canonical transformation which requires u2
k

� v2
k

= 1. There
is an energy gap at k = 0 of !

↵

� !
�

= �J12(hs2i � hs1i)/µ1µ2.

Magnon Spectrum

When there is a very low concentration of Gd within the lattice (10-15%), the Gd sites
act as impurities in what is predominately a ferromagnetic system. The DSF shows
that the AF interactions are very localised to the edge of the Brillouin zone due to
the limited range of the AF interactions. A0 is maximised at the edge of the Brillouin
zone, however the vast difference in the band frequencies here means that there is no
coupling between modes. In equations (7.7) and (7.8) the off diagonal terms Bk12 and
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Bk21 and inter-sublattice terms of Ak11 and Ak22 are very small. The result is that the
spin operators s+k1 and s+k2 are almost purely eigenstates of ↵k and �k. Therefore the
contribution of each branch of the DSF can be distinguished as excitations of either
FeCo or Gd moments.

TIMS is readily found in Gd concentrations between 20-30%. In this regime the FM
magnon contribution to spin fluctuations decreases in amplitude on large length scales
(near the �-point) in favour of AF modes, gradually diminishing the ferromagnetic
character of such spin fluctuations. The result is that the excitations become a mixed
FM-AF mode, as seen also by the Bogoliubov transform (Eq. 7.10) in the LSWT.
The two spin wave mode causes localised oscillations in the magnetisation, leading
to the formation of a transient state where the magnetisation of both sublattices is
aligned promoting the reversal. When the gap between the bands �f is minimised, this
maximises the energy and angular momentum flow between the sublattices. Therefore
reducing �f in areas of the Brillouin zone which are excited strongly allows reversal
more readily.

At even higher Gd concentrations, around 35% and above, TIMS ceases to occur.
The DSF shows that the AF band now dominates across the Brillouin zone and the
FM modes contain little amplitude. The gap between the bands once again increases
stopping the transfer of energy between non linear modes (Fig. 7.8c)

Amorphous Effects

The amorphous nature of GdFeCo, which is approximated in the lattice impurity
model, means that the magnetic interactions are not uniform across the system.
Instead there are some areas which contain clusters of Gd, where there will be a
higher concentration of the AF FeCo-Gd interactions. This phenomenon causes AF
interactions to be range-limited, leading to important effects in the magnon spectrum.
To measure this effect in the impurity model, clusters within the lattice must be
identified and properties their properties quantified. This is done using the Hoshen-
Kopelman method. It is also important that these effects are include in the analytic
theory and so percolation theory is employed, which describes the occurrence of
clusters in random lattices from a statistical mechanics perspective. Using these
two approaches it is shown that features in the DSF are directly determined by the
properties of Gd clusters in the FeCo lattice.
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Hoshen-Kopelman Method

To quantify clusters of Gd within the lattice all unique clusters must be identified.
These are defined as regions of Gd which are directly exchange coupled by Gd-Gd
exchange. An efficient way of labeling unique clusters in a large lattice is required.
One such method is described by Hoshen and Kopelman128,129. It involves scanning
through the lattice once to number all connected regions in each column and then a
second pass to re-number connected regions between columns (Fig. 7.10). During
this processes the statistical properties of the clusters such as the number of sites it
contains (s) are obtained and subsequently the radius of gyration (R) can be calculated.
The discrete distribution of clusters is calculated, in which the number of clusters of a
given size is denoted as n

s

. The typical correlation length of clusters in the lattice can
be calculated from these statistics as130

⇠2 =
2

P
s

s2
P

ns

t=1 R
2
stP

s

s2n
s

(7.15)

This quantity gives a value for the typical spacial extent of an cluster randomly drawn
from the lattice. Clearly on large lattices the distribution of cluster sizes can be quite
large and also the radius of gyration can be quite different even for clusters of the same
size. So ⇠ gives the dominant length scale occurring from the clusters.
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Percolation Theory

Percolation theory quantifies the properties of clusters in random lattices. One of the
central ideas is that of a percolating cluster, which is a cluster that spans the lattice from
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one side to the other. The percolation threshold (p
c

) is a phase transition where the
statistical properties of clusters is different above and below this threshold. As a phase
transition theory, percolation theory is strictly only defined in the thermodynamic limit
i.e. for and infinite system size. For finite sized systems the statistical properties
must be rescaled to account for the absence of truly divergent behaviour at the critical
point97,130. It is the typical length scale of Gd clusters which is of interest, as this
corresponds to the typical length scale of AF interactions in the system. In percolation
theory the correlation length of clusters is

˜⇠ = A|p� p
c

|�⌫ (7.16)

where p is the fraction of occupied lattice sites, p
c

is the percolation threshold, ⌫ is a
universal critical exponent and A is a scaling constant. The percolation threshold, p

c

,
depends on the symmetries of the lattice and is the same for all lattices which have
the same underlying symmetries. In this work a simple cubic lattice is considered
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and it is the site percolation which is of importance as it is the immediate surface
area where the AF interactions exist. If the interaction through the clusters was of
importance then instead the bond percolation would be considered. The value of p

c

is
therefore p

c

= 0.3116004 (Ref. 131). The universal critical exponent, ⌫ is common to
all percolating systems and has the value ⌫ = 0.875 (Ref. 132). The scaling factor A of
a bulk system is in general a function of the percolation threshold and the lattice size.
In a single, finite system, A can be obtained by a fit to the correlation length obtained
from both the Hoshen-Kopelman method and analysis of the two magnon states. The
result in figure 7.11 shows a good agreement between the correlation lengths obtained
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from both methods and with percolation theory for site percolation.

7.5 Band Gap Prediction

It was determined above that TIMS occurs due to the excitation of two magnon states
which transfer angular momentum between the two sublattices in GdFeCo. The
detailed information about the two magnon states is contained within the magnon
spectrum of the material and as such, the magnon spectrum can be used to predict
the occurrence of TIMS. The spectrum can be readily calculated from LSWT (with the
VCA) as was shown above, but regions within the Brillouin zone where the relative
amplitude is similar for both bands must be identified, i.e. the two magnon state is
maximised according to the Bogolioubov transform (Eq.(7.10)). Within GdFeCo this is
determined by the clustering within the amorphous lattice and the relevant length scale
can be calculated from percolation theory (Eq.(7.16)). The efficient excitation of the
two magnon modes requires that the difference in frequency of the bands at this point
is small. In effect, the energy load supplied by the laser must be sufficient to excite
across this frequency difference. But the energy load must not be so much that the
magnetisation is destroyed. From the combination of analytic methods LSWT, VCA
and percolation theory, an analytic model can be built which describes the frequency
gap of the two magnon states. A temperature dependence can be included into the
LSWT by calculating hs1i and hs2i in Eq. (7.8) from mean field theory122. This gives
an experimentally accessible parameter space of the initial temperature and the Gd
concentration, within which the energy threshold can be described (in terms of h̄!)
which is required for TIMS. As an instructive comparison the band gap at the �-point
is calculated, which describes a simplified, macroscopic description where only the
magnetisation compensation point is considered.

In the macroscopic picture, Fig. 7.12a, the minimum �f follows the magnetisation
compensation point, meaning that switching would always require a low energy
threshold regardless of the initial temperature when close to the compensation point.
This is not supported by experimental observations9. Furthermore the magnon
spectrum shows that there are rarely two magnon states at the �-point, and this
demonstrative diagram shows the importance of accounting for clustering within
GdFeCo.

Going beyond the macroscopic picture and including the effects of Gd clustering,
Fig. 7.12b, a radically different �f landscape is obtained. There is now a temperature
dependence to the band gap because the magnon spectrum is more temperature
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dependent at larger wave vectors, an effect known as magnon softening14. At room
temperature the minimum �f is relatively flat between 20-30% Gd concentrations,
which explains why these concentrations are found to switch experimentally. Also
in the region of 25-30% Gd concentration the compensation point is coincident with
the �f minimum around 300-400K. This helps to explain why experiments have
frequently shown the compensation point to be important but also justifies why in some
cases such as 20-25%, switching occurs even above the compensation point.

The predictive power of this theory can be tested by performing extensive switching
simulations for different initial temperatures and Gd concentrations using a laser heat
profile from the two-temperature model in the same way as the results in Fig. 7.4 were
produced. Repeating these experiments for different laser fluence, a different energy
load is applied to the system. To validate the combination of theories which form
Fig. 7.12b switching must be shown to occur within a contour of �f(|k| = 1/⇠) for
a given energy load. The resulting switching windows are given in Fig. 7.13, where
the colouring describes the area of parameter space where TIMS is found for a given
laser fluence (energy load). There is a very good agreement between the observed
switching and the contours and the larger energy loads switch systems with larger
energy gaps.
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7.6 Conclusions

The angular momentum transfer channel between the Gd and FeCo sublattices during
TIMS has been identified in the impurity lattice Heisenberg model. The range limiting
of the exchange interactions due to amorphous clustering in the lattice causes this
transfer channel to be strong only in a small area of the Brillouin zone corresponding to
a two magnon mode. The prediction that follows is that if the transfer channel is larger,
i.e. the overlap of the two bands in the DSF is greater then TIMS occurs more readily.
In the low Gd concentration, quasi-FM limit it is not possible to excite TIMS because
the two magnon states only exist at the edge of the Brillouin zone which is not strongly
excited by the laser heating. There is also a large difference in the frequency between
the two bands in this regime which precludes the angular momentum transfer. In the
high Gd concentration, quasi-AF regime, the exchange field from the inter-sublattice
exchange raises the upper band in the DSF, leading to a wide gap between the two
bands. The upper band is also weaker due to the reduction in FeCo intra-sublattice
exchange. Therefore TIMS cannot occur because the angular momentum channel is
impeded.

Using the knowledge of the microscopic mechanism for TIMS and the angular
momentum transfer channel leads to the key optimisation criteria. The gap between the
two excitation bands must be minimised where the two magnon state is strongest. In
GdFeCo this is determined by the properties of the random clustering as it is the mix of
interactions at the interfaces of the clusters that allows the angular momentum transfer.
If enough energy is provided by the laser to excite the two magnon modes then TIMS
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occurs. Otherwise the material demagnetises according to the usual behaviour in an
FM or AF like material.



CHAPTER 8

Conclusions

Atomistic spin dynamics and multiscale modelling

Within this work a highly efficient model of atomistic spin dynamics was implemented
on a graphical processing unit, leading to a performance increase of up to 75⇥ in
simulations. The use of ASD is important in the work presented here due to the require-
ments of representing high temperatures and the need to include antiferromagnetic
order. The increase in performance has allowed the study of novel magnetic materials
on time and length scales which were previously prohibitive. These abilities were
used to study the temperature scaling of micromagnetic parameters, in comparison to
semi-analytic methods. By simulating very large systems of the order of two million
atomistic spins up to the nanosecond time scale, it was possible to identify which
decoupling schemes in the classical spectral density method, most closely reproduces
the results of ASD. This work is of importance in multiscale modelling, where the
ability to model materials on many time and length scales from an ab initio input is
highly desirable. The Callen decoupling procedure, in the classical Heisenberg model,
gives results which are most similar to ASD on micromagnetic length scales. However
the anisotropy scaling was found to scale as K(T ) ⇠ M3 for all temperatures up to
the Curie point, in contrast to the Callen scheme which predicts this only as the low
temperature exponent.

Enhanced damping in antiferromagnetic/ferromagnetic bilayers

A study of the eigenmodes in ferromagnetic/antiferromagnetic bilayers was performed.
Analytical calculations were made, taking the low frequency limit where the anti-
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ferromagnetic dynamics are not considered. A local mode was identified within the
system on the scale of the exchange length and that the eigenfrequency is strongly
effected by the AF properties if the AF/FM coupling is sufficiently strong. Further
analysis allowed the determination of the effective damping of the system, which
increases with the interfacial coupling strength. The damping is also sensitive to the AF
properties and this mechanism explains the enhanced damping found experimentally
in spin valve structures. The analytic results were validated by comparison with
numeric simulations. A numerical study of a bilayer with a disordered interface,
beyond the analytic approach, found that the damping remained frequency dependent
as determined by the effective interfacial exchange strength, rather than the local
exchange strength at the interface. It was explained that due to the lack of excitation
of areas of the AF due to the exchange frustration caused by the disorder at the
interface. This limits the volume of the AF which partakes in the enhanced damping
mechanism.

Four spin interactions in FeRh

The origin of the metamagnetic phase transition in FeRh has long been debated. On the
basis of ab initio calculations a model was implemented in this work where an effective
four spin interaction between the Fe moments leads to an AF-FM phase transition.
This model was shown to contain an AF-FM phase transition and in parametrising
to experiment, the model can closely represent FeRh. This provides weight to the
argument of a purely magnetic origin to the phase transition as this model does not
explicitly include lattice dynamics. The phase transition was found to occur due to
the increased temperature dependence of the four spin exchange term in comparison
to the Heisenberg term. At the phase transition the total energy is larger than that of
higher temperatures and this dissipation of this excess energy may lead to the observed
lattice expansion in FeRh. This model is unique in the ability to study dynamics
through the phase transition. Studying the behaviour during femtosecond laser heating,
mirroring experiments which have been performed, a similar dynamical behaviour was
found. However there is some uncertainty in the time scales of the dynamics due to the
complicated issue of the magnitude of the Gilbert damping in FeRh.

Thermally induced magnetisation switching in GdFeCo

The microscopic mechanism leading to thermally induced magnetisation switching
has eluded explanation since the discovery of this phenomenon. A study was
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conducted using large scale ASD simulations, to identify the microscopic mechanism
and the important material parameters for TIMS. Linear spin wave theory was used
in the virtual crystal approximation to form a theoretical framework to study and
predict this phenomenon. By studying the spin wave dynamics and the spin wave
spectrum the excitation of two magnon states in the spectrum, which mix AF and FM
interactions, were identified. This leads to the switching in GdFeCo. The study of the
spin wave spectrum allowed the identification of the important material feature, the
relative energies of the two bands, which determines the energy threshold required for
switching. The amorphous character of GdFeCo means that the two magnon states
do not necessarily exist on all length scales. The mean size of clusters of Gd was
found to determine the important length scale of the two magnon modes. Finally
a comparison was performed between predictions of the energy threshold required
for TIMS from the analytic framework with numerical simulations of femtosecond
laser heating. Switching was found within contours of constant energy in regions of
the explored parameter space (initial temperature, Gd concentration) for a given laser
energy input.

8.1 Further Work

The work presented in this thesis just touches the surface of many interesting areas of
magnetism. It is often the case in numerical work that there is a very large parameter
space which can be explored, but finding interesting physics within this can prove
difficult. Below is listed the intended direction for future research of the work which
has been presented here.

Enhanced damping in antiferromagnetic/ferromagnetic bilayers

The work presented here is a smaller area of an extremely large parameter space.
Several assumptions have been made in the analytic work, focussing on the practically
exploitable low frequency regime. In the future the same approach will be used, but in a
high frequency approximation, therefore retaining the dynamics of the antiferromagnet
rather than using the quasi-static approximation. The results from this are interesting
for the study of antiferromagnets experimentally. It may be possible to discern the
properties of an antiferromagnet from how a coupled ferromagnet behaves when driven
at high frequency, thus allowing access to measurements of antiferromagnets without
the complication of methods such as X-ray magnetic linear dichroism (XMLD).
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Thermally induced magnetisation switching in GdFeCo

A full parameterisation of the FeRh induced moment model from first principles will be
attempted. This is difficult because of the difficulty in isolating four spin contributions
in constrained field electronic structure calculations. A successful parameterisation of
the Hamiltonian will give much weight to the evidence for a purely magnetic origin
of the phase transition in FeRh. Coupling a lattice model to the magnetic model
would be instructive to observe how the energy from the phase transition is dissipated
within the lattice and if this is consistent with the observations that have been made
experimentally. Beyond these immediate steps, a study of the surface effect in FeRh
would be very interesting. There is some anecdotal evidence of a ferromagnetic ‘skin’
at the surface which does not undergo the phase transition. There are also experimental
measurements of small FeRh clusters embedded in carbon which do not have the AF-
FM phase transition and are always ferromagnetic133. Understanding how the reduced
size and dimensionality effects the phase transition is important if FeRh is ever to be
used in nanoscale applications.

Thermally induced magnetisation switching

This work has explained the observed switching behaviour within GdFeCo, which is
an amorphous ferrimagnet. The next case which can be considered is heterostructures
with antiferromagnet and ferromagnetic ordering. For such materials the k-vector
at which the two magnon states are accessible is likely to be determined by the
construction of the heterostructure, therefore allowing the tuning of TIMS to specific
energy ranges. Experimentally it is important that TIMS can be found in systems which
do not contain rare-earth elements. This is because sourcing rare-earth materials is now
becoming costly due to export restrictions and also due to the practical implementation
of there materials where corrosion can be a major issue.



APPENDIX A

Data Processing

A.1 Dynamic Structure Factors

The random fluctuations from the thermal noise term of the Langevin equation means
that dynamic structure factors calculated in a reasonable time frame can be quite noisy.
On top of this there is usually a large contrast between small and large wave vectors
as the magnons follow an approximately Bose-Einstein distribution. Therefore it is
useful to apply some smoothing and normalisation of the data to improve readability.
Following the example of Bergman, Taroni, Bergqvist, Hellsvik, Hjörvarsson &
Eriksson [14] we perform a Gaussian convolution of the frequency domain along
constant q. We then normalise the maximum peak value on this q to unity. This
means that information can be read about the relative intensity of peaks along a given
q.
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