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Abstract 

 

Pathological proliferation of vascular smooth muscle cells (VSMC) is a central feature 

of vascular disorders such as atherosclerosis and restenosis. During such proliferative 

conditions the expression of the T-type Ca2+ channel is increased, providing an 

important route for Ca2+ entry. The inducible stress-response protein, heme 

oxygenase-1 (HO-1), is also up-regulated during vascular disorders. This enzyme 

confers cytoprotective effects via the breakdown of free heme to produce iron, 

biliverdin, and carbon monoxide (CO). CO has been shown to be anti-inflammatory, 

anti-apoptotic, and anti-proliferative at low concentrations. Furthermore, CO is 

emerging as a modulator of various ion channels, and our research group has recently 

found that CO inhibits the T-type Ca2+ current via whole-cell patch clamp recordings. 

Therefore, the aim of this thesis was to investigate whether the VSMC T-type Ca2+ 

channel could act as an anti-proliferative target for HO-1-derived CO. 

 

HEK293 cells over-expressing the Cav3.2 T-type Ca2+ channel produced higher basal 

[Ca2+]i and displayed an augmented proliferative response. [Ca2+]i and proliferation 

were both reduced by T-type Ca2+ channel inhibition, CO exposure, and HO-1 

induction. T-type Ca2+ channel inhibition and HO-1 induction reduced [Ca2+]i and 

proliferation in the rat aortic VSMC line, A7r5. Exogenous CO exposure decreased 

[Ca2+]i in A7r5 cells, but conferred insignificant anti-proliferative effects, which 

correlated to a relatively low expression of the T-type Ca2+ channel. T-type Ca2+ 

channel inhibition, CO exposure, and HO-1 induction all have anti-proliferative effects 

in human VSMCs, yet simultaneous HO-1 induction and T-type Ca2+ channel inhibition 

do not cause additive inhibitory effects on proliferation. 

 

These data provide evidence that CO is anti-proliferative, and that CO potentially acts 

via the T-type Ca2+ channel. This pathway could be a novel therapeutic target for 

vascular disorders involving excessive smooth muscle cell proliferation. 
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CHAPTER 1 

Introduction 

 

This thesis reports the results of a series of studies designed to investigate whether the 

vascular smooth muscle T-type Ca2+ channel is an anti-proliferative target for heme 

oxygenase-1 (HO-1). The prominent features of cardiovascular disorders will be 

reviewed, including the roles of both vascular smooth muscle cells (VSMCs) and 

endothelial cells (ECs), in addition to the changes that occur in cellular proteins and 

Ca2+ homeostasis. The relationship of the T-type Ca2+ channel to cardiovascular 

disorders will also be reviewed in detail, as will the stress response protein HO-1, and 

the associated by-product, carbon monoxide (CO). 

 

1.1 Disorders of Vascular Remodelling 

Cardiovascular disease accounts for 47% of all European deaths, equating to over 4 

million deaths each year (British Heart Foundation, 2012, resource code HS2012EC, 

http://www.bhf.org.uk/publications/view-publication.aspx?ps=1002098). Coronary heart 

disease and stroke are the main forms of cardiovascular disease and the most 

common cause of death in western societies (Lusis, 2000). Vascular smooth muscle 

cell (VSMC) proliferation is a central feature of cardiovascular disorders, therefore the 

elucidation of therapeutic targets to limit this pathological proliferation is imperative. 

The major cardiovascular diseases in which VSMC proliferation is an important factor 

are considered further. 

 

Atherosclerosis 

Atherosclerosis is a progressive, chronic inflammatory disease of large arteries (Lusis, 

2000). Lipid-rich sub-endothelial lesions consist of necrotic debris and VSMCs covered 

by a fibrotic cap (Lusis, 2000). This complex disease involves numerous cell types, the 

accumulation of extracellular matrix, and the action of proteases and inflammatory 

mediators (Owens et al., 2004). High circulating low density lipoprotein (LDL) levels are 

a primary factor in lesion formation, as they migrate into the sub-endothelial space 

where they are oxidised, forming oxidised LDL (oxLDL), and an inflammatory cascade 

ensues. Endothelial injury, in response to disturbed blood flow, for example, also 
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influences lesion formation and stimulates VSMC migration and proliferation (Lusis, 

2000). Monocytes enter the sub-endothelial space where they differentiate into 

macrophages, and subsequently into foam cells as they imbibe lipids (Lusis, 2000). 

Activated macrophages release inflammatory mediators and growth factors that 

stimulate VSMC migration and proliferation. VSMCs secrete extracellular matrix which 

contributes to vessel occlusion (Rzucidlo et al., 2007). In response to oxLDL, synthetic 

VSMCs form a fibrous cap which overlays the atherosclerotic plaque. Matrix 

metalloproteinases (MMPs) are endopeptidases produced by VSMCs and 

macrophages. MMPs are involved in extracellular matrix degradation and remodelling, 

which can lead to plaque instability (Galis et al., 1994). Extracellular matrix proteins are 

degraded prior to VSMC migration (Galis et al., 1994), and elevated MMP levels have 

been linked to neointimal hyperplasia (Porter et al., 1999). Simvastatin has been shown 

to reduce neointimal hyperplasia in organ-cultured human VSMCs, in addition to 

limiting MMP activity and VSMC proliferation (Porter et al., 2002). Plaque rupture and 

subsequent thrombosis can lead to stroke or myocardial infarction (Lusis, 2000), 

therefore the inhibition of excessive VSMC proliferation may have beneficial effects on 

vessel morbidity by limiting the progression of atherosclerosis. 

 

Hypertension 

Hypertension results from increased vascular resistance and causes structural 

changes within the vessel wall. This process is termed eutrophic remodelling and 

involves narrowing of the vessel lumen via increased vessel wall thickness (Sonoyama 

et al., 2007). Hypertrophic remodelling can ensue upon increased wall stress, which 

also modulates collagen distribution, producing a less compliant vessel wall. This 

adaptive response to increased vessel wall stress involves the growth of VSMCs 

(Owens, 1989;Mulvany, 1993). Hypertension causes increased contractility, increased 

VSMC proliferation and vascular remodelling. Both systemic and pulmonary 

hypertension are linked to VSMC proliferation and altered Ca2+ handling (Firth et al., 

2007). Up-regulation of Transient Receptor Potential Canonical (TRPC) channels has 

been associated with increased Ca2+ influx and the development of hypertension (Firth 

et al., 2007). Using cerebral arterial smooth muscle from a rat model of salt-sensitive 

hypertension, higher basal [Ca2+]i was found in addition to a more depolarised resting 

membrane potential (Wellman et al., 2001). Reduced function of Kv channels together 

with an increase in [Ca2+]i via voltage-dependent Ca2+ channel activity stimulated 

activation of the cAMP response element binding protein transcription factor and the 

immediate early gene c-fos, thereby linking altered Ca2+ handling to gene expression in 
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hypertension (Wellman et al., 2001). Furthermore, the transcription factor c-fos has 

been identified as an important signalling component in pathological VSMC 

proliferation (Sylvester et al., 1998), which is linked to cyclin A transcription and cell 

cycle progression (Wei et al., 1997). 

 

T-type Ca2+ channels have been linked to hypertension. The inhibition of both L- and T-

type Ca2+ channels was shown to confer anti-hypertensive effects in systemic and renal 

circulation (Nakamura et al., 1999). Indeed, both L-type and T-type Ca2+ channels are 

expressed in afferent vessels, whereas efferent vessels appear to express T-type Ca2+ 

channels only, as reviewed by Cribbs (2006). Blockade of T-type Ca2+ channels was 

demonstrated to cause vasodilation of both afferent and efferent arterioles of Sprague-

Dawley rats via in vitro perfusion (Feng et al., 2004). Furthermore, T-type Ca2+ channel 

inhibition has been linked to positive effects on the renin-angiotensin-aldosterone 

system, VSMC proliferation, and extracellular matrix deposition (Buhler, 1997). Given 

that adequate [Ca2+]i levels are required for the progression of the cell cycle (Ciapa et 

al., 1994), the increased Ca2+ influx via voltage-dependent Ca2+ channels may facilitate 

the enhanced gene expression, VSMC replication, and extracellular matrix remodelling 

of proliferative disorders such as hypertension. 

 

Restenosis 

Intimal hyperplasia occurs in response to vessel wall injury and endothelial damage as 

a result of stenting (Rzucidlo et al., 2007). Excessive amounts of extracellular matrix 

are produced by proliferating VSMCs, which causes hyperplastic lesions and 

restenosis (Rzucidlo et al., 2007). VSMC proliferation in response to stenting appears 

as an early event immediately post-stent insertion to repair the damaged endothelium, 

but this process can also continue and subsequently cause restenosis in order to shield 

the stent from thrombogenic blood constituents (Curcio et al., 2011). By blocking the 

mitogen-activated protein kinase (MAPK) and cAMP- protein kinase A (PKA) cell 

signalling pathways involved in VSMCs, studies have shown that the inhibition of 

VSMC proliferation in order to limit restenosis is a promising therapeutic strategy, as 

reviewed by Curcio et al. (2011). Indeed, the exposure of the compromised vessel to 

anti-proliferative compounds via drug-eluting stents initially demonstrated 

advantageous effects on intimal hyperplasia (Curcio et al., 2011). Rapamycin inhibits 

mTOR (mammalian target of rapamycin) which mediates environmental cues and, in-

turn, regulates cell proliferation (Sarbassov et al., 2005). This immunosuppressant has 
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been shown to inhibit VSMC migration and proliferation in vitro and in vivo (Marx et al., 

1995;Poon et al., 1996), and promote VSMC differentiation (Martin et al., 2004). 

Additionally, rapamycin drug-eluting stents have been shown to limit restenosis 

(Eisenberg & Konnyu, 2006). However, follow-up studies demonstrated the need for 

both anti-proliferative and anti-inflammatory drug-eluting stents. 

 

Evidently numerous factors or interventions can cause vessel injury. The disruption of 

vascular integrity begins with damage to the endothelium, vascular remodelling then 

follows which involves VSMC proliferation, apoptosis, and the production of 

extracellular matrix proteins such as collagen, elastin and fibronectin (McCarthy & 

Bennett, 2000). Apoptosis of VSMCs can play a dual role in vascular remodelling by 

limiting intimal hyperplasia and reducing vessel occlusion, yet conversely VSMC 

apoptosis can contribute to atherosclerotic plaque rupture and thrombosis (McCarthy & 

Bennett, 2000). Vascular remodelling has been described as both the cause and 

consequence of ensuing pathology, as the inherent plasticity of VSMCs is a pre-

disposing factor for proliferative disorders (Owens et al., 2004). The roles of the 

endothelium and the plasticity of VSMC in vascular remodelling are discussed further 

below. 

 

1.2 The response to vascular injury 

1.2.1 The role of the endothelium 

Endothelial cells (ECs) form a continuous non-thrombogenic layer that mediates 

metabolic exchange through the arterial wall. A healthy endothelium co-ordinates 

vascular tone by the secretion of vasoactive agents, and plays a role in coagulation 

and inflammation (Widlansky et al., 2003). However, endothelial injury increases the 

risk of a cardiovascular event, as reviewed by Widlansky et al. (2003). Injury can occur 

as a result of denudation, inflammation, oxidative stress, hyperglycaemia or elevated 

levels of free fatty acids (Atochin & Huang, 2010). 

 

ECs are an important source of nitric oxide (NO) which acts as a positive regulator of 

vascular function (Atochin & Huang, 2010). NO is principally a vasodilator of VSMC, 

although this signalling molecule also limits VSMC proliferation and inhibits platelet 

aggregation. A reduction in the bioavailability of NO can induce endothelial dysfunction 
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(Higashi et al., 2009). Oxidative stress is a prominent feature in the pathogenesis of 

cardiovascular diseases such as hypertension, dyslipidemia, diabetes mellitus, 

atherosclerosis, and myocardial infarction. Reactive oxygen species (ROS) arise from 

numerous sources including nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase (eNOS), 

cyclooxygenase, and the mitochondrial electron transport chain (Higashi et al., 2009). 

ROS can inactivate NO by forming toxic peroxynitrite, thereby inducing endothelial 

dysfunction (Higashi et al., 2009). ROS can be produced in VSMCs, ECs, and 

mononuclear cells, and the associated effects include lipid and protein oxidation, 

increased [Ca2+]i load, and DNA fragmentation (Higashi et al., 2009). Upon injury to the 

endothelium, EC located at the periphery of a wound are able to migrate and 

proliferate, whilst also remaining attached to neighbouring ECs. However, ECs located 

at sites distal to the wound are unable to participate in injury repair (Ross, 1981), and 

so the reparative capacity of the endothelium is limited. ECs are able to influence 

VSMC growth and migration by the secretion of growth factors, and it is this response 

by VSMCs that is central, not only to repair after injury, but to proliferative disorders of 

the vasculature. 

 

1.2.2 Vascular smooth muscle cells and phenotypic switching 

VSMCs are situated in the medial layer of the blood vessel wall, and are responsible 

for maintaining basal vascular tone. They respond to chemical, mechanical, and 

electrical signals, and thereby regulate systemic blood pressure (Cribbs, 2006). 

VSMCs are highly proliferative during vasculogenesis and development, before 

differentiating into contractile VSMCs in mature vessels (Owens et al., 2004). In healthy 

blood vessels VSMCs contain cytoskeletal proteins and ion channels specific to their 

contractile function, and exhibit low proliferative activity (Rzucidlo et al., 2007). Mature, 

contractile VSMCs retain the ability to de-differentiate in response to environmental 

cues in order to adapt to cellular stresses (Owens, 1995). This response to vessel 

injury is central to the repair and restoration of vascular function, yet excessive 

proliferation is associated with cardiovascular disorders such as restenosis, 

atherosclerosis and hypertension (House et al., 2008). 

 

During the early stages of primary culture, VSMCs can be maintained in the contractile 

state by seeding at a high cell density, or by supplying endothelial growth factors 

(Ross, 1981). As VSMCs lose myosin and the ability to contract, they are able to 
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respond to mitogens and subsequently switch to a synthetic state (Ross, 1981). 

Synthetic VSMCs play a prominent role in the response to injury, according to the 

hypothesis proposed by Ross (1981); injury to the endothelial lining of blood vessels as 

a result of mechanical, chemical or immunological insult leads to the activation of 

platelets and monocytes. The subsequent release of growth factors and 

chemoattractant molecules, such as platelet derived growth factor (PDGF), stimulate 

medial VSMCs to migrate into the intima where they proliferate. Indeed, endothelial 

injury is the underlying factor that recruits VSMCs to neointima formation (Schwartz et 

al., 1986). Upon repair of the endothelium, VSMCs of the neointima switch back to a 

contractile state and exhibit prominent myofilaments, with a concurrent loss of synthetic 

organelles (Clowes et al., 1983). Differentiated VSMCs of the adult aorta predominantly 

express smooth muscle α-actin, which, in addition to smooth muscle myosin heavy 

chain, is a marker of contractile VSMCs (Kocher et al., 1985). The expression of these 

proteins decreases upon de-differentiation along with a simultaneous increase in 

abundance of the Golgi network and the endoplasmic reticulum, demonstrating two 

distinct phenotypes (Chamley-Campbell et al., 1981). In vitro studies have shown that 

VSMCs plated at a high density can revert back to a contractile state upon confluence, 

although VSMCs plated at a low density remain in a synthetic state (Chamley-

Campbell et al., 1981). Using a rabbit model of aortic balloon injury, Louis et al. (2006) 

demonstrated that contractile VSMC markers declined and de-differentiation markers 

appeared at 2 days post injury. These changes appeared in all medial VSMCs, 

whereas inflammatory markers were isolated to VSMCs near to the site of injury (Louis 

et al., 2006). This implies that VSMCs are activated and de-differentiate in a timely 

manner in response to endothelial injury. 

 

The phenotype of VSMC is also modulated by growth factors. ECs have been 

demonstrated to maintain VSMCs in a differentiated state in vitro, and co-culture of 

VSMCs with ECs limited activation of transforming growth factor-β1 (TGF-β1), thereby 

preventing VSMC growth (Powell et al., 1996). TGF-β was shown to mediate VSMC 

differentiation in culture conditions by increasing smooth muscle α-actin and smooth 

muscle myosin heavy chain (Owens et al., 1988). Conversely, in balloon injury models, 

TGF-β has been shown to increase neointima formation, matrix deposition and VSMC 

proliferation (Schulick et al., 1998). PDGF release from platelets was also 

demonstrated to be a requirement for VSMC proliferation after balloon injury (Ross, 

1981). PDGF appears to mediate the down-regulation of contractile VSMC markers in 

vitro (Blank & Owens, 1990), and mediate VSMC migration and proliferation in vivo 
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(Ferns et al., 1991). The down-regulation of VSMC markers reported by Blank and 

Owens (1990) in response to PDGF treatment was associated with only a temporary 

increase in VSMC growth, and the VSMC markers remained down-regulated during 

PDGF stimulation, leading the authors to conclude that the effects on VSMC markers 

are not secondary to proliferation. Consistent with this finding, a previous study also 

demonstrated that cell cycle withdrawal is not a pre-requisite for the up-regulation of 

contractile proteins in confluent VSMCs (Blank et al., 1988). The transition between the 

contractile and synthetic states of VSMCs appears complex, and the resulting changes 

occur in response to both environmental stimuli and active control (Owens et al., 2004). 

Another key feature of the phenotypic switch of VSMCs, which is central to the studies 

reported in this thesis, is the modulation of calcium signalling. 

 

1.2.3 Modulation of Ca2+ signalling during the phenotypic switch 

Ca2+ is an important second messenger that mediates VSMC contraction, migration, 

proliferation and gene expression. VSMC contraction is slow and sustained, and occurs 

in response to membrane depolarisation, or by the binding of contractile agonists, 

which produces an increase in cytoplasmic Ca2+ (House et al., 2008). Cytoplasmic Ca2+ 

activates Ca2+/calmodulin-dependent myosin light chain kinase; myosin light chain is 

subsequently phosphorylated and interacts with actin myofilaments (Webb, 2003). 

Cytoplasmic Ca2+ is increased further by Ca2+-induced Ca2+-release (CICR) via 

ryanodine receptor (RyR) activation leading to Ca2+ release from the sarcoplasmic 

reticulum (SR), and receptor-operated channel (ROC) activation at the plasma 

membrane leading to further Ca2+ influx (Webb, 2003). VSMC relaxation occurs via 

Ca2+ extrusion from the cytoplasm and an increase in myosin light chain phosphatase 

activity. Cytoplasmic Ca2+ is decreased via Ca2+ extrusion by both the plasma 

membrane Ca2+ ATP-ase (PMCA) and the Na+/Ca2+ exchanger, and reuptake by the 

sarco/endoplasmic reticulum ATPase (SERCA). In addition, L-type Ca2+ channels and 

ROC are inactivated (Webb, 2003). Cell proliferation depends on a sustained and 

adequate [Ca2+]i level which is sourced from intracellular stores and extracellular milieu 

(Kao et al., 1990;Sheng et al., 1990;Chao et al., 1992;Negulescu et al., 1994;Pratt et 

al., 2002). Numerous Ca2+ signalling pathways are modulated during the phenotypic 

switch of VSMCs in order to provide adequate [Ca2+]i levels, and these are outlined 

below. 
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Voltage-dependent L-type Ca2+ channels are characterised by their high voltage-

activated currents, large single channel conductance, and slow voltage dependent 

inactivation (Catterall, 2000). L-type Ca2+ channels provide the dominant route of Ca2+ 

entry in muscle cells, and are highly expressed in contractile VSMCs (Catterall, 2000). 

These channels are essential for controlling blood pressure, and L-type antagonists are 

commonly used anti-hypertensive agents (Cribbs, 2006). Using rat aortic VSMCs, L-

type Ca2+ channel expression was shown to decrease during de-differentiation, which 

correlated with a lower expression of the contractile VSMC markers, α-actin and 

myosin heavy chain, in addition to smaller L-type Ca2+ currents (Gollasch et al., 1998). 

The mechanisms underlying L-type Ca2+ channel suppression involve mitogenic 

transcriptional down-regulation, and MAPK-mediated post-transcriptional down-

regulation (Ihara et al., 2002). This study used primary rat aortic VSMCs and 

demonstrated that L-type Ca2+ channels were re-expressed by contact inhibition of the 

cells. Conversely, voltage-dependent T-type Ca2+ channels have been shown to be up-

regulated during VSMC de-differentiation, and therefore may have a role in augmenting 

a proliferative response (Kuga et al., 1996;Vallot et al., 2000). T-type Ca2+ channels 

convey small single channel conductance, are inactivated rapidly, and are 

characterised by activation at more negative membrane potentials than L-type Ca2+ 

channels (Cribbs, 2006). Consequently there is a strong case for the role of T-type 

Ca2+ channels in VSMC proliferation given that de-differentiated VSMCs have a more 

negative resting membrane potential (RMP), (McDonald et al., 1994;Gollasch et al., 

1998). The role of the T-type Ca2+ channel, which is a major focus of this thesis, will be 

discussed in section 1.3. 

 

TRPC channels have also been shown to be up-regulated in proliferative VSMCs. 

TRPC channels are non-selective cation channels, inactivated by membrane 

depolarisation, and are often active at RMP allowing Ca2+ influx at negative membrane 

potentials (Nilius et al., 2007). Furthermore, TRPC channels have been demonstrated 

to constitute store operated channels (SOCs) and ROCs, and therefore mediate 

capacitative Ca2+ entry (CCE) (Golovina, 1999;Nilius et al., 2007;House et al., 2008). 

SOCs are activated by Ca2+ store depletion and function to sustain Ca2+ influx. 

Therefore, SOCs have been indicated to play a role in proliferation and gene 

expression (Albert & Large, 2003). ROCs mediate Ca2+ influx in response to agonist 

activation, although both SOCs and ROCs function downstream of phospholipase C 

(PLC) (Gonzalez-Cobos & Trebak, 2010). TRPC1 and TRPC6 appear to have 
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important roles in VSMCs as they are expressed throughout the vasculature (Firth et 

al., 2007); 

TRPC1 

This TRPC channel has been correlated with SOC activity in both human and rat 

pulmonary artery VSMCs (Remillard & Yuan, 2006). TRPC1 is involved in VSMC 

contraction and proliferation in numerous vascular beds and species by mediating 

store-operated Ca2+ entry (Gonzalez-Cobos & Trebak, 2010). The Ca2+ release 

activated Ca2+ current (ICRAC) provided by SOCs has been linked to the migratory and 

proliferative capacity of VSMCs, and TRPC channels appear to have a significant role 

in the phenotypic switch (Golovina, 1999;Bergdahl et al., 2005;Potier et al., 2009). De-

differentiated human pulmonary artery VSMCs were shown to have higher basal [Ca2+]i 

and increased TRPC1 mRNA, suggesting that TRPC channels are involved in 

sustaining adequate [Ca2+]i for cell proliferation (Golovina, 1999;Golovina et al., 2001). 

Store-operated Ca2+ entry via TRPC1 also contributes to the maintenance of [Ca2+]i for 

neointimal hyperplasia in human organ culture (Kumar et al., 2006), and in 

hypertension (Firth et al., 2007). 

TRPC3/6/7 

This subfamily are activated by diacylglycerol in a protein kinase C (PKC)-dependent 

manner and are therefore considered to form ROCs (Gonzalez-Cobos & Trebak, 

2010). Up-regulation of TRPC6 expression correlates with greater Ca2+ entry upon 

store depletion, and CCE via TRPC6 is enhanced during proliferative phases of 

VSMCs, as reviewed by Gonzalez-Cobos and Trebak (2010). TRPC6 expression was 

shown to be higher in mesenteric arterioles of salt-hypertensive rats, and high levels of 

TRPC6 were demonstrated in rat pulmonary artery VSMCs in a model of hypoxic 

pulmonary hypertension, implying this channel plays a role in vascular remodelling of 

hypertension, as reviewed by Gonzalez-Cobos and Trebak (2010). 

 

KCa channels are K+ channels activated in response to increases in [Ca2+]i which occur 

as a result of cell depolarisation, and serve to induce hyperpolarisation (House et al., 

2008). KCa1.1 expression is characteristic of differentiated VSMCs, and limits Ca2+ 

influx via L-type Ca2+ channels by cell hyperpolarisation. This channel displays voltage-

dependent activation, which also occurs in response to high [Ca2+]i (Neylon et al., 

1999;Wei et al., 2005). KCa3.1 channels are expressed in de-differentiated VSMCs, are 

voltage insensitive, and are activated in response to low levels of [Ca2+]i (Wei et al., 

2005). Down-regulation of KCa1.1, along with the concomitant increase in KCa3.1 
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channel expression is apparent in cultured VSMCs, and in VSMCs in vivo post balloon 

injury (Neylon et al., 1999;Kohler et al., 2003;Ledoux et al., 2006). These altered 

expression levels increase the driving force for Ca2+ influx, therefore maintaining [Ca2+]i 

for proliferation. The major Ca2+ entry pathways in de-differentiated VSMCs are 

illustrated in Figure 1.1. 

 

Ca2+-release channels and re-uptake pumps are also modulated during the phenotypic 

switch. The ryanodine receptor, RyR3, on the SR is down-regulated in de-differentiated 

VSMCs, which hampers CICR that is important for VSMC contraction (House et al., 

2008). More recently, RyR agonists were shown to induce Ca2+ release in freshly 

dissociated rat aortic VSMCs, whereas Ca2+ release was not stimulated in cultured 

cells (Kim et al., 2011a). Inositol trisphosphate receptor (IP3R) down-regulation is 

another feature of the phenotypic switch, and is apparent in VSMCs exposed to oxLDL, 

and in VSMCs of animal models of diabetes (Narayanan et al., 2012). SERCA2a is 

down-regulated in de-differentiated VSMCs, but re-expressed when cells reach 

confluence, indicating the importance of sustaining [Ca2+]i in proliferating cells (Lipskaia 

et al., 2009). Indeed, gene transfer of SERCA2a limited neointima formation in the 

injured rat carotid artery, and VSMCs demonstrated cell cycle arrest at G1 (Lipskaia et 

al., 2005). The inhibition of VSMC proliferation in response to SERCA2a up-regulation 

was mediated by inactivation of calcineurin and nuclear factor of activated T-cells 

(NFAT). This study also demonstrated a marked decrease in the amplitude and the 

propagation of IP3 stimulated Ca2+ signals. However, contrasting data have been 

generated regarding the effects of PMCA modulation on cell proliferation, indicating 

that spatial Ca2+ arrangements and microdomains may play a role in the physiological 

response of the VSMC, as reviewed by (House et al., 2008). 

 

NFAT is a Ca2+ dependent transcription factor involved in the proliferative response of 

VSMCs (Hill-Eubanks et al., 2003). Sustained increases of [Ca2+]i activate calcineurin 

which dephosphorylates NFAT, promoting activation and nuclear translocation (Hill-

Eubanks et al., 2003). The calcineurin/NFAT pathway is implicated as the major VSMC 

transcription pathway, and sustained rises in [Ca2+]i have been associated with NFAT 

stimulation and subsequent VSMC proliferation and remodelling (Lipskaia et al., 2009). 

Balloon injury of the carotid artery stimulated NFAT expression, and pharmacological 

inhibition of NFAT limited neointimal hyperplasia (Liu et al., 2005). The vasoactive 

agonists, angiotensin II (Gomez et al., 2002), PDGF (Liu et al., 2004), and LDL  
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Figure 1.1 Ca2+ entry pathways in de-differentiated VSMCs 

 [Ca2+]i is sustained in de-differentiated VSMCs for gene expression and proliferation by 

modulation of numerous ion channels. TRPC channels in the form of both SOC and 

ROC channels are up-regulated. These channels are active at RMP and can be 

stimulated by G protein-coupled receptor (GPCR) or Receptor Tyrosine Kinase (RTK)-

mediated production of PLC. T-type Ca2+ channels are also up-regulated, which are 

active at negative membrane potentials, and allow Ca2+ influx via their window current 

at RMP. Increased K+ efflux via KCa3.1 channels leads to hyperpolarisation and a 

greater driving force for Ca2+ entry. PIP2 = phosphatidylinositol 4,5-bisphosphate. 

Image adapted from Remillard & Yuan (2006). 
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(Lipskaia et al., 2003), all stimulate NFAT activation and subsequent VSMC 

proliferation. Different splice variants of Ca2+/calmodulin protein kinase II (CaMKII) 

mediate Ca2+ signalling in the differentiated and de-differentiated VSMC phenotypes; 

CaMKIIγ is prominently expressed in differentiated VSMCs, whereas CaMKIIδ2 is 

prominently expressed in de-differentiated VSMCs (House et al., 2007). The altered 

expression of the splice variant occurred within 30 hours of rat aortic VSMC culture, 

and CaMKIIδ2 suppression halted cell cycle progression. Comparable results were 

seen in vivo after balloon angioplasty; CaMKIIγ was the dominant variant in medial 

VSMCs, and CaMKIIδ2 was expressed in neointimal VSMCs (House & Singer, 2008). 

 

Evidently a wide variety of modulations in Ca2+ handling occur during the phenotypic 

switch of VSMCs. Modulation of voltage-dependent Ca2+ channels, KCa3.1, and SOCs 

mediate an increase in [Ca2+]i, which is required for cell proliferation and cell cycle 

checkpoints (Golovina, 1999;House et al., 2008). The processes mediating the 

phenotypic switch appear highly complex and involve numerous pathways. It is likely 

that the duration and amplitude of the Ca2+ signals determines the physiological 

response of the VSMCs (Munaron et al., 2004). Moreover, a recent report implies that 

nanojunctions between the plasma membrane and the SR are responsible for 

deciphering local Ca2+ signals to produce specific functional responses such as 

contraction, relaxation, or proliferation (van et al., 2013). Therapeutic targeting of the 

pathways involved in maintaining [Ca2+]i for proliferation and gene expression may 

assist the treatment of disorders involving vascular remodelling. This thesis focuses on 

one particular Ca2+ entry pathway, the T-type Ca2+ channel. As described previously, 

the up-regulation of T-type Ca2+ channels appears to be a prominent feature in the 

phenotypic switch of VSMCs. Therefore, this channel may provide a potential 

therapeutic target within cardiovascular disease. 

 

1.3 T-type Ca2+ channels 

1.3.1 Properties of T-type Ca2+ channels 

T-type Ca2+ channels are activated upon membrane depolarisation and provide a route 

for Ca2+ influx, which is fundamentally linked to numerous cellular physiological effects 

(Catterall et al., 2005). There are three T-type Ca2+ channel subtypes; Cav3.1, Cav3.2, 

and Cav3.3, and they are expressed in a range of cell types. All three subtypes are 

found in neuronal cell bodies and dendrites, and Cav3.1 and Cav3.2 are also found in 
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cardiac and smooth muscle, with Cav3.2 displaying the widest expression level 

(Catterall et al., 2005). T-type Ca2+ channels are termed low-voltage activated as they 

open in response to weak depolarisations at low voltages. They play a role in 

intracellular Ca2+ oscillations, repetitive firing and pacemaker potentials (Perez-Reyes, 

2003). T-type Ca2+ currents have the following characteristics: 

 Transient currents due to fast inactivation at strong depolarisations 

 Tiny single channel conductance (in comparison to L-types Ca2+ channels) 

 Slow channel deactivation (closing), producing tail currents 

 Voltage dependence of steady state inactivation overlaps significantly with 

voltage dependence of activation, giving rise to a window current  

T-type Ca2+ channel activity has been studied in numerous cell types including 

neurons, cardiomyocytes and fibroblasts, which has subsequently allowed the 

transitions between open and closed states to be defined, as reviewed by Perez-Reyes 

(2003). Upon depolarisation, T-type Ca2+ channels exhibit burst firing by opening and 

closing rapidly, then they begin to inactivate as membrane depolarisation continues. 

The channels may be inactive for some time before recovering to a deactivated state. 

This model contains further complexity as T-type Ca2+ channels are also capable of 

deactivating immediately from their open state, without inactivation, and different sub-

types display different kinetics. An important feature of T-type Ca2+ channels is the 

associated window current that is active at physiologically relevant membrane 

potentials. This window current is produced under basal conditions and is due to the 

overlap of activation and inactivation curves (Perez-Reyes, 2003), as illustrated in 

Figure 1.2. Consequently, Ca2+ is constantly able to enter the cell via a proportion of T-

type Ca2+ channels that are active and not fully inactivated, therefore influencing [Ca2+]i 

levels at RMP (Capiod, 2011). Indeed, the over-expression of T-type Ca2+ channels 

was shown to increase basal [Ca2+]i, which could be reduced by the T-type antagonists, 

mibefradil and Ni2+ (Chemin et al., 2000). In numerous cell types the window current is 

active at -65 to -40mV, which acts as a driving force for Ca2+ entry (Lory et al., 2006), 

and has been demonstrated to be an important contributor to vascular tone in 

mesenteric and renal arterioles (Bijlenga et al., 2000). L-type Ca2+ channels also 

display a window current, although it is not active at RMP (Capiod, 2011). 

 

Voltage-dependent Ca2+ channels are composed of up to five subunits. The auxiliary β- 

subunit is essential for L-type Ca2+ channel expression at the cell membrane, in  
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Figure 1.2 Window currents of T-type and L-type Ca2+ channels 

The window currents of voltage-gated Ca2+ channels are a result of the overlap 

between the activation and inactivation curves at steady state. The window current of 

T-type Ca2+ channels has an important role in Ca2+ homeostasis. Ca2+ is able to flow 

continuously into the cell via T-type Ca2+ channels that are partially active, thereby 

contributing to sustained [Ca2+]i at RMP. The L-type Ca2+ channel window current is 

active at more depolarised membrane potentials, and therefore, does not contribute to 

Ca2+ homeostasis at RMP. Image taken from Capiod (2011). 
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addition to the voltage dependence of the channel (Perez-Reyes, 2003). However, it 

appears T-type Ca2+ channels are capable of functioning without auxiliary subunits, as 

recombinant channels have comparable electrophysiological properties to native T-type 

currents (Perez-Reyes, 2003). Despite this, co-expression with the α2-δ auxiliary 

subunit was shown to increase membrane expression of the channel (Dolphin et al., 

1999). The α1 subunit acts as the conduction pore and has four domains, each with six 

transmembrane segments, and confers voltage sensitivity, in addition to gating 

apparatus (Catterall et al., 2005). Figure 1.3 illustrates the structure of the T-type Ca2+ 

channel α1 subunit. The cloning of rat and human isoforms of the T-type Ca2+ channels 

by the Perez-Reyes group (Perez-Reyes et al., 1998), has allowed for the over-

expression of recombinant channels in various cell models in order to assess further 

the properties of these currents (Perez-Reyes, 1998). Indeed, the stable over-

expression of Cav3.1 or Cav3.2 in HEK293 cells was shown to augment a proliferative 

response, with more cells in the S phase of the cell cycle (Wang et al., 2002a;Wang et 

al., 2002b;Gray et al., 2004). Indeed, Gray et al. (2004) demonstrated that a direct, 

non-linear relationship existed between Ca2+ entry and HEK293/Cav3.2 cell 

proliferation. 

 

1.3.2 Modulation of T-type Ca2+ channels 

Mibefradil was introduced as an anti-hypertensive agent in 1997, but withdrawn the 

following year due to adverse interactions with β-blockers (Mullins et al., 1998). 

However, the drug has subsequently been used as an experimental tool to inhibit T-

type Ca2+ channels. First described as Ro 40-5967; a selective T-type Ca2+ channel 

antagonist found to inhibit T-type Ca2+ currents after dihyropyridine abolition of L-type 

Ca2+ currents in rat VSMCs (Mishra & Hermsmeyer, 1994). Subsequent investigations 

have described the actions of mibefradil to be less specific. Mibefradil can inhibit Ca2+ 

activated Cl- channels with a Ki of 4.7µM (Nilius et al., 1997), voltage gated Na+ 

channels with an IC50 of 0.98µM (Strege et al., 2005), and L-type Ca2+ channels with an 

IC50 of 13µM (Martin et al., 2000). Although, the concentration required to inhibit L-Type 

Ca2+ channels has been stated to be at least 10-fold higher than that for T-type Ca2+ 

channels (Bezprozvanny & Tsien, 1995;Martin et al., 2000). Ni2+ has also been 

demonstrated as a selective T-type channel inhibitor, with varying affinities for the 

different channel subtypes, and the Cav3.2 subtype exhibiting the highest sensitivity 

(Lee et al., 1999). 
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Figure 1.3 Transmembrane structure of the T-type Ca2+ channel α1 subunit 

The α1 subunits of voltage-gated Ca2+ channels comprise of four homologous domains 

(I to IV), each with six transmembrane spanning helices (S1 to S6). The S4 helix of 

each domain contains positive amino acids, which constitutes the voltage sensor of the 

channel. The II-III linker is the site of action by numerous pathways, including PKA, 

PKC, Rho kinase, and CaMKII. The extracellular His191 residue is the site of redox 

modulation by Zn2+, ascorbate, and L-cysteine. Image taken from Iftinca and Zamponi 

(2009). 
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T-type Ca2+ channels contain numerous phosphorylation consensus sites for 

modulation by protein kinases (Iftinca & Zamponi, 2009). Serine/threonine kinases 

(PKA and PKC), calmodulin dependent kinases and RTKs have all been shown to 

modulate T-type Ca2+ channel activity, and the II-III loop of Cav3 channels appears to 

be an important site of regulation, as reviewed by Iftinca and Zamponi (2009). 

Numerous hormones have been demonstrated to inhibit or stimulate T-type Ca2+ 

currents in neurons (Perez-Reyes, 2003). Endothelin has been shown to stimulate 

smooth muscle and cardiac muscle T-type Ca2+ currents (Perez-Reyes, 2003). 

Lysophosphatidic acid inhibits T-types Ca2+ channels via Rho kinase activation, and 

Rho kinase inhibitors have been shown to limit seizures, suggesting a role for this 

pathway in epilepsy (Iftinca & Zamponi, 2009). The reducing agent L-cysteine can 

increase T-type Ca2+ currents in nociceptive and thalamic neurons, and the oxidising 

agent ascorbate inhibited Cav3.2 Ca2+ channels (Huc et al., 2009). This redox 

modulation of Cav3.2 Ca2+ channels was mediated via the extracellular His191 residue. 

Zn2+ selectively blocks Cav3.2 channels, but in contrast can slow the deactivation 

kinetics of Cav3.3 (Huc et al., 2009). Considering the wide range of endogenous and 

exogenous modulators of Type Ca2+ channels, there is scope for therapeutic 

intervention of the numerous functions that these channels are involved in, and these 

functions are discussed in detail below. 

 

1.3.3 Physiological Functions of T-type Ca2+ channels 

T-type Ca2+ channels are prevalent throughout the body including VSMCs, the heart, 

nerves, sperm, and endocrine organs. In these tissues the channels are involved in 

proliferation, gene expression, VSMC contraction, vascular tone, fertilisation, hormone 

secretion, neuronal firing, nociception, cancer growth, and epilepsy (Perez-Reyes, 

2003). These channels enhance membrane depolarisation in excitable cells and 

mediate Ca2+ influx in non-excitable cells (Nilius et al., 2006). 

 

Oxygen sensing 

Hypoxia has been shown to enhance T-type Ca2+ channel gene expression via a 

hypoxia inducible factor (HIF) -dependent signalling pathway (del Toro et al., 2003). T-

type Ca2+ channel mRNA, in addition to Ca2+ currents, were increased in response to 

hypoxia in rat pheochromocytoma (PC12) cells (del Toro et al., 2003). This enhanced 

T-type activity occurred via HIF, which is reinforced by the presence of hypoxia 

responsive elements in the Cav3.2 gene, and demonstrates the importance of the T-
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type Ca2+ channel as regulator of the hypoxic response (del Toro et al., 2003). 

Exposure of human VSMCs to hypoxia attenuated depolarisation-stimulated Ca2+ entry 

via voltage-gated Ca2+ channels, although T-type Ca2+ channels appeared to play a 

more prominent role than L-type Ca2+ channels (Aley et al., 2008). This response was 

apparent in VSMCs from internal mammary artery, but not saphenous vein, implying 

that hypoxic remodelling is dependent on the vascular bed. T-type Ca2+ channels have 

also been shown to be re-expressed in the heart in response to hypoxia (Pluteanu & 

Cribbs, 2009). Ventricular myocytes demonstrated a reduction in T-type current 

density, and Cav3.1, but not Cav3.2, mRNA was reduced via HIF-1α during a hypoxic 

insult. These data show that T-type Ca2+ channels selectively undergo redox 

modulation (Pluteanu & Cribbs, 2009). 

 

Cardiac pacemaker potential 

In health, T-type Ca2+ channels are prominent in the conduction system of the heart 

where they contribute to pacemaker potential (Perez-Reyes, 2003). T-type Ca2+ 

channels are expressed in embryonic hearts; this expression decreases after birth, but 

can increase again under pathological conditions (Perez-Reyes, 2003). One example is 

cardiac hypertrophy, as this condition involves reversion to the foetal gene program. 

Pressure overload-induced hypertrophy was attenuated in Cav3.2-/- mice, but not 

Cav3.1-/- mice, implying that Ca2+ entry via the Cav3.2 T-type Ca2+ channel plays a role 

in this condition (Chiang et al., 2009). 

 

Smooth muscle cell contraction and relaxation 

T-type Ca2+ channels were reported to play a role in arterial vasoconstriction, as 

mibefradil treatment produced vasodilatory effects (Cribbs, 2006). These channels 

have been attributed to vasoconstrictor responses of renal microcirculation, more 

specifically efferent arteriole resistance, as reviewed by Cribbs (2006). Indeed, a role 

for T-type Ca2+ channels in microvascular tone has been demonstrated in both rats and 

humans (Ball et al., 2009). The Cav3.1 T-type Ca2+ channel has been shown to play a 

role in vasoconstriction of rat mesenteric arterioles (Braunstein et al., 2009). Cav3.1 

was also found to be the most prominent subtype in A7r5 cells, a rat aortic VSMC line, 

and mibefradil abrogated arginine-vasopressin induced Ca2+ oscillations 

(Brueggemann et al., 2005). This group concluded that T-type Ca2+ channels are 

important for VSMC Ca2+ oscillations, but are not the sole contributors, as Cav3.2 over-

expression did not increase oscillation frequency. Ca2+ oscillations mediate pacemaker 
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activity, which manifests as vasomotion (Cribbs, 2006). Pacemaker potential as a result 

of T-type Ca2+ channel activity has been documented in pulmonary veins as reviewed 

by Cribbs (2006). Unexpectedly, the Cav3.2 T-type Ca2+ channel was demonstrated to 

be responsible for coronary artery relaxation, as Cav3.2-/- mice demonstrated 

constricted vessels (Chen et al., 2003). This group hypothesised that the Cav3.2 T-type 

Ca2+ channel could be functionally coupled to BKCa channels in coronary artery VSMC. 

The presence of T-type Ca2+ channels in the endothelium still remains controversial, as 

reviewed by Kuo et al. (2011). The presence of these channels has not been 

documented in cultured ECs, yet their expression in small vessels has been suggested, 

where they may play a role in vasodilation (Kuo et al., 2011). From these data it 

appears that T-type Ca2+ channels play a prominent role in vasoconstriction of 

peripheral arterioles. 

 

Proliferation and the cell cycle 

VSMCs  

T-type Ca2+ channels are often expressed alongside L-type Ca2+ channels, which in 

addition to their small conductance, makes for challenging current detection (Cribbs, 

2006). It is likely that T-type Ca2+ channels contribute to [Ca2+]i in VSMCs via the 

associated window current, which lies in the range of -65 to -40mV, as determined in 

numerous cell types (Janssen, 1997;Blanks et al., 2007;Lory et al., 2006;Capiod, 

2011). The RMP of de-differentiated VSMCs is initiated at -60mV, implying that T-type 

Ca2+ channels can influence [Ca2+]i via their window current (Perez-Reyes, 2003). 

Cav3.1 and Cav3.2 are the most prominent cardiovascular subtypes (Cribbs, 2006), and 

Cav3.2 is involved in VSMC contraction and proliferation (Catterall et al., 2005). T-type 

Ca2+ currents have been characterised in numerous smooth muscle cell tissues from a 

variety of species, including VSMCs, as reviewed by Perez-Reyes (2003). 

 

The profile of T-type Ca2+ channel activity has been demonstrated to change across 

the period of culture of rat aortic VSMCs. At day 5 and 6 of culture, T-type Ca2+ channel 

currents were prominent. However, at day 15 of culture when the cells were confluent, 

T-type Ca2+ currents were reduced, and L-type Ca2+ currents were more prominent 

(Akaike et al., 1989). These findings were corroborated by Neveu et al. (1994). Rat 

aortic VSMCs displayed a progressive increase in T-type Ca2+ channel currents 

throughout culture, which decreased as the cells reached confluence. In contrast, L-
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type Ca2+ currents decreased during the first few days of culture, remaining constant 

until the cells reached confluence. Furthermore, L-type Ca2+ currents increased upon 

growth arrest by serum-starvation, with the concomitant decrease of T-type Ca2+ 

currents (Neveu et al., 1994). Similarly, L-type Ca2+ channels were predominantly 

associated with freshly isolated VSMCs and confluent cultures, and T-type Ca2+ 

currents were apparent throughout proliferative phases (Richard et al., 1992). 

Furthermore, T-type Ca2+ currents were not detected in freshly isolated human 

coronary artery VSMCs, but they were found after 4 days in culture (Quignard et al., 

1997). The U8A4 VSMC line can be maintained in the differentiated state, or stimulated 

to de-differentiate. Mibefradil was able to cause a dose-dependent inhibition of 

proliferation of de-differentiated U8A4 cells, with no effect of differentiated U8A4 cells 

(Louis et al., 2006). These data strongly link T-type Ca2+ channel up-regulation to the 

de-differentiated VSMC phenotype. 

 

Consistent with a role for T-type Ca2+ channels in VSMC proliferation, mibefradil was 

shown to limit neointima formation after balloon injury in rat carotid arteries, and also 

inhibit rat VSMC proliferation in vitro (Schmitt et al., 1995). The role of the T-type Ca2+ 

channel was confirmed by the lack of effect of L-type Ca2+ channel blockers. A study of 

rat aortic VSMCs in primary culture demonstrated cell cycle dependent expression of 

T- and L-type Ca2+ channels (Kuga et al., 1996). T-type current density was shown to 

be greater in cells of the G1 and S phases, therefore linking DNA replication and 

proliferation to T-type Ca2+ currents. Cav3.1 was found to be the most prominent T-type 

Ca2+ channel subtype in human pulmonary artery VSMCs, and Cav3.1-targeting siRNA 

limited cell proliferation (Rodman et al., 2005). Mibefradil also inhibited proliferation of 

these cells, which correlated with a higher proportion of cells in the G0/G1 phase of the 

cell cycle, implying T-type Ca2+ channels play a central role in the proliferative 

response. Insulin-like growth factor-1 has a role in pathological VSMC proliferation. 

This growth factor increased Cav3.1 mRNA in rat pulmonary artery VSMCs, and 

consequently enhanced cyclin D signalling (Pluteanu & Cribbs, 2011). Furthermore, the 

Cav3.1, but not the Cav3.2, T-type Ca2+ channel mediated VSMC proliferation and 

neointima formation in mice (Tzeng et al., 2012). Injury of carotid arteries produced 

neointima in Cav3.2-/- but not in Cav3.1-/- mice, and the proliferative response of VSMCs 

from Cav3.1-/- mice was suppressed. This group also demonstrated that Cav3.1 

knockdown hampered the progression of the S phase of the cell cycle, and indicated 

that the Cav3.1 channel regulates VSMC proliferation by a calmodulin dependent 

pathway. Moreover, inhibition of Cav3.1 by the more selective T-type Ca2+ channel 
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blocker, NNC55-0396, limited [Ca2+]i in addition to cell proliferation, implying that this 

channel is essential to VSMC proliferation, and is a potential therapeutic target for 

vascular disorders. 

 

Cancer 

A sustained level of [Ca2+]i is required for activation of calmodulin and downstream 

signals that stimulate cell cycle progression (Means, 1994). The G1/S and the G2/M cell 

cycle checkpoints are dependent on adequate [Ca2+]i and calmodulin activity (Means, 

1994). Highly proliferative cells, such as cancer cells, have increased Ca2+ 

requirements, and T-type Ca2+ channels have been shown to be up-regulated in many 

forms of cancer (Taylor et al., 2008). The window current associated with T-type Ca2+ 

channel expression is important for the maintenance of [Ca2+]i in non-excitable cancer 

cells (Taylor et al., 2008). T-type Ca2+ channels are expressed in many types of cancer 

including, but not limited to neuroblastoma, glioblastoma, and breast, prostate, and 

colorectal carcinoma. The T-type inhibitors mibefradil and NNC55-0396 have been 

shown to limit breast cancer growth, as reviewed by Taylor et al. (2008). Proliferation of 

both U87MG glioma cells and N1E-115 neuroblastoma cells was reduced in response 

to T-type Ca2+ channel inhibition by mibefradil, or via serum starvation (Panner et al., 

2005). This study also demonstrated that over-expression of Cav3.2 enhanced cell 

proliferation. The blockade of T-type Ca2+ channels by the endogenous angiogenesis 

inhibitor, endostatin, was demonstrated to have limiting effects on U87MG cell 

migration and proliferation (Zhang et al., 2012). These data establish a role for T-type 

Ca2+ channels in cancer progression. T-type Ca2+ channels have been linked to a CCE 

in non-excitable cancer cells (Gray et al., 2004). This study demonstrated that prostate 

cancer, breast cancer, T cell leukemia, and neuroblastoma cell lines expressed Cav3.2 

T-type Ca2+ channels or the splice variant α25B. These cell lines were sensitive to the 

novel compound, TH-1177, which blocked Ca2+ entry through T-type Ca2+ channels, as 

demonstrated in HEK/Cav3.2 cells, but not in cells lacking T-type Ca2+ channel 

expression. This inhibition of Ca2+ entry led to a decrease in cell proliferation, 

implicating a role for T-type Ca2+ channels in CCE. However, a role for T-type Ca2+ 

channels in CCE was excluded in a range of prostate cancer cell lines (Gackiere et al., 

2006). Mibefradil was able to decrease CCE in prostate cancer cells over-expressing 

the Cav3.2 T-type Ca2+ channel, yet this inhibition could not be reproduced with other 

T-type Ca2+ channel blockers, such as Ni2+. This group proposed that mibefradil is 

therefore able to inhibit SOC channels, which is another group of channels proposed to 

be essential for sustaining [Ca2+]i in proliferating cells. 
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Mechanisms linking Ca2+ channels and Ca2+ influx to proliferation are complex and cell 

dependent. NFAT was shown to be highly sensitive to Ca2+ and can be activated by 

low Ca2+ levels accordingly (Dolmetsch et al., 1997). Furthermore, NFAT requires 

sustained [Ca2+]i to remain in the nucleus. The amplitude and duration of Ca2+ signals 

contribute to differing Ca2+ sensitivities, and therefore, the specificity of Ca2+ waves or 

oscillations can selectively activate gene expression and proliferation (Dolmetsch et al., 

1997). Nevertheless, T-type Ca2+ channels are evidently involved in the pathological 

proliferative response, and appear to play an important role in sustaining [Ca2+]i levels 

required for cell cycle progression.  

 

In addition to excess VSMC proliferation, cardiovascular disorders often feature 

hypoxia, oxLDL, ROS and inflammatory mediators, and all of which are capable of 

inducing the stress-response protein, HO-1. This enzyme is also studied in depth in this 

thesis, and is discussed in detail below. 

 

1.4 Heme oxygenase 1 

Heme oxygenase was discovered over 40 years ago as a microsomal enzyme 

responsible for the oxidative breakdown of heme (Tenhunen et al., 1969). Free heme 

has pro-oxidant properties, therefore the action of heme oxygenase provides cellular 

defence (Abraham & Kappas, 2008). HO-1 is a highly inducible form of the enzyme and 

up-regulation occurs in response to numerous cell stresses (Kim et al., 2011b). Found 

at basal levels in select tissues including the spleen and reticuloendothelial cells of the 

liver and bone marrow, HO-1 can be induced in all other cell types (Kim et al., 2011b). 

Figure 1.4 shows the crystal structure of human HO-1. Heme oxygenase 2 (HO-2) is a 

constitutively expressed form of the enzyme found mainly in the testes, the brain, and 

the vasculature (Kim et al., 2011b). The functions of HO-2 appear to include heme 

sequestration to maintain an intracellular heme pool, oxygen sensing, and basal levels 

of cytoprotection, as reviewed by Kim et al. (2011b). A third isoform of HO was 

detected, although this form is sparsely distributed, has low enzyme activity, and is a 

pseudogene of HO-2 which is not expressed in humans (Kim et al., 2011b). HO-1 is a 

membrane bound protein, principally localised to the endoplasmic reticulum, although 

studies have identified HO-1 in mitochondria, in the nucleus and within caveolae, as 

reviewed by Abraham and Kappas (2008). Plasma membrane caveolae localisation 

correlated with reduced HO-1 activity, yet these lipid rafts may provide a scaffold for  
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Figure 1.4 Crystal Structure of human HO-1 

This image shows the secondary structure of the human HO-1 protein, together with a 

depiction of the heme substrate within the active site. Image taken from 

http://nist.rcsb.org/pdb/explore/images.do?structureId=1N45 
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the cytoprotective actions of this enzyme (Kim et al., 2004). One study outlined that 

translocation of HO-1 into the nucleus upon cleavage of the C-terminus augmented 

oxidant-responsive transcription factor activation, suggesting that the effects of HO-1 

can be produced in various cell locales (Lin et al., 2007). HO-1 is highly conserved and 

expressed in many species (Ryter et al., 2006). The natural substrate of this enzyme, 

heme, can induce HO-1 expression and activity, and heme also acts a cofactor (Ryter 

et al., 2006). Upon induction, HO-1 degrades free heme oxidatively in a NADPH-

dependent reaction to produce iron, biliverdin, and carbon monoxide (CO), and these 

by-products mediate the numerous cytoprotective effects of this enzyme (Ryter et al., 

2006). Figure 1.5 illustrates the HO-1 pathway. Free iron has pro-oxidant properties, 

although increased production stimulates ferritin synthesis, which rapidly sequesters 

free iron, thereby promoting anti-oxidant effects. Indeed, ferritin confers protection 

against oxLDL in ECs, as reviewed by Abraham and Kappas (2008). Biliverdin is 

rapidly converted to bilirubin by biliverdin reductase, and both compounds are able to 

scavenge reactive oxygen species (ROS) (Durante, 2002). Endogenous bilirubin has 

anti-apoptotic effects in ECs, exogenous bilirubin limits oxidative stress-induced injury 

in vascular cells, and this compound has positive effects on leukocyte infiltration, as 

reviewed by Durante (2002). HO-1 derived bilirubin can inhibit NADPH oxidase, and 

was shown to limit ROS generation and proliferation of human airway smooth muscle 

cells via extracellular signal-regulated kinase 1/2 (ERK1/2) MAPK (Taille et al., 2003). 

Furthermore, serum bilirubin has been described as an independent, inverse risk factor 

for coronary artery disease (Ryter et al., 2006). Low serum bilirubin levels correlate 

with an increased incidence of peripheral vascular disease, whereas mild elevations 

have protective cardiovascular effects (Ryter et al., 2006). HO-1 activity is the major 

source of endogenous CO, and this signalling molecule is associated with a vast array 

of protective effects, which are discussed in detail later. 

 

1.4.1 Inducers of HO-1 

The majority of HO-1 inducers regulate the transcription of the HO-1 gene (HMOX1) in 

a cell specific manner (Gozzelino et al., 2010). Oxidative stress is an important 

regulator of HO-1 expression, and the promoter regions of the HMOX1 gene contain 

stress response elements (Gozzelino et al., 2010). HO-1 induction occurs in response 

to heme and protoporphyrins, heavy metals, ROS, hypoxia, hyperoxia, UVA radiation, 

NO gas and NO donors, resveratrol, curcumin, aspirin, statins, growth factors such as 

PDGF and TGF-β, inflammatory cytokines such as TNF-α and IL-1, anti-inflammatory 

cytokines, angiotensin II, oxLDL and endotoxin (Abraham & Kappas, 2008). The  
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Figure 1.5 The HO-1 Pathway 

HO-1 is induced in response to numerous cell stressors including, but not limited to, 

hypoxia, oxLDL, NO, ROS, inflammation and heme. HO-1 breaks down free heme 

oxidatively to produce iron, biliverdin, and CO. It is the by-product CO that mediates the 

majority of the cytoprotective effects associated with HO-1 activity. 

  



26 
 

recruitment of signalling pathways and subsequent transcription factors by this vast 

array of inducers appears to be cell type and species specific (Ryter et al., 2006). The 

MAPK signal transduction pathways are involved in HO-1 induction along with 

numerous transcription factors (Ryter et al., 2006). Nrf2 is involved in HO-1 induction, 

along with redox sensitive transcription factors NF-κβ and AP-1 (Ryter et al., 2006). 

 

A vast amount of data regarding the protective effects of HO-1 has relied on the use of 

metalloporphyrins such as cobalt protoporphyrin IX (CoPPIX), which consists of a 

cobalt ion chelated by protoporphyrin IX (Kappas & Drummond, 1986). Administration 

of CoPPIX or cobalt chloride in rats caused an induction of hepatic HO-1 which lasted 

48-72h (Maines & Kappas, 1975). Cobalt chloride and tin chloride are also HO-1 

inducers, however tin protoporphyrin (SnPP) is a competitive HO-1 inhibitor (Kappas & 

Drummond, 1986). The heme pocket within the HO-1 molecule where heme binds is 

also the site at which the synthetic metalloporphyrins bind, thereby acting as 

competitive inhibitors (Maines, 1997). Zinc protoporphyrin (ZnPP) is a competitive 

inhibitor of HO-1 activity, but ZnPP is conversely able to induce HO-1 mRNA and 

protein levels (Maines & Trakshel, 1992;Yang et al., 2001). It appears that a region of 

DNA upstream of the murine HO-1 gene is the convergence point for the different 

signalling pathways from numerous HO-1 inducers, including hemin and CoPPIX (Alam 

et al., 1995). It has also been demonstrated in chick embryonic liver cells that the 

response element for HO-1 induction by heme and CoPPIX differs from that of stress 

inducers such as heavy metals (Shan et al., 2000;Shan et al., 2002). The signalling 

pathway in human liver cells involves down-regulation of Bach1 and up-regulation of 

Nrf2 transcription factors (Shan et al., 2006). Hypoxia has been demonstrated to 

induce HO-1 in rat tissues and in culture via the action of HIF-1α (Lee et al., 1997). 

Peroxisome Proliferator-Activated Receptors (PPAR) are also capable of up-regulating 

HO-1 expression. Upon ligand activation, PPARα and PPARγ have been shown to 

induce HO-1 expression in VSMCs and ECs (Kronke et al., 2007). Therefore, PPAR 

ligands, such as lipid-lowering fibrates, may also enhance cardiovascular integrity 

(Kronke et al., 2007). The cytoprotective effects of HO-1 have been examined in a wide 

range of tissues and diseases, but for the purpose of this project only those effects 

relating to disorders of the vasculature will be examined. 
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1.4.2 Effects of HO-1 induction 

Proliferation and Apoptosis 

PDGF was demonstrated to induce HO-1 mRNA and protein levels in rat aortic 

VSMCs, with a concomitant increase in CO and ROS production (Durante et al., 1999). 

A later study by this group once again demonstrated mitogen-induced HO-1 induction, 

yet they concluded that CO was able to inhibit VSMC proliferation via modulation of the 

cell cycle (Peyton et al., 2002). Exogenously applied gaseous CO was able to limit cell 

cycle progression by increasing the number of cells in the G0/G1 phase. Additionally, 

cyclin A expression was reduced, as was cyclin A-associated kinase activity and cyclin-

dependent kinase 2 activity. Concerning cell cycle progression, differential effects of 

HO-1 induction have been demonstrated in VSMCs and ECs. In VSMCs HO-1 

induction increased the proportion of cells in the G0/G1 phase, and decreased the 

proportion of cells in the S and G2/M phases. The opposite effect was observed with 

HO-1 inhibition. In ECs HO-1 induction produced reciprocal effects, mediating a pro-

proliferative response (Li et al., 2002). HO-1 induction and subsequent CO production 

occurred in response to balloon injury in rat carotid arteries, and CO limited neointimal 

hyperplasia via a cGMP dependent pathway (Togane et al., 2000). HO-1 expression 

within VSMCs of the intima correlated with the timely migration of medial VSMCs, 

further demonstrating a role for HO-1 in the repair of cardiovascular injury. 

 

An extensive study involving numerous in vitro and in vivo methods demonstrated the 

pleiotropic and protective effects of HO-1 within the vasculature. Transfection of HO-1 

in primary VSMCs reduced cell proliferation in a soluble guanylyl cyclase (sGC) and 

cGMP dependent pathway, which was associated with cell cycle arrest in the G0/G1 

phase and up-regulation of the cyclin-dependent kinase inhibitor, p21 (Duckers et al., 

2001). HO-1 gene transfer in pig arteries limited the development of intimal hyperplasia 

after angioplasty, and this correlated with the expression of cyclin-dependent kinase 

inhibitors p21 and p27, leading the authors to conclude that HO-1 functions upstream 

of these inhibitors to limit cell cycle progression (Duckers et al., 2001). Enhanced 

relaxation of these arteries was also apparent, and was mediated via a cGMP 

mechanism. The beneficial effects of HO-1 were also evidenced by experimentation 

with HO-1 gene knockout mice (HMOX1-/-). Wire injury of the femoral artery produced 

significant hyperplastic lesions, and VSMCs cultured from these mice proliferated to a 

greater extent than control VSMCs (Duckers et al., 2001). Consistent with the effects of 

proliferation, p21 was down-regulated and G1/S phase progression occurred in 
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HMOX1-/- VSMCs. These data established the vasodilatory and anti-proliferative effects 

of HO-1 in VSMCs. 

 

Metalloporphyrins also demonstrate how the cytoprotective effects of HO-1 are 

involved in numerous cardiovascular disorders. Hemin pre-treatment of rats subject to 

balloon injury of the carotid artery induced HO-1 in both the endothelial and medial 

vessel layers, and limited neointima formation (Tulis et al., 2001). Furthermore, 

neointimal hyperplasia was not affected by pre-treatment with the HO-1 inhibitor, 

SnPP, demonstrating that HO-1 protects against vascular remodelling (Tulis et al., 

2001). The contrasting effects of hemin and SnPP were also demonstrated in vitro 

using rat aortic VSMCs. An increase in HO-1 expression and activity decreased the 

proliferative response, arresting cells in the G0/G1 phase of the cell cycle and 

increasing p21 expression (Chang et al., 2008). SnPP and HO-1 siRNA attenuated 

such effects. The levels of ROS were also reduced by HO-1 induction, demonstrating a 

role for HO-1 in proliferative and oxidative disorders of the vasculature (Chang et al., 

2008). Zhang et al. (2002) also provided evidence that HO-1 is likely to confer anti-

oxidant effects. Rat aortic VSMCs transfected with HO-1 exhibited increased HO-1 

activity, decreased proliferation, and resistance to oxidative stress in the form of H2O2. 

ZnPP abolished these effects, implying that HO-1 could protect against cardiovascular 

disorders such as atherosclerosis (Zhang et al., 2002). 

 

Restenosis is another proliferative disorder that could benefit from enhanced HO-1 

activity. Hemin treatment of stented rabbit aorta and iliac arteries limited neointima 

formation without causing adverse effects on re-endothelialisation (Hyvelin et al., 

2010). HO-1 induction reduced early adverse inflammatory, proliferative, and apoptotic 

events, thereby enhancing the integrity of a stented vessel (Hyvelin et al., 2010). HO-1 

inhibition attenuated the associated protective responses, and the anti-proliferative 

effects appeared to be mediated via activation of cyclin-dependent kinase inhibitors 

and a reduction in RhoA expression (Hyvelin et al., 2010). Furthermore, the application 

of a CO donor, CORM-2, also limited intimal hyperplasia, implying that the beneficial 

effects associated with HO-1 induction are in fact mediated by the product CO (Hyvelin 

et al., 2010). HO-1 may play a role in limiting vascular damage during hypertension. It 

was found that basal HO-1 was higher in spontaneously hypertensive rats (SHR) than 

in wistar Kyoto rats (WKY) (Jeon et al., 2009). HO-1 gene transfer or induction by 

hemin inhibited VSMC proliferation to a greater extent in SHR, and this correlated to a 
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higher proportion of cells in the G1 phase of the cell cycle, lower cyclin D expression, 

and higher p21 expression (Jeon et al., 2009). 

 

Morita et al. have provided extensive data regarding the effects of HO-1 induction by 

hypoxia. HO-1 mRNA and activity were up-regulated in response to hypoxia in rat 

aortic and pulmonary VSMCs, producing CO which was shown to regulate cGMP 

(Morita et al., 1995). Hypoxia was not able to induce HO-1 in ECs, although the 

induction of HO-1 and CO in VSMCs limited proliferation of these cells, and exerted 

paracrine effects on ECs (Morita & Kourembanas, 1995). CO production increased 

levels of cGMP and inhibited the expression of growth factors. A later study 

corroborated these findings and proved that the reduction in rat aortic VSMC 

proliferation in response to hypoxia is due to CO (Morita et al., 1997). CO reduced 

E2F-1 and c-myc expression in a cGMP-dependent manner. 

 

In contrast to the well documented anti-proliferative effects in VSMCs, HO-1 functions 

in a pro-proliferative manner in ECs and some tumours. Transfection of HO-1 into 

rabbit ECs resulted in an increase in HO-1 activity, cell proliferation, and angiogenesis 

(Deramaudt et al., 1998). Inhibition of HO-1 activity in a B-cell leukaemia/lymphoma 1 

tumour down-regulated cyclin D1 expression and tumorigenesis (La et al., 2009). The 

pro-proliferative effects of HO-1 on tumorigenesis are tissue specific, as are the anti-

apoptotic effects (Jozkowicz et al., 2007). However, HO-1 activity appears to enhance 

tumour viability by promoting angiogenesis and metastasis, in addition to limiting 

apoptosis, as reviewed by Jozkowicz et al. (2007). The DAOY medulloblastoma cell 

line was documented to have constitutive HO-1 expression, which was potentiated by 

hypoxia or metalloporphyrins, and augmented anti-apoptotic effects via a p38/MAPK-

dependent pathway (Al-Owais et al., 2012). Exogenous application of the CO donor, 

CO releasing molecule-2 (CORM-2), reproduced these effects, implying that CO is the 

HO-1 by-product responsible for promoting cancer cell survival. Interestingly, the 

abolition of HO-1 expression improves the response to chemotherapy in pancreatic 

cancer cells, as reviewed by Abraham and Kappas (2008). 

 

There are conflicting data regarding the effects of HO-1 and CO on apoptosis in 

vascular cells. Adenovirus-mediated HO-1 over-expression limited VSMC proliferation 
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and caused apoptosis (Liu et al., 2002b). Furthermore, these effects were mimicked by 

exogenous bilirubin and biliverdin, implying that the anti-oxidant properties of these by-

products can stimulate apoptosis (Liu et al., 2002b). In contrast, HO-1 over-expression 

or exogenous CO confer anti-apoptotic effects in rat aortic VSMCs, which was 

dependent on the sGC/cGMP pathway (Liu et al., 2002a). However, HO-1 and CO 

appear to protect ECs from apoptosis, which may play an essential role in maintaining 

endothelial integrity. (Liu et al., 2002b;Liu et al., 2002a). 

 

Inflammation and oxidation 

HO-1 activity has been associated with anti-inflammatory effects in numerous in vivo 

and in vitro studies. The expression of this enzyme has been documented in VSMCs, 

ECs, and macrophages involved in an inflammatory response. However, expression is 

visibly lacking in adjoining, unaffected cells, as reviewed by Kim et al. (2011). A study 

involving aortic balloon injury of rabbits fed an atherogenic diet demonstrated a 

prominent inflammatory response together with thin fibrous caps of lesions (Li et al., 

2011). Metalloporphyrin induction of HO-1 limited the development of atherosclerosis 

and plaque disruption by preventing lipid deposition and attenuating an inflammatory 

response. Plaque stability was maintained by a reduced level of apoptosis, a 

decreased expression of pro-inflammatory mediators such as MMP-9, IL-6 and TNF-α, 

and an increased expression of the anti-inflammatory cytokine IL-10 (Li et al., 2011). 

An increase in eNOS activity also appeared to play a protective role. HO-1-/- apoE-/- 

mice demonstrated advanced atherosclerotic lesions containing higher levels of lipids, 

macrophages and VSMCs (Yet et al., 2003). HO-1-/- mice underwent vein grafting 

which promoted neointimal hyperplasia, followed by neointimal cell death (Yet et al., 

2003). The pleiotropic effects of HO-1 are evidently important in the progression of 

atherosclerosis. 

 

HO-1 is induced by oxidative stress and alterations in the redox state of proteins such 

as glutathione, as reviewed by Ryter et al. (2006). Human pulmonary artery VSMCs 

were shown to express HO-1 upon an oxidative insult. The application of the CO donor, 

CORM-2, reduced cell proliferation, suggesting a protective role for the by-products of 

this enzyme in airway remodelling and pulmonary hypertension (Stanford et al., 2003). 

HO-1 induction in human airway VSMCs also limited oxidative stress and apoptosis via 

an Akt-dependent pathway leading to Nrf2 activation of the HO-1 promoter (Brunt et al., 

2006). 
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Vasodilation 

High flow laminar shear stress can induce HO-1 expression (Wagner et al., 1997). 

Indeed, this shear stress also leads to NO production and mitochondrial derived H2O2, 

which play a role in resistance artery remodelling (Freidja et al., 2011). HO-1 derived 

CO activates sGC with subsequent cGMP production and vasodilation, therefore 

contributing to adaptive vascular remodelling (Freidja et al., 2011). Moreover, NO is 

capable of inducing HO-1 in numerous vascular cells and the associated compensatory 

mechanisms are discussed below. 

 

1.4.3 HO-1 and NO 

Both NO and CO can promote vasodilation via the sGC/cGMP pathway. NO is an 

inducer of HO-1, and the HO-1/CO system can regulate NOS activity. High CO levels 

inhibit NOS and NO generation which leads to vasoconstriction, whereas low CO levels 

stimulate eNOS activity leading to vasodilation, as reviewed by Kim et al. (2011). NO 

bioavailability is critical to endothelial function and vascular homeostasis. Shear stress 

can up-regulate eNOS via NF-κβ leading to NO production in vascular cells (Pae et al., 

2010). In addition to conferring vasodilatory effects, the generation of NO via eNOS 

has been shown to inhibit VSMC proliferation and platelet aggregation (Pae et al., 

2010). Oxidative stress can cause eNOS uncoupling and subsequent HO-1 induction, 

which can compensate for a reduction in NO bioavailability, as reviewed by Pae et al. 

(2010). The interplay between the HO-1/CO and eNOS/NO systems serves to protect 

cells from physiological stress. In a rat model of carotid artery balloon injury the 

exposure to gaseous CO (250ppm) or to the CO donor, CORM-2, enhanced the 

proliferation of ECs in vivo and in vitro (Wegiel et al., 2010). The increased cell growth 

was associated with a higher proportion of cells in the S phase of the cell cycle and 

was mediated via RhoA with subsequent downstream phosphorylation of Akt and 

eNOS (Wegiel et al., 2010). These effects associated with CO appeared to be 

dependent on NO, as re-endothelialisation did not occur in eNOS-/- mice. In human 

ECs, HO-1 was induced in response to a NO donor, which limited NADPH oxidase 

activity, thereby promoting anti-oxidant effects (Jiang et al., 2006). Bilirubin also 

inhibited NADPH oxidase, therefore NO is able to regulate ROS production via HO-1 

activity (Jiang et al., 2006). 

 

Inducible NOS (iNOS) expression occurs in response to inflammatory cytokines and 

produces abundant amounts of NO over extended time periods, whereas eNOS 
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production of NO is transient (Durante, 2002). Furthermore, NO production via iNOS 

has the potential to produce both beneficial and adverse effects (Singh & Evans, 1997). 

iNOS plays an adverse role in oxidative stress, whereas a beneficial role has been 

documented in hypertension, as summarised by (Lee & Yen, 2009) However, iNOS 

expression has been demonstrated in intimal VSMCs after injury, and this expression 

was linked to increased VSMC proliferation (Chyu et al., 1999). The interaction 

between HO-1/CO and NO is complex and cell specific. There are feedback 

mechanisms that allow CO to compensate for a reduction in NO bioavailability, which is 

essential to vascular integrity. 

 

1.4.4 Therapeutic potential of HO-1 

Evidently from the data described above, HO-1 holds great potential as a therapeutic 

target for cardiovascular disorders. However, metalloporphyrins are unsuitable for 

clinical use due to associated side effects and structural similarity to heme, which can 

cause cytotoxicity, as reviewed by (Kinobe et al., 2008). However, there are numerous 

naturally occurring compounds that have the ability to induce HO-1, and therefore 

could confer cardiovascular benefits. Resveratrol is a polyphenolic component of red 

grapes that is associated with anti-oxidant properties, and has been shown to induce 

HO-1 in rat aortic VSMCs (Huang et al., 2005). Indeed, moderate consumption of red 

wine correlates with a reduced incidence of cardiovascular disease (Huang et al., 

2005). Numerous studies have detailed the effects of the spice curcumin on HO-1 

expression. Curcumin increased HO-1 mRNA and provided protection against oxidative 

stress when applied to bovine ECs (Motterlini et al., 2000). Proliferation of primary rat 

VSMCs and human airway VSMCs was inhibited by curcumin-induced HO-1 via up-

regulation of p21 (Pae et al., 2007). This study demonstrated that curcumin induced 

HO-1 via Nrf2 translocation and anti-oxidant response element activation within the 

HO-1 promoter. 

 

A range of drugs currently used to treat disorders of the vasculature have also been 

demonstrated to induce HO-1, including rapamycin and probucol. Aspirin can induce 

HO-1 in human ECs, the effects of which were associated with anti-inflammatory and 

anti-oxidative benefits, as reviewed by Abraham and Kappas (2008). The pleiotropic 

effects of statins also extend to HO-1 induction, as increased protein and mRNA levels 

have been produced in human ECs in vitro and in vivo in response to simvastatin and 

lovastatin, as reviewed by Abraham and Kappas (2008). The associated anti-
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inflammatory and anti-oxidative effects were shown to be mediated by the p38/MAPK 

and the ERK1/2 MAPK pathways, implying that the MAPK pathways act co-operatively, 

as reviewed by Kim et al. (2011). 

 

As HO-1 can be induced in all cells, targeting a HO-1 inducer to the correct tissue 

poses difficulties. To try and overcome this issue, HO-1 gene transfer has been 

investigated. Trials in animals have been successful, yet the major risks include an 

immune response and the development of cancer, as reviewed by Abraham and 

Kappas (2008). Delivery of the human HO-1 gene into rats generated protective effects 

within the vasculature, and the use of adenovirus-mediated gene transfer of HO-1 into 

liver cells of mice did not elicit immune or inflammatory responses (McCarter et al., 

2003). These effects have been corroborated within a cardiac allograft of rats 

(Braudeau et al., 2004). 

 

HMOX1 is an extremely sensitive gene which can be up-regulated by numerous factors 

that are associated with the cellular redox state. HO-1 activity has pleiotropic actions 

within the vasculature, and all three of the by-products confer cytoprotective effects. 

However, the majority of these effects appear to be mediated by CO. 

 

1.5 Carbon Monoxide 

CO is a renowned environmental toxin that causes tissue hypoxia at high levels by 

producing carboxyhemoglobin (COHb), (Wu & Wang, 2005). Chronic exposure 

modulates mitochondrial function promoting superoxide production and ensuing 

adverse effects including oxidative damage and apoptotic cell death (Ryter et al., 

2006). Contrastingly, this gas is also a vital cell signalling molecule produced 

endogenously via HO-1 activity (Ryter et al., 2006). CO is a stable signalling molecule 

in comparison to NO, and the cellular targets of CO are hemoproteins such as 

hemoglobin, myoglobin, guanyl cyclase, cyclooxygenase, cytochrome P450, 

cytochrome c oxidase, iNOS, and NADPH oxidase (Otterbein et al., 2003a). Oxidative 

stress is an underlying factor of numerous cardiovascular disorders, and CO plays an 

important role in regulating ROS availability. CO can rapidly increase ROS production 

in the mitochondria by modulation of cytochrome c oxidase, as reviewed by Peers and 

Steele (2012). ROS production may subsequently regulate physiological functions by 
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interacting with ion channels, as discussed in section 1.5.2. Additionally, CO has been 

proposed to initiate an adaptive response which subsequently leads to a reduction in 

ROS and the restoration of cellular homeostasis via the inhibition of NADPH oxidase 

and HO-1 induction (Ruiz & Ameredes, 2012). This may involve the conditioning of 

cells via transcriptional up-regulation of genes to combat a subsequent oxidant 

mediated insult (Bilban et al., 2008). Moreover, CO induced ROS can confer cell-

specific anti-inflammatory, anti-proliferative and anti-apoptotic effects, as reviewed by 

Bilban et al. (2008). The plethora of cytoprotective effects associated with CO in 

vascular cells appear to be mediated by the sGC/cGMP and p38/MAPK pathways, 

either in concert or independently, with additional effects on PI3K-Akt, PPARγ, and 

HIF-1α (Kim et al., 2006). 

 

1.5.1 Cytoprotective effects of CO 

Vasorelaxation 

CO stimulates vasorelaxation in numerous vascular beds across numerous species via 

direct binding to sGC and increased levels of cGMP, or via stimulation of BKCa 

channels, which leads to K+ efflux, membrane hyperpolarisation and subsequent 

closure of voltage-dependent Ca2+ channels, as reviewed by Bilban et al. (2008). CO 

has been proposed to bind to histidine residues within the channel, to the heme moiety 

associated with the channel, or to histidine/aspartate residues in the conductance 

regulator domain to augment this channel (Wilkinson & Kemp, 2011). Gaseous CO has 

been shown to dilate VSMCs of rat aortas (Lin & McGrath, 1988), and the CO donor, 

CORM-3, relaxed pre-contracted rat aortae (Foresti et al., 2008). The vasodilatory 

effects of the latter were associated with an increase in cGMP and were mediated in 

part by BKCa channels. CO may be a viable therapeutic agent for pulmonary arterial 

hypertension, as gaseous CO restored pulmonary arterial pressures in a rodent model 

(Zuckerbraun et al., 2006). Acute exposure of low dose CO (250ppm) stimulated 

VSMC apoptosis and limited VSMC proliferation in hypertrophied vessels. These 

protective effects required eNOS, implying that a functional endothelium is critical to 

limiting vessel remodelling (Zuckerbraun et al., 2006). The vasodilatory responses to 

hypoxia appear to be tissue specific; systemic vessels dilate, but pulmonary vessels 

constrict, as reviewed by Wu and Wang (2005). Ventilation with CO abolishes this 

constriction of pulmonary vessels (Wu & Wang, 2005). 
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Proliferation 

In airway VSMCs 250ppm CO conferred anti-proliferative effects by halting the cell 

cycle in the G0/G1 phase via an ERK1/2 MAPK-dependent pathway (Song et al., 2002). 

These effects also correlated with increased levels of p21 and a reduction of cyclin D1. 

The same pathway was proposed to be responsible for limiting proliferation of airway 

smooth muscle cells in response the CO donor, CORM-2 (Taille et al., 2005). In this 

study, CO played a role in redox signalling by inhibiting NADPH oxidase cytochrome b 

activity, leading to mitochondrial ROS production and subsequent anti-proliferative 

effects. The idea that the mitochondrial electron transport chain could act as a CO 

sensor may underlie the mechanism of airway remodelling (Taille et al., 2005). 

 

Transplant-associated atherosclerosis was limited in a rat model by exogenous CO 

(250ppm), which also inhibited leukocyte infiltration (Otterbein et al., 2003b). 

Additionally, intimal hyperplasia was limited by exogenous CO (250ppm) after balloon 

injury of the carotid artery (Otterbein et al., 2003b). This level of exogenous CO also 

increased the expression of p21, and the anti-proliferative effects of CO appeared to be 

mediated by a pathway involving both cGMP and p38/MAPK (Otterbein et al., 2003b). 

Caveolae may play a role in the anti-proliferative effects of exogenous CO, as up-

regulation of the p38β/MAPK signalling pathway by CO increased the expression of 

caveolin-1 in fibroblasts and VSMCs (Kim et al., 2005). This cell cycle arrest was 

promoted by the up-regulation of p21 and the down-regulation of cyclin A, and also 

appeared to involve cGMP (Kim et al., 2005). 

 

In a porcine model of balloon injury, pre-operatively and intra-operatively inhaled CO 

(250ppm) limited neointima formation (Raman et al., 2006). Interestingly, inhaled CO 

and iNOS gene transfer together conferred non-additive but enhanced effects on 

intimal hyperplasia. This evidences the co-operative effects of CO and NO, and it is 

possible that NO induced HO-1, which would further produce CO. The protective 

effects of 250ppm inhaled CO on intimal hyperplasia were also demonstrated within a 

porcine model of femoral artery grafting (Ramlawi et al., 2007). Levels of COHb did not 

reach toxicity in either of these studies, suggesting that gaseous CO could be a 

potential therapeutic agent. The anti-proliferative effects of CO were also reproduced 

with porcine VSMCs in vivo (Ramlawi et al., 2007). 
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Inflammation 

Exogenous CO has demonstrated anti-inflammatory properties both in vitro and in vivo, 

the effects of which appear to be mediated by the p38/MAPK pathway (Otterbein et al., 

2000). Pro-inflammatory cytokines were down-regulated and anti-inflammatory 

cytokines were up-regulated in murine macrophages and MKK3-/- mice by gaseous CO 

(Otterbein et al., 2000). The application of CORM-3, a CO donor, to human umbilical 

vein ECs suppressed the expression of the adhesion molecules, E-selectin and I-CAM 

(Song et al., 2009). These data suggest that CO is able to promote an anti-

inflammatory environment that could protect the vasculature and limit remodelling. 

However, when gaseous CO (500ppm) was inhaled by human volunteers for 1 hour 

prior to an endotoxin challenge, anti-inflammatory effects were absent (Mayr et al., 

2005a). These data contrast the beneficial anti-inflammatory and anti-proliferative 

effects demonstrated in rodent and murine models in response to 250ppm CO 

(Otterbein et al., 2000;Otterbein et al., 2003b). Species differences obviously factor into 

the response, as CO tissue levels will depend on the respiration rate of the subject 

(Mayr et al., 2005b). However, the exposure of chronic obstructive pulmonary disease 

patients to 125ppm CO for 2 hours a day, for a period of 4 days, conferred moderate 

anti-inflammatory benefits (Bathoorn et al., 2007). CO may therefore be a potential 

therapy for disorders involving remodelling of the airways and the vasculature. 

 

Thrombosis 

The inhibition of platelet aggregation by CO was demonstrated over 20 years ago, and 

is dependent on the cGMP pathway (Brune & Ullrich, 1987). These anti-thrombotic 

effects were also demonstrated by endogenous CO in rat aortic VSMCs (Wagner et al., 

1997). Induction of HO-1 by shear stress limited platelet aggregation via a cGMP-

dependent mechanism, as HO-1 and not iNOS inhibitors abrogated the effects 

(Wagner et al., 1997). The CO donor, CORM-3, inhibited platelet aggregation in vitro, 

ex vivo, and in vivo, although these effects were attributed to actions of both NO and 

CO, in a sGC/cGMP-dependent mechanism (Soni et al., 2011). These anti-thrombotic 

effects of CO are likely to play a protective role after endothelial injury, during late 

stage atherosclerosis, and during organ grafting. Delivering the optimal concentration 

of CO in a timely and tissue specific manner may lead to beneficial effects, yet the 

cellular targets of CO are still being uncovered. 
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1.5.2 Ion channels as targets of CO 

Our research group has demonstrated that CO can inhibit numerous ion channels. 

Both CO and CORM-2 inhibited L-type Ca2+ channel currents, and given these 

channels provide an important route for Ca2+ entry in VSMCs, this has important 

implications during situations of vascular stress, when CO production is enhanced via 

HO-1 induction (Scragg et al., 2008). CO was shown to increase mitochondrial ROS, 

which caused redox modulation of cysteine residues within the L-type Ca2+ channel in 

cardiac myocytes and HEK293 cells expressing the human Cav1.2 subunit. Both 

gaseous CO and CORM-2, were shown to inhibit Kv2.1 channels. CO inhibited native 

neuronal Kv2.1 and HEK293 cells expressing recombinant Kv2.1 by a protein kinase G 

dependent mechanism (Dallas et al., 2011). More recently, our group demonstrated 

that CO was able to block Kv2.1 channels in a medulloblastoma cell line, which 

consequently plays a role in limiting apoptosis (Al-Owais et al., 2012). Subsequently, 

our group has made a novel discovery in the form of Cav3.2 T-type Ca2+ current 

inhibition by CORM-2, and these currently unpublished findings opened avenues of 

investigation which led to this PhD project. Recent reviews discuss the findings that CO 

is also able to inhibit epithelial Na+ channels, whilst conversely augmenting BKCa 

channels, tandem P domain K+ channels, interstitial smooth muscle L-type Ca2+ 

channels, and the ATP gated P2X receptor (Peers, 2011;Wilkinson & Kemp, 

2011;Peers & Steele, 2012). These ion channels may provide novel therapeutic targets 

for a wide range of disorders. Figure 1.6 illustrates the pathways involved in mediating 

the cytoprotective effects of CO in VSMCs, and given the various signalling pathways 

that are sensitive to CO, it seems likely that other ion channels will also be found to be 

regulated by CO. 

 

1.5.3 Therapeutic potential of CO 

The wide ranging cytoprotective effects attributed to CO allow this gasotransmitter to 

be regarded as an essential signalling molecule and a potential therapeutic agent. 

Concerning gaseous CO, the data thus far is equivocal, with the beneficial effects 

dependent on dose, length of exposure and the species under examination. However, 

the general consensus is that acute CO exposure confers positive effects, whereas 

chronic exposure is associated with adverse outcomes, as reviewed by Bilban et al. 

(2008). Indeed, the first Phase I clinical trial assessing the safety of inhaled CO in 

humans using the Covox DS CO delivery device has been completed (Motterlini & 

Otterbein, 2010). This study assessed acute CO exposure, 3mg/kg/hour for 1 hour a 

day for 10 days, and reported no cytotoxic COHb levels, as reviewed by Motterlini and  
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Figure 1.6 Pathways mediating the cytoprotective effects of CO in VSMC 

CO acts at numerous cellular targets, shown in boxes in the diagram, to mediate 

cytoprotective effects. CO modulates numerous ion channels; BKCa channels are 

augmented, Kv2.1 channels are inhibited, and T-type Ca2+ channels have also been 

shown to be inhibited. CO interacts with cytochrome oxidase in the mitochondria and 

with NADPH oxidase to inhibit their activity, thereby modulating ROS production. NOS 

is either inhibited or up-regulated depending on the level of CO available, with 

subsequent effects on NO production, sGC activity and HO-1 induction. CO binds sGC 

and directly activates this second messenger leading to increased levels of cGMP. The 

p38/MAPK pathway also mediates a variety of cytoprotective effects associated with 

CO, potentially via interaction with the MAPK-mediated protein phosphatase 2C 

(Boczkowski et al., 2006). The ensuing physiological effects are displayed in red. 

  



39 
 

Otterbein (2010). Issues associated with the targeting of this gas to the correct tissue, 

such as respiration rates, levels of CO exhalation, and COHb conversion, may restrict 

the use as therapeutic agent to disorders involving pulmonary remodelling (Mayr et al., 

2005b;Ruiz & Ameredes, 2012). However, the advent of CORMs may allow targeted 

CO delivery for specific disorders with a view to providing distinct physiological 

benefits. CORMs are transition metal carbonyls that release CO either in the presence 

of light (in the case of CORM-1), by a pH change (in the case of CORM-A1), or by 

ligand substitution (in the case of CORM-2 and CORM-3), and allow controlled delivery 

of low doses of CO (Foresti et al., 2008). CORM-1 and -2 were the first to be produced 

and are soluble in inorganic solvents. The treatment of VSMCs with CORM-2 did not 

affect cell viability, and had favourable vasodilatory and anti-hypertensive effects on 

isolated aortic tissue and on in vivo models respectively (Motterlini et al., 2002). 

Indeed, CORM-2 has been associated with numerous beneficial effects including 

reduced proliferation and inflammation, as described in the previous section. CORM-3 

has a biological ligand incorporated into the molecular structure, resulting in a less toxic 

compound that is water soluble, and therefore more compatible with experiments 

involving live cells, (Motterlini et al., 2003). CORM-3 has demonstrated cardioprotective 

effects on cardiac cells and isolated hearts (Clark et al., 2003), and has been shown to 

dilate pre-contracted rat aortic rings (Foresti et al., 2004). The experimental use of 

CORMs has further validated the understanding that CO is a cytoprotective molecule at 

the correct concentration (Motterlini et al., 2003), and application of micromolar 

concentrations of CORM-3 are deemed to be comparable to the effects of endogenous 

CO (Foresti et al., 2004). CORMs are currently undergoing assessment in Phase III 

clinical trials (Motterlini & Otterbein, 2010), therefore it is possible that these molecules 

will provide safe and effective targeting of therapeutic levels of CO, as reviewed by 

Foresti et al. (2008), although tissue selectivity remains an issue to be resolved. 

 

1.6 Aims of the present study 

Numerous cardiovascular disorders involve excess proliferation of VSMCs, therefore 

limiting this adverse response may confer beneficial effects. HO-1 is up-regulated 

during disorders of vascular remodelling and is associated with cytoprotective effects. 

HO-1 induction is the major pathway of endogenous CO production, and this vital 

gasotransmitter is gaining a reputation as a possible therapeutic agent. Moreover, CO 

has anti-proliferative effects on VSMCs and pro-proliferative effects on ECs, indicating 

that this signalling molecule could promote the optimal conditions to limit vascular 

remodelling. The phenotypic switch of VSMCs involves extensive modulation of Ca2+ 
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signalling, which in turn involves the maintenance of [Ca2+]i appropriate for cell 

proliferation and gene expression. Both the T-type Ca2+ channel and TRPC channels 

appear to have prominent roles in proliferative VSMCs, as their expression is heavily 

linked to the cell cycle, and they allow Ca2+ influx at RMP. Our research group has 

recently discovered that CO can inhibit the T-type Ca2+ channel, with no effect on 

TRPC channels. Therefore, the aim of this study was to investigate whether the VSMC 

T-type Ca2+ channel could act as an anti-proliferative target for HO-1. 
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CHAPTER 2 

Methods and Materials 

 

2.1 Cell Isolation and Culture 

2.1.1 WT HEK293 and HEK293/Cav3.2 Cells 

Wild-type (WT) HEK293 cells (European Collection of Cell Cultures (ECACC), Health 

Protection Agency Culture Collection (HPACC), Salisbury UK) were grown in minimum 

essential medium (MEM; Gibco, Cambridge UK), containing 10% foetal bovine serum 

(FBS; Biosera, Ringmer UK), 1% non-essential amino acids (Gibco, Cambridge UK), 

1% antibiotic/antimycotic (Gibco, Cambridge UK), and 0.1% gentamicin (Gibco, 

Cambridge UK). HEK293/Cav3.2 cells, engineered to over-express the human Cav3.2 

subunit of the T-type Ca2+ channel (gift from Prof. E. Perez-Reyes; University of Virginia 

Virginia, USA), were cultured in WT HEK293 media as above, yet additionally 

supplemented with 1mg/ml G-418 (Gibco, Cambridge UK) to maintain selection for the 

transfected cells. HEK293 cells were passaged on a weekly basis from 75cm2 flasks as 

follows: culture media was aspirated from the flask and replaced by 10ml of Dulbecco’s 

phosphate buffered saline (PBS; Gibco, Cambridge UK), to wash the cells. The PBS 

was removed and replaced with 2ml of 0.05% trypsin-EDTA (Gibco, Cambridge UK) to 

promote cell detachment. After 2-3 minutes in a humidified incubator (37ºC; 95% air, 

5% CO2), the cells had detached from the flask. This cell suspension was transferred to 

a 50ml falcon tube along with 10ml of complete growth media (outlined above, Cav3.2 

or WT as required) to neutralise the trypsin, and then centrifuged (600g for 6 minutes). 

The supernatant was removed leaving the cell pellet in the tube. If cells were to be 

propagated into new 75cm2 flasks, 20ml of complete growth media (Cav3.2 or WT as 

required) was added to the cell pellet and the cells resuspended. Dilutions of this cell 

suspension were then performed at 1:20 and 1:40 for HEK293/Cav3.2 cells, and at 1:10 

and 1:20 for WT HEK293 cells. Conversely, if cells were to be seeded at a specific 

density in 6- or 24-well plates, 1ml of complete media (Cav3.2 or WT as required) was 

added to the cell pellet, and the cells resuspended and counted to enable the required 

aliquot of cell suspension to be calculated. Subsequent sections outline the protocols 

for seeding cells for specific experiments. HEK293/Cav3.2 cells were used at passages 

between P1 and P8, and WT HEK293 cells were used at passages between P1 and 

P12. 
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2.1.2 A7r5 Cells 

A7r5 cells (ECACC, HPACC, Salisbury UK) are smooth muscle cells derived from rat 

thoracic aorta (Kimes & Brandt, 1976). A7r5 cells were grown in Dulbecco’s minimum 

essential medium (DMEM; Gibco, Cambridge UK), containing 10% FBS and 1% 

glutamax (Gibco, Cambridge UK), (Hall et al., 2006), and kept in a humidified incubator 

(37ºC; 95% air, 5% CO2). A7r5 cells were passaged weekly from 75cm2 flasks following 

the same procedure as described above for HEK293 cells. The cell dilutions seeded 

into 75cm2 flasks varied depending on when the cells were required to be confluent, a 

range of 1:5 to 1:40 was often seeded on a weekly basis. A 1:20 dilution became 80-

90% confluent within a week. To maintain optimum cell viability, half the media in the 

flasks was changed twice weekly. A7r5 cells were used at passages between P1 and 

P6. 

 

2.1.3 Human Coronary Artery Smooth Muscle Cells (HCASMC) 

HCASMCs (ECACC, HPACC, Salisbury UK) were grown in complete smooth muscle 

cell growth medium (470ml of basal medium plus 30ml of growth supplement) as 

supplied by HPACC and maintained in a humidified incubator (37ºC; 95% air, 5% CO2). 

HCASMCs were passaged weekly from 75cm2 flasks following the same procedure as 

described above for HEK293 cells, with dilutions of 1:10 and 1:20 seeded into 75cm2 

flasks. To maintain optimum cell viability, half the media in the flasks was changed 

twice weekly. HCASMCs were used at passages between P1 and P6. 

 

2.1.4 Human Saphenous Vein Smooth Muscle Cells (HSVSMC) 

Smooth muscle cells were isolated from the saphenous vein of patients undergoing 

coronary bypass graft surgery at Leeds General Infirmary following ethical approval 

and informed patient consent. Ethical approval received from Leeds West Research 

Ethics Committee; reference number CA/01/040. Smooth muscle cell isolation was 

carried out using the medial pad of the vessel, after endothelial cells had been 

removed for culture. Segments of saphenous vein, around 1cm in length were cut open 

longitudinally, lumen facing upwards. The segment was then divided into two pieces. 

2ml of complete medium (DMEM containing 10% foetal calf serum (FCS; Biosera, 

Ringmer UK), 1% L-glutamine (Gibco, Cambridge UK), and 1% penicillin/streptomycin 

(Gibco, Cambridge UK)), was transferred into a clean petri dish. A segment of vein was 

placed in the media. This was then cut up with a razorblade into fragments around 

0.5cm2 in size. This tissue and media mixture was then transferred to a 25cm2 tissue 
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culture flask. Cells were kept in a humidified incubator at (37ºC; 95% air, 5% CO2). 

Cells migrated out from these tissue fragments within 7-10 days and when 80-90% 

confluent, the cells were passaged using 1ml of 0.05% trypsin-EDTA into a 75cm2 

flask, and thereafter passaged at a ratio of 1:3. Half the media in the flasks was 

changed twice weekly and passaged when 80-90% confluent. The flask was washed 

with 10ml of PBS and then 2ml of 0.05% trypsin-EDTA was added to the cells. The 

flask was incubated in a humidified incubator (37ºC; 95% air, 5% CO2) for 4-5 minutes 

until the cells detached. If propagation of more cells was required from this cell 

suspension, 30ml of complete medium was added to neutralise the trypsin then the 

suspension divided between three 75cm2 flasks. Alternatively, if the cell suspension 

was required for seeding a specific density of cells, 10ml of complete medium was 

added to neutralise the trypsin then centrifuged (600g for 6 minutes). The supernatant 

was aspirated and the cell pellet re-suspended in 1ml of complete medium, then the 

cells were counted to enable the required aliquot of cell suspension to be calculated. 

Subsequent sections outline the protocols for seeding cells for specific experiments. 

HSVSMCs were used at passages between P1 and P6. 

 

2.2 Proliferation Assay 

2.2.1 Proliferation Assay Protocol 

The techniques used for proliferation assays and cell counting were based on 

longstanding protocols from our research group (Porter et al., 2002). Cells were plated 

in complete media at 1x104 cells per well in 24-well plates. HSVSMCs and HCASMCs 

were allowed to adhere overnight and subjected to serum free or 0.5% serum 

containing media for 2.5 days respectively. This produced a quiescent state and cell 

cycle synchronisation of the whole cell population. As the growth medium for 

HCASMCs was purchased commercially, no details were given regarding the 

composition of the medium, except that it contained 5% serum and various growth 

factors. To quiesce the cells without inducing proliferation, a 1:10 dilution of the 

complete growth medium with basal medium was prepared to give a final serum 

concentration of 0.5%. This decision was also based on a preliminary experiment 

involving HSVSMCs, which is presented in results section 6.2.1. A7r5 cells, along with 

WT HEK293 and HEK293/Cav3.2 cells, were allowed to adhere for 6 hours and then 

subjected to serum free media overnight. On day 0 of the assay, serum free media was 

removed and 1ml of the relevant complete media added to each well, in addition to the 

required drug or compound being investigated. To count cells the media was removed 
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from the well, cells were washed with 1ml of PBS, and 200µl 0.05% trypsin-EDTA was 

added (pre-warmed to 37⁰C). Post-incubation 800µl of complete media was added and 

the cell suspension centrifuged (600g for 6 minutes). Following removal of 950µl of 

media, 50µl of supernatant remained with the cell pellet, which was then re-suspended 

with 50µl of 0.4% Trypan Blue (Thermo Scientific, Rockford USA) to exclude unviable 

cells. Media was retained from one well of each treatment, processed in the same 

manner as the cell samples, and any cells present were counted as a quantification of 

non-viable, floating cells. Day zero counts and media counts were performed using a 

hemocytometer. All other counts were performed using a hemocytometer initially, until 

a TC10 Automated Cell Counter (Bio-Rad, Hemel Hempstead UK) was acquired. Data 

produced using the TC10 was validated by counting samples on both the 

hemocytometer and the TC10 over a period of 3 weeks with HSVSMCs, and WT 

HEK293 and HEK293/Cav3.2 cells. All data was comparable with the exception of day 

0 counts as fewer cells were present in these samples, and it was therefore decided 

that the hemocytometer would give more accurate day 0 data. 

 

2.2.2 Determination of Proliferation Assay Length 

Optimal assay length for HEK293 cells had been previously determined in the 

laboratory. A 3 day proliferation assay was adopted as this was adequate to 

demonstrate significant changes in the growth curves of HEK293/Cav3.2 cells and WT 

HEK293 cells. A 3 day proliferation assay was also adopted for A7r5 cells based on the 

growth characteristics observed between passages in 75mm2 flasks, and preliminary 

proliferation assays. The optimal assay length for HSVSMCs and HCASMCs was 

determined via the proliferative response to 0.4% and 10% serum, as described in 

results section 6.2.1. 

 

2.3 Sodium-Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

2.3.1 Cell Lysis and Protein Extraction of samples 

HSVSMCs, A7r5 and HEK293 cells used for western blotting were plated at 3x104 

cells/ml in 6-well plates. The cells were allowed to establish and become 80-90% 

confluent, then the wells were replenished with 0.4% serum media and the required 

treatment added. Post-treatment, the cells were washed once with PBS and lysed via 

incubation for 30 minutes with 200µl Mammalian Protein Extraction Reagent (M-

PERTM), (Thermo Scientific, Rockford USA) containing Complete Mini protease inhibitor 
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(Roche Diagnostics Ltd, Lewes UK; 1x Complete Mini protease inhibitor tablet per 10ml 

Mammalian Protein Extraction Reagent). The cell lysates were retrieved in a 1.5ml 

microcentrifuge tube using a cell scraper, centrifuged on a short spin for 10 seconds, 

and frozen at -20ºC until required. 

 

2.3.2 Membrane Enrichment of HSVSMC samples 

To detect the Cav3.2 and Cav3.1 T-type Ca2+ channels via western blotting in A7r5 cells 

and HSVSMCs the cell lysates required membrane enrichment. The following protocol 

was used for lysates from a 6-well plate. Subsequently the harvested lysates were kept 

on ice at all times.  

Cells were washed in ice-cold PBS and incubated with 1ml of 0.05% trypsin-EDTA for 

3-4 minutes. To neutralise the trypsin 3ml of ice-cold PBS was added to the wells and 

all the cell suspension removed into a 50ml falcon tube. A further 10ml of ice-cold PBS 

was added then the suspension centrifuged (600g for 2 minutes at 4⁰C). The 

supernatant was discarded and cell pellets homogenized (passed x12) using a teflon 

homogeniser (Wheaton, Millville, USA) in 1ml ice-cold membrane enrichment buffer 

(50mM Tris HCl, 140mM KCl, 1mM EGTA, 1mM MgCl2, 1x Complete Mini protease 

inhibitor tablet, pH 7.4). This suspension was then centrifuged (600g for 2 minutes at 

4⁰C) to pull down any remaining intact cells. The supernatants were then removed and 

centrifuged (1600g for 40 minutes at 4⁰C). The cell pellets were then solubilised in 

100µl M-PERTM containing Complete Mini protease inhibitor via ultrasonic agitation. 

Lysates were frozen at -20⁰C until required, and kept on ice when defrosted until used. 

 

2.3.3 Immunoprecipitation 

Immunoprecipitation was also employed to improve detection of the Cav3.2 and Cav3.1 

channels via western blotting in A7r5 cells and HSVSMCs. The following protocol was 

used for lysates from a 6 well plate. The harvested lysates were kept on ice at all times. 

Cell lysates were solubilised in 500µl ice-cold M-PERTM containing Complete Mini 

protease inhibitor and centrifuged at 10,000g for 5 minutes. Following retrieval of the 

supernatant, 15µl protein A sepharose beads (Sigma, Gillingham UK), 15µl protein G 

sepharose beads (Sigma, Gillingham UK) and 5µg of Cav3.2 or Cav3.1 antibody was 

added, then the sample placed on a GyroMini™ nutating mixer overnight at 4⁰C. The 

following day the sample was centrifuged (5000g for 5 minutes), the supernatant 

discarded, and the beads were then washed to remove any unbound proteins with 1ml 
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of sterile PBS. The sample was then placed on a GyroMini™ nutating mixer at 4⁰C for 

20 minutes. This step was repeated for a total of 3 washes. The sample was then 

centrifuged (20,000g for 5 minutes), the supernatant was discarded, and 20μl of 4x 

sample buffer (detailed in table 2.1) was added to the beads. This was allowed to 

incubate for 20 minutes to maximise protein elution, followed by centrifugation (20,000g 

for 5 minutes), and the sample then transferred to the gel for electrophoresis. 

 

2.4 Bicinchoninic acid protein assay  

This assay (Thermo Scientific, Rockford USA) allows quantification of total protein 

levels in samples, which enables normalisation of protein loading onto gels for 

electrophoresis. Under alkaline conditions, proteins in the sample reduce Cu2+, which is 

then chelated by bicinchoninic acid, producing a colour change from green to purple. 

The total protein level in each sample is proportional to the intensity of the purple 

colour formed, which is determined by colorimetry (Smith et al., 1985). The amount of 

protein in each sample can then be determined from a standard curve. Bovine serum 

albumin (BSA) protein standards were used with a range of 0-2000µg/ml. 10µl of 

standards and 2.5µl of samples with unknown protein levels were pipetted into 

separate wells of a 96-well plate and 200µl of working reagent added to each well. 

After a 30 minute incubation period at 37ºC, the plate was allowed to cool to room 

temperature (RT) and absorbance read at 570nm. The appropriate ratio of sample to 

sample buffer, (detailed in table 2.1), was determined using Graphpad Prism 6. These 

sample solutions were allowed to stand for 15 minutes at RT to maximise protein 

denaturisation prior to loading onto the gel for electrophoresis. 

 

2.5 Gel Electrophoresis 

Gel electrophoresis was performed to separate the proteins in the cell lysate samples 

to allow subsequent isolation and visualisation of the protein band of interest. 

Separating gels were prepared using the reagents shown in table 2.2. The size of the 

protein of interest dictated the percentage of acrylamide in the gel. For example the 

HO-1 protein is approximately 32kDa, so a 10% or 12% gel is sufficient. However, the 

Cav3.2 and Cav3.1 T-type Ca2+ channels are much larger proteins of approximately 

250kDa, therefore a gel with a larger pore size is required to allow the larger proteins to 

move through the gel, which dictates the use of a 7.5% acrylamide gel.  
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Reagent 1x Sample buffer 

Tris HCl 125mM 

SDS (w/v) 2% 

EDTA 2mM 

EGTA 2mM 

Glycerol (w/v) 20% 

β-mercaptoethanol (v/v) 10% 

Bromophenol blue (v/v) 1% 

Table 2.1 Composition of sample buffers used for gel electrophoresis 
(All compunds from Sigma, Gillingham UK) 

 

Reagent Resolving Gel Stacking Gel 

Acrylamide % 12% 10% 7.5% 4% 

Acrylamide (30%) 6.25ml 5ml 3.75ml 1ml 

Ammonium persulphate 1.5ml 1.5ml 1.5ml 0.5ml 

Distilled Water 3.5ml 4.75ml 6ml 2.35ml 

Separating Gel Buffer 

(1.5M Tris Base pH8.8, 

0.4% w/v SDS) 

3.75ml 3.75ml 3.75ml - 

TEMED 15µl 15µl 15µl 2.5µl 

Stacking Gel Buffer 

Buffer (0.5M Tris Base 

pH6.8, 0.4% w/v SDS) 

- - - 1.25ml 

Table 2.2 Composition of electrophoretic gels 

 

Gels were cast and a layer of isobutan-2-ol was pipetted on top of the separating gel to 

ensure a flat, even surface. Once the separating gel had polymerised, the isobutan-2-ol 

was poured off. A few grains of phenol red (Acros Organics, Geel Belgium) were added 

to the 4% stacking gel solution to allow visualisation of the wells, and this stacking gel 

solution was pipetted on top of the separating gel. 0.75mm combs were inserted at an 

angle to force out any air bubbles. Once polymerisation of the stacking gel had 

occurred, the gels were run on vertical mini gel (11 x 11cm) apparatus (Mini Protean III 

electrophoresis cell, Bio-Rad, Hemel Hempstead UK). The gel cassette sandwich was 

placed in the electrode assembly and running buffer added (25mM Tris, 192mM 

glycine, 0.1% w/v SDS, Bio-Rad, Hemel Hempstead UK). Combs were removed and 
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the samples and molecular weight markers pipetted slowly into the wells to prevent 

overflow. Running time was approximately 1 hour at 35mA, or until the markers of 

interest were in the correct position. 

 

2.6 Western Blotting 

2.6.1 Electrophoretic Transfer 

After separation, proteins were transferred onto 0.45µm Immobilon-P polyvinylidine 

difluoride membrane (Millipore Corporation, Massachusetts USA). The membrane, 

along with x2 Mini Trans Blot filter paper (Bio-Rad, Hemel Hempstead UK) and x2 

sponges, were soaked in methanol (Fisher Scientific, Rockford USA) and then in 

transfer buffer (600ml ddH20, 70ml Tris-Glycine transfer buffer (Invitrogen, Cambridge 

UK), and 30ml methanol). The blotting sandwich was assembled in cassettes as 

follows: Anode(+), sponge, filter paper, membrane, gel, filter paper, sponge, Cathode(-

). The cassettes were placed in a Mini Trans-Blot electrophoretic transfer cell (Bio-Rad, 

Hemel Hempstead UK) and subjected to 30V overnight. 

 

2.6.2 Immunodetection 

Post transfer, the membranes were removed from the cassettes and soaked in 

methanol, followed by blocking in 5% (w/v) Marvel non-fat dried milk powder in TBST 

(tris-buffered saline (TBS) containing 0.05% (v/v) Tween-20) for 1 hour. The 

membranes were then incubated with primary antibody for 3 hours at RT in 5% Marvel 

in TBST (see table 2.3 for dilutions of the anitbodies used). For loading control, β-actin 

(Sigma, Gillingham UK) was used at 1:4000. The membranes were then washed in 

TBST for 30 minutes, with the TBST changed every 5 minutes. Following this wash 

protocol, the membranes were then incubated with the corresponding anti-rabbit or 

anti-mouse peroxidase conjugated secondary antibody (GE Healthcare, Amersham 

UK) at 1:2000 dilution in 5% Marvel in TBST for 1 hour at RT. The wash protocol was 

then followed again. Protein bands were detected using the enhanced chemi-

luminescent (ECL) method (GE Healthcare, Amersham UK). The secondary antibodies 

used (see table 2.3), are conjugated to horseradish peroxidase (HRP) which catalyses 

a substrate in the ECL detection reagent, producing chemiluminescence that was 

detected on hyperfilm (GE Healthcare, 2012). The hyperfilm was scanned using Canon 

5600F scanner and densitometric analysis performed using Image J (NIH UK). The 

expression of HO-1 was normalised to β-actin in each instance. 
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 Anti-HO-1 

(Santa Cruz, SC-

10789) 

Anti-Cav3.1 

(Santa Cruz, SC-

16259) 

Anti-Cav3.2 

(Santa Cruz, SC-

16263) 

Anti-Cav3.1 

(Alomone, ACC-021) 

Anti-Cav3.2 

(Alomone, ACC-025) 

Polyclonal/ Monoclonal Rabbit Polyclonal Goat Polyclonal Goat Polyclonal Rabbit Polyclonal Rabbit Polyclonal 

Western Blotting 

Dilution 

1:200 1:200 1:200 1:200 1:200 

Western blotting 

Secondary Antibody 

Anti-Rabbit 

ECL HRP Linked 

(GE Healthcare) 

1:2000 

Anti-Goat 

ECL HRP Linked 

(GE Healthcare) 

1:2000 

Anti-Goat 

ECL HRP Linked 

(GE Healthcare) 

1:2000 

Anti-Rabbit 

ECL HRP Linked 

(GE Healthcare) 

1:2000 

Anti-Rabbit 

ECL HRP Linked 

(GE Healthcare) 

1:2000 

Immunocytochemistry 

Dilution 

1:50 1:50 1:50 1:50 1:50 

Immunocytochemistry 

Secondary Antibody 

Goat Anti-Rabbit 

Alexa Fluor488 

(Invitrogen, 

Cambridge UK) 

Donkey Anti-Goat 

Alexa Fluor488 

(Invitrogen, 

Cambridge UK) 

Goat Anti-Goat 

Alexa Fluor488 

(Invitrogen, 

Cambridge UK) 

Goat Anti-Rabbit 

Alexa Fluor488 

(Invitrogen, 

Cambridge UK) 

Goat Anti-Rabbit 

Alexa Fluor488 

(Invitrogen, 

Cambridge UK) 

Table 2.3 Primary and secondary antibodies used in western blotting and immunocytochemistry  
(Santa Cruz Biotechnology Santa Cruz USA, Alomone Jerusalem Israel)
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2.7 Immunocytochemistry 

Cells used for immunocytochemistry were plated on sterile glass coverslips (22x22mm, 

thickness 0) in 6-well plates at 1x104 cells/ml for A7r5 cells and HSVSMCs, and at 

2x104cells/ml for HEK293 cells. To enhance the adherence of HEK293 cells, 1.5ml 

polylysine (Sigma, Gillingham UK) was added to each well containing the coverslip and 

removed after 30 seconds. Once the wells were completely dry, the cells were then 

plated. This was not required for A7r5 or SVSMCs. If HO-1 induction was required, 

cells were allowed to adhere to the coverslips for 24 hours and then the correct 

protoporphyrin added for 48 hours. Post-treatment, the media was removed and the 

coverslips were washed with PBS (3x5 minutes). The cells were then fixed with 4% 

paraformaldehyde in PBS for 20 minutes. This was followed by incubation for 20 

minutes at RT in PBS containing 0.2% Triton X100 and 10% normal goat serum (NGS; 

Sigma, Gillingham UK), or BSA (Sigma, Gillingham UK) if the primary antibody was 

raised in goat. The coverslips were then washed again with PBS (3x5minutes), 

followed by a wash with PBS containing 1% NGS/BSA for 2 minutes. The primary 

antibody was diluted in PBS containing 1% NGS/BSA. See tables 2.3 and 2.4 for 

details of the antibodies used. The coverslips were incubated with primary antibody 

overnight at 4⁰C in an air-tight box lined with wet tissue paper.  

The following day the coverslips were washed with PBS (3x5 minutes). The secondary 

antibody was used at 1:1000 in PBS containing 1% NGS/BSA. 1ml/well was incubated 

for 1 hour in the dark at RT. The coverslips were again washed with PBS (3x5 

minutes). Coverslips were mounted on glass slides using 20µl Vectasheild containing 

DAPI (Vector Laboratories, Burlingame USA) and the edges sealed with nail varnish. 

The slides were allowed to dry in the dark, then visualised using a Zeiss laser scanning 

confocal microscope (LSM510), (Oberkochen, Germany), and Zeiss AIM software. 

LSM Image Browser software was used to produce images. Settings were identical for 

each condition. 

 

2.7.1 HO-1 

Immunocytochemistry was performed in HSVSMCs, A7r5, HEK293/Cav3.2, and WT 

HEK293 cells to visualise HO-1 after induction with Cobalt Protoporphyrin IX (CoPPIX; 

Sigma, Gillingham UK) or Hemin Chloride (Calbiochem, Darmstadt Germany). The 

cells were allowed to adhere for 24 hours then treated for the required time period. The 

details of the antibodies used are listed in table 2.3. 
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 Dilution Polyclonal/Monoclonal Secondary 

Antibodies 

Anti α-SM Actin 

(Clone 1A4) 

(A2547, Sigma, 

Gillingham UK) 

1:300 Mouse Monoclonal Donkey Anti-

Mouse 

Alexa Fluor555 

(Life 

Technologies, 

Cambridge UK) 

Anti-Vimentin (V9) 

 (Santa Cruz 

Biotechnology sc-

6260, Santa Cruz 

USA) 

1:50 Mouse Monoclonal Donkey Anti-

Mouse 

Alexa Fluor555 

(Life 

Technologies, 

Cambridge UK) 

Anti-SM Myosin 

Heavy Chain (H-44) 

(Santa Cruz 

Biotechnology sc-

98705, Santa Cruz 

USA) 

1:50 Rabbit Polyclonal Goat Anti-Rabbit 

Alexa Fluor488 

(Life 

Technologies, 

Cambridge UK) 

Table 2.4 Primary and secondary antibodies used in immunocytochemistry for 
cell characterisation 

 

2.7.2 Cav3.2 and Cav3.1 T-type Ca2+ channels 

Immunocytochemistry was performed in HSVSMCs, A7r5 cells, HEK293/Cav3.2, and 

WT HEK293 cells to demonstrate the presence or absence of the Cav3.2 T-type Ca2+ 

channel. The above protocol was followed using two different Cav3.2 primary 

antibodies as listed in table 2.3. 

 

2.7.3 Cell Characterisation 

HSVSMCs and A7r5 cells were subject to immunocytochemistry using the antibodies 

listed in table 2.4 to characterise them as smooth muscle cells.  

 



52 
 

 

2.8 Detection of Caspase-3/7 Activation via CellEvent™ 

Activation of caspases 3 and 7 were monitored fluorogenically via CellEvent™ 

Caspase-3/7 detection reagent (Molecular Probes, Cambridge UK). The reagent 

consists of a nucleic acid binding dye conjugated to a four amino acid peptide. Upon 

activation of caspases 3 and 7, the four amino acid peptide is removed allowing the 

dye to bind to DNA and fluoresce. Maximal absorbance is measured at 530nm. 

This experiment was employed as an alternative to trypan blue exclusion and media 

counts, to determine conclusively whether the drugs used in proliferation assays cause 

an inhibition of proliferation as opposed to apoptosis. A7r5 cells were plated at 2x104 

cells/ml on sterile square glass coverslips (22x22mm, thickness 0) in a 6-well plate. 

Cells were allowed to adhere overnight then the following morning the media in the 

wells was replenished and treated the with the appropriate compound. As a positive 

control, one well was treated with 2μM staurosporine (Sigma, Gillingham UK), an 

established inducer of apoptosis (Bertrand et al., 1994), for 3 hours on day 3 of the 

assay. All wells were then washed briefly with PBS, then 8μM CellEvent™ added to 

each well. Cells were incubated for 30 minutes at RT in the dark. All wells were washed 

again with PBS and two drops of NucBlue™ Live Cell Stain (Hoechst 33342), 

(Molecular Probes, Cambridge UK), added per ml of PBS. Cells were again incubated 

for 20 minutes at RT in the dark. Cells were then washed for 5 minutes with PBS, fixed 

with 4% paraformaldehyde for 20 minutes, mounted using 20µl Vectasheild without 

DAPI (Vector Laboratories, Burlingame USA), and sealed with nail varnish. Cells were 

imaged with a Nikon E600 light microscope (Nikon, Kingston upon Thames UK), x40 

lens, and Q Imaging Micropublisher ACQuis (Syncroscopy) software. 

 

2.9 Measurement and analysis of [Ca2+]i 

2.9.1 Measurement of [Ca2+]i by microfluorimetry 

Microfluorimetry was performed to monitor [Ca2+]i of A7r5, HEK293/Cav3.2 and WT 

HEK293 cells. Fura 2-AM (Invitrogen, Cambridge UK) was used as the [Ca2+]i indicator 

for the microfluorimetry experiments. Fura 2-AM is an acetoxymethyl (AM) ester and it 

is this AM group which confers hydrophobicity to the otherwise hydrophilic dye, 

allowing passage through the cell membrane (Paredes et al., 2008). The action of 

intracellular esterases ensures the dye remains inside the cell by hydrolysing the AM 

group. This high affinity fluorescent dye is ratiometric. On Ca2+ binding the peak 

excitation wavelength shifts from 380nm to 340nm (Paredes et al., 2008), which is 
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illustrated in figure 2.1. Higher [Ca2+]i produces an increase in emission intensity at 

510nm when Fura 2 is excited at 340nm, whereas lower [Ca2+]i produces an increase 

in emission intensity at 510nm when Fura 2 is excited at 380nm. The ratiometric 

property of Fura 2 allows for any differences in dye loading, cell size, and cell volume in 

the recording field to be overcome, therefore allowing data from different experiments 

to be compared (Paredes et al., 2008), and for the shift in excitation wavelength to 

correlate directly to [Ca2+]i (Duchen, 1992). 

[Ca2+]i can be determined from the Fura 2 ratio using the following equation 

(Grynkiewicz et al., 1985): 

[Ca2+] = Kd Sf2 / Sb2 ( R – Rmin / Rmax – R ) 

Where: 

Kd is the dissociation constant for Fura 2, which is the [Ca2+]i when the concentration of 

Ca2+ bound and free Fura 2 are equal. 

R is the fluorescence ratio defined as the fluorescence intensity induced by λ1 (F1 

340nm) divided by the fluorescence intensity induced by λ2 (F2 380nm), (I340/I380). 

Rmin is the R recorded when the [Ca2+] is 0. 

Rmax is the R recorded when the [Ca2+] is a maximum or much higher than Kd. 

Sf2 is F2 when Ca2+ is not bound to Fura 2 and Sb2 is F2 when Fura 2 is fully bound to 

Ca2+. 
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Figure 2.1 Fluorescence excitation spectra of Fura 2-AM in solutions containing 
0-39.8µM free Ca2+ (Diagram taken from www.invitrogen.com) 
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The determination of [Ca2+]i, however, is not without limitations. To calculate [Ca2+]i 

precisely, Kd must be determined for each cell type and fluorescent indicator (Neher, 

2000), which varies with temperature, pH, and Mg2+ levels (Paredes et al., 2008). 

Additional issues associated with the indicator can also contribute to inaccuracies, such 

as compartmentalisation of the indicator, and sub maximal hydrolysis which produces 

fluorescence without Ca2+ sensitivity (Duchen, 1992;Neher, 2000) For these reasons, 

changes in [Ca2+]i were expressed as changes in Fura 2 ratio in this thesis. 

For all Ca2+ microfluorimetry experiments A7r5 and HEK293 cells were plated on 

circular glass coverslips (10mm, thickness 0) in 24 well plates at a 1:3 dilution for A7r5 

cells, and at a 1:5 dilution for HEK293 cells. Previous to cell plating, 1ml polylysine was 

added to each well containing the coverslip and removed after 30 seconds. Once the 

wells were completely dry the cells were then plated and kept in a humidified incubator 

(37ºC; 95% air, 5% CO2), until the cell monolayer was confluent. The coverslip was 

transferred to a 35mm petri dish and cells were loaded with 4µM Fura 2-AM (dissolved 

in Ca2+ containing buffer) for 40 minutes. The cells were then washed with 1ml of Ca2+ 

containing buffer and then incubated in Ca2+ containing buffer for 15 minutes to allow 

de-esterification of the loaded dye. During both incubations the petri dish was wrapped 

in foil and kept in a dark drawer at RT. Table 2.5 lists the buffer compositions. 

 

 Normal 

(Ca2+-

containing) 

Ca2+-Free 20mM K+ 80mM K+ 80mM K+/ 

Ca2+ Free 

NaCl 135mM 135mM 120mM 60mM 60mM 

KCl 5mM 5mM 20mM 80mM 80mM 

MgCl2 1.2mM 1.2mM 1.2mM 1.2mM 1.2mM 

HEPES 5mM 5mM 5mM 5mM 5mM 

D-Glucose 10mM 10mM 10mM 10mM 10mM 

Sucrose 300mOsm 300mOsm 300mOsm 300mOsm 300mOsm 

CaCl2 2.5mM - 2.5mM 2.5mM - 

EGTA - 1mM - - 1mM 

Table 2.5 Composition of 1L buffers used in Ca2+ microfluorimetry 
(All compunds from Sigma, Gillingham UK) 
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Composition of Ca2+-containing buffer (in mM): NaCl 135, KCl 5, MgSO4 1.2, CaCl2 2.5, 

HEPES 5, glucose 10, osmolarity adjusted to 300 mOsm with sucrose, pH 7.4. Ca2+-

free buffere as above minus CaCl2 2.5, plus 1mM EGTA. 

Coverslip segments were loaded into a perfusion chamber (volume approximately 80µl) 

on an inverted epi-fluorescence microscope with the required buffer perfused via 

gravity at 2-3ml/min. The perfusion system consisted of four 60ml disposable syringes 

which acted as reservoirs (Merck, Feltham UK), connected to a 6 way tap (Hamilton 

GB Ltd., Birmingham UK) via Tygon tubing (2.5mm outside diameter, 0.83mm inside 

diameter; Merck, Feltham UK). Buffer was delivered from the tap to the perfusion 

chamber by Tygon tubing. Various compounds and drugs were used to alter the activity 

of the T-type Ca2+ channels, L-type Ca2+ channels and HO-1 (see section 2.14 and 

specific results chapters for details), and these were applied to the perfusion chamber 

from the appropriate reservoir via the Hamilton tap as and when required. A suction 

tube connected to a peristaltic pump (Gilson, Minipulse 3, Anachem, Luton UK) was 

used to continuously remove the perfusate from the chamber. 

The cellular Ca2+ responses were recorded using a Cairn Research ME-SE Photometry 

system (Cairn Research, Faversham UK). Acquisition Engine 1.6.1 software was used 

to visualise the wavelength traces. Plotting and analysis of the data was done using 

Graphing (in house program) and GraphPad Prism version 6 (GraphPad Software, Inc., 

La Jolla USA). 

 

2.9.2 Analysis of microfluorimetry traces from A7r5 cells 

It was noted that the response of A7r5 cells to 20mM K+ buffer declined over time with 

each subsequent exposure. This can be seen in Figure 2.2 (A), the response to each 

exposure numbered from 1 to 3. These three consecutive responses on the control 

traces were analysed to determine the standard to which to compare the effects of any 

drugs or compounds. Two sets of data were retrieved for each exposure to 20mM K+ 

buffer; these were the change in Fura 2 ratio, and spikes per second (spikes/s). The 

change in Fura 2 ratio is illustrated in Figure 2.2 (B), and calculated by subtracting the 

basal Fura 2 level (F1) from the Fura 2 level in response to K+ buffer (F2). These Fura 2 

ratio values were taken as the response reached plateau. Spikes/s were achieved by 

dividing the time period (in seconds) of each exposure to 20mM K+ buffer, by the 

number of spikes for the response during this exposure. This is illustrated in Figure 2.2 

(C). The same analyses were performed on the traces from A7r5 cells in response 

various compounds or drugs. 
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The Graphing program was also used to calculate the integral of the response of A7r5 

cells to 80mM K+ buffer. Exposure to 80mM K+ buffer was timed, and the integral of the 

curve for the initial 200 seconds was determined. This is illustrated in Figure 2.3; the 

integral of the curve bound by the red lines was calculated for all traces. This time-point 

was chosen to demonstrate the different responses to the various compounds used as 

some responses were extremely brief with a rapid return to baseline, whereas the 

control traces would continue to decline slowly, possibly not returning to baseline within 

an ideal timeframe in which to monitor the cells. Therefore, a snapshot of the initial 

response was assessed for all traces. 

 

2.9.3 Analysis of microfluorimetry traces from HEK293 cells 

An example of how traces from HEK293/Cav3.2 and WT HEK293 cells were analysed 

is shown in Figure 2.4. The response to normal buffer (F1) was compared to the 

response to Ca2+ free buffer, or normal buffer plus specified compound (F2) on each 

trace. The Fura 2 ratio of each response was recorded from a plateau level. 

 

2.10 Real-Time Polymerase Chain Reaction (RT-PCR) 

The basal expression of Cav3.2 and Cav3.1 mRNA in A7r5 cells and HSVSMCs was 

quantified via RT-PCR. This technique was then used to monitor changes in mRNA 

expression post-siRNA knockdown of the Cav3.1 gene (CACNA1G) in A7r5 cells. 

 

2.10.1 RNA generation 

To determine the expression levels of Cav3.2 and Cav3.1 channels, T25 flasks of 70-

80% confluency were washed with PBS and cells dissociated using 0.5ml 0.05% 

trypsin-EDTA for 3 minutes (37ºC; 95% air, 5% CO2). Enzyme activity was halted by 

adding 0.5ml ice-cold PBS, the cell suspension was then centrifuged (600g for 6 

minutes). If RNA was not to be generated immediately, the supernatant was discarded 

and the cell pellets dispersed in 100µl of RNAlater® (Ambion, Cambridge UK) and 

frozen at -20⁰C until required. 

RNA was generated from whole cell lysates using the Aurum Total RNA Mini Kit (Bio-

Rad, Hemel Hempstead UK). The RNAlater® solution containing the cells was 

centrifuged (600g for 6 minutes) then the supernatant discarded. 350μl of lysis solution 

was added to each cell pellet, and the cells were dispersed by pipetting up and down  
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Figure 2.2 Details of how A7r5 traces were analysed 

(A) Representative A7r5 control trace. (B) Enlarged view of the highlighted centre 

section demonstrating how the change in Fura 2 ratio was determined. (C) 

Demonstration of how spikes per second were calculated. 
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Figure 2.3 Illustration of the 200s integral calculated for all A7r5 cell traces 

in response to 80mM K+ buffer 

 

 

100s

0
.1

r.
u
.

 

Figure 2.4 Details of how HEK293 traces were analysed 
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approximately 15 times. Then 350μl of 70% ethanol (molecular biology grade, Sigma, 

Gillingham UK) was added, and the solution mixed by pipetting up and down 

approximately 15 times. Each lysate was transferred to a spin column inserted in a 2ml 

collection tube and centrifuged (13000g for 30 seconds). Flowthrough was discarded 

and 700μl of low stringency wash was added, the columns then centrifuged (13000g for 

30 seconds). Again flowthrough was discarded and 75μl DNase Incubation Mix (5μl 

DNase I: 75μl DNase Dilution Solution) added to each column. This was incubated at 

RT for 15 minutes then centrifuged at 13000g for 30 seconds. Flowthrough was 

discarded, 700μl of high stringency wash solution was added, then the columns 

centrifuged (13000 g for 30 seconds). Flowthrough was again discarded, 700μl low 

stringency wash added and the columns centrifuged (13000g for 1 minute). Again, 

flowthrough was discarded and the columns centrifuged (13000g for a further 2 

minutes). Each spin column was then placed in a new elution tube, 80μl of elution 

solution (pre-warmed to 70⁰C) was added and incubated for 1 minute at RT. RNA was 

eluted by centrifugation (13000g for 2 minutes). RNA samples were frozen at -70⁰C if 

cDNA was not generated immediately. 

 

2.10.2 cDNA generation 

A cDNA template was generated from RNA samples using the iScript cDNA Synthesis 

Kit (Bio-Rad, Hemel Hempstead UK). Firstly, 20µl of the reaction solution, as shown in 

table 2.6, was transferred into a dome-capped 0.2ml PCR tube, and placed in a bench 

top thermocycler (Applied Biosystems). The reaction samples were subjected to 5 

minutes at 25⁰C, followed by 30 minutes at 42⁰C, 5 minutes at 85⁰C, and then held at 

4⁰C. 

 

Component Volume per Reaction 

5x iScript reaction mix 4μl 

Reverse Transcriptase 1μl 

Nuclease-free water 12.5μl 

RNA template 2.5μl 

Table 2.6 Composition of iScript reaction solution 
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2.10.3 RT-PCR 

The reaction mix for each primer was prepared as outlined in table 2.7. The details of 

the primers used are outlined in table 2.8; rat primers employed for A7r5 cells, and 

human primers employed for HSVSMCs. Firstly, 18μl of RT-PCR reaction mix was 

added to the required wells of a 96 well PCR plate (Applied Biosystems, Cambridge 

UK), followed by 2μl of sample cDNA in the same pattern. The plate was then sealed 

with an optical adhesive cover, centrifuged briefly, and then placed in an RT-PCR 

machine (Applied Biosystems, Cambridge UK). The RT-PCR reaction was as follows: 2 

minutes at 50⁰C, 10 minutes at 95⁰C,15 seconds at 95⁰C for 60 cycles, then 1 minute 

at 60⁰C. 

 

Component Volume per Reaction 

Taqman Universal PCR Master Mix (Roche 

Diagnostics Ltd, Lewes UK) 

10μl 

Taqman Primer 0.5μl 

RNase/DNase-free water (Gibco Cambridge UK) 7.5μl 

Table 2.7 Composition of RT-PCR reaction mix 

 

Primer Species Function 

HPRT1 (hypoxanthine 

phosphoribosyltransferase 1) 

Rat/Human Endogenous House Keeper 

Β2M (β2microglobulin) Rat/Human Endogenous House Keeper 

CACNA1G Rat/Human Target 

CACNA1H Rat/Human Target 

Table 2.8 RT-PCR Primer details (all from Applied Biosystems, Cambridge UK) 

 

2.11 Stable Transfection of A7r5 cells with pcDNAhHO-1 

To generate a cell line stably expressing human (hH-O1) HO-1, referred to hereafter as 

A7r5/hHO-1, cells were initially transfected with the pcDNA3.1/Neo (hHO-1) construct 

using the Genejammer transfection reagent (Agilent Technologies, Stockport UK) 

according to manufacturer’s instructions. Stable A7r5/hHO-1 cell lines were achieved 

by antibiotic selection with 1mg/ml G-418, added to the medium 3 days after 

transfection. Selection was applied for 3-4 weeks (media changed every 4-5 days), 
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after which time individual colonies were isolated. To isolate individual clones, first the 

cells were washed with PBS, the top of the T75 flask broken and removed, and 

individual colonies enclosed with a greased cloning ring. Specifically, 200μl 0.05% 

trypsin-EDTA was added to each ring for 2 minutes then neutralised with an equal 

volume of FCS, gently triturated and subsequently transferred to an upright T25 and 

allowed to reach confluence. Next, cells were harvested by trypsinization and then 

transferred to T75 flasks for further culture and examination of hHO-1 expression. 

Generation of the pcDNA3.1/Neo (hHO-1) construct and A7r5/hHO-1 cell line was 

performed by Dr Jason L. Scragg. 

Four clones were screened via western blotting for the HO-1 protein, and a clone which 

demonstrated a high level of HO-1 overexpression was chosen for further experiments. 

A7r5/hHO-1 cells were compared to control A7r5 cells via proliferation assays and 

monitoring of [Ca2+]i responses by microfluorimetry, (as described previously), with or 

without HO-1 induction with 10μM CoPPIX.  

 

2.12 Cell Transfection with HO-1-targeting siRNA 

HSVSMCs were transfected using hHO-1-targeting siRNA (sc-35554; Santa Cruz 

Biotechnology, Santa Cruz USA). Numerous parameters needed to be confirmed in 

order to optimise the cell transfection protocol including which concentration of HO-1 

siRNA produced the optimal mRNA knock-down, how long the mRNA knock-down 

would last, and as the HMOX1 gene is inducible, at what time-point the CoPPIX should 

be added to the cells. 

 

2.12.1 Transfection Protocol for a 6 well plate 

HSVSMCs were plated in four wells of a 6-well plate at 1x105 cells/well (as determined 

by previous experiments) in complete growth medium without penicillin/streptomycin, 

and allowed to attach overnight. Mock and transfected cell groups were utilised. Mock 

groups were subjected to all transfection reagents with the exception of siRNA. On the 

day of transfection, Optimem (Invitrogen, Cambridge UK) and 0.4% FCS-containing 

media without penicillin/streptomycin were pre-warmed to 37ºC. Lipofectamine 2000® 

(Invitrogen, Cambridge UK) was used as the transfection reagent. The transfection 

solutions for a 6-well plate format are shown in tables 2.9-2.11. Tubes 1 and 2 were 

prepared separately, mixed gently, and left to stand for 5 minutes at RT. Tubes 1 and 2 

were then combined and left to stand for 20 minutes at RT. Tube 3 was then added to 
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the solution and mixed gently. Media was removed from the cells, followed by a PBS 

wash, and 1.5ml of the appropriate solution (Mock or Transfected) was then added to 

each well. After 6 hours in a humidified incubator (37ºC; 95% air, 5% CO2), the 

transfection media was removed and replaced with complete growth medium and the 

cells were then incubated for 2 days. Cell lysates were removed at the end of the 

incubation period using 200µl M-PERTM plus Complete Mini protease inhibitor per well. 

The plate was rocked for 30 minutes at RT. The wells were then scraped using a cell 

scraper, the lysates collected and centrifuged on a short spin for 10 seconds, and then 

frozen at -20⁰C until required for western blotting. 

 

Cell Group Tube 1 Tube 2 Tube 3 

 10µM siRNA Optimem Lipofectamine Optimem 0.4%fcsw/opsf 

Mock - 375µl 5µl 370µl 750µl 

Transfected 15µl 360µl 5µl 370µl 750µl 

Table 2.9 Transfection volumes per well of each experimental group using 100nM 

siRNA 

 

Cell Group Tube 1 Tube 2 Tube 3 

 10µM siRNA Optimem Lipofectamine Optimem 0.4%fcs w/o psf 

Mock - 375µl 5µl 370µl 750µl 

Transfected 7.5µl 367.5µl 5µl 370µl 750µl 

Table 2.10 Transfection volumes per well of each experimental group using 50nM 
siRNA 

 

Cell Group Tube 1 Tube 2 Tube 3 

 10µM siRNA Optimem Lipofectamine Optimem 0.4%fcs w/o psf 

Mock - 375µl 5µl 370µl 750µl 

Transfected 3.75µl 371.25µl 5µl 370µl 750µl 

Table 2.11 Transfection volumes per well of each experimental group using 25nM 
siRNA 
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2.12.2 First transfection – determination of optimal HO-1-targeting siRNA 

Transfection was performed in 6-well plates to evaluate the efficiency of mRNA knock-

down using 25nM, 50nM, and 100nM siRNA following the protocol stated above, and 

protein knockdown verified by western blotting of protein lysates at 48 hours post 

transfection. 

 

2.12.3 Second transfection – determination of the period of gene knock-down 

Once the optimal concentration of siRNA had been determined, the experiment was 

performed once again, but over 4 days to determine the maximal time frame of mRNA 

knockdown. At day 2, the media and CoPPIX were replenished. Protein lysates were 

prepared sequentially each day for 4 days. 

 

2.12.4 Proliferation assay post-transfection 

Once the time period of gene knockdown and optimal siRNA concentration had been 

established, the transfection was performed in 24-well plates. Initially cells were plated 

at 1x104 cells/well, prior to a 4 day proliferation assay in which cells were counted daily. 

Cells were plated in parallel at 1x105 in 6 well plates to retrieve protein lysates for 

western blotting at days 2 and 4. The transfection protocol was performed as stated in 

2.12.1, but with a smaller volume of 300µl transfection media per well for the 24 well 

plate format. The transfection solutions for a 24-well plate are stated in table 2.12. 

 

Cell Group Tube 1 Tube 2 Tube 3 

 10µM siRNA Optimem Lipofectamine Optimem 0.4%fcsw/opsf 

Mock - 75µl 1µl 74µl 150µl 

Transfected 1.5µl 73.5µl 1µl 74µl 150µl 

Table 2.12 Transfection volumes per well of each experimental group using 
100nM siRNA 

 

2.13 Cell Transfection with Cav3.1-targeting siRNA 

Preliminary RT-PCR was performed on cDNA from A7r5 cells to determine the 

expression level of Cav3.2 and Cav3.1 T-type Ca2+ channels, and to screen 

β2microglobulin (β2M) and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as 

possible housekeeper genes. Once expression levels were known, and the appropriate 
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housekeeper gene chosen, cells were transfected using ON-TARGETplus SMARTpool 

rat CACNA1G siRNA (Dharmacon, Waltham USA). The protocol described in section 

2.12.1 was followed, with the exception of the final step as cells were retrieved using 

trypsin, the activity of which was halted with ice-cold PBS, and the cells stored in 100µl 

RNAlater® until RNA generation. 

 

2.13.1 First transfection – determination of optimal Cav3.1-targeting siRNA 

concentration 

Three concentrations of Cav3.1-targeting siRNA were employed; 25nM, 50nM and 

100nM, and all cells retrieved at 48 hours post-transfection. The transfection volumes 

for a 6-well plate format are shown in tables 2.13-2.15. Dharmafect 2 (Dharmacon, 

Waltham USA) was utilised as the transfection reagent, as gene knock-down proved 

unsuccessful when Lipofectamine 2000® was utilised. 

 

Cell Group Tube 1 Tube 2 Tube 3 

 5µM siRNA Optimem Dharmafect 

2 

Optimem 0.4%fcsw/o 

psf 

Mock - 200µl 3.5µl 196.5µl 1600µl 

Transfected 20µl 180µl 3.5µl 196.5µl 1600µl 

Table 2.13 Volumes for 50nM siRNA transfection for 1 well of each experimental 
group. 

 

Cell Group Tube 1 Tube 2 Tube 3 

 5µM siRNA Optimem Dharmafect 

2 

Optimem 0.4%fcs w/o 

psf 

Mock - 200µl 3.5µl 196.5µl 1600µl 

Transfected 10µl 190µl 3.5µl 196.5µl 1600µl 

Table 2.14 Volumes for 25nM siRNA transfection for 1 well of each experimental 
group. 
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Cell Group Tube 1 Tube 2 Tube 3 

 5µM siRNA Optimem Dharmafect 

2 

Optimem 0.4%fcs w/o 

psf 

Mock - 200µl 3.5µl 196.5µl 1600µl 

Transfected 4µl 196µl 3.5µl 196.5µl 1600µl 

Table 2.15 Volumes for 10nM siRNA transfection for 1 well of each experimental 
group. 

 

2.13.2 Second transfection – determination of the period of gene knock-down 

A 3 day time-course was then performed with 50nM Cav3.1-targeting siRNA. This 

concentration was chosen on the basis of adequate knock-down, as demonstrated by 

RT-PCR. The cell transfection process was performed as described above, in 6-well 

plates and 24-well plates. Post-transfection, cells were counted daily from a 24-well 

plate, and retrieved daily for RT-PCR from both 6-well and 24-well plates, for a total of 

three days. The volumes for a 24-well plate are given in table 2.16. An untransfected 

cell group, which contained 0.4% FCS medium only, was also included in this 

experiment to determine whether any minor fluctuations seen with the housekeeper 

were due to the transfection process or a natural occurrence for this cell line. 

 

Cell Group Tube 1 Tube 2 Tube 3 

 5uM siRNA Optimem Dharmafect 

2 

Optimem 0.4%fcs w/o 

psf 

Mock - 50µl 1µl 49µl 400µl 

Transfected 5µl 45µl 1µl 49µl 400µl 

Untransfected - - - - 500µl 

Table 2.16 Volumes for 50nM siRNA transfection for 1 well of each experimental 
group. 

 

2.14 Drugs 

Table 2.17 outlines all the drugs used in experiments. Figure legends in results 

chapters provide more specific details. 
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Reagent Solvent Storage Concentration 

used 

CoPPIX 100mM NaOH Freezer -20ºC, 

dark 

0.1 - 30 μM 

Hemin 100mM NaOH Freezer -20ºC, 

dark 

1 - 100 μM 

QC-15 Distilled water Freezer -20ºC 10 μM 

Mibefradil Distilled water Freezer -20ºC 0.3 - 30 μM 

NNC55-0396 Distilled water Freezer -20ºC 3 μM 

Nickel Distilled water Made fresh 1 - 250 μM 

Nifedipine 100% 

Ethanol/DMSO 

Freezer -20ºC, 

dark 

0.5 - 4 μM 

CORM-3 Distilled water Freezer -20ºC 1 -  60 μM 

iCORM-3 Distilled water Freezer -20ºC 1 -  60 μM 

Table 2.17 Drugs used in experiments 

 

2.15 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 6. Data are presented as 

mean ± standard error of the mean (s.e.m.). With regards to proliferation assay data, in 

some cases there was large variation in Day 0 counts, which impacted on the Day 3 or 

Day 4 comparisons. A higher Day 0 count inevitably resulted in a much higher end of 

assay count due to the exponential growth of the cells. In order to compare equivalent 

proliferative responses, the cell counts were normalised to Day 0 counts. This data was 

then transformed using the Y=log(Y) function, and the statistical analysis performed on 

this transformed data. Statistical significance is displayed on graphs showing the 

original, untransformed data. Ratio repeated measures one-way ANOVA was 

performed on concentration response curve data, with Dunnett’s or Bonferroni’s 

multiple comparison test as appropriate. With regards to time-course proliferation data, 

each proliferation curve was normalised, transformed, and then analysed by a two-way 

repeated measures ANOVA, with sample matching by time point. This was followed by 

Sidak’s multiple comparison test between control and treated groups for each time 

point. 

Samples from individual western blotting experiments were processed on the same gel, 

and run on duplicate gels within the same electrophoresis tank. The amount of protein 

loaded was maximised in every instance, but varied between experiments. The time 
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spent developing the films was also another source of variation, as this was dependent 

on how fresh the developer was, and also how much protein was loaded. Therefore, 

the use of repeated measures ANOVA is not appropriate for this data. HO-1 and β-

actin levels of each gel lane were expressed as percentage area of the total blot, then 

HO-1 normalised to the corresponding β-actin. Densitometry data from western blots 

was analysed via one-way ANOVA, with Dunnett’s or Bonferroni’s multiple comparison 

test as appropriate. 

All microfluorimetry data was analysed by two-tailed, paired t-test, excluding data in 

Figures 4.15, 4.16, 4.17, 5.2, 5.7, and 5.11, which was analysed via one-way ANOVA 

followed by Tukey’s multiple comparison test. The 200s integrals from 80mM K+ 

experiments on A7r5 cells were analysed by one-way ANOVA with Bonferroni’s 

multiple comparison test. The corresponding sections of the bar graph were then 

shown in separate figures, as the data are presented systematically based on the drug 

used. RT-PCR data was analysed by one-way ANOVA, or two-way ANOVA, as 

appropriate, with Bonferroni’s multiple comparison test. 
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CHAPTER 3 

The role of T-type Ca2+ channels in cell proliferation and the inhibitory 

effects of CO and HO-1  

 

3.1 Introduction 

HO-1 is an inducible, stress-response protein that has cytoprotective effects within the 

vasculature, as discussed in detail in Chapter 1. HO-1 induction has been linked with 

many favourable effects on cardiovascular pathology; it is anti-oxidative, anti-apoptotic, 

anti-inflammatory, anti-proliferative, and it promotes vasodilation (Kim et al., 2011b). 

Each of the by-products of HO-1 induction have positive attributes, yet CO is able to 

mediate the vast majority of these protective effects (Wu & Wang, 2005). Heme 

proteins are cellular targets of CO, one of which is sGC. Activation of sGC by CO is 

one pathway through which CO mediates its cytoprotective effects, another is via 

p38/MAPK activation (Kim et al., 2006). The emerging topic of gasotransmitter 

regulation of ion channels links CO to alternative cellular targets. CO has been shown 

to be a modulator of numerous ion channels producing variable physiological effects 

(Peers, 2011;Wilkinson & Kemp, 2011;Peers & Steele, 2012). Our research group has 

made a novel discovery, that of Cav3.2 T-type Ca2+ current inhibition by CORM-2, and 

these currently unpublished findings led to this PhD project. The experimental use of 

CORMs has further validated our understanding that CO is a cytoprotective molecule at 

low doses (Motterlini et al., 2003). T-type Ca2+ channels have proven to be central to 

cell proliferation in cancer (Taylor et al., 2008), to be involved in de-differentiation of 

mouse embryonic stem cells (Rodriguez-Gomez et al., 2012), and in disorders 

involving VSMCs (Rodman et al., 2005;Cribbs, 2006;Pluteanu & Cribbs, 2011). 

 

HEK293 cells have been used as a model system to over-express T-type Ca2+ channel 

subtypes. This cell line offers a simple system in which to investigate the physiological 

effects of T-type Ca2+ channel expression and their modulation. HEK293 cells 

engineered to over-express the Cav3.2 T-type Ca2+ channel (HEK293/Cav3.2 cells) 

were used in this project, as the Cav3.2  channel sub-type has been described as the 

most prominent cardiovascular sub-type (Cribbs, 2006). HEK293/Cav3.2 cells are an 

ideal cell line in which to explore the role of the Cav3.2 T-type Ca2+ channel in 

proliferation as the WT HEK293 cells act as an adequate control cell line. Experiments 
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were carried out on HEK293/Cav3.2 and WT HEK293 cells to examine the effects of T-

type Ca2+ channel inhibition, CO availability, and HO-1 induction on cell proliferation 

and [Ca2+]i. Three compounds were used to inhibit T-type Ca2+ channels. Mibefradil, 

first described as Ro 40-5967, is a T-type Ca2+ channel antagonist, and was found to 

inhibit T-type Ca2+ currents after dihyropyridine abolition of L-type Ca2+ currents in rat 

smooth muscle cells (Mishra & Hermsmeyer, 1994). The structure of mibefradil has 

been modified to produce a compound named NNC55-0396, which has higher 

selectivity for T-type Ca2+ channels over L-Type Ca2+ channels, given that no 

detectable inhibition of L-type Ca2+ currents was detected using 100µM NNC55-0396 

(Huang et al., 2004). NNC55-0396 has also been employed here, in addition to Ni2+. 

Ni2+ has been demonstrated as a selective T-type Ca2+ channel inhibitor, with varying 

affinities for the different channel subtypes, and the Cav3.2 subtype exhibiting the 

highest sensitivity (Lee et al., 1999). The effect of CO was examined using CORM-3. 

CORMs are transition metal carbonyls that release CO by various mechanisms; 

CORM-3 releases CO by ligand substitution (Foresti et al., 2008). CORM-3 has a 

biological ligand incorporated into the molecular structure, resulting in a less toxic 

compound that is water soluble, and therefore more compatible with experiments 

involving live cells, (Motterlini et al., 2003), which is the reason for using CORM-3 in 

these experiments. The metalloporphyrin cobalt protoporphyrin IX (CoPPIX) was used 

to induce HO-1 as it does not act as a substrate for the enzyme, unlike hemin (Shan et 

al., 2000). 

 

It is evident that HO-1 is important in cardiovascular health, the product CO can exert 

anti-proliferative effects, and also appears to be capable of modulating T-type Ca2+ 

channel function. T-type Ca2+ channels themselves have a role in the maintenance of 

[Ca2+]i and cell proliferation (Gray et al., 2004). Therefore, in disorders of the 

vasculature, where excess VSMC proliferation is a shaping feature of vessel integrity, 

could T-type Ca2+ channels be a target of stress-induced HO-1? 

 

3.2 Results 

3.2.1 Characterisation of HEK293/Cav3.2 cells 

Immunocytochemistry was performed on the two cell lines to provide evidence of the 

difference in expression of Cav3.2 T-type Ca2+ channels. Figure 3.1 demonstrates the   
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A   B  

C   D  

E   F  

Figure 3.1 Identification of the Cav3.2 T-type Ca2+ channel in HEK293 cells 

Immunocytochemistry of HEK293/Cav3.2 cells (P7) and WT HEK293 cells (P2) labelled 

with anti-Cav3.2 (green) from Alomone (panels A and D respecitvely), with anti-Cav3.2 

from Santa Cruz (panels B and E respectively), and control without primary antibody 

(panels C and F respectively). Cell nuclei were stained blue with DAPI. Panels (A-C) 

are representative images of 6 fields of view from n=3 experimental repeats. Panels 

(D-F) are representative images of 4 fields of view from n=2 experimental repeats. 
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presence of Cav3.2 channels in HEK293/Cav3.2 cells and WT HEK293 cells using two 

different antibodies. Applying the Cav3.2 antibody from Alomone, the image in panel (A) 

shows the Cav3.2 T-type Ca2+ channel to be located throughout the cell, with nuclear 

puncta also visible. Using the Cav3.2 antibody from Santa Cruz, the image in panel (B) 

shows the Cav3.2 T-type Ca2+ channel to be denser at the cell membrane, with graded 

expression through the cytoplasm towards the nuclei. Images of WT HEK293 cells are 

shown in Figure 3.1, panels (D-F). Some isolated nuclear staining can be seen in panel 

(D) which exhibits the Cav3.2 antibody from Alomone. However, no staining is visible in 

panel (E) showing the Cav3.2 antibody from Santa Cruz. 

 

Basal levels of [Ca2+]i in the two cell lines were assessed by microfluorimetry. Figure 

3.2 shows the changes in [Ca2+]i levels in response to normal (Ca2+-containing) or Ca2+-

free buffer. The representative trace of HEK293/Cav3.2 cells in panel (A), shows a 

significant change in [Ca2+]i when the cells were subjected to Ca2+-free buffer. In 

contrast, there were minimal changes in [Ca2+]i in WT HEK293, shown in panel (B). 

The mean data in the bar graph in panel (C) demonstrate that HEK293/Cav3.2 cells 

(grey bars) have a significantly higher basal level of [Ca2+]i than WT HEK293 cells 

(white bars) when subjected to normal buffer. The HEK293/Cav3.2 cells also 

demonstrated a larger response to Ca2+-free buffer compared to WT HEK293 cells; 

[Ca2+]i was reduced by 12% and 4% respectively. 

 

Proliferation assays were performed to assess the growth characteristics of both 

HEK293/Cav3.2 and WT HEK293 cells, to determine whether over-expression of the 

Cav3.2 channel could influence cell proliferation. Figure 3.3 shows the differences in 

the growth characteristics of the two cell lines. The HEK293/Cav3.2 cells (grey bars) 

proliferated at a significantly faster rate over the three day assay than the WT HEK293 

cells (white bars). Indeed, the over-expression of the Cav3.2 T-type Ca2+ channel 

augments proliferation, in addition to providing a route for an enhanced level of [Ca2+]i. 

 

3.2.2 The effect of T-type Ca2+ channel inhibition on [Ca2+]i and proliferation 

To examine the effects of T-type Ca2+ channel inhibition on basal [Ca2+]i, 3µM 

mibefradil was assessed by microfluorimetry. The representative trace shown in Figure 

3.4 (A) demonstrates the significant decrease in [Ca2+]i caused by 3µM mibefradil in 
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Figure 3.2 HEK293/Cav3.2 cells have elevated basal [Ca2+]i levels 

Representative traces of HEK293/Cav3.2 and WT HEK293 cells (A and B respectively) 

illustrate the disparate basal [Ca2+]i levels in these two cell lines, and the different 

magnitude of the decrease in [Ca2+]i in response to Ca2+-free buffer. The bar graph (C) 

shows the mean (± s.e.m.) basal [Ca2+]i levels in response to normal and Ca2+-free 

buffers. Data were analysed by one-way ANOVA with Bonferroni’s multiple comparison 

test; * p<0.05, *** p<0.001 as indicated above. n=108, r.u.=ratio units, s=seconds. 
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Figure 3.3 Augmented proliferation of HEK293/Cav3.2 cells 

Bar graph showing the higher fold increase in cell number of HEK293/Cav3.2 cells 

compared to WT HEK293 cells, over a 3-day proliferation assay. Data are represented 

as fold increase (± s.e.m.), and were analysed by a two-tailed paired t-test, * p<0.05, 

n=7. 
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Figure 3.4 Treatment with 3µM mibefradil reduces [Ca2+]i in HEK293/Cav3.2 cells 

Representative traces showing the effect of 3µM mibefradil on basal [Ca2+]i levels in 

HEK293/Cav3.2 (A) and WT HEK293 cells (B). Bar graphs showing the mean (± s.e.m.) 

decrease in Fura 2 ratio in HEK293/Cav3.2 cells (C) and WT HEK293 cells (D) when 

3µM mibefradil was added to the normal buffer. Data were analysed by a two-tailed 

paired t-test, *** p<0.001, n=6. 
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HEK293/Cav3.2 cells. In contrast, Figure 3.4 (B) shows there is no effect of 3µM 

mibefradil on [Ca2+]i in WT HEK293 cells. The slight and insignificant increase in Fura 2 

ratio in WT HEK293 cells over time can be attributed to the natural behaviour of the 

cells during the experimental conditions, as it was noted that the Fura 2 ratio had a 

tendency to drift when the cells were constantly exposed to normal buffer. The bar 

graphs in Figure 3.4 (C) and (D) demonstrate the mean changes in [Ca2+]i in response 

to mibefradil. [Ca2+]i was reduced by 12% in HEK293/Cav3.2 cells, with no significant 

reduction in WT HEK293 cells. Proliferation assays were performed with the addition of 

3µM mibefradil to determine whether inhibition of the Cav3.2 T-type Ca2+ channel would 

subsequently inhibit cell proliferation. The IC50 of Cav3.2 current inhibition in 

HEK293/Cav3.2 cells by mibefradil has been quoted to range between 1.1µM and 

1.4µM (Cribbs et al., 1998;Martin et al., 2000). Although, the optimal concentration of 

mibefradil required to significantly inhibit proliferation, as determined from previous 

concentration response curves performed within our research group, was 3µM. Figure 

3.5 shows the inhibition of HEK293/Cav3.2 proliferation by mibefradil on day 3 of the 

assay. 3µM mibefradil inhibited HEK293/Cav3.2 cell proliferation by 26% over the 3 day 

period. There was no significant difference in the proliferation of WT HEK293 cells. 

 

The effect of NNC55-0396, a more selective T-type Ca2+ channel blocker, on [Ca2+]i 

was also investigated. The IC50 of NNC55-0396 for HEK293/Cav3.2 cells is stated to be 

7µM (Huang et al., 2004). However, a preliminary proliferation assay involving 

HEK293/Cav3.2 and WT HEK293 cells revealed NNC55-0396 was more potent than 

mibefradil; and the drug was cytotoxic at concentrations above 5µM. Therefore, 

concentrations ranging from 1-3µM were tested using microfluorimetry, and 3µM was 

selective for HEK293/Cav3.2 cells. Figure 3.6 (A) demonstrates there was a significant 

decrease in [Ca2+]i in HEK293/Cav3.2 cells in response to 3µM NNC55-0396, with no 

effect in WT HEK293 cells as shown in 3.6 (B). The bar graph in Figure 3.6 (C) shows 

a 12% decrease in [Ca2+]i caused by 3µM NNC55-0396 in HEK293/Cav3.2 cells. 

Regarding WT HEK293 cells, Figure 3.6 (D) shows there is no significant reduction in 

the mean Fura 2 ratio with the addition of NNC55-0396. 

 

The effect of Ni2+, a differentially selective T-type Ca2+ channel blocker, was also 

investigated. The IC50 for Ni2+ in HEK293/Cav3.2 cells has been quoted to be 13µM   
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Figure 3.5 Mibefradil inhibits proliferation of HEK293/Cav3.2  cells 

Bar graphs showing the mean (± s.e.m.) cell number of HEK293/Cav3.2 cells (A) and 

WT HEK293 cells (B). 3µM mibefradil inhibited HEK293/Cav3.2 cell proliferation on day 

3 with no effect on WT HEK293 cells. Data were analysed by a two-tailed paired t-test * 

p<0.05, n=3.  
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Figure 3.6 Treatment with 3µM NNC55-0396 reduces [Ca2+]i in HEK293/Cav3.2 

cells 

Representative traces showing the effect of 3µM NNC55-0396 on [Ca2+]i levels in 

HEK293/Cav3.2 (A) and WT HEK293 cells (B). Bar graphs showing the mean (± s.e.m.) 

decrease in Fura 2 ratio in HEK293/Cav3.2 cells (C) and WT HEK293 cells (D) when 

3µM NNC55-0396 is added to the normal buffer. Data were analysed by a two-tailed 

paired t-test ** p<0.001, n=8. 
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(Lee et al., 1999). In these experiments 30µM Ni2+ was utilised to ensure Cav3.2 

channel block. Figure 3.7 (A) demonstrates that 30µM Ni2+ significantly decreases 

[Ca2+]i in HEK293/Cav3.2 cells, in contrast to the lack of effect in WT HEK293 cells (B). 

The mean data shown in the bar graph in Figure 3.7 (C) illustrate that 30µM Ni2+ 

reduced [Ca2+]i by 11%. Figure 3.7 (D) shows mean [Ca2+]i was unchanged in the 

presence of 30µM Ni2+ in WT HEK293 cells. 

 

In summary, inhibition of the Cav3.2 Ca2+ channel by Ni2+ NNC55-0396, and mibefradil 

decreases [Ca2+]i, and the latter also significantly inhibits augmented proliferation of 

HEK293/Cav3.2 cells, with no effect on WT HEK293 cells. 

 

3.2.3 The effect of CO on [Ca2+]i and proliferation 

It has been previously demonstrated by our research group, using the patch-clamp 

technique, that CORM-2 can inhibit the Cav3.2 T-type Ca2+ current. The effect of 

CORM-3 on basal [Ca2+]i in HEK293/Cav3.2 cells was assessed in this project by 

microfluorimetry, in order to validate such a novel finding using an alternative 

technique. A concentration of 3µM CORM-3 was employed in microfluorimetry 

experiments as this was the lowest concentration that was able to selectively reduce 

[Ca2+]i in HEK293/Cav3.2 cells over WT HEK293 cells, after testing the effects of 1, 3, 

10 and 30µM CORM-3. Figure 3.8 (A) shows a representative trace of the 

HEK293/Cav3.2 cells in response to 3µM CORM-3; [Ca2+]i was significantly reduced by 

CO, in contrast to the lack of effect seen in WT HEK293 cells in panel (B). The bar 

graphs in panels (C) and (D) show the mean data; the presence of 3µM CORM-3 

reduced [Ca2+]i in HEK293/Cav3.2 cells by 11%. There was minimal change in Fura 2 

ratio in WT HEK293 cells in response to CORM-3. The proliferation assays in panels 

(E) and (F) were produced by Dr Hannah E. Boycott previous to this PhD project. Panel 

(E) shows the proliferative response of HEK293/Cav3.2 cells to CORM-3 and iCORM-3, 

inactivated CORM-3, over a 3 day proliferation assay. There was a significant inhibition 

of HEK293/Cav3.2 cell proliferation by 3µM CORM-3, but not iCORM-3, demonstrating 

that CO has anti-proliferative effects in this cell line. Panel (F) shows the proliferative 

response of WT HEK293 cells to CORM-3 and iCORM-3 over a 3 day proliferation 

assay. The proliferation of WT HEK293 cells was not affected by CO, implying that CO 

is able to modulate the Cav3.2 T-type Ca2+ channel, which subsequently inhibits cell 

proliferation. Figure 3.9 shows the effect of 3µM iCORM-3 on [Ca2+]i. The 

representative trace of HEK293/Cav3.2 cells in panel (A) shows an unexpected,   
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Figure 3.7 Treatment with 30µM Ni2+ reduces [Ca2+]i in HEK293/Cav3.2 cells 

Representative traces showing the effect of 30µM Ni2+ on [Ca2+]i levels in 

HEK293/Cav3.2 (A) and WT HEK293 cells (B). Bar graphs showing the mean (± s.e.m.) 

decrease in Fura 2 ratio in HEK293/Cav3.2 cells (C) and WT HEK293 cells (D) when 

30µM Ni2+ is added to the normal buffer. Data were analysed by a two-tailed paired t-

test ** p<0.001, n=6. 
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Figure 3.8 The effect of CORM-3 on [Ca2+]i and proliferation 

Representative traces showing the effect of 3µM CORM-3 on [Ca2+]i levels in 

HEK293/Cav3.2 (A) and WT HEK293 cells (B). Bar graphs showing the mean (± s.e.m.) 

decrease in Fura 2 ratio in HEK293/Cav3.2 cells (C) and WT HEK293 cells (D) when 

3µM CORM-3 is added to the normal buffer. Data were analysed by a two-tailed paired 

t-test, *** p<0.001, n=6. Line graphs showing mean (± s.e.m.) cell number monitored in 

HEK293/Cav3.2 (E) and WT HEK293 (F) cells. Cells were cultured in the absence of 

drugs (solid circles), or in the presence of either CORM-3 (30M; open circles) or 

iCORM (30M solid triangles), ** p<0.01, n=3. The data in panels (E) and (F) was 

generated by Dr Hannah E. Boycott. 
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Figure 3.9 The effect of 3µM iCORM-3 on [Ca2+]i 

Representative traces showing the effect of 3µM iCORM-3 on [Ca2+]i levels in 

HEK293/Cav3.2 (A) and WT HEK293 cells (B). Bar graphs showing the mean (± s.e.m.) 

Fura 2 ratio in HEK293/Cav3.2 cells (C) and WT HEK293 cells (D) when 3µM iCORM-3 

is added to the normal buffer. Data were analysed by a two-tailed paired t-test, * 

p<0.05, n=6. 

  



83 
 

 

significant decrease in [Ca2+]i, with a 7% reduction of mean Fura 2 ratio in the presence 

of iCORM-3. This is shown in panel (C). [Ca2+]i was unchanged by iCORM-3 in WT 

HEK293 cells, which is demonstrated by the representative trace in panel (B), and the 

mean data in panel (D). In summary, CO is able to inhibit the Cav3.2 T-type Ca2+ 

channel, with a subsequent reduction in [Ca2+]i and inhibition of proliferation. 

 

3.2.4 The effect of HO-1 induction on [Ca2+]i and proliferation 

Immunocytochemistry was performed to demonstrate the induction of HO-1 by 

CoPPIX. Figure 3.10 (A) illustrates how HO-1 is induced by 10µM CoPPIX, and panel 

(B) illustrates HO-1 induction by 10µM hemin in HEK293/Cav3.2 cells. Panel (D) shows 

that HO-1 is induced by 3µM CoPPIX, and panel (E) illustrates HO-1 induction by 3µM 

hemin in WT HEK293 cells. There is minimal staining in panel (F), which shows the 

control image without induction. As the DAPI could not be visualised at this time, it is 

unclear as to where the cells are localised in Figure 3.10 (F). 

 

A range of CoPPIX concentrations were applied to the cells for a 48h period to assess 

the corresponding level of HO-1 induction via western blotting, and subsequently 

decide on an adequate concentration to use in microfluorimetry experiments. Figure 

3.11 (A) demonstrates that HO-1 was induced in HEK293/Cav3.2 cells to a level of 55 ± 

11.50% of β-actin using 10µM CoPPIX, compared to 1.2 ± 0.14% the control group. 

Panel (B) shows a representative western blot of HO-1 protein with the corresponding 

β-actin loading control underneath. Figure 3.12 (A) demonstrates that HO-1 was 

induced in WT HEK293 cells to a level of 49.06 ± 12.90% of β-actin by 7µM, and 40.07 

± 20.16% by 10µM CoPPIX, vs 2.42 ± 2.30% for the control group. However, analysis 

via one-way ANOVA demonstrated a P value of 0.0647. Panel (B) shows a 

representative western blot of HO-1 protein with the corresponding β-actin loading 

control underneath. 

 

To investigate whether the CO produced as a result of HO-1 induction could affect 

[Ca2+]i levels, the cells were subjected to normal and Ca2+-free buffers after a 48h 

incubation with CoPPIX. Disparate concentrations of 10µM and 3µM CoPPIX were 

applied to HEK293/Cav3.2 cells and WT HEK293 cells respectively. These  
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A   B  

C   D  

E   F  

Figure 3.10 Identification of HO-1 induction in HEK293 cells 

Immunocytochemistry of HEK293/Cav3.2 cells (P7) labelled with anti-HO-1 (green) 

after a 48h incubation with 10µM CoPPIX (panel A), with 10µM Hemin (panel B), and 

control without induction (panel C). Cell nuclei were stained blue with DAPI. 

Immunocytochemistry of WT HEK293 cells (P4) labelled with anti-HO-1 after a 24h 

incubation with 3µM CoPPIX (panel D), with 3µM Hemin (panel E), and control without 

induction (panel F). At the time of images D-F being taken, visualisation of DAPI was 

unavailable. Panels (A-C) are representative images of 10 fields of view from n=5. 

Panels (D-F) are representative images of 6 fields of view from n=3 experimental 

repeats.  
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Figure 3.11 CoPPIX induces HO-1 protein expression in HEK293/Cav3.2 cells 

Bar graph showing the mean (± s.e.m.) relative HO-1 protein expression in 

HEK293/Cav3.2 cells after normalisation of densitometric analyses relative to β-actin. 

(A). Data were analysed by one-way ANOVA with Dunnett’s multiple comparison test, * 

p<0.05 vs control levels n=3. Representative Western Blot of HO-1 and the 

corresponding β-actin loading control (B). The arrows represent the position of the 

molecular weight markers (top, 37KDa; bottom, 25kDa).  

Control          1µM      3µM          7µM      10µM 
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Figure 3.12 CoPPIX induces HO-1 protein expression in WT HEK293 cells 

Bar graph showing the mean (± s.e.m.) relative HO-1 protein expression in WT 

HEK293 cells after normalisation of densitometric analyses relative to β-actin (A), n=3. 

Representative Western Blot of HO-1 and the corresponding β-actin loading control 

(B). The arrows represent the position of the molecular weight markers (top, 37KDa; 

bottom, 25kDa).  

Control          1µM       3µM           7µM      10µM 

 

β-actin 
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concentrations produced optimal HO-1 induction in the corresponding cell types, as 

determined from the data in Figures 3.11 and 3.12. Figure 3.13 (A) shows 

representative traces of experimental repeats. HEK293/Cav3.2 cells from both the 

control group and the CoPPIX treated group (black and blue traces respectively), 

aligned side by side on the same axis. Panel (B) shows the corresponding traces from 

WT HEK293 cells. Panels (C) and (D) show the mean data of control and CoPPIX 

treated groups for HEK293/Cav3.2 and WT HEK293 cells respectively. Concerning 

HEK293/Cav3.2 cells, it is demonstrated in both panels (A) and (C) that basal [Ca2+]i 

was significantly lower in cells following HO-1 induction when compared to the control 

group. The mean Fura 2 ratio was 12% less in CoPPIX treated HEK293/Cav3.2 cells. 

The response of the control group to Ca2+-free buffer showed a significant reduction in 

[Ca2+]i, in contrast the HO-1 group did not respond significantly; there was a 10% 

reduction compared to a 7% reduction in [Ca2+]i respectively. Panels (B) and (D) in 

Figure 3.13 show minimal changes in [Ca2+]i in WT HEK293 cells in response to HO-1 

induction using 3µM CoPPIX. 

 

To investigate the effect of HO-1 induction, and therefore subsequent CO production, 

on cellular proliferation, a concentration-response curve to the HO-1 inducer, CoPPIX, 

was performed. Figure 3.14 (A) shows the effect of CoPPIX on HEK293/Cav3.2 cell 

proliferation. 10µM CoPPIX significantly inhibited cell proliferation, demonstrating a 

27% decrease in cell number. Panel (B) shows the effect of CoPPIX on WT HEK293 

cell proliferation. 10µM CoPPIX surprisingly also inhibited the proliferation of WT cells, 

demonstrating a 79% reduction in cell number. However, it was observed that WT 

HEK293 cells became less viable when subjected to 10µM CoPPIX, which undoubtedly 

contributed to the lower cell counts. From this point in the experiments it was decided 

that corresponding cell media would also be processed alongside trypsinised cells, and 

any cells present counted and documented as floating, non-viable cells. Graphs 

containing this data are shown from Chapter 4 onwards. 

 

In summary, HO-1 induction requires a higher concentration of CoPPIX in 

HEK293/Cav3.2 cells than WT HEK293 cells, which is reflected by western blots and 

proliferation assays. HO-1 induction significantly decreased [Ca2+]i in HEK293/Cav3.2 

cells, implying HO-1-derived CO is also able to inhibit the Cav3.2 T-type Ca2+ channel. 
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Figure 3.13 Treatment with CoPPIX reduces [Ca2+]i in HEK293/Cav3.2 cells 

Data showing the effects of a 48h pre-treatment with CoPPIX (blue traces and bars), in 

comparison to control cells without HO-1 induction (black traces and bars). 

Representative traces of HEK293/Cav3.2 cells (A) plus or minus incubation with 10µM 

CoPPIX. Representative traces of WT HEK293 cells (B) plus or minus incubation with 

3µM CoPPIX. Bar graphs showing the mean (± s.e.m.) Fura 2 ratio in HEK293/Cav3.2 

(C) n=16, and WT HEK293 cells (D) n=12, in response to Ca2+-containing buffer and 

Ca2+-free buffer. Data were analysed by one-way ANOVA with Bonferroni’s multiple 

comparison test, *** p<0.001, ** p<0.01. 

  



89 
 

 

A 

D a y  0 C o n tr o l 1 3 7 1 0

0

1 0 0

2 0 0

3 0 0

***

D a y  3

[C o P P IX ]  M

C
e

ll
 N

u
m

b
e

r
 x

1
0

3
/m

l

 

B 

D a y  0 C o n tr o l 1 3 7 1 0

0

1 0 0

2 0 0

3 0 0

**
**

[C o P P IX ]  M

C
e

ll
 N

u
m

b
e

r
 x

1
0

3
/m

l

D a y  3

 

Figure 3.14 HO-1 induction by CoPPIX inhibits cell proliferation 

Bar graphs showing the mean (± s.e.m.) day 3 cell number of HEK293/Cav3.2 cells (A) 

and WT HEK293 cells (B) in response to increasing concentrations of CoPPIX. Data 

were analysed by ratio repeated measures one-way ANOVA with Dunnett’s multiple 

comparison test, *** p<0.001, ** p<0.01 vs day 3 control, n=3.  
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3.3 Discussion 

 

The images in Figure 3.1 illustrate the differing T-type Ca2+ channel expression levels 

between the two cell lines. The Cav3.2 antibody from Alomone appears less specific as 

the image in panel (A) of both figures display varying degrees of punctate nuclear 

staining. The use of focus imaging, or Z-stack imaging, would be useful to allow greater 

depth of field and more specific localisation of the Cav3.2 T-type Ca2+ channels in 

question. The use of HEK293/Cav3.2 cells at P7 in this figure demonstrates that 

expression of the Cav3.2 T-type Ca2+ channel is maintained at the older passages 

employed in the experiments shown in this chapter. 

 

An important property of the Cav3.2 T-type Ca2+ channel noted from these experiments 

is the influence this channel has on cell proliferation, as illustrated in Figure 3.3. The 

HEK293/Cav3.2 cells proliferated at a faster rate than the WT HEK293 cells over the 

course of the assay. This enhanced proliferation by the HEK293/Cav3.2 cells can be 

significantly inhibited by mibefradil, giving further integrity to the idea that T-type Ca2+ 

channels play a significant role in proliferation. A previous study, (Chemin et al., 2000), 

reported no proliferative advantage of the Cav3.2 T-type Ca2+ channel using the same 

HEK293/Cav3.2 cells as detailed in this project. This study by Chemin et al. assessed 

proliferation via bromodeoxyuridine (BrdU) labelling. While this is an established assay 

for detecting BrdU incorporation into DNA, it is an indirect assessment of proliferation 

(Taupin, 2007). The method of cell counting employed in this PhD project is a direct 

measure of proliferation. However, these negative findings were contradicted by a later 

study from the same group, in which they describe a direct, non-linear relationship 

between Ca2+ entry by the Cav3.2 T-type Ca2+ channel, and proliferation of 

HEK293/Cav3.2 cells (Gray et al., 2004). Together with another study, they link the 

augmented proliferation of HEK293/Cav3.2 cells to a cell cycle control mechanism 

(Wang et al., 2002b). They describe a Ca2+ threshold that must be achieved in order to 

trigger an all or nothing proliferative response through the G1/S cell cycle boundary. T-

type Ca2+ currents have been strongly linked to specific cell cycle phases, with 

proliferating cells evidenced as having a higher level of expression of T-type Ca2+ 

channels, and a larger proportion of T-type Ca2+ currents in the G1 and S phases of the 

cell cycle (Kuga et al., 1996). As the cell cycle requires Ca2+
 signalling to progress 

(Ciapa et al., 1994), the T-type Ca2+ channel could provide the route through which 

proliferating cells maintain adequate [Ca2+]i levels. The window current associated with 
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T-type Ca2+ channels is due to a proportion of these channels remaining open during 

the resting membrane potential of the cell, allowing Ca2+ to move in (Crunelli et al., 

2005). The disparate expression levels of the Cav3.2 T-type Ca2+ channel between 

HEK293/Cav3.2 and WT HEK293 cells, as shown in Figure 3.1, is consistent with the 

differing steady state levels of [Ca2+]i as shown in Figure 3.2, which can be attributed to 

the window current available in HEK293/Cav3.2 cells. HEK293/Cav3.2 cells displayed a 

higher level of basal [Ca2+]i, together with a more pronounced response to Ca2+-free 

buffer compared to WT HEK293 cells. The reduction of [Ca2+]i by various T-type Ca2+ 

channel blockers; mibefradil, NNC55-0396, and Ni2+, in HEK293/Cav3.2 cells but not in 

WT HEK293 cells, demonstrates that WT HEK cells express low levels of T-type Ca2+ 

channels, if any at all, and implicates the Cav3.2 T-type Ca2+ channel as being 

responsible for the higher basal [Ca2+]i levels. In keeping with this idea, the effect of 

mibefradil on the proliferation of HEK293/Cav3.2 cells, but not WT HEK293 cells, 

implicates the Cav3.2 T-type Ca2+ channel as a determining factor of proliferation. The 

effects of mibefradil on T-type Ca2+ current inhibition in HEK293/Cav3.2 cells have been 

previously studied, with IC50 values quoted at 1.4µM (Cribbs et al., 1998), and 1.1µM 

(Martin et al., 2000). Although the extent of Cav3.2 current inhibition appears to depend 

upon the charge carrier, Ca2+ or Ba2+, and also on temperature; the IC50 values 

increased with a shift from room temperature to physiological temperature (Martin et 

al., 2000). As stated previously, mibefradil also inhibits L-type Ca2+ channels (Eller et 

al., 2000). However, the concentration required to inhibit L-Type Ca2+ channels has 

been reported to be at least 10-fold higher than that for T-type Ca2+ channels 

(Bezprozvanny & Tsien, 1995;Martin et al., 2000). Mibefradil has been shown to block 

L-type Ca2+ channels at higher concentrations; with an IC50 of 12.9µM in 

HEK293/Cav1.2 cells (Martin et al., 2000). Given the fact that this chapter is concerned 

with data from HEK293 cells over-expressing the Cav3.2 channel, any effects of 

mibefradil on L-Type Ca2+ channels are likely to be insignificant. Concerning the effects 

of Ni2+, the level of [Ca2+]i begins to recover as the buffer is changed back to normal 

buffer, as shown in Figure 3.7 (A). In contrast to NNC55-0396, inhibition by Ni2+ is 

reversible (Lee et al., 1999;Kang et al., 2006), and if a longer wash-out period, or if a 

lower [Ni2+] closer to the IC50 of 13µM had been employed in these experiments, the 

restoration in Cav3.2 T-type Ca2+ channel function may have been demonstrated. The 

possibility of reversible Cav3.2 T-type Ca2+ channel inhibition by mibefradil was not 

assessed in these experiments, yet this has been shown previously (Martin et al., 

2000). 
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Preliminary data gathered by Dr H. E. Boycott prior to this PhD project demonstrate 

that CO, delivered via CORM-3, is anti-proliferative. Figure 3.8, in concordance with 

Figure 3.3, show that the HEK293/Cav3.2 cells proliferated at a faster rate than WT 

HEK293 cells, and that CO is able to inhibit this proliferation. The molecular backbone 

of CORM-3 that remains post CO release, namely iCORM-3, was shown to have no 

effect on proliferation, which supports existing studies demonstrating that CO is anti-

proliferative in rat aortic VSMCs (Togane et al., 2000;Peyton et al., 2002;Peyton et al., 

2002), in human airway smooth muscle cells (Song et al., 2002), in HO-1 transduced 

primary rat VSMCs, and primary mouse HO-1-/- smooth muscle cells (Otterbein et al., 

2003b). CO also significantly reduced [Ca2+]i levels in HEK293/Cav3.2 cells, which 

validates the notion that CO acts by inhibiting the Cav3.2 T-type Ca2+ channel, as WT 

HEK293 cells were unaffected. However, iCORM-3 did also reduce [Ca2+]i levels in 

HEK293/Cav3.2 cells. This could be attributed to incomplete inactivation of CORM-3. 

To inactivate the CORM-3 solution, which was made up with distilled water, the 

solution was exposed to the atmosphere for 48h to allow CO to be released. An 

alternative method to ensure complete inactivation would be to dissolve solid CORM-3 

in Dulbecco’s PBS as opposed to water, and then leave exposed for 48h (Motterlini et 

al., 2003). However, the iCORM-3 employed by Dr H. E. Boycott in the proliferation 

assay was also made with distilled water. It is possible that any CO still available within 

the iCORM-3 solution was enough to produce a significant effect when applied acutely 

and monitored via Ca2+ microfluorimetry, which is essentially a snapshot of a short 

window of activity. iCORM-3 applied chronically over a proliferation assay did not 

produce any significant effects therefore, implying that any residual CO cannot prevent 

the level of [Ca2+]i from falling below the required threshold to trigger cell cycle 

progression and proliferation, as discussed previously (Wang et al., 2002b;Gray et al., 

2004). Together with the preliminary proliferation data produced by Dr H. E. Boycott, 

the effect of CORM-3 on [Ca2+]i levels in HEK293/Cav3.2 cells demonstrates a novel 

finding that CO appears to inhibit the Cav3.2 T-type Ca2+ channel. This was 

investigated further by utilising the HEK293 HO-1 system to assess the effects of 

endogenous CO production. 

 

CoPPIX successfully induced HO-1 in both HEK293/Cav3.2 and WT HEK293 cells, as 

illustrated by immunocytochemistry in Figure 3.10. The cellular location of HO-1 in 

these images appears to be generally cytoplasmic, with no clear organelle locale. In 

HEK293 cells, HO-1 has been localised to the nucleus (Lin et al., 2007), whereas in 

other cell types, HO-1 has been localised to caveolae (Kim et al., 2004), mitochondria 
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(Converso et al., 2006), and the endoplasmic reticulum where it is synthesised 

(Shibahara et al., 1980). Figure 3.13 shows that HO-1 induction by 10µM CoPPIX 

significantly reduced basal [Ca2+]i in HEK293/Cav3.2 cells. Additionally, the response of 

the HO-1 group to Ca2+-free buffer was lower than that of the control group. These data 

imply the window current was smaller as a result of HO-1 induction, which could be 

attributed to CO-mediated inhibition of the Cav3.2 T-type Ca2+ channels. The disparate 

concentrations of CoPPIX used to induce optimally, HO-1 in HEK293/Cav3.2 and WT 

HEK293 cells, is a limitation of the experiment. However, these concentrations were 

selected based on western blotting data in Figures 3.11 and 3.12, to ensure HO-1 was 

induced without cytotoxicity as a result of CoPPIX exposure. 

 

The proliferative profile in response to CoPPIX in HEK293/Cav3.2 cells inversely 

correlates to the profile of HO-1 induction by CoPPIX, as validated by the increased 

expression of the HO-1 protein, shown in Figures 3.14 (A) and 3.11 respectively. 

However, there was no clear concentration-response to CoPPIX in WT HEK293 cells, 

shown in Figure 3.12, and HO-1 was also induced to higher levels than in 

HEK293/Cav3.2 cells. The pattern of HO-1 induction, and the extent of the 

physiological effect, was visibly different between the two cell lines. The proliferation of 

HEK293/Cav3.2 cells was reduced by 27% with 10µM CoPPIX, compared to a 

reduction of 79% by 10µM CoPPIX in WT HEK293 cells. One possible explanation for 

the fact that WT HEK293 cells are more susceptible to the effects of HO-1 induction 

than HEK293/Cav3.2 cells could be that the level of CO produced by HO-1 induction 

may not be as effective at inhibiting the Cav3.2 T-type Ca2+ channel when it is vastly 

over-expressed. There could be a proportion of Cav3.2 T-type Ca2+ channels that are 

unaffected by the available CO, which would leave a proportion of Cav3.2 T-type Ca2+ 

channels free to function normally. The window current would be active at these 

channels, and therefore CO inhibition at other Cav3.2 T-type Ca2+ channels would be 

ineffective at reducing [Ca2+]i to a level that would fall short of the threshold trigger of 

the G1/S cell cycle boundary, in order to subsequently prevent proliferation, as 

discussed earlier (Wang et al., 2002b;Gray et al., 2004). 

 

An alternative explanation for the differing effects of CoPPIX could be that the WT 

HEK293 cells were simply more sensitive to this compound, and other effects were 

unsubstantiated. It is feasible that the HEK293/Cav3.2 cells are more robust due to 

their stable transfection. In WT HEK293 cells, there was a visible reduction in 
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proliferation by 3µM CoPPIX, albeit statistically non-significant. In contrast, HO-1 

induction by 3µM CoPPIX had no effect on [Ca2+]i in WT HEK293 cells. These data 

imply that HO-1 induction, and subsequent CO production, inhibit proliferation by an 

alternative mechanism to Cav3.2 T-type Ca2+ channel inhibition, as the 

immunocytochemistry in Figure 3.2 shows that there are no Cav3.2 T-type Ca2+ 

channels to inhibit. Although, the most plausible explanation is that CoPPIX is cytotoxic 

at concentrations higher than 3µM in WT HEK293 cells, and had any floating cells in 

the media been counted, this theory would have been corroborated. With regards to 

how CoPPIX induces HO-1, it appears that a region of DNA upstream of the murine 

HO-1 gene is the convergence point for the different signalling pathways from 

numerous HO-1 inducers, including hemin and CoPPIX (Alam et al., 1995). It has also 

been demonstrated in chick embryonic liver cells that the response element for HO-1 

induction by heme and CoPPIX differs from that of stress inducers such as heavy 

metals (Shan et al., 2000;Shan et al., 2002). The signalling pathway in human liver 

cells involves down-regulation of Bach1 and up-regulation of Nrf2 transcription factors 

(Shan et al., 2006). In summary, the induction pathways of HO-1 appear to be complex 

and specific to the type of inducer. 

 

It is unknown how the levels of CO produced via CoPPIX induction of HO-1 correlate to 

those produced by CORM-3 addition. Micromolar concentrations of CORM-3 are 

deemed to be comparable to endogenous CO (Foresti et al., 2004). Conversely, it has 

been suggested that the exposure to exogenous, gaseous, CO would provide higher 

levels of CO than would be available as a result of HO-1 induction (Foresti et al., 2008). 

The fact that proliferation was inhibited to a greater extent by CORM-3 than by HO-1 

induction in HEK293/Cav3.2 cells, suggests more CO was available following CORM-3 

exposure. It has also been suggested that a positive feedback loop exists within the 

HO-1/CO pathway, and that CO can directly induce the expression of HO-1 (Lee et al., 

2006;Kim et al., 2007). This could explain why the more pronounced effects on 

proliferation were seen with CORM-3 exposure. 

 

In conclusion, the data shown here demonstrate indirectly, that the Cav3.2 T-type Ca2+ 

channel can be inhibited by T-type Ca2+ channel antagonists, CO via CORM-3, and 

HO-1 induction. The effects of which manifest as inhibition of HEK293/Cav3.2 cell 

proliferation, and appear to be linked to the window current associated with T-type Ca2+ 

channels. The T-type Ca2+ channel window current is evidently the underlying 
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mechanism maintaining adequate [Ca2+]i levels for numerous physiological processes. 

These include signal amplification in thalamacortical neurons, (Williams et al., 1997), 

human myoblast fusion (Bijlenga et al., 2000), and neuroendocrine differentiation of 

human prostate cancer cells, (Mariot et al., 2002). There is also a wealth of data linking 

T-type Ca2+ channels currents to the pathological proliferation that underlies cancer 

development (Panner et al., 2005;Panner & Wurster, 2006;Zhang et al., 2012). In 

addition, the T-type Ca2+ current has been linked to the proliferation of primary aortic 

VSMCs; as the VSMCs become more confluent, the percentage of T-type Ca2+ current 

decreases, and the percentage of L-type current increases (Akaike et al., 1989). This 

led to investigations into a role for T-type Ca2+ channels in pathological proliferation of 

VSMCs, reviewed by Cribbs, (2006). Therefore, to explore the effect of CO on the T-

type Ca2+ channel in a more physiologically relevant model, a smooth muscle cell line 

was employed with the aim of assessing relevant findings in the context of data 

previously published on the anti-proliferative effects of CO in the vasculature (Morita et 

al., 1997;Togane et al., 2000;Song et al., 2002;Otterbein et al., 2003b;Raman et al., 

2006;Zuckerbraun et al., 2006;Ramlawi et al., 2007). This is examined in Chapter 4. 
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CHAPTER 4 

Characterisation of Ca2+ channels in A7r5 cells 

 

4.1 Introduction 

VSMCs undergo a phenotypic switch, from a contractile to a proliferative state, in 

response to vascular injury (House et al., 2008). This phenotypic switch is 

accompanied by an up-regulation of T-type Ca2+ channels, and a down-regulation of L-

type Ca2+ channels (Akaike et al., 1989;Richard et al., 1992;Kuga et al., 1996;Rodman 

et al., 2005;House et al., 2008). Pharmacological inhibition of T-type Ca2+ channels has 

been shown to inhibit cell proliferation in rat VSMCs (Schmitt et al., 1995), human lung 

adenocarcinoma cells (Heo et al., 2008), mouse glioblastoma cells (Keir et al., 2012), 

and human glioblastoma cells (Schmitt et al., 1995;Heo et al., 2008;Keir et al., 

2012;Zhang et al., 2012). Moreover, the maintenance of adequate [Ca2+]i levels is 

central to the progression of the cell cycle (Ciapa et al., 1994). The window current of 

T-type Ca2+ channels may be an important route through which [Ca2+]i is maintained in 

proliferating cells; in VSMCs the window current is active at resting the membrane 

potential (-40mV to -55mV), providing a continuously functioning route of Ca2+ entry 

into the de-differentiated cells (Richard & Nargeot, 1998). 

 

In order to study the effects of T-type Ca2+ channel modulation in the context of 

vascular biology, a VSMC line was employed. A7r5 cells are VSMCs that were 

originally isolated from embryonic rat aorta (Kimes & Brandt, 1976), and they have 

been shown to express both T- and L-type Ca2+ channels (Brueggemann et al., 2005). 

A7r5 cell depolarisation using the vasoconstrictor vasopressin has been utilised to 

demonstrate the occurrence of Ca2+ oscillations in these cells (Otun et al., 

1992;Brueggemann et al., 2005). Ca2+ oscillations within VSMCs promote a 

depolarising current that advances to neighbouring VSMCs via gap junctions, which 

synchronises a change in VSMC tone along the vessel (Peng et al., 2001). The A7r5 

cell line appears to be an ideal model in which to assess the contribution of T-type Ca2+ 

channels to changes of [Ca2+]i, in addition to the proliferative response. 
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4.2 Results 

4.2.1 Characterisation of A7r5 cells 

Immunocytochemistry was performed on A7r5 cells to confirm their smooth muscle cell 

properties. Figure 4.1 illustrates positive staining for smooth muscle α-actin (panel A), 

smooth muscle myosin heavy chain (panel B), and vimentin (panel C). In addition, co-

localisation of smooth muscle α-actin and myosin heavy chain can be seen in panel 

Figure 4.1 (F), as demonstrated by the orange staining across the cells. All images in 

Figure 4.1 were produced from cells at the same passage, and using the same 

microscopy settings. The images in Figure 4.1 panels (D-F) were modified to the same 

extent by reducing the contrast in order to effectively discern the positive staining when 

the images were printed onto paper. The presence of T-type Ca2+ channels was also 

demonstrated by immunocytochemistry. Figure 4.2 shows positive staining for Cav3.1 

and Cav3.2, with denser staining of Cav3.1 appearing in peri-nuclear regions. Anti- 

Cav3.1 and Cav3.2 antibodies sourced from Alomone were used to assess channel 

expression in A7r5 cells and human VSMC, as these antibodies produced consistent 

data upon experimental repeats. Demonstration of the presence of T-type Ca2+ 

channels by western blotting proved difficult; Figure 4.3 (A) shows the only successful 

identification of Cav3.1 from membrane enriched A7r5 samples, with HEK293/Cav3.1 

cells used as the positive control. Figure 4.3 (B) shows the wide variation in mRNA 

expression levels of Cav3.1 from eleven samples of A7r5 cells, from five passages 

ranging from P2 to P6, as determined by RT-PCR. There was no correlation between 

passage number and degree of channel expression. Figure 4.4 shows the mRNA 

expression levels of Cav3.2, which was expressed at lower levels than Cav3.1, and 

Cav3.2 was undetected in some samples. Figure 4.5 shows example responses of 

A7r5 cells to 20mM K+ buffer. This level of raised extracellular [K+] was employed to 

cause modest depolarisation of the cell membranes, and therefore preferentially 

augment T-type voltage-gated Ca2+ channel activity. The example trace in panel (A) 

illustrates both the increase in [Ca2+]i and the appearance of Ca2+ oscillations when 

A7r5 cells were exposed to 20mM K+ buffer. The change in Fura 2 ratio for each of the 

three exposures to 20mM K+ buffer is shown in panel (B). There was no significant 

difference between the first and second exposures. However, the response to 20mM 

K+ buffer decreased on each subsequent exposure which is demonstrated by the 

significant difference in the change in Fura 2 ratio between exposure 1 and exposure 3. 

It was decided that only exposures 1 and 2 would be used in analyses of subsequent 

traces involving the assessment of a drug or compound. Panel (C) shows the spike 

frequency (i.e. the number of oscillations per second) for each exposure to 20mM K+   
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A   B   

C   D  

E   F  

Figure 4.1 Characterisation of A7r5 cells 

Immunocytochemistry of A7r5 cells showing staining for smooth muscle α-actin (red) 

(A), myosin heavy chain (green) (B), and vimentin (red) (C). The images in panels (D-

F) were generated from simultaneous incubation with anti-smooth muscle α-actin and 

anti-myosin heavy chain antibodies; Panel (D) shows smooth muscle α-actin (red), 

panel (E) shows myosin heavy chain (green), and panel (F) shows smooth muscle α-

actin and myosin heavy chain co-localisation. The contrast of images (D-F) was 

reduced by 15 units in order to distinguish the staining when the image is printed. Cell 

nuclei were stained blue with DAPI. Cells were utilised at P6, and are representative 

images of 4 fields of view from n=2 experimental repeats.   



99 
 

 

A    B   

C   

Figure 4.2 T-type Ca2+ channel expression in A7r5 cells 

Immunocytochemistry of A7r5 cells showing staining for Cav3.1 (green) (A), and for 

Cav3.2 (green) (B). Antibodies sourced from Alomone. Panel (C) shows a control 

image without primary antibody. Cell nuclei were stained blue with DAPI. Cells were 

utilised at P4, and are representative images of 14 fields of view from n=7 experimental 

repeats. 
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A 

 

 

B 

 

Figure 4.3 Expression of the Cav3.1 T-type Ca2+ channels in A7r5 cells 

Panel (A) shows the only successful western blot of the Cav3.1 T-type Ca2+ channel, 

using anti-Cav3.1 antibody (Alomone), in various cell samples tested (A7r5: membrane 

enriched A7r5; HEK/Cav3.1: HEK293/Cav3.1 cells, positive control). The arrow 

represents the position of the 250kDa molecular weight marker. Below is the 

corresponding β-actin loading control blot. Panel (B) shows a bar graph of Cav3.1 

mRNA expression, relative to the endogenous control, HPRT1 (hypoxanthine 

phosphoribosyltransferase 1), in eleven samples of A7r5 cells from five different 

passages, as indicated by the x-axis label. The inset bar graph shows the A7r5 

samples with lower expression levels not clearly visible on the main bar graph. 

Samples were analysed in triplicate and represented as mean ± s.e.m. 

  A7r5          A7r5      HEK/Cav3.1 
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Figure 4.4 Expression of the Cav3.2 T-type Ca2+ channel in A7r5 cells 

Bar graph of Cav3.2 mRNA expression, relative to the endogenous control, HPRT1. 

Twelve samples of A7r5 cells were analysed for Cav3.2 mRNA expression, and the 

channel was detectable in four samples from three passages, as indicated by the x-

axis label. Samples were analysed in triplicate and represented as mean ± s.e.m. 
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Figure 4.5 20mM K+ buffer causes Ca2+ oscillations and an increase in [Ca2+]i 

(A) Representative control trace showing the response of A7r5 cells to 20mM K+ buffer. 

The switch from normal buffer (Ca2+-containing) to 20mM K+ buffer causes a rapid 

increase in [Ca2+]i and Ca2+ oscillations, as shown by the three exposures. (B) Trend 

graph showing the change in Fura 2 ratio for the three exposures to 20mM K+ buffer. 

(C) Trend graph showing the change in spikes/s for the three exposures to 20mM K+ 

buffer. Data were analysed by one-way ANOVA with Bonferroni’s multiple comparison 

test, ** p<0.01, n=12. 
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buffer. There were no significant differences between exposures 1-3. Figure 4.6 shows 

the minimal change in [Ca2+]i when extracellular Ca2+ is removed; Fura 2 ratio was 

reduced by 4%, which is representative of a small window current. Figure 4.7 (A) 

shows the response of A7r5 cells to 80mM K+ buffer. This level of extracellular [K+] was 

used to strongly depolarise the cell membranes, and thereby stimulate Ca2+ influx 

preferentially via L-type Ca2+ channels. There was a rapid increase in [Ca2+]i as 80mM 

K+ buffer was applied, which slowly declined during continued depolarisation, 

presumably because the L-type Ca2+ channels inactivate. Figure 4.7 (B) shows that 

removal of extracellular Ca2+ causes an almost complete loss of this response, as 

predicted, since Ca2+ was not available to move into the cell. Panel (C) shows the 

mean integrated response of five experiments, illustrated by Figure 4.7 (A) and (B). 

 

In summary, Cav3.1 is the more prominent T-type Ca2+ channel in A7r5 cells. A7r5 cells 

produce Ca2+ oscillations in response to 20mM K+ buffer, and rapid increases in [Ca2+]i 

in response to both 20mM and 80mM K+ buffer, implicating the presence of both T- and 

L-type Ca2+ channels in A7r5 cells. 

 

4.2.2 The contribution of T-type and L-type Ca2+ channels to evoked [Ca2+]i 

responses in A7r5 cells 

Mibefradil was employed to assess the changes in [Ca2+]i as a result of T-type Ca2+ 

channel inhibition. After an initial exposure to 20mM K+ buffer, 3µM mibefradil was 

applied prior to, and throughout, the second exposure, which subsequently inhibited 

[Ca2+]i by 58%, and also inhibited Ca2+ oscillations, as shown in Figure 4.8 (A). 

Unexpectedly, the responses of [Ca2+]i to 80mM K+ buffer were also significantly 

reduced by 65% in the presence of 3µM mibefradil, as shown by the example trace and 

the mean integral in Figure 4.9. 

 

The effect of Ni2+, a differentially selective T-type Ca2+ channel blocker, was also 

investigated. As the Cav3.1 Ca2+ channel is the dominant subtype in A7r5 cells, the 

inhibitory effects of Ni2+ on Cav3.1 channel activity in HEK293/Cav3.1 cells were 

assessed within our research group using whole-cell patch clamp recordings. Peak 

current-voltage (I-V) relationship curves in response to a range of Ni2+ concentrations 

are shown in Figure 4.10, and were generated by Dr Jacobo Elies. The IC50 was found   
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Figure 4.6 The response of [Ca2+]i on exposure to Ca2+-free extracellular buffer  

Representative trace showing the response of A7r5 cells to Ca2+ free buffer (A). Bar 

graph of mean (± s.e.m.) Fura 2 ratio in response to Ca2+-containing and Ca2+-free 

extracellular buffer (B). Data were analysed by a two-tailed paired t-test, *** p<0.001, 

n=3. 
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Figure 4.7 80mM K+ buffer causes a rapid increase in [Ca2+]i  

Representative control trace showing the response of A7r5 cells to cell depolarisation 

by 80mM K+ (A), exhibited as an increase in Fura 2 ratio. This is the control condition to 

which subsequent drug applications will be compared to. Representative trace showing 

the minimal change in [Ca2+]i in response to 80mM K+/Ca2+-free buffer (B). Bar graph 

showing the mean (± s.e.m.) integral of the responses evoked by 80mM K+ or 80mM 

K+/Ca2+ free buffer (C). Data were analysed by one-way ANOVA, *** p<0.001, n=5. 
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Figure 4.8 3µM mibefradil inhibits [Ca2+]i and Ca2+ oscillations 

Representative trace showing the response of A7r5 cells to 20mM K+ buffer in the 

presence of 3µM mibefradil (A). Panel (B) shows a trend graph of the decrease in Fura 

2 ratio in response to 20mM K+ buffer followed by 20mM K+ buffer in the presence of 

3µM mibefradil. Panel (C) shows a trend graph of the decrease in spikes/s for exposure 

to 20mM K+ buffer followed by 20mM K+ buffer in the presence of 3µM mibefradil. The 

mean (± s.e.m.) response is shown to the right and left of the corresponding individual 

data points on each graph. Data were analysed by a two-tailed paired t-test, ** p<0.01, 

n=5. mib. = mibefradil 
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Figure 4.9 Response to 80mM K+ buffer containing 3µM mibefradil 

Representative trace showing the change of [Ca2+]i in response to 80mM K+ buffer (A) 

and the reduced response to 80mM K+ containing 3µM mibefradil (B). Bar graph 

showing the mean (± s.e.m.) integral of the curves produced in response to 80mM K+ 

buffer (control), and 80mM K+ buffer containing 3µM mibefradil (C). Data were 

analysed by one-way ANOVA, *** p<0.001, n=5. 
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Figure 4.10 Inhibitory effects of Ni2+ on Cav3.1 channels  

Representative peak I-V curves showing control and Ni2+ treated HEK293/Cav3.1 cells. 

Peak I-V relationships were measured by stepping from a holding potential of -80mV to 

voltages between -110mV and +50mV in 10mV increments for 100ms each. Data 

generated by Dr Jacobo Elies. 
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to be 289 ± 11.3µM (n=3). Preliminary experiments investigating the effect of 250µM 

Ni2+ demonstrated the complete abolition of the response to 20mM K+ buffer. 

Therefore, a lower concentration of 30µM Ni2+ was utilised to assess the effects of low 

level T-type Ca2+ channel inhibition without producing off-target effects on L-type Ca2+ 

channels. Figure 4.11 shows the effects of 30µM Ni2+. Mean [Ca2+]i was significantly 

reduced by 37% via 30µM Ni2+, yet Ca2+ oscillations were not significantly affected. The 

presence of 30µM Ni2+ did not alter the response to 80mM K+ buffer; the mean curve 

integral was comparable to that of the control cells, as shown in Figure 4.12.  

 

Nifedipine was employed to assess the effects of L-type Ca2+ channel inhibition on 

[Ca2+]i, with the aim of establishing which responses could be attributed solely to T-type 

Ca2+ channel activity. The representative trace in Figure 4.13 (A) shows that 2µM 

nifedipine reduces the response to 20mM K+ buffer by 60%, and completely abolishes 

the Ca2+ oscillations. Figure 4.14 demonstrates that nifedipine also significantly 

inhibited the response to 80mM K+ buffer. The mean curve integral was reduced by 

68% in the presence of 2µM nifedipine. 

 

The simultaneous addition of 2µM nifedipine and 3µM mibefradil completely prevented 

the response to 20mM K+ buffer. There was no rise in [Ca2+]i and no Ca2+ oscillations, 

as shown in Figure 4.15. Application of mibefradil and nifedipine, individually or 

simulataneously, significantly prevented an increase of [Ca2+]i, and the combined effect 

of both compounds on [Ca2+]i was significantly different from each individual effect, as 

shown in Figure 4.15 (D). Simultaneous addition of 2µM nifedipine and 3µM mibefradil 

inhibited a significant rise in [Ca2+]i in response to 80mM K+ buffer, as shown in Figure 

4.16. The mean curve integral was reduced by 92%, which is comparable to the 

response to Ca2+-free 80mM K+ buffer, suggesting essentially all voltage-gated Ca2+ 

channels were blocked, as expected. However, the combined effect of both 

compounds on [Ca2+]i was not significantly different from each individual effect, as 

shown in Figure 4.16 (C). Application of 2µM nifedipine and 30µM Ni2+, individually or 

simultaneously, significantly prevented an increase of [Ca2+]i, and completely abolished 

the oscillatory response to 20mM K+ buffer, as shown in Figure 4.17. Although, the 

combined effect of both compounds on [Ca2+]i was not significantly different from each 

individual effect, as shown in Figure 4.17 (D). Concerning the oscillation frequency, Ni2+ 

caused no significant effect on the response to 20mM K+   
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Figure 4.11 30µM Ni2+ inhibits [Ca2+]i but not Ca2+ oscillations 

Representative trace showing the response of A7r5 cells to 20mM K+ buffer in the 

presence of 30µM Ni2+ (A). Panel (B) shows a trend graph of the decrease in Fura 2 

ratio in response to 20mM K+ buffer followed by 20mM K+ buffer in the presence of 

30µM Ni2+. Panel (C) shows a trend graph of the change in spikes/s for exposure to 

20mM K+ buffer followed by 20mM K+ buffer in the presence of 30µM Ni2+. The mean (± 

s.e.m.) response is shown to the right and left of the corresponding individual data 

points on each graph. Data were analysed by a two-tailed paired t-test, *** p<0.001, 

n=6. 
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Figure 4.12 Response to 80mM K+ buffer containing 30µM Ni2+ 

Representative trace showing the change of [Ca2+]i in response to 80mM K+ buffer (A) 

and in response to 80mM K+ buffer containing 30µM Ni2+ (B). Bar graph showing the 

mean (± s.e.m.) integral of the curves produced in response to 80mM K+ buffer 

(control), and 80mM K+ buffer containing 30µM Ni2+ (C), n=6. 
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Figure 4.13 2µM nifedipine inhibits [Ca2+]i and Ca2+ oscillations 

Representative control trace showing the response of A7r5 cells to 20mM K+ buffer in 

the presence of 2µM nifedipine (A). Trend graph showing the decrease in Fura 2 ratio 

in response to 20mM K+ buffer followed by 20mM K+ buffer in the presence of 2µM 

nifedipine. (B). Trend graph showing the decrease in spikes/s in response to 20mM K+ 

buffer followed by 20mM K+ buffer in the presence of 2µM nifedipine (C). The mean (± 

s.e.m.) response is shown to the right and left of the corresponding individual data 

points on each graph. Data were analysed by a two-tailed paired t-test, ** p<0.01, *** 

p<0.001, n=5. nif. = nifedipine 
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Figure 4.14 Response to 80mM K+ buffer containing 2µM nifedipine 

Representative trace showing the change of [Ca2+]i in response to 80mM K+ buffer (A) 

and the decreased response to 80mM K+ buffer containing 2µM nifedipine (B). Bar 

graph showing the mean (± s.e.m.) integral of the curves produced in response to 

80mM K+ buffer (control), and 80mM K+ buffer containing 2µM nifedipine (C). Data 

were analysed by one-way ANOVA, *** p<0.001, n=7. 
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Figure 4.15 Simultaneous addition of 2µM nifedipine and 3µM mibefradil inhibits 

[Ca2+]i and Ca2+ oscillations 

Representative trace showing the response of A7r5 cells to 20mM K+ buffer in the 

presence of 2µM nifedipine and 3µM mibefradil (A). Trend graph showing the decrease 

in Fura 2 ratio (B) and the decrease in spikes/s (C) within individual traces in response 

to 20mM K+ buffer followed by 20mM K+ buffer in the presence of 2µM nifedipine and 

3µM mibefradil. The mean (± s.e.m.) response is shown to the right and left of the 

corresponding individual data points on each graph, n=4. Bar graph showing the mean 

(± s.e.m.) change in Fura 2 ratio (D) and the change in spikes/s (E) in response to 

20mM K+ buffer in the presence of the drug as indicated. Data analysed by one-way 

ANOVA followed by Tukey’s multiple comparison test, * p<0.05, ** p<0.01 vs 

K+/mib./nif. *** P<0.001, **** p<0.0001 vs K+. nif. = nifedipine, mib. = mibefradil 
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Figure 4.16 Response to 80mM K+ buffer containing 2µM nifedipine and 3µM 

mibefradil 

Representative trace showing the change of [Ca2+]i in response to 80mM K+ buffer (A) 

and the decreased response to 80mM K+ buffer containing 2µM nifedipine and 3µM 

mibefradil (B). Bar graph showing the mean (± s.e.m.) integral of the curves produced 

in response to 80mM K+ buffer (control), and 80mM K+ buffer in the presence of the 

drug as indicated (C). Data were analysed by one-way ANOVA, *** p<0.001, n=6. nif. = 

nifedipine, mib. = mibefradil. 
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Figure 4.17 Simultaneous addition of 2µM nifedipine and 30µM Ni2+ inhibits [Ca2+]i 

and Ca2+ oscillations 

Representative trace showing the response of A7r5 cells to 20mM K+ buffer in the 

presence of 2µM nifedipine and 30µM Ni2+ (A). Trend graph showing the decrease in 

Fura 2 ratio (B) and the decrease in spikes/s (C) within individual traces in response to 

20mM K+ buffer followed by 20mM K+ buffer in the presence of 2µM nifedipine and 

30µM Ni2+ The mean (± s.e.m.) response is shown to the right and left of the 

corresponding individual data points on each graph, n=6. Bar graph showing the mean 

(± s.e.m.) change in Fura 2 ratio (D) and the change in spikes/s (E) in response to 

20mM K+ buffer in the presence of the drug as indicated. Data analysed by one-way 

ANOVA followed by Tukey’s multiple comparison test, **** p<0.0001 vs K+ or 

K+/Ni2+/nif. nif. = nifedipine  
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buffer, and there was no significant difference between the response to nifedipine or 

nifedipine and Ni2+ combined. The differing extents of reductions of evoked [Ca2+]i rises 

by the T-type Ca2+ channel blockers, mibefradil and Ni2+, suggest that mibefradil has 

non-specific effects when used at 3µM. The lower level of [Ca2+]i inhibition by 30µM 

Ni2+ is in accordance with the fact that the Cav3.2 T-type Ca2+ channels, which is the 

Ni2+ sensitive channel subtype, are expressed at low levels in A7r5 cells. 

 

In summary, mibefradil appears to inhibit both T- and L-type Ca2+ channels when used 

at 3µM, whereas 30µM Ni2+ appears to selectively inhibit T-type Ca2+ channels. 

Nifedipine has significant effects during stimulation by 20mM K+ buffer, implying that L-

type Ca2+ channels are also active upon weak depolarisation of the cells. The 

insignificant effects of Ni2+ during stimulation by 80mM K+ buffer confirm preferential 

activation of L-type Ca2+ channels upon strong depolarisation of the cells. 

 

4.2.3 Inhibition of T-type and L-type Ca2+ channels and the effect on A7r5 

proliferation 

Proliferation of A7r5 cells was inhibited by mibefradil in a concentration dependent 

manner, as shown in Figure 4.18 (A). At higher concentrations of mibefradil, the non-

viable cell count increased, as shown by the red line graph in panel (A). 3µM mibefradil 

decreased mean cell number by 32%, and caused 1.6% cell death. This concentration 

was subsequently applied to a three day time-course proliferation assay. Panel (B) 

shows the mean proliferative response over time; mibefradil reduced cell number by 

40% on day 3. Cell Event™ was used as an indicator of caspase-3/7 activation, which 

is indicative of apoptosis. Representative images are shown in Figure 4.19 of 2µM 

staurosporine treated cells (positive control, panels A and B), and of 3µM mibefradil 

treated cells (panels C and D). The mean data of the percentage of Cell Event™ 

positive cells from all fields of view are shown in panel (E). Mibefradil treatment 

induced caspase-3/7 activation in 13% of cells, yet there was no significant effect on 

apoptosis by mibefradil vs negative control. 

 

A7r5 cell proliferation was not affected by concentrations of Ni2+ ranging from 1µM to 

30µM, and cell death was less than 0.5%, as shown in Figure 4.20. There was no 

concentration-dependent decrease in proliferation in response to increasing   
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Figure 4.18 Mibefradil inhibits A7r5 cell proliferation 

Bar graph showing the proliferative response of A7r5 cells to increasing concentrations 

of mibefradil (left y-axis) (A). The overlaid red plot shows the corresponding non-viable 

cell count (right y-axis). Data were analysed by a ratio repeated measures one-way 

ANOVA with Dunnett’s multiple comparison test, * p<0.05, *** p<0.001 vs Day 3 

Control, n=3. Line graph of the effects of 3µM mibefradil over a 3 day period. Data 

were analysed by two-way repeated measures ANOVA with sample matching by time 

point. This was followed by Sidak’s multiple comparison test between control and 

treated groups for each time point, ** p<0.01, n=4. Data are represented as mean ± 

s.e.m. 
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Figure 4.19 The effect of mibefradil on caspase-3/7 activation  

Representative images of 2µM staurosporine treated A7r5 cells (positive control), 

Hoechst staining (A) and the corresponding Cell Event™ staining (B); and of 3µM 

mibefradil treated A7r5 cells, Hoechst staining (C) and the corresponding Cell Event™ 

staining (D). Scale bar=10µm. Bar graph of mean (± s.e.m.) % Cell Event positive cells 

for 2µM staurosporine treated A7r5 cells (positive control), untreated A7r5 cells 

(negative control) n=12 fields of view, and 3µM mibefradil treated cells, n=8 fields of 

view (E). Data were analysed by one-way ANOVA, with Bonferroni’s multiple 

comparison test, *** p<0.001. 



120 
 

 

0

5 0

1 0 0

1 5 0

0

1 0

2 0

3 0

4 0

5 0C e ll D e a th

C e ll P ro life r a t io n

D a y  0    D a y  3      1          3        1 0         3 0

[N i
2 +

]  M

C o n tro l

C
e

ll
 N

u
m

b
e

r
 x

1
0

3
/m

l C
e

ll N
u

m
b

e
r
 x

1
0

3
/m

l

 

Figure 4.20 Low Ni2+ concentrations do not inhibit A7r5 cell proliferation 

Bar graph showing the proliferative response of A7r5 cells to increasing concentrations 

of Ni2+ (left y-axis). The overlaid red plot shows the corresponding non-viable cell count 

(right y-axis). n=3, data are represented as mean ± s.e.m. 
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concentrations of nifedipine, nor did it affect cell viability, as shown in Figure 4.21. Only 

at a concentration of 4µM did nifedipine significantly inhibit cell proliferation, with cell 

death at less than 0.5%. As stated previously, the IC50 of T-type Ca2+ channels to Ni2+ 

differs for the channel subtypes, with Cav3.1 being less sensitive. Cav3.1 is expressed 

at higher levels than Cav3.2 in A7r5 cells, as described in section 4.2.1. As our 

research group has demonstrated that the IC50 of Ni2+ for the HEK293/Cav3.1 channel 

to be 289µM (see Figure 4.10), a higher concentration range of Ni2+ was applied to 

A7r5 cells to isolate the effects of Cav3.1 inhibition on cell proliferation. To block L-type 

Ca2+ channels, and thus prevent any off-target effects of 250µM Ni2+ on these 

channels, the assay was performed in the presence of 2µM nifedipine. Figure 4.21 has 

demonstrated that 2µM nifedipine had no effect on proliferation. Figure 4.22 

demonstrates that 250µM Ni2+ significantly inhibits proliferation, with no effect on cell 

viability, as shown by the red line graph. Cell number was reduced by 75% by 250µM 

Ni2+, and cell death was less than 0.5%.  

 

In summary, the non-selective T-type Ca2+ channel blocker, mibefradil, significantly 

inhibited A7r5 cell proliferation. The L-type Ca2+ channel blocker, nifedipine, did not 

significantly inhibit A7r5 cell proliferation when used at a concentration of 2µM or less. 

Selective inhibition of Cav3.2 channels by low concentrations of Ni2+ did not limit cell 

proliferation, yet selective inhibition of Cav3.1 channels by high concentrations of Ni2+, 

in the presence of 2µM nifedipine, did significantly inhibit A7r5 cell proliferation. 

 

4.2.4 T-type Ca2+ channel modulation by Cav3.1 siRNA 

As the Cav3.1 T-type Ca2+ channel is the more highly expressed sub-type in A7r5 cells, 

molecular techniques were employed to knock-down Cav3.1 channel expression using 

Cav3.1-targeting siRNA, with the aim of assessing subsequent effects on cell 

proliferation. Initial assessment of Cav3.1-targeting siRNA was performed at 24h and 

48h time-points using a range of concentrations. HPRT1 was chosen as the 

endogenous control mRNA as the associated Ct values were comparable to the Ct 

values of the Cav3.1 mRNA in the A7r5 cell line. At the 24h time-point, 25nM and 50nM 

Cav3.1-targeting siRNA significantly reduced the expression of the Cav3.1 T-type Ca2+ 

channel, with 10nM, 25nM and 50nM all producing significant knock-down at 48h, as 

shown in Figure 4.23. A concentration of 25nM Cav3.1-targeting siRNA was then 

assessed over a 96h time-course, as shown in Figure 4.24. Significant knock-down of 

Cav3.1 mRNA expression was demonstrated at 24h and 48h, but this did not continue  
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Figure 4.21 The effect of nifedipine on A7r5 cell proliferation 

Bar graph showing the proliferative response of A7r5 cells to increasing concentrations 

of nifedipine (left y-axis). The overlaid red plot shows the corresponding non-viable cell 

count (right y-axis). Data were analysed by a ratio repeated measures one-way 

ANOVA with Dunnett’s multiple comparison test, * p<0.05 vs Day 3 Control, n=3, data 

are represented as mean ± s.e.m. 
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Figure 4.22 The effect of high Ni2+ concentrations and 2µM nifedipine on A7r5 

proliferation 

Bar graph showing the proliferative response of A7r5 cells to increasing concentrations 

of Ni2+, in the presence of 2µM nifedipine (right y-axis). The overlaid red plot shows the 

corresponding non-viable cell count (left y-axis). Data were analysed by a ratio 

repeated measures one-way ANOVA with Dunnett’s multiple comparison test, ** 

p<0.01 vs Day 3 Control, n=3, data are represented as mean ± s.e.m. 
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Figure 4.23 Preliminary assessment of Cav3.1-targeting siRNA at 24h and 48h 

Bar graph showing the relative expression of Cav3.1 24h post 10nM, 25nM, or 50nM 

Cav3.1-targeting siRNA treatment (A). Bar graph showing the corresponding HPRT1 Ct 

values at 24h (B). Bar graph showing the relative expression of Cav3.1 48h post 10nM, 

25nM, or 50nM Cav3.1-targeting siRNA treatment (C). Corresponding HPRT1 Ct values 

at 48h (D). M; Mock, T; transfected, 6-well format. Data were analysed by a ratio 

repeated measures one-way ANOVA with Bonferroni’s multiple comparison test, * 

p<0.05, ** p<0.01, *** p<0.001, n=2, values in triplicate, data are represented as mean 

± s.e.m. Cells at P3 and P4. 
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Figure 4.24 Assessment of 25nM Cav3.1-targeting siRNA over a 96h time-course 

Bar graph showing the relative expression of Cav3.1 at time-points post 25nM Cav3.1-

targeting siRNA treatment (A). Bar graph showing the corresponding HPRT1 Ct values 

(B). M; Mock, T; transfected, 6-well format. Data were analysed by a two-way ANOVA 

and matched within each treatment group (M or T), with Bonferroni’s multiple 

comparison test, * p<0.05, ** p<0.01, **** p<0.0001, n=1, values in triplicate, data are 

represented as mean ± s.e.m. Cells at P5. 
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to 72h and 96h. Although mRNA knock-down was significant at 96h, this is likely due to 

the fact that the expression of the HPRT1 endogenous mRNA was increased in the 

transfected group at 96h. The assessment of 25nM Cav3.1-targeting siRNA over 96h 

was therefore repeated, as shown in Figure 4.25. Knock-down of Cav3.1 mRNA 

expression was demonstrated on day 0 at the start of the assay, but this was not 

maintained throughout the 96h time-course (panel A). The lack of effect on proliferation 

over this 96h time-course is shown in panel (B). As the expression of HPRT1 was 

variable in previous experiments, β2-microglobulin (β2M) was also employed as an 

endogenous control, although this mRNA was expressed at a higher level than both 

HPRT1 and Cav3.1 in A7r5 cells. β2M was employed to establish whether HPRT1 was 

affected by the transfection process itself, or whether such endogenous control mRNA 

was subject to fluctuation across A7r5 cell passages. However, as shown in Figures 

4.25, 4.26, and 4.27, both HPRT1 and β2M fluctuate between samples in the same 

pattern. As 25nM Cav3.1-targeting siRNA caused no consistent effects on Cav3.1 

mRNA expression, nor on proliferation, 50nM Cav3.1-targeting siRNA was assessed 

over a 96h time-course. There was a difference in cell proliferation at 48h using 50nM 

Cav3.1-targeting siRNA, as shown in Figure 4.26 (panel B). Cell number was reduced 

by 36% in the transfected group in comparison to the mock group. However, this was 

not maintained at 96h, and the proliferative response did not correlate with the mRNA 

knock-down shown in panel (A). It appeared that Cav3.1 mRNA knock-down was not 

attainable at 96h, therefore 50nM Cav3.1-targeting siRNA was employed once more 

over a 72h assay period, as shown in Figure 4.27. An untransfected group was also 

added to this experiment to establish whether the transfection process was adversely 

affecting the mRNA expression levels of the proteins being assessed. However, there 

was variability in Cav3.1 expression between the mock and untransfected groups, 

which suggests the transfection procedure itself adversely affected channel expression 

levels. Additionally, Figure 4.27 (A) demonstrates how the level of Cav3.1 expression 

varies over time in A7r5 cells. Both mock and untransfected groups show an increase 

in Cav3.1 expression between 0h and 24h, which then declines at 48h and 72h. 

However, this does not correlate with the proliferation data in Figure 4.27 (B), as the 

cell number did not increase until after 48h. Furthermore, Cav3.1 mRNA knock-down 

could not be accurately assessed due to fluctuations in levels of endogenous controls. 

Due to time constraints, the assessment of Cav3.1-targeting siRNA on A7r5 cell 

proliferation was not investigated further. 
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Figure 4.25 The effect of 25nM Cav3.1-targeting siRNA on A7r5 proliferation over 

a 96h time-course 

Bar graph showing the relative expression levels of Cav3.1 at various time-points post 

25nM Cav3.1-targeting siRNA treatment (A). Data were analysed by a two-way ANOVA 

and matched within each treatment group (M or T), with Bonferroni’s multiple 

comparison test, ** p<0.01. Line graph showing the proliferative response of A7r5 cells 

post 25nM Cav3.1 siRNA treatment (B). Bar graphs (C and D) showing the 

corresponding housekeeper Ct values of HPRT1 and β2M respectively for 0h, 48h, and 

96h time-points. M; Mock, T; transfected, 24-well format, n=1, values in triplicate, data 

are represented as mean ± s.e.m. Cells at P5. 
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Figure 4.26 The effect of 50nM Cav3.1-targeting siRNA on A7r5 proliferation over 

a 96h time-course 

Bar graph showing the relative expression levels of Cav3.1 at various time-points post 

50nM Cav3.1-targeting siRNA treatment (A). Data were analysed by a two-way ANOVA 

and matched within each treatment group (M or T), with Bonferroni’s multiple 

comparison test, * p<0.05, *** p<0.001. Line graph showing the proliferative response 

of A7r5 cells post 50nM Cav3.1-targeting siRNA treatment (B). Bar graphs (C and D) 

showing the corresponding housekeeper Ct values of HPRT1 and β2M respectively for 

0h, 48h, and 96h time-points. M; Mock, T; transfected, 24-well format, n=1, values in 

triplicate, data are represented as mean ± s.e.m. Cells at P4. 
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Figure 4.27 The effect of 50nM Cav3.1-targeting siRNA on A7r5 proliferation over 

a 72h time-course 

Bar graph showing the relative expression levels of Cav3.1 at various time-points post 

50nM Cav3.1 siRNA treatment (A). Data were analysed by a two-way ANOVA and 

matched within each treatment group (M or T), with Bonferroni’s multiple comparison 

test, *** p<0.001. Line graph showing the proliferative response of A7r5 cells post 

50nM Cav3.1-targeting siRNA treatment (B). Bar graphs (C and D) showing the 

corresponding housekeeper Ct values of HPRT1 and β2M respectively for 0h, 48h, and 

72h time-points. M; Mock, T; transfected, U; untransfected, 24-well format, n=1, values 

in triplicate, data are represented as mean ± s.e.m. Cells at P5. 
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4.3 Discussion 

Figure 4.1 confirms positive staining for smooth muscle cell markers in A7r5 cells. The 

co-stained images in panels (D-F) exhibited fainter staining, despite being captured 

using the same microscopy settings, the same antibody dilutions, and using the same 

cells. This suggested that the presence of both antibodies prevented the effective 

binding and visualisation of either antibody. The expression of both Cav3.1 and Cav3.2 

T-type Ca2+ channels was demonstrated by immunocytochemistry and RT-PCR, and 

both methods show Cav3.1 to be the more prominently expressed T-type Ca2+ channel 

subtype in A7r5 cells, despite variable expression levels across passages. Such 

variation could be a result of the proliferative state of the cells and how confluent the 

cell monolayer was, as T-type Ca2+ channel expression is down-regulated by cell 

contact in confluent cell monolayers (Akaike et al., 1989;Richard et al., 1992). To try 

and minimise such variation, all A7r5 cell samples were retrieved when the monolayer 

was 80% confluent. However, differences in expression levels were still apparent, 

although a link to passage number was ruled out. Another group has also 

demonstrated that Cav3.1 is more prominent than Cav3.2 in rat arteries and A7r5 cells, 

in addition to a similar Cav3.1 peri-nuclear staining pattern (Brueggemann et al., 2005). 

Membrane enrichment of A7r5 cell samples prior to western blotting produced limited 

success of Cav3.1 detection (Figure 4.3). These findings correlate to the fact that 

immunocytochemistry demonstrated minimal positive staining of the channels at the 

cell membrane (Figure 4.2). Therefore, even though Cav3.1 expression is more 

prominent, absolute expression levels are still low. 

 

A7r5 cells respond rapidly to modest membrane depolarisation caused by 20mM K+ 

buffer, with a rise of [Ca2+]i, superimposed on which was the appearance of Ca2+ 

oscillations. The diminished response to consecutive exposures of 20mM K+ buffer, as 

shown in Figure 4.5, could be due to Ca2+ channel inactivation. T-type Ca2+ channels 

open in bursts during prolonged depolarisation, and the channels cycle between open, 

inactivated, and closed states (Perez-Reyes, 2003). Indeed, Cav3.1 T-type Ca2+ 

channel gating has been shown to be modulated by Ca2+ ions, as free [Ca2+]i promote 

the cycling between channel states (Lacinova et al., 2006). The inactivation of L-type 

Ca2+ channels is voltage and also Ca2+ dependent, and these channels inactivate more 

slowly than T-type Ca2+ channels (Hille, 1992). As the length of the trace increased, the 

Ca2+ channels may have taken longer to recover, therefore preventing subsequent 

activation. This is more likely of T-type Ca2+ channels, which have longer tail currents 

(Hille, 1992). The phenomenon of ‘run-down’, described as the decline of Ca2+ current 
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over long recordings, is a documented problem associated with the whole-cell patch 

clamp technique (Belles et al., 1988). Run-down was proposed to be due to a loss of 

cellular constituents via the patch pipette, a rise in [Ca2+]i, and loss of high energy 

compounds. The idea of Ca2+ current run-down could be extrapolated to the diminished 

response of A7r5 cells seen here. Although, recording [Ca2+]i by microfluorimetry does 

not involve a loss of cellular constituents as whole-cell patch clamp does, the co-

ordination of the cellular responses could change over time. Furthermore, gap junctions 

have been shown to mediate the diffusion of Ca2+ to neighbouring human smooth 

muscle cells (Christ et al., 1992), and in HEK293 cells transfected with connexin-43 

and the ryanodine receptor (Toyofuku et al., 1998). However, rises in [Ca2+]i have been 

shown to reduce junctional conductance (Loewenstein, 1981). The contribution of gap 

junctions to the cell response to 20mM K+ buffer could be investigated by the use of a 

gap junction modulator, such as carbenoxolone. During long microfluorimetry traces, as 

illustrated in Figure 4.5, the depolarising response could diminish across the cell 

monolayer, which could produce variable movements of Ca2+ between cells. Taking 

this notion into account, with the additional possibility that voltage-gated Ca2+ channels 

may take longer to cycle through inactivated and deactivated states, as Lacinova et al 

(2006) demonstrated that [Ca2+]i facilitated Cav3.1 T-type Ca2+ channel inactivation, 

these effects would likely be reflected by a smaller change in Fura 2 ratio as the length 

of the trace increases. 

 

A pharmacological approach was taken to try to isolate the individual contributions of T-

type and L-type Ca2+ channels to the response to 20mM K+ buffer. Taken together, the 

effects of all the compounds applied to A7r5 cells during 20mM K+ buffer exposure 

imply that both T-type and L-type Ca2+ channels are involved in the response. 

However, the data suggest that L-type Ca2+ channels have a more prominent role in 

the mediation of Ca2+ oscillations. The L-type Ca2+ channel blocker, nifedipine, 

significantly inhibited [Ca2+]i, reducing the response to 20mM K+ buffer by 60% relative 

to control, and nifedipine also abolished the Ca2+ oscillations. The T-type Ca2+ channel 

blocker mibefradil produced a similar effect, reducing the response to 20mM K+ buffer 

by 58%, although the oscillatory response was not completely abolished. Simultaneous 

application of nifedipine and mibefradil completely inhibited any change in [Ca2+]i. 

Nanomolar concentrations of mibefradil have been shown to inhibit A7r5 Ca2+ 

oscillations, and this study concluded that both T-type and L-type Ca2+ channels are 

involved in the oscillatory response in A7r5 cells (Brueggemann et al., 2005). However, 

this study also found that T-type Ca2+ channel over-expression did not increase Ca2+ 
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oscillation frequency, implying that T-type Ca2+ channels are not the major influence of 

such oscillations. Mibefradil has been shown to block L-type Ca2+ channels at higher 

concentrations; with an IC50 of 12.9µM in HEK293/Cav1.2 cells (Martin et al., 2000), an 

IC50 of 18.6µM in L-type transfected Chinese hamster ovary cells (Mehrke et al., 1994), 

and an IC50 of 3µM in rat ventricular cells (Leuranguer et al., 2000). It would seem 

likely, therefore, that 3µM mibefradil employed in these experiments also had inhibitory 

effects on L-type Ca2+ channels. The possible inhibition of L-type Ca2+ channels by 

mibefradil is also evidenced by the response to 80mM K+ buffer, which promotes strong 

membrane depolarisation and preferential activation of L-type Ca2+ channels. Mibefradil 

reduced the integrated response by 65%, nifedipine by 68%, and simultaneous 

application of both drugs by 92%. Contrastingly, one study has demonstrated that 

nifedipine can inhibit endogenous and recombinant T-type Ca2+ channels with an IC50 

of 109µM for Cav3.1, and 5µM for Cav3.2 (Shcheglovitov et al., 2005). Although a 

concentration of 2µM was used in the current experiments, and the fact that A7r5 cells 

express Cav3.1 channels more abundantly, the data concerning proliferation suggest it 

is highly unlikely that nifedipine had any inhibitory effects on T-type Ca2+ channels. 

 

The IC50 of Ni2+ for Cav3.1 and Cav3.2 has been shown to be 250µM and 13µM 

respectively for recombinant channels expressed in HEK293 cells (Lee et al., 1999), 

and 304.8µM and 4.9µM (Kang et al., 2006) respectively for recombinant channels 

expressed in xenopus oocytes. 200µM Ni2+ was able to reversibly inhibit T-type Ca2+ 

currents in A7r5 cells (Brueggemann et al., 2005), and we have quantified the IC50 to 

be 289µM in HEK293/Cav3.1 cells. Preliminary microfluorimetry experiments using 

250µM Ni2+ demonstrated complete abolition of the response to 20mM K+ buffer, 

therefore a lower concentration 30µM Ni2+ was utilised to assess the effects of partial 

T-type Ca2+ channel block, without producing off-target effects on L-type Ca2+ 

channels. The response to 20mM K+ buffer in the presence 30µM Ni2+ was reduced by 

37% without altering oscillation frequency, and the simultaneous addition of Ni2+ and 

nifedipine inhibited the change in Fura 2 ratio by 48%. This implies that the effects of 

30µM Ni2+ are limited to T-type Ca2+ channels, which is verified by the lack of effect of 

30µM Ni2+ on [Ca2+]i when the cells were exposed to 80mM K+ buffer. Indeed, Ni2+ was 

shown to inhibit L-Type Ca2+ channels with an ED50 of 65µM quoted in human smooth 

muscle cells (Hollywood et al., 2003). Proliferation of A7r5 cells was not affected by 

concentrations of Ni2+ up to 30µM. This concentration of Ni2+ is selective for Cav3.2 

over Cav3.1 channels, and the former are expressed at low levels in A7r5 cells, as 

demonstrated by Figure 4.4. The significant effects of 30µM Ni2+ on [Ca2+]i, but not on 
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cell proliferation, suggest that Cav3.2 channels do not notably contribute to proliferation 

of A7r5 cells. It is possible that chronic inhibition of Cav3.2 channels over a period of 3 

days during a proliferation assay did not reduce [Ca2+]i to sub-threshold levels, which 

would subsequently limit cell proliferation (Gray et al., 2004), as discussed previously in 

Chapter 3. Figure 4.11 demonstrates that acute inhibition of Cav3.2 channels does 

significantly affect [Ca2+]i, yet Figure 4.20 implies that chronic inhibition of Cav3.2 

channels does not lead to significant effects on proliferation. In the presence of 2µM 

nifedipine, concentrations of Ni2+ increasing from 30µM to 250µM caused a 

concentration-dependent decrease in proliferation. It is likely that Cav3.2 channels were 

inhibited by lower concentrations of Ni2+, with Cav3.1 channels additionally inhibited by 

concentrations of 120µM Ni2+ and above. Significant inhibition of proliferation occurred 

in response to chronic exposure of 250µM Ni2+, implying Cav3.1 channels are central to 

the proliferative capacity of A7r5 cells, and to the maintenance of adequate [Ca2+]i 

levels to trigger cell cycle progression. Interestingly, sub-confluent A7r5 cells have 

been shown to have higher resting [Ca2+]i and are less excitable than confluent A7r5 

cells (Otun et al., 1992). These data are consistent with the fact that T-type Ca2+ 

channels are expressed at higher levels in proliferating cells (Kuga et al., 1996), and 

become less prominent on contact inhibition and in contractile cells (Akaike et al., 

1989;House et al., 2008). The inhibitory effects on proliferation exerted by 3µM 

mibefradil can be attributed to T-type Ca2+ channel inhibition and not off-target effects, 

as proliferation was not affected by L-type Ca2+ channel inhibition. Non-viable cell 

counts show mibefradil to be cytotoxic at concentrations above 5µM, which is 

corroborated by the fact that 3µM mibefradil did not cause significant activation of 

caspase-3/7. 

 

In the context of the [Ca2+]i responses shown in this chapter, the data may show an 

under-estimate of T-type Ca2+ channel contribution. As coverslips of confluent A7r5 

cells were utilised for microfluormetry experiments, T-type Ca2+ channel expression 

could have declined, and therefore the effects of Ni2+ upon moderate depolarisation 

demonstrated to be less significant than in sub-confluent proliferating cells. The higher 

resting [Ca2+]i in sub-confluent A7r5 cells described by Otun et al. (1992) could be 

attributed to the window current caused by T-type Ca2+ channels. A negligible window 

current was demonstrated in A7r5 cells in the present experiments, as shown in Figure 

4.6. This is consistent with the low level of T-type Ca2+ channel expression shown in 

Figures 4.3 and 4.4. The sharp increases in [Ca2+]i shown on the trace in Figure 4.6 as 

the buffer is changed from Ca2+-containing to Ca2+-free may be indicative of internal 
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Ca2+ store emptying. The upsurge of [Ca2+]i when the buffer is switched back to a Ca2+-

containing buffer is likely attributable to the availability of extracellular Ca2+, and 

possibly in conjunction with Ca2+-induced Ca2+-release (CICR). Although further 

experiments involving a sarcoplasmic endoplasmic reticulum Ca2+ ATPase (SERCA) 

inhibitor, such as cyclopiazonic acid for example, would need to be performed to 

conclude reliably how the internal Ca2+ stores contribute to the [Ca2+]i changes and the 

oscillatory response. Although, Otun et al. (1992) concluded that the oscillatory 

response of confluent A7r5 cells occurs as a result of extracellular Ca2+, and therefore 

via voltage-gated Ca2+ channels, the possibility of a role for CICR was not assessed in 

this study. 

 

The limited data produced from the experiments involving Cav3.1-targeting siRNA were 

not consistent or elucidative. These experiments were carried out to validate the 

pharmacological findings involving Ni2+ at a molecular level. However, the level of 

Cav3.1 mRNA expression fluctuated in mock samples, both within and among time-

course experiments, but there was no correlation with passage number. This is 

illustrated in Figures 4.25 to 4.27. Indeed, T-type Ca2+ channels have been shown to 

be affected by the proliferative state of VSMCs, as a confluent cell monolayer 

influences the down-regulation of channel expression (Akaike et al., 1989;Richard et 

al., 1992). Panels (A and B) in Figure 4.25 illustrate this; as the time-course proceeds, 

the A7r5 cells became more confluent and Cav3.1 mRNA expression in the mock 

samples declined. The fluctuations in HPRT1 values between mock and transfected 

groups within experiments undoubtedly had an effect on the calculation of relative 

Cav3.1 expression levels. The amount of RNA within each sample was not normalised 

prior to the RT-PCR assay as the relative quantification of Cav3.1 expression to HPRT1 

expression is designed to remove RNA loading variability. Additionally, samples were 

assessed in triplicate. However, β2M also fluctuated in the same pattern as HPRT1, 

therefore the transfection process itself could have caused variations in the mRNA 

expression levels of all the proteins assessed. Alternatively, the mRNA levels in the cell 

samples from different time-points could have contained such large variation that the 

relative expression is not an accurate assessment. This is supported by the fact that 

the untransfected group shown in Figure 4.27 (A) did not follow the pattern of mock 

Cav3.1 mRNA expression. Other commonly used endogenous controls such as β-actin 

and glyceraldehyde phosphate dehydrogenase (GAPDH) are expressed at much 

higher levels than Cav3.1, and GAPDH expression has also been shown to be 

modulated by proliferation (Suzuki et al., 2000), so were therefore not utilised. The 
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siRNA employed in these experiments was chosen specifically as it was ON-

TARGETplus® SMARTpool® siRNA marketed to reduce off-target effects, but it is 

possible that the correct target in A7r5 cells was not hit. If time had permitted, the next 

stage of experiments could have involved short hairpin RNA (shRNA) to knock-down 

Cav3.1 mRNA expression. The use of shRNA has proven to be more efficient than 

siRNA, as shRNA is incorporated directly into the endogenous miRNA pathway (Rao et 

al., 2009). Higher concentrations of siRNA are required to produce mRNA knock-down 

in comparison to the required number of shRNA copies, and this can subsequently 

cause siRNA-mediated off-target effects (Rao et al., 2009). Knock-down of mRNA via 

shRNA can be constitutive or inducible, although the use of an inducible system offers 

more control of mRNA suppression regulation (Gossen & Bujard, 1992). The use of the 

tetracycline inducible system produces reversible mRNA suppression which has been 

utilised in colorectal cancer cells for the analysis of cell cycle arrest (van de Wetering et 

al., 2003). This suggests it would be a suitable system for the investigation of the 

proliferative effects of mRNA knock-down. This system has previously been employed 

in our laboratory group. 

 

In summary, these data suggest that both T-type and L-type Ca2+ channels are 

activated upon modest cell depolarisation, yet L-type Ca2+ channels appear to have a 

more prominent role in the generation of Ca2+ oscillations. L-type Ca2+ channels do not 

have a role in the proliferative response, but the Cav3.1 T-type Ca2+ channel is central 

to A7r5 cell proliferation. As T-type Ca2+ channels have been demonstrated to be 

present and functional in A7r5 cells, the effects of CO and HO-1 were next examined.  
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CHAPTER 5 

The effect of HO-1 and CO on proliferation and [Ca2+]i in A7r5 cells 

 

5.1 Introduction 

VSMCs are responsible for the maintenance of normal blood pressure and blood flow, 

and have a contractile phenotype in healthy vessels (Owens, 1995). In response to 

vascular injury, VSMCs undergo a phenotypic switch from contractile to synthetic cells, 

which migrate to the site of injury and proliferate. This proliferative response is a central 

feature of several cardiovascular disorders, such as atherosclerosis, hypertension, and 

restenosis (Rzucidlo et al., 2007). The environment encompassing such injury 

promotes HO-1 induction, which plays a role in limiting vessel damage (Durante, 2003). 

HO-1, via subsequent CO and bilirubin production, limits apoptosis, inflammation, 

oxidation, platelet aggregation, and proliferation. Indeed, the protective role of CO 

within the vasculature has been well defined, (Morita et al., 1997;Togane et al., 

2000;Song et al., 2002;Otterbein et al., 2003b;Raman et al., 2006;Zuckerbraun et al., 

2006;Ramlawi et al., 2007). CO has numerous intracellular targets, including heme-

containing proteins such as NOS, catalase, peroxidase, cytochrome c oxidase, 

cytochrome P450, sGC, in addition to NADPH oxidase and BKCa channels (Motterlini & 

Otterbein, 2010). What remains to be fully elucidated are the cellular targets by which 

this gasotransmitter exerts specific anti-proliferative effects.  

 

Redox signalling appears to be important for many effects associated with CO, 

including anti-proliferative effects. CO was shown to limit the proliferation of human 

airway smooth muscle cells by the inhibition of NADPH oxidase in addition to the 

production of mitochondrial ROS (Taille et al., 2005). This anti-proliferative mechanism 

involved a reduction of ERK1/2 phosphorylation and a subsequent increase in cyclin 

D1 expression. The involvement of ERK1/2 and the MAPK pathway, in addition to sGC 

and the cGMP pathway, have both been detailed as signalling pathways involved in the 

anti-proliferative effects of CO (Song et al., 2002;Stanford et al., 2003). Redox 

regulation also appears to have a role in the phenotypic switch of VSMCs; 

dehydroepiandrosterone is able to inhibit the phenotypic switch by enhancing the levels 

of glutaredoxin and glutathione (Urata et al., 2010), which are involved in the defence 

against oxidative stress (Fernandes & Holmgren, 2004). Our research group has 

demonstrated that CO can inhibit the L-type Ca2+ channel, with an IC50 of 14.8µM in 
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HEK/Cav1.2 cells, and given these channels provide an important route for Ca2+ entry 

in VSMCs, this has important implications during situations of vascular stress, when 

CO production is enhanced via HO-1 induction (Scragg et al., 2008). CO was shown to 

increase mitochondrial ROS, which caused redox modulation of cysteine residues 

within the L-type Ca2+ channel. Inhibition of the T-type Ca2+ channel by CO has been 

recently demonstrated via electrophysiological methods by our research group, and it is 

possible that redox modulation may also underlie this mechanism. CO and HO-1 

induction, in addition to the use of a reducing agent, were therefore examined in A7r5 

cells, and the effects on [Ca2+]i and proliferation assessed. 

 

5.2 Results 

 

5.2.1 The effect of CO on [Ca2+]i and cell proliferation 

The effect of CO on [Ca2+]i was assessed by application of CORM-3. After an initial 

exposure to 20mM K+ buffer, 10µM CORM-3 was applied prior to, and throughout the 

second exposure, which subsequently inhibited [Ca2+]i and reduced the Ca2+ oscillation 

frequency, as shown in Figure 5.1 panels (A), (D), and (G). There was no difference in 

the mean change in Fura 2 ratio or in mean oscillation frequency upon addition of 

10µM iCORM-3, as shown in Figure 5.1 panels (B), (E), and (H). To assess whether 

the redox state of the cellular environment affected the response to CORM-3, A7r5 

cells were pre-treated with a reducing agent, dithiothreitol (DTT), before applying 

CORM-3. Pre-treatment with 2µM DTT prior to 10µM CORM-3 application did not 

significantly reduce the Ca2+ oscillation frequency, as shown in Figure 5.1 (I), yet there 

appears to be a trend towards a lower oscillation frequency on the representative trace 

in panel (C). DTT pre-treatment did not completely prevent a decrease in [Ca2+]i, as 

shown in Figure 5.1 panels (C) and (F). When compared to the effect of CORM-3 alone 

via one-way ANOVA, DTT pre-treatment caused no significant difference in [Ca2+]i or 

oscillation frequency, as shown in Figure 5.2. The response of A7r5 cells to 80mM K+ 

buffer in the presence of 10µM CORM-3 was comparable to the control cell response, 

as shown in Figure 5.3. CORM-3 had no inhibitory effect on the mean integrated 

response when the cells were strongly depolarised; [Ca2+]i was not affected. CORM-3 

was assessed in a proliferation assay; A7r5 cell number was reduced by 5%, 8%, and 

16% in response to 3µM, 10µM, and 30µM CORM-3 respectively, yet proliferation was 

not significantly inhibited, as shown in Figure 5.4. Cell death was limited to 1% or less.   
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Figure 5.1 The effect of 10µM CORM-3, iCORM-3 and 2µM DTT on [Ca2+]i and Ca2+ 

oscillations 

Representative traces showing the response of A7r5 cells to 20mM K+ buffer in the 

presence of 10µM CORM-3, 10µM iCORM-3, and 10µM CORM-3 post 2µM DTT pre-

treatment (panels A-C). Trend graphs showing the change in Fura 2 ratio between K+ 

exposures, in the presence of 10µM CORM-3, 10µM iCORM-3, and 10µM CORM-3 

post 2µM DTT pre-treatment (panels D-F). Trend graphs showing the change in 

spikes/s between K+ exposures, in the presence of 10µM CORM-3, 10µM iCORM-3, 

and 10µM CORM-3 post 2µM DTT pre-treatment (panels G-I). The mean (± s.e.m.) 

response is shown to the right and left of the corresponding individual data points on 

each graph. Data were analysed by a two-tailed, paired t-test, ** p<0.01, n=5.  
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Figure 5.2 DTT does not significantly prevent the effects of CORM-3 

Bar graph showing the mean (± s.e.m.) change in Fura 2 ratio (A) and the change in 

spikes/s (B) in response to 20mM K+ buffer in the presence of 10µM CORM-3, plus or 

minus pre-treatment with 2µM DTT. n=5 
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Figure 5.3 The change in [Ca2+]i in response to 80mM K+ buffer containing 10µM 

CORM-3 

Representative trace showing the change of [Ca2+]i in response to 80mM K+ buffer (A) 

and in response to 80mM K+ buffer containing 10µM CORM-3 (B). Bar graph showing 

the mean (± s.e.m.) integrated response to 80mM K+ buffer, plus or minus the addition 

of 10µM CORM-3 (C). n=6. 
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Figure 5.4 CORM-3 has no effect on A7r5 proliferation 

Bar graph showing the proliferative response of A7r5 cells to increasing concentrations 

of CORM-3 (left y-axis). The overlaid red plot shows the corresponding non-viable cell 

count (right y-axis). Data are represented as ± s.e.m., n=6.  
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Co-application of 3µM mibefradil with concentrations of CORM-3 ranging from 1µM to 

30µM significantly inhibited cell proliferation without affecting cell viability, as shown in 

Figure 5.5. Cell death was limited to 1.6% or less. The application of 3µM mibefradil in 

isolation caused a 43% reduction of proliferation, as shown in the inset of Figure 5.5, 

whereas the co-application of 3µM mibefradil with 1µM, 3µM, 10µM and 30µM CORM-

3 caused a 26%, 34%, 35%, and a 36% reduction of proliferation respectively. These 

data imply competition for the same cellular target, namely the T-type Ca2+ channel. 

Although, no direct comparison can be made between the inset and the main graph in 

Figure 5.5, as the assays were performed at different times. The lack of effect of 10µM 

CORM-3 on cell viability demonstrated by the red line graph in Figure 5.4 was verified 

by the lack of caspase-3/7 activation shown in Figure 5.6. 

 

The simultaneous application of 2µM nifedipine and 10µM CORM-3 was examined to 

see how the response compared to the effects of nifedipine and Ni2+ co-application, 

and assess whether both the T-type and L-type components of the response to 20mM 

K+ buffer could be inhibited. Together, nifedipine and CORM-3 completely abolished 

the oscillatory response and significantly reduced [Ca2+]i by 48%, as shown in Figure 

5.7 (A). The co-application of nifedipine and Ni2+ also significantly reduced [Ca2+]i by 

48%, as shown in Figure 4.17 in chapter 4. Simultaneous application of 2µM nifedipine 

and 10µM CORM-3 significantly prevented the response to 20mM K+ buffer, as shown 

in Figure 5.7 (D) and (E). There was no siginificant difference between the response to 

CORM-3 and nifedipine vs the response to CORM-3 or nifedipine alone. Cell 

proliferation was inhibited by co-application of a range of CORM-3 concentrations with 

2µM nifedipine, as shown in Figure 5.8. 1µM, 3µM, 10µM, and 30µM CORM-3 caused 

a 41%, 62%, 68%, and a 62% reduction of cell number respectively. Cell death was 

limited to 6% or less. 

 

In summary, CORM-3 significanlty limited a rise in [Ca2+]i in response to moderate 

depolarisation, and also significantly inhibited Ca2+ oscillations. This effect was not 

significantly prevented by redox modulation. CORM-3 had no effect on [Ca2+]i when the 

cells were strongly depolarised, nor did CORM-3 have a significant effect on cell 

proliferation. The simultaneous application of CORM-3 and nifedipine caused no 

additive effect on [Ca2+]i levels, yet this combination significantly inhibited cell 

proliferation.  
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Figure 5.5 Co-application of CORM-3 and mibefradil inhibits A7r5 proliferation 

Bar graph showing the proliferative response of A7r5 cells to increasing concentrations 

of CORM-3, in the presence of 3µM mibefradil (left y-axis). The overlaid red plot shows 

the corresponding non-viable cell count (right y-axis). Data were analysed by a ratio 

repeated measures one-way ANOVA with Dunnett’s multiple comparison test, ** 

p<0.01, *** p<0.001 vs Day 3 Control. Data are represented as ± s.e.m., n=6. Inset is a 

replication of Figure 4.18 showing the effects of mibefradil on A7r5 cell proliferation. 
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Figure 5.6 CORM-3 and iCORM-3 do not induce caspase-3/7 activation 

Bar graph showing that neither 10µM CORM-3, nor 10µM iCORM-3, induced activation 

of caspase-3/7, n=11 and n=7 fields of view respectively. 2µM staurosporine treatment 

represented the positive control, A7r5 cells acted as the negative control, n=12 fields of 

view. Data are represented as mean ± s.e.m. Data were analysed by one-way ANOVA, 

with Bonferroni’s multiple comparison test, ** p<0.01, *** p<0.001 vs positive control. 
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Figure 5.7 Simultaneous addition of 10µM CORM-3 and 2µM nifedipine inhibits 

[Ca2+]i and Ca2+ oscillations 

Representative trace showing the response of A7r5 cells to 20mM K+ buffer in the 

presence of 10µM CORM-3 and 2µM nifedipine (A). Trend graph showing the decrease 

in Fura 2 ratio (B) and the decrease in the change in spikes/s (C) in response to 20mM 

K+ buffer followed by 20mM K+ buffer in the presence of 10µM CORM-3 and 2µM 

nifedipine. The mean (± s.e.m.) response is shown to the right and left of the 

corresponding individual data points on each graph. Bar graph showing the mean (± 

s.e.m.) change in Fura 2 ratio (D) and the change in spikes/s (E) in response to 20mM 

K+ buffer in the presence of the drug as indicated. Data were analysed by one-way 

ANOVA, followed by Tukey’s multiple comparison test, ** p<0.01, **** p<0.0001 vs K+, 

n=6. nif. = nifedipine.  

A B 

C 
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Figure 5.8 CORM-3 inhibits A7r5 proliferation in combination with nifedipine 

Bar graph showing the proliferative response of A7r5 cells to increasing concentrations 

of CORM-3, in the presence of 2µM nifedipine (left y-axis). The overlaid red plot shows 

the corresponding non-viable cell count (right y-axis). Data were analysed by ratio 

repeated measures one-way ANOVA with Dunnett’s multiple comparison test, ** 

p<0.01, *** p<0.001 vs Day 3 Control. Data are represented as mean ± s.e.m., n=3. 

  



147 
 

 

5.2.2 The effect of HO-1 modulation on [Ca2+]i and cell proliferation 

HO-1 induction by 10µM CoPPIX and 10µM hemin over a 24h period was verified by 

immunocytochemistry and is shown in Figure 5.9. The effects of HO-1 induction in 

response to modest depolarisation are shown in Figure 5.10. The level of [Ca2+]i was 

visibly lower in cells with HO-1 induction as shown by the example traces in panels (A) 

and (B); the mean change in Fura 2 ratio was reduced by 30% with respect to the 

control group, as shown in panel (C). The oscillation frequency was also visibly 

reduced, as shown in Figure 5.10 (D). It appears that there was a trend towards lower 

[Ca2+]i and Ca2+ oscillation frequency in response to CoPPIX pre-treatment, yet the 

data did not reach statistical significance. Figure 5.11 (A) shows the effect of nifedipine 

in comparison to the effects of nifedipine post HO-1 induction in Figure 5.11 (B). As 

stated in Chapter 4, nifedipine significantly reduced [Ca2+]i by 60% in comparison to 

control data. The addition of 2µM nifedipine after a 48h incubation with 10µM CoPPIX 

also completely abolished the Ca2+ oscillations, and significantly reduced [Ca2+]i by 

70% in comparison to control data. The representative trace in Figure 5.11 (B) shows 

the diminished response to 20mM K+ buffer, as indicated by the lower baseline of the 

Ca2+ oscillations. Furthermore, the amplitude of the oscillations appears to be 

increased, although this was not quantitatively assessed. Incubation of the cells with 

10µM CoPPIX, individually or followed by application of 2µM nifedipine, prevented a 

significant increase of [Ca2+]i, in response to 20mM K+ buffer, as shown in Figure 5.11 

(C). Incubation of the cells with 10µM CoPPIX followed by application of 2µM 

nifedipine, completely abolished Ca2+ oscillations, as shown in Figure 5.11 (D). 

 

HO-1 induction by a range of CoPPIX concentrations was verified by western blotting 

and is shown in Figure 5.12. At the 48h time-point, HO-1 protein expression was 

induced to a level of 57.72 ± 20.55% of β-actin in response to 10µM CoPPIX, and to a 

level of 55.92 ± 11.60% of β-actin in response to 30µM CoPPIX. CoPPIX was added to 

the cells as a single application on Day 0, and subsequent induction of the HO-1 

protein is shown in Figure 5.13. However, without re-application of CoPPIX, HO-1 

expression appears to begin to decline over the 3 day period, although not to a level of 

statistical significance. A7r5 cell proliferation was inhibited in a concentration 

dependent manner, as shown in Figure 5.14 (A), with no effect on cell viability as 

shown by the red line graph. Mean cell number was reduced by 30% and 41% for 

10µM and 30µM CoPPIX respectively, and cell death was limited to 1.6% or less. Cell  



148 
 

 

A    B  

C   

Figure 5.9 HO-1 induction by CoPPIX and hemin 

Immunocytochemistry of HO-1 induction (green) in A7r5 cells. Panel (A) illustrates HO-

1 expression after a 24h incubation with 10µM CoPPIX. Panel (B) illustrates HO-1 

expression after a 24h incubation with 10µM hemin. Panel (C) shows a control image 

without HO-1 induction. Cell nuclei were stained blue with DAPI. Cells were utilised at 

P6, and are representative images of 12 fields of view from n=6 experimental repeats. 
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Figure 5.10 The effect of 10µM CoPPIX on [Ca2+]i and Ca2+ oscillations 

Representative control trace showing the response of A7r5 cells to 20mM K+ buffer (A), 

and the response of A7r5 cells to 20mM K+ buffer after a 48h incubation with 10µM 

CoPPIX (B). Bar graph showing the mean (± s.e.m.) change in Fura 2 ratio in response 

to 20mM K+ buffer, plus or minus pre-treatment with 10µM CoPPIX (C). Bar graph 

showing the mean (± s.e.m.) spikes/s in response to 20mM K+ buffer, plus or minus 

pre-treatment with 10µM CoPPIX (D). n=4. 
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Figure 5.11 A7r5 [Ca2+]i and Ca2+ oscillations are inhibited by simultaneous 

CoPPIX and nifedipine treatment 

Representative trace showing the response of A7r5 cells to 20mM K+ buffer in the 

presence of 2µM nifedipine (A). Representative trace showing the response of A7r5 

cells, after a 48h incubation with 10µM CoPPIX, to 20mM K+ buffer in the presence of 

2µM nifedipine (B). Bar graph showing the change in Fura 2 ratio (C) and the change in 

spikes/s (D) in response to 20mM K+ buffer in the presence of the drug as indicated. 

Data are represented as mean (± s.e.m.) and were analysed by one-way ANOVA, 

followed by Tukey’s multiple comparison test, ** p<0.01, *** p<0.001 vs K+, n=6. nif. = 

nifedipine. 
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Figure 5.12 CoPPIX induces HO-1 protein expression in A7r5 cells 

Bar graph showing relative HO-1 protein expression in A7r5 cells in response to a 48h 

incubation with a range of CoPPIX concentrations, densitometric analyses were 

normalised relative to β-actin (A). Data are represented as mean ± s.e.m. and were 

analysed by one-way ANOVA with Dunnett’s multiple comparison test, * p<0.05 vs 

Control levels, n=3. Representative western blot of HO-1 and the corresponding β-actin 

loading control (B). The arrows represent the position of the molecular weight markers 

(top, 37KDa; bottom, 25kDa).   

HO-1 

Control      1µM             3µM               10µM         30µM 

β-actin 
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Figure 5.13 HO-1 induction by CoPPIX over a 3 day period 

Bar graph showing relative HO-1 protein expression in A7r5 cells following incubation 

with 10µM CoPPIX for 24h, 48h, and 72h, densitometric analyses were normalised 

relative to β-actin (A). Data are represented as mean ± s.e.m., n=3. Representative 

western blot of HO-1 and the corresponding β-actin loading control (B). The arrows 

represent the position of the molecular weight markers (top, 37KDa; bottom, 25kDa). 
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Figure 5.14 HO-1 induction by CoPPIX inhibits A7r5 cell proliferation in a 

concentration-dependent manner 

Panel (A) shows a bar graph of the proliferative response of A7r5 cells to increasing 

concentrations of CoPPIX (left y-axis). The overlaid red plot shows the corresponding 

non-viable cell count (right y-axis). Data were analysed by ratio repeated measures 

ANOVA with Dunnett’s multiple comparison test, ** p<0.01, *** p<0.001 vs Day 3 

Control, n=5. Line graph showing the effects of 10µM CoPPIX over a three day period; 

cell counts were taken daily to produce a 3 day time-course (B). Data were analysed by 

a two-way repeated measures ANOVA, with sample matching by time point. This was 

followed by Sidak’s multiple comparison test between control and treated groups for 

each time point, *** p<0.001, n=4. Data are represented as mean ± s.e.m.  
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number in response to 10µM CoPPIX was monitored daily for a period of 3 days to 

produce a 3 day time-course of proliferation. The line graph in Figure 5.14 (B) 

demonstrates that 10µM CoPPIX significantly reduced cell number by day 3. The 

minimal effect of 10µM CoPPIX on cell viability demonstrated by media counts in 

Figure 5.14 (A) was verified by the lack of caspase-3/7 activation shown in Figure 5.15. 

 

HO-1 induction by 10µM hemin over a 24h period was verified by 

immunocytochemistry and is shown in Figure 5.9 (B). HO-1 induction by a range of 

hemin concentrations was verified by western blotting and is shown in Figure 5.16. At 

the 48h time-point, HO-1 was induced to a level of 51.99 ± 1.73% of β-actin for 10µM 

hemin. After the addition of hemin on Day 0, the HO-1 protein was induced, but 

expression decreased over a 3 day period, as shown in Figure 5.17. Mean A7r5 cell 

number was reduced by 18% and 50% in response to 10µM and 30µM hemin 

respectively, as shown in Figure 5.18 (A). Cell death was 1% or less. Over a 3 day 

time-course, hemin inhibited the proliferative response of A7r5 cells, although not to a 

level of statistical significance, as shown in Figure 5.18 (B). 

 

A7r5 cells stably over-expressing human HO-1 (A7r5/hHO-1 cells) demonstrated a 

decline in HO-1 expression as they were passaged weekly over a three week period, 

which is demonstrated in Figure 5.19. The response of A7r5 cells and A7r5/hHO-1 cells 

to moderate depolarisation by 20mM K+ buffer is shown in Figure 5.20. A7r5/hHO-1 

cells demonstrated a smaller change in Fura 2 ratio than A7r5 cells, as shown by the 

bar graph in Figure 5.20 (C), yet the data did not reach statistical significance. There 

was a wide variation in the oscillatory response of A7r5/hHO-1 cells, as shown by 

Figure 5.20 (D). Figure 5.21 shows the proliferative response of A7r5 cells and 

A7r5/hHO-1 cells in the presence or absence of 10µM CoPPIX over a 3 day time-

course. The application of 10µM CoPPIX to A7r5 cells reduced the mean cell number 

by 38%. The addition of CoPPIX to the A7r5/hHO-1 cell group had an additional effect 

on the proliferative response, reducing mean cell number by a further 11% on day 3. 

The proliferative response between A7r5 cells and A7r5/hHO-1 cells was significantly 

different on day 2 and day 3, as shown in Figure 5.21 (B). 
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Figure 5.15 CoPPIX does not induce caspase-3/7 activation 

Bar graph showing that 10µM CoPPIX does not induce apoptosis by caspase-3/7 

activation. 2µM staurosporine treatment represented the positive control, untreated 

A7r5 cells acted as the negative control, n=12 fields of view for each group. CoPPIX 

treated, n=6 fields of view. Data were analysed by a one-way ANOVA, with 

Bonferroni’s multiple comparison test, ** p<0.01, *** p<0.001. Data are represented as 

± s.e.m. 
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Figure 5.16 Hemin induces HO-1 protein expression in A7r5 cells 

Bar graph showing relative HO-1 protein expression in A7r5 cells in response to a 48h 

incubation with a range of hemin concentrations, densitometric analyses were 

normalised relative to β-actin (A). Data are represented as mean ± s.e.m., and data 

were analysed by one-way ANOVA with Dunnett’s multiple comparison test, * p<0.05 

vs Control levels, n=3. Representative western blot of HO-1 and the corresponding β-

actin loading control (B). The arrows represent the position of the molecular weight 

markers (top, 37KDa; bottom, 25kDa).   

 Control         1µM           3µM            10µM       30µM 

HO-1 

β-actin 
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Figure 5.17 HO-1 induction by hemin declines over a 3 day period 

Bar graph showing relative HO-1 protein expression in A7r5 cells following incubation 

with 10µM hemin for 24h, 48h, and 72h, densitometric analyses were normalised 

relative to β-actin (A). Data are represented as mean ± s.e.m., and data were analysed 

by one-way ANOVA with Dunnett’s multiple comparison test, * p<0.05, ** p<0.01 vs 

Control levels, n=3. Representative western blot of HO-1 and the corresponding β-actin 

loading control (B). The arrows represent the position of the molecular weight markers 

(top, 37KDa; bottom, 25kDa).  

   Control    24h      48h      72h 

β-actin 
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Figure 5.18 The effect of hemin on A7r5 cell proliferation 

Panel (A) shows a bar graph of the proliferative response of A7r5 cells to increasing 

concentrations of hemin (left y-axis). The overlaid red plot shows the corresponding 

non-viable cell count (right y-axis). Data were analysed by ratio repeated measures 

one-way ANOVA with Dunnett’s multiple comparison test, *** p<0.001 vs Day 3 

Control, n=3. Line graph showing the effects of 10µM hemin; cell counts were taken 

daily to produce a three day time-course (B), n=3. Data are represented at mean ± 

s.e.m. 
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Figure 5.19 HO-1 expression by A7r5/hHO-1 cells 

Illustrative western blot showing the decline in HO-1 protein expression by A7r5/hHO-1 

cells over 3 passages. Underneath is the corresponding β-actin loading control. The 

arrows represent the position of the molecular weight markers (top, 37KDa; bottom, 

25kDa). n=1 

          P 1        P 2   P 3 

HO-1 
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Figure 5.20 [Ca2+]i and Ca2+ oscillations in A7r5 vs A7r5/hHO-1 cells 

Representative control trace showing the response of A7r5 cells to 20mM K+ buffer (A). 

Representative trace showing the response of A7r5/hHO-1 cells to 20mM K+ buffer (B). 

Bar graph showing the mean change in Fura 2 ratio in response to 20mM K+ buffer, for 

A7r5 cells and A7r5/hHO-1 cells. (C). Bar graph showing the mean spikes/s in 

response to 20mM K+ buffer, for A7r5 cells and A7r5/hHO-1 cells. Data are 

represented mean ± s.e.m., n=9. 
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Figure 5.21 Stable over-expression of HO-1 inhibits A7r5 cell proliferation 

Line graph showing the proliferative response of A7r5 cells and hHO-1/A7r5 cells 

±10µM CoPPIX over a 3 day period; cell counts were taken daily to produce a 3 day 

time-course (A). Line graph showing the significant difference in proliferation between 

A7r5 cells and hHO-1/A7r5 cells on days 2 and 3 of the assay (B). Data were analysed 

by two-way repeated measures ANOVA, with sample matching by time point. This was 

followed by Sidak’s multiple comparison test between A7r5 and hHO-1 cell groups for 

each time point, * p<0.05, ** p<0.01 hHO-1 vs A7r5, n=5. Data are represented as 

mean ± s.e.m. 
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QC-15 is a non-competitive inhibitor of HO-1 that binds to the distal side of the heme 

binding pocket within the enzyme (Rahman et al., 2012). Various combinations of 

CoPPIX and QC-15 (a gift from Prof. Kanji Nakatsu, Queen’s University, Kingston, 

Canada) were assessed in attempt to establish how the effects of this novel HO-1 

inhibitor were exerted. One group of cells were treated with QC-15 and this was added 

to media already containing CoPPIX, to investigate whether inhibition was possible in 

the presence of an inducer. Another group of cells were treated with QC-15, but this 

was added to fresh media after the cells had been previously exposed to CoPPIX, in 

order to establish whether the effect of the inducer could be reversed. Figure 5.22 

shows that QC-15 was able to reduce the level of CoPPIX induced HO-1 expression 

when CoPPIX containing media was removed from the cells, and fresh media added 

containing 10µM QC-15. This is shown by the HO-1 protein levels; 3.91 ± 1.30% of β-

actin for 24h CoPPIX/48h QC-15, and 33.84 ± 4.58% of β-actin for 48h CoPPIX/24h 

QC-15. The level of HO-1 induction was higher when CoPPIX remained in the media 

with QC-15; 62.95 ± 26.91% of β-actin for 24h CoPPIX+48h QC-15, 53.46 ± 5.66% of 

β-actin for 48h CoPPIX+24h QC-15. With regards to the proliferative response of A7r5 

cells to such combinations of CoPPIX and QC-15, the presence of CoPPIX in any 

combination significantly inhibited proliferation, as shown in Figure 5.23. The effect of 

QC-15 independent of CoPPIX also appeared to reduce cell proliferation, but did not 

reach statistical significance. There was no effect on cell viability by CoPPIX or QC-15, 

as demonstrated by the red line graph. 

 

In summary, HO-1 induction by CoPPIX and hemin was verified by 

immunocytochemistry and westen blotting. CoPPIX treatment caused a trend towards 

lower [Ca2+]i and Ca2+ oscillations, but did not reach a level of statistical significance. 

Treatment of A7r5 cells with CoPPIX also appeared to increase the amplitude of Ca2+ 

oscillations. The combined effect of CoPPIX and nifedipine treatment produced additive 

effects on [Ca2+]i compared to nifedipine alone. HO-1 induction by CoPPIX significantly 

inhibited cell proliferation. Treatment with hemin produced a trend towards lower cell 

number, but data did not reach statistical significance. hHO-1/A7r5 cells proliferated 

significantly less than A7r5 cells, yet no significant effect were seen on [Ca2+]i levels. 

The novel HO-1 inhibitor, QC-15, was able to limit HO-1 induction to a greater extent in 

the absence of CoPPIX, but QC-15 also appeared to negatively regulate A7r5 cell 

proliferation. 
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Figure 5.22 The effect of QC-15 on HO-1 induction by CoPPIX 

(A) Bar graph showing relative HO-1 protein expression in A7r5 cells in response to 

10µM CoPPIX, 10µM QC-15, or combinations of the two compounds; CoPPIX initially 

for 24h then fresh media with QC-15 for 48h; CoPPIX initially for 24h, then QC-15 for 

48h in addition to the existing media; CoPPIX initially for 48h then fresh media with QC-

15 for 24h; CoPPIX initially for 48h, then QC-15 for 24h in addition to the existing 

media. Densitometric analyses were normalised relative to β-actin, n=3. Data are 

represented as mean ± s.e.m., and data were analysed by one-way ANOVA with 

Dunnett’s multiple comparison test, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 vs 

CoPPIX levels. (B) Representative western blot of HO-1 and the corresponding β-actin 

loading control. Each lane corresponds to the above bar on the graph. The arrows 

represent the position of the molecular weight markers (top, 37KDa; bottom, 25kDa).  

HO-1 

β-actin 
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Figure 5.23 The effect of QC-15 on A7r5 cell proliferation 

Bar graph showing the proliferative response of A7r5 cells to 10µM CoPPIX, 10µM QC-

15, or combinations of the two compounds (left y-axis); CoPPIX initially for 24h then 

fresh media with QC-15 for 48h; CoPPIX initially for 24h, then QC-15 for 48h in addition 

to the existing media; CoPPIX initially for 48h then fresh media with QC-15 for 24h; 

CoPPIX initially for 48h, then QC-15 for 24h in addition to the existing media. The 

overlaid red plot shows the corresponding non-viable cell count (right y-axis). Data are 

represented as mean ± s.e.m., and data were analysed by one-way ANOVA with 

Dunnett’s multiple comparison test, ** p<0.01, *** p<0.001 vs Day 3 Control, n=4.  
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5.3 Discussion 

Taken together, Figures 5.1 and 5.3 suggest that CORM-3 is able to inhibit T-type Ca2+ 

channels. Significant effects on [Ca2+]i and Ca2+ oscillations were demonstrated when 

the cells were modestly depolarised (20mM K+ buffer), but not when they were strongly 

depolarised (80mM K+ buffer), implying T-type Ca2+ channels were preferentially 

inhibited. Given that Ni2+ did not affect Ca2+ oscillation frequency (Figure 4.11, Chapter 

4), but mibefradil did significantly reduce Ca2+ oscillations (Figure 4.8, Chapter 4), 

possibly as a result of non-selective effects on L-type Ca2+ channels, it appears logical 

to conclude that by significantly reducing Ca2+ oscillations, CORM-3 also has non-

selective effects. However, the fact that CORM-3 had no effect on [Ca2+]i when L-type 

Ca2+ channels were preferentially activated, suggests that CORM-3 preferentially 

inhibits T-type Ca2+ channels. CORM-3 caused a significant decrease in [Ca2+]i 

regardless of DTT pre-treatment, yet Ca2+ oscillations were not significantly affected, 

despite there being a trend towards a lower oscillation frequency. Our research group 

has demonstrated that CO can inhibit L-type Ca2+ currents in cardiac myocytes and 

HEK293 cells expressing the human Cav1.2 subunit, although at a higher concentration 

of 30µM CORM-2, and also that DTT is able to prevent the effects of CO on this 

channel (Scragg et al., 2008). Therefore, the non-significant effect of DTT pre-

treatment on Ca2+ oscillations could also be attributed to the preventative effect on L-

type Ca2+ channels. CO has also been shown to augment human recombinant 

interstitial smooth muscle L-type Ca2+channels (Lim et al., 2005). The study by Scragg 

et al. details how reactive oxygen species produced by electron transport chain 

modulation alter the redox state of the cell and the L-type Ca2+ channel, thereby 

altering the channel function. T-type Ca2+ channels have been shown to be modulated 

by a variety of endogenous ligands and pathways. The reducing agent L-cysteine has 

been demonstrated to augment T-type Ca2+ currents in sensory neurons (Nelson et al., 

2005). The neurotransmitter Zn2+ has been shown to preferentially inhibit Cav3.2 

channels via an extracellular histidine residue at position 191 (His191) in domain I of 

the Cav3.2 α1 subunit (Traboulsie et al., 2007), and this can be prevented by Zn2+ ion 

chelation via reducing agents (Nelson et al., 2007b). His191 is also the site implicated 

in preferential Ni2+ inhibition (Kang et al., 2006), and the site of metal-catalysed 

oxidation by ascorbate, which subsequently inhibits the channel (Nelson et al., 2007a). 

Evidently, redox sites within the T-type Ca2+ channel are important for modulation. DTT 

has been shown to inhibit Cav3.1 T-type Ca2+ channels in HEK293/Cav3.1 cells by 

causing a hyperpolarising shift of current activation (Karmazinova et al., 2010). 

Through Cav3.1 mutagenesis, this study demonstrated that extracellular cysteine 

residues are required for current inhibition by DTT. If DTT had produced significant 
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effects on [Ca2+]i in the present study, further experiments to elucidate which residues 

were affected by CO and DTT would be required. T-type Ca2+ channel mutagenesis 

followed by electrophysiological assessment of channel currents would be the logical 

next step. Cysteine residues are modified by the redox status of the cell (Chung et al., 

2013), and are a likely target for redox modulation within the Cav3.1 T-type Ca2+ 

channel protein (Karmazinova et al., 2010). 

 

CORM-3 did not significantly inhibit A7r5 cell proliferation, and in combination with 3µM 

mibefradil, CORM-3 caused no additive inhibitory effects in comparison to the effect of 

mibefradil alone. CORM-3 is stable for over 24h at 37ºC when dissolved in water, and 

releases CO upon ligand exchange in physiological solutions with a half-life of 4-18 

minutes (Clark et al., 2003). It has been proposed that CORM-3 reacts with plasma 

proteins in vivo to form ruthenium-protein adducts, and these adducts then decay 

slowly to liberate CO (Santos et al., 2012). In the present experiment, CORM-3 was 

applied to the medium twice daily to ensure the cells were consistently exposed to CO. 

The myoglobin assay provides a method for the quantitation of CO released from 

CORMs, (Motterlini et al., 2002;Atkin et al., 2011), and was employed by our research 

group during preliminary investigations of CORM-3 activity prior to the use of this 

compound in proliferation assays. However, the low expression levels of T-type Ca2+ 

channels in A7r5 cells likely constrained the elucidation of the anti-proliferative effects 

of CO within this cell line. When CORM-3 was applied in combination with 2µM 

nifedipine, proliferation was significantly inhibited. The proliferative response of the 

cells in Figure 5.8 was lower than in other proliferation assays. An explanation for this 

could be that as the cells reached P6, it was discovered that they proliferated at a 

slower rate. The passages used in the Figure 5.8 were a combination of passages 4, 5, 

and 6. However, the effects of both nifedipine and CORM-3 on [Ca2+]i when applied 

simultaneously were less than the effect of nifedipine alone; [Ca2+]i reached a higher 

level in the presence of both compounds. The fact that the proliferative response to 

both compounds does not reflect the change [Ca2+]i levels is unexpected. These data 

imply that L-type Ca2+ channels, or a proportion of these channels, are active upon 

modest depolarisation therefore, it is possible that this activity is masking the activity of 

T-type Ca2+ channels. The effects of 2µM nifedipine on [Ca2+]i levels, as shown in 

Figure 4.13 in Chapter 4, demonstrate that L-type channels are prominent in A7r5 cells, 

yet Figure 4.21 shows that 2µM nifedipine has no inhibitory effect on proliferation. As 

CO has been shown to modulate both L-type and T-type Ca2+ channel activity, it is 

possible that when L-type Ca2+ channels are inhibited by nifedipine, the inhibitory effect 
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of CO on T-type Ca2+ channels is unmasked. This is likely to be more apparent in the 

setting of a proliferation assay, as a proportion of T-type Ca2+ channels are active at 

RMP, and the contribution of these channels to resting [Ca2+]i levels is greater than that 

of L-type Ca2+ channels. 

 

HO-1 induction via 10µM CoPPIX pre-treatment reduced [Ca2+]i and Ca2+ oscillation 

frequency, but not to a level of statistical significance. However, the trends may have 

proven significant if the number of experimental repeats was increased. The application 

of nifedipine after CoPPIX pre-treatment reduced [Ca2+]i levels by a greater extent than 

nifedipine treatment alone; implying HO-1 induction and subsequent CO exposure is 

able to reduce [Ca2+]i by a mechanism independent of L-type Ca2+ channels. This 

additional effect by CoPPIX, which was not produced by CORM-3 in the presence of 

nifedipine, may be attributable to the prolonged exposure of the cells to CO as a result 

of a 48h exposure to CoPPIX. Interestingly, the amplitude of the Ca2+ oscillations 

produced in response to HO-1 induction in both Figures 5.10 and 5.11 appear to be 

increased in comparison to the control traces. In hindsight, analysis of the Ca2+ 

oscillation amplitude between control and HO-1-induced traces should have been 

performed. Figure 5.11 (C) shows that Fura 2 ratio was significantly reduced by HO-1 

induction, yet the representative traces in Figures 5.10 and 5.11 (B) imply that Ca2+ 

oscillation frequency decreases with HO-1 induction. These observations suggest that 

HO-1-derived CO is able to limit [Ca2+]i, possibly by inhibition of T-type Ca2+ channels 

(as suggested by Figures 3.13 and 5.10), but that Ca2+ movement with each oscillation 

is increased, possibly via L-type Ca2+ channels. The potential inhibition of T-type Ca2+ 

channels by HO-1-derived CO may have revealed the full response of L-type Ca2+ 

channels and their influence on Ca2+ oscillations. 

 

Proliferation of A7r5 cells was significantly inhibited by 10µM CoPPIX. There was also 

a general trend of decreased cell proliferation in response to hemin, although a level of 

statistical significance was not reached. The anti-proliferative effects of hemin were 

less potent than the effects of CoPPIX. This is surprising as hemin also acts as a 

substrate for HO-1, therefore one would expect higher enzyme activity and more CO 

production. If time had permitted, the levels of HO-1 activity after induction by the two 

metalloporphyrins could have been assessed using the biliverdin reductase assay 

(Huber, III et al., 2009). Taking into consideration the significant effects of CORM-3 and 

CoPPIX on HEK293/Cav3.2 cell proliferation and [Ca2+]i, it is tempting to speculate that 
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the significant inhibitory effects of CoPPIX on A7r5 proliferation are due to T-type Ca2+ 

channel inhibition. However, this cannot be reliably concluded given the insignificant 

effects of CORM-3 on proliferation, and of CoPPIX on [Ca2+]i levels. 

 

As the level of HO-1 expression deterioratied during the passage of A7r5/hHO-1 cells, 

early passage numbers were utilised in the proliferation assays and microfluorimetry 

recordings. A7r5/hHO-1 proliferation was significantly lower than A7r5 cell proliferation, 

implying the level of HO-1 activity as a result of over-expression is comparable to the 

effects of 10µM CoPPIX and 30µM hemin. As A7r5/hHO-1 proliferation was lower than 

the CoPPIX induced anti-proliferative effects in A7r5 cells, it is feasible that the 

constant level of over-expressed HO-1 activity, and subsequent CO production, 

continuously limited the proliferative response. Indeed, rat VSMC proliferation was also 

inhibited by HO-1 over-expression using a retroviral vector (Zhang et al., 2002). 

However, the mechanism underlying this response was not fully elucidated. As the 

application of CoPPIX reduces the proliferative response of A7r5/hHO-1 by a further 

12%, it appears there is scope for further HO-1 induction. The level of A7r5/hHO-1-

mediated CO production was not high enough to reduce [Ca2+]i significantly in 

A7r5/hHO-1 cells. The mircofluorimetry data provide a snapshot of Ca2+ handling over 

a short time window, whereas proliferation assays provide a continuous assessment of 

the cell response. Therefore, the chronic exposure of the cells to HO-1 and CO is more 

accurately assessed by the latter. 

 

The densitometry data in Figure 5.22 (A) imply that QC-15 is able to inhibit HO-1 

induction by CoPPIX after a 24h exposure, but induction will still occur if CoPPIX is 

maintained in the media. This suggests that there was a level of competition between 

the two compounds because, if CoPPIX was present in addition to QC-15, HO-1 

induction ensued. The inhibition of A7r5 proliferation in Figure 5.23 by QC-15 was 

surprising given that this compound was developed as a HO-1 inhibitor, as it is HO-1 

induction that has demonstrated anti-proliferative effects previously (Duckers et al., 

2001;Tulis et al., 2001;Peyton et al., 2002;Zhang et al., 2002;Choi et al., 2009;Hyvelin 

et al., 2010). The anti-proliferative effects of combinations of QC-15 and CoPPIX 

cannot be solely attributed to the induction of HO-1, as QC-15 also negatively affected 

the proliferative response. Further evidence of this notion is given by the fact that HO-1 

was not induced by the 24h incubation with CoPPIX which was then replaced by QC-

15 for a further 48h, as demonstrated in Figure 5.22, yet proliferation was inhibited by 
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this combination. HO-1 is inhibited more potently by QC-15 than HO-2, and QC-15 has 

been shown to have little effect on other heme-containing enzymes, such as sGC and 

NOS (Kinobe et al., 2006). However, there appears to be additional off-target effects 

with regards to A7r5 proliferation. Indeed, neointima formation has been shown to be 

reduced in iNOS knockout mice (Chyu et al., 1999), therefore even minimal off-target 

effects of QC-15, on NOS for example, may have limited the proliferative response of 

A7r5 cells. 

 

In summary, despite the minimal effects of CORM-3 alone on A7r5 cell proliferation, 

microfluorimetry data indirectly imply that CO can inhibit native T-type Ca2+ channels in 

these cells. HO-1 induction or over-expression, and subsequent CO production, have 

anti-proliferative effects and visibly reduce [Ca2+]i. Although, the inhibitory effect of 

CORM-3 on [Ca2+]i was not significantly prevented by redox modulation, transient 

receptor potential channels have been shown to be modulated by the extracellular 

redox protein, thioredoxin (Beech & Sukumar, 2007). Thioredoxin has an important role 

in maintaining cellular redox status (Yamawaki et al., 2003), and oxidative stress is a 

feature of many cardiovascular disorders (Paravicini & Touyz, 2006;Kim et al., 

2011b;Chung et al., 2013). Excess pathological proliferation and T-type Ca2+ channel 

up-regulation (Rodman et al., 2005;Cribbs, 2006;Pluteanu & Cribbs, 2011), in addition 

to HO-1 induction and subsequent CO production (Wang & Chau, 2010), are central to 

such disorders, therefore a possible role for thioredoxin as a modulator of T-type Ca2+ 

channels warrants investigation. Indeed, ROS have been shown to increase VSMC 

differentiation (Su et al., 2001), therefore the redox status of VSMCs during the 

response to injury may provide the specific environment for CO to exert effects on the 

T-type Ca2+ channel. 
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CHAPTER 6 

The effect of T-type Ca2+ channel inhibition, HO-1 induction, and CO on 

human smooth muscle cell proliferation 

 

6.1 Introduction 

Vascular injury and ensuing complications arise from endothelial dysfunction or 

damage. Interventions such as stenting and angioplasty, and disorders such as 

hypertension and atherosclerosis, compromise the integrity of the endothelium and a 

an inflammatory response ensues, followed by an increase in oxidative stress and 

remodelling (Rzucidlo et al., 2007). In response to this injury, VSMCs de-differentiate, 

re-enter the cell cycle, migrate to the site of injury and proliferate (Rzucidlo et al., 

2007). Excessive VSMC proliferation can be detrimental to vascular function, as they 

produce extracellular matrix that contributes to the formation of atherosclerotic plaques 

and hyperplastic lesions (Rzucidlo et al., 2007), and neointima formation can reduce or 

even occlude blood flow. Under such conditions of oxidative and inflammatory stress, 

HO-1 is induced, and the by-product of HO-1 activity, CO, has been shown to have 

anti-proliferative effects in VSMCs (Kim et al., 2011b). The anti-proliferative effects of 

HO-1 and CO have been demonstrated across different species. HO-1 induction was 

shown to limit vascular remodelling in vivo following balloon injury in rats (Tulis et al., 

2001), and HO-1 derived CO reduced neointima formation and inhibited proliferation of 

rat aortic VSMCs (Togane et al., 2000;Peyton et al., 2002). VSMC proliferation was 

reduced in a pig model of arterial injury after HO-1 induction (Duckers et al., 2001), and 

HO-1 induction in stented rat aorta and rabbit iliac arteries limited neointimal 

hyperplasia, in addition to apoptosis and inflammation (Hyvelin et al., 2010). 

 

Previous chapters have detailed the anti-proliferative effects of CO in HEK293/Cav3.2 

cells and rat aortic VSMCs. The hypothesis that the T-type Ca2+ channel is a target of 

CO has been strengthened by the data generated thus far. Primary VSMCs were 

employed in order to assess the effects of HO-1 induction, CO and T-type Ca2+ channel 

inhibition on proliferation in a model with greater relevance to human disease. Both 

human saphenous vein smooth muscle cells (HSVSMC) and human coronary artery 

smooth muscle cells (HCASMC) were utilised. 
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6.2 Results 

6.2.1 Characterisation of HSVSMCs 

Immunocytochemistry was performed on HSVSMCs to confirm their smooth muscle 

cell properties. Figure 6.1 illustrates positive staining for smooth muscle α-actin (panels 

A and E), smooth muscle myosin heavy chain (panels B and F), and vimentin (panel 

C). In addition, a degree of co-localisation of smooth muscle α-actin and myosin heavy 

chain can be seen in Figure 6.1 panel (D), as demonstrated by the orange staining in 

the cell in the centre of the image. The corresponding α-actin and myosin heavy chain 

images are shown in panels (E) and (F). The presence of T-type Ca2+ channels were 

also demonstrated by immunocytochemistry. Figure 6.2 shows positive staining for 

Cav3.1 and Cav3.2, with denser staining of Cav3.1 in peri-nuclear regions and what 

appears to be an association with the Golgi network. Figure 6.3 (A) shows the only 

successful identification of Cav3.1 via western blot. The channel is represented most 

clearly in lanes 2 and 4, which correspond to a membrane enriched and an untreated 

HSVSMC sample respectively. HEK293/Cav3.1 cells were used as the positive control. 

Immunoprecipitation of the T-type Ca2+ channels was attempted on two occasions 

without success. Figure 6.3 (B) shows the wide variation in mRNA expression levels of 

Cav3.1 from six patient samples of HSVSMCs, the cell passages ranged from P2 to P6. 

Figure 6.4 shows the mRNA expression levels of Cav3.2, detectable in only two patient 

samples, which exhibit a trend of considerably lower expression than Cav3.1. Figure 

6.5 demonstrates the growth characteristics of HSVSMCs in response to 0.4% or 10% 

serum-containing medium. The 10% serum-containing medium was utilised to 

encourage cell proliferation, whilst the 0.4% serum-containing medium was employed 

to induce cell senescence. There was a significant difference in cell number between 

the 10% and 0.4% experimental groups at days 3 and 4 of the assay. Subsequent 

proliferation assays involving human VSMCs were therefore performed over 4 days in 

order to detect reliably, the significant effects of compounds used in this study. 

 

6.2.2 The effect of T-type Ca2+ channel inhibition on HSVSMC and HCASMC 

proliferation 

Proliferation of both HSVSMCs and HCASMCs was significantly inhibited by mibefradil, 

as shown in Figures 6.6 and 6.7 respectively. There was a concentration-dependent 

decrease in HSVSMC proliferation, as shown in Figure 6.6 (A), yet concentrations of 

10µM and 30µM mibefradil reduced cell viability to 50%. Cells were counted daily for a   
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A   B  

C   D  

E   F  

Figure 6.1 Characterisation of HSVSMCs 

Immunocytochemistry of HSVSMCs showing smooth muscle α-actin staining (red) (A), 

smooth muscle myosin heavy chain staining (green) (B), vimentin staining (red) (C), 

smooth muscle α-actin and myosin heavy chain co-localisation (D). Panels (E) and (F) 

show the corresponding smooth muscle α-actin (red) and smooth muscle myosin heavy 

chain (green) of image (D). Cell nuclei were stained blue with DAPI. Cells were utilised 

at P5, and are representative images of 12 fields of view from n=6 experimental 

repeats. 
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A   B  

C  

Figure 6.2 Expression of Cav3.1 and Cav3.2 in HSVSMCs 

Immunocytochemistry of HSVSMCs showing staining for Cav3.1 (green) (A), and for 

Cav3.2 (green) (B). Panel (C) shows a control image without primary antibody. Cell 

nuclei were stained blue with DAPI. Cells were utilised at P3, and are representative 

images of 10 fields of view from n=5 experimental repeats. 
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Figure 6.3 Expression of the Cav3.1 T-type Ca2+ channel in HSVSMCs 

Western blot of Cav3.1 T-type Ca2+ channel expression using an anti-Cav3.1 antibody 

from Alomone (A), in various cell samples (SV; control HSVSMC, SV/M.E.; membrane 

enriched HSVSMC, Cav3.1; HEK293/Cav3.1 cells). The arrow represents the position of 

the 250kDa molecular weight marker, and of the Cav3.1 protein. Below is the 

corresponding β-actin loading control. Panel (B) shows a bar graph of Cav3.1 mRNA 

expression, relative to the endogenous control, HPRT1 (Hypoxanthine 

phosphoribosyltransferase 1), in samples of HSVSMCs from 6 different patients at P2 

to P6. Samples were analysed in triplicate and represented as mean ± s.e.m.  

SV/M.E. SV/M.E.  SV/M.E.     SV            SV         Cav3.1 

  

 

β-actin 

Cav3.1 

    1        2           3    4       5  6 
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Figure 6.4 Expression of the Cav3.2 T-type Ca2+ channel in HSVSMCs 

Bar graph of Cav3.2 mRNA expression relative to the endogenous control, HPRT1, 

detectable in only two patient samples of HSVSMCs. Samples were at P3 and P4, 

analysed in triplicate and represented as mean ± s.e.m. 
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Figure 6.5 Growth characteristics of HSVSMCs 

Line graph showing the daily counts of HSVSMCs in response to 0.4% (grey line) or 

10% serum-containing media (black line), over a 4 day time-course, n=4. Data are 

represented as mean ± s.e.m., and data were analysed by two-way repeated measures 

ANOVA with sample matching by time point. This was followed by Sidak’s multiple 

comparison test between control and treated groups for each time point, * p<0.05, *** 

p<0.001. 
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Figure 6.6 Mibefradil inhibits HSVSMC proliferation 

Bar graph showing the proliferative response of HSVSMCs (left y-axis) to increasing 

concentrations of mibefradil (A). The overlaid red plot (right y-axis) shows the 

corresponding non-viable cell count. Data were analysed by ratio repeated measures 

one-way ANOVA with Dunnett’s multiple comparison test, *** p<0.001 vs Day 4 

Control, n=4. Line graph of the effects of 3µM mibefradil over a 4 day time-course (B), 

data were analysed by two-way repeated measures ANOVA with sample matching by 

time point. This was followed by Sidak’s multiple comparison test between control and 

treated groups for each time point, ** p<0.01, n=4. Data are represented as mean ± 

s.e.m.  
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Figure 6.7 Mibefradil inhibits HCASMC proliferation 

Bar graph showing the proliferative response of HCASMCs (left y-axis) to increasing 

concentrations of mibefradil (A). The overlaid red plot shows the corresponding non-

viable cell count (right y-axis). Data were analysed by ratio repeated measures one-

way ANOVA with Dunnett’s multiple comparison test, * p<0.05, **** p<0.0001 vs Day 4 

Control, n=5. Line graph of the effects of 3µM mibefradil over time (B), data were 

analysed by two-way repeated measures ANOVA with sample matching by time point. 

This was followed by Sidak’s multiple comparison test between control and treated 

groups for each time point, * p<0.05, n=4. Data are represented as mean ± s.e.m. 
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period of 4 days to assess the proliferative response of 3µM mibefradil over time; 

producing a 4 day time-course. Cell proliferation was inhibited by 34% and 39% in the 

presence of 3µM mibefradil on day 4, as shown in Figure 6.6 (A) and (B) respectively. 

Despite the fact that 3µM mibefradil has been demonstrated to have non-selective 

effects in A7r5 cells, this concentration produced visible effects on human VSMC 

proliferation, without causing cytotoxicity as assessed via non-viable cell counts. Given 

that inhibition of L-type Ca2+ channels by 2µM nifedipine did not cause significant 

inhibition of cell proliferation in A7r5 cells, as shown in Figure 4.21 (Chapter 4), one 

can speculate that any off-target effects of mibefradil on L-type Ca2+ channels would 

therefore, not significantly inhibit cell proliferation. Additionally, mibefradil was the most 

selective T-type blocker available at the time of these experiments. HCASMCs 

appeared more sensitive; 3µM mibefradil caused 5% cell death, and higher 

concentrations were increasingly cytotoxic, as shown in Figure 6.7 (A). Cell 

proliferation was inhibited by 52% and 35% in the presence of 3µM mibefradil on day 4, 

as shown in Figure 6.7 (A) and (B) respectively. However, the combination of all day 4 

counts to produce n=9 demonstrates that cell proliferation was inhibited by 43% in the 

presence of 3µM mibefradil (graph not shown). In summary, T-type Ca2+ channel 

inhibiton by 3µM mibefradil limits proliferation of HSVSMC and HCASMC to similar 

extents. 

 

6.2.3 The effect of CO on HSVSMC and HCASMC proliferation 

CORM-3 inhibited the proliferation of HSVSMCs and HCASMCs in a concentration 

dependent manner without causing effects on cell viability. HSVSMC number was 

reduced by 45% in the presence of 10µM CORM-3, as shown in Figure 6.8. HCASMC 

number was reduced by 22% and 34% in the presence of 10µM CORM-3, as shown in 

Figure 6.9 (A) and (B) respectively. However, the combination of all day 4 counts to 

produce n=7 indicated that cell proliferation was inhibited by 25% in the presence of 

10µM CORM-3 (graph not shown). 

 

6.2.4 The effect of HO-1 modulation on HSVSMC and HCASMC proliferation 

Immunocytochemistry of HSVSMC in Figure 6.10 illustrates that HO-1 is induced by 

3µM CoPPIX (panel A) and 3µM hemin (panel B) over 24h. Figure 6.11 illustrates the 

change in HO-1 protein expression after treatment with increasing concentrations of 

CoPPIX. Panels (A) and (B) show the levels of HO-1 protein expression at 48h and at   
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Figure 6.8 CORM-3 inhibits HSVSMC proliferation 

Bar graph showing the proliferative response of HSVSMCs (left y-axis) to increasing 

concentrations of CORM-3 (right y-axis). The overlaid red plot shows the 

corresponding non-viable cell count. Data are represented as mean ± s.e.m., and data 

were analysed by ratio repeated measures one-way ANOVA with Dunnett’s multiple 

comparison test, ** p<0.01, *** p<0.001 vs Day 4 Control, n=4.  
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Figure 6.9 CORM-3 inhibits HCASMC proliferation 

Bar graph showing the proliferative response of HCASMCs (left y-axis) to increasing 

concentrations of CORM-3 (A). The overlaid red plot shows the corresponding non-

viable cell count (right y-axis). Data were analysed by ratio repeated measures one-

way ANOVA with Dunnett’s multiple comparison test, * p<0.05, *** p<0.001 vs Day 4 

Control, n=4. Line graph of the effects of 10µM CORM-3 over time (B). Data were 

analysed by two-way repeated measures ANOVA with sample matching by time point. 

This was followed by Sidak’s multiple comparison test between control and treated 

groups for each time point, * p<0.05, n=3. Data are represented as mean ± s.e.m.  
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A   B  

C  

Figure 6.10 HO-1 induction in HSVSMCs 

Immunocytochemistry of HO-1 induction (green) in HSVSMCs. Panel (A) illustrates 

HO-1 induction after a 24h incubation with 3µM CoPPIX. Panel (B) illustrates HO-1 

induction after a 24h incubation with 3µM hemin. Panel (C) shows a control image 

without HO-1 induction. Cell nuclei were stained blue with DAPI. Cells were utilised at 

P4, and are representative images of 8 fields of view from n=4 experimental repeats. 
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C      D 

               

               

Figure 6.11 CoPPIX induces HO-1 protein expression in HSVSMCs 

Bar graphs showing the relative HO-1 protein expression in HSVSMCs; densitometric 

analyses were normalised to β-actin at 48h (A) and 96h (B), n=3. CoPPIX treatment 

was added at 0h and 48h. Data are represented as mean ± s.e.m. and data were 

analysed by one-way ANOVA with Dunnett’s multiple comparison test, * p<0.05 vs 

Control levels. Representative western blots of HO-1 and the corresponding β-actin 

loading control at 48h (C) and 96h (D). The arrows represent the position of the 

molecular weight markers (top, 37KDa; bottom, 25kDa). 

  

HO-1 

β-actin 
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96h, and corresponding representative western blots are shown in panels (C) and (D). 

HO-1 expression was increased in a concentration-dependent manner in response to 

CoPPIX. Expression was maintained at 96h by re-application of CoPPIX when the 

media was changed at 48h, and HO-1 was subsequently induced to a higher level at 

96h. Figure 6.12 (A) shows the proliferative response of HSVSMCs to increasing 

concentrations of CoPPIX, with no effect on cell viability, as shown by the red line plot. 

Proliferation of HSVSMCs was significantly inhibited by 3µM and 10µM CoPPIX; cell 

number was reduced by 42% and 45% respectively. The proliferative response of 

HSVSMCs to 3µM CoPPIX was assessed daily over a 4 day period to produce a time-

course; HSVSMC proliferation was inhibited by 39% on day 4, as shown in Figure 6.12 

(B), which is comparable to the extent of inhibition demonstrated in response to 3µM 

CoPPIX shown in Figure 6.12 (A). Co-application of 3µM mibefradil and 3µM CoPPIX 

did not cause additive inhibitory effects on HSVSMC proliferation when assessed over 

a 4 day time-course, as shown in Figure 6.13. Cell number was reduced by 10% and 

47% in response to CoPPIX and mibefradil respectively. However, cell number was 

reduced by 47% in response to simultaneous application of CoPPIX and mibefradil. 

CoPPIX limited cell proliferation in HCASMCs at a concentration of 3µM or higher. Cell 

death was less than 1%, 1.6%, and 3% in response to 3µM, 10µM and 30µM CoPPIX 

respectively. HCASMC number was reduced by 43% and 52% in the presence of 3µM 

CoPPIX, as shown in Figure 6.14 (A) and (B) respectively. However, the combination 

of all day 4 counts to produce n=8 indicates that cell proliferation was inhibited by 48% 

in the presence of 3µM CoPPIX (graph not shown). 

 

HO-1-targeting siRNA was employed to prevent basal HO-1 expression and HO-1 

induction in HSVSMCs, in order to assess the subsequent proliferative response. A 

range of HO-1-targeting siRNA concentrations were applied to the cells for 48h, and 

western blots performed to evaluate HO-1 protein knock-down. As HO-1 is an inducible 

protein, the optimal time-point at which to apply CoPPIX to the cells was investigated to 

ensure that the optimal window of mRNA knock-down was utilised. The cell response 

to the application of CoPPIX immediately post transfection or on the day following 

transfection was assessed. Figure 6.15 (A) shows HO-1 protein expression levels in 

response to 3µM CoPPIX application immediately after the transfection solutions were 

removed, proceeding transfection with 25nM, 50nM, and 100nM HO-1-targeting siRNA. 

From these western blots it was concluded that 100nM HO-1-targeting siRNA was the 

optimal concentration to knock-down HO-1 expression. Figure 6.15 panels (B) and (C)   
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A 

 

B 

 

Figure 6.12 CoPPIX inhibits HSVSMC proliferation 

Bar graph showing the proliferative response of HSVSMC (left y-axis) to increasing 

concentrations of CoPPIX. The overlaid red plot shows the corresponding non-viable 

cell count (right y-axis). Data were analysed by ratio repeated measures one-way 

ANOVA with Dunnett’s multiple comparison test, ** p<0.01, *** p<0.001 vs Day 4 

Control, n=4. Line graph of the effects of 3µM CoPPIX over time (B). Data were 

analysed by two-way repeated measures ANOVA with sample matching by time point. 

This was followed by Sidak’s multiple comparison test between control and treated 

groups for each time point, ** p<0.01, n=3. Data are represented as mean ± s.e.m. 
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Figure 6.13 Co-application of CoPPIX and mibefradil inhibits HSVSMC 

proliferation 

Bar graph showing the mean (±s.e.m.) day 4 counts of HSVSMC after treatment with 

3µM CoPPIX, 3µM mibefradil, or simultaneous application of 3µM mibefradil and 3µM 

CoPPIX. Data were analysed by one-way ANOVA followed by Tukey’s multiple 

comparison test, ** p<0.01 vs control. Control n=12, CoPPIX n=3, mibefradil n=4, 

CoPPIX and mibefradil n=5. 
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Figure 6.14 CoPPIX inhibits HCASMC proliferation 

Bar graph showing the proliferative response of HCASMCs (left y-axis) to increasing 

concentrations of CoPPIX (A). The overlaid red plot shows the corresponding non-

viable cell count (right y-axis). Data were analysed by ratio repeated measures one-

way ANOVA with Dunnett’s multiple comparison test, *** p<0.001 vs Day 4 Control, 

n=4. Line graph showing the effects of 3µM CoPPIX over a 4 day time-course (B). Data 

were analysed by two-way repeated measures ANOVA with sample matching by time 

point. This was followed by Sidak’s multiple comparison test between control and 

treated groups for each time point, * p<0.05, n=4. Data are represented as mean ± 

s.e.m.  
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Figure 6.15 Optimisation of HO-1-targeting siRNA in HSVSMCs 

Western blots of HO-1 expression after transfection with 25nM, 50nM, and 100nM HO-

1-targeting siRNA (A); 3µM CoPPIX was added to the cells upon removal of the 

transfection solution. Panels (B) and (C) show western blots of HO-1 expression after 

transfection with 100nM HO-1-targeting siRNA; 3µM CoPPIX was added to the cells 

the day following transfection (B), or added to the cells upon removal of the transfection 

solution (C). The arrows represent the position of the molecular weight markers (top, 

37KDa; bottom, 25kDa). M=Mock, T=Transfected. 
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show HO-1 induction in response to 3µM CoPPIX applied the day following 

transfection, or applied immediately post-transfection respectively, proceeding 

transfection with 100nM. These western blots show that the window of adequate HO-1 

knock-down begins immediately post-transfection, therefore CoPPIX was applied at 

this time-point in subsequent experiments. Proliferation was assessed by a 4 day time-

course immediately following transfection with 100nM HO-1-targeting siRNA; day 0 

counts were taken at this time-point. The western blots in Figure 6.16 (A) demonstrate 

that the HO-1 mRNA was sufficiently knocked-down for the 4 day period, as CoPPIX 

did not induce protein expression in the transfected cell group. Figure 6.16 (B) shows 

the proliferative response of the mock and transfected groups, with or without the 

addition of 3µM CoPPIX. CoPPIX inhibited the cell proliferation of the mock cells by 

22% on day 4, with no effect on the transfected cells. This also demonstrates that the 

HO-1 mRNA was sufficiently knocked-down. However, the presence of the HO-1-

targeting siRNA negatively affected the proliferative response of the HSVSMCs. 

Unexpectedly, cell proliferation was reduced by 57% in the presence of HO-1-targeting 

siRNA. 

 

In summary, 3µM CoPPIX limits proliferation of HSVSMC and HCASMC to similar 

extents. The anti-proliferative effect of CoPPIX and mibefradil simultaneously does not 

appear to be additive. 100nM HO-1-targetting siRNA prevents HO-1 induction by 

CoPPIX, yet the presence of the siRNA negatively regulated cell proliferation. 

 

6.3 Discussion 

Smooth muscle α-actin is the most abundant protein in smooth muscle cells, and 

smooth muscle myosin heavy chain is the most distinguishing marker of smooth 

muscle cells (Owens et al., 2004). Despite the abundance of smooth muscle α-actin, 

this protein was not demonstrated clearly in all cells in Figure 6.1 (A) and (E). The 

synthesis of smooth muscle α-actin has been shown to decrease in the presence of 

serum stimulation in parallel with cell proliferation, as demonstrated by thymidine 

incorporation (Owens et al., 1986). Indeed, smooth muscle α-actin was shown to 

decrease during culture conditions and remain at low levels during cell proliferation 

(Campbell et al., 1989). As HSVSMCs were plated at sparse densities for 

immunocytochemistry, the expression of smooth muscle α-actin may therefore have   
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Figure 6.16 The effect of 100nM HO-1-targeting siRNA in HSVSMCs 

Western blots of HO-1 expression after transfection with 100nM HO-1-targeting siRNA 

at 48h, 72h, and 96h (A); 3µM CoPPIX was added to the cells immediately upon 

removal of the transfection solution. The arrows represent the position of the molecular 

weight markers (top, 37KDa; bottom, 25kDa). Line graph showing the proliferative 

response over 4 days of Mock and Transfected cells, ± 3µM CoPPIX treatment, after 

transfection with 100nM HO-1-targeting siRNA (B), n=3, data are represented as mean 

± s.e.m. M=Mock, T=Transfected.  
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been limited during these conditions. This is in line with a more recent study which 

demonstrated that the expression of contractile proteins; (smooth muscle α-actin and 

smooth muscle myosin heavy chain), was lower in synthetic VSMCs than in contractile 

VSMCs (Worth et al., 2001). Furthermore, the cytoskeletal protein, vimentin, was 

expressed at higher levels in synthetic cells, indicating that expression of this 

intermediate filament is increased upon phenotypic modulation of VSMCs (Kocher et 

al., 1985;Worth et al., 2001). In canine airway smooth muscle cells, vimentin 

expression increased in proliferating cells, and decreased as cells reached confluence, 

implying vimentin could be a marker of smooth muscle cell dedifferentiation (Halayko et 

al., 1996). Limited co-localisation of smooth muscle α-actin and smooth muscle myosin 

heavy chain has been demonstrated in synthetic cells (Worth et al., 2001), which 

coincides with the limited co-localisation illustrated in Figure 6.1 (D). The HSVSMCs 

examined in the present study were synthetic VSMCs, and the arrangement of 

cytoskeletal and contractile proteins shown in Figure 6.1 reflected this cell phenotype. 

The images of the cells in Figure 6.1 represent HSVSMC at P5, implying that the 

maintenance of these cells in culture for 5 weeks sustains a proliferative phenotype, 

which was also ensured by preventing the cells from reaching confluence (Campbell et 

al., 1989). 

 

The expression levels of Cav3.1 and Cav3.2 in HSVSMCs, as shown in Figures 6.3 and 

6.4, are much higher than the expression levels in A7r5 cells (Chapter 4, Figures 4.3 

and 4.4), yet there was no correlation with passage number in either cell type. Despite 

these higher levels of expression, identification of Cav3.1 by membrane enrichment 

remained challenging, and Cav3.2 could not be detected. Immunoprecipitation of the T-

type Ca2+ channels was attempted on two occasions without success. Cav3.1 is 

expressed at higher levels than Cav3.2 in both cell types, which is also suggested by 

immunocytochemistry in Figure 6.2. Indeed, the Cav3.1, but not the Cav3.2 T-type Ca2+ 

channel has been shown to be a requirement for murine VSMC proliferation (Tzeng et 

al., 2012). The localisation of Cav3.1 positive staining at peri-nuclear regions, as shown 

in Figure 6.2, could be indicative of increased Cav3.1 protein synthesis and trafficking 

in response to the synthetic phenotype of the HSVSMCs. The Golgi network and the 

rough endoplasmic reticulum have been described as prominent features of injured 

VSMCs, and are likely to play a role in the regenerative response of VSMCs (Poole et 

al., 1971;Chamley-Campbell et al., 1979). The β1b auxiliary subunit has been shown to 

increase functional Cav3.1 T-type Ca2+ channel expression, and a possible role as a 
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chaperone was suggested (Dolphin et al., 1999). This study also demonstrated that the 

α2-δ auxiliary subunit influenced the expression of the Cav3.1 T-type Ca2+ channel at 

the cell membrane, in addition to the amplitude of the current. Yet, recombinant Cav3.1 

T-type Ca2+ channels exhibit similar currents to those of native channels, therefore α1 

subunits do not require accessory subunits to function adequately (Perez-Reyes, 

2006). To validate the idea that the Cav3.1 T-type Ca2+ channel becomes localised 

within the Golgi network during proliferative phases, a fluorescent probe targeted 

against the Golgi, such as CellLight® Golgi marker (Molecular Probes), could be 

employed simultaneously with a Cav3.1 targeted probe to assess co-localisation. 

 

HCASMCs consistently proliferated to a greater extent than HSVSMCs in all 

proliferation assays. Contrastingly, HCASMC proliferation was inhibited to a lesser 

extent by CORM-3 than HSVSMC proliferation, as shown in Figure 6.8 and 6.9 (A). 

Based on the proliferative responses one could speculate that HCASMCs have a 

higher expression level of T-type Ca2+ channels than HSVSMCs, yet this contradicts 

the hypothesis that CO inhibits cell proliferation via T-type Ca2+ channels. If time had 

permitted, elucidation of the T-type Ca2+ channel expression levels via 

immunocytochemistry and RT-PCR could have explained these disparate proliferative 

profiles. Venous VSMCs have been shown to proliferate more than paired arterial 

VSMCs (Turner et al., 2007), however the arterial and venous VSMCs employed in the 

present study were not paired, and different cell requirements necessitated different 

growth media, which negates any physiological conclusions drawn from direct 

comparisons. The fact that HSVSMCs have a higher expression level of the T-type 

Ca2+ channel subtypes than A7r5 cells may explain the differing responses of the cell 

types to CORM-3. Figure 5.4 in Chapter 5 demonstrates the minimal inhibition of 

proliferation of A7r5 cells in response to CORM-3, in contrast to the significant 

inhibition of HSVSMC proliferation shown in Figure 6.8. 

 

The proliferative responses of HSVSMCs and HCASMCs to the T-type inhibitor 

mibefradil were similar when the drug was applied at 3µM. The corresponding non-

viable cell counts, as demonstrated by the red plots in Figures 6.6 and 6.7, corroborate 

the effects seen on A7r5 cells (Chapter 4); that mibefradil is cytotoxic at high 

concentrations. However, there was an apparent difference in the extent of the anti-

proliferative effects produced in response to 3µM mibefradil in HCASMCs in Figure 6.7 
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(A) and (B). The cells utilised in the concentration-response assay ranged from P2 to 

P6, whereas the cells utilised in the time-course assay ranged from P3 to P6, therefore 

the cell ages were similar. The control cell group for the time-course assay proliferated 

to a greater extent than the control group for the concentration-response assay, which 

may explain why 3µM mibefradil limited cell growth to a greater extent in the 

concentration-response assay. 

 

There is a larger standard error associated with day 4 counts of HCASMCs than with 

HSVSMCs, as the proliferative response of the former cell type diminished with 

subsequent cell passage, and was particularly apparent at P5 and P6. Higher passage 

numbers were utilised for the time-course assays assessing the effects of CORM-3 and 

CoPPIX. This suggests the development of replicative senescence. Senescent cell 

cultures can be described as those exhibiting a decline in cell proliferation after a 

phase of exponential proliferation (Matsumura et al., 1979), although the cell cultures 

detailed in this study were examined over much longer periods of 60 weeks, compared 

to the 6 week period over which HCASMCs were assessed in the present study. 

Increased cell doubling time and lower population densities have been attributed to an 

ageing process of sub-cultured VSMCs (Chamley-Campbell et al., 1979). The number 

of senescent human VSMCs was shown to be directly related to the age of the donor 

(Ruiz-Torres et al., 1999), although studies in different species are less consistent. 

Replication efficiency of rat aortic VSMCs is higher in cells isolated from aged animals 

than from young animals (McCaffrey et al., 1988;Li et al., 1997), whereas the data 

regarding mouse aortic VSMCs is conflicting (Moon et al., 2001;Moon et al., 2003). It is 

possible that the phenotype of the HCASMCs was modified with each subsequent 

passage, producing an increasing number of senescent cells. An assessment of T-type 

Ca2+ channel expression at each passage would have been advantageous to assess 

whether the expression of the channels declined over the 6 week period. 

 

HO-1 induction in HSVSMCs was demonstrated by immunocytochemistry following a 

24h incubation with CoPPIX, and the associated western blots show that HO-1 protein 

expression is maintained at 48h and 96h. CoPPIX did not inhibit proliferation in a 

concentration-dependent manner in both HSVSMCs and HCASMCs, suggesting that 

low concentrations of CoPPIX do not reach the threshold required to induce HO-1 

protein expression. This is verified by the lack of HO-1 protein bands in response to 

0.1µM and 0.3µM CoPPIX in Figure 6.11. As noted previously, there was a large 
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variation in day 4 HCASMC counts due to the use of older passages. The inhibitory 

effects of CoPPIX on HSVSMCs and HCASMCs proliferation begin to appear at day 2, 

whereas the inhibitory effects on A7r5 cells appear at day 3. This could be due to the 

fact that A7r5 cells have lower expression levels of T-type Ca2+ channels than 

HSVSMCs. Co-application of mibefradil and CoPPIX did not cause additive effects on 

proliferation. Moreover, the extent of proliferation inhibition by simultaneous application 

of the compounds equalled that of mibefradil treatment, implying there was competition 

for the same cellular target. However, the extent of inhibition by CoPPIX in Figure 6.13 

was much lower than that shown in Figure 6.12, which is due to the combination of 

control data from 12 assays. These HSVSMC were sourced from 12 different patients 

therefore, inherent differences will have undoubtably contributed to the extent of which 

the cells proliferated, and possibly how they responded to the HO-1 inducer, CoPPIX. 

 

In contrast to the effects of CORM-3, CoPPIX inhibited HCASMC proliferation to a 

greater extent than HSVSMC proliferation. The fact that the HSVSMCs utilised in the 

present study were isolated from patients undergoing coronary artery bypass graft 

(CABG) surgery is noteworthy. To necessitate the need for CABG surgery, these 

patients will no doubt have coronary artery disease (CAD), and therefore the 

corresponding HSVSMCs may have inherent modifications as a result. In contrast, the 

HCASMCs were derived from normal, plaque free coronary arteries. The saphenous 

vein is subject to lower blood pressure and less shear stress than an artery (Turner et 

al., 2007), yet the risk factors of CAD, such as hypercholesterolemia, diabetes mellitus, 

and cigarette smoke, will likely be detrimental to all vessels (Vogel, 1997). 

Furthermore, such risk factors have been linked with a long microsatellite 

polymorphism (GT)n in the HO-1 promoter, and with the development of CAD (Kaneda 

et al., 2002). Another study also found that longer (GT)n repeats were associated with 

CAD susceptibility in patients with diabetes mellitus (Chen et al., 2002). Although 

neither study found a significant correlation between the long length polymorphism and 

CAD without such risk factors, there was a trend towards this relationship. The longer 

(GT)n genotype has been shown to limit HO-1 expression, which suggests that patients 

with risk factors for CAD have a reduced capacity for HO-1 induction and vessel 

protection in response to stresses such as ROS and oxLDL (Chen et al., 2002;Kaneda 

et al., 2002). These findings can be extended to the data shown here; proliferation was 

inhibited to a greater extent in HCASMCs than in HSVSMCs, which could be a result of 

differing extents of HO-1 induction. If time had permitted, western blots of HO-1 

induction in HCASMCs could have clarified this hypothesis. 
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Preliminary assessment of the effect of HO-1-targeting siRNA indicated that 100nM 

was the optimal concentration, and the adequate window of HO-1 knock-down began 

immediately post-transfection. The finding that HO-1 knock-down negatively regulated 

cell proliferation was unexpected, although the fact that CoPPIX had no further 

inhibitory effect on the transfected cells implies that the siRNA effectively targeted HO-

1 mRNA. Therefore, the inhibitory effects of HO-1 knock-down are difficult to explain. 

The mock cells proliferated 3.5 fold over the course of the assay, yet the growth of the 

control cells in all proliferation assays involving HSVSMCs ranged from 3.3 to 5.8 fold. 

This range can be explained by the fact that cells were sourced from numerous 

different patients and consequently will contain inherent differences. It can be 

assumed, therefore, that the transfection procedure itself was not the cause of the 

diminished proliferative response of the transfected cells. HO-1 has markedly different 

effects on proliferation depending on the cell type. In contrast to the anti-proliferative 

effects of HO-1 in VSMCs and fibroblasts, HO-1 is pro-proliferative in keratinocytes, 

endothelial cells, pancreatic cancer cells, lung cancer cells, hepatoma, sarcoma, and 

melanoma (Jozkowicz et al., 2007). In numerous cancers HO-1 is induced or 

constitutively expressed, which confers resistance to apoptosis (Jozkowicz et al., 

2007). Indeed, our research group has demonstrated that HO-1-derived CO confers 

resistance to apoptosis in medulloblastoma DAOY cells (Al-Owais et al., 2012). As 

reported by Jozkowicz et al. (2007), the effects of HO-1 on proliferation are conflicting, 

and the involvement of numerous mediators confers complex cellular responses. 

Despite the fact that HO-1 has been shown to have definitive anti-proliferative effects in 

VSMCs (Kim et al., 2011b), it is possible that in addition to HO-1 mRNA knock-down, 

the siRNA caused off-target effects which subsequently affected proliferation. 

 

The use of human VSMCs in the present study has added a clinically relevant aspect 

to the project as a whole, which has progressed from the use of a recombinant 

expression system, to a vascular cell line, to primary cells. The anti-proliferative effects 

of HO-1 and CO are conserved in human VSMCs, and the role of the T-type Ca2+ 

channel in proliferation has been indicated by the use of mibefradil. The previously 

documented non-specific effects associated with mibefradil are a limiting factor of these 

experiments. A novel, selective T-type Ca2+ channel inhibitor, ML218, has 

demonstrated inhibition of T-type Ca2+ current in subthalamic neurons (Xiang et al., 

2011). Additional experiments assessing ML218 as a pharmacological tool would be 

useful. Stronger conclusions could be drawn about the effects of CO on T-type Ca2+ 

channels in human VSMCs if microfluorimetry data was available. However, such data 
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proved difficult to acquire, as stable baseline recordings of [Ca2+]i could not be 

obtained. To test further the hypothesis of T-type Ca2+ channel inhibition by CO, 

electrophysiological recordings via whole-cell patch clamp would generate more 

specific data about T-type Ca2+ channel currents, as these currents could be isolated 

and pharmacological modulation assessed. However, this is technically demanding 

given the small currents shown in previous reports, as reviewed by (Kuo et al., 2011). 
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CHAPTER 7 

Conclusions 

 

7.1 Principle Findings 

HEK293/Cav3.2 cells 

 Over-expression of the Cav3.2 T-type Ca2+ channel produced higher basal 

[Ca2+]i which was reduced by T-type Ca2+ channel inhibition, CO exposure, and 

HO-1 induction 

 The Cav3.2 T-type Ca2+ channel augments proliferation 

 Augmented proliferation is decreased by T-type Ca2+ channel inhibition, 

therefore T-type Ca2+ channels are central to the proliferative response 

 CO is anti-proliferative and potentially acts via the T-type Ca2+ channel 

 

A7r5 cells 

 Cav3.1 T-type Ca2+ channels are the more prominent subtype in A7r5 cells 

 Both L-type and T-type Ca2+ channels are expressed in A7r5 cells, and L-type 

Ca2+ channels appear to have a more prominent role in Ca2+ oscillations 

 L-type Ca2+ channels do not have a role in cell proliferation 

 Cav3.1 T-type Ca2+ channels do have a role in cell proliferation, as evidenced 

by the effects of Ni2+ 

 CORM-3, but not iCORM-3, reduced [Ca2+]i and Ca2+ oscillation frequency in 

A7r5 cells upon modest depolarisation 

 CORM-3 did not affect Ca2+ influx when A7r5 cells were strongly depolarised 

 CORM-3 had minimal anti-proliferative effects in isolation, but was anti-

proliferative when L-type Ca2+ channels were blocked 

 HO-1 induction and over-expression inhibited A7r5 cell proliferation and there 

was a trend towards reduced [Ca2+]i  
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Human VSMCs 

 T-type Ca2+ channels are expressed at higher levels in HSVSMCs than A7r5 

cells 

 Cav3.1 T-type Ca2+ channels are the more prominent subtype in HSVSMCs 

 T-type Ca2+ channel inhibition, CO exposure and HO-1 induction have anti-

proliferative effects in human VSMCs 

 Simultaneous HO-1 induction and T-type Ca2+ channel inhibition do not cause 

additive inhibitory effects on proliferation 

 HO-1 induction and CO exposure had a greater inhibitory capacity in 

conjunction with a higher expression level of the Cav3.1 T-type Ca2+ channel in 

HSVSMC than A7r5 cells 

 

7.2 Summary and clinical relevance 

As the level of T-type Ca2+ channel expression has been shown to increase in synthetic 

VSMCs (House et al., 2008), along with the concurrent induction of HO-1 activity (Kim 

et al., 2011b), and the fact that our research group has recently demonstrated that CO 

is able to inhibit the T-type Ca2+ current, the possibility that the T-type Ca2+ channel is a 

therapeutic target for HO-1 was investigated. My data indicate that CO can inhibit the 

T-type Ca2+ channel. The physiological effects of this inhibition present as a decrease 

in cell proliferation and a reduction in [Ca2+]i. This conclusion is strengthened by the 

fact that both CO exposure and HO-1 induction conferred a greater anti-proliferative 

effect in cells with higher expression levels of the T-type Ca2+ channels. CO appears to 

affect both the Cav3.1 and Cav3.2 T-type Ca2+ channels, as shown by the effects on 

HEK293/Cav3.2 cells and HSVSMCs. The T-type Ca2+ channel is an important 

mediator of VSMC proliferation (Cribbs, 2006), yet the commonly used 

pharmacological antagonist of this channel, mibefradil, has limited specificity and 

associated side effects in vivo (Nilius et al., 1997;Mullins et al., 1998;Eller et al., 

2000;Strege et al., 2005). The inhibitory effect of CO on the T-type Ca2+ current is a 

novel finding by our research group, and as CO is an endogenous signalling molecule, 

the associated anti-proliferative effects could be exploited as a therapy for 

cardiovascular disorders involving excessive VSMC proliferation. By directly enhancing 

CO availability at the site of vascular injury, or by increasing HO-1 expression and 

activity in VSMCs, pathological proliferation could be reduced, thereby limiting the 

ensuing complications associated with a compromised vessel. The idea of gaseous CO 

as a therapy is not unreasonable, considering the fact that nitric oxide gas is currently 
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used as a treatment for pulmonary hypertension (Bloch et al., 2007). However, there is 

a narrow margin between the cytoprotective and detrimental effects of gaseous CO 

exposure, and targeting the gas to the desired endogenous tissues could pose 

difficulties. Adequate monitoring of blood COHb levels would also be necessary 

(Motterlini & Otterbein, 2010). The advent of CORMs suggests that CO delivery could 

be specifically directed to the site of injury, for instance, by the use of a CORM-coated 

stent to limit restenosis (Motterlini & Otterbein, 2010). This notion is particularly 

appealing given that CO has the ability to limit VSMC proliferation and concurrently 

promote endothelial cell proliferation (Wu & Wang, 2005). Experimentation of such a 

specifically targeted drug-eluting stent was recently discussed by Curcio et al. (2011), 

whereby delivery of the phosphatidylinositide-3-kinase, p85, limited VSMC proliferation 

without effecting endothelial cells. Regarding the potential therapeutic use of gaseous 

CO, a CO delivery system has recently been developed; the Covox DS (Ikaria), and 

both gaseous CO and CORMs are currently being assessed for safety and efficacy in 

Phase III clinical trials. (Motterlini & Otterbein, 2010). The suggestion that CO can limit 

VSMC proliferation by inhibiting T-type Ca2+ channel activity is an important finding and 

certainly offers potential for further investigation. However, an understanding of the 

exact mechanism of inhibition is required in order to support the development of a 

therapy tailored to this endogenous pathway. 

 

7.3 Further Work 

Investigating native T-type Ca2+ channel activity poses numerous challenges. 

Identification of the T-type Ca2+ channel by western blotting and RT-PCR has proved 

difficult, due to the relatively low level of expression in VSMCs, in combination with the 

fact that expression levels can vary in proliferative cells. The use of microfluorimetry 

recordings added scope to the data generated from proliferation assays, yet the 

elucidation of the specific T-type Ca2+ channel response using this methodology on 

cells expressing both voltage-gated T- and L-type Ca2+ channels was dependent on the 

use of pharmacological agents. Therefore, whole-cell patch clamp electrophysiological 

recordings would provide further information about distinct T-type Ca2+ channel activity, 

and the extent of T-type Ca2+ current inhibition by both antagonists and CO. The 

inclusion of electrophysiology data demonstrating the inhibitory effects of CO on the T-

type Ca2+ current would allow a more definitive conclusion to be drawn. The availability 

of a novel, more specific, T-type Ca2+ channel blocker, ML218, will aid the verification 

of T-type Ca2+ channel effects in subsequent investigations (Xiang et al., 2011). 
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The limited data shown here regarding the potential involvement of redox modulation 

on T-type Ca2+ channel activity warrants further investigation. Oxidative stress is a 

feature of many cardiovascular disorders (Paravicini & Touyz, 2006;Kim et al., 

2011b;Chung et al., 2013); therefore, exploration of the various sources of ROS and 

their subsequent effects on T-type Ca2+ channel activity and CO-mediated inhibition 

may help elucidate the exact mechanism of modulation. Endogenous ROS are 

produced from numerous sources including NADPH oxidase, xanthine oxidase, 

uncoupled NOS, and the mitochondria (Mueller et al., 2005), and CO has been shown 

to modulate NADPH oxidase (Taille et al., 2005) and cytochrome c oxidase 

(Zuckerbraun et al., 2007). Therefore, the use of anti-oxidants such as MitoQ, and 

inhibitors of potential sources of ROS such as allopurinol, apocynin, and antimycin A, 

as previously examined by our research group with respect to L-type Ca2+ channel 

inhibition by CO (Scragg et al., 2008), are pertinent pathways to explore. This may be 

aided by T-type Ca2+ channel mutagenesis in order to specifically isolate potential 

redox sites within the channel protein. The thioredoxin and glutaredoxin systems serve 

to maintain cellular redox balance (Yamawaki et al., 2003), and transient receptor 

potential channels have been shown to be modulated by thioredoxin (Beech & 

Sukumar, 2007), therefore these systems may be another potential direction of 

investigation. 

 

To extend the clinical relevance of this project, in vivo experiments assessing CO-

mediated modulation of the T-type Ca2+ channel would be appropriate. The effects of 

CO on neointima formation could be assessed in T-type knock-out mice. It would be 

advantageous to examine the effects of CO on both Cav3.1-/- and Cav3.2-/- mice, as one 

group found that the Cav3.1 T-type Ca2+ channel is required for intimal hyperplasia 

(Tzeng et al., 2012), yet the Cav3.2 subtype is documented as the prominent subtype in 

the cardiovascular system (Catterall et al., 2005;Cribbs, 2006). 
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