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Abstract

This thesis concerns the field of computational intelligence (CI), an important area of
computer science that predominantly endeavours to model complex systems with heuristic
algorithms. Heuristic algorithms from CI are generally nature or biologically inspired
programs that iteratively learn from experience. More specifically, the research focuses
on the overlap between the fields of CI and financial analysis, where the financial markets
(in the form of financial time series) provide the complex system of interest. Therefore
the objective of the thesis can be summarized as a exercise in improving the abilities of
CI algorithms for modelling financial time series.

CI has been applied to a whole spectrum of domains where techniques are developed at
a more general level and then applied to a particular application area or complex system.
The financial markets are somewhat unique. Unlike other complex systems in nature, the
financial markets are of our own creation and their evolution is a by product of human
nature, where the beliefs and bias of the participants (humans) in the complex system
(financial markets) govern how the system behaves. This is in contrast to many complex
systems where, for example, the opinions of experts have no effect on the outcome.
Thus, the motivation of this work is to quantify meaningful characteristics (behaviour)
of the financial markets as a means to improve and understand how heuristic algorithms
respond to them. This process of applying more scrutiny to the analysis of the application
area, yields an approach to algorithm development that takes into account the unique
characteristics of the market.

To achieve this goal the thesis is structured into three sections that comprise four
contribution chapters. The contribution chapters are labelled: validity, implications and
innovations and each is motivated by a separate research question. The validity chapter is
based on determining a reasonable characterization of the financial markets. This includes
a detailed literature review of the popular competing market theories as well as some new
innovative tests. There is not a general consensus as to which theory is correct but from a
computational intelligence perspective the adaptive market hypothesis (AMH) is revealed
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as a reasonable characterization of the financial markets and one that provides quantifiable
characteristics to be utilized in following chapters.

The implications chapter concerns testing the effect of implications of the AMH, if
any, on the robustness of models derived from CI. Specifically three implications are
examined, i.e., variable stationarity, variable efficiency and the waxing and waning of
investment strategies. The experiments concerned six algorithms from four of the major
paradigms in supervised learning. The results from each of the studies demonstrated that
the implications of the AMH affect CI derived models. This conclusion reveals that the
unique properties of the financial markets should be taken into account when applying CI
algorithms for modelling and forecasting.

The two chapters concerning innovations explore how CI techniques can be improved
based on the results from the validity and implications chapters. The first chapter
(chapter 6) concerns the development of a meta learner based on the implication of the
waxing and waning of investment strategies, the meta learning algorithm called LATIS
(Learning Adaptive Technical Indicator System) is a blend of micro and macro modelling
perspectives and allows for online adaptive learning with an interpretable white box
framework. The second innovations chapter (chapter 7) concerns the discretization of
financial time series data into a finite alphabet. A discretization algorithm is developed,
which extends an existing state-of-the-art algorithm to handle the characteristics of
financial time series. The proposed algorithm, called alSAX (adaptive local Symbolic
Aggregate approXimation), is demonstrated to be superior in terms of its symbolic
mappings, in relation to a gold standard, and in the popular time series subsequence
analysis task. Additionally, an invalid theoretical assumption of the existing algorithm
is revealed. The flaw in the algorithm is discussed and its impact is determined based
on the characteristics of the time series and the parameters of the algorithm. From the
analysis, the thesis offers viable fixes to compensate for the flaw, where the suitability of
the fixes are dependent on the problem domain and objective of the data mining task.
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Chapter 1

Introduction

This thesis concerns the field of computational intelligence (CI), an important area of
computer science that predominantly endeavours to model complex systems with heuristic
algorithms. Heuristic algorithms from CI are generally nature or biologically inspired
programs that iteratively learn from experience. More specifically, the research focuses
on the overlap between the fields of CI and financial analysis, where the financial markets
(in the form of financial time series) provide the complex system of interest. Therefore
the objective of the thesis can be summarized as a exercise in improving the abilities of
CI algorithms for modelling financial time series.

1.1 Motivation

The financial markets are a critical component of all modern capitalist economies
and forecasting of financial assets and indicators is an important task for economists,
financial professionals and academics alike. Several studies have applied CI algorithms
to modelling and forecasting the financial markets with varying degrees of success. By
far the most represented learning paradigm in the literature is supervised learning (SL)
where an algorithm is provided with labelled data that is of an input-output format,
however, other areas such as unsupervised learning, population-based optimization and
reinforcement learning are also present. The main distinction of this work from the related
literature is that the complex system accounts for more than just an application area. Thus
the motivation of this work is to quantify meaningful characteristics (behaviour) of the
financial markets as a means to improve and understand how heuristic algorithms respond
to them. Unlike other complex systems in nature, the financial markets are of our own
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creation and their evolution is a by product of human nature, where the beliefs and bias
of the participants (humans) in the complex system (financial markets) govern how the
system behaves. This is in contrast to many complex systems where, for example, the
opinions of experts have no effect on the outcome, e.g. the ocean and marine biologists’
attempts to forecast the size of the cod stock in the Atlantic. Regardless of how many
experts believe that the current conditions will lead to an increase in the number of cod,
those beliefs do not influence that outcome. The same cannot be said for financial systems
where throughout the recorded history of modern markets we have seen speculative
bubbles form and bust as a result of crowd like mentality. Ignoring the unique nature
of this complex system yields a sub-optimal approach to understanding it when using
computational intelligence.

1.2 Problem Statement

This stance that the complex system requires more scrutiny as a vehicle for algorithm
development and improvement leads to a formal problem statement:

Improve computational intelligence techniques for financial modelling through a
better understanding of the interactions between heuristic algorithms and the
unique characteristics of financial time series.

This can be expressed by three research questions explored in the thesis:

1. What is a reasonable characterization of the complex system we are modelling?

2. What implications does this hold for computational intelligence?

3. What improvements can be made to compensate for these implications?

1.3 Machine Learning

The term machine learning (ML) defines an area of AI that develops algorithms that can
learn from examples. Common tasks the algorithms would be learning are classification,
regression and anomaly detection . The classification task is where a set of data belongs
to two or more distinctive classes and the algorithm attempts to learn which class a given
observation in a member of. Where membership in a class can be determined by a set
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of measurable characteristics, the measurable characteristics form the attributes of the
data with the class membership being the class attribute. This representation defines an
input-output relation between what is observed and what the desired outcome is. Another
way of describing it, is that the inputs are the independent variables and the output is
the dependent variable. One observation from a set of training data contains the input
attributes and a class attribute and is commonly referred to, in the literature, as an instance,
exemplar or tuple. The regression task is also referred to as level estimation and is the
same as the statistical approach. In this case the dependent variable is real-valued and
typically does not belong to one class or another. In this case the output value may be a
scalar or if the output defines a mult-dimensional state it may be a vector of real-valued
scalars. The final task in anomaly detection which is similiar to classification where the
algorithm is learning to identify abnormal behaviour within a system. Generally speaking
a system could be categorized by normal and abnormal behaviour, so it is similar to
two class classification, but the added difficulty is that abnormal behaviour is generally
underrepresented in the training data and therefore different learning techniques need to
be utilized to accommodate this added complexity.

In the financial and econometrics domains, time series modelling is a popular task. Time
series modelling could be facilitated by any of the common ML tasks, i.e., classification,
level estimation and anomaly detection. The most widely used ML algorithm, for time
series analysis, in the literature is the artificial neural network (ANN). An ANN is
a supervised learning algorithm inspired by the brain and will be described in detail
in chapter 2.1.4. However, despite its popularity, nearly every paradigm within AI is
represented in the related work and the popularity of these techniques, in general, is also
a motivating factor behind the thesis.

1.4 Research Strategy

The research concerns a three stage process based on the questions listed in section 1.2,
namely: validity (question 1), implications (question 2) and innovations (question 3).

1.4.1 Validity

In order to gain a better understanding of the interactions between CI and financial time
series we require a reasonable characterization of the financial markets. This will allow
us to identify characteristics that present non-trivial implications to modelling with CI.
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This section on validity explores and attempts to validate a relatively new but popular
market theory called the adaptive market hypothesis (AMH). The validation is performed
through a discussion (and reproduction) of previous work from the econometrics literature
and with new evidence being introduced by two novel tests. The first test explores the idea
of non-stationarity in the financial markets and whether or not this characteristic is in fact
constant. This test utilizes a framework from previous studies where a unit-root test is
iteratively applied to a time series using a sliding window. A unit-root test is used to
determine if a time-series is stationary .

Secondly, the risk-to-reward relationship of a financial asset is examined and we test if
this relationship is constant, as implied by the efficient market hypothesis (EMH), or is
time varying as implied by the AMH. The risk-to-reward relationship is the amount of risk
associated with a financial asset in relation to the amount of expected return of that asset.
The test for this time varying relationship is based on a state space model formulation of
the traditional Capital Asset Pricing Model (CAPM) that is fitted to real world data using
the diffuse Kalman filter (DKF). The advantage to using a state space representation is
that we can allow the parameters of the model to be stochastic and therefore potentially
time-varying. However, if the preferred fit for the model is to have constant parameters
then this is also admissible.

1.4.2 Implications

Once we are satisfied that we have a reasonable characterization of market behaviour
we can explore what the implications of said characterization hold for computational
intelligence. In this section three implications of the AMH are tested: variable
stationarity, variable efficiency and the waxing and waning of investment strategies.
Variable stationarity suggests that the optimal pre-processing step for preparing the data
for computational intelligence algorithms is time varying. To test this implication an
experiment is performed on simulated and real world data that gauges the performance
of an artificial neural network (ANN) in a level estimation task when using different pre-
processing steps.

Secondly we examine variable efficiency. Most attempts to validate the AMH from
econometricians have focused on the idea of variable efficiency and whether or not
“informationally efficient” markets exist. Several metrics have been proposed and are
generally concerned with measuring dependence (linear or non-linear) in market index
data. From a CI perspective, we are interested in whether or not variable efficiency has
any effect on the forecasting accuracy of heuristic algorithms. In other words, can we
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expect an increase/decrease in the forecasting accuracy of CI algorithms when markets
are less/more efficient? A less efficient market implies statistically significant dependence
in the time series and therefore opportunities for excess returns. To test this effect a
simulated time series is generated that mimics real world data and is then segmented into
samples that can be considered either random walks or containing non-linear dependence
(as identified by a given statistical test). Next we train and test six supervised learning
algorithms on the different sets of data and compare their classification accuracies to
determine if an increase is observed in forecasting accuracy.

Thirdly, the implication of the waxing and waning of investment strategies is tested. To
facilitate this objective we formalize the implication into a measurable performance metric
called cyclical effectiveness. Cyclical effectiveness is based on the belief that an active
trading strategy should outperform a passive buy-and-hold approach in terms of realized
investment returns. A trading strategy is considered to be effective during a given time-
period when it is able to outperform the market benchmark (buy-and-hold approach), is
active in the market (not just investing in a risk-free rate) and producing a positive return.
The investment strategy utilized in the study is a novel CI trading algorithm based on a
popular quantitative trading technique (mean reversion). We train the algorithm, called
an adaptive Bollinger band (ABB) (described in chapter 5), on a training set using a
sliding window, where a new ABB is created for each window. We then test the cyclical
effectiveness of this population of ABBs on a test set and observe how often on average
an ABB is effective after the time period it is created for.

1.4.3 Innovations

In the final section of the thesis we develop two new algorithms for modelling and
forecasting financial time series taking into consideration a number of the implications
of the AMH.

The first is largely based on the results from the test for cyclical effectiveness. Given that
the validity of signals produced from CI trading models will be cyclical there is a need
to indentify when a given trading model should be trusted, or more importantly, when it
should not. This leads to the development of an online adaptive learning algorithm that
creates and maintains a population of investment strategies that are continually updated
as new information is received. A specific implementation of the proposed algorithm is
described that is based on the ABBs developed in the chapter 5.

The second innovation concerns the pre-processing or discretization of continuous
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financial time series into a symbolic (discrete) representation. This pre-processing step
has been applied in numerous studies but in this chapter a novel algorithm is developed
based on a state-of-the-art technique and which takes into account the variable and non-
stationary nature of market characteristics. This algorithm, which transforms a financial
time series into a symbolic representation, allows the data to be modelled with the various
algorithms from machine learning that require discrete or symbolic data and provides a
means for dimensionality reduction. The symbolic algorithm is validated based on tests
of the ex-post symbolic distribution it generates in relation to the desired gold standard
distribution and the ex-post distributions of alternative approaches.

1.5 Thesis Contributions

As previously stated, the thesis concerns the overlap between two fields, namely,
computational intelligence and financial analysis. As a result, the contributions can
be categorized as either purely computational intelligence, purely financial analysis or
in computational intelligence for financial analysis. This section will highlight the
contributions made in the thesis and the category under which they fall. It should be
noted that all contributions are quantitative in nature and are generally the result of fully
implemented algorithms and experiments.

1.5.1 Computational Intelligence for Financial Analysis

The majority of the contributions fall into this category and are as follows:

1. Demonstrating the effects of variable stationarity on price level estimation of the
Artificial Neural Network (ANN).

2. Demonstrating the effect of variable efficiency of supervised learning (SL) algo-
rithms .

3. Demonstrating the existence of cyclical effectiveness in computational intelligence
derived financial models.

4. Developing an online learning algorithm for optimizing financial technical analysis.

5. Demonstrating that artificial immune systems (AIS) are a viable modelling tech-
nique for financial time series. An AIS is a SL algorithm inspired by the natural
immune system.
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6. Development of a new technical indicator based on Bollinger Bands (BB) and
particle swarm optimization (PSO).

7. Developing a symbolic discretization algorithm for financial time series.

1.5.2 Computational Intelligence

The three pieces of work that are general contributions to computational intelligence as a
whole are:

1. Extending dynamic heterogeneous particle swarm optimization (dHPSO) to multi-
objective optimization (MOO).

2. Refuting work concerning non-stationary data and the Artificial Neural Network
(ANN).

3. Discovering an invalid assumption of the Symbolic Aggregate approXimation
(SAX) algorithm and correcting it.

1.5.3 Financial Analysis

These contributions are more important from a financial perspective but some of them
would not have been possible without computational intelligence techniques.

1. Revealing the time-varying nature of alpha and beta from the Capital Asset Pricing
Model (CAPM) as implied by the adaptive market hypothesis.

2. Revealing the variable nature of stationarity in financial time series as opposed to
the commonly held view that it is constant.

3. Reproducing results on variable efficiency from the financial literature.

4. Demonstrating that variable efficiency is a non-trivial consideration for trading
models.
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1.6 Thesis Organization

The structure and scope of the three parts and eight chapters of the thesis are as follows:

Part I: Introduction and Background

Chapter 1: Introduction

Chapter 1 (this chapter) provides a general introduction to the thesis. This includes
the motivation and the research objectives, as well as, the thesis structure and research
strategy.

Chapter 2: Methods and Theories

Chapter 2 provides the relevant background on the algorithms and financial theories
utilized or discussed in the thesis. This is a literature review of sort but is intended to
be much more general and a more specific discussion of related work that directly leads
into the research in thesis is covered in chapter 3. The first part of this chapter details the
algorithms and learning paradigms that are most represented in the thesis. It then goes on
to describe the major financial theories of the financial markets, this section discusses the
similarities and differences that define the different camps of thought on what drives the
behaviour of markets.

Chapter 3: Literature Review

Chapter 3 is the final chapter of part I, in this chapter a more detailed account of the related
work is provided. It provides a literature review of research that directly impacts the
work presented in the thesis and generally concerns the overlap between computational
intelligence and financial analysis. It is broken up in to sections where each section
pertains to a specific contribution chapter in thesis.

Part II: Thesis Contributions

Chapter 4: Validity

The first contribution chapter (chapter 4) presents research that examines the adaptive
market hypothesis. This includes the reproduction of work on variable information
efficiency in the markets from the econometrics literature, as well as an examination of
other characteristics of the markets held to be static under the efficient market hypothesis.
It then goes on to describe the work on the time varying relationship of risk and reward.
This includes the definition of a state-space approach to a linear financial model and the
results from fitting such as model using the diffuse Kalman filter.
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Chapter 5: Implications

The second chapter of Part II, chapter 5, examines the effects of the variable nature of
certain characteristics identified in the previous chapter and the AMH implication of
cyclical effectiveness. This begins with an experiment on Artificial Neural Networks
and how variable stationarity impacts the forecasting of simulated and real world time
series. It then goes on to describe the experiments on supervised machine learning and
if time varying market efficiency has any effect on forecasting with these techniques in
terms of classification accuracy. In the final section it discusses a formal definition of
the waxing and waning of investment strategies, proposes a novel forecasting algorithm
based on particle swarm optimization and technical analysis, and tests this algorithm for
cyclical effectiveness.

Chapter 6: Innovations in Technical Anlaysis

Chapter 6 describes the proposed meta-learning algorithm that is based on the results
from cyclical effectiveness in chapter 5. The general theory and framework is provided
followed by a specific implementation using the novel algorithm proposed in the previous
chapter. The specific implementation is then tested in a Monte Carlo simulation and then
on real world data.

Chapter 7: Innovations in Discretization

The final contribution chapter, chapter 7, concerns the discretization of continuous
time series into a symbolic representation. This begins with a discussion and then an
experiment which reveals an invalid assumption of a state of the art algorithm from this
field and a fix for this issue. Then it goes on to describe a proposed novel discretization
algorithm for mapping a continuous financial time series to a symbolic representation.
Due to the specific and time varying nature of financial time series characteristics the
benefits of the proposed algorithm are demonstrated on simulated and real world data and
compared to alternative techniques from the field.

Part III: Conclusions and Future Work

Chapter 8: Conclusions and Future Work

The final chapter summarizes the contributions of the thesis and examines to what extend
the three research questions in the introduction have been satisfied. The key research
contributions are highlighted in relation to the thesis objectives and finally the directions
for future work are discussed.
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Chapter 2

Methods and Market Hypotheses

This chapter will provide an overview of the algorithms and financial theories that are
utilized and discussed throughout the thesis. This chapter is a literature review but serves
more to provide relevant background of a more a general nature and specific work related
to the overlap of computational intelligence and financial analysis will be provided in
chapter 3.

2.1 Methods

2.1.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is an algorithm inspired by swarm intelligence
developed in 1995 by Kennedy et al. [70]. Swarm intelligence is the biological
phenomenon of decentralised collective behaviour in the natural world, such as a flock
of birds or a school of fish. It was recognized that collectively such animals displayed
intelligence far beyond that of any one individual. A particular individual in the swarm
governs its behaviour based on personal experience (perceptions) as well as benefits from
the collective knowledge of the swarm as a whole. Mimicking the behaviour of an
individual’s neighbours turns out to be an efficient and effective way of communicating
information throughout a decentralized group where the capacity for communication is
unsophisticated by human standards. For example, a school of fish will quickly change
direction once a predator is detected, thus each fish is more likely to evade threats even if
they do not observe it themselves. The PSO algorithm solves an optimization problem
by maintaining a population of particles that “fly” through an n-dimensional solution
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space and are represented by their position and velocity. The movement of the swarm
is governed by a fitness function (as with many biologically inspired algorithms) where a
particle’s position and velocity are updated by equations 2.1 and 2.2. The velocity update

is as follows:

vi, j ← ω ∗ vi, j + c1 ∗ r1 ∗ (localbest i, j − xi, j) + c2 ∗ r2 ∗ (globalbest i, j − xi, j) (2.1)

where vi, j is the velocity of jth dimension of the ith particle, c1 and c2 determine the
influence on a particular particle by its optimal position previously visited and the optimal
position obtained by the swarm as a whole, r1 and r2 are uniform random numbers
between 0 and 1. The inertia weight term ω (introduced in [123]) can be a constant,
usually between 0 and 1, or a function of time. The position update is as follows:

xi, j ← xi, j + vi, j (2.2)

where xi, j is the position of the jth dimension of the ith particle in the swarm. As a means
to avoid particles developing very high velocities and “flying” out of the solution space
a constraint called maximum velocity (Vmax) is introduced that essentially sets an upper
threshold on jumps between iterations. The pseudo code for maintaining a swarm of
particles to navigate a solution space is as follows:

Algorithm 1 Particle Swarm Optimization
maxIterations
number of particles
number of dimensions
initialize particle positions(number of particles, number of dimensions)
initialize particle velocities equal to 0
initialize global and local best fitness to worst possible(for example 0)
for i 5 maxIterations do

evaluate fitness for each particle
update local and global best
for each particle do

update velocity for each dimension (equation 2.1)
update position (equation 2.2)

end for
end for
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2.1.1.1 Heterogeneous Particle Swarm Optimization

A more sophisticated version of PSO called dynamic heterogeneous particle swarm
optimization (dHPSO) [34] is used in the thesis. The dHPSO was chosen as it was
demonstrated in [34] to outperform the canonical form of PSO on a variety of optimization
problems. With dHPSO the position update remains the same (in all but one case,
described below) but the calculation of the velocity update is expanded to allow for
alternatives. The swarm becomes heterogeneous as each particle in the swarm will have
one of five possible velocity update profiles and the swarm is dynamic as the velocity
update profile will change if a particle becomes stagnant. The additional velocity updates
are as follows:

υi, j ← ω ∗ υi, j + c1 ∗ r1 ∗ (localbest i, j − xi, j) (2.3)

υi, j ← ω ∗ υi, j + c2 ∗ r2 ∗ (globalbest j − xi, j) (2.4)

υi, j ∼ N
(
localbest i, j + globalbest j

2
, σ

)
(2.5)

υi, j ←

 localbest i, j if U(0,1) < 0.5

N
( localbest i, j+globalbest j

2 , σ
)

otherwise
(2.6)

where, N and U are normal and uniform distributions respectively. Equation 2.3 is the
cognitive only profile where the social component has been removed. This promotes
exploration as each particle becomes a hill-climber. Equation 2.4 is the social only profile
where the cognitive component has been removed. In effect the entire swarm becomes
one large hill-climber. Equation 2.5 is the Barebones PSO where the position update is
the velocity update, so:

xi, j = υi, j, and (2.7)

σ = |localbest i, j − globalbest j|. (2.8)

Finally, equation 2.6 is the modified Barebones profile. One additional improvement has
been made to the dHPSO algorithm where particles that continue to be stagnant after
velocity profile changes will be re-initialized randomly in the solution space.

2.1.2 Genetic Algorithms

Genetic Algorithms (GA), developed by John Holland [51], are a range of learning
techniques inspired from evolution, known as evolutionary computation (EC). A GA will
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navigate the solution space by evolving a population of candidate solutions which attempt
to improve (as a whole) with each generation. Candidate solutions are evolved, under the
building block hypothesis [51], by employing processes from evolution: breeding (cross-
over), mutation and reproduction (reproduction would be more commonly associated at a
genetic level, such as mitosis). The building block hypothesis is one of the foundations of
GA theory where schema of low order (short length) contain partial optimal solutions and
through the evolutionary process this subset of optimal schema are eventually combined
to form a complete optimal solution. GAs have been very successful in searching
through complex solution spaces and are more adept at escaping local minima than other
approaches such as greedy algorithms. The pseudo code for evolving a population of
candidate solutions is as follows:

Algorithm 2 Genetic Algorithm
maxGenerations
number of individuals
length ind
initialize population(number of individuals, lenght ind)
evaluate fitness of initial population
for i 5 maxGenerations do

select k fittest individuals for reproduction
create new individuals via crossover and mutation
evaluate fitnees of new individuals
replace least fit individuals from population with the newly evolved

end for

2.1.3 Genetic Programming

Another evolutionary based algorithm is genetic programming (GP) first introduced by
John Koza [73] in 1990. Also population based, GP iteratively learns from previous
experience by continually updating its population of potential solutions to a given problem
of interest. As the name suggests, the individuals in the population define a working
computer program that is essentially a set of functions which describe the mapping from
an input domain to a target domain or output attribute. A common form of the program is a
decision tree, similar in structure to those described in section 2.1.7, but the methodology
for determining the structure of the tree is based on evolution, Darwinian natural selection
and a fitness function. The fitness function is designed to effectively evaluate the quality
of the solutions in the population.
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2.1.4 Artificial Neural Networks

One of the most important and popular paradigms of learning algorithms from artificial
intelligence are those based on the biological processes in the brain. Often referred
to as Artificial Neural Networks (ANN), these models have all been inspired by how
information is believed to be processed by humans. Essentially an ANN is a directed
graph, where the nodes are based on the neurons in the brain and the arcs are synaptic
weights between them. Information is processed by being fed to an input layer and
then transmitted through the graph by the weighted arcs between the nodes. The nodes
contain activation functions which allow them to “fire” when adequately stimulated, thus
allowing further propagation of the signal. The ANN which is considered to have the
greatest practical value [5] is the multi-layer perceptron (MLP) which is an extension of
the original ANN the perceptron from the 1960s. An MLP can be considered a non-linear
function approximator and, provided enough neurons are supplied, then a 2-hidden layer
MLP should be able to approximate any signal [43]. The type of ANN utilized in the thesis
is a feed-forward MLP and an example of a topology used in the research is displayed in
figure 2.1. In this example there are two hidden layers, an input layer and an output layer.
The neurons in the hidden layers have sigmoid activation functions (equation 2.10) and the
output neuron has a linear activation function (equation 2.11). MLPs utilized in the study
are trained for two distinct but related task, the first is classification where the training
data is associated with a class attribute (C) that is numeric but discrete, for example C ∈
{0,1}. The second task is level estimation , where the training data is associated with a
target value that is also numeric but is continuous, such that C ∈ R. This task is analogous
to a linear regression and based on the output neuron in figure 2.1 this MLP would be
used for a level estimation task.

The process of propagating a signal through an MLP with one hidden layer can be
formally described by the following equation:

Ŷ(x,w) = σ

 M∑
j=1

w(2)
k j h

 D∑
i=1

w(1)
ji xi + w(1)

j0

 + w(2)
k0

 (2.9)

where the (1) and (2) represent the input and hidden layers respectively. Ŷ is the output
of the MLP, x is an input vector of D real-valued variables, w is a matrix of weights, M is
the number of neurons in the hidden layer, h denotes a hidden layer and σ is the sigmoid
activation function given by:

σ(a) =
1

1 + exp−a (2.10)

where a is the sum of each input into the node multiplied by its respective weight. The
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linear activation function from figure 2.1 which is used in level estimation is calculated as
follows:

Ŷ =

L∑
m=0

XmWm (2.11)

where Xm is the output of neuron m the final hidden layer, Wm is the connection weight
and L is the number of neurons in the final hidden layer.

Ŷ=∑XW

δ(a) = 1(1+exp-a)-1 

Output Layer

2nd Hidden Layer

1st Hidden Layer

Input Layer

Figure 2.1: A typical feed-forward MLP topology.

2.1.4.1 Training with Back-Propagation

One of the most popular methods for training feed-forward MLPs is the back-propagation
(BP) algorithm. The BP algorithm works by propagating the error realized in the output
layer back through the network of nodes to adjust the weights using the error gradient.
A step-by-step process for implementing BP for a single hidden layer is displayed in
algorithm 3, where we define Y j to be the output of jth neuron in the hidden layer, Yt is
the desired target, α is the learning rate and the i subscript indicates the input layer.

2.1.5 Support Vector Machine

A Support Vector Machine (SVM) is a machine learning algorithm for solving classifi-
cation, regression and anomaly detection problems. The SVM is also referred to as a
maximum margin classifier because the learning procedure attempts to find the largest
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Algorithm 3 Back Propagation
for each training sample do

propogate input signal X through network using equation 2.9 yeilding Yk

calculate error in output neuron: ek = Yk - YT

calculate the gradient for output neuron: δk = Ŷ[1-YT ]ek

calculate weight corrections between output neuron and hidden layer:
4w jk = αY jδk

update corresponding weights: w jk ← w jk + 4w jk

calculate error gradient for neurons is hidden layer:
δ j = Y j[1-Y j]

∑
δ jw jk

calculate the weight corrections: 4wi j = αXiδ j

update corresponding weights: wi j ← wi j + 4wi j

end for

plane or hyper plane (in hyper-space) that maximizes the distance between different
classes of data. In its canonical form the SVM would be used in a two-class classification
problem where the plane of maximum margin is constructed in feature space, where the
data is assumed to linearly separable. Formally we can demonstrate the intuition behind
SVMs by considering the following linear model:

y(x) = wTφ(x) + b (2.12)

Margin

Y = 1

Y =-1

Y = 0

Figure 2.2: The data points falling on the

decision boundary form the set of support

vectors.

where y(x) would be a vector of target
variables, w is a weight vector, b is a
bias parameter and φ(x) is feature-space
transformation. So an SVM will project
a set of training data into a transformed
feature-space where the data will not
only be linearly separable but also the
transformed space will be the unique
solution that maximizes the margin. With-
out the extra criteria of the maximum
margin several solutions would satisfy
equation 2.12. Achieving the maximum
margin is desirable as it guarantees the
optimal generalization of the model [131]
given the training set with target variables
of the form tn ∈ {-1,1}. In feature space
the target values would form the decision
boundaries such that the distance between
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them is maximized, as depicted in figure 2.2. The solution to the maximum margin
problem can be found by solving:

arg max
w,b

{
1
w

min
n

[tn(wtφ(xn) + b)]
}

(2.13)

which is in feature space and a direct solution would be difficult to calculate. As such
the SVM is generally described in its dual form which uses a kernel trick and lagrange
multipliers to solve an equivalent problem that is much simpler. The dual form is:

L̃(a) =

N∑
n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm) (2.14)

where an is a Lagrange multiplier and k(xn, xm) is the kernel function that yeilds the feature
space transformation. Equation 2.14 is maximized with respect to a training set of size N

and the contraints:

an ≥ 0, n = 1, ...,N (2.15)
N∑

n=1

antn = 0. (2.16)

Several algorithms have been proposed for solving equation 2.14 and for a more detailed
account please refer to [5].

2.1.6 k-Nearest Neighbours

The k-Nearest Neighbours (kNN) algorithm is a simple instance based learner also
referred to as a lazy learner generally used for classification and anomaly detection. An
advantage of kNN is that no training is required and new unseen instances from an out-of-
sample data set are classified based on distances between them and the training data. The
distance is defined in feature space and is generally measured using Euclidean distance
but other distance measure such as Manhattan and Mahalanobis are also popular. Once
the distances between the new data point and the training data have been determined a
local neighbourhood of size k is constructed. The local neighbourhood then determines
the class to be assigned to the new data point which is generally based on a majority vote.
Another desirable property of kNN is that it only has one parameter k which is the size
of the local neighbourhood, when k=1 the algorithm is referred to as nearest neighbour
(NN).
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2.1.7 Entropy-Based Decision Tree

A decision tree is commonly used for classification and is a type of graph that maps
input data to specified outcomes by a making a series of decisions based on the instance
attributes as the tree is traversed. An entropy based decision tree is one that makes
decisions based on entropy or information theory. A popular entropy-based decision tree
that is widely available is ID3 [115] or its numeric attribute extension C4.5 [116]. Each
node in the tree represents an attribute that splits the training instances into 2 or more
segments depending on the instances attribute values.

2.1.8 Naı̈ve Bayes

The Naı̈ve Bayes classification algorithm is a simplified approach to probabilistic
modelling of data using Bayes rule. The attributes contained in the training instances
are considered to be conditionally independent based on the class attribute. The decision
as to what class a given unseen instance is assigned to is based on the prior probability
of the class and the conditional probabilities of an attribute on a class. The equation
for calculating the probability of assigning a class to a new instance, or the posterior
probability, is:

P(Ci|A1, ..., An) = P(Ci)P(A1, ..An|Ci) (2.17)

where the probability of class i (Ci) given the observed attribute (A1, ..., An) is just the
product of the probability of the class (P(Ci)) and the conditional probabilities of the
attributes given the class (P(A1, ..., An|Ci). For each class this quantity (equation 2.17) is
calculated and the class yielding the highest probability is assigned to the new data point.

2.1.9 Artificial Immune Systems

The Artificial Immune System (AIS) is a biologically inspired algorithm which draws its
inspiration from the vertebrate natural immune system (NIS). The NIS can be generalized
as a system which continually protects the body from harmful invaders, called antigens,
and keeps the body in an equilibrium state. The AIS is not an exact model of how the
NIS interacts with a living entity; rather, it draws on principles from the immune systems
which are a natural fit for machine learning. The notion of “self” and “not self” is one of
the more popular principles employed in AIS algorithms; it means that the immune system
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is able to recognize objects which are not harmful, such as red bloods cells, categorized as
“self”, commonly referred to as antibodies and antigens which are a threat to the wellbeing
of the system, such as viruses. This principle is the main underlying theme to AIS for
supervised learning , although the algorithms go into much more detail and employ other
principles from the NIS to accomplish this goal; in all cases, the notion that the immune
system can effectively distinguish between two distinct objects is the very basis of using it
for an analogy in machine learning. In the NIS, if an antibody is activated by an antigen,
then the two bind and the antigen is destroyed, eliminating the threat. How the immune
system actually accomplishes this task forms the principles which influence the inner
workings of AIS algorithms.

Negative selection (NS) was first used in AIS for recognizing “self” and “not self”, with
this type of learning the algorithm only uses examples of one-type of object such as in
positive-only learning. NS comes from the thymus which is an organ responsible for
generating the T-Cells which circulate the body looking for invading antigens. The thymus
continually creates T-cells which are first held in the thymus and tested to see if they
are activated by any of the “self”, which would mean that they recognize and react to
“self”, if they do than they are destroyed, otherwise they are released into the body as
they will only be activated by “non-self” pathogens. A T-cell is activated if its degree of
similarity is sufficiently close to an antigen and this degree of similarity is determined by
an affinity measure. This type of learning can be very ineffective for supervised learning
as the “non-self” space can be quite large and require a massive number of T-cells to
accurately map it. Also by ignoring counter examples and only training on one type of
data a large amount of useful information is ignored. To improve upon the principle of
NS, the algorithm implemented in the thesis, which will be introduced next, is referred to
as clonal selection-based AIS where training is conducted with both negative and positive
exemplars. The algorithm learns and builds a memory of negative and positive exemplars
and later uses this experience to classify new antigens which enter the system or, in other
words, new unlabelled examples to which the algorithm is exposed.

One of the most well known clonal selection algorithms is the Artificial Immune
Recognition System (AIRS) developed in [133]. The metaphors from the NIS employed
in AIRS are antibody-antigen binding, affinity maturation, clonal selection process,
resource competition and memory acquisition. The algorithm has four main stages,
initialization, memory cell recognition and ARB generation, resource competition and
revision of resulting memory cells. Artificial Recognition Balls (ARB) are a combination
of a feature vector with a class attribute used to recognize possible antigens (training
data). Although the implementation in the thesis is based on AIRS it might be different
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from existing AIRS implementations in certain details. A high-level algorithm that is used
to evolve a set of memory cells is as follows:

Algorithm 4 Artificial Immune System
L number of antigens
all data is normalized ∈ 0, 1
L antigens seed ARB and memory cell (MC) pools
for each training examplar do

MC identification and ARB generation
Competition for resources and development of a candidate MC
MC introduction

end for
for each test case do

apply kNN algorithm for K>0 to determine local neighbourhood of MCs
classify test case by majority vote

end for

As can be seen from the steps above, once the set of memory cells (MC) has been created
the classifier works as a nearest neighbours algorithm where the memory cells act as the
raw data would in the k-Nearest Neighbours (kNN) algorithm.

2.1.10 Learning Classifier Systems

In this section a moderately detailed description on a Learning Classifier System (LCS)
is provided. Although LCSs are not used in the thesis, an algorithm developed in
chapter 7 is based on them and some background on LCSs will aid in its explanation. A
learning classifier system is a population based adaptive system which combines genetic
algorithms (GA) and reinforcement learning (RL). In many ways it is similar to an AIS
where a population of classifiers are maintained that become active and involved in
classification when they are stimulated by input data from an environment. Modelling
complex systems with an LCS was first proposed by John Holland in [52] and later made
a practical supervised learning approach by Wilson [136]. Wilson’s eXtended Classifier
System (XCS) was the first classifier system based on accuracy that segmented the update
of the GA population away from the other learning parameters. Without going into
too much detail, the XCS algorithm changed how LCS were used and it’s framework
still forms the basis of many LCSs developed today. In figure 2.3 we have the general
framework for a LCS and the typical steps for a given iteration of the algorithm.

The 10 steps depicted in figure 2.3 comprise the three main components of a LCS:
discovery, performance and reinforcement. In the discovery component (steps 4 and
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Figure 2.3: A typical LCS framework.

10) the system, guided by the genetic algorithm, creates classification rules of an
“IF condition THEN action′′ format. The rules are learned based on the input data
received from the environment (step 1) that is in the standard form for training supervised
learning algorithms. The population [P] can be randomly generated then developed online
as data is received or an initial batch learning stage can be performed to seed the initial
population of the LCS with classifiers. The covering mechanism is used to create new
classifiers for [P] when the current data does not satisfy any of the “IF condition′′s of the
current population.

The performance component is responsible for evaluating the classifiers in [P], forming
a match set [M] (step 3) and then an action set [A] (step 6). From [M] an action will
be chosen (step 5) to be executed by the system for the current iteration. The match
set contains all the classifiers from [P] which had their “IF condition′′s satisfied by the
current signal received from the environment. The action set contains the classifiers from
[M] whoose “THEN action′′ matched the chosen action. Finally, action selection (step
5) can be determined in a variety of ways but canonically it will be a weighted-fitness
evaluation where the action chosen has the highest score.

The reinforcement component is responsible for credit assignment and represents the
reinforcement learning portion of the LCS. Based on a reward received from the
environment, the parameters of the classifiers from an action set are updated using the
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Widrow-Hoff delta rule, equation 2.18:

Vi ← Vi + β(V̂i − Vi) (2.18)

where, 0 < β ≤ 1 is the learning rate, Vi is the current value of some parameter of the ith

classifier and V̂i is the current estimate of said parameter from the most recent inclusion
in [A]. Using equation 2.18 the parameters of the classifiers in [P] can be updated online
as new information is received. As we can observe in figure 2.3 the credit assignment step
is applied to an action set of time t−1 which implies a delayed credit assignment format.

2.1.11 Symbolic Aggregate Approximation

In time series analysis research there is a strong interest in discrete representations of real
valued data streams. The discretization process offers several desirable properties such
as numerosity/dimensionality reduction, the removal of excess noise and the access to
numerous algorithms that typically require discrete data. As a result there is a wealth
of literature describing a variety of techniques to facilitate this transformation. These
methods can be as simple as equal-width/equal-frequency binning or more sophisticated
approaches that are based on clustering [28] and information theory. One approach
that emerged over a decade ago and is still (along with its successors) considered state-
of-the-art is the Symbolic Aggregate approXimation (SAX) algorithm proposed in Lin
et al. [87] [88]. This discretization algorithm was the first symbolic approach that
mapped a real-valued time series to a symbolic representation that was guaranteed to
lower-bound Euclidean distance. This discovery lead to an explosion of application
areas for the SAX algorithm, such as, telemedicine [25], robotics [40], computational
biology [1], environmental science [100], network traffic [144] and pattern matching in
general [128] [103]. The interest in SAX is also motivated by its easy implementation
and intuitive approach to discretization based on the assumption of Gaussian distributions.
The SAX algorithm maps a real-valued time series of length n to a symbolic representation
of length m where m < n and often m << n. In this context, m represents the number of
segments the time series is divided up into and the ratio of n/m could be regarded as the
compression rate. The three main steps of the algorithm are as follows:

Algorithm 5 Symbolic Aggregate Approximation
Normalize the time series to have µ = 0 and σ = 1
convert the time series to PAA
substitute the PAA segments for symbols based on the standard normal curve
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Figure 2.4: A time series of 150 data points converted to a SAX representation of length
15, using an alphabet size of 3. The lines at ±0.43 represent the partitions of the
standardized normal curve which yield 3 equally probable regions. The original time
series is transformed into the SAX “word” CCBAAACBBAABCCA.

The Piecewise aggregate approximation (PAA) step requires that a time series C of length
n is replaced by a vector C̄ of length m where each element i of C̄ is calculated using the
following:

c̄i =
m
n

n
m i∑

j= n
m (i−1)+1

c j (2.19)

Equation 2.19 states that a time-series is divided into m equal size segments, where each
segment is then represented by its mean. This representation can also be considered as
an attempt to approximate the original time-series with a linear combination of box basis
functions [87]. Figure 2.4 illustrates the transformation from a real-valued time-series to
it’s symbolic representation. From the graph we can observe that a series of original length
150 is mapped into a symbolic sequence of 15 letters which form a “word” [87] from
an alphabet of cardinality 3. The distance measure, defined on the symbolic sequence,
lower bounds the Euclidean Distance of its real-valued counterpart. For example, for two
SAX representations P and Q defined over the same alphabet the distance between those
sequences is calculated as follows:

MINDIS T (P̂, Q̂) ≡
√

n
m

√∑m

i=1
(dist( p̂i, q̂i))2 (2.20)

where the sub function dist() is determined by a lookup table as shown in table 2.1 for an
alphabet of cardinality 4.
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Table 2.1: A lookup table used by the MINDIST function for an alphabet of cardinality 4.
a b c d

a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

2.1.12 State space models and the Kalman Filter

State space models (SSM) sometimes referred to as dynamic linear models were first
developed in the 1960s for the aerospace industry by Kalman and Bucy [64]. SSMs were
developed as a means to determine an optimal estimate of some unknown quantity that
can only be measured by a less than perfect instrument. Using this suboptimal instrument
introduces a degree of measurement error into the observation and therefore the “true”
value of the unknown quantity cannot be determined exactly. However, if assumptions
are made about the error associated with the measurement then possibly with enough
observations a near optimal estimation can be achieved. If the unknown quantity was a
single constant variable then we could obtain the maximum likelihood estimate (MLE) by
simply averaging the observations, however if the unknown variable is dynamic a more
sophisticated approach is required. State space models are commonly used in several areas
of computational intelligence and have achieved the greatest recognition in computational
linguistics where hidden markov models (HMM) are considered one of the most robust
algorithms for part-of-speech tagging and sequence analysis. The HMM is a discrete
representation of a SSM where the emission and transition probabilities (between states)
would be determined using the forward-backwards algorithm, which is a special case of
the Expectation-Maximization (EM) algorithm. For a continuous process such as a time
series (the type of process considered in the thesis) a SSM could be represented by two
equations: an observation equation (equation 2.21) and a state equation (equation 2.22).
For a process {Yt}

n
1 for 1 ≤ t ≤ n that is generated by a SSM ({Yt} ← SSM), the observation

equation is:
Yt = Ztαt + Gtut (2.21)

where ut ∼ (0, σ2I) with σ2 > 0. If Yt is scalar and αt is a p x 1 vector then Zt is 1 x p

vector that defines the interaction of the state with the observations and Gt is a p x 1 input
vector. The state equation for αt+1 is:

αt+1 = Ttαt + Htut (2.22)
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where ut has the same definition as above, α0 = 0 and Tt is the transition matrix. All of
the matrices (Z, G, T and H) are non-random and as the subscript implies can be time-
varying. The parameters of the SSM of {Yt} can be efficiently estimated using the Kalman
filter (KF) and Kalman smoother (KS), which work as a recursive procedure through a set
of training data. The KF can be defined by a set of equations for filtering and forecasting
the process {Yt}. One of the main advantages of the KF is that it is continuously updatable
as new observations become available without having to re-train (re-fit) the model with
the entire data set. The set of recursion equations defining the KF are:

et = yt − Ztat (2.23)

Dt = ZtPtZ′t + GtG′t (2.24)

Kt = (TtPtZ′t + HtG′t)D
−1
t (2.25)

at+1 = Ttat + KtEt (2.26)

Pt+1 = (Pt − KtZt)PtT ′t + (Ht − KtGt)H′t (2.27)

where at is a predictor of the state αt and at has the variance-covariance matrix Pt, which is
an estimate of the error covariance. Equation 2.25 is called the Kalman gain and represents
a gain or blending factor that minimizes the a posterior error covariance. The matrix Dt

can be thought of as a projection of the error covariance ahead and then Pt is the update of
the error covariance taking into account the Kalman gain. The Kalman smoother provides
an efficient method for smoothing the state estimates, αt, of the observed series {Yt}, where
essentially αt can be predicted using the entire series of observations rather than just those
up to time t. Thus smoothing using the KS can be accomplished using the recursion:

Nt−1 = Z′t D
−1
t Et + L′t Nt (2.28)

Rt−1 = Z′t D
−1
t Zt + L′tRtLt (2.29)

Lt = Tt − KtZt (2.30)

where Nn = 0, Rn = 0 and all other quantities are defined in the KF equations above. The
KS works in reverse to the KF where it begins a time n and works backwards to t=0.
The smoother is not used for making real-time predictions of the state or the observations
but allows for a better estimate. However, once the KS has been applied the improved
estimates of the state can be used for forecasting.
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2.2 Market Hypotheses

In this section a description of the three main stream market hypothesis will be provided
that includes related work from the financial literature.

2.2.1 Efficient Markets and Random Walks

Probably the most cited paper in the field of finance and economics is the thesis of Eugene
Fama which examines the theory of efficient financial markets [35]. His research formally
developed the idea of the efficient market hypothesis (EMH) a ubiquitous concept in
modern finance. The majority of research concerning financial forecasting will make
reference to this work and to some degree their results will offer evidence in support or
against this theory. In a general sense the EMH states that the markets are informationally
efficient and that current market prices fully reflect all available information about the
underlying asset. Models of this type can be simplified to expected return theories where
the following equation describes the efficient market:

E( p̃ j,t+1 | φt) = [1 + E(r̃ j,t+1 | φt)]p jt (2.31)

where E is the expected value operator, p jt is the price of asset j at time t, r j,t+1 is the one
period percentage return, φt is the information set and the ∼ signifies that the variables
are random. Examining equation 2.31 we observe that it defines a relationship where the
expected price of a stock at time t + 1 given a set of information at time t is equal to 1 plus
the return of the stock at time t + 1 multiplied by the price of the stock at time t. Since the
price and return variables are random this implies that the future value of any stock given
the set of available information is not predictable. This expression is the basis for many
modern financial models and, if it is valid, also calls into question financial forecasting
models and the need for active portfolio management. Active portfolio management is
an investment strategy where a collection of assets are regularly adjusted to take into
account current trends. This relationship also implies that all expected excess returns
for a portfolio of assets in relation to the market portfolio are equal to zero. The market
portfolio is a representation of all assets that trade on a given market, for example, in the
United Kingdom the market portfolio is the FTSE 100 index.

Even the casual observer of the stock market will know that in the long-run markets drift
and tend to drift upwards. To demonstrate this fact, figure 2.5 is a time series plot of six
market indexes from around the world spanning a time period of over 20 years. It is clear
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from all of these markets that they are drifting, with the majority, towards higher prices.
We represent this mathematically as a first order autoregressive (AR) process with a drift
or intercept term, as in equation 2.32:

yt = a0 + a1yt−1 + εt (2.32)

where yt is the observation of the series at time t, a0 is an intercept or drift term, a1 is a
constant, and εt is white noise. Based on this formulation the drift term a0 will be ≥ 0 and
therefore the long-run behaviour of the process will be a positive drift. If a1 = 1 then the
equation simplifies to the well known stochastic process the random walk. Considering
this evidence Fama further refines the EMH into two special cases: (i) a sub-martingale
model and (ii) the random walk. A martingale process is equivalent to a gambler flipping
a fair-coin where the probability of winning and losing are equal; this would be a “fair
game” situation. However, when the coin is weighted in favour of one side we have a
sub or super martingale process depending on who receives the advantage. If the gambler
was to receive a higher expected return than we have a sub-martingale process, formally
defined as:

E( p̃ j,t+1 | φt) ≥ p jt or E(r̃ j,t+1 | φt) ≥ 0 (2.33)

The relationship defined by either form of equation 2.33 would be favourable to investors
as one would always be guaranteed to retain at least your initial investment. However, the
EMH is still valid as the expected returns are not in excess to the market portfolio and are
still random variables.

The other special case that the market follows a random walk is the focus of several
studies in the literature and often these separate theories (efficient markets and random
walks) are used interchangeably. Despite sometimes being confused with one another,
informationally efficient markets and markets following a random walk are not equal.
Under a random walk there are two assumptions which must hold; the first that successive
price changes are independent and the second that the returns are also identically
distributed, which means random and iid. The model expression is:

f (r j,t+1 | φt) = f (r j,t+1) (2.34)

this relationship states that the marginal and conditional probability distributions of
an independent random variable are identical. Studying the notation we see that
equation 2.34 is stricter than what we have in equation 2.31 which was only concerned
with expected returns from a stochastic process. The random walk model requires that the
entire distribution is independent at φt. In Lo et al. [95] the authors reject the random walk
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Figure 2.5: Time series plots of 6 market indexes on the logarithmic scale.

hypothesis, but conclude that their results do not necessarily imply that the stock market
is not “information efficient”. Fama points out that the random walk hypothesis initially
came about mainly from observation of market movements [69] and [138] and provided
little in the way of economic rationale.

Further to these special cases, there are three forms of the EMH based on the coverage of
the information set φ: weak, semi-strong and strong. The distinction was created to test
different levels of market efficiency and more accurately determine where the hypothesis
breaks down. Under the weak form, φt only contains historical prices and states that by
considering only these prices a trading model cannot produce sustainable excess return
to that of expected returns in the market. Under the semi-strong form, φt contains all
publicly available information such as news articles and financial reports, etc. The final
form is strong and is the least popular as it would be the least plausible and the most
difficult to test. Under this assumption the φt also contains all “insider” information which
would mean that individuals which have an intimate knowledge of the company would not
have an advantage over other market participants. Given the restrictions and control over
insider trading it is unlikely that such a condition would hold true and in [36] Fama does
concede that there is evidence (thought not a substantial amount) contradicting this form.
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2.2.2 Behavioural Finance

The term behavioural finance (BF) defines a field of study that makes allowances for
market inefficiencies and attempts to understand market behaviour from a psychological
perspective. The first occurrence of this idea pre-dates that of the EMH by several decades,
where in 1912 Selden [121] wrote The Psychology of the Stock Market, where he argues
that the changes in market prices are a result of mental attitudes and biases of market
participants and not a reflection of the underlying value of some asset. Several studies
have appeared in the financial literature discussing this field, however for brevity, only a
few of the more influential papers will be discussed.

In Kahneman et al. [63] the authors present a critique of utility theory (a theory essential
for informationally efficient markets) and offer an alternative description of how investors
make decisions. They argue that “prospect theory” offers a more accurate account of
investor behaviour, where people value gains and losses relative to a reference point and
that they are risk-adverse with the possibility of a certain gain and risk-seeking when faced
with a possible loss. Prospect theory is able to explain a well documented behavioural bias
called the disposition effect, which is an individuals tendency to sell when in a positive
return investment and hold on to an investment that is in a negative position. Thus, the
utility functions for the same investor depend on the state of the investment itself, as
depicted in figure 2.6. Weber et al. [134] confirmed that the disposition effect, which is
sometimes referred to as the reference point effect, does exist. The authors also discovered
that the investment behaviour of their subjects was inconsistent with portfolio theory, as
proposed in Markowitz [98]. The results showed that the subjects tended to have a more
diversified portfolio and traded more often than what would be optimal. The authors
also found that the subjects anticipated mean-reversion in the market where they expected
losers to become winners and vice-versa. This behavioural trait of being loss-averse is also
observed in Coval et al. [27] where day traders on the Chicago Board of Trade regularly
assumed above-average afternoon risk to recover morning losses, which had an effect on
short-term prices.

Another well known market phenomenon that has received attention from BF is the
apparent over and under reaction of investors to new information which is contrary to
how efficient markets would operate. A model of investor sentiment is offered in [4] as
explanation for this behaviour. In underreaction the evidence shows that over horizons
of less than a year stock prices underreact to news, which would mean that current
good news would have predictive power of positive stock returns in the future. For
overreaction the evidence shows that in time-horizons of 3-5 years, stock prices will
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Figure 2.6: The utility functions for individual investors which show the disposition effect
in the stock market. Where investors are more likely to sell winning trades and hold-on to
losing ones. P0 is the initial buying into the market and P1 is decision point to sell or hold
onto the investment. When in a winning trade (left) the expected utility goes down over
time so an investor is more likely to sell. When in a losing trade (right) the utility curve is
convex and the expected utility increase with time and therefore the investor is more likely
to hold.

overact (become overvalued/undervalued) to a series of good/bad news and subsequently
the returns will be lower/higher over the coming time horizon. The authors draw on
two psychological traits known as representativeness and conservatism to explain this
behaviour. Representativeness is the tendency for people to see a situation as typical
or representative of some group of behaviour and ignore the laws of probability in the
process. In the market this would lead to overreaction for a company that has had
considerable growth over the last few years. It would become overvalued as investors
are too optimistic about its future growth even though it is more likely to slow down
rather than keep expanding forever. If we were to speak of this behaviour in terms of
expected returns we have:

E(rt+1 | zt = G, zt−1 = G, ..., zt− j = G) < E(rt+1 | zt = B, zt−1 = B, ..., zt− j = B) (2.35)

Where zt is a form of new information at time t, G and B designate if it is good or
bad respectively and j = 1 and probably much greater than 1. Equation 2.35 states a
relationship where the expected return from a stock which has had a series of good news
is lower than for a stock with a series of bad news. The second psychological trait is
conservatism, which is the tendency of people to be slow in updating their models in the
face of new evidence. This leads to the underreaction to news and the slow integration of
it into stock prices, once again stated in terms of expected returns we have:

E(rt+1 | zt = G) > E(rt+1 | zt = B) (2.36)
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The implications of equations 2.35 and 2.36 are a clear violation of the EMH where a
sophisticated investor would be able to create sustainable excess returns in the market by
exploiting these investor tendencies.

2.2.3 Adaptive Market Hypothesis

The adaptive market hypothesis (AMH) is an attempt by Lo [94] [93] to combine several
competing theories of market behaviour, such as the distinct views presented in the
previous sections. The AMH takes an evolutionary perspective of the financial markets,
where the market is seen as an evolving entity. One of the greatest insights from this work
is that market efficiency is not a static characteristic of the market but rather variable and
cyclical. Variable efficiency, that is also cyclical, allows for both the EMH and BF to
coexist. There will be times when markets are perfectly efficient and excess returns above
the market portfolio are equal to 0 and then there will also be periods of inefficiency
where trading models and active portfolio management will be rewarded with higher
risk-adjusted returns . Risk-adjusted returns and returns from an asset or collection of
assets that are adjusted for the amount of risk required to achieve those returns. Lo makes
the claim that many of the behavioural traits discussed in BF (overreaction, underreaction,
loss aversion) could be explained by an evolutionary model of individuals adapting to a
changing environment. The primary components of the AMH are:

1. Individuals act on their own self interest.

2. Individuals make mistakes.

3. Individuals learn and adapt.

4. Competition drives adaptation and innovation.

5. Natural selection shapes market ecology.

6. Evolution determines market dynamics.

The first item on the list is the same as a core assumption of the EMH and is
central to modern economics. It was first discussed by Adam Smith in his book
The Wealth of Nations [125] as the underlying driver of capital markets. However, the rest
of the items are unique to the AMH and are based on work from behavioural finance and
evolutionary biology. The AMH has received a considerable amount of attention from the
academic community since it was first proposed and in chapter 3 a detailed description on
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the related work on the validity of the AMH is presented. For now, the implications of the
AMH fundamental to the validity of modelling financial time series with computational
intelligence or any technique not based on random walks are highlighted. The three
implications are:

1. Variable market efficiency,

2. The waxing and waning of investment strategies, and

3. A time-varying and path dependent equity risk premium

These implications change the interpretation of the information set φ and allow for
tactical asset allocation, dynamic risk assessment and active trading strategies. Tactical
asset allocation is another term for active portfolio management where the collection or
portfolio of assets are regularly adjusted.

2.3 Chapter Summary

In this chapter we presented an overview of methods and hypotheses utilized and
discussed in the thesis. We started with an overview of several algorithms and machine
learning paradigms from the literature, with particular focus on the specific algorithms
implemented for the thesis. We continued this chapter by describing three major stock
market hypotheses from the financial literature and how they differnetiated themselves
from another. This included a description of the AMH which is referenced to throughout
the thesis.
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Chapter 3

Related Work

This chapter provides a detailed description of the related work that is vital to the
contributions made in the thesis. As such this chapter is divided up in to sections
that reflect the three parts of the thesis: validity, implications and innovations. The
validity section discusses the related work from econometrics that initially lead to the
determination that the AMH would be used as a reasonable characterization of the
financial market. The implications section discusses related work on computational
intelligence and financial analysis that concerns the financial time-series characteristics
under study. Finally the innovations section also covers the overlap of computational
intelligence and financial analysis but related to technical analysis and forecasting, as
well as, prior attempts to create a discretization algorithm specific to financial time series.

3.1 Validity

There exists an entire spectrum of views on what governs the behaviour of financial
markets, as was discussed in 2.2. Despite its popularity in academia the EMH is not
widely held in the financial industry [48] and it seems illogical that all the time and effort
spent by financial institutions in modelling financial markets would be an exercise in
futility. In fact many academics believe that markets need to be inefficient for them to
be liquid and therefore to exist [45] [46]. From this point there has been a growing body
of literature that suggests the rigid and static nature of efficient markets is not valid and
that an alternative based on a more dynamic model of market characteristics, i.e. the
AMH is a more reasonable alternative. This includes the work by Neely et al. [105]
that showed technical trading rules used in the foreign exchange markets were able to

57
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produce sustainable excess returns. From a computational intelligence perspective the
most important aspect of a hypothesis is not necessarily that it can be proven beyond
a doubt but whether or not it is offers any insight for modelling and forecasting with
heuristic algorithms. Thus what follows in this chapter is a discussion of the literature
pertaining to the AMH that provides quantifiable characteristics of the market.

3.1.1 Variable Stationarity

There is no previous literature that we are aware of that exactly discusses the possibility
that a financial time series could be considered stationary during some periods and non-
stationary during others. However the idea that, what we labelled variable stationarity,
could exist is based on the results of two studies. The first by Lo et al. [95], where he
rejects the hypothesis that financial markets follow a random walk based on variance ratio
tests that were proposed in the same paper. An interesting implication of these results is
that if the markets do not follow a random walk then there are several (not necessarily
mutually exclusive) reasons for this conclusion. Once such possibility is that the series
does not contain a unit-root which is a necessary but not sufficient condition for a random
walk. A time series with a unit-root is non-stationary which has serious implications for
modelling said time series. In the second study by Diebold and Kilian [29] the authors
investigate if unit-root tests are useful for selecting forecasting models (a unit-root test
is a statistical test for stationarity explained in section 4.3.2). Though [29] does not
specifically state that stationarity can be variable their results demonstrate that choosing
a forecasting model based on the outcome of a unit-root test will improve the forecasting
accuracy of an autoregressive (AR) model. Thus, a unit-root test is useful for selecting
a forecasting model and because the experiments are performed on a single time-series
then this implies that the characteristic of stationarity is time varying. If it was static then
pre-testing a time series with a unit root test would not offer any advantages.

An initial experiment to determine if there are periodic departures from a random walk
was conducted using the variance ratio test (see Appendix A) applied iteratively using
a sliding window. The experiment was motivated by the results from [95] where the
random walk hypothesis could not be rejected for all sub periods of the US markets.
The results from this study for the US market index are shown in figure 3.1, where
z and z∗ are the test statistics for the variance ratios that assume the variance is
homoskedastic and heteroskedastic respectively. Given that market variance is proven
to be heteroskedastic [30] the z∗ statistic is considered more robust. The increasing values
of q indicate the number of lagged values of the series used for the test. The results
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demonstrate that over a 10 year period from 2000-2009 there are several and prolonged
departures from a random walk which implies that this characteristic is also episodic.
Whether a unit root is present during these departures will be explored in chapter 4.3.

z(2)

Time

te
st

 s
ta

tis
tic

0 500 1000 1500 2000

−
5

−
4

−
3

−
2

−
1

0
1

z(4)

Time

te
st

 s
ta

tis
tic

0 500 1000 1500 2000

−
5

−
4

−
3

−
2

−
1

0

z(8)

Time

te
st

 s
ta

tis
tic

0 500 1000 1500 2000

−
4.

0
−

3.
5

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

z(15)

Time

te
st

 s
ta

tis
tic

0 500 1000 1500 2000

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5

z*(2)

Time

te
st

 s
ta

tis
tic

0 500 1000 1500 2000

−
5

−
4

−
3

−
2

−
1

0
1

z*(4)

Time

te
st

 s
ta

tis
tic

0 500 1000 1500 2000

−
5

−
4

−
3

−
2

−
1

0

z*(8)

Time

te
st

 s
ta

tis
tic

0 500 1000 1500 2000

−
4.

0
−

3.
5

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

z*(15)

Time

te
st

 s
ta

tis
tic

0 500 1000 1500 2000

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5

Figure 3.1: A plot of the test statistics from the z and z* variance ratios. The solid line
represents the significance level of -1.96.

3.1.2 Variable Efficiency

The AMH was first published in 2004 and since then, there have been several studies
which examined variable efficiency using a variety of tests. There is of course related
literature submitted/published prior to the AMH that does support it but obviously does
not make reference to it. This includes work by Cajueiro et al. [15] (which is the first
of a series of papers published on the subject by the authors) which examines the long
range dependence in Asian equity markets. Their test was based on the Hurst exponent
calculated using the original R/S statistic as proposed in [55]. R/S analysis is a popular
technique for detecting long range dependence in a time series and can detect episodic or
cyclical dependencies by applying it iteratively with a sliding window. The findings of the
study were that all of the Asian markets considered (China, Hong Kong and Singapore)
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displayed long range dependence and that based on the sliding window results these
dependencies were episodic. The authors do not mention the AMH in their conclusions
but their findings which show statistically significant dependencies in financial time series
do support the AMH implication of variable efficiency. A caveat to this work is that the
classical R/S statistic was used and not the modified R/S version as proposed by Lo et
al. [92] that is more robust. Therefore it is possible that some of the reported findings
are false positives and could impact the final results. In the same year the authors also
published a study [16] that considered more financial markets from around the world that
also examined long range dependence. An improvement for this work is that it used
the modified version of the R/S analysis that took into account the effect of short range
dependencies. Using the sliding window approach the findings of the study are consistent
with their previous work in that the majority of the markets displayed episodic long range
dependence. A third instalment by these authors was made in 2005 [17], where once
again the modified R/S analysis was applied to several financial markets using a sliding
window. The main distinction for this work is that the authors were examining squared
and absolute returns as a means to focus on volatility; the findings are consistent with the
previous two studies.

The next study by Lim [85] in 2007 uses a different approach to measure market
inefficiency. The author used a test proposed in Hinich [49] and Hinich and Patterson [50]
called the Portmanteau bicorrelation test statistic or the H-statistic. The details of
the calculation will be supplied in chapter 4 but essentially the test is for non-linear
dependence in a time series. The reason the H-statistic was chosen is because the
existence of non-linear dependence in a financial time series would invalidate the EMH.
Lim’s experiment framework was based on [15] and therefore applied the H-statistic
iteratively using a sliding window. The results from the experiments revealed that non-
linear dependence existed in all the financial markets considered and that is was episodic.
The results also suggested that emerging markets were less efficient than developed but
that both exhibited a cyclical nature to market inefficiency rather than a convergence.

The strategy in Ito et al. [57] to measure time varying market efficiency was based on the
estimated autocorrelation of stock returns. The authors avoided using a sliding window by
fitting an autoregressive (AR) model to the returns data using the Kalman filter (KF) (as
described in section 2.1.12). The benefit of using a state space model with the KF is that
the sampling bias introduced by using a sliding window of a static size is removed and
the model can be continuously updated as new data becomes available. The results of the
study, which examined the US stock market, found that time-varying market inefficiency
exists and that the most inefficient period was in the 1980’s.
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The final two studies reported in this section were written by the same set of authors
in 2009 and 2010. The first ([146]) examined market inefficiency based on forbidden
patterns and permutation entropy. Their results showed that inefficiencies exist in markets
around the world and that market efficiency is also time varying. The second study ([145])
was based on the complexity-entropy causality plane, a tool for discriminating Gaussian
from non-Gaussian process and different degrees of correlations. In accordance with their
previous studies the results demonstrate that the markets under study can be characterized
by time varying market inefficiencies.

3.1.3 Time Varying Risk

Another important implication of the AMH is that it allows for a time varying risk
to reward relationship between a financial asset (such as a stock or commodity) and
the market as a whole. This allowance is supported by a growing number of studies
([101] [141] [139] [26] [44] [33] [117] [9] [120]) that have demonstrated that the risk of
an asset in relation to the market is not static. Formally we can describe this relationship
by the capital asset pricing model (CAPM) [122] [89], equation 3.1:

E(Ri,t − R f ) = βiE(Rm,t − R f ), (3.1)

R f is the (fixed) return of a risk free asset, Ri,t and Rm,t are the returns of asset i and the
market portfolio respectively. βi is the measure of systematic risk or the proportion of the
assets expected excess return described by the market. The linear regression model:

Ri,t − R f ,t = αi + βi(Rm,t − R f ,t) + ε, t = 1, ...,T (3.2)

where ε is assumed to be iid zero mean and constant variance disturbances, which allows
the estimation of βa as the least squares estimate of β (the ratio defined in equation 3.3):

βi =
cov(Ri,Rm)

var(Rm)
(3.3)

where a β = 1 would have the same risk as the market and a value less than 1 would
indicate a less risky asset. Under an efficient market α would be equal to 0 and β would be
constant. The relationship (3.1) and the estimating method that uses (3.2) are valid under
the crucial assumption of an efficient market.

Well before the incarnation of the AMH it was recognized that the CAPM in its canonical
form was not adequately explaining the observation data. Work as early as 1975 by
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Blume [8] and 1976 by Black and Fischer [7] highlighted the presence of heteroskedasity
is portfolio volatilities and that changes in volatilities in relation to the market portfolio
were not homogenous. These observations were indicative of a time varying β and
therefore an asset may become more or less risky as the economic environment changes.
This idea was followed up some years later by Bollerslev et al. [9] and in Schwert et
al. [120] using regression models to estimate time varying monthly variances in stock
portfolios. Both studies confirmed the results of Black and Fischer that betas are time
varying based on sample sizes of returns as large as 50 years. Since 1990 there have
been several studies which confirmed that the β value of a particular asset can be time
varying, however the short coming of these studies is the approach. The dynamic
behaviour of a time varying β cannot be described by a linear regression model. To
accommodate this dynamic behaviour state-space representations of the CAPM have been
proposed [139] [26] that allow the parameters to be stochastic and therefore if β is time-
varying its trajectory through time can be estimated without the unnecessary constraints
of a linear model. Though several techniques for estimating a time varying β exist the
results from Brooke et al. [10] and Choudhry et al. [26] demonstrated that the preferred
technique was the Kalman filter (section 2.1.12). The exact methodology for fitting 3.1
with a SSM and the KF will be described in chapter 4 but this methodology has been used
in [26] [101] [139] and [44] all of which demonstrated that β was time varying.

3.2 Implications

The adaptive market hypothesis contains several implications that will influence financial
modelling decisions. The thesis is concerned with two implications in particular and
their impact on modelling and forecasting with computational intelligence algorithms.
The first implication can be generalized as variable characteristics of the market,
specifically stationarity and efficiency. The second implication is the waxing and waning
of investment models and how their effectiveness is dependent on the current market
dynamics.

3.2.1 Variable Stationarity

Whether or not a time-series is stationary or non-stationary has consequences for
modelling said time-series for many statistical techniques. Financial time series is
considered non-stationary [75] [106] and this characteristic is also considered to be
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static. In chapter 4 this generally held belief is challenged and experimental results
demonstrate that at certain time periods markets would be more appropriately described
as trend-stationary and thus stationarity could be considered time varying. Given that this
characteristic was historically considered static there is no directly related literature on
the effect of “variable stationarity” (VS) on computational intelligence.

Although VS has not been previously explored in the computational intelligence literature
there is a study which focuses on how to model non-stationary data with an artificial
neural network (ANN). Due to the complications of non-stationary data (explained in
chapter 4) it can negatively impact the robustness of models learned by ANNs. In Kim
et al [72] the authors investigate the preferred procedure for training ANNs for non-
stationary time series where the KOPSI market index from Japan serves as the system
of interest. Unfortunately the authors ignore the statistical properties of the data and the
wealth of literature from the forecasting domain and make the assertion that the preferred
way to deal with non-stationary data is to overfit the models. This is achieved by removing
a validation set and simply training on all the data. The results analysis considered the
residual squared error and if the residuals contained autocorrelation. This is an incomplete
analysis of the results and the size of the forecasting errors should have been compared
to standard preprocessing techniques. Overfitting is a major obstacle for any modelling
technique and the conclusions of [72] are unsound. Thus as part of the chapter on the
implications of VS the experiments will also refute this work and offer a statistically
sound procedure for modelling non-stationary data with ANNs.

3.2.2 Variable Efficiency

The previous studies on variable efficiency (VE) from section 3.1.2 were concerned with
indentifying how often a financial market is inefficient and then ranking the markets in
terms of efficiency. None of these studies considered if the periods of market inefficiencies
offered any forecasting advantages. Two studies by Todea et al. [130] [129] examined the
profitability of moving average strategies during periods of market inefficiencies across
several markets in Asia and Europe. A moving average (MA) trading strategy generates
signals through the interaction of two or more moving averages and can be mathematically
represented by equations 3.4 and 3.5:

Buy : MA stt−1 < MA lgt−1 & MA stt > MA lgt (3.4)

S ell : MA stt−1 > MA lgt−1 & MA stt < MA lgt (3.5)
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where MAst is a short period moving average and MAlg is a long period moving average.
From equations 3.4–3.5 we see that when a shorter MA (for example a 5 day MA)
crosses a longer MA (for example 100 day MA) from below it generates a buying
signal and when it crosses from above we have a sell signal. Figure 3.2 displays a
moving average trading strategy and the signals it produced for the Merval index from
Argentina. Periods of market inefficiencies in [130] and [129] were identified using the

Figure 3.2: A depiction of 250 days of trading for the Merval index with a 100-day (blue
dashes) and 20-day (red dots) moving averages. A buy signal is created when the 20-day
MA crosses the 100-day MA from below and a sell signal is generated when it crosses
from above.

H-statistic (see chapter 4) and its linear companion the C-statistic (see [130]). For each
market an optimal moving average strategy was chosen from 15000 alternatives based
on profitability and then the average returns for periods of efficiency and inefficiencies
calculated and compared. The results of both studies suggested that the excess returns
in relation to the market of the moving average strategies were higher during periods
of inefficiencies and thus were in accordance with the AMH. There are however a few
shortcomings of the studies in terms of the experiment methodology and the results
analysis. The experiment methodology only considers an optimal trading strategy and
therefore the results are very specific to this one strategy, given that over 15000 were
evaluated it would have been more meaningful to report the distribution results where
we could have seen on average if any given strategy was more likely to be profitable.
This would be preferred as the “optimal” strategy is not likely to be known a priori
and therefore most practitioners would be using sub-optimal strategies. Additionally
the results analysis does not consider risk, so it is very likely that during periods of
inefficiencies there is more variance in the daily returns of the market and therefore more
risk. Thus the returns of the trading strategies during these time periods would be expected
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to be higher. Without taking into account risk and presenting risk-adjusted returns it is
difficult to quantify how much of an advantage was offered by these market inefficiencies.
To avoid having to account for risk altogether the authors could have reported accuracy or
the percentage of trades that were profitable rather than profit itself. Since accuracy and
profitability are strongly correlated then an expected increase in accuracy implies a high
probability that returns will also increase.

The related literature on the effects of VE on use of computational intelligence is not
based on the various statistical tests previously discussed but comes from research into
predictability filters for genetic programming (GP). GP [74] is an evolutionary algorithm
that learns a computer program which satisfies some objective based on a set of training
data. GP has been extensively used in financial modelling ([22] [105] [56] [112] [62])
and offers the advantage of being a “white box” technique where the evolved program
can be viewed and is potentially human readable. The first occurrence of predictability
filters was in Kaboudan [61] where the η measure is developed which is a predictability
score ranging between 0 (completely unpredictable) to 100 (completely predictable). The
measure is a proportion of sums of squared errors (SSE) between a GP run on a normal
time series (S S Ey) and a GP run on a shuffled version (S S Es) of the same time series.
The idea behind the measure is that if there is a pattern in the time series than the errors
from the original should be lower than the (assumed to be random) shuffled version. The
η measure calculation is as follows, equation 3.6:

η =

 0 if
(

S S Ey

S S Es

)
> 1

100 ∗
(
1 −

(
S S Ey

S S Es
, t
))

otherwise
(3.6)

where
S S Ey =

S S Ey

k
and S S E s =

S S Es

k
(3.7)

and k is the number of GP trials sampled. The results from [61] demonstrated that by
using the η measure as a filter to decide when to make predictions the overall prediction
accuracy of the GP models were improved. Other work which used the η measure include
Chen et al. [24] where the authors extended the measure to include a random search of
equal intensity to compare against the GP models. This added layer was intended to
distinguish between time periods when there were no interesting patterns to model and
when the η measure said the series was predictable but GP was unable to capitalize. The
results from applying the pre-tests to nine financial markets provided preliminary evidence
that the filters were able to improve the forecasting performance of the GP models and
thus the filters were effective at detecting patterns in the time series. More recent work
concerning filter approaches is Wilson et al [135] that developed two novel pre-tests for
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GP. The first filter was based on volatility called “Price Frequency” and second based on
information theory called “Information Theoretic”. The price frequency filter was used
to detect higher then desirable volatility in a time series that would negatively impact the
forecast performance of GP. The information theoretic filter was intended to distinguish
between time periods of random behaviour and periods where an pattern exists. The
experiment results suggest that the price frequency filter was more effective then the
information theoretic where the performance of GP was significantly improved when the
price frequency filter was pretesting the time series.

The research into predictability filters has demonstrated their effectiveness. However,
none have reported the percentage of periods that were considered to be predictable but
the results for each demonstrate that periodically patterns exist in financial time series. A
discernable pattern that continues past the time period where it was detected is evidence
of a market inefficiency and thus these results not only demonstrate variable efficiency
but also that when inefficiencies are detected it is reasonable to assume an increase in
forecasting performance of GP and most likely computational intelligence algorithms in
general, as stated in [24].

3.2.3 Cyclical Effectiveness

Previous work related to the investigation of the waxing and waning of investment
strategies comes for research into the Dinosaur (DH) [3] and Market Fraction (MFH)
Hypotheses [65] [23]. The DH could be summarized as the need to continually evolve
new strategies as the market changes and any previous strategy will become obsolete
after the time it was created. This is in contrast to the AMH which states that market
behaviour is more cyclical and that previous strategies will become useful again. The
initial published results from testing the DH in [66] conclude the DH is not valid and
that “dinosaurs” can return and hence the market behaviour is cyclical. These results
reflect an experiment methodology based on the average fitness of a population of GP
strategies being tested on out of sample data. The fitness function is based on accuracy,
which is strongly correlated with profitability. However, subsequent work by the same
authors [67] comes to the opposite conclusion and now their results suggest that the DH
is valid and that previously effective trading models become “dinosaurs” i.e. become
extinct or obsolete as time progresses. A major shortcoming of this work is that the
profitability or fitness of these trading strategies is not used as the determining factor
as to whether or not the strategy is obsolete. Rather the authors have opted for a new
metric based on a dissatisfaction rates derived from clustering trading strategies using self
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organizing maps (SOM). This approach is based on the belief that the structure of a GP
evolved decision tree is correlated with the effectiveness of this trading strategy. Thus
when the structures of different populations of GP models are compared the conclusion
that DH is valid is based on the result that the structures on average are never the same.
Whether or not these models are profitable or outperform the market again is never
considered and therefore the results cannot be considered contrary to the AMH. Another
short coming of the approach is that the GP models are not controlled for over-fitting and
their complexity is not constrained. As a result the GP trading strategies are most likely
modelling noise and whether or not the signals or patterns in the market are repeating will
be difficult to determine. These results are also considered by the authors of [67] to be
supportive of the MFH which states that the micro-structure of the market (the composite
of trading strategies in the market) continually evolves and that trading models also have
to continually evolve to be useful. This however is not direct evidence as to whether or
not the effectiveness of a trading strategy is cyclical.

The previous work on the subject has missed the main point that Lo is making when
he discusses the waxing and waning of the effectiveness of trading strategies. The most
important metric for a trading model is how it performs in real currency (i.e. $ or £) terms.
Without an investigation into the profitability or accuracy of investment models on out of
sample data, the effect of the cyclical nature of market behaviour cannot be determined. In
what follows in chapter 5 is investigation into the cyclical effectiveness of computational
intelligence models in relation to a relevant benchmark.

3.3 Innovations

This section begins with a description of the related work pertaining to computational
intelligence approaches to technical analysis; this includes optimization of technical
indicators as well as meta learning approaches. This section then goes on to discuss
the literature on discretizing a time-series and previous attempts to create a discretization
algorithm specific to financial time series.

3.3.1 Improving Technical Analysis

There have been several attempts to improve technical indicators using population
based optimization from computational intelligence. This includes work using genetic
algorithms (GA) (see chapter 2.1.2) to fit a technical indicator’s parameters to a set
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of training data. The majority of the attention has been given to optimizing MA
strategies [39] [38] [109] [76] (as discussed in section 3.2.2) but other indicators such
as filter rules [86] and Bollinger bands [13] (see chapter 5) are also represented. In
Fernandez-Rodriguez et al. [39] [38] the authors were optimizing a general moving
average (GMA) rule with a genetic algorithm (GA). A GMA can be stated as equation 3.8:

S (Θ)t = MA(θ1)t − (1 + (1 − 2S t−1)θ3)MA(θ2)t (3.8)

where Θ = [θ1, θ2, θ3] denotes the parameters associated with the GMA rule and MA(θ)
is a MA indicator. θ1 is the short-period MA, θ2 is the long-period MA and θ3 is
a filter parameter included to reduce the number of false buy/sell signals. The result
of equation 3.8 is either positive or negative which translates into a buy or sell signal
respectively. The authors evaluated this equation for each trading day to decide if the
model would buy into the market on that day or invest in a risk-free rate (Rf ). The GA
was optimizing the three parameters using the following fitness function, equation 3.9:

rtr =

N∑
t=1

S t−1rmt +

N∑
t=1

(1 − S t−1)R f − T × c (3.9)

where T is the number of transactions, c is the transaction cost per trade, and St−1 is either
{0,1}. In these experiments the transaction cost is kept static which is different from [13]
where the transaction costs were a function of the amount invested. To assist in evaluating
the performance of the GA evolved solutions a benchmark portfolio was created which
was a risk-adjusted buy and hold approach, equation 3.10.

rbh = α

N∑
t=1

+(1 − α)
N∑

t=1

rmt − 2c (3.10)

Where α is the proportion of trading days the model is invested in a risk free rate and rmt

is the market return at time t. The results show that the models developed from the GAs
were able to outperform the risk-adjusted buy and hold strategy, however the parameter
α is never revealed so the proportion of days spent at risk in the market it not known. If
α is quite large it is not surprising that the GA models performed better. It would have
been useful to see the GA evolved model compared to the canonical setting of a MA
to evaluate if the extra effort to evolve the MA indicator was justified. The other work
that also considered using GAs for optimizing the MA technical indicator [76] [109] had
similar experiment frameworks and results. A strength of this approach, where a technical
indicator is optimized in its canonical form, is that the traditional interpretation of the
indicator is still valid and therefore the signal is interpretable by a human. However,
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these studies along with the others based on different indicators [13] [86] all share the
same shortcoming that only one rule is being used in the out of sample testing data, a
common approach to technical analysis is to have confirmation, which is when two or
more indicators produce the same signal and in theory produce more profitable trading
solutions [78] [77]. The desire to combine signals leads to a meta-learning approach
where the computational intelligence models are taking into account multiple indicators
or combining signals from a population of agents based on technical indicators.

Related work pertaining to combined signal analysis in computational intelligence
comes from several areas including reinforcement learning (RL), biologically inspired
optimization, genetic programming (GP) and learning classifier systems (LCS). The
related work could also be segmented into single agent and multi-agent approaches. Under
single agent approaches the technical indicators serve as inputs to the algorithm [127] [97]
that is generally learning in a supervised context for classification of stock movements
or investment decisions. One of the most well known examples of this approach is
EDDIE (Evolutionary Dynamic Data Investment Evaluator) [83] and its subsequent
extensions [68] which is a tree-based GP algorithm for classification that evolves decision
trees based on technical indicators. The original version of EDDIE has static window
sizes for the technical indicator parameters but in the latest version these window
sizes can also be determined during training. EDDIE has been extensively tested and
shown to produce trading strategies which can outperform a passive buy and hold
approach. The multi-agent approaches often involve a meta learning agent that interacts
with a population of single agents that are generating trading signals. This would
include [108] which is a combination of ANNs and RL and the various studies concerning
learning classifier systems. As described in chapter 2.1.10 an LCS would also have
a meta agent that is based on RL. The population of agents in the LCS could be
any type of classification algorithm but a popular theme amongst LCS for financial
forecasting is to have a population consist of technical indicator rules evolved using a
GA [84] [126] [20] [137] [113] [90] [114] [132] [119] [21].

The main distinction between the algorithm developed in chapter 6 and the previous work
is that in all of these approaches the technical indicators are not being used as they
are traditionally intended. Most technical indicators do not make a next-tick prediction
rather they are forecasting future trends over some time horizon. Additionally, technical
indicators generate signals from the interactions of components within the indicator
(figure 3.2) not by separate criteria being satisfied (such as MA5−day > MA10−day). This
problem has been highlighted before in [113] but their solution was still not compliant
with how a technical indicator is typically used in the real world. The proposed approach
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is an online adaptive algorithm that optimizes and combines a population of technical
indicators whilst still maintaining their intended interpretation.

3.3.2 Discretization

In time series analysis research there is a strong interest in discrete representations of real
valued data streams. The discretization process offers several desirable properties such
as numerosity/dimensionality reduction, the removal of excess noise and the access to
numerous algorithms that typically require discrete data. As a result there is a wealth
of literature describing a variety of techniques to facilitate this transformation. Although
several discretization algorithms exist the most commonly used are equal width or equal
frequency histograms. The majority of studies concerned with sequence analysis of
financial time series have used a form of equal width or equal frequency binning on a
log normalized first differenced series [118] [140] [11] [19] [111]. The first differenced
series, which would be the single period returns, are used as a means to counteract the
non-stationarity of financial time series. This creates an extra pre-processing step before
the symbolic mapping that is applied indiscriminately without regard to the specific
properties of time series during a given period, such as trend and unit-roots. Also by
first differencing, information is lost such as where the stock is trading in relation to
current highs and lows over some meaning interval, such as the previous 52 weeks.
Another method used in the literature (on its own or in conjunction with first differences)
to counteract non-stationarity is the sliding window approach, which is also a popular
technique for modelling financial data of a continuous nature [12]. In the general area of
time series analysis, there have been several algorithms developed to transform the actual
observations. Mapping the real valued observations facilitates the extraction of primitive
shapes from the series for comparing segments within a time series or between them.
These techniques preserve the temporal information as well as the more global position
of a data point in relation to the series as a whole.

Two of the most well know techniques from discretizing time-series data for extracting
primitive shapes are Symbolic Aggregate aproXimation (SAX) [87] [88] and clustering
based methods (CBM) [28]. SAX has already been described in chapter 2.1.11 but to
reiterate it is an unsupervised algorithm that is based on PAA and the normal distribution.
CBMs transform a real valued time series to a discrete representation segmenting the
time series using a sliding window and then clustering the set of segments. Each
cluster is assigned a symbol and then each segment is then represented in the original
time series by the symbol corresponding to its cluster. In Das et al. [28] this method
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was used for financial data and the rules were constructed in a manner similar to
association rule mining. The effectiveness of the symbolic mapping was quantified by
rule informativeness based on the J-measure for rule ranking. Aside from forecasting
endeavours clustering of financial time series has been very popular in portfolio index
tracking where several studies have been conducted. They include, inter alia, Fu et al. [42]
which concerned self-organizing maps, Dose et al. [31] which used hierarchal clustering
and Musetti [104] which compared several techniques for analysing companies from the
S&P 100 index. However CBMs have not been as popular for forecasting and sequence
analysis which may be a result of the finding of a study by Keogh et al. [71]. This study
concluded that clustering time series subsequences lead to meaningless results based on
the commonly used methodologies at that time, which includes the work of [28]. The
authors demonstrated that the results obtained from the CBM were the same as if a sine
wave had been the underlying series. These results most likely have impacted the research
and discretization methods of the previous literature on financial analysis.

Aside from the studies using the equal width/frequency methods for discretization there
has been some interest in using the more sophisticated algorithms from time series
analysis, such as SAX. However financial time series data has some unique properties
that will make it problematic, particularly that it is non-Gaussian and non-stationary. The
authors of [88] have addressed the problem of non-Gaussian data and demonstrate that
their algorithm is still complete but not as efficient under these conditions. The main
problem with non-Gaussian data is that the symbolic mapping based on partitions of the
standard normal distribution no longer guarantee an equal probability of each symbol
occurring. The problem with non-stationary data is that primitive shapes can be difficult
to extract as the characteristics of the series change, as depicted in figure 7.8. Two
previous studies have acknowledged that SAX in its canonical form is not appropriate
for financial data and have attempted to extend SAX to this application area. The first
paper to consider this problem was by Lkhagva et al. [91] where they proposed a method
called Extended SAX (ESAX) that attempted to find better matches within the financial
time-series by embedding the max and min within in a time-window along with the mean
into the symbolic representation. The authors state that the original SAX method will
miss important patterns because it only uses the mean to represent a segment of the
series, figure 3.3 illustrates the intuition behind the approach. With the ESAX the authors
are able to maintain the original SAX symbolic nature and distance function that lower
bounds the Euclidean distance. In effect what’s happening is that for a given level of
dimensionality reduction in terms of the number of partitions w the Extended SAX will
be three times larger than SAX as a result of each partition having 3 symbols represent
it rather than 1. The results show that for a given reference sequence ESAX matches
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Figure 3.3: An example plot of a randomly generated time series showing the mapping
of the real-valued time series to a SAX representation using a 4 letter alphabet with a
PAA window size of 10. The green circles and blue triangle represent the min and max
within a PAA segment respectively. The authors of ESAX highlight the need to capture
this information in order to improve pattern matching using SAX. The horizontal red lines
represent the means within each PAA segment.

fewer segments on average then SAX, which implies that closer matches are being found.
However, the comparison is not fair because ESAX is working with more dimensions so
a true comparison would be against SAX with a equal number of dimensions, because as
the number of partitions increases the average matches for SAX would also decrease.
Regardless of the inappropriate comparison between ESAX and SAX the proposed
method does not alleviate the problems of non-stationarity and therefore primitive shapes
are still being missed.

The second attempt to improve performance of SAX on financial time-series was by Hung
et al. [54] where they proposed combining SAX with Piecewise Linear Approximation
(PLA). PLA is also a dimensionality reduction technique where a partition of data
is represented by a best-of-fit straight line that would generally be determined by a
regression . In this work the authors propose using PLA as a post-processing step as
a way to prune the matching results of SAX to yield superior quality matches. Using
PLA to determine the final matching patterns means that the symbolic representation
of SAX is changed and with it the loss of the lower-bounding distance function. The
distance function used for PLA is based on slope trends and each slope trend of a segment
corresponds to a symbol. The distance between symbols is then based on a tree-like
hierarchy (as depicted in figure 3.4) which represents a suitable set of slope trends. The
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Figure 3.4: The shape definition hierarchy tree for the PLA extension of SAX.

distance between symbols (slope states xi and y j) would then be calculated as:

dist(xi, y j) = 2max(0,|k−t|−1) ∗ max(0, | j − i| − 1) (3.11)

where the parent nodes of xi, y j are Ak and Bt respectively. The reason for using SAX
initially rather than just using PLA is not discussed but the proposed method simply
attempts to find closer matches based on the original matches that SAX returns. This
approach is still hampered by the shortcomings of SAX with non-stationary data and
therefore will still miss important patterns in different regions of the time series.

It is clear that both previous studies have missed the major problems of matching sequence
patterns using SAX and that a new method has to be considered. In chapter 7, a
new algorithm will be proposed called alSAX or adaptive local SAX that alleviates the
problems of non-Gaussian and non-stationarity.
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Chapter 4

Validity

In the first contribution chapter the research which extends the body of work pertaining to
the validity of the AMH is presented. This includes the reproduction of variable efficiency
results as a means for code validation, the results from a SSM representation of the CAPM
(equation 3.2), which reveals the time varying nature of the CAPM parameters and finally
the test for and demonstration of variable stationarity in a financial time series.

4.1 Variable Efficiency

The presence of variable efficiency has already been established based on a review of the
previous literature in section 3.1.2. In this section a portion of this work will be reproduced
as a means to validate the code implementation of the portmanteau bicorrelation test
statistic (H-statistic). The H-statistic, described in the next section, has been utilized in
several studies (see section 3.1.2) but there is not a widely available library for calculating
it. Thus for the experiments performed in chapter 5 the H-statistic has been implemented
in the R statistical language. To validate the implementation, the results from running the
code will be compared with the results published in Lim [85] and Todea et al. [130] for
various market indexes.

77
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4.1.1 H-Statistic

Prior to calculating the H-statistic the data undergoes two stages of pre-processing as
outlined in [85]. First, the series {Yt}

T
1 is assumed1 to be a non-stationary stochastic

process. To aid with the analysis, the series is transformed to stationary by converting
the series as follows:

rt = log(yt/yt−1) ∗ 100 (4.1)

where rt is the continuously compounded percentage return for time t. The second step is
to standardize the data to have a sample mean of zero and a sample standard deviation of
one, as follows:

Zt =
rt − mR

σR
(4.2)

where {Zt} is the standardized series, mR is the sample mean and σR is the sample standard
deviation. The null hypothesis of the test is that {Zt} is a realization of a white noise
process with null bi-correlations. The test for non-linear correlations is calculated as
follows:

H =

L∑
s=2

s−1∑
r=1

G2(r, s) (4.3)

where,
G(r, s) = (n − s)1/2CRRR(r, s) (4.4)

and,

CRRR(r, s) = (n − s)−1
n−s∑
t=1

Z(t)Z(t + r)Z(t + s) (4.5)

where r and s satisfy 0 < r < s < L. The H statistic is distributed according to a χ2 law of
probability with (L-1)(L/2) degrees of freedom. The number of lags, L, is specified as L =

nb, with 0 < b < 0.5 and n is the window size. Previous work by Hinch and Patterson [50]
recommend a value of 0.4 for b. In this implementation, when L = nb does not yield an
integer value, the value of L is rounded down prior to calculating the degrees of freedom
for the χ2 critical value.

In addition to the pre-processing performed above, the series {Zt} undergoes one additional
step of pre-whitening before calculating the H-statistic. The pre-whitening step entails
filtering away the linear component and therefore any autocorrelation structure of {Zt} by
means of an autoregressive AR(p) fit. When performing an AR(p) fit an AR(p) model is
fitted to the data using ordinary least squares and the residuals are retained for further
analysis. The order p ∈ {0, 10} is the smallest value for which the Ljung-Box Q(10)

1Later in this section this assumption is tested where the results demonstrate that departures from non-
stationarity exist in financial time series.
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statistic is insignificant at the 10% level. In this implementation, 20 lags are used for
calculating the Q-statistic and the AR(p) model contains an intercept term.

4.1.2 Code Validation Results

The H-statistic has been implemented based on the details provided in [85] and [130],
where the results to be reproduced were chosen based on data availability. The first set of
results are published in Lim [85] and concern the US (S&P 500), Japan (Nikkei 225) and
Argentinean (Merval) market indexes. The results from running the thesis implementation
over the time frames for each market are presented in table 4.1. It is worth noting that the
data for the thesis and the data used in the previous work are from different sources, the
data in the thesis is from Yahoo! Finance and both previous studies used Datastream.
From the results it is apparent that the number of samples created based on a 50-day
sliding window2 are not consistent with the reported time frame, for example, in the
US market Lim had 3602 samples whereas the thesis only had 3479. This is quite a
large difference that is most likely from incorrect reporting of the time-period for data
collection. For each market index the time-frame was extended backwards and then
forwards to accommodate the number of samples. We can see from lines 3 and 7 from
table 4.1 that extending the time-frame backwards yields almost identical results. For the
Argentinean market the results are comparable but the thesis implementation still labels
fewer windows as having non-linear dependence.

The second set of results reproduced are from Todea et al. [130] and concern the Hong
Kong (Hang Seng) and Malaysian (KLSE) market indexes. The results of running the
thesis implementation using the same experiment details are displayed in table 4.2. From
these results we observe that the number of samples is almost identical and therefore the
time frames do not need to be adjusted. The number and percentage of rejections are
also very similar with the thesis implementation again labelling fewer samples as having
non-linear dependence.

2A sliding window approach is a method for segmenting data that yields over-lapping samples. For
example, given a time series {Yt} and a window of size d an initial sub-sample is created consisting of
observations {Y1,2..,d}, the appropriate tests are run and then the window shifts by one day to cover {Y2,3..,d+1}

and so forth until the end of the sample.
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Table 4.1: The results comparison between the implemented H-statistic and the results
reported in [85] (shown in bold) for the US (US), Japanese (JPN) and Argentinean (ARG)
market indexes.

Result Code Index Period samples # of Rej. % of Rej.
1 Lim US 01/01/1992 - 31/12/2005 3602 189 5.25
2 Thesis US 01/01/1992 - 31/12/2005 3479 177 5.09
3 Thesis US 09/07/1991 - 31/12/2005 3602 188 5.22
4 Thesis US 01/01/1992 - 28/06/2006 3602 177 5.09
5 Lim JPN 01/01/1992 - 31/12/2005 3602 312 8.66
6 Thesis JPN 01/01/1992 - 31/12/2005 3396 304 8.95
7 Thesis JPN 05/03/1991 - 31/12/2005 3602 312 8.66
8 Thesis JPN 01/01/1992 - 30/10/2006 3602 308 8.55
9 Lim ARG 02/08/1993 - 31/12/2005 3189 541 16.96

10 Thesis ARG 02/08/1993 - 31/12/2005 3037 415 13.66
11 Thesis ARG 22/12/1992 - 31/12/2005 3189 475 14.89
12 Thesis ARG 02/08/1993 - 09/08/2006 3189 429 13.45

Table 4.2: The results comparison between the implemented H-statistic and the results
reported in [130] (shown in bold) for the Hong Kong (HK) and Malaysian (MAL) market
indexes.

Result Code Index Period samples # of Rej. % of Rej.
1 Todea HK 14/04/1998 - 14/04/2008 2279 362 15.88
2 Thesis HK 14/04/1998 - 14/04/2008 2270 339 14.93
3 Todea MAL 23/09/1997 - 14/04/2008 2398 1363 56.84
4 Thesis MAL 23/09/1997 - 14/04/2008 2401 1283 53.44

4.1.3 Code Validation Discussion

The output from the thesis implementation of the H-statistic is comparable to the previous
literature and in most cases the results were identical once certain assumptions were
made. There is not enough detail concerning the experiments and the H-statistic from
the previous work and although discrepancies could have been caused by differences in
the data sources and normal implementation bias, there are three aspects of this work
that were not reported. The first concerns the calculation of the lag (L) parameter from
equation 4.3 and how the values are handled when the calculation nb does not yield an
integer. Are the values rounded and, if so, is this rounding performed before or after
the calculation of the degrees of freedom for the χ2 distribution? Secondly, what type
of AR(p) model is fit to the data in the pre-whitening step? Does the equation contain
an intercept term? Finally the third detail not discussed is the lag parameter for the
Ljung-Box Q statistic and how many lags are used for detecting autocorrelation? These
details will affect the outcome of the H-statistic and are most likely a source of the small
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variations in the output. Nonetheless the results demonstrate that the H-statistic has been
implemented correctly and that in all markets considered there exists variable efficiency.

4.2 Time Varying CAPM

The work presented in this section is taken from a collaborative paper, “Dynamic risk
analysis with incomplete information in an adaptive market”, written by Dr. Sonia
Mazzi and Matthew Butler, under review at the Journal of Business and Economic
Statistics at the time of writing the thesis [99]. The theoretical model used in the study
(defined by equations 4.6-4.8) was developed and implemented by Dr. Mazzi along with
preprocessing scripts. Matthew Butler was responsible for initial data preprocessing,
preparing the scripts for the experiments, performing the experiments and the creation
of the various plots. The dicussion and results analysis was jointly contributed.

The AMH makes allowances for a time varying risk to reward relationship between
financial assets and the market. From the discussion in chapter 3.1.3 the detection and
modelling of this time varying relationship was revealed through the assumption of a
dynamic β. Based on this literature the AMH assumption of a time varying risk to reward
relationship is valid. The distinguishing features of this work are (1) that in addition
to considering β to be time varying we also analyze α and explore if it too is dynamic
and how the co-evolution of α and β can affect investment decisions, (2) we fit the
model using the diffuse Kalman filter (DKF) and (3) we explore if a time varying CAPM
holds for metals. The modelling technique allows inference on a crucial but unobserved
component, namely factors influencing risk of an asset not accounted for by the market
(such as behavioral biases or other exogenous shocks). The result is an adaptive tool which
could be used for active portfolio management and because the approach is applicable to
a range of time horizons, the analysis is relevant for several techniques of asset allocation.
However, despite the evidence for a time varying β, to achieve this objective we argue
that in the short-term the CAPM holds and thus model this relationship with a first-order
approximation in state space by the following:

Ra,t − R f ,t = αt + βt(Rm,t − R f ,t) + εt, t = 1, ..., n (4.6)

αt+1 = αt + ηt (4.7)

βt+1 = βt + νt (4.8)

where equation 4.6 is the observation equation and equations 4.7 and 4.8 are the state
equations. The variables Ra,t, R f ,t and Rm,t are returns for the an asset a, a risk-free rate and



82 CHAPTER 4. VALIDITY

the market respectively. The processes {εt}, {ηt} and {νt} are mutually independent white
noise with variances σ2

ε , σ
2
η and σ2

ν respectively. This model representation can be thought
of as a generalization, where the canonical CAPM (equation 3.1) is a special case where
ση =σν = 0, i.e. the variances of these parameters are zero and therefore they are constant.
We also denote the random processes A = {αt} and B = {βt}. As stated, in this work we
also allow α to be time varying and this is facilitated by assuming it follows a random
walk (equation 4.7). Also, because we are interested in interpreting A, it is mandatory to
include R f ,t, otherwise the error terms in equations 4.7 and 4.8 will be contemporaneously
correlated and αt would have a different interpretation [99]. By contemporaneously
correlated we mean correlation between two error terms in simultaneous equations.

Our state space representation still allows for the traditional interpretations of the CAPM,
with the only difference being that these processes are potentially time-varying. After the
white noise is removed from the excess return data, the process B represents the part of
the excess returns of the asset explained by excess returns of the market and the process
A represents excess returns of the asset not accounted for by the excess returns of the
market.

Our proposed model (equations 4.6-4.8) is a state-space model and can be fitted using
the diffuse Kalman Filter (DKF) and smoother (DKS) of [60]. De Jong’s paper deals
with unobservable initial conditions, hyperparameter estimation via maximum likelihood,
and smoothing, which allows for predictions of E(αt|y1, . . . , yn) and E(βt|y1, . . . , yn), t =

1, . . . , n, together with their mean squared errors. If only the KF was used in the analysis
then the predictions would not incorporate all the information available, rather for any
time, t, E(αt|y1, . . . , yt−1) and E(βt|y1, . . . , yt−1). Smoothing the output of the KF is an
integral component of state space modelling.

To demonstrate the different outcomes from fitting this model figure 4.1 displays the 4
possible combinations of ση and σν from four stocks from the S&P 500: BA has ση =

σν = 0, WMT has ση, σν > 0, XOM has ση = 0, σν > 0, BEAM has ση > 0 and
σν = 0. Additionally in figure 4.2 we have the α-β scatter plots, where the trajectories
of their interactions are displayed. Different line colours along with their ending symbols
are used for different time intervals but all time intervals are of the same length (five years
in all our examples). In this way longer stretches denote acceleration and shorter stretches
denote less change in the time period.
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Figure 4.1: Predicted αt and βt values, left axis for predictions of αt, right axis for
predictions of βt, for four stocks from the S&P 500.

4.2.1 Fitting the Model

As stated, we fit our proposed model using the diffuse Kalman filter (DKF) and smoother
(DKS) of De Jong [60]. The DKF is a derivation of the original KF that allows for better
approximations to real world data when the initial conditions are considered diffuse or
nearly diffuse. Modelling a system under the assumption of a diffuse process means that
little to no information is available concerning the initial conditions. In this case the
unobservable initial conditions are α1 and β1 but we do not use the fully diffuse form
of the DKF as we estimate the initial conditions using the canonical OLS regression
(equation 3.2) on a small sample of the data. The diffuse Kalman Filter for this model is
the basic KF (see chapter 2.1.12) with new equations for et and at given by the following:

Et = (0, yt) − ZtAt (4.9)

At+1 = At + KtEt (4.10)
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Figure 4.2: Alpha-Beta trajectories for four stocks from the S&P 500.

where the notation (0, yt) signifies a combination of column vectors side-by-side. We
model the initial condition of the state vector (α1, β1)′ = c′ + γ + H0ζ, where c denotes
the 2 × 1 vector with entries given by the intercept and slope of the ordinary regression
of Ra,t on Rm,t, for t = 1, . . . , n0, where n0 < n/4, γ is a random vector with unknown
mean and variance, ζ ∼ (0, 1) and H0 is a diagonal matrix with diagonal entries given by
the standard errors of the components of c, also generated from the OLS regression. Let
P1 = H0H′0, A1 = (−I2, c), Zt = (1, xt), Q1 = 03, where Ik denotes the k× k identity matrix,
and 0k denotes a k × k matrix of zeroes.

The SSM representation is as parsimonious as the simple linear regression model where it
has the same number of unknown parameters as the canonical CAPM. Other extensions of
the CAPM model have been proposed which increase the number of unknown parameters,
these extension are known collectively as multi-factor models (MFM) (such as the
multifactor CAPM [37]). These MFM increase the complexity without possibly taking
into account all non-trivial influences on asset returns. For example the work presented on
behavioural finance (section 2.2.2) discusses factors that would be difficult to quantify by



4.2. TIME VARYING CAPM 85

Asset Classification Time Period
gold precious 01/1980 - 12/2010
palladium precious 01/1994 - 12/2010
silver precious 01/1980 - 12/2010
copper industrial 01/1987 - 12/2010
lead industrial 01/1987 - 12/2010
nickel industrial 01/1987 - 12/2010
tin industrial 01/1990 - 12/2010
aluminium industrial 01/1988 - 12/2010
aluminium alloy industrial 01/1993 - 12/2010
S&P 500 market index 01/1980 - 12/2010
1 month T-bill risk-free 01/1980 - 12/2010

Table 4.3: Summary of metals data analysed.

covariates in a regression model such as the disposition effect and sentiment. Additionally,
the relationship between these factors and risk is most likely to be variable as well,
and therefore a linear model would not be appropriate. However the proposed model
allows for these unknown effects to be modelled dynamically and because it is flexible,
additional covariates could be added if required. For example if one was invested in
several international markets then it may be of interest to quantify the non-systematic risk
on an asset in relation to two or more market indexes.

4.2.2 Metals Case Study

In this section we present the results from fitting the proposed model (equations 4.6-
4.8) in an effort to test if the time varying risk-reward relationship holds for precious
and industrial metals. Table 4.3 provides details of the metals included in the study as
well as the market benchmark and the risk-free rate. All metal data was obtained from
Bloomberg3. The time-period covered varies from metal to metal but at a minimum all
time periods are at least 17 years, with the majority covering over twenty years. The data
consists of daily observations of the closing prices where values for the time aggregates
used for the analysis (quarterly, monthly and semi-monthly) are derived by averaging the
daily returns at each time granularity considered. This is in contrast to other studies which
would use returns over these time-periods, i.e. a monthly return rather than a monthly
average of daily returns. This data pre-processing method was utilized as a means of
capturing most of the information in daily returns.

The results from fitting the model using the DKF and DKS are presented in table 4.4 and

3Obtained from Bloomberg, last access was August 23, 2011
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Figure 4.3: Plots of αt and βt for the precious metals.

plots of the semi-monthly time granularity are displayed in figures 4.3 and 4.4. Reported
in table 4.4 are the maximum likelihood estimates of the model parameters σε , ση and σν

which indicate if there is time-variation in αt or βt, where positive values for ση and σν

indicate time variation.

If we begin the discussion with the precious metals (gold, silver and palladium) we
observe two different types of behaviour. Gold and silver have time variation in both αt

and βt as shown in figure 4.3, whereas the canonical CAPM basically holds for Palladium
(figure 4.3), where a constant but slightly positive αt indicates that a portion of the excess
returns are not accounted for by the market. The only industrial metal to have time
variation in αt is tin where both ση and σν are > 0. The unique behaviour of tin is most
likely influenced by the EU policy change that required that all solder contain 97.5% tin
instead of the previous requirement of 40% by July 2006. This policy change increased
the demand for tin and thus with a limited supply an increase in the price and investment
returns. The other industrial metals all exhibit similar behaviour (figure 4.4) where the
parameter estimates of ση = 0 and σν > 0, indicating constant αt and time varying βt.

From these results we can conclude that based on σν there exists a time varying risk to
reward relationship between precious/industrial metals and the market. Additionally, the
results demonstrated time variation in α, which means that the proportion of an asset’s
return not accounted for by the market is also dynamic. In terms of risk analysis, our
proposed model allows for the estimation of both variables, market and non-market, which
could aid in portfolio optimization when an active approach to portfolio management is
sought. For more details on the approach please refer to Mazzi and Butler [99].
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Figure 4.4: Plots of αt and βt for the industrial metals.

4.3 Variable Stationarity

Determining if a time series is level or trend stationary or if it contains a unit root
is an important task for making informed financial decisions that involve forecasting.
The reason stationarity is so important is that the assumption of a stationary series
is fundamental to entire classes of modelling techniques from statistics and machine
learning. If a time series is stationary, then any external shocks will only impact the
series temporarily, however in a non-stationary series, these shocks will have a permanent
effect on the moments (i.e. µ and σ2). Put more formally, consider a time series {Yt} and
an AR(1) model with drift:

yt = a0 + a1yt−1 + εt (4.11)

where yt is the observation of the series at time t, a0 is an intercept or drift term, a1 is a
constant, and εt is white noise. The process is stationary iff the constant a1< 1, so as to
enable the system to return to a stable trend. If a1 = 1 then the equation simplifies to:

yt = a0 + yt−1 + εt (4.12)

which is a random walk with drift model; this process is non-stationary and any shocks
to the system will have a permanent effect. To observe why shocks to the system have a
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lasting effect we can solve for yt given an initial condition y0, so:

yt = y0 + a0t +

t∑
i=1

εi (4.13)

here the value of yt is governed by a deterministic trend a0t which depends solely on time
and a stochastic trend Σεi , that is an accumulation of all previous shocks to the system
from t0 until time t. The presence of a unit root has important consequences for modelling
and forecasting where non-stationary behaviour increases the complexity of the task. For
these reasons it is important to determine the characteristics of the time series under study
in order to transform it to stationary via differencing or de-trending.

Given the motivating factors from chapter 3.1.1, the investigation into whether or not
variable stationarity exists is performed using two different statistical tests. The standard
tests are utilized with a technique that is intended to detect time variation in a1 from
equation 4.11. We denote this possibility of time variation by the inclusion of a time
subscript t, so we have a1,t. The experiment performs a series of unit-root tests using a
sliding window with overlapping periods.

4.3.1 Data Description

The data considered for this study are daily observations of the adjusted closing prices
from 18 market indices from around the world. The sample spans a 10 year period
from the beginning of January 2000 to the end of December 2009. All observations are
log normalised as a pre-processing step. Table 4.5 displays the 18 market indexes (and
their corresponding country) and the number of observations for each. Although the time
span is of equal length, the number of trading days for each market varies slightly. The
18 markets represent 9 developed and 9 emerging markets based on the classification
provided by the Morgan Stanley Capital index methodology to define developed and
emerging stock markets.

4.3.2 Sliding Window Approach

The experiment framework is similar to the studies investigating variable efficiency where
the fraction of windows rejecting the null hypothesis at different significance levels will
be reported. To facilitate this objective a sliding window approach is utilised which moves
in increments of 1 day at a time. For a time series {Yt} and a window of size d an initial
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Table 4.5: The 18 market indexes considered in the study and the number of observations
for each. The sample period is from January 2000 to December 2009. An asterisk signifies
an emerging market.

Country Market Index obser. Country Market Index obser.
US S&P 500 2515 Indonesia* Jakarta 2411
Korea* KOSPI 2464 Malaysia* KLSE 2464
Taiwan* TSEC 2465 Argentina* MerVal 2466
Japan Nikkei 225 2454 China* Shanghai Comp. 2579
Singapore Strait Times 2509 UK FTSE 100 2526
Hong Kong Hang Seng 2489 France CAC 40 2553
Brazil* Bovespa 2472 Germany DAX 2543
Mexico* IPC 2506 Canada TSX/S&P 2515
India* BSE 30 2474 Australia ASX(all ord) 2538

sub-sample is created consisting of observations {Y1,2..,d}, the appropriate tests are run and
then the window shifts by one day to cover {Y2,3..,d+1} and so forth until the end of the
sample. We will consider sliding windows of size 250 and 500 observations, roughly one
and two years of data respectively. The experiment will be performed twice with two
different unit-root tests that both assume a null hypothesis that the series contains a unit-
root. The first is probably the most widely used, namely, the Augmented Dickey Fuller
test (ADF), where the time-series is fitted to a differenced AR(p) process of one of three
possible forms:

∆yt = γyt−1 +

p∑
i=2

βi∆yt−i+1 + εi (4.14)

∆yt = a0 + γyt−1 +

p∑
i=2

βi∆yt−i+1 + εi (4.15)

∆yt = a0 + γyt−1 + a2t +

p∑
i=2

βi∆yt−i+1 + εi (4.16)

If we assume a unit-root process for the difference equations then equation 4.14 is a simple
random walk, equation 4.15 is a random walk with drift and equation 4.16 is random walk
with drift and a linear time trend. The process to determine if the time series contains a
unit root (i.e. a1 = 1) entails estimating the coefficients (a0, a2 and β) for one of the
equations above using ordinary least squares (OLS). If we let γ = a1 - 1 then testing a1 = 1

in the AR(1) model is equivalent to testing γ = 0 in the difference equations. The estimate
of γ along with its standard error (SE) will form a t-statistic which can be evaluated against
the critical values in the Dickey-Fuller tables.

The ADF test assumes that the errors are statistically independent with a constant
variance, which can potentially be problematic, therefore in [110] the Phillips-Perron (PP)
test was proposed to relax some of the assumptions on the error terms. The test statistic
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can be evaluated for significance using the same table of critical values as the ADF test.
The regression equation considered in the PP test is:

yt = µ + β(t − T/2) + αyt−1 + ut (4.17)

where µ, β and α are determined by OLS and the unit root test is determined under the
assumption that the data are generated by yt = yt−1 + ut. Under the PP test the error
terms, ut, are allowed to be weakly dependent and heterogeneously distributed. From
equation 4.17 we see that an advantage of using the canonical form of the PP regression
equation is that there is no need to choose the lag. Though, like the Dickey-Fuller tests
this equation can be expanded to include additional lags. By default the PP test includes
a drift term and linear time trend. For the purpose of this study the ADF test will also
be performed with a difference equation that includes a drift term and a linear time trend
(equation 4.16).

The effectiveness of the ADF and PP tests depend upon the choice of p the lag parameter.
There are two popular methods for choosing the lag parameter, the first is using Akaike’s
information criterion (AIC), and the other is based on the statistical significance of the
estimated coefficients, as suggested by Ng and Perron [107] and denoted the NP method.
In [107] the authors found that the use of an information criterion tended to underestimate
the correct number of lags in the autoregressive equation and therefore the power of ADF
test suffers. Therefore, in the thesis the NP method is used to fit the lag parameter of
the unit-root tests. The pseudo code for the NP method is shown in algorithm 6, where
this procedure is more effective in the general → specific direction, as in the reverse the
number of lags is generally underestimated. This is due to the fact that having a lag k

which is significant does not imply that all lags < k will also be significant.

Algorithm 6 NP method for estimating the lag
1) calculate maximum lag: Pmax = [12 × (T/100)1/4], T is the sample size
2) set order of AR model lag(p) = Pmax

3) Fit AR model to training data
4) Calculate t-statistic for lag(p) = tstat = φ̂ / S E(φ̂), φ̂ is the estimated coefficient
while lag(P) is not significant do

set lag(p) = p-1
repeat steps 2-4

end while
set ADFlag = p
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4.3.3 Sliding Window Results

Upon applying the unit root tests using the methodology described above the following
results have been obtained. Table 4.6 displays the results for the ADF and PP tests,
respectively, performed with each window size. Reported are the fraction of windows
which rejected the null hypothesis of a unit root at the 5% and 10% significance levels.
The results from both unit-root tests indicate that across all markets there are periods
where the null of a unit-root is rejected and thus the series can be considered trend
stationary. However the number of rejections tends to be quite low and thus the majority
of the periods could be considered non-stationary. This observation is not surprising given
that the markets are generally held to be non-stationary . In figure 4.5 we have plots of
the p-values from the unit-root tests for the US and Singapore market indexes using a
sliding window of 500 observations. The dashed and solid lines indicate the 5% and
10% significance levels and clearly show the time-periods were the null is rejected. It is
interesting that in both markets and according to both tests there were periods of trend
stationarity around 2006, a couple of years prior to the most recent market crash of 2008.
Additionally we observe that the patterns of the p-values are very similar between the unit-
root tests. A short coming of this study is that the results are dependent on the window
size, type of unit-root test and the choice of the lag parameter.

Table 4.6: The Augmented Dickey-Fuller and Philips-Perron test results. Displayed is the
fraction of windows rejecting the null hypothesis for each market and window size at the
5% and 10% significance levels.

ADF PP
250 500 250 500

Country 5% 10% 5% 10% 5% 10% 5% 10%
US 0.006 0.02 0.04 0.113 0.023 0.065 0.096 0.198
Korea 0.021 0.049 0.013 0.017 0.047 0.087 0.014 0.02
Taiwan 0.023 0.045 0.014 0.035 0.029 0.05 0.022 0.074
Japan 0.03 0.061 0.03 0.057 0.058 0.111 0.05 0.063
Singapore 0.036 0.078 0.01 0.036 0.092 0.161 0.068 0.133
HongKong 0.013 0.029 0.032 0.068 0.016 0.043 0.064 0.112
Brasil 0.031 0.067 0.022 0.059 0.067 0.101 0.02 0.052
Mexico 0.031 0.051 0.007 0.017 0.049 0.087 0.005 0.019
India 0.018 0.04 0.018 0.072 0.013 0.042 0.004 0.018
Indonesia 0.01 0.024 0.021 0.081 0.013 0.033 0.017 0.07
Malaysia 0.008 0.013 0.008 0.039 0.009 0.033 0.006 0.021
Argentina 0.028 0.046 0.046 0.101 0.031 0.079 0.03 0.097
China 0.018 0.035 0.008 0.029 0.028 0.066 0.009 0.046
UK 0.044 0.077 0.026 0.095 0.121 0.207 0.157 0.307
France 0.031 0.078 0.016 0.041 0.107 0.196 0.058 0.164
Germany 0.034 0.079 0.007 0.025 0.068 0.16 0.018 0.046
Canada 0.032 0.064 0.016 0.03 0.064 0.105 0.022 0.061
Australia 0.029 0.072 0.013 0.037 0.046 0.092 0.012 0.053
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Figure 4.5: Plots of the p-values for the US and Singapore market indexes for the ADF and
PP tests using a sliding window of 500 observations. The red (solid) and blue (dashed)
lines are the 5% and 10% significance levels respectively.

4.4 Chapter Summary

In this first contribution chapter we have provided further evidence in support of the AMH
in the form of three studies which analyse the dynamic nature of the financial markets.
The first study reproduced results from the econometrics literature on variable efficiency;
this not only provided evidence of reproducibility but also served as a means of code
validation for subsequent experiments to be performed. Next we considered the risk-to-
reward relationship for precious and industrial metals, where we demonstrated that for
the majority of the metals included in the study the risk-to-reward relationship was time-
varying as implied by the AMH. Finally, the characteristic of non-stationarity which is
generally held to be a static property of financial time-series was analyzed. The results
established that in all markets considered there were departures from non-stationarity and
that time periods existed where the markets were in fact trend stationary. This result
further demonstrates the dynamic behaviour of the financial markets and that departures
from random walk behaviour could, in part, be caused by the periodic disappearance of
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the unit-root in financial time-series.



Chapter 5

Implications

Given the previous discussion, the AMH has been demonstrated as a reasonable character-
ization of market behaviour. Thus, this chapter explores some of the specific implications
of the AMH and their effect on computational intelligence algorithms. This begins
with an analysis of variable efficiency and how it affects forecasting with supervised
learning algorithms. Secondly, the effects of departures from non-stationarity on the level
estimation task of ANN are explored and, finally, we investigate the effect of the waxing
and waning of investment strategies.

5.1 Variable Efficiency

From sections 3.1.2 and 4.1 we can conclude on the basis of the statistical metrics
considered that there exists periodic non-linear dependence in the financial markets.
However there still remains the question whether or not active trading strategies or
technical analysis can take advantage of these inefficient market periods. The observation
that market efficiency is cyclical is dependent on the robustness of the statistical test.
From a forecasting point of view, the most important question, assuming a cyclical nature
to market efficiency, is whether or not the implied periods of non-linear dependence can
be used to improve forecasting accuracy and therefore lead to more profitable trading
models. This is the motivation to determine if the presence of non-linear dependencies in
a time series offers any benefits to forecasting models developed from machine learning
techniques. The word ‘presence’ is emphasized as the actual data generating process is not
known and any dependencies identified are contingent on the robustness of the statistical
test.

95
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To analyze the effect of non-linear dependence in a time-series on the forecasting accu-
racy of supervised learning, a generalized autoregressive conditional heteroskedasticity
(GARCH) model is used to simulate a financial time-series. A GARCH model, as the
name suggests, allows for conditional variance that is not constant through time, as is
commonly observed in financial time series. The form of a GARCH(p, q) process for a
series of discrete observations {Yt} is given by the following:

Yt = σtεt (5.1)

σ2
t = α0 +

p∑
i=1

αiY2
t−i +

q∑
i=1

βiσ
2
t−i (5.2)

where εt is standard Gaussian white noise and the condition that
∑p

i=1 αi +
∑q

i=1 βi < 1.
Equations 5.1 and 5.2 return a white noise process with non-constant conditional variance,
where the variance depends on the previous return. Equation 5.2 can be easily extended
to include more lags. For the purpose of this study a GARCH(2,2) model was used
to simulate the data series. A simulated data series was chosen as means to focus
the analysis on the algorithms and their performance as opposed to being unduly
influenced by shortcomings of the statistical test. Using the GARCH process allows
for a more controlled environment where the influence of non-linear dependence can
be meaningfully determined. From a computational intelligence perspective we want to
know if non-linear dependence has an effect on classification accuracy; whether or not the
test is robust to real market conditions is a question for econometricians. In this study the
H-statistic (described in section 4.1.1) is used to identify non-linear dependence.

5.1.1 Supervised Learning

We are interested in the effect, if any, that non-linear correlations have on the forecasting
abilities of trading models developed from supervised learning (SL). The advantage of
focusing on forecasting accuracy in terms of classification is that the results are easily
interpretable. If the investment returns were used as in [130] then they would have to be
risk-adjusted to make any meaningful conclusions. There is no shortage of literature on
SL techniques being developed and applied to the financial domain. The dynamic and
non-linear nature of the financial markets makes them a challenging and attractive system
to model using complex methods. This study focuses on six widely available learning
algorithms that represent four well established learning paradigms. The algorithms
considered are:

1. Multilayer Perceptron (MLP)
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2. Support Vector Machine (SVM)

3. Artificial Immune System (AIS)

4. J48 Decision Tree (J48)

5. k-Nearest Neighbour (kNN)

6. Naı̈ve Bayes (NB)

where the MLP and SVM are function approximators, AIS and kNN are instance based
learners, J48 is a decision tree learner and, finally, NB is a simplified approach to Bayesian
learning. In terms of forecasting financial time series, all of the listed algorithms have
been previously used in other studies with the exception of AIS. The related work on
the overlap of AIS and finance never concerned time series forecasting directly, however
a more recent study by Butler et al. [12] demonstrated that in general the practice of
using the natural immune system to inspire a learning algorithm is a viable alternative to
modelling financial time series when implementing a supervised learning approach. The
full details of the study are available in Appendix B.

5.1.2 Experiment Setup

Using the sliding window methodology previously discussed, the simulated GARCH(2,2)
series (figure 5.1) is segmented into samples; one sample consisting of sliding windows
that contain non-linear dependence and the other consisting of data that adheres to a
stochastic random walk. In other words, a sample is a set of window frames. The
size of the window is 200 observations and the rejection of the null is determined at
the 5% significance level. The forecasting task for each of the algorithms is classification.
Each tuple of information supplied to the various SL techniques will have 5 consecutive
lagged values of the time series and a class attribute (Ci) where Ci ∈ {0, 1}. 0 signifies
a market contraction and 1 signifies a market expansion. The SL algorithms are then
applied to the separate samples, where 75% is allocated for training and 25% for testing.
The parameter settings for the SL algorithms are kept constant between the samples and
are presented in table 5.1 (only parameters different from the default settings in WEKA-
3-7 are reported). Any changes to the parameters were a result of experimentation on the
training data. The experiments are performed in Java using the WEKA libraries [47] for
the various SL algorithms. In addition to the experiment code, a purpose built Java class
was implemented for pre-processing the data from CSV format to the Attribute Relation
File Format (arff) of WEKA-3-7.
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Table 5.1: The parameter settings for the various supervised learning algorithms that are
different from the default settings in WEKA-3-7.

Algorithm Parameters
MLP learning rate = 0.1
SVM cost parameter for C-SVC = 60
AIS all default settings used
J48 pruning confidence factor = 0.50
kNN k = 7
NB all default settings used

Figure 5.1: (top) A plot of the GARCH series used in the study. (bottom) Example plots
of the GARCH process when it is exhibiting non-linear dependence (NLD) (right) and
random walk (RW) behaviour (left).

This experiment setup allows us to answer the question: “Keeping everything else
constant, do we expect an increase in the classification accuracy of supervised learning
algorithms when non-linear dependence is detected?”. Here we use the traditional
interpretation of expectation that is, whether or not we expect an increase on the average.
Figure 5.1 displays a plot of the GARCH series used in the analysis (top) and examples
of subsamples of this series that contain non-linear dependence (right) and random walk
behaviour (left).



5.1. VARIABLE EFFICIENCY 99

Table 5.2: The results from training and testing the SL algorithms on the GARCH
subsample data. NLD represents samples with non-linear dependence and RW represents
samples adhering to a random walk. *, ** signifies the increase in accuracy is statistically
significant at the 5% and 1% levels respectively.

RW NLD
Algorithm Acc. Min. Max. Acc. Min. Max.
MLP 0.587 0.347 0.755 0.622** 0.367 0.796
SVM 0.625 0.510 0.796 0.656** 0.531 0.775
AIS 0.569 0.327 0.796 0.580* 0.388 0.755
J48 0.617 0.469 0.755 0.656** 0.429 0.755
kNN 0.629 0.428 0.775 0.633 0.367 0.861
NB 0.617 0.429 0.796 0.651** 0.490 0.775

5.1.3 Experiment Results

The results in table 5.2 and figure 5.2 show that all 6 algorithms achieved a higher
directional accuracy in the subsamples that exhibited non-linear dependence and in 5
of the 6 cases the increase was statistically significant based on a one-sided t-test.
The only exception was the kNN algorithm where only a small incremental gain was
realized, however the overall accuracy was comparable to the other algorithms. These
results indicate that when non-linear dependence is present the SL algorithms tested were
able to take advantage of this deterministic component of the signal. A caveat to be
made is that these results are for classification accuracy and not investment returns, and
therefore we cannot conclude with absolute confidence that these results indicate higher
investment returns. However, based on the results from Leung et al. [81] which showed
that investment returns and classification accuracy are highly correlated, we can conclude
that this result indicates that the models will most likely (or on average) be more profitable
during periods of non-linear dependencies as well.

5.1.4 Variable Efficiency Conclusions

One should put these results in perspective of the related work on filter approaches
discussed in 3.2.2. The conclusion that SL algorithms are able to take advantage of
non-linear dependence, strengthens the argument that the filter approaches are effective.
Additionally it implies that the filters were indirectly indentifying non-linear dependence
in the financial time series. The filter approaches focus on forecasting metrics and
therefore are unable to make any rigorous statistical inferences as to the dependencies
(linear or non-linear) in the time series. The results from this study demonstrate in
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Figure 5.2: A Histogram of the testing accuracy results from the Random Walk (RW) and
non-linear dependent (NLD) subsamples.

a quantitatively sound framework that supervised learning algorithms can model non-
linear dependence and, if it is reliably detected, a statistically significant increase in
classification accuracy can be expected.

With respect to reliably detecting non-linear dependence there is an opportunity to
improve this process using the Bonferroni Correction (BC) [32]. The BC is a method
to counteract the problem of incorrectly rejecting the null hypothesis (type 1 error) when
performing multiple comparisons. In its most naive form, the desired α is divided by
the number of tests (n) to be performed to yield a new level of significance, i.e. α =

α/n. Using this stricter criterion to filter out time-periods with non-linear dependence, in
theory, should widen the gap in classification accuracy between the two samples utilized
previously.

5.2 Variable Stationarity

This section has two objectives, the first to investigate what effect variable stationarity has
on artificial neural networks and, secondly, to determine the preferred methodology for
training ANNs with non-stationary data. The latter objective aims to clarify the results
reported in [72] and test their correctness.

Variable stationarity would most likely affect any algorithm from CI in time-series
prediction, so it seems appropriate from a CI perspective to start the analysis of this
phenomenon with arguably the most robust modelling CI technique for forecasting
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financial time-series, i.e. Artificial Neural Networks [12] [142] [6]. ANNs are considered
non-linear function approximators, which makes them attractive for complex time-series.
Indeed, studies have shown that modelling non-linear data with ANNs produces more
accurate models than their linear counterparts. For this study we will be experimenting
with a feed-forward multi-layer perceptron with two hidden layers and the canonical
back-propagation for updating connection weights. The topology of the ANN used was
shown in figure 2.1, where we have a (5,2,4,1) architecture with 5 inputs representing
5 lagged values of the time-series. The hidden nodes have sigmoid activation functions
(equation 2.10) and the output node is linear (equation 2.11) as we require a real-valued
output.

5.2.1 Experiment Setup

The main objective of this study is to examine the effects of departures from non-
stationarity in a time-series on the forecast errors of ANNs. To facilitate this objective
we train ANNs on stationary and non-stationary time series using three different pre-
processing steps:

• First differenced (DIF): log(Pt) − log(Pt−1) ,

• De-trended by removing a linear time trend (DET), and

• No pre-processing (OBS).

where these three forms represent the preferred pre-processing method for input data when
a time-series is difference, trend and level stationary respectively. The first differences of
a log normalized series are essentially the one period returns. Thus by comparing the
different forecast errors we can determine if suspected departures from non-stationarity
impact the forecasts of the ANNs. The experiments will be conducted on data sets of
increasing size and time-horizon. The real-world data used for this study is the same as
for the test for variable stationarity that used the sliding window approach, see table 4.5.
The subsamples from the real-world data will also be collected for this study with a sliding
window approach which moves in increments of 1 day at a time. So, for a time series {Yt}

and a window of size d an initial sub-sample is created consisting of observations {Y1,2..,d}.
Next the appropriate tests are run and then the window shifts by one day to cover {Y2,3..,d+1}

and so forth until the end of the sample. If a sample is found to generate a statistically
significant p-value at some specified limit then the sample is stored and a linear time
trend is evaluated. The algorithm for determining stationary and non-stationary windows
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is described in algorithm 7, where the ADFtest(L) is the ADF test for L lags (described

Algorithm 7 Identify Stationary/Non-stationary Windows
input: Data set D
input: Pmax

input: windowSize
input: upper/lower significance levels(sigLevU, sigLevL)
for i← 1:length(D)-windowSize do

sample(S)← i:i+windowSize
apply NG method to S
return Optimal lag L
apply ADFtest(L) to D
return p-value(pval)
if pval < sigLevL then

store S to SW
Trend← regress S on time
store Trend to ST

end if
if pval > sigLevU then

store S to NS
Trend← regress S on time
store Trend to NST

end if
end for
return SW, NS, ST, NST

in chapter 4.3.2) and the NGmethod is the Ng and Perron method [107] for determining
the lag of a unit-root test (algorithm 6). SW and NS are matrices of stationary and non-
stationary data samples respectively, and ST and NST are vectors of linear time trends for
the samples stored in SW and NS respectively. Once the relevant data has been collected,
it is split into two equal sets for training and testing. The evaluation of the results will be
performed using mean squared errors (MSE), where all the errors are calculated based on
the price of the asset. This is vitally important for comparing the results as the difference
data would always yield smaller errors (generally magnitudes smaller) since the values of
the series are smaller. Thus, to have a fair comparison, the difference data forecast will
be added to the previous day price to arrive at a forecast price and the de-trended data
will have the trend added back in to arrive at a forecast price as well. So for example,
if the difference data produces a forecast of 1% then the forecast price Pt for time t is
1.01 × Pt−1. This will enable the MSE to be calculated on the price forecasts for all
pre-processing steps and therefore allow a truly fair comparison.

In addition to the real-world market data this study also considered a simulated time series
as a means to compare the real-world results and to answer the question as to what is the
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Figure 5.3: A plot of one realization for each of the four levels of persistence generated
from Yt = (a - aρ + bρ) + (b - bρ)t + ρ Yt−1 + εt.

preferred method for training ANNs with non-stationary data. For the simulated data
experiments a series will be generated that contains 2000 observations with a 50/50 split
for training and testing, using equation 5.3 (taken from Diebold et al. [29]):

Yt = (a − aρ + bρ) + (b − bρ)t + ρYt−1 + εt (5.3)

where εt∼ N(0,1), a = 7.3707 and b = 0.0065. The values for a and b were chosen to
mimic post World War II Gross Domestic Product (GDP) data. ρ is a coefficient which
determines the influence of past values on the present, the same as a1 from equation 4.16,
where ρ = 1 creates a non-stationary time series. The data is generated using increasing
values for ρ that approach and eventually equal unity. Figure 5.3 displays the four
simulated realizations of equation 5.3 used in the experiment.

5.2.2 Simulated Data Results

This section will detail the results from training and testing on the simulated data.
In tables 5.3-5.5 PPstep stands for pre-processing step, OBS, DET and DIF stand for
observation, de-trended and differenced data respectively. All simulations are generated
with a = 7.3707 and b = 0.0065. The reported results are the MSE from the forecasts
using the different pre-processing steps. Table 5.3 displays the testing results from the
three different pre-processing steps for each time-horizon and ρ.

From the AR(p) results discussed in Diebold et al. [29], we would expect that when
a series is trend-stationary, de-trending would be the preferred pre-processing method.
Likewise, when the series is non-stationary we would expect to get the best forecasts
from differencing the data. From the plots in figure 5.3 we observe that all of the time
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Table 5.3: The MSE results from out-of-sample testing on the simulated results generated
from equation 5.3, where εt∼ N(0,1), a = 7.3707, b = 0.0065 and ρ = {0.50, 0.80. 0.99,
1.00}.

Time Horizon
PPstep ρ 1 5 10 20 50 100
OBS

0.50

1548 1555 1564 1578 1626 1712
DET 1.06 1.36 1.36 1.36 1.38 1.38
DIF 1.35 2.41 2.81 3.84 3.83 13.40
OBS

0.80

1547 1558 1572 1583 1631 1713
DET 2.08 2.85 2.93 3.02 3.15 2.92
DIF 1.26 5.23 5.72 6.02 6.60 8.44
OBS

0.99

1731 1741 1764 1785 1831 1925
DET 2.76 16.71 11.77 20.90 28.98 34.26
DIF 1.13 5.99 22.31 30.04 68.95 150.68
OBS

1.00

3.24 67.60 47.58 148.24 408.69 1569.34
DET 110.59 136.97 126.20 167.33 219.46 308.99
DIF 1.15 6.13 17.20 45.07 155.11 519.84

series contain a trend, and when ρ < 1, the series are trend-stationary.

The results in table 5.3 show that the preferred pre-processing step for ρ = 0.50 is
de-trending and this is true for all time horizons. However, as we increase ρ, the
preferred method becomes a function of the time horizon, where at shorter time horizons
first differencing the data produces better forecasts. In time series analysis the ρ of a
stationary series is referred to as its persistence, where higher values for ρ indicate more
persistent processes. It is interesting to note that for the non-stationary series (ρ = 1)
the preferred pre-processing method at the 100 day time horizon is de-trending rather
than first differencing as might be expected. It should also be noted for comparison that
using just the observations (as published in [72]) never produced a superior model and
the forecast errors were generally magnitudes larger than in the case of differencing or
de-trending.

This concludes the experimentation on the simulated data. We have shown that
stationarity, or lack thereof, affects the performance of the ANN and that proper
consideration for the characteristics of the time series leads to improved forecasting
performance. The choice of the proper pre-processing step is a function of forecast-time
horizon, persistence of the stationary process and the presence of a linear time trend.

5.2.3 Stock Market Data

This section will detail the results from applying the above procedure to sub-samples of
actual stock market index data. The results reported in the tables are not the MSE as before
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but the percentage of samples that pre f erred each pre-processing step. By preferred we
mean that a given pre-processing step minimized forecasting error for a particular sample
based on MSE.

5.2.3.1 P-Values = {0.99, 0.01}

This section reports results from training the ANN on samples that either accepted or
rejected the null of the ADF test at the 0.99 and 0.01 levels of significance respectively.
This criterion yielded 219 stationary and 1049 non-stationary samples for the 250 day
window. For the 500 day window only 25 samples were considered stationary and 1537
samples were non-stationary.

Table 5.4: The results from out-of-sample testing on the stationary and non-stationary
samples determined by an ADF test (with p-values ≤ 0.01) using a 250 and 500
observation sliding window.

Time Horizon
PPstep Window Type 1 5 10 20 50 100
OBS

250

S
0.0 0.0 0.009 0.027 0.027 0.023

DET 0.0 0.091 0.356 0.598 0.703 0.831
DIF 1.0 0.909 0.635 0.374 0.270 0.146
OBS

NS
0.0 0.031 0.041 0.160 0.137 0.388

DET 0.0 0.0 0.027 0.182 0.662 0.598
DIF 1.0 0.968 0.932 0.658 0.201 0.014
OBS

500

S
0.0 0.0 0.0 0.0 0.0 0.0

DET 0.0 0.0 0.0 0.24 0.680 0.840
DIF 1.0 1.0 0.1 0.76 0.320 0.160
OBS

NS
0.0 0.005 0.019 0.025 0.184 0.230

DET 0.0 0.0 0.0 0.012 0.269 0.587
DIF 1.0 0.995 0.981 0.963 0.547 0.113

The results from the real-world data (table 5.4) are akin to those obtained with the
simulated data. The behaviour of the market is not always well represented by an AR(1)
process (the form of the simulated data) and this added complexity makes the benefits
of pre-processing less definitive. To help visualize the differences between the pre-
processing steps and the stationary/non-stationary samples, figure 5.4 plots the percentage
of samples that preferred de-trending at each time horizon and sample type. From
these plots we can observe that as the time horizon extended, the percentage of samples
preferring de-trending increases, and in the trend-stationary samples this tendency is
monotonic. Additionally, at all time-horizons the percentage of samples preferring de-
trending was always equal to or greater than that for the trend-stationary samples. Next we
relax the rejection level for the ADF test to an α=0.05 and perform the same experiment.
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Figure 5.4: Plots of the percentage of stationary samples that preferred de-trending as a
pre-processing step for the 250 and 500 sliding windows using the ADF test at α = 0.01.

5.2.3.2 P-Values = {0.95, 0.05}

This section reports results from training the ANN on samples that accepted and rejected
the null of the ADF test at the 0.95 and 0.05 levels of significance respectively. This
criterion yielded 883 stationary and 3332 non-stationary samples for the 250 day window.
For the 500 day window, 498 samples were considered stationary and 4879 samples were
non-stationary.

The results in table 5.5 and figure 5.5 show similar results to those reported in the
previous section. From the plot we can observe that de-trending is preferred more often
when the series is considered trend-stationary. At all time horizons, a greater number
of samples prefer de-trending when the series is trend stationary (except when these
percentages are zero). The change in this percentage is also monotonically increasing
with the time horizon for trend stationary samples and at time horizons of 50 points and
greater de-trending is the preferred method for the majority of the samples. This result
along with those previously discussed provide evidence that taking into account the local
characteristics of the market will benefit forecasting financial time series with ANNs.
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Table 5.5: The results from out-of-sample testing on the stationary and non-stationary
samples determined by an ADF test (with p-values ≤ 0.05) using a 250 and 500
observation sliding window.

Time Horizon
PPstep Window Type 1 5 10 20 50 100
OBS

250

S
0.0 0.0 0.0 0.009 0.050 0.091

DET 0.0 0.046 0.160 0.475 0.740 0.758
DIF 1.0 0.954 0.840 0.516 0.210 0.151
OBS

NS
0.0 0.009 0.073 0.265 0.123 0.525

DET 0.0 0.0 0.005 0.192 0.498 0.447
DIF 1.0 0.991 0.922 0.543 0.123 0.027
OBS

500

S
0.0 0.0 0.004 0.068 0.100 0.100

DET 0.0 0.0 0.022 0.265 0.634 0.773
DIF 1.0 1.0 0.974 0.667 0.265 0.127
OBS

NS
0.0 0.0 0.0 0.022 0.168 0.494

DET 0.0 0.0 0.0 0.012 0.236 0.295
DIF 1.0 1.0 0.999 0.966 0.600 0.210

5.2.4 Non-stationarity and ANN

Our results appear to contradict a result published in [72]. The effects of non-stationary
data on stationary models is well documented in the statistical literature and the most
common method for modelling non-stationary data is to transform it to stationary. To
begin, we show that an ANN can be written in the form of an AR(p) which is widely
understood to be a stationary model. If we consider a basic ANN with a linear activation
function and some input bias, as depicted in figure 5.6, we can represent it using the
following equation:

Ŷt = W0X0 +

t−1∑
i=t−lag

WiXi (5.4)

where W0X0 is the input bias and WiXi the lagged inputs of the series being multiplied by
their respective weights. If we set W0X0 = α and assume the error of Ŷt (of a fully trained
ANN) to be uncorrelated white noise with µ = 0 and σ2

ε , then we have:

Ŷt = α +

t−1∑
i=t−lag

WiXi + εt (5.5)

which is the same equation as an AR(p) model. Thus it seems logical that ANNs would
most likely benefit from appropriate pre-processing techniques.

The original paper [72] was performing one-step ahead forecasts with daily data. Focusing
on the short term forecast results from the simulated data, we can see that using the
original observations never produced the optimal forecast of the three models. Since a
validation set was not used, these results are directly comparable to each other. The most
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Figure 5.5: Plots of the percentage of stationary samples that preferred de-trending as a
pre-processing step for the 250 and 500 sliding windows using the ADF test at α = 0.05.

probable reason for the authors of [72] conclusion was that the patterns the ANN was
learning were only valid for a short-time period. So without the validation set, there
was a small period of time after training where the learned relationship between inputs
and output was still valid, leading to slightly better results in the out-of-sample testing.
An example of this problem is displayed in figure 5.7, where we have a plot of a non-
stationary time series (top) and plots of the forecast errors from training an ANN with and
without appropriate pre-processing. As we can observe, the error is similar in the initial
period after training but as the series continues to evolve and the moments of the series
change the error in the ANN trained without pre-processing begins to grow.

However, despite the results in [72], from the derivation of the ANN in to an AR(p) model
and the experimental results we can conclude that the preferred methodology for training
ANNs with non-stationary data is to transform the data to stationary using an appropriate
pre-processing step.
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Figure 5.6: A basic artificial neural network structure with a linear activation function
an input bias.
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Figure 5.7: The absolute forecast errors for an ANN trained with and without appropriate
pre-processing. Plotted values represent a 10-day moving average of the errors.

5.2.5 Variable Stationarity Conclusions

The results from the simulated data confirm that the effects of (non)-stationary of time-
series on ANNs are similar to those of AR(p) models that were obtained in [29]. Where de-
trending was beneficial in lowly persistent trend stationary processes at any time-horizon
and in highly persistent trend-stationary processes, the advantages to using de-trending
were a function of the time-horizon and degree of persistence. The results from the
real-world data are not as clear as the simulated, but in general, given an appropriate
window size for calculating the ADF test, we observe results that roughly adhere to their
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simulated counter-parts. In the trend-stationary samples de-trending was the dominant
pre-processing step at time-horizons of 50 days and above. Also de-trending was more
often preferred at any time horizon in the trend-stationary samples as opposed to the non-
stationary ones. The inferior performance on the real-world data sets could be a result of
Type II errors, where some of the null acceptances could have been from structural breaks
or other anomalies in the time-series that the unit-root test was sensitive to. This could
possibly be overcome by using a test which allows for structural breaks, such as the Zivot
and Andrews unit root test [143].

The results from the real-world data also present conclusive evidence that overfitting
the training data is not the preferred method for training ANNs for financial time-series
forecasting. Using just the observations was commonly the inferior model for the non-
stationary data w.r.t. differencing at forecasting time-horizons of 50-days or less. When
the use of the observations was superior to differencing (at the 100-day time-horizon)
there was not a conclusive method for producing optimal results. As a consequence, the
use of differencing in non-stationary financial data will produce the most accurate models
in the majority of the cases up to forecasting time-horizons of at most 50 days. This
conclusion is supported by the statistical properties of stationarity and its implications for
modelling a time-series.

As noted before in section 5.1.4 the results in this section could be improved by utilizing
the Bonferroni Correction, which will yield a more conservative approach to detecting
departures from difference stationary in financial time series.

5.3 Cyclical Effectiveness

From the results discussed in chapter 3.2.3 [66] we have seen that trading models
developed using genetic programming can be useful after the time period they were trained
on. By useful we mean that their fitness functions achieved similar values in out-of-sample
time periods. Equipped with only the fitness function results the effectiveness (redefined
below) of the models cannot be determined. Active trading strategies must be able to
outperform the market or other passive approaches to investing in order to warrant the
extra time and expenses required to administer them. As a result, in this section we
extend this work to a more meaningful interpretation that allows us to gauge the effect of
the waxing and waning of investment strategies on computational intelligence. We hope
to determine if CI models are ever effective again after the time they were trained for. To
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reiterate, we define effectiveness as:

I Rt(T M) > Rt(M) outperforms the market,

II Rt(T M) > 0, yeilds a postive return, and

III Tt > 0 is actively trading in the market

where Rt(TM) and Rt(M) are the returns of the trading model and the market in time
period t respectively and Tt is the corresponding number of trades in time period t.
The criterion are also represented in figure 5.8 as a Venn diagram, where the region
corresponding to the overlap of the three circles contains the models which are effective.
As such a trading model is considered effective when these three criterion are satisfied.
If trading models exhibit cyclical effectiveness then maintaining and consulting previous
models may improve forecasting performance. In essence this would be a passing on of
knowledge from older generations to new ones. This positive impact of older generations
is seen in the natural world where the emergence of grandparents in human society led to
an explosion of sophisticated tools and art [18]. There are various methods which could
be explored to test the implication of cyclical effectiveness of trading models developed
from computational intelligence. Concerning financial time series analysis, several studies
have shown that CI algorithms have been effective at learning and forecasting, producing
results suggesting that the markets are not perfectly efficient. From this we have to decide
what the primary objectives of the study are and which algorithms can accommodate. The
list of primary objectives is provided below:

1. Optimal - able to outperform the market benchmark,

2. Flexible - adapt to changing market conditions, and

3. Interpretable - surmise what the agent is doing and determine market conditions
from agent structure

The first of the primary objectives is to ensure that the results are meaningful. Secondly,
for a trading model to be profitable in a range of market conditions that model needs to
be flexible. Rigid trading rules will not produce above average returns at all times, which
is precisely why technical analysis is difficult. Thirdly, the model should be white box.
The results from the analysis would be more meaningful if we could interpret what the
agent has learned, and if we could surmise what type of market conditions are suitable
for a particular agent. For example, can we determine if the market was trending or more
volatile based on the agent’s structure?
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Figure 5.8: A Venn diagram showing that effective models are those that satisfy all the
criterion of being profitable, outperforming the market and are actively trading.

Let us start with one of the most popular learning paradigms from CI for time-series
analysis, Artificial Neural Networks (ANN), where studies have shown that they are
arguably among the most robust [142] [6]. In the context of the three primary objectives
we can determine that ANNs are able to outperform the market during training, that they
are flexible but represent a black-box model, and that it would be difficult to extract
domain knowledge from the topology and connection weights. Support Vector Machines
have also become popular in the financial forecasting literature and offer a robust and
flexible modelling approach, however, they also suffer from a lack of interpretability just
as the ANNs. Evolutionary Computation (EC) is also an active area of research in financial
forecasting and encompasses a variety of techniques from genetic algorithms (GA),
genetic programming (GP), Artificial Immune Systems (AIS) and hybrid algorithms,
to name a few. Once again, in the canonical use of these techniques we can easily
accommodate the objectives of flexibility and optimality but the models will generally
be black box. Moving back to traditional technical analysis, certain trading rules could
be more effective in trending markets (moving averages) and others when the market is
moving sideways (Bollinger Bands) and although it is possible to interpret these rules,
they are, by construction, static.

With each of these techniques possessing weaknesses with respect to the primary
objectives, it is a natural succession to entertain the combination of two or more of
them. There has been documented success in combining population based optimization
techniques with technical trading models, such as GAs with moving averages. This
would entail determining the length of windows for calculating the moving averages via
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profitability based fitness functions. Another recent study by Butler et al. [13] combined
Bollinger Bands with particle swarm optimization (PSO) to tune the parameters to current
market conditions. The experiments implied that the effectiveness of the indicator could
be enhanced beyond that of just using the default parameters. In the context of the primary
objectives the hybrid models are the most suitable. Using an architecture from traditional
technical analysis allows for interpretable models; additionally the benefit of flexibility
from the CI algorithms is retained, and finally the comparability between models is
possible as the technical trading rules have a finite set of attributes, which allows for
comparisons in a relatively small n-dimensional space.

For this study the optimal trader for each market segment will be determined using
adaptive Bollinger bands (ABB) [13], which are based on a technical indicator created
by John Bollinger in the 1980’s.

5.3.1 Adaptive Bollinger Bands

The ABBs were initially developed because, despite their popularity, the recent academic
literature had shown Bollinger Bands (BB) to be ineffective [79] [80]. However, through
PSO-based parameter fine tuning the indicator could be improved and outperform the
market index under certain market conditions. The three main components of BBs are:

1. An N-day moving average (MA) for a price series {Pi}, which creates the middle
band, equation 5.6,

MAn(t) =

∑t
i=t−N+1 Pi

N
(5.6)

2. an upper band, which is the MA plus k times the standard deviation of the middle
band, and

3. a lower band, which is the MA minus k times the standard deviation of the middle
band.

The default settings for using BBs are a moving average window of 20 days and a value
of k equal to 2 for both the upper and lower bands. When the price of the stock is trading
above the upper band, it is considered to be overbought, and conversely, an asset which
is trading under the lower band is oversold. The trading rules that can be generated from
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using this indicator are given by equations 5.7–5.8:

Buy : Pi(t − 1) < BBlow
n (t − 1)&Pi(t) > BBlow

n (t) (5.7)

S ell : Pi(t − 1) > BBup
n (t − 1)&Pi(t) < BBup

n (t) (5.8)

Essentially, the above rules state that a buy signal is initialized when the price (Pi) crosses
the lower band from below, and a sell signal when the price crosses the upper band from
above. Using the BBs in their canonical form, in both cases the trade can be closed
out when the price crosses the middle band. As such, a trader will be taking long/short
positions in the market; a long/short position is a trading technique which profits from
increasing/decreasing asset prices.

To allow for efficient online optimization of the BBs we define two new forms of the
traditional indicator, running and exponential BBs, that make use of estimates of the 1st

and 2nd moments of the time series (i.e. µ and σ2).

5.3.1.1 Running and Exponential Bollinger Bands

We define a BB as:
BB = MAn ± k × σ(nperiod) (5.9)

where MAn is an n-day moving average and σ is the standard deviation. Then a Running
Bollinger Band that makes use of estimates of the 1st and 2nd moments is:

BB = An ± k × Jn(Bn − A2
n)1/2 (5.10)

where,

An =
1
n

n∑
i=1

Yi , Bn =
1
n

n∑
i=1

Y2
i (5.11)

Jn =
n

n − 1

1/2
(5.12)

where the normalization factor Jn allows for an unbiased estimate of the σ and Yi is ith

data point. From this, recursive updates of the BBs can be performed as follows:

An =
1
n

Yn +
n − 1

n
An−1 (5.13)

Bn =
1
n

Y2
n +

n − 1
n

Bn−1 (5.14)
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Table 5.6: The parameters that the PSO algorithm optimized. MA stands for moving
average. The particles are the number of particles from each individual in the swarm
allocated for that parameter.

Description Particles
The value for calculating the upper/lower band. 2/2
Window size for the upper/lower band MA. 5/5
The type of ABB to use for upper/lower band. 1/1
The stop loss for short-sells/buys. 2/2

For the exponential form we define the BB on a time scale η−1. Where incremental updates
of the estimates are:

An = ηYi + (1 − η)An−1 (5.15)

Bn = ηY2
i + (1 − η)Bn−1 (5.16)

and the normalization factor becomes:

Jn =
1 − η/2
1 − η

(5.17)

This implementation of the ABBs was written in JAVA and optimizes eight parameters, as
displayed in table 5.6. A result from [13] concluded that BBs are ineffective at generating
profits when the market is trending. This shortcoming of the BBs was mainly due to
the exiting of profitable trades prematurely. To counteract this consequence of using
the middle band (the N day moving average) to initiate the closing out of a trade, this
implementation uses trailing stop-losses to determine exit points. A trailing stop-loss
is a popular trading technique that essentially allows a set amount to be lost from the
maximum profit achieved.

An additional advantage to using BBs as the underlying technical analysis tool is that we
are able to tap into a common heuristic used by active traders of identifying turning points
in stock movements. The identification of an overbought or oversold security signals a
correction and therefore a change in directional movement. However, choosing a turning
point is very difficult as a trader will be taking positions that are contrary to the current
market trend.
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Figure 5.9: The mapping of a particle from the 20-dimensional solution space to the
8-dimensional parameters space for the ABBs.

5.3.2 Training Adaptive Bollinger Bands

The new versions of the Bollinger bands allow for efficient online optimization which is
performed using particle swarm optimization (PSO). More specifically the type of PSO
used is dynamic Heterogeneous Particle Swarm Optimization (dHPSO) as described in
section 2.1.1. Each particle in the swarm will define a mapping from the n-dimensional
solution space (particle space) to the m-dimensional parameter space, where m<n. In
these experiments each particle will have 20 dimensions that map to the 8 dimensions of
the ABB as displayed in table 5.6 and depicted in figure 5.9.

In addition to the PSO representation above the algorithm also requires a metric to
gauge the performance of the individual particles in the swarm. In a genetic algorithm
this is referred to as a fitness function and although PSO is not derived from the
principles of evolution we will also refer to this performance metric as a fitness function.
Several metrics have been proposed in the literatures that vary from general classifier
outputs, such as accuracy and precision, to more application based such as profit
and risk-adjusted returns. The previous literature on optimizing technical analysis
(discussed in section 3.3.1) only considered profitability for assessing the fitness of an
individual, however there are several documented cases of using accuracy (as discussed
in chapter 3) and risk-adjusted returns [102] to train CI algorithms where these metrics
have outperformed purely profit maximization approaches. As such, this section will
perform a preliminary study to determine “what is the most appropriate fitness function
for training ABBs given the three primary objectives listed above? The first is based on
profit maximization that also takes into account transaction costs, equation 5.18:

f itnessi =

T∑
i=1

capitalt ×
(P1,t − P0,t)

P0,t
− (τ × capitalt) (5.18)

where f itnessi is the fitness of the ith particle in the swarm, τ represents the transaction
costs, and P0 and P1 are the entering and exiting price for the underlying asset. The profit
for each trade is the rate of return multiplied by the capital invested minus the transaction
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cost which is also a function of the amount of capital invested. The next fitness function
is the Sharpe ratio, a metric which considers returns and risk, shown in equation 5.19:

S =
E[R − R f ]√
var[R − R f ]

(5.19)

where R is the return on the asset and R f is a risk-free rate and E is the expected returns
operator. Using the Sharpe ratio allows for particles which efficiently use risk to be
assigned higher fitness with the intention that these models will perform better in the
out-of-sample test periods. The third and final fitness function to be considered is based
on accuracy and though a technical indicator is not a classifier we can base accuracy on the
number on profitable trades divided by the total number of trades executed, equation 5.20

f itnessi =
#returns > 0

#returns > 0 + #returns ≤ 0
(5.20)

where returns is a scalar representing the return of a single trade.

To investigate the preferred fitness functions we simulate a time series using the following:

pt = pt−1 + βt−1 + κεt (5.21)

βt = αβt−1 + νt (5.22)

where α and κ are constants, and εt and νt are normal random variables with zero mean
and unit variance. The simulated price process is:

zt = exp
( pt

R

)
(5.23)

where R is the range of pt: max(pt) − min(pt) over a simulation of 10,000 samples.
Equations 5.21-5.23 define a random walk with short-term autoregressive trend properties
as discussed in Moody et al. [102]. Using a realization from these equations the ABBs
will be trained and tested based on a 50/50 split, which yields 5000 points for training and
5000 for testing. Due to the fact that a degree of randomness is associated with PSO, 100
runs will be performed for each fitness function and reported results will be averages over
those runs. Reported are the percentage returns and number of trades for the training and
testing periods, shown in table 5.7.

The results suggest that accuracy is not appropriate for training an ABB and across
all periods and metrics it produced inferior results. This is not as surprising as it
may seem given that accuracy is generally associated with classifiers and technical
indicators are more closely aligned with reinforcement learning, in that their signals tend
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Table 5.7: The average results from 100 runs for training and testing the ABBs using the
various fitness functions.

Train Test
Function Return (%) # of Trades Return (%) # of Trades

Profit 0.6844 93.14 0.0710 18.92
Sharpe 0.6798 95.79 -0.0355 15.6

Accuracy 0.6055 12.53 -0.0243 7.86

to be associated with delayed rather than immediate rewards. Thus, given that profit
maximization and the Sharpe ratio have been implemented successfully in reinforcement
learning it is not surprising that these metrics produced superior results. However, it is a
straight forward decision that profit maximization is the preferred method as it produced
higher returns (more likely to produce positive returns) and more trades (more likely to
be actively trading) in the testing period. This result is in agreement with previous results
published in Butler et al. [13]. Therefore in the cyclical effectiveness experiments to come
the profit maximization fitness function will be used to train the ABBs.

5.3.3 Experiment Setup

The data used for testing cyclical effectiveness were the daily closing prices for the S&P
500 for a 10 year time period spanning 2001-2010. The first 5 years were allocated for
training the ABBs with the remaining 5 years for testing. A benefit of using BBs (as well
as other technical analysis techniques) is that no pre-processing of the data is required as
the indicators do not make any assumptions of normality or stationarity.

To allow for a range of investment policies we analyze the optimal traders at different
levels of granularity. Thus the experiments are conducted for an increasing number of data
points within the sliding window. The use of the sliding window is the same as described
in section 5.2.1. Table 5.8 displays the parameters and number of agents created for
each of the experiment setups. To assess the effectiveness of the agents, the experiments
are carried out with an initial starting capital of £1000.00 and a transaction rate (applied
when entering and exiting the market) of 0.25%, i.e., a quarter of a percent of the amount
of capital invested. We assume no transaction costs for investing in the risk-free rate (Rf )
which is accrued daily and has AER of 2%. In this implementation the ABB fully invests
all capital each day and whilst in a trade no other positions can be taken.

The parameters for the PSO algorithm have the same settings for each experiment and are
displayed in table 5.9. In order to maximize the number of time-periods where an agent
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Table 5.8: The parameters for the various experiment setups.
Case Window # of Agents ≈ time # of test periods

1 125 1132 6 mths 1133
2 250 1007 1 yr 1008
3 500 757 2 yrs 758
4 1000 257 4 yrs 258

is identified that outperforms the market, the PSO algorithm will initially train for 100
epochs. If at that time an optimal agent is not found the algorithm is allowed to continue
up to a maximum of 1000 epochs. The dimensions are a sum of the number of particles
in each position vector allocated to each of the ABB parameters.

Table 5.9: The parameter settings for the PSO algorithm.
Parameter Value Parameter Value
initial epochs 100 max epochs 1000
c1 2 c2 2
Particles 30 Dimensions 20

5.3.4 Cyclical Effectiveness Results

The results presented in this section are the average performance results for the ABBs
over all test periods. There are three metrics considered: (1) the average number of ABBs
that outperform the market (OM), (2) the average number of ABBs that produce a positive
return (PR), and (3) the average number of ABBs that are effective (EF), where effective
implies, from the above definition, that the ABB was profitable, active and outperformed
the market index. The following sections will present tables and box plots of the results
as well as a discussion.

5.3.4.1 Case 1 through Case 4

The results from training and testing the ABBs using sliding windows of 125, 250, 500
and 1000 days are presented in tables 5.10-5.13 and figures 5.11-5.14 are box plots of the
metric distributions.

5.3.5 Cyclical Effectiveness Conclusions

The results presented in tables 5.10 through 5.13 reveal that at each level of granularity
there were ABBs that were effective in the out-of-sample test data. Figure 5.10 plots the
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Figure 5.10: Plots of the average number of trades for effective ABBs and the average
percentage of ABBs that were effective.

Table 5.10: The results from training and testing the ABBs with a sliding window of 125
days. ??t̄r stands for the average number of trades by the ABBs that satisfied the concerned
metric.

OM OMt̄r PR PRt̄r EF EFt̄r

Average 0.444 2.841 0.463 2.409 0.193 2.844
Min 0.116 0.000 0.000 0.000 0.000 1.000
Max 0.627 21.270 1.000 19.723 0.462 19.914
Median 0.449 1.941 0.434 1.549 0.192 1.984

Table 5.11: The results from training and testing the ABBs with a sliding window of 250
days. ??t̄r stands for the average number of trades by the ABBs that satisfied the concerned
metric.

OM OMt̄r PR PRt̄r EF EFt̄r

Average 0.438 5.128 0.371 4.588 0.162 4.829
Min 0.056 0.000 0.013 0.000 0.000 1.000
Max 0.678 41.695 1.000 38.571 0.422 38.147
Median 0.438 4.015 0.343 3.669 0.157 3.765

Table 5.12: The results from training and testing the ABBs with a sliding window of 500
days. ??t̄r stands for the average number of trades by the ABBs that satisfied the concerned
metric.

OM OMt̄r PR PRt̄r EF EFt̄r

Average 0.601 8.558 0.311 6.689 0.226 6.521
Min 0.001 0.062 0.000 0.065 0.000 1.000
Max 0.959 92.201 0.997 92.028 0.858 92.028
median 0.617 7.258 0.289 5.463 0.219 5.123

average number of trades and the percentage of effective ABBs against the window size.
We see an increase in the percentage of the ABBs that are effective as the window size
increases. This is due to overfitting, where the ABBs tuned to smaller amounts of data
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Figure 5.11: Box plots of the distributions of the Outperform the Market (OM), Positive
Return (PR) and EFfective (EF) metrics for case 1.
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Figure 5.12: Box plots of the distributions of the Outperform the Market (OM), Positive
Return (PR) and EFfective (EF) metrics for case 2.

Table 5.13: The results from training and testing the ABBs with a sliding window of 1000
days. ??t̄r stands for the average number of trades by the ABBs that satisfied the concerned
metric.

OM OMt̄r PR PRt̄r EF EFt̄r

Average 0.611 12.108 0.391 11.871 0.352 12.289
Min 0.000 0.000 0.000 0.000 0.000 1.000
Max 1.000 51.171 1.000 48.952 1.000 48.952
Median 0.624 13.593 0.399 13.296 0.329 13.589

are more likely to become over-fit and therefore not generalize as well. We also observe a
monotonic increase in the average number of trades executed by the ABBs as the window
size increases. From the OM and PR metrics we can observe that ABBs are not always



122 CHAPTER 5. IMPLICATIONS

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●●

●
●
●
●●

●

●

●

●

●

●●

Outperform PositiveReturn Effective

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.13: Box plots of the distributions of the Outperform the Market (OM), Positive
Return (PR) and EFfective (EF) metrics for case 3.
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Figure 5.14: Box plots of the distributions of the Outperform the Market (OM), Positive
Return (PR) and EFfective (EF) metrics for case 4.

active in the market and that the parameters which are optimal in one time period can lead
to a technical indicator that does not execute any trades when the market environment is
quite different. This is partly the reason for higher percentages of the ABBs producing
positive returns but not being able to outperform the market. On average the ABBs made
a trade every 3 to 4 months when they were effective, though there were instances where
the ABBs were effective and extremely active in executing trades. In case 3 where the
window size was 500 days we observe a maximum average trading activity of 92.028,
which translates to about 4 trades a month. This is quite active for a technical indicator
that is identifying turning points in stocks price behaviour.
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The box plots reveal that none of the metric distributions are normal (all rejected the null
of normal from the Jarque-Bera test [58]) and that for the majority of the plots there are
several outliers beyond the 1st and 3rd quartiles. With the exception of case 4 (1000 day
window) all of the boxes are quite small indicating that 50% of the data is within close
range of the median. This narrow interquartile range coincides with the large amount of
outliers or suspected outliers.

5.4 Chapter Summary

In this chapter we presented work which investigated the effect of certain implications
of the AMH on computational intelligence algorithms. Commencing with a study into
variable efficiency and if the presence of non-linear dependence in a financial time series
offered any advantages for supervised learning algorithms. The results demonstrated
that if non-linear dependence could be reliably detected then a statistically significant
increase in classification accuracy could be expected. Secondly we considered variable
stationarity and how it impacted the optimal pre-processing step for training ANNs for
level estimation. From the results we concluded that the optimal pre-processing step was
a function of stationarity, forecast time horizon and persistence of the stationary process.
This conclusion also lead to the rejection of a previously published result, that concluded
that overfitting an ANN was the optimal way for modelling non-stationary data. Our
results, which are also theoretically sound, demonstrated that differencing the data was
the optimal pre-processing step for short-term forecasting. Finally the effect of the waxing
and waning of investment strategies was investigated. This section included the proposal
and development of a novel modelling tool called an adaptive Bollinger band, which was
used for testing cyclical effectiveness. The results demonstrated that ABBs exhibited
cyclical effectiveness and that models developed in one time period were effective again
in future time periods. This concludes the research on the implications of the AMH and
in the next chapter we explore innovative approaches to accommodate these implications
and the complexity of the market in general.
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Chapter 6

Innovations in Technical Analysis

Technical analysis is based on the premise that history tends to repeat itself and therefore
past patterns can be used for predictive purposes [82]. This section introduces a novel
forecasting algorithm that is a blend of micro and macro modelling perspectives when
using computational intelligence techniques. The micro component concerns the fine-
tuning of technical indicators with population based optimization algorithms. This entails
learning a set of parameters that optimize some economically desirable fitness function so
as to create a dynamic signal processor which adapts to changing market environments.
The macro component concerns combining the heterogeneous set of signals produced
from a population of optimized technical indicators. The combined signal is loosely
based on a Learning Classifier System (LCS) framework that combines population based
optimization and reinforcement learning (RL). This research is motivated by the results
in chapter 5.3 that demonstrated the cyclical effectiveness of trading models derived from
computational intelligence. As discussed, the non-stationary nature of the stock market
denotes a signal which has moments (such as the µ and σ2) that are not constant in
time. This could imply that trading models will have to continually adapt to changing
market conditions to remain profitable. However, cyclical effectiveness implies that the
performance of trading models constructed from historical information will wax and
wane with the evolving market conditions. Thus, experienced trading models will still
contain useful information for forecasting. These two properties are not necessarily in
contradiction but they do highlight the need for adaptation and creation of new models,
while synchronously being able to consult others which were previously effective. What
follows in this chapter is the proposal, implementation and testing of an algorithm
called LATIS (Learning Adaptive Technical Indicator System) which can account for
this complexity in the financial markets, whilst remaining true to the canonical form of
technical indicators. The name has a double meaning, it is not only an acronym but since
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the framework is based on several interconnected woven components it is also lattice like
in structure.

6.1 How to generate signals?

The previous work discussed in section 3.3.1 highlighted that the majority of the research
in the overlap of computational intelligence and technical analysis concerned supervised
learning for classification of price movements. In the studies discussed, the technical
indicators were used as input attributes to the various algorithms and therefore the
information contained in the technical indicators was being utilized for classification. This
of course is not how technical indicators are intended to be used and their straight forward
interpretation is also compromised. Although many of the approaches have been “white
box” this does not mean that an intuition as to why signals are being created can be
gained by examining those models. However, the mechanics behind signal creation in
technical indicators is well understood by technical analysts and these approaches have
endured due to their intuitive nature. Thus it would be beneficial to create an algorithm
that has the sophistication of computational intelligence but also the intuitive and familiar
interpretation of technical indicators.

The results from Butler et al. [13] on optimizing a single Bollinger band, and the results
from the previous chapter on cyclical effectiveness, demonstrate that technical indicators
can be successfully combined with population based optimization algorithms and that
models created in one time-period will be effective again in another. However the
questions of when a technical indicator will become effective and how long it will be
effective for, still remain. These questions contribute to the motivating factors behind the
development of LATIS. Since it cannot be known a priori when a model will be effective
again and for how long, there needs to be a mechanism which can learn this. If we consider
the answers to these questions to be time varying meta parameters of the indictors then an
appropriate algorithm can learn them from a set of training data. The LATIS framework
allows for online estimation of these parameters using reinforcement learning. Therefore
signals generated from a population of optimized technical indicators can be evaluated by
a meta agent where actions of the agent are based on a set of signals and meta information
associated with the indicators producing the signals. In summary then, the indicators are
not used as inputs to a classifier but are preserved in their original form and the, highly
desirable, combined signal approach is achieved through population based optimization
and reinforcement learning.
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Figure 6.1: LATIS framework - the values 1-8 indicate the typical steps included in a
single learning iteration of the algorithm. Dashed lines indicate steps that may not occur
every iteration.

6.2 Description of LATIS

An overview of a typical iteration of the LATIS algorithm is supplied in figure 6.1.
We observe from figure 6.1 that LATIS interacts with its environment through a set of
detectors, for receiving signals, and a set of effectors, which allow LATIS to make changes
or alter its environment. The eight steps comprise the three main components of the
LATIS system: performance, reinforcement and discovery, which will all be described
in detail in the following sections. In what follows we denote the following parameters
and data structures. LATIS contains a population, [P], of technical indicators of size N,
where the initial population, [P]0 is created using a set of training data and an optimization
technique. The indicators in [P] are referred to as individuals, I, where technical indicators
in the population will be denoted as I ∈ [P]. Associated with each I ∈ [P] are three meta
parameters, reputation, effectiveness threshold and return (R, κ and θ respectively) that
are used by the meta agent to choose actions. R determines how much influence an
individual has on the meta agent and is an expectation of how long an individual will
provide reliable information, κ is the performance required to be introduced into [M] (the
match set) and θ is the expected return while included in [M].

At each time step, t, LATIS will choose an action, a, from a set of possible actions, A, to
perform. The typical actions available to LATIS are long, short or risk-free positions in
the environment. A long position requires that the financial asset under consideration
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is bought at market price (the current price in the market). For a short position the
financial asset is short-sold (sold before acquiring), and the risk-free position requires
that LATIS invests in a risk-free alternative. To reiterate, a long position means an
investment increases in value when the asset increases in value and a short position means
the investment increases in value as the asset decreases in value.

The flow of information through the system is depicted in figure 6.2, where the forward
propagation of a signal is shown from the environment through to the generation of an
action to be performed. At each time step a signal, S t, is generated by the environment
and serves, as depicted, a dual purpose. Firstly, the signal is transmitted to the population,
[P]t, which contains technical indicators. The time subscript on [P] denotes that the
components of [P] are time-varying. The signal is then used by [P]t to form a match
set, [M]t, which is a combination of a subset of the match set a time t−1 and the additions
to [M]t from [P]t. The match set then transmits the opinions of the of I ∈ [M] to the meta
agent which are then combined with their respective meta parameters to form an action.
This action is then performed in the environment by the meta agent. The opinions of the
I ∈ [M] are their current positions in the environment. For example, if an I is currently
in a long position, it would transmit a “buy” opinion to the meta agent and if it was in a
short position it would transmit a “sell” opinion.

Secondly, the same signal, S t is also transmitted back to the meta agent as a reward for its
previous action. The reward is a function of the signal and the action performed at time
t− 1, where for the reward calculation, the actions long, short and risk-free are repesented
as {1, -1 and 0} respectively. The reward calculation is as follows:

reward ←

 (S t − S t−1)/S t−1 ∗ at−1 if sgn(at−1) , 0

rr f otherwise
(6.1)

where at−1 is the most recent action, sgn() is the signum function which extracts the sign
of a real number and rr f is the risk-free rate of return. For example, if the meta agent’s
action at t − 1 was to take a long position and S t > S t−1, then the agent would receive a
positive reward.

It is worth noting that the creation of [P]0 does not have to be data driven and a population
of technical indicators with random parameter settings could be used. However, since
the implication of cyclical effectiveness was demonstrated to be valid for CI models,
it is desirable to initialize [P]0 with some training data representative of the target
environment. In general, the environment will be represented by time series data from
a financial asset, such as a stock or market index, and the signals generated are recent
prices sampled from that environment. The exact details of how the technical indicators
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Figure 6.2: The propagation of information from the environment through the LATIS
framework. Each signal generated from the environment serves two purposes, the first
to create the match set and generate a signal, and secondly, to provide a reward to the
meta agent for the most recent action performed in the environment.

are trained for inclusion in [P]0 is up to the data modeller but an example approach will
be supplied in section 6.4, where we discuss a specific implementation of the LATIS
framework.

The two questions which motivated the LATIS framework, (i) as to when a technical
indicator will be effective and (ii) for how long? are answered by the meta parameters
of the I ∈ [P]. Firstly, to know when a technical indictor (not currently included in [M])
is going to be effective its recent performance is gauged by the meta agent against the
original performance from training. The performance required is determined by the κ
meta parameter, which is a scalar ≥ 0. If the current performance satisfies this minimum
criterion then it is included in [M]. Secondly, once an individual is a member of [M], its
reputation represents an expectation of how long it will remain effective after inclusion.
Reputation thus provides an estimate of how reliable the signal is. Assuming that we
have a dynamic environment, we would want these meta parameters to be adaptive, and
thus these values are determined and updated in an online learning fashion. Once the
algorithm goes online the R, κ and θ meta parameters are updated each time an individual
participated in [M] (this process is described in section 6.2.2).

6.2.1 Performance Component

Given an input at time t from the environment, a match set [M]t is formed from individuals
in [P]t that satisfy the performance criteria set by the meta agent. This is another difference
between LATIS and an LCS (Learning Classifier System) where in an LCS the classifiers
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from [P] that form [M] would have rules with antecedents that matched the signal. From
[M] a prediction array is constructed which determines an action ai ∈ A (the set of
possible actions) to be performed by the system. To construct the prediction array the
system forms a system prediction P(ai) for each ai represented in [M]. The calculation of
P(ai) is based on a reputation weighted score of the individuals advocating ai. This is
similar to the fitness-weighted method described by Wilson [136]. Once the prediction
array is constructed, the ai to be selected can be based on a variety of methods. For
example, deterministic action selection, which selects the ai with the largest P(ai), other
possibilities could be roulette wheel or random. The three possible actions a typical
LATIS implementation can perform are: long, short and risk-free. Once an action is
chosen the meta agent performs it and receives a reward from the environment (see
equation 6.1), which is used to update the trading position of the meta agent. The equation
for calculating P(ai) is:

P(ai) =

[ m∑
j=0

r j

(
Rem j∑m
j=0 Rem j

)
︸                   ︷︷                   ︸
reputation−weighted return

×
ψ j

ψavg

]
︸︷︷︸

relative accuracy

(6.2)

where the first component of the equation is a reputation weighted return. m is the number
of individuals advocating the action ai in [M], r j is the current return of jth individual and
Rem j is the remainder or difference between an individuals reputation and its current
duration, D j, in [M], so:

Rem j ←

 R j − D j if R j - D j > 1

1 otherwise
(6.3)

Reducing the reputation by the current duration takes into account the confidence the
system has for a particular individual given that it will only be effective for a given
duration based on cyclical effectiveness . The second component is an accuracy multiplier,
where ψ j (equation 5.20) is the directional accuracy of the jth individual and ψavg is the
average accuracy in [M]. The time-period used to determine the directional accuracy is
the same time period for determining inclusion in [M]. The accuracy multiplier allows for
an extra dimension to the system prediction that considers accuracy as well as return.

To aid in the explanation of this step, figure 6.3 shows the interaction between the meta
agent and [M], where the action selection mechanism is based on information transmitted
to the meta agent from [M] and calculated using equation 6.2. The individuals (I j) in [M]
transmit to the meta agent their action, reputation (R) and current return (r) to be used to
calculate the system predictions.
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Figure 6.3: A diagram of the action selection mechanism of the meta agent. Showing the
information that is supplied to the meta agent from [M] and how the rewards from the
system are feed back into the meta agent directly.

6.2.2 Reinforcement Component

The reinforcement component of LATIS updates the meta parameters R, κ and θ of the
individuals in step 5 of figure 6.1. The box label, [M]t−1 \ [M]t, denotes the relative
complement of [M]t in [M]t−1 which represents the individuals that no longer satisfy
the criteria for being included in [M]. The criteria for remaining in [M] is based on the
following, where the jth individual, referred to as I j, may remain in [M] while either:

I j ∈ [M] if


R j − D j > 0, or

er j > 0 and

opinion j , risk-free

(6.4)

where er j is the excess return of the jth individual since R j - D j = 0. Therefore an
individual may remain in [M] as long as it remains profitable and is invested in the market.
This allows for trades that are useful for longer than the reputation suggests to still be
considered by the meta agent. er j is an excess return so it is calculated as:

er j = ra..b
j − rb+1..t

j (6.5)

where r j is the return of the jth individual during inclusion in [M], a is the time of inclusion
in [M], b is the time when R j - D j = 0 and t is the current time. Thus er j is only based on
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the time after reputation indicates the individual is no longer effective.

If reputation is supposed to represent how long I j will be effective and we expect this to be
time-varying, then we would want to have updates that incorporate recent performance.
When reputation is too large and the signals are not as reliable, we want to be able to
reduce reputation and when I j is remaining effective beyond its’ reputation value, we
want to be able to increase it. Therefore, a learning technique which allows for online
learning and the incremental aquistion of new information is appropriate. This type of
learning can be acheived using the Widrow-Hoff delta rule, which is commonly used in
neural networks and learning classifier systems. Thus, the update to reputation using the
learning parameter β is as follows:

R j ←

 R j + β(D j − R j) if D j > R j

R j + (ra..b
j − θ j)/θ j, otherwise

(6.6)

where all quantities are as previously defined. This equation allows the reputation of I j to
expand and contract in reaction to inclusion in [M]. If D j > R j then the update is positive
and is based on the difference between the two. If I j exited [M] when R j = 0, then the
return (ra..b

j ) may have been lower than expected and the difference between the realized
return (ra..b

j ) and the expected return (θ j) is used to update reputation with a lower value.
Since the returns will typically be quite small in comparison to R, there is no need for a
discount factor.

The minimum criterion for the initial inclusion of I j in [M] (κ) is intended to represent
when I j is effective and therefore would be producing reliable signals. Once again if
we assume this parameter to be time-varying or at the very least to be unknown a priori
we will want an update equation that maximizes the time I j is in [M], that is, we want
to maximize the actionable information in I j. To facilitate this objective then, κ should
be increased when I j’s performance declines and increased when I j is becoming more
effective. Thus an update for κ, based on the change in R, is:

κ ← κ − log(|∆R j|)/(1/log(|∆R j|) + (100 ∗ sgn(∆R j))) (6.7)

where ∆R j is the change is reputation based on equation 6.6 and sgn is the signum
function, as before, which extracts the sign of a real number. This relationship allows for κ
to decrease when R is increasing and vice-versa. The inclusion of 100 in the denominator
is to control the size of the jumps in κ as ∆R j increases. This relationship is shown in
figure 6.4 where the size of the changes in κ tappers off as |∆R j| increases. When R j is
decreasing it indicates that I j was added at an inappropriate time and therefore a closer
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Figure 6.4: A plot of the change in κ for increasing values of ∆R j, where the acceleration
of the change in κ tappers off as ∆R j approaches extreme values. Negative values are
shown in red and positive values are blue.

match is desired in the future. It is worth mentioning, at this time, that there is not a
maximum value for κ and values > 1 represent a minimum criteria that is above what was
achieved by I j in training. This of course could indicate the I j is not very useful and in
section 6.2.4 we will see how the meta parameters are used to eliminate individuals from
[P].

The final meta parameter to be updated in θ j which is the expectation of the return of I j in
any given inclusion in [M]. This parameter is updated after each participation in [M] by
the following:

θ ← θ + α(ra..b
j − θ) (6.8)

where α is the learning rate or discount factor and all other quantities are as previously de-
fined. Equation 6.8 allows θ to increase/decrease when returns are increasing/decreasing
in [M] and the use of the learning rate α ensures θ is not overly sensitive to the most recent
returns.

6.2.3 Discovery Component

The third and final main component of LATIS is discovery which is used to create new
individuals for [P]. Unlike an LCS, in LATIS the population based optimization algorithm
does not interact with [M] and only has a connection with [P]. In LATIS the optimization
algorithm used is PSO and its two main duties are the following:
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1. Create the initial population, [P]0, based on a set of training data supplied from the
environment.

2. Introduce new individuals to [P]>0 (called the covering mechanism, step 4) when:

(a) |[M]| < [M]min (the minimum size of the set [M]), or

(b) when I ∈ [P] no longer meet the minimum criteria to be a member of [P].

As stated, how the initial population is created is a decision for the data modeller but in
the following section an example of this process will be provided. However in general the
following is required:

1. An optimization algorithm for fitting the parameters of the technical indicators,

2. A set of technical indicators that have parameters which can be fitted to a set of
training data,

3. A set of training data which is representative of the environment being modelled,
and

4. A FitnessFunction - a performance function based on some economically desirable
metric.

The training data can be partitioned using a sliding window (discussed in previous
chapters) and then for each window a version of each technical indicator can be created
and added to [P] up to size N, which is the maximum size of the population. Other
selection methods can be used for determining which indicator to optimize and the size of
the sliding window to partition the data.

The covering mechanism (step 4) is meant to update LATIS with new information from
the environment and also in recognition that not all models created in training are going
to be useful or may not be useful forever. Removing individuals from [P] that are no
longer useful and replacing them with new models from more recent data allows LATIS
to incorporate current information. Thus the covering mechanism facilitates the objective
of being able to synchronously consult previously found models and models developed in
the current environment. If [P] is at its maximum capacity then any additions will have
to be accompanied by a deletion from [P]. The determination of removing from [P] is
covered in the next section.
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6.2.4 Removing from [P]

The removal of individuals from [P] is a sensitive operation. This is because we want to
protect the I ∈ [P] which will be useful again and remove those which will not or will
be detrimental to the performance of the meta agent. All of the information required to
make this decision is contained in the meta parameters of the individuals. So, if any of
the following criteria is satisfied then I j should be removed from [P] (i.e. I j < [P]):

1. R j < 0 (reputation is negative), or

2. θ < 0 (expected return is negative).

The number of I ∈ [P] need not be constant. When an individual is selected to be removed,
it is not necessary to replace them immediately and the place can be held until the next
covering step has be initiated. If I j has a negative reputation then it has consistently
produced lower returns then expected to the point that those returns have been negative.
Alternatively, I j could still have a positive reputation but a negative expected return, which
would also make I j undesirable. This would happen if the initial reputation was estimated
to be quite large and only a limited number of inclusions in [M] have taken place. This
leads to the final consideration for removing from [P] and that is the frequency at which
an individual participates in [M]. If an individual never or rarely is included in [M] then
it is not contributing to the meta agent and therefore should be replaced. To facilitate this,
a count is maintained for each individual in [P] that indicates the number of times it has
been included in [M]. If the covering step produces a new individual for [P] and [P] is
at maximum capacity then the following equation can be used to determine the I to be
removed:

Remove j =
θ j

R j
∗ (TC j − MC j) (6.9)

where TC j is a count of the number of time periods I j has existed, MC j is the count of
the number of times I j has participated in [M] and Remove j is a gauge of the contribution
of I j to the meta agent. Where higher scores for Remove j are more desirable. The use of
TC j is to accommodate the newly created I in [P] that did not have the same number of
opportunities to participate in [M]. This removes the bias from LATIS of removing newly
created I. Dividing the expected return by the reputation provides the daily contribution
for being a member of [M] and then by multiplying this number by the TC j-MC j gives
an estimate of how useful I j is to the meta agent.
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6.2.5 Adding to [M]

An integral part of forming the system predictions, P(ai), which are used to select an
action, ai, is the formation of [M]. In this section we provide more detail on how to use κ
to select individuals for [M]. κ j defines the performance criteria for I j that is intended to
signify when I j is effective in the cyclical effectiveness sense of the word. The size of the
time period, that the performance of I j ∈ [P] is calculated for, is a decision for the data
modeller. Since we are evaluating current performance, the time-period should end with
the most recent observation. However, there is not a generally preferred value for this
variable but in the next section an example for choosing it is provided.

We propose two methods for selecting individuals for [M]. The first is based on
performance and since these are trading models the appropriate metrics to consider are
return, risk and trading activity. LATIS is meant to be active in the market, so the
minimum criteria for trading is simply that I j has made at least one trade in the period
being considered. For the metrics of risk and return the κ j meta parameter can be used.
The metric for measuring risk is the Sharpe ratio as defined in equation 5.19. If we require
that both metrics satisfy the κ criteria then we have a corresponding region in 2-d feature
value space. In figure 6.5 we have a representation of the feature value space and the
region that I j must occupy to be introduced in to [M]. We do not necessarily want to
penalize I j for achieving a superior performance over the training period and therefore κ
does not define a minimum criteria but a region around the training performance, denoted
the κ-region, as indicated by the red ellipse in figure 6.5.

The second method is based on the structure of the individuals in [P]. Where the distance
between models is determined in parameter space and κ forms a multi-dimensional
region around the training structure. For the time-period currently under consideration a
technical indicator is fitted, denoted the reference model (Mre f ), and the resulting structure
is compared to the κ-regions of each I < [M]. Each I j that the Mre f occupies the κ j-region
is added to [M].

6.2.5.1 Calculating the κ-region

The κ-regions defined above will be either 2 or 3 dimensional spaces depending on the
feature space and the technical indicator being considered. We will describe the steps for
calculating the κ-region in 2-d using figure 6.6 as a reference. Given a training point and
a κ value the corresponding region is as follows:
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1. calculate the length a as a = (∆X2 + ∆Y2)−1/2

2. calculate the angle A as A = arcsin(∆Y2/a)*(180/π)

3. angle A = angle D

4. calculate the length b as b = ∆Y2/sin(D)
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Figure 6.6: An example figure for the κ-

region calculaiton.

The values of a and b form the major
and minor axes of the ellipse. Equipped
with this information the training point at
the centre of the ellipse (red point) can
be translated to the origin (as shown in
figure 6.5) where the standard equation for
describing an ellipse:

X2

a2 +
Y2

b2 = 1 (6.10)

can be used to determine if a point lies
within the κ-region. Substituting the
values of X and Y with any point in the 2-
d feature value space will determine if the
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point lies within the κ-region, where values < 1 indicate points within the region and
values > 1 indicate points that are not.

This procedure can easily be extended to 3-d space where the equation for determining if
a point lies within the κ-region is:

X2

a2 +
Y2

b2 +
Z2

c2 = 1 (6.11)

and the additional axis c is determined by simplifying the 3-d (x, y, z) space into 2-d along
the (x, z) axis and then the procedure is executed as normal. In the above discussion the
x-axis is considered the largest and therefore the major axis for all calculations.

6.3 Parameter List

The foregoing description of LATIS has introduced various parameters. They are
summarized below in table 6.2 and some typical values will be seen in the implementation.

Table 6.1: A list of LATIS parameters.
Parameter Description
N Population size of [P]
R Reputation assigned to I ∈ [P]
κ Defines the region in parameter space for adding I to [M]
θ Expected return assigned to I ∈ [P]
β Learning rate for reputation
α Learning rate for expected return
[M]min Minimum size of [M]
TC j Number of periods I has existed for
MC j Number of times I has participated in [M]
ai ∈ A An action from the set of actions available to LATIS
P(ai) The system prediction for action ai

D Duration assigned to I ∈ [M]
Rem Difference between RJ and D j

ψ Accuracy assigned to I ∈ [M]
er Excess return assigned to I ∈ [M]
Mre f Reference model for current time period
κ-region Region defined by the κ parameter
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6.4 Implementation

In this section we describe a specific implementation of the LATIS framework. This
implementation is proceeded by a simplified version called LABBS (Learning Adaptive
Bollinger Band System) that was created as a prototype and was presented at CIFEr 2012
in New York [14].

The various parameters which were left to be defined by the data modeller will be
addressed. This includes, inter alia, what types of technical indicators to include in [P],
how the initial population is created and the length of the time period for constructing [M].
We all also define some typical values for the parameters in table 6.2. The optimization
algorithm will be dHPSO that is extended to multi-objective optimization. The choice
for the time period for evaluating I ∈ [P] is set to be size of the window used to fit the
indicator. Determining whether or not an individual from [P] should be included in [M]
is based on the return and Sharpe ratio performance metrics. For the other considerations,
they will be discussed in the following subsections. This implementation does not include
the covering step as the experiments are focused on evaluating the LATIS framework
in relation to the AMH implication of cyclical effectiveness. Therefore, individuals are
removed from [P] if they satisfy one of the required criteria but no new individuals are
created. This methodology could lead to [P] becoming empty, however, in all experiments
performed, the size of the population always remained positive and early stoppage was
avoided.

The R and θ meta parameters are seeded with values from the training period. The R for
a particular I ∈ [P] is set to 1/10th the size of the training window used to create I and θ
is the return acheived during the training period. The final meta parameter, κ, was seeded
with a value of 0.80, which was determined during experimentation. The initial values for
the meta parameters do not have a large influence on the system as a whole, as long as
the learning parameters for their update equations (i.e. α and β from table 6.2) are chosen
appropriately.

6.4.1 Technical Indicators for LATIS

We have chosen two technical indicators to be included in [P], the first is the Bollinger
band used in the cyclical effectiveness experiments and the second is a moving average
indicator (MAI) as described in chapter 3.2.2 and shown in figure 3.2. Signals for a
MAI are generated through the interactions of two or more moving averages (of different
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Figure 6.7: The mapping of a particle from the 14-dimensional solution space to the
5-dimensional parameter space for the MAIs.

lengths) of a time series. For this implementation the ABBs will be segmented into two
separate functions for optimization, one for the upper band and one for the lower. As
such, the PSO mapping is now from 10 particles to 4 parameters. Since the bands are
independent of each other there is no benefit to optimizing them at the same time and by
separating them the κ-regions can be in lower dimensional space. We have already shown
in the related work how an MAI can be combined with a population based algorithm
(chapter 3.3.1) but our implementation is different and is described as follows.

Each MAI requires two moving averages of different lengths, a type for each moving
average (i.e. arithmetic or exponential) and stop-loss criteria for exiting trades. These
requirements yield 5 parameters for optimizing where each particle in the PSO will have
10 particles. The mapping from the 10-d solution space to the 5-d parameter space is
shown in figure 6.7. The larger window length is determined as % amount greater than
the smaller window, this way the larger window is always guaranteed to be in fact larger
and simplifies the mapping procedure.

6.4.2 Creating [P] - training procedure

Given a set of technical indicators to optimize a population [P] can be constructed by
fitting the technical indicators to some training data whilst optimizing some economically
desirable fitness function(s). In this implementation we train our technical indicators on a
set of training data using a sliding window approach with increasing window sizes. This
approach enables the technical indicators to be fitted to very specific and more general
market conditions which are intended to improve the performance of the meta agent.
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Figure 6.8: (left) The 2-dimensional fitness value space explored by the PSO algorithm
, the solid line represents the pareto front. (right) The ring topology of a swarm where
particles are influenced locally by their two closest neighbours.

The optimization will consider the two fitness functions which produced the best results
from chapter 5.3.2, i.e., profit based and the Sharpe ratio. This creates a multi-objective
optimization (MOO), depicted in figure 6.8, where we extend the canonical dHPSO to
MOO using the dynamic neighbourhood approach of Hu and Eberhart [53]. This MOO
approach is simple and straight forward but has been proven effective when the number
of objectives is 3 or less. The algorithm works by optimizing objectives one at a time and
executing the following steps:

1. Calculate the distances between each particle in the swarm in the fitness value space
of the first objective (profit).

2. Secondly, locate the m closest particles for each particle in the swarm, these m

particles form the local neighbourhood.

3. Find the local optimum among the neighbours in terms of the fitness-value of the
second objective (Sharpe ratio). This local optimum is used as the localbest position
in the PSO equations (see chapter 2.1.1.1).

In this study the neighbourhood size was set to 3, so each particle was influenced by 2
neighbours, this creates a ring structure for the neighbourhood topology as depicted in
figure 6.8. The other parameter values for the experiments are provided in table 6.2.
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6.5 Empirical Results

In this section we report results from modelling simulated and real-world time series using
the LATIS implementation described in section 6.4. The experiment design is based on
Moody et al. [102] using the same equations for simulating the data and the real world
time series is the monthly prices of the S&P 500 market index. The LATIS framework
is intended to provide a method for online and adaptive learning when using technical
analysis and the LATIS investment policy (the series of trades that LATIS executes) is
meant to capitalize on the AMH implication of cyclical effectiveness. Given that the
performance of LATIS is dependent on the quality of the models in [P], an informative
metric as to LATIS’s usefulness is the proportion of individuals in [P] that LATIS is able
to outperform. Before the testing period commences we have N models, each of which
was profitable in the time-period it was created for, and thus without knowledge of the
future, each model would have a 1/N chance of being the top performer. If an I ∈ [P]
was chosen at random over a large number of trials then this random policy would on
average choose an I in [P] that outperforms 50% of the population. Thus for the LATIS
framework to be considered effective it must be able to outperform more that 50% of the
I in [P]. Additionally, we also report the overall return of the LATIS algorithm (averaged
over a number of runs) and the percentage of runs that LATIS outperformed an investment
benchmark.

6.5.1 Trader Simulation

In order to evaluate the LATIS framework we begin with a Monte Carlo simulation, where
1000 independent realizations of equations 5.21-5.23 are generated and then modelled
using LATIS. The values for κ and α are 3 and 0.9 respectively, which yields a random
walk series with a significant amount of noise and is trending on short time-scales. At
each time step LATIS can either be in a short, long or risk-free position. In figure 6.9 we
provide four example plots of the simulated series used in the Monte Carlo simulation. We
also present results from applying LATIS to one simulated series to show the evolution
of the cumulative returns and the series of trades the LATIS was making. Due to the
random component of PSO we present results that are averaged over 100 independent
runs. The experiment setup parameters for LATIS and PSO are listed in table 6.2, where
|Dtraining| is the size of the training window used to construct an I ∈ [P], rtraining is an
indicator’s return during the training period and fmemory is the fitness memory for dHPSO
for determining when a particle is stagnant and its velocity update profile is changed. In
table 6.3 we have the trading parameter settings for LATIS which includes the starting
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capital, the transaction rate for executing trades and the risk-free rate. As in [102] the
simulated trader (LATIS) is able to take either a short, long or risk-free position but never
two at the same time. To reiterate, a short position is when the trader sells an asset first
and then buys it at a later time, thus profiting from a decline in the asset’s price and a long
position is buying an asset first and selling it at a later date.

Table 6.2: A list of the LATIS and PSO parameter settings for the simulated and real-
world experiments.

LATIS Parameters
Parameter Setting Parameter Setting

N 100 R0 0.10*|Dtraining|

κ0 0.80 θ rtraining/|Dtraining|

β 0.10 α 0.10
window sizes {250,500} training length 1000

PSO Parameters
Parameter Setting Parameter Setting
particles 30 fmemory 5

C1 2 C2 2
intertia 0.99 neighbourhood 3

Table 6.3: A list of the trading parameter settings for the simulated and real-world
experiments.

Trading Parameters
Parameter Description Setting
Capital0 initial Capital £1000

Transaction fee the cost for executing trades 1
4%

RFreturn risk-free return 2%
S Lmax maximum stop loss 50%

6.5.1.1 Simulated Data Results

This section reports the results from the simulated data experiments. Reported in table 6.4
is the average number of I ∈ [P] that LATIS outperforms (metric 1), i.e., how many
of its own agents does the meta learner outperform and the percentage of runs where
LATIS outperformed the buy-hold-approach (metric 2). From the results we observe
that on average the LATIS algorithm was able to outperform 91.47% of the I ∈ [P]
which demonstrates that LATIS was able to effectively combine the forecasts from the
population and also identify when a particular individual was going to be effective. From
the second metric was observed that in 91.1% of the simulations the LATIS algorithm
was able to outperform the market benchmark, where the benchmark was the passive
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Figure 6.9: Four plots of simulated data generated by equations 5.21-5.23. The plot in
the upper left hand corner is the time series used for the results reported in table 6.5.

buy-and-hold investment strategy. This result provides evidence that the extra work and
costs associated with trading with LATIS were justifiable and that using the population of
indicators modelling short-term trends leads to long-term excess returns.

Table 6.4: The results from a Monte Carlo simulation of 1000 replications. Reported are
summary statistics for the average number of I ∈ [P] that LATIS outperformed (metric
1) and the percentage of simulations where LATIS outperformed the market benchmark
(metric 2).

Metric 1 Metric 2
µ σ µ σ

0.9147 0.1428 0.911 0.285

Now we focus on one realization of the Monte Carlo simulation, depicted in the upper
left hand corner of figure 6.9, to analyze the variation in performance over a series of
runs for one simulated time series. The reported results include the same metrics from the
Monte Carlo simulation plus the average cumulative capital (metric 3). All results have
been averaged over 100 independent runs and are reported in table 6.5. In figure 6.10 the
average cumulative capital and average trading position are plotted for the online training
phase of the algorithm. Considering the trade positions, the reported result for a given
trade executed by LATIS is either {-1,0,1} reflecting the current trade for LATIS as a short
position, risk-free rate or a long position respectively.

The results in table 6.5 complement the results from the Monte Carlo simulation
(table 6.4) where on average LATIS outperformed over 90% of the I ∈ [P] and in each run
was able to outperform the market benchmark. The middle plot in figure 6.10 provides
insight into the types of trades that LATIS was executing, where negative values indicate
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Table 6.5: The average results from a 100 runs on a simulated data series. Reported are
summary statistics for the average number of I ∈ [P] that LATIS outperformed (metric 1),
the percentage of simulations where LATIS outperformed the market benchmark (metric
2) and the average cumulative capital achieved by the algorithm (metric 3).

Metric 1 Metric 2 Metric 3
µ σ µ σ µ σ

0.9098 0.040 1 n/a 5506.877 2522.960
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Figure 6.10: The plots of the simulated time series (top), the average trade position
(middle) and the cumulative capital for LATIS over the online learning phase (bottom).
All results are averaged over 100 runs.

short positions and positive values indicate long positions. During periods were the time-
series was significantly trending upwards we can see that LATIS was regularly entering
long positions and when the market was negatively trending, LATIS was entering into
short positions.

6.5.2 Real World Results

The real world experiments use the monthly price data for the S&P 500 market index
spanning 62 years and 10 months from January 1950 to October 2012. The first 25
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years are used for training, followed by approximately 21 years (250 months) of updating
the population ([P]) with out-of-sample data and finally 17 years for testing and online
learning. The 20 year time period for updating the population is to allow all I ∈ [P]
to only have access to data outside of the training phase before LATIS begins to trade.
For the real-world experiment the transaction cost is increased to 0.5% or half a percent
to reflect higher costs associated with lower frequency trading and to account for other
factors associated with real world trading which negatively impact trading profits. For
the real world experiments the LATIS trading system can take long, short and risk-free
positions. The parameters for the experiment setup and the data description are displayed
in table 6.6 and a plot of the time series is provided in the top panel of figure 6.11. We
report the same performance metrics as before with the simulated data experiments, where
the reported results are averaged over 100 independent runs and displayed in table 6.7.

Table 6.6: A list of the trading parameter settings for the real-world experiments that have
been changed. Any parameters not listed are the same as the simulated data experiments.

Experiment Parameters
Parameter Description Setting

transaction fee the cost for executing trades 1
2%

window sizes size of the training windows {125,250}
Data Description

data name S&P 500 market index
time period 01/1950 - 10/2012
series length 755

data type monthly observations

Table 6.7: The average results from a 100 runs on the monthly prices of the S&P
500. Reported are summary statistics for the average number of I ∈ [P] that LATIS
outperformed (metric 1), the percentage of simulations where LATIS outperformed
the market benchmark (metric 2) and the average cumulative capital achieved by the
algorithm (metric 3). The * denotes a statistically significant result at the 0.1%
significance level.

Metric 1 Metric 2 Metric 3
µ σ µ σ µ σ

0.7956* 0.167 0.58 n/a 2715.911* 1594.880

The results in table 6.7 show that on average LATIS was able to outperform 80% of
the I ∈ [P]. This represents a statistically significant increase based on a two-sided t-test
(at the 1% significance level) from the 50% average assumed a priori. Also, in 58% of
the runs LATIS was also able to outperform the buy-and-hold approach. The average
cumulative capital of £2715.911 represents a percentage return of 171.5% over the 17
years which is also higher than the buy-and-hold approach (£2235.32). The increase in
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Figure 6.11: The plots of the S&P 500 time series (top), the average trade position
(middle) and the cumulative capital for LATIS over the online learning phase (bottom).
All results are averaged over 100 runs.
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Figure 6.12: The plots of the average trade position (top), the majority vote trade position
(middle) and the cumulative capital for LATIS over the online learning phase (bottom).
The dashed horizontal lines on the top panel represent the trade decision boundaries for
the majority vote. Values about 0.33 are considered a long position, values below -0.33
are a short position and everything in between is a position in a risk-free investment.
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the cumulative capital is also significant at the 0.1% significance level based on a two-
sided t-test. Figure 6.11 plots the cumulative capital during the online learning phase for
the average of the 100 runs. We can see that in the beginning of the period when the
market was significantly trending upwards LATIS was underperforming the buy-and-hold
approach, however after the dot com market crash (2001), LATIS is able to take short
positions to capitalize on the market contraction.

In figure 6.12 we plot the results from following a trading strategy of taking a majority
vote from the 100 runs, where each run represents a trading strategy. This trading system
is not as active as those previously discussed but does achieve a cumulative capital higher
than the average of the 100 runs and the buy-and-hold strategy.

6.6 Chapter Summary

In this chapter we have proposed, implemented and tested a novel algorithm for
optimizing a population of technical indicators and combining their heterogeneous set of
signals into one coherent trading strategy. We have also extended the dHPSO algorithm to
multi-objective optimization to accommodate different but equally important investment
objectives. The overall framework of the proposed system is inspired from a Learning
Classifier System but has been significantly changed to accommodate a population that
does not contain classifiers. The implemented algorithm utilized Bollinger bands and
moving average indicators but practically any technical indicator or function that can be
fitted using population based optimization would be appropriate. The results from the
simulated and real-world data demonstrate the usefulness of the LATIS framework and
its ability to detect and exploit trends in a price series. The framework, having been
influenced by the cyclical effectiveness results (chapter 5.3), demonstrates that technical
indicators can provide actionable information after the time they are identified to be
effective.
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Chapter 7

Innovations in Discretization

The final contribution chapter covers the area of time series discretization where a
real-valued time series is mapped to a symbolic representation. Having discussed the
numerous benefits of discretization in sections 2.1.11 and 3.3.2 we now move to the
development of a financial time series specific algorithm. The proposed algorithm extends
a current state of the art approach to handle the generally non-stationary and non-Gaussian
properties of financial time series. However, before the financial specific algorithm
is introduced we begin in the following section with a discussion of an invalid core
assumption of the SAX algorithm.

7.1 Invalid SAX assumption

The SAX discretization algorithm was the first symbolic approach that mapped a real-
valued time series to a symbolic representation that was guaranteed to lower-bound
Euclidean distance. At this time we highlight that the interest of this section concerns the
SAX assumption of data being highly Gaussian and the use of the standard normal curve to
choose partitions to discretize the data. Though not necessarily but generally and certainly
in its canonical form the SAX approach chooses partitions on the standard normal curve
that would produce an equal probability for each symbol in a finite alphabet to occur.
An equal probability of occurrence for each symbol is considered desirable [2] [96] and
supports choosing the partitions to segment the area under the curve into equal regions.
This procedure is generally a valid approach as a time series is normalized to have a mean
of zero and a standard deviation of one before the SAX algorithm is applied. However
there exists a caveat to this assumption of equi-probability, which we will explain in

151
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more detail in the following sections, due to the intermediate step of Piecewise Aggregate
Approximation (PAA). The PAA step is used for dimensionality reduction and, in brief, it
converts a time series into a sequence of means. What we will show in this section is that
when PAA is applied the distribution of the data is altered, resulting in a shrinking standard
deviation that is proportional to the number of points used to create a segment of the PAA
representation and the degree of auto-correlation within the series. Data that exhibits
statistically significant auto-correlation is less affected by this shrinking distribution. As
the standard deviation of the data contracts the mean obviously remains the same, since
it was zero, however the distribution is no longer standard normal and therefore the
partitions based on the standard normal curve are no longer valid for the assumption of
equal probability.

7.1.1 Effects of PAA

As mentioned in the introduction, this section focuses on the effects of the dimensionality
reduction step on the distribution of the data. We are asserting that when PAA is applied
to a standard normalized data set that the resulting PAA representation will have a smaller
standard deviation. This reduction can be trivial and therefore not affect the assumption
of equal probability of each symbol in a finite alphabet. However, depending on the size
of the PAA segments and the characteristics of the data this effect can have a significant
impact. Trivially, we can highlight this effect by stating that the minimum and maximum
of the series will be distorted closer to the mean of the distribution, in all but one special
case. This special case occurs when the max and min are surrounded by equal valued
points that outnumber or equal the number of points in a PAA segment. To further
illustrate this effect we provide examples from simulated and real-world time series.

7.1.1.1 Simulated Time Series

This study utilizes three simulated time series which represent the two extreme cases of
having highly correlated data (sinusoidal wave form) and completely uncorrelated (white
noise) and a mixture of both (sinusoidal wave with added white noise). Figure 7.1 displays
the autocorrelation functions for the three series. From these plots we observe that the
random data has no significant autocorrelation at any lag, the sinusoidal wave has perfect
autocorrelation at lag 1 (which tapers off slowly) and the sinusoidal wave with noise is
in between. Additionally, table 7.1 displays the standard deviations of the simulated time
series after the PAA step has been applied for various PAA parameter settings.
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Figure 7.1: Autocorrelation Function (ACF) plots of the three simulated series.

Firstly we have the case where the time series is composed of random data drawn from
a standard normal distribution that exhibits no statistically significant autocorrelation.
Depicted in figure 7.2 is a plot of the series and box plots showing the distributions of
the letters after the SAX algorithm has been applied. The box plots represent increasing
values for the number of points used to construct the PAA segments. Clearly as the number
of points increases within a PAA segment the distribution of letters that SAX is mapping
to contracts closer to the mean, thus losing the desirable outcome of an equal distribution.
The bar chart labelled “B” shows the distribution of letters when no dimensionality
reduction is applied and is producing a uniform distribution. If we examine the results
reported in table 7.1 we observe that the standard deviation of the distribution is shrinking
as the PAA segments become larger.

Secondly we have the case of highly correlated data with the sinusoidal wave form. This
data, depicted in figure 7.3, was generated using equation 7.1:

A ∗ cos(2πωt + φ) (7.1)

where A is the amplitude, ω is the frequency of oscillation, and φ is a phase shift, where φ
= B * π and B is a constant. For this simulation the values for A, ω, B were 2, 0.002, and
0.6 respectively. From figure 7.3 we can see that a sin wave is not Gaussian and therefore
does not produce a uniform distribution of symbols. However, the data is highly correlated
and the PAA step has no effect on the distribution of the data. This result is reflected in the
corresponding results in table 7.1 where the standard deviation is only trivially affected.

The final example demonstrates that as the data exhibits lower degrees of autocorrelation
the PAA step has a larger impact on the post PAA data distribution. In figure 7.4 we have
the plots of the same sinusoidal wave as before but with added Gaussian white noise.

As we can see from the box plots in figure 7.4 the data is again not Gaussian but this
time the distribution is being altered as the PAA step is applied with more and more data
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Figure 7.2: Plots related to a standard normal distribution. “A” is a time series plot of
the data. “B”-“F” are box plots of the distributions of letters from a symbolic sequence
derived from SAX for increasing number of points used to create the PAA segments. The
desired distribution amongst the letters is uniform and is only achieved when the PAA step
is skipped (Graph “B”).

Table 7.1: The standard deviations for the data distributions ex-post the PAA step of SAX.
1 2 5 10 20

random 0.9999 0.7139 0.4448 0.3167 0.2258
sin wave 0.9999 0.9999 0.9998 0.9993 0.9973

sin wave with noise 0.9999 0.8162 0.6909 0.6394 0.6098

points per segment. The effect is clearly observed in the standard deviations of the ex-
post distributions (table 7.1) where the standard deviation shrinks from approximately 1
to 0.6098 for PAA segments equal to 20 data points.

7.1.1.2 Real World Time Series

To demonstrate this effect in real world time series we have chosen 12 data series from
8 sources available from the UCI machine learning repository [41] and downloaded from
Dr. Eamonn Keogh iSAX webpage [124]. We have chosen 11 series which are negatively
impacted by the PAA step and 1 which is not. The 12 data series are summarized in
table 7.2 which reports the results from the Jarque-Bera test for normality and figure 7.5
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Figure 7.3: Plots related to a sinusoidal wave distribution. “A” is a time series plot of
the sin wave data. ‘B”-“F” are box plots of the distributions of letters from a symbolic
sequence derived from SAX for increasing number of points used to create the PAA
segments. The desired distribution amongst the letters is uniform and is never achieved
as a sin wave is not Gaussian. However, the distribution is never significantly affected by
the PAA step.

displays the ACF plots. Based on the Jarque-Bera test results only one of the time series
is normal (robot 2). The ACF plots are arranged based on the impact the PAA step had
on the ex-post distribution. Where the data series that was most affected is in the top left
hand corner and the data set least affected is in the bottom right hand corner. From these
plots we can see that the series with ACFs which are positive and taper off slowly (similar
to the sinusoidal wave) were the least affected by the PAA step.

The real world time series are standardized and then converted to a PAA representation.
Table 7.3 displays the ex-post standard deviations of the PAA representations of the
standardized time series. As we can see for all time series the standard deviations of the
PAA representations are shrinking as the size of the PAA segments increases. However,
the spot FX rate exhibits only minor changes in its distribution, thus not impacting the
assumption of equi-probability of each symbol. This is similar to the results obtained with
the sinusoidal wave without added noise. It is also worth noting that the ACF of the FX
rate is similar to the sinusoidal wave as well. The reduction in the standard deviation in the
other 11 series is much more dramatic and would most likely have a negative impact on
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Figure 7.4: Plots related to a sinusoidal wave with added noise distribution. “A” is a time
series plot of the sin wave data. ‘B”-“F” are box plots of the distributions of letters from
a symbolic sequence derived from SAX for increasing number of points used to create the
PAA segments. The added noise lowers the level of autocorrelation within the sin wave
and therefore as PAA is applied the distribution of the data changes.

Table 7.2: The real world time series used to demonstrate the negative effects of the PAA
step on the ex-post distributions. JB test stands for the Jarque-Bera test for normality and
reports the p-value obtained.

Data file (name) Description length JB test
darwin.dat (darwin) Monthly values - Darwin SLP series 1400 <0.001
flutter.dat (flutter 1) Wing flutter data (input) 1024 <0.001
flutter.dat (flutter 2) Wing flutter data (output) 1024 <0.001
robot arm.dat (robot 1) Data from a robot arm (input) 1024 <0.001
robot arm.dat (robot 2) Data from a robot arm (output) 1024 0.5042
sunspot.dat (sunspot) Monthly data - 01/1749 to 07/1990 2899 <0.001
EEG heart rate.dat (heart) Heart Rate after Epileptic seizure 7200 <0.001
water.dat (water 1) Rainfall riverflow data (aprecip) 2191 <0.001
water.dat (water 2) Rainfall riverflow data (discharg) 2191 <0.001
water.dat (water 3) Rainfall riverflow data (Log Flow Rate) 2191 <0.001
spot exrates.dat (fx rate) Spot prices for GBP in USD 2567 <0.001
balloon.dat (balloon) Balloon collected radiation data 2001 <0.001
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Figure 7.5: Plots of the Autocorrelation functions for the 12 real world time series
considered in the study. The ACF plots are arranged based on the impact the PAA step
had on the ex-post distribution. Where the data series that was most affected is in the top
left hand corner and the data set least effected is in the bottom right hand corner.
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Table 7.3: The standard deviations for the data distributions ex-post the PAA step of SAX.
Size of PAA Segment

Name 2 5 10 20
heart 0.5975 0.2246 0.1216 0.0659
robot 2 0.9268 0.5178 0.1966 0.1404
flutter 2 0.9794 0.8461 0.3982 0.1479
flutter 1 0.9810 0.8577 0.5665 0.1503
darwin 0.9496 0.7406 0.3295 0.2607
robot 1 0.9264 0.6449 0.4764 0.3690
balloon 0.7766 0.5944 0.4690 0.3934
water 1 0.8436 0.6683 0.5911 0.4337
water 2 0.9461 0.8745 0.7970 0.6157
water 3 0.9832 0.9570 0.9283 0.8914
sunspot 0.9799 0.9572 0.9341 0.8928
fx rate 0.9994 0.9975 0.9951 0.9875

the symbolic distribution. This is the same property observed in the simulated sinusoidal
wave with noise and the random data drawn from a standard normalized distribution. The
ACFs of these 11 series vary in their behaviour but the most affected series are those which
have no statistically significant positive autocorrelation at any lag or exhibit oscillating
positive and negative autocorrelation.

7.1.2 Effect on Symbolic Distributions

With the property of shrinking distributions now documented in the post PAA representa-
tions, the question remains as to what effect this has on the distribution of symbols from a
finite alphabet. To demonstrate this effect we assume that a discretization becomes more
desirable as its distribution of symbols approaches uniformity. Additionally we introduce
a potential fix for this effect, where the PAA data can simply be re-normalized before
transformation into a symbolic sequence. Thus the effect can be measured using a chi-
squared (χ2) goodness-of-fit test between the SAX representation and the target uniform
distribution. This test will be performed using the canonical form of SAX as well the
aforementioned augmented version that renormalizes the PAA representation to have µ=0
and σ=1. As previously shown (table 7.2), only one series can be considered Gaussian
(robot 2) and therefore is the only one which we would expect a uniform distribution
from the symbolic sequence. For the other 11 series we would expect that the majority of
them will reject the null of the χ2 test but that the absolute deviations from the uniform
distributions should be smaller for a normalized distribution with a σ=1. Therefore if the
shrinking σ of the PAA representations is negatively impacting the mapping to a symbolic
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Table 7.4: The results from performing a χ2 goodness-of-fit test on the SAX symbolic
distributions with alphabet cardinality of 5. Reported are the absolute deviations from
the uniform distribution. A * indicates the null was not rejected at the 5% significance
level. S AXn indicates the results when the PAA distribution was re-normalized prior to
converting the PAA vector to symbols.

Size of PAA Segment
Name 2 5 10 20

SAX S AXn SAX S AXn SAX S AXn SAX S AXn

darwin 19.43 24.00 25.71 20.00 80.00 11.43* 94.29 17.14*
flutter 1 72.11 72.11 83.53 73.73 101.18 85.49 132.55 73.73
flutter 2 78.75 77.58 78.63 77.65 105.10 83.53 148.24 81.57
robot 1 6.17* 8.52* 33.92 14.31* 62.35 12.16* 80.00 21.96*
robot 2 13.75 10.63* 57.45 4.51* 120.78 9.41* 144.31 10.20*
sunspot 16.07 16.48 16.44 16.03 15.64 13.43* 17.50* 14.72*
heart 48.28 3.72* 110.69 4.86* 153.06 8.33* 158.89 8.33*
water 1 138.81 118.36 132.60 105.66 129.86 88.77 125.14 77.43
water 2 147.58 146.85 147.67 146.30 147.21 143.56 150.83 101.65
water 3 31.78 31.42 29.59 25.94 27.76 25.02 31.93 24.59*
balloon 72.60 70.40 73.00 52.00 81.00 34.00 90.00 42.00
fx rate 24.97 25.13 25.81 26.20 24.53 25.31 26.88 26.88

sequence we should observe smaller absolute deviations and more acceptances of the null
of the χ2 test with the re-normalized PAA representations. The results are reported for the
same PAA segmentations as displayed in table 7.3 and for alphabet cardinalities of 5 and
10. In tables 7.4 and 7.5 we report the absolute deviations from the uniform distribution
for alphabet cardinalities of 5 and 10 respectively; any results which did not reject the null
of the χ2 test (at the 5% significance level) are marked with an asterisk (*). The null of a
goodness-of-fit test is that the observed distribution is equal to the expected distribution.
The χ2 test statistic is calculated as follows:

X2 =

n∑
i=1

(Oi − Ei)2

Ei
(7.2)

where X2 is the Pearson’s cumulative test statistic, Oi is the ith observed frequency, Ei is
the ith expected or target frequency and n is the cardinality of the finite alphabet. In these
experiments the target frequency would be calculated as 1/(cardinality of the alphabet), so
for an alphabet cardinality of 5 the target frequency is 0.2.

To summarize tables 7.4 and 7.5, two statistics can be determined. Firstly, there are 96
cases reported across both tables and in 80 of those cases re-normalizing the data produced
a distribution as close or closer to uniform. Secondly, the χ2 test accepted the null that
the two distributions (observed and expected) were equal in 29 of the 96 cases when the
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Table 7.5: The results from performing a χ2 goodness-of-fit test on the SAX symbolic
distributions with alphabet cardinality of 10. Reported are the absolute deviations from
the uniform distribution. A * indicates the null was not rejected at the 5% significance
level. S AXn indicates the results when the PAA distribution was re-normalized prior to
converting the PAA vector to symbols.

Size of PAA Segment
Name 2 5 10 20

SAX S AXn SAX S AXn SAX S AXn SAX S AXn

darwin 30.86 31.14 32.14 22.86 97.14 21.43* 111.43 34.29*
flutter 1 72.11 73.52 83.53 73.73 101.18 88.63 132.55 73.73
flutter 2 78.75 77.58 78.63 77.65 105.10 83.53 148.24 81.57
robot 1 7.97* 9.84* 36.86 16.67* 74.90 16.47* 92.55 41.18*
robot 2 13.75* 14.84 58.24 12.16* 122.35 21.96* 144.31 21.96*
sunspot 41.48 42.31 40.24 42.63 39.79 46.71 43.06 45.00
heart 49.17 5.78 114.86 4.86* 153.06 9.44* 158.89 11.67*
water 1 150.23 138.36 138.45 125.66 129.86 109.77 125.14 77.61
water 2 151.69 151.69 148.95 148.95 147.21 145.30 150.83 125.14
water 3 44.75 44.66 42.47 42.92 41.46 36.99 41.28 34.13
balloon 81.80 74.60 78.00 54.50 94.00 45.00 106.00 46.00
fx rate 38.16 38.32 40.08 39.69 41.88 41.88 39.06 39.06

PAA distribution was re-normalized but only accepted the null in 4 of the 96 cases when
it was not. Based on these results we can conclude that transforming the PAA distribution
to standard normal before converting to a symbolic representation, facilities a more even
distribution of the symbols. However, in the case of the FX rate, re-normalizing lead to
poorer results from the χ2 test in 4 of the 8 cases. In the 2 cases that a better result was
achieved, it was only a marginal improvement. From these results we can conclude that,
whether or not the effect of the PAA step can be determined a priori, a simple test of the
PAA distribution is all that is required to decide if a re-normalization is necessary. Clearly
in the case of the FX rate the re-normalization was not advantageous.

If we focus on robot 2, the only series that was Gaussian, we observe similar results
to those obtained with the simulated data from the standard normal distribution. The
σ steadily shrank and the absolute deviation from the uniform distribution grew as the
size of the PAA segments became larger. When we examine the re-normalized PAA
representation we see that in 7 of the 8 cases the symbolic sequence produced did conform
to a uniform distribution and in the one case that the χ2 test rejected the null, it was
marginal.
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7.1.3 Effect of Autocorrelation

We are asserting that autocorrelation is a non-trivial contributing factor to the effect of
the PAA step on the standard deviation of the PAA representation distribution. Figure 7.5
displays the plots the ACFs of the time series in order of effect the PAA step had on the
standard deviation for the PAA segment size of 20. This figure depicted a succession
of ACF plots that became more and more positively autocorrelated as the effect on the
standard deviation diminished. To further highlight this point in figure 7.6 we provide a
plot of the sums of the autocorrelation coefficients up to 30 lags for the 12 series along
with a plot of the standard deviations. In figure 7.6 the solid line represents the sum of the
ACF coefficients and the dashed line represents the standard deviations. The two plots are
clearly linearly correlated, where an increase in the ACF sum is related to a decrease in the
effect on the post PAA distribution. This relationship is also expressed by the correlation
coefficient between the two series which is 0.9527805. Additionally if we fit a linear
regression model of the form:

Y = Xβ + ε (7.3)

where Y (the response variable) represents the σ and X represents the ACF coefficient
sums as the predictor. The resulting adjusted R2 value is 0.8989, thus indicating that
approximately 90% of the variance in the post PAA standard deviations is explained by
the autocorrelation.

7.2 Effect on Data Mining

The observation that a SAX discretization of a real-valued time series results in a shrinking
standard deviation will undoubtedly effect data mining tasks. However, that effect is not
necessarily negative nor is it homogenous within the variety of data mining tasks (i.e.
classification and clustering), application areas and algorithms. In a general sense, we can
quantify the effect in terms of information theory, where if the probability of each symbol
occurring is no longer uniform we can base the information loss on a measure of entropy
(H) within the system. For example, if we consider a time series, Xi, where i = 1,..,n,
with a PAA segment size (m) = 10 and alphabet cardinality = 10 as well, then assuming a
uniform distribution of letters we have the following number of bits required to transmit



162 CHAPTER 7. INNOVATIONS IN DISCRETIZATION
S

um
 o

f A
C

F
 V

al
ue

s

heart robot_2 flutter_2 flutter_1 darwin robot_1 ballon water_1 water_2 water_3 sunspot fx_rate

0
5

10
15

20
25

0.
2

0.
4

0.
6

0.
8

1.
0

S
tandard D

eivations

Figure 7.6: Plots of the standard deviations (dashed line) and ACF coefficient sums
(solid line) for the 12 data series under analysis. The two plots reveal a strong linear
relationship between the variables which is also expressed by the correlation coefficient
between them of 0.9527805.

the signal, (i.e., information content):

H(X) = −

n/m∑
j=1

p(x j) log2 p(x j) (7.4)

H(X) = 3.3219

where the number of PAA segments in X is n/m or the compression rate, ∀ j: p(x j) = 0.10
and the information content per symbol with a uniform distribution is 3.3219. However, if
the post PAA distribution has shrunk and the assumption of uniformity is invalid, then we
can easily quantify the theoretical loss of information by plugging the new probabilities
into equation 7.4.

Aside from a theoretical information loss there are several methods for making this new
information valuable to data mining tasks, but ultimately the preferred methodology will
be specific to the needs of the data mining expert and the problem at hand. However, we
present the following as a non-exhaustive list of potentially viable approaches to utilizing
this information:

1. Re-normalize the data after the PAA step

2. Filter the data based on the ex-post PAA step standard deviation
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The first procedure was used in a previous section (section 7.1.2) to show that if the desired
outcome was to be as close to a uniform distribution as possible then re-normalizing
the PAA segment data would facilitate this goal. However, this may not be the case;
certainly when extreme values are present and pertinent to the data mining task, diluting
these points through renormalizing is not advantageous. The second procedure which
uses a filter based on the post PAA standard deviation allows for this characteristic of
the data to be directly considered when performing a data mining task. For example,
when performing a classification of a given time series using the nearest neighbour
algorithm, only the training exemplars with sufficiently similar post PAA distributions
will be considered. It is possible that using a filter may result in no training exemplars
meeting the criteria and thus leaving a testing exemplar unclassified. However, this is
not necessarily a negative consequence and assuming the training data has been chosen
appropriately (i.e. it is representative of the problem domain) then this situation should be
avoided.

7.3 Case Study

To demonstrate the “actionability” of this information we present a small case study which
considers the classification accuracy of the nearest neighbour (NN) algorithm using the
SAX distance measure (equation 2.20). The data set under study is the popular Synthetic
Lightning EMP data set [59] where we use the split of 2,000 cases for training and 18,000
for testing. Each time series exemplar contains 2000 points and is a member of either the
“slow leading edge” class (class 0) or the “fast leading edge” class (class 1). To test if the
information pertaining to the shrinking standard deviation could be used for improving
performance, we compare the classification accuracies of the proposed procedures to
the canonical procedure of simply applying SAX to the data and then classifying using
NN. The experiments are performed using a range of PAA segment sizes and alphabet
cardinalities, where the PAA segment sizes considered are 5 and 10 and the alphabet
cardinalities range from 5 to 20. This setup results in 32 unique scenarios for comparison.

7.3.1 Experiment Results

The results from performing the experiment setup described previously are displayed in
tables 7.6 to 7.8 for the canonical approach, the procedure of re-normalizing, and the filter
approach respectively. The final two rows in each table report the averages and standard
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deviations across alphabet cardinalities for each PAA segment size. For the filter approach
the results reflect using a threshold of 5% (based on the original σ2 = 1), i.e., only training
exemplars with a post PAA distribution within ±0.05 of a given testing exemplar’s post
PAA distribution will be considered for classification. Using a filter of this size allowed
for all exemplars in the testing set to have at least one training exemplar for classification.
In figure 7.7 we display box plots of the post PAA distributions for all data in the training
set for PAA segment sizes of 5 and 10. From the box plots we can see that a range of post
PAA distributions are present, this implies that the degree of autocorrelation within the
training set exemplars is not homogenous.
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Figure 7.7: Box plots of the ex-post PAA standard deviations for the training data of the
Synthetic Lightning EMP data set under different PAA segment sizes.

7.3.2 Results Analysis and Discussion

From tables 7.6-7.8 we can see that the average classification accuracy is higher for
the filter approach for each PAA segment size and in 100% of the cases considered the
filter approach yields a higher classification accuracy than the canonical SAX approach.
However, the process of re-normalization after the PAA step leads to inferior results,
suggesting that in this case a uniform distribution of letters was not desirable.

If we average across all results then the average accuracy for the filter approach is
86.0600% and for canonical SAX approach we have 85.0547% with standard deviations
of 0.9094 and 0.8101 respectively. Performing a Student t-test on the average classifi-
cation accuracies yields a t-score = 4.669456509, which based on a two-sided t-test is
significant at the 0.1% significance level with a value = 0.000016295. The calculation
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Table 7.6: Classification results for the NN algorithm using canonical SAX.
PAA Segment Size

Alphabetsize 5 10
Accuracy (%) Correct Accuracy (%) Correct

5 82.59 14866 82.06 14771
6 84.61 15230 84.12 15142
7 85.01 15302 84.98 15296
8 84.9 15282 85.44 15379
9 85.06 15311 84.63 15233

10 85.18 15332 85.13 15323
11 85.47 15386 85.87 15457
12 85.1 15318 85.01 15302
13 85.47 15384 85.77 15438
14 85.41 15374 85.63 15414
15 85.39 15371 85.09 15317
16 85.38 15370 85.44 15380
17 85.47 15385 85.83 15369
18 85.37 15368 85.26 15347
19 85.33 15360 85.36 15364
20 84.99 15298 85.4 15372

mean 85.05 15308.56 85.06 15306.55
sd 0.7003 126.25 0.9200 162.35

was based on the following:

tscore = (86.0600 − 85.05469)/(
√

0.5 ∗ (0.90942 + 0.81012)) ∗
√

(2/32)

= 1.0053/0.2153

= 4.6693

where over 32 independent cases for the experiment setup yields (32-2) degrees of
freedom for the t-test. In addition to the student’s t-test we have also performed a
Wilcoxon rank sum test. The resulting test score was 232 which yields a p-value ≤ 0.001,
thus rejecting the null that the two distributions are equal and therefore the filter approach
was superior.

In addition to the increased accuracy, the filter approach also offers an advantage in
terms of execution time, as distances are only calculated when post PAA distributions are
similar. Ignoring implementation bias and the initial calculation of the ex-post standard
deviations, the filter approach only adds one operation for each comparison in the testing
phase, i.e. the similarity check. However, if the exemplars do not have similar post PAA
standard deviations then the algorithm is saved n comparisons, n being the length of the
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Table 7.7: Classification results for the NN algorithm using SAX but with a re-
normalization of the data after the PAA step.

PAA Segment Size
Alphabetsize 5 10

Accuracy (%) Correct Accuracy (%) Correct
5 81.89 14740 78.24 14083
6 83.3 14994 80.38 14468
7 84.2 15156 80.52 14494
8 84.16 15149 81.69 14704
9 84.22 15160 81.85 14733

10 85.54 15397 81.89 14740
11 84.54 15217 82.19 14795
12 84.46 15202 82.06 14770
13 84.8 15264 82.27 14808
14 84.79 15263 82.67 14881
15 85.12 15321 82.25 14805
16 84.58 15224 82.76 14896
17 84.62 15232 82.58 14865
18 84.87 15277 82.67 14881
19 84.86 15274 82.93 14927
20 84.84 15272 82.74 14893

mean 84.42 15196.36 81.86 14733.98
sd 0.8363 150.53 1.2151 218.71

SAX representation of the time series. The overall result is a savings of n-1 comparisons
per testing exemplar and as the length of n increases, the larger the reduction in run time.1

Since the ex-post PAA distributions of the training set can be analyzed prior to the testing
phase (see figure 7.7) there is little risk of increasing the computation time of the algorithm
using the filter. In other words, the filter approach is only used when there is variation in
the post PAA distributions.

7.3.3 Conclusions

In this section we highlighted conditions under which one of the core assumptions of the
SAX algorithm is invalid. When the PAA step is applied for dimensionality reduction,
the standard deviation of the resulting distribution is almost certainly less than 1, and
depending on the circumstances, can be much less than 1. Those circumstances concern
two measurable variables, the number of data points within a given PAA segment and
the degree of positive autocorrelation within the series. A time series with statistically

1The exact benefits from this speed-up are still to be studied.
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Table 7.8: Classification results for the NN algorithm using SAX but with a filter based on
the post PAA distribution.

PAA Segment Size
Alphabetsize 5 10

Accuracy (%) Correct Accuracy (%) Correct
5 83.63 15054 82.87 14918
6 85.16 15329 84.41 15194
7 85.81 15446 85.17 15332
8 85.93 15468 85.84 15451
9 86.27 15529 85.86 15454

10 86.43 15557 86.27 15528
11 86.48 15567 86.68 15603
12 86.08 15494 86.33 15539
13 86.58 15586 86.91 15644
14 86.65 15597 86.63 15593
15 86.58 15585 86.37 15546
16 86.49 15568 86.39 15551
17 86.71 15607 86.36 15545
18 86.58 15584 86.6 15588
19 86.59 15586 86.4 15552
20 86.33 15540 86.53 15575

mean 86.14 15506.06 85.98 15475.81
sd 0.7815 140.541 1.0373 186.34

significant autocorrelation that tapers off slowly will be less affected by the PAA step and
vice-versa. We have shown that the shrinking distribution negatively effects the symbolic
representation of the time series with respect to the target uniform distribution. Finally,
we have provided a small case study which demonstrates how knowledge of the PAA
affect can improve classification accuracy when using SAX in conjunction with the nearest
neighbour algorithm. The results from the case study were statistically significant at the
0.1% significance level (based on two separate tests) and on average produced 183.38
more correctly classified instances in the Synthetic Lightning EMP data set. Although the
case study focused on a particular algorithm in a particular domain, the more general
impact of the paper is that a previously believed property of an algorithm is invalid.
How this new information affects each data mining task is left to the modelling expert
but at least now this property (i.e. the shrinking standard deviation) can be taken into
consideration. Adding the extra step of analyzing the post PAA distributions of the time-
series data will allow a very popular algorithm to realize its full potential in the variety of
domains where it has already proved very useful.
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7.4 SAX for Financial Time Series

We discussed previous attempts to extend SAX in chapter 3.3.2 and highlighted that these
studies failed to accommodate the problematic characteristics of financial time series.
Certainly the researchers recognized that SAX had to be altered to improve the matching
of similar shapes occurring at different time periods. However, the true cause was
overlooked, which is the generally non-stationary nature of financial time series and the
periodic departures from a Gaussian distribution. In this section we describe an algorithm
called alSAX (Adaptive Local SAX), which extends the canonical version of SAX such
that the algorithm automatically accommodates for non-stationarity and the departures
from a normal distribution. The resulting algorithm preserves the important property of
SAX that the distance measure lower bounds Euclidean distance and the dimensionality
reduction of discretization.

7.4.1 Description of alSAX

One of the most widely used methods for modelling non-stationary data is to use a
sliding window. The idea is that the window of data is relatively stationary (constant
µ and σ) and therefore those properties can be exploited. This method is already used in
implementations of SAX where a sliding window shifts by an observation at a time and
performs the discretization; however, this is generally not how SAX has been utilized in
the literature. Nevertheless this procedure, given an appropriate window size, facilitates
a discretized representation that accommodates non-stationary data. A caveat to this
approach is that any one data point is represented by various symbols and therefore
the data compression and dimensionality reduction benefits are lost. Additionally, the
negative impact of periodic departures from Gaussian is still present. These departures
invalidate the assumption of equal probability of the each symbol occurring, which as
discussed, is a desirable property of discretization algorithms.

The alSAX algorithm accommodates both of these properties by locally fitting a Gaussian
distribution to the data with non-overlapping windows that vary in size based on a
goodness-of-fit test for a normal distribution. Figure 7.8 illustrates the intuition behind
the proposed method, where a locally fit Gaussian will be more likely to match primitive
shapes in a non-stationary series. Each data point is also only represented by one
symbol and therefore the dimensionality reduction and data compression properties are
preserved. It is also worth noting that from a financial perspective this approach is also
quite appealing since investors do not consider the entire price history of an asset when
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Adaptive Local SAX 
(alSAX) Example

Figure 7.8: A depiction of locally fitted Standard Normal Distributions that allow for
more primitive shapes to be matched by the SAX distance metric even though the data is
non-stationary.

making decisions. For example, a latent piece of information concerning a financial asset
is the 52-week high and low price, where current prices in relation to a local distribution
are considered more relevant.

The decision as to the size of the sliding window is the only added parameter of alSAX.
If we assume that having fewer SAX discretizations to perform is preferred then we will
want to maximize the size of each window. Since there are two characteristics to consider
(non-stationarity and non-Gaussian) we will want the largest window size that provides a
data set which is stationary and normal. From the results in chapter 4.3.3 we can determine
that choosing a window based on stationarity will not be useful since the standard unit-root
tests are not sensitive enough for financial time series for sub period analysis. Another
choice for the window size could be the largest window that maximizes the number of
samples that accept the null of the Jarque-Bera (JB) test for normality. SAX assumes that
the series is normal, which financial data is not, but using an appropriate sample size this
assumption may be correct. We now perform a simple experiment that analyzes different
window sizes for the data and tests for normality and returns the percentage of windows
that accept the null of a normal distribution. The results reported in table 7.9 and figure 7.9
for the S&P 500 market index demonstrate that smaller windows are more likely to accept
the null of a normal distribution. These results are informative but are not sufficient to
make a decision. The window sizes need to be large enough for interesting patterns to be
constructed and this has to be facilitated given that the PAA step will reduce the number
of points within a window. For these reasons, simply choosing the smallest window size
(window length of 25) would not be desirable. Thus a trade-off exists between the property
of a normal distribution and the ability to construct meaningful patterns. For this reason
we propose using an adaptive approach that maximizes the size of a window by iteratively
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Table 7.9: The results from testing for a normal distribution within a sliding window
using the Jarque-Bera test for increasing window sizes. The reported results represent the
percentage of windows which accept the null of a normal distribution.

Window Size P-value
25 0.9729
50 0.8667
100 0.5892
250 0.1199
500 0.0180
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Figure 7.9: Plots of the p-values from performing the Jarque-Bera test for normality on
data within a sliding window of increasing lengths.

growing it until the null of the Jarque-Bera test is rejected.

From the above discussion we can formalize the steps of alSAX in algorithm 8, where
JB(d) is the Jarque-Bera test of data set d and d is allowed to increase in size as long as
the p-values from the test (JBp−value) continue to be larger than the α level of significance.
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Algorithm 8 alSAX
Input alphabet size→ A, partion size→ P, time series→ D
Input minimum window size→ minWindow,
Input p-value for Jarque-Bera Test→ α
for i in 1 to (length(D)-minWindow) do

set window size S = minWindow
Create subsample d← D[i:(i+S)]
JB(d)→ JBp−value

while JBp−value > α do
d← d+D[i:(length(d)+1)]
JB(d)→ JBp−value

end while
normalize d to have µ = 0 and σ = 1
convert the time series to PAA using P
substitute PAA segments for symbols from an alphabet of size A
i← i+(length(d)-(length(d) % P))

end for

7.4.2 Experiment Setup

The motivation behind alSAX is to have a locally fit Gaussian and an adaptive window
size to maximize the number of points within a sliding window. To test the effectiveness
of alSAX a series of experiments are performed on different simulated and real-world data
sets for different parameter values for the minimum window size, alphabet cardinality and
the size of the partitions for the PAA segmentation. In the experiments we consider the
canonical form of SAX, the proposed alSAX algorithm and a simplified version of alSAX
that does not use an adaptive window, denoted loSAX or local SAX. Comparing alSAX
with just a locally fit Gaussian of static size will allow us to gauge if the Jarque-Bera test
offers any advantages. The results are compared using the chi-squared (χ2) goodness-of-
fit test (equation 7.2) under the assumption that a uniform distribution of the symbols is the
desired outcome. The algorithm which produces an ex-post symbolic distribution closest
to uniform will be deemed the most effective. The parameter settings for each experiment
are listed in table 7.10 and details of the data sets are in table 7.11. The simulated data
was generated using equations 5.21-5.23.

7.4.3 Experiment Results

The results from the aforementioned experiment setups (table 7.10) are displayed in
tables 7.12 to 7.15. Reported is the absolute deviation from the target uniform distribution,
any results which were not rejected by the χ2 test are marked with an asterisk (*). If the



172 CHAPTER 7. INNOVATIONS IN DISCRETIZATION

Table 7.10: The parameter settings for the SAX algorithms for the various experiments.
Exper. |Alphabet| PAA seg. min. window

1 10 5 30
2 10 5 50
3 10 5 100
4 10 5 200
5 10 10 30
6 10 10 50
7 10 10 100
8 10 10 200
9 5 5 30

10 5 5 50
11 5 5 100
12 5 5 200

Table 7.11: Data description.
Dataset Description Length JB test
SimData1 A independent realization of equations 5.21-5.23 10000 < 0.001
SimData2 A independent realization of equations 5.21-5.23 10000 < 0.001
S&P 500 Daily closing prices of the S & P 500 index 8074 < 0.001
IPC Daily closing prices of the Mexican IPC index 5034 < 0.001
XOM Daily closing prices for Exxon Mobil 8075 < 0.001
MMM Daily closing prices for 3M 8075 < 0.001

χ2 test accepted the null then the realized symbolic distribution from the discretization
algorithm was statistically indistinguishable from uniform.

7.4.4 Results Analysis

To begin, if we consider the comparison between the local fitting approaches (alSAX
and loSAX), there are 72 cases reported in tables 7.12 to 7.14. In approximately 85%
(61/72) of the cases the alSAX algorithm produces a smaller absolute deviation from the
uniform distribution. Additionally, the average absolute deviation across all data sets for
alSAX is roughly half that of loSAX, where the absolute deviations are 12.628 and 25.170
respectively. If we consider the 11 cases where loSAX was superior the average difference
in the absolute deviations between loSAX and alSAX was 1.577, however in the reverse
the difference was several magnitudes larger at 15.274. Thus, the adaptive window was
able to collect data that adhered to a normal distribution more effectively and therefore
produced superior ex-post symbolic distributions. Focusing on the results in table 7.15
for the canonical SAX algorithm we observe that the ex-post symbolic distributions were
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Table 7.12: Experiment Results for SimData1 and SimData2.
SimData1 SimData2

Exper. loSax alSAX loSax alSAX
1 36.4964965 13.65682841 33.93393393 10.07007007
2 27.53768844 16.04802401 27.63819095 14.65732866
3 15.65656566 18.34917459 18.48484848 14.60413515
4 19.59183673 14.92717228 19.3877551 17.07808564
5 74.53453453 22.1021021 76.93693694 13.13313313
6 36.38190955 24.52261307 38.3919598 16.31631632
7 25.25252525 23.70221328 22.62626263 23.93541877
8 24.28571429 15.67839196 20.40816327 19.55645161
9 22.36236236 3.541770885* 20.06006006 4.584584585*
10 9.648241206 7.943971986 11.15577889 7.043521761
11 9.090909091 7.243621811 4.141414141* 6.434694907
12 16.2244898 12.61677549 11.02040816 12.69521411

Table 7.13: Experiment Results for the S&P 500 and the IPC.
S&P 500 IPC

Exper. loSax alSAX loSax alSAX
1 33.92812887 8.996282528 37.56487026 11.45129225
2 26.70807453 10.35935564 25.60000000 11.92842942
3 16.62500000 10.03717472 13.60000000 13.91650099
4 12.87500000 12.60188088 14.00000000 14.22492401
5 67.06319703 14.47335812 72.57485030 15.58648111
6 39.62732919 15.39033457 38.80000000 15.30815109
7 29.75000000 15.81164808 24.40000000 22.39043825
8 19.25000000 13.73433584 20.80000000 20.20283976
9 25.79925651 5.402726146* 23.07385230 5.248508946*
10 12.29813665 3.915737299* 14.40000000 6.242544732*
11 4.500000000* 2.403965304* 6.00000000* 11.80914513
12 7.750000000 7.021943574 6.80000000* 7.051671733*
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Table 7.14: Experiment Results for XOM and MMM.
XOM MMM

Exper. loSax alSAX loSax alSAX
1 35.66294919 11.02293862 32.71375465 10.64516129
2 27.57763975 9.522628642 29.9378882 14.04466501
3 15.37500000 13.41235184 18.1250000 11.35068154
4 13.50000000 13.12500000 17.3750000 16.23824451
5 65.3283767 17.91563275 62.60223048 17.71712159
6 43.47826087 14.83870968 41.24223602 21.93548387
7 25.75000000 21.09862672 33.00000000 19.95043371
8 15.25000000 16.25000000 18.50000000 17.85268414
9 26.41883519 4.488530688* 25.30359356 3.945409429*
10 13.78881988 3.992560446* 15.77639752 4.069478908*
11 6.50000000 3.593262633* 5.62500000* 4.758364312*
12 5.50000000* 7.000000000 10.37500000 10.65830721

Table 7.15: Experiment Results for SAX without a sliding window. The column headings
indicate the cardinality of the alphabet (let) and the number of points used to construct
the PAA segments (pts).

Dataset 10let/5pts 10let/10pts 5let/5pts
SimData1 52.47623812 53.35335335 35.25762881
SimData2 27.07353677 26.74674675 27.07353677
S&P500 68.8228005 68.20322181 42.30483271
IPC 79.04572565 79.44333996 48.62823062
XOM 74.64684015 75.39033457 31.1771995
MMM 70.48327138 70.35935564 35.1425031

further from uniform than alSAX for all 6 data sets and experiment setups. The SAX
algorithm did outperform loSAX on 3 occasions but this was only for the simulated
data and for real-world results both locally fitting approaches produced ex-post symbolic
distributions closer to uniform.

From these results we can conclude that taking into account the non-stationary nature of a
financial time-series and its periodic departures from Gaussian improves the discretization
process from real-values to a finite alphabet. The use of an adaptive window based
on a goodness-of-fit test for a normal distribution also improved the ex-post symbolic
distributions. Additionally, the locally fit Gaussians will facilitate closer matches of
similar patterns emerging in a non-stationary time-series that occur in different regions
of the normal PDF. Finally, the alSAX algorithm preserves the canonical SAX distance
function and therefore distances defined on the alSAX symbolic mappings will lower
bound Euclidean distance.
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Table 7.16: Experiment results for SAX and alSAX for the subsequence matching task.
Subsequence Length

4 6 8 10
SimData1 0.139 0.447 0.069 0.441 0.036 0.435 0.020 0.435
SimData2 0.140 0.432 0.063 0.434 0.035 0.428 0.016 0.414
SP500 0.159 0.459 0.075 0.452 0.038 0.453 0.020 0.443
IPC 0.156 0.518 0.084 0.530 0.044 0.510 0.024 0.526
XOM 0.145 0.489 0.069 0.484 0.033 0.486 0.018 0.464
MMM 0.138 0.462 0.063 0.454 0.028 0.471 0.013 0.464

7.4.5 Subsequence Analysis

In the last section we established that alSAX is superior to the canonical form of SAX
for non-stationary data with respect to producing a symbolic mapping closest to uniform.
Next we investigate how accurate alSAX is for the popular subsequence analysis task. The
subsequence matching task can be formalized as follows: we have a target subsequence
Q (called the query sequence) and a time series data set T which is mapped to a
discrete representation P, where generally |Q| << |P| << |T |. The task is then to find
all subsequences of P that are similar to Q, where all possible subsequences of P are
queried. The reported result from such a task is the average number of matching results
from sequence P, where fewer matches are generally preferred. The settings for SAX and
alSAX were the same as experiment 9 from table 7.10. These parameter settings were
chosen as they produced symbolic mappings statistically indistinguishable from uniform
for alSAX.

In table 7.16 we report the results from performing a subsequence matching task on
the 6 data sets in table 7.11. For each data set and subsequence length the results are
averaged over 500 randomly chosen subsequences and only exact matches are considered
sufficiently similar. The degree of similarity (or distance) between two subsequences is
determined using the SAX distance measure (equation 2.20).

From the results reported in table 7.16 we observe that canonical SAX matched random
subsequences at very high rate, where on average it found similar matches in 46.4% of
the subsequences considered. This highly undesirable result is due to the non-stationarity
of the data. In figure 7.10 we display SAX mappings for three of the financial time series
under study. From these plots it is quite clear that the non-stationary nature of the data
causes canonical SAX to overly smooth the data and much of the information is lost.
These mappings result in extended durations of the same letter being produced one after
another, which leads to the high subsequence match rates. Contrasting this result with
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Figure 7.10: Plots of the SAX mapping for the S&P 500, IPC and XOM time series (top)
and their original series (bottom).
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Figure 7.11: Plots the first 1500 points of S&P 500 index (approx. 6 years) and the alSAX
and SAX representations of the same time period.

alSAX, we observe that on average only 6.8% of the subsequences considered matched
the query sequence. To aid the analysis, and help explain why canonical SAX performed
so poorly, figure 7.11 plots the first 1500 points of S&P 500 index (approx. 6 years)
and the alSAX and SAX representations of the same time period. The SAX mapping
labels the entire period as one symbol and all the dynamic behaviour during that time
period is ironed out. This leads to a significant loss of information and without any added
benefits for compression (alSAX only adds one extra place holder in the discretization
per window). From the top three panels in figure 7.11 we observe that alSAX was able to
capture significantly more information during these time periods and that despite the non-
stationary nature of the time series was still able to extract interesting primitive shapes.
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7.5 Chapter Summary

In this chapter we highlighted an invalid assumption of the SAX algorithm and demon-
strated why the assumption is invalid. We also showed under what conditions this invalid
assumption will negatively impact the symbolic distribution and a fix to counteract these
problems. We have also proposed a novel algorithm which extends SAX to handle
financial data. The proposed algorithm, alSAX, was demonstrated to produce superior ex-
post symbolic distributions over other alternatives by making allowances for the generally
non-stationary nature of financial time series and its periodic departures from a Gaussian
distribution. We also tested alSAX in the popular time series task of subsequence analysis,
where the results also demonstrated alSAX to be superior in realtion to canonical SAX.

We are also delighted to report that the invalid core assumption of SAX has been reviewed
and confirmed by Dr. Emmon Keogh (the original co-author of SAX) and his comments
regarding the work are:

“I very much like your paper. While there are several hundred papers on SAX, your
observation is novel. Moreover you explanations are clear, and your experiments
unimpeachable.”
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Chapter 8

Conclusions and Future Work

This thesis has presented original research that concerns the overlap of the fields
of computational intelligence and econometrics. The objective of the thesis can be
generalized as an exercise in improving how computational intelligence is used for
modelling and forecasting financial time series. From a holistic perspective, the thesis
has considered the important problems encountered when modelling a complex system,
i.e., how to characterize the system at a meta level, what are the specific and unique
implications it holds which differentiate it from other systems of similar complexity, and
how this knowledge can be utilized as a means for novel algorithm development and
improvement.

This endeavour commenced with an in depth analysis of the complex system of interest,
with a specific focus on characterizing the behaviour of the system in way that was
meaningful for computational intelligence. To achieve this objective a thorough review
of the related work was conducted, followed by the reproduction of previous results and
finally the proposal, implementation and analysis of novel tests for dynamic behaviour in
the financial markets.

Once a reasonable characterization was determined, the thesis explored how this char-
acterization impacted machine learning. Experiments were designed, implemented
and performed that concerned a spectrum of supervised learning and nature inspired
population based optimization algorithms. The results demonstrated that the specific
implications, drawn from the assumed characterization of the complex system, did in
fact have a non-trivial impact on the robustness of models derived from computational
intelligence techniques. Thus the result suggests that taking into account the behaviour of
these dynamic characteristics will improve model robustness.

181
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Equipped with an improved knowledge of the complex system and how its unique features
affect computational intelligence, the thesis focused on the design, implementation and
analysis of novel algorithms. The implication of cyclical effectiveness was utilized to
create an online adaptive algorithm for financial forecasting. The unique framework and
processes of the algorithm were directly influenced by the cyclical effectiveness results
which demonstrated that models will be effective after the time period they were initially
created for. Additionally, a financial time series discretization algorithm was proposed
that was based on the non-stationarity of financial time series and the periodic departures
it experiences from a Gaussian distribution. The proposed algorithm was able to achieve
better results then it’s predecessors in terms of mapping a real-valued time series to the
target discrete uniform distribution and in subsequence matching, a common task for
discretized time series.

8.1 Summary of Thesis

This section will provide a summary of the each of the contribution chapters in the thesis.

8.1.1 Chapter 4 - Validity

In this chapter we examined if the adaptive market hypothesis was a valid representation
of the financial markets. This examination was facilitated through tests of measureable
characteristics of financial time series. We examined if the behaviour of the financial
markets was indicative of one market theory or another. In the first case the results
from variable efficiency were confirmed as a means to validate an algorithm that was
to be utilized in chapter 5. The results confirmed that the code was implemented
correctly and that in the financial markets considered variable efficiency was present,
in the informationally efficient sense of the phrase. Variable efficiency was represented
by statistically significant non-linear correlation in the time series and its discovery
demonstrated that periodic opportunities for improving trading models existed.

In the next section we considered the AMH implication of a time-varying risk to
reward relationship in the financial markets. Specifically we analyzed the risk-to-reward
relationship between individual financial assets and the market index. This analysis
was realized through the lens of a novel dynamic model that was a generalization
of a traditional linear investment model, the CAPM. The results demonstrated that
the relationship between an asset and the market index (referred to as its β value) is
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heterogeneous amongst the variety of asset types considered in the study. In some cases
the relationship was time-varying and therefore, was evidence in favour of the AMH, but
for others the relationship was static throughout the analysis period as would be the case
if the markets were efficient. However, the majority of the assets considered did exhibit
variation in their β values and because the AMH is not invalidated by a static relationship,
the evidence strongly supports the AMH alternative to market efficiency.

Finally, the generally held view that financial time-series is non-stationary was challenged.
The aim of section 4.3 was to determine if this characteristic was also time-varying. An
allowance for this alternative was provided by the rejection of the random walk hypothesis
by Lo [95] and the results in section 3.1.1 which showed the dynamic behaviour of the
variance ratio test for random walks. The experiment design considered an approach
based on standard unit-root tests that were applied iteratively using a sliding window. The
results from the approach revealed that the majority of financial markets are generally
non-stationary but experience periodic departures to trend stationarity. This discovery
demonstrates that the assumption of non-stationarity is not always valid and, dependent
on the time interval under consideration, a time series can be either non-stationary or
trend stationary. This has implications for modelling and forecasting financial time series
for any model that a priori assumes a stationary process (i.e. a stationary model). To
model non-stationary data with a stationary model the data needs to be pre-processed and
the correct pre-processing methodology is dependent on the whether the series is non-
stationary or trend stationary. This discovery thus demonstrates that by sampling the local
time series for the existence of a unit-root will improve stationary model robustness.

8.1.2 Chapter 5 - Implications

In the implications chapter we explored what effects, if any, the validity of the AMH had
on trading and investment models derived from computational intelligence techniques.
This began with variable efficiency and its effect on the classification accuracy of
supervised learning algorithms. The assumption being, that the detection of non-linear
dependence in a time series, implies that higher accuracy should be expected. The
experiments concerned six supervised learning algorithms from four machine learning
paradigms and a simulated GARCH(2,2) process created to mimic real-world financial
data. The results demonstrated that during time periods when non-linear dependence is
detected in the time series, a statistically significant increase in classification accuracy can
be expected. Additionally, the results suggest that trading models derived from machine
learning algorithms should also be more profitable during times of non-linear dependence
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since profitability and accuracy are strongly positively correlated [81].

Secondly, we considered how variable stationarity affected modelling and forecasting
financial time series with ANNs. The results from experiments with simulated and real-
world time series demonstrated that superior forecasts could be achieved by taking into
account the dynamic behaviour of stationarity. Additionally the experiments also refuted
previous work concerned with modelling non-stationary data with ANNs.

Finally, the implication of the waxing and waning profitability of investment strategies
was examined. First, we proposed a metric called cyclical effectiveness for evaluating this
implication that was robust to the dynamic nature of the financial markets. This metric
was then used to test the cyclical effectiveness of a hybrid trading model that was a blend
of PSO and a popular technical indicator. The hybrid trading model was also proposed
in this chapter and methods for training and implementation were provided. The results
demonstrated that cyclical effectiveness was present in these models which implies that
the models would be effective again after the time period they were initially developed
for. Thus, this result demonstrated that the AMH implication of cyclical effectiveness was
valid for computational intelligence models.

8.1.3 Chapter 6 - Innovations in Technical Analysis

Chapter 6 proposed, implemented and tested a novel machine learning algorithm that was
a blend of population based optimization and reinforcement learning. The motivation
for the design of the algorithm, called LATIS, was based on the cyclical effectiveness
results which highlighted a meta learning opportunity for combining newly created and
pre-existing models. The resulting framework for LATIS allowed for a blend of micro
and macro modelling perspectives that combined a meta learner with a population of
optimized technical indicators.

The benefits of the proposed algorithm were demonstrated on simulated and real-world
data sets, where a thorough Monte Carlo simulation showed that the LATIS algorithm was
able to combine the heterogeneous set of signals produced by a population of indicators
into a coherent trading strategy that outperformed the vast majority of the indicators in
the LATIS population. These results not only show the LATIS could determine when to
trust the signals from any given indicator but that the implication of cyclical effectiveness
could be used to derive a machine learning algorithm for modelling financial time series.
The implementation used two technical indicators from the financial literature known as
a Bollinger band and a moving average indicator, where the parameters of the indicators
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were fit to a subsample of data using the recently introduced dHPSO algorithm that was
extended to handle a multi-objective optimization.

8.1.4 Chapter 7 - Innovations in Discretization

In the general area of time series analysis there is a strong interest in discrete represen-
tations of real-valued time series. As discussed in chapter 7 there are several benefits to
discretization, such as, dimensionality reduction, the removal of noise and availability of
machine learning algorithms that require discrete data. While our original motivation for
using discretization was from an econometric perspective, the research has lead to a more
important insight which we believe deserves to be shared with the research community.
This refers to the opening section of chapter 7 where an invalid core assumption of the
SAX algorithm was revealed. We demonstrated the negative effects of the PAA step of
the SAX algorithm on the ex-post symbolic distribution on a variety of real-world data
sets. The relationship between the effect and the autocorrelation function of a time series
was also revealed using standard statistical tests. Finally, a case study was described that
demonstrated how the effect of the PAA step could be taken into account for data mining.
The results from the case study showed a statistically significant increase in classification
accuracy for the nearest neighbour algorithm as well as a speed up in the execution time.

The second half of the chapter implemented and tested a novel algorithm for discretizing
financial time series. The algorithm, called alSAX, is an extension of the SAX
discretization algorithm, which takes into account the problematic characteristics of
financial time series, i.e. being generally non-stationary with periodic departures from
Gaussian. The alSAX algorithm was tested on simulated and real-world data sets and the
ex-post symbolic distributions were gauged in relation to a gold standard. The results
showed that the alSAX algorithm produced superior ex-post symbolic distributions is
relation to the canonical version of SAX and a simplified version of alSAX.

8.2 Aims Revisited

Having summarized the contribution chapters of the thesis, we now revisit the aims or
research objectives. In general the thesis was positioned as an exercise in evaluating and
improving computational intelligence for financial modelling. More specifically, the aims
or goals of the thesis can be encapsulated by the three research questions outlined in the
introduction:
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• What is a reasonable characterization of the complex system we are modelling?

This question was approached in the related work in chapter 3 and the first contribution
chapter, chapter 4. The general conclusion from the related work is that a consensus is
not held amongst financial practitioners or academics as to what governs the behaviour
of the financial markets. There is however an increasing body of evidence that suggests
the efficient market hypothesis is not valid. Specifically, this concerns the work presented
on behavioural finance and the adaptive market hypothesis. The lack of informationally
efficiency is also observed during the market bubbles and subsequent crashes that have
occurred in developed and emerging markets around the world. Thus, the characterization
initially assumed by the thesis was that the financial markets are dynamic and evolving
and therefore a hypothesis which made allowances for this behaviour was adopted.

This position was further explored in the chapter 4. Evidence of market inefficiencies were
confirmed from the econometrics work, which demonstrated that a times, markets were
informationally efficient as implied by the EMH but at others non-linear dependencies
existed and thus informational efficiency was lost. The argument for using the AMH as the
basis for the market characterization was also strengthened by the results demonstrating
a time varying risk-to-reward relationship in metals and the results from examining non-
stationarity, which showed that this characteristic was also dynamic.

In light of the dynamic nature of the many market characteristics considered, the AMH
presents a more plausible representation of market behaviour. The AMH also provided
measureable characteristics that can be used to update investment and trading models as
the market environment changes. Thus in summary, from a computational intelligence
perspective, the AMH offers a reasonable characterization of the systems behaviour upon
which further studies can be based.

• What implications does this hold for computational intelligence?

The AMH provided the basis for measurable characteristics which could be analyzed
within a sound research framework. In chapter 5, three implications were isolated
and analyzed for their affect, if any, on learning from time series data with supervised
machine learning and nature inspired optimization algorithms. The analysis concerning
variable efficiency showed that in periods where non-linear dependence was detected the
algorithms experienced an increase in classification accuracy. Additionally, the analysis of
variable stationarity, demonstrated that artificial neural networks benefit from appropriate
pre-processing based on the existence or lack thereof a unit-root. Finally, trading models
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developed from particle swarm optimization exhibited cyclical effectiveness, as implied
by the AMH, and therefore models would be effective again after the time period they
were trained for.

From the results we can conclude that the implications of the AMH held non-trivial
consequences for computational intelligence algorithms and that by making allowances
for the dynamic nature of the financial markets, the forecasting performance of the
computational intelligence derived trading models can be improved. Thus in summary, the
implications of the AMH do effect algorithms from computational intelligence and local
characteristics of a financial time series should be considered to improve performance.

• What improvements can be made to compensate for these implications?

The thesis presented improvements and innovations for computational intelligence al-
gorithms in chapters 6 and 7. In chapter 6 an algorithm was developed for online and
adaptive learning based upon the implication of cyclical effectiveness. The proposed
algorithm described a meta learning approach that allowed the traditional interpretation
of technical indicators to be preserved. The algorithm detailed a framework and learning
procedure for training an initial population of individuals and how to utilize those models
in an online learning context given that they exhibit cyclical effectiveness.

In chapter 7, a popular discretization algorithm was extended to handle the non-stationary
nature and periodic departures from a Gaussian distribution exhibited by financial time
series. The proposed algorithm was able to improve the performance in relation to a gold
standard and demonstrated how the AMH implication of dynamic characteristics can be
utilized in algorithm development. Indirectly, two other improvements we made in the
implications chapter, where the results from variable stationarity and variable efficiency
demonstrated that sampling the local characteristic of the time series could improve the
forecasts of several supervised learning algorithms.

The work presented in the thesis was not intended to be exhaustive but to offer
improvements to existing algorithms and to propose new algorithms derived from the
implications of the AMH. Thus, in summary, there are lots of improvements which can
be made and how the information regarding the AMH and modelling with computational
intelligence is used is up to the machine learning expert but in the thesis we have presented
a few which seemed important.
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8.3 Summary of Contributions

Here we provide a brief summary and recap of the contributions in the thesis and under
which category they fall. The contributions are listed in increasing order of importance.

8.3.1 Financial Analysis

The following is a list of main contributions when the thesis is considered from a purely
financial point-of-view.

1. The thesis reproduced results on variable efficiency from the financial literature.

2. The thesis revealed the variable nature of stationarity in financial time series as
opposed to the commonly held view that it is constant.

3. The thesis demonstrated that variable efficiency is a non-trivial consideration for
trading models.

4. The thesis revealed the time-varying nature of alpha and beta from the Capital Asset
Pricing Model (CAPM) as implied by the adaptive market hypothesis .

8.3.2 Computational Intelligence

The main focus of the thesis was in the overlap of econometrics and computational
intelligence but some of the contributions were more general in nature and are classified
as additions to computational intelligence in general.

1. Extending dynamic heterogeneous particle swarm optimization (dHPSO) to multi-
objective optimization (MOO).

2. Refuting published results on training ANNs on non-stationary data.

3. Discovering an invalid assumption of the Symbolic Aggregate approXimation
(SAX) algorithm and providing potential corrections.
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8.3.3 Computational Intelligence for Financial Analysis

Finally the contributions in the overlap between econometrics and computational intelli-
gence are the following.

1. Demonstrating that artificial immune systems are a viable modelling technique for
financial time series.

2. Development of a new technical indicator based on Bollinger Bands and particle
swarm optimization.

3. Demonstrating the effects of variable stationarity on price level estimation of the
artificial neural network.

4. Demonstrating the effect of variable efficiency of supervised learning algorithms .

5. Demonstrating the existence of cyclical effectiveness in computational intelligence
derived financial models.

6. Developing an online learning algorithm for optimizing financial technical analysis.

7. Developing a symbolic discretization algorithm for financial time series.

With respect to item 6 which refers to the LATIS algorithm developed in chapter 6
the proposed framework is general enough to be applicable to other models for the
population, such as classifiers, and other environments besides financial. From a general
overview perspective, LATIS provides a framework for online learning in a dynamic
environment where local models are developed for different behaviour. When the inputs
to the population need to be qualified by other more meta considerations, LATIS provides
a way to qualify when a model is reliable and for how long. From this perspective,
the framework can be considered as a more general contribution to online and adaptive
learning but the specific implementation and testing is more appropriately labelled as a
contribution to computational intelligence for financial analysis.

8.4 Future Work and Concluding Remarks

The thesis has introduced a novel approach to financial modelling using computational
intelligence techniques, where the application area has been thoroughly analyzed and used
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as the basis for algorithm innovations and developments. From the results and conclusions
discussed in the contributions chapters, we now discuss the following areas that can be
pursued for further development.

Having revealed and confirmed the dynamic nature of market characteristics and shown
the effect on supervised learning algorithms, this information can now be used to improve
forecasting systems. These characteristics have a non-trivial impact and can potentially
be used to describe the current market state. This information could be used in ensemble
methods or in meta learning, where at any one time there may be competing models to
describe future behaviour of the system. Specifically, the variable efficiency results could
be extended to real-world data and utilized in a similar manor as the filter approaches
discussed in section 3.2.2.

The LATIS algorithm proposed in chapter 6 focused on only two technical indicators and
did not include the covering step of the algorithm. This approach was taken to focus
the results and experiments on cyclical effectiveness. The work can now be extended
to include this step of the algorithm as a means to acquire new information about the
environment. This work could also be extended through the development of more complex
training strategies for creating the initial population. This research direction would focus
on maximizing the out of sample effectiveness of the I ∈ [P]. The algorithm could also be
extended to include additional technical indicators and meta information concerning the
market environment, such as the characteristics discussed in chapter 4.

Finally, the revealed invalid assumption of the SAX algorithm could be considered in
a wide variety of application domains and data mining tasks and any previous work
concerning SAX could be revisited to determine if the analysis can be improved. How
this new information is utilized is a decision for the data mining expert but at least
now this information is available and has been proven to have a significant effect. The
benefits of using the SAX filter have not been fully studied and using this new SAX
approach in a large data base could assist in determining the exact benefits and under
which circumstances the filter will lead to more desirable results. The alSAX algorithm
which extends SAX to financial data could be further analyzed in conjunction with other
data mining/machine learning algorithms and potentially other data sets that have similar
properties (i.e., non-stationary and periodic departures from Gaussian).



Appendix A

Variance Ratios

In the original paper that introduced the Variance Ratios (VR) [95], the test statistics were
created for assumptions of homoscedastic (RW1) and heteroscedastic (RW3) increments.
Given that most economists would agree that the variance in financial markets is
heteroscedastic a test statistic that signifies a departure from a random walk to due
heteroscedasticity of the variance would not be of much interest. As the paper divulged
the homoscedastic test statistic was more likely to reject the null of a random walk. As a
result most studies that use the VRs for analysing weak-form efficiency focus on the RW3
test statistic. However in the thesis, results from both tests are reported in section 3.1.1.

The VRs exploit a property of random walk that the variance grows linearly in the
observation interval, meaning the variance between Xt - Xt+1 should be half the variance
between Xt - Xt+2. Lets consider a time series {Yt} for t = {1 : nq} observations converted to
continuously compounded log-normalized returns {Xt}. Under the null of the random walk
the following relationship holds asymptotically as the number of observations approaches
infinity:

M̄r(q) ≡
σ̄c(q)
σ̄a

− 1 (A.1)

where q is the number of lags to consider and σ̄c(q) and σ̄a are unbiased estimators defined
as:
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σ̄a =
1

nq − 1

nq∑
k=1

(Xk − Xk−1 − µ̂)2 (A.2)

σ̄c(q) =
1
m

nq∑
k=q

(Xk − Xk − q − qµ̂)2 (A.3)

m = q(nq − q + 1)
(
1 −

q
nq

)
(A.4)

where µ̂ is the estimated mean of the sample. This ratio is not robust to heteroscedasticity
but highlights the basis of the test statistic, where under the null hypothesis, equation A.1
evaluates to 0. This represnets a test of the RW1 hypothesis that assumes the increments
are iid. The asymptotically standard normal test statistic is:

z(q) ≡
√

nqM̄r(q)√
2(2q − 1)(q − 1)/3q)

(A.5)

To allow for more general forms of heteroscedasticity, Lo et al. [95] define the specific
form of the test statistic as follows:

M̄r(q) �
q−1∑
j=1

2(q − j)
q

ρ̂( j) (A.6)

where ρ̂( j) is the autocorrelation coefficient estimator at lag j. Under the assumption
of heteroscedasticity the estimators of asymptotic variance of ρ̂( j) and M̄r(q) are
respectively:

δ̂( j) =

∑n
k= j+1 q(Xk − Xk−1 − µ̂)2

[
∑nq

k=1(Xk − Xk−1 − µ̂)2]2
(A.7)

and

θ̂(q) ≡
q−1∑
j=1

[
2(q − j)

q

]2

δ̂( j) (A.8)

Using the equations above, the following test statistic can be computed to test for
statistical significance:

z∗(q) ≡
√

nqM̄r(q)√
θ̂

(A.9)

where if z∗(q) is significant at ± 1.96 for 95% confidence interval.



Appendix B

AIS for Financial Forecasting

In chapter 5 the thesis explores the effect of non-linear dependence on the forecast
accuracy of supervised learning algorithms. To maximize the generalization of the results
the experiments include algorithms from each of the major paradigms within supervised
learning. In that respect, all of the algorithms concerned, with the exception of the
artificial immune system (AIS), had previously been studied and found to be effective
when modeling financial time-series data. In the following paper the effectiveness of the
AIS is determined, where its performance is gauged against an artificial neural network
(ANN) and the k-Nearest Neighbors (kNN) algorithm. The results from the study revealed
that the AIS was superior to the kNN algorithm and statistically equivalent to the ANN in
terms of classification accuracy.
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Abstract— This study analyzes the effectiveness of an 

Artificial Immune System (AIS) to model and predict the 

movements of the stock market. To aid in this research 

the AIS models are compared with a k-Nearest 

Neighbors (kNN) algorithm, an artificial neural network 

(ANN) and a benchmark market portfolio to compare 

simulated trading results. The analysis shows that the 

AIS produced overall accuracy results of 67% over a 20 

year test period and that the increased complexity of the 

model was warranted by the statistically significant 

superior results when compared to the simpler instance-

based approach of kNN. The accuracy results were 

comparable to those obtained from training the ANN 

and the trading results outperformed the market 

benchmark, providing evidence that the stock market 

had a degree of predictability during the time period of 

1989-2008. In general the practice of using the natural 

immune system to inspire a learning algorithm has been 

established as a viable alternative to modeling the stock 

market when implementing a supervised learning 

approach.        

I. INTRODUCTION 

Evolutionary inspired algorithms are a popular learning 

technique applied to several financial modeling problems 

[1], [2], [3]. Their ability to work with highly non-linear and 

noisy data makes them a natural choice in solving the 

difficult prediction and optimization problems faced in the 

financial domain. Although this area has been popular the 

majority of the research in forecasting financial assets has 

been with genetic algorithms [4], genetic programming [5] 

and hybrids such as evolutionary neural networks. The group 

of algorithms inspired from the vertebrate immune system 

referred to as Artificial Immune Systems (AIS) has received 

very little attention in this area. These algorithms were 

initially used in unsupervised learning and as a result were 

not as appropriate for a lot of financial applications. This 

constraint has been lifted as several AIS algorithms have 

been developed for classification tasks [6], [7]. Much of the 

on-going research in financial forecasting could be 

generalized into the problems of patterns recognition and 

anomaly detection, both of which have been successfully 

attempted by AIS in other areas [8], [9]. Given the success 
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of the somewhat related research endeavors with AIS, it 

seems appropriate to further investigate their abilities with 

market and other financial asset prediction. The AIS 

algorithms are instance-based learners which are not as 

popular in the research literature compared to other 

algorithms from supervised learning (SL), such as artificial 

neural networks (ANN) and support vector machines 

(SVM). Where an ANN will attempt to learn a global 

operator to generate predictions, the instance-based 

approaches look to identify situations which are similar to 

ones in the past. There is an increasing body of evidence 

which suggests that the returns in the stock market are not 

completely random. This body of work comes partly from 

the area of behavioral finance which attempts to prove that 

market efficiency, as described in the efficient market 

hypothesis [10], is not the underlying factor which governs 

market behavior. Research in behavioral finance is aimed 

toward explaining market behavior by combining the fields 

of psychology and economic theory. Behavioral finance has 

provided evidence to explain certain market phenomena 

such as the disposition effect [11] and the inefficient and 

slow integration of news into current market prices [12]. A 

definition of market predictability could be that if markets 

exhibit behavior that can be identified as similar to 

previously observed and such behavior results in a similar 

outcome than it is predictable. Under such a definition it 

seems logical that an algorithm which determines similarity 

between events, such as instance-based learners, would be 

appropriate for modeling such behavior, thus taking 

advantage of the specificity bias in instance-based learners.  

This paper will apply a popular AIS algorithm for 

classification to the task of predicting monthly stock market 

movements. Specifically the algorithm will be training in a 

supervised learning context with tuples of information 

containing macro-economic data and its effect on market 

movements. The algorithm will be attempting to learn the 

highly non-linear relationship that exists between the 

performance of the market and measureable variables of the 

state of the economy. The algorithm used in this study is 

AIRS [6] which uses an instance-based representation and is 

inspired from clonal selection theory of acquired immunity. 

The algorithm will be compared three fold, first to another 

lazy-learning learning technique namely, k-Nearest 

Neighbor, secondly to an artificial neural network, and 

finally to a traditional investment model. The final 

benchmark is to add context to the results in terms of market 

performance which will assist in judging the real-world 

applicability of such a technique.  

Modeling the Behavior of the Stock Market with an Artificial 

Immune System 

Matthew Butler, Dimitar Kazakov 

978-1-4244-8126-2/10/$26.00 ©2010 IEEE
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II. OVERVIEW OF AIS 

This section will outline the major principles behind the 

machine learning approach based on the immune system. 

The Artificial Immune System is a biologically inspired 

algorithm which draws its inspiration from the vertebrate 

natural immune system (NIS). The NIS can be generalized 

as a system which continually protects the body from 

harmful invaders, called antigens, and keeps the body in an 

equilibrium state. The AIS is not an exact model of how the 

NIS interacts with a living entity; rather, it draws on 

principles from the immune systems which are a natural fit 

for machine learning. The notion of “self” and “not self” is 

one of the more popular principles employed in AIS 

algorithms; it means that the immune system is able to 

recognize objects which are not harmful, such as red bloods 

cells, categorized as “self”, commonly referred to as 

antibodies and antigens which are a threat to the wellbeing 

of the system, such as viruses. This principle is the main 

underlying theme to AIS for supervised learning, although 

the algorithms go into much more detail and employ other 

principles from the NIS to accomplish this goal; in all cases, 

the notion that the immune system can effectively 

distinguish between two distinct objects is the very basis of 

using it for an analogy in machine learning. In the NIS, if an 

antibody is activated by an antigen, then the two bind and 

the antigen is destroyed, eliminating the threat. How the 

immune system actually accomplishes this task forms the 

principles which influence the inner workings of AIS 

algorithms.     

Negative selection (NS) was first used in AIS for 

recognizing “self” and “not self”, with this type of learning 

the algorithm only uses examples of one-type of object such 

as in positive-only learning. NS comes from the Thymus 

which is an organ responsible for generating the T-Cells 

which circulate the body looking for invading antigens. The 

thymus continually creates T-cells which are first held in the 

thymus and tested to see if they are activated by any of the 

“self”, which would mean that they recognize and react to 

“self”, if they do than they are destroyed, otherwise  released 

into the body as they will only be activated by “non-self” 

pathogens. A T-cell is activated if its degree of similarity is 

sufficiently close to an antigen and this degree of similarity 

is determined by an affinity measure. This type of learning 

can be very ineffective for supervised learning as the “non-

self” space can be quite large and require a massive number 

of T-cells to accurately map it. Also by ignoring counter 

examples and only training on one type of data a large 

amount of useful information is ignored. To improve upon 

the principle of NS, the algorithm implemented in this study, 

which will be more thoroughly introduced in the next 

section, is referred to as clonal selection-based AIS where 

training is conducted with both negative and positive 

exemplars. The algorithm learns and builds a memory of 

negative and positive exemplars and later uses this 

experience to classify new antigens which enter the system 

or, representing, new, unlabelled examples to which the 

algorithm is exposed.  

 

III. RELATED WORK 

In [13], where the k-Nearest Neighbor (kNN) algorithm has 

been used in financial time-series prediction, the authors 

state the motivation for using such a method is derived from 

the non-stationary nature of financial time-series. The higher 

level of complexity in that data creates problems for 

artificial neural networks to build a global operator to 

capture reoccurring patterns. The kNN algorithm was also 

explored in [14] for determining index predictability of the 

Warsaw Stock Exchange. The kNN algorithm was the top-

performer, in terms or overall accuracy of predictions, in 

comparison to an ANN, GA-evolved logic programmers and 

Naive Bayes. Once again the author concluded that the 

superior performance could be related to the non-linear 

nature of financial data and that generated global methods to 

explain market prediction may contain too many problems. 

Related work with Artificial Immune Systems includes 

research [15] where an AIS was attempting to predict the 

performance of a bank over the coming year in the 

Taiwanese Banking Industry based on financial ratios. The 

algorithm was compared to other methods from similar 

research which included neural networks trained with a 

genetic algorithm or back-propagation, case-based 

reasoning, logistic regression analysis and quadratic 

discriminant analysis. The results were reported for overall 

accuracy and the AIS system, which was based on a resource 

limited AIS [16], generated the best results with a hit ratio of 

97.30%. Along the same lines the authors in [17] used a 

hybrid-AIS algorithm to predict bankruptcies among Indian 

companies based on commonly reported financial ratios. The 

method employed several immune system analogies such as 

negative/positive selection and clonal selection. The results 

are compared with two statistical methods, the Altman Z-

score and Emergent Market-score, and over the three test 

periods the immune inspired algorithms were the top 

performers. The authors found that while using r-continuous 

matching to determine similarity, the positive selection 

algorithm was the most effective. The work in [18] was 

directed at detecting abnormal fluctuations in stock prices in 

order to improve risk management of the stock market. The 

method was based on negative selection with r-continuous 

matching for determining affinity and a novel risk evaluation 

function was proposed to assist in determining if an 

unknown antigen was an anomaly or not. 

IV. ALGORITHM OVERVIEWS 

This section will introduce and provide an overview of the 

algorithms implemented in this study. 

A. Artificial Immune Systems 

The Artificial Immune System developed for this work was 

based on AIRS [6], where a set of memory cells are evolved 

during training by stimulating and mutating a population of 

Artificial Recognition Balls (ARBs). Although the 

implementation is based on AIRS it might be different from 

existing AIRS implementations in certain details. A high-
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level algorithm that is used to evolve a set of memory cells 

is as follows
1
: 

 

1. Data Normalization and Initialization 

a. All data is normalized between 0 and 1. 

b. L antigens are chosen from the data set to seed 

Artificial Recognition Ball (ARB) and Memory 

Cell (MC) pools, where L>0. 

2. For each training vector in the dataset, do: 

a. MC identification and ARB generation. 

b. Competition for resources and development of 

a candidate memory cell. 

c. Memory cell introduction. 

3. Step 2 is repeated for each of the training exemplars in 

the training data. 

4. Classification of test data: 

a. Apply kNN algorithm for K>0 to determine 

local neighbourhood of mcs. 

b. Classify training vector by majority vote. 

 

1) Parameter and data structure description 

This section will introduce some terminology and discuss 

the parameters which had the greatest effect on the 

algorithms performance in terms of accuracy for this 

implementation: 

 Clonal rate: a variable in the equation which 

determines the number of mutated clones a given 

ARB or Memory Cell is allowed to produce.  

 Mutation rate: The probability, set between 0 and 1, 

that any one input attribute within an ARB will be 

mutated, excluding the class attribute of that ARB. 

 Stimulation Threshold: A parameter used to 

determine the stopping criterion for training on a 

particular antigen, set between 0 and 1.   

 Stimulation Threshold Scalar: A value between 0 

and 1 that when combined with the average affinity 

value (AAV) among the training antigens, given in 

equation [1], determines the cut-off point for MC 

replacement.  

 

 [1] 

 

where n is the number of training exemplars, 

 are the ith and jth training exemplars and 

the affinity (x, y) is the Euclidian distance between 

feature vectors, equation [4]. 

 Hyper mutation rate: Another variable in the 

equation (clonal rate x hyper mutation rate x 

stimulation value) which determines the number of 

mutated clones a given ARB or MC is allowed to 

produce. 

 Total Resources: The total number of resources 

allowed to be shared amongst the ARB population. 

This parameter provides the selection pressure to 

 
1 For a more detailed account of the algorithm please refer to [6]. 

ensure that the ARB pool only contains the most 

stimulated cells. 

 K: The parameter which is used in classification to 

determine the number of neighbours in the local 

neighbourhood to consider for the majority vote. 

 Stimulation Value: Determined using Euclidian 

Distance and is the value returned by the 

stimulation function, given by equation [2]. 

 

 [2] 

 

B. Artificial Neural Network 

The artificial neural network (ANN) implemented is this 

study had a topology of two hidden layers with 6 nodes in 

the first hidden layer and 4 nodes in the second. This 

topology was arrived at after experimentation and taking 

into consideration overall run time and accuracy of the 

models. A sigmoid activation function was used at each 

node, given by equation [3]. 

 

 [3] 

 

where a is the sum of each input into the node multiplied by 

its respective weight. 

A. K-Nearest Neighbor 

The k-Nearest Neighbours (kNN) algorithm is a simple lazy-

learning instance based approach where a local 

neighborhood of k-points are identified based on a similarity 

function for each tuple in the testing data. Once a local 

neighborhood is established the testing tuple is classified 

based on a majority vote. The similarity function is based on 

the Euclidian distance between the testing tuple in question 

and each training tuple in the dataset training window, the 

similarity equation is given in [4]. The kNN algorithm 

provides a baseline for evaluating the more complex 

learning methods employed in AIS and ANN. In particular 

kNN will help assist in assessing the effectiveness of 

instance-based learning as an alternative to generating a 

global operator for financial forecasting. 

 

 [4] 

 

where d(x, y) is the Euclidian distance between vectors x 

and y, and xi and yi are the ith elements in each feature 

vector. 

V. DATA DESCRIPTION 

The algorithms are training to learn the behaviour of a stock 

market as a whole and as a result the input dataset reflects 

information pertaining to macro-economic indicators and 

past performances of other market indexes. These indicators 

include, inter alia, measures of inflation, corporate bond 

ratings and treasury-bill rates. The inputs are not the actual 
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values of each indicator but the rate of change from one 

month to the next. The market index which the algorithms 

are attempting to model is the Dow Jones Industrial Average 

(DJIA) which is a major market index which is comprised of 

the 30 largest blue-chip companies in the USA. The 

classification is binary {0, 1} where a 0 denotes a market 

contraction and 1 a market expansion. This technique has a 

shortcoming in that the algorithms are not concerned with 

magnitude and only direction which can lead to a more 

accurate model producing inferior investment returns. 

However classifying based on directional accuracy during 

training has been shown to produce models which are highly 

correlated with out-of-sample profitability [19], [20], which 

is the main objective of these investment models.    

A. Data pre-processing 

The data for the AIS and kNN algorithms was normalized 

between 0 and 1, this step is essential for the AIS 

implementation as the stimulation values and other 

parameters of the system are setup under the assumption that 

all data is in this range. The ANN was initially trained with 

this data format, however the results were very weak and the 

models were essentially a buy-and-hold approach where 

each month was predicted to increase, this was the result of a 

gradient close to 0, caused by the large number of inputs 

(28) and weights initialized between {0,1}. To combat this 

short-coming the data was normalized between {-1, 1} to 

increase the continuous range. The effect does not bias the 

data as it is still an unambiguous linear transformation.  

VI. TRADING STRATEGIES 

In addition to comparing the algorithms based on statistical 

measures, the outputs of the algorithms will be used to 

generate semi-active short-term trading models, where the 

models will be making investments locked in for one month 

at a time. The trading models will be compared to each other 

and an appropriate bench-mark, for these experiments a buy-

and-hold trading strategy will be used. The benchmark 

portfolio will provide insight into the usefulness of any of 

the developed models as the extra effort required for the 

research should produce higher realized returns. Since the 

predictions are based on the market as a whole and the 

investments are as well, then the only way to outperform the 

benchmark is to accurately predict contractions. Under both 

trading systems the models are predicting the direction the 

market will move in the coming month.  

A. Long positions with a risk-free alternative  

The first method will only take long positions in the stock 

market where in the event of a market contraction being 

predicted the model will invest in a risk-free rate ( ). For 

the purposes of this study the risk-free rate is assumed to be 

an annualized rate of return of 2% when monthly payments 

are re-invested and compounded.  

B. Long and short positions 

The second and more risky strategy will take long and 

short positions in the market, such a strategy is seeking 

positive returns from the stock market in times when the 

market value is decreasing, the process of a taking a short-

position is depicted in Fig. 1. A variety of market 

instruments are available to short the market, such as a put 

option, but effectively they all profit from market 

contractions.         

 

 

 

 

 

 

 

 
Figure1 – An overview of the process of short-selling a security in the stock 
market or taking a short position. 

VII. EXPERIMENT SETUP 

The data set contains monthly data which spans a 30 year 

time period from 1978-2008. The experiments are performed 

with a sliding window approach, which helps eliminate the 

negative effects of the non-stationary nature of the time 

series. Each algorithm is trained for 10 years (120 data 

tuples) and tested for 1 year (12 data tuples), at which point 

the window shifts by one year. This approach allows for 20 

separate, though not fully independent, training and testing 

periods, this equates to 240 test points for evaluating the 

competing performances of the algorithms. As stated, the 

experiments are conducted with an Artificial Immune 

System (AIS), k-Nearest Neighbour (kNN) and an Artificial 

Neural Network (ANN) with 2 hidden layers. With regards 

to the instance-based learners (kNN and AIS), the 

experiments are conducted under two different learning 

assumptions. In the first case the memory of the algorithms 

is wiped clean at the end of each training/testing window, 

under the second assumption the memory is allowed to 

accumulate from one window to the next.   

VIII. EXPERIMENT RESULTS 

The main focus of this research is the AIS and therefore the 

results from the AIS experiments will receive more 

attention. This section will initially report on the testing 

results of the AIS and subsequently of the other algorithms.  

A. Results for AIS with accumulated memory 

In table 1 we have the parameter settings for the AIS 

experiment which yielded the highest performance in terms 

of overall accuracy for the accumulated memory.  

 
Table 1 – The parameter settings for the AIS experiments using 

accumulated memory which yielded the highest performance results. 

Parameter Value 

MC Seed – # of antigens to seed the mc’s  1 
ARB Seed - # of antigens to seed ARB pool 1 

Clonal Rate  10 

Mutation Rate  0.15 
Stimulation Threshold 0.90 

Hyper-mutation Rate 2.0 

Affinity Threshold Scalar 0.30 
Total Resources 150.00 

k – number of neighbors  3 

Step 1: A short-seller borrows the shares from a lender   

            for a fee and sells the shares on the market at the 

            current price. 

Step 2: At sometime in the future the short-seller  

             purchases the shares from the market and  

             returns the shares back to the lender. 
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In table 2 the AIS testing results are displayed for the 

algorithms performance using the above parameter settings. 

To assist the reader and for space considerations the testing 

results are grouped into sets of 4, yielding 5 periods of 

averaged results. For each period the reported results include 

accuracy, precision for each class, the number of memory 

cells at the end of training and the number of mc 

replacements. Precision is defined as the number of months 

correctly predicted to be a certain class ci divided by the total 

number of months predicted to be Ci. 

 
Table 2 - Various performance measures for the accumulating memory AIS 

during the testing periods. Prec() is the precision for class 1 and 0 
respectively, mc stands for memory cells and mcr is memory cell 

replacements. 

Period 89-92 93-96 97-00 01-04 05-08 

Accuracy 0.688 0.708 0.625 0.625 0.667 

Prec(1) 0.698 0.847 0.661 0.619 0.698 

Prec(0) 0.667 0.492 0.396 0.717 0.583 

# of mc 122 267.7 390.7 500.7 584.5 

# of mcr 44.5 3.5 2.0 6.75 15.0 

 

B. Results for AIS without accumulated memory 

Table 3 displays the parameter settings for the optimal 

performance over the testing periods when the memory cells 

are deleted after each window. 

 
Table 3 - The parameter settings for the AIS experiments using non-

accumulated memory which yielded the highest performance results. 

Parameter Value 

MC Seed – # of antigens to seed the mcs  1 

ARB Seed - # of antigens to seed ARB pool 1 
Clonal Rate  10 

Mutation Rate  0.15 

Stimulation Threshold 0.93 
Hyper-mutation Rate 2.0 

Affinity Threshold Scalar 0.30 

Total Resources 150.00 
k – number of neighbors  7 

 

Table 4 displays the algorithms performance with the above 

settings in table 3.  

 
Table 4 - Various performance measure for the non-accumulating memory 

AIS during the testing periods. Prec() is the precision for class 1 and 0, mc 

stands for memory cells and mcr is memory cell replacements. 

Period 89-92 93-96 97-00 01-04 05-08 

Accuracy 0.604 0.750 0.687 0.604 0.708 

Prec(1) 0.645 0.846 0.704 0.595 0.743 

Prec(0) 0.555 0.600 0.662 0.542 0.639 

# of mc 91.75 109.3 110 103 97.75 

# of mcr 26.25 4.0 2.5 15.0 19.5 

 

From the tables above we see that the differences in terms of 

parameter settings for the two memory conditions are the 

stimulation threshold and the k number of neighbors to 

consider. When fewer memory cells are available more of 

them are required to make a positive prediction. As well, the 

AIS models benefit from training memory cells to higher 

threshold when only the recent past is considered. The 

number of memory cell replacements over a given training 

window yields some interesting insights into how the AIS 

models are learning, in figure 2 we have a plot of the DJIA 

market index over the testing window along with the number 

of memory cell replacements that each model had for each 

year. In the early `90s when the market was fairly stable and 

trending, the number of mc replacements was quite high for 

both models. This is because the antigens entering the AIS 

system are very similar and therefore the evolved antibody is 

also quite similar to other existing mcs, this makes the 

possibility of replacement more likely. A complement to this 

observation is that when the market was more volatile the 

number of mc replacements declines for both models, 

displaying that the evolved antibodies are unlike any which 

have been seen before as the current market conditions are 

unique at that time as well. The two largest differences 

between the yearly accuracies occur in 1991 and 2002, with 

the AIS system allowed to retain its memory having the 

superior accuracy in 1991 and the reverse for 2002. In terms 

of precision when predicting positive market movements 

both models produced results below 50% only once over the 

20 years and in both cases this was achieved when the 

models had their largest differences in overall accuracy 

(1991 and 2002). It is interesting to note that the extended 

memory cell AIS performs better when the market is less 

volatile and the movement is relatively flat, where as the 

shortened memory cell AIS is performing better when the 

market trend experiences a drastic change. This behavior is 

based on each models interpretation of memory and how 

quickly the models are able to adapt to market changes. The 

extended memory cell model exhibits a behavioral trait of 

conservatism, which is the slow updating of models in the 

face of new evidence, so in quick trend changes the quality 

of the predictions is eroded. This observation could also 

indicate that the market behavior was non-stationary and 

therefore the extended memory compromises the prediction 

quality. This behavior has been linked to stock returns and 

market inefficiencies in [21]. The shortened memory cell 

models have a somewhat myopic view of market behavior 

and can be more susceptible to small fluctuations, which is 

usually most predatory to investor earnings in times of 

sideways moving markets, as was experienced in 1991.  

A. Comparison results 

In table 5 the results from all of the algorithms are displayed. 

Reported for these models are the overall accuracy, precision 

for both classes and their respective standard deviations. For 

the kNN and AIS models the results are shown for both 

accumulating and non-accumulating memory. 

 
Table 5 - Testing results for the AIS, ANN and kNN algorithms. Prec() is 

the precision for class 1 and 0 and sd is the standard deviation. AIS/kNN-1 

and AIS/kNN -2 are the accumulating and non-accumating memroy models 
respectively. 

 Accuracy sd Prec(1) sd Prec(0) sd 

ANN 0.692 0.112 0.748 0.146 0.691 0.286 

kNN-1 0.458 0.168 0.551 0.125 0.286 0.065 

kNN-2 0.542 0.168 0.594 0.136 0.333 0.118 

AIS -1 0.663 0.12 0.715 0.149 0.571 0.294 

AIS-2 0.671 0.134 0.706 0.168 0.600 0.269 
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From the table above we see that the ANN was able to 

produce slightly higher overall accuracy for the testing sets 

with an accuracy of 69.17% compared to the AIS models of 

67.08% and 66.25% for the non-accumulating and 

accumulating models respectively. 

 
Figure 2 - A plot of the DJIA index value from 1988 - 2008 along with the 
number of memory cell replacements, MC1 and MC2, for the accumulating 

and non-accumulating AIS models respectively. 

The kNN models were both significantly inferior across each 

measure and the additional data points gained from an 

accumulating memory lead to a reduction in model 

robustness. For both AIS models and the ANN the 

predictions were more reliable for market expansions where 

we have a higher overall precision and lower standard 

deviation. For the instance-based learning approaches there 

appears to be an inverse relationship between the value of k 

and the number of data points available in the global 

neighborhood, where the larger the training set or the 

number of mcs the smaller the value of k
2
. Figure 3 provides 

a plot of the yearly accuracies for the ANN and the AIS 

models (kNN is not represented as the results were 

significantly inferior to the other approaches). From figure 3 

we see that the AIS models are outperforming the ANN in 

the latter part of the testing period (2005 -2008). 

IX. TRADING RESULTS 

A. Long-positions with risk-free alternative 

The trading simulations generated from each of the models 

under the strategy which only takes long positions in the 

stock market (as discussed in section 6.A) are displayed in 

table 6. The results with regards to annual returns and 

cumulative profits do not account for transaction costs, this 

 
2 The value of K for the kNN approaches were chosen empirically and 

were 1 and 7 for the accumulating and non-accumulating models 
respectively. 

is for simplicity reasons and that this research is mainly 

intended for institutional investors. Reported are cumulative 

return (assuming an initial investment of $1000.00 and 

returns are 100% re-invested), average yearly return and the 

Sharpe Ratio [22] which is a commonly used metric for 

investment managers to gauge how efficient a trading 

strategy is with the extra risk it is exposed to, where the 

higher the value the better. The Sharpe Ratio, , is shown in 

equation [5]: the numerator is the risk adjusted expected 

return and the denominator is the amount of variance in 

those returns for the reporting period; the more risky an 

investment the greater the degree of variance in its value.

 
Figure 3 - Accuracy results for the AIS and ANN models during the testing 

period. 

 

 

[5] 

where  is the return on the asset and  is a risk-free rate. 

 
Table 6 - Results from trading simulations without short positions allowed 

for each model over the testing period. The benchmark is the DJIA 

performance from 1988-2008. 

Model 

Cumulative 

Return ($) 

Average Yr. 

Return  

Average Sharpe 

Ratio 

ANN 21478.82 0.159 4.792 

kNN-1 1652.58 0.027 <0 

kNN-2 3379.53 0.061 <0 
AIS-1 11241.11 0.117 3.634 

AIS-2 13026.22 0.126 3.971 

Benchmark 5299.51 0.082 2.042 

 

We can see that a slightly higher average yearly return for 

the ANN leads to significantly more valuable trading profits, 

which is why the cumulative return is not quoted on its own 

as one abnormal gain can lead to drastic differences in 

cumulative profit. The Sharpe ratio for the ANN is also the 

highest which demonstrates that it was also the most 
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efficient with the additional risk its model was exposed to. 

The AIS models were comparable to the ANN, with the non-

accumulating memory model producing the superior result. 

When compared to the benchmark the ANN and AIS models 

were able to outperform it with regards to cumulative return 

and their Sharpe ratios. 

B. Long and short positions 

In table 7 we have the trading results for models which take 

long and short positions in the market. 

 
Table 7 - Results from trading simulations with short positions allowed for 

each model over the testing period. The benchmark is the DJIA 

performance from 1988-2008. 

Model 
Cumulative 

Return ($) 
Average Yr. 

Return  
Average Sharpe 

Ratio 

ANN 56986.32 0.226 5.398 

kNN-1 331.43 -0.035 -1.171 
kNN-2 1754.58 0.034 0.337 

AIS-1 15930.46 0.136 3.386 

AIS-2 21438.52 0.154 4.306 
Benchmark 5299.51 0.082 2.042 

 

Once again the top performing model is that of the ANN; 

however there is a significant difference between the AIS 

models and the kNN approach, which is consistent with 

previous results. As well the AIS models and the ANN were 

able to outperform the benchmark in terms of cumulative 

return and Sharpe ratios. From the results we can infer that 

under instance-based learning approaches the models have 

not benefited from an accumulating memory with the kNN 

models performance negatively affected the most. Using a 

trading model with shorting allowed emphasizes the kNN 

models inability to predict market contractions (as seen in 

table 5) where the low precision on class 0 has lead to above 

average losses in those periods. The AIS models and the 

ANN were better at modeling the market behavior before 

contractions which yielded positive investment gains in 2008 

at a time when the market was experiencing a large trend 

shift. Figure 4 shows a plot of the monthly returns for each 

model and the market for the first 6 months of 2008. 

 
Figure 4 - A plot of the returns for each model and the DJIA for the first 6 

months of 2008 when the market experienced a drastic trend change. 

During this time period the market produces negative returns 

for 5 of the 6 months, conversely the AIS models with and 

without accumulating memory only had two and one 

negative month during the same time period respectively. 

X. RESULTS ANALYSIS 

From the results in section IX we have seen that small 

differences in accuracy can lead to significant differences in 

trading profits. However the trading profits may not 

generalize as the classification of market movements only 

considers direction and not magnitude, as a result two 

algorithms with equal accuracy could produce different 

trading results. To aid in determining the effectiveness of 

AIS for market prediction the results in-terms of accuracy 

will be considered as a statistical test can be performed to 

discover if the output of the models are significantly 

different. The test used in this study is a one-sided t-test for 

binary output distribution. Table 8 displays a matrix of p-

values generated from the previously described statistical 

test. 
 

Table 8 - p-values generated from a one-sided t-test for binary output 

distribution. 

 ANN AIS – 1 AIS – 2 kNN – 1 kNN – 2 

ANN  0.167 0.244 < 0.001 < 0.001 

AIS – 1 0.167  0.392 < 0.001 < 0.001 

AIS – 2 0.244 0.392  < 0.001 < 0.001 

kNN – 1 <0.001 < 0.001 < 0.001  < 0.001 

kNN – 2 < 0.001 < 0.001 < 0.001 < 0.001  

 

Form the p-values reported above we can determine that the 

differences in accuracy between the ANN and AIS models 

was not statistically significant with p-values of 0.167 and 

0.244 for the accumulating and non-accumulating models 

respectively. When comparing the instance-based learning 

approaches we see that the differences are statistically 

significant using a 99% confidence interval with p-values of 

less than .01 for each comparison. 

 Although the accuracies for the AIS and ANN are 

statistically significant when compared to the simpler kNN 

approach these results do not indicate how predictable the 

market was over this time period. A classifier
3
 which always 

predicted the majority class (class 1) was constructed; its 

accuracy was 59.17%. The accuracies of the ANN and AIS 

models are statistically significant
4
 in comparison to this 

majority-class classification, providing evidence that the 

algorithms have been able to learn a portion of the market 

behavior. 

XI. CONCLUSION 

The main focus of this work was to establish if an AIS is a 

suitable supervised learning technique to model the stock 

market. This analysis was considered from two angles, first 

with regards to kNN a much simpler instance-based learning 

 
3 The out-of-sample data had an approximate distribution of 60/40 for 

class 1 and 0 respectively.  
4 P-values were 0.000429, 0.010363 and 0.00467 for the ANN, and the 

accumulating and non-accumulating AIS models respectively. 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 6

R
et

u
rn

Time (months)

mlp ais-1 ais-2

knn-1 knn-2 mrkt

200



 

 

 

algorithm to determine if the increased complexity of an AIS 

offered any advantages and secondly a comparison to other 

commonly held benchmarks, a ANN and a stock market 

portfolio, to obtain a more global view of its effectiveness. 

By all measures of performance introduced in this study the 

AIS was able to outperform the kNN algorithm. The added 

complexity of evolving a set of memory cells to model the 

search space rather than the actual previous instances 

produced superior results which were statistically significant 

and which generated substantially more profitable trading 

models. The ANN did outperform the AIS models whether 

they used accumulating or non-accumulating memory 

although the results were not statistically significant with 

regards to accuracy and the superior trading results cannot 

be guaranteed to generalize because of a short-coming of the 

classification technique. The data used in this study is not 

necessarily the most suitable for AIS algorithms and other 

datasets could be more favorable to instance-based 

approaches, future work will consider this question. The AIS 

models did outperform the other benchmark the market 

portfolio in terms of cumulative investment return and the 

Sharpe ratio. Although the returns did not include 

transaction costs, these would be minimal as the models only 

make trades on a monthly basis and only if required
5
. This 

trading simulation along with the comparison to the 

majority-class classifier provides evidence that the DJIA 

index monthly returns contained a degree of predictability 

from 1989-2008, which reflects work done by [23] where 

the authors had a similar conclusion from training with 

reinforcement learning on the S&P 500 (another US index) 

from 1970 - 1994. Given these results the AIS could be 

considered a viable option for modeling the stock market 

using an instance-based approach rather than developing a 

global operator such as with an artificial neural network or a 

support vector machine. In general the practice of using the 

natural immune system to inspire a learning algorithm has 

been established as a viable alternative to modeling the stock 

market when implementing a supervised learning approach.        
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Glossary

alSAX adaptive local SAX
AMH adaptive market hypothesis
AIS artificial immune system
AI artificial intelligence
ANN artificial neural network
ADF augmented Dickey Fuller test
ACF autocorrelation function
AR Autoregressive
BF behavioral finance
CAPM capital asset pricing model
CI computational intelligence
DKF diffuse Kalman filter
dHPSO dynamic heterogeneous particle swarm optimization
EMH efficient market hypothesis
EC evolutionary computation
EM expectation-maximization algorithm
GA genetic algorithm
GP genetic programming
HMM hidden Markov model
J48 J48 Decision tree
kNN k-nearest neighbors
LATIS learning adaptive technical indicator system
ML machine learning
MLP multilayer perceptron
MOO multi-objective optimization
PSO particle swarm optimization
PP Phillips-Perron test
PAA piecewise aggregate approximation
RL reinforcement learning
SL supervised learning
SVM support vector machine
SAX symbolic aggregate approximation
VE variable efficiency
VS variable stationarity
ABB adaptive Bollinger bands
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