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Abstract 

A library of polymers/oligomers with three different architectures was synthesised. Short 

chain, linear oligomers were produced by performing oxidative cleavage on a poly(butyl 

methacrylate-co-butadiene) polymer. Although butadiene is a gaseous monomer, it was found 

that careful control over the reaction conditions led to successful copolymerisation in an 

unpressurised reactor. Hyperbranched polymers of n-butyl methacrylate and t-butyl acrylate 

were synthesised by RAFT polymerisation with 4-vinylbenzyl-pyrrolecarbodithioate (CTA1) 

and 4-vinylbenzyl dithiobenzoate (CTA2). A variety of analytical techniques, such as 

elemental analysis and NMR, were used to characterise the polymers and confirm the 

hyperbranched structure. Some variation in monomer conversion and CTA uptake was seen 

under different polymerisation conditions. 

After synthesis and characterisation, it was found that the polymer end groups could be 

modified through work up with diamine or 4.4‘-azobiscyanovaleric acid. Linear oligomers of 

butyl methacrylate were functionalised with amines whilst hyperbranched polymers were 

given acid functional end groups. FT-IR and elemental analysis were used to monitor the 

success of the end group reactions. 

As the polymers could be applied as films, they were assessed as cell culture substrates using 

Human dermal fibroblasts (HDF) and Human renal epithelial cells (HREp). A linear butyl 

methacrylate-co-4-vinyl benzoic acid copolymer was also assessed in comparison to the 

hyperbranched structures. It was observed that the two cell types had different responses to 

each of the polymers. Fibroblast cells showed better rates of adhesion and proliferation on 

acid-functionalised polymers, whilst epithelial cells performed best on the amine-

functionalised moieties.  

This work provides useful information for the synthesis and preparation of new biomaterials. 

It has been found that polymer functionality must be considered when compatibility with a 

specific cell type is desired, and polymers with the potential to be incorporated into future 

biomaterials are highlighted. 
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1 - Introduction 

Context 

Today, teams of polymer chemists and cell biologists are working together in an effort to 

create evermore practical and functional materials for use in tissue engineering, cell re-

growth and therapy and agent delivery. The purpose of this introduction is to review and 

correlate the work carried out in the areas of controlled polymer architecture and 

biocompatibility. Many potential bio-interactive polymers have been identified, but rarely are 

cell culture experiments performed which would provide adherence and toxicity information. 

Any commercial material must be able to fit within a narrow specification range. HBPs are 

attractive biomaterials as they can be synthesised with high control and within narrow 

polydispersities[1]. The use of HBPs in biomaterials ranges from carriers to degradable 

materials. A HBP with tertiary amino groups was synthesised by Park et al.[2] that was able 

to efficiently transfect DNA with low toxicity. In addition, protein immobilisation has been 

demonstrated by Shen[3], [4] and Cosulich[5] which opens the possibility of ‗enzyme-based 

bioobjects‘. Lin and Zhang et al. created a biodegradable blend material with enhanced 

properties by combining HBPoly(ester amide) with polylactide[6], and Chen et al. reported 

the successful synthesis of an inherently biodegradable cationic HBP of PEG-PEI-PBLG[7]. 

These polymers all show positive bio-interactions and indicate that the amine functionality 

may be a positive inclusion for increasing cell adherence and culture.  

Polymers with carboxylic acid functionality are also considered to have a degree of 

biocompatibility[8]. Observations by MacNeil et al. have indicated that a polymer containing 

ca. 3% acid promotes the attachment of keratinocytes and osteoblast-like cells[9], [10].  

The MacNeil group have also utilised the technique of electrospinning to form polymers with 

acid functionality, that can be used for tissue regeneration and drug release [11], [12]. 

This project investigated the emulsion polymerisation of P(BMA-BD) and the 

biocompatibility of oligomers after being cleaved with ozone and functionalised with amine 

or acid. Also explored was the synthesis of and biocompatibility of HBP(BMA) and 

HBP(tBuAc). Some polymers were reacted with 4,4‘-azobis4-cyanovaleric acid (ACVA) or 

diamines in order to observe the effect of end group functionality on cell adhesion. 

To our knowledge this is the first known use of RAFT to form hyperbranched polymers using 

t-butyl acrylate and butyl methacrylate monomers. It was investigated what effect varying the 

amount of chain transfer agent (CTA) had on the polymerisation and also on the final 

product. The original aim was to synthesise a range of hyperbranched polymers, and then use 
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these to build a library of semi-interpenetrating polymer networks. However, the HBPs did 

not have high enough molecular weights to stay entrapped in the networks.  

In order to investigate the polymers‘ biocompatibility, they were cast into films so that cells 

could be grown in direct contact, where it was found that introducing acid functionality was 

advantageous. Amino groups have been considered to be more cell interactive than 

carboxylic acid and OH functionality [13], [14]. The evidence provided by this work 

indicates that the cell-interactivity of a functional group is also dependent on the cell type 

tested against. With carefully planned experiments, it is possible to observe the effect of 

molecular weight, branching and end group modifications on HBPs. The observations 

described within indicate that non-mesenchymal cells show a preference for amine and 

dithioate functional polymers over acids. This knowledge is essential for the creation of 

future materials that possess both the necessary physical and chemical properties for 

continued healthy cell adhesion and proliferation in vivo. This introduction will discuss 

current methods and trends in RAFT and emulsion polymerisation, followed by an overview 

of synthetic polymers (specifically hyperbranched or crosslinked) and their uses in modern 

biomaterials.  

 

1.1 Emulsion polymerisation 

 

Emulsion polymerisation is used in a variety of applications ranging from adhesives, rubbers, 

drug delivery and paper additives[15]–[22]. The product obtained from emulsion 

polymerisation is a polymer dispersed in water and colloidally stabilised by surfactant – 

called a latex or polymer dispersion.  Typically the reaction is free radical and occurs in a 

Figure 1.1 – Diagram illustrating the concept and stages of the project 
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heterophase system, where an immiscible liquid (the monomer) is held in the dispersion 

medium (water) by a surfactant.  

The role of surfactant within the system is to: stabilise monomer in the form of droplets or 

micelles, influence the polymerisation kinetics and provide colloidal stability for the final 

product. It is added at levels above the critical micelle concentration, which is the minimum 

concentration for micelle formation. Surfactants have two domains, a hydrophilic ‗head‘ and 

a hydrophobic fatty acid ‗tail‘ and it is this amphiphilic nature that allows these compounds 

to stabilise hydrophobic molecules in aqueous media. Monomer and surfactant can interact to 

form either large monomer droplets or smaller, and relatively numerous, micelles (figure 

1.1.1).  The number and size of micelles present in a system depends on the amount of 

surfactant added, with higher proportions leading to smaller, more numerous micelles. This 

means that, to some extent, larger particle sizes can be achieved by using less surfactant in 

the recipe – especially during interval I as will be described on page 14. However, this can 

lead to the appearance of coagulated polymer as it will not be adequately stabilised later in 

the reaction. 

 

 

 

Figure 1.1.1 – The basic constituents in an emulsion polymerisation. 

 

Emulsion recipes can be prepared so that a population of larger sized particles are included at 

the end of the reaction. The combination of small and large particles enables more efficient 

ordering of the molecules to occur, and therefore greater solids contents can be achieved than 

with a single particle size[23].  
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Many different types of surfactant, or emulsifier, are available to assist the dispersion of 

monomers in emulsion polymerisation. The most commonly used are those with an anionic 

head group, such as sulfates, sulfonates, carboxylates and phosphates. Available emulsifiers 

in this group include sodium dodecyl sulfate and dioctyl sodium sulfosuccinate. There also 

exist cationic surfactants, these are normally amines or contain a quaternary ammonium 

cation, and non-ionic stabilisers such as long chain alcohols. However, it is often found that 

the strongest amphiphilic behaviour exists with molecules up to a chain length of C22, beyond 

which the hydrophobic domain dominates and prevents solubility in water. A dispersant is a 

surface-active molecule that is added to an emulsion to aid the dispersal of additives such as 

pigments. In this case, the dispersant adsorbs directly onto the surface of the pigment 

molecules in order to prevent clumping and flocculation. 

  

The key property of any monomer for polymerisation is that it must be unsaturated and allow 

addition across the bond. For a monomer to be suitable for emulsion polymerisation it must 

only be sparingly soluble in the dispersal medium – usually water. The solubility of some 

commonly used monomers that are used in emulsion polymerisation is listed in table 1.1.2. 

 

Monomer Solubility in water g/l
-1

 

Styrene 0.07 

Butadiene 0.8 

Vinyl Chloride 7 

Methyl methacrylate 16 

Vinyl acetate 25 

Butyl acrylate 2 

Butyl methacrylate 3 

Table 1.1.2 – Solubility of some common monomers used in emulsion polymerisation. 

 

A typical commercial emulsion contains 30-50% of monomer[24], [25], with the end use of 

the product determining how much is required. The majority of monomer within the reaction 

system exists within the large monomer droplets which are stabilised by surfactant molecules. 

The rest is either present within surfactant micelles, or free within the dispersion medium. 

To provide a source of radicals, either a redox coupling system or a thermal initiator is 

employed, although universally the initiator will be water soluble and oil-insoluble. This 

means that propagation cannot occur on the monomer droplets as previously discussed. The 

benefit of a redox coupling system is that it can be used to produce radicals at low 
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temperatures. This means reactions can be performed at 6°C instead of common industrial 

processes that occur at temperatures of 75°C and above. 

 

Unlike other techniques, emulsion polymerisation is able to attain high molecular weights 

with no detriment to reaction rates. This is because propagating polymer chains are kept 

separated by the dispersal medium, reducing the chance of termination by coupling. 

Employing a chain transfer agent such as n-dodecyl mercaptan can keep molecular weight 

lowered. Chain transfer is the effect that is responsible for lower observed polymer molecular 

weights than predicted. Chain transfer occurs through the termination of a propagating chain 

through abstraction of a hydrogen atom, or other species present in the reaction system (for 

instance monomer, solvent and initiator). If the rate of chain transfer is greater than the rate of 

propagation, then very short chain polymers are formed. In addition to the termination of a 

growing chain, chain transfer also releases a free radical which is able to reinitiate 

polymerisation. If the rate of reinitiation is rapid, then no effect is observed on the rate of 

polymerisation. However, a slow rate of reinitiation will lead to a decrease in overall rate of 

polymerisation. The effect of chain transfer on the degree of polymerisation can be calculated 

using the general form of the Mayo equation (equation 1.1.3) 

 

 

  
 

(   )  

   
      

   

   
   

   

   
 

Equation 1.1.3 – General form of the Mayo equation, where Xn= number average degree of 

polymerisation, Rp = Rate of polymerisation, Ri = rate of initiation, C = chain transfer 

constant, M = monomer, S = chain transfer agent and I = initiator. 

 

The theory for the mechanism of emulsion polymerisation was first proposed by Harkins, and 

further developed by Smith and Ewart, in the 1940‘s based on studies of poly(butadiene) and 

styrene respectively[26]–[28]. The mechanisms proposed were insightful for the time but it is 

now known that the migration of the (electronegative) initiator into the micelles was 

overlooked. 

Smith-Ewart-Harkins theory splits the polymerisation into three intervals. The theory states 

that interval I involves the dispersal of monomer and surfactant into large droplets and 

smaller micelles. Small amounts of monomer diffuse though the dispersion medium into the 

micelles, and a water-soluble initiator is added. The initiator forms free radicals that in the 

first instance begin the polymerisation with monomers present in the aqueous phase. As 

monomer molecules are added to the growing oligomers, their hydrophobicity increases until 

they reach a critical length. At this length the oligomers begin to leave the aqueous phase and 

enter the monomer-swollen micelles. Once inside the micelles, there is plenty of monomer 
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present to continue the propagation of oligomers and the micelle then becomes a particle 

nuclei. The embryonic particles continue to grow, and their colloidal stability is maintained 

by the donation of surfactant molecules from shrinking monomer micelles[29]. 

The depletion of the monomer micelles marks the end of interval I. An average of about 10
2-3 

micelles are successfully converted into latex particles - this is much greater than the number 

of monomer droplets, which generally only act as monomer reservoirs and are not converted 

into particles. The concentration of surfactant contributes strongly to particle nucleation; this 

is predicted by Smith-Ewart theory that states the number of nucleated particles per unit 

volume of water is proportional to [surfactant]
0.6

. Particle nucleation continues until about 10-

20% conversion of monomer, and it controls the particles size and particle size distribution of 

latexes. A seed latex, which bypasses interval I, is commonly used commercially to ensure 

batch-to-batch repeatability and generally a smaller particle size can be achieved by 

increasing the amount of surfactant.  

The initiator produces two radicals, which react with the monomer in the surfactant micelles 

to form z-mer oligomeric radicals. The z-mer is the oligomer chain length that is no longer 

soluble in the continuous phase. 

Persulfate molecules initiate polymerisation by undergoing homolysis  in the aqueous phase 

and then adding across the unsaturated bond in the monomer. The radical active site is then 

regenerated and propagation occurs as this radical adds to further monomer molecules. This 

is known as interval II. As monomer is added into the polymer chain, more molecules 

disperse into the micelles from the large droplets of monomer. The radical active site is also 

constantly regenerated after the addition of each discrete molecule of monomer allowing 

polymer growth to continue. Interval III is considered to occur when all of the free monomer 

is present in the polymer particles, and the rate of polymerisation will begin to steadily to 

steadily decrease. Termination can occur by combination where two growing chains come 

together to form one dead polymer or by disproportionation, where a growing chain donates a 

proton to another. This can lead to branched polymers as a result of chain transfer. 

Smith-Ewart theory does not account for the homogenous nucleation that occurs when using 

slightly more water soluble monomers, such as vinyl acetate or methyl methacrylate. In this 

case because of the higher presence of free monomer in the dispersal medium, it is possible to 

get z-mer formation in that phase. Therefore, the polymerisation of these monomers can be 

performed without the use of surfactant. 
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1.2 RAFT polymerisation 

 

Reversible addition-fragmentation transfer (RAFT) polymerisation is a highly versatile 

controlled radical polymerisation (CRP) technique that was first reported by Rizzardo, Moad 

and Thang in 1998[30]. It is intrinsically tolerant to functionality and allows for 

polymerisation of a wide range of monomers such as acrylic acid, hydroxyethyl methacrylate 

and dimethylaminoethyl methacrylate[31]–[36]. A variety of polymer architectures have been 

synthesised using RAFT polymerisation including brushes, stars, hyperbranched and 

dendrimers[37]. A good review of the versatility of RAFT with regards to polymer 

architecture has been provided by Chong et al.[38] and also by Perrier and 

Takolpuckdee[39]. RAFT can also be used to synthesise polymers with controlled molecular 

weights and narrow polydispersities, as evidenced by Moad et al.[40], Pelet and Putnam[41] 

and others [36], [42]. 

Key to the success of a RAFT polymerisation is the choice of chain transfer agent (CTA, 

figure 2.2.1), which come in four main classes: dithioesters, trithiocarbonates, xanthates and 

dithiocarbamates.  

 

 

Figure 1.2.1 – General structure of a chain transfer agent, CTA where R = free radical 

leaving group and Z controls the reactivity of the C=S bond. 

 

The CTA contains an activated double bond and a weak bond, this means thiocarbonyls are 

often advantageous due to their higher reactivity compared to carbonyls[43].  The choice of Z 

group is important for the activation of the C=S double bond, and those RAFT agents with 

low reactivities have electrophilic Z groups with lone pairs of electrons that conjugate with 

C=S [44]. A summary of the main classes of CTA used in RAFT polymerisation is shown in 

figure 1.2.2. 
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Dithiobenzoates 

 

Trithiocarbonates 

 

Dithiocarbamates 

 

-Very high transfer constants 

-Prone to hydrolysis 

-May cause retardation under 

high concentrations 

-High transfer constants 

-More hydrolytically stable 

than dithiobenzoates 

-Cause less retardation 

-Activity determined by 

substituents on N 

-Effective with electron-rich 

monomers 

 

Figure 1.2.2 – Summary of the three main classes of RAFT chain transfer agent, and their 

properties[45].  

 

Addition of the propagating species to the CTA forms an intermediate, which then fragments 

at the weak bond. The RAFT process induces an equilibrium between propagating and 

dormant species and it is this, and the subsequent loss of the termination step, that is 

responsible for its high levels of control (figure 1.2.3). Overall, the process is not kinetically 

degrading because the fragment radical formed is free to re-enter the reaction cycle. The 

stability, sterics and polarity of the R group can affect the rate of reaction once equilibrium is 

reached[46].  

 

 

 

Figure 1.2.3 – Schematic of the addition/fragmentation mechanism within RAFT 

polymerisation. 

 

The complete mechanism for RAFT polymerisation is shown in figure 1.2.4. 
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Figure 1.2.4 – Full scheme of RAFT polymerisation[31]. 

 

Both initiation and termination are identical to normal radical polymerisations. However, 

shortly after initiation the propagating chain will add to the CTA forming an intermediate 

radical, which fragments into a new radical and a polymeric dithiocarbonate. The newly 

formed radical proceeds to react with monomer to form a new propagating chain which is 

then subject to the same addition/fragmentation process. As equilibrium is reached between 

Pn*, Pm* and the dormant species, there is equal opportunity for all chains to grow and 

therefore low polydispersity is achievable with this technique. Some polymers will retain the 

CTA end group as a result of RAFT, allowing functional end groups to be applied post-

polymerisation. 

 

The main disadvantage of the RAFT procedure is the synthesis of the CTA itself, which often 

requires an inert atmosphere and the use of hazardous materials, such as CS2. However, 

modern syntheses are being published using softer reagents[47] and also report high yields 

without the need for strict anaerobic conditions[48].  

 

In the presence of a cross-linker RAFT polymerisation enables branching whilst quenching 

cross-linking[49] and hyperbranched polymers with polydispersities as low as 1.3 have been 

produced using this system[50]. The amount of CTA present in the system has been seen to 

control levels of branching, however too high quantities can decrease monomer conversion. 
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This is a known effect, although if the mechanism is primarily an increase in side reactions, 

or a decrease in the fragmentation reaction is still the subject of some controversy[51]–[53]. 

 A variety of hyperbranched polymers have thus been synthesised using RAFT 

polymerisation including poly(N-isopropyl acrylamide) (PNIPAM) [54] and poly(methyl 

methacrylate)[55], with the latter case indicating that monomer concentration plays a role in 

determining the microstructure of the final product. It has been demonstrated by Sherrington 

that using a CTA to reduce the primary chain length can lead to a corresponding reduction of 

gel formation[56]–[61]. 

Hyperbranched polymers offer the opportunity to functionalise the numerous chain ends 

imparting, for example, protein binding capabilities[5], [62], [63] and the tolerance of RAFT 

permits the introduction of biodegradable bonds within a hyperbranched structure[64], [65]. 

These advantages offer great possibilities for increasing bioconjugation using this technique. 

The labile C-S bond that is retained in polymers during RAFT allows the introduction of 

functionality through reaction with amines[30]. Moad et al. further expand this by 

demonstrating the preparation of carboxy- and primary amino functional RAFT 

polymers[66], after showing that the sulfur-containing end groups of RAFT polymerization 

can be removed[67]. 

The CTA can also be used as a source for introducing carboxy functionality, although 

hydrolytic instability can be a problem[68]–[70].  

RAFT and other living polymerisation techniques offer the special ability to grow polymers 

directly from the surface of a protein. This has been achieved by the conjugation of initiator 

on cysteine thiol groups that are present on the surface of the protein[71]. RAFT 

polymerisation also allows the synthesis of block copolymers[72]–[74] and this is an 

important feature for conjugate polymers, as when one block collapses the other block can 

remain soluble and prevent phase separation. The introduction of two different end groups on 

one polymer via RAFT has been used by Kulkarni to improve polymer-protein 

conjugation[75]. Polymers are attractive protein conjugates as they can be designed across a 

wide range of compositions, structures and sizes[76]–[78] and potential uses range from 

markers to enzyme inhibitors.  

1.3 Ozonolysis 

 

Ozonolysis is the breakdown of unsaturated organic compounds by the use of ozone. 

Cleavage of the carbon-carbon bond generates an ozonide and its subsequent work up leads 

to the formation of two carbonyl compounds. Carl Harries was the son-in-law of the inventor 
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Werner Siemens who designed some of the earliest ozone generators. Harries first 

investigated the interaction of ozone with a range of olefins, from ethylene to 

cycloalkanes[79]–[82]  where he found that a 1:1 addition occurs between alkene and ozone 

to form the ozonide species. By choosing the appropriate work up (for instance, hydrogen 

peroxide) products with aldehyde, ketone or carboxylic acid functionality were produced.  

Harries concluded that oxidative cleavage by ozone is an undemanding process with a good 

degree of manipulation. 

Ozone can be generated in the lab by passing oxygen through a high-voltage electrical 

current[83] and two molecules of ozone are formed for every three of oxygen that enter the 

system. 

 

The generally accepted mechanism of ozonolysis has been described by Criegee in the 1960s 

[83]–[86] and proceeds via three discrete steps (figure 1.3.1). The first step is the nucleophilic 

addition of the alkene to ozone, forming a C-O bond. The other nucleophilic oxygen of ozone 

then attacks the opposite end of the alkene to form a second C-O bond. The overall process is 

1,3-cycloaddition, generating an unstable molozonide 5-membered ring. The second step of 

the mechanism is the decomposition of the molozonide forming a carbonyl and a zwitterion. 

Finally, another 1,3-dipolar cycloaddition occurs where the carbonyl and zwitterion 

recombine. The zwitterion acts similarly to ozone in this situation, and a second ozonide is 

formed as the first stable product which can be isolated[87]. 

 

Figure 1.3.1 – Mechanism of ozonolysis. 
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The final ozonide, whilst stable, can be explosive when heated at concentrations in excess of 

20 wt% and is usually decomposed in situ. This can be achieved using a gentle or strong 

reduction, forming two aldehyde products, or oxidatively to produce carboxylic acids. When 

ozonolysis is performed under aqueous conditions, the zwitterion formed in step 2 is 

stabilised and can yield hydroperoxides through reaction with water[88]. 

In a commercial setting, ozone must compete with methods such as through the use of 

permanganese and chromic acid that are used to oxidate alkene bonds[89]. However, ozone is 

often preferred for use in the cosmetic and pharmaceutical industries, where impurities from 

heavy metals can necessitate complex purification procedures. 

 

 

 

1.4 Hyperbranched polymers 

The history of hyperbranched polymers can be traced back to the end of 19th, when it was 

observed that a resin was formed from the combination of tartaric acid (A2B2 monomer) and 

glycerol, a B3 monomer[90]. In 1901 the results of combining an A2 monomer (phthalic 

anhydride or phthalic acid) with the B3 monomer glycerol. This reaction was studied by 

Callahan, Arsem and Kienle et al.[91], [92] to reach conclusions about viscosity that are still 

valid today. The first  commercialised plastics, which were phenolic polymers, were 

introduced in 1909 by Baekeland via the Bakelite Company[93]. The polymerisation between 

an A2 monomer (formaldehyde) and a B3 monomer (phenol) produces a hyperbranched 

structure just before gelation occurs. Statistical mechanics was used in the 1940s by 

Flory[94]–[97] in order to determine the molecular weight distribution of hyperbranched 

polymers. Flory also developed the concepts of the degree of branching and highly branched 

species. Flory further developed his theory in 1952 with the synthesis of highly branched 

polymers without gelation. This could be achieved through the polycondensation of ABn 

monomers (where n>=2)[98]. In 1982 highly branched polymers were reported by 

Kricheldorf as the products of an AB + AB2 polymerisation[99]. The term ‗Hyperbranched 

polymer‘ was first used by Kim and Webster[100] in 1988 after the successful synthesis of 

HBpolyphenylene. Since that time hyperbranched polymers have seen a boon as an 

alternative to the more intricate dendrimers; wth applications in coatings, drug delivery, 

rheology modifiers and biomaterials. Hyperbranched polymers are being researched for many 

potential uses including host-guest encapsulation[101]. 
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Hyperbranched polymers (HBPs) are macromolecules with a tree-like architecture; they have 

a high number of end groups with a densely packed and highly branched backbone. HBPs 

belong to the dendritic molecules, although they display less perfect branching than 

dendrimers as illustrated in figure 1.4.1. Dendrimers are the ideal hyperbranched polymers, 

with perfect 100% branching. Both dendrimers and hyperbranched polymers comprise of a 

central core with repeat units emanating outwards, but the stringent synthetic techniques to 

produce dendrimers are not well suited to industrial processes. Usually, linear monomers or 

chains are used to connect the core to further branching molecules like spokes.  Each 

multifunctional branching molecule then acts as an individual core as further bifunctional 

molecules are added. HBPs are often produced using a simpler one-pot synthesis that 

produces a range of molecular weight products with random branching. This means that for a 

given recipe, there will be multiple possible HBP structures but only one dendrimer outcome.  

 

Figure 1.4.1 – Schematic comparison between dendrimers, hyperbranched polymers, and 

linear polymers. Purple is a core monomer, whilst green represents end groups. 

 

When a polymer is dissolved in a solvent, an increase in viscosity is observed. The intrinsic 

viscosity (η) of the polymer solution is determined by the interactions between polymer chain 

and solvent molecules. It is specifically defined as ―the ratio of a solution‘s specific viscosity 

to the concentration of the solute, extrapolated to zero concentration‖[102]. For any given 

molecular weight, a large diffuse molecule will have a higher intrinsic viscosity than a small 

and compact molecule. HBPs have different viscosity profiles to linear polymers, often HBPs 

have a lower viscosity (figure 1.4.2).  
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Figure 1.4.2 – Simplified representation of the viscosity profile of different polymer 

architectures. 

 

When in solution, HBPs reach a maximum of intrinsic viscosity as a function of molecular 

weight. This occurs as the extended shape of the HBP becomes more compact and globular. 

Linear polymers show a linear increase in viscosity up to a critical molar mass, whereupon a 

drastic increase in viscosity is observed as a result of chain interactions and entanglement. In 

HBPs this effect is a result of the entanglements and interactions of the branch units – longer 

branches lead to increased interactions between molecules and thus increase the viscosity of 

the system. By controlling the branch length, HBPs can be used as processing aids to reduce 

viscosity[103]–[105]. It is this property that is exploited in techniques such as triple detection 

GPC to obtain molecular weight information. In GPC, polymer is passed through a column 

packed with beads; the smaller chain molecules enter into and pass through the beads, whilst 

longer chains have a faster elution time as they pass between the beads. This separation is 

based on the size of the polymers and not their molecular weight. Commonly, GPC is 

performed with a single concentration detector such as refractive index. In conventional GPC, 

a standard sample is run first so that the response and elution time can be calibrated to known 

molecular weights. As the test polymer often does not have the same chemistry as the 

standard sample, this can lead to errors as interactions with the column packing affect 

retention time as well as differences in polymer size. The use of a viscometric detector means 

that the universal calibration can be used, allowing for a more accurate molecular weight 

determination. The universal calibration uses a calibration plot of log[n]M against retention 

time. This plot will look the same independent of the standards used, and it means that the 

chemical nature of the polymer is no longer influencing the results[106].  

As the effect of branching is to decrease the intrinsic viscosity, therefore it can be possible to 

determine the degree of branching by also performing analysis of a linear analogue. 
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Rheology studies have been successful in characterising the average branching of 

polyolefins[107], [108] and 1H and 13C melt-state NMR have also been used in the 

characterisation of starch[109], polyethylene[110] and polyacrylates[111]. HBPs have much 

greater chemical reactivity than their linear analogues, due to the high proportion of end 

groups[112]–[114]. The percentage functionality can also be controlled by control over the 

degree of branching / number of end groups. 

 

1.5 Interpenetrating polymer networks 

 

A note on terminology 

Occasionally within the literature the term ‗hydrogel interpenetrating network‘ (hydrogel 

IPN) is shortened only to hydrogel. The term ‗double network hydrogel‘ is also used to 

describe a sub-class of interpenetrating polymer network (IPN). Whilst hydrogels and IPNs 

can share many characteristics it is important to define them as two separate species. A 

hydrogel is a single, sometimes copolymer, network that is highly swollen in water. Whilst it 

can, in certain situations, be applicable to call an IPN a hydrogel the reverse does not apply 

and for clarity this report shall not use the two terms interchangeably. 

 

Interpenetrating polymer networks (IPNs) consist of two or more polymers, in network form, 

which whilst being heavily intermingled are not chemically bound to each other (figure 

1.5.1)[115]. This is not to be confused with a polymer blend or alloy, which is a mixture of 

non-crosslinked polymers. IPNs are generally considered to be composite materials, and are 

heterogeneous systems with defined phase boundaries between their component parts. Semi-

IPNs refer to a system where one of the polymers is not crosslinked. 

 

 

Figure 1.5.1 – Diagram illustrating full and semi-IPNs.  

 

      Full IPN Semi-IPN 
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At present, the state-of-the-art mainly describes semi-IPNS in which the non-crosslinked 

component is linear and there are very few reports of instances where this component is 

branched. There are two routes to forming an IPN; simultaneous, whereby both networks are 

formed at the same time[116], [117] or sequential, where the second network is polymerised 

within an existing, swollen, cross-linked system[118]. The simultaneous method is preferred 

for its greater integration of networks and simplicity, but it relies upon both sets of monomers 

being polymerised by different means e.g. radically and via a condensation reaction. 

 

As expected, IPNs have much improved mechanical properties compared to hydrogels due to 

their double network structure[119]. Even IPNs composed of weak polymers can show 

strength greater than the sum of the two component networks[120]. For applications within 

bioengineering this is highly advantageous. Natural tissues such as cartilage are able to 

combine high water content with good mechanical properties, which is difficult to replicate 

with most biocompatible hydrogels.  By using a two-polymer system, it is proposed that these 

natural properties will become easier to replicate by combining a functional polymer with a 

network that has good mechanical strength.  

IPNs have a variety of industrial and biomaterial applications silver-loaded IPNs are being 

investigated as wound dressings with antibacterial capability[121]–[123] and are also 

showing promise as proton exchange membranes which have applications in both biology 

and emerging fuel technologies[124], [125].  

IPN hydrogels have a variety of properties that make them preferred for biotechnical 

applications. This includes a relatively straightforward method of production, minimal 

irritation of surrounding tissues and stability in biological fluids[126]. The structure of the 

IPN allows for control of the hydrophilicity of the hydrogel, and this property is exploited for 

the entrapment and release of small molecules like drugs[127]–[130].  

 

1.6 Stimuli responsive interpenetrating polymer 

networks 

 

The formation of IPNs that can respond to external stimuli is of great interest to researchers. 

The stimulus can include a pH response that causes network swelling and release of a target 

molecule, temperature, salt or a change in shape induced by an electrical field. The general 

principle of a stimulus responsive IPN is to form a product with two different network 

functionalities that each reacts differently to external stimuli. The use of amphiphilic IPNs is 
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already showing promise for controlled and targeted drug release[131], where the 

hydrophobic network acts to quell swelling of its hydrophilic counterpart leading to 

aggregation around the target molecule. 

 

An example of this is an IPN containing networks of Konjac glucomannan (KGM) and 

poly(acrylic acid) (PAA). KGM is a fibre derived from the Amorphophallus konjac 

plant[132] , and has been explored as a means to target drug delivery to the colon. 

Interpenetrating polymer networks formed from KGM and PAA have been loaded with 

vitamin B12 and then subjected to a model digestive tract system. These IPNs showed 

significant vitamin release when exposed to colonic conditions, due to the combined 

enzymatic attack upon the KGM and the pH response of the PAA[133]. In this case, the 

KGM network acts to prevent degradation in the harsh digestive conditions prior to reaching 

the bowel, whilst the PAA pH response assists molecule release from the network. 

 

However, homo-IPNs, where both networks are chemically identical, have also been 

investigated. Poly(N-isopropylacrylamide) (PNIPAM) is a well-documented temperature 

responsive polymer[134] and it is intuitive that this response could be conveyed to an IPN. 

PNIPAM homo-IPNs show an enhanced trapping of bovine serum albumin (BSA) above the 

LCST, as well as greater mechanical properties when compared to a single network PNIPAM 

hydrogel[129]. PNIPAM‘s temperature response has also been exploited to create an 

injectable semi-IPN that hardens in vivo, to reinforce scleral tissue that has been degenerated 

by myopia[135]. IPNs that exhibit a bending response when exposed to an electrical field 

have been synthesised. These IPN systems typically couple a strong electrolyte network, such 

as PNIPAM[136] and Poly(vinyl sulfonic acid) (PVSA)[137], [138] with a second network 

that imparts other desirable properties such as pH responsiveness or biodegradability. As the 

IPN is exposed to an electrical field, the positive ions in the electrolytic network migrate 

towards the cathode with the result being partial shielding of the sulfonate and carboxylate 

groups and, ultimately, a reduction in hydration. These IPNs could provide breakthroughs 

relating to biological switches and sensors.  

  

There is a wide scope for introducing functionality and stimuli response to IPNs, and the 

examples given above are by no means exhaustive but have been chosen to demonstrate the 

range of applications and responses that are possible. 
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1.7 Cell adhesion and biocompatibility 

 

The success of any biomaterial clearly rests upon its biocompatibility. Hydrophilic polymers 

such as PAA and PNIPAM, and natural polymers such as KGM are considered 

biocompatible[139] and as a result there is a bias towards these compounds when developing 

biomaterials. 

There are many examples of cell growth upon a hydrogel or IPN scaffold. Neural tissue has 

been grown upon networks of a tri-block copolymer of ethylene glycol, glycolic acid and 

lactic acid[140], dextran/gelatin IPNs have exhibited endothelial cell adhesion[141], as have 

IPNs with a collagen/glycopolymer composition[142].  

Antifouling materials also require careful control of biocompatibility to prevent 

environmental pollution and current work is focussing towards protein resistant 

networks[143], [144]. Hyperbranched fluoropolymers have been explored as antifouling 

materials[145], [146] but their unknown toxicity and bioaccumulation data has caused a shift 

towards networks of poly(isoprene) and poly(N-vinylpyrrolidinone)[147] alongside further 

investigation of the more traditional poly(ethylene glycol) based materials[148], [149]. 

Surface chemistry, including surface tension[150], hydrophilicity[151], [152] and 

zwitterionic nature[153], is known to be of considerable importance in antifouling. Polymer 

networks appear to be a logical solution to the problem of fouling. 

When formulating a new biomaterial, there are tactics available to the researcher to improve 

the chances of cell adhesion, growth and biocompatibility. As previously mentioned there are 

well-documented polymers that are known to be non-toxic and biocompatible. Early workers 

considered that controlling the amphilicity of the biomaterials surface would be sufficient to 

ensure cell adhesion and proliferation. However, although there are clear effects of 

amphilicity on cell adhesion these strategies have rarely proved effective enough for the 

clinic. A much more effective technique is to place peptide sequences within the structure; 

the RGD motif in particular is known to confer cell adhesion[154] (where R = arginine, G = 

glycine and D = aspartic acid). The modification of materials with specific peptide sequences 

is an expensive and time-consuming process and an emerging technique is to apply alkyl 

amines to a material[155]. These act to mimic the lysine functionalities that are modified by 

extracellular enzymes during cell proliferation[155], [156]. Finally, careful thought must be 

given to the final structure of any network designed to sustain tissue regeneration, as too 

narrow a mesh size will inhibit any cell growth. Material architecture is also expressly 

important in the emerging field of stem cell differentiation[157]. 
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There are four primary cell assays that are undertaken to assess biocompatibility of a new 

material. These are: cell contact toxicity, cell extract toxicity, cell seeding and cell 

proliferation. Together these assays build a picture that informs if a material itself is toxic to 

cells, whether it leaches toxic chemicals, and finally if cells are able to adhere to and 

proliferate upon the material‘s surface. 

The cells chosen for contact studies in this work were primary dermal fibroblasts (HDF) and 

renal epithelial cells (REpC). Fibroblast and epithelial cells are often found growing together 

in the tissues of the body, but they exhibit very different phenotypes and perform different 

biological roles. The differences in membrane proteins are responsible for each cell type‘s 

specific interactions and the movement of small molecules into and out of the cell. Protein 

typically represents 50% of the plasma membrane, although this value can vary dramatically 

depending on the cell type. Despite this there is still a high ratio of lipid molecules to protein 

due to their smaller size (figure 1.7.1).   The variances in protein expression are what 

differentiate fibroblast cells from epithelia and other cell types. 

 

 

 

 

Figure 1.7.1 – Side- (top) and top-down representations of protein and lipids in the cell 

membrane[158]. 

 

This means that due to differences in protein expression and extracellular matrix (ECM) 

development, the fibroblasts and epithelial cells may have opposite responses to the same 

material. The extracellular matrix is best imagined as a scaffold that provides sites for cell 
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attachment and structural support. In addition, it also acts as a store for small signalling 

molecules that regulate inflammation, cell movement and angiogenesis[159].  

The epithelium lines the cavities of many of the body‘s compartments. As well as forming a 

physical barrier, the epithelium is responsible for absorption and secretion, as well as 

detecting changes in environment. Generally, there is little space between individual 

epithelial cells with physical links through tight cell junctions. This means that the cells are 

able to form continuous sheets which can act like a barrier (figure 1.7.2). 

 

Figure 1.7.2 – Diagram of a continuous epithelial sheet. 

 

Epithelia have a minimal ECM and are linked together at tight junctions between cells that in 

turn form a tight barrier between body parts. In RePCs, plasma membrane proteins are 

spatially arranged so that proteins are confined to the apical and basal domains in the 

membrane (figure 1.7.3)[158]. Tissue polarity is governed by cell interactions – either with 

the ECM or another cell – and it is this that means the apical and basal layers can perform 

different functions[160].  

 

Figure 1.7.3 – Diagram representing the apical and basal plasma membranes, and the tight 

junctions between epithelial cells. 

 

Underlying epithelial cells is the basal lamina and this connects to a layer of fibroblasts in 

order to build tissues and organs. Fibroblasts can be seen to have a different structure and 

growth pattern to epithelia, related to their role as connective tissue (figure 1.7.4) 
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Figure 1.7.4 – Diagram representing normal fibroblast morphology. 

 

As already mentioned, fibroblast cells are critical for the healing of wounds and for structural 

integrity. Fibroblasts produce precursors of the extracellular matrix, for instance collagen, 

and many diseases have been related to errors in fibroblast activity[161]–[163]. Fibroblast 

cells also influence wound healing as mitosis is stimulated by tissue damage, encouraging the 

production of ECM molecules, for instance glucosaminoglycans and elastic fibres. 

Unsurprisingly, fibroblast cells show a well-developed extracellular matrix, which is 

designed to withstand some mechanical stress[158]. However, this has been found to apply 

only along the length of the cell[164]. Mechanical stress on fibroblasts has also been seen to 

increase their production of collagen I[165] whilst vocal fold fibroblasts show increased rates 

of proliferation when subjected to vibration[166]. 

 

There are some situations in which fibroblast cells are able to arise from epithelia and this is 

called an epithelial-mesenchymal transition (EMT). EMT is an essential process during 

embryonic development but it is also linked with tumours and other diseases[167], [168]. 

Factors that induce EMT are varied and the pathways involved require much more depth than 

is necessary for this review. Interested parties are directed to the referenced articles[169]–

[172].  

Conversely, there are also developmental stages where epithelia are able to arise from sheets 

of fibroblast cells and this is known as a mesenchymal-epithelial transition (MET). Once 

again, the reader is directed to the referenced sources for further information about this 

process[173]–[176]. 
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2 - Synthesis of oligo(n-butyl methacrylate) with 

acid or amine end groups 

2.1 Introduction 

 

The purpose of this work was to build upon previous work done within the Rimmer group 

that showed fibroblast cytocompatibility with acid-ended oligomeric butyl methacrylate with 

Mn>2700[177]. Initially, reactions were performed to identify the optimal conditions for 

emulsion polymerisation between butyl methacrylate and butadiene. Ozonolysis was then 

used to cleave the polymers at the site of butadiene insertion. Work up with selenium 

dioxide/hydrogen peroxide functionalised the resulting oligomers with carboxylic acid end 

groups. These activated oligomers were then subject to modification with various alkane 

diamines as per previous work[178] and their cytocompatibilty with human primary cells was 

investigated. This work produced butyl methacrylate oligomers of Mn 10,000-22,000Da. The 

cell culture results indicate that fibroblast cells may prefer acidic functionality whilst 

epithelial cells are better able to proliferate on amine materials. Optimised oligomers could be 

used as surface coatings to introduce functionality and improve biocompatibility, whilst the 

cytotoxicity of these compounds is of interest as oligomeric dispersions are the main product 

from in vitro degradation of aliphatic polyesters[179]. 

 

As previously reported, a semi continuous monomer-starved process was adopted for the 

copolymerisation of n-butyl methacrylate and butadiene[177], [178], [180], [181]. A batch 

polymerisation would not be appropriate as the co-monomer butadiene would volatilize from 

the system before reaction could occur. In this situation, careful control of the monomer feed 

rate(s) prevents a monomer flooded system from occurring. Monomer flooded systems 

resemble a batch polymerisation and butadiene can easily volatilize away. A two-syringe gas 

pump was used to control the rate of butadiene injection, whilst a calibrated peristaltic pump 

controlled the liquid monomer feed over the course of 16 hour reactions. Despite this 

polymerisation having been previously carried out successfully[178], it was found that 

different reaction conditions were necessary for the incorporation of butadiene into the 

polymer. 

 

Butadiene is a small, hydrophobic monomer and cyclodextrins were therefore employed as 

solubilizing agents to decrease the instantaneous vapour pressure during polymerisation. 
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Cyclodextrins are cyclic oligosaccharides, composed of glucopyranose units seen in figure 

2.1.1. These structures adopt a toroidal shape, with a central pore that is less hydrophilic than 

the surrounding aqueous environment[182] and enable the formation of inclusion complexes 

with small hydrophobic monomers.  

 

Figure 2.1.1– From left to right, structure of α, β and γ cyclodextrins. Internal diameter (nm) 

of each cyclodextrin is shown. 

 

Cyclodextrins allow the aqueous phase initiation and Z-mer formation of molecules that are 

not normally able to undergo emulsion polymerisation[183], [184] and Ritter has notably 

reported the formation of CD-monomer complexes that have then been polymerised[185]–

[189] using such hydrophobic monomers such as styrene and isobornyl acrylate. The use of 

cyclodextrins in biomaterials is not disadvantageous and several reviews into the 

pharmaceutical uses of cyclodextrins have been provided by Loftsson[190]–[192]. Studies 

have also indicated that the cytotoxicity of cyclodextrins follows γ < α < β, where γ is least 

toxic[193], [194] and cyclodextrins administered orally are practically non-toxic[195].  

Oxidative cleavage is a non-selective technique whereby the two alkene carbons of a C=C 

bond are converted to carbonyl functionality. When polymer molecules are exposed to ozone, 

both 1,2- and 1,4- orientated alkene bonds are cleaved by the mechanism described in chapter 

1.3. For the purposes of the project non-selectivity is not a disadvantage, as any cleavage that 

does not occur in the polymer backbone will simply give rise to acid functional pendant 

groups. 

Cell studies were performed using primary human dermal fibroblasts (HDF) and human renal 

epithelial cells (REpC) in direct contact with oligomers over 72 hours. Cell viability and 

microscopy studies were performed after 24 and 72 hours to assess cell adhesion, growth and 

health. It was expected that the two cell types might show a preference for oppositely 

functional materials, due to the differences in their plasma membrane phenotype as 

previously discussed in chapter 1.  
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2.2 Results and Discussion 

2.2.1 Monomer starve-fed emulsion polymerisation of 

butyl methacrylate and butadiene 

 

Scheme 2.2.1.1 – Scheme of emulsion copolymerisation of n-butyl methacrylate and 

butadiene. KPS = potassium persulfate. 

 

Initially it was found to be much more difficult than expected to incorporate butadiene into 

the final product using emulsion polymerisation (scheme 2.2.1.1). This was caused by 

volatilisation of the co-monomer before it could successfully react within the reaction vessel. 

A series of emulsion polymerisations were performed at 70 ºC over 4-16 hours, and the 

amount of butadiene fed into the reaction was also increased from 0.05 to 2 moles. Despite 

these efforts, butyl methacrylate polymers still contained negligible butadiene. Without 

butadiene to provide cleavage sites ozonolysis could not be used to split the polymer 

backbone into oligomeric segments. 

A polymerisation was performed at the higher temperature of 80 ˚C. The rationale for 

increasing the temperature was to increase the rate of polymerisation: thus creating a 

monomer starved system. Any butadiene entering the system should, with the aid of 

cyclodextrins, react before it can be volatilised. Also, any increased loss of butadiene would 

be minimised by the addition of a new condenser to the reaction vessel, enabling cooling of 

effluent gases to -14 ˚C. 

Figure 2.2.1.2 shows that 1 mole of butadiene fed into the reaction at 80 ˚C (24 mL/min feed 

rate) led to successful alkene incorporation into the final polymer. All described reactions 

contained β-cyclodextrin at 1% unless otherwise stated. 

 

 



33 

 

 

 

Figure 2.2.1.2 – 
1
H NMR spectrum of poly(butyl methacrylate-co-butadiene) polymerised at 

80˚C.  

 

The resonances at 5.57ppm and 6.12ppm indicate the predominant 1,4-insertion of butadiene 

in the cis and trans configuration. The peak at 5.05ppm is due to 1,2-terminal olefins whilst 

the signal at 5.45ppm is due to non-terminal 1,2- inserted butadiene[196]. The data obtained 

here shows some variation from literature values, and this is thought to be due the electron 

withdrawing effects of the butyl methacrylate co-monomer. The 
13

C NMR spectrum provides 

further evidence that the majority of butadiene insertion occurred in a 1,4-configuration. 

 (figure 2.2.1.3). The 1,2-insertion of butadiene would result in two sp
2
 carbon environments, 

and therefore two opposing peaks would be observed on the 
13

C spectrum. The single peak 

shown here correlates well with cis-polybutadiene that has been previously 

characterised[197]. 
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Figure 2.2.1.3 – 
13

C spectrum of poly(butyl methacrylate-co-butadiene) polymerised at 80˚C. 

Of note is the single alkene peak at 125ppm. 

DEPT-spectra: above baseline are even number of protons (CH2) and below baseline is odd 

number of protons (CH, CH3). 

 

After the successful 1,4-insertion of butadiene at 80˚C, the influence of cyclodextrin on the 

reaction system was investigated. The reaction was repeated in an identical manner but in the 

absence of cyclodextrin. This product still showed some incorporation of butadiene (figure 

2.2.1.5) but less than in the presence of cyclodextrin. Figure 2.2.1.6 provides a comparison of 

butadiene content of polymerisations performed with and without cyclodextrin stabilisation. 

These results show that cyclodextrin is essential for successful butadiene incorporation in this 

type of reactor configuration. Reactions performed at 75°C allow the greatest butadiene 

incorporation only in the presence of either α- or β-cyclodextrin (0.9% and 0.6% butadiene 

content in final product respectively). This confirms previous assumptions that cyclodextrin 

acts as a stabilising molecule that traps butadiene within the reaction system. Reactions 

performed without cyclodextrin and those performed at the higher temperature 80°C showed 

little to no incorporation of butadiene. This can be attributed to the volatilisation of butadiene.  
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Figure 2.2.1.5 – 
1
H NMR comparison of poly(butyl methacrylate) prepared in the presence 

of butadiene with and without cyclodextrin. Polymerisations performed at 80 ˚C. 

 

 

Figure 2.2.1.6 – Graph comparing the butadiene content in poly(butyl methacrylate) under 

different reaction conditions. % Butadiene calculated using integrations from 
1
H NMR 

spectrometry. 

 

Figure 2.2.1.7 shows that butadiene incorporation at 75 °C with β-cyclodextrin displays a 

simple splitting pattern which is associated with 1,4-insertion. It is suggested that this 

therefore is the optimal reaction conditions for copolymerisation between butyl methacrylate 

and butadiene in this unpressurised reactor configuration. 
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Figure 2.2.1.7 - 
1
H NMR comparison of poly(butyl methacrylate) prepared in the presence of 

butadiene with and without cyclodextrin. Polymerisations performed at 75˚C. Alkene proton 

resonances seen at 5.5 and 6.1ppm. 

 

All polymers were subjected to SEC GPC using tetrahydrofuran as the solvent. Table 2.2.1.8 

provides a summary of this analysis. It is possible to see here that β-cyclodextrin produces 

polymers of slightly lower Mn than α-cyclodextrin. This is because as higher amounts of 

butadiene are incorporated, the average propagation rate constant (  ̅̅̅̅ ) decreases. The   ̅̅̅̅  of 

n-butyl methacrylate at 60 ºC is 976[198], whilst it is only 0.057x10
-3

 for butadiene at 30 

ºC[93].  

Reaction Conditions % Butadiene   ̅̅ ̅̅ ̅   ̅̅ ̅̅ ̅   ̅̅ ̅̅  PDI 

80°C, β-CDX, 1mole BD, 0.63moles BMA 0.2% 16300 44700 89250 2.7 

80°C, 1mole BD, 0.63moles BMA 0.3% 40850 124000 252550 3.0 

75°C, β-CDX, 1mole BD, 0.63moles BMA 0.9% 18450 57550 129100 3.1 

75°C, 1mole BD, 0.63moles BMA 0 35650 80300 183550 2.3 

80°C, α-CDX, 1mole BD, 0.63moles BMA 0 22500 57800 112350 2.6 

75°C, α-CDX, 1mole BD, 0.63moles BMA 0.6% 40800 88200 153580 2.2 

Table 2.2.1.8 – GPC analysis of butyl methacrylate polymers. Where CDX is β-cyclodextrin. 

  ̅̅ ̅̅  and   ̅̅ ̅̅ ̅ given in Daltons. 
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Figure 2.2.1.9 demonstrates that all butyl methacrylate polymers have approximately the 

same molar mass distribution (MMD). The molar mass distribution describes the relationship 

between the number of molecules (LogM) and their molecular weight (dw/dLogM). The  

presence of β-cyclodextrin can be seen to increase butadiene incorporation and yet their 

presence decreased the average molar mass. Those polymers synthesised without any 

cyclodextrins gave high molecular weights contained negligible butadiene and were not 

suitable for further treatment by ozonolysis. α-Cyclodextrin was found to be a viable 

alternative at 75 °C, producing a butyl-methacrylate-butadiene copolymer with   ̅̅ ̅̅  40800Da. 

The decrease in molar mass produced by inclusion is probably not due to reactions with the 

cyclodextrins. Rather, the increased frequency of propagation steps involving butadiene 

reduces the overall average rate of propagation relative to the rate of termination. 

 

 

Figure 2.2.1.9 – Molar mass distribution for various poly(butyl methacrylates) synthesised in 

the presence of butadiene and cyclodextrin (see legend). 
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2.2.2 Formation of oligo(butyl methacrylate) and end 

group functionalization 

 

Scheme 2.2.2.1 – Scheme showing ozonolysis of poly(n-butyl methacrylate-co-butadiene). 

 

Scheme 2.2.2.2 – Scheme showing amidation of acid ended butyl methacrylate oligomer. 

 

Polymers which had been identified by NMR spectroscopy to contain butadiene were 

subjected to cleavage by ozonolysis (schemes 2.2.2.1 and 2.2.2.2). As alkene sites along the 

polymer backbone were cleaved by ozone, oligomers were formed. By varying the work up 

conditions, the end groups of these oligomers can be functionalised into aldehydes, ketones 

and carboxylic acids. In this instance, all oligomers were given carboxylic acid end groups as 

it is then a relatively trivial procedure to further react these oligomers with excess of diamine-

functional compounds to produce oligomers with primary amine end groups. The success of 

the ozonolysis of polymers was observed using GPC and NMR. 
1
H NMR spectroscopic 

analysis of the oligomeric product confirmed loss of the alkene moieties (figure 2.2.2.3) 

whilst GPC showed a significant decrease in molar mass consistent with backbone cleavage 

(table 2.2.2.4). The molar mass distribution can be seen to become much broader (figure 
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2.2.2.5) whilst   ̅̅ ̅̅  has significantly decreased. This is consistent with cleavage of polymer 

chains that have alkene insertion randomly along the chain. The increase in the breadth of the 

molar mass distribution is a consequence of changes in the efficiency in the placement of 

butadiene in the chain as the polymerisation progresses. Further optimisation of the 

copolymerisation can provide narrower molar mass distributions after ozonolysis and perfect 

statistical placement in the copolymer chain is predicted to decrease the MMD compared to 

the non-ozonised material. In this study a broad distribution of molar masses is potentially an 

advantage as  lower molar mass oligomers, with high amine end group content, are expected 

to diffuse to the surface of the films cast for cell culture while the higher molar mass fractions 

form the bulk of the coatings. This means that the maximum amount of the imposed 

functionality should be available for cell-polymer interactions. 

 

Figure 2.2.2.3 - 1H NMR of poly(BMA-BD) after treatment with ozone demonstrating the 

loss of resonance in the alkene region (5.5-6.5ppm) 

 

 

   ̅̅ ̅̅ ̅   ̅̅ ̅̅ ̅   ̅̅ ̅̅  PDI 

Polymer 16300 44700 89250 2.7 

Oligomer 1400 14200 52750 10.1 

Table 2.2.2.4 -  GPC analysis of butyl methacrylate-co-butadiene polymer before and after 

ozonolysis. Molecular weights given in Daltons. 
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Figure 2.2.2.5  – Molar mass distribution of butyl methacrylate polymer (red) oligomer after 

ozonolysis (blue). The molar mass distribution has a lower average and broadens after ozone 

treatment. 

 

Functionalisation with diamine occurs through the formation of an amide linker between 

CO2H and NH2. The carbodiimide EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) 

was used as a coupling agent. The proposed mechanism of amide formation by EDC is shown 

in scheme 2.2.2.6. Carbodiimides are dehydrating agents that activate carboxylic acids for 

amide or ester formation. They can also produce unwanted byproducts, however. The 

mechanism of amide formation by EDC in aqueous solution was investigated by Nakajima 

and Ikadan[199]. Their work confirmed that the presence of both protons and carboxyl 

groups is required for amide formation, and determined an optimal pH range of 3.5-4.5. The 

formation of the side product N-acylurea (5) in the presence of excess EDC was also 

confirmed[200]. Amidation reactions were performed in a two-step process whereby 

oligomer and EDC were first added  into the reaction vessel, followed by the slow addition of 

diamine. The carboxylic acid end groups on the oligomer prevent the hydrolysis reaction in 

the first step.  
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Scheme 2.2.2.6 – Reaction scheme showing the formation of amide (7) and by-products 

using EDC coupling agent. Where 1 = Carbocation derivative of carbodiimide, 2 = urea 

derivative, 3 = O-acylisourea, 4 = carbocation derivative of O-acylisorea, 5 = N-acylurea, 6 = 

carboxylate, 7 = amide and 8 = carboxylic anhydride. 

 

2.2.3 Characterisation of functionalised oligomers 

After end group modification oligomers were subject to various characterisation techniques.  

FT-IR studies confirmed that amines and amide linkers were absent from the acidic oligomer 

but present in those that had been treated with amine. Figure 2.2.3.1 shows that the acidic 

oligomer has the signature broad absorbance band at ~3400 cm
-1

 due to the OH stretch. The 

acidic oligomer also displays peaks at the frequencies 1700 cm
-1

 and 1200cm
-1

 which could 

be caused by C=O and O-C stretches in the BMA pendant groups and/or in the acid end 
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groups. As these stretches are also seen in the aminated oligomers it is reasonable to assume 

the two functionalities are overlapped in the acid oligomer. All of the oligomers exhibit 

alkene carbon stretches just under 3000cm
-1

. The absorbance bands at 1445 cm
-1 

seen in all 

oligomers are due to CH scissoring; however, some broadness in non-acidic oligomers is to 

be expected caused by an overlap with N-H stretching expected around 1500cm
-1

. Finally the 

oligomers treated with diamines all exhibit activity between 580-650cm
-1

 and 930-980cm
-1

 

which can be attributed to NH2 and NH wag modes. 

 

Figure 2.2.3.1 – Combined FT-IR of acidic and aminated oligomers, where 1,2 = reaction 

with 1,2-diaminoethane through to 1,6- = hexamethylenediamine. 

 

GPC analysis of the functionalised oligomers is summarised in table 2.2.3.2. Here the amine 

functional oligomers can be seen to have comparable molar masses and table 2.2.3.3 confirms 

similar molar mass distributions. A noticeable amount of chain extension and narrowing of 

polydispersity is seen after the reaction with diamine. The increase in molar mass after 

treatment with diamine is probably the consequence of a single diamine reacting with the acid 

ends of two different polymer chains and therefore acting as a linker. Additionally, where one 

end of the diamine has added to the polymer, it is then possible for ‗back-biting‘ to occur, 

where the free amine end reacts with the other acid group on the opposite end of the polymer. 
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Oligomer   ̅̅ ̅̅ ̅   ̅̅ ̅̅ ̅   ̅̅ ̅̅  PDI 

Acid 
1400 14200 52750 10.1 

1,2-NH2 12250 44750 124250 3.7 

1,3-NH2 11400 45900 152150 4.0 

1,4-NH2 11600 44950 126350 3.9 

1,6-NH2 13000 27550 43600 2.1 

Table 2.2.3.2- Summary of molar mass (Daltons) and polydispersity for functionalised 

oligomers. 

 

 

Figure 2.2.3.3 – Combined molar mass distributions (MMD) of poly(butyl methacrylate) 

subjected to ozonolysis and worked up with H2O2/SeO2 to produce acid end group 

functionality and then an excess of the relevant diamine plus EDC to give amine end group 

functionality. 

 

The contact angle measurements were obtained for the acidic oligomer (54.4º±1.2) and the 

1,2-diamine functionalised oligomer (4.75º±0.17) but values for the other amine functional 

oligomers were not easily obtainable as the droplets quickly dispersed on the surface of the 

material. This is an important result as it indicates a much higher charge separation on the 
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amidated oligomers. This again confirms the successful coupling reaction with diamine, and 

the difference in surface properties between acid and amine functional oligomers. These 

properties are vitally important when developing new biomaterials[201], [202] and it is 

expected that cell interactions will differ between acid and amine functional oligomers. 
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2.2.4 Cell contact studies 

Human Dermal Fibroblasts 

Polymers were dissolved in isopropanol and cast onto a sterile glass coverslip, 22x22mm. 

1.5x10
4
 cells were then directly seeded onto the polymers and incubated in normal conditions 

for 72 hours prior to undergoing viability testing and staining. The results from seeding with 

human dermal fibroblast (HDF) cells are summarised in figure 2.2.4.1. 

 

 
Figure 2.2.4.1 Alamarblue results after incubation of HDF for 72 hours in direct contact with 

oligomers. Contact experiment repeated on two separate occasions (1and 2). Error calculated 

to 95% confidence. One way analysis of variance (ANOVA) and post-hoc Tukey‘s analysis 

was performed to find statistically significant results (marked with *). 

 

The amidated oligomers performed significantly worse compared to the tissue culture plastic 

(TCP) standard for fibroblast viability in both experiments presented here. The 1,2-

diaminoethane ended polymer also has a significantly lower cell viability in experiment 1. 

However, based on this one experiment it is unknown if this is due to oligomer toxicity or 

culture conditions. Taking into account the broad molecular weight distribution of the 

oligomeric products, these results could be caused by the leeching of toxic short chain 

molecules. Therefore, a higher molecular weight polymer with acid functionality may show 

good cell viability. Polymer size and mass have been identified as important properties when 

investigating the biocompatibility of synthetic materials. Polyethylenimine, which is used as 

a transfecting agent, has been shown to be much more effective in the linear form[203] and at 

higher molar masses[204]. 
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Of the amidated oligomers, it can be seen that the 1,4- difunctional oligomers are able to 

withstand slightly higher cell numbers although still not as many as the acid functional and 

standard materials. This is likely due to the similarities held between the amino terminal 

residues of the oligomer and the amino acid lysine which has the chemical formula 

HO2CCH(NH2)(CH2)4NH2. 

Optical microscopy was used to investigate the morphology of the adhered cells (figure 

2.2.4.2).  In all experiments cells were incubated on oligomer-coated coverslips. These 

images showed that the oligomers with acid functionality were covered with the largest 

amount of fibroblasts and these cells were closest in appearance to those on TCP. This could 

be due to the surface chemistry, or as a consequence of the topography of the cast oligomers. 

Surface nano-topography may be important in adherent cell cultures[205]–[207] but 

elucidating the interplay of surface chemistry and topography remains elusive. The acidic 

oligomer has a smooth surface when viewed by phase contrast microscopy (figure 2.2.4.3). 

The amidated oligomers appeared slightly rougher and this may have some effect on cell 

adhesion, as witnessed by microscopy after 24 hours. The 1,6-NH2 functionalised oligomer is 

seen to have the greatest fibroblast adhesion out of all the amine functional oligomers via 

microscopy, but it still performs poorly as a cell culture substrate material. Figure 2.2.4.4 

shows higher magnification images of the fibroblast cells after 72 hours culture on 

functionalised oligomers. These images show a comparable cell morphology and density 

between TCP and the acid functional oligomer. However, the nuclei of the cells grown on the 

oligomer are slightly less pronounced. Fibroblast morphology on the amidated oligomers is 

abnormal with the appearance of spindly cells that are sparsely spaced.  This further confirms 

that oligomers with amine end group functionality are not a suitable fibroblast cell culture 

substrate. Acid functional oligomers show promise and could be further tailored. 
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24 hours 72 hours 

Acid 

1,2-NH2 

1,3-NH2 

1,4-NH2 

 

1,6-NH2 

 

Figure 2.2.4.2 - Images comparing fibroblast adhesion on functionalised oligomers after 24 and 72 hours at 

4x magnification. 24 hours= phase contrast, red circles indicate adhered cells. 72 hours = cells fixed and 

stained with Giemsa solution. 
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Figure 2.2.4.3 – Phase contrast images of oligomer films after drying. Where A = acid 

functional end groups and B= 1,NH2, C=1,3-NH2 ,D=1,4-NH2 amine functional end groups. 
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Figure 2.2.4.4 – 20x magnification images comparing fibroblast adhesion and morphology 

on functionalised oligomers and TCP. Cells cultured on oligomers for 72 hours then fixed 

with 10% formalin and stained with Giemsa. A= Acid oligomer. B= 1,2-NH2 functional. C= 

1,3-NH2 functional. D= 1,4-NH2 functional. E= 1,6-NH2 functional. F= TCP. Arrows mark 

abnormal spindly cells.  
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Human Renal Epithelial Cells 

Primary renal epithelial cells were cultured in direct contact with oligomer films in an 

identical manner to the fibroblasts, mentioned above. The viability assay results are shown in 

figure 2.2.4.5 below. 

 

 

Figure 2.2.4.5 Alamarblue® results of 72 hour HREpC incubation in direct contact with 

oligomers. 

 

Experiment 1 with the epithelial cells indicate that the acidic and 1,6- ended oligomers are far 

preferable for cell growth and adhesion when compared to the shorter chain diamines.  

This is confirmed clearly by the cell images taken at 24 hours in figure 2.2.4.6 which show 

little to no cell adhesion on the 1,2-, 1,3- and 1,4- functional oligomers. However, further 

seeding experiments suggest that such an extreme difference between the different oligomers 

does not exist and that, whilst not comparable to control materials, all are equally able to 

provide a suitable substrate for cell culture. For all experiments the healthiest cell 

morphology, closest to that seen on the TCP controls, and attachment was seen on the 1,6-

functional oligomer (figure 2.2.4.7). The cells on the 1,3-NH2 oligomer can be seen to be 

underdeveloped with smaller nuclei when compared to those cells on the acid and 1,6- 

oligomers. The cells on the 1,2 and 1,4- oligomers were too underdeveloped to image 

effectively and are not shown. 
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24 hours 72 hours 

Acid 

1,2-NH2 

1,3-NH2 

1,4-NH2 

 

1,6-NH2 

 

Figure 2.2.4.6 - Images comparing epithelial adhesion on functionalised oligomers after 24 and 72 hours at 

4x magnification. 24 hours= phase contrast, red circles indicate adhered cells. 72 hours = cells fixed and 

stained with Giemsa solution. 
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A 

B 

C 

D 

Figure 2.2.4.7 - 20x images of epithelial cells cultured for 72 hours on A= acid, B= 1,3-NH2  and 

C= 1,6-NH2 functionalised oligomers. D= tissue culture plastic. Cells stained with Giemsa. 
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The cell morphology on the acid oligomer is erratic. Some cells display good adhesion and 

prominent nuclei comparable with the TCP control whilst others appear rounded or 

enlongated (marked with arrows on figure 2.2.4.7 A). This indicates that whilst epithelial 

cells are able to adhere and proliferate on the acid functional material, this growth is not 

entirely healthy and normal. Epithelial cells express transglutaminases (Tgase), calcium-

dependent enzymes that are able to cross link free amine groups to the gamma-carboxamide 

group of bound glutamine[208]–[210] Tgases can be extracellular or reside within the 

cytoplasm and almost since their discovery have been linked to cell morphology and 

adhesion[211], [212]. They are of interest especially as they have been previously shown to 

aid the adhesion and mobility of epithelial cells[213]. It is possible Tgases are acting to 

stabilise the epithelial cells and assist the formation of cell-polymer linkages. 
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2.3 Conclusions 

Through the course of this work it has been identified that cyclodextrins are essential for the 

successful inclusion of butadiene into an n-butyl methacrylate backbone, as is a reaction 

temperature of 75 °C. However, despite this polymers still showed relatively low levels of 

butadiene incorporation when compared to the amount of monomer added to the reaction. 

Copolymers of butyl methacrylate-butadiene were successfully cleaved using ozone and then 

successfully worked up to contain either acid or amine end group functionality. The 

successful end group functionalization of the butyl methacrylate oligomer was shown using 

FT-IR and elemental analysis.  

Contact angle measurements were not possible on many of the films formed by the amidated 

oligomers. This indicates a surface with a high charge separation and provides reassurance 

that much of the amine functionality was present on the surface of the films. 

Fibroblast and epithelial cell culture on the functionalised oligomers showed that overall, no 

material was a competitor for the standards tissue culture plastic and poly(lactide-glycolic 

acid). Dermal fibroblast cells showed greatest cell adherence and proliferation on the acid 

functional oligomer. Optical microscopy showed that these cells were comparable to those 

cultured on TCP control material. Growth on the amine functional oligomers was sparse and 

the cells displayed an abnormal spindly morphology. Cell viability results taken in hand with 

size exclusion chromatography suggest that low molecular weight molecules could leach 

from the oligomers which could potentially be toxic to cells.  

The results of the renal epithelial cell culture in direct contact with functionalised oligomers 

showed that the 1,6-diamine functional oligomer was the preferred. Some abnormal epithelial 

growth was observed on the acid functional oligomer. This is in direct contrast to the 

fibroblast cell culture results, and is probably due to the expression of transglutaminase by 

epithelial cells. Transglutaminase (tgase) may be able to catalyse the cross-linking of 1,6-

diamine groups present in the oligomer film with glutamate residues in extracellular 

biomolecules. 

Fibroblasts, being structural cells, are believed to rely on a different adhesion mechanism. It 

is proposed that the acid functional polymers are mimicking the negatively charged 

proteoglycans that reside within the extracellular matrix. The presence of negatively charged 

species ensures that cells stay hydrated, through the attracted of water and they may also 

allow the storage of growth factors. 

In conclusion, these results suggest the potential for new cell culture substrates using 

oligo(BMA) functionalised with acid (fibroblast cells) or 1,6-diamine end groups (epithelial 
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cells). However, both systems require further optimisation through oligomer compositon and 

their purification. Additionally, longer term culture studies are required and further cell 

assays: for instance the DNA stain pico green and the fluorescent live/dead staining system 

can both be used to assess cell health. 
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2.4 Experimental 

Instrumentation 

NMR spectra were obtained using either a Bruker AC-250 (operating frequency 
1
H- 250 

MHz, 
13

C- 62.5 MHz) or a Bruker AMX2-400 (operating frequency 
1
H- 400 MHz, 

13
C- 100 

MHz) spectrometer depending on the required resolution. Analysis was performed using 

TopSpin™. 

THF Gel permeation chromatography was performed using a Polymer Laboratories LC1150 

pump with dual model 481 Lambda-Max LC spectrophotometer UV detector obtained from 

ERMA and Viscotek RI detector. The stationary phase comprised 2 x 40 cm Polymer 

Laboratories PL gel mixed-E columns (5 mm particle size, Effective MW range 103 – 0.2 x 

106 g mole-1) + guard columns. The flow rate of the mobile phase was 1.0 ml/min. 

Automatic sampling was performed by a Gilson auto injector and analysis was performed 

using Cirrus™ GPC software. 

Triple detection GPC was performed using a Viscotek TDA 302 complete with a GPCmax 

autosampler with THF as the mobile phase (flow rate 1.0 ml/min). The stationary phase 

comprised of 2 x 300 mm  Polymer Laboratories PL gel mixed-C columns (effective range 

200 – 2 x 106 gmol
-1

). Analysis was performed using OmniSEC™ software. 

Ultrafiltration was performed using a stirred 400 cm
3
 Millipore ultrafiltration cell with a 

regenerated cellulose filter under 4-bar nitrogen pressure. 

Colorimetric studies were performed using end point analysis on a Dynex Technologies 

MRXII plate reader with a 570nm filter and a 600nm reference filter. 

Infrared spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR spectrometer with 

diamond tip ATR. 

2.4.1 Monomer starve-fed emulsion polymerisation of 

butyl methacrylate and butadiene 

Materials 

Butadiene (99+%, Aldrich), Potassium persulfate (99+%, Aldrich), Potassium hydrogen 

phosphate (98+%, Aldrich), DOWFAX2A1 surfactant solution (alkyldiphenyloxide 

disulfonate, Dow Chemical Company USA), sodium chloride (Fisher, Lab reagent grade), 

Methanol (Fisher, HPLC grade) Beta-cyclodextrin hydrate (Alfa Aesar) and Alpha-

cyclodextrin hydrate (Alfa Aesar)  were used as received. 
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Butyl methacrylate (99%, Aldrich) was purified before use to remove any inhibitor present. It 

was twice washed with equal portions of aqueous 2% sodium hydroxide solution, followed 

by two equal portions of distilled water. This washed butyl methacrylate was then distilled 

under reduced pressure, prior to use and stored at –4.5 ˚C. 

Distilled water was used throughout. 

 

Equipment 

Polymerisations were performed in a 1L double-jacketed glass reactor (Radleys, UK) 

equipped with an overhead mechanical glass stirrer, a nitrogen inlet, a reflux condenser, a 

temperature probe and an inlet for gaseous and liquid monomer addition. Liquid monomers 

were added using a peristaltic pump (Watson Marlow 505S) and gaseous butadiene was 

added using an infusion pump (Precidor Type 5003, Infors HT). The peristaltic pump was 

calibrated after every three uses, and tubing was cleaned using successive flows of distilled 

water and acetone. Monomer addition was controlled so that addition of both liquid and gas 

was completed at the same time and the butadiene molar feed rate was adjusted to coincide 

with the liquid monomer. The equipment set up can be seen in figure 2.4.1.1.  
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Infusion pump 

Peristaltic pump 

Reaction vessel Monomer feed 

Figure 2.4.1.1 – Photo of 1L reactor, with peristaltic and infusion pumps. 
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Method 

 

Cyclodextrin, DOWFAX 2A1 (3.6 g) and pH regulator potassium hydrogen phosphate (0.4 g) 

were added to 450 mL water and stirred until dissolved. The solution was added to the reactor 

and nitrogen purged for one hour, whilst simultaneously heated to 70 ˚C. At the same time, 

potassium persulfate was dissolved in 50 mL of water and butyl methacrylate was added to a 

two-necked round bottom flask. Both were purged with nitrogen for one hour. Once the 

contents of the reactor had reached the required temperature, the initiator solution was 

injected into the reactor and the monomer feed was started. Table 2.4.1.2 summarises the 

quantities and reaction times attempted. Reactions were also performed at 80 ˚C and 75 ˚C 

using α-cyclodextrin (3.6 g, 0.00317 moles), butyl methacrylate (100 mL, 0.63 moles) and a 

feed rate of 2 4mL/min of butadiene (1 mole) over 16 hours. 

Butyl 

methacrylate 

/mL (moles) 

Butadiene /mL 

(moles) 

Temperature 

/˚C 

Reaction 

time /hr 

 

β-Cyclodextrin /g 

(moles) 

75 (0.47) 7600 (0.32) 70 4 3.6 (0.00317) 

75 (0.47) 1200 (0.0625) 70 4 3.6 (0.00317) 

100 (0.63) 4000 (0.17) 70 4 3.6 (0.00317) 

100 (0.63) 4000 (0.17) 70 5 3.6 (0.00317) 

100 (0.63) 24000 (1) 70 16 3.6 (0.00317) 

100 (0.63) 24000 (1) 70 16 3.6 (0.00317) 

100 (0.63) 48000 (2) 70 16 3.6 (0.00317) 

100 (0.63) 24000 (1) 80 16 3.6 (0.00317) 

100 (0.63) 24000 (1) 80 16 0 

100 (0.63) 24000 (1) 75 16  3.6 (0.00317) 

100 (0.63) 24000 (1) 75 16 0 

Table 2.4.1.2 – Summary of conditions used in poly(butyl methacrylate-co-butadiene) 

syntheses. Molar values in parentheses. 

 

When both monomers had been consumed, the resulting white latex was removed from the 

reactor and stored at room temperature. 
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Solid polymers were retrieved from the latex by using sodium chloride to induce coagulation. 

The white solid was filtered and washed thoroughly with water and then methanol before 

being dried in a vacuum oven at 50 ˚C. GPC analysis was performed using tetrahydrofuran 

(GPC grade, Fisher) eluent. 

Results of NMR spectroscopy: 

(
1
H, 400 MHz, CDCl3) δppm 0.97 (A), 0.98 (E), 1.42 (B), 1.64 (C), 1.96 (F,I), 4.17 (D), 5.57 

(G), 6.12 (G) 

(
13

C, 100 MHz, CDCl3) δppm 13.7 (1,7), 19.3 (2,3), 30.2 (8), 44.9 (6), 64.6 (4), 76.5 

(CDCl3), 77.2 (CDCl3), 125.1 (Alkene), 180.7-174.4 (5). 

 

2.4.2 Ozonolysis of Poly (Butyl methacrylate-co-

Butadiene) and generation of acid end groups 

Materials 

Hydrogen peroxide (35% v/v, Alfa Aesar), selenium dioxide (98%, Aldrich), toluene (Fisher) 

and Amberlite IRA 400(Cl) (Aldrich) used as received. 

 

Equipment 

Ozone was generated by passing oxygen through an electrical discharge generator (Type BA, 

Wallace & Tiernan, UK) at a rate of 1.74ghour
-1

. 

 

Method 

The poly(BMA-co-BD) latex (200 mL) was added to a 1L 3-neck round bottom flask, 

equipped with a magnetic stirrer and dropping funnel. An equal volume of distilled water 

(200 mL) was added with stirring. Toluene (50 mL) was added dropwise to the diluted latex 

over 4 hours at room temperature. The swollen latex was then stirred for a further 24hours. 

After this time a reflux condenser was added to the flask and it was placed in an ice bath. A 

glass inlet was used to introduce ozone at a rate of 1.74 ghour
-1

 for 6-8 hours, with constant 

stirring of the latex throughout. The ice bath was topped up as required during this time. On 

removal of the ozone inlet, a nitrogen inlet was introduced for an hour to remove any residual 

ozone from within the flask. 
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Selenium dioxide (4 g, 0.03 moles) and hydrogen peroxide solution (35 % v/v) (100 mL, 1 

mole) were then added to the colloidally stable latex with stirring. This was heated to 80
o
C 

and refluxed for 24 hours to generate acid end group functionality. 

 

Purification of acidic poly(BMA-co-BD) 

 

Amberlite IRA 400(Cl) (20 g) was placed into a conical flask with 100mL of latex. The flask 

was placed onto an orbital shaker with a very low setting and gently shaken. After about 5 

hours the latex was decanted into a second conical flask containing fresh Amberlite IRA 400 

(Cl) and was shaken gently overnight. The latex was then removed and placed into dialysis 

visking tubing and placed into distilled water. Twice daily water changes occurred over a 

period of one week. The latexes were then removed from the dialysis tubing and any toluene 

present was removed by reduced pressure. The water was then azeotropically removed by 

addition of ethanol and then removing by reduced pressure. 
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2.4.3 Diamine Addition to Oligo(BMA-co-BD) with acid 

end groups 

Materials 

Ethylenediamine (99%, Aldrich), 1,3-diaminopropane (99%, Aldrich) 1,4-diaminobutane 

(99%, Aldrich), 1,6-diaminohexane (99%, Aldrich), 1-(3-dimethyl-aminopropyl)-3-

ethylcarbodiimide hydrochloride (Alfa Aesar) were used as received. Distilled water was 

used throughout. 

 

Method 

The oligo (BMA) + COOH latex (75 mL) was added to a 3-neck round bottom flask, 

equipped with a condenser and magnetic stirrer bar. DOWFAX 2A1 was then added to the 

flask and vigorous stirring was started. At the same time 1-(3-dimethyl-aminopropyl)-3-

ethylcarbodiimide hydrochloride (EDC) was weighed out and dissolved in 45mL of water. 

The stirring solution of latex and surfactant was then submerged into an ice bath; the aqueous 

solution of EDC was then added slowly, upon completion, of addition, a stable latex 

remained. The appropriate diamine was then added to the stirring latex slowly over a period 

of at least an hour. Substantial effervescence was observed at this stage. The reaction was left 

to warm to room temperature and continued to stir for 24 hours. The quantities used for each 

reaction are shown in table 2.4.3.2. 

 

Diamine 

Amount used EDC DOWFAX2A1 (g) 

Ethylenediamine 4.651g (0.08 moles) 3.6971g (0.02 moles) 1.210g 

1,3-diaminopropane 5.841g (0.08 moles) 3.7123g(0.02 moles) 1.211g 

1,4-diaminobutane 6.812g (0.09 moles) 3.6991g(0.02 moles) 1.210g 

1,6-diaminohexane 7.941g (0.09 moles) 3.7114g(0.02 moles) 1.202g 

Table 2.4.3.2 – Table of reagents used in EDC-mediated diamine-oligomer cross coupling 

reaction. 

1, 6-diaminohexane is a solid and an aqueous solution of this was prepared in 90 mL of water 

which was then added to the reaction mixture. 
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Purification of amidated oligomers 

 

The stable emulsions were removed placed into dialysis visking tubing and placed into 

distilled water for 2 weeks, with daily changes of water taking place. 

 

2.4.4 Culture of fibroblast and epithelial cells 

All described protocols performed under sterile conditions in a dedicated laminar flow hood, 

using 70% alcohol (ethanol or isopropanol) and Virkon® solutions as cleaning agents. 

Human dermal fibroblasts 

Materials 

Primary normal dermal fibroblasts (ATCC), Dulbecco‘s modified Eagle‘s medium (HEPES 

buffered, high glucose, + pyruvate, Life Technologies), fetal bovine serum (FBS; sterile 

filtered, non-USAorigin, Sigma), penicillin-streptomycin (pen-strep; 10000µ, Life 

Technologies), trypsin-EDTA (0.25%, Life Technologies), trypan blue stain (Life 

Technologies).  

Equipment 

Purecell NU-5100 CO2 Direct Heat Air Jacketed Incubator (Nuaire). 

Culture 

60 mL of DMEM was removed from the 500 mL bottle, and replaced with 50 mL FBS and 

10 mL penicillin-streptomycin. The bottle was agitated before 9 mL of complete medium was 

removed and placed in a T75 cell culture flask. This aliquot of medium was warmed in the 

incubator for 30 minutes, whilst the remaining media was stored in the fridge for up to six 

weeks. After 30 minutes the cryopreserved cells were gently agitated in a water bath at 37 °C 

for 1 minute, until the frozen ‗plug‘ broke inside the vial. The cells were then quickly 

transferred to the pre-prepared T75 and gently swirled to thaw completely. The cells were 

kept in the incubator at 5% CO2, 37 °C for 24 hours, in order to adhere, before a complete 

media change was performed. Complete media changes were then performed every 2-3 days, 

with daily checks of cell health using phase contrast microscopy. 



64 

 

Passage 

When cells were observed to be 80-90% confluent, passage was performed to ensure the 

continued rate of mitosis. The media was aspirated from the cells, and they were washed with 

10 mL of PBS. Each T75 was then treated with 3 mL of trypsin-EDTA, tapped and agitated 

until the cells were observed to be detached from the flask. The trypsin was then neutralised 

by the addition of an equal amount (3 mL) of complete 
f
media. The cell suspension was then 

transferred to a centrifuge tube and spun at 1400rpm for 5 minutes, until a cell pellet could be 

observed on the  bottom of the tube. The supernatant was carefully aspirated from the pellet, 

which was then resuspended in a known amount of complete 
f
media. A cell count (described 

in section 2.4.5) was performed at this stage, and cells were then reseeded into T75 flasks at a 

density of 2x10
6
 cells. 10 mL of 

f
media was added to each flask, and cells were then 

subjected to ordinary incubation and culture. 

 

Human renal epithelial cells 

Materials 

Primary human renal epithelial cells (ATCC), DMEM/F-12 (no phenol red, HEPES buffered, 

+ L-glutamine, Life Technologies), hydrocortisone (Bioreagent, Sigma) , epidermal growth 

factor (EGF; recombinant, expressed in E. coli, lyophilized powder, Sigma) , penicillin-

streptomycin (pen-strep; 10000 µ, Life Technologies), fetal bovine serum (FBS; sterile 

filtered, non-USAorigin, Sigma), phenol red (Bioreagent, Sigma), insulin-transferrin-

selenium supplement A (ITS-A; Life Technologies), GlutaMAX™ (Life Technologies). 

 

100 µg of EGFwas dissolved in 400 µL DMEM/F-12 and stored in the freezer -20 ºC.  

18 µg of hydrocortisone was dissolved in 20ul of ethanol, which was then made up to 20 mL 

with DMEM/F-12. 1 mL aliquots were stored in the freezer at -20 ºC. 

FBS and pen-strep were stored in 25 mL and 10 mL aliquots at -20 ºC, respectively. 

Preparation of media 

40 mL of DMEM/F-12 was removed from each 500mL bottle. To the remaining media was 

added 5 mL ITS-A, 5 mL pen-strep, 5 mL GlutaMAX™, 5mL pen-strep, 25 mL FBS, 20 µl 

EGF solution, 20 µl hydrocortisone solution and 5 mg phenol red. The media was gently 

agitated and stored in the fridge for up to six weeks. 
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Culture 

The culture of HREp cells followed the same protocols as described for fibroblast cells in 

section 2.4.4, with the use of HREp medium as prepared above used throughout. 

Due to the lower amount of FBS present in complete HREp medium, a ratio of 2 mL trypsin : 

4 mL neutralising media was used during the passage procedure of epithelial cells. 

2.4.5 Culture of cells in direct contact with oligomers 

Materials 

Functionalised oligomers as synthesised in sections 2.4.2 and 2.4.3, isopropanol (absolute, 

Fisher), complete media (prepared as described above), trypsin-EDTA (Life Technologies), 

PLGA (50:50, Polysciences), DMSO (anhydrous, Sigma), Alamarblue® (Life Technologies), 

phosphate buffered saline (Bioreagent, Sigma), hematoxylin solution according to Weigert 

(parts A and B, Aldrich), eosin y (99%, Sigma Aldrich), 10% neutral buffered formalin 

solution (Sigma), giemsa stain modified solution (Sigma), ethanol (absolute, Fisher), glacial 

acetic acid (99%, Fisher). 

Distilled water was used throughout unless otherwise specified. 

Equipment 

IR spot lamp 75W (Exo Terra). 

Preparation of polymer films 

Polymers were dissolved in isopropanol at a concentration of 5 mg in 1 mL solvent, whilst 

the PLGA was dissolved in DMSO at the same concentration. The polymer solutions were 

well agitated and sonicated for 30 seconds if required. 100 mL of polymer solution was then 

pipetted onto each sterile glass coverslip. An IR lamp was used to heat treat the polymer 

films until the solvent appeared visibly removed. At this point, each coverslip-with-film was 

placed into its own well of a six well plate and washed with sterile PBS to remove any 

residual solvent. 

Fibroblasts or epithelial cells were treated with trypsin as previously described, but instead of 

re-seeding into T-75 flasks, they were seeded directly onto the films at a density 1x10
4 

cells/well. 2 mL of complete media added was to each well and the cells were incubated for 

24 hours at 37 ºC, 5%CO2. After 24 hours phase contrast imaging and a full media change 

was performed. After 72 hours cells were assayed and fixed for staining. 
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Cell counting and seeding 

To ensure that approximately the same density of cells was cast onto each film, cell counting 

was performed after resuspension of the cell pellet.  

20 µL of cell suspension was agitated with 20 µL of trypan blue stain. 15 µL of this solution 

was pipetted into each of the chambers of a haemocytometer cell counter. The 

hemocytometer has a known volume of 0.1 µl for each large square. The number of live 

(non-stained) cells were counted within the marked squares on figure 2.4.5.1. 

 

Figure 2.4.5.1 – Diagram illustrating the counting squares of a hemocytometer. Pale blue 

dots represent live cells, whilst dark blue dots represent dead cells stained with trypan blue. 

 

As there are two counting chambers on a hemocytometer, a total of 8 cell counts are obtained 

and an average per 0.1µl can be obtained. By using equation 2.4.5.2 the number of cells in 

suspension can be calculated. 

 

 

 

 

 

Live cell 

Dead 

cell 
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Equation 2.4.5.2 - Equation used to calculate total number of cells in m  mLs of solution 

after obtaining average cell count (n) from hemocytometer. It is necessary to multiply by 2 

due to the half dilution with trypan blue in the counting chamber. 

 

After obtaining a total cell count it was then possible to seed the cells at the required density. 

Alamarblue® Assay 

The Alamarblue® assay was performed as per the manufacturer‘s instructions[214]. As 

colorimetric analysis was being used to assess the colour change of rezasurin to resorufin, an 

incubation period of 16 hours with 10% Alamarblue® was found to be optimal for the cell 

types used. A typical standard curve obtained for the Alamarblue® assay is shown in figure 

2.4.5.3. 

 

 

Figure 2.4.5.3 -  Typical Alamarblue® standard curve. 

 

The number of cells present in each well was then calculated using the following equation: 

 

y = 6E-07x + 0.1225 
R² = 0.9425 
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Equation 2.4.5.4 - Equation used to find number of cells from optical density (OD570nm). C= 

constant from standard curve and m = gradient of standard curve. 

Cell visualisation 

After performing viability assays, each glass coverslip was washed with sterile PBS. The 

slips were then submerged in 10% formalin for 10 minutes to fix the cells and then washed 

again with sterile PBS.  

Giemsa 

Coverslips were then submerged into the giemsa stain solution for 5 minutes and then washed 

with distilled water until clear. The coverslips were allowed to air dry before imaging. 

This stain has the following characteristics:  

 

Feature Colour 

Micro-organisms, fungi, parasites Purple/blue 

Starch and cellulose Sky blue 

Nuclei Dark blue/violet 

Erythrocytes Salmon pink 

Cytoplasm Various light blues 

Collagen, muscle, bone Pale pink 

Hematoxylin and Eosin Y 

Equal parts of the hematoxylin reagents A and B were mixed fresh to form the working 

Weigert‘s solution. Each coverslip submerged into the Weigert‘s solution for 5 minutes and 

then washed with tap water until clear. The coverslips were then submerged into a 1% 

aqueous solution of Eosin Y for 5 minutes. The coverslips were then submerged into 0.5% 

acetic acid for 1 minute and then rinsed again with tap water. Finally, each coverslip was 

washed with ethanol and allowed to air dry. 
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This stain has the following characteristics: 

 

Feature Colour 

Nuclei Blue (hematoxylin) 

Erythrocytes Very bright pink ( eosin Y) 

Muscle, cytoplasm Deep pink (eosin Y) 

Collagen Pale pink (eosin Y) 
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3 - Hyperbranched poly(n-butyl methacrylate) 

and linear analogues with acid or amine end 

groups: synthesis and cytocompatibility 

3.1 Introduction                             

 

The purpose of this part of the work was to synthesise novel hyperbranched (HB) butyl 

methacrylate (BMA) polymers using RAFT polymerisation and to observe cell-polymer 

interactions on coatings derived from these polymers. To our knowledge, the synthesis of 

hyperbranched poyl(BMA) using RAFT has not been reported to date. Experiments were 

performed to ascertain the optimal ratio of monomer:chain transfer agent to produce 

hyperbranched polymers with end groups capable of being modified. These materials, if they 

exhibit satisfactory properties, might be suitable as cell-adhesive coatings for tissue implants. 

The addition of acid monomers in tissue scaffolds has been shown to enhance wound healing 

and promote angiogenesis[215], [216]. This is due to the differences in hydrophilicity and 

hydrophobicity between comonomers creating the right amphiphilic environment for cell 

growth. Also important for cell adhesion are the proteins and molecules that are present on 

the cell surface, known as cell adhesion molecules (CAMs). Ruoslahti has published popular 

reviews on both integrins and proteoglycans in cell adhesion[217], [218].  A review of the 

role of peptides has been been provided by LeBaron et al.[219]  and these have been utilised 

by members of the Rimmer group to improve cell adhesion[220]–[222]. CAMs are also 

discussed in chapter 1 section 7. 

 One objective was to test the hypothesis that a hyperbranched polymer with multiple acid 

end groups would be a good substrate for cell adhesion and proliferation. This would then 

allow future projects to optimise these materials for use as tissue scaffold coatings. This 

would involve using a polymer coating to introduce cell-adhesive functionality onto an inert 

structural material. In order to assess the performance of the hyperbranched polymers, they 

were compared with linear BMA polymers that had been copolymerised with 4-vinyl benzoic 

acid. These acid functional polymers were then reacted with diamines to investigate if this 

would provide enhanced cell adhesion. Diamines were chosen to functionalize the polymers 
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due to simplicity of the amidation reaction at the carboxylic acid groups[155], [199], [223], 

[224] and because of the chemical similarity to the amino acid lysine. Lysine is the eighth 

most abundant amino acid and is present in all proteins[225]. As it is a positively charged 

amphiphile, lysine is often involved in salt-bridges with negatively charged amino acids (e.g. 

aspartate) and this has a stabilising effect on protein structure[226], [227]. Additionally, the 

action of lysyl oxidase on lysine in the extracellular matrix forms the derivative allysine 

(figure 3.1.1) which is then used in the synthesis and crosslinking of collagen and 

elastin[228], [229]. 

 

Figure 3.1.1 – The conversion of lysine into allysine by lysyl oxidase. Allysine is a precursor 

for the ECM components collagen and elastin. 

 

It was hypothesised that the diamine functional polymers will promote the action of lysyl 

oxidase through mimicking lysine, and thus encourage the formation of cross-links and the 

extracellular matrix. 

The synthesised polymers (BMA1-4) were analysed using standard characterisation 

techniques such as triple detection GPC and 
1
H NMR spectroscopy and the results are 

discussed with a critical view of the RAFT polymerisation. A successful polymerisation 

should produce highly branched polymers showing good conversion of both methacrylate 

monomer and CTA1, with little evidence of cross-linking in the final polymer. Severe cross-

linking, or gelation, is evident by insolubility in all solvents. The hyperbranched polymers 

were also analysed after reaction with excess 4,4‘-azobiscyanovaleric acid (ACVA) in order 

to judge if the acid functionality had successfully added to the end groups. The linear n-butyl 

methacrylate polymers were prepared in three different monomer ratios and characterised by 

Sarah Canning in the course of her Master‘s project[230] prior to functionalization. In this 

document, the linear polymers shall be referred to as LIN1, 2 or 3 where 1 = 4:1 molar ratio 

n-butyl methacrylate:4-vinylbenzoic acid, 2 = 8:1 ratio and 3 = 12:1 ratio of monomers. 
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These polymers were assessed for their suitability as analogues to the BMA library and also 

the outcomes of diamine coupling reactions were studied.  

As these polymers are intended for use as surface coatings, they were cast upon glass 

coverslips before cell seeding was carried out as described in chapter 2. Primary dermal 

fibroblast and renal epithelial cells were used for direct contact studies, at a density of 

1.5x10
4
cells per film. Cells were grown on each polymer in triplicate in each experiment and 

each experiment was repeated on three separate occasions using identical methods and 

conditions (experiments 1, 2 and 3). The cell viability on the polymers after 72 hours was 

assessed using the Alamarblue
®
 assay and optical microscopy.   
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3.2 Results and Discussion 

3.2.1 Hyperbranched polymer synthesis and 

functionalisation 

The first step of the RAFT polymerisation was the synthesis of the RAFT agent 4-

vinylbenzyl pyrrole carbodithioate chain transfer agent (CTA1). This is shown in scheme 

3.2.1.1 and described in detail in chapter 3.4.1. 

 

Scheme 3.2.1.1 – Scheme of 4-vinylbenzyl-pyrrolecarbodithioate synthesis. 4-VBC = 4-

Vinylbenzyl chloride. 

 

Hyperbranched polymers of butyl methacrylate were produced in four molar ratios with 

pyrrole carbodithioate (CTA 1) and 4-4‘azobis cyanovaleric acid was used as a free radical 

initiator in RAFT polymerisation (scheme 3.2.1.2 and table 3.2.1.5). The synthesis was 

performed using a freeze-pump-thaw technique with an aprotic solvent. Polymers with higher 

quantities of n-butyl methacrylate were sensitive to gelling in the ampoule, probably caused 

by cross-links through bimolecular termination. It was found that this effect could be lessened 

by minimising the amount of initiator present in the system, thus decreasing the total number 

of radicals present. 

 

 

Scheme 3.2.1.2 – RAFT polymerisation of n-butyl methacrylate using ACVA initiator.  

NaH 

 

DMF 

CS2 

4-VBC 

 

DMF 
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The successful incorporation of the chain transfer agent into poly(butyl methacrylate) was 

first observed using 
1
H NMR. Figure 3.2.1.3 shows that in addition to the usual peaks 

associated with poly(butyl methacrylate), signals associated with aromatic protons were 

observed at 6.5-8ppm. The most intense resonances observed are those that arise from the 

alkyl protons of butyl methacrylate between 1-2ppm– this is expected as it is the monomer 

present in the greatest amount. 

 

 

A 

 C  B 

F 

 

D 

E 

G/H 

BMA1 

BMA2 

BMA4 

Figure 3.2.1.3 -  
1
H NMR spectra of hyperbranched polymers BMA1-4. (BMA3  insoluble).  

I/J 
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Approximate values for the percentage incorporation of carbodithioate can be calculated by 

comparison of the integrations in the proton NMR spectra. This is achieved using equation 

3.2.1.4 which compares the integrals of the pendant alkyl protons from the n-butyl 

methacrylate (HA) and pyrrolidine protons (HJ). 

 

 

                  
∫

  

 

∫
  

 

 

Equation 3.2.1.4 - Equation used to calculate the percentage dithioate in each polymer using 

1
H NMR integrals. 

The observed incorporation of carbodithioate as calculated by the equation above is 

summarised for each polymer in table 3.2.1.5. 

 

 

BMA 

added (mL) 

ACVA 

added (g) 

CTA1 

added 

(mL) 

Moles 

BMA 

Moles 

ACVA Moles 

CTA 1 

Maximum % 

dithioate 

Observed % 

dithioate 

BMA1 5 1.29 1 0.03 0.004 0.004 12.26 2.3 

BMA2 10 1.29 1 0.06 0.004 0.004 6.13 4.0 

BMA3 15 0.645 1 0.09 0.002 0.004 4.09 n/a 

BMA4 20 0.645 1 0.13 0.002 0.004 3.3 3.06 

Table 3.2.1.5 – Comparison of the different ratios of n-butyl methacrylate (BMA) and 4-

vinylbenzyl-pyrrolecarbodithioate RAFT agent (CTA1) in each of the polymers synthesised 

(BMA1-4). Analysis of 
1
H NMR spectra used for calculated % dithioate.  

 

With the exception of BMA3, that was not suitably soluble in deuterated solvents for NMR 

analysis, there appears to be an increase in the efficiency of the polymerisation as the 

percentage of CTA1 decreases. As expected, the observed incorporation carbodithioate of all 

polymers was lower than the theoretical maximum if 100% conversion had occurred. 

However, BMA4 does seem to show the closest correlation between calculated and 

theoretical percentage of dithioate: 3.06 and 3.3% respectively. The decrease in efficiency 

with CTA1 is most pronounced for BMA1:- to which 12% CTA1 was added but only 2% 

appears to have been incorporated into the hyperbranched polymer. Using greater amounts of 
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monomer in the starting mixture, that is to decrease the proportion of CTA1, appears to have 

led to the easier incorporation of CTA1 into the polymer product. 

 

Using less initiator in the BMA3 and 4 feeds was successful in reducing most of the 

crosslinking that had been observed. As each mole of ACVA generates two moles of radicals, 

in theory each CTA1 molecule could still have been activated during the reaction. The 

percentage monomer conversion for each of the polymer compositions is shown in table 

3.2.1.6. 

Polymer Conversion % 

Time in 60°C 

bath 

BMA1 74.3±2.5 16 hours 

BMA2 100.0 ±11.6 16 hours 

BMA3 34.6±4.2 6 hours 

BMA4 20.9±3.8 4 hours 

Table 3.2.1.6 – Calculated conversion of monomer for each of the hyperbranched butyl 

methacrylate polymers. 

 

Here it can be seen that monomer conversion reaches a maximum for the BMA2 polymer at 

almost 100%, but then tapers off strongly for the BMA3 and BMA4 polymers. This is 

probably at least in part due to the decreased time spent in the water bath at 60‘C (4 hours 

compared to 16), however, longer reaction times led to a highly crosslinked product. It is 

reasonable to assume the   ̅̅̅̅  of the divinyl R group of CTA1 is approximate to styrene, 

~162M
-1

s
-1

. It is therefore expected that the rate of propagation drops significantly as this 

styrene derivative is added to a n-butyl methacrylate polymerisation which has a   ̅̅̅̅  in the 

region of 573M
-1

s
-1

 [231]. However, the design of these experiments are rather complex 

given that the molar percentage of monomer, initiator and CTA1 varies for the different 

polymers as well as the reaction times. Thus, it is perhaps not too surprising that the trends in 

the conversion data would be complex and difficult to fully rationalise. 

It can be seen through elemental analysis (table 3.2.1.7) that decreasing the amount of ACVA 

did not prevent copolymerisation with the RAFT agent. The main aim in this work is to 

develop polymeric coatings for improving epithelial cell adhesion. Since these 

polymerisations were successful in generating target polymers no further work on the detail 

of the kinetics of these polymerisations was carried out. 
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 Predicted Elemental Analysis Observed Elemental analysis % CTA1 

BMA1 C 66.6%, H 8.9%, N 1.5%, S 6.7%  C 66.8%, H 9.2%, N 1.0%, S 4.0% 2.0% 

BMA2 C 67.0%, H 9.1%, N 0.8%, S 3.8% C 66.9%, H 9.9%, N 0.6%, S 2.1% 1.05% 

BMA3 C 67.9%, H 9.3%, N 0.7%, S 3.0% C 67.3%, H 9.4%, N 0.5%, S 3.5% 1.75% 

BMA4 C 68.5%, H 9.6%, N 0.5%, S 2.0% C 67.0%, H 9.3%, N 0.5%, S 3.3% 1.65% 

Table 3.2.1.7 – Summary of theoretical (calculated) and observed elemental analysis for 

hyperbanched(butyl methacrylate) (BMA1-4). CTA1= carbodithioate chain transfer agent.  

 

The elemental analysis results provide data that is contrary to the end group analysis that was 

performed using the 
1
H NMR spectra. It is considered that elemental analysis is much more 

sensitive for the quantitative analysis of these polymers and is thus more reliable. Here, the 

polymer BMA2 can be seen to contain the lowest amount of carbodithioate (1.05%) whilst 

NMR spectroscopic analysis suggested that it actually contained the highest amount of chain 

transfer agent (4%). This indicates that care must be taken when using techniques such as 

NMR spectroscopy to quantitatively analyse samples such as this, although NMR can still be 

successfully employed as an indicator of successful copolymerisation. The polymer BMA1 

can be seen to contain the highest amount of CTA1 (2.0%), and this is in line with 

expectations given the molar ratio of monomers used in this polymer (0.1 CTA1:BMA). 

Polymers BMA3 and BMA4 show approximately the same observed CTA1 content by 

elemental analysis (1.75 and 1.65 %, respectively). Interestingly, these polymers appear to 

show better incorporation of the chain transfer agent than the 10:1 ratio polymer. This again 

suggests that for optimal efficiency, it may be preferred to use a lower ratio of chain transfer 

agent to monomer. However, when taken in hand with the other results so far presented, 

especially the percentage conversion of monomer, it seems that BMA2 is the optimal feed 

ratio in terms of producing polymer with the highest functionality. 

 



78 

 

 

Figure 3.2.1.8 – Combined FT-IR spectra of hyperbranched polymers BMA1-4.  

 

Figure 3.2.1.8 provides the FT-IR comparison of the hyperbranched polymers. The strong 

stretches at 1710 and 1490cm
-1

 can be attributed to the C=O and C-O of the ester linkage in 

butyl methacrylate.  The sharp stretch at 1160 is due to the C=S thiocarbonyl bond. The 

stretches seen between 2920 and 3030 are due to sp
3
 C-H bonds. The weak aromatic stretch 

expected around 1600cm
-1

 can‘t be observed because it is coincident with the C=O signal, but 

aromatic overtones can be seen between 1800 and 2200cm
-1

 in addition to the aromatic C=C 

signal at 1450cm
-1

 that confirm the successful inclusion of the RAFT agent. 
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   ̅̅ ̅̅ ̅   ̅̅ ̅̅ ̅   ̅̅ ̅̅  PDI α 

BMA1 14300 39700 90100 2.8  

BMA1 TD 17600 43750 160850 2.5 0.5 

BMA2 21250 62900 164700 3.0  

BMA2 TD 66050 210600 4840000 3.2 0.4 

BMA3 21300 57800 140800 2.8  

BMA3 TD 68400 220550 2402000 3.2 0.5 

Table 3.2.1.9 – Molar mass averages (gmol
-1

) for HB(nBMA) polymers as determined by 

GPC using tetrahydrofuran as the mobile phase. TD= triple detection GPC results, also 

performed with tetrahydrofuran mobile phase. 

 

Table 3.2.1.9 shows that BMA2 and BMA3 polymers have comparable   ̅̅ ̅̅ s, but BMA1 has 

almost half the molar mass. The molar mass distribution in figure 3.2.1.10 also shows that the 

BMA1 distribution is marginally broader with a slight shoulder, suggesting the presence of 

lower molar mass fractions. 

 

Figure 3.2.1.10 – Molar mass distribution of hyperbranched polymers BMA1-3. BMA4 was 

not sufficiently soluble for GPC analysis. 

The Mark Houwink equation describes the dependence of a polymer‘s intrinsic viscosity on 

its molar mass and is shown in equation 3.2.1.11. 
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Equation 3.2.1.11 – Mark-Houwink equation, where [ŋ] is intrinsic viscosity, K and α are 

polymer-dependent constants (α being the Mark-Houwink exponent) and Mr is the viscosity 

molar mass average.  

 

The value for α can vary between 0 for solid spheres and 2 for rod shaped structures, and an α 

of 0.4 to 0.5 indicates a random coil structure[232]. By using triple detection GPC, which 

incorporates the measuring of viscosity, it was possible to calculate α for the HB poly(butyl 

methacrylate)s (table 3.2.1.9). Table 3.2.1.9 shows   ̅̅ ̅̅  correlates relatively well between the 

two GPC techniques, in that the trend in molar mass averages is the same. As expected, the 

absolute values of molar mass differ between the two GPC techniques with almost three-fold 

higher   ̅̅ ̅̅  reported for polymers BMA2 and 3 using the triple detector set up. This effect is a 

clear indication of the branched nature of the polymers, as increased branching decreases the 

hydrodynamic volume of the coil at a constant molar mass, and it is this parameter that 

controls the retention time in a GPC experiment. Calculations suggested that ~74% monomer 

was converted in polymerisation BMA1 (table 3.2.1.6), but the low molar mass results 

suggest much of this was converted into more numerous polymers with lower chain length. 

This is to be compared with polymers BMA2 and 3 which exhibited monomer conversions of 

100 and 35%, respectively, and much higher molar masses. It is clear, as expected, that as the 

amount of CTA1 and initiator increased in the reaction the rate of chain growth decreased 

providing lower molar mass averages and lower monomer conversion. In order to maintain 

relative ratios of CTA1 to initiator, as the CTA1 was increased the initiator concentration was 

also increased: the latter increases the rate of conversion, whilst increasing the former 

decreases conversion. 

The α values quoted above indicate that the synthesised polymers all have a tight random coil 

structure. Our observed values for α correspond well with the α values previously reported 

for hyperbranched polystyrene[233], polyesteramide[234] and polymethyl methacrylate[235]. 

However, the values of α are higher than the previously reported values when a similar CTA 

was copolymerised with N-isopropyl acrylamide. This suggests that the branching self-

condensation process is less effective with this class of chain transfer agent when 

polymerising methacrylates, such as BMA. Despite this, the α values still suggest branched 

structures. It is also important to note that the system with the highest conversion (BMA2) 

had the lowest α, which is an indication of increased branching. 
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3.2.2. Characterisation of hyperbranched polymers with 

acid end groups 

 

The hyperbranched polymers were reacted with ACVA in order to replace the pyrrole 

carbodithioate end groups with acid functionality. After extensive purification, the polymers 

were subjected to characterisation by 
1
H NMR and FT-IR spectroscopies. Gel permeation 

chromatography was not available to these functionalised polymers as they were not suitably 

soluble in the required solvents, but it is reasonable to assume without the evidence of chain 

disintegration that the molar mass of each polymer is comparable to its unfunctionalised 

precursor. 

 

 

Figure 3.2.2.1 FT-IR of hyperbranched polymers after reaction with excess ACVA to form 

acid functional end groups.  

 

The FT-IR spectra in figure 3.2.2.1 shows that there is a much greater response from the acid 

functional polymers in the region 1100-1700cm
-1

. The strong absorbance band at 1650cm-1 

can be attributed to the C=O of ACVA, which has shifted due to the presence of a nitrile 

group which is observable at 2200cm
-1

. The conservation of the C=O peak at 1700cm
-1
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indicates that the butyl methacrylate polymer backbone remains intact. This is a good 

indicator of the successful reaction with ACVA, replacing the carbodithioate groups with 

acid functionality. Further evidence for this can be seen in the absorbance band at 2220cm
-1 

which arises from the C≡N in the ACVA molecule, the broad stretch at 3200-3400cm
-1

 due to 

hydrogen bonding between O-H groups and at 1390cm
-1

 from the C-O-H bend, as well as the 

new N-H stretch at 1520cm
-1

.  It is worth noting that BMA4 does not appear to be 

successfully functionalised by this reaction, with none of these signals present. This could be 

due to inaccessibility of the carbodithioate groups, or crosslinking, as further reactions with 

ACVA were fruitless. If polymer BMA4 has been crosslinked, this would also explain its 

insolubility in analytical solvents such as THF and CDCl3. 

 

 

 

 

Figure 3.2.2.2 – Representative 
1
H NMR of hyperbranched butyl methacrylate polymer after 

treatment with excess ACVA. 

 

Figure 3.2.2.2 shows a representative 
1
H NMR spectra of polymers BMA1-3 after the 

reaction with excess ACVA. Polymer BMA4 was too insoluble for NMR analysis, again 

indicating that it had crosslinked during the course of the reaction. The success of this 

reaction is noted by a new peak at 8ppm that is due to OH of the carboxylic acid. Two further 
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peaks are evident at 2.8 and 3ppm, which can be assigned to the CH2 of ACVA and indicates 

the successful introduction of ACVA onto the polymer chain ends. The signals seen between 

1-3ppm are a result of the alkyl protons present within the P(BMA). 

 

3.2.3 Linear polymer characterisation 

 

Linear polymers, analogous to the HB polymers, were supplied by Masters student Sarah 

Canning. These were copolymers of butyl methacrylate and 4-vinyl benzoic acid in various 

ratios (LIN1, 2 and 3 being 4:1, 8:1, and 12:1 molar ratios, respectively) in order to mimic the 

hyperbranched functionality after reaction with ACVA. These polymers were fully 

characterised and reacted with an excess of diamines, before being used as substrates in direct 

culture with epithelial and fibroblast cells. 

The reaction with 1,6-diaminohexane produced much more effervescence than the reaction 

with other diamines, and the amount of recovered polymer was not sufficient to perform cell 

culture and all analysis techniques. Due to limited amounts of the supplied acid-functional 

polymers, instead of repeating the reaction greater amounts of the other amidated polymers 

were produced so that cell culture and analysis could be comfortably performed. 

In figure 3.2.3.1 the sharp signal at 1740cm
-1

 exhibited by the acid polymer is the C=O 

stretch. This stretch is notable by its shift to 1677cm
-1

 in the amidated polymers, as is usual 

for an amide bond. This shows that the reactions with excess amine and EDC were successful 

in adding diamines to a copolymer of butyl methacrylate and 4-vinyl benzoic acid.  
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Figure 3.2.3.1 –Combined FT-IR of Poly(BMA-co-4-vinylbenzoic acid)  and amidated 

derivatives which has been subsequently reacted with an excess of various diamines as 

previously described.  
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Figure 3.2.3.2 – 
1
H NMR of linear butyl methacrylate-co-4-vinyl benzoic acid polymers. 

(LIN1-3) 

 

As previously described the linear polymers were analysed by triple detection GPC and the 

Mark-Houwink principle was applied (table 3.2.3.3). This enabled us to make a good 

approximation of the size of the polymers supplied. 
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  ̅̅ ̅̅ ̅   ̅̅ ̅̅ ̅   ̅̅ ̅̅  PDI α 

LIN1 81350 113000 192900 1.4 0.5 

LIN2 97700 143500 278000 1.5 0.6 

LIN3 126700 176250 291300 1.4 0.7 

Table 3.2.3.3 – Triple detection GPC molar masses and Mark-Houwink exponent for linear 

butyl methacrylate-co-4-vinylbenzoic acid polymers (LIN1-3). 

 

The Mark-Houwink exponent for these polymers increases in value as the amount of n-butyl 

methacrylate increases relative to 4-vinyl benzoic acid (4-VBA). α is a measure of the 

openness of the coils across the molar mass range and thus increases in α reflect an increase 

in solvency and coil expansion. This also means that as the amount of 4-VBA in the polymer 

decreases, the solvency increased in THF.  These data agree with one aspect of the 

observations with the highly branched polymers, which is that the solvency decreases as the 

amount of carboxylic acid increases. The HBPs became insoluble in THF when the dithioate 

end groups were converted to carboxylic acid. The variation in solubility and method of  

casting the polymer films means that a uniform film of equal thickness may not always be 

achieved. However, as this work is a proof of concept regarding cell adhesion to polymers 

with different architecture and end group functionality, the film formation was considered to 

be sufficient.  

 

 

 

 

 

 

 

 

 

 

 

  



87 

 

3.2.4 Cell contact studies 

 

Two types of primary cells, normal human dermal fibroblasts and human renal epithelial 

cells, were cultured on polymer films cast on glass coverslips for 72 hours to observe cell 

adherence and proliferation. Cells were imaged after 24 hours using phase contrast optical 

microscopy in order to observe initial cell adherence before any potential cell death due to 

polymer toxicity.  

Human Dermal Fibroblasts 

 

 

Figure 3.2.4.1 -  Human dermal fibroblast cell viability after 72 hour culture in direct contact 

with hyperbranched(BMA)s over 72 hours. One-way analysis of variance and post-hoc 

Tukey‘s statistical analysis performed, significant values relative to TCP marked with *. 

 

Figure 3.2.4.1 shows that in experiment 1 there was a pronounced preference for the acid 

functional polymers (BMA1-3 acid) and the results are slightly better than tissue culture 

plastic (TCP). This is again repeated in experiment 2, except the cells were also maintained 

on the dithioate functional polymers (BMA1-4). In experiment 3, TCP was a slightly better 

substrate (cells showing improved viability) and the dithioate from BMA4 was a particularly 
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poor substrate. It is unclear from these experiments if any of the acid functional polymers are 

more preferred for cell adhesion and proliferation, although they do perform better than the 

native carbodithioate functional HBPs (BMA1-4). The carbodithioate polymers also appear 

to perform similarly as cell culture substrates, partly due to the variances in cell viability 

between samples. 

The fibroblast cells were stained and imaged using an inverted microscope. Figure 3.2.4.2 

demonstrates that all carbodithioate polymers showed fibroblast adhesion after 72 hours 

culture, with growth patterns extremely similar to the TCP control. Initial cell adhesion is 

observed on the polymers BMA1-4 after 24 hours culture, and the polymers BMA2 and 4 

appear to have an initial fibroblast confluence that exceeds the control substrate. 

Figure 3.2.4.3 shows the cell adhesion after 24 and 72 hours on the acid functional HBPs 

(BMA1-3 acid). Cell adhesion is visible after 24 hours and the acid functional polymers all 

show cell adherence and proliferation similar to TCP; there does not appear to be any 

variation between the polymers and the cells have normal patterns of growth. 

Examination images taken at increased magnification (figure 3.2.4.4) reveals that the cells 

grown in contact with carbodithioate functional polymers exhibit the same morphology and 

nucleus as those cells cultured on TCP. The tendency for the acid functional polymers to also 

become stained meant that clear, high magnification images were difficult to obtain on these 

substrates. The cells that were imaged on the acid functional PBMAs looked healthy and 

comparable to those cultured on control materials. During culture there was little evidence of 

cell die-off on the polymers when observed by optical microscopy, and these images confirm 

the viability assay that fibroblasts can be successfully cultured on PBMA substrates. 
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Figure  3.2.4.2-  Images comparing fibroblast adhesion on HP(n-butyl methacrylate) polymers (BMA1-4) and 

TCP after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles indicate adhered cells. 72 

hours = cells fixed and stained with Giemsa solution. 
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Figure  3.2.4.3 -  Images comparing fibroblast adhesion on HP(n-butyl methacrylate) polymers with 

carboxylic acid end groups (BMA1-3 A) and TCP after 24 and 72 hours at 4x magnification. 24 hours= phase 

contrast, red circles indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure 3.2.3.4 -  Images of fibroblast cells on hyperbranched BMA polymers (labelled) after 

72 hours culture in direct contact at 20x magnification. Cells fixed and stained with giemsa. 
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Figure 3.2.4.5 shows fibroblast viability on linear butyl methacrylate polymers; acid 

functional (due to the acidic comonomer) or amidated with excess C2-4 alkyl diamine. These 

results show much more starkly the preferential fibroblast growth on acid copolymers 

compared to those with amine functionality (see the LIN1 polymer series in figure 3.2.4.5 for 

example). In all three experiments, the amidated polymers had significantly less viable cell 

growth than TCP and acid polymers after 72 hours. In experiment 3 the LIN2 and 3 polymers 

(acid functional) also have significantly decreased cell viability. These polymers exhibit 

satisfactory fibroblast viability in experiments 1 and 2.

 

Figure 3.2.4.5 – Human dermal fibroblast cell viability after 72 hours culture in direct 

contact with linear(BMA) with acid and amine functionality. One-way analysis of variance 

and post-hoc Tukey‘s statistical analysis performed. Significant values relative to TCP 

control marked with * 

 

 

The fibroblasts observed using optical microscopy were healthy and confluent with visible 

nuclei on the acid substrates, whilst debris was seen on the amidated polymers. Figure 

3.2.4.6-8 show fibroblast visualisation on all of the linear polymers after 24 and 72 hours. In 

figure 3.2.4.6 the images from the LIN1 polymers are shown, although the acid and 1,4-NH2 

functional polymers could not be satisfactorily imaged using phase contrast after 24 hours. 
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Some initial fibroblast adhesion is observed on the 1,2-NH2 functionalised, but none can be 

seen on the 1,3- functionalised substrate. After 72hours, no fibroblast growth is observed on 

any of the amidated polymers. The acid functional polymer exhibits the best proliferation of 

cells after 72hours with a healthy confluence of cells visible. 

Figure 3.2.4.7 demonstrates the same 24 and 72 hour images taken on the LIN2 polymer 

series. Good initial fibroblast adhesion is seen on the acid functional polymer, but there does 

not appear to be any cells on the amidated materials. After 72 hours a confluence approaching 

90% can be seen on the acid polymer (LIN2) whilst the amidated polymers appear to support 

only the sporadic and spindly growth of fibroblast cells.  

The adherence of fibroblasts to the LIN3 polymer series can be seen in figure 3.2.4.8. Once 

again there is initial cell adherence visible on LIN3 (acid) but none on the amidated 

polymers. This continues after 72 hours, where a confluence of ~75% is observed on LIN3 

but only a few cells are seen on the amidated polymers. These images confirm the viability 

assay results that polymers with acidic functionality are much preferred for fibroblast culture 

substrates when to compared the polymer treated with diamine(s). 
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LIN1-1,2-NH2 

LIN1-1,3-NH2 

LIN1-1,4-NH2 

PLGA 

Figure  3.2.4.6 -  Images comparing fibroblast adhesion on functionalised linear (n-butyl methacrylate) 

polymer (LIN1) and PLGA after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles 

indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure  3.2.4.7-  Images comparing fibroblast adhesion on functionalised linear (n-butyl methacrylate) 

polymer (LIN2) and TCP after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles 

indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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TCP 

Figure  3.2.4.8 -  Images comparing fibroblast adhesion on functionalised linear (n-butyl methacrylate) 

polymer (LIN3) and PLGA after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles 

indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure 3.2.4.9 -  20x magnification images of fibroblasts after 72 hours culture on linear 

polymers (labelled). Those polymers not represented above had no identifiable cells. 

 

Higher magnification images are shown in figure 3.2.4.9. Only debris could be observed for 

almost all of the amidated polymers. This was partly due to staining of the polymers, but also 
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due to the death and poor health of the fibroblasts. This is demonstrated for the polymer LIN3 

1,4-NH2 which has small and spindly cell growth. However, the acid polymers (LIN1,2,3) can 

be seen to support healthy fibroblast growth of normal size and with visible nuclei. 

Human Renal Epithelial Cells 

 

Figure 3.2.4.10 and subsequent post-hoc analysis indicates that it is hard to determine the 

optimal polymer chemistry for epithelial adhesion. The data as shown indicates that the acid 

functional polymers perform poorly in the first two experiments, but large variances are 

observed throughout. Such inconsistencies are not ideal for cell culture substrates and no 

particular hyperbranched polymer appears to perform consistently well.  

In experiment 1, polymer BMA1 exhibits exceptionally good viability whilst polymers 

BMA1-3 acid have much lower average cells than TCP. BMA4 also has a greater number of 

viable cells compared to TCP, whilst BMA2 and 3 do not exceed the standards. 

 

Figure 3.2.4.10 – Epithelial cell viability after 72 hours culture in direct contact with 

HP(BMA) polymers with dithioate (BMA1-4) and acid functionality (BMA1-3 acid). One-

way analysis of variance and post-hoc Tukey‘s statistical analysis performed. 

 

In experiment 2, BMA2 is the only polymer to perform comparatively to the TCP and PLGA. 

Experiment 3 offers some complication as BMA3 acid performs almost equally to TCP, and 

BMA 1 and 2 both perform slightly better. Once again, the proliferation on the acid 

functional polymers is less than that on the standard materials. Figure 3.2.4.11 compares cell 
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images taken after 24 and 72 hours culture on the different polymer substrates. The TCP 

images indicate that there is a good initial adhesion of cells after 24 hours, which continue to 

proliferate for the remaining time of the experiment. This is a pattern mimicked by the BMA1 

polymer, but to a lesser extent. BMA2 does not appear to show many cells adhered after 

24hours, but after 72 hours this substrate has a confluence of about 50% - a number which is 

comparable with the TCP. BMA3 appears to show relatively numerous adhered cells after 24 

hours but only a few cells are visible after 72 hours, suggesting that the cells are becoming 

unadhered or are suffering a toxic effect from this polymer. The polymer itself interfered with 

the imaging of the cells adhered to BMA4, however after 72 hours there appears to be some 

adhered cells, but fewer than can be seen on the TCP. 

 The optical microscopy images of epithelial adhesion on the acid functional HBPs is shown 

in figure 3.2.4.12. There is very poor initial adhesion visible on all three of the acid substrates 

after 24 hours. BMA2 acid shows the  greatest number of adhered cells after 24 hours but it 

still performs poorly when compared to TCP. After 72 hours, the TCP can be seen to have 

approximately 70% confluence whilst only a few sparse cells are observed on the acid 

functional polymers.  
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Figure  3.2.4.11-  Images comparing renal epithelial cell adhesion on HP(n-butyl methacrylate) polymers 

(HP1-4) and TCP after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles indicate 

adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure  3.2.4.12 -  Images comparing epithelial adhesion on HP(n-butyl methacrylate) polymers with 

carboxylic acid end groups (BMA1-3 A) and TCP after 24 and 72 hours at 4x magnification. 24 hours= phase 

contrast, red circles indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure 3.2.4.13 compares the cell morphology of the dithioate and acid functional polymers 

at 20x magnification. From the TCP and PLGA standards it can be seen that epithelial cells 

generally grow in close proximity, and that approximately 1/3
rd

 of the cell area is accounted 

for by the nucleus. The cells cultured on HBpolymers BMA1 and 2 have healthy cell 

morphologies comparable with the standards. There are only a few sparse cells on BMA3 and 

once again the polymer interfered with the quality of images for BMA4. The cells on the acid 

functional materials appear to have shrunken and malformed morphologies and do not appear 

healthy. 
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Polymer was not acid functional. 

  

Dithioate Acid 
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Figure  3.2.4.13 -  Images comparing renal epithelial cell adhesion on HP(n-butyl methacrylate) polymers 

(HP1-4) with dithioate and acid functionality with TCP and PLGA after 72 hours at 20x magnification. Cells 

fixed and stained with Giemsa solution. 



104 

 

 

Figure 3.2.4.14 – Human renal epithelial cell viability after 72 hours culture in direct contact 

with linear(BMA) with acid and amine functionality. One-way analysis of variance and post-

hoc Tukey‘s statistical analysis performed. 

 

This set of experiments shows that amidated polymers are able to outperform tissue culture 

plastic and poly(lactide-glycolic acid). Of note, is that all amidated polymers have greater 

average viable cells than TCP in experiments 1 and 2. The acid functional polymers overall 

do not perform well, although the acidic copolymer LIN2 outperforms TCP in all of the 

experiments. This could mean that this polymer has the optimal hydrophobic/hydrophilic 

balance for the adhesion of epithelial cells and it is also in contrast to the contact studies 

performed with fibroblasts, where acid functional polymers were the best cell culture 

substrates. 

The ‗messiness‘ of this data indicates that epithelial cells are more sensitive to factors such as 

molar mass and polymer architecture, rather than just functionality as was observed 

previously for fibroblasts. What is clear is that epithelial cells do not demonstrate the same 

cytotoxic response when cultured on amine functional materials. We speculate this is because 

of the actions of lysyl oxidase and transglutaminase in epithelia culture. As discussed in 
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chapter 1 and chapter 3.1, these two enzymes are vital elements for the construction of the 

extracellular matrix and action upon lysine residues. The presence of the lysine-like amidated 

polymers might be triggering ECM formation of the epithelia. 

The optical microscope images after 24 and 72 hours are shown in figures 3.2.4.15-17.  

Cell adherence is seen after 24 hours on the polymers LIN1, LIN1 1,2-NH2 and LIN1 1,4-

NH2 at a similar proportion to PLGA. After 72 hours there is some remaining cells, but these 

seem to have proliferated at a slower rate when compared to PLGA. No cells can be seen on 

the 1,3- and 1,4-NH2 functional polymer. 

For the LIN2 polymers, only the polymer with acid functionality has adhered  cells after 24 

hours. After 72 hours the epithelial cells cultured on the TCP are ~75% confluent, whilst 

much fewer cells are visible on the polymers – and none on the 1,3-NH2 variant of LIN2. 

All of the LIN3 polymers – acid and amine functional – show some epithelial adherence after 

24 hours. This continues after 72 hours, with some clustered cell growth on all of the 

polymers. Some of the cells on the amine functional polymers appear spindly and may not be 

proliferating normally. 

High magnification images of many of the linear polymers proved challenging to the 

prevalence of ‗debris‘ and interference due to cell staining. Those cells that could be imaged 

are shown in figure 3.2.4.18. Healthy epithelial morphologies are seen on the acid polymers 

LIN1 and LN3, but only debris can seen on the 1,3-NH2 functional LIN2.  
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24 hours 72 hours 

LIN1 

LIN1 1,2-NH2 

LIN1 1,3-NH2 

LIN1 1,4-NH2 

 

PLGA 

 

Figure  3.2.4.15-  Images comparing epithelial adhesion on functionalised linear (n-butyl methacrylate) 

polymer (LIN1) and PLGA after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles 

indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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24 hours 72 hours 

LIN2  

LIN2 1,2-NH2 

LIN2 1,3-NH2 

LIN2 1,4-NH2 

 

TCP 

Figure  3.2.4.16-  Images comparing epithelial adhesion on functionalised linear (n-butyl methacrylate) 

polymer (LIN2) and TCP after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles 

indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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24 hours 72 hours 

LIN3 

LIN3 1,2-NH2 

LIN3 1,3-NH2 

LIN3 1,4-NH2 

 

Figure  3.2.4.17-  Images comparing epithelial adhesion on functionalised linear (n-butyl methacrylate) and 

polymer (LIN3) after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles indicate 

adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure 3.2.4.18 – 20x magnification of stained epithelial cells after 72 hours culture in direct 

contact with linear polymers. 

 

LIN1 

LIN2, 1.3-NH2 

LIN2 1,4-NH2 

LIN3 
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3.3 Conclusions 

Through elemental and chromatographic analysis, we found that 6% of CTA1 in the RAFT 

polymerisation with n-butyl methacrylate was optimal for conversion of monomer and 

branching of the polymer. Those polymerisations that contained 4 and 3% of CTA1 showed 

poor conversion as the system was deficient in initiator and flooded with methacrylate 

monomer. This was also possibly the cause for the suspected crosslinking of BMA4, which 

was the only polymer that did not successfully react with an excess of ACVA.  

The linear polymers supplied for comparison were found to have similar α values to the 

synthesised hyperbranched polymers, and these were also successfully reacted with a small 

library of diamines to create a range of functional linear polymers for cell culture studies. 

Through the incubation of cells in direct contact with polymers over 72 hours, it was found 

that HDFs grew equally well on all of the synthesised BMA polymers. The cells cultured on 

both acid and dithioate end groups show healthy morphologies as on the control materials.  

There is some evidence, such as greater average cell viabilities, to suggest that dermal 

fibroblast cells are best cultured in the presence of acid functional materials. 

The preference for acid functional polymers is most striking on the linear materials, where 

very little HDF growth is observed on the amine functional polymers. Some fibroblast growth 

was seen on the polymer LIN3 1,4-NH2, but the cells did not appear to be healthy. 

Further experiments might also expose further nuances between the acid content of polymer 

and cell proliferation. 

Conversely, the epithelial cells were found to show no real preference for any of the dithioate 

PBMAs. The hyperbranched polymers BMA1 and 2 seem to be relatively better epithelial 

culture substrates than the 3 and 4 varients, and in some experiments had greater viability 

than TCP. The epithelial cells showed a strong preference for adherence and proliferation on 

the amine functional linear polymers. The acid functional polymers – both hyperbranched 

and linear – showed poor proliferation and cell growth was sparse with unusual 

morphologies.  

These experiments have shown that acid functional linear polymers and hyperbranched 

poly(BMA) are suitable dermal fibroblast culture substrates. For the culture of renal epithelial 

cells, the preferred functionality is amine – possibly due to its chemical similarity to lysine 

which can be utilised by ECM forming enzymes such as lysyl oxidase.  
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3.4 Experimental 

Instrumentation used as described in chapter 2.4 

3.4.1 Synthesis of RAFT chain transfer agent: 4-

vinylbenzyl-pyrrolecarbodithioate 

 

Materials 

Sodium hydride (60% in mineral oil dispersion, Aldrich), carbon disulfide (99+%, Aldrich), 

4-vinylbenzyl chloride (90%, Aldrich), diethyl ether (Fisher), hexane (Fisher) were used as 

received. 

Dimethyl formamide (DMF) was obtained from a Grubb‘s dry solvent system. 

Pyrrole (99%, Aldrich) was distilled over calcium hydride (95%, Aldrich) under reduced 

pressure to give a colourless liquid. 

Method 

A three-necked round bottom flask was equipped with a condenser and bubbler, pressure 

equalising dropping funnel and a nitrogen inlet. A magnetic stirrer was also placed inside the 

flask. The apparatus was heated and purged with nitrogen to remove moisture. Sodium 

hydride (2.98 g) was added to the flask followed by DMF (80 mL) to form a suspension. 

Pyrrole (5.0 g) and DMF (10 mL) were then added dropwise over 30 minutes to produce a 

yellow foam. The solution was stirred at room temperature for 30 minutes and then cooled to 

0˚C using an ice bath. Carbon disulfide (5.68 g, 4.50 mL) and DMF (10 mL) were added 

dropwise over 10 minutes to create a dark red solution. This was stirred at room temperature 

for 30 minutes and then cooled to 0˚C. 4-Vinylbenzyl chloride (11.37 g, 10.50 mL) and DMF 

(10 mL) were then added dropwise over 20 minutes. The brown solution was stirred 

overnight at room temperature. 

The solution product was placed in a 1L separating funnel, with diethyl ether (80 mL) and 

distilled water (80 mL). The organic layer was recovered and the aqueous layer was extracted 

with diethyl ether (3 x 160 mL). The organic extracts were combined and dried over 

magnesium sulfate before filtration, and the solvent was removed by rotary evaporation to 

give a brown oil. 
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The oil was purified by flash chromatography, with a column of 6cm diameter, using 100% 

hexane. The solvent was removed by rotary evaporation to give 5.6 g of a bright yellow oil. 

The air sensitive product was stored under nitrogen at -18˚C.  

 

Mpt: ~25˚C. Elemental analysis: C: 64.7%, H: 5.2%, N: 5.4%, S:24.7%. 

 

 

Figure 3.4.1.2 - 
1
H NMR of 4-vinylbenzyl-pyrrolecarbodithioate (250 MHz, CDCl3) δppm 

4.62 (s, HA), 5.29 (d, J = 10.81 Hz, HC),  5.78 (d, J = 17.57 Hz, HB), 6.35 (HJ, HK), 6.73 (dd, 

J = 17.60, 10.90 Hz, HD), 7.20 (HI, HL), 7.28 (solvent), 7.45-7.31 (HH, HF), 7.73 (HE, HG). 

 

 

3.4.2 RAFT polymerisation of n-butyl methacrylate using 

4-vinylbenzyl pyrrole carbodithioate chain transfer agent 

 

Materials 

4-Vinylbenzyl pyrrole carbodithioate (produced as previously described), n-butyl 

methacrylate (98%, Aldrich), 4,4‘-azobis 4-cyanovaleric acid (ACVA, ≥98%, Aldrich), 1,4-

dioxane (anhydrous, 99.8%, Sigma-Aldrich), methanol (Fisher) were used as received. 
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Equipment 

Ampoules were degassed on a high vacuum line equipped with a Pirani gauge.  

 

Method 

4-vinylbenzyl pyrrole carbodithioate, n-butyl methacrylate, dioxane (25 mL) and ACVA 

were mixed together until the solid initiator had dissolved. The resulting solution was 

pipetted into a 50 mL ampoule and placed onto the vacuum line but was not exposed to 

vacuum. The solution was frozen using liquid nitrogen and then opened to the vacuum until 

the gauge dropped to a steady output. The ampoule‘s exposure to vacuum was then ceased as 

its contents were left to thaw. Once thawing was completed, the full process was repeated 

until a negligible rise in pressure was observed when the ampoule was opened to vacuum. 

The end pressure in the ampoule was approximately 3x10
-3

 mBar. The ampoule was sealed 

using a gas/oxygen blowtorch and placed in a water bath at 60 ˚C for up to 24 hrs to undergo 

polymerisation. 

Table 3.4.2.1 summarises the quantities of reagents used. 

n-butyl methacrylate /mL Chain transfer agent /mL ACVA /g 

5 (0.03) 1 (0.004) 1.29 (0.004) 

10 (0.06) 1 (0.004) 1.29 (0.004) 

15 (0.09) 1 (0.004) 1.29 (0.004) 

20 (0.12) 1 (0.004) 1.29 (0.004) 

15 (0.09) 1 (0.004) 0.65 (0.002) 

20 (0.12) 1 (0.004) 0.65 (0.002) 

Table 3.4.2.1 – summary of reagent quantities used in RAFT polymerisation of n-butyl 

methacrylate. Molar values in parenthesis.  

Products were precipitated by transferring into 4x by volume of methanol and leaving to 

stand, followed by filtering and drying in a vacuum oven producing a yellow solid. Dried 

products were stored in closed sample tubes at room temperature. 

Polymers were analysed by 
1
H and 

13
C NMR, size exclusion chromatography, FT-IR and 

elemental analysis. 

NMR spectroscopy results: 

1
H (400 MHz, CDCl3) δppm 0.97 (A), 1.12 (E), 1.42 (B), 1.48 (C), 1.85(F) 4.02 (D), 6.46 

(J/I), 7.83 (G/H) 
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3.4.3 Reaction of hyperbranched butyl methacrylate 

polymers with excess ACVA 

Materials 

Acetone (HPLC grade, Fisher), ethanol (absolute, Fisher), methanol (HPLC grade, Fisher),  

ultrapure water (18.8Ω, MilliQ systems), HBP(n-butyl methacrylate) synthesised as described 

in section 3.3.2 and 4,4‘-azobis 4-cyanovaleric acid (ACVA, ≥98%, Aldrich) were used as 

received. Dimethyl formamide (DMF) was obtained from a Grubb‘s dry solvent system. 

Method 

A three necked round bottom flask was equipped with a magnetic stirrer, nitrogen inlet and a 

condenser. The apparatus was nitrogen purged and heated to 60°C. A known amount of 

polymer was dissolved in dry DMF and then injected into the warm, dry flask which was kept 

under a nitrogen atmosphere. 60molar equivalents of ACVA were then dissolved in 10-15mL 

DMF (up to 1 minute of sonication was used to assist dissolution) and this was then injected 

into in the flask. The solution was stirred for 16hours at 60°C before the addition of another 

60molar equivalents of ACVA. This process was repeated for four additions. 

The polymer was purified from ACVA by first removing the DMF under reduced pressure. 

The solid polymer was then dissolved in ultrapure water (MilliQ) and waste ACVA was 

removed via vacuum filtration. The polymer was washed with methanol and then further 

purified by ultrafiltration through a 3kDa cellulose membrane using a solvent system of  9:1 

acetone:ethanol. 

The reaction was deemed successful when elemental analysis showed that no sulfur was 

present in the final product, indicating the complete removal of the dithionate protecting 

groups. 

Polymers were analysed by 
1
H and 

13
C NMR, size exclusion chromatography, FT-IR and 

elemental analysis (results shown within this chapter). 
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3.4.4 Coupling of linear butyl methacrylate copolymers to 

diamines 

Materials 

Ethylenediamine (99%, Aldrich), 1,3-diaminopropane (99%, Aldrich) 1,4-diaminobutane 

(99%, Aldrich), 1,6-diaminohexane (99%, Aldrich), 1-(3-dimethyl-aminopropyl)-3-

ethylcarbodiimide hydrochloride (Alfa Aesar) were used as received. Distilled water was 

used throughout. 

 

Method 

A polymer solution was formed by dissolving 2 g of polymer in 10 mL dichloromethane 

(DCM). To this was added 1g DOWFAX2A1 solvated in 50 mL water with high agitation. 

The DCM was then removed using nitrogen under high agitation. 

10 mL of the resultant polymer in water solution was added to a 3-neck round bottom flask, 

equipped with a condenser and magnetic stirrer bar. At the same time 1-(3-dimethyl-

aminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) was weighed out and dissolved in 

45 mL of water. The stirring polymer solution was then submerged into an ice bath and the 

aqueous solution of EDC was added slowly. The appropriate diamine was then added to the 

stirring mixture slowly over a period of at least an hour. Substantial effervescence was 

observed at this stage. The reaction was left to warm to room temperature and continued to 

stir for 24 hours. The quantities used for each reaction are shown in table 3.4.4.1. 

 

Diamine Amount used EDC (g) DOWFAX2A1 (g) 

Ethylenediamine 4.651g (0.08 moles) 3.6971 1.210 

1,3-diaminopropane 5.841g (0.08 moles) 3.7123 1.211 

1,4-diaminobutane 6.812g (0.09 moles) 3.6991 1.210 

1,6-diaminohexane 7.941g (0.09 moles) 3.7114 1.202 

Table 3.4.4.1 – Table of reagents used in EDC-mediated diamine-oligomer cross coupling 

reaction. 

1, 6-diaminohexane is a solid and an aqueous solution of this was prepared in 90mL of water 

which was then added to the reaction mixture. 



116 

 

Purification of amidated polymers 

 

The stable emulsions were removed placed into dialysis visking tubing and placed into 

distilled water for 2 weeks, with daily changes of water taking place. 

 

The modified polymers were analysed by FT-IR and elemental analysis (results shown within 

this chapter). 

 

 

 

3.4.5 Culture of cells in direct contact with polymers 

Materials 

Human dermal fibroblasts and human renal epithelial were cultured and prepared as 

described in chapter 2.  

Hyperbranched butyl methacrylate (BMA1-4) as synthesised in section 3.4.2, and with acid 

end groups as described in section 3.4.3 (BMA1-4 acid). Linear copolymers were used as 

received from Sarah Canning[230] and also amidated (section 3.4.4), isopropanol (absolute, 

Fisher), complete media (prepared as described in chapter 2), trypsin-EDTA (Life 

Technologies), PLGA (50:50, Polysciences), DMSO (Anhydrous, Sigma), Alamarblue® 

(Life Technologies), phosphate buffered saline (Bioreagent, Sigma), hematoxylin solution 

according to Weigert (parts A and B, Aldrich), eosin y (99%, Sigma Aldrich), 10% neutral 

buffered formalin solution (Sigma), giemsa stain modified solution (Sigma), ethanol 

(absolute, Fisher), glacial acetic acid (99%, Fisher) were all used as received.  

Distilled water was used throughout unless otherwise specified. 

Equipment 

IR spot lamp 75W (Exo Terra), glass coverslip (22x22mm, Menzel). 

Glass coverslips were sterilised by autoclave. 

Preparation of polymer films and cell seeding 

Polymers were dissolved in the solvents listed in table 3.4.5.1 at a concentration of 5mg/mL. 

The polymer solutions were well agitated and sonicated for up to 30 seconds if required.  
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Solvent Polymer 

Isopropylalcohol Amidated linear copolymers 

Tetrahydrofuran Linear copolymers, BMA1-4 

Dimethylsulfoxide PLGA 

Ethanol BMA1-4 acid 

Table 3.4.5.1. – Solvents used to solvate the various polymers prior to casting on glass slips. 

 

100 mL of polymer solution was then pipetted onto each glass coverslip. An IR lamp was 

used to heat treat the polymer films until the solvent appeared visibly removed. At this point, 

each covered slip was placed into its own well of a six well plate and washed with sterile PBS 

to remove any residual solvent. 

Fibroblasts or epithelial cells were treated with trypsin as per the protocol for passage, but 

instead of re-seeding into T-75 flasks, they were seeded directly onto the films at a density 

1x10
4 

cells/well. 2 mL of complete media was added to each well and the cells were 

incubated for 24 hours at 37 ºC, 5% CO2. After 24 hours phase contrast imaging and a full 

media change was performed. After 72 hours cells were assayed and fixed for staining using 

the methods in chapter 2.  
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4 - Hyperbranched Poly(t-butyl acrylate) 

4.1 Introduction 

  

The purpose of this work was to produce hyperbranched t-butyl acrylate using the RAFT 

procedure already described for n-butyl methacrylate. The hypothesis was that having 

observed the cellular response to acidic polymers, it would be possible to create a polymeric 

coating that would show good cell adhesion by trapping a branched polymer within a 

crosslinked coating. The choice of t-butyl acrylate monomer was governed by the desire to 

form a hyperbranched polymer that, along with having functionalised end groups, could also 

be subjected to further hydrolysis and chemical modifcations to produce either acid or amine 

functionality at the t-butyl sites.  

T-butyl acrylate has a glass transition temperature, Tg, of 43 °C compared to -54 °C for n-

butyl acrylate and 20 °C for n-butyl methacrylate. When a polymer resides at temperatures 

below its Tg, it appears crystalline and ‗glassy‘. At temperatures above the Tg, individual 

chains have enough energy to overcome the weak intermolecular forces (usually London 

dispersion forces and hydrogen bonds) to allow flow to occur. This means that the inclusion 

of t-butyl acrylate can help raise the Tg and improve the mechanical properties of the 

polymer. A strong polymer with a reasonably high Tg is required to prevent wear, especially 

for the application of a cell-adhesive coating in replacement joints. This has also been 

exploited in order to control the memory response of polymeric stents. The thermoresponse 

was induced by warming the polymer stent to above its Tg, allowing it to be compressed for 

storage. The polymer could then decompressed by rewarming and softening. A stent was 

synthesised usng t-buyl acrylate that would remain compressed at room temperature but 

reformed its original shape at body temperature[236]. Control over the Tg is important not 

only for issues of storage and application, but also for the form of the polymer at body 

temperature. Polyurethanes have been extensively studied as so-called shape memory 

polymers (SMPs) due to excellent biocompatibility and a wide range of available Tgs[237], 

[238].  

The ease with which it is possible to hydrolyse t-BuAc and subsequently subject it to 

chemical modification makes it an attractive comonomer for polymeric biomaterials[239]–

[243].  
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T-butyl acrylate has previously been reported as a precursor in the formation of poly(acrylic 

acid). The graft copolymers prepared by Kriegel et al. were synthesised using atom-transfer 

radical polymerisation and ring-opening metathesis techniques[244], which allows for good 

control over the architecture of the final polymer. Zhou, however, produced hyperbranched 

polymers using a stepwise graft procedure[245]. The prepared films from both of these 

reactions showed a high density of carboxylic acid functionality.  By employing a weak acid, 

it has been demonstrated that macrophages and endothelial cells can be corralled into the 

hydrophobic valleys present on a patterned surface[205]. This finding has implications for 

controlled 3-dimensional cell culture, allowing cells to grow beyond single layer sheets in 

vitro.  The results presented previously in this work indicate that dermal fibroblast and renal 

epithelial cells would also be suitable for corralling using acid- and amine- function 

HBP(butyl methacrylate).  

The results of cell viability on HBP(t-butyl acrylate) also suggests that functionalised  

Walters and Hirt have previously reported the synthesis of amine functional polymers from t-

butyl acrylate [224] . Although this work demonstrates the tunability of t-butyl acrylate 

polymers, no cell compatibility work was performed[246]. This is a pattern repeated 

throughout the current literature and this work hopes to shine some light on the 

biocompatibility of functionalised t-butyl acrylate polymers. 

 

The RAFT polymerisation was carried out as previously described, using four different ratios 

of monomer to carbodithioate chain transfer agent (4-vinylbenzyldithiobenzoate, CTA 2) in 

the reaction mix.  

After characterisation the polymers were reacted with excess ACVA, as described in chapter 

3, to remove the CTA end groups and replace them with acid functionality. The polymers, 

both in native form and after reaction with excess ACVA, were subjected to the same cell 

testing as the hyperbranched n-butyl methacrylate polymers, so that a direct comparison 

could be made between the two hyperbranched materials. These polymers are also envisaged 

to act as a precursor for hyperbranched poly(acrylic acid) by subsequent removal of the tert-

butyl group. By reaction with stoichiometric amounts of diamine this could provide carefully 

tailored amphiphilic biomaterials as previously demonstrated. 

 

The intricacies of IPNs have already been discussed in Chapter 1 section 9. Hydrogels often 

have limited mechanical properties, and (semi-)IPNs are an emerging alternative. Semi-IPNs 
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display properties that are often stronger than those of the native polymers due to  the 

combined polymer network and intertwined functional polymer (figure 4.1.1)[247]–[249].  

 

Figure 4.1.1 – Diagram of semi-IPN with a crosslinked polymer network (grey) and a non-

crosslinked hyperbranched polymer (blue) with labile, modifiable end groups (red). 

 

The benefit of IPNs and sem-IPNs is that two polymers with different functionality can be 

combined to form a dual-responsive material as described in chapter 1 section 6. 

 

The HBPs synthesised within this project were also to be investigated for use in semi-

interpenetrating networks. Due to their low molecular weights they would not stay trapped 

within the networks formed, even with increased levels of cross-linker present in the 

surrounding network. 
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4.2 Results and discussion 

4.2.1 Polymer synthesis and characterisation 

The first step of the RAFT polymerisation was synthesis of the RAFT agent 4-

vinylbenzyldithiobenzoate (CTA2) shown in scheme 4.2.1.1. 

 

 

Scheme 4.2.1.1 – Scheme of 4-vinylbenzyl dithiobenzoate synthesis. 

 

Four hyperbranched polymers using t-butyl acrylate monomer were synthesised using 

varying amounts of chain transfer agent 2 (CTA2) and monomer, using a similar 

methodology as described in chapter 3.  

 The polymerisation recipes are described in detail in section 4.4.2. Multiple analytical 

techniques were used to fully characterise the polymers in order to gauge the success of the 

RAFT polymerisation and the percentage incorporation of CTA2.  

1
H NMR was first used to observe if the chain transfer agent had successfully copolymerised 

with t-butyl acrylate and a representative spectrum is shown in figure 4.2.1.2. Compared to a 

homopolymer of the acrylate monomer, the copolymer was expected to exhibit resonances in 

the region of 7-8.5ppm due to aromatic protons present on CTA2. 

 

 

Mg CS2 

THF 

4-VBC 

 

50ºC 

THF 
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Figure 4.2.1.2 -
  
Representative

 1
H NMR spectrum of hyperbranched(t-butyl acrylate) 

polymers. 400 MHz, CDCl3 

 

The spectra showed that the copolymerisation between t-butyl acrylate and the branching 

chain transfer agent was successful and that aromatic protons are present in the polymer. The 

only source of the signals seen at 6.5-8ppm is the CTA2 comonomer. The most intense 

resonance at 1.5ppm can be associated with the sp
3
 protons present on the pendant methyl 

groups of t-butyl acrylate. As this is the monomer present in greatest quantities, it is 

predictable that these protons will be most numerous. The resonance at 2.1ppm can be 

assigned to the ArR2CH that occurs on the insertion of CTA2 into the polymer backbone, 

whilst the resonance at 4.9ppm occurs because of the R2(CO)CH protons contributed by t-

butyl acrylate. End group analysis was performed using equation 4.2.1.3 in order to 

quantitatively compare the proton spectra of the polymers and estimate the percentage 

incorporation of CTA2. This showed that tBuAc4 had an estimated incorporation of 4% 

CTA2, whilst tBuAC3 and 4 had 7% and 6%, respectively: almost double their predicted 

maximum amount of CTA2 (table 4.2.1.4). 

 

A 

C 

B 
F/G/C/D/E 
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Equation 4.2.1.3 - Equation used to estimate the percentage dithiobenzoate in each polymer 

using 
1
H NMR integrals. 

 

 

tBuAc1 

tBuAc 

added 

(mL) 

CTA added 

(mL) 

Moles 

tBuAc 

Moles 

CTA 

Maximum % 

dithioate 

Estimated % 

dithioate 

5 1 0.034 0.004 12 n/a 

tBuAc2 10 1 0.068 0.004 6 4% 

tBuAc3 15 1 0.1 0.004 4 7% 

tBuAc4 20 1 0.14 0.004 3 6% 

Table 4.2.1.4 – Comparison of theoretical and calculated (by 
1
H NMR end group analysis) % 

dithioate present in hyperbranched polymers tBuAc1-4. 

 

Table 4.2.1.5 compares the monomer conversion for each of the polymers. The monomer 

conversion of polymers tBuAc3 and 4 was extremely low at 22.5% and 7.3%, respectively, 

which could explain the high presence of CTA2 as indicated by end group NMR analysis. 

 

 

 

 

Polymer 

Conversion (% 

monomer) 

tBuAc1 75.9±4.3 

tBuAc2 100.0±11.6 

tBuAc3 22.5±3.2 

tBuAc4 7.3±2.5 

Table 4.2.1.5 – Percentage monomer conversion for hyperbranched polymers tBuAc1-4. 

 

tBuAc1 and 2 both showed good monomer conversion and elemental analysis confirmed that 

both polymers contain over 1% CTA2 (table 4.2.1.6). The percentage of CTA2 calculated by 

elemental analysis is much lower for all of the polymers when compared to the estimates of 
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the NMR analysis. Elemental analysis is a much more sensitive technique and it is believed 

that these results to be more realistic. Analysis by 
1
H NMR spectroscopy in this manner must 

be used as a supplement and not as a stand alone technique. 

 

Polymer Predicted Elemental Analysis Observed Elemental analysis % CTA2 

tBuAc1 C 69.3%, H 8.3%, S 3.9% C 64.0%, H 8.3%, S 2.7% 1.35% 

tBuAc2 C 67.7%, H 8.8%, S 2.3% C 65.3%, H 8.7%, S 2.2% 1.1% 

tBuAc3 C 67.1%, H 8.9%, S 1.6% --- --- 

tBuAc4 C 66.8%, H 9.1%, S 1.2% C 57.4%, H 8.5%, S, 2.5% 1.25% 

Table 4.2.1.6 – Elemental analysis results of hyperbranched t-butyl acrylate polymers. 

 

 

 

Figure 4.2.1.7 – FT-IR of hyperbranched polymers tBuAc1-4. 

 

The FT-IR spectra shows that all four polymers contain the same functionality, with 

successful inclusion of the RAFT chain transfer agent (figure 4.2.1.7). This is again a strong 

indicator for the successful copolymerisation between CTA2 and t-butyl acrylate in all four 

polymers. The strong signal seen at 1120cm
-1

 arises due to C=S stretching in CTA2, whilst 

the two bands at 1220 and 1350cm
-1

 result from C-O stretching in t-butyl acrylate. The C=O 
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of t-butyl acrylate is observed as a strong signal at 1700cm
-1

. Aromatic overtones are 

observed at 1900-2100cm
-1 

whilst sp
3
 and sp

2
 C-H stretches are visible at 2980 cm

-1
.  

 

   ̅̅ ̅̅ ̅   ̅̅ ̅̅ ̅   ̅̅ ̅̅   PDI 

tBuAc1 8250 18530 35330 2.24 

tBuAc2 11030 54230 199420 4.9 

tBuAc3 3859 8532 18613 2.21 

tBuAc4 24750 61080 120750 2.47 

Table 4.2.1.8 - Molecular weight data (daltons) for HP(tBuAc) polymers as determined by 

size exclusion GPC using tetrahydrofuran as the mobile phase. 

 

 

Figure 4.2.1.9 - Molar mass distribution of polymers tBuAc1-4. 

 

Table 4.2.1.8 provides a summary of the polymers‘ molar masses whilst figure 4.2.1.9 shows 

the MMD of tBuAc1-3.  It can be seen that relatively low molar mass averages are obtained 

with this branching RAFT agent, and this is possibly because higher rate of retardation is 

experienced when using an aromatic carbodithioester with an acrylate monomer[250]. 

However, it is unknown if this retardation is caused directly by a low rate of fragmentation or 

by making side reactions more likely to occur. Ting et al. have shown experimentally that the 
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retardation of styrene does not occur when short chain radicals are not present[251], giving 

credence to the calculated model proposed by Perrier et al.[252]. In addition, Meiser et al. 

observed that fast fragmentation occurred in the RAFT polymerisation of BAc and 

dithiobenzoate[253] – although it is noted that fragmentation is faster still when using a 

trithiocarbonate CTA. This still does not explain the wide variances observed in the rate of 

reaction[254], and the topic has been and continues to be a source of debate[255], [256].  

The polydispersity values of the polymers above also suggest at least a bimodal distribution 

of molar masses. The molar mass distributions in figure 4.2.1.9 are bimodal. The distribution 

of hyperbranched polymer tBuAc3 shows an especially broad distribution and a PDI of 4.9; 

this sample evidently contains a wide range of polymer chain lengths. As discussed in chapter 

3, the broadness in polydispersity is actually considered an advantage in this instance as the 

low molecular weight chains are expected to migrate to the surface of the films cast on cell 

culture substrates. However, polymers with low molar mass may not be suitable for 

incorporation into semi-IPNs due to the lower probability of physical entrapment. 

 

 

 

  ̅̅ ̅̅ ̅   ̅̅ ̅̅ ̅   ̅̅ ̅̅  PDI α 

tBuAc1 3800 14100 53500 3.7 0.3 

tBuAc2 17250 129050 1504000 7.5 0.4 

tBuAc3 6300 45000 276450 7.2 0.4 

Table 4.2.1.10 – Summary of triple detection SEC data of hyperbranched t-butyl acrylate 

polymers tBuAc1-3 using tetrahydrofuran mobile phase. tBuAc4 was not sufficiently soluble 

for triple detection analysis. 

 

Despite the low conversions quoted in table 4.2.1.8 the α values in the table above correlate 

with poly(N-isopropyl acrylamide) materials previously prepared in our laboratories; this 

indicates that some branching has occurred even at low monomer conversion.  Rannard et al. 

have used  radiolabelled ATRP[257] to demonstrate that initiation occurs even at >90% 

conversion[258].  Through the combination of these results, it can be concluded that initiation 

and chain branching occurs throughout the lifetime of the polymerisation. 
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4.2.2 Characterisation of acid functional polymers and 

embedding into semi-interpenetrating networks 

 

After characterisation, the hyperbranched polymers were treated with an excess of ACVA in 

order to remove the carbodithioate end groups and to replace them with acid functionality. 

The 
1
H NMR spectra shown in figure 4.2.2.1 of the polymers after this treatment reveals a 

decrease in the intensity of the benzyl signals at 7-8ppm as would be expected with the loss 

of CTA2. 

 

Figure 4.2.2.1 – 
1
H NMR of hyperbranched t-butyl acrylate polymers (tBuAc2-4) after 

treatment with excess ACVA. 

tBuAc4 

tBuAc3 

tBuAc2 
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Figure 4.2.2.2 – FT-IR of hyperbranched polymers (tBuAc1-4 acid) after treatment with 

excess ACVA. 

 

As can be seen in figure 4.2.2.2, after work up with the acid-donor group, new weak signals 

can be observed at  2220cm
-1

 which can be assigned to C≡N in the ACVA molecule. The 

broad signals at 3000-3500 can be attributed the OH group of carboxylic acid and its 

associated H bonding. Meanwhile, the signal seen at 2900cm
-1

 arises from the sp
3
 carbons of 

the t-butyl acrylate monomer. FT-IR therefore further confirms that all four of the t-butyl 

acrylate polymers were successfully coupled with ACVA. 

The hyperbranched polymers were embedded in UV-cured hydrogels using the monomer n-

butyl acrylate and the crosslinker ethylene glycol dimethacrylate (EGDMA). For recipe 

details see experimental section 4.4.4 and scheme 4.2.2.3.  
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The aim was to use a process between the sequential and simultaneous methods to form semi-

IPNs by dissolving the hyperbranched polymers in the polymerisation solvent and then 

forming the crosslinked networks around them. A summary of the networks formed and their 

properties is shown in table 4.2.2.4. 

 

nBuAc 

/g 

DVB 

/g 

EGDMA 

/g 

IPA 

/mL HBP /g 

HMPP 

/mg Properties 

3.2 0.3 0 1 0.7 40 

Slightly yellow gel, very brittle and 

crumbled. 

3.2 0.3 0 1 0 20 Clear, brittle gel that curled and broke. 

3.2 0.15 0 1 0 20 Clear, less brittle gel, sticky. 

3.2 0 0.5 1 0 20 Clear, less brittle again, some breakage. 

3.2 0 0.25 1 0 20 Clear, not brittle but sticky. 

3.2 0.15 0 1 0.5 20 Yellow gel. Slightly brittle, not sticky 

3.2 0 0.25 1 0.5 20 Yellow gel. Not brittle or sticky. 

Table 4.2.2.4 – Composition and properties of synthesised networks and sem-IPNs. 

 

It was found that the inclusion of HB(tBuAc) enhanced the mechanical properties over single 

network gels. Semi-IPNs were found to increase the rigidity and decrease the ‗stickiness‘ 

when compared to the single network analogue. This is due to a hardening of the gels, as the 

HBP is incorporated into the network and reinforces the structure through non-covalent 

interactions. 

The cured gels were washed in isopropyl alcohol overnight in order to remove any residual 

monomer. However, figure 4.2.2.5 illustrates that the ‗embedded‘ polymer leached from the 

network over 24 hours. This can be observed as a colour change in the solvent, as the 

coloured HBP leaves the clear network. 

Scheme 4.2.2.3 – Scheme showing the formation of poly(n-butyl acrylate) hydrogel 

network with ethyleneglycol dimethacrylate cross-linker. 
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Figure 4.2.2.5 – Photos illustrating the permeation of HB(tBuAc) out of a n-butyl acrylate, 

into the washing solvent (IPA). 

 

As the semi-IPNs were unable to maintain their composition, this route was abandoned and 

no cell culture work was performed on the gels. 

 

NMR analysis also confirmed the presence of polymer in the isopropanol after a 16 hour 

wash. It may be possible to embed the hyperbranched polymers with further adjustment of 

the hydrogel composition, but due to time constraints cell studies were simply performed on 

films of the HBPs.  

4.2.3 Cell contact studies 

Human Dermal Fibroblasts 

Human dermal fibroblasts were cultured for 72 hours in direct contact with polymer films in 

order to investigate cell adhesion and proliferation. Cell health was monitored using the 

Alamarblue™ viability assay and optical microscopy. 

Figure 4.2.3.1 shows the cell viability on all materials after 72 hours and it is possible to see a 

stark contrast between the functionalised and unfunctionalised materials. 
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Figure 4.2.3.1 – Human dermal fibroblast viability after 72 hours culture in direct culture 

with HP(tBuAc)s with carbodithioate (tBuAc1-4) or acid (tBuAc1-4 acid) functionality. One-

way analysis of variance and post-hoc Tukey‘s statistical analysis performed, significant 

values relative to TCP marked with *. 

 

In experiment 1 it can be seen that the acid functional polymers have greater average 

fibroblast viability than TCP. This is to be contrasted with the carbodithioate functional 

HBpolymers which have not experienced the same levels of cell proliferation. In fact, the 

polymers tBuAc1-4 perform significantly poorly in all three of the experiments, with average 

viabilities lower than TCP and the acid functional HBPs. This indicates, as in Chapter 3, that 

fibroblast adherence and proliferation is encouraged with the incorporation of carboxylic acid 

into the substrate. It is not possible to tell from these results if there is any variance of 

fibroblast viability between the acid HBPs. 

Optical microscopy was performed after 24 hours (phase contrast microscope) and 72 hours 

(inverted microscope), in order to compare the fibroblast health and confluence between the 

different substrates. Higher magnification images are also able to show indicators such as 

morphology and nuclei size that are extremely important in discussions of cell health. 

 

Figure 4.2.3.2 shows the images of the native acrylate polymers and TCP after 24 and 72 

hours. It can be seen that after 24 hours, polymers tBuAc1, 2 and 3 have a comparable 

amount of cell adherence to TCP. After 72 hours the number of cells on the TCP has 
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increased as expected, and this pattern also occurs on the tBuAc1 and tBuAc3 substrates 

although there are fewer cells overall than visible on TCP. After 72 hours a reduction in cell 

number can be seen on the substrate tBuAc2 and some degradation (the appearance of holes) 

is apparent on the polymer film. This could be the consequence of polymer being broken 

down by the cells. tBuAc3 also appears to have suffered some degradation of the polymer, 

although fibroblasts are present on the remaining polymer. Dead cells are visible after 24 

hours on the tBuAc4 polymer, and these are seen as small white specks on the image.  Poor 

adherence was also seen after 72 hours on this polymer, although interference from the 

polymer did reduce the quality of the image.  

Figure 4.2.3.3 compares the proliferation of fibroblasts on the acid functional HB polymers 

after 24 and 72 hours. Images for tBuAc3 and 4 acid functional polymers were not possible 

after 24hours as the polymer interfered with the image quality of the phase contrast 

microscope. After 72 hours, however, high confluence growth is seen on the tBuAc1, 2 and 4 

polymers. In fact, these substrates appear to have a greater confluence than the TCP control.  

The tBuAc3 acid functionalised does not appear to have as many adhered cells. This could be 

a consequence of the low molar mass of tBuAc3 leading to cytotoxic effects.   

Figure 4.2.3.4 shows higher magnification images of fibroblasts on each of the substrates. 

The cells on the acidic polymers tBuAc1 and 2 were not easily imaged due to staining of the 

polymer, but no abnormalities seem apparent. The fibroblast cells on the carbodithioate 

materials have a generally healthy morphology as do those cultured on the acid functional 

derivatives of tBuAc1 2 and 4. The cells cultured on the tBuAc3 acid substrate appear to have 

enlarged nuclei; further evidence that this polymer has a cytotoxic effect. 

From the Alamarblue
®
 and microscopy data, it can be suggested that tBuAc4 is the most 

promising functionalised polymer as a cell culture substrate. tBuAc4 had the high molar mass 

and the broadest MMD, and this suggests that the combination of a higher molecular weight 

polymer to form the structure of the film with lower molar mass chains with numerous 

functional groups that are able to migrate to the surface is advantageous. 

It is believed that the acid functionalised polymers show better cell viability due to the 

hydrophilic carboxylic acid group which migrates to the surface of the film. This group is 

able to form essential hydrogen bonds and creates the preferred amphiphilic environment for 

cell adhesion.  
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Figure  4.2.3.2-  Images comparing fibroblast adhesion on HB(t-butyl methacrylate) polymers 

(tBuAc1-4) and TCP after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red 

circles indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure  4.2.3.3-  Images comparing fibroblast adhesion on acid functionalised HB(t-butyl acrylate) polymers 

(tBuAc1-4A) and TCP after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles 

indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure  4.2.3.4-  Images comparing fibroblast adhesion on HB(t-butyl acrylate) polymers (tBuAc1-4) with 

carbodithioate or acid end groupds, TCP and PLGA after 72 hours at 20x magnification. Cells fixed and 

stained with Giemsa solution. 
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Figure  4.2.3.4-  Images comparing fibroblast adhesion on HB(t-butyl acrylate) polymers (tBuAc1-4) with 

carbodithioate or acid end groupds, TCP and PLGA after 72 hours at 20x magnification. Cells fixed and 

stained with Giemsa solution. 

 

PLGA, TCP 
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Human Renal Epithelial Cells 

Renal epithelial cells were cultured on hyperbranched materials for three days, as all previous 

experiments. The purpose was to compare the growth between the native and acid-

functionalised polymers, and to see if the t-butyl acrylate monomer had an effect on 

cytocompatibility. The cell viability results in figure 4.2.3.2 show that compared to the tissue 

culture plastic, very few of the results were significant. However, this is not a necessarily 

negative result as it indicates that almost all of these materials could show potential as a cell 

culture substrate for this cell type.  

 

 

Figure 4.2.3.5 – Human renal epithelial cell viability after 72 hours culture in direct contact 

with HB(tBuAc) with carbodithionate (tBuAc1-4) or acid (tBuAc1-4 acid) functionality. 

One-way analysis of variance and post-hoc Tukey‘s statistical analysis performed, significant 

values relative to TCP marked with *. 

 

From these results, the epithelial cells appear to have proliferated about equally well on all of 

the substrates across the 3 experiments.  Experiment 1 shows that tBuAc2 performs the best, 

wth an average viability greater than TCP, whilst tBuAc3 has the lowest average viabilty. In 

experiment 2, two of the acid polymers and tBuAc2 were found to perform significantly 

worse than TCP. All of the acid functional films had greater average viabilities than TCP in 

experiment 3, and this indicates that –like fibroblasts- renal epithelia do exhibit some 
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preference for an acidic comonomer with t-butyl acrylate.  Pictures were taken with an 

optical microscope after 24 and 72 hours of culture in order to visually assess the cells. 

Figure 4.2.3.6 shows the growth of epithelial cells on CTA2 end group HBPs after 24 and 72 

hours. There is some good initial cell adhesion observed on tBuAc1 after 24 hours, but 

proliferation has not occurred and there are only sparse cells present after 72 hours culture. 

tBuAc2 appears to have reasonable cell adhesion after 24 hours, that has proliferated in the 

72 hour image. The cells on this polymer have well defined nuclei and cytoplasm and appear 

to be approaching confluence. Both tBuAc3 and 4 show poor initial cell adhesion, and as 

expected there is little cell growth after 72 hours. These images do not fit harmoniously with 

the results obtained from the Alamarblue
®
 assay. This could be because of the higher 

metabolic activity of a few cells. 

The cells imaged on the acid functionalised polymers are shown in Figure 4.2.3.7. After 24 

hours there is a high percentage of dead cells – visible as white dots - on all four polymers, 

and little proliferation is seen after 72 hours. The polymer with the most visible cell 

proliferation is tBuAc4 acid, although it still performs poorly when compared to the epithelial 

cells observed on the TCP. 

Higher magnification images (figure 4.2.3.8) show that the cells on tBuAc4 acid have a 

healthy morphology, as do the cells culture on tBuAc1 and 2, with carbodithioate end groups. 

However, the cells on the acid functional tBuAc1, 2 and 3 appear to be contracted and dying 

or becoming unadhered. This again implies that the inclusion of an acid comonomer is not 

essential, and may even be detrimental, for the adhesion and growth of epithelial cells.  

The cell images presented appear to indicate that proliferation as suggested by the 

Alamarblue
®
 assay has not occurred. This could be due to contamination during the assay, 

although bacteria would also have been visible using the staining techniques performed. 
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Figure  4.2.3.6-  Images comparing epithelial adhesion on HB(t-butyl acrylate) polymers (tBuAc1-4) and 

TCP after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles indicate adhered cells. 72 

hours = cells fixed and stained with Giemsa solution. 
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Figure  4.2.3.7 -  Images comparing epithelial adhesion on acid functionalised HB(t-butyl acrylate) polymers 

(tBuAc1-4 A) and TCP after 24 and 72 hours at 4x magnification. 24 hours= phase contrast, red circles 

indicate adhered cells. 72 hours = cells fixed and stained with Giemsa solution. 
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Figure  4.2.3.8 -  Images comparing epithelial adhesion on HB(t-butyl acrylate) polymers (tBuAc1-4), TCP 

and PLGA after 72 hours at 20x magnification. Cells fixed and stained with Giemsa solution. 
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4.3 Conclusions 

The main aim of this work was to show the successful RAFT polymerisation of t-butyl 

acrylate, and to examine the cytocompatibility before and after hydrolysis of the monomer. 

The chain transfer agent, CTA2, was especially chosen so that it could also act as a branching 

agent in the formation of hyperbranched polymers. Four polymers were synthesised with 

different ratios of monomer:CTA2. The polymer tBuac2 showed almost complete conversion 

of the monomer, whilst tBuAc3 and 4 had very low monomer conversion. Elemental analysis 

of tBuAc2 show that it has the lowest level of CTA2 than any of the other polymers, and it 

also has the broadest molar mass distribution. It is difficult to pinpoint the exact cause of this, 

as each polymer was made with different levels of monomer, initiator and CTA2.  

Despite the lower level of monomer conversion of the polymers tBuAc1 and 3, there was still 

evidence of branching by looking at the Mark-Houwink equation and through the 

incorporation of CTA2. This is contrary to what is reported in the literature, where it is said 

that polymers tend to stay linear until higher conversion levels and then begin to branch later 

in the reaction[257], [258].  

All of the synthesised polymers were successfully reacted with ACVA in order to produce 

HBPs with carboxylic acid end groups. The low molecular weight of the HBPs may 

subsequently lead to less hindrance and easier access to the polymer end groups. 

The incorporation of HBPs into semi-IPNs was not successful. The un-crosslinked polymer 

could be seen to leech out of the gels over 3 days. However, despite this proof-of-concept 

was provided as the gels with incorporated HBPs were seen to have beneficial qualities over 

the single network. This was observed as the gels being less ‗sticky‘ and more rigid. 

The cell proliferation assay indicated that fibroblasts have a strong preference for acid 

functionalised polymers. Fibroblast cells were also seen to adhere and proliferate to all of the 

polymers tested – both with dithiobenzoate and carboxylic acid end groups. The acid 

functional derivative of tBuAc4 showed the healthiest and most prolific cell growth and it 

also had the greatest molecular weight as determined by GPC. As previously discussed, low 

molecular weight polymers can be toxic in their own right[259]. From these results, the 

synthesised acid functional polymers could be further optimised as fibroblast cell culture 

substrates. 

In contrast, however, renal epithelial cell culture showed a stronger preference for the 

dithiobenzoate functional polymers. The epithelial cells were seen to both adhere and 



142 

 

proliferate on the dithiobenzoate in a comparable manner to TCP. Epithelials cultured on the 

acid functional HBPs showed very little to no adherence and proliferation over 72 hours. 

High magnification images were hampered by polymer staining but the dithiobenzoate 

polymer tBuAc2 did display healthy epithelial growth.  

This work has shown that t-butyl acrylate can be successfully polymerised using RAFT and 

dithiobenzoate CTA. The HBPs were all successfully reacted with ACVA to remove the 

dithiobenzoate group remaining after the polymerisation and replace it with carboxylic acid 

functionality. Culture with fibroblast cells indicates that these acid functional polymers could 

be used as cell culture substrates, but none of the polymers were a good substrate for 

epithelial cells.  
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4.4 Experimental 

Instrumentation used as described in chapter 2.4. 

4.4.1 Synthesis of RAFT chain transfer agent: 4-

vinylbenzyldithiobenzoate 

Materials 

Bromobenzene (99%, Aldrich), magnesium turnings (99.95%, Aldrich), carbon disulfide 

(99+%, Aldrich), 4-vinylbenzyl chloride (90%, Aldrich), diethyl ether (Fischer), hexane 

(Fischer), ethyl acetate (Fischer) were used as recieved. 

THF was obtained from a Grubb‘s dry solvent system. 

Method 

A three-necked round bottom flask was equipped with a condenser and bubbler, pressure 

equalising dropping funnel and a nitrogen inlet. Magnesium turnings (1.7 g) and a magnetic 

stirrer bar were added to the flask, which was then gently heated and stirred under a nitrogen 

environment for 40 minutes. The flask was left to cool to room temperature, before the 

dropwise addition of bromobenzene (10 g) in THF (40 mL) over 30 minutes. Gentle heat was 

provided to instigate the exothermic reaction, and cooling via an ice bath was provided as 

required. A green solution was formed, which was left to stir for 30 minutes at room 

temperature. 

Carbon disulfide (5 g) and THF (30 mL) were then added dropwise over 10minutes, and an 

orange to red colour change of the reaction solution was observed. The flask contents were 

cooled to 0 ˚C using an ice bath and stirred for 30 minutes, before being heated to 50 ˚C and 

stirred for a further 30 minutes. At this higher temperature, 4-vinylbenzyl chloride (10 g) in 

THF (30 mL) was added dropwise over 10 minutes.  

The solution was left to cool to room temperature and stirred overnight. The red liquid 

product was placed in a 1 L separating funnel, with diethyl ether (80 mL) and distilled water 

(80 mL). The organic layer was recovered and the aqueous layer was extracted with diethyl 

ether (3 x 100 mL). The organic extracts were combined and dried over magnesium sulfate 

before filtration and the solvent was removed by rotary evaporation to give a red oil. 
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The oil was purified by flash chromatography, with a column of 6cm diameter, using 0.5-2 % 

hexane in ethyl acetate. The solvent was removed was removed by rotary evaporation to give 

5.6 g of a red oil. The product was stored at -18 ˚C. 

 

 Elemental analysis: C: 70.6%, H: 5.9%, N: 0%, S:23.5%. 

 

 

 

Figure 4.4.1.2 – 
1
H NMR of 4-vinylbenzyl dithiobenzoate (250 MHz, CDCl3) δppm 4.33 

(HE), 5.28 (HA), 5.79 (HA), 6.70 (HB), 7.08 (HD), 7.28 (HC), 7.38 (HJ), 7.53 (HI, HK), 7.98 

(HF, HG). 

 

 

 

 

4.4.2 RAFT polymerisation of t-butyl acrylate using 4-

vinylbenzyl dithiobenzoate chain transfer agent 

 

Materials 

4-Vinylbenzyl dithiobenzoate (produced as previously described), t-butyl acrylate (98%, 

Aldrich), 4,4‘-azobis 4-cyanovaleric acid (ACVA, ≥98%, Aldrich), 1,4-dioxane (anhydrous, 

99.8%, Sigma-Aldrich), methanol (Fisher) were used as recieved. 

Equipment 

Ampoules were degassed on a high vacuum line equipped with a Pirani gauge.  
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Method 

4-Vinylbenzyl dithiobenzoate, t-butyl acrylate, dioxane (25 mL) and ACVA were mixed 

together until the solid initiator had dissolved. The resulting solution was pipetted into a 50 

mL ampoule and placed onto the vacuum line but was not exposed to vacuum. The solution 

was frozen using liquid nitrogen and then opened to the vacuum until the gauge dropped to a 

steady output. The ampoule‘s exposure to vacuum was then ceased as its contents were left to 

thaw. Once thawing was completed, the full process was repeated until a negligible rise in 

pressure was observed when the ampoule was opened to vacuum. The end pressure in the 

ampoule was approximately 3x10
-3

 mBar. The ampoule was sealed using a gas/oxygen 

blowtorch and placed in a water bath at 60˚C for up to 24 hrs to undergo polymerisation. 

 

Table 4.4.2.1 summarises the quantities of reagents used. 

 

t-Butyl acrylate /mL Chain transfer agent /mL ACVA /g 

5 (0.034) 1 (4.0x10
-3

) 0.025 (8.9x10
-5

) 

10 (0.068) 1 (4.0x10
-3

) 0.025 (8.9x10
-5

) 

15 (0.1) 1 (4.0x10
-3

) 0.025 (8.9x10
-5

) 

20 (0.14) 1 (4.0x10
-3

) 0.025 (8.9x10
-5

) 

5 (0.034) 1 (4.0x10
-3

) 1.29 (4.6x10
-3

) 

10 (0.068) 1 (4.0x10
-3

) 1.29 (4.6x10
-3

) 

15 (0.1) 1 (4.0x10
-3

) 1.29 (4.6x10
-3

) 

20 (0.14) 1 (4.0x10
-3

) 1.29 (4.6x10
-3

) 

15 (0.1) 1 (4.0x10
-3

) 0.65 (2.3x10
-3

) 

20 (0.14) 1 (4.0x10
-3

) 0.65 (2.3x10
-3

) 

Table 4.4.2.1 – summary of reagent quantities used in RAFT polymerisation of t-Butyl 

acrylate. Moles shown in parenthesis.  

 

Products were precipitated by transferring into 4x by volume of methanol and leaving to 

stand, followed by filtering and drying in a vacuum oven producing an orange solid. Dried 

products were stored in closed sample tubes at room temperature. 
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4.4.3 Reaction of hyperbranched t-butylacrylate polymers 

with excess ACVA 

Materials 

Acetone (HPLC grade, Fisher), ethanol (absolute, Fisher), methanol (HPLC grade, Fisher),  

ultrapure water (18.8Ω, MilliQ systems), HBP(t-butyl acrylate) synthesised as described in 

4.4.2 and 4,4‘-azobis 4-cyanovaleric acid (ACVA, ≥98%, Aldrich) were used as received. 

Dimethyl formamide (DMF) was obtained from the Grubb‘s dry solvent system. 

Method 

A three necked round bottom flask was equipped with a magnetic stirrer, nitrogen inlet and a 

condenser. The apparatus was nitrogen purged and heated to 60 °C. A known amount of 

polymer was dissolved in dry DMF and then injected into the warm, dry flask which was kept 

under a nitrogen atmosphere. 60 molar equivalents of ACVA were then dissolved in 10-

15mL DMF (up to 1 minute of sonication was used to assist dissolution) and this was then 

injected into in the flask. The solution was stirred for 16hours at 60 °C before the addition of 

another 60molar equivalents of ACVA. This process was repeated for four additions. 

The polymer was purified from ACVA by first removing the DMF under reduced pressure. 

The solid polymer was then dissolved in ultrapure water (MilliQ) and waste ACVA was 

removed via vacuum filtration. The polymer was washed with methanol and then further 

purified by ultrafiltration through a 3 kDa cellulose membrane using a solvent system of  9:1 

acetone:ethanol. 

The reaction was deemed successful when elemental analysis showed no sulfur present in the 

final product, indicating the complete removal of the carbodithioate groups. 

4.4.4 Embedding of hyperbranched polymers into semi-

interpenetrating networks 

Materials 

HBP(t-butyl acrylate) as synthesised in 4.4.4.2, isopropanol (IPA, absolute, Fisher), n-butyl 

acrylate (>99%, Aldrich), 2-hydroxy-2-methylpropiophenone (HMPP, 97%, Aldrich), divinyl 

benzene (80%, Aldrich), ethylene glycol dimethacrylate (98%, Aldrich) were used as 

received.  
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Preparation of semi-IPNs 

The monomers were mixed together in the ratios shown in table 4.4.1 and flushed with 

nitrogen for 30 minutes, and at the same time the HBP was dissolved in isopropanol and also 

nitrogen flushed.  

 

nBuAc 

/g 

DVB 

/g 

EGDMA 

/g 

IPA 

/mL HBP /g 

HMPP 

/mg Properties 

3.2 0.3 0 1 0.7 40 

Slightly yellow gel, very brittle and 

crumbled. 

3.2 0.3 0 1 0 20 Clear, brittle gel that curled and broke. 

3.2 0.15 0 1 0 20 Clear, less brittle gel, sticky. 

3.2 0 0.5 1 0 20 Clear, less brittle again, some breakage. 

3.2 0 0.25 1 0 20 Clear, not brittle but sticky. 

3.2 0.15 0 1 0.5 20 Yellow gel. Slightly brittle, not sticky 

3.2 0 0.25 1 0.5 20 Yellow gel. Not brittle or sticky. 

Table 4.4.4.1 – Quantities of monomers used in the synthesis of hydrogels and sem-IPNs. 

 

The polymerisation mould was constructed from two 4mm glass sheets, covered with 100μm 

PET film fixed using the minimum amount of Spray-Mount® (3-M) adhesive. A 500μm 

PTFE spacer was used to separate the plates, leaving a gap into which the polymerisation 

mixture was injected. The mould was secured around all edges using crocodile clips. The 

monomer and HBP mixtures were then combined, and finally the initiator (HMPP) was 

added. This solution was then quickly transferred into the mould using a syringe. The 

polymerisation was performed in a UV oven over 150secs, turning the mould every 30sec 

until a gel had been formed.  

The semi-IPN was then removed from the mould and washed with IPA for 24 hours, before 

being stored in IPA. The hydrating solvent was replaced every 7 days thereon. 
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4.4.5 Culture of cells in direct contact with polymers 

Materials 

Human dermal fibroblasts and human renal epithelial were cultured and prepared as 

described in chapter 2.  

Hyperbranched tbutyl acrylate (tBuAc1-4) as synthesised in section 4.4.2, and with acid end 

groups as described in section 4.4.3 (tBuAc1-4 acid). isopropanol (absolute, Fisher), 

complete media (prepared as described in chapter 2), trypsin-EDTA (Life Technologies), 

PLGA (50:50, Polysciences), DMSO (Anhydrous, Sigma), Alamarblue® (Life 

Technologies), phosphate buffered saline (Bioreagent, Sigma), hematoxylin solution 

according to Weigert (parts A and B, Aldrich), eosin y (99%, Sigma Aldrich), 10% neutral 

buffered formalin solution (Sigma), giemsa stain modified solution (Sigma), ethanol 

(absolute, Fisher), glacial acetic acid (99%, Fisher) were used as received. 

Distilled water was used throughout unless otherwise specified. 

Equipment 

IR spot lamp 75W (Exo Terra), glass coverslip (22x22mm, Menzel). 

Glass coverslips were sterilised by autoclave. 

Preparation of polymer films and cell seeding 

Polymers were dissolved in the solvents listed in table 4.4.5.1 at a concentration of 5 mg/mL. 

The polymer solutions were well agitated and sonicated for up to 30 seconds if required.  

 

Solvent Polymer 

Tetrahydrofuran tBuAc1-4 

Dimethylsulfoxide PLGA 

Ethanol tBuAc1-3 acid 

Table 4.4.5.1. – Solvents used to solvate the various polymers prior to casting on glass slips. 

 

100mL of polymer solution was then pipetted onto each glass coverslip. An IR lamp was 

used to heat treat the polymer films until the solvent appeared visibly removed. At this point, 

each covered slip was placed into its own well of a six well plate and washed with sterile PBS 

to remove any residual solvent. 
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Fibroblasts or epithelial cells were treated with trypsin as per the protocol for passage, but 

instead of re-seeding into T-75 flasks, they were seeded directly onto the films at a density 

1x10
4
cells/well. 2 mL of complete media was added to each well and the cells were incubated 

for 24 hours at 37ºC, 5% CO2. After 24 hours phase contrast imaging and a full media change 

was performed. After 72 hours cells were assayed and fixed for staining using the methods in 

chapter 2.  
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5 - Overall conclusions and future work 

 

The aim of this thesis was to develop new synthetic procedures for hyperbranched polymers, 

and also further our understanding into how imposing end group functionality can impact 

upon biocompatibility. Other properties that were assessed were polymer mass and degree of 

branching.  

The greatest challenge in the synthesis of oligo(BMA) laid with the initial copolymerisation 

with butadiene. A series of experiements were performed in an unpressurised reactor, 

allowing the determination of optimal reaction conditions. It was found that the use of α- or 

β-cyclodextrin and a carefully controlled reaction temperature of 75-80 °C was essential for 

copolymerisation to occur. The amount of cyclodextrin included in the reaction was not 

found to have any significant effect above 0.003 moles; this is because cyclodextrin acts as a 

carrier molecule for butadiene and is not used up during the course of the polymerisation. The 

presence of cyclodextrin contaminant in the final product is not a barrier to cell based studies 

as these molecules do possess some cytocompatibility. 

The copolymer was successfully cleaved at the sites of 1,4-butadiene insertion using the well-

established technique of ozonolysis and oxidative cleavage. The creation of oligomers in this 

way allowed further reaction of the end groups to carboxylic acid and diamine functionality. 

GPC confirmed the successful polymer cleavage as the oligomers had a decrease in 

molecular weight and FT-IR and elemental analysis was used to confirm the end group 

functionality.  

Cell adhesion studies of oligomers with fibroblast and epithelial cells showed that different 

functionality is preferred by different cell types. When cultured on the synthesised materials, 

fibroblast cells showed the greatest proliferation on the acid functionalised oligomer whilst 

epithelial cells performed best on the 1,6-amidated oligomer. This is most likely due to 

differences in protein expression which are observed as variances in adhesion mechanism and 

ECM formation. None of the oligomers showed as great cell adhesion as the control materials 

TCP and PLGA – indicating that further work is required to produce fully biocompatible 

oligomers. 

 

Hyperbranched polymers of n-butyl methacrylate and t-butyl acrylate were produced using 

RAFT polymerisation via two different chain transfer agents (CTA1 and 2).  
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Again a series of polymerisations were performed and the optimal amount of CTA1 in the 

polymerisation with BMA was found to be 4%, which gave almost total monomer 

conversion. CTA2, a benzyl carbodithioate, was employed with the tBuAc monomer. These 

polymerisations had relatively low conversion and it is believed this is due to a retardation 

effect that is experienced when copolymerising acrylates with a benzyl CTA. During the 

polymerisation of mixes with higher levels of monomer, gelation indicated the occurance of 

cross-linking and therefore the amount of initiator in the feed was decreased. 

Triple detection GPC was successfully used to substantiate the claimed hyperbranched 

structure of the polymer. Using excess ACVA, the end groups of each polymer were replaced 

with carboxylic acid functionality, which was confirmed by elemental analysis and FT-IR. 

The linear n-butyl methacrylate copolymers supplied by Sarah Canning were characterised 

and found to be sufficient for comparison with HB(BMA). These linear polymers already 

possessed acid functionality through the incorporation of the comonomer 4-divinyl benzoic 

acid.  Linear polymers were amidated at the 4-vinyl benzoic acid groups through work up 

with excess diamines. All of the functionalised polymers were assessed for their 

biocompatibility, where it was found that fibroblast cells show a significant preference for 

acid functional polymers and not the amidated varients. This echoes the response observed on 

the shorter chain oligo(BMA)s - fibroblast cells grown on the amine functional materials 

either did not grow, or displayed unhealthy morphologies.  

When compared together, it can be seen that there is no significant differences in the 

fibroblast viabilities between linear, oligomeric and hyperbranched P(BMA) – except in the 

cases where amine functionality were present. Amine functional linear polymers and 

unmodified HP polymers show a significant decrease in cell adhesion compared to standard 

materials such as tissue culture plastic (TCP) and poly(lactide-glycolic acid) (PLGA). When 

the functionality was preferable fibroblast cells were able to proliferate equally as well on 

linear and HB polymers, showing that HBPs are a viable substrate for new biomaterials. 

The strong preference of fibroblasts for acid functional polymers was not observed for renal 

epithelial cells. The epithelial cells also showed higher average viabilities on linear(BMA) 

when compared to hyperbranched and oligomeric analogues – although it should be 

cautioned that lower viabilities were also seen on the control materials. There was also an 

overall increase in proliferation seen on the HB(tBuAc). It is very likely that the percentage 

functionality and hydrophilicity, which are related to the structure, of the polymer contribute 

to the ability of cells to adhere. 
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It is not surprising that the two cell types displayed different reactions when exposed to the 

same material, due to their differences in phenotype and gene expression. As discussed 

previously, the differences in cell genotype can be seen as differences in the localised 

extracellular matrix and its formation. 

An attempt to produce semi-IPNs using n-butyl acrylate network with HBP(tBuAc) was 

made. Although these semi-IPNs showed enhanced properties over the single networks, the 

HBPs leached into the storage solvent over a few days. 

This evidence shows that the formation of a new biomaterial is highly complex, and one 

functionality is unlikely to be harmonious with all cell types, indicating that the thoughtful 

functionalisation of polymers can increase their cytocompatibilty. When developing new 

materials for use in cell culture and tissue regeneration, it is important to consider the cell 

types to make sure that optimal polymer architecture and functionality is used. For instance, 

one would pick an amine functionalised polymer for use with epithelial cells, and acid 

functionality for fibroblast cells. 

 

 

Future work 

It is thought that some low Mw toxicity was observed during cell culture with oligo(BMA). A 

better method for the synthesis and purification of these molecules is required if further cell 

adhesion experiements are to be performed. Fine tuning of the polymerisation may produce a 

more regular distributon of butadiene so that the cleaved oligomers are of similar chain 

length. Meanwhile, purification techniques such as filtration and dialysis could be used to 

further remove very short chain oligomers. 

Functional polymers can be subjected to  titration, in order to assess the amount of acid 

functionality, which can then be used to find the optimal %acid required for fibroblast 

adherence.  

By work up of the acid functional HBPs with diamines, it would be possible to form amine 

functional HBPs. These may show an increase in cell proliferation when used as a substrate 

for epithelial cells. 

The RAFT polymerisation of t-BuAc could be repeated with a more compatible CTA – this 

would produce higher molecular weight HBPs that may be better suited for both cell culture 

and inclusion in semi-IPNs. 
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With increased time it would be beneficial to repeat the cell culture experiments with more 

sophisticated assays and imaging. For instance, fluorescent dyes are available that stain 

specific proteins and methods such as ELISA can be used to observe protein expression. 

Assaying for the presence of small molecules such as ATP can also provide valuable insight 

into cells‘ metabolic rate.  

HB(BMA) polymers may not show the same leaching effects as HB(tBuAc) when 

incorporated into semi-IPNs. These polymers showed some agreeable cell adherence and 

proliferaton, and it would be interesting to see how this is affected on inclusion in a non-toxic 

n-butyl acrylate network. Once the optimal polymer/IPN composition had been found, this 

would be suitable for use as a structured cell culture substrate in the laboratory, or as a 

biomaterial with applications in wound healing and tissue regeneration. 
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