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All substances are poisons, 

there are none which is not a poison, 

only the dose permits something not to be poisonous. 

 

Paracelsus 

 

*** 

 

True happiness is not made in getting something.  

True happiness is becoming something.  

This can be done by being committed to lofty goals.  

We cannot become something without commitment. 

 

 Marvin J. Ashton 

  



III 
 

Abstract 
Carbon monoxide (CO) is commonly considered to be toxic due to the propensity of 

this gaseous molecule to bind to ferrous iron in haemoglobin and cytochromes, thereby 

inhibiting respiration and the transport of oxygen around the body. However, CO is 

produced endogenously by haem oxygenases and has various cytoprotective functions 

including being vasodilatory, anti-inflammatory and anti-apoptotic. The development of 

CO-RMs (Carbon Monoxide-Releasing Molecules), which are generally transition 

metal carbonyls that release CO under certain conditions, has facilitated research into 

the physiological effects of CO and the potential use of CO as a therapeutic agent. 

Furthermore, CO-RMs have been found to reduce significantly the viability of various 

Gram-positive and Gram-negative bacteria, which is thought to be caused in part by the 

binding of CO from CO-RMs to the terminal oxidases of aerobic respiratory chains. 

Interestingly, CO-RMs are known to elicit many effects distinct from those of CO gas, 

including acting as more potent bactericidal agents. 

 

This thesis aims to increase the current knowledge of the antibacterial effects of CO-

RMs, with a particular focus on the interactions with respiration, oxidases and thiol 

compounds. In contrast to CO gas, CORM-3 was not preferentially inhibitory to 

respiration at low oxygen tensions; however, in accordance with the relative resistance 

of cytochrome bd-I to CO gas, this oxidase was found to be the most resistant of E. coli 

to respiratory inhibition by CORM-3, and possession of this oxidase conferred some 

protection against growth inhibition in the presence of this CO-RM.  

 

Inhibition of E. coli respiration by CORM-3 was photosensitive and light reduced 

significantly the toxic effects of this compound, suggesting that CO from CORM-3 

binds to ferrous haems in a classical, light-sensitive manner. This supports the 

hypothesis that the binding of CO from CORM-3 to haemoproteins is largely 

responsible for killing by these compounds. However, in opposition to this hypothesis, 

the non-haem oxidase AOX from Vibrio fischeri was found to be hypersensitive to 

inhibition by CORM-3, but not to CO, emphasising the complex effects of these 

compounds. 
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Data are presented to show that thiol-containing compounds, which have been widely 

reported to abolish the biological effects of CO-RMs, substantially reduce the uptake of 

ruthenium-containing CO-RMs. The generation of reactive oxygen species by CO-RMs 

is also demonstrated and investigated. 

 

Finally, the generation and preliminary characterisation of CO-RM-resistant E. coli 

mutants is described. This work was done with the aim of revealing previously 

unappreciated bacterial targets for CO-RMs. Sugar-transporting phosphotransferase 

systems were identified as a possible means of CO-RM entry into the bacterial cell. 
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Chapter 1 

 

Introduction 
 

1.1 Carbon Monoxide (CO)  

Carbon Monoxide (CO), a small, diatomic, gaseous molecule, is commonly considered 

to be a poison and an atmospheric pollutant. Natural sources of CO include 

photosynthesis and natural combustion such as forest fires and volcanoes, while a major 

source of anthropogenic CO is the partial oxidation of carbon containing compounds 

during energy generation from fossil fuels and the exhausts of internal combustion 

engines. CO inhalation causes approximately 170 deaths each year in the USA when 

gas appliances such as household boilers are used without adequate ventilation (U.S 

Consumer Product Safety Commission). CO also contributes to damaging ozone 

production by reacting with other pollutants, thereby reducing levels of atmospheric 

NO, which is then less effective at eliminating ozone (Assembly of Life Sceinces 

(U.S.). Committee on Medical and Biologic Effects of Environmental Pollutants, 1977). 

 

CO has a molecular weight of 28 and is relatively unreactive due to a stable triple bond 

between the two atoms and, consequently, has a high activation energy of 213 kJ mol-1. 

It is however, able to form complexes with some transition metals that have low 

oxidation states (Davidge et al., 2009a). Despite these complexes being stable due to the 

triple M-C≡O bond, this process renders the CO susceptible to hydroxide attack, and 

therefore more reactive than in the diatomic form. CO has a low boiling point (-191.5 

°C) and therefore exists as a gas at room temperature. 

 

1.1.1 Gasotransmitters 

Together with NO and H2S, CO is classified as a gasotransmitter (for more information 

see the following comprehensive reviews; (Kajimura et al., 2010; Kajimura et al., 2012; 

Li et al., 2009; Tinajero Trejo et al., 2013). These three molecules share many 

properties; they are all small, uncharged, membrane-permeable gases, and are highly 

toxic, primarily due to their interactions with metalloproteins and propensity to inhibit 
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respiration (Wikstrom et al., 1981), yet all are produced endogenously in small amounts 

by mammalian systems and play vital roles within the body. All three gases are 

regulators of the cardiovascular and nervous systems (Furchgott, 1999; Liu et al., 2011; 

Marks et al., 1991; Murad, 1999; Wang, 2003), and NO and CO also have important 

effects on the immune system. Indeed, the realisation that CO was more than just a toxic 

molecule (Marks et al., 1991) followed on from the initial appreciation of the vital 

beneficial activities of NO (Ryter et al., 2004), for which Murad (1999), Furchgott 

(1999) and Ignarro (1999) were awarded the Nobel Prize for Physiology or Medicine in 

1998. Each gasotransmitter is considered to have potential in a variety of therapeutic 

applications (Szabo, 2010). NO is an effective pulmonary vasodilator in patients with 

pulmonary hypertension (reviewed by(Griffiths and Evans, 2005) and decreases the risk 

of brain injury in premature infants with respiratory failure (Kinsella et al., 2006). H2S 

induces relaxation of blood vessels, inhibits inflammation, and modulates neuronal 

activity (Gadalla and Snyder, 2010). CO is an anti-inflammatory (Boczkowski et al., 

2006) and protective agent following organ transplants (Akamatsu et al., 2004) and of 

the cardiovascular system (Furchgott and Jothianandan, 1991) (see sections 1.1.2.5 and 

1.2.8.2). 

 

1.1.2 Historical use of CO as an experimental tool 

The history of the experimental use of CO to elucidate the cellular components 

responsible for respiration has been comprehensively reviewed by Keilin (1966). Early 

work investigating the interaction of CO with biological systems was conducted by 

Haldane and Smith (Keilin, 1966), who in 1896, showed that the binding of CO to 

haemoglobin was reversible by light. Critical work was also performed by Louis Soret, 

who obtained UV absorption spectra of dilute blood samples and found that treatment of 

these samples with CO caused a red shift in the spectra of these samples (Keilin, 1966). 

Soret’s pioneering work led to the designation of the γ-band of visible absorption 

spectra as the ‘Soret’ region. 

 

Inhibition of respiration in yeast was first noted by Warburg (reviewed by(Keilin, 

1966). Warburg concluded that the CO/O2 ratio was critical in determining the extent of 

respiratory inhibition caused by CO, thereby confirming that CO and O2 compete for 

the same respiratory protein. He further investigated the finding of Haldane and Smith 
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that inhibition of respiration by CO was photosensitive, a property shared by 

haemoglobin (Hb), which led to his realisation that the unidentified respiratory 

components and haemoglobin were related (reviewed by(Keilin, 1966). Warburg 

proceeded to develop photochemical action spectra, which involved examining the 

effects of light on respiration by yeast in the presence of CO, in order to further 

investigate the nature of the respiratory component (Keilin, 1966). 

 

Britton Chance (Chance et al., 1953) developed the work of Warburg and obtained 

photochemical action spectra of a variety of eukaryotic tissues and of prokaryotes, 

leading to a demonstration of the photodisociation of the CO-bound adduct of 

cytochrome a3, which in turn led to him identifying the oxidase of the mitochondrial 

respiratory chain. The use of action spectra to study the photorelief of inhibition of 

respiration by CO became an established assay to confirm the presence of terminal 

oxidases (Castor and Chance, 1959; Lemberg and Barrett, 1973). The relationship 

between cytochromes and aerobic respiration was further appreciated by Keilin (1966), 

who studied microorganisms sepctroscopically and found cytochromes to be present in 

aerobic yeast and the bacterium Bacillus subtilis, but not in the obligate anaerobe 

Clostridium sporogenes. 

 

1.1.3 CO in mammalian systems 

1.1.3.1 Toxicity of CO  

In mammalian systems, prolonged inhalation of CO leads to tissue hypoxia, as the 

preferential binding of CO to haemoglobin prevents the transport of O2 around the body 

(Goldbaum et al., 1975; Stewart, 1974). The toxic effects of CO inhalation depend on 

the relative CO and O2 tensions (Wu and Wang, 2005). The affinity of haemoglobin for 

CO is 200 – 250-fold higher than that of O2 (Rodkey et al., 1974); therefore upon 

inhalation, the majority of CO is sequestered by haemoglobin. Currently, the United 

States Occupational Health and Safety Administration (OSHA) has advocated a safe 

carbonmonoxyhaemoglobin (COHb) level of 8–10%, which is equivalent to exposure to 

50 parts per million (ppm) for 8 h. 

  

Hypoxia is most evident and detrimental in the brain and heart as these organs have a 

high requirement for oxygen. Symptoms of exposure to CO include headaches (which 
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typically begin when blood COHb levels reach 20%), dizziness and vomiting (typically 

experienced with COHb levels of 30%). Higher levels of COHb in the blood lead to 

collapse, convulsions (COHb of 40 – 50%), coma and death (COHb of 60 – 80%) 

(Roughton and Darling, 1944). However death has been reported at COHb levels of 30 

– 40%, while other individuals with more than 40% CO-bound Hb have shown no 

symptoms (Goldbaum et al., 1975). These discrepancies suggest that it is not the 

oxygen-carrying capacity of the blood, but rather, the dissolved CO level, that is critical 

in determining toxicity, as it is this free CO that is able to bind to other cellular targets 

such as respiratory cytochromes, a view shared by Chance et al. (1970). Indeed, when 

dogs inhaled 13% CO, they died within 15 min – 1 h and were found to have COHb 

levels of 54 – 90%, yet when dogs were bled to anaemia and then the blood replaced 

with blood from a donor dog with 80% COHb, the dogs were able to survive with 

COHb levels of 60% (Goldbaum et al., 1975).  

 

More recently, Alonso et al. (2003) presented further evidence that COHb levels are not 

sufficient to explain the toxicity of CO, and proposed that this involves both tissue 

hypoxia and direct cellular damage. In this work, mitochondria from muscle tissue were 

treated with 50, 100 and 500 ppm CO, which reduced cytochrome c oxidase activity by 

20, 42 and 55% respectively. However, the conclusion that CO is toxic due to binding 

to respiratory cytochromes was to some extent disputed by Coburn (1979), who 

reviewed data that suggests that CO tensions of more than 1000-times those that occur 

when HbCO is at 5 to 10% saturation only cause a slight reduction in oxygen uptake. 

Instead, he suggests that CO binding to myoglobin (Mb) in heart and skeletal muscle, is 

a major cause of toxicity, even at less than 5% HbCO saturation (Coburn, 1979). This is 

supported by recent evidence, which shows that exposure to chronic levels of CO can 

cause arteriosclerotic heart disease and cardiac hypertrophy (Wang, 2004). Other toxic 

effects of CO are caused by the interaction of CO with haem proteins including 

cytochrome P450, cytochrome c oxidase, catalase and myoglobin (Piantadosi, 2002).  

 

1.1.3.2 CO as an inhibitor of respiration  

The final step in aerobic respiration in mammalian systems, in which oxygen is reduced 

to water, is catalysed by cytochrome c oxidase. This enzyme contains haem and is 
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therefore susceptible to inhibition by CO, a compound that binds avidly to FeII in the 

ferrous form of haem (Cotton and Wilkinson, 1980). 

 

Haem consists of a porphyrin ring and a central iron ion. There are several different 

types of haem, each with variation in the functional groups attached to the main 

porphyrin ring. For example, c-type haems are very similar to b-type haems, but have 

cysteine SH-groups attached to the vinyl side chains, thus covalently binding haem to 

the apoprotein. This has no effect on the redox or catalytic properties of the haem, but in 

bacteria, c-type haems are only present in the periplasm, (Wood, 1983). Depending on 

the redox state of the iron, several small molecules, such as O2, NO, H2S, HCN-, can 

bind to this moiety. 

 

In general, high spin haem proteins are able to bind ligands, while low spin haems are 

involved in electron transfer (Collman et al., 1980). Cytochrome c oxidase has 4 redox 

centers that partake in the reduction of O2; CuA and CuB and haems a and a3. Electrons 

are transferred from ferrocytochrome to CuA, and then passed to haem a, and 

subsequently to the haem a3/CuB binuclear center, before finally being transferred to O2 

(Babcock and Wikstrom, 1992). Both O2 and CO are able to bind to this site only when 

both the iron and copper are in the reduced state. The site at which O2 is reduced to 

water, haem a3/CuB, is hydrophobic and therefore preferentially binds neutral species 

(or anions associated with a proton) (Rich et al., 1996). Figure 1.1 shows a 

diagrammatic representation of the redox centers of cytochrome c oxidase, and indicates 

the sites of binding of CO. 

 

A recent study on the effects of endogenous CO on mammalian respiration showed that 

treatment of HEK293 cells with 20 µM CO inhibits respiration by 40% in the presence 

of 20 µM O2, and that the degree of respiratory inhibition is greater at lower oxygen 

concentrations, consistent with competitive inhibition by this compound (D'Amico et 

al., 2006). Furthermore, mitochondrial oxygen uptake has been shown to be 

significantly reduced in kidneys after the endogenous production of CO was increased 

(Sandouka et al., 2005).  
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1.1.3.3 A comparison with other respiratory inhibitors  

CO is not unique as an inhibitor of respiratory oxidases. These enzymes are also 

inhibited by other small gaseous molecules, including NO, H2S and hydrogen cyanide. 

The roles of the first two as gasotransmitters are discussed above, here the mechanisms 

by which they inhibit cytochrome c oxidase will be compared, a subject that has 

recently been comprehensively reviewed by Cooper and Brown (2008). 

  

NO has more complex effects on cytochrome c oxidase than CO, as it is able to inhibit 

this enzyme by both competitive and non-competitive mechanisms (Cooper and Brown, 

2008) and is able to bind to both the reduced and oxidised enzyme. Non-competitive 

inhibition is mediated by the binding of NO to CuB in oxidised cytochrome c oxidase 

(Cooper et al., 1997) and results in the oxidation of NO to nitrite and the reduction of 

the enzyme (Torres et al., 2000). The inhibition of respiration by NO causes reduction 

of the components of the electron transport chain, which leads to formation of 

superoxide and hydrogen peroxide (H2O2), which can act as important signalling 

molecules, as described below (section 1.2.8.2.4). 

 

H2S also binds to and inhibits cytochrome c oxidase in a non-competitive manner and at 

more than one site, at reduced CuB and at oxidised haem a3 (Hill et al., 1984). As with 

NO, H2S can be oxidised by this enzyme (Petersen, 1977).  

 

Like CO, cyanide inhibits respiration by binding to the binuclear center of cytochrome c 

oxidase, but unlike CO, it binds to these components in their oxidised or reduced forms 

and in a non-competitive manner (Antonini and Brunori, 1971). It is thought that HCN 

inhibits a turnover intermediate (Mitchell et al., 1992). Cyanide-insensitive, terminal 

oxidases exist, such as alternative oxidase (AOX) present in plants and some bacteria, 

which is resistant to CN- due to an absence of haem (see Chapter 5) and the CIO  

(cyanide insensitive oxidase) subfamily of oxidases present in some species of bacteria 

(Matsushita, 1983). P. aeruginosa contains a CIO, which is homologous to cytochrome 

bd quinol oxidases, but does not contain haem d (Cunningham et al., 1997). This 

oxidase is induced upon entry into stationary phase (Cooper, 2003), during which HCN 

(at approximately 300 µM) is produced as one of many virulence factors (Blumer and 

Haas, 2000) and is therefore proposed to be involved in growth under cyanogenic 
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conditions (Cunningham et al., 1997; Cunningham and Williams, 1995) and in the 

pathogenicity of this bacterium (Gallagher and Manoil, 2001) as demonstrated in 

Caenorhabditis elegans (Zlosnik et al., 2006). 

 

1.1.3.4 Endogenous production of CO 

Despite the established perception of CO as a toxic gas, CO has more recently been 

recognised as an important biological molecule that is produced endogenously in both 

prokaryotes (Engel et al., 1972) and eukaryotes (Sjostrand, 1949) and which has many 

beneficial roles (see section 1.1.7 below). Sjostrand (1949), found that the 

decomposition of Hb led to the production of CO. Coburn et al. (1963) then showed that 

when a person breathes into a closed system, the amount of CO detected over time 

increases, which confirmed that CO is produced endogenously in humans, and that CO 

production by the body is substantially increased during conditions such as haemolysis, 

when the levels of free haem are raised.  

 

The enzyme required for the breakdown of haem, haem oxygenase (HO), was identified 

by Tenhunen et al. (1969). The breakdown of haem by HO requires molecular oxygen 

and NADPH. NADPH activates O2 and reduces FeIII in haem to FeII, which is necessary 

for the cleavage of haem. The breakdown of haem produces CO, FeII
 and biliverdin (a 

green pigment) (Tenhunen et al., 1969), which is later converted to bilirubuin (a yellow 

pigment) by biliverdin reductase; this process and the biological effects of the 

breakdown products are summarised in Figure 1.2. Haem breakdown can be visualised 

during bruising. Such an injury will initially appear purple / red as oxygenated haem is 

released under the skin. Haem oxygenase uses oxygen to break down haem, generating 

anaerobic conditions and therefore deoxy-haem, causing the bruise to appear blue. The 

formation of bilirubin will then lead to the bruise becoming yellow (Mann, 2012). 

 

Haem oxygenase exists in most mammalian species in both an inducible (HO-1) and a 

constitutive (HO-2) form (Tenhunen et al., 1969), although a third isoform, HO-3, has 

been found in rats. HO-3 is a less powerful enzyme than HO-1 or HO-2 and is thought 

to be involved in haem-sensing (McCoubrey et al., 1997). The degradation of haem is 

necessary in mammalian systems, as excess free haem is cytotoxic due to its oxidative 
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effect. Additionally, the products of haem breakdown, CO and bilirubin, have beneficial 

effects; bilirubin has antioxidant (Stocker et al., 1987) and anti-inflammatory properties 

(Sarady-Andrews et al., 2005), while CO is also anti-inflammatory and is involved in 

regulating the generation of cGMP, which has many important roles in the cell.  

 

The different isoforms of HO share some cellular defence functions, but also have 

distinct roles within the body. HO-2 is most abundant in the brain and testes, but is also 

constitutively expressed in other tissues, such as in endothelial tissues and the liver 

(Ewing and Maines, 1992). In the neuronal system, CO is an important signalling 

molecule that regulates neurotransmitters and neuropeptide release. HO-2 is also 

responsible for maintaining homeostatic haem levels within the cell, and has an 

important role in inactivating radicals derived from NO (Maines and Panahian, 2001).  

 

Induction of HO-1 protects ischemic kidneys against tissue damage by degrading 

oxidant-generating haem from denatured hemoproteins and converting it to bilirubin 

and CO. The production of cytoprotective compounds by HO-1 necessitates that its 

expression is up-regulated by various stimuli that cause cellular stress, such as 

hyperoxia, heat shock and bacterial endotoxins, as well as haem and haem derivatives 

(Sardana et al., 1981), including CO itself (Carraway et al., 2002). Induction of HO-1 

can comprise several different pathways including those involving cAMP (Durante et 

al., 1997), protein kinase C, Ca2+-calmodulin-dependent protein kinase and the 

phosphoinositol pathway (Terry et al., 1999). In some tissues, mitogen-activated protein 

kinases and the phosphorylation of tyrosine also play a role in the activation of HO-1 

(Elbirt et al., 1998). In contrast, there are conditions under which it is important to 

preserve haem by the down-regulation of HO-1 expression. This can occur in response 

to hypoxia (Nakayama et al., 2000) or interferon-γ (Takahashi et al., 1999) and can 

involve Bach1, a haem-regulated repressor (Sun et al., 2002). 
 

Although the majority of the CO produced endogenously is derived from the 

degradation of haem by haem oxygenase enzymes, some CO is also produced by the 

breakage of methylene bridges in haem by hydrogen peroxide or ascorbic acid (Bonnett 

and McDonagh, 1973), or by the inactivation of cytochrome P450, which also leads to 

haem breakdown (Karuzina et al., 1999). 
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1.1.3.5 The physiological functions of endogenous CO 
Contrary to the traditional view of CO as a toxic molecule, it is now known to have 

various cytoprotective functions such as acting as a neural messenger (Verma et al., 

1993) and having vasodilatory (Furchgott and Jothianandan, 1991), anti-inflammatory 

and anti-apoptotic properties (Boczkowski et al., 2006). Examples of studies that have 

furthered our understanding of the effects of CO in these systems are listed in Table 1.1. 

CO is also involved in the regulation of many other physiological systems including the 

reproductive system (Ewing and Maines, 1995; Middendorff et al., 2000), the renal 

system (Hill-Kapturczak et al., 2002) and the control of circadian rhythms in a process 

involving sGC (soluble guanylate cyclase), and cGMP (cyclic guanosine 

monophosphate) (Artinian et al., 2001), and through interaction with the NPAS2 

(neuronal PAS domain protein) transcription factor (Dioum et al., 2002). HO-1 

knockout mice have been important in increasing our understanding of the important 

roles that CO plays within the body and in particular the understanding that HO-1 is 

required for mammalian iron reutilization. Such mice have an embryonic survival rate 

of only 5%, and individuals that survive are extremely vulnerable to stress and do not 

have a normal life span (Poss and Tonegawa, 1997).  

 

The most abundant and obvious target for CO is ferrous iron in haem and cytochromes. 

However, CO exerts some of its biological effects via a variety of signalling pathways 

within the cell, although the precise mechanisms by which CO mediates its effects on 

targets that do not contain a transition metal are not well understood (Boczkowski et al., 

2006). Section 1.2.8.2 provides a more detailed explanation of the mechanisms by 

which CO interacts with biological targets in order to evoke these effects. 

 

Abnormalities in CO metabolism and function are associated with a range of 

pathological conditions such as hypertension, heart failure, inflammation and 

neurodegenerative disease (Wu and Wang, 2005). Elevated production of CO has been 

noted in inflammatory pulmonary diseases, including cystic fibrosis, asthma and 

infectious lung disease (Kharitonov and Barnes, 2002). The important role of HO-1 in 

human health was highlighted by a case of an individual who lacked the ability to 

produce HO-1. This person experienced growth retardation, anaemia, thrombocytosis, 

hyperlipidaemia and leukocytosis, as well as high levels of ferritin and haem in their 
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Biological 
effect 

Evidence Reference 

Vasorelaxation The relaxation of pulmonary blood vessels in response to 
exogenous CO (involving binding of CO to cytochrome P450). 
 

(Sylvester and 
McGowan, 
1978)  

 The relaxation of rat coronary arteries in response to CO. 
 

(McGrath and 
Smith, 1984) 

 Inhibition of HO activity by zinc protophorphyrin-IX increased 
vascular resistance by decreasing the production of CO. 
 

(Suematsu et al., 
1994) 

 CO causes vasorelaxation of vascular smooth muscle cells via the 
cGMP signalling pathway and by affecting the activity of calcium-
activated K (KCa) channels. 

(Wang et al., 
1997) 

 CO caused vasorelaxation of rabbit aorta by stimulation of sGC, but 
was 1000-fold less potent than NO at eliciting these effects. 

(Furchgott and 
Jothianandan, 
1991) 

 CO relaxes vascular tone in the heart, thereby improving cardiac 
blood supply. 
 

(Grilli et al., 
2003)  

Neuronal 
effects 

HO co-localises with NOS in the CNS leading to the suggestion 
that CO is an endogenous neuronal messenger. 
 

(Verma et al., 
1993) 

 CO modulates the HPA response. 
 

(Snyder et al., 
1998) 

 CO inhibits the secretion of oxytocin by the hypothalamus. (Kostoglou-
Athanassiou et 
al., 1996) 

Anti-
inflammatory 
effects 

Low concentrations of CO inhibit the expression of LPS-induced 
pro-inflammatory cytokines: TNF-α, IL-1β, and macrophage 
inflammatory protein-1β, and increase the LPS-induced expression 
of the anti-inflammatory cytokine IL-10 via activation of MAPK. 

(Otterbein et al., 
2000) 

 CO inhibits LPS-induced GM-CSF production in macrophages 
(GM-CSF is a cytokine generated in response to LPS, which 
promotes proliferation, maturation, and effector functions of 
leukocytes). It does this by preventing the activation of the 
transcription factor NF-κB, which regulates GM-CSF transcription, 
by preventing the phosphorylation and degradation of the 
regulatory subunit IκB-α. 

(Sarady et al., 
2002) 

Anti-apoptotic 
effects 

Heme oxygenase-1 inhibits TNF-α-induced apoptosis in cultured 
fibroblasts and these effects are mimicked by the exogenous 
administration of low concentrations of CO. 
 

(Petrache et al., 
2000) 

 CO produced by HO-1 protects endothelial cells from TNF-alpha-
mediated apoptosis by activiating p38 MAPK. 

(Brouard et al., 
2002) 

 CO protects pancreatic beta-cells from apoptosis in a process 
involving sGC activation. 

(Gunther et al., 
2002) 

 

Table 1.1 The physiological effects of CO. This table summarises some of the key 

studies that have led to our appreciation of some of the main roles CO plays within the 

body.  
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serum and low levels of bilirubin, and sadly died aged 6 years (Ohta et al., 2000; Yachie 

et al., 1999). 

 

CO-based therapies are currently in the early stage of development, and include CO 

inhalation therapy, development of CO-RMs and induction of HO-1 to increase the 

production of endogenous CO (see section 1.2.8 below).  

 

1.1.4 CO in bacteria 

1.1.4.1 Bacterial haem oxygenases 

The production of CO by bacteria was first noted by Engel et al. (1972) who detected 

the generation of this gas by species of  Bacillus and Staphylococcus using gas 

chromatography. The first bacterial HO, HmuO from Corynebacterium diptheriae 

(Schmitt, 1997), was discovered because of its homology to human HO-1. Interestingly, 

there is relatively little sequence identity between bacterial HOs; however, important 

regions within the protein are conserved and these proteins often have the same overall 

fold with key ligands located with the same spatial relationship to the haem (Schuller et 

al., 2001; Zhu et al., 2000a). Bacterial HO genes are often confirmed by the inability of 

mutants in the gene to grow when haem or haemoglobin is the sole source of iron (for 

examples, see (Ratliff et al., 2001; Ridley et al., 2006; Schmitt, 1997). The ability to 

produce bilirubin is also indicative of HO-1 activity (Wegele et al., 2004; Zhu et al., 

2000b).  

 

Not all bacteria possess HOs; however, there does seem to be a higher incidence of this 

enzyme in pathogenic or haemolytic species (Davidge et al., 2009a). For example, 

Neisseria species have HemO (Zhu et al., 2000a), while Campylobacter jejuni has the 

HO Cj1613c (Ridley et al., 2006), which shares similarity with HugZ in Helicobacter 

pylori (Guo et al., 2008). In addition, the opportunistic pathogen Pseudomonas 

aeruginosa has two HOs: PigA, which has 37% similarity to HemO from Neisseria 

(Ratliff et al., 2001), and BhpO, which is a typical HO, but may also have a role in the 

production of phytochromes (Wegele et al., 2004). Other pathogenic species of Shigella 

and Enterobacter also have HOs. Further evidence to support this generalisation is the 

absence of HO in E. coli K12 strains, but the presence of the HO, ChuS, in the 

enterohemorregic strain 0157:H7 (Suits et al., 2005).  
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The proposed roles of HO in bacteria include iron acquisition, the production of 

chromophores and the establishment and maintenance of an anaerobic environment 

(reviewed by(Davidge et al., 2009a). With regards to the last, the HO HemT has been 

found in pathogenic species of Clostridium that colonise wounds in which 

anaerobiosisis is beneficial, but not in non-pathogenic Clostridium species 

(Bruggemann et al., 2004). The requirement of a functional HO for growth when haem 

is the only source of iron, for example during pathogenesis, has led to the identification 

of HOs as potential targets for antimicrobial therapy (Furci et al., 2007) (see section 

1.2.8 below). 

 

There is a second, seemingly smaller, group of bacterial HOs that do not resemble 

mammalian HOs. Examples have been found in Staphylococcus aureus, designated IsdI 

and IsdG (Skaar et al., 2004), Listeria monocytogenes (Wu et al., 2005) and Bacillus 

anthracis (Skaar et al., 2006) amongst others (Puri and O'Brian, 2006). Such HOs are 

regulated by iron and the utilisation of haem as a source of iron is a major role of these 

enzymes (Skaar et al., 2004; Skaar et al., 2006). 

 

1.1.4.2 Bacterial metabolism of CO  

Despite the propensity of CO to inhibit aerobic respiration, many bacteria, both aerobic 

and anaerobic, use CO as their main carbon and energy source (Ragsdale, 2004). Indeed 

the CO/CO2 pair has a favourably low redox potential of -524 to 558 mV 

(Oelgeschlager and Rother, 2008). As seen in equation (1), the oxidation of CO to CO2 

generates two protons and two electrons through the simultaneous reduction of water. 

 

CO + H2O → CO2 + 2H+ + 2e-       (1) 

 

The metabolism of CO by some bacterial species (known as carboxidotrophic bacteria) 

has been comprehensively reviewed (King and Weber, 2007; Oelgeschlager and Rother, 

2008; Ragsdale, 2004). This process requires a CO dehydrogenase (CODH) enzyme, 

the active site of which contains iron along with either nickel in anaerobic bacteria, or 

molybdenum in aerobic bacteria (reviewed by(Ragsdale and Kumar, 1996). 
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The ability of aerobic bacteria, such as Oligotropha carboxidovorans and Pseudomonas 

thermocarboxydovorans, to use CO relies on a CO-insensitive respiratory chain 

involving ubiquinone and cytochromes, such as cytochrome b561 in P. 

thermocarboxydovorans (Jacobitz and Meyer, 1989). Anaerobic bacteria that can utilize 

CO include sulfate reducers, acetogens and hydrogenogens (Oelgeschlager and Rother, 

2008). Many CO utilizing, sulfate reducers are thought to convert CO to CO2 in order to 

detoxify the CO as well as to produce reducing power (Sipma et al., 2006); however 

Desulfotomaculum carboxydivorans is remarkable in its ability to grow in 100% CO 

and in the absence of sulfate (Parshina et al., 2005). Acetogenic bacteria are obligate 

anaerobes, which use CO to form acetic acid and CO2, according to equation (2).  

 

4CO +2H2O → CH3COO- +2CO2 + H+      (2) 

 

This process provides a mechanism for autotrophic carbon assimilation (Oelgeschlager 

and Rother, 2008), and the formation of an ion motive force, which thereby allows ATP 

generation (Muller, 2003). 

 

Another group of anaerobic carboxidotrophs are the hydrogenogens (Svetlitchnyi et al., 

2001). These oxidise CO and concomitantly reduce protons from H2O to produce 

molecular hydrogen, as shown in equation (3).  

 

CO + H2O → CO2 + H2
      (3) 

 

The best studied of this group, the facultative anaerobe Rhodospirillum rubrum, is able 

to generate energy by aerobic respiration, fermentation or photosynthesis depending on 

the oxygen tension of the surroundings. In the absence of both oxygen and light, R. 

rubrum can use CO as a terminal electron acceptor  (Kerby et al., 1995) using CO 

dehydrogenase (CooS), which deprotonates water at a Ni-Fe-S centre forming 

hydroxide which then attacks CO (Ragsdale and Kumar, 1996). A CO hydrogenase 

(CooH), with a CO-insensitive Ni/Fe center, then transfers the electrons produced to H+ 

to form molecular hydrogen (Bonam et al., 1989). This process translocates protons 

across the membrane, allowing the subsequent generation of ATP (Fox et al., 1996; 

Maness et al., 2005). The expression of the coo operon in this bacterium is regulated by 
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the haem-containing protein CooA, which senses CO as described below (Aono et al., 

1996). Carboxydothermus hydrogenoformans is another example of a bacterium that 

undergoes carboxidotrophic hydrogenogenesis, although it can also grow on other 

electron donors and acceptors. It is a strict anaerobe and is able to grow more rapidly on 

CO than many other species (Svetlitchnyi et al., 1991). 

 

1.1.4.3 Bacterial sensing of CO 

The two main types of bacterial CO sensors use haem in order to detect this gas. Such 

sensors are similar to the CRP/FNR transcription factors and globin coupled sensors 

(GCS) as they have a regulatory globin-like domain and a transducer domain (Thijs et 

al., 2007). CooA, from R. rubrum is a typical example of a haem-based CO sensor 

(Aono et al., 1996). It regulates the expression of CO-utilising genes (Shelver et al., 

1995), including the coo operon (Bonam et al., 1989). Mutants of cooA, which were 

devoid of haem, were found to be constitutively active (Youn et al., 2006). CooA is able 

to discriminate between CO and NO; although NO is able to bind to CooA, forming a 5-

coordinate NO-haem complex, this does not trigger the binding of this sensor to DNA 

(Reynolds et al., 2000). CO binds to CooA only when the haem is in the ferrous form, 

as the distal ligand is displaced when the iron is reduced, thereby allowing preferential 

binding of CO (Clark et al., 2007). The binding of CO to CooA forms a 6-coordinate 

complex (Aono, 2003; Aono et al., 1996; Aono et al., 1998; Shelver et al., 1997). This 

stabilises the CooA dimer, which allows the binding of DNA to a specific sequence of 

DNA (Roberts et al., 2001) and thus transcription of the CODH genes. Histidine at 

residue 77 is required for the CO-responsiveness of this sensor (Youn et al., 2006). 

Other haem-based CO sensors include the two component system FixLJ in Rhizobium 

meliloti (Gilles-Gonzalez et al., 1991; Rodgers and Lukat-Rodgers, 2005), RcoM from 

Burkholderia xenovorans (Kerby et al., 2008) and HemAT in B. subtilis (Hou et al., 

2000). In Mycobacterium tuberculosis, the haem-containing sensor kinases DosS and 

DosT are able to bind CO (Kumar et al., 2007), which induces the Dos regulon, thereby 

inducing dormancy in this organism (Kumar et al., 2008).  

 

In E. coli, the direct oxygen sensor, DOS, is also able to bind to CO, although the 

purpose of this binding is not understood (Delgado-Nixon et al., 2000) The Kd of DOS 

for oxygen is 340 µM, while that of CO is 3.1 µM (Taguchi et al., 2004). The haem 
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binding domain of DOS has 60% sequence similarity to the PAS (signal tranducing 

domain) of FixL, while the C-terminal domain is similar to phosphodiesterases 

(Delgado-Nixon et al., 2000). The ferrous form of DOS has phosphodiesterase activity, 

but this is inhibited by CO, NO and etazolate (Sasakura et al., 2002). 

 

1.2 Carbon Monoxide-Releasing Molecules (CO-RMs)  

1.2.1 An introduction to CO-RMs 

When the beneficial physiological roles of CO became apparent, it was realised that 

molecules that could release CO in a controlled, targeted manner would facilitate 

research into the physiological effects of CO, and could potentially have therapeutic 

applications (Motterlini et al., 2002). Such molecules would allow CO to be stored in a 

solid form and then solubilised to allow injection directly into target sites in the body, 

thereby avoiding the need to inhale CO for therapeutic purposes (see section 1.2.8.1). 

 

Initial proponents of this idea, Brian Mann and Roberto Motterlini, realised the potential 

of transition metal carbonyls as stable CO carriers; however those that were 

commercially available were insoluble in water, and many required photolysis in order 

to release the CO. These molecules were shown to have some striking vasoactive 

properties (Motterlini et al., 2002). However, in order to be therapeutically useful, CO-

RMs need to be non-toxic, be sufficiently water-soluble, pure and stable, and to release 

CO at an adequate rate (Davidge et al., 2009a). Table 1.2 Shows the structure of several 

commonly used CO-RMs and lists their properties, CO release mechanisms and some 

physiological effects. 

 

Common initial tests to identify potentially therapeutically useful CO-RMs are the 

ability to cause vasodilation in pre-contracted aortic rings (Clark et al., 2003; Motterlini 

et al., 2002; Motterlini et al., 2005b) and the ability to decrease levels of pro-

inflammatory markers in response to lipopolysaccharides (LPS) (Crook et al., 2011; 

Hewison et al., 2010; Sawle et al., 2005).  



 

CO-RM 

CORM-1 
[Mn2(CO)10] 

CORM-2 
[Ru(CO)3Cl2]2 

CORM-3 
(Ru[CO]3Cl
(glycinate)) 

CORM-A1 
(Na2[H3BC

O2]) 

CORM-401 
[Mn(CO)4(S2
CNMeCH2C

O2H)] 
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1.2.2 Early CO-RMs 

1.2.2.1 CORM-1  

The first Carbon Monoxide-Releasing Molecule (CO-RM) to be investigated for 

biological effects was [Mn2(CO)10] (CORM-1) (Motterlini et al., 2002). CORM-1 was 

found to cause a reduction in vasoconstriction in rat hearts following photo-excitation, 

providing the first evidence of a pharmacological effect caused by CO from a transition 

metal carbonyl. These effects mimic those of the HO-1/CO pathway. However, CORM-

1 had many problems that made it less than ideal as a potential therapeutic; it was not 

water-soluble and required photolysis to trigger CO release. However, promisingly, low 

concentrations of this compound (100 µM) were not toxic to vascular smooth muscle 

cells over a period of 24 h. 

 

1.2.2.2 CORM-2 

The second CO-RM to be identified was tricarbonyldichlororuthenium (II) dimer 

[Ru(CO)3Cl2]2 (CORM-2) (Motterlini et al., 2002). Such ruthenium-based compounds 

were thought to have great potential as CO-RMs as many ligands can bind to this metal 

allowing manipulation of the CO release kinetics (Forresti et al., 2004). In contrast to 

CORM-1, CO release is not induced by photo-excitation, but spontaneously by 

substitution of the ruthenium coordinated CO for DMSO from the solvent. When 

dissolved in DMSO, the CORM-2 dimer immediately dissociates to form tri-carbonyl 

and di-carbonyl monomers (Motterlini et al., 2002). CO release occurs in the presence 

of dithionite-reduced myoglobin; each mole of [Ru(CO)3Cl2]2  releases 0.7 moles of CO 

with a half-life of approximately 1 min. Recent evidence suggests that sulfite species 

such as dithionite dramatically increase the release of CO from several CO-RMs 

including CORM-2 (see section 1.2.3.1 below) (McLean et al., 2012). CORM-2 is 

commercially available and by early 2012, approximately 150 papers had been 

published describing its biological effects (Mann, 2012).  

 

1.2.3 Water soluble CO-RMs 

1.2.3.1 CORM-3 

One disadvantage of the CO-RMs mentioned so far is their lack of solubility in water. 

This prompted Motterlini and colleagues to synthesise a range of water soluble CO-
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RMs, the most promising of which was tricarbonylchloro(glycinato)ruthenium(II), 

known as CORM-3 (Ru[CO]3Cl(glycinate)) (Clark et al., 2003). As mentioned above, 

ruthenium is particularly amenable to chemical modification as it can exist in many 

oxidation states. CORM-3 is derived from CORM-2, but with the addition of a glycine 

coordinated to the ruthenium. Glycine was chosen as an ideal ligand as it does not 

contain a chiral center and therefore avoids the formation of diastereomers (Mann, 

2012).  

 

When CORM-3 is dissolved in water, [HO]- groups attack the CO group forming an 

acidic solution of pH 2.5 – 3 (Davidge et al., 2009a). CORM-3 releases CO rapidly at 

physiological pH with each CORM-3 molecule releasing 1 molecule of CO, leaving 2 

carbonyl groups attached to the ruthenium moiety. Subsequently, the glycinate group 

becomes monodentate and is lost from the compound (Johnson et al., 2007).   

 

CORM-3 has a very complex solution chemistry, which makes it difficult to fully 

elucidate the mechanism of CO release (Davidge et al., 2009a). It was initially thought 

that electron-withdrawing ligands found endogenously in the cellular environment, such 

as thiol compounds or imidazole, combined with physiological pH, was sufficient to 

trigger CO release from CORM-3 (Alberto and Motterlini, 2007). In addition, the Cl- 

ligand of CORM-3 is very labile, and the exchange of this ligand for another in solution 

is thought to favour subsequent CO release (Davidge et al., 2009a). It was known that 

CO was released from CORM-3 in the presence of dithionite-reduced myoglobin, but 

no spontaneous CO release could be detected using a CO electrode. It was therefore 

assumed that CO release from such CO-RMs required an acceptor, such as reduced 

myoglobin in order to trigger CO release. However, a recent study by McLean and co-

workers (2012) has advanced our understanding of the mechanisms by which CO is 

released from such CO-RMs. It was found that reduced myoglobin alone was not 

sufficient to cause CO release from CORM-3, but that dithionite, a necessary 

component of the myoglobin assay used to detect CO release from CO-RMs, or other 

sulfite species, greatly facilitated CO release. Based on this new evidence, it is thought 

that in vivo, endogenous sulfite species, or other similar intracellular components, 

trigger CO release (McLean et al., 2012). This has implications for how CO release 

from CO-RMs is measured, as the myoglobin assay can only measure CO release in the 
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presence of dithionite. An alternative ‘haemoglobin assay’ has been proposed in which 

the spectroscopic changes that occur when oxy-ferrous haemoglobin (which is stable in 

the absence of dithionite) binds to CO are measured (McLean et al., 2012). It is of great 

importance for the future use of CO-RMs that intracellular CO release can be measured 

and understood.  

 

Another recent study investigated the effects of the interactions of proteins with 

CORM-3 on CO loss (Santos-Silva et al., 2011). The authors note that no CO is 

detected in the headspace of a closed vial of a solution of CORM-3 using a gas 

chromatography thermal conductivity detector (GC-TCD), which, in agreement with 

McLean et al. (2012), suggests that CO is not released spontaneously from CORM-3. 

They suggest instead that interactions between proteins and CORM-3 may cause the 

chloride ion, glycinate group and one CO group to be lost from this CO-RM. If correct, 

this has important implications for the use of CO-RMs as therapeutic agents, as it 

suggests that CO-RMs would become deactivated by plasma proteins before reaching 

their target site. An X-ray structure of hen egg white lysozyme soaked with CORM-3 

was obtained, and revealed that the remaining fragment of CORM-3 binds to the protein 

at three exposed sites by interacting with histidine and aspartate groups. A further study 

by this group investigated the CO release profile of CORM-3 and Ru(CO)3Cl2(1,3-

thiazole), which is structurally similar to CORM-3, and found that there was only 

marginal CO loss from this compound or CORM-3 in the presence of a range of serum 

proteins. They did however find that when lysozyme was soaked with Ru(CO)3Cl2(1,3-

thiazole), protein–Ru(CO)2 adducts were formed leading to the hypothesis that such 

CO-RMs deliver CO in vivo through the decay of their adducts with plasma proteins 

(Santos et al., 2012).  

 

1.2.3.2 CORM-A1 

CORM-A1, also known as sodium boranocarbonate (Na2[H3BCO2]), is a water-soluble 

CO-RM that does not contain a transition metal and loses CO by becoming protonated 

at physiological pH. CORM-A1 releases CO at a much slower rate than CORM-3, with 

a half-life of 21 min at pH 7.4; however, lower pH leads to faster CO release to 

myoglobin. Temperature also affects the rate of CO release from CORM-A1, with 

lower temperatures causing slower release. The slow CO-release rate may be beneficial 
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in allowing the CO to reach biological targets and to elicit long-acting effects, thereby 

mimicking endogenous CO produced by HO-1(Motterlini et al., 2005b).  

 

1.2.3.3  CORM-401 

Due to the potential difficulties of using ruthenium as a therapeutic agent, attention was 

turned to developing manganese-based CO-RMs. Of these, CORM-401 

[Mn(CO)4(S2CNMeCH2CO2H)],  had low cytotoxicity and was considered to have 

much potential. CORM-401 is water-soluble at pH 7.4 and this molecule releases more 

than 3 CO groups to dithionite-reduced myoglobin from each CO-RM molecule, a 

desirable property of efficient CO-RMs (Crook et al., 2011). CORM-401 releases some 

CO spontaneously by a reversible, dissociative process, although it is now known that 

dithionite is able to accelerate the rate of CO release from CORM-401 (McLean et al., 

2012). The presence of pyridine and phosphorus ligands and myoglobin also promote 

CO release from CORM-401 in a concentration-dependent manner. This is because 

these compounds either react with the CO-RM backbone or with CO, thereby 

preventing reassociation with CO (Mann, 2012). 

 

1.2.3.4 Iron indenyl carbonyls 

A group of CO-RMs have been developed based on iron indenyl carbonyls, which are 

made water-soluble by the addition of functional groups to the cyclopentadienyl ring. 

The most promising is [Fe(ᵑ5-C9H7)(CO)2(NCMe)][BF4] as it is not toxic and has a half-

life for CO release of 210 min; however, it only slightly reduces the production of 

nitrite (a marker of inflammation) in macrophages stimulated with LPS. The X-ray 

structures have been obtained for several of these compounds (Hewison et al., 2010). 

 

1.2.4 PhotoCO-RMs 

The term ‘photoCO-RM’ (photoactivated carbon monoxide-releasing moiety) (Rimmer 

et al., 2010) describes a compound that releases CO when exposed to a specific 

wavelength and intensity of light (Schatzschneider, 2011). Indeed, as outlined above 

(section 1.2.1 and 1.2.2), many of the early CO-RMs to be investigated released CO 

upon irradiation (Motterlini et al., 2002). The theoretical benefit of this mechanism of 

CO release is that it can be precisely controlled by the administrator of the CO-RM and 

therefore circumvents some of the problems faced with other CO-RMs that release CO 
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according to the physiological environment. There are of course disadvantages to the 

requirement for a particular light source in order to trigger CO release, including 

potential damage to tissues cause by certain wavelengths. 

 

The use of light to modify drugs in situ is not without precedent; examples of  

photodynamic therapy include the use of light to generate singlet oxygen (1O2) with the 

aim of destroying malignant cells (Brown et al., 2004), and the activation of pro-drugs 

in anti-cancer treatment (Farrer and Sadler, 2008). PhotoCO-RMs must be stable in the 

dark in order for the compound to accumulate in target tissues prior to photoexcitation, 

after which CO will be released, and ideally will not rebind to a high degree, but rather 

bind a solvent molecule in order to stabilise the remaining molecule (Schatzschneider, 

2011).  

 

The next group of compounds to be thoroughly explored for their potential as 

therapeutically relevant photoCO-RMs were those based on monocationic manganese(I) 

tricarbonyls [Mn(CO)3(tmp)]+ (Niesel et al., 2008). The potential for modification of the 

tmp ligand at the pyrazole ring and at the central methane carbon atom adds to the 

usefulness of this group (Schatzschneider, 2010). Such compounds are stable in the dark 

and, in the absence of light, do not affect the viability of HT29 human colon cancer 

cells, but typically release 2 CO groups per molecule upon irradiation at around 360 nm, 

and in this activated form, significantly reduce the viability of such cells (Niesel et al., 

2008). In order to allow such photoCO-RMs to be targeted to specific cancer cells, the 

[Mn(CO)3(tmp)]+ compound was conjugated to a targeting peptide (Pfeiffer et al., 

2009). An interesting development in the design of photoCO-RMs was the linkage of 

[Mn(CO)3(tmp)]+ to silicium dioxide nanoparticles which have the potential to deliver 

CO-RMs into solid tumours, without adversely affecting CO release (Dordelmann et al., 

2011). 

 

Another group of photoCO-RMs are based on the sodium salts of the water soluble 

tungsten carbonyl complex Na3[W(CO)5(TPPTS)] (Rimmer et al., 2010). These are 

stable in aerated media, but release approximately 1 CO upon irradiation; further CO is 

then released due to aerobic oxidation. These photoCO-RMs have been suggested as 

suitable for topical applications using UVA as an excitation source.  
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Recently, a manganese-based photoCO-RM has been described that has therapeutic 

potential (Ward et al., 2012). Particular advantages of this CO-RM are that it releases 3 

CO molecules from each CO-RM molecule, is activated by light from a LED (light 

emitting diode) at 400 nm, and is not toxic to RAW 264.7 murine macrophages before 

and after irradiation. Further investigation of the biological activities of photoCO-RMs 

is now needed. PhotoCO-RMs that release CO at wavelengths near to IR are desirable 

for therapeutic purposes.  

 

1.2.5 Recently designed CO-RMs with modified CO release or delivery 

mechanisms 

1.2.5.1 Enzyme-Triggered CO releasers  

A number of enzyme-triggered CO-RMs have been described (Romanski et al., 2011). 

These are acyloxybutadiene-iron tricarbonyl complexes, and are stable in solution but 

are activated to release CO after entry into the cell by cleavage of the ester group by 

intracellular esterases. By varying the dienylester ligand, it is possible to manipulate the 

biological and pharmacological properties of such CO-RMs and it is hoped that, after 

further development, this type of CO release mechanism will allow precise, tissue 

controlled delivery of CO.  

 

1.2.5.2 Carbon monoxide-releasing micelles 

A novel idea to enable the delivery of CO-RMs therapeutically is the incorporation of 

CO-RMs into carbon monoxide-releasing micelles (Hasegawa et al., 2010). These are 

based on existing ruthenium-based CO-RMs, conjugated to a polymeric micelle forming 

a spherical structure 30 - 40 nm in diameter. The micelles are stable in buffer and 

serum, but interestingly, release CO in the presence of cysteine and other thiol 

compounds (see Chapter 5). The micelles release CO at a slower rate than CORM-3, 

and yet they were able to prevent NF-κB activation in human monocytes that had been 

stimulated with LPS while CORM-3 was not. Interestingly, the micelles were 

significantly less toxic than CORM-3. They also have the advantage of slowing the 

diffusion of the CO-RM into tissues, which is particularly advantageous for the 

targeting of CO-RMs to distal tissue drainage sites. 
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1.2.5.3 Other modifications of interest 

Much current work is focusing on how to modify CO-RMs to allow them to be targeted 

to specific cell or tissue types or to alter the rate of CO loss in order to render them 

more suitable for therapeutic applications. One such example is the modification of 

CORM-A1 to reduce the CO release rate to allow this compound to reach the target 

cells prior to the release of CO (Pitchumony et al., 2010). This is achieved by adding 

histamine, morpholine, aniline or ethylene-diamine groups to the [H3BCO] moiety. 

Another example is the conjugation of CO-RMs to a polymeric carrier system to 

facilitate the passive transport of the CO-RM to tumours or to sites of inflammation 

(Bruckmann et al., 2011). This involves the addition of an organometallic fac-Mn(CO)3 

moiety, to a methacrylate or methacrylamide polymer backbone. These complexes are 

triggered to release CO by light and are of the appropriate size and weight to allow 

passive drug delivery. 

 

1.2.6 The future of CO-RM development 

Future design of CO-RMs and work to characterise them should pay special attention to 

understanding the mechanism of CO release from CO-RMs. It is desirable for CO-RMs 

to have high CO release ratios, so that less drug needs be administered in order to 

achieve a therapeutic effect. In addition, future CO-RM design needs to focus on 

making CO-RMs more suitable for use as a medical drug. Currently we have water-

soluble, bioactive CO-RMs such as CORM-3 and CORM-A1, but in order for CO-RMs 

to be a realistic therapy they must have highly attuned absorption into tissues and 

excretion from them, have higher biocompatibility and contain no potentially harmful 

components (Motterlini and Otterbein, 2010). 

 

It is also important that we gain a better understanding of how CO from CO-RMs enters 

cells (Mann, 2012). For example, it is not known whether CO-RM enters via specific 

transporters, or by passive diffusion. Furthermore, little is known about the fate of the 

CO-RM backbone or the released CO after it has entered cells (Mann, 2012). However, 

Raman microscopy has shown that when HT29 human colon cancer cells are exposed to 

CO-RM, most of the CO-RM localises around the nucleolous (Meister et al., 2010). 
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It is also vital that future CO-RMs are designed with the importance of the availability 

of reliable control molecules in mind. Currently, despite the reported use of three 

different control molecules for CORM-3: inactive CORM-3 (iCORM-3), myoglobin 

inactivated CORM-3 (miCORM-3) and RuCl2(DMSO)4, there is no control molecule 

for this compound for which the chemistry is completely understood, or that mimics the 

in vivo breakdown products of this CO-RM precisely. Recent work in the field of 

photoCO-RMs aims to avoid the problems associated with uncharacterised and 

potentially unstable break-down products following the release of CO by carrying an 

additional ‘pendant ligand arm’ for each labile CO, which is able to replace the CO 

group following its release (Nagel, Mclean et al., unpublished). Well-defined iCO-RMs 

such as these could be synthesised and used as control compounds. 

 

1.2.7 Methods of detecting CO   

It is also important that better techniques are developed to monitor CO release from 

CO-RMs, particularly now that it is known that the CO release rates measured by the 

widely used myoglobin assay are affected by the presence of dithionite. Furthermore, a 

recent paper by Atkin et al. (2011), highlighted problems associated with the processing 

of data from myoglobin assays and inaccuracies that arise from shifts in the isosbestic 

points upon CO-RM addition. Alternative methods of CO detection include measuring 

spectroscopic changes when CO binds to haemoglobin (McLean et al., 2012) or other 

overexpressed intracellular globins (Lauren Wareham and Mariana Tinajero Trejo, 

unpublished), the use of gas chromatography to detect CO in the gas phase of a closed 

system (Santos-Silva et al., 2011), or the detection of redox changes in a haemin 

modified electrode (Obirai et al., 2006). A recent paper has described a novel means of 

intracellular CO detection based on the genetic insertion of a fluorescent probe into the 

coo operon (Wang et al., 2012). This operon is under the control of CooA, a highly 

selective CO sensor (see section 1.1.4.3). This technique has the potential to allow the 

distribution of CO to be monitored within a living cell. An electrochemical microsensor 

able to detect CO and NO has also been reported (Lee and Kim, 2007). The sensor 

consists of a platinum electrode and a Ag/AgCl reference electrode covered with a gas-

permeable membrane, and has a detection limit of < 5 nM and is therefore sufficient for 

analysing physiological levels of NO and CO.  
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1.2.8 The therapeutic effects of CO and CO-RMs  

As discussed above, CO is capable of initiating myriad beneficial effects within 

mammalian systems, which has led to research into ways that CO can be harnessed as a 

therapeutic agent to treat cardiovascular disease, sepsis, acute injury of the kidney, liver  

and lung, and to prevent organ transplant rejection (Motterlini and Otterbein, 2010). 

While there are obvious concerns regarding the administration of a ‘toxic’ compound to 

patients, there are some advantages of the therapeutic use of CO: it is relatively 

unreactive aShivand therefore does not undergo undesirable reactions with intracellular 

compounds, and is a natural compound that is not metabolised by the body to produce 

harmful breakdown products.   

 

There are currently three main approaches to the administration of CO as a therapeutic. 

The first is by the induction of HO-1 expression. This can be achieved through the 

administration of haem or protoporphyrins and has been shown to have beneficial 

effects in pathologies such as hyperoxia-induced lung injury, nephrotoxicity and sickle 

cell disease (Belcher et al., 2006; Nath et al., 1992; Otterbein et al., 1999). The second 

involves the inhalation of gaseous CO, and the third the delivery of CO using CO-RMs, 

both of which are described below. 

 

1.2.8.1 CO inhalation therapy 

There have been several clinical trials into the use of CO gas inhalation therapy. These 

involve the inhalation of air containing CO, usually at a dose of 100 – 250 ppm. One 

phase II trial investigated the use of CO gas to prevent the development of postoperative 

obstructions of the bowel following colon surgery, while another investigated the use of 

CO to improve the toleration of donor kidneys in transplant patients (reviewed by 

Mann, 2010). Many questions must be answered before CO inhalation can be 

considered as a credible therapy. These include questions about the dose of CO 

required, and whether this is best delivered in multiple, low dose sessions, or in less 

frequent, larger doses (Motterlini and Otterbein, 2010).  

 

A recent study with cynomolgus macaques investigated the efficacy of inhaled CO in 

reducing LPS-induced lung inflammation and found that exposure to 500 ppm CO over 

6 h decreased tumour necrosis factor-α (TNF-α) production, but did not affect levels of 



28 
 

IL-6 or IL-8. Lower concentrations of CO (250 ppm, 6 h) were less effective at inducing 

these effects in primates, despite being effective in rodent models. Treatment with 

relatively high levels of CO (500 ppm over 6 h) increased COHb levels by more than 

30% (Mitchell et al., 2010). The propensity of CO to bind to haemoglobin poses a 

significant danger and limitation, particularly as other cellular targets have lower 

affinities for CO. However, despite similar reservations regarding the pharmacological 

use of NO, which also has toxic effects, inhaled NO is currently used to treat premature 

babies with pulmonary hypertension (Bloch et al., 2007). 

 

1.2.8.2 The therapeutic effects of CO-RMs  

CO-RMs were developed to provide a means by which CO could be stored in a stable, 

solid form and then solubilised prior to administration via intravenous or subcutaneous 

injection. This has the advantage of allowing CO to be delivered directly to the site at 

which it is required, thus bypassing haemoglobin in the blood and lowering the 

necessary dose, as well as reducing the likelihood of systemic side effects. Studies into 

the therapeutic effects of CO and CO-RMs are now numerous, and this area has been 

extensively reviewed (Johnson et al., 2003; Motterlini and Otterbein, 2010; Romao et 

al., 2012). Consequently, only a brief overview of this work will be given here. Table 

1.3 summarises some of the preeminent findings in this field, while Figure 1.3 presents 

some of the biological targets know to interact with CO in order to mediate these 

physiological effects. The beneficial effects of therapeutically applied CO mimic those 

of endogenous CO, such as the modulation of vascular tone and attenuation of 

inflammation, and many of the same pathways are involved in the mediation of these 

effects. 

 

1.2.8.2.1 Vasoactive properties 

CO-RMs are considered to have great potential in regulating vasoactive processes in a 

variety of diseases (Motterlini and Otterbein, 2010). CORM-2 causes vasodilation and 

reduces hypertension in rat aorta, whereas the control molecule RuCl2(DMSO)4, which 

is structurally similar to [Ru(CO)3Cl2]2, but with the carbonyl groups replaced  
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CO-RM Evidence of pharmaceutical potential Reference 
CORM-1 
[Mn2(CO)10] 

Reduces vasoconstriction and maintains coronary perfusion pressure 
in isolated rat hearts, yet is not toxic to vascular smooth muscle cells 
after 24 hrs. 
 

 (Motterlini et al., 
2002) 

 Causes in vivo dilation of porcine cerebral arteriole smooth muscle 
cells via activation of large conductance, calcium dependent 
potassium channels. 
 

(Xi et al., 2004) 

 Increases renal blood flow by 54%, glomerular filtration by 38%, and 
urinary cGMP excretion by 128%. 
 

(Arregui et al., 
2004) 

 Reduces neutrophil migration, leukocyte rolling and adhesion to 
endothelial cells in acute inflammation. 
 

(Freitas et al., 2006) 

CORM-2 
[Ru(CO)3Cl2]2 

Causes vasodilation and reduces hypertension in aorta from rats 
through activation of sGC. 
 

(Motterlini et al., 
2002) 

 Reduces proliferation of human smooth muscle cells by increased 
mitochondrial ROS production and subsequent decreased 
phosphorylation of ERK1/2 and cyclin D1 expression. 
 

 (Taille et al., 2005) 

  CO from this compound causes production of ROS by complex III of 
the electron transport chain. This affects the redox state of key 
cysteine residues in cardiac L-type Ca2+ channels, inhibiting ion 
transport, which has cardioprotective effects. 
 

(Scragg et al., 2008) 

 Reduces inflammation by attenuating LPS-induced production of 
ROS and NO by preventing expression of intracellular adhesion 
molecule-1 and activation of NF-κB.  
 

(Cepinskas et al., 
2008) 

 Protects against acute renal failure caused by ischemia. 
 

(Vera et al., 2005) 

CORM-3 
(Ru[CO]3Cl(gly
cinate)) 

Prevents cardiac allograft rejection and protects against ischemia 
reperfusion injury in mice. This involves the activation of HO-1, sGC 
and ATP-dependent potassium channels. 
 

(Clark et al., 2003) 

 Prevents human platelet aggregation. 
 

(Chlopicki et al., 
2006) 

 Reduction of microglia activity in strokes and other 
neuroinflammatory diseases. 
 

(Bani-Hani et al., 
2006) 

CORM-A1 Causes significant but slow-acting and sustained vasodilation of 
precontracted aortic rings, mimicking the effects of endogenous CO. 
 

(Motterlini et al., 
2005b) 

 Increases renal blood flow and the rate of glomerular filtration. 
 

(Ryan et al., 2006) 

CORM-401 Reduces nitrite production in RAW 264.7 macrophages by 70% 
following stimulation with LPS. 
 

(Crook et al., 2011) 

[Mn(CO)3(tmp)
]+ with targeting 
peptide 

Such photoCO-RMs have the potential to be targeted to specific 
cancer cells.  

(Pfeiffer et al., 
2009). 

[Mn(CO)3(tmp)
]+nanoparticles 

Such photoCO-RM nanoparticles have the potential to deliver CO-
RMs into solid tumours. 
 

(Dordelmann et al., 
2011) 

Table 1.3 The pharmacological effects of CO-RMs. This table summarises key 
literature into the effects of CO-RMs on mammalian systems.   
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Figure 1.3 The interaction of CO with biological targets and the subsequent effects 

CO mediates its biological effects by binding to haem-containing proteins such as 

soluble guanylate cylase (sGC), which produces cyclic guanosine monophosphate 

(cGMP), inducible nitric oxide synthase (iNOS), or cytochrome c oxidase, or to 

transition metals such as Fe2+ in potassium (K+) channels. Inhibition of respiration, due 

to CO binding to cytochrome c oxidase produces reactive oxygen species (ROS), which 

is a messenger for downstream signalling via mitogen activated protein kinases 

(MAPK) and extracellular-regulated-signal kinase (ERK1/2). 

 

This is a simplified representation of the interaction of CO with a selection of biological 

targets. The precise mechanism by which CO exerts its effects on many of these targets 

is not fully understood, nor is the interplay between many of these pathways, or the 

complex interactions with NO.  The information used to generate this figure was 

obtained from Boczkowski et al., (2006), Dulak and Jozkowicz (2003) and Mann and 

Motterlini (2007).  
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with DMSO, is unable to cause these effects, suggesting that CO, rather than the CO-

RM backbone is the causative agent (Motterlini et al., 2002). Importantly, no 

cytotoxicity was experienced in vascular smooth muscle cells treated with up to 420 µM 

CORM-2 over 3 h. CORM-3 also has significant vasodilatory properties, which are 

induced at concentrations of CORM-3 as low as 25 – 50 µM (Foresti et al., 2004). 

CORM-3 is also able to protect myocardial cells and isolated rat hearts from ischemia-

reperfusion injury and can prevent cardiac allograft rejection in mice (Clark et al., 

2003). A major advantage of CORM-3 is that is has relatively low toxicity: 

concentrations less than 500 µM are not toxic to porcine aortic endothelial cells or to 

primate peripheral blood mononuclear cells in vitro (Vadori et al., 2009). Furthermore, 

the non-metal CO-RM, CORM-A1 causes significant but slow-acting and sustained 

vasodilation of precontracted aortic rings, thereby mimicking endogenous CO, while the 

inactive compound (iCORM-A1) does not.  

 

The main mechanism by which CO-RMs (and indeed CO gas) mediate their vasoactive 

properties is by the activation of the haem-containing protein, soluble guanylate cyclase 

(Foresti et al., 2004; Motterlini et al., 2002; Motterlini et al., 2005b) and the 

subsequent production of cGMP, an important second messenger with wide reaching 

effects (Kharitonov et al., 1995). Both CO and NO activate sGC, but NO does so to a 

much greater extent (30 – 100-fold more than CO). However, the effects of CO on 

cGMP production can be increased by the benzyloid derivative YC-1 (Friebe et al., 

1998). 

 

The activation of potassium channels by CO has also been implicated in the vascular 

activities of CO-RMs (Clark et al., 2003; Foresti et al., 2004). One mechanism by 

which CO may modulate the activity of such channels is by interacting with an 

associated haem group. Calcium-dependent Slo BK channels, interact with a haem 

group via a conserved haem-binding sequence motif. The association of haem with the 

channel inhibits the transport of K+ across the membrane and therefore reduces the 

frequency of channel opening (Tang et al., 2003). Interestingly, HO-2 is part of the 

large-conductance, Ca2+-sensitive potassium BK channel complex and CO was shown 

to be involved in regulating the activity of this channel (Williams et al., 2004). 
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Haem-independent mechanisms may also be involved in the activation of such 

channels. There have been two separate reports of CO interacting with histidine and or 

aspartate residues to open such channels (Wang and Wu, 1997; Hou et al., 2008). There 

is also evidence that reactive oxygen species (ROS) generated from the inhibition of 

respiration by CORM-3 can transduce signals to K+ channels (Clark et al., 2003) (see 

section 1.2.8.2.4). 

 

1.2.8.2.2 Anti-Inflammatory properties 

CO-RMs are also considered to have great potential as anti-inflammatory agents 

(Motterlini and Otterbein, 2010). Several CO-RMs have been shown to decrease levels 

of anti-inflammatory intermediaries and to reduce levels of TNF-α and NO in LPS 

stimulated macrophages (Sawle et al., 2005). 

 

CO delivered by CO-RMs may also be beneficial in the treatment of inflammation 

associated with arthritis. CORM-3 reduced levels of inflammatory cytokines in joint 

tissues and reduced the recruitment of inflammatory cells, joint inflammation and 

degradation of cartilage in animal models of arthritis (Ferrandiz et al., 2008). In 

addition, CORM-2 has been shown to substantially reduce the inflammatory response 

induced by cytokines in human colonic epithelial cells. This includes reduced 

expression of nitric oxide synthase-2 (NOS-2) and subsequent production of nitrite as 

well as differential-regulation of inflammatory genes involved in intestinal 

inflammation and cancer progression (Megias et al., 2007). 

 

Many of the anti-inflammatory effects of CO and CO-RMs involve activation of the 

mitogen-activated protein kinase (MAPK) pathway. This pathway allows the 

transduction of signals via a series of serine/threonine-specific protein kinases and is 

involved in the regulation of  proliferation, differentiation, gene expression, mitosis, cell 

survival, and apoptosis in a wide variety of eukaryotic cells (Johnson and Lapadat, 

2002). It is well established that CO activates p38 MAPK and down-regulates 

extracellular-signal-regulated kinases, ERK1 and ERK2, but it is not understood how 

this is achieved. There is evidence that CO prevents ERK1/2 activation by CO gas after 

lung ischemia-reperfusion in rats, and that this involves the activation of sGC (Mishra et 

al., 2006).  Alternatively, it is possible that CO affects the MAPK pathway directly, by 
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interaction with Mn2+ in the serine/threonine phosphatase, protein phosphatase 2C, 

which is important in regulating stress responses in eukaryotes (Das et al., 1996). 

 

The regulation of NO production by CO also mediates the anti-inflammatory properties 

of CO-RMs. CO binds to haem in inducible nitric oxide synthase (iNOS), supressing 

NO production (White and Marletta, 1992). This has important implications for the use 

of CO in antimicrobial therapies as NO is a key mediator of host defences against 

microbial infection (Motterlini and Otterbein, 2010) (see section 1.3.1). NO also has 

important roles in the regulation of vascular tone (Furchgott and Jothianandan, 1991), 

platelet aggregation (Sylman et al., 2013) and smooth muscle relaxation (Sharma et al., 

2013). Interestingly, NO is a major regulator of sGC and, consequently, there is much 

interplay between the pathways involving iNOS and sGC. 

 

1.2.8.2.3 The effects of CO and CO-RMs on organ transplantation 

Much research has been undertaken into the protective potential of CO in organ 

transplant systems, and it has been found to have significantly beneficial effects 

(Akamatsu et al., 2004). An early study into the biological activity of CORM-3 

investigated cardiac allograft rejection in mice and found that treatment of recipients 

with CORM-3, but not an inactive control compound, greatly increased the survival rate 

of transplanted hearts (Clark et al., 2003). CO-RMs have also been shown to prevent 

ischemia reperfusion injury in intestinal grafts via a sGC-dependent mechanism (Nakao 

et al., 2006b). The reduction of pro-inflammatory cytokines by CO-RMs is also thought 

to be important in increasing the survival rate of transplant patients (Nakao et al., 

2006a). In addition, CO-RMs and saturated solutions of CO added to the organ 

preservation solution have been shown to greatly benefit the health of the transplanted 

organ (Musameh et al., 2007; Pizarro et al., 2009; Sandouka et al., 2006). The 

mechanisms by which CO and CO-RMs induce these effects is not fully understood, but 

there is evidence that sGC (Nakao et al., 2003), cytochrome p450 (Nakao et al., 2008) 

and the reduction of inflammatory cytokine levels (Nakao et al., 2006a) are involved. 
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1.2.8.2.4 The effects of CO and CO-RMs on cell proliferation and apoptosis 

involves MAPK signalling and ROS production 

CO can both promote and prevent apoptosis. For example, CO from HO-1 or CORM-

A1 has been shown to contribute to neuronal cell death following bradykinin-induced 

neuronal dysfunction (Yang et al., 2013). In contrast, CO has been shown to prevent 

apoptosis in hepatocytes by inhibiting mitochondrial membrane permeabilization, which 

would otherwise release pro-apoptotic factors into the cell (Queiroga et al., 2011). CO 

also prevents apoptosis by activating MAPK signalling. Administration of CORM-3 to 

a mouse model of peritonitis-induced sepsis elevated levels of ROS, which stimulated 

mitochondrial biogenesis and expression of peroxisome proliferator-activated receptor γ 

co-activator-1α (Lancel et al., 2009). Mitochondrial ROS and subsequent signalling 

involving ERK1/2 has also been implicated in the inhibition of proliferation of airway 

smooth muscle cells by CORM-2 (Taille et al., 2005). CO has also been attributed an 

important role in mitochondrial biogenesis (Suliman et al., 2007). Again, the production 

of ROS by inhibition of respiration is implicated in the increased expression of specific 

transcription factors that initiate transcription of mitochondrial proteins. 

 

The binding of CO to cytochrome c oxidase in the eukaryotic respiratory chain inhibits 

respiration and therefore causes an accumulation of reduced components along the 

electron transport chain. ROS form when this reducing power is transferred to O2 at 

ubiquinol forming superoxide (O2
-) (Poderoso et al., 1999). ROS are known to be 

involved in diverse intracellular signalling processes, and therefore constitute second 

messengers of CO signalling (Gutterman et al., 2005). Indeed, CO has been found to 

increase the production of ROS in RAW 264.7 cells, which initiates signalling 

pathways, including p38 MAPK, and therefore has anti-inflammatory effects 

(Zuckerbraun et al., 2007). It should be noted however, that inhibition of cytochrome c 

oxidase by endogenous CO is only thought to occur at very low levels (D'Amico et al., 

2006), in part because of the propensity for haemoglobin and myoglobin to sequester 

free CO. 

  

NADPH oxidase is widely distributed, but particularly important in phagocytes where 

it produces superoxide, which is an important host defence (Babior et al., 2002). This 

protein contains haem and thus is susceptible to inhibition by CO, and consequently, 
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CO is also able to reduce levels of ROS (Taille et al., 2005), although, this same work 

also showed that inhibition of respiration by CO delivered by CORM-2 increased the 

production of ROS, which then decreased cyclin D1 expression, preventing muscle 

proliferation. This exemplifies the complex balance that controls the biological effects 

of CO. 

 

1.2.8.2.5 Limitations to the therapeutic use of CO-RMs 

Despite the many potential advantages of CO-RMs compared to CO gas as a therapeutic 

agent, they also have some disadvantages. For example, consideration must be given to 

the fate of the CO-RM backbone following the release of CO. It is important that the 

resulting compound, and any residual breakdown products are not toxic, and that they 

are not metabolised by the body to subsequently produce toxic products. CORM-2 and 

CORM-3, which have potent therapeutic effects, both contain ruthenium, which is not 

found naturally in the body and therefore accumulation in cells and tissues would be 

undesirable. 

 

1.3 Antimicrobial activity of CO and CO-RMs 

1.3.1 The effects of CO and CO-RMs on the clearance of bacteria by the innate 

immune response 

Carbon monoxide is thought to be a key anti-inflammatory molecule involved in the 

resolution of inflammation and the prevention of sepsis; indeed, during infection, many 

host stress response genes are induced, including HO-1, which, as detailed above 

(section 1.1.3.4), catalyses the production of several anti-inflammatory molecules, 

including CO (Otterbein et al., 2000; Zhou et al., 2004). CO is anti-inflammatory, in 

part due to inhibition of haem-containing nitric oxide synthase (NOS), which prevents 

the production of NO, an inflammatory mediator. CO also increases the expression of 

interleukin-10 (IL-10) an anti-inflammatory molecule and decreases the expression of 

the pro-inflammatory cytokines, ICAM-1 and TNF-α through activation of a MAPK 

pathway (Otterbein et al., 2000).  

 

There is much evidence that CO plays an important role in host survival following 

bacterial infection (reviewed by(Chung et al., 2009). When challenged with endotoxin 

from the cell wall of gram negative bacteria, HO-1-deficient mice experienced 
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exacerbated organ injury and mortality caused by oxidative stress, compared to wild 

type mice (Wiesel et al., 2000). However, treatment of such mice with exogenous CO 

reduced the inflammation experienced and increased the survival rate (Otterbein et al., 

2000). Furthermore, HO-1 deficient mice suffered increased lethality compared to wild 

type mice in a cecal ligation and puncture (CLP) model of abdominal sepsis, but this 

was ameliorated by the administration of CO, either by overexpression of HO-1, or 

delivery of CO by CO-RMs (Chung et al., 2008). CORM-2 and CORM-3 have also 

been shown to reduce the inflammatory response caused by application of LPS to RAW 

264.7 murine macrophages (Sawle et al., 2005).  
 

Inhalation of 250 ppm CO for 1 h before exposure to a lethal dose of LPS increased 

survival in rats by 86% compared to those without CO treatment (Sarady et al., 2004). 

Moreover, treatment with this amount of CO for 3 h prior to LPS administration 

reduced levels of the pro-inflammatory cytokines (IL-6 and TNF-α) and increased 

production of IL-10 in a rat macrophage cell line. Similar results were found with CO-

RM treatment of human umbilical vein endothelial cells (Cepinskas et al., 2008), 

suggesting that endogenous CO can modulate the inflammatory response and protect 

cells and organisms by the restoration of homeostasis. 

 

Paradoxically, the anti-inflammatory role of CO might suggest that this gas could 

inhibit the innate immune response against microbial infections; indeed, there is 

evidence that administration of CORM-2 decreases the production of superoxide and 

NO in macrophages and blocks the oxidative burst, the first defence of macrophages 

against pathogens (Srisook et al., 2006). This led to the suggestion that the anti-

inflammatory properties of CO may be sufficient to resolve inflammation in 

inflammatory models of disease, but not to clear live pathogens from the host (Chin and 

Otterbein, 2009).  

 

However, there is evidence that CO is also able to promote bacterial clearance, and that 

it does not supress host defences. For example, over-expression of HO-1 was found to 

reduce death following E. faecalis infection, but not during E. coli infection, without the 

suppression of circulating inflammatory cells (Chung et al., 2008). Furthermore, CO has 

been shown to increase phagocytosis of heat killed E. coli by RAW 264.7 macrophage 
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cells, by increased expression of Toll-like receptor 4 (TLR-4) (Otterbein et al., 2005), 

while, more recently, CORM-3 (Desmard et al., 2009) and CORM-2 (Desmard et al., 

2012) have been shown to increase survival and antimicrobial response following 

bacterial infection in mice.  

 

This previously unappreciated role of CO in promoting the innate host response to 

infection has significant implications for the potential use of CO and CO-RMs as 

antimicrobial agents.  Importantly, the finding that CO can eradicate bacterial infections 

in immuno-compromised mice (Desmard et al., 2009) suggests that CO may have a 

direct bactericidal effect, as discussed below. 

 

1.3.2 The effects of CO-RMs on bacterial growth and viability  

Until recently, very little research has been done into the effects of CO on bacterial 

growth and viability. Despite this, CO gas has been used for many years to reduce 

bacterial growth in the meat packaging industry. CO reacts with myoglobin on the 

surface of the meat to produce carboxymyoglobin, which has a bright red colour, 

making the meat more visually appealing to consumers (El-Badawi et al., 1964). It was 

later found that CO could extend the shelf-life of packaged beef by inhibiting microbial 

growth (Clark et al., 1976). Another early observation of the deleterious effects of CO 

on bacteria (Weigel and Englund, 1975), reported that this gas inhibited DNA 

replication in aerobically grown E. coli cells, which they suggested could be caused by a 

reduction in the amount of ATP available.  

 

Significant new research has provided evidence that CO and CO-RMs can have a direct 

bactericidal effect (Davidge et al., 2009b; Desmard et al., 2009; Nobre et al., 2009; 

Nobre et al., 2007). Work by Saraiva and colleagues found that CORM-2 and CORM-3 

and the CO-RMs ALF021 and ALF062 could significantly reduce the viability of both 

E. coli and S. aureus cells, providing the first evidence that CO from CO-RMs is 

bactericidal towards both Gram-positive and Gram-negative bacteria. CO was shown to 

be the causative agent of these effects as CO-RMs had no effect in the presence of 

haemoglobin a CO-scavenger, and inactive control compounds, also had no effect on 

cell viability (Nobre et al., 2007).  
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The potential of CORM-3 as an antimicrobial therapeutic was also demonstrated by the 

ability of very low concentrations (0.5 – 10 µM) to inhibit the growth of an antibiotic 

resistant strain of P. aeruginosa in vitro at concentrations of that were 50-fold lower 

than concentrations that were toxic to eukaryotic cells (Desmard et al., 2009). 

Moreover, 10 µM CORM-3 was as effective at reducing the bacterial count in vitro as 

the established antibiotics amikacine (50 mg l-1, or 0.8 mM) and ticarcilline (50 mg kg-

1). CORM-2 is also effective at preventing P. aeruginosa biofilm maturation and at 

killing cells within established biofilms (Murray et al., 2012). Interestingly, CORM-2 

was found to be more effective when combined with tobramycin, an established 

antibiotic used to treat P. aeruginosa pulmonary infections. 

 

Davidge et al. (2009b) found both aerobic and anaerobic cultures of E. coli to be 

sensitive to CORM-3; however, they demonstrated that CORM-3 completely prevented 

the growth of aerobic cultures at lower concentrations (100 μM) than was needed to 

prevent the growth and viability of anaerobic cultures (200 μM). Moreover, 30 μM 

CORM-3 reduced the number of viable cells 10-fold in 2 h in aerobic conditions, 

whereas 100 μM CORM-3 had no effect on the viability of anaerobic cultures within 

this time. The greater susceptibility of aerobic cultures concurs with our understanding 

of CO as a known inhibitor of aerobic respiration; however as CO is known to be a 

competitive inhibitor with oxygen, it is surprising that CO is inhibitory even at high 

oxygen concentrations. In contrast, Nobre et al. (2007) found CO-RMs to be more toxic 

towards anaerobic cells than aerobic cells, which they suggest may be due to CO 

binding to the ferrous form of haemoproteins, which are abundant at low oxygen 

concentrations. They propose that the stronger effect of CO-RMs on anaerobically 

grown cells implies the existence of significant targets of CO other than the 

cytochrome-containing terminal oxidases of aerobic respiration. The reasons for the 

different findings with regards to aerobic and anaerobic cultures of these two groups are 

not clear, but may be due to the type and concentration of CO-RM used: Davidge et al. 

used CORM-3, whereas Nobre et al used high concentrations of ALF 021, ALF 062 and 

CORM-2. It is possible that CORM-2 and CORM-3 have different mechanisms of 

toxicity, as is discussed in Chapter 5. Inspection of the results of Nobre et al. (2007) 

reveals that, after 30 min, the viability of aerobic cultures was much more affected by 
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the addition of CORM-2 than that of anaerobically grown cultures, but that by 1 h after 

the addition of CORM-2, this trend has reversed, although to a lesser extent. 

 

Interestingly, CO-RMs are more effective at preventing bacterial growth than the 

equivalent concentration of CO-saturated solution (Davidge et al., 2009b, Nobre et al., 

2007). This was unexpected as CO gas delivered in solution is expected to be highly 

membrane-permeable, but may indicate that CO-RMs deliver CO directly to 

intracellular targets, a hypothesis confirmed by assaying for the presence of CO in the 

extracellular medium using myoglobin. In the absence of E. coli, CO from CORM-3 

rapidly bound to Mb; however in the presence of E. coli, only 28% of the initial CO was 

found to be present in the extracellular medium after 10 min, suggesting it had been 

taken up by the cells and was therefore no longer accessible to the Mb. Further evidence 

of the direct delivery of CO by CO-RMs is that ruthenium from CORM-3 (Davidge et 

al., 2009b) and molybdenum from ALF062 (Nobre et al., 2007) were found to 

accumulate inside E. coli cells. Accumulation of ruthenium was greater in aerobic cells 

(where the concentration of ruthenium was 7-fold greater than that in the culture) 

compared to that in anaerobic cells (in which the concentration of ruthenium was 2.1-

fold greater than in the culture), which may partly explain the greater sensitivity of 

aerobic cells to CORM-3 (Davidge et al., 2009b). Table 1.4 presents a comparison of 

the effects of CO and CO-RMs on bacteria. 

 

1.3.3 The effects of CO-RMs on bacterial respiration 

It has been known for nearly 90 years that CO inhibits bacterial respiration (reviewed by 

Keilin, 1966). As described previously (section 1.2.3.2), CO mediates this inhibition by 

binding to ferrous iron in the haem groups of terminal oxidases in the aerobic 

respiratory chain. This led to the assumption that bacterial respiration was a major target 

of CO from CO-RMs (as discussed in Chapter 3). For example, CO gas is known to 

bind to cytochrome c oxidase in P. aeruginosa (Parr et al., 1975) and, more recently, 

aerobic cultures of P. aeruginosa treated with CORM-3 have been shown to exhibit 

reduced oxygen uptake followed by a reduced growth rate (Desmard et al., 2009). 

Furthermore, when cultures of E. coli were stressed with 30 μM CORM-3 for 2 h and 

then washed before respiration was measured, respiration rates were significantly 

diminished (although this effect was not immediate) (Davidge, 2009). Spectroscopic 
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analysis of several bacterial species, including E. coli (Davidge et al., 2009b), P. 

aeruginosa (Desmard et al., 2009) and C. jejuni (Smith et al., 2011), treated with 

CORM-3 has confirmed that CO from such compounds binds rapidly to the terminal 

oxidases of the respiratory chain, as discussed in Chapter 3. 

 

A recent publication has provided a detailed study of the effects of CORM-3 on 

microbial respiration (Wilson et al., 2013). Addition of CORM-3 to cultures of E. coli 

resulted in a period of respiratory stimulation followed by inhibition, while higher 

concentrations of CORM-3 resulted in increased stimulation for a shorter time period, 

followed by more marked inhibition. It was concluded that the initial increase in 

respiration rate upon CORM-3 addition is not due to a direct stimulatory effect of 

CORM-3 on oxidase activity, or to the uncoupling of electron transport from the 

generation of the proton motive force as is true of classical respiratory uncouplers such 

as CCCP (Lou et al., 2007). Instead, it is hypothesised that CORM-3 enables the 

movement of potassium or sodium ions into the cell, which results in less back pressure 

from positive charges outside of the cell, and therefore favours proton extrusion coupled 

to respiration (Wilson et al., 2013). It was also found that incubation of CORM-3 with 

the bacterial suspension under anoxic conditions for increased time periods resulted in 

greater inhibition. Respiratory inhibition was also observed in P. aeruginosa, 

Salmonella enterica serovar Typhimurium and the yeast Candida albicans, although a 

higher concentration of CORM-3, 250 µM instead of 100 µM, was needed to see these 

effects in yeast.  

 

It was initially assumed that the inhibition of respiration by CO from CO-RMs was a 

major cause of killing by these compounds (Davidge et al., 2009b; Desmard et al., 

2009). However, the fact that cultures grown anaerobically also experience decreased 

viability in the presence of CO (Nobre et al., 2007, Nobre et al., 2009 and Davidge et 

al., 2009b), suggests that aerobic respiration is not the only site of action of CO in 

bacteria. Further evidence that the inhibition of respiration may not be the main cause of 

killing by CO-RMs is provided by a study on the effects of CORM-3 on the growth and 

respiration of C. jejuni (Smith et al., 2011). In this bacterium, 100 µM CORM-3 

diminished the rate of respiration, but had no effect on the growth rate. This was 

unexpected, as it was assumed that CO-RMs would be more inhibitory to C. jejuni as it 
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grows under microaerobic conditions, which could be expected to favour competitive 

inhibition by CO. It was suggested that C. jejuni may be better able to tolerate CO, due 

to its ability to grow on haem as an iron source consummate with its pathogenic lifestyle 

(Smith et al., 2011). 

 

1.3.4 The effects of CO-RMs on gene expression 

To date, three studies have investigated the effects of CO-RMs on transcriptional 

regulation in E. coli. Nobre et al. (2009) concluded that CORM-2 has a greater effect on 

gene expression in anaerobic cultures as genes belonging to eight functional classes 

were down-regulated anaerobically, but not affected aerobically; this is in agreement 

with the findings of this group that anaerobic cultures are more sensitive to this 

compound. This work showed that the expression of the redox sensors OxyR and SoxS, 

which activate the expression of Fur, a repressor of ferric ion uptake, is up-regulated by 

CORM-2. The gene oxyR was up-regulated in aerobic conditions in the presence of 

CORM-2, whereas the expression of soxS was up-regulated at all oxygen tensions. 

Evidence was also presented that CORM-2 affects methionine metabolism and biofilm 

formation.  

 

In contrast, Davidge et al. (2009b) found transcription in aerobic cultures to be affected 

more by CORM-3 than that in anaerobic conditions. They found CORM-3 to up-

regulate 63 genes and down-regulate 183 genes aerobically compared to the up-

regulation of 29 genes and down-regulation of 41 genes anaerobically. Many of the 

down-regulated genes encode important aerobic respiratory complexes confirming that 

aerobic respiration is a major target of CORM-3 (Davidge et al., 2009b). Most notable 

was the 10 - 22-fold reduction in transcription of the cyo operon, which encodes the 

cytochrome bo’ terminal oxidase involved in aerobic respiration; the sdh operon that 

encodes succinate dehydrogenase, which links the citric acid cycle to the electron 

transport chain and the nuo operon, which encodes NADH dehydrogenase-1. In 

contrast, cytochrome bd-I, which has a high affinity for oxygen was up-regulated by 

CORM-3. The increase in cytochrome bd-I levels and the reduction in cytochrome bo’ 

was confirmed spectrophotometrically (Davidge et al., 2009b). Anaerobically, although 

fewer genes were affected, there was still down-regulation of some of the genes 
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involved in respiration, including those encoding some of the subunits of cytochrome 

bo’ and cytochrome bd-I (Davidge et al., 2009b).  

 

Both groups found genes involved in regulating transition metal metabolism, 

homeostasis and transport within the cell to be differentially expressed, particularly 

those involved with iron, zinc and copper. This is consistent with the propensity of CO 

to bind to transition metals (Boczkowski et al., 2006). 

  

The most affected gene in the presence of CORM-3 was spy, an envelope-stress-

induced periplasmic protein that is regulated by the transcription factors BaeSR and 

CpxAR and is induced by zinc and copper. The spy gene was up-regulated more than 

100-fold anaerobically, and 26-fold aerobically, although the reason for this dramatic 

up-regulation is not understood. Other zinc-related genes were also affected leading to 

the suggestion that CORM-3 adversely affects zinc release (Davidge et al., 2009b). This 

gene was also up-regulated by CORM-2, and was affected more in aerobic conditions 

than in anaerobic conditions (Nobre et al., 2009). 

 

Interestingly, genes encoding transporters were affected, which could suggest attempts 

by the cell to prevent entry of CORM-3, or to increase efflux. The genes encoding the 

methyl-galactoside transporter (mglABC) were down-regulated, while those encoding 

the mdtABC operon, which is involved in a multi-drug export system, were up-regulated 

by 8 - 13-fold (Davidge et al., 2009b). 

 

This work used statistical modelling of the array data to identfy 8 transcription factors 

that are significantly affected by CORM-3: ArcA, FNR, CRP, Fis, Fur, BaeR, CpxR and 

IHF (Davidge et al., 2009b). It is difficult to envisage how most of these are affected by 

CO, although the response of ArcA is understood. The two-component system, ArcAB 

responds to changes in the redox state of the respiratory chain. Inhibition of respiration 

by CO from CORM-3 would lead to accumulation of reduced ubiquinone, which allows 

auto-phosphorylation of ArcB and the subsequent phosphorylation of ArcA, which 

inhibits the transcription of ArcA-regulated genes, including those encoding 

components of the aerobic respiratory chain (Davidge et al., 2009b). 
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A subsequent time-resolved transcriptional analysis compared the effects of a sub-lethal 

concentration of CORM-3 (40 μM) with the control compound iCORM-3 on gene 

expression in aerobically grown E. coli (McLean et al., 2013). The control compound 

evoked a much smaller transcriptomic response than CORM-3, with only 2% of the 

genome significantly affected, compared to 23% at 40 min in the presence of CORM-3. 

 

Both CORM-3 and iCORM-3 altered the expression of several genes involved in energy 

metabolism, amino acid metabolism and ABC (ATP-binding cassette) transport. The 

expression of genes involved in sulfate transport and utilization were also affected by 

both. However CORM-3 had a wider range of effects than iCORM-3, and also affected 

the expression of genes involved in signal transduction, carbohydrate metabolism and 

cell motility. That motility is affected by CO was confirmed by swarming assays, in 

which significantly less swarming occurred in an atmosphere of 50% CO compared to 

control conditions. Following the discovery that the dppABCDF operon, which encodes 

a dipeptide permease, is down-regulated, growth and ruthenium uptake analysis was 

performed to assess whether this transporter is responsible for CO-RM uptake; however 

this was not found to be the case. This transporter is also capable of acting as a haem 

permease (Letoffe et al., 2006), which could indicate a role in the acquisition of haem to 

replace haem centers that have been damaged by CO. 

 

1.4 The aerobic respiratory chain of Escherichia coli 

Respiration is an essential process that allows the generation of a proton motive force 

across a proton-impermeable membrane, by the net movement of protons from the 

cytoplasm to the periplasm in gram negative bacteria (Poole and Cook, 2000). This 

proton gradient can be used for the production of ATP or other processes that require 

energy, such as solute transport or motility. 

 

Aerobic respiration in bacteria involves the transfer of electrons from an electron-

donating substrate through a series of electron carriers that are sequentially oxidised and 

reduced, before the final transfer of the electrons to O2, and the formation of H2O. The 

complete reduction of O2 to H2O requires 4 electrons. Aerobic respiration is favourable 

compared to anaerobic energy production,  as the redox potential of oxygen reduction to 

water is + 815 mV and therefore results in more ATP generation than other terminal 



44 
 

electron acceptors such as the reduction of NO3
- to NO2

- (with a redox potential of + 

430 mV), or that of fumarate to succinate (+ 33 mV) (Poole and Cook, 2000). However, 

the use of oxygen as an electron acceptor requires its activation by a metal center, 

generally provided by two haem groups or a haem-copper center in the active site of 

terminal oxidases. 

 

Most bacteria have a degree of redundancy in their respiratory chains, which allows 

them to respond to, and survive in, many different environmental conditions (reviewed 

by(Poole and Cook, 2000). E. coli is a particularly good example of this. As 

exemplified above, not only can E. coli respire both aerobically and anaerobically using 

a variety of different substrates (and in the case of anaerobic respiration; using a range 

of electron acceptors), its aerobic respiratory chain can consist of 5 possible 

NADH:quinone oxidoreductases and 3 possible terminal oxidases. NADH 

dehydrogenase 1 (NDH-1) (Ohnishi et al., 1994) translocates 4 protons across the 

membrane for each pair of electrons that it accepts (Calhoun et al., 1993), while NDH-2 

(Bjorklof et al., 2000) is not electrogenic (Calhoun et al., 1993). The other three 

NADH:quinone oxidoreductases; WrbA (Patridge and Ferry, 2006), YhdH 

(Sulzenbacher et al., 2004) and QOR (Thorn et al., 1995), are also not thought to 

contribute to the generation of the proton motive force. A diagrammatic representation 

of the main components of the branched aerobic respiratory chain of E. coli is shown in 

Figure 1.4. 

 

By using different combinations of these respiratory chain components, different 

amounts of ATP can be produced for each molecule of oxygen that is reduced. This 

flexibility may allow the cell to respond to the varying rate at which electrons enter the 

respiratory chain, and allow more efficient production of products from the carbon 

source by minimising ATP and therefore biomass production (Calhoun et al., 1993). 

The expression of respiratory chain components is precisely regulated and depends on 

several factors, including growth rate and the environmental conditions such as pH.
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1.4.1 The terminal oxidases of the aerobic respiratory chain 

The three terminal oxidases that can be expressed in E. coli are cytochrome bo’, 

cytochrome bd-I and cytochrome bd-II. All three catalyse the oxidation of ubiquinol and 

the reduction of oxygen to water, yet each have distinctive properties, outlined below. 

Each oxidase has a different affinity for oxygen (D'mello et al., 1996), contribution to 

proton translocation (Calhoun and Gennis, 1993) and pattern of expression as a result of 

transcriptional regulation (Gunsalus, 1992; Tseng, 1996). A diagrammatic 

representation of cytochrome bo’ and cytochrome bd-type oxidases can be seen in 

Figure 1.5. 

 

1.4.1.1  Cytochrome bo’ 

Cytochrome bo’ is a haem-copper oxidase containing the redox centres haem b, haem o’ 

and CuB. It is expressed at high oxygen concentrations as it has a relatively low affinity 

for oxygen (Km = 0.016 – 0.35 µM (D'mello et al., 1995)), but a high affinity for 

ubiquinol. Cytochrome bo’ is a proton pump and actively translocates up to 4 protons 

across the bacterial membrane for each pair of electrons that it accepts (Puustinen et al., 

1989). A low-spin six-coordinate haem (haem b) oxidises ubiquinol and transfers 

electrons to the binuclear centre, which is composed of a five-coordinate high-spin 

haem o’ and a copper ion (CuB). It is at this binuclear centre that oxygen is reduced to 

water (Mogi et al., 1994). 

 

Cytochrome bo’ is encoded by the cyo operon, the expression of which is repressed 

under anaerobic conditions by the ArcA/ArcB two-component system and the 

transcriptional regulator, Fnr (Gunsalus and Park, 1994). The expression of this oxidase 

is also affected by the available carbon source used for growth and is up-regulated by 

iron limitation. 

 

1.4.1.2 Cytochrome bd-I 

Cytochrome bd-I has 3 redox centres, low-spin haem b558 and high-spin haem b595 and 

haem d (Borisov, 1996; Junemann, 1997; Trumpower and Gennis, 1994). Oxygen binds 

to heam d and is reduced to water by a unique di-haem site comprising haems b595, and 

d. Cytochrome bd-I has an exceptionally high affinity for oxygen (Km of 3-8 nM 
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(D'mello et al., 1996)) and a relatively low affinity for ubiquinol. Unlike cytochrome 

bo’, cytochrome bd-I does not actively pump protons across the membrane; however, 

the oxidation of ubiquinol at the periplasmic side of the membrane releases protons, 

while the reduction of oxygen to water occurs at the cytoplasmic face of the membrane 

and requires the consumption of protons, therefore resulting in a net translocation of 2 

protons for each pair of electrons transferred to O2 (Puustinen et al., 1991). 

 

Cytochrome bd-I is encoded by the cydAB operon, and like cytochrome bo’, expression 

of this oxidase is repressed by Fnr anaerobically (Gunsalus and Park, 1994); however, 

in contrast, expression is induced under low oxygen conditions by the ArcA/ArcB two-

component system. This leads to maximal gene expression under microaerobic 

conditions. Arc also regulates the expression of this operon in response to heat shock.   

 

In addition to the role of cytochrome bd-I in enabling aerobic respiration in 

microaerobic conditions, it has also been suggested that this oxidase may be required to 

help E. coli survive when faced with unfavourable growth conditions (Avetisyan et al., 

1991) and environmental stresses (Poole and Cook, 2000; Poole et al., 1989), and that 

high levels of cytochrome bd-I may be related to increased virulence of certain 

pathogens (Borisov et al., 2007). Additionally, cytochrome bd-I may protect E. coli 

from NO-induced growth inhibition (Mason et al., 2009). Exposure of E. coli to NO up-

regulates expression of cydAB and causes greater inhibition of growth and respiration in 

a strain containing cytochrome bo’ as the only terminal oxidise (see section 3.3.3).  

 

1.4.1.3 Cytochrome bd-II 

The third, more recently recognised terminal oxidase, cytochrome bd-II (Sturr et al., 

1996), is able to reduce oxygen to water, but was initially suggested to be non-

electrogenic, and therefore was thought to provide a route by which catabolism could be 

uncoupled from ATP synthesis  (Bekker et al., 2009). However, a more recent paper has 

disputed this and presents evidence that cytochrome bd-II does generate a proton motive 

force and thus contributes to the synthesis of ATP and the transport of nutrients 

(Borisov et al., 2011b). This work shows that cytochrome bd-II generates this proton 

gradient in the same way as cytochrome bd-I, and that it too extrudes approximately 2 

H+ for each pair of electrons transferred to O2.  
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Cytochrome bd-II has a lower affinity for ubiquinol than the other terminal oxidases of 

E. coli, while the affinity of this oxidase for O2 is under dispute. Measurements made 

using a membrane-covered Clark electrode suggested the Km of cytochrome bd-II for 

oxygen was 2 μM (Bekker et al., 2009), although this method is insufficiently sensitive 

to accurately measure such values. A recent paper calculated the oxygen affinity of this 

oxidase using leghaemoglobin deoxygenation measurements and reported a Km value 

almost 10-fold lower (0.24 μM) (Jesse et al., 2013). Irrespective of this discrepancy, it 

is clear that cytochrome bd-II has a lower oxygen affinity than cytochrome bd-I. 

 

The amino acid sequences of both subunits of cytochrome bd-I and bd-II are highly 

homologous (approximately 60% identity). Cytochrome bd-II  is encoded by the appBC 

operon (Dassa et al., 1991), which is regulated by the transcriptional activator AppY 

(Atlung and Brondsted, 1994). Expression of this operon is induced by anaerobic 

conditions, upon entry into the stationary phase and by carbon or phosphate starvation. 

 

1.4.1.4 Kinetics of CO binding to and dissociation from the terminal oxidases of 

E. coli  

In cytochrome bd-I, CO binds predominantly to haem d, however, at high 

concentrations (mM) some CO binds to haem b558, despite this being a low-spin haem 

(Borisov, 2008). The Kd value for cytochrome bd-I in membranes is fast as compared to 

heme-copper oxidases, 70 nM for cytochrome bd-I, as measured using myoglobin 

(Borisov, 2008), compared to 1.7 μM for cytochrome bo’ (Cheesman et al., 1993). For 

cytochrome bd - I, the koff is 6 or 1.6 s-1
 according to the method used (Borisov et al., 

2007). The experimentally determined Kd is consistent with the faster off 

 rate of 6 s-1 (Borisov, 2008). However, there are disagreements in the literature; 

Cheesman et al. (1993) report a Koff (CO) value of  < 10 s-1
 for cytochrome bo’, but the 

dependence of the pseudo-first-order rate upon CO concentration suggests a value 

around 1 s-1. Subsequent citing of these data, however, gives a Koff (CO) value of 0.1 s-1 

(Hill, 1994). This suggests that the different sensitivities of cytochrome bo’ and bd-I for 

CO cannot be explained by the respective CO off-rates (Jesse et al., 2013). The affinity 

of cytochrome bd-II for CO has not been reported.  
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1.4.2 An exception to the rule: the alternative oxidase (AOX)  

In contrast to the terminal oxidases described above, some bacteria, notably the marine 

organism Vibrio fischeri, contain a functioning terminal oxidase that does not contain 

haem. This oxidase will be discussed in detail in Chapter 4. 

 

1.5 Conclusions and scope of thesis. 

Despite the established perception of CO as a respiratory inhibitor and ‘toxic’ molecule, 

appreciation has grown in recent years of the importance of this endogenous molecule 

in mammalian physiology, not least as a regulator of vascular tone and the 

inflammatory response to infection, as well as its vital role in maintaining cellular 

homeostasis. Preclinical and clinical trials into the use of CO as a therapeutic agent are 

underway, and CO, delivered through inhalation or through administration as a CO-RM, 

is hoped to have wide-reaching potential (Motterlini et al., 2005a).  

 

Many bacteria can utilize CO as a carbon source and many bacteria, particularly 

pathogenic and commensal species, possess HOs, and therefore produce this gas 

endogenously. There is a long history of the addition of CO to meat packaging in order 

to improve appearance, and reduce microbial growth  (Clark et al., 1976). However, it is 

only in the past six years, following the advent of CO-RMs, that CO has been 

investigated as a potential bactericidal agent. CORM-3 has been shown to be 

bactericidal to clinical isolates of P. aeruginosa at concentrations 50-fold lower than 

those that cause cytotoxicity to mammalian cells (Desmard et al., 2009). Several CO-

RMs have been shown to be bactericidal to numerous species of Gram-positive (Nobre 

et al., 2007) and Gram-negative (Davidge et al., 2009b) bacteria, although as yet, the 

mechanism(s) of killing by these compounds is not clear. 

 

CO-RMs are particularly promising as novel antimicrobial agents for several reasons. 

Firstly, the rapid rise in antibiotic-resistant microbes is limiting the usefulness of 

traditional antibiotics, which is likely to have devastating consequences within the next 

few years unless alternative therapeutically safe bactericidal drugs can be established. 

Secondly, CO-RMs provide ideal means of storing CO and facilitating its delivery, with 

the potential to control CO release, directly to the site at which it is needed. A variety of 

CO-RMs are available, with a wide array of properties, and much research and several 
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clinical trials are underway into the use of many of these as therapeutic agents. Thirdly, 

CO-RMs have been shown to be much more effective at killing bacterial cells than the 

equivalent concentration of CO gas (Davidge et al., 2009b; Nobre et al., 2007). This 

potentiation of the bactericidal effects of CO is hypothesised to be due to the delivery of 

CO into bacterial cells, causing an accumulation of CO at the micro-domains at which it 

acts, although this is still unproven. 

 

However, many questions remain in this new field. It is not well understood how CO-RMs 

kill bacteria. Initially, inhibition of respiration was considered to be a likely cause of the 

bactericidal properties of CO-RMs, and several pieces of evidence support this hypothesis. 

CO from CORM-3 has been shown to bind rapidly to the terminal oxidases of the aerobic 

respiratory chains of E. coli (Davidge et al., 2009b) and P. aeruginosa, and a reduction in 

oxygen consumption in the later has been observed following treatment with this 

compound, prior to a decrease in viability (Desmard et al., 2009). In contrast, there is 

evidence that inhibition of respiration is not the main cause of killing by CO-RMs. In C. 

jejuni, CO-RMs have been shown to inhibit respiration, without adversely effecting growth 

or viability (Smith et al., 2011), and transcriptomic analysis of E. coli treated with 

CORM-3 suggests that while respiratory genes are greatly affected by this compound, 

the expression levels of a wide variety of non-respiratory genes are also significantly 

affected (Davidge et al., 2009b). Furthermore, the growth and viability of anaerobic 

cultures is also adversely affected by treatment with CORM-3 (Davidge et al., 2009b) 

and CORM-2 (Nobre et al., 2009). 

 

An alternative hypothesis is that CO-RMs are bactericidal because they generate ROS 

(Tavares et al., 2011). Again there are several pieces of evidence both for and against 

this suggestion. Research has shown that CORM-2 generates hydroxyl radicals in vitro, 

and that E. coli mutants unable to resist oxidative stress are hypersensitive to killing by 

this compound (Tavares et al., 2011). However, other work has found no evidence of 

ROS formation by CORM-3 (Desmard et al., 2009; Desmard et al., 2012) or CORM-2 
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(Murray et al., 2012). Figure 1.6 shows a diagrammatic representation of our 

understanding of the effects of CO-RMs on bacterial cells. 

 

The work presented in this thesis therefore aims to investigate the mechanisms of 

bacterial killing by CO-RMs, particularly by water-soluble CORM-3. Initial work 

focused on investigating the effects of CO-RMs on bacterial respiration, and 

particularly on the interaction of CO from CORM-3 with the terminal oxidases of the 

aerobic respiratory chain of the model organism E. coli (Chapter 3). Important 

differences between the behaviour of CO gas and CO from CO-RMs necessitated a 

thorough comparison of the effects of these two compounds on respiration. This work 

was extended through an investigation of the effects of CORM-3 on the growth and 

respiration of a mutant strain of the marine bacterium Vibrio fischeri (Chapter 4). This 

bacterium naturally contains a non-haem oxidase, AOX (alternative oxidase); therefore 

it was hypothesised that, if inhibition of haem-containing terminal oxidases is the 

primary cause of killing by CO-RMs, a strain of V. fischeri containing AOX as the only 

oxidase should be resistant to killing by this compound. 

 

Another unanswered question with regards to the mechanisms of CO-RM action is why 

thiol-containing compounds such as N-acetyl cysteine (NAC), cysteine and reduced 

glutathione (GSH) prevent the bactericidal action of CO-RMs. There is conflicting 

evidence as to whether it is the anti-oxidant properties of these molecules that 

ameliorate the effects of CO-RMs (Desmard et al., 2012; Tavares et al., 2011). 

Therefore, a thorough investigation was undertaken into the mechanisms by which thiol 

compounds prevent killing by CO-RMs, and into whether CORM-3 causes the 

production of reactive oxygen species (Chapter 5). 

 

Finally, uncertainty surrounding the mechanisms of action of CO-RMs on bacteria led 

to a search for new bacterial targets of CO-RMs. Consequently, random transposon 

mutants of E. coli were generated and then screened for CORM-2-resistance (Chapter 

6).  
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Figure 1.6 The effects of CO-RMs on the bacterial cell. CO-RMs may release CO 

extracellularly (1); external CO could then be detected using myoglobin (2). 

Alternatively, CO-RMs may be transported into the cell (3) by unknown pathways 

(possibly via a membrane importer as shown). Once inside the cell, the CO dissociates 

(4) from the CO-RM (with formation of iCO-RM, the inactive form). CO will then react 

with biological targets, including the haem centres of terminal oxidases in the cell 

membrane (5). Other targets include membrane transporters (6) and transcription factors 

(7) that regulate gene expression. The fate of CO-RM or iCO-RM in the cell is 

unknown but it is possible that the compounds are exported (8). 
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Chapter 2 

 

Materials and Methods 
2. Materials and Methods 

2.1 Bacteriological Methods    

2.1.1 Strains 

The bacterial strains used in this work are described in Table 2.1 

 

2.1.2 Media 

All media were prepared with distilled, deionised water and sterilised by autoclaving at 

121 psi for 15 min. Unless stated otherwise, all chemicals were purchased from Sigma 

Aldrich and solutions were filter-sterilised as needed using Millipore filters with a pore 

size of 0.2 µm. 

 

2.1.2.1 Luria Bertani broth (LB) 

Into 1 l of H2O was dissolved tryptone (10 g), yeast extract (5 g) (both from Oxoid) and 

NaCl (10 g) (BDH). The pH was then adjusted to 7.0 (Sambrook and Russell, 2001). 

 

2.1.2.2 Defined minimal medium 

Into 990 ml of H2O was dissolved K2HPO4 (4 g), NH4Cl (1 g), CaCl2 (10 mg), K2SO4 

(2.6 g) and glycerol (5 g). To this, 10 ml of trace element solution was added. The pH 

was then brought to 7.4 and the media was autoclaved. Before use, 1 ml l-1 of 1 M 

MgCl2 was added. 

 

2.1.2.3 Trace element solution for defined minimal medium 

Into 700 ml of H2O was added EDTA (5 g) and the pH adjusted to 7.4. Then 

FeCl3.6H2O (0.5 g), ZnO (50 mg), CuCl2.2H2O (10 mg), H3BO3 (10 mg), ammonium 

molybdate (0.12 mg) and sodium selenite (17 mg) were added. The volume was brought 

up to 1 l with H2O and the media was filter-sterilised (Flatley et al., 2005). 
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Table 2.1 Bacterial strains used in this work 

  

 Phenotype Genotype Source/Reference 
Escherichia coli  
MG1655 Wild type, K12 Wild type 

F- lambda- ilvG  rfb-50 rph-1 
(Blattner et al., 1997) 

TBE023 Cyd+App+Cyo+ MG1655 ΔnuoB::kan Kindly given by Alex Ter 
Beek, University of 
Amsterdam 

TBE025 Cyo+ MG1655 ΔcydB nuoB appB::kan Kindly given by Alex Ter 
Beek, University of 
Amsterdam 

TBE026 App+ MG1655 ΔcydB nuoB cyoB::kan Kindly given by Alex Ter 
Beek, University of 
Amsterdam 

TBE037 Cyd+ MG1655 ΔappB nuoB cyoB::kan Kindly given by Alex Ter 
Beek, University of 
Amsterdam 
 

frvB mutant  frvB::kan  
From the Keio collection 

Kindly given by Simon 
Andrews, The University of 
Reading. 

manX mutant  manX::kan 
From the Keio collection 

Kindly given by Simon 
Andrews, The University of 
Reading. 

sgaU mutant  sgaU::kan 
From the Keio collection 

Kindly given by Simon 
Andrews, The University of 
Reading. 

    
Iq Express 
competent E. coli 

 BL21 MiniF lacIq (CamR) / 
fhuA2 [lon] ompT gal sulA11 
R(mcr-73::miniTn10--TetS)2 
[dcm] R(zgb-210::Tn10--TetS) 
endA Δ(mcrC-mrr)114::IS10 

 

New England Biosciences 

gshA mutant  MG1655 ΔgshA::kan This work 
 

Vibrio fischeri  
ES114  Wild type  V. fischeri (Boettcher and Ruby, 1990) 

 
AKD788  ES114 Δaox ΔccoNOQP (Dunn et al., 2010) 

 
AKD789  ES114 ΔcydAB ΔccoNOQP (Dunn et al., 2010) 
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2.1.2.4 Evans medium 

The following solutions were added to 1 l H2O to the stated final concentrations: 

NaH2PO4.2H2O (10 mM), KCl (10 mM), MgCl2.6H2O (1.25 mM), NH4Cl (100 mM), 

Na2SO4 (2 mM) and CaCl2.2H2O (20 µM). Evans trace elements solution (5 ml) and 10 

µl of a 3 mg ml-1 solution of Na2SeO3.5H2O was then added along with nitrilotriacetic 

acid (0.38 g). The pH was adjusted to 7.5 with the addition of NaOH and the solution 

was autoclaved. Once cool, 20 ml of 1 M sterile glucose was added (Evans, 1970). 

 

2.1.2.5 Trace element solution for Evans medium 

Into 990 ml of H2O was added 8 ml of 37% HCl, ZnO (0.412 g,) FeCl3.6H2O (5.4 g), 

MnCl2.4H2O (2 g) CuCl2.2H2O (0.172 g), CoCl2.6H2O (0.476 g), H3BO3 (64 mg) and 

Na2MoO4.2H20 (4 mg). The solution was then filter-sterilised. 

 

2.1.2.6 LBS medium 

To 1 l H2O was added bactotryptone (10 g), yeast extract (5 g), NaCl (20 g) and 20 ml 

of a 1 M solution of Tris HCl. The pH was then adjusted to 7.5 and the medium was 

autoclaved. When solid LBS was required, 15 g l-1 of agar was added before autoclaving 

(Stabb et al., 2001). 

 

2.1.2.7 Artificial sea water (ASW) 

To make 1 l of medium, KCl (1.5 g) and NaCl (23.38 g) was dissolved in 809 ml H2O. 

To this 100 ml of 1 M MgSO4, 20 ml of 1 M CaCl2, 1 ml of 5.4% (w/v) K2HPO4, 50 ml 

of 1 M Tris HCl (pH 7.5) and 20 ml of 0.5 M N-acetyl glucosamine was added. The 

medium was then filter-sterilised (Reichelt and Baumann, 1973). 

 

2.1.2.8 SOC medium 

To 1 l H2O was added bactotryptone (20 g), yeast extract (5 g), NaCl (0.5 g) and 10 ml 

of a 250 mM solution of KCl. The pH was then adjusted to pH 7 and the medium was 

autoclaved. Before use, 10 ml of 1 M MgCl2 and 20 ml of sterile 1 M glucose was 

added. 
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2.1.2.9 TY medium 

To 100 ml H2O was added bactotryptone (1.6 g), yeast extract (1 g) and NaCl (1 g), the 

medium was then autoclaved (Sambrook and Russell, 2001). 

 

2.1.2.10 TB medium  

To 100 ml H2O was added bactotryptone (0.8 g) and NaCl (0.5 g). The medium was 

then autoclaved. 

 

2.1.2.11 TB soft agar  

To make TB soft agar, agar (0.7 g) was added to TB medium (100 ml) prior to 

autoclaving. 

 

2.1.2.12 Nutrient agar (NA). 

Nutrient agar (Oxoid) was dissolved at 2.8% w/v in H2O. 

 

2.1.2.13 Phage lysate plates 

To 500 ml H2O was added bactotryptone (4 g), yeast extract (2.5 g), NaCl (2.5 g), 

glucose (1 g) and agar (6 g). This was then autoclaved and cooled to approximately 50 

°C before the addition of 5 ml of 0.5 M CaCl2, 5 ml 1 M MgCl2.6H2O and 0.5 ml 10 M 

FeCl3 (all of which had been filter-sterilized), (Miller, 1972). Plates were refrigerated 

immediately after pouring to ensure a moist atmosphere. 

 

2.1.2.14 LBS Plates 

To make LBS plates, agar (7.5 g) was added to LBS medium (500 ml) prior to 

autoclaving (Stabb et al., 2001). 

 

2.1.3 Buffers and Solutions 

2.1.3.1 Phosphate buffered saline (PBS) 

To 1 l of H2O was added NaCl (8 g), Na2HPO4 (1.15 g), KCl (0.2 g) and K2HPO4 (0.2 

g). The pH of this solution was the adjusted to 7.4 before autoclaving.     
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2.1.3.2 KPi buffer 

Potassium phosphate buffer was made using 1 M stock solutions of K2HPO4 and 

KH2PO4. These were mixed together in the appropriate ratios to give the desired pH. For 

a solution of pH 7.0, 61.5 ml K2HPO4 and 38.5 ml KH2PO4 were mixed, for a solution 

of pH 7.4, 80.2 ml K2HPO4 and 19.8 ml KH2PO4 were mixed together and for a solution 

of pH 7.8, 90.8 ml K2HPO4 and 9.2 ml KH2PO4 were mixed together; each of these 

stocks was then diluted 1 in 10 to 0.1 M. 

 

2.1.3.3 Sonication buffer 

To 1 l H2O was added 50 mM Tris HCl (7.88 g), 2 mM MgCl2 (395.8 mg) and 1 mM 

EGTA (380.35 mg).  The pH of this solution was the adjusted to 7.4 and then filter-

sterilised.        

 

2.1.3.4 Vibrio phosphate buffer   

To 900 ml H2O was added 100 ml of 0.2 M potassium phosphate buffer (pH 7.8), 10 

mM MgSO4 (2.46 g) and 0.2 M NaCl (11.69 g).  

 

2.1.3.5 TAE buffer (50x) 

To 843 ml H2O was added 242 g Trisma base, 57.1 ml glacial acetic acid and 100 ml 

Na2EDTA (0.5 M, pH 7.8). This was then diluted 1:50 with H2O before use to give 1x 

TAE buffer. 

 

2.1.3.6 Phage lysate buffer 

To 500 ml H2O was added Tris base (0.61 g), MgSO4.7H2O (1.23 g), CaCl2.2H2O (0.37 

g) and NaCl (1.47 g). The pH was adjusted to 7.5 and the solution autoclaved (Miller, 

1972). 

 

2.1.3.7 Sodium dithionite solution 

A fresh solution of sodium dithionite (0.1 M) was made immediately prior to use in 5 

ml KPi (0.1 M, pH 7.0, previously degassed by bubbling with N2 from a cylinder (BOC) 

for 10 min) in a sealed 7 ml Bijoux bottle fitted with a Suba-Seal and vent. This solution 

was further degassed after addition of the sodium dithionite by bubbling with N2 for 10 

min.  
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2.1.3.8 CO-saturated solution 

CO-saturated solutions were made by bubbling the appropriate buffer with CO gas from 

a cylinder (BOC, Guildford) in a 7 ml Bijoux bottle fitted with a Suba-Seal and gas 

escape needle at room temperature for 15 min. This generates a solution of 

approximately 1 mM, as verified spectroscopically by a myoglobin assay (section 

2.3.1.1). 

 

2.1.3.9 N2-saturated solution 

N2-saturated solutions were made by bubbling the appropriate buffer with N2 gas from a 

cylinder (BOC, Guildford) in a 7 ml Bijoux bottle fitted with a Suba-Seal and gas 

escape needle at room temperature for 15 min.  

 

2.1.4 Strain Storage 

2.1.4.1  E. coli 

Strains were cultured on NA plates and stored at 4 °C and, when necessary, subcultured 

onto fresh plates. Glycerol stocks were made by adding 2 ml sterile LB medium 

containing 25% (v/v) glycerol onto a lawn of bacteria grown on NA. The bacteria were 

resuspended and removed using a sterile 1 ml pipette. This slurry was dispensed into a 

cryovial (Nalgene) and stored at - 80 °C. 

 

2.1.4.2 V. fischeri 

Strains were cultured on LBS plates and stored at 4 °C. Fresh plates were made directly 

from the glycerol stock prior to each experiment. Glycerol stocks were made by adding 

2 ml sterile LB medium containing 25% (v/v) glycerol onto a lawn of bacteria grown on 

NA. The bacteria were resuspended and removed using a sterile 1 ml pipette. This slurry 

was dispensed into a cryovial (Nalgene) and stored at - 80 °C. 

 

2.1.4.3 Bacteriophage 

P1 vir phage lysates were stored at 4 °C in air-tight vials containing a few drops of 

chloroform. 
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2.1.4.4 Antibiotics 

Kanamycin and ampicillin stock solutions (both 50 μg ml-1) were prepared in H2O and 

filter-sterilised using a 0.2 μm filter (Sartorius Stedim Biotech). Antibiotics were stored 

at - 20 °C. 

 

2.1.5   Culture conditions 

All cultures were grown aerobically with shaking at 200 rpm to ensure even oxygen 

distribution. 

 

2.1.5.1 Cultures for E. coli growth and viability studies 

E. coli starter cultures of the appropriate strain were grown in 10 ml LB broth for 7 h 

and then the LB removed by centrifugation at 5500 rpm for 5 min. The cells were then 

washed in aerobic defined minimal medium and pelleted once more, before being 

resuspended in defined minimal medium (10 ml) and a 0.1 % v/v inoculum added to 30 

ml aerobic defined minimal medium in side arm conical flasks. The cultures were kept 

at 37 °C and were shaken at 200 rpm. For growth studies, CO-RM was added after the 

OD of the cultures reached 30 Klett units at the concentration specified in the 

appropriate Figure legends, whereas for viability studies, CORM-3 was added at 50 

Klett units.  

 

2.1.5.2 Cultures for V. fischeri growth studies 

 

To measure the sensitivity of a strain to a range of CO-RM concentrations (0-100 µM), 

starter cultures were were grown in 10 ml LBS for 6 h. The LBS was removed by 

centrifugation at 4500 rpm for 5 min. The cells were then washed in ASW and pelleted 

once more, before being resuspended in ASW. An inoculum (20 µl) was added to 5 ml 

ASW in 20 ml Sterilin tubes with the appropriate volume of CO-RM. Cultures were 

incubated at 28 °C overnight and then OD600 measured using a Jenway 

spectrophotometer. 
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2.1.5.3 Cultures for the preparation of E. coli membrane particles  

To produce large quantities of cells from which to isolate membranes, starter cultures 

were grown in 5 ml LB broth and incubated at 37 °C with shaking at 200 rpm for 16 h. 

Each starter culture was then added to 995 ml of LB broth in 2 l baffled flasks, which 

were also kept at 37 °C, with shaking, until mid-exponential phase was reached. For 

each membrane preparation, 6 l of culture was grown. 

 

2.1.5.4 Cultures for the preparation of V. fischeri membrane particles 

Starter cultures were grown in 5 ml LBS broth and incubated at 28 °C for 16 h. An 

aliquot of this culture (2 ml) was then added to 1 l of LBS broth in 2 l conical flasks, 

which were also kept at 28 °C and shaken at 200 rpm until the culture reached an OD600 

of 1.0. For each membrane preparation, 5 l of culture was grown. 

 

2.1.5.5 Growing and sampling bacterial cells for ruthenium analysis (ICP-MS) 

Evans medium (200 ml) supplemented with glucose (4 ml of a 1 M stock solution) was 

transferred to a sterile 500 ml conical flask and inoculated with 10 µM starter culture of 

the appropriate strain, which had been grown for 8 h in LB and then pelleted and 

resuspended in double the volume of Evans medium. This was incubated overnight at 

37 °C with shaking at 200 rpm. When the cells reached an OD600 of approximately 0.4, 

a 20 ml sample was removed. Where appropriate, 40 µM CORM-3 or 20 µM CORM-2 

in combination with a 10 fold molar excess of NAC was added and the culture placed 

back in the incubator. Samples (20 ml) were taken at 2.5, 5, 10, 20, 40 and 80 min 

following the addition of CORM-3. The OD600 of the culture was read at each time-

point. Each sample was centrifuged for 20 min at 5,500 rpm at 4 °C. The supernatant 

was reserved. The cell pellet was resuspended in 0.5 ml nitric acid (0.5%) and this was 

centrifuged at 13,000 rpm for 5 min. This wash step was repeated twice more and the 

supernatant from each wash was retained along with the final pellet. This method was 

adapted from that described by (Davidge et al., 2009b; Graham et al., 2009). The 

protocol for ICP-MS is described in section 2.3.2.4. 

 

2.1.6 Culture turbidity measurements 

In order to measure the growth of a culture, the optical density was measured using a 

Klett-Summerson photoelectric colourimeter (Klett Manufacturing Co., New York) 
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with a number 66 red filter. A blank containing the sterile medium was used. Cultures 

were grown in conical side arm flasks, which allowed the optical density reading to be 

taken without removing any culture from the flask.  

 

2.1.7 Screening a library of E. coli transposon mutants 

2.1.7.1 The initial CORM-2 screen 

Cells treated with transposon (250 µl) were inoculated into 30 ml defined minimal 

medium in each of 3 Klett flasks. These cultures were incubated at 37 °C with shaking 

at 250 rpm until they reached approximately 25 Klett units (early exponential phase). 

CORM-2 (40 µM) or the equivalent concentration of the vehicle DMSO, was added, 

and the cultures incubated for a further 30 min at 37 °C with shaking at 250 rpm. The 

cultures were then washed by centrifugation at 4500 rpm for 4 min at 4 °C and then 

resuspended in 10 ml of defined minimal medium and then the centrifugation step 

repeated before finally resuspending in 500 µl defined minimal medium. This was then 

plated onto nutrient agar containing 30 µg ml-1 kanamycin.  

 

2.1.7.2 The second stage of the screen 

Each of the 288 kanamycin and putatively CORM-2 resistant colonies obtained in the 

initial CORM-2 screen was inoculated into 200 µl defined minimal medium in wells of 

a 96-well plate and grown for 8 h until a typical OD600 of between 0.1 and 0.3 was 

reached. CORM-2 (40 µM) was then added to each well and incubated at 37 °C with 

shaking for 16 h. OD600 was measured on a multilabel reader (VictorTM X3, Perkin 

Elmer). Mutants were regarded as interesting if they had an increase in OD600 > 0.2, 16 

h after treatment with CORM-2. 

 

2.1.7.3 CORM-2 susceptibility assay 

To measure the sensitivity of a strain to a range of CORM-2 concentrations (0-1.5 µM), 

starter cultures were prepared as described above (section 2.1.5.1) and a 20 µl inoculum 

added to 5 ml defined minimal medium in 20 ml Sterilin tubes with the appropriate 

volume of CORM-2. Cultures were incubated at 37 °C overnight with shaking at 200 

rpm and then OD600 measured using a spectrophotometer (Jenway). 
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2.1.7.4 The growth of transposon mutants of interest on plates containing CORM-2 

Overnight cultures of each transposon mutant of interest were grown in LB (10 ml). The 

cultures were harvested by centrifugation at 5000 rpm at 4 °C for 5 min, and the pellets 

resuspended in 10 ml defined minimal medium. An aliquot of each culture (50 μl) was 

added to 2.95 ml of molten defined minimal medium with 0.7% agar and maintained at 

50 °C, before the addition of various concentrations of CORM-2 (20 - 40 μM). This was 

mixed and poured onto a base layer of defined minimal medium with 1.5% agar and 

incubated overnight.  

 

2.1.7.5 Gradient plates 

Gradient plates consisting of two layers of agar were made as described by Gerhardt 

(1994) and used by Poole et al. (1989). The first layer consisted of defined minimal 

medium containing 1.5% agar, which was set at an angle (achieved by balancing the 

plate on the edge of a plate lid). The second layer consisted of defined minimal medium 

containing 0.7% agar, to which (after cooling to approximately 50 °C) 60 μM CORM-2 

was added. This agar containing CORM-2 was poured on to the first layer, resulting in a 

level agar plate, which had a maximal quantity of CORM-2 at one apex of the plate, 

which decreased gradually across the plate (for a diagrammatic representation of the 

construction of this plate, see Figure 6.5A and B). Cultures of each transposon mutant 

of interest, and the parent strain, were grown overnight in LB (10 ml) at 37 °C with 

shaking at 250 rpm; these cultures were then harvested by centrifugation at 5000 rpm at 

4 °C for 5 min, washed by resuspending in defined minimal medium, harvested once 

more and finally resuspended in 200 μl defined minimal medium. An aliquot of this 

suspension (50 μl) was streaked onto the CORM-2 gradient plates using a Gilson pipette 

to release the cell suspension along the concentration gradient, starting at the apex that 

had the least CORM-2. Care was taken to apply the suspension evenly and consistently 

between strains. The plates were then incubated at 37 °C overnight and then growth 

observed by eye. 

 

2.1.8 Viability Studies 

2.1.8.1 Viability Studies with E. coli 

Cultures were prepared as described above (section 2.1.5.1). In the case of CORM-3, 

samples were taken immediately prior to addition of CORM-3 or iCORM-3 (both at 30 
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μM) and at 10, 20, 30, 45, 60, 90 and 120 min thereafter, whereas in the case of CO-

RM-2, samples were taken immediately prior to addition of the CO-RM or 

RuCl2(DMSO)4 (20 - 50 μM) and after 30 min. Samples were diluted (10-5-10-8) and 

plated on to nutrient agar thus allowing the cfu ml-1 to be calculated. The experiments 

were performed with 3 independent cultures.  

 

2.1.8.1.1 Measuring the effect of photolysis on the viability of E. coli 

To evaluate the effect of photolysis of the haem-CO bond on bacterial viability, wild-

type MG1655 E. coli was grown to mid-exponential phase (50 Klett units) and 2 ml of 

culture transferred into each of two glass chambers (Strathkelvin instruments); one dark 

chamber (foil-wrapped) and one light chamber, on which a beam of light from a 150 W 

projector bulb was focused using a magnifying glass. Cultures were held at 37 °C and 

stirred magnetically at 260 rpm. Viable counts were performed as described above 

(section 2.1.8.1). 

 

2.1.9 Isolation of bacterial membrane particles  

Cells grown as described in section 2.1.5.1 and 2.1.5.2 were harvested by centrifugation 

at 12,000 g for 10 min at 4 °C. The pellets were then washed by resuspending in 8 ml of 

sonication buffer (for E. coli) or Vibrio phosphate buffer (for V. fischeri) and pelleting 

by centrifugation at 5500 rpm for 10 min at 4 °C. The cells were then resuspended in 4 

ml buffer to make a thick slurry and then broken by sonication at 12 µm ampliude for 5 

intervals of 30 s with a 15 s rest between each. The cells were kept on ice throughout 

this process. The sonicate was then centrifuged at 12000 g for 15 min at 4 °C in order to 

remove the unbroken cells. These unbroken cells were sonicated once more as above in 

order to ensure maximal cell breakage. The sonicate was centrifuged again at 12000 g 

for 15 min at 4 °C. The supernatant was then spun in an ultracentrifuge at 225,000 g for 

60 min at 4 °C in order to remove the membranes from the cytoplasm. The pellet 

obtained was resuspended in buffer using a glass homogeniser and the 

ultracentrifugation step repeated in order to wash the membranes. Finally, the pellets 

were resuspended in 3 ml buffer, frozen in liquid nitrogen and stored at – 70 °C in 200 

µl aliquots until required. This protocol is based on that of Poole (1993). 
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2.2 Biochemical Methods 

2.2.1 Carbon monoxide-releasing molecules (CO-RMs) 

2.2.1.1 Synthesis of CORM-3 

CORM-3 was either provided by Dr. Roberto Motterlini and Professor Brian Mann 

(Hemocorm), or synthesised by the following method as published by (Johnson et al., 

2007). CORM-2 ([Ru(CO)3Cl2]2, 0.129 g) and glycine (0.039 g) were placed under 

nitrogen in a round bottomed flask. Methanol (75 ml) and sodium ethoxide (0.034 g) 

were added and the reaction progressed for 18 h at room temperature while being 

magnetically stirred. The solvent was then removed under pressure and the residue 

redissolved in tetrahydrofuran. This was filtered and diethyl ether was added, followed 

by an excess of 40 - 60 light petroleum. The yellow solution was then evaporated under 

reduced pressure to give a pale yellow solid (typically 0.142 g, 96% yield). The purity 

of the CORM-3 preparation was assessed by infrared Anvel cell spectrophotometry 

performed by Dr. Robert Hanson and 1H NMR in methanol performed by Dr. Brian 

Taylor (both in the Chemistry Department of The University of Sheffield). CO-release 

by each CORM-3 preparation was measured spectroscopically by a myoglobin assay 

(Johnson et al., 2007) (see section 2.3.1.1). 

 

2.2.1.2  Preparation of CO-RM stock solutions and control compounds 

2.2.1.2.1  CORM-2 

CORM-2 was purchased from Sigma Aldrich. Fresh 10 mM stock solutions were made 

each hour by dissolving in DMSO and wrapped in foil to exclude light. 

 

2.2.1.2.2  CORM-3 

CORM-3 (tricarbonylchloro(glyinato)ruthenium(II)) was obtained from Professor Brian 

Mann (Alfama, previously Hemocorm). Stock solutions (10 mM or 100 mM) were 

made by dissolving in water and stored on ice. Stocks were used fresh or on the 

following day after overnight storage at 4 ºC. 

 

2.2.1.2.3  CORM-401 

CORM-401 [Mn(CO)4(S2CNMeCH2CO2H)], was obtained from Professor Brian Mann 

(Alfama, previously Hemocorm). Stock solutions (5 mM) were made by dissolving in 

PBS (pH 7.4, section 2.1.3.1). 
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2.2.1.2.4  Preparation of RuCl2(DMSO)4 

RuCl2(DMSO)4 was provided by Dr. Tony Johnson (Chemistry Department, University 

of Sheffield). A solution of this compound (100 mM) was prepared fresh for each 

experiment in distilled H2O. 

 

2.2.1.2.5  Preparation of iCORM-3 (inactive CORM-3) 

CORM-3 was dissolved in PBS to give a 5 mM solution. This was bubbled with 

nitrogen for 5 min immediately after it was made and then for 5 min every 2 h the 

following day (Clark et al., 2003; McLean et al., 2012). On the day of use, the solution 

was bubbled once more with nitrogen for 5 min. The lid was left off during the day, but 

closed overnight. Immediately prior to use, a myoglobin assay was performed (see 

section 2.3.1.1) to confirm that no CO was released from the iCORM-3. 

 

2.2.1.2.6  Preparation of miCORM-3  

miCORM-3 was prepared by treating CORM-3 twice with a 2-fold excess of ferrous 

myoglobin, reduced by adding sodium dithionite solution (2.2 mM final concentration 

in 0.1 M potassium phosphate, pH 7) to 1 mM metmyoglobin. Carbonmonoxy 

myoglobin was separated from the inactivated CORM-3 by centrifugation in a Vivaspin 

20 concentrator (Sartorius Stedim Biotech) with a molecular weight cut-off of 5 kDa 

(Wilson et al., 2013). Immediately prior to use, a myoglobin assay was performed (see 

section 2.3.1.1) to confirm that no CO was released from the miCORM-3. 

 

2.2.2 Determination of protein concentration 

The concentration of protein in whole cell and membrane samples was determined using 

the protocol established by Markwell et al. (1978). Cell and membrane samples were 

diluted as appropriate, typically by a factor of 20 initially, followed by 1 in 100, 5 in 

100, or 1 in 10 dilutions. Reagent A (100 parts) containing Na2CO3 (20 g l-1), NaOH (4 

g l-1), sodium tartrate (1.6 g l-1) and sodium dodecyl sulphate (SDS, 10 g l-1) was mixed 

with 1 part reagent B (CuSO4.5H2O, 40 g l-1); 3 ml of this was then added to each 

sample dilution. This was left to incubate at room temperature for 1 h, after which, 0.3 

ml Folin-Ciocalteau (Lowry) reagent (diluted 1:1 with H2O) was added to the samples 

and incubated at room temperature for a further 45 min. The absorbance of each sample 
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at 660 nm was then measured using a spectrophotometer (Jenway) against a H2O blank. 

The standard curve of protein amount against A660 was plotted and the equation of the 

line obtained. Protein concentrations (mg ml-1) were determined using a standard curve 

constructed using a range of dilutions of bovine serum albumin (BSA, 20 µg ml-1 to 200 

µg ml-1). 

 

2.2.3 DTNB thiol assay  

Ellman’s reagent (DTNB, 5,5’-dithiobis-[2-nitrobenzoic acid]) is reduced by free thiol 

groups causing the production of 5-thio-2-nitrobenzoic acid, which has a spectroscopic 

feature at 412 nm.  

 

2.2.3.1 The DTNB assay with variation of thiol concentration 

In an assay to investigate whether a range of CO-RMs and control molecules are able to 

react with thiol groups, various concentrations (10 – 200 μM) of NAC were incubated 

for 5 min with 100 μM of each of the following: CORM-3, CORM-2, iCORM-3, 

RuCl2(DMSO)4, CO-saturated solution or CORM-A1. DTNB (0.8 mM) was then added 

and incubated for 15 min. The OD412 was measured using a spectrophotometer 

(Jenway). 

  

2.2.3.2 The DTNB assay with variation of CO-RM concentration 

In an additional experiment, the thiol containing compounds cysteine, reduced 

glutathione and sodium hydrosulphide were incubated for 15 min with various 

concentrations (25 – 1000 μM)  of either CORM-3,  iCORM-3, or  CO-saturated 

solution in KPi (0.1 M pH 7.0). DTNB (0.5 mM) was then added and incubated for 15 

min. The OD412 was measured using a Jenway spectrophotometer. 

 

2.2.3.3 The DTNB assay to determine intracellular thiol concentration  

Starter cultures of wild type MG1655 E. coli and the gshA mutant in an MG1655 

background were grown for 8 h in 5 ml LB and 100 µl used to inoculate 20 ml LB in a 

250 ml conical flask, which was then incubated at 37 °C for 16 h with shaking at 200 

rpm. Cells were harvested by centrifugation at 5500 rpm for 5 min and then 

resuspended in 2 ml sonication buffer. Cells were broken by sonication at 12 µm 

amplitude for 5 intervals of 30 s with a 15 s rest between each, and the unbroken cells 
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removed by centrifugation (5500 rpm, 5 min). DTNB (0.8 M) was added to the cell free 

extract, which had been diluted by a factor of 4, and the A412 measured after 15 min 

incubation. Three technical and three biological replicates were performed. The 

concentration of thiol compounds in the sample was established by comparing the A412 

of the samples to a standard curve (0 – 0.1 mM NAC). This method is adapted from 

Goldman et al. (1996). 

 

2.2.4 Superoxide Assay 

Cytochrome c (20 μΜ) was added to the CO-RM or control molecule (1 mM), or 

CORM-3 pre-incubated for 5 min with NAC (1 mM) in KPi, pH 7.8. The OD550 was 

then read over a time course, as the reduction of cytochrome c causes an increase in 

absorbance at this wavelength. Superoxide dismutase (SOD, 250 units) was included as 

a control to determine whether the increase in absorbance detected is caused by 

superoxide. This method is adapted from Korshunov and Imlay (2006). 

 

2.2.5 Amplex red assay for hydrogen peroxide 

Hydrogen peroxide production by E. coli treated with CORM-3 was assayed using the 

Amplex Red Hydrogen Peroxide / Peroxidase Assay Kit (Invitrogen), which uses 10-

acetyl-3,7-dihydroxyphenoxazine to react with H2O2 in a 1:1 stoichometry to produce 

the fluorescent oxidation product resorufin, which has excitation and emission 

maximum of approximately 571 nm and 585 nm respectively. This assay is extremely 

sensitive and can detect as little as 10 picomoles H2O2 in 100 µl. 

 

A starter culture of wild type MG1655 E. coli was grown in 10 ml defined minimal 

medium for 17 h and then harvested by centrifugation (5500 rpm, 5 min, 4 °C) and then 

resuspended in 2 ml (1x) reaction buffer, which gave an OD600 of 9.2. This was then 

further diluted with reaction buffer to give a final OD600 of 0.09. The Amplex red 

reaction mixture was made up according to the manufacturer’s protocol and contained 

the amplex red reagent dissolved in DMSO, reaction buffer and horse radish peroxidase. 

An aliquot of this mixture (to give a final total volume of 50 µl) was added to wells of a 

96-well plate along with 5 µl cell suspension alone or with either CORM-3 (100 µM), 

CORM-3 with glycerol (5 mM) or glycerol alone. A standard curve was generated using 

a series of dilutions of H2O2 (0 – 10 µM). The absorbance at 560 nm was measured 
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spectrophotometrically (VictorTM X3, Perkin Elmer). Method adapted from Seaver and 

Imlay (2001). 

 

2.2.6 Oxygen electrode for measurement of respiration rates  

Respiration was measured using a Clark-type oxygen electrode (OXY041A, Rank Bros 

Ltd., Bottisham, CB25 9DA) operating at a polarising voltage of 0.6 V. This consists of 

a chamber separated from an electrode by an oxygen-permeable Teflon membrane. The 

oxygen is reduced at the cathode and creates a potential difference, which is recorded by 

a chart recorder (REC112, Amersham Pharmacia Biotech). The chamber is kept at a 

constant temperature by connection to a water bath, and the reaction mixture is 

constantly stirred magnetically (Gilberthorpe and Poole, 2008). The oxygen electrode 

was calibrated using air-equilibrated buffer appropriate for the sample type to establish 

maximal dissolved oxygen tensions; a few grains of sodium dithionite were added to 

remove all oxygen for the chamber to calibrate for 0% dissolved oxygen. A photograph 

of the oxygen electrode is shown in Figure 2.1. 

 

2.2.6.1 Closed electrode experiments 

A small amount of bacterial membrane suspension (adjusted to give a final protein 

concentration typically between 60 and 275 µg ml-1) was added to sonication buffer 

(used with E. coli membrane particles) or Vibrio phosphate buffer to a final volume of 2 

ml. The lid was then replaced and the system was left for several minutes to allow the 

amount of oxygen in the chamber to stabilise. Respiration was stimulated by the 

addition of 6.25 mM NADH, and then the compound of interest (for example CO-RM, 

CO-saturated solution, or control compound), was added at an oxygen tension of 

approximately 150 µM. The precise concentrations of compounds added are detailed in 

each experimental chapter. Where appropriate, thiol compounds, antioxidants or SOD 

were added to the chamber 1 min prior to the addition of CO-RM. Compounds were 

added through a hole in the lid using a Hamilton syringe to prevent additional oxygen 

from being added to the chamber. Respiration rates were calculated as nmol O2 
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Figure 2.1 Oxygen electrode for measurement of respiration rates.  
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consumed per min per mg of protein (measured using the Markwell assay described in 

section 2.2.2). 

 

2.2.6.2 Photolysis of the haem – CO bond 

Membranes were prepared from each E. coli single oxidase-containing strain as 

described in (Poole, 1993) and resuspended in 1.95 ml N2-saturated sonication buffer 

mixed with 50 µl air-saturated sonication buffer and placed in a glass chamber held at 

37 °C (Strathkelvin instruments) and stirred magnetically at a moderate speed. CORM-3 

(300 μM) was added and respiration was stimulated by addition of 12.5 mM NADH. A 

microcathode O2 electrode (SI130; Strathkelvin Instruments Limited) connected to an 

O2 meter (Model 781) was placed in the chamber. Prior to use, the electrode was 

calibrated using air-saturated buffer and by the addition of sodium dithionite (50 µl of a 

0.1 M solution, section 2.1.3.7) to remove all oxygen from the system. A 150 W 

projector bulb was used as a source of white light, and the beam focused on the wall of 

the glass chamber using a magnifying glass and an optical light guide. The intensity of 

light at the vessel surface was measured as 175,000 lux. The light was switched on and 

off at 1 or 2 min intervals. The oxygen level in the chamber was recorded using Data-

TraxTM software using a Lab-Trax-4/16 recorder (World Precision Instruments). A 

photograph of the apparatus used in this experiment is shown in Figure 2.2. 

 

2.2.6.3 Open electrode experiments 

2.2.6.3.1 Respiratory studies utilising membranes subjected to various oxygen 

tensions  

Membranes were prepared from wild-type E. coli, MG1655 as described previously 

(Poole, 1993). Membranes (175 μg ml-1, resuspended in 2 ml of sonication buffer) were 

transferred to an open, stirred chamber fitted with a Clark-type polarographic oxygen 

electrode (Rank Brothers) and held at 37 °C. Respiration was stimulated by the addition 

of 12.5 mM NADH. The speed of stirring was manipulated so that a steady state was 

achieved at either a high (approximately 75% of air saturation), low (approximately 

15% of air saturation) or very low (approximately 3% of air saturation) oxygen level. 

CORM-3 or RuCl2(DMSO)4 at 50 µM were added 2 min after the oxygen equilibrium 

had been reached. Respiration rates were calculated for both the CORM-3-inhibited and 



72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Apparatus to measure oxygen consumption following photolysis.  
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control cultures (with either RuCl2(DMSO)4 or nothing added) at 10 and 20 min after 

the addition of compound. 

 

2.2.6.3.2  Measuring the time taken for the electrode chamber to reoxygenate 

The extent of respiratory inhibition of bacterial membrane particles was determined 

using an open electrode system in which the time taken for a sample to begin to re-

accumulate oxygen following a period of anoxia is measured as previously described 

(Hendgen-Cotta et al., 2008;(Shiva et al., 2007). In this experimental design, the sample 

is open to the atmosphere and is stirred magnetically allowing continuous O2 diffusion 

from the vortex surface into the sample with a typical KLa value of 0.35 min-1. KLa is 

the gas transfer coefficient from gas to liquid and is dependent on reaction volume, 

surface area and temperature (Pirt, 1985). The respiration of more sensitive strains will 

be inhibited to a greater extent and so will not be able to utilise the oxygen in the 

chamber as quickly, leading to a shorter time to reoxygenation.  

 

In order to compare the sensitivity of the terminal oxidase of E. coli to respiratory 

inhibition, membranes prepared from mutants containing only one of the three terminal 

oxidases of E. coli were added to the chamber to a final concentration of approximately 

370 μg ml-1 and stimulated to respire by the addition of 12.5 mM NADH. The stirring 

speed was set to 5 as, in the absence of compound, this maintained the oxygen level in 

the chamber at 0 for an extended period of time after the lid had been removed. Either 

CORM-3 or miCORM-3 (100 μM) was added 2 min after the oxygen in the chamber 

had reached 0, and the lid was then immediately removed. The time taken for the 

oxygen levels in the chamber to rise above 0 was recorded. 

 

In order to compare the sensitivity of the terminal oxidase of V. fischeri to respiratory 

inhibition, membranes prepared from wild type V. fischeri or mutants containing either 

AOX or cytochrome bd as the only terminal oxidase were resuspended in Vibrio 

phosphate buffer to a final concentration of approximately 40 mg ml-1, added to the 

electrode chamber, which was stirred magnetically at speed 5. The sample was 

stimulated to respire by the addition of 12.5 mM NADH. CORM-3 or iCORM-3 (both 

at 25 μM)  or CN- (100 μM) were added 1 min after the dissolved oxygen tension in the 
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chamber reached 0% and the lid removed 1 min later. The time taken for the oxygen 

levels in the chamber to rise above 0 was recorded. 

 

In order to assess whether NAC is able to protect bacterial respiration from inhibition 

by CORM-3, wild-type E. coli membrane particles were resuspended in sonication 

buffer (2 ml) to a final concentration of approximately 1.5 mg ml-1 and placed in an 

electrode chamber, which was stirred magnetically at speed 5. Respiration was initiated 

by the addition of NADH (6.25 mM). Where appropriate, NAC (400 µΜ) was added to 

the chamber 1 min before the addition of CORM-3 (400 µΜ); after a further minute, the 

lid was removed and the time taken for the chamber to reoxygenate was recorded. 

 

2.3 Spectroscopic methods 

2.3.1 Measurement of CO release from CO-RMs 

2.3.1.1 Myoglobin assay for the measurement of CO loss from CORM-3 

CO release from CORM-3 and control molecules to ferrous myoglobin was assayed as 

before (Clark et al., 2003), using an SDB4 dual-wavelength scanning spectrophotometer 

(The Johnson Foundation, University of Pennsylvania Biomedical Instrumentation 

Group and Current designs Inc., Philadelphia, PA, USA). This spectrophotometer scans 

samples from 400 to 700 nm in 0.5 nm increments. The data was analysed using 

SoftSDB software and then plotted using Sigma Plot (Systat Software Inc.). Horse heart 

Mb (10 µM) in 0.1 M KPi (pH 7.4) was reduced by the addition of a few grains of 

sodium dithionite, and this was scanned in triplicate as a baseline.  

 

In order to assess CO release from CORM-3 and control compounds, CORM-3 (8 µM) 

(pre-incubated for 5 min with various concentrations of NAC where appropriate) was 

added to the reduced myoglobin (10 μM), in a cuvette with 10 mm path length, and 

rapidly mixed before recording CO reduced minus reduced difference spectra in 

triplicate. Data were averaged and the spectrum of reduced myoglobin was subtracted 

from that of the CO-RM treated, reduced myoglobin. The change in absorbance was 

calculated as the difference between the peak and trough in the Soret region (426 – 441 

nm) of this difference spectrum, using Excel software. Where appropriate, the extinction 

coefficient of Mb-CO (177 mM-1 cm-1) was used to calculate the concentration of Mb-

CO formed over time (Wood, 1984).  
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2.3.1.2 Haemoglobin assay 

This assay measures the release of CO from CO-RMs without the presence of 

dithionite, which has been shown to facilitate CO loss from some CO-RMs including 

CORM-2 and CORM-3 (McLean et al., 2012).  

 

Haemoglobin (Sigma, grade P90%) was dissolved in 0.1 M KPi (pH 7.4) and reduced 

by the addition of a few grains of sodium dithionite. This was then passed down a PD 

MiniTrap G-25 column (GE Healthcare) to remove the excess dithionite and generate 

oxyferrous-haemoglobin. The concentration of reduced oxy-hamoglobin was measured 

spectrophotometrically using the known extinction coefficient for bovine muscle 

haemoglobin (133 mm-1 cm-1, at 430 nm). CORM-3 (8 µM) (pre-incubated for 5 min 

with 80 µM NAC when appropriate) was added to 10 µM oxyferrous-haemoglobin. 

Scans were taken every 30 s for 10 min, then every 1 min for the next 10 min and every 

5 min for the next 20 min using a scanning kinetics program (Cary 50). Difference 

spectra were then obtained by subtracting the oxyferrous-haemoglobin spectrum from 

the CORM-3 treated spectra in Excel, followed by plotting of the data in Sigma Plot. 

 

2.3.1.3 Measurement of CO binding to cytochromes 

For E. coli, membrane particles (prepared as described above, section 2.1.9) were 

suspended in sonication buffer to a final protein concentration of 8 – 33 mg ml-1 

whereas, for V. fischeri, samples were suspended in Vibrio phosphate buffer to a final 

protein concentration of 2 - 4 mg ml-1 for membrane particles, or 12 - 14 μg ml-1 for 

whole cell samples grown to OD600 1.0, as described above (section 2.1.5.4). Samples 

were transferred to a cuvette of 10 mm path length and reduced with sodium dithionite 

and spectra recorded in a Johnson Foundation SDB4 dual-wavelength 

spectrophotometer as detailed above (2.3.1.1) at room temperature (Kalnenieks et al., 

1998). This reduced sample spectrum was recorded in triplicate and assigned as the 

baseline, before the addition of CO-saturated solution, CORM-3 (pre-incubated with 1 

mM NAC where appropriate), iCORM-3 or RuCl2(DMSO)4 (each at 100μM). The CO 

treated samples were scanned in triplicate and spectra were viewed using SoftSDB 

software. Data were averaged and the spectrum of reduced myoglobin was subtracted 

from that of the CO-treated, reduced myoglobin to produce what is termed a CO 

reduced minus reduced, or CO difference spectra. Where appropriate, the change in 
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absorbance was calculated as the difference between the peak and trough in the Soret 

region (426 – 441 nm) of this difference spectrum, using Excel software, and then 

plotted in Sigma Plot. Where stated, data have been smoothed in Sigma plot graphing 

software with a sampling proportion of 0.1 and a polynomial degree of 9. 

 

2.3.1.4 ICP-MS 

Pellets were digested with 1 ml nitric acid (Aristar, 69% v/v) for 60 min and then 

diluted to 5 ml with 1% nitric acid. Analysis of ruthenium (mass 101) was done using 

an Agilent 7500CE ICP-MS (inductively coupled plasma-mass spectrometer) 

instrument using rhodium (mass 103) as an internal standard. Calibration standards 

were made up in 20% nitric acid to match the samples (blank, 25, 50 and 250 µg l-1 

ruthenium). With each batch of samples a sample blank was prepared comprising 1 ml 

nitric acid diluted to 5 ml with 1% nitric acid. This work was done at the Centre for 

Analytical Sciences (CAS, University of Sheffield) (Davidge et al., 2009b; Graham et 

al., 2009). 

 

2.3.1.5 Electron paramagnetic resonance (EPR) spectroscopy  

The spin trap BMPO (5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide) (Enzo Life 

Sciences) was used to allow superoxide and hydroxyl radicals to be detected, identified 

and quantified. Superoxide and hydroxyl adducts of BMPO were generated to provide 

reference spectra for comparison with the CO-RM spectra. The components for each 

sample are described in the relevant figure legends. Samples were loaded into an AquaX 

cell and EPR spectra were recorded, at room temperature, on a Bruker EMX 

spectrometer at 9.47 GHz microwave frequency, 3.18 mW microwave power, 100 kHz 

modulation frequency and 9.54 G s-1 scan rate. Spectra were analysed using WINEPR, 

Version 2.11 (Bruker). This work was done in collaboration with Dr. Dimitri 

Svistunenko at the University of Essex. 

 

2.4 Genetic and molecular techniques 

2.4.1 Generalised transduction with bacteriophage P1 vir 

This was done to transfer the gshA mutation into an MG1655 background, and to 

transfer the mutated genes identified as important in the CORM-2 resistance screen 
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from independently sourced strains from the Keio collection (Simon Andrews, The 

University of Reading) into an MG1655 background. 

 

2.4.1.1 Preparation of lysates 

Donor cells were grown overnight at 37 °C in TY medium with CaCl2 (5 mM) with 

antibiotic where necessary. A P1 stock was diluted to 108, 107 and 106 PFU ml-1, and 

each was mixed with donor cells (100 µl) and incubated at 37 °C for 20 min. This phage 

/ cell mixture was then added to TB medium (1 ml) and TB soft agar (1.5 ml) both at 50 

°C, and then poured onto phage lysate plates, which were incubated in a wet atmosphere 

at 37 °C until plaques appeared giving the plates a ‘lacy’ appearance. The plates were 

then chilled at 4 °C for 20 min before cold phage dilution buffer was carefully added to 

the surface of the plates. These were then stored overnight at 4 °C, and then the overlay 

liquid was harvested using a Pasteur pipette and filtered through a 0.45 µm filter to 

exclude any bacterial cells. Phage lysates were stored over a drop of chloroform in 

sterile, screw capped tubes at 4 °C. 

 

2.4.1.2 P1 vir transduction of the recipient strain 

Recipient cells were grown overnight at 37 °C in 2.5 ml TY medium with CaCl2 (5 

mM). P1 lysates containing the DNA of the donor strain were diluted by 10- and 100-

fold and these dilutions as well as the neat lysate (100 µl) were mixed with the recipient 

cells (100 µl) and incubated at 37 °C for 20 min. The cells were then spread onto 

nutrient agar plates containing kanamycin (50 µg ml-1) and NaP2O7 (0.125 mM) and 

incubated at 37 °C overnight. A control plate with non-transformed recipient cells, and 

another with the phage lysate was also made. Surviving colonies from the transduced 

cultures were then re-plated on selective medium containing kanamycin (50 µg ml-1) 

and PCR carried out to confirm the mutaton. 

 

2.4.2 Transposon mutagenesis 

Transposon mutagenesis was performed using the EZ-Tn5™ <R6Kγori/KAN-2>Tnp 

Transposome™ Kit from Epicentre Biotechnologies, according to the manufacturer’s 

instructions. Briefly, the transposome complex (1 µl) was transformed into Iq Express 

chemically competent E. coli (50 µl) using the high efficiency transformation protocol 

(known as heat shock) as described in section 2.4.3.  
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2.4.3 High Efficiency Transformation Protocol  

A tube of NEB Express Iq Competent E. coli cells was thawed on ice for 10 min, then 

mixed gently and 50 µl of cells mixed with 1 µl transposon. The tube was flicked 4-5 

times to gently mix the cells and DNA. The mixture was placed on ice for 30 min and 

placed in a water bath at 42 °C for exactly 20 s, then placed on ice for 5 min. SOC (950 

µl) that had been heated to 37 °C was added and then the mixture incubated at 37 °C for 

60 min with shaking at 250 rpm. The cells were then mixed thoroughly but gently, then 

several 10-fold serial dilutions were performed in SOC. An aliquot (100 µl) of each 

dilution was spread onto a nutrient agar plate containing kanamycin (30 µg ml-1), which 

had been pre-warmed to 37 °C. The plates were then incubated overnight at 37 °C.  

 

2.4.4 Primer design and cloning 

Primers were designed based on the DNA sequences of the target genes using Primer 3 

software (V.0.4.0). Primers were designed to be 18 – 24 bp in length and to have a 

melting temperature (Tm) of 57 – 65 °C and a GC content of 20 – 80 %. Primers that 

had the potential to form secondary structures were eliminated and redesigned. Primers 

were synthesised by Sigma Aldrich and were supplied as desiccated oligonucleotides 

that were then resuspended in super-pure H2O to a final concentration of 100 µM. The 

primers used in this work are described in Table 2.2. 

 

2.4.5 Genomic DNA extraction 

The Blood and Tissue Kit (Qiagen) was used to extract genomic DNA according to the 

manufacturer’s protocol, from 1 ml culture grown to late-exponential phase in LB 

medium. Instructions for pre-treatment of Gram-negative bacteria, then those describing 

the purification of total DNA from animal tissues were followed. Super-pure water (50 

µl) was pipetted directly onto the membrane; this was incubated at room temperature for 

1 min, then spun for 1 min at 8000 rpm to elute the DNA. 

 

2.4.6 Restriction enzyme digestion 

Genomic DNA (17 µl) from mutants of interest was digested using the restriction 

enzyme RsaI (1 µl, NEB), which recognises the sequence 5’GTAC 3’ and cuts between 

the T and the A to generate blunt ends. The reaction mixture also included buffer 4 (2 
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µl, NEB). The digested DNA was purified using Qiaquick PCR purification kit 

(Qiagen) according to the manufacturer’s protocol. 

 

2.4.7 Ligation of Fragmented DNA 

Previously digested DNA (100 ng or 1 µl) was ligated by incubating with T4 DNA 

ligase (1 µl, NEB) and ligase buffer (1 µl, NEB) in super-pure water (7 µl) at room 

temperature for 6 h.   

 

2.4.8 PCR  

PCR was conducted in order to amplify the DNA adjacent to the transposon in the 

mutant strains. The primers used were KAN-2 FP1 Forward Primer (EZ-Tn5 

<R6Kγori/KAN-2>Tnp TransposomeTM Kit, Epicentre Biotechnologies) and a primer 

internal to the RsaI site of the EZ-Tn5 transposon (designed by Iain Kean), the 

sequences of which are given in Table 2.2 

 

The reaction mixture contained genomic DNA (0.5 µl) as a template, forward and 

reverse primers (0.1 µl of each), Dream Taq (2x) Green PCR mastermix (25 µl) 

(Thermo Scientific) and 24.3 µl super-pure water. 

 

A PCR machine was used to heat the mixture according to the following thermal cycle: 

 

95 °C            1 cycle 

95 °C 

55 °C            35 cycles 

68 °C 

72 °C            1 cycle 
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Primer name 
 

Primer Sequence Source 

KAN-2 FP1 
Forward Primer 

 
5’ ACCTACAACAAAGCTCTCTCATCAACC 3’ 

EZ-Tn5 <R6Kγori/KAN-
2>Tnp TransposomeTM 
Kit, Epicentre 
Biotechnologies  
 

Primer internal 
to the Rsa1 site  
of the EZ-Tn5 
transposon 
 

 
5' GTAACCATGCATCATCAGG 3' 

Designed by Iain Kean 

frvB forward 
primer 
 

5’ CAAACCCTCAGCTCATAAGGAAG 3’ Designed for this work 
using Primer3 Version 
0.4.0 

frvB reverse 
primer 
 

5’ GTTTATCAGAATGTCGCGAACTTC 3’ Designed for this work 
using Primer3 Version 
0.4.0 

manX forward 
primer 
 

5’ GTGTTAACGATAATAAAGGAGGTAGC 3’ Designed for this work 
using Primer3 Version 
0.4.0 

manX reverse 
primer 
 

5’ CTCCATTGTACTTCTCCTGTTTACG 3’ Designed for this work 
using Primer3 Version 
0.4.0 

sgaU forward 
primer 
 

5’ ATCGCTGAACTGTGGGGCTAAGGA 3’ Designed for this work 
using Primer3 Version 
0.4.0 

sgaU reverse 
primer 

5’ CCA TGT TGG CTT CAA ATA CCT GCT G 
3’ 

Designed for this work 
using Primer3 Version 
0.4.0 

 
gshA forward 
primer 

 
5’ CAGTTCGTTTTCCAATCTGCAAC 3’ 

 
Designed by Mariana 
Tinajero Trejo 

 
gshA reverse 
primer 

 
5’ ATTTTGACAGGCGGGAGGT 3’ 

 
Designed by Mariana 
Tinajero Trejo 

 

Table 2.2 List of Primers. Synthetic oligonucleotides used as primers for the 
sequencing of transposon insertion sites or PCR amplification of DNA fragments. 
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2.4.9 Agarose gel electrophoresis 

DNA samples were separated and visualised using agarose gel electrophoresis. Agarose 

(1 g) was dissolved in 100 ml 1 x TAE buffer by heating and then poured into a plastic 

mould containing a comb to form the sample wells. Hyperladder 1 (Bioline) was 

typically loaded alongside the DNA samples to provide a reference of the fragment size 

and concentration. The gel was covered with 1 x TAE buffer and 3 µl of 10 mg ml-1 

ethidium bromide solution (Promega) was added to the buffer in order to allow 

visualisation of the DNA. The gels were run at 100 V for approximately 45 min and 

then the DNA visualised under UV light using the GeneGenius Gel Imaging System 

(Syngene). 

 

2.4.10 Purification of DNA samples 

Following amplification of a region of DNA by PCR, samples were purified using 

Qiaquick PCR purification kit (Qiagen) according to the manufacturer’s protocol. 

 

2.4.11 DNA sequencing 

Samples were sent for nucleotide sequencing (Beckman Coulter Genomics) with the 

KAN-2 FP1 Forward Primer. 

 

2.4.12 Sequence and database analysis for identification of genes inactivated by 

transposon mutagenesis 

The sequence of the DNA adjacent to the transposon (sequenced using the KAN-2 FP1 

Forward Primer) was entered into a BLASTN search in the NCBI (The National Center 

for Biotechnology Information) database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

against the E. coli K12 genome sequence.   
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Chapter 3 

 

CO-RMs as inhibitors of the terminal oxidases of E. coli 

 
The haem-containing cytochromes of bacterial aerobic respiratory chains are thought to 

be important targets of CO from CORM-3, although there is mounting evidence that 

there are several other bacterial targets of this compound (as discussed in section 1.3.4 

and section 4.3). UV- visible spectroscopy of bacterial suspensions, including E. coli 

(Davidge et al., 2009b), P. aeruginosa (Desmard et al., 2009), and C. jejuni (Smith et 

al., 2011) show the formation of CO-bound cytochromes upon treatment with CORM-3. 

In E. coli, CO from CORM-3 binds rapidly to cytochrome d, followed by the slower 

formation of another CO-adduct, which is thought to be cytochrome bo’ (Davidge et al., 

2009b). Transcriptional analysis of E. coli treated with CORM-3 also implicates aerobic 

respiration as a major target of this compound. CORM-3 down-regulates the cyo 

operon, which encodes the terminal oxidase cytochrome bo’ and slightly up-regulates 

cydAB, which encodes cytochrome bd-I (Davidge et al., 2009b).  

 

While there have been many detailed studies of the interaction of CO gas with 

respiratory cytochromes (Borisov, 2008; Borisov et al., 2007; Borisov et al., 2001; 

Chance et al., 1953; Keilin, 1966), several key discrepancies between the effects of CO 

gas and CORM-3 on bacterial growth and respiration necessitate a thorough 

investigation of the nature of the interaction of CO from CORM-3 with the aerobic 

respiratory chain. These discrepancies include the finding that CO from CORM-3 is 

inhibitory to growth when present at concentrations equal to atmospheric oxygen levels 

(Davidge et al., 2009b), whereas historically, it has been understood that CO has a 

lower affinity for respiratory cytochromes than O2 and thus must be present in a 

significant excess, typically in a ratio of 19:1 (Poole et al., 1973), in order to be 

inhibitory. Nobre et al., (2007) have also reported that CO-RMs are more potent 

antibacterial agents than CO gas. More recent work has found that CORM-3 is more 

inhibitory to the respiration of E. coli cells than the equivalent concentration of CO gas 

(Wilson et al., 2013). 
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The work described in this chapter aims to compare the effects of CORM-3, and where 

appropriate CORM-2, on respiration in the model organism E. coli with the well-

established effects of CO gas. It was hoped that in doing so, a better understanding 

would be gained of the mechanism(s) by which CO-RMs inhibit respiration, and in turn, 

further our understanding of one of the key questions regarding the antibacterial 

properties of CO-RMs: to what extent does inhibition of respiration by CO-RMs 

contribute to the bactericidal properties of these compounds (see section 1.3.3). 

Specifically, it was investigated whether the three quinol oxidases of the aerobic 

respiratory chain of E. coli: cytochrome bd-I, cytochrome bd-II and cytochrome bo’ 

differ in their sensitivity to CO from CORM-3. Work was also done to investigate the 

photosensitivity of the CO-haem bond in CORM-3 treated bacterial membranes, and to 

assess whether the oxygen tension at which CORM-3 is added affects the extent of 

respiratory inhibition. 

3.2 Results CORM-2, CORM-3 and CO gas inhibit respiration in E. coli 

membrane particles  

When this work began, there were only two published reports of the effects of CORM-3 

on bacterial respiration. These reported incubation of CORM-3 with cultures of  E. coli 

for an extended period, followed by the measurement of oxygen consumption (Davidge 

et al., 2009b) and the treatment of P. aeruginosa cultures with CORM-3 prior to 

respiration rates being measured over a 40 min time-course (Desmard et al., 2009). 

Both pieces of work also provided spectroscopic evidence of the formation of CO-

adducts of cytochromes following treatment with CORM-3. Two papers have since 

been published on this subject, one of which demonstrates that CORM-3 inhibits 

respiration in C. jejuni without inhibiting growth (Smith et al., 2011), and the other 

presents a comprehensive study of the effects of CORM-3 on bacterial respiration in 

several bacteria and the yeast Saccharomyces cerevisiae (Wilson et al., 2013).  

 

The respiratory studies described in the present work differ from previous published 

reports as they study the effects of CO-RMs on bacterial membrane particles created by 

disrupting E. coli suspensions by ultrasonication (Poole, 1993). Measuring respiratory 

inhibition of E. coli membrane particles allowed the direct measurement of the effects 

of CORM-3 on respiratory components, without interference from other cellular 

components, or the effects of trans-membrane ion gradients. 
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The work described in this chapter predominantly used CORM-3 as a model CO-RM as 

it is chemically well characterised and is water soluble, a property that will be important 

in future therapeutically relevant CO-RMs. In some experiments, CORM-2, which is 

soluble only in organic solvents, was also used in order to confirm whether the effects 

observed with CORM-3 were shared by other CO-RMs. The chemical structure of both 

of these compounds can be seen in Table 1.2. It was important to begin by comparing 

the sensitivities of membrane particles to CORM-2, CORM-3 and equivalent 

concentrations of CO-saturated solution. E. coli membrane particles were suspended in 

fully aerated sonication buffer in a stirred Perspex chamber fitted with a Clark-type 

polarographic oxygen electrode (OXY041A, Rank Bros Ltd.) held at 37 °C, with a lid 

placed on the chamber to prevent the entry of additional oxygen into the sample 

(Gilberthorpe and Poole, 2008). NADH (6.25 mM) was added to stimulate respiration 

and the CO-RM compound or CO-saturated solution was added, through a small hole in 

the lid using a Hamilton syringe, when the dissolved oxygen tension in the chamber 

reached approximately 155 µM (75% of air saturation). 

 

Previous published reports had not studied the immediate effect of CORM-3 on 

bacterial respiration in the closed oxygen electrode, as inhibition could not be observed 

for intact E. coli cells in the limited time this experimental design allowed (Davidge et 

al., 2009b), however, the present study used fragmented membrane particles, which 

allowed an immediate inhibition of respiration to be observed when CORM-3 was 

added to the chamber. CO gas (100 µM) significantly inhibited respiration of membrane 

particles (by 38%), and to a greater extent than the equivalent concentration of CORM-3 

(12%; Figure 3.1A and B, blue short dash line). High concentrations of CORM-3 (400 

µM) were required to inhibit respiration in wild type membrane particles by 54.6%. 

CORM-2 was found to be more inhibitory to respiration than CORM-3 (100 µM 

inhibited respiration by 85%; Figure 3.1B and C). Importantly, the control compounds 

iCORM-3 (Figure 3.1B, red dot dash line) and RuCl2(DMSO)4 (Figure 3.1C, red dot 

dash line) caused little (6%) or no inhibition respectively. This confirms that CO is the 
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Figure 3.1 CO gas, CORM-3 and CORM-2 inhibit respiration in wild type E. coli 

membrane particles. Wild type E. coli membrane particles were added to an oxygen 

electrode chamber in sonication buffer (2 ml) to a final concentration of approximately 

60 μg ml-1 (in A), 170 µg ml-1  (in B) and 100 μg ml-1  (in C). A lid was placed on the 

chamber and respiration was initiated by the addition of 6.25 mM NADH. Traces show 

dissolved oxygen in the chamber as follows: (A) control (black solid line) and 100 μM 

CO (blue broken line); (B) control (black solid line), 100 μM iCORM-3 (red dot dash 

line), 100 μM CORM-3 (blue short dash line), 400 μM CORM-3 (blue long dash line); 

(C) control (black solid line), 100 μM RuCl2(DMSO)4 (red dot dash line), 50 μM 

CORM-2 (blue short dash line), 100 μM CORM-2 (blue long dash line). CO and CO-

RMs were added at approximately 75% of oxygen saturation (310 nmol O2). These data 

are representative of at least 3 technical and 2 biological replicates. Respiration rates 

(nmol min-1 mg-1 protein) 2 min following the addition of CO-RM are shown adjacent 

to each trace. This figure was published in Jesse et al. (2013).  
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causative agent of respiratory inhibition by CO-RMs, and that the inactive metal-

containing structure of the CO-RM does not contribute substantially to respiratory 

inhibition. Typical respiration rates for each of these conditions are given in Figure 3.1. 

 

3.2.2 The oxygen tension at which CORM-3 is added does not affect the degree of 

respiratory inhibition. 

It has been known for several decades that CO gas is a competitive inhibitor of the 

terminal oxidases of aerobic respiration as it binds to haem in place of oxygen, thereby 

preventing the reduction of oxygen to water (Wikstrom et al., 1981). Because of this, 

CO gas is a more potent inhibitor of respiration when oxygen concentrations are low 

(Poole et al., 1973). It has recently been reported that endogenously produced, but 

artificially induced CO can inhibit respiration, and that it does so more potently 

following a period of hypoxia (D'Amico et al., 2006). It is expected that CO from CO-

RMs inhibits aerobic respiration in the same way as CO gas; however this cannot be 

taken for granted as CO-RM-derived CO is known to elicit some strikingly different 

effects than CO gas, such as being inhibitory to growth (Davidge et al., 2009b) and 

respiration at substantially lower concentrations (Smith et al., 2011; Wilson et al., 

2013), even when present at concentrations much lower than surrounding oxygen 

tensions (Davidge et al., 2009b; Smith et al., 2011).  

 

It was therefore important to assess whether CO from CO-RMs inhibits aerobic 

respiration in a competitive manner. Wild type E. coli membranes were stimulated to 

respire in an open electrode using 12.5 mM NADH, and the speed of stirring was 

manipulated so that a steady state was achieved at either a high (approximately 75% of 

air saturation), or low (approximately 9% of air saturation) oxygen levels. 50 μM 

CORM-3 was then added two min after the oxygen equilibrium had been reached, and 

the respiration rates calculated 10 and 20 min after the addition of compound. 

Respiration rates at the corresponding time points in a control experiment in which no 

compound was added were also calculated. At both time points, there was no significant 

difference in the percentage inhibition induced by CORM-3 with regards to the oxygen 

level at which it was added (Figure 3.2). It was then investigated whether there was a 

difference in the degree of respiratory inhibition when CORM-3 was added at either low 
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Figure 3.2 The oxygen tension at which CORM-3 is added does not affect the 

degree of respiratory inhibition. Wild type membrane particles were added to 

sonication buffer to a final concentration of approximately 175 µg ml-1 in an open 

system oxygen electrode chamber. A magnetic stirrer bar was used to mix the 

suspension and to introduce oxygen into the sample. The rate of stirring was 

manipulated to achieve a constant dissolved oxygen tension for an extended time 

period. A stirrer speed of 9 achieved a plateau at high oxygen tensions (approximately 

75.0% of air saturation), shown in (A), while a stirrer speed of 5 achieved a plateau at 

low oxygen tensions (approximately 9.3% of air saturation), shown in (B). NADH (12.5 

mM) was added to initiate respiration and 50 μM CORM-3 (broken line) was added at 

the point indicated by the arrow (t = 0). No compound was added to the control (solid 

line). The numbers shown on the traces are the respiration rates (nmol min-1 mg-1 

protein) 10 and 20 min following the addition of compound, or at the equivalent point in 

the control. Data are from one representative experiment. (C) Respiration rates 10 and 

20 min following the addition of CORM-3, or the control compound RuCl2(DMSO)4 

(both at 50 µM) are expressed as a percentage of the respective rates at t=0. Data are the 

mean and standard deviations of 3 biological replicates. 
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(13%) or very low (3%) oxygen tensions. Again, no significant difference was found 

between these conditions (Figure 3.3). 

 

3.2.3 Cytochrome bd-I is the most resistant oxidase of E. coli to respiratory 

inhibition by CORM-3 and a strain containing only this oxidase is partially 

protected from growth inhibition by this compound. 

As mentioned previously, terminal oxidases are thought to be one of the major targets 

for CO-RM inhibition and may be important in determining sensitivity to CO-RMs in 

antimicrobial therapy. It was therefore important to study the interaction of CO from 

CORM-3 with each individual terminal oxidase of E. coli and to ascertain whether these 

differed in sensitivity to CORM-3. It could not be taken for granted that the oxidases 

would behave the same with CORM-3-derived CO as with CO gas due to the many 

differences in the effects of CO and CORM-3 described above (section 3.1). 

Additionally, there are no published reports of the interaction of CO or CORM-3 with 

the more recently identified cytochrome bd-II of E. coli. This work therefore constitutes 

the first comparison of the effects of a CO-RM on the individual terminal oxidases of a 

bacterial respiratory chain. 

 

The E. coli strains used in this work were each able to express only one of the three 

quinol oxidases of the aerobic respiratory chain of E. coli. For example, the strain 

containing only cytochrome bd-I had the phenotype Cyd+ App- Cyo- (see Table 2.1). To 

simplify the nomenclature in this work, this strain will be referred to by the phenotype, 

Cyd+, the strain containing only cytochrome bd-II will be referred to as App+ and the 

strain containing only cytochrome bo’ will be referred to as Cyo+. The single oxidase 

mutants also had a deletion in the nuo gene rendering them unable to produce NADH 

dehydrogenase-I, an electrogenic component upstream of the quinol oxidases in the 

respiratory chain of E. coli. The control strain used in this work was able to express all 

three oxidases, but had a nuo deletion and is referred to throughout this work as the 

parent strain. 

 

Growth of each of the single oxidase strains was monitored in the presence of 12.5 µM 

CORM-3, which was added during early exponential phase (at approximately 30 Klett 

units) (Figure 3.4 A-D). This concentration of CORM-3 had only a slightly deleterious 
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Figure 3.3 The degree of respiratory inhibition experienced by wild type E. coli 

membrane particles treated with CORM-3 is not exacerbated at very low oxygen 

tensions. Wild type membrane particles were added to sonication buffer to a final 

concentration of 175 µg ml-1 in an open system oxygen electrode chamber, as described 

in Figure 3.2. A stirrer speed of 7 achieved a plateau at low oxygen tensions 

(approximately 13.4% of air saturation), shown in (A), while a stirrer speed of 5 

achieved a plateau at very low oxygen tensions (approximately 3.1% of air saturation), 

shown in (B). NADH (12.5 mM) was added to initiate respiration and 50 μM CORM-3 

(broken line) was added at the point indicated by the arrow (t = 0). No compound was 

added to the control (solid line). The numbers shown on the traces are the respiration 

rates (nmol min-1 mg-1 protein) 10 and 20 min following the addition of compound, or at 

the equivalent point in the control. Data are from one representative experiment. (C) 

Respiration rates 10 and 20 min following the addition of CORM-3, or the control 

compound RuCl2(DMSO)4 (both at 50 µM) are expressed as a percentage of the 

respective rates at t = 0. Data are the mean and standard deviation of 3 biological 

replicates. 
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Figure 3.4. A strain containing only cytochrome bd-I is resistant to growth 

inhibition by CORM-3. CORM-3 (12.5 µM) was added at early exponential phase to 

cultures of E. coli: (A) parent strain; (B) expressing cytochrome bd-I only; (C) 

expressing cytochrome bd-II only and (D) expressing cytochrome bo’ only. Nothing 

was added to the controls. Data in (A) – (D) show growth in the absence (closed 

symbols) and presence (open symbols) of CORM-3. (E) Shows the doubling times of 

these strains, for the two hours before (black bars) and after (grey bars) the addition of 

CORM-3. All data are averages and standard deviations of three biological repeats. 

Student’s t-test was done in order to establish whether the doubling times before and 

after CORM-3 were significantly different for each strain. *, p = 0.0564, **, p = 0.0214. 

This figure was published in Jesse et al. (2013). 

 

  

E 
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effect on the growth rate of the parent strain. The single oxidase mutants were all 

affected to a greater extent than the control strain, however, the doubling time of the 

Cyd+ mutant was inhibited much less than that of both App+ and Cyo+ (Figure 3.4 E). 

The doubling time of the parent strain was affected by a factor of 1.19 by 12.5 µM 

CORM-3, 1.16 for Cyd+, 1.98 for App+ and 1.81 for Cyo+. Student’s t-test was 

performed to establish whether the changes in doubling time following the addition of 

CORM-3 were statistically significant for each single oxidase containing strain. The 

doubling times of the parent strain and the strain containing cytochrome bd-I as the only 

oxidase were not significantly changed by the addition of 12.5 µM CORM-3, whereas 

that of the strains containing either cytochrome bd-II or cytochrome bo’ as the only 

oxidase were significantly decreased by this concentration of CORM-3. 

 

In order to further investigate this finding, membrane particles prepared from these 

single oxidase-expressing E. coli mutants were assessed for their susceptibility to 

respiratory inhibition by CORM-3. The extent of respiratory inhibition was determined 

by measuring the time taken for oxygen re-accumulation to begin after removal of the 

chamber lid, in the presence of CORM-3 or the control compound miCORM-3. 

miCORM-3 is a control compound developed by Jayne Louise Wilson (Wilson et al., 

2013), which is prepared by treating CORM-3 with dithionite and myoglobin in order to 

remove any labile CO from the compound. It has an advantage over another commonly 

used control compound iCORM-3, as it has been exposed to biological ligands. While 

both compounds have been used in published work, the precise chemical structure of 

neither is known. 

 

In this experimental design, the respiration of more sensitive strains will be inhibited to 

a greater extent and so will not be able to utilise the oxygen in the chamber as quickly, 

leading to a shorter time to reoxygenation. This is an established method for comparing 

the sensitivity of respiring samples to inhibitors (Hendgen-Cotta et al., 2008; Shiva et 

al., 2007). The chamber was initially closed and NADH (12.5 mM) was added to 

stimulate respiration. Compound(s) were added 1 min after the dissolved oxygen 

tension in the chamber reached 0 and the lid removed 1 min later. This allowed 

continuous O2 diffusion from the vortex surface into the sample with a typical KLa 

value of 0.35 min-1. KLa is the gas transfer coefficient from gas to liquid and is 
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dependent on reaction volume, surface area and temperature (Pirt, 1985), all of which 

were quantified and controlled. The extent of respiratory inhibition was determined by 

measuring the time to oxygen re-accumulation after removal of the chamber lid, as 

previously described (Shiva et al., 2007). This method has the advantage that prolonged 

measurements can be made without exhaustion of oxygen.  

 

When respiring membrane particles containing either cytochrome bd-II or all three 

oxidases (parent strain) were treated with 100 µM CORM-3, the time taken for the 

chamber to reoxygenate was significantly reduced (by 80 - 84%) (Figure 3.5A) 

compared to treatment with the control compound, miCORM-3 (Figure 3.5B). Thus, 

CORM-3 significantly inhibits respiration in these strains. However, when membrane 

particles prepared from a strain expressing only cytochrome bd-I were treated with 100 

µM CORM -3, the time to reoxygenation of the electrode chamber was reduced by only 

9% compared to that when miCORM-3 was present. Figures 3.5A and B show the 

electrode traces of one representative experiment. Figure 3.5C shows the means and 

standard deviations of 2 technical and 2 biological replicates of these data. Mean times 

to reoxygenation in min for each experimental condition were as follows: parent strain 

with miCORM-3 (65.8 ± 2.99) and with CORM-3 (13.2 ± 2.56); App+ with miCORM-3 

(55.5 ± 6.28) and with CORM-3 (9.42 ± 3.84); Cyd+ with miCORM-3 (65.7 ± 4.51) and 

with CORM-3 (59.8 ± 4.84). This confirms that cytochrome bd-I is the most resistant 

oxidase of E. coli to CORM-3.  

 

3.2.4 A spectroscopic study of the binding of CO from CORM-3 to each of the 

terminal oxidases of E. coli 

UV-visible spectroscopy was performed using a dual-beam spectrophotometer, in order 

to identify the haems present in membrane particles prepared from each single oxidase 

mutant and therefore confirm the oxidase composition of the mutants used in this work 

(Figure 3.6). CORM-3 difference spectra (i.e. the difference between the spectrum of a 

reduced sample treated with 100 µM CORM-3 minus the spectrum of a reduced sample 

(Wood, 1984)) were recorded for membrane particles prepared from the single oxidase-

expressing strains and resuspended in sonication buffer to a final concentration of 

between 8 and 16 mg ml-1. In each strain, the Soret feature consisting of a peak near 420 
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Figure 3.5 Cytochrome bd-I is resistant to respiratory inhibition by CORM-3. 

Membranes prepared from mutants containing only one of the three terminal oxidases 

of E. coli were added to an oxygen electrode chamber in sonication buffer (2 ml) to a 

final concentration of approximately 370 μg ml-1 and stimulated to respire by the 

addition of NADH (12.5 mM). The point at which either CORM-3 (shown in A) or the 

control compound miCORM-3 (shown in B, both at 100 µM) were added is indicated 

by the first, longer arrow in each panel. The lid was removed from the chamber 1 min 

later, indicated by the second arrow. These traces show dissolved oxygen in the 

chamber and indicate the times taken for the chamber to begin to reoxygenate for the 

strains containing cytochrome bd-I only (black lines), cytochrome bd-II only (blue 

dotted lines) and the parent strain (red dashed lines). The times taken for the chamber to 

reoxygenate (min) in each condition were as follows: parent strain with miCORM-3 

(70) and with CORM-3 (14); App+ with miCORM-3 (54) and with CORM-3 (7); Cyd+ 

with miCORM-3 (70) and with CORM-3 (63). These data are representative of 2 

technical and 2 biological replicates. (C) Shows the time to reoxygenation for each 

strain with CORM-3 (grey bars) or miCORM-3 (black bars). These data are the means 

and standard deviations of 2 technical and 2 biological replicates. This figure was 

published in Jesse et al. (2013). 
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Figure 3.6 Difference spectra of single oxidase membrane particles. Membranes 

were prepared from E. coli respiratory mutants and diluted with sonication buffer to a 

final protein concentration of 8 - 19 mg ml-1. Spectra were obtained 10 min after the 

addition of CORM-3 to membranes from the following strains: (A) wild type; (B) 

cytochrome bd-I only; (C) cytochrome bd-II only; (D) cytochrome bo’ only. Data were 

plotted using a scanning dual wavelength spectrophotometer as the difference between 

the spectrum of a dithionite reduced sample incubated with 100 μM CORM-3 minus the 

spectrum of a reduced sample. Data have been smoothed in Sigma plot graphing 

software with a sampling proportion of 0.1 and a polynomial degree of 9. This figure 

was published in Jesse et al. (2013). 
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nm and the trough near 445-459 nm demonstrate the binding of CO from CORM-3 to a 

mixture of cytochromes including cytochrome b, and in the case of Cyo+ cytochrome o’ 

(Figire 3.6D). The peak in the α-region, between 645 - 647 nm, is indicative of the 

binding of CO to cytochrome d (Figures 3.6A-C). Importantly, this feature is absent in 

the CORM-3 difference spectrum of Cyo+ (Figure 3.6D). 

 

Work was done to obtain CORM-3 difference spectra over a time-course in order to 

gain time-resolved data regarding the rate of CO binding to the respiratory cytochromes. 

Here, membrane particles prepared from wild type E. coli were resuspended in buffer to 

a final protein concentration of approximately 32 mg ml-1. The samples were reduced by 

the addition of a few grains of sodium dithionite and then treated with 100 μM CORM-

3. Spectra were recorded after 5 and 10 s, then every 10 s until 5 min, every 30 s until 

10 min, every 5 min until 40 min and then at 60 min. The main spectral features are 

shown in Figure 3.7A (the Soret region) and Figure 3.7B (the α-region). The magnitude 

of the peak at 423 nm and trough at 440 nm increase over time. These features are 

characteristic of CO binding to cytochrome b595. Cytochrome o’ bound to CO also has 

spectral features in this region, but this typically has a peak at 415 nm and a trough at 

430 nm (Wood, 1984). The absorbance minima of this feature (at 440 nm) was 

subtracted from the absorbance maxima (at 423 nm) and this difference in absorbance 

plotted against time (Figure 3.7C). This confirms that CO from CORM-3 binds rapidly 

to cytochrome b595 from E. coli, reaching saturation 10 min after CORM-3 treatment. 

The half-time of CO binding to cytochrome b595 was calculated as 0.44 min (± 0.13; 2 

biological replicates). The peak at 643 nm (Figure 3.7B) is indicative of CO-bound 

haem d. This change in intensity of this peak over time (calculated as the absorbance at 

643 nm minus the absorbance at 658 nm) is shown in Figure 3.7D. This shows that CO 

from CORM-3 binds extremely rapidly to haem d in E. coli membrane particles. The 

half-time of CO binding to this cytochrome was calculated as 0.17 min (± 0.011; 2 

technical replicates), although it should be noted that this spectroscopic method is not 

ideal for calculating accurate kinetic data for such a rapid process. 

 

For comparison, spectra of CO gas (from a saturated solution) bound to wild type 

membrane particles were also recorded over a time-course (Figure 3.8). The Soret 

region has a peak at 424 nm and a trough at 438 nm (Figure 3.8A), almost identical in 
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Figure 3.7. Binding of CO from CORM-3 to haem d and haem b595 of the terminal 

oxidases of E. coli. Membranes were prepared from wild type E. coli and diluted with 

sonication buffer to a final protein concentration of 32.6 mg ml-1. The samples were 

treated with 100 μM CORM-3. CORM-3 reduced minus reduced difference spectra 

were recorded. (A) shows the Soret region of the spectrum and (B) the α-region over a 

time course. (C) shows the change in absorbance in the Soret region (absorbance at 423 

nm minus the absorbance at 440 nm) plotted against time and (D) shows the change in 

the α-region (absorbance at 643 nm minus the absorbance at 658 nm plotted against 

time. In both cases, the absorbance at time 0 (ie. at the point of CORM-3 addition) has 

been assigned as zero, although technical limitations prevent a spectrum from being 

recorded at this point. The dashed horizontal lines in (C) and (D) indicate half the 

maximal absorbance change and the dashed vertical lines indicate the half time of CO 

binding to each cytochrome. The inset figure in (D) shows the same data as in the main 

figure, but without the data point for time zero allowing greater resolution of the data. 

Data are from one technical replicate but are representative of 2 technical replicates. 
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Figure 3.8 Binding of CO from a saturated solution to haem d and haem b595 of the 

terminal oxidases of E. coli. Membranes were prepared from wild type E. coli and 

diluted with buffer to a final protein concentration of 32.6 mg ml-1. The samples were 

treated with 100 μM CO from a saturated solution. CO reduced minus reduced 

difference spectra were recorded. (A) shows the Soret region of the spectrum and (B) 

the α-region over a time course. (C) shows the change in absorbance in the Soret region 

(absorbance at 423 nm minus the absorbance at 440 nm) plotted against time and (D) 

shows the change in the α-region (absorbance at 643 nm minus the absorbance at 658 

nm) plotted against time. In both cases, the absorbance at time 0 (ie. at the point of 

CORM-3 addition) has been assigned as zero, although technical limitations prevent a 

spectrum from being recorded at this point. The inset figure in (C) shows the same data 

as in the main figure, but without the data point for time zero allowing greater 

resolution of the data. The dashed horizontal lines in (C) and (D) indicate half the 

maximal absorbance change and the dashed vertical lines indicate the half time of CO 

binding to each cytochrome. Data are from one technical replicate but are representative  

D
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wavelength and magnitude to those in the difference spectra generated following 

treatment with CORM-3. However, this spectral feature formed much more rapidly 

following treatment with CO gas compared to CORM-3, with a half-time of CO binding 

of 0.020 min (Figure 3.8C), which is more than 5-fold lower than that for CORM-3. CO 

bound to haem d so rapidly, that almost no changes could be detected over time (Figure 

3.8B). 

3.2.5 Photolysis alleviates the inhibition of respiration by CO from CORM-3 and 

reduces killing by CORM-3 

Over 100 years ago, in 1896, Haldane and Smith noted that carbonmonoxy-

haemoglobin dissociates in the light, and reassociates in the dark (Keilin, 1966). Then in 

1926, Warburg demonstrated that a mixture of 95% CO and 5% O2 caused the 

respiration of yeast to be inhibited by 71% in the dark, but that this was greatly 

alleviated in the light, with respiration inhibited by only 14%. The photo-reversibility of 

CO inhibition of respiration was later used to identify terminal oxidases (Castor and 

Chance, 1955). In the early 1970s it was shown that the inhibition of respiration by CO 

in yeast, for example, Schizosaccharomyces pombe was light-reversible, confirming that 

CO was inhibiting respiration by binding to haem in the cytochromes of the terminal 

oxidases of this organism (Poole et al., 1973).  

 

The current work aimed to establish whether the binding of CO from CORM-3 to the 

terminal oxidases of the aerobic respiratory chain of E. coli could also be reversed by 

light in order to ascertain to what extent CO from CORM-3 mimics CO gas applied as a 

solution. Initially, work was done to confirm that photolysis of the haem-CO bond could 

be observed as a change in respiration rate upon illumination of respiring wild type 

membrane particles. White light from a 150 W bulb was focused on the wall of a glass 

chamber using a convex lens; the light was switched on and off at 1 min intervals. 

 

In the presence of a solution of CO gas, an increase in respiration rate was evident 

immediately following the application of light, followed by an instant decrease in 

respiration rate upon removal of the light (Figure 3.9A, respiration rates for the first two 

light / dark cycles are given in Table 3.1). This confirms that the experimental design 

used here is suitable for observing the effects on respiration caused by the photolysis of 



99 
 

 

Figure 3.9 Photolysis of CORM-3 treated membrane particles confirms that the heme-

CO bond is photolabile in each terminal oxidase of E. coli. Oxygen consumption of E. 

coli membrane particles prepared from (A) and (B) wild type, (C) cytochrome bd-I only, 

(D) cytochrome bd-II only and (E) cytochrome bo’ only strains in the presence of (A) a 

solution of CO gas and (B) – (E) 300 µM CORM-3. The membrane particles were 

resuspended in sonication buffer to a final protein concentration of approximately 0.1 

mg ml-1. Respiration was started by the addition of 12.5 mM NADH. White light focused 

on the glass chamber was switched on and off at 1 min intervals (A), and 2 min intervals 

(B-E); green arrows indicate where the light was switched on and red arrows where it 

was switched off. These traces are representative of at least 2 technical replicates. 

Respiration rates for the first 2 light / dark cycles for each condition can be found in 

Table 3.1.  
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 Respiration rates (nmol O2 min-1 mg-1) 
 

Wild type 
with CO * 

Wild type with 
CORM-3 

 

Cytochrome bd-I 
with CORM-3 

Cytochrome bd-II 
with CORM-3 

Cytochrome bo’ 
with CORM-3 

Rate 1 
(light on) 

157.5 82.0 88.5 52.7 15.0 

Rate 2 
(light off) 

51 13.7 12.3 10.5 4.0 

Rate 3 
(light on) 

78 31.9 36.8 21.0 8.6 

Rate 4 
(light off) 

21 7.18 6.1 3.6 2.5 

 

 

Table 3.1 The respiration rates calculated from the gradients of the traces at four 

different time points. For CORM-3 treated membranes, rate 1 refers to the rate of 

respiration between 1 min and 3 min when the light is on, rate 2 is that between 3 and 5 

min when the light is off, rate 3 between 5 and 7 min when the light is on and rate 4 

between 7 and 9 min when the light is off. This experiment was conducted three times 

for each oxidase, the data shown is from one representative experiment. *The rates for 

wild type membranes with CO gas were recorded between the following time intervals: 

rate 1: 1 and 2 min when the light is on, rate 2: 2 and 3 min when the light is off, rate 3 

3 and 4 min when the light is on and rate 4: 4 and 5 min when the light is off. 
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the bond between CO gas and the haem groups of the terminal oxidases of the 

respiratory chain of E. coli.  

 

In order to establish whether CO from CORM-3 binds to CO in a ‘classical’ photolabile 

manner, this experiment was repeated with membranes prepared from wild type E. coli 

and from each single oxidase strain in the presence of 300 μM CORM-3. Membrane 

particles were suspended in sonication buffer, which had been bubbled with nitrogen 

gas for 15 min in order to reduce the amount of dissolved oxygen in the buffer to 

between 60 - 90 µM, to obtain a dissolved oxygen tension similar to that in the 

experiment with CO-saturated solution described above. The light was switched on and 

off at 2 min intervals. Addition of CORM-3 inhibited respiration significantly in all 

strains, but this inhibition was immediately alleviated during illumination of the sample, 

and these effects were observed repeatedly over several light dark cycles (Figure 3.9B-

E). 

 

Table 3.1 shows the rates of respiration for each strain after the first four light changes. 

The initial inhibited rate is very similar for both wild type and Cyd+ membranes treated 

with CORM-3, and in both cases there is approximately a 3-fold increase in the rate of 

respiration when the light is switched on (between rate 2 and rate 3). In contrast, the 

respiration rates for both the App+ and the Cyo+ membranes increased by approximately 

2-fold in the presence of white light compared to the CORM-3 inhibited rate in the dark 

(between rates 2 and 3).  

 

Following the demonstration that respiratory inhibition by CORM-3 could be reversed 

by white light, it was hypothesised that light may also be able to rescue E. coli cultures 

from killing by CORM-3. To investigate whether this was the case, wild type cultures 

of E. coli were grown to an optical density of 50 Klett units and then a 2 ml aliquot of 

this culture was placed into a glass chamber wrapped in foil so that no light could enter, 

while a second 2 ml aliquot was placed in an identical glass chamber on which a beam 

of light was focused. The cultures in each chamber were stirred magnetically and 

samples were taken before the addition of 30 μM CORM-3 and at 10, 20, 30, 45 and 60 

min after. These samples were diluted and plated out on to nutrient agar, incubated 

overnight and then counted. The cfu ml-1 values of the cultures grown in the light were 
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calculated and compared to those of the dark cultures. The light incubated CORM-3 

treated culture experienced approximately 70% killing in the first hour following 

treatment, however, the viability loss was significantly greater in the dark; 95% of the 

population was killed in 60 min. Statistical analysis of the data was done using a 

Student’s t test, which revealed that survival of the CORM-3 treated cultures grown in 

the light was significantly higher than that of the cultures grown in the dark at 30 (P < 

0.001), 45 (P = 0) and 60 min (P = 0) following CORM-3 addition (Figure 3.10).     

 

3.3 Discussion                

3.3.1 CORM-2, CORM-3 and CO gas inhibit respiration in E. coli membrane 

particles 

Inhibition of bacterial respiration by CORM-3 had been reported when the work 

described in this thesis was undertaken, including preliminary evidence that CORM-3 

treated E. coli cells contained CO-bound cytochromes (Davidge et al., 2009b; Desmard 

et al., 2009). However the details of respiratory inhibition by CORM-3 remained 

elusive and it was uncertain as to what extent inhibition of the terminal oxidases by CO 

from CORM-3 contributed to the bactericidal nature of these compounds. As outlined in 

the Introduction to this chapter (section 3.1) several key differences between the 

behaviour of CO gas and CORM-3 were evident, which necessitated a thorough 

investigation into the similarities and differences between respiratory inhibition by CO-

RMs with the established knowledge of the mechanisms by which CO gas inhibits 

respiration, in order to ascertain to what extent CO from CORM-3 mimics CO applied 

as a saturated solution. The work presented in this chapter investigated the nature of the 

inhibition of the terminal oxidases of E. coli with the aim of better understanding the 

mechanism of respiratory inhibition by CORM-3 

 

The respiratory studies presented in this thesis utilize bacterial membrane particles 

rather than whole cells. This was done to allow the investigation of respiration alone, 

without interference from other cellular components. The utilization of membrane 

particles allowed the immediate inhibitory effect of CO-RMs on the terminal oxidases 

to be observed without interference from the phenomenon of respiratory stimulation 

seen in whole cells treated with CORM-3, which is thought to arise from the transport 

of K+ and Na+ ions across the cell membrane as described in section 1.3.3.  
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Figure 3.10 Light can reduce the toxic effect of CORM-3 by photolysing the haem 

– CO bond. E. coli was grown aerobically to an OD of 50 Klett units, and 2 ml culture 

was added to both a light and dark chamber. Samples were taken before addition of 30 

μM CORM-3 and at regular intervals after and viability counts performed.  The mean 

percentage survival of 5 technical replicates at 30, 45 and 60 min compared to the 

viability before the addition of CORM-3 is shown. Asterisks indicate statistically 

significant decreases in viability of cultures grown in the dark compared to cultures 

grown in the light as measured using Student’s t test (*, P < 0.001; **, P < 0). These 

data are representative of 3 biological replicates. 

 

These data have been published in Wilson et al. (2013)  
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(Wilson et al., 2013). Indeed the demonstration that respiration rates are not stimulated 

in fragmented membrane samples is evidence that CORM-3 does not directly stimulate 

oxidase activity as has been reported with cytochrome c oxidase activity in 

mitochondria, in which low doses of CO (10 µM) transiently stimulate respiration 

(Queiroga et al., 2011).  

 

The use of membrane particles in respiratory studies also has the advantage of providing 

a more stable sample, whereas when whole cells samples were prepared their ability to 

respire deteriorated over several hours. It also allowed rapid measurements to be made 

in the closed system of the oxygen electrode, which is not possible with whole cell 

samples.  

 

While inhibition of respiration of E. coli membranes particles by CORM-3 is reported 

in this work as occurring on a faster time scale than that of whole cells as reported in 

Wilson et al. (2013), much higher concentrations of CORM-3 (400 µM) were required 

in order to give substantial inhibition (55%, Figure 3.1B). In the current work, 100 µM 

CORM-3 added at 75% of air saturation inhibited respiration by only 12%, while this 

concentration of CORM-3 inhibited intact E. coli cell suspensions by approximately 

40% (Wilson et al., 2013). While it would be unwise to try to make quantitative 

comparisons between these two findings, due to several inherent differences in the 

methodology used in each study, including differences in the amount of protein used, 

the oxygen tension at which the CO-RM compound was added and the use of the 

closed, compared to the open electrode system, it can be qualitatively concluded that 

over an extended time period, CORM-3 is more inhibitory to respiration in whole cells 

than in membrane particles. This is particularly evident when the effects of CORM-3 

are compared to those of CO gas in each system. CO gas (100 µM) administered as a 

solution has been shown not to inhibit bacterial respiration in whole cells Wilson et al. 

(2013), whereas work presented in this chapter shows CO gas to be more inhibitory to 

respiration of E. coli membrane particles than the equivalent concentration of CORM-3 

(38% inhibition following treatment with 100 µM CO gas, Figure 3.1A).   

 

Although it may initially seem counterintuitive that CORM-3 would be more inhibitory 

to whole cells than to membrane particles, as it could be expected that CO from CORM-
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3 would be better able to access its respiratory targets in fractured membrane particles 

compared to intact cells (as indeed it appears to with regards to exhibiting immediate 

inhibition upon addition of CORM-3), it may be that the low levels of cellular 

components available with washed membrane particles may reduce the rate or extent of 

CO release from CORM-3. This hypothesis is consistent with the findings of  (McLean 

et al., 2012) who showed that CORM-3 requires the presence of compounds such as 

sulfites in order to release CO. It is thought that CORM-3 releases CO once it has 

entered the cell, but not when in buffer, due to the presence of intracellular species 

similar to sulfites, which trigger this release.  

 

CORM-2 was used in addition to CORM-3 in these initial experiments to provide a 

comparison with CORM-3 and to ascertain the effects of this compound on respiration 

of E. coli membrane particles as a precursor to other work using this compound 

throughout this thesis. The finding that CORM-2 was more inhibitory to respiration than 

the same concentration of CORM-3 is in agreement with the findings of Nobre et al., 

(2007) who found that higher concentrations of CORM-3 than CORM-2 were required 

to decrease viability in E. coli and S. aureus cultures. 

 

3.3.2 The oxygen tension at which CORM-3 is added does not affect the degree of 

respiratory inhibition. 

An interesting finding of the current work is that the oxygen tension at which CORM-3 

is added does not determine the extent of respiratory inhibition experienced by E. coli 

membrane particles. This is contrary to our established knowledge that CO gas is 

preferentially inhibitory to respiration when present in concentrations in excess of 

dissolved oxygen (Keilin, 1966) and therefore provides additional evidence that CO 

from CORM-3 does not merely mimic CO gas. It is known from the work described in 

this thesis (section 3.2.1) and from the published work of others (Davidge et al., 2009b; 

Wilson et al., 2013), that  CO is the agent of CORM-3 that causes inhibition of 

respiration, as control molecules, including the CORM-2 precursor RuCl2(DMSO)4, 

inactive iCORM-3 and myoglobin inactivated miCORM-3, do not perturb respiration. 

Therefore it is hypothesised that the differing effects of CORM-3 and CO applied as a 

saturated solution are caused by the ability of CO-RMs such as CORM-3 to deliver CO 

into the cell, perhaps directly to the micro-domain of the respiratory chain resulting in 
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concentrations of CO at these sites that exceed concentrations applied outside the cell, 

and consequently, that greatly exceed the local oxygen concentrations (Davidge et al., 

2009b). Further evidence in support of this hypothesis is that ruthenium from CORM-3 

is known to accumulate inside cells to concentrations approximately 8-fold that applied 

to the culture medium (McLean et al., 2013), and results described in Chapter 5).  

 

The finding that CORM-3 is not more inhibitory to respiration of E. coli membrane 

particles when applied at low oxygen tensions differs from the findings of Wilson et al. 

(2013) who found that incubation of whole cell suspensions of E. coli and CORM-3 

under anoxic conditions for an extended period of time resulted in a shorter period of 

respiratory stimulation and a greater degree of inhibition when oxygen was allowed to 

re-enter the system. These differences may result from differences in experimental 

design between the two studies, particularly variations in the behaviour of CORM-3 

with whole cells and membrane particles. It is also possible that the greater inhibition 

seen when CORM-3 is incubated with whole cells under extended conditions of anoxia 

is in part due to the longer time period in which the cells were exposed to CORM-3, 

rather than a specific consequence of the oxygen tension at which this incubation 

occurred.  

 

A limitation of the experimental design used in this work is that the oxygen tension 

achieved may not have been sufficiently low considering the very high affinity of 

respiratory cytochromes for oxygen. In the ‘very low’ oxygen condition, the oxygen 

tension will have been approximately 6.2 µM, however, the km of cytochrome bo’ for 

oxygen is reported to be between 0.2 and 0. 46 µM, depending on the globin used in the 

measurement (D’mello et al., 1996), while that for cytochrome bd-I is between 3 – 8 

nM (D’mello et al., 1996). Furthermore, the cytochrome composition of the wild type 

membranes used in this work was not quantified. It is likely therefore likely that even in 

the very low oxygen condition, the cytochromes were able to bind oxygen efficiently, 

therefore out competing CO from the CO-RM.  

 

3.3.3 Cytochrome bd-I is the most resistant oxidase of E. coli to CORM-3 

The data presented in Figure 3.3 and 3.4 clearly demonstrate that cytochrome bd-I is 

significantly more resistant to inhibition by CO from CORM-3 than the other two 
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quinol oxidases of E. coli and that when expressed as the sole respiratory oxidase it is 

able to partially protect this organism from growth inhibition caused by CORM-3. The 

notion that cytochrome bd-I may have a role as a cellular protector against stressors is 

well established in the literature. This oxidase is known to protect bacteria from various 

environmental stresses such as azide and divalent metal ions. Moreover, cytochrome bd-

I null mutants are more sensitive to hydrogen peroxide than wild type E. coli (Poole and 

Cook, 2000). Cytochrome bd-I is more resistant to haem group inhibitors than haem-

copper oxidases such as cytochrome bo’, including cyanide (Pudek and Bragg, 1974), 

NO and CO (Poole et al., 1989). 

 

 More recently, cytochrome bd-I has been shown to protect E. coli cultures from NO-

induced growth inhibition by virtue of the fast dissociation rate of NO from this oxidase 

(Mason et al., 2009). Evidence for this stems from the findings that cydA and cydB, the 

genes that encode cytochrome bd-I, are up-regulated by exposure to NO (Pullan et al., 

2007). It was found that there was greater inhibition of respiration by NO of a strain 

containing cytochrome bo’ as the only terminal oxidise, and that the growth of this 

strain was also more restricted during NO stress. The authors concluded that these 

negative effects were not caused by a reduction in the amount of terminal oxidase in this 

strain (caused by the down-regulation of cytochrome bo’ in response to NO) but that 

cytochrome bo’ is more sensitive to NO than cytochrome bd-I. Measuring the O2- and 

NO-binding kinetics of each terminal oxidase allowed the authors to conclude that it is 

the rapid rate at which NO dissociates from cytochrome bd-I (5 times faster than that of 

cytochrome bo’) that causes this resistance (Mason et al., 2009). The resistance of 

cytochrome bd-I to NO may confer an advantage to pathogenic bacteria such as M. 

tuberculosis (Shi et al., 2005) and S. aureus (Richardson et al., 2006), both of which 

increase expression of this oxidase in response to low concentrations of NO. In support 

of this hypothesis, cytochrome bd mutants of several pathogenic bacteria are 

significantly less virile than their wild type counterparts (Endley, 2001; Shi et al., 2005; 

Way, 1999).  

 

Cytochrome bd-I also has a very high dissociation constant for CO (Kd = 70 nM for 

membrane bound enzyme (Borisov, 2008) compared to 1.7 μM for cytochrome bo’ 

(Cheesman et al., 1993)), which could explain the resistance of this oxidase to CO from 
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CORM-3. That the genes encoding cytochrome bd-I are up-regulated upon exposure to 

CORM-3 (Davidge et al., 2009b; McLean et al., 2013), provides further evidence that 

this oxidase provides a modest cellular defence against this compound. The increased 

transcription of cydAB was shown using a gene profiling microarray and then confirmed 

spectroscopically; a mutant containing only cytochrome bd-type oxidases exhibited 

increased levels of this oxidase following treatment with CORM-3 (Davidge et al., 

2009b). The published work also found a 10 - 22-fold reduction in the transcription of 

the genes in the cyo operon that encode cytochrome bo’. This is consistent with the 

finding in the current work that a strain expressing this cytochrome as the only terminal 

oxidase is the most sensitive to growth inhibition following treatment with CORM-3.  

 

3.3.4 Time-resolved spectra of CO from CORM-3 binding to each of the terminal 

oxidases of E. coli 

The data presented in Figure 3.7 confirm that CO is released rapidly from CORM-3 in 

the presence of E. coli membrane particles and sodium dithionite, and that it binds 

rapidly to  haem b595 and even more so to haem d. This is consistent with the findings of 

Davidge et al. (2009b), which provided evidence of the binding of CO from CORM-3 

to cytochromes in E. coli whole cells, however, the current work provides more detailed 

and time-resolved data. The substantially longer half-time of CO (from CORM-3) 

compared to that of a CO-saturated solution, binding to the respiratory cytochromes of 

E. coli membrane particles is consistent with CO needing to dissociate from the CORM-

3 molecule before it can bind to the oxidases.  

 

It is acknowledged that kinetic data cannot be accurately determined for such fast 

processes using this experimental technique. The use of stopped-flow spectroscopy 

would allow much more accurate kinetic data to be collected, although this is not trivial 

due to limitations with regards to the optical density of the samples used in this method. 

The data reported here do however confirm that, like CO gas (Figure 3.8), CO from 

CORM-3 binds most rapidly to haem d and that the majority of haem d becomes CO-

bound within the first 5 seconds following the addition of CORM-3. 

 

A limitation of both studies is the use of dithionite, which is added in order to reduce 

the haem proteins, thereby allowing CO binding, as this compound is now known to 
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promote CO release from several CO-RMs including CORM-3 (McLean et al., 2012). 

Therefore, while this method allows the relative rates of binding of CO from CORM-3 

to be measured, it does not allow conclusions to be drawn as to the un-facilitated rate of 

CO release from CORM-3 to the respiratory cytochromes. For this to be achieved, 

whole cell, or membrane particles should be treated with glucose, or another respirable 

substrate, to promote respiration to render the sample anoxic prior to the addition of 

CORM-3. This would allow in vivo measurements of CO release from CORM-3 to the 

terminal oxidases to be made.  

 

Cytochrome bd-I from E. coli has a Km (O2) value of 3-8 nM, which is the highest 

reported oxygen affinity for a respiratory oxidase. In this oxidase, it is haem d that binds 

O2 and reduces it to H2O, and it is known that this is also the site of CO binding 

(Borisov, 2008). Studies of the binding of CO gas to cytochrome bd from Azotobacter 

vinelandii have shown that haem d has an affinity for CO approximately 20-fold higher 

than that of haem b595 (Borisov et al., 2001). 

 

3.3.5 Photolysis alleviates the inhibition of respiration by CO from CORM-3 and 

reduces killing by CORM-3. 

When this work began, one of the major questions surrounding the bactericidal activity 

of CO-RMs was to what extent the inhibition of respiration is the major cause of killing 

by these compounds. The work described in this chapter aimed to investigate the 

mechanism by which CO from CORM-3 binds to respiratory cytochromes, and to 

answer this question by investigating the relationship between the alleviation of 

respiratory inhibition and the effect this has on the viability of CORM-3 treated 

cultures.  

 

It is shown here for the first time that CO from CORM-3 inhibits respiration in a 

‘classical’ photo-sensitive manner. This is an important finding and confirms that, 

despite having many properties distinct from CO gas (Davidge et al., 2009b; Nobre et 

al., 2007; Wilson et al., 2013), the mechanism of respiratory inhibition is similar. 

 

Most significantly, this work has directly demonstrated that, by alleviating CORM-3 

induced inhibition of respiration through photolysis of the haem-CO bond, the viability 
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of CORM-3 treated cultures can be preserved. This provides strong evidence that the 

binding of CO to haem proteins, including those in respiratory cytochromes, is a key 

contributor to the bactericidal properties of CORM-3. This is in agreement with the 

work of Desmard et al. (2009), who showed that inhibition of respiration precedes the 

loss of viability of P. aeruginosa caused by CORM-3, but is in contrast to the findings 

of Wilson et al. (2013), who measured respiration rates and viability concurrently in 

CORM-3 treated E. coli cultures and found a significant loss of viability of E. coli 

cultures before respiratory inhibition began. The conflicting evidence suggests that 

respiration is a significant target of CO from CORM-3, and that, by relieving this 

inhibition by photolysing the CO-haem bond in CORM-3-treated cultures, viability can 

be significantly protected. However, this does not exclude other important mechanisms 

by which CORM-3 exerts its toxicity. Such mechanisms may include the binding of CO 

from CORM-3 to other non-respiratory haem proteins, which based on the findings of 

this work, would be expected to be relieved by light, or indeed the effects of CORM-3 

on non-haem proteins (as described in section 4.3). 

 

Further evidence that inhibition of respiration is not the main mechanism by which CO-

RMs exert their bactericidal effects is provided by the work of Desmard et al. (2012), 

which compared the effects of two fast CO-releasing, ruthenium based CO-RMs 

(CORM-2 and CORM-3) with those of the slow releasing CO-RMs, CORM-371, which 

is manganese based, and CORM-A1, which does not contain a metal moiety. This work 

found that CORM-2, CORM-3 and CORM-371 decreased oxygen consumption to a 

similar extent, but that CORM-371 had a more transient effect on loss of viability. 

Furthermore, CORM-A1 only had a slight effect on O2 consumption and no adverse 

effect on viability. These differences in bactericidal effect suggest that it is unlikely that 

inhibition of respiration, is the cause of viability loss, but rather that the metal 

component of CO-RMs may have a larger effect on the toxicity of these compounds 

than was previously thought. 

 

The greater increase in respiration rate when light is applied to wild type and Cyd+ 

membranes treated with CORM-3 compared to that of App+ and Cyo+ membranes could 

suggest that CO is either bound more strongly to cytochrome bd-II and cytochrome bo’ 

or that it associates more rapidly with these oxidases reducing the stimulatory effects of 
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photolysis in these strains. This is consistent with the data presented earlier in this 

chapter, which suggest that cytochrome bd-II and cytochrome bo’ are more sensitive to 

respiratory inhibition by CORM-3. The data also support the work of Borisov (2008), 

which shows CO to dissociate more rapidly from cytochrome bd-I than from 

cytochrome bo’. 

 

Overall, this work provides the first evidence that the biological consequences of CO 

release from a CO-RM can be reversed by light and has been published in part in 

Wilson et al., (2013). There is much current work developing CO-RMs that release CO 

upon irradiation; see section 1.2.4 and the recent review by Schatzschneider (2011). The 

findings of the current work have important implications for future therapeutic 

applications of CO-RMs, particularly regarding photoCO-RMs. 
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Chapter 4 

The non-haem oxidase AOX from Vibrio fischeri 

is sensitive to inhibition by CORM-3 

 

4.1 Introduction  

Vibrio fischeri is a bioluminescent bacterium, which is able to live freely in fresh or salt 

water or to live symbiotically in the light organ of the Hawaiian bobtail squid Euprymna 

scolopes. This bacterium is of interest to the present work as it encodes the non-haem 

alternative oxidase AOX (Visick and Ruby, 2006), haems being prime targets of CO. 

 

4.1.1 Respiration in V. fischeri 

V. fischeri is able to conserve energy by aerobic and anaerobic respiration (Ruby et al., 

2005) and by mixed acid fermentation (Doudoroff, 1942). Anaerobically, it is able to 

use several terminal electron acceptors, including trimethylamine N-oxide (TMAO), 

nitrate, nitrite and fumarate (Dunn and Stabb, 2008; Ruby et al., 2005). Aerobically, V. 

fischeri can express three terminal ubiquinol oxidases; cytochrome bd-I, encoded by 

cydAB, a cbb3 type oxidase, encoded by ccoNOQP and an alternative oxidase, encoded 

by aox. Cytochrome bd-I and the cbb3 type oxidase are both haem-based oxidases, 

whereas AOX is unique as it does not contain haem, but instead possesses a di-iron 

catalytic center (Berthold et al., 2002). Figure 4.1 shows a diagrammatic representation 

of the respiratory chain of V. fischeri. 

 

4.1.2 Alternative oxidase 

Alternative oxidase was originally discovered in the mitochondria of plants and is also 

found in some fungi, bacteria and protozoa (Vanlerberghe and McIntosh, 1997). Most 

of the knowledge of the structure, regulation and function of AOX comes from studies 

of the plant oxidase, although it is not known whether bacterial AOX shares all of these 

properties. Bacterial homologs of plant aox were discovered by genome sequencing 

(McDonald and Vanlerberghe, 2005; Stenmark and Nordlund, 2003) and it is notable 

that many bacteria that possess aox, including V. fischeri, are marine organisms 
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(Rusch et al., 2007). As a functioning ubiquinol oxidase, AOX catalyses the four 

electron reduction of oxygen to water in aerobic respiratory chains, with oxygen binding 

to the di-ferrous form of the enzyme (Berthold and Stenmark, 2003). In plants, AOX 

does not directly contribute to the generation of a proton motive force, but may 

contribute indirectly when coupled to proton-pumping by NADH dehydrogenase 

(reviewed by Vanlerberghe and McIntosh, 1997).  

 

4.1.2.1. Structure of plant AOX 

Relatively little is known about the structure of AOX due to difficulties in purifying this 

protein. Work investigating the plant AOX indicates that it is a monotopic integral 

membrane protein (Berthold and Stenmark, 2003) with a dicarboxylate di-iron active 

site (Berthold et al., 2002). Recent work by Moore et al. (2008) used EPR spectroscopy 

to confirm that this is also true of trypanosomal AOX. The iron atoms are located within 

a bundle of 4 helices (Andersson and Nordlund, 1999; Berthold and Stenmark, 2003) 

and are bound by four carboxylate groups and two histidine residues (Berthold and 

Stenmark, 2003).  

 

4.1.2.2 Regulation of AOX activity and expression 

In V. fischeri aox is not expressed under normal laboratory conditions (Dunn, 2012). 

AOX activity is regulated at both the gene and protein levels. The expression of AOX is 

regulated by many stressors including low temperature, oxidative stress, pathogens and 

by inhibitors of cytochrome-mediated respiration (Slayman, 1977). Reduced sulfur 

compounds such as cysteine and methionine are known to induce AOX expression in 

the yeast Hansenula anomala (Minagawa et al., 1990). 

 
AOX activity is also regulated by post-transcriptional and post-translational 

modifications. The activity of plant AOX has been shown to increase when levels of 

reduced ubiquinone are high, implicating it as a useful respiratory pathway when the 

cytochrome oxidases are saturated (Lambers, 1982). However, AOX does not merely 

constitute an ‘overflow’, as it is known to compete with cytochrome oxidases for 

electrons (Hoefnagel et al., 1995). In plants, AOX activity is known to depend on direct 

interaction of a key cysteine residue, Cys I (Berthold et al., 2000) with certain alpha-

keto acids, particularly pyruvate (Day et al., 1994; Millar et al., 1993). High levels of 
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pyruvate occur with rapid glycolytic flux and when ADP levels are high, ensuring AOX 

is not active when respiratory substrates are limited. Recent studies in the plant Arum 

maculatum have elucidated the mechanism of AOX activation by pyruvate, which has 

been shown to stabilise the active conformation of AOX, directly increasing Vmax (Carre 

et al., 2011). AOX can exist as a monomer or dimer linked by disulfide bonds, with the 

dimer being the less active form (Umbach and Siedow, 1993). AOX must be in the 

reduced monomeric form in order to be activated by pyruvate and this reduced, 

activated form of AOX has a higher affinity for ubiquinone (Umbach et al., 1994). 

Figure 4.2 summarises factors that affect AOX activity. 

 

4.1.2.3 The role of AOX 

In themogenic plants, AOX is involved in heat generation, which is important for 

pollination and temperature regulation (Meeuse, 1975); however the specific role of this 

oxidase in other species is less well understood. There is some evidence that AOX is 

involved in the maintenance of metal homeostasis (Rasmusson et al., 2009), protection 

from oxidative stress (Gupta et al., 2009; Wagner and Moore, 1997) and in virulence 

(Akhter et al., 2003). Plant AOX is not directly involved in the generation of the proton 

motive force, and is therefore not subject to back pressure from this force, however, 

AOX may be important in maintaining turnover of the Krebs cycle and allowing 

synthesis of carbon skeletons (Lambers, 1982). 

 

AOX may also confer a selective advantage to V. fischeri, enabling it to exclusively 

colonise the squid Euprymna scolopes. This symbiotic relationship is well studied as a 

model for beneficial host - microbe interactions. V. fischeri readily colonises the light 

organ of E. scolopes, where it receives a plentiful supply of nutrients, while the squid 

benefits from the bioluminescence produced by the bacteria in a process called 

‘counterillumination’, which reduces the visibility of the squid to predators (Jones and 

Nishiguchi, 2004). V. fischeri produces light via the enzyme luciferase, which requires 

oxygen in order to convert a reduced flavin mononucleotide and an aldehyde to a 

carboxylic acid. The reaction forms an excited hydroxyflavin intermediate, which emits 

blue-green light of λmax 490 nm upon dehydration (Fisher et al., 1996). Strains unable to 

generate light have a colonisation defect (McFall-Ngai et al., 2012; McFall-Ngai and 

Ruby, 2000; Visick et al., 2000). Luciferase has an affinity for oxygen in the nanomolar 
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Figure 4.2 Factors that affect the activity of plant AOX. Major factors that control 

the partitioning of respiratory electrons to the non-energy-conserving alternative 

oxidase may include coarse control of the amount of AOX enzyme present as well as 

fine metabolic control of the activity of pre-existing AOX enzyme. The information 

used to generate this figure was obtained from (Vanlerberghe and McIntosh, 1997). 
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range (Lloyd et al., 1985), therefore the process of light generation is in competition 

with aerobic respiration, which may be problematic at later stages of colonisation when 

oxygen may be limited (Ruby and McFall-Ngai, 1999). The low oxygen affinity of 

AOX (see below) may enable it to continue catalysing aerobic respiration, without 

compromising essential luciferase activity. 

 

4.1.2.4 Interaction of AOX with gaseous ligands 

The affinity of AOX for oxygen has long been known to be lower than that of 

cytochrome based oxidases (Kano and Kageyama, 1977). Studies of cytochrome 

oxidases similar to those encoded by V. fischeri suggest that cytochrome bd has a 

Michaelis constant of between 3 – 8 nM (D'mello et al., 1996), while CcoNOQP is 

thought to have a Km value of 7 nM (Preisig et al., 1996). These oxidases have 

considerably higher affinities for oxygen than plant AOX, which has a Km in the 

micromolar range (Ribas-Carbo et al., 1994).  

 

It is well established that AOX from plants is a cyanide-resistant oxidase (reviewed by 

(Laites, 1982) due to the absence of haem, which is at the center of the catalytic 

mechanism of traditional cytochrome oxidases. Indeed, the existence of cyanide-

resistant respiration in plants such as that in potato tubers, has been known since before 

the discovery of AOX (Hanes and Barker, 1931). The ability to undergo cyanide-

resistant respiration is an important property in plants as approximately 800 species of 

plant are known to produce cyanide when wounded or attacked by pathogens 

(Mansfield, 1983). 

 

It has recently been shown that a strain of V. fischeri containing AOX as the sole 

terminal oxidase was significantly less sensitive to the respiratory inhibitor NO than a 

strain containing cytochrome bd as the only terminal oxidase (Dunn et al., 2010). As 

AOX is up-regulated by NO via the negative regulator NsrR, it has been suggested that 

AOX is important in protecting V. fischeri from host-derived NO during colonisation, 

enabling the symbiotic relationship between the bacterium and squid to be established. 

Contrary to this, aox mutants have been shown to be capable of colonizing squid with 

the same efficiency as wild type, which may suggest that AOX has a role at later stages 

of symbiosis (Dunn et al., 2010).  
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There is currently no literature describing the relationship between CO and AOX, but 

this oxidase is assumed to be CO insensitive by analogy with cyanide and NO, which 

inhibit haem-based oxidases, but not AOX (Dunn et al., 2010; Lambers, 1982).  

 

4.1.3 The aim of this work 

The aim of the work in this chapter was to assess the effects of CO-RMs on the non-

haem oxidase AOX from V. fischeri through respiratory studies and spectroscopic 

methods. It was hypothesised that this oxidase would be resistant to respiratory 

inhibition by CO-RMs, as it lacks haem, which is believed to be a major target of CO 

from CO-RMs.  

 

4.2. Results 

4.2.1 The growth of V. fischeri in rich medium 

In this work, mutants were obtained that were each able to express only one of the 

terminal oxidases of V. fischeri. AKD788 has the genotype Δaox ΔccoNOQP and 

therefore expresses CydAB (cytochrome bd-I) as the only ubiquinol oxidase; AKD789 

has the genotype ΔcydAB ΔccoNOQP and expresses AOX (alternative oxidase) as the 

only terminal oxidase (Dunn et al., 2010). CydAB is known to be essential for aerobic 

growth; however, when such mutants were switched from anaerobic to aerobic growth, 

many developed suppressor mutations, which often affected AOX expression and 

allowed these mutants to grow normally in aerobic conditions (Dunn et al., 2010). 

AKD789 contains the suppressor mutation OG1-10, which disrupts the putative NsrR 

binding site and results in NO-independent AOX expression (Dunn et al., 2010). The 

wild type V. fischeri strain used as a control in this work was ES114 (Boettcher and 

Ruby, 1990), from which the mutant strains and were derived. 

 

Initially, the growth of these strains was assessed in rich LBS medium (Figure 4.3). The 

strain AKD789 (AOX-only) grew at a much slower rate than both the wild type and 

AKD788 strains, which had similar growth rates.  
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Figure 4.3 The growth of three strains of V. fischeri in LBS medium. The growth of 

wild type V. ficheri ES114 (closed circles), the mutant expressing only cytochrome bd 

(AKD 788, open circles) and the mutant expression only AOX (AKD 789, closed 

triangles) was measured spectroscopically using a Klett meter. Data are the means and 

standard deviations of 2 technical replicates and are representative of 2 biological 

replicates. 
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 4.2.2 The effects of CO gas and CO-RMs on the terminal oxidases of V. fischeri 

In order to investigate the effects of CO-RMs on the terminal oxidases of V. fischeri, 

oxygen consumption of membrane particles prepared from cultures of each of the 

strains introduced in section 4.2.1 was measured using an oxygen electrode. Respiration 

was initially studied in a closed oxygen electrode (ie. a lid was placed on the electrode 

chamber to prevent the entry of oxygen into the system). The closed system allows 

oxygen consumption to be studied simply and directly for a short duration. A small 

amount of membrane preparation (typically 275 µg ml-1) was added to the chamber and 

the respiratory substrate NADH (6.25 mM) was added to initiate respiration. As 

respiration proceeded, oxygen levels within the chamber rapidly decreased in a linear 

fashion. When the oxygen levels in the chamber reached 75% of air saturation 

(approximately 150 µM), the compound of interest (CO, CORM-401, CORM-3 or 

iCORM-3) was added to the chamber through a narrow hole in the lid, using a Hamilton 

syringe. 

 

The addition of CORM-3 (50 µM) to both wild type and AKD788 (cytochrome bd-I-

only) membranes reduced the rate of respiration to 84% and 74% respectively of the 

control rates in which no compound was added (data are the mean of at least 2 technical 

and 2 biological replicates). In contrast, the addition of CORM-3 (50 µM) to AKD 789 

(AOX-only) membrane particles had a larger effect on the respiration rate, which was 

reduced to 27% of the control rate (Figure 4.4A and Figure 4.5).  

 

The finding that membranes containing AOX as the sole terminal oxidase were 

hypersensitive to CORM-3 was contrary to expectations, as it was hypothesised that an 

oxidase without haem would be insensitive to respiratory inhibition by CO from 

CORM-3. In order to further investigate this finding, the above experiment was 

repeated with a CO-saturated solution used in place of CORM-3. CO reduced the rate of 

oxygen consumption by wild type, AKD788 and AKD789 membrane particles to 50, 60 

and 79% of the control rates respectively (Figure 4.4B and Figure 4.5).The experiment 

was then repeated using the control compound iCORM-3. This had a minimal effect on 

the rates of oxygen consumption, altering respiration rates to 101, 94 and 90% of the 

control for wild type, AKD 788 and AKD 789 respectively (Figure 4.4C and Figure 

4.5). Finally, the experiment was repeated using the manganese based CO-RM, CORM- 
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Figure 4.4 AOX from V. fischeri is resistant to respiratory inhibition by CO-

saturated solution, but hypersensitive to CORM-3 and CORM-401. Membrane 

particles resuspended in 2 ml Vibrio phosphate buffer to a final protein concentration of 

approximately 275 µg ml-1, and added to the closed oxygen electrode chamber. NADH 

(6.25 mM) was added to initiate respiration. Traces show oxygen consumption of 

membrane particles from wild type (black lines), cytochrome bd-I-only (red lines) and 

AOX-only (blue lines) in the presence of (A) CORM-3 (50 μM), (B) CO-saturated 

solution (100 μM), (C) iCORM-3 (50 μM) and (D) CORM-401 (50 μM), all added at 

approximately 150 µM O2, as indicated by the arrow. Traces (E - H) show the 

corresponding controls for the above experiments. Variations in respiration rate between 

control experiments are due to variation in the use of different batches of membrane 

preparation and variations of the quantity of protein added for different strains. The 

numbers on the traces are respiration rates 2 min following the addition of compound 

(nmol O2 min mg-1 protein-1). These traces are representative of at least 2 technical and 

2 biological replicates. 
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Figure 4.5 Respiration rates of V. fischeri membrane particles treated with CO, 

CORM-3, iCORM-3 or CORM-401 as a percentage of the control rate. This figure 

summarizes graphically the data shown in Figure 4.4. Respiration rates were calculated 

2 min after the addition of compound, and at the corresponding point in the control 

experiment in which no compound was added. Rates were expressed as a percentage of 

the control rate and means and standard deviations calculated from at least 2 technical 

replicates of at least 2 biological replicates. Brown bars represent the control rate, which 

was set as default at 100%, orange bars show the data for iCORM-3 (50 µM), yellow 

bars for CORM-3 (50 µM), green bars for CO (100 µM) and blue bars for CORM-401 

(50 µM). 
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401. This compound is able to release up to 3 CO equivalents from each CO-RM 

molecule under biological conditions (1.2.3.3). CORM-401 inhibited respiration to a 

lesser extent than CORM-3, consistent with the effects of this compound on E. coli 

membranes (Lauren Wareham, unpublished work). Oxygen consumption rates of wild 

type and AKD788 membranes were both increased by 116% in the presence of 50 µM 

CORM-401 compared to the control in which no compound was added, whereas that of 

AKD789 was inhibited to 79% of the control (Figure 4.4D and Figure 4.5). Figures 

4.4E – F show the oxygen consumption rates of the control experiments in each case. 

Numbers shown on each trace represent the respiration rates calculated at 2 min 

following the addition of compound (or the equivalent time point in the control 

experiments). In some cases, these numbers appear misleading; for example the 

respiration rate calculated for AKD789 membranes in Figure 4.2F is 58.4 nmol O2 min-1 

mg-1 protein, however it appears to have a faster rate of oxygen consumption than 

AKD788 membranes in the same figure, which have a respiration rate of 333 nmol O2 

min-1 mg-1 protein. This is because a larger amount of protein was added to the chamber 

in the case of AKD789 in order to achieve similar apparent rates of oxygen 

consumption for all three strains prior to the compound of interest being added. 

Variation between the various control respiration rates occurred between each 

preparation of membrane particles; however, the trends seen when the various 

compounds were added to the chamber were consistent between biological replicates as 

reflected by the small standard deviations of the percentage inhibition data (Figure 4.5). 

 

Due to the unexpected nature of the results described above, work was also done to 

compare the sensitivities of the oxidases to inhibition by CORM-3 in the open oxygen 

electrode, by measuring the time taken for the chamber to reoxygenate, as described in 

Chapter 3. This method allows a comparison between the sensitivity of various strains 

to the inhibitor to be made; the respiration of more sensitive strains will be inhibited to a 

greater extent and so will not be able to utilise the oxygen in the chamber as quickly, 

allowing oxygen to accumulate in the chamber and be detected by the electrode.  

 

In this experiment, conditions were established that allowed respiration to proceed at a 

sufficient rate to maintain an oxygen level of 0 in the chamber for an extended period of 

time. Eventually, the substrate NADH became exhausted, leading to reoxygenation of 
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the chamber. In the absence of an inhibitor, the time to reoxygenation of membranes 

from all three strains (wild type, AKD788 and AKD789) was very similar (between 40 

and 48 min; Figure 4.6A). However, when CORM-3 (25 μM) was added, while the time 

to reoxygenation of wild type and AKD789 was largely unaffected (wild type: 81% of 

control, AKD788: 87% of control), the chamber containing AKD789  membranes began 

to reoxygenate almost immediately, confirming that this oxidase is extremely sensitive 

to respiratory inhibition by CORM-3 (Figure 4.6B). Importantly, the control experiment 

using iCORM-3 gave times to reoxygenation for each membrane type similar to that of 

the control (Figure 4.6C; wild type: 93% of control, AKD788: 103%, AKD789: 94%).   

 

Plant AOX is known to be resistant to cyanide (reviewed by Lambers, 1982). In order to 

validate the experimental design, the experiment was repeated using potassium cyanide 

(KCN) (Figure 4.6D). Indeed, it was found that the time taken for membranes 

containing AOX or cytochrome bd-I as the only terminal oxidase to begin to 

reoxygenate was largely unaffected by 50 µM cyanide (with times to reoxygenation of 

96% and 119% of the control times respectively). AKD788 membranes were able to 

maintain anoxia in the chamber for a significantly longer duration than wild type 

membranes, which is consistent with cytochrome bd-I having some cyanide resistance 

(Borisov et al., 2011a; Voggu et al., 2006) The control traces for this experiment, in 

which no cyanide was added, are shown in Figure 4.6E. The data described thus far in 

this chapter confirm that AOX is resistant to cyanide and CO, but hypersensitive to CO-

RMs. 

 

4.2.3 The effects of CORM-2 and CORM-3 on the growth of V. fischeri 

Next, it was investigated whether the sensitivity of the AOX protein to respiratory 

inhibition by CORM-3 led to an increased sensitivity of a strain of V. fischeri 

expressing AOX as the only ubiquinol oxidase to growth inhibition by this compound. 

Aliquots of CORM-2 or CORM-3 were added to 5 ml ASW medium in sterilin tubes 

with a small inoculum of primary culture (40 µl of wild type and 120 µl of AKD789), 

which had been grown in 5 ml LBS for 6 h.   
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Figure 4.6 AOX is the most sensitive oxidase of V. fischeri to respiratory inhibition 

by CORM-3. Membranes prepared from either wild type V. fischeri or from mutants 

containing either AOX (AKD 789) or cytochrome bd-I (AKD 788) as the only terminal 

oxidase were added to the chamber to a final concentration of approximately 40 mg ml-1 

and stimulated to respire by the addition of 12.5 mM NADH. The black lines show the 

traces for the wild type strain, red lines show the traces for the strain containing 

cytochrome bd-I only and blue lines for the strain containing AOX only. (A) shows the 

control in which no compound was added for the CORM-3 experiment, (B) CORM-3 

(25 μM) added at the long arrow, (C) iCORM-3 (25 μM) added at the long arrow,  (D) 

CN- (100 μM) added at the long arrow, (E) shows the control in which no compound 

was added for the cyanide experiment. In each case, the lid was removed from the 

chamber at the time point indicated by the short arrow. The numbers with each trace 

show the time taken for the chamber to reoxygenate, following the removal of the lid, in 

minutes. Data are representative of at least 2 biological and 2 technical repeats. 
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These cultures were then incubated at 28 °C with shaking for 17 h and then the OD600 

measured using a spectrophotometer. One difficulty that arose when comparing the 

growth of AKD 789 with that of wild type V. fischeri in the presence of CO-RM, is that 

in the absence of an inhibitor, the former grows significantly slower than the later. In 

the absence of CO-RM, AKD789 reached an optical density (OD600) approximately 

40% lower than that of wild type after 16 h (Figure 4.7A and C). For this reason, it was 

considered that the optical density values expressed as a percentage of the growth for 

each strain in the absence of CORM-3 (Figure 4.7B and D) gave more meaningful 

information than the raw optical density data (Figure 4.7A and C).  The growth of 

AKD789 was inhibited by a lower percentage than that of wild type V. fischeri over a 

range of CORM-3 concentrations. CORM-2 had a more potent effect on the growth of 

V. fischeri than CORM-3, consistent with observations in other organisms (see Chapter 

3 of this work and Nobre et al. (2007)). CORM-2 (50 µM) reduced the growth of wild 

type V. fischeri by 93%, whereas 50 µM CORM-3 reduced the growth of V. fischeri by 

only 65% (Figure 4.7B and D). At three of the four CORM-2 concentrations tested 

(12.5, 50 and 100 µM), the growth AKD789 appeared to be slightly less affected in 

terms of percentage than that of the wild type strain. Importantly, the control compound 

RuCl2(DMSO)4, a CORM-3 precursor that is also structurally similar to CORM-2, did 

not have any effect on the growth of either strain under the same experimental 

conditions (data not shown). 

 

4.2.4 Spectroscopic studies of V. fischeri cell suspensions and membrane 

preparations treated with CORM-3 

The haem content of the membrane particles used in the respiratory studies in this 

chapter was confirmed by generating reduced minus oxidised difference spectra (Figure 

4.8). V. fischeri membrane particles were suspended in buffer to a final concentration of 

approximately 2 - 4 mg ml-1. The ‘oxidised’ sample was scanned in triplicate using a 

dual wavelength spectrophotometer (Kalnenieks et al., 1998) using a 10 mm path 
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Figure 4.7 The effect of various concentrations of CORM-2 and CORM-3 on the 

growth of V. fischeri. Cultures of V. fischeri; wild type (black bars) and AKD 789 

(grey bars) were grown overnight in the presence of various concentrations of CORM-2 

or CORM-3 (0 – 100 μM). OD600 was then recorded for each strain (A and C) and 

expressed as a percentage of the OD600 in the absence of CO-RM (B and D). Data are 

the means and standard deviations of 3 biological repeats.  
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Figure 4.8 Reduced minus oxidised spectra of V. fischeri membrane particles. (A) 

wild type, (B) AKD788 (cytochrome bd-I only) and (C) AKD789 (AOX only) 

membranes were analysed using a dual-beam spectrophotometer to generate reduced 

minus oxidised difference spectra. Membrane preparations were diluted with vibrio 

buffer to a final concentration of 2 - 4 mg ml-1. These spectra are representative of 2 

technical and 2 biological replicates. 
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length. Samples were then reduced by the addition of a few grains of sodium dithionite 

and spectra were again recorded in triplicate. Data were averaged in Excel and plotted 

as reduced minus oxidised difference spectra. The spectrum of each strain had a peak 

between 438 and 448 nm, which is indicative of various cytochromes, a trough at 

approximately 470 nm, which is probably attributable to flavin and a peak at 

approximately 560 nm caused by haem b (Jones and Poole, 1985). Importantly, there is 

a peak at approximately 634 nm in the wild type and cytochrome bd-I-only-containing 

cells that is not present in the AOX only cells confirming the absence of haem d. 

 

CORM-3 difference spectra for V. fischeri whole cells (Figure 4.9) were then generated 

for each strain to further investigate their interaction with CO from CORM-3. Samples 

were suspended in buffer to a final concentration of approximately 12 - 14 mg ml-1, 

reduced by the addition of a few grains of sodium dithionite and then scanned in 

triplicate using a dual wavelength spectrophotometer as described above. Samples were 

then treated with CORM-3 (300 µM). Spectra were recorded in triplicate, averaged and 

plotted as a CO reduced minus reduced difference spectra. The whole cell CORM-3 

difference spectra confirmed that CO from CORM-3 binds to components of all three 

strains, including AKD789, which expresses AOX as the only terminal oxidase. 

 

In order to investigate more directly the interaction of CO from CORM-3 with the 

terminal oxidases of V. fischeri, CO difference spectra were also generated as described 

above by treating membrane particles (final concentration 2 - 4 mg ml-1) prepared from 

wild type V. fischeri (Figure 4.10A, C, E), or the strain expression AOX as the only 

terminal oxidase (Figure 4.10B, D, F) with CO (Figure 4.10A, B, bubbled for 5 min) 

CORM-3 (Figure 4.10C, D; 300 µM) or iCORM-3 (Figure 4.10E, F; 300 µM), or by 

bubbling with CO for 5 min. The spectra produced from the whole cell samples and the 

membrane preparations were very similar, confirming that membrane-based 

components are interacting with CO in all cases. CO and CORM-3 treatment also led to 

very similar spectra, indicating that CO released from CORM-3 was responsible for the 

spectral changes seen when the membrane particles were treated with this compound 

(Figure 4.10A and C, B and D). An important spectral difference between the two 

membrane types is the absence of a peak at 648 nm in the AOX only membranes. This  
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Figure 4.9 CORM-3 difference spectra of V. fischeri whole cells. A dual wavelength 

spectrophotometer was used to generate difference spectra (CORM-3 reduced minus 

reduced) of (A) wild type, (B) AKD788 (cytochrome bd-I-only) and (C) AKD789 

(AOX only membranes). Cell suspensions were added to Vibrio phosphate buffer to a 

final concentration of between 12 - 14 μg ml-1 and treated with CORM-3 (100 μM). 

These spectra are representative of 2 technical and 2 biological replicates. 
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Figure 4.10 CORM-3 difference spectra V. fischeri membrane particles (reduced 

plus CORM-3 minus reduced) were recorded in a dual wavelength spectrophotometer. 

V. fischeri membrane particles from wild type (A, C, E) and AOX-only (B, D, F) 

strains were added to Vibrio buffer to a final concentration of between 2 - 4 μg ml-1 and 

treated with either CO-saturated solution (A and B), CORM-3 (300 μM) (C and D) and 

iCORM-3 (300 μM) (E and F).   
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confirms that haem d is not present in these membranes (Figure 4.10B and D). It is clear 

however that there are some spectral features in the CO and CORM-3 difference spectra 

of the AOX-only membranes (Figure 4.10B and D), some of which are also present in 

the wild type membranes (Figure 4.10A and C). Difference spectra were produced for 

each membrane type treated with the control compound iCORM-3, which was verified 

to release very little CO to myoglobin (less than 1% compared with CORM-3, data not 

shown). The addition of iCORM-3 to wild type membranes resulted in oxidation of the 

membrane particles (seen by a trough at 436 nm, Figure 4.10E) as well the formation of 

a small peak at 648 nm indicating the binding of a small amount of CO to haem d. 

Interestingly, while the addition of iCORM-3 to AOX-only membranes appears to cause 

slight oxidation (shown by a small trough at 424 nm), no other distinct features are seen, 

suggesting that membranes devoid of haem are less able to trap the small amount of 

residual CO from iCORM-3. 

 

4.3 Discussion 

The work in this chapter constitutes the first investigation of the effects of CO and CO-

RMs on a non-haem oxidase. Contrary to the expectation that AOX would be resistant 

to respiratory inhibition by CO-RMs, membranes containing only this oxidase were 

found to be hypersensitive to these compounds. Two different methods were used to 

measure respiration in membranes treated with CO-RMs because of the unexpected 

findings. These included closed electrode experiments, which measure respiration rates 

directly, and an open electrode method, used to compare the sensitivities of various 

strains to a respiratory inhibitor. Both methods experienced the same difficulty; that the 

respiration rate of AKD789 was significantly slower than that of AKD788 or wild type, 

which had similar oxygen consumption rates to one another (Dunn et al., 2010). This 

necessitated a greater quantity of membrane preparation be used for AKD789 than the 

other two strains in order to achieve similar oxygen consumption rates. It is therefore 

possible that CORM-3 could be titrated by the additional membrane in this sample, 

thereby dampening the effects of the compound; however, the finding that CORM-3 is 

in fact more inhibitory to respiration in this strain negates this potential problem. 

Another concern caused by the differing respiration rates of the strains used was the 

possibility that the weak oxygen consumption rates of AKD 789 would render this 

strain sensitive to potent respiratory inhibition by any inhibitor. This led to the control 
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experiment in which cyanide (to which AOX is known to be resistant) was added to 

respiring membrane particles in the open electrode chamber (Figure 4.6D). The ability 

of AKD789 membrane particles to respire in the presence of cyanide acts as a positive 

control and confirms the validity of the finding that these membranes are hypersensitive 

to CORM-3. The experiment to measure time to reoxygenation is also validated by the 

finding that membranes containing only cytochrome bd-I were more resistant to CN- 

than wild type membranes, as is reported in the literature (Borisov et al., 2011a). 

 

The finding that the control compound iCORM-3 does not significantly inhibit 

respiration in any of the strains (Figure 4.4C and 4.6C) supports the conclusion that CO 

is the agent causing the inhibition, rather than the ruthenium-containing CO-RM 

backbone; however, the uncertain nature of iCORM-3, which was not fully apprecieated 

at the time this work was carried out, complicates the interpretation of these results. 

This hypothesis is further supported by the finding that CORM-401, which contains 

manganese instead of ruthenium at its centre, is also more inhibitory to respiration in 

AKD789 membranes (Figure 4.4D). However, in contrast to this, AOX was shown to be 

resistant to CO delivered as a saturated solution (Figure 4.4B), suggesting that CO is not 

the causative agent of the inhibition of the enzymatic activity of this oxidase (Figure 

4.4B).  

 

Despite the finding that AOX oxidase activity is extremely sensitive to respiratory 

inhibition by CORM-3, the strain AKD 789 was less sensitive to growth inhibition by 

CORM-3. One difficulty in assessing the contribution of AOX to growth sensitivity in 

the presence of an inhibitor is that the strain AKD 789 grows at a much slower rate than 

wild type, which may affect the growth response to CORM-3. It should also be noted 

that the percentage of the optical density in the presence of CORM-3 compared to that 

in the absence of CORM-3 is quoted, and this will be affected to a different magnitude 

by an inhibitor because of the differing growth rates of the two strains. Another 

difficulty with the strain AKD789 is that the expression of AOX has been uncoupled 

from control by the NO response regulator NsrR and so AOX is being expressed under 

conditions in which it might not otherwise be, and perhaps in the absence of other 

proteins or conditions that are associated with its normal function. It is also possible that 

the V. fischeri cultures were able to ferment the carbon source in the medium (N-acetyl 
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glucosamine). As elucidating the effects of CO-RMs on the respiratory components of 

V. fischeri is the aim of this work, further studies should be done using a non-

fermentable carbon source, such as glycerol to force the bacteria to respire. 

 

It was considered important to investigate further the nature of the interaction between 

CO from CORM-3 and the terminal oxidases of V. fischeri. This process was hampered 

by the inherent difficulties of studying AOX, which, in plants, is notoriously difficult to 

purify and has no characteristic spectral features and no specific EPR signals (Laites, 

1982).   

 

Both the reduced minus oxidised and CO and CORM-3 difference spectra show that 

haem d is absent from both whole cell and membrane samples of the strain ADK789. 

Importantly though, CO applied as a saturated solution, or as CORM-3, was found to 

bind to components of membranes from all three strains of V. fischeri. The CO bound 

features of AKD789 membranes cannot yet be positively identified, however it is 

possible that they contribute to the sensitivity of this strain to CORM-3. 

 

The peaks at 631 - 634 nm in the wild type and cytochrome bd-only reduced minus 

oxidised spectra (Figure 4.8A and B) are characteristic of cytochrome d as shown by 

Haddock et al. (1976) in E. coli and A. vinelandii, Jones and Redfearn (1966) in P. 

aeruginosa and Miller and Gennis (1986) in E. coli. This feature is absent from the 

AOX-only spectrum as expected (Figure 4.8C). The peaks between 561 and 565 nm are 

due to multiple b type cytochromes, with a contribution from cytochrome c (a 

component of ccoNOQP) in the case of the wild type and cytochrome bd-only 

membranes (Figure 4.8A and B). In the Soret region, the bands between 438 and 448 

nm are again due to a composite of signals from cytochromes b and d. In Figure 4.8B, 

there is a greater contribution from cytochrome bd, shown by the shift of the peak to 

448 nm. The features from the c-type cytochromes in the cco type oxidase would be 

expected at shorter wavelengths, but these are masked by other features. 

 

These conclusions are supported by the CO and CORM-3 difference spectra in Figure 

4.9 and 4.10, which show the presence of haem d, indicated by a peak at 645 – 648 nm 

(Jones and Poole, 1985) in the wild type and cytochrome bd-only strains, but not in the 
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AOX-only strain. In the Soret region of Figure 4.9A and B, the peak and trough can be 

attributed largely to CO binding cytochrome b (ie. cytochrome b595) and haem d. The 

identity of the spectral features seen in the CO spectra of AKD 789 is much less clear; 

the only oxidase reported in this strain is AOX and it has been reported that this oxidase 

has no spectral features (Laites, 1982). 

 

Haemoproteins other than respiratory oxidases are capable of giving rise to spectral 

features. Indeed, a peak at approximately 420 nm can indicate CO binding to 

cytochrome P-420, while a peak at approximately 440 – 445 nm can be caused by CO 

binding to cytochrome a1 or a3 (Jones and Poole, 1985). There is no evidence that V. 

fischeri contains either of these cytochromes; however, it is known to contain 

cytochromes c551 and c554 (Petushkov and Lee, 1997), which have reduced absorption 

spectra similar to c-type cytochromes from P. aeruginosa and Azotobacter with a strong 

peak at 416 nm. There are other components of V. fischeri that absorb in the UV-visible 

region; blue fluorescence protein also has an absorption maximum at 417 nm and 

thioredoxin reductase has absorption features between 400 – 500 nm (Petushkov and 

Lee, 1997).  

 

The binding of CO from CO-RMs to haem proteins and the subsequent inhibition of 

these proteins was initially considered to be a major cause of the bactericidal nature of 

these compounds. While this is still considered to be an important mechanism of CO-

RM action, there is mounting evidence that CO-RMs have much wider reaching cellular 

effects. Transcriptomic profiling indicates that the metabolism and transport of many 

ions are greatly affected by CORM-3, as well as several global regulators of 

transcription (Davidge et al., 2009b). There is also evidence that E. coli cultures treated 

with CORM-3 (100 µM) lose significant viability prior to the onset of respiratory 

inhibition (Wilson et al., 2013). In addition, anaerobic cultures have been shown to be 

susceptible to killing by high concentrations of CO-RMs (Davidge et al., 2009b; Nobre 

et al., 2007). Recent work from this laboratory has found that both naturally occurring 

haem-deficient bacteria (Lactococcus lactis) and a strain of E. coli, which had been 

genetically modified to be haem-deficient, were both susceptible to growth inhibition 

and killing by CORM-3 (Wilson, 2012). 
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These findings, and the results presented in this chapter, suggest that there are 

significant targets of CORM-3 other than the haem-containing respiratory oxidases. 

There are examples of CO directly affecting the activity of non-haem proteins. CO is 

known to activate large-conductance Ca2+- and voltage-gated K+ (Slo1 BK) channels, 

which are involved in oxygen sensing, vasodilation and the activation of signalling from 

neurones (Wang et al., 1997). The interaction of CO with such channels is thought to 

involve sulfur from cysteine and nitrogen from histidine residues within the cytoplasmic 

domain of the channel. CO is thought to act as a partial agonist for the divalent cation 

sensor in the Slo1 BK channel (Hou et al., 2008).  

 

As yet, the mechanism of AOX inhibition by CO-RMs cannot be envisaged as there is 

no structural information available for the active site of bacterial AOX. CO is able to 

bind to iron in iron, iron-iron and iron-nickel hydrogenases (Armstrong, 2004) and to 

the iron-iron hydrogenases of Chlamydomonas (Stripp et al., 2009), which could 

provide a precedent for the binding or CO to the di-iron active site of AOX.  

Furthermore, a cyanide-resistant but CO-sensitive hydrogenase has been reported 

(Lamrabet et al., 2011). As some hydrogenases have di-iron centres that coordinate to 

both CO and cyanide in order to activate hydrogen, this may be a starting point for 

understanding the CO-RM sensitivity of the di-iron centre of AOX. 

 

CO-RM has been reported to have activities distinct from those of CO gas; for example, 

CORM-2, but not CO gas, has been shown to obstruct ATP-gated human P2X4 

receptors involved in the sensing of pain in mammalian systems (Wilkinson and Kemp, 

2011). CORM-2 is thought to behave as an antagonist, reversibly inhibiting these 

receptors in a competitive manner independent of its CO releasing properties. 

Furthermore, CORM-3, but not CO gas or iCORM-3, has recently been shown to 

facilitate the transport of K+ and Na+ ions across the bacterial membrane, causing a 

stimulation of respiration (Wilson et al., 2013). These findings could be analogous to 

the results obtained in the current study, in which it is possible that the whole CO-RM 

molecule is binding to and interfering with the activity of AOX, compatible with the 

finding that both CO gas and the control compound iCORM-3 do not inhibit the activity 

of AOX. It should be noted that the structure and redox properties of iCORM-3 are not 

well characterised, which poses difficulties in drawing firm conclusions from the results 
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gained when using this control compound (see section 7.2). CORM-3 has recently been 

reported to bind to proteins (Santos-Silva et al., 2011; Santos et al., 2012). It would 

therefore be interesting to investigate this hypothesis further by purifying AOX 

(although this would not be trivial) and then investigating whether CORM-3 is able to 

bind to this protein. 

 

CO-RMs are known to be more potent than CO gas at inhibiting growth (Davidge et al., 

2009b), viability (Nobre et al., 2007), and respiration (Wilson et al., 2013). However, in 

such cases, it is assumed that CO-RMs deliver CO into the cell, dramatically increasing 

the concentration of this gas at the target sites (Davidge et al., 2009b). In the case of 

AOX, CORM-3 is inhibitory, while CO is not, and there is no conceivable mechanism 

for how CO could inhibit this enzyme, even at high concentrations.  

 

Although regulation of AOX activity is not well understood, it is known that in plants, 

certain carboxylic acids such as pyruvate and glyoxylate stabilize the active 

confirmation of AOX and are essential for the activity of this oxidase (Carre et al., 

2011). Pyruvate is a fundamental component of metabolism. It is produced by 

glycolysis and is also converted into acetyl-coenzyme A, which is essential for the 

Krebs cycle. It could therefore be investigated whether CORM-3 interferes with the 

binding of pyruvate to AOX, thereby adversely affecting the activity of this oxidase. 

 

The lack of detailed structural or sequence information for bacterial AOX, as well as the 

unavailability of the purified protein, have limited efforts to explain the unexpected 

finding that AOX is hypersensitive to respiratory inhibition by CORM-3. Ideally, 

Infrared or Resonance Raman spectroscopy would be performed to investigate whether 

CO interacts with AOX directly, or with another component of these membranes. There 

has been some success elucidating the nature of the active site of plant and 

trypanosomal AOX using EPR spectroscopy (Moore et al., 2008), and so this technique 

could be used to investigate the binding of CO to this oxidase. 
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Chapter 5 

 

The effects of thiol-containing compounds and antioxidants 

on the activities of CO-RMs 

 

5.1 Introduction  

Almost a decade ago, it was noted that N-acetylcysteine (NAC) abolished the activities 

of CORM-2 and CORM-3 (Sawle et al., 2005 and Taille et al., 2005). Since then, 

several papers have been published describing this phenomenon, but none have 

comprehensively explained the mechanism by which these compounds exert their 

effects. It was initially shown that while CORM-2 and CORM-3 increased HO-1 

expression and haem oxygenase activity in murine macrophages, these effects were 

abolished by NAC (Sawle et al., 2005). NAC was also found to partially prevent the 

inhibitory effects of CORM-2 on the mitochondrial respiratory chain and NAD(P)H 

oxidase (Taille et al., 2005). It was then reported that NAC (1 mM), reduced glutathione 

(GSH) (50 μM) and cysteine (100 μM) all completely prevent the effects of CORM-3 

on the growth and oxygen consumption of P. aeruginosa. The authors concluded that 

this was not due to NAC preventing the liberation of CO from CORM-3, or causing the 

activation of the cysteine - glutathione pathway leading to increased levels of free 

glutathione. Instead, they hypothesised that NAC may interfere with the interaction of 

CO liberated from CORM-3 and the cytochromes of the bacterial respiratory chain, or 

that inhibition of oxygen consumption by CORM-3 may involve cysteine moieties 

strategically located in the enzymes of the respiratory chain (Desmard et al., 2009). It 

was later reported that only the activity of metal-containing CO-RMs (especially those 

containing ruthenium) are affected by thiol compounds; therefore it is unlikely that 

NAC interferes with the binding of CO to terminal oxidases, as this is assumed to be a 

target of all CO-RMs (Desmard et al., 2012). It was hypothesised that thiol compounds 

may favour a very rapid rate of CO release from transition metal carbonyls (Desmard et 

al., 2012), causing them to mimic the application of CO gas (ie. CO release prior to the 

CO-RM entering the cell), and that this could abrogate the intracellular delivery 

capacity of CO-RMs. In support of this, there is some evidence that thiol-containing 
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compounds such as cysteine, can promote CO release from CO-RMs (Hasegawa et al., 

2010). 

 

An alternative hypothesis suggests that thiol-containing compounds quench the activity 

of CO-RMs by virtue of their antioxidant properties (Tavares et al., 2011). It was found 

that GSH was able to prevent the antibacterial effects of CORM-2 by approximately 

95% and that cysteine prevented the growth inhibitory effects of the CO-RM ALF062 

by approximately 85%. Evidence is presented that high concentrations of CORM-2 

cause an increase in reactive oxygen species (ROS) as measured by the fluorescent 

probe 2’,7’-dichlorofluorescien diacetate, and that application of exogenous glutathione 

reduces the amount of ROS detected, leading the authors to conclude that the 

antioxidant properties of GSH are responsible for this activity. It was also shown that 

CO is necessary for ROS production, as cultures treated with RuCl2(DMSO)4 or with 

CORM-2 in media supplemented with haemoglobin, which scavenges CO, did not 

experience an increase in ROS (Tavares et al., 2011).  

 

It is important to note that another group had previously investigated the possibility that 

CORM-3 mediates its bactericidal effects by the production of ROS and concluded this 

was unlikely as not all antioxidants (for example ascorbic acid) were able to abolish the 

effects of CO-RMs and hydrogen peroxide production was not detected when P. 

aeruginosa was treated with 10 µM CORM-3, despite this concentration of CORM-3 

significantly decreasing the viability of this organism (Desmard et al., 2009).  

 

In light of the uncertainty in the published literature as to how thiol compounds 

abrogate the effects of CO-RMs, and whether the production of ROS contributes to the 

deleterious effects of CO-RMs, the work presented in this chapter aimed to address the 

following questions. (1) Do thiol compounds affect the rate or amount of CO released 

from CORM-3? (2) If not, by what mechanism do thiol compounds abrogate the effects 

of CO-RMs? (3) Do endogenous thiol compounds protect bacterial cells from the 

deleterious effects of CO-RMs? (4) To what extent does the production of ROS by CO-

RMs contribute to the bactericidal effects of these compounds? 
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5.2 Results 

5.2.1 Thiol-containing compounds completely prevent the inhibitory effects of 

CORM-2 and CORM-3 on respiration 

It was important to begin by establishing that under the standard experimental 

conditions used in this laboratory, thiol-containing compounds could prevent the 

inhibitory effects of CORM-3 on bacterial respiration as has been reported by others 

(Desmard et al., 2009). Initially, a closed oxygen electrode system was used to measure 

the rate of respiration of wild type E. coli membrane particles in the presence of 

CORM-3 and the thiol-containing compounds NAC, cysteine and reduced glutathione. 

Membrane particles were added to 2 ml sonication buffer to a final concentration of 

between 60 and 100 μg ml-1 and respiration was initiated by the addition of 6.25 mM 

NADH. The thiol compound was added when the dissolved oxygen tension in the 

chamber reached approximately 155 µM (75% of air saturation) and the CO-RM was 

added 1 min later.  

 

The respiration rate of membrane particles 2 min after the addition of CO-saturated 

solution to a final concentration of 100 μM was 177 nmol min-1
 mg-1

 compared to 287 

nmol min-1
 mg-1

 in the control in which no compound was added. NAC was unable to 

abrogate the inhibition caused by CO gas: respiration in the presence of both NAC and 

CO was inhibited to the same extent as when CO-saturated solution was added alone 

(Figure 5.1A). 

 

This experiment was then repeated with CORM-3. The respiration rate of membrane 

particles 2 min after the addition of 400 μM CORM-3 was 167 nmol min-1
 mg-1

 

compared to 442 nmol min-1
 mg-1

 in the absence of inhibitor. However, in the presence 

of CORM-3 and an equimolar concentration of NAC, the respiration rate was restored 

to 418 nmol min-1
 mg-1 (Figure 5.1B). NAC also reduced respiratory inhibition of E. 

coli membrane particles by CORM-2; however a 10-fold excess of NAC was required 

in order to reduce the inhibitory effect of CORM-2 by approximately 45% (Figure 

5.1C). The respiration rate of membrane particles 2 min after the addition of 50 μM 

CORM-2 was 139 nmol min-1
 mg-1

 compared to 452 nmol min-1
 mg-1

 in the absence of 

inhibitor, and 276 nmol min-1
 mg-1

 in the presence of CORM-2 and NAC. Figure 5.1D 

shows the oxygen consumption profile of E. coli membranes in which NAC was added 
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Figure 5.1 NAC prevents CORM-2 and CORM-3 - dependent inhibition of 

respiration in E. coli membrane particles. Wild type E. coli membrane particles were 

added to sonication buffer (2 ml) to a final concentration of approximately 60 μg ml-1 

(A) or 100 μg ml-1 (B, C, D) and respiration was initiated by the addition of NADH 

(6.25 mM). In (A) arrows indicate the addition of 100 μM NAC, or 100 μM CO as a 

saturated solution; in (B), arrows indicate the addition of NAC or CORM-3 (both at 400 

μM); in (C) arrows indicate the addition of NAC (500 μM) or CORM-2 (50 μM) and in 

(D), the arrow shows the addition of 400 mΜ NAC. The traces show dissolved oxygen 

in the chamber for uninhibited respiration (black solid lines) or oxygen consumption in 

the presence of CO or CO-RM (blue dashed lines) or CO-RM and NAC (red dotted 

lines). Respiration rates (nmol min-1 mg-1 protein) 2 min following the addition of CO 

or CO-RM are shown adjacent to each trace. These data are representative of at least 3 

technical and 2 biological replicates. This figure was published in Jesse et al. (2013).
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alone when the oxygen in the chamber reached approximately 80%. The respiration rate 

here (445 nmol min-1
 mg-1) was very similar to that when no compound was added, 

confirming that NAC alone has no effect on the rate of respiration. This investigation 

was extended to confirm that the thiol-containing compounds glutathione and cysteine 

were also able to abrogate the inhibitory effects of CORM-3. The respiration rate of 

wild type E. coli membrane particles 2 min after the addition of 400 μM CORM-3 was 

91.8 nmol min-1
 mg-1

 compared to 197 nmol min-1
 mg-1

 in the absence of inhibitor and 

123 nmol min-1
 mg-1

 in the presence of CORM-3 and 200 μM reduced glutathione 

(Figure 5.2A). Similarly, in the case of GSH, the respiration rate of the membrane 

particles 2 min after the addition of 400 μM CORM-3 was 72.6 nmol min-1
 mg-1

 

compared to 117 nmol min-1
 mg-1

 in the absence of inhibitor and 115 nmol min-1
 mg-1

 in 

the presence of CORM-3 and 400 μM cysteine (Figure 5.2B). It is important to note that 

the addition of these thiol compounds alone did not affect significantly the rate of 

respiration (Figure 5.2 C and D). 

 

The open electrode system in which the time taken for the oxygen electrode chamber to 

begin to reoxygenate is measured (as described in section 3.2.3 and 4.2.2) was also used 

to confirm that NAC protects respiration from inhibition by CORM-3. In this 

experiment, the balance between the oxygen entering the stirred system and the oxygen 

consumed by respiration is manipulated (by adjusting the speed of stirring) so that the 

oxygen detected by the electrode remains at 0 for an extended period of time. The 

presence of a respiratory inhibitor will reduce the rate at which oxygen is consumed, 

therefore allowing oxygen to be detected by the electrode leading to an upward 

deflection of the electrode trace (Figure 5.3).  

 

The addition of 400 μM CORM-3 caused the chamber to reoxygenate immediately, 

indicating that respiration was inhibited (Figure 5.3, blue dashed line). However, when 

400 μM NAC was added prior to CORM-3, respiration was protected so that the time 

taken for the chamber to reoxygenate was restored to 87% of the control time in which 

no inhibitor was added (Figure 5.3, red dotted line). NAC was added to the chamber in 

the absence of CORM-3 and found to cause reoxygenation in 74% of the time taken 

under control conditions. However, previous measurements in the closed oxygen 
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Figure 5.2 Reduced glutathione and cysteine prevent CORM-3 dependent 

inhibition of respiration in E. coli membrane particles. E. coli membrane particles 

were added to sonication buffer to a final concentration of ~ 60 μg ml-1 inside an 

oxygen electrode chamber. A lid was placed on the chamber and respiration was 

initiated by the addition of 6.25 mM NADH. The first arrow in each panel indicates the 

addition of either 200 μM reduced glutathione (A) and (C), or 400 μM cysteine (B) and 

(D), while the second arrow in (A) and (B) indicates the addition of 400 μM CORM-3. 

In (A) and (B) the black solid lines indicate respiration in the absence of these 

compounds, the blue dashed lines show oxygen consumption in the presence of CORM-

3 and the red dotted lines show oxygen consumption in the presence of CORM-3 and 

the thiol-containing compound. In (C) and (D) the black lines show oxygen 

consumption in the presence of 200 μM reduced glutathione and 400 μM cysteine 

respectively. Respiration rates (nmol min-1 mg-1 protein) 2 min following the addition of 

CO or CO-RM are shown adjacent to each trace. These data are representative of 3 

technical and 2 biological replicates for each condition. This figure was published in 

McLean et al. (2013). 
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Figure 5.3 NAC prevents CORM-3-dependent inhibition of respiration in E. coli 

membrane particles. Wild type E. coli membrane particles were added to sonication 

buffer (2 ml) to a final concentration of approximately 1.5 mg ml-1 and respiration was 

initiated by the addition of NADH (6.25 mM). Arrows indicate the addition of NAC or 

CORM-3 (both at 400 µΜ). The trace shows dissolved oxygen in the chamber for 

uninhibited respiration (black solid lines) or oxygen consumption in the presence of 

CORM-3 (blue dashed lines), CORM-3 and NAC (red dotted lines) or NAC alone (red 

dot-dash line). The lid was removed from the chamber 1 min after the addition of 

CORM-3 and the time taken for the chamber to reoxygenate (given in min in 

parentheses) was measured for the various conditions: with no additions (35); with 

CORM-3 (0); with NAC and CORM-3 (33); with NAC alone (28). These data are 

representative of at least 3 technical and 2 biological replicates. This figure was 

published in Jesse et al. (2013). 
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electrode had shown that the respiration rate of E. coli membrane particles was not 

affected when NAC was added on its own to the chamber (Figure 5.1D). These results 

confirm that NAC, in a 1:1 ratio with CORM-3, is able to protect the respiration of E. 

coli from inhibition by this CO-RM. 

 

5.2.2 Investigating the hypothesis that thiol-containing compounds affect the rate 

or amount of CO released from CORM-3. 

In order to elucidate the mechanism by which thiol-containing compounds prevent the 

effects of CO-RMs, several hypothesis were considered. Initially it was investigated 

whether NAC affects the rate at which CO is released from CORM-3. The rate of CO 

release from CORM-3 was measured spectroscopically by assaying the rate of 

formation of carbonmonoxy-myoglobin (CO-Mb) in the presence and absence of NAC. 

A dual-beam spectrophotometer was used to record the spectra of a 10 µM solution of 

myoglobin in phosphate buffer (pH 7.4) reduced with sodium dithionite. This was then 

subtracted from the spectra of this sample treated with either 8 µM CORM-3, or 8 µM 

CORM-3 pre-treated with a 10-fold molar excess of NAC.  

 

The rate of CO release was slower and 21% less CO was released from CORM-3 in the 

presence of a 10:1 molar excess of NAC (Figure 5.4, open circles). The half-life of CO 

release from CORM-3 to dithionite-reduced myoglobin was calculated to be 2.5 min, 

whereas the half-life of CO release in the presence of NAC in a 10:1 molar excess was 

2.8 min. It was then investigated whether higher ratios of NAC:CORM-3 led to 

diminished CO loss from CORM-3 to myoglobin. There was no concentration-

dependent difference in the amount or rate of CO loss from CORM-3 when a 20-fold 

excess of NAC (Figure 5.4, closed triangles) was used instead of a 10-fold excess. 

However the use of both a 50-fold excess (Figure 5.4, open triangles) and a 100-fold 

excess (Figure 5.4, closed squares) of NAC did slightly reduce the rate and amount of 

CO release compared to the lower concentrations; however there was no difference 

between these higher concentrations. 

 

The finding that the total amount of CO released to myoglobin was reduced in the 

presence of NAC, could imply that NAC acts by either preventing some CO loss from 

CORM-3, or by promoting the loss of CO, which could then be lost from solution prior 
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Figure 5.4 Increasing the ratio of NAC to CORM-3 to some extent reduces the 

amount of CO lost to myoglobin up to a 50-fold NAC excess. The change in 

absorbance in the Soret region induced by the binding of CO from 8 μM CORM-3 to 10 

μM of dithionite-reduced myoglobin was measured spectroscopically and plotted 

against time. This was done for CORM-3 alone (closed circles) and for CORM-3 

preincubated for 5 min with NAC in either a 10:1 (open circles), 20:1 (closed triangles), 

50:1 (open triangles) or 100:1 (closed squares) ratio. These data are representative of 2 

technical replicates. 
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to the application of CORM-3 to myoglobin. Recent work from this laboratory has 

greatly advanced our understanding of the mechanisms by which CO is released from 

CORM-3 (McLean et al., 2012). It is now known that sulfite species including 

dithionite (a necessary component of the myoglobin assay, which has been widely used 

to determine the rate of CO loss from CO-RMs (Atkin et al., 2011; Davidge et al., 

2009b; Desmard et al., 2012) cause CO loss from CO-RMs. The myoglobin assay is 

therefore not an ideal method by which to measure of the rate of CO release from these 

compounds. Haemoglobin has been proposed as an alternative to reduced myoglobin for 

this purpose (McLean et al., 2012), as CO binds to oxyhaemoglobin much more avidly 

than oxygen (Sirs, 1974). In this assay, sodium dithionite is used to reduce the haem 

groups of haemoglobin, but is then removed by chromatography, producing 

oxyhaemoglobin, which, unlike oxymyoglobin, is stable in air. The spectroscopic 

changes that occur when oxyhaemoglobin is converted to carbonmonoxy-haemoglobin 

in the presence of CO-RMs can therefore be used as a measure of the rate of CO loss 

from these molecules in the absence of sodium dithionite (McLean et al., 2012). In 

particular, the peak at 422 nm in the CO difference spectrum is indicative of CO 

binding to the haem in oxyhaemoglobin (see Figure 5.5B). 

 

Haemoglobin was reduced with dithionite, then desalted on a PD-10 column, producing 

oxyferrous haemoglobin with no residual dithionite. This was diluted in phosphate 

buffer (100 mM, pH 7.4) to 10 μM and the spectrum of this sample recorded in an OLIS 

spectrophotometer as described above (section 2.3.1.2). CO was added to the 

oxyhaemoglobin by bubbling the contents of the cuvette with CO from a cylinder for 2 

min, and the spectrum of this sample was recorded. The absolute spectra of the 

oxyhaemoglobin and carbonmonoxyhaemoglobin are shown in Figure 5.5 A, while the 

difference spectrum of these samples (CO - treated oxyhaemoglobin minus 

oxyhaemoglobin) is shown in Figure 5.5B. The shift in the peak of the Soret region of 

the absolute spectra, from 414 nm to 419 nm (Figure 5.5A) and the corresponding peak 

at 422 nm in the difference spectrum confirms that CO has bound to haemoglobin; 

however, when oxyhaemoglobin is treated with CORM-3 (8 μM), this shift was not 

seen (Figure 5.5C) and therefore, no peak was seen at 422 nm in the CORM-3 

difference spectrum (Figure 5.5D). This confirms that when CORM-3 is exposed to a 

biological ligand in buffer, no CO loss occurs (McLean et al., 2012). This experiment 
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Figure 5.5 The haemoglobin assay: NAC does not promote CO loss from CORM-3. 
Haemoglobin was reduced with sodium dithionite, then desalted on a PD-10 column, 
producing oxyferrous-haemoglobin with no residual dithionite. (A, C and E) show the 
absolute spectra (B, D and F) show the CO difference spectra (ie. the oxyhaemoglobin 
spectra minus the spectra of oxyhaemoglobin treated with CO (B), CORM-3 (D) or NAC 
and CORM-3 (F). The various coloured lines represent the spectra taken at time points from 
0 to 40 min). In (A, C and E), the absolute spectrum of oxyhaemoglobin (10 μM) is shown 
in burgundy, while the orange lines show the absolute spectrum in the presence of (A) CO 
(applied by bubbling the contents of the cuvette with CO from a cylinder for 2 min), (C) 
CORM-3 (8 μM) and (E) CORM-3 (8 μM) preincubated with NAC (80 μM) for 5 min 
before the assay was begun.  
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was then repeated with CORM-3 pre-incubated for 5 min with a 10-fold excess of NAC 

(80 μM) in order to investigate whether NAC was able to promote CO loss from 

CORM-3. As can be seen from the absolute spectra (Figure 5.5E) and the difference 

spectra (Figure 5.5F), CO does not bind to oxyhaemoglobin in the presence of NAC and 

CORM-3. This confirms that NAC does not cause CO loss from CORM-3. The troughs 

seen in the difference spectra (Figure 5.5D and F) indicate a small loss of the reduced 

form of oxyhaemoglobin, which may suggest that CORM-3 can act as an oxidising 

agent, as discussed in section 7.1.2. 

 

5.2.3 NAC does not prevent the interaction between CO from CORM-3 and the 

terminal oxidases of the aerobic respiratory chain of E. coli 

In order to assess whether NAC prevented the interaction of CO from CORM-3 with the 

terminal oxidases of the aerobic respiratory chain, difference spectra were recorded of 

wild type E. coli membrane particles treated with CORM-3 alone (Figure 5.6A) or with 

CORM-3 pre-incubated for 5 min with a 10-fold excess of NAC (Figure 5.6B). Both 

spectra show a peak at approximately 420 nm and a trough at approximately 446 nm in 

addition to a peak at approximately 644 nm. The later indicates the presence of CO-

bound cytochrome d of E. coli (Wood, 1984), while the features in the Soret region can 

be attributed to CO binding to a mixture of haems, including haems d and b595. 

Importantly, there was no reduction in the magnitude of these features in the presence of 

NAC, confirming that this compound does not interfere with the binding of CO released 

from CORM-3 with the terminal oxidases of E. coli.  

 

5.2.4. A glutathione-deficient E. coli mutant is more resistant to killing than a wild 

type strain 

As thiol-containing compounds have been shown to protect bacteria from the 

deleterious effects of some CO-RMs (Desmard et al., 2009; Desmard et al., 2012; 

Tavares et al., 2011), it was hypothesised that endogenous glutathione may constitute a 

cellular defence against CORM-3. It was therefore investigated whether a mutant strain 

of E. coli that was unable to produce glutathione was hypersensitive to killing by 

CORM-3. 
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Figure 5.6 Reaction of the terminal oxidases in wild type E. coli membrane 

particles with CORM-3. Wild type E. coli membrane particles were added to 

sonication buffer to a final concentration of approximately 10 mg ml-1 and incubated 

with (A) CORM-3 (100 μM) and (B) CORM-3 (100 μM) pre-incubated for 5 min with 

NAC (1 mM). Spectra were obtained 5 min after the addition of CORM-3 to 

membranes using a scanning dual-beam spectrophotometer. Data were plotted as the 

difference between the spectrum of a dithionite-reduced sample incubated with CORM-

3 minus the spectrum of a reduced sample. Data have been smoothed in Sigma plot 

graphing software with a sampling proportion of 0.1 and a polynomial degree of 9. This 

figure was published in Jesse et al. (2013). 

 

  



151 
 

A mutation in the glutathione gene gshA was moved into a wild type MG1655 

background by P1 vir phage transduction. The successful transduction was verified by 

an absence of a PCR product generated using primers specific to the gshA gene 

(described in Table 2.2) in the mutant, but the presence of an appropriately sized 

product in the MG1655 wild type. A 64.4% (± 4.41) reduction in intracellular thiol 

content in the gshA mutant was confirmed by the DTNB assay (section 2.2.3.3). The 

viability of this mutant was then studied in the presence and absence of CORM-3 and 

compared to that of wild type. Treatment with 30 µM CORM-3 reduced the viability of 

wild type E. coli cultures to 56% of the initial viable cell count at 45 min, and 2.8% at 

90 min, whereas the viability of the gshA mutant had only decreased to 68% of the 

initial viable cell count at 45 min, and 75% at 90 min (all percentages given are the 

means and standard deviations of 5 technical and 3 biological replicates). Figure 5.7A 

shows data from one representative biological replicate in which the gshA mutant is 

statistically significantly more resistant to killing than the wild type strain at 30, 45, 90 

and 120 min (p < 0.02). In each biological replicate, the gshA mutant had statistically 

greater viability than wild type 120 min following CORM-3 treatment (as determined 

by a Student’s t test). In order to confirm that the effects seen in this experiment were 

due to CO released from CORM-3, the experiment was repeated using the control 

compound iCORM-3, which does not release CO. This compound did not reduce the 

viability of either strain within 120 min (Figure 5.7B). 

 

5.2.5 CORM-2 and CORM-3 react with thiol groups  

A recently published paper suggests that CORM-2 and the molybdenum-based CO-RM 

ALF062 generate ROS, specifically hydroxyl radicals, which are able to oxidise thiol 

groups (Tavares et al., 2011). The authors propose that CO-RMs are bactericidal 

because of this ROS, and that thiol compounds are protective against the effects of CO-

RMs because they quench these damaging species. The DTNB assay was used to show 

that in the presence of CORM-2, but not RuCl2(DMSO)4, the amount of thiol groups 

detected in a solution of glutathione was diminished. DTNB (5,5'-dithiobis-2-

nitrobenzoic acid) reacts quantitatively with thiol groups releasing 5-sulfido-2-

nitrobenzoic acid which absorbs light at 412 nm (Ellman, 1959).   
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Figure 5.7 A glutathione deficient E. coli mutant is more resistant to killing than a 

wild type strain. The viability of wild type (closed circles) and a gshA mutant (open 

circles) in the presence of (A) CORM-3 and (B) iCORM-3, both at 30 µM. Data are the 

means and standard deviations of 5 technical replicates and are representative of 3 

biological replicates. Asterisks denote the degree of statistical significance for the data 

as determined by a Student’s t test (*, p<0.02), (**, p<0.001). 
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In order to determine whether NAC is able to react with other CO-RMs, various 

concentrations (10 – 200 μM) of NAC were incubated for 5 min with CORM-3, 

CORM-2 and CORM-A1 or the control compounds iCORM-3, RuCl2(DMSO)4 or CO-

saturated solution, all at 100 μM. DTNB (0.8 mM) was then added and incubated for 15 

min before the OD412 was measured using a Jenway spectrophotometer. This assay 

revealed that CORM-3 reacts with 16% of the thiol groups of NAC (Figure 5.8A) when 

present in equimolar amounts, while CORM-2 reacts with approximately 80% of the 

thiol groups in NAC when present at equimolar amounts. In contrast, the control 

compounds iCORM-3, RuCl2(DMSO)4 and CO gas did not react to a significant degree 

with thiol groups. The non-metal CO-RM, CORM-A1 reacted with only 4% of the thiol 

groups in NAC when present in a 2-fold excess. 

 

It was then investigated whether CORM-3 could react with a range of thiol compounds, 

specifically cysteine, reduced glutathione and sodium hydrosulfide. Cysteine and 

glutathione were investigated as they are abundant within the cellular milieu, and 

sodium hydrosulfide in order to determine whether CORM-3 had different effects on an 

inorganic sulfide compound compared with organic thiol compounds. The DTNB assay 

was employed again, but here the concentration of thiol compound was kept constant 

(100 µM), while the concentration of CORM-3, iCORM-3 or CO-saturated solution was 

varied (0 – 100 µM). The presence of CORM-3 reduced the number of thiol groups in 

solution for each thiol compound (Figure. 5.9). The control compound iCORM-3 

caused a less pronounced, yet still significant, decrease in the amount of free thiol 

groups, whereas exposure of the thiol compounds to CO-saturated solution had no 

significant effect on the free thiol groups (Figure 5.9). 

 

5.2.6 Superoxide is generated by CORM-2 and CORM-3 in solution 

As there are conflicting data in the literature as to whether CO-RMs generate ROS and 

therefore whether the protective effect of thiol compounds against CO-RMs is due to 

their antioxidant properties, superoxide production by CORM-2, CORM-3, the non-

metal CO-RM, CORM-A1 and the control compounds RuCl2(DMSO)4 and iCORM-3 

was assayed in vitro. Cytochrome c (20 μΜ) was added to a solution of each CO-RM (1 

mM) in potassium phosphate buffer (pH 7.8). Spectrophotometric changes at 550 nm, 

which are indicative of the reduction of cytochrome c (Winterbourn, 1982),  
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Figure 5.8 CORM-2 and CORM-3, but not CORM-A1 or control compounds react 
with NAC. Various concentrations (10 – 200 μM) of NAC were incubated for 5 min 
with each of the following, all at 100 μM: (A) CORM-3, (B) CORM-2, (C) iCORM-3, 
(D) RuCl2(DMSO)4, (E) CO-saturated solution or (F) CORM-A1. DTNB (0.8 mM) was 
then added and incubated for 15 min. The OD412 was measured using a Jenway 
spectrophotometer. (G) Shows the structure of DTNB (5,5'-dithiobis-(2-nitrobenzoic 
acid)). The red line shows the site of cleavage when DTNB reacts a thiol group.
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Figure 5.9 CORM-3 reacts with glutathione, cysteine and sulfide. Various 

concentrations (0 – 100 µM) of CORM-3 (closed circles), iCORM-3 (open circles) or 

CO-saturated solution (closed triangles) were incubated with 100 μM (A) cysteine, (B) 

reduced glutathione or (C) sodium hydrosulfide in phosphate buffer for 15 min at room 

temperature. 500 μM DTNB was added and the solution incubated for a further 15 min 

before the absorbance was measured at 412 nm. These data are the means and standard 

deviations of three separate experiments. This figure was published in McLean et al. 

(2013).  
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were then monitored over a time course. The abolition of the signal by superoxide 

dismutase (SOD) confirmed that the reduction of cytochrome c is caused by superoxide. 

CORM-3 (Figure 5.10A), CORM-2 (Figure 5.10B) and CORM-A1 (Figure 5.10C), all 

at 1 mM, were found to produce low levels of superoxide (equivalent to ~ 1% of the 

CO-RM concentration). CORM-2 produced superoxide at an initial rate approximately 

10-fold faster than CORM-3 (1.9 μM O2
- min-1 and 0.17 μM O2

- min-1 respectively); 

however the overall amounts of superoxide produced from CORM-2 and CORM-3 were 

similar. CORM-A1 generated a similar amount of superoxide as CORM-3 and did so at 

a similar rate. Interestingly, iCORM-3 was found to produce slightly more superoxide 

than CORM-3 over 2 h (Figure 5.10D), and at a slightly faster initial rate (0.624 μM O2
- 

min-1), whereas the control compound for CORM-2, RuCl2(DMSO)4, produced only a 

very small amount of superoxide (0.0971 μM O2
- in one hour; Figure 5.10E).  

 

It was then investigated whether NAC altered the kinetics of superoxide production 

from CORM-3 (Figure 5.10F). Contrary to the expectation that this antioxidant would 

reduce the amount of superoxide detected, the rate of superoxide production from 

CORM-3 in the presence of NAC was greatly increased (1.17 μM O2
 min-1). 

 

5.2.7 Antioxidants do not consistently prevent the inhibitory effects of CORM-3 on 

respiration 

As mentioned previously, recent work has presented evidence that CORM-2 generates 

ROS, specifically hydroxyl radicals (OH·), leading the authors to conclude that this 

accounts for the antibacterial properties of this CO-RM (Tavares et al., 2011). However, 

it is important to note that very high concentrations of CORM-2 are used in these assays 

(up to 2 mM). This group had also previously reported the up-regulation of oxidative 

stress response genes such as soxS and oxyR when E. coli was subjected to 250 µM 

CORM-2. Other groups have not seen the up-regulation of oxidative stress response 

genes in transcriptomic studies using low concentrations (30 μM) CORM-3 (Davidge et 

al., 2009b). It is therefore unlikely that the generation of ROS by CO-RMs is able to 

account for all of the deleterious effects that occur when bacteria are stressed with low 

concentrations of CORM-3. 
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Figure 5.10 Both CORM-2 and CORM-3 generate superoxide. Cytochrome c (20 

μΜ) was added to the CO-RM (1 mM) in KPi, pH 7.8. The OD550 was then read over a 

time course. Graphs show superoxide generated by (A) CORM-3 (solid line) and 

CORM-3 in the presence of SOD (250 units) (broken line), (B) CORM-2 (solid line) 

and CORM-2 in the presence of SOD (250 units) (broken line), (C) CORM-3 (open 

circles) and CORM-A1 (closed circles), (D) CORM-3 (open circles) and iCORM-3 

(closed circles) (E) CORM-2 (closed circles) and RuCl2(DMSO)4 (open circles), 

CORM-3 (open circles) and (F) CORM-3 in the presence of  NAC (1mM) (closed 

circles). Part A of this figure was published in McLean et al. (2013).  
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Figure 5.11 Antioxidants and superoxide dismutase (SOD) do not prevent CORM-

3-dependent inhibition of respiration to the same extent as thiol compounds. Wild 

type E. coli membrane particles were added to the oxygen electrode in sonication buffer 

(2 ml) to a final concentration of approximately 60 μg ml-1. A lid was placed on the 

chamber and respiration was initiated by the addition of 6.25 mM NADH. The first 

arrows in each panel indicate the addition of the antioxidant or enzyme: (A) ubiquinol 

(100 μM); (B) ascorbate (1 mM); (C) ferredoxin (200 μg ml-1) and (D) SOD (250 units) 

to the chamber, while the second arrows indicate the addition of CORM-3 (400 μΜ). 

The black solid lines show the uninhibited respiration rate, the blue dashed lines show 

oxygen consumption in the presence of CORM-3 and the red dotted lines show oxygen 

consumption in the presence of CORM-3 and the antioxidant (A, B and C) or SOD (D). 

In (A and C), the red dot dash line shows oxygen consumption in the presence of (A) 

ubiquinol or (B) ferredoxin alone. Respiration rates (nmol min-1 mg-1 protein) 2 min 

following the addition of CO-RM are shown adjacent to each trace. Traces are 

representative of 2 biological replicates, each with 3 technical replicates. This figure 

was published in Jesse et al. (2013).  
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In order to examine this further, it was investigated whether non-thiol-containing 

antioxidants were capable of abolishing the inhibitory effects of CORM-3 on respiration 

(Figure 5.11). While the antioxidant ubiquinol (100 μM) was capable of partially 

decreasing the degree of respiratory inhibition caused by CORM-3 (Figure 5.11A), 

ascorbic acid (1 mM) had no effect on respiratory inhibition by CORM-3 (Figure 

5.11B). Interestingly, in the presence of CORM-3 and the antioxidant ferredoxin, 

respiration was inhibited more than it was in the presence of CORM-3 alone (despite 

ferredoxin having no significant effect on the respiration rate of these membranes when 

added alone (Figure 5.11C, red dot dash line). These results suggest that it is not the 

antioxidant nature of compounds such as NAC, reduced glutathione and cysteine that 

enable them to prevent metal-based CO-RMs from exerting their effects but, more 

likely, the chemical interaction of the thiol groups with the CO-RM. Additionally, when 

superoxide dismutase (SOD) was added to the electrode with CORM-3 (Figure 5.13D), 

there was no significant change in the degree of inhibition suggesting that superoxide 

plays no role in the inhibition of respiration by CORM-3. 

 

5.2.8 The use of EPR spectroscopy and the spin trap BMPO to assess whether 

reactive oxygen species are generated from solutions of CORM-2 and 

CORM-3 

Electron Paramagnetic Resonance (EPR) spectroscopy is a sensitive method able to 

detect species with unpaired electrons and therefore has the potential to identify ROS. 

However, ROS are transient, which causes difficulties when recording EPR spectra; 

consequently, nitrone spin traps are often used to stabilize these species (Frejaville et 

al., 1995). 

 

The spin trap BMPO (5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide) has the 

advantage over other spin traps that it is able to distinguish between hydroxyl radicals 

and superoxide anions (Zhao et al., 2001). In comparison, the spin trap DMPO forms a 

superoxide adduct, which then decomposes to form the hydroxyl adduct (Finkelstein et 

al., 1982).  

 

Tavares et al., (2011) recently reported the use of a BMPO spin trap with EPR 

spectroscopy to detect ROS generated from CORM-2, RuCl2(DMSO)4 and CORM-2 
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incubated with reduced haemoglobin. They claim that the species detected is hydroxyl 

radicals (OH.), yet they show a hyperfine splitting constant around both nitrogen and 

hydrogen of 1.1 mT or 11 gauss (G) (Figure 5.12). This does not match the EPR 

spectrum of the hydroxyl-BMPO adduct seen in Zhao et al. (2001), which has aN 

values of 13.37 G and 13.4 G and aH values of 9.42 G and 12.1 G. Therefore, 

independent EPR spin trapping measurements were undertaken to investigate whether 

hydroxyl radicals could be detected in solutions of CORM-2. This work was then 

extended to investigate whether CORM-3 was able to produce such species. 

 

Initially, superoxide and hydroxyl adducts of BMPO were generated to provide 

reference spectra for comparison with the CO-RM spectra. Samples were loaded into an 

AquaX cell and EPR spectra were recorded, at room temperature, on a Bruker EMX 

spectrometer at 9.47 GHz microwave frequency, 3.18 mW microwave power, 100 kHz 

modulation frequency and 9.54 G/s scan rate. Spectra were analysed using WINEPR, 

Version 2.11 (Bruker).  

 

Xanthine and xanthine oxidase were reacted in order to generate superoxide. Figure 

5.13A shows the EPR spectrum of a mixture of 1 mM xanthine, 5 milliunits xanthine 

oxidase, the chelator DTPA (0.1 mM) and 25 mM BMPO, 2 min after mixing, while 

Figure 5.13B shows the spectrum of this mixture 80 min after mixing. This spectrum 

has a nitrogen hyperfine coupling constant (aN) of 11 G and a hydrogen hyperfine 

coupling constant (aH) of 13.4 G. This spectrum is similar to that for superoxide 

reported by Zhao et al., (2001). Two values are given as there are two diastereomers of 

each spin adduct (Zhao et al., 2001), each with their own hyperfine coupling constants 

for both nitrogen and hydrogen. There are however some slight differences between the 

spectra obtained in this work and those reported by Zhao et al., (2001): the features 

circled in green in Figure 5.13B were slightly broader than expected when compared to 

the published spectrum and the feature circled in red was not as broad as that presented 

in Zhao et al., (2001); this suggests that there are two contributions to this feature in the 

present work.  
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Figure 5.12 EPR spectra of samples containing (A) 2 mM CORM-2, (B) iCORM-2 

and (C) CORM-2 plus hemoglobin (Hb,) acquired in the presence of the spin trap, 

BMPO.  

 

This figure was originally published in The Journal of Biological Chemistry. Tavares, 

A.P.N., Teixeira, M., Romao, C.C. Seixas, J.D., Nobre, L.S. and Saraiva, L.M. Reactive 

Oxygen Species Mediate Bactericidal Killing Elicited by Carbon Monoxide-releasing 

Molecules. The Journal of Biological Chemistry. (2011) 286 (30):26708-26717. © The 

American Society for Biochemistry and Molecular Biology. 
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Attempts were then made to generate the hydroxyl-BMPO adduct using Fenton 

chemistry. This involves hydroxyl radicals being produced from H2O2 in the presence of 

either Fe2+ or Cu+ according to the reactions below: 

 

Fe2+ + H2O2              Fe3+ + ·OH + OH-                             (1) 

Cu+ + H2O2                Cu2+ + OH- + ·OH                  (2) 

 

When 1 mM FeSO4 was mixed with 1 mM H2O2 in the presence of 8 mM BMPO, an 

EPR spectrum typical of the BMPO-hydroxyl adduct was observed (Figure 5.13 C; see 

also Zhao et al., (2001)). The hyperfine splitting around nitrogen was 13.3 G, while that 

for hydrogen was 14.0 G; these values are consistent with those reported by Zhao et al., 

(2001). However, when CuSO4 was used to generate hydroxyl radicals, a different EPR 

spectrum was observed. CuSO4 (1 mM) was mixed with 1 mM ascorbic acid (included 

to reduce the copper in CuSO4 to Cu+) and 1 mM H2O2 with 8 mM BMPO (Figure 

5.13D; see also Zhao et al., (2001)) and gave a spectrum that appears to be a doublet of 

overlapping triplets, i.e. the first, second and fourth features comprise the first triplet 

and the third, fifth and sixth features comprise the second. The hyperfine splitting for 

nitrogen was 15 G, while aH was measured as 21.4 G. When both hydrogen and 

nitrogen, interact with an electronic spin, the EPR line splits into a 1:1:1 triplet (on IN = 

1, with a distance between the lines being the aN value), then each line splits into a 1:1 

doublet (on IH = 1/2, with a distance between the lines being the aH value). Now, a 

spectrum exhibiting a quartet pattern 1:2:2:1 can be observed if aN ≈ aH, or, to be more 

precise, if the difference │aN - aH│ is not notably greater than the individual line width 

(see below). 

 
The FeSO4 generated hydroxyl-BMPO spectrum (Figure 5.13C) is approximately a 

1:2:2:1 spectrum, while that generated by CuSO4 (Figure 5.12D) shows a well resolved 

1:1 doublet of 1:1:1 triplets giving 6 lines in intensity 1:1:1:1:1:1. Both spectra seem to 

show the presence of two isomers. 
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The EPR spectrum generated from CuSO4, ascorbic acid and H2O2 (Figure 5.13D) 

shows a larger than expected aH, which indicates a slightly higher spin density on the 

hydrogen. It is possible that the BMPO molecule has either been oxidised or reduced as 

a result of the attack of the oxygen radical, leaving the O-N=CH fragment planar rather 

than the -CH existing in a tetrahedral conformation. The planar O-N=CH would allow a 

higher unpaired electron density at the H and therefore an increased aH. However, the 

CuSO4-generated spectrum (Figure 5.13D) appears to show a small quantity of a second 

isomer is present, which would rule out the existence of a planar structure. An 

alternative possibility is that Cu or Ru could coordinate at either the NO or the 

OH/OOH oxygen of BMPO, which would modify the unpaired electron density 

distribution, resulting in a larger than expected aH (Brian Mann, personal 

communication). 

 

The EPR spectrum of 4 mM CORM-2 in DMSO mixed with 10 mM BMPO was then 

recorded (Figure 5.14A). The resulting spectrum was not identical to either the 

superoxide or hydroxyl BMPO adducts reported in the literature (Zhao et al., 2001), nor 

to the EPR spectrum reported by Tavares et al. (2001) for CORM-2 mixed with BMPO. 

The spectrum does however overlay the spectrum generated by a mixture of CuSO4, 

ascorbic acid and H2O2 mixed with BMPO and has a hyperfine splitting value for 

nitrogen of 15.2 G, while that for hydrogen is 21.2 G (Figure 5.14B). This suggests the 

EPR spectrum obtained for CORM-2 in this work could indicate the presence of 

hydroxyl radicals, although it is not clear why this spectrum differs from those reported 

in the literature for both the BMPO hydroxyl radical (Zhao et al., 2001) and CORM-2 

with BMPO (Tavares et al., 2011). The EPR spectrum of RuCl2(DMSO)4 mixed with 

BMPO was generated, and no features were detected, suggesting that this control 

compound does not generate any ROS (Figure 5.14C). The relative intensity of the EPR 

spectrum generated by CORM-2 and BMPO was plotted against time (Figure 5.14D) 

and revealed that the BMPO adduct was short lived, with a maximum intensity 

occurring within the first 2 min following mixing. 

 

EPR spectra were then recorded for a solution of CORM-3 (4 mM) with BMPO (8 mM) 

over time. Initially, no clear features could be seen, (Figure 5.15A and B); however, by 

recording multiple spectra and averaging the signals, the signal to noise ratio was  



164 
 

3 4 8 0 3 4 9 0 3 5 0 0 3 5 1 0 3 5 2 0 3 5 3 0 3 5 4 0

  - 1 .5

  - 1 .0

  - 0 .5

   0 .0

   0 .5

   1 .0

   1 .5

A 

B 

3 4 8 0 3 4 9 0 3 5 0 0 3 5 1 0 3 5 2 0 3 5 3 0 3 5 4 0

- 4

- 2

 0

 2

 4C

 

 

 

 

 

 

 

Figure 5.13 Reference spectra of superoxide (A and B) and hydroxyl (C and D) 

radicals bound to BMPO. EPR spectra were generated from the following samples 

including the spin trap BMPO (5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide). 

(A) and (B) xanthine (1 mM), xanthine oxidase (5 milliunits), DTPA (0.1 mM) and 

BMPO (25 mM), A) 2 min after mixing and (B) 80 min after mixing, (C) hydroxyl-

BMPO adduct generated by FeSO4 (1 mM), H2O2 (1 mM) and BMPO (8 mM) and (D) 

hydroxyl-BMPO adduct generated by CuSO4 (1 mM), ascorbic acid (1 mM), H2O2 (1 

mM) and BMPO (8 mM) 10 min after mixing. The features circled in green were 

slightly broader than expected when compared to the spectrum published by Zhao et al., 

(2001), and the feature circled in red was not as broad. 
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Figure 5.14 CORM-2 EPR spectra. Spectra were generated from the following 

samples including the spin trap BMPO (5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-

oxide). (A) shows the spectrum generated by CORM-2 (4 mM) in DMSO with BMPO 

(10 mM) 2 min after mixing, (B) shows an overlay of the copper generated hydroxyl 

radical bound to BMPO in green (Figure 5.12D) and the CORM-2 with BMPO spectra 

(red), (C) shows the spectrum of RuCl2(DMSO)4 (4 mM) with BMPO (8 mM) and (D) 

shows the intensity of the CORM-2 adduct of BMPO over time. 
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Figure 5.15 CORM-3 EPR spectra. (A) and (B) Spectra were generated from CORM-

3 (4 mM) with the spin trap BMPO (5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-

oxide) (8 mM) (A) 2 min after mixing, (B) 6 min after mixing, (C) shows the average of 

4 spectra generated from this sample and (D) shows an overlay of the iron-generated 

hydroxyl radical bound to BMPO and the averaged CORM-3 with BMPO spectrum. 
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improved allowing a distinct spectrum to be produced (Figure 5.15C). This spectrum 

bares great resemblance to the hydroxyl-BMPO spectrum generated from FeSO4 in this 

work, with similar values for aH (14.5 G) and aN (13.8 G); however it is of very low 

intensity suggesting that only a small amount of hydroxyl radical is formed. Figure 

5.15D shows an overlay of the CORM-3 - BMPO spectrum with the FeSO4 generated 

hydroxyl-adduct of BMPO. 

 

5.2.9 Assay of H2O2 production in vitro by CORM-3 treated E. coli 

It was also considered important to assess whether CORM-3 produced hydrogen 

peroxide in vivo; therefore an Amplex red assay (Invitrogen) was performed in CORM-

3 treated cells. This assay uses 10-acetyl-3,7-dihydroxyphenoxazine, which reacts with 

H2O2 in a 1:1 stoichometry to produce the fluorescent oxidation product resorufin, 

which has excitation and emission maxim of approximately 571 nm and 585 nm 

respectively, and can also be detected spectrophotmetrically at 560 nm. This assay is 

extremely sensitive and can detect as little as 10 picomoles H2O2 in 100 µl.  

 

H2O2 production was assayed in a suspension of wild type MG1655 E. coli cells alone 

(resuspended to a final OD600 of 0.09) and with either CORM-3 (100 µM), CORM-3 

with glycerol (5 mM) or glycerol alone. Glycerol was added to ensure the samples were 

respiring. A standard curve was generated using a series of dilutions of H2O2 (0 – 10 

µM). The absorbance at 560 nm was measured spectrophotometrically. No hydrogen 

peroxide was detected in any of the samples (data not shown). This could suggest that 

the cell concentration used was too dilute; however it is similar to that used by Seaver 

and Imlay (2001) who detected elevated H2O2 production by E. coli mutants unable to 

express both alkyl hydroperoxide reductase and catalase. It therefore seems reasonable 

to conclude that a dilute E. coli cell suspension (OD600 = 0.09) treated with 100 µM 

CORM-3 produces less than 10 picomoles H2O2 irrespective of whether the cells are 

respiring or not. 

 

5.2.10 NAC significantly reduces CORM-2 and CORM-3 uptake of E. coli cells  

Finally, it was investigated whether the presence of NAC affects the uptake of CO-RMs 

into bacterial cells (Figure 15.16). ICP-MS is a technique that measures with great 

sensitivity the concentration of individual metals within a sample, and therefore was 
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Figure 5.16 NAC significantly reduces the uptake of CORM-2 and CORM-3 into 

bacterial cells. Cultures of wild type E. coli were grown to mid-log phase (OD600 ~0.5) 

prior to the removal of 20 ml samples both before and at regular intervals after the 

addition of CORM. In (A) ruthenium uptake as CORM-3 (40 μM) in the absence 

(closed symbols) or presence (open symbols) of 400 μM NAC is shown. In (B) 

ruthenium uptake as CORM-2 (20 μM) in the absence (closed symbols) or presence 

(open symbols) of 200 μM NAC is shown. Cell pellets were assayed for ruthenium 

content by inductively coupled plasma-mass spectrometry. Data are the means and 

standard deviations of 3 biological replicates. This figure was published in Jesse et al. 

(2013). 
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ideal for comparing the uptake of both CORM-2 and CORM-3 (measured as ruthenium) 

in the presence and absence of NAC. As ruthenium is not present in bacteria under 

normal conditions, it can be assumed that any ruthenium detected in the cell pellets 

following CO-RM treatment has come directly from the CO-RM.  Bacteriostatic 

concentrations of each CO-RM were added to cultures of wild type E. coli grown in 

Evans medium to early exponential phase (OD600 = 0.5) either alone, or in the presence 

of a 10-fold excess of NAC. Samples (20 ml) were taken before the addition of CORM-

3 and at 2.5, 5, 10, 20, 40 and 80 min thereafter. Cells were harvested by centrifugation 

at 5500 rpm for 5 min in polypropylene tubes (50 ml). Culture supernatants were 

retained for analysis. Cell pellets were washed three times in 0.5% HNO3 (0.5 ml; 

Aristar nitric acid (69%, v/v)) to remove loosely bound elements. Supernatants collected 

from the washes were also retained for analysis. Samples were analyzed using a Spectro 

CirosCCD (Spectro Analytical) inductively coupled plasma-mass spectrometer (ICP-MS). 

The percentage of ruthenium recovered from these samples was calculated to monitor 

the precision of this technique and revealed that between 74 to 90% of the ruthenium 

added to the culture was recovered in the cell pellet, wash steps or medium. To calculate 

intracellular ruthenium concentrations, published values for individual cell dry mass and 

volume were used (Graham et al., 2009).  

 

Treatment of cultures of E. coli with 40 µM CORM-3 led to a rapid accumulation of 

ruthenium within the cells to approximately 8 times the concentration of ruthenium 

applied to the culture (Figure 5.16A). The striking discovery was made that in the 

presence of 400 µM NAC, ruthenium from CORM-3 accumulated inside E. coli cells 

approximately 8-fold less, i.e. to a similar concentration to that applied to the culture. 

 

A similar effect was true of CORM-2 treated E. coli: in the absence of NAC, ruthenium 

from CORM-2 (20 µM) accumulated inside the cells to concentrations approximately 

30-fold higher than that applied to the culture, however in the presence of 200 µM 

NAC, intracellular ruthenium concentrations were 5-fold lower, confirming that NAC 

dramatically reduces the uptake and intracellular accumulation of ruthenium-based CO-

RMs.  
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5.3 Discussion 

As detailed in the introduction to this chapter (section 5.1), this work aimed to ascertain 

the mechanism by which thiol compounds are able to prevent the inhibitory effects of 

CO-RMs, and specifically, to what extent the negation of the deleterious effects of ROS 

are responsible for these effects. 

 

The finding presented in this chapter that an excess of NAC, cysteine or reduced 

glutathione is able to abolish the effects of CORM-3 on respiration is in agreement with 

the literature (Desmard et al., 2009, Desmard et al., 2012). However, the work 

presented here is the first demonstration that NAC is able to completely abolish the 

inhibitory effects of CORM-3 on respiration when present at an equimolar 

concentration to CORM-3 (Figure 5.1B). Furthermore, it is shown that thiol compounds 

are able to prevent or greatly reduce the inhibition of respiration induced by ruthenium 

based CO-RMs in E. coli membrane particles (Figure 5.1B and C, and Figure 5.2A and 

B), but have no effect on inhibition caused by CO gas (Figure 5.1A).  

 

Importantly, it was shown that thiol compounds do not interfere with binding of CO 

from CORM-3 to the terminal oxidases (Figure 5.6). This concurs with the conclusions 

of Desmard et al. (2012), who found that only the activity of certain CO-RMs, 

specifically those containing metal, are affected by thiol-containing compounds such as 

NAC. They concluded that if thiol compounds elicited their effects by interfering with 

the downstream effects of CO-RMs, such as the binding to the terminal oxidases, they 

would affect all CO-RMs similarly. 

 

5.3.1 The effect of thiol compounds on the release of CO from CORM-3 

The hypothesis that the rate of CO release from CORM-3 may be affected (either 

increased or decreased) by thiol compounds was investigated. CO release from CORM-

3 was assayed by performing myoglobin assays in the presence of varying 

concentrations of NAC. The data obtained suggest that the rate of CO release from 

CORM-3 is slightly diminished and that the final amount of CO release is slightly less 

(21%) in the presence of a 10-fold excess of NAC (Figure 5.4), and that these effects are 

greater as the ratio of NAC to CORM-3 increased. However, as the majority of CO can 

still be released to Mb following incubation with NAC, these differences do not seem 
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sufficient to completely abolish the effects of CO-RMs on bacteria. In light of our 

current understanding of the ability of sulfite species, such as dithionite, to promote CO 

release from many CO-RMs, it is possible that thiol compounds do greatly reduce the 

ability of CO to be released from CO-RMs in cellular conditions, but that the ability of 

dithionite to promote CO loss then overrides this, resulting in relatively normal CO 

release kinetics to myoglobin (Figures 5.4). 

 

The haemoglobin assay (Figure 5.5) was used as a measure of CO release from CORM-

3 in the absence of dithionite, and in accordance with the findings of McLean et al. 

(2012), no CO release from CORM-3 was observed. Furthermore, CO release was not 

observed from CORM-3 pre-incubated with an excess of NAC, confirming that this 

compound does not promote CO loss from CORM-3.  

 

These findings suggest that NAC stabilizes the CO-bound CORM-3 structure. It is 

possible that interaction between thiol compounds and CORM-3 causes a 

conformational change in the latter, thereby decreasing the rate of CO loss from 

CORM-3. It is known that CORM-3 and other fac-[Ru(CO)3]2+ compounds are able to 

bind to hen egg white lysozyme resulting in a conformational change in the CO-RM 

that may decrease the rate of CO-release (Santos-Silva et al., 2011; Santos et al., 2012).  

 

The finding that CORM-3 may cause slight oxidation of oxy-ferrous haemoglobin is 

interesting and is in agreement with observations of other researchers in this laboratory 

(Lauren Wareham, unpublished). Conversely, another researcher, Salar Ali 

(unpublished) has found some evidence that some CO-RMs are able to reduce 

tetrazolium dyes. It is becoming increasingly clear that the redox potential of CO-RMs, 

of which very little is currently known, may have important biological effects, and 

therefore should be a key area for future investigation. 

 

There is a published report of thiol compounds promoting the release of CO from 

CORM-3 and carbon monoxide-releasing micelles (Hasegawa et al., 2010); cysteine (10 

mM) was found to cause the release of 0.12 equivalents of CO per molecule of CORM-

3. However, lower concentrations of cysteine (100 µM) did not have this ability. These 

effects were also observed for glutathione. It is important to note that CO release was 
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measured using a CO detector that measured the CO concentration in the gas phase, and 

that only very low levels of CO were detected and the CO release occurred slowly 

(Hasegawa et al., 2010). 

 

It has been suggested that if thiol compounds promoted the release of CO from CO-

RMs, it would cause the CO-RM to ‘act like CO gas’ (Desmard et al., 2012) and 

therefore be less effective at inhibiting respiration in whole cells than CORM-3. The 

data presented in this chapter show that CO gas, at a concentration of 100 μM, causes 

substantial inhibition of respiration in E. coli membranes particles (Figure 5.1A). 

Therefore, with regards to the inhibition of respiration of membrane particles, thiol 

compounds do not cause CORM-3 to behave like CO gas. Moreover, when CO is 

released from CORM-3 prior to a myoglobin assay being conducted, a characteristic 

jump in the myoglobin spectrum is seen upon addition of the CORM-3 mixture to the 

myogobin (McLean et al., 2012). This is not seen in the case of CORM-3 pre-treated 

with NAC (Figure 5.4).  

 

Desmard et al. (2009) reported that NAC did not affect the rate of CO release from 

CORM-3 as measured by the myoglobin assay; however, while specific details were not 

provided in that paper, it is likely that they added NAC directly to the CORM-3 and 

myoglobin, without allowing a 5 min pre-incubation period as was done in the present 

work. In addition, the presence of dithionite in that study and in the present work adds a 

variable that contributes to CO release in a manner that was not understood when both 

pieces of work were undertaken. 

 

5.3.2 The influence of endogenous thiol compounds on the bactericidal effects of 

CORM-3  

Glutathione is present in a wide variety of organisms including bacteria, yeast, plants 

and animals (Hopkins, 1921). It was shown to undergo reversible oxido-reduction and 

was believed to have an important role in respiration (Hopkins, 1923), for a recent 

review see Masip et al. (2006). Viability studies presented in the current work found 

that an E. coli mutant unable to produce endogenous glutathione was significantly more 

resistant to killing by CORM-3 than wild type cultures, particularly at 90 and 120 min 

following treatment (Figure 5.7). This provides further evidence that ROS is not a 
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significant cause of bacterial killing by this CO-RM. These findings are contrary to the 

expectation that glutathione would protect against damage from CORM-3. However the 

finding that CORM-3 is able to react with thiol groups (Figure 5.8 and 5.9) and that 

superoxide is generated from CORM-3 at a substantially faster rate in the presence of 

NAC (Figure 5.10F), could suggest that there are deleterious consequences of CORM-3 

in the presence of glutathione. An alternative possibility is that the glutathione mutant 

has an altered redox potential, which may affect the ability of CORM-3 to release CO 

inside the cell. It is also important to note that there are many other endogenous proteins 

that stabilize the redox potential of a cell such as glutaredoxins and thioredoxins 

(Aslund et al., 1997). In contrast, Tavares et al. (2011) found that exogenous 

glutathione protects against killing by CORM-2 and ALF062, while Nobre et al. (2009) 

found that E. coli mutants unable to synthesize methionine are hypersensitive to 

CORM-2.  

 

The expression of several genes involved in the transport and metabolism of thiol-

containing compounds are affected by treatment of E. coli with CORM-3 (McLean et 

al., 2013). Genes affected include cysPUWA, which encodes the sulfate-thiosulfate 

transport system, metQIN, which are involved in methionine metabolism and transport 

and ssuABCDE and tauABCD, which respond to sulfur starvation. This indicates that E. 

coli cultures treated with CORM-3 have enhanced requirements for sulfur. 

 

5.3.3 Could ROS account for the bactericidal effects of CO-RMs? 

As mentioned above, it has been suggested that the main mechanism by which CORM-

2 induces bacterial cell death is by the generation of ROS, specifically hydroxyl radicals 

(Tavares et al., 2011). There is a large body of evidence suggesting that CO (and in 

some cases CO-RMs) lead to increased ROS due to inhibition of respiration (Queiroga 

et al., 2011; Smith et al., 2011; Zuckerbraun et al., 2007). Such ROS are thought to play 

an important role in mediating some of the downstream effects of CO, particularly in 

eukaryotic systems (Zuckerbraun et al., 2007) (see section 1.2.8.2.4). However, there is 

evidence that low concentrations of CO can actually protect against oxidative stress in 

models of mouse lung hypoxia (Otterbein et al., 1999) and that CO can actually 

decrease ROS production by NADPH oxidase (Taille et al., 2005).  
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Tavares et al. (2011) suggest that, in addition to ROS produced by the inhibition of 

respiration, CORM-2 and ALF062 can also generate hydroxyl radicals directly. It is 

known that some transition metal carbonyls e.g. Na[Mo(CO)3(histidinate)] and 

Na3[Mo(CO)3(citrate)] can cause hydroxyl radical formation (Seixas, 2010). It is 

proposed that ALF062 produces hydroxyl radicals by reaction of the electron dense 

metal with H2O and O2, as ROS did not form in anoxic conditions (Tavares et al., 2011). 

They propose that hydroxyl radicals are formed by CORM-2 via the reduction of 

oxygen by ruthenium species that are generated by the water gas shift reaction, which 

occurs when water reacts with one of the CO ligands of this CO-RM. They show that 

the control molecule RuCl2(DMSO)4, which they refer to as iCORM-2, did not produce 

ROS, and neither did CORM-2 in the presence of haemoglobin, as in these conditions, 

CORM-2 forms RuII(CO)2, which is stable and does not react with water to form OH 

radicals. It is also important to remember that EPR is very sensitive and the radicals 

detected in the current work and in Tavares et al. (2011) may be the products of a minor 

side reaction, or even a contaminant in the CO-RM preparation. 

 

The data collected in this current work, by biochemical assays (Figure 5.10) and EPR 

spectroscopy (Figure 5.14 and 5.15) indicate that while small amounts of ROS (both 

superoxide and hydroxyl radicals) are produced by high concentrations (1 - 4 mM) of 

both CORM-2 and CORM-3, this does not explain all of the effects of CO-RMs on 

bacteria. Indeed, neither CORM-2 nor CORM-3 (both at 100 μM) produced sufficient 

superoxide to be detected by the superoxide assay (data not shown). This is close to the 

concentration of CO-RMs used in biological studies and therefore it is unlikely that 

superoxide is responsible for the deleterious effects induced by low concentrations of 

these CO-RMs. Furthermore, no H2O2 was detected in vivo by relatively high 

concentrations of CORM-3 (100 µM) in a dilute suspension of E. coli cells (data not 

shown). This concurs with the findings of Desmard et al. (2012) that 100 µM of 

CORM-2, CORM-3, CORM-371 and CORM-A1 did not cause any ROS production in 

P. aeruginosa within 1 h of treatment as measured by DCFH-DA, which measures 

oxidation of DCFA by ROS. This is in agreement with previous work from this group, 

which showed that CORM-3 did not produce ROS (Desmard et al., 2009). Furthermore, 

while CORM-2 treatment has been shown to increase the production of ROS by P. 

aeruginosa biofilms, this increase did not correlate with bacterial cell death and addition 
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of the thiol compound and antioxidant L-cysteine in combination with 100 µM CORM-

2 reduced biofilm formation, but did not affect ROS production, suggesting that 

CORM-2 is preventing biofilm formation by a different mechanism (Murray et al., 

2012).  

 

Therefore, our data support the previous observations that ROS production is not the 

major mechanism by which CORM-2 disrupts P. aeruginosa growth. There is, however, 

some evidence that inhibition of respiration by CORM-3 leads to ROS production in C. 

jejuni (Smith et al., 2011). The addition of catalase to respiring C. jejuni cultures in the 

presence of 100 µM CORM-3 resulted in an increase in the oxygen concentration in the 

chamber, indicating that respiratory inhibition by CORM-3 generates H2O2, most likely 

via the production of superoxide. 

 

The possibility that the superoxide detected is generated from impurities in the CO-RM 

preparation cannot be discounted, particularly as the amount of superoxide generated by 

CORM-A1, CORM-2, CORM-3 and iCORM-3 was approximately 1% of the CO-RM 

concentration. That iCORM-3 generated more superoxide than CORM-3 suggests that 

superoxide is not caused by the CO release process. It is possible that superoxide is 

formed from the oxidation of ruthenium causing an electron to pass to oxygen, although 

this is unlikely as CORM-3 is known to be stable in water for several hours. 

Furthermore, if superoxide radicals were formed in this way, it is feasible that they 

would spontaneously dismutate to form peroxide, which could react with contaminating 

free iron or copper in the solution to form hydroxyl radicals, which would be detected 

by the BMPO spin trap. In this case, haemoglobin, used as a control in the EPR spectra 

shown by Tavares et al. (2011) would scavenge the peroxide and so decrease the signal, 

as is seen in the published work, rather than CO scavenging by haemoglobin being the 

cause of this decrease, as is proposed.  

 

CORM-2, and to a lesser extent CORM-3, were found to react with the thiol groups of 

NAC (Figure 5.8). This is consistent with the findings of Tavares et al. (2011) that 

CORM-2 is able to diminish the thiol groups in reduced glutathione. They suggest that 

this indicates that CORM-2 generates species that promote oxidation of thiol groups. 

Contrary to expectations, incubation of NAC with CORM-3 was found to increase the 
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rate of superoxide generation by CORM-3 (Figure 5.10F). This could be due to the 

reaction of the thiol group of NAC with CORM-3 (section 5.2.4) generating electrons, 

which then produce superoxide. CORM-3 and iCORM-3, but not CO gas, decrease the 

amount of free thiol groups detected in cysteine, reduced glutathione and sodium 

hydrosulfate (Figure 5.9), which suggests that it is the ruthenium skeleton that reacts 

with thiol groups. It is possible that this involves the binding of a thiol group to 

ruthenium, which displaces a chloride ion on the (i)CORM-3 compound (McLean et al., 

2013). 

 

The present work used EPR spin-trapping to show that ROS is formed by CORM-2, and 

to a much lesser extent by CORM-3, and that this species is likely to be hydroxyl 

radical. However, there are still uncertainties as to why the species generated here do 

not match the literature spectrum of hydroxyl bound to BMPO, and why the spectrum 

presented in Tavares et al. (2011) does not have aH and aN values that match those 

reported in the literature (Zhao et al., 2001).  

 

In order to further investigate the claim of Tavares et al. (2011) that it is the antioxidant 

properties of thiol compounds that abolishes the antibacterial effects of CO-RMs, the 

ability of a range of antioxidants that do not contain thiol groups were assessed for their 

ability to prevent inhibition of respiration by CORM-3 (Figure 5.11). Both ascorbic acid 

(Figure 5.11B; in accordance with the observations of Desmard et al. (2009)) and 

ferredoxin (Figure 5.11C), were unable to abolish the inhibitory effects of CORM-3 on 

respiration, while ubiquinol (Figure 5.11A) was only able to slightly reduce these 

effects. Ubiquinol and ascorbate have identical redox potentials (+ 60 mV), while 

ferredoxin has much lower reduction potential of - 430 mV. For comparison, 

glutathione has a reduction potential intermediate to these of - 172 mV (Nicholls and 

Ferguson, 2002). Therefore, the ability of ubiquinol to slightly diminish the apparent 

inhibition of respiration by CORM-3, is unlikely to be related to the reduction potential 

of this compound, as ascorbate, and the more potent reducing agent ferredoxin, do not 

have the same effects. When ubiquinol is added to respiring membrane particles in the 

oxygen electrode chamber in the absence of CORM-3, respiration appears to be 

stimulated slightly, consistent with the role of this compound in carrying electrons to 

the terminal oxidases, which is likely to explain why the respiration rate is slightly 
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faster in the presence of ubiquinol and CORM-3 than with CORM-3 alone. Taken 

together, these data suggest that it is the thiol group that is crucial in preventing the 

effects of CORM-2 and CORM-3 on respiration, and that not all antioxidants are 

capable of this. 

 

While this work has shown that superoxide is produced by CORM-2 and CORM-3, the 

addition of SOD had no effect on the degree of inhibition caused by CORM-3 on 

respiration (Figure 5.11D). This allows us to conclude that the inhibition of respiration 

by CORM-3 is prevented by thiol-containing compounds via a mechanism that does not 

involve the quenching of reactive oxygen species. It seems clear that while ROS may be 

generated by high concentrations of some CO-RMs, this cannot account for all of the 

deleterious effects of these molecules. In particular, this hypothesis cannot explain why 

respiration is inhibited by CORM-3.  

 

5.3.4 The effects of NAC on the uptake of CORM-2 and CORM-3 by bacterial cells 

Finally, the results presented in this chapter show that NAC has a striking ability to 

reduce the entry of both CORM-2 and CORM-3 into growing E. coli cells. The 

substantial reduction in CORM-2 and CORM-3 entry into bacterial cells in the presence 

of NAC could explain why both these CO-RM compounds are much less toxic in the 

presence of NAC.  

 

In the presence of NAC, ruthenium from CORM-3 accumulates inside the cell to 

approximately the same concentration that is present outside the cell. Little is known 

about how CO-RMs are transported into bacterial cells; for example, it is not known 

whether CO-RMs enter cells by active transport, or by free diffusion. It is possible that 

NAC modifies ruthenium-containing CO-RMs (and perhaps other CO-RMs) in some 

way rendering it unable to use a specific transporter. 

 

However, this reduced uptake cannot explain all of the effects seen with thiol 

compounds on CO-RM activity, as in this work it has been shown that thiol compounds 

also prevent respiratory inhibition in bacterial membrane particles, in which 

presumably, CORM-3 access is not a constraint. 
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5.3.5 Conclusions 

It is now clear that there is likely to be more than one mechanism by which thiol 

compounds prevent the deleterious effects of CO-RMs. The work presented in this 

chapter has contributed to the understanding of how thiol compounds prevent the effects 

of CO-RMs, by eliminating hypotheses suggested in the literature and by the significant 

finding that these compounds drastically reduce the uptake of CO-RMs; however, more 

work is needed in order to fully understand the mechanisms by which these compounds 

exert their effects. One difficulty encountered when trying to understand how thiol 

compounds affect CO-RM activity, is that each research group that has investigated this 

phenomenon has used different CO-RMs, at different concentrations, with different 

experimental designs, which makes it difficult to make generalisations and to determine 

the effects of thiol compounds on different types of CO-RM. In this regard, the recently 

published study by Desmard et al. (2012) was particularly rigorous and helpful as it 

compared the effects of NAC on two ruthenium based CO-RMs with fast CO release 

rates, with those of a manganese based CO-RM and a boranocarbonate CO-RM, both of 

which had slow CO - release rates. NAC was found to completely prevent the effects of 

CORM-2 and CORM-3 on growth, but only partially alleviate growth inhibition caused 

by low concentrations of CORM-371 and had  no effect on growth inhibition caused by 

CORM-A1 (Desmard et al., 2012). It seems therefore, that NAC only interferes with the 

effects of metal-containing CO-RMs, particularly those containing ruthenium. In light 

of this information, it would be helpful to know if non-ruthenium CO-RMs are able to 

produce significant amounts of ROS, particularly hydroxyl radicals. That the uptake of 

ruthenium based CO-RMs is significantly reduced by the presence of NAC provides a 

clear explanation for why this compound reduces the efficacy of these CO-RMs; 

however, it will be important to ascertain whether NAC also reduces the uptake of non- 

ruthenium CO-RMs including CO-RMs for which the activity is not affected by thiol 

compounds such as CORM-A1 (Desmard et al., 2012). It would also be interesting to 

see if other thiol compounds are also able to reduce CO-RM uptake by bacteria. 

 

The results of the current work, when viewed alongside the literature, suggest that the 

low concentrations of CORM-3 that are effective in decreasing oxygen consumption, 

growth and viability in bacterial systems, do not produce significant amounts of ROS, 

and therefore the ability of thiol compounds to abrogate these effects is likely to be 
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distinct from the antioxidant properties of these compounds. However, the literature has 

shown that high concentrations of CORM-2 do produce hydroxyl radicals (Tavares et 

al., 2011), a property that may explain why CORM-2 is a more potent bactericidal agent 

than CORM-3, despite having similar CO-release profiles. 
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Chapter 6 

 

The generation and characterisation of CORM-2 resistant mutants 
 

6.1 Introduction 

 

In order to understand more about the bacterial targets of CO-RMs and their 

mechanisms of toxicity in E. coli, work was done to generate and characterise mutants 

of E. coli that exhibited a CO-RM-resistant phenotype. 

 

The EZ-Tn5 <R6Kγori/KAN-2>Tnp TransposomeTM Kit (Epicentre Technologies) was 

used to generate random transposon mutants of the parent strain Iq Express E. coli (New 

England Biolabs). This method utilizes a hyperactive Tn5 transposon system (Goryshin 

and Reznikoff, 1998), which randomly inserts into the genomic DNA of the host. A 

kanamycin marker allows transposon mutants to be selected. The insertion site of the 

transposon in mutants of interest can then be identified by sequencing outwards from 

the transposon into the chromosomal DNA. No host proteins are required for 

transposition, allowing this system to be used in a wide variety of organisms (Goryshin 

and Reznikoff, 1998); for example, a derivative of EZ-Tn5 <R6Kgori/KAN-2> has been 

used successfully to generate a large pool of mutants of Salmonella enterica serovar 

Typhi, which enabled candidate essential genes in this organism to be identified 

(Langridge et al., 2009). 

 

Tn5 causes transposition by a ‘cut and paste’ mechanism as opposed to replicative 

transposition (Berg, 1977; Goryshin and Reznikoff, 1998). It naturally has a low level 

of transposition, which can be beneficial, allowing long-term, stable associations with 

the host genome; however the introduction of 3 mutations modified this transposon 

causing it to have a much higher frequency of transposition (1000-fold higher), making 

it ideal for use as a genetic tool (Goryshin and Reznikoff, 1998). Another beneficial 

feature of this system is that this transposon inserts into the genome randomly (Kirby, 

2007).  
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Tn5 comprises 3 antibiotic genes, including one conferring kanamycin resistance, the 

transposase (Tnp), and the negative regulator Inh, the synthesis of which is blocked in 

this system. There are also 19-bp inverted repeats at either end of the transposon that are 

recognised by transposase (Goryshin and Reznikoff, 1998). Once the transposome has 

been introduced into the host cell by transformation, interaction of the transposase with 

Mg2+ activates this enzyme (reviewed by Kirby, 2007). The transposase enzyme binds 

to sequences at either end of the transposable element and then catalyses the cleavage of 

the phosphodiester bonds at either end of the transposable element. This multifaceted 

enzyme then inserts the transposon into random sites in the target DNA by strand 

exchange, before being released. 

 

This chapter describes the generation of random transposon mutants using the EZ-Tn5 

<R6Kγori/KAN-2>Tnp TransposomeTM described above, followed by screening of the 

resulting mutants for resistance to CORM-2. Various assays were performed in order to 

verify the CORM-2 resistance of transposon mutants of interest and then nucleotide 

sequencing was used to identify the disrupted gene. 

 

6.2 Results 

6.2.1 The use of random transposon mutagenesis to generate E. coli mutants 

followed by screening for CORM -2 resistance. 

Critical in this work was the design of a screen to select for CO-RM resistance. CORM-

2 was used in this screen as, unlike CORM-3, it is commercially available and therefore 

more financially viable for use in large screens. Iq Express E. coli (a BL21 derivative, 

purchased from New England Biolabs) was used as the recipient strain for the 

transposon, as it is a chemically competent strain with a high efficiency for 

transformation. Initial trails to determine the minimum concentration of CORM-2 that is 

toxic to Iq Express E. coli revealed that exposure of cultures to 40 μM CORM-2 for 30 

min resulted in complete loss of viability (Figure 6.1). Therefore, this concentration was 

used in the mutant screen.  
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Figure 6.1 The survival of Iq Express E. coli in the presence of various 

concentrations of CORM-2. E. coli was grown aerobically to an OD600 of 50 Klett 

units, various concentrations of CORM-2 (0 – 50 μM) were added, and the cultures 

incubated at 37 °C with shaking at 200 rpm. After 30 min, samples (50 μl) were taken 

and serially diluted to allow viability counts to be performed. Data shows the mean and 

standard deviation of 5 technical replicates, and are representative of 2 biological 

replicates. 
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Transposon mutagenesis was performed using the EZ-Tn5™ <R6Kγori/KAN-2>Tnp 

Transposome™ Kit from Epicentre Biotechnologies, according to the manufacturer’s 

instructions. Briefly, the transposome complex (1 µl) was used to transfom Iq Express 

chemically competent E. coli (50 µl) using the high efficiency transformation protocol 

(heat shock) as described in section 2.4.3. Transformants were selected by plating the 

cell suspension on to nutrient agar, supplemented with kanamycin (30 µg ml-1).  

 

Mutagenised cultures of Iq Express were grown to early exponential phase (50 Klett 

units) in 30 ml defined minimal medium by incubation at 37 °C with shaking at 250 

rpm, then exposed to a bactericidal concentration of CORM-2 (40 µM) for 30 min and 

then spread onto nutrient agar plates containing kanamycin and incubated at 37 °C 

overnight. It was expected that only a small number of mutants would be ‘CORM-2 

resistant’ and therefore survive this screen; however nearly 300 were obtained. It is 

likely that many of these survivors are siblings generated during the outgrowth stage 

following mutagenesis. A control, in which the mutagenized cultures were treated with 

the vehicle DMSO, yielded too many colonies to count, confirming that treatment with 

CORM-2 had successfully killed a large portion of the kanamycin resistant colonies.  

 

A second selection process of the putative CORM-2 resistant colonies was performed. 

A trial was done in a 96-well plate in order to establish the concentration of CORM-2 

that would substantially reduce the growth of the parent strain Iq Express. The parental 

strain was incubated at 37 °C, until the cultures reached an OD600 of 0.2. A range of 

CORM-2 concentrations (0 - 60 µM) were added to the wells: 10 µM CORM-2 caused 

3.9% less growth than the control in which no compound was added, 20 µM CORM-2 

caused 14.6% less growth than the control and concentrations above 30 µM caused 

between 64 and 69% growth inhibition. This led to 40 µM CORM-2 being used as a 

stringent selection for CORM-2-resistant mutants. 

 

Each mutant was inoculated into 200 μl defined minimal medium in individual wells of 

a 96-well plate and incubated at 37 °C for 8 h until a typical OD600 of between 0.1 and 

0.3 was reached. CORM-2 (40 µM) was then added to each well and incubated at 37 °C 

with shaking for 16 h and the OD600 measured using a multilabel reader (VictorTM X3, 

Perkin Elmer). The change in OD600 was calculated and an increase of more than 0.2 
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was considered to indicate substantial growth in the presence of CORM-2. This 

identified 4 mutants as CORM-2 resistant, designated IB2 (A600 increase of 0.404), 

IB11 (ΔA600 = 0.413), 3A33 (ΔA600 = 0.200) and 3B8 (ΔA600 = 0.216), according to their 

position in the 96-well plates. The OD600 of each of these mutants before and after the 

addition of CORM-2 and the subsequent change in absorbance are given in Table 6.1. 

The mutant 1B11 is of particular interest as it appeared to have low growth initially, but 

then grew well in the presence of CORM-2. 1B2 is also of interest because it had a large 

increase in growth following the addition of CORM-2. 

 

6.2.2 Characterisation of mutants of interest.  

The 4 mutants of interest were then further characterised by conducting growth studies 

in larger volumes of medium in the presence of 25 μM CORM-2 (Figure 6.2). The 

addition of 25 μM CORM-2 to the parent strain Iq Express, reduced the growth rate of 

this strain and caused a delay in the onset of exponential phase of approximately 2 h, 

whereas the growth profiles of the transposon mutants were not affected.  

 

The relative CORM-2 resistance of each mutant of interest was further investigated by 

performing CORM-2 susceptibility assays. At the point of inoculation, various 

concentrations of CORM-2 (0 – 2 µM) were added to cultures of the parent strain Iq 

Express and the 4 transposon mutants of interest. This assay uses extremely low 

concentrations of CORM-2, because the stressor is added at the point of inoculation, at 

which higher concentrations would completely prevent growth. Cultures were incubated 

at 37 °C with shaking at 250 rpm for 17 h, before the OD600 was measured using a 

spectrophotometer (Jenway). Figure 6.3 shows the growth for each strain subjected to 

various concentrations of CORM-2 as a percentage of growth for that strain in the 

absence of CORM-2. All four mutants exhibited stronger growth in the presence of 

CORM-2 than the parental strain. In particular, the mutants 3B8, 1B2 and 1B11 

exhibited much greater resistance to growth inhibition by CORM-2 than the parental 

strain, while the mutant 3A33 showed a more moderate ‘CORM-2-resistant’ phenotype. 
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Table 6.1 OD600 of the mutants of interest obtained from the second stage of the 

CORM-2 screen. The OD600 of each of the parental strain and the mutants of interest 

grown in defined minimal medium was measured using a multilabel reader (VictorTM X3, 

Perkin Elmer), before and after the addition of 40 µM CORM-2. The OD600 and the 

subsequent change in absorbance are given for each mutant of interest. 

  

Strain OD600 before CORM-2 OD600 after CORM-2 ΔOD600 
Iq 0.162 0.168 0.006 

1B2 0.145 0.549 0.404 
1B11 0.063 0.476 0.413 
3A33 0.198 0.398 0.200 
3B8 0.171 0.387 0.216 



186 
 

Time (h)

14 16 18 20 22 24 26

0

50

100

150

200

250

I
q

Express control 

I
q

 Express + CORM-2 

 

Time (hours)

14 16 18 20 22 24
-20

0

20

40

60

80

100

120

140

160

180

1B2 Control 
1B2 + CORM-2 

Time (hours)

14 16 18 20 22 24
0

50

100

150

200

250

1B11 control
1B11 + CORM-2 

 

Time (hours)

14 16 18 20 22 24
0

50

100

150

200

250

3A33 Control
3A33 + CORM-2 

Time (hours)

14 16 18 20 22 24
0

50

100

150

200

250

3B8 control
3B8 + CORM-2 

 

Figure 6.2 The growth of selected transposon mutants in the presence and absence 

of CORM-2. Growth of the parent strain Iq Express (A) and the transposon mutants; 

1B2 (B), 1B11 (C), 3A33 (D) and 3B8 (E) was measured spectrophotometrically using 

a Klett meter in the presence of 25 μM CORM-2 (open circles) or the equivalent 

volume of the vehicle DMSO (closed circles). CORM-2 or DMSO was added when 

cultures reached an OD600 of approximately 30 Klett units (as indicated by the arrows). 

Cultures were inoculated at time = 0. Data are the means and standard deviations of two 

biological replicates. 
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Figure 6.3 CORM-2 susceptibility assay. At the point of inoculation, various 

concentrations of CORM-2 (0 – 1.5 µM) were added to cultures of the parent strain Iq 

Express (closed circles, burgundy line), and the 4 transposon mutants of interest: 3A33 

(open circles, orange line), 3B8 (closed triangles, yellow line), 1B2 (open triangles, 

green line) and 1B11 (closed squared, blue line). The OD600 was measured 17 h after 

inoculation using a spectrophotometer and the growth in the presence of CORM-2 

compared to that in the absence of CORM-2 for each strain to generate a percentage. 

These data are representative of 3 biological replicates. 
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Each transposon mutant was then grown on nutrient agar plates containing increasing 

concentrations of CORM-2 (30 μM – 40 μM; Table 6.2). Overnight cultures of each 

mutant of interest and the parental strain were grown and 50 μl was added to 2.95 ml of 

molten defined minimal medium (cooled to 50 °C) with 0.7% agar, before the addition 

of various concentrations of CORM-2 (20 - 40 μM). This mixture was poured onto a 

base layer of defined minimal medium with 1.5% agar and incubated overnight. The 

ability of each strain to grow on the plates containing CORM-2 was assessed by eye and 

characterised according to their ability to grow. The results obtained suggest that all 

four transposon mutants are more resistant to CORM-2 than cultures of Iq Express, 

which had poor growth on plates containing 35 μM CORM-2 and was unable to grow 

on plates containing 40 μM CORM-2, whereas each transposon mutant tested was able 

to grow on plates containing up to 40 μM CORM-2. The transposon mutant 3B8 had the 

most growth on CORM-2 plates at all concentrations. 

 

Finally, in order to further assess the relative ability of the transposon mutants of 

interest to grow in the presence of this compound, CORM-2 gradient plates were made 

(Gerhardt, 1994). Gradient plates involve two layers of agar, the first of which was 

constructed from defined minimal medium containing 1.5 % agar, which was set with 

the petri dish at an angle (achieved by balancing the plate on the edge of a plate lid). 

The second layer consisted of defined minimal medium containing 0.7% agar, to which 

(after cooling to approximately 50 °C) 60 μM CORM-2 was added. This agar 

containing CORM-2 is poured on to the first layer, resulting in a level agar plate that 

has a maximal quantity of CORM-2 at one apex of the plate, which decreases gradually 

across the plate (for a diagrammatic representation of the construction of this plate, see 

Figure 6.4A and B). Cultures of each transposon mutant of interest, and the parent 

strain, were grown overnight in LB (10 ml) at 37 °C with shaking at 250 rpm, these 

cultures were then harvested as described above, washed by resuspending in defined 

minimal medium, harvested once more and finally resuspended in 200 μl defined 

minimal medium. 50 μl of this suspension was streaked onto the CORM-2 gradient 

plates using a Gilson pipette to release the cell suspension along the concentration 

gradient, starting at the apex that had the least CORM-2. Care was taken to apply the 

suspension evenly and consistently between strains. More resistant strains are expected 

to grow further along the plate towards the higher concentration of CORM-2. In each 
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Table 6.2 The growth of transposon mutants of interest on plates containing 

CORM-2. The information in this table indicates the ability of each transposon mutant 

of interest, and the parent strain Iq Express, to grow on nutrient agar plates containing a 

range of CORM-2 concentration (30 – 40 μM). *** strong growth, ** intermediate 

growth, * little growth, - indicates no growth. These results are representative of two 

biological replicates. 

  

 Growth on plates containing CORM-2? 
 30 μM 35 μM 40 μM 

Iq Express ** * - 
1B2 ** ** ** 

1B11 ** ** ** 
3B8 *** *** *** 

3A33 ** ** ** 
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Figure 6.4 CORM-2 gradient plates. (A) and (B) represent the stages involved in 

making a gradient plate. In (A) the petri dish is tilted by resting one edge on the lid of a 

petri dish. 12.5 ml defined minimal medium with 1.5% agar was then poured into the 

plate and allowed to solidify on an angle. The plate is the returned to a flat surface and 

defined minimal medium containing 0.7% agar and 60 µM CORM-2 was poured on to 

make a level plate with a CORM-2 gradient (B). A concentrated suspension (50 µl) of 

each mutant was then applied to a plate in a line parallel with the concentration gradient. 

(C) shows a photograph of a gradient plate obtained from one biological replicate and is 

representative of the results obtained on each.   
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biological replicate, all 4 mutants exhibited stronger growth, and grew further along the 

CORM-2 concentration gradient than the parental strain Iq express (Figure 6.4C). This 

provides further evidence of the CORM-2 resistant phenotype of these mutants. 

  

6.2.3 Sequencing the CORM-2 resistant mutants 

In order to determine where the transposon had been inserted into the E. coli genome, 

genomic DNA was extracted from each transposon mutant and digested by the 

restriction enzyme RsaI. This restriction enzyme recognises the sequence 5’GTAC3’ 

and cuts between the T and the A to generate blunt ends. RsaI cuts once inside the 

kanamycin resistance gene, although it cuts several times within the R6K origin of 

replication and many times within the genomic DNA of E. coli. The sequence of the EZ 

Tn5 transposon is given in Figure 6.5 and the RsaI cut sites are marked. The digested 

chromosomal DNA was then ligated using T4 DNA ligase to form small, circular 

fragments of DNA, which were then amplified using the KAN-2 FP1 Forward Primer 

from the EZ-Tn5 <R6Kγori/KAN-2>Tnp TransposomeTM Kit, in conjunction with a 

primer designed to be internal to the Rsa1 site using the polymerase chain reaction 

(PCR). The sequence of both primers is given in Table 2.2, while Figure 6.6 shows a 

diagrammatic representation of the rescue cloning process. The PCR product generated 

from these primers with DNA from each transposon mutant of interest was sent for 

nucleotide sequencing (Beckman Coulter genomics) using the KAN-2 FP1 Forward 

Primer. An NCBI nucleotide blast search was then done to identify the sequence, and 

positive matches were found for three of the four sequences, a summary of the results is 

shown in Table 6.3.  

 

The transposon mutant strain 3B8 was found to have 97% sequence identity with the 

gene frvB, also known as yiiJ. This gene is 1452 bp in length and encodes the enzyme 

IIB and IIC domains of a predicted PEP-dependent sugar-tranporting phosphotranferase 

system. It is an inner membrane protein and a predicted transporter. Sequence similarity 

of frvB to characterized fructose-specific enzymes IIBC suggests this transporter may be 

specific for fructose (Reizer et al., 1994) 

 

The transposon mutant strain 1B11 was found to have 98% sequence identity with the 

gene sgaU, also known as ulaE. This gene is 855 bp in length and encodes the enzyme 
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CTGTCTCTTATACACATCTCAACCATCATCGATGAATTGCTTCGTTAATACAGATGTAGGTGTTCCACAG
GGTAGCCAGCAGCATCCTGCGATGCAGATCCGGATGCCATTTCATTACCTCTTTCTCCGCACCCGACAT
AGATCCGAAGATCAGCAGTTCAACCTGTTGATAGTACGTACTAAGCTCTCATGTTTCACGTACTAAGCT
CTCATGTTTAACGTACTAAGCTCTCATGTTTAACGAACTAAACCCTCATGGCTAACGTACTAAGCTCTCA
TGGCTAACGTACTAAGCTCTCATGTTTCACGTACTAAGCTCTCATGTTTGAACAATAAAATTAATATAA
ATCAGCAACTTAAATAGCCTCTAAGGTTTTAAGTTTTATAAGAAAAAAAAGAATATATAAGGCTTTTAA
AGCTTTTAAGGTTTAACGGTTGTGGACAACAAGCCAGGGATCTGCCATTTCATTACCTCTTTCTCCGCAC
CCGACATAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGG
AAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGC
TCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGAC
AGGAGCACGATCATGCGCACCCGTGGCCAGGACCCAACGCTGCCCGAGATGCGCCGCGTGCGGCTGCT
GGAGATGGCGGACGCGATGGATATGTTCTGCCAAGGGTTGGTTTGCGCATTCACAGGGTGTCTCAAAAT
CTCTGATGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAAC
AGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCC
AACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATC
TATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAAT
GATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCAT
TTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGAAAAACAGCATTCCAGGTA
TTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCAT
TCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAA
TGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCT
GGAAAGAAATGCATAAACTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGA
TAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCG
ATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTT
CAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCT
AATCAGAATTGGTTAATTGGTTGTAACACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGGCTTTG
TTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGATCACGCATCTTCCCGACAACGCAGACCGTTC
CGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTACAACAAAGCTCTCATCAACCGTGGCG
GGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTCAGGGTTGAGATGTGTATAAGAGACAG 

 

Figure 6.5 The sequence of the EZ Tn5 transposon. The Tn5 Mosaic Ends are 

highlighted in yellow, the RsaI cut sites in grey. The R6k origin of replication is given 

in a blue font, while the Tn903 Kanamycin resistance gene is in orange. In order to 

identify the insertion site of the transposon in mutants of interest, the forwards primer 

from the EZ-Tn5 <R6Kγori/KAN-2>Tnp TransposomeTM Kit was used, the sequence 

complementary to this primer (Kan2FP-1) is highlighted in turquoise, while the primer 

internal to Kanamycin RsaI site (highlighted in green) was designed by Iain Kean for 

the purpose of allowing sequencing of the genetic material adjacent to the transposon. 
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Figure 6.6 Identifying the transposon insertion site. Following insertion of the 

transposon (shown in pink) into the chromosomal DNA (shown in black) of the host, 

genomic DNA was extracted from the mutants of interest and digested with the 

restriction enzyme RsaI. This cuts once within the transposon and at many sites within 

the genomic DNA. The DNA fragments were ligated using T4 DNA ligase, and then the 

DNA adjacent to the transposon was amplified by PCR using a primer complementary 

to the sequence immediately following the RsaI cut site internal to the transposon 

(shown in green), in conjunction with a primer matching the DNA sequence at the 3’ 

end of the transposon (shown in blue).  
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Table 6.3 The genes disrupted in the transposon mutant strains that have been 
identified as CORM-2 resistant.   

Transposon 
Mutant 

Disrupted gene 
(all commonly 
used names) 

Sequence 
identity 

(%) 

Gene 
size (bp)

Gene function 

3B8 frvB 
yiiJ 

 

97 1452 Putative fructose-like PTS 
system enzyme IIB 

1B11 sgaU 
ulaE 

98  855 L-xylulose 5-phosphate 3-
epimerase 

 
3A33 manX 91 972 PTS system mannose - 

specific transporter subunit 
IIC 

1B2 No sucessful 
sequence match 

obtained 
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L-xylulose 5-phosphate 3-epimerase, an isomerase that catalyses the conversion of L-

xylulose 5-phosphate to L-ribulose 5-phosphate, a step in the catabolism of L-ascorbate 

in E. coli (Yew and Gerlt, 2002). Interestingly, the sga operon encodes three 

components of a PTS system that imports L-ascorbate into the cell. 

 

The transposon mutant strain 3A33 was found to have 91% sequence identity to a short 

section (21 bp) of the gene manX. This gene is 972 bp in length and encodes subunit IIC 

of a mannose - specific transporter in the inner membrane, which like FrvB and SgaU, 

is a component of the sugar PTS system.  This transporter is required for bacteriophage 

lambda DNA penetration (Esquinas-Rychen and Erni, 2001).  

 

After several attempts, the PCR product from IB11 failed to give a sequence that 

matched any known gene in the E. coli gene database. Therefore, due to time 

constraints, work with this mutant was terminated. 

 

It seemed significant that all three of the genes identified in this work encode 

components of a PTS transport system, which may indicate that CORM-2 enters cells 

via these, or related transporters. This suggests that a key mechanism of bacterial 

resistance to CO-RMs could be the disruption of transport of these compounds into the 

cell. 

 

6.2.4 The characterisation of independent mutants 

In order to verify that mutations in the 3 genes mentioned above are sufficient to cause 

resistance to CORM-2, and that this phenotype was not caused by downstream effects 

of the transposon insertion, independent mutants were sought. Mutants in manX, frvB 

and sgaU from the Keio collection were obtained from Simon Andrews, The University 

of Reading. These mutations were then transferred by P1 vir phage transduction into an 

MG1655 background, and the transductants selected on kanamycin plates.  

 

Primers were designed using Primer 3 software, version 0.4.0 to allow amplification of 

these three genes. These primers were then used to amplify the relevant section of DNA 

in each of the mutants and in the wild type MG1655 strain, and the PCR products were 

then run on an agarose gel. As expected, each primer pair generated a sole product of 
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the correct size from the wild type DNA, but produced a differently sized product in 

each of the transductants, indicating the absence of the gene (and replacement with a 

kanamycin marker) in each case (Figure 6.7), confirming that the appropriate mutations 

had been transferred to an MG1655 background. 

 

The sensitivity of these independently generated mutants to CORM-2 was then 

compared to the wild type MG1655 strain. Cultures of each strain were grown in 

defined minimal medium (30 ml) with glycerol (0.5%) as a carbon source to 30 Klett 

units as described previously (section 2.1.6). CORM-2 (4 µM) was added and the 

growth was monitored over time and compared to that of the MG1655 wild type strain 

(Figure 6.8). Under these conditions, the growth of the sgaU and frvB mutants (Figure 

6.8B and C respectively) was actually increased by this low concentration of CORM-2. 

The growth of the manX mutant was not enhanced by this concentration of CORM-2; 

however, in this assay, the growth of this mutant was less inhibited by CORM-2 than 

that of the wild type strain (Figure 6.8A). This provides evidence that mutations in these 

genes cause a CORM-2 resistant phenotype, and may, in some cases, result in enhanced 

growth in the presence of this compound. 

 

The growth of these three mutants in the presence of CORM-2 was assessed further by 

performing CORM-2 susceptibility assays in which low concentrations of CORM-2 (0 – 

1 µM) were added to cultures of MG1655 wild type and the 3 mutants of interest. The 

sgaU mutant was significantly more resistant than the wild type strain at 0.25 µM 

CORM-2 (P < 0.05) and at 0.5 µM CORM-2 (P < 0.1) (Figure 6.9A, yellow bars). The 

manX mutant was significantly more sensitive to CORM-2 (0.25 and 0.5 µM) than the 

wild type (P < 0.1) (Figure 6.9A, green bars). However, while the frvB mutant appeared 

to be more resistant to CORM-2 than the wild type strain (Figure 6.9A, orange bars); 

this was not statistically significant. Importantly, the growth of all of the strains was not 

affected by up to 3 µM RuCl2(DMSO)4 (Figure 6.9B). It should be noted however that 

the statistical analysis was performed on percentage data which compared the growth of 

each strain with CORM-2 to that without CORM-2. This was done in order to account 

for differences in the growth of each strain in the absence of CORM-3. It is 

acknowledged that it is not ideal to perform statistical tests on percentage data, and so 

care must be taken when interpreting these results.  
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Figure 6.7 Confirmation of the absence of the mutated gene in the MG1655 

transductants.  Genomic DNA was extracted from a kanamycin resistant colony from 

each transduction event (sgaU, frvB, manX). A PCR reaction was performed on each 

DNA sample using primers designed to amplify the mutated gene in each case. (Lanes 2 

- 4 contain the PCR product of the SgaU primers from wild type DNA (lane 2, positive 

control, 800 bp) and the sgaU DNA (lanes 3 and 4, replicates, 1350 bp), lanes 5 - 7 

contain the PCR product of the FrvB primers from wild type DNA (lane 5, positive 

control, 1450 bp) and the frvB DNA (lanes 6 and 7, replicates, 1400 bp), finally, lanes 8 

- 10 contain the PCR product of the ManX primers from wild type DNA (lane 8, 

positive control, 1100 bp) and the manX DNA (lanes 9 and 10, replicates, 1400 bp),  

Lanes 1 and 11 show the molecular weight marker (Hyperladder 1, Bioline), the sizes of 

which are indicated on the right hand side.  
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Figure 6.8 CORM-2 growth assays with the putative CORM-2 resistant mutants in 

an MG1655 background. CORM-2 (4 µM) was added at early exponential phase to 

cultures of E. coli: (A) manX, (B) sgaU and (C) manX. Nothing was added to the 

controls. The growth of the wild type MG1655 strain with and without CORM-2 is 

shown in each case for comparison. 
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Figure 6.9 CORM-2 susceptibility assay with the putative CORM-2 resistant 

mutants in an MG1655 background. At the point of inoculation, various 

concentrations of (A) CORM-2 (0.25 - 1 µM) or (B) RuCl2(DMSO)4 (0 - 3 µM) were 

added to cultures of the wild type MG1655 (brown) and the 3 mutants of interest: frvB 

(orange), sgaU (yellow) and manX (green). OD600 was measured 

spectrophotometerically and the percentage growth for each strain in the presence of 

each concentration of compound, compared to the growth in the absence of compound 

was calculated. Data for CORM-2 are averages and standard errors of 6 biological 

replicates, and for RuCl2(DMSO)4 are the averages and standard deviations of 2 

biological replicates. Asterisks indicate significantly higher percentage growth of the 

mutant strain compared to wild type in the presence of CORM-2 as measured using 

Student’s t test (*, P < 0.1; **, P < 0.05). It is however acknowledged that it is not ideal 

to perform statistical analysis on percentage data. 
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6.2.5 The effects of sub-inhibitory concentrations of CO-RM on bacterial growth 

Interestingly, very low concentrations of CORM-2 caused an increase in growth in the 

wild type MG1655 strain, as well as the mutant strains (Figure 6.9). It was ruled out that 

this was caused by the addition of the vehicle DMSO, as addition of a volume of DMSO 

equivalent to the largest volume of CORM-2 added in the previous experiment did not 

result in any change in optical density compared to growth of the strains with no 

additions (data not shown). Consequently, the effects of very low concentrations of both 

CORM-3 (a ruthenium containing CO-RM) and CORM-401 (a manganese-based CO-

RM) was then investigated with two aims: 1) to assess whether the mutant strains 

exhibited resistance to CO-RMs other than CORM-2, and 2) to investigate whether sub-

inhibitory concentrations of these CO-RMs also caused a stimulation of growth as seen 

with CORM-2.  

 

None of the mutant strains exhibited resistance to CORM-3 (Figure 6.10A) or CORM-

401 (Figure 6.10B), which suggests that any resistance these strains have to CORM-2 is 

specific to this compound, and not to wider features of CO-RMs in general or to CO. It 

is notable however that all strains, including wild type, also exhibited increased growth 

in the presence of low concentrations of CORM-3 and CORM-401. Wild type cultures 

grew approximately 80% more than untreated cultures when treated with 0.5 µM 

CORM-3, and approximately 50% more when treated with 1 µM CORM-3, and yet 

treatment with 2 µM CORM-3 almost completely prevented growth of this strain 

(Figure 6.10A, brown bars). Similarly, sub-inhibitory concentrations of CORM-401 (< 

50 µM) had a stimulatory effect on the growth of wild type cultures, with maximal 

stimulation (40% more than untreated cultures) occurring at 15 µM CORM-401. The 

stimulation of growth by sub-inhibitory concentrations of both ruthenium- (CORM-2 

and CORM-3) and manganese- (CORM-401) containing CO-RMs is an unexpected and 

interesting finding that requires further investigation.  

  

6.2.6 Uptake of CORM-2 by sgaU and frvB mutants 

It was hypothesised that the sgaU and frvB mutants may be partially resistant to 

CORM-2 because of reduced uptake of this compound into the bacterial cell caused by a 

defect in the PTS system, encoded by the sga and frv operons, which usually import L-

ascorbate and fructose, respectively. Therefore ruthenium uptake in sgaU and frvB 
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Figure 6.10 CORM-3 and CORM-401 susceptibility assay with the putative 

CORM-2 resistant mutants in an MG1655 background. At the point of inoculation, 

various concentrations of (A) CORM-3 (0 - 3 µM) or (B) CORM-401 (0 - 200 µM) 

were added to cultures of the wild type strain MG1655 and the 3 mutants of interest: 

frvB (orange), sgaU (yellow) and manX (green). OD600 was measured 

spectrophotometerically and the percentage growth for each strain in the presence of 

each concentration of CO-RM, compared to the growth in the absence of the CO-RM 

was calculated.  
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mutant cells treated with CORM-2 was measured over a time-course using ICP-MS 

analysis, as described previously (section 5.2.10), and compared to that in wild type 

MG1655 cells. The results of this investigation indicate that CORM-2 enters both sgaU 

cells (Figure 6.11A) and frvB cells (Figure 6.11B) at a similar initial rate as in wild type 

cells, but that ruthenium reaches a slightly lower equilibrium level within the mutant 

cells. This difference is significant in frvB cells at the 40 min time point (p = 0.055) and 

in sgaU cells at the 40 min time point (p = 0.01) and the 80 min time point (p = 0.06). 

 

6.3 Discussion 

There are still many unanswered questions surrounding the interaction of CO-RMs with 

bacteria and the nature of their bactericidal effects. It was therefore considered useful to 

generate and characterise CO-RM resistant strains of E. coli in the hope that this would 

reveal previously unappreciated targets of CO-RMs and facilitate a better understanding 

of the bacterial response to these compounds. 

 

The approach taken was the generation of a large pool of random transposon mutants, 

followed by selecting for CORM-2 resistant mutants by the application of a 

concentration of CORM-2 that is toxic to the parental strain (40 µM, Figure 6.1). 

Surviving mutants were screened further to confirm their CORM-2 resistant phenotype 

(Figure 6.2, 6.3, 6.4 and Table 6.2) and then the insertion sites of the transposon in the 

resistant mutants were identified by rescue cloning.  

 

It is very interesting that all three of the CORM-2 resistant mutants identified in this 

work had mutations in genes encoding components of sugar-transporting PTS enzymes. 

This could indicate that CORM-2 enters E. coli cells via PTS transporters, as this would 

explain why mutations in genes that encode components of these transporters might be 

resistant to CORM-2. Currently, almost nothing is known about the transport of CO-

RMs into bacterial cells, and therefore the comments made in this discussion are largely 

speculative. It is possible that CO-RMs enter bacterial cells by free diffusion through 

the membrane, perhaps down a concentration gradient, which provides the driving 

force; however, it seems plausible that CO-RMs enter bacterial cells using a transporter 

system, either by a passive or active mechanism. Some PTS transporters are able to 
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Figure 6.11 The uptake of CORM-2 by wild type MG1655 E. coli and the sgaU and 

frvB mutants. Cultures of MG1655 wild type and the sgaU mutant of E. coli in an 

MG1655 background (A, open circles) and frvB mutant (B, open circles) both in an 

MG1655 background were grown to mid-log phase (OD600 ~0.5) prior to the removal of 

a 20 ml sample from each, both before and at regular intervals after the addition of 

CORM-2 (20 μM). Cell pellets were assayed for ruthenium content by inductively 

coupled plasma - mass spectrometry. Data are the means and standard deviations of 3 

biological replicates. Asterisks indicate statistically significant differences in the 

ruthenium content of cultures of the mutant strains compared to wild type as measured 

using Student’s t test (*, P ≤ 0.06; **, P = 0.01).  
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transport only one specific sugar; for example, N-acetylglucosamine is the only sugar 

that can be transported by EIINag from E. coli, which is encoded by nagE. Interestingly 

though, this transporter has been shown to transport the antibiotic streptozotocin into the 

cell (Lengeler, 1980). In contrast, the mannose PTS transporter, encoded by the 

manXYZ operon has a diverse substrate specificity, and is able to transport a variety of 

hexose sugars, including mannose, glucose, fructose and the amino sugars, glucosamine 

and N-acetylglucosamine. It is therefore feasible that CO-RMs could use sugar 

transporters to enter bacterial cells. CORM-2 has a molecular weight of 512, whereas 

that of CORM-3 is 310, both of which are larger than the molecular weights of 

ascorbate, mannose and fructose, which are 176 for the former and 180 for each of the 

latter. There are however some broad similarities in the structures of ascorbate and 

CORM-3, such as the pentose ring containing an oxygen atom and a double bond to 

oxygen from the adjacent carbon atom in the ring. Table 6.4 shows the chemical 

structures of CORM-2, CORM-3 and CORM-401, and the sugars ascorbate (transported 

by the product of the sga operon), fructose (transported by the product of the frv 

operon), and mannose (transported by the product of the man operon). 

 

The ruthenium uptake measurements are consistent with the the sgaU and frvB mutants 

importing lower levels of CORM-2 into the cell. However, the observation that a large 

portion of the ruthenium applied as CORM-2 is still able to enter these mutants suggests 

that there are other mechanisms of entry of CORM-2 into the cell, perhaps by free 

diffusion, or by other transport proteins. This is consistent with these mutants only 

being partially resistant to growth inhibition by CORM-2. Moreover, preliminary data 

were collected, which suggested that the entry of CORM-3 into both of these mutant 

strains did not differ from that of wild type cells (data not shown), which combined with 

a lack of resistance of these mutants to CORM-3, suggests that this CO-RM enters the 

cell via different transporters. 
 

Subsequent measurements of the growth of independently generated mutants of sgaU, 

frvB and manX in an MG1655 background, in the presence of CORM-2, revealed that 

only the sgaU mutant was statistically significantly resistant to this compound (Figure 

6.9, yellow bars). The gene sgaU encodes the enzyme L-xylulose 5-phosphate 3- 
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epimerase, which catalyses the isomerisation of L-xylulose 5-phosphate to L-ribulose 5-

phosphate; a subsequent epimerase conversion, catalysed by another member of the 

operon, converts this to D-xylulose-5-phosphate, an intermediate of the pentose 

phosphate pathway (Yew and Gerlt, 2002).  Members of the operon upstream of sgaU 

encode proteins responsible for the uptake and phosphorylation of L-ascorbate, via a 

phosphotransferase uptake system (Zhang et al., 2003). Mutants with deletions in the 

sga operon are unable to ferment L-ascorbate (Yew and Gerlt, 2002). Structural 

similarities of the active site of SgaU to the active sites of other epimerases suggest a 

metal-dependent epimerization mechanism for this enzyme (Shi et al., 2008). 

 

The original transposon mutants exhibited a stronger CORM-2 resistance phenotype 

than the independently generated mutants. This is likely to be due to the different 

genetic backgrounds of the strains. The transposon mutants were BL21 derivatives with 

a series of genetic modifications, which rendered the strain highly competent and ideal 

for the overexpression of proteins. The genotype of this strain is given in Table 2.1. The 

Iq express parent strain appears to be more sensitive to CORM-2 than MG1655 (data not 

shown). This is not ideal, and with hindsight, it seems that further attempts should have 

been made to generate MG1655 that were sufficiently competent to allow the 

transposon mutagenesis to be performed directly in this strain.  

 

It is possible that the CORM-2 resistant phenotype of the original transposon mutants 

were caused partly, or completely, by downstream effects of the transposon insertion, 

this may be particularly true in the case of the transposon mutant designated 3A33 (later 

identified as manX) as the independently generated manX mutant did not appear to be 

resistant to CORM-2, and in fact, was significantly more sensitive to CORM-2 than the 

wild type strain. The manX gene is up-regulated 13.2-fold by organic solvents (Okochi 

et al., 2007), which may explain the sensitivity of this strain to CORM-2 as this 

compound is delivered in the organic solvent DMSO. Alternatively, it is possible that 

the transposon insertion site in this mutant was incorrectly identified, as it only matched 

the manX gene by 91% over a 21 base pair sequence, although there were no better 

matches for the transposon insertion site in this mutant. Furthermore, the transposon 

mutant 3A33 exhibited the weakest CORM-2 resistant phenotype in the initial 

resistance screen with a change in OD600 of 0.2 (assigned as the minimum change to 
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indicate significant growth) following the addition of CORM-2, and in the initial 

characterisation assays (Figure 6.3, orange line). 

 

Although the characterisation of independently generated strains with mutations in the 

genes identified by transposon mutagenesis as conferring resistance to CORM-2 was an 

important control, if time had allowed, these strains would have ideally been 

complemented with the appropriate functional gene in order to confirm that this restored 

the wild type phenotype. This would provide unequivocal evidence that mutations in 

these genes were the cause of the CORM-2 resistance.  

 

Analysis of the transcriptome of E. coli following exposure to sub-lethal concentrations 

of CO-RMs is an alternative approach to identify previously unappreciated effects of 

CO-RMs and to further our understanding of the global effects of these compounds on 

bacterial cells. Such studies have been carried out by this laboratory using CORM-3 

(Davidge et al., 2009b; McLean et al., 2013) as mentioned previously (section 1.3.4) 

and the manganese based CO-RM, CORM-401 (Lauren Wareham, unpublished). 

Searches of these transcriptomic databases for the genes identified in the current work 

revealed that sgaU is down-regulated 1.62-fold in the presence of 40 µM CORM-3 30 

min after addition of the compound, and that this down-regulation is maintained at 80 

min after addition (Samantha McLean, unpublished). This trend is seen with many 

genes in the sga operon, with the most significant change being the 2-fold down-

regulation of sgaB. This supports the hypothesis that some CO-RMs may enter E. coli 

cells via this transporter. Interestingly, despite the lack of CORM-2 resistance in the 

independent manX mutant in the MG1655 background, the manXYZ operon was down-

regulated by 2.78 - 3.22-fold 40 min after the addition of CORM-3. This mutant was not 

found to exhibit resistance to CORM-3 (Figure 6.10A, green bars). The expression of 

frvB was slightly up-regulated across the time-course by CORM-3. 

 

In contrast, CO gas (bubbled at a rate of 50 ml min-1) caused a very slight up-regulation 

of the sga and man operons across the time-course. There was, however, an overall 

down-regulation of the frv operon, with frvB being down-regulated by approximately 2-

fold at all time-points after 5 min following exposure to CO. The different effects of CO 

gas and CO-RMs on the transcriptome emphasise the very different effects of these 
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compounds on the bacterial cell. Their different effects on the genes of interest here 

suggest that it is not CO, but the CO-RM compound itself that causes the down-

regulation of the sga and manXYZ operons, consistent with the free diffusion of CO 

through lipid bilayers, and so the absence of the need for a transporter for CO gas. 

 

Treatment with the manganese based CO-RM, CORM-401 (66.7 µM), caused a 2.5-fold 

up-regulation of manX after 40 min and a 3-fold up-regulation at 80 min. In contrast, 

frvB was down-regulated by 3-fold at 5 min and 2.7-fold at 10 min following the 

addition of this CO-RM; however, expression of frvB returned to basal levels by the 80 

min time-point. The sgaU gene was slightly up-regulated, by approximately 1.8-fold at 

2.5, 40 and 80 min, following CORM-401 addition (Lauren Wareham, unpublished). 

Again, the mutants of interest did not exhibit resistance to this CO-RM (Figure 6.10B), 

which was not unexpected, as these CO-RMs, particularly CORM-401, differ greatly in 

their size, structure and chemical properties; therefore it is likely that they enter the cell 

via different pathways.  

 

While conclusions cannot be drawn from this data as it describes the transcriptomic 

responses of E. coli to CORM-3 and CORM-401, but not CORM-2, it is interesting to 

note that both the sgaU operon and the manX operon are slightly down-regulated in 

response to CORM-3. This could reflect a bacterial defence against the import of 

ruthenium based CO-RMs.  

 

An alternative approach to this work would have been the screening of an established 

library of transposon mutants of E. coli (or indeed a pathogenic bacterial species) with 

CO-RMs. This would have the advantage of allowing mutants in every non-essential 

gene in an organism to be screened for CO-RM resistance, or indeed sensitivity, 

allowing a much more thorough and systematic investigation of the response of mutants 

to CO-RMs. 

 

An interesting and unexpected finding of this work was that very low concentrations of 

CORM-2 (Figure 6.9), CORM-3 (Figure 6.10A) and CORM-401 (Figure 6.10B) added 

at the point of inoculation cause increased growth of wild type MG1655 E. coli and the 

mutant strains. The growth of these strains with low levels of the CO-RMs was not 
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followed over time and so conclusions about the effect of these compounds on the rate 

of growth cannot be made, but it is clear that the final culture density is significantly 

greater in the presence of sub-inhibitory concentrations of CO-RM (wild type cultures 

grew approximately 80% more than untreated cultures when treated with 0.5 µM 

CORM-3 and 40% more when treated with 15 µM CORM-401). This could suggest that 

a factor, such as exhaustion of the carbon source glycerol, is preventing growth in the 

absence of CORM, but is not limiting in the presence of CO-RM. Initially, it was 

considered that DMSO could be acting as a substrate for E. coli treated with CORM-2 

(for which DMSO is the vehicle), however this was considered unlikely due to the very 

small amount of DMSO added, and indeed a control in which an equivalent volume of 

DMSO was added to the E. coli cultures was not found to stimulate or inhibit growth 

(data not shown). If time had allowed, an important control would be to investigate the 

effects of very low amounts of CO gas on bacterial growth. An interesting hypothesis 

for why some bacteria may grow better in the presence of CO or CO-RMs is that the up-

regulation of HO by CO activates a variety of cytoprotective pathways within the cell 

(Motterlini and Otterbein, 2010). However, this is not the cause of the increase in 

growth in this case as E. coli K12 does not contain a HO enzyme. 

 

There is currently no literature on the effects of very low levels of CO or CO-RMs on 

bacterial growth; however, there is much on the effects of these compounds on 

mammalian cells as outlined in the introduction to this thesis (sections 1.1.3.5 and 

1.2.8). For example, CO has been shown to prevent excessive production of ROS in 

mitochondria by uncoupling electron transport from ATP production (Lo Iacono et al., 

2011), while brief exposure of astrocytes  to CO has been shown to improve respiration 

(Almeida et al., 2012). Furthermore, the concentration of CO has been shown to be 

critical in determining the response. Low concentrations of CORM-3 (0.5 and 1 μM) 

caused an increase in the respiratory control ratio and mitochondrial transmembrane 

potential in isolated heart mitochondria, while higher concentrations (5 and 10 μM) 

caused a decrease in these values (Lancel et al., 2009).  

 

Treatment of intact E. coli with CORM-3 has been shown to result in a transient 

stimulation of respiration prior to respiratory inhibition (Wilson et al., 2013). It was 

concluded that this stimulation was the result of transport of K+ and Na+ ions across the 
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bacterial membrane. It is possible that an increased rate of respiration in the presence of 

low concentrations of CO-RMs causes the improved growth observed in the current 

work.  

 

An alternative possibility is that exposure to low levels of CO-RMs (and perhaps other 

non-specific stressors) activates cellular machinery that is able to counteract stress 

rendering the cell better equipped to deal with stress, and indeed better able to grow, in 

the absence of stress. This hypothesis emphasises the multifaceted effects of CO-RMs. 

It is likely that some cellular processes are benefited by interaction with CO and the 

CO-RM molecules, while others are inhibited; however at high concentrations of CO-

RM, the beneficial effects are masked by the inhibitory effects. 
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Chapter 7 

 

General Discussion 

 

7.1 Summary 

The work presented in this thesis has developed knowledge of the antibacterial 

properties of a range of CO-RM compounds, but in particular the ruthenium-containing 

compounds CORM-2 and CORM-3, in comparison with CO gas. Several similarities 

between these CO-RMs and CO gas were demonstrated; for example, cytochrome bd-I 

was found to be the most resistant oxidase of E. coli to CORM-3, as is true for CO gas. 

It is hypothesised that in both cases, this resistance is caused by the fast dissociation rate 

of CO from this oxidase (Borisov, 2008). Furthermore, inhibition of E. coli respiration 

by CORM-3, as with CO gas, is shown here to be photosensitive, suggesting that CO 

from CORM-3 binds to ferrous haems in a classical, light-sensitive manner. However, 

CORM-3 does not merely act as a CO donor. Unlike CO gas, CORM-3 was not 

preferentially inhibitory to bacterial respiration when added at low oxygen tensions, a 

difference hypothesised to be caused by an accumulation of CO in the micro-domains of 

the target sites inside bacterial cells. This intracellular accumulation of CORM-2 and 

CORM-3 is demonstrated here using ICP-MS (Chapters 5 and 6) and is thought to 

explain in part the increased potency of these compounds as antimicrobial agents in 

comparison with CO gas. 

 

One of the most significant findings of this work was the demonstration that the thiol 

compound NAC dramatically reduces the uptake of both CORM-2 and CORM-3 into E. 

coli cells. This is important due to the many previously unexplained reports in the 

literature that thiol compounds are able to abrogate many of the effects of CO-RMs, 

particularly those containing ruthenium (Desmard et al., 2012), in both prokaryotic 

(Desmard et al., 2009; Murray et al., 2012) and eukaryotic systems (Sawle et al., 2005; 

Taille et al., 2005). Other researchers in the field have proposed that thiol compounds 

protect against the deleterious effects of CO-RMs by virtue of their antioxidant 

properties (Tavares et al., 2011); however, data are presented herein that suggest that 
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CORM-3, at the concentrations routinely used in biological experiments, does not 

produce significant amounts of ROS, in agreement with the work of others (Desmard et 

al., 2009; Desmard et al., 2012), and that other antioxidants, which do not contain thiol 

groups, are unable to confer the same protection (Figure 5.11). It should now be 

explored whether thiol-containing compounds also reduce the uptake of CO-RMs in 

eukaryotic systems as this could have implications for the therapeutic applications of 

CO-RMs. 

 

7.1.1 The effects of CO-RMs on bacterial respiration 

The work described here provides the first evidence that CO from CORM-3 binds to all 

three terminal oxidases of E. coli. The data confirm that application of CORM-3 to 

suspensions of E. coli membrane particles leads to immediate inhibition of respiration. 

It was shown, for the first time, that membranes containing cytochrome bd-I as the only 

terminal oxidase are more resistant to this inhibition than membranes containing the 

other oxidase types, and that this oxidase can confer resistance to growth inhibition by 

CORM-3, as discussed in Chapter 3. This thesis also contains the first report of 

inhibition of a non-haem containing oxidase by CO-RMs, as discussed below. 

 

This thesis aimed to further the understanding of the extent to which inhibition of 

respiration is the cause of the bactericidal nature of the CO-RMs. It is clear that CO 

from CORM-2 and CORM-3 (Figures 3.1 and 3.6) binds to and inhibits terminal 

oxidases and that at high concentrations, this inhibition could be sufficient to kill the 

bacteria. It is shown here (Figure 3.10) that the viability of E. coli treated with 30 µM 

CORM-3 was reduced by 95% within 1 h, but that killing was reduced to 70% when a 

bright light was shone on to the culture vessel, causing the photolysis of haem-CO 

bonds. This provides the first conclusive evidence that the binding of CO from CORM-

3 to haem proteins contributes to killing by these compounds. However, these data do 

not allow a distinction between the relief of CO inhibition of respiration and the lysis of 

haem-CO bonds in other haemoproteins within the bacterial cell. Therefore it is not 

possible to determine based on these results whether the reduction in killing in the light 

was caused by alleviation of the inhibition of repiration, or the lysis of haem-CO bonds 

in other haemoproteins. Furthermore, the substantial killing effect (70%) in the presence 
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of CORM-3 and light could imply that there are other causes of killing by CORM-3, as 

discussed below.  

 

A difficulty associated with the use of E. coli as a model organism in these studies is 

that it has flexible respiratory pathways, and so is able to rapidly adapt to a range of 

environmental conditions. Indeed, transcriptomic analyses by this laboratory have 

shown altered expression of the individual terminal oxidases of this organism in 

response to CORM-3 (Davidge et al., 2009b; McLean et al., 2013) and CORM-401 

(Lauren Wareham, unpublished). This gives rise to the possibility that following 

treatment with CO-RM, particularly at lower concentrations that do not kill all bacteria 

within a short time, E. coli may either synthesise more terminal oxidases, or switch to 

an alternative form of energy generation, such as fermentation, and therefore continue to 

grow after a lag phase. It would therefore be interesting to study the effects of CO-RMs 

on E. coli grown on a non-fermentable substrate such as succinate to investigate 

whether this prevented such recovery. Preliminary data suggests that this is the case 

(Samantha McLean, unpublished). This transient inhibition was not observed in the 

current work with CORM-2 and CORM-3, which appear to be two of the most potent 

antibacterial CO-RMs, possibly due to their ruthenium centre, as will be discussed 

further below. However, CORM-401 (Lauren Wareham, unpublished) and the 

photoCO-RM Mn(CO)3(tpa-κ3N)]Br (Christoph Nagel and Samantha McLean, 

unpublished) are much less detrimental to the growth of E. coli than ruthenium-based 

CO-RMs, which suggests that inhibition of respiration limits growth only transiently 

until the bacteria can switch to an alternative method of energy production. If inhibition 

of respiration by CO-RMs were the main cause of killing by these compounds, then it 

would be expected that all CO-RMs would have similar levels of toxicity, or rather that 

CO-RMs that release more CO per molecule, or had faster rates of CO-release, would 

be more toxic. However, this does not seem to be the case; CORM-401 is much less 

toxic to E. coli than CO-RMs 2 and 3, despite releasing approximately three times more 

CO per mole than these compounds. The notion that inhibition of aerobic respiration is 

not wholly responsible for killing by CO-RMs is also consistent with reports of the 

growth inhibition of anaerobically grown E. coli by both CORM-2 (Nobre et al., 2007) 

and CORM-3 (Davidge et al., 2009b). 
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It seems therefore that ruthenium containing CO-RMs cause killing by other 

mechanisms, in addition to the inhibition of respiration. In order for these mechanisms 

to be elucidated, a thorough understanding of the chemistry of the intact CO-RM and of 

the breakdown products following CO release is required. Initially, the potential effects 

of these CO-RM backbones were not fully appreciated, because control experiments 

using ‘inactive’ compounds devoid of CO did not elicit the same effects as the active 

CO-RMs in a range of growth, viability and respiratory experiments. The need for 

robust control compounds is discussed further below.  

 

The recent paper by Desmard et al. (2012) provides the most through comparative 

report to date of the bactericidal effects of a range of CO-RMs. They show that CO-

RMs with different chemical properties differentially influence bacterial growth and O2 

consumption and that the kinetics of CO release from CO-RMs does not determine their 

antibacterial effects. They conclude that the inhibition of oxygen consumption by CO 

released from CO-RMs is not the only factor influencing their bactericidal effect, and 

that the nature of the transition metal is important in determining the antibacterial 

activity exerted by CO-RMs.  

 

7.1.2 The redox properties of CO-RMs 

Following the realisation that the inhibition of respiration is not the sole cause of the 

bactericidal effects of CO-RMs, the hypothesis that the production of reactive oxygen 

species by these compounds leads to their toxic effects, as proposed by Tavares et al. 

(2011), was explored.  

 

This work demonstrates that while CORM-2 does produce small amounts of ROS, 

probably hydroxyl radicals as reported by Tavares et al. (2011) (Figure 5.14), low 

concentrations of CORM-3 that are effective in decreasing oxygen consumption, growth 

and viability in bacterial systems, do not produce significant amounts of ROS in vitro 

(Figure 5.10 and 5.15) or in vivo, as demonstrated by an assay for hydrogen peroxide 

production (data not shown). The production of ROS by CORM-2 may explain why this 

compound is a more potent bactericidal agent than CORM-3 despite having similar CO-

release profiles. In this work, the ability of thiol compounds to abrogate the effects of 

CO-RMs was shown to be unrelated to the antioxidant properties of these compounds, 
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but rather is likely to be caused by a dramatic reduction in CO-RM uptake into the 

bacterial cell in the presence of certain thiol compounds such as NAC (Figure 5.16). 

 

This work raises questions about the redox properties of CO-RMs. This is an area that is 

currently not well understood. Some transition metal carbonyls e.g. 

Na[Mo(CO)3(histidinate)] and Na3[Mo(CO)3(citrate)] can cause hydroxyl radical 

formation (Seixas, 2010). In addition, the CO-RM ALF062 is also hypothesised to 

produce hydroxyl radicals by reaction of the electron-dense molybdenum with H2O and 

O2 (Tavares et al., 2011) and CORM-2 is hypothesised to produce these radicals via the 

water gas shift reaction (see below) involving the reduction of oxygen by ruthenium 

species. 

CO + H2O             CO2 + H2 

 

CORM-3 is thought to take part in the first stage of the water gas shift reaction. Under 

acidic conditions (CORM-3 has a pH of around 3 in solution), CORM-3 becomes 

[Ru(CO)2(CO2H)Cl(glycinate)]-, which could then lose a proton to form 

[Ru(CO)2(CO2)Cl(glycinate)]2-between pH 6 and 7. The two electrons could then be 

used to reduce a substrate leading to the release of CO2 (Brian Mann, personal 

communication). The ability of CORM-2 and CORM-3 to reduce a variety of 

tetrazolium dyes has been demonstrated recently in this laboratory (Salar Ali, 

unpublished). However in contrast, the Hb spectra shown in the current work (Figure 

5.5) appear to show oxidation of this haemoprotein upon addition of CORM-3. This 

emphasises the complex redox properties of these compounds, which are likely to vary 

under different environmental conditions. It will be important for the future use of CO-

RMs as research tools and potential pharmacological agents that the redox properties of 

these compounds are understood. Cyclic voltammetry could provide a possible means 

by which to investigate these properties. 

 

7.1.3 Other potential mechanisms of killing by CO-RMs 

The results described above suggest that neither inhibition of respiration by CO released 

from CORM-3, nor reactive oxygen species, are fully responsible for the bactericidal 

properties of this compound. As indicated previously (in this discussion and by 
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Desmard et al. (2012)), it seems that the chemistry of the ruthenium center must be 

considered as a possible contributing factor of killing by CORM-2 and CORM-3. 

 

Non-carbonylated ruthenium(II) compounds have been reported to possess potent 

antibacterial properties against the pathogens P. aeruginosa, E. coli, Proteus vulgaris 

and Proteus mirabilis (Anthonysamy et al., 2008). Ruthenium compounds at 

micromolar concentrations have also been shown to inhibit ATPase activity in E. coli 

(Scott et al., 1980). In contrast, Desmard et al. (2009) demonstrated that bacterial 

growth was not affected by ruthenium chloride (1 - 10 µM), however, it has not been 

demonstrated that this compound is able to enter bacterial cells. 

 

The transcriptomic response of E. coli to CORM-3 indicates that there is a global 

cellular response to CORM-3, and probabilistic modelling of these data implicates 

several transcription factors in this response, although the mechanism by which CORM-

3 affects these transcription factors, with the exception of ArcA / FNR (as described in 

section 1.3.4) is not understood (Davidge et al., 2009b). 

 

The transcriptomic data suggest that the metabolism and transport of several metals 

including iron is greatly disrupted by CORM-3 (Davidge et al., 2009b, McLean et al., 

2013) and this is supported by measurements of the intracellular concentration of these 

metals. Genes involved in sulfur metabolism, such as tauABC, ssuAD, cysWA and sbp, 

and in methionine metabolism, including metNI and metBLF are up-regulated by 

CORM-2 (Nobre, 2009) and CORM-3 (McLean et al., 2013) and so this reveals another 

route by which CO-RMs disrupt normal cellular homeostasis. 

 

An investigation into the effects of CORM-3 on a hemA mutant of E. coli  that is unable 

to synthesise haem (Wilson, 2012) revealed that this mutant was more sensitive than 

wild type to the bactericidal effects of CORM-3, which emphasises the importance of 

non-haem targets in killing by this compound. It may also suggest that haem groups in 

wild type E. coli may act as CO sinks, protecting other cellular components from 

damage by CO. The work revealed that CORM-3 differentially alters the transcription 

of genes involved in iron homeostasis and in Fe-S cluster assembly and repair in the 

hemA mutant compared to wild type, which implicates these as targets of CORM-3.  
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The finding presented in the current work that the non-haem oxidase AOX from V. 

fischeri is hypersensitive to inhibition by CO-RMs also provides further evidence that 

either CO or the CO-RM centre, are able to interact with and inhibit non-haem targets. 

The insensitivity of this oxidase to CO gas suggests that it is some other feature of these 

compounds that are interacting with and inhibiting the activity of this oxidase. A report 

by Santos-Silva et al. (2011) used X-ray crystallography to demonstrate that CORM-3 

is able to bind to hen egg white lysozyme by interacting with histidine and aspartate. 

There is also a report of CORM-2, but not CO gas or iCORM-2, activating ATP-gated, 

human P2X4 receptors by acting as an antagonist (Wilkinson and Kemp, 2011). These 

results emphasise the importance of considering non-haem targets for CO-RMs and the 

potential effects of interactions between the backbone of CO-RMs with proteins.  

 

7.1.4 The entry of CO-RMs into bacterial cells 

Several papers have reported the uptake of the metal center of CO-RMs into cells 

(Desmard et al., 2009; Jesse et al., 2013; McLean et al., 2013; Meister et al., 2010; 

Nobre et al., 2007), and there is spectroscopic evidence that CO from these compounds 

also enters bacterial cells (Lauren Wareham, unpublished), but currently, little is known 

about the mechanisms by which CO-RMs enter bacterial (or indeed mammalian) cells. 

 

It is possible that CO-RMs enter bacterial cells by passive diffusion, but it seems more 

likely given their size, that transporters are involved in their uptake. The present work 

has identified sugar transporting phosphotransferase systems as a possible means of 

CO-RM entry into the bacterial cell because of a partial CORM-2-resistant phenotype 

of E. coli with deletions in the frvB gene (encoding a component of the PTS fructose 

transporter) and sgaU (a component of a xylulose PTS transporter, see Chapter 6). This 

hypothesis is strengthened by data showing reduced entry of CORM-2 into each of 

these mutant strains (Figure 6.11). It now needs to be considered whether it is 

structurally and chemically possible for these transporters to enable CORM-2 entry into 

the bacterial cell, and other means of CO-RM entry should also be sought. 

 

The work presented in this thesis also adds to the current understanding of the bacterial 

uptake of CORM-2 and CORM-3 by demonstrating that the thiol compound NAC 

dramatically reduces the uptake of these compounds. It is hypothesised that this is due 
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to the thiol compound altering the structure of the CO-RM, thereby rendering it 

unsuitable for transport by the usual mechanisms.  

 

In the future, it will be important to investigate the interactions of CO-RMs with 

transporters that accumulate CO-RMs against a concentration gradient. It would also be 

interesting to investigate whether CO-RMs enter bacterial cells by active or passive 

transport, This could be done by measuring the rate of transport (assayed as intracellular 

ruthenium by ICP-MS) in the presence of different concentrations of CO-RM. 

Furthermore, ATPase mutants and uncouplers could be used in order to investigate the 

involvement of the proton motive force in CO-RM transport. The involvement of the 

multidrug efflux pump, implicated by transcriptomics (Davidge et al., 2009b; McLean 

et al., 2013), could be studied by investigating the rate of entry and exit of CO-RMs and 

the sensitivity of an mdt mutant to these compounds. The Mdt protein could be purified 

and CO-RM binding to this protein assayed by fluorimetry, CD, NMR, scintillation-

proximity or other methods. It is known that some CO-RMs are more toxic to bacterial 

cells than to eukaryotic cells (Desmard et al., 2009) and it would be interesting to 

investigate whether this is because bacteria can import CO-RMs more effectively than 

eukaryotic cells. 

 

7.2 Future directions and outstanding questions 

CO-RMs have shown great promise since their advent in the early 2000s as potential 

drugs in a wide range of human diseases and as antimicrobial agents, and this has led to 

the development of a wide range of new CO-RMs. With regards to understanding the 

antimicrobial properties of CO-RMs, it is important that each of these compounds is 

characterised and systematically assessed for its antimicrobial properties under standard 

conditions. Such data should allow clear patterns to emerge, which should further the 

current understanding of why CO-RMs are bactericidal. For example, it will be 

important to know which CO-RMs produce ROS and whether this contributes to the 

biological effects of these compounds. 

 

Throughout this work, it has become increasingly apparent that the compounds used 

currently as controls are far from ideal and, in many cases, do not accurately mimic the 

chemical properties of the intracellular breakdown products of CO-RMs. This is a major 
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limitation in the study of CO-RMs and in many cases prevents clear conclusions being 

drawn as to whether the effects seen are caused by CO from the CO-RM, or are caused 

by undesired, and in many cases, poorly understood, side reactions involving the CO-

RM metal centre devoid of CO. These limitations are not confined to the present work, 

and in many published works no control compounds are used, or the appropriate solvent 

is added in place of a control (Desmard et al., 2007; Desmard et al., 2009; Nobre et al., 

2007). 

 

Within the current work, three different control compounds have been used. 

RuCl2(DMSO)4 is used as a control for CORM-2 as both compounds contain chloride 

ligated to a central ruthenium and the compounds are broadly structurally similar, but 

with the carbonyl groups of the CO-RM replaced with DMSO in the control; however, 

the chemistry of the two compounds in solution is not identical. This compound has 

been used in published work as a control for CORM-3 (Davidge et al., 2009b).  

 

Another control compound used in this work and in published work (Clark et al., 2003; 

Santos-Silva et al., 2011) is iCORM-3. iCO-RM is a term used to indicate an inactive 

form of the compound, produced by prolonged incubation of the CO-RM in solvent or 

buffer to allow all labile CO to be released. However, our recent increased 

understanding of the mechanisms and triggers of CO release from ruthenium based CO-

RMs (ie. the need for a compound, such as dithionite, to be present (McLean et al., 

2013)), suggests that many iCO-RMs, particularly iCORM-3 may not have lost CO, but 

rather have formed a stable tricarbonyl structure (McLean et al., 2013) in which 

components of the buffer prevent CO loss from the compound, even when it is later 

exposed to dithionite in the myoglobin assay. A recent paper has provided the most 

detailed analysis to date of the global effects of iCORM-3 on the transcriptome of E. 

coli, and showed that, while this control compound caused a much smaller impact on 

gene expression than CORM-3, it still had some effects distinct from those of the active 

compound (McLean et al., 2013). For example, the transcription factor ArcA, which 

represses respiratory metabolism, was much less affected by iCORM-3 than CORM-3, 

whereas IscR, which is involved in the regulation of iron-sulfur cluster assembly, was 

affected similarly by CORM-3 and iCORM-3, suggesting that damage to iron-sulfur 

clusters could be a consequence of exposure to the ruthenium centre of CORM-3. This 
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work also revealed that ruthenium from iCORM-3 accumulates in cells approximately 

10-fold less than from CORM-3, which may explain why this compound has a smaller 

impact on bacterial cells (and perhaps mammalian cells, although this has not been 

demonstrated). An alternative explanation for the effects observed in cultures treated 

with iCORM-3 is that the causative agent is a small amount of CO that is released from 

this compound (iCORM-3 preparations typically release up to 5% of the CO compared 

to CORM-3). Despite the progress made in understanding the effects of this control 

compound, it is clear that our comprehension of its chemistry is far from complete, and 

so its use as a control poses more questions than it answers. 

 

The third control compound used in this work is termed miCORM-3 (myoglobin-

inactivated CORM-3 (Wilson et al., 2013). In many ways this is the best control 

compound as it has been exposed to biological molecules (myoglobin); however, 

although precautions were taken to use the minimum quantity of dithionite require to 

reduce the myoglobin used in the preparation of this control compound, it is possible 

that some remains in the final preparation, which is obviously not ideal. A possible 

solution to this would be to bubble the miCORM-3 solution with air prior to use in 

order to oxidise any residual dithionite, although this would still leave some residual 

species from the breakdown of dithionite in the solution. 

 

 Attempts to use myoglobin to inactivate other CO-RM compounds, such as CORM-

401, have been unsuccessful and, the best control available for this compound has been 

the suspected breakdown products of this CO-RM (MnSO4 and dithiocarbamate), 

however work is currently underway to use haemoglobin to biologically remove the CO 

from this CO-RM (Lauren Wareham, unpublished). 

 

Those working on the rational design of new CO-RMs are beginning to show awareness 

of the importance of the availability of well-characterised control compounds; for 

example new photoCO-RMs are in development that carry additional ligands for each 

labile CO. These are then able to replace CO group(s) following their release (Nagel 

and Schatzschneider, unpublished). This results in stable and well characterised 

breakdown products following intracellular CO release and such compounds can be 

synthesised separately and used as accurate control compounds. 
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As mentioned several times throughout this thesis, the discovery in 2012 that dithionite 

promotes CO release from CORM-2 and CORM-3 necessitates that several pieces of 

CO-RM dogma be reconsidered (McLean et al., 2013). A systematic assessment of the 

kinetics of CO entry into cells in the absence of dithionite has begun using the truncated 

globin Ctb from C. jejuni as a reporter when overexpressed in E. coli (Mariana Tinajero 

Trejo and Lauren Wareham, unpublished). This will provide important information as to 

the rate and amount of CO that is able to enter cells under native biological conditions 

from a range of CO-RMs. 

 

Furthering our understanding of CO-release kinetics and of the interactions of CO-RMs 

with bacterial cells could provide important information about the effects of these 

compounds on mammalian cells where they are hoped to have great potential as 

therapeutic agents. For example, the finding that the thiol compound NAC prevents the 

entry of ruthenium-containing CO-RMs into bacterial cells may have implications for 

mammalian CO-RM research, where the abrogation of the effects of CO-RMs by thiol 

compounds is also seen (Sawle et al., 2005; Taille et al., 2005). 

 

It will be important for the future use of CO-RMs as a treatment for bacterial infections 

to consider the effects of CO-RMs on bacteria within a host. Preliminary studies have 

already been done to investigate the effects of CORM-3 on the uptake and killing of 

Neisseria meningitidis in macrophages (Wilson, 2012). These studies found that 

CORM-3 had no significant effect on the ability of macrophages to phagacytose N. 

meningitidis, or to kill bacteria that had already been internalised. In contrast, the ability 

of macrophages to phagacytose P. aeruginosa is improved by CORM-3 (Desmard et al., 

2009), and the CO-RM ALF-186 is able to promote clearance of S. typhimurium in mice 

by promoting the bactericidal activities of macrophages (Onyiah et al., 2013). These 

results are interesting, because, as an anti-inflammatory agent, it could be expected that 

CO-RMs would supress the immune response to infection (Chin and Otterbein, 2009). 

 

7.3 Conclusions 

This thesis reports an investigation into the mechanisms by which CO-RMs affect the 

respiration and growth of bacteria. While several key findings have advanced our 



222 
 

understanding of these processes, there is still much work to be done in order for the 

mechanisms of the antibacterial activity of CO-RMs to be fully understood. 

 

When the antibacterial properties of CO-RMs first became apparent, they were 

considered to have great promise in the treatment of antibiotic-resistant infections, 

which pose a looming global crisis. However, it is becoming apparent that CO-RMs 

differ in their bactericidal properties; CORM-2 and CORM-3 have potent antimicrobial 

effects, while other CO-RMs may only transiently inhibit growth.  

 

One potential use of CO-RMs in the fight against antimicrobial infections is as an 

adjunctive or adjuvant treatment (Pena et al., 2012). Research in underway to 

investigate whether CO-RMs could be used in combination with established antibiotics 

in order to reduce the dose of antibiotic needed, or perhaps even potentiate the effects of 

antibiotics (Salar Ali and Robert Poole, unpublished). 

 

It seems unlikely that CORM-2 and CORM-3 would ever be suitable therapeutic agents 

to treat bacterial infections, due to the limitations of using a non-biological metal in 

such treatments. It will therefore be important to develop new CO-RMs which are 

potent antibacterial agents, and yet are not toxic to mammalian cells. This may be 

achieved through the use of biologically innocuous metals in place of ruthenium, or by 

modifications that allow the more precise targeting of these CO-RMs to prokaryotic 

cells. A thorough understanding of the mechanisms of action of each new CO-RM will 

be required in order to allow the rational design of therapeutically viable CO-RMs. 

 



223 
 

References 

Akamatsu, Y., Haga, M., Tyagi, S., Yamashita, K., Graca-Souza, A. V., Ollinger, R., 
Czismadia, E., May, G. A., Ifedigbo, E., Otterbein, L. E., Bach, F. H. and 
Soares, M. P. (2004). Heme oxygenase-1-derived carbon monoxide protects 
hearts from transplant associated ischemia reperfusion injury. FASEB J. 18, 771-
2. 

Akhter, S., McDade, H. C., Gorlach, J. M., Heinrich, G., Cox, G. M. and Perfect, J. R. 
(2003). Role of alternative oxidase gene in pathogenesis of Cryptococcus 
neoformans. Infect. Immun. 71, 5794-802. 

Alberto, R. and Motterlini, R. (2007). Chemistry and biological activities of CO-
releasing molecules (CO-RMs) and transition metal complexes. Dalton Trans., 
1651-60. 

Almeida, A. S., Queiroga, C. S. F., Sousa, M. F. Q., Alves, P. M. and Vieira, H. L. A. 
(2012). Carbon monoxide modulates apoptosis by reinforcing oxidative 
metabolism in astrocytes. Role of Bcl-2. J. Biol. Chem. 287, 10761-10770. 

Alonso, J. R., Cardellach, F., Lopez, S., Casademont, J. and Miro, O. (2003). Carbon 
monoxide specifically inhibits cytochrome c oxidase of human mitochondrial 
respiratory chain. Pharmacol. Toxicol. 93, 142-146. 

Andersson, M. E. and Nordlund, P. (1999). A revised model of the active site of 
alternative oxidase. FEBS Lett. 449, 17-22. 

Anthonysamy, A., Balasubramanian, S., Shanmugaiah, V. and Mathivanan, N. (2008). 
Synthesis, characterization and electrochemistry of 4'-functionalized 2,2':6',2''-
terpyridine ruthenium(II) complexes and their biological activity. Dalton Trans., 
2136-43. 

Antonini, E. and Brunori, M. (1971). "Hemoglobin and myoglobin in their reactions 
with ligands". North-Holland Publishing, Amsterdam. 

Aono, S. (2003). Biochemical and biophysical properties of the CO-sensing 
transcriptional activator CooA. Acc. Chem. Res. 11, 825-831. 

Aono, S., Nakajima, H., Saito, K. and Okada, M. (1996). A novel heme protein that acts 
as a carbon monoxide-dependent transcriptional activator in Rhodospirillum 
rubrum. Biochem. Biophys. Res. Commun. 228, 752-756. 

Aono, S., Ohkubo, K., Matsuo, T. and Nakajima, H. (1998). Redox-controlled ligand 
exchange of the heme in the CO-sensing transcriptional activator CooA. J. Biol. 
Chem. 273, 25757-25764. 

Armstrong, F. A. (2004). Hydrogenases: active site puzzles and progress. Curr. Opin. 
Chem. Biol. 8, 133-140. 

Arregui, B., Lopez, B., Garcia Salom, M., Valero, F., Navarro, C. and Fenoy, F. J. 
(2004). Acute renal hemodynamic effects of dimanganese decacarbonyl and 
cobalt protoporphyrin. Kidney Int. 65, 564-74. 

Artinian, L. R., Ding, J. M. and Gillette, M. U. (2001). Carbon monoxide and nitric 
oxide: interacting messengers in muscarinic signaling to the brain's circadian 
clock. Exp. Neurol. 171, 293-300. 

Aslund, F., Berndt, K. D. and Holmgren, A. (1997). Redox potentials of glutaredoxins 
and other thiol-disulfide oxidoreductases of the thioredoxin superfamily 
determined by direct protein-protein redox equilibria. J. Biol. Chem. 272, 30780-
6. 



224 
 

Assembly of Life Sceinces (U.S.). Committee on Medical and Biologic Effects of 
Environmental Pollutants. (1977). "Ozone and other photochemical oxidants". 
National Academy of Sciences, Washington D.C. 

Atkin, A. J., Lynam, J. M., Moulton, B. E., Sawle, P., Motterlini, R., Boyle, N. M., 
Pryce, M. T. and Fairlamb, I. J. S. (2011). Modification of the deoxy-
myoglobin/carbonmonoxy-myoglobin UV-vis assay for reliable determination 
of CO-release rates from organometallic carbonyl complexes. Dalton Trans. 40, 
5755-5761. 

Atlung, T. and Brondsted, L. (1994). Role of the transcriptional activator AppY in 
regulation of the cyx appA operon of Escherichia coli by anaerobiosis, 
phosphate starvation, and growth phase. J. Bacteriol. 176, 5414-5422. 

Avetisyan, A. V., Dibrov, P. A., Semeykina, A. L., Skulachev, V. P. and Sokolov, M. 
V. (1991). Adaptation of Bacillus FTU and Escherichia coli to alkaline 
conditions - The Na+-motive respiration. Biochim. Biophys. Acta 1098, 95-104. 

Babcock, G. T. and Wikstrom, M. (1992). Oxygen activation and the conservation of 
energy in cell respiration. Nature 356, 301-309. 

Babior, B. M., Lambeth, J. D. and Nauseef, W. (2002). The neutrophil NADPH 
oxidase. Arch. Biochem. Biophys. 397, 342-4. 

Bani-Hani, M. G., Greenstein, D., Mann, B. E., Green, C. J. and Motterlini, R. (2006). 
Modulation of thrombin-induced neuroinflammation in BV-2 microglia by 
carbon monoxide-releasing molecule 3. J. Pharmacol. Exp. Ther. 318, 1315-
1322. 

Bekker, M., de Vries, S., Ter Beek, A., Hellingwerf, K. J. and de Mattos, M. J. (2009). 
Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic 
terminal cytochrome bd-II oxidase. J. Bacteriol. 191, 5510-7. 

Belcher, J. D., Mahaseth, H., Welch, T. E., Otterbein, L. E., Hebbel, R. P. and 
Vercellotti, G. M. (2006). Heme oxygenase-1 is a modulator of inflammation 
and vaso-occlusion in transgenic sickle mice. J. Clin. Invest. 116, 808-816. 

Berg, D. E. (1977). "Insertion and excision of the transposable kanamycin resistance 
determinant Tn5. In DNA Insertion Elements, Plasmids, and Episomes". Cold 
Spring Harbor Press, Cold Spring Harbor, New York. 

Berthold, D. A., Andersson, M. E. and Nordlund, P. (2000). New insight into the 
structure and function of the alternative oxidase. Biochimica et Biophysica Acta   
Bioenergetics 1460, 241-254. 

Berthold, D. A. and Stenmark, P. (2003). Membrane-bound diiron carboxylate proteins. 
Annu Rev Plant Biol 54, 497-517. 

Berthold, D. A., Voevodskaya, N., Stenmark, P., Graslund, A. and Nordlund, P. (2002). 
EPR studies of the mitochondrial alternative oxidase - Evidence for a diiron 
carboxylate center. Journal of Biological Chemistry 277, 43608-43614. 

Bjorklof, K., Zickermann, V. and Finel, M. (2000). Purification of the 45 kDa, 
membrane bound NADH dehydrogenase of Escherichia coli (NDH-2) and 
analysis of its interaction with ubiquinone analogues. FEBS Lett. 467, 105-110. 

Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., 
ColladoVides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, 
N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B. and Shao, Y. 
(1997). The complete genome sequence of Escherichia coli K-12. Science 277, 
1453-1462. 

Bloch, K. D., Ichinose, F., Roberts, J. D., Jr. and Zapol, W. M. (2007). Inhaled NO as a 
therapeutic agent. Cardiovasc. Res. 75, 339-48. 



225 
 

Blumer, C. and Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial 
cyanide biosynthesis. Arch. Microbiol. 173, 170-177. 

Boczkowski, J., Poderoso, J. J. and Motterlini, R. (2006). CO-metal interaction: vital 
signaling from a lethal gas. Trends Biochem. Sci. 31, 614-621. 

Boettcher, K. J. and Ruby, E. G. (1990). Depressed light emission by symbiotic Vibrio 
fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 172, 3701-6. 

Bonam, D., Lehman, L., Roberts, G. P. and Ludden, P. W. (1989). Regulation of carbon 
monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum - Effects 
of CO and oxygen on synthesis and activity. J. Bacteriol. 171, 3102-3107. 

Bonnett, R. and McDonagh, A. F. (1973). The meso-reactivity of porphyrins and related 
compounds. VI. Oxidative cleavage of the haem system. The four isomeric 
biliverdins of the IX series. J Chem Soc Perkin 1 9, 881-8. 

Borisov, V. B. (1996). Cytochrome bd: Structure and properties. A review. 
Biochemistry - Moscow 61, 565-574. 

Borisov, V. B. (2008). Interaction of bd-type quinol oxidase from Escherichia coli and 
carbon monoxide: Heme d binds CO with high affinity. Biochemistry-Moscow 
73, 14-22. 

Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A. and Giuffre, A. 
(2007). Redox control of fast ligand dissociation from Escherichia coli 
cytochrome bd. Biochem. Biophys. Res. Commun. 355, 97-102. 

Borisov, V. B., Gennis, R. B., Hemp, J. and Verkhovsky, M. I. (2011a). The 
cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta Bioen. 
1807, 1398-1413. 

Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H. Z., Gennis, R. 
B. and Verkhovsky, M. I. (2011b). Aerobic respiratory chain of Escherichia coli 
is not allowed to work in fully uncoupled mode. Proc. Natl. Acad. Sci. U. S. A. 
108, 17320-17324. 

Borisov, V. B., Sedelnikova, S. E., Poole, R. K. and Konstantinov, A. A. (2001). 
Interaction of cytochrome bd with carbon monoxide at low and room 
temperatures. Evidence that only a small fraction of heme b595 reacts with CO. J. 
Biol. Chem. 276, 22095-22099. 

Brouard, S., Berberat, P. O., Tobiasch, E., Seldon, M. P., Bach, F. H. and Soares, M. P. 
(2002). Heme oxygenase-1-derived carbon monoxide requires the activation of 
transcription factor NF-kappa B to protect endothelial cells from tumor necrosis 
factor-alpha-mediated apoptosis. J. Biol. Chem. 277, 17950-61. 

Brown, S. B., Brown, E. A. and Walker, I. (2004). The present and future role of 
photodynamic therapy in cancer treatment. Lancet Oncology 5, 497-508. 

Bruckmann, N. E., Wahl, M., Reiss, G. J., Kohns, M., Watjen, W. and Kunz, P. C. 
(2011). Polymer Conjugates of Photoinducible CO-Releasing Molecules. Eur. J. 
Inorg. Chem., 4571-4577. 

Bruggemann, H., Bauer, R., Raffestin, S. and Gottschalk, G. (2004). Characterization of 
a heme oxygenase of Clostridium tetani and its possible role in oxygen 
tolerance. Arch. Microbiol. 182, 259-263. 

Calhoun, M. W. and Gennis, R. B. (1993). Demonstration of separate genetic loci 
encoding distinct membrane-bound respiratory NADH dehydrogenases in 
Escherichia coli. J. Bacteriol. 175, 3013-3019. 

Calhoun, M. W., Oden, K. L., Gennis, R. B., Demattos, M. J. T. and Neijssel, O. M. 
(1993). Energetic efficiency of Escherichia coli - Effects of mutations in 
components of the aerobic respiratory chain. J. Bacteriol. 175, 3020-3025. 



226 
 

Carraway, M. S., Ghio, A. J., Suliman, H. B., Carter, J. D., Whorton, A. R. and 
Piantadosi, C. A. (2002). Carbon monoxide promotes hypoxic pulmonary 
vascular remodeling. American journal of physiology. Lung cellular and 
molecular physiology 282, L693-702. 

Carre, J. E., Affourtit, C. and Moore, A. L. (2011). Interaction of purified alternative 
oxidase from thermogenic Arum maculatum with pyruvate. FEBS Lett. 585, 397-
401. 

Castor, L. N. and Chance, B. (1955). Photochemical action spectra of carbon monoxide-
inhibited respiration. J. Biol. Chem. 217, 453-465. 

Castor, L. N. and Chance, B. (1959). Photochemical determinations of the oxidases of 
bacteria. J. Biol. Chem. 234, 1587-1592. 

Cepinskas, G., Katada, K., Bihari, A. and Potter, R. F. (2008). Carbon monoxide 
liberated from carbon monoxide-releasing molecule CORM-2 attenuates 
inflammation in the liver of septic mice. Am. J. Physiol.-Gastr. L. 294, G184-
G191. 

Chance, B., Erecinska, M. and Wagner, M. (1970). Mitochondrial responses to carbon 
monoxide toxicity. Ann. N. Y. Acad. Sci. 174, 193-204. 

Chance, B., Smith, L. and Castor, L. (1953). New methods for the study of the carbon 
monoxide compounds of respiratory enzymes. Biochim. Biophys. Acta 12, 289-
298. 

Cheesman, M. R., Watmough, N. J., Pires, C. A., Turner, R., Brittain, T., Gennis, R. B., 
Greenwood, C. and Thomson, A. J. (1993). Cytochrome bo from Escherichia 
coli - Identification of haem ligands and reaction of the reduced enzyme with 
carbon monoxide. Biochem. J. 289, 709-718. 

Chin, B. Y. and Otterbein, L. E. (2009). Carbon monoxide is a poison... to microbes! 
CO as a bactericidal molecule. Curr Opin Pharmacol 9, 490-500. 

Chlopicki, S., Olszanecki, R., Marcinkiewicz, E., Lomnicka, M. and Motterlini, R. 
(2006). Carbon monoxide released by CORM-3 inhibits human platelets by a 
mechanism independent of soluble guanylate cyclase. Cardiovasc. Res. 71, 393-
401. 

Chung, S. W., Hall, S. R. and Perrella, M. A. (2009). Role of haem oxygenase-1 in 
microbial host defence. Cell. Microbiol. 11, 199-207. 

Chung, S. W., Liu, X., Macias, A. A., Baron, R. M. and Perrella, M. A. (2008). Heme 
oxygenase-1-derived carbon monoxide enhances the host defense response to 
microbial sepsis in mice. J. Clin. Invest. 118, 239-247. 

Clark, D. S., Lentz, C. P. and Roth, L. A. (1976). Use of carbon-monoxide for 
extending shelf-life of prepackaged fresh beef. Canadian Institute of Food 
Science and Technology Journal-Journal De L Institut Canadien De Science Et 
Technologie Alimentaires 9, 114-117. 

Clark, J. E., Naughton, P., Shurey, S., Green, C. J., Johnson, T. R., Mann, B. E., Foresti, 
R. and Motterlini, R. (2003). Cardioprotective actions by a water-soluble carbon 
monoxide-releasing molecule. Circ. Res. 93, e2-8. 

Clark, R. W., Youn, H., Lee, A. J., Roberts, G. P. and Burstyn, J. N. (2007). DNA 
binding by an imidazole-sensing CooA variant is dependent on the heme redox 
state. J. Biol. Inorg. Chem. 12, 139-146. 

Coburn, R. F. (1979). Mechanisms of carbon-monoxide toxicity. Prev. Med. 8, 310-322. 
Coburn, R. F., Forster, R. E. and Blakemore, W. S. (1963). Endogenous Carbon 

Monoxide Production in Man. J. Clin. Invest. 42, 1172-1178. 



227 
 

Collman, J. P., Hallber, T. R. and Suslick, K. S. (1980). "Metal Ion Activation of 
Dioxygen". Wiley, New York. 

Cooper, C. E. and Brown, G. C. (2008). The inhibition of mitochondrial cytochrome 
oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and 
hydrogen sulfide: chemical mechanism and physiological significance. J. 
Bioenerg. Biomembr. 40, 533-539. 

Cooper, C. E., Torres, J., Sharpe, M. A. and Wilson, M. T. (1997). Nitric oxide ejects 
electrons from the binuclear centre of cytochrome c oxidase by reacting with 
oxidised copper: a general mechanism for the interaction of copper proteins with 
nitric oxide? FEBS Lett. 414, 281-284. 

Cooper, M., Tavankar, G.R. and Williams, H.D. (2003). Regulation of expression of the 
cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa. Microbiology 
149, 1275-1284. 

Cotton, F. A. and Wilkinson, G. (1980). "Advances in Organic Chemistry". Wiley, New 
York. 

Crook, S. H., Mann, B. E., Meijer, A., Adams, H., Sawle, P., Scapens, D. and 
Motterlini, R. (2011). Mn(CO)4[S2CNMe(CH2CO2H)], a new water-soluble CO-
releasing molecule. Dalton Trans. 40, 4230-4235. 

Cunningham, L., Pitt, M. and Williams, H. D. (1997). The cioAB genes from 
Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase 
related to the cytochrome bd quinol oxidases. Mol. Microbiol. 24, 579-591. 

Cunningham, L. and Williams, H. D. (1995). Isolation and characterization of mutants 
defective in the cyanide-insensitive respiratory pathway of Pseudomonas 
aeruginosa. J. Bacteriol. 177, 432-438. 

D'Amico, G., Lam, F., Hagen, T. and Moncada, S. (2006). Inhibition of cellular 
respiration by endogenously produced carbon monoxide. J. Cell Sci. 119, 2291-
2298. 

D'mello, R., Hill, S. and Poole, R. K. (1995). The oxygen affinity of cytochrome bo' in 
Escherichia coli determined by the deoxygenation of oxyleghemoglobin and 
oxymyoglobin: Km values for oxygen are in the submicromolar range. J. 
Bacteriol. 177, 867 - 870. 

D'mello, R., Hill, S. and Poole, R. K. (1996). The cytochrome bd quinol oxidase in 
Escherichia coli has an extremely high oxygen affinity and two oxygen-binding 
haems: implications for regulation of activity in vivo by oxygen inhibition. 
Microbiology 142, 755-763. 

Das, A. K., Helps, N. R., Cohen, P. T. and Barford, D. (1996). Crystal structure of the 
protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 15, 6798-
809. 

Dassa, J., Fsihi, H., Marck, C., Dion, M., Kieffer-Bontemps, M. and Boquet, P. L. 
(1991). A new oxygen-regulated operon in Escherichia coli comprises the gene 
for a putative third cytochrome oxidase and for pH 2.5 acid phosphatase (appA). 
Mol. Gen. Genet. 229, 341-352. 

Davidge, K. S., Motterlini, R., Mann, B. E., Wilson, J. L. and Poole, R. K. (2009a). 
Carbon monoxide in biology and microbiology: surprising roles for the "Detroit 
perfume". Adv. Microb. Physiol. 56, 85-167. 

Davidge, K. S., Sanguinetti, G., Yee, C. H., Cox, A. G., McLeod, C. W., Monk, C. E., 
Mann, B. E., Motterlini, R. and Poole, R. K. (2009b). Carbon monoxide-
releasing antibacterial molecules target respiration and global transcriptional 
regulators. J. Biol. Chem. 284, 4516-4524. 



228 
 

Day, D. A., Millar, A. H., Wiskich, J. T. and Whelan, J. (1994). Regulation of aternative 
oxidase activity by pyruvate in soybean mitochondria. Plant Physiol. 106, 1421-
1427. 

Delgado-Nixon, V. M., Gonzalez, G. and Gilles-Gonzalez, M. A. (2000). Dos, a heme-
binding PAS protein from Escherichia coli, is a direct oxygen sensor. 
Biochemistry 39, 2685-2691. 

Desmard, M., Boczkowski, J., Poderoso, J. and Motterlini, R. (2007). Mitochondrial 
and cellular heme-dependent proteins as targets for the bioactive function of the 
heme oxygenase/carbon monoxide system. Antiox. Redox Signal. 9, 2139-2155. 

Desmard, M., Davidge, K. S., Bouvet, O., Morin, D., Roux, D., Foresti, R., Ricard, J. 
D., Denamur, E., Poole, R. K., Montravers, P., Motterlini, R. and Boczkowski, J. 
(2009). A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal 
activity against Pseudomonas aeruginosa and improves survival in an animal 
model of bacteraemia. FASEB J. 23, 1023-1031. 

Desmard, M., Foresti, R., Morin, D., Dagouassat, M., Berdeaux, A., Denamur, E., 
Crook, S. H., Mann, B. E., Scapens, D., Montravers, P., Boczkowski, J. and 
Motterlini, R. (2012). Differential antibacterial activity against Pseudomonas 
aeruginosa by carbon monoxide-releasing molecules. Antioxid. Redox Signal. 
16, 153-63. 

Dioum, E. M., Rutter, J., Tuckerman, J. R., Gonzalez, G., GillesGonzalez, M. A. and 
McKnight, S. L. (2002). NPAS2: A gas-responsive transcription factor. Science 
298, 2385-2387. 

Dordelmann, G., Pfeiffer, H., Birkner, A. and Schatzschneider, U. (2011). Silicium 
dioxide nanoparticles as carriers for photoactivatable CO-releasing molecules 
(PhotoCORMs). Inorg. Chem. 50, 4362-4367. 

Doudoroff, M. (1942). Studies on the Luminous Bacteria: II. Some Observations on the 
Anaerobic Metabolism of Facultatively Anaerobic Species. J. Bacteriol. 44, 
461-7. 

Dunn, A. K. (2012). In "Vibrio fischeri Metabolism: Symbiosis and Beyond In 
Advances in Microbial Physiology" (R. K. Poole, ed.), vol. 61, pp. 37-68. 
Academic Press. 

Dunn, A. K., Karr, E. A., Wang, Y. L., Batton, A. R., Ruby, E. G. and Stabb, E. V. 
(2010). The alternative oxidase (AOX) gene in Vibrio fischeri is controlled by 
NsrR and upregulated in response to nitric oxide. Mol. Microbiol. 77, 44-55. 

Dunn, A. K. and Stabb, E. V. (2008). Genetic analysis of trimethylamine N-oxide 
reductases in the light organ symbiont Vibrio fischeri ES114. J. Bacteriol. 190, 
5814-23. 

Durante, W., Christodoulides, N., Cheng, K., Peyton, K. J., Sunahara, R. K. and 
Schafer, A. I. (1997). cAMP induces heme oxygenase-1 gene expression and 
carbon monoxide production in vascular smooth muscle. Am. J. Physiol. 273, 
H317-23. 

El-Badawi, A., Samuels CE, Cain R and Anglemeir AF. (1964). Color and pigment 
stability of packaged refrigerated beef. Food Technol 18, 159-163. 

Elbirt, K. K., Whitmarsh, A. J., Davis, R. J. and Bonkovsky, H. L. (1998). Mechanism 
of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. 
Role of mitogen-activated protein kinases. J. Biol. Chem. 273, 8922-31. 

Endley, S., McMurray, D. and Ficht, T.A. (2001). Interruption of the cydB locus in 
Brucella abortus attenuates intracellular survival and virulence in the mouse 
model of infection. J. Bacteriol. 183, 2454-2462. 



229 
 

Engel, R. R., Schwartz, S., Chapman, S. S. and Matsen, J. M. (1972). Carbon monoxide 
production from heme compounds by bacteria. J. Bacteriol. 112, 1310-1315. 

Esquinas-Rychen, M. and Erni, B. (2001). Facilitation of bacteriophage lambda DNA 
injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: 
carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3, 
361-70. 

Evans, C. G. T., Herbert, D. and Tempest, D.W. (1970). "The continuous cultivation of 
microorganisms part 2 construction of a chemostat;". Elsevier Ltd., London and 
New York. 

Ewing, J. F. and Maines, M. D. (1992). In situ hybridization and immunohistochemical 
localization of heme oxygenase-2 mRNA and protein in normal rat brain: 
Differential distribution of isozyme 1 and 2. Mol. Cell. Neurosci. 3, 559-70. 

Ewing, J. F. and Maines, M. D. (1995). Distribution of constitutive (HO-2) and heat-
inducible (HO-1) heme oxygenase isozymes in rat testes: HO-2 displays stage-
specific expression in germ cells. Endocrinology 136, 2294-302. 

Farrer, N. J. and Sadler, P. J. (2008). Photochemotherapy: Targeted activation of metal 
anticancer complexes. Aust. J. Chem. 61, 669-674. 

Ferrandiz, M. L., Maicas, N., Garcia-Amandis, I., Terencio, M. C., Motterlini, R., 
Devesa, I., Joosten, L. A. B., van den Berg, W. B. and Alcaraz, M. J. (2008). 
Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation 
and erosion in murine collagen-induced arthritis. Ann. Rheum. Dis. 67, 1211-
1217. 

Finkelstein, E., Rosen, G. M. and Rauckman, E. J. (1982). Production of hydroxyl 
radical by decomposition of superoxide spin-trapped adducts. Mol. Pharmacol. 
21, 262-5. 

Fisher, A. J., Thompson, T. B., Thoden, J. B., Baldwin, T. O. and Rayment, I. (1996). 
The 1.5-A resolution crystal structure of bacterial luciferase in low salt 
conditions. J. Biol. Chem. 271, 21956-68. 

Flatley, J., Barrett, J., Pullan, S. T., Hughes, M. N., Green, J. and Poole, R. K. (2005). 
Transcriptional responses of Escherichia coli to S-nitrosoglutathione under 
defined chemostat conditions reveal major changes in methionine biosynthesis. 
J. Biol. Chem. 280, 10065-10072. 

Foresti, R., Hammad, J., Clark, J. E., Johnson, T. R., Mann, B. E., Friebe, A., Green, C. 
J. and Motterlini, R. (2004). Vasoactive properties of CORM-3, a novel water-
soluble carbon monoxide-releasing molecule. Br. J. Pharmacol. 142, 453-460. 

Fox, J. D., He, Y., Shelver, D., Roberts, G. P. and Ludden, P. W. (1996). 
Characterization of the region encoding the CO-induced hydrogenase of 
Rhodospirillum rubrum. J. Bacteriol. 178, 6200-8. 

Freitas, A., Alves-Filho, J. C., Secco, D. D., Neto, A. F., Ferreira, S. H., Barja-Fidalgo, 
C. and Cunha, F. Q. (2006). Heme oxygenase/carbon monoxide-biliverdin 
pathway down regulates neutrophil rolling, adhesion and migration in acute 
inflammation. Br. J. Pharmacol. 149, 345-354. 

Frejaville, C., Karoui, H., Tuccio, B., Le Moigne, F., Culcasi, M., Pietri, S., Lauricella, 
R. and Tordo, P. (1995). 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: 
a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping 
of oxygen-centered radicals. J. Med. Chem. 38, 258-65. 

Friebe, A., Mullershausen, F., Smolenski, A., Walter, U., Schultz, G. and Koesling, D. 
(1998). YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic 
GMP effects in human platelets. Mol. Pharmacol. 54, 962-7. 



230 
 

Furchgott, R. F. (1999). Endothelium-derived relaxing factor: Discovery, early studies, 
and identifcation as nitric oxide (Nobel lecture). Angewandte Chemie   
International Edition 38, 1870-1880. 

Furchgott, R. F. and Jothianandan, D. (1991). Endothelium-dependent and endothelium-
independent vasodilation involving cyclic GMP- Relaxation induced by nitric 
oxide, carbon monoxide and light. Blood Vessels 28, 52-61. 

Furci, L. M., Lopes, P., Eakanunkul, S., Zhong, S. J., MacKerell, A. D. and Wilks, A. 
(2007). Inhibition of the bacterial heme oxygenases from Pseudomonas 
aeruginosa and Neisseria meningitidis: Novel antimicrobial targets. J. Med. 
Chem. 50, 3804-3813. 

Gadalla, M. M. and Snyder, S. H. (2010). Hydrogen sulfide as a gasotransmitter. J. 
Neurochem. 113, 14-26. 

Gallagher, L. A. and Manoil, C. (2001). Pseudomonas aeruginosa PA01 kills 
Caenorhabditis elegans by cyanide poisoning. J. Bacteriol. 183, 6207-6214. 

Gerhardt, P., Murray, R. G. E., Wood, W. A., Krieg, N. R. (1994). "Methods For 
General and Molecular Bacteriology". The American Society of Microbiology, 
Washington D.C., USA. 

Gilberthorpe, N. J. and Poole, R. K. (2008). Nitric oxide homeostasis in Salmonella 
typhimurium - Roles of respiratory nitrate reductase and flavohemoglobin. J. 
Biol. Chem. 283, 11146-11154. 

Gilles-Gonzalez, M. A., Ditta, G. S. and Helinski, D. R. (1991). A haemoprotein with 
kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350, 
170-172. 

Goldbaum, L. R., Ramirez, R. G. and Absalon, K. B. (1975). What is the mechanism of 
carbon monoxide toxicity? Aviat. Space Environ. Med. 46, 1289-91. 

Goldman, B. S., Gabbert, K. K. and Kranz, R. G. (1996). Use of heme reporters for 
studies of cytochrome biosynthesis and heme transport. J. Bacteriol. 178, 6338-
6347. 

Goryshin, I. Y. and Reznikoff, W. S. (1998). Tn5 in vitro transposition. J. Biol. Chem. 
273, 7367-74. 

Graham, A. I., Hunt, S., Stokes, S. L., Bramall, N., Bunch, J., Cox, A. G., McLeod, C. 
W. and Poole, R. K. (2009). Severe zinc depletion of Escherichia coli: roles for 
high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins. 
J. Biol. Chem. 284, 18377-89. 

Griffiths, M. J. and Evans, T. W. (2005). Inhaled nitric oxide therapy in adults. New 
Engl. J. Med. 353, 2683-95. 

Grilli, A., De Lutiis, M. A., Patruno, A., Speranza, L., Gizzi, F., Taccardi, A. A., Di 
Napoli, P., De Caterina, R., Conti, P. and Felaco, M. (2003). Inducible nitric 
oxide synthase and heme oxygenase-1 in rat heart: direct effect of chronic 
exposure to hypoxia. Ann. Clin. Lab. Sci. 33, 208-15. 

Gunsalus, R. P. (1992). Control of electron flow in Escherichia coli - Coordinated 
transcription of respiratory pathway genes. J. Bacteriol. 174, 7069-7074. 

Gunsalus, R. P. and Park, S. J. (1994). Aerobic-anaerobic gene regulation in 
Escherichia coli: Control by the ArcAB and Fnr regulons. Res. Microbiol. 145, 
437-450. 

Gunther, L., Berberat, P. O., Haga, M., Brouard, S., Smith, R. N., Soares, M. P., Bach, 
F. H. and Tobiasch, E. (2002). Carbon monoxide protects pancreatic beta-cells 
from apoptosis and improves islet function/survival after transplantation. 
Diabetes 51, 994-9. 



231 
 

Guo, Y., Guo, G., Mao, X., Zhang, W., Xiao, J., Tong, W., Liu, T., Xiao, B., Liu, X., 
Feng, Y. and Zou, Q. (2008). Functional identification of HugZ, a heme 
oxygenase from Helicobacter pylori. BMC Microbiol 8, 226. 

Gupta, K. J., Zabalza, A. and van Dongen, J. T. (2009). Regulation of respiration when 
the oxygen availability changes. Physiol Plant 137, 383-91. 

Gutterman, D. D., Miura, H. and Liu, Y. (2005). Redox modulation of vascular tone: 
focus of potassium channel mechanisms of dilation. Atertio. Thromb. Vasc. Biol. 
25, 671-8. 

Haddock, B. A., Downie, J. A. and Garland, P. B. (1976). Kinetic characterization of 
the membrane-bound cytochromes of Escherichia coli grown under a variety of 
conditions by using a stopped-flow dual-wavelength spectrophotometer. 
Biochem. J. 154, 285-294. 

Hanes, C. S. and Barker, J. (1931). The effects of cyanide on the respiration and sugar 
content of the potato at 15 C. Proc. R. Soc. London Ser. B 108, 95-118. 

Hasegawa, U., van der Vlies, A. J., Simeoni, E., Wandrey, C. and Hubbell, J. A. (2010). 
Carbon monoxide-releasing micelles for immunotherapy. J. Am. Chem. Soc. 
132, 18273-80. 

Hendgen-Cotta, U. B., Merx, M. W., Shiva, S., Schmitz, J., Becher, S., Klare, J. P., 
Steinhoff, H. J., Goedecke, A., Schrader, J., Gladwin, M. T., Kelm, M. and 
Rassaf, T. (2008). Nitrite reductase activity of myoglobin regulates respiration 
and cellular viability in myocardial ischemia-reperfusion injury. Proc. Natl. 
Acad. Sci. U. S. A. 

Hewison, L., Crook, S. H., Johnson, T. R., Mann, B. E., Adams, H., Plant, S. E., Sawle, 
P. and Motterlini, R. (2010). Iron indenyl carbonyl compounds: CO-releasing 
molecules. Dalton Trans. 39, 8967-75. 

Hill-Kapturczak, N., Chang, S. H. and Agarwal, A. (2002). Heme oxygenase and the 
kidney. DNA Cell Biol. 21, 307-21. 

Hill, B. C., Hill, J.J. and Gennis, R.B. (1994). The room temperature reaction of carbon 
monoxide and oxygen with the cytochrome bd quinol oxidase from Escherichia 
coli. Biochemistry 33, 15110 - 15115. 

Hill, B. C., Woon, T. C., Nicholls, P., Peterson, J., Greenwood, C. and Thomson, A. J. 
(1984). Interactions of sulfide and other ligands with cytochrome c oxidase - An 
electron paramagnetic resonance study. Biochem. J. 224, 591-600. 

Hoefnagel, M. H., Millar, A. H., Wiskich, J. T. and Day, D. A. (1995). Cytochrome and 
alternative respiratory pathways compete for electrons in the presence of 
pyruvate in soybean mitochondria. Arch. Biochem. Biophys. 318, 394-400. 

Hopkins, F. G. (1921). On an autoxidizable constituent of the cell. Biochem. J. 15, 286-
305. 

Hopkins, F. G. (1923). [A lecture on] An oxidative mechanism in the living cell. 
Lancet, 1251 – 1254. 

Hou, S., Xu, R., Heinemann, S. H. and Hoshi, T. (2008). The RCK1 high-affinity Ca2+ 
sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc. Natl. 
Acad. Sci. U. S. A. 105, 4039-43. 

Hou, S. B., Larsen, R. W., Boudko, D., Riley, C. W., Karatan, E., Zimmer, M., Ordal, 
G. W. and Alam, M. (2000). Myoglobin-like aerotaxis transducers in Archaea 
and Bacteria. Nature 403, 540-544. 

Ignarro, L. J. (1999). Nitric oxide: A unique endogenous signaling molecule in vascular 
biology (Nobel lecture). Angew. Chem. Int. Ed. 38, 1882-1892. 



232 
 

Jacobitz, S. and Meyer, O. (1989). Removal of CO dehydrogenase from Pseudomonas 
carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to 
depleted membranes, and restoration of respiratory activities. J. Bacteriol. 171, 
6294-6299. 

Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A. and 
Verkhovsky, M. I. (2000). Electrogenic reactions of cytochrome bd. 
Biochemistry 39, 13800-13809. 

Jesse, H. E., Nye, T. L., McLean, S., Green, J., Mann, B. E. and Poole, R. K. (2013). 
Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or 
bo' to inhibition by the carbon monoxide-releasing molecule, CORM-3: N-
acetylcysteine reduces CO-RM uptake and inhibition of respiration. Biochim. 
Biophys. Acta 1834, 1693-1703. 

Johnson, G. L. and Lapadat, R. (2002). Mitogen-activated protein kinase pathways 
mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-2. 

Johnson, T. R., Mann, B. E., Clark, J. E., Foresti, R., Green, C. J. and Motterlini, R. 
(2003). Metal carbonyls: A new class of pharmaceuticals. Angewandte Chemie-
International Edition 42, 3722-3729. 

Johnson, T. R., Mann, B. E., Teasdale, I. P., Adams, H., Foresti, R., Green, C. J. and 
Motterlini, R. (2007). Metal carbonyls as pharmaceuticals? 
[Ru(CO)3Cl(glycinate)], a CO-releasing molecule with an extensive aqueous 
solution chemistry. Dalton Trans., 1500-1508. 

Jones, B. W. and Nishiguchi, M. K. (2004). Counterillumination in the Hawaiian bobtail 
squid, Euprymna scolopes Berry (Mollusca: Cephalopoda) Marine Biol. 144, 
1151–1155. 

Jones, C. W. and Poole, R. K. (1985). In "Methods in Microbiology" (G. Gottschalk, 
ed.), vol. 18, pp. 285 - 328. Academic Press. 

Jones, C. W. and Redfearn, E. R. (1966). Electron transport in Azotobacter vinelandii. 
Biochim. Biophys. Acta 113, 467-481. 

Junemann, S. (1997). Cytochrome bd terminal oxidase. Biochim. Biophys. Acta 1321, 
107 - 127. 

Kajimura, M., Fukuda, R., Bateman, R. M., Yamamoto, T. and Suematsu, M. (2010). 
Interactions of multiple gas-transducing systems: Hallmarks and uncertainties of 
CO, NO, and H2S gas biology. Antiox. Redox Signal. 13, 157-192. 

Kajimura, M., Nakanishi, T., Takenouchi, T., Morikawa, T., Hishiki, T., Yukutake, Y. 
and Suematsu, M. (2012). Gas biology: tiny molecules controlling metabolic 
systems. Respir Physiol Neurobiol 184, 139-48. 

Kalnenieks, U., Galinina, N., Bringer-Meyer, S. and Poole, R. K. (1998). Membrane D-
lactate oxidase in Zymomonas mobilis: evidence for a branched respiratory 
chain. FEMS Microbiol. Lett. 168, 91-97. 

Kano, H. and Kageyama, M. (1977). Effects of cyanide on the respiration of musk 
melon. Plant Cell Physiol. 18, 1149 - 1153. 

Karuzina, II, Zgoda, V. G., Kuznetsova, G. P., Samenkova, N. F. and Archakov, A. I. 
(1999). Heme and apoprotein modification of cytochrome P450 2B4 during its 
oxidative inactivation in monooxygenase reconstituted system. Free Radic Biol 
Med 26, 620-32. 

Keilin, D. (1966). "The History of Cell Respiration and Cytochrome". Cambridge 
University Press, Cambridge. 

Kerby, R. L., Ludden, P. W. and Roberts, G. P. (1995). Carbon monoxide-dependent 
growth of Rhodospirillum rubrum. J. Bacteriol. 177, 2241-2244. 



233 
 

Kerby, R. L., Youn, H. and Roberts, G. P. (2008). RcoM: A new single-component 
transcriptional regulator of CO metabolism in bacteria. J. Bacteriol. 190, 3336-
3343. 

Kharitonov, S. A. and Barnes, P. J. (2002). Biomarkers of some pulmonary diseases in 
exhaled breath. Biomarkers 7, 1-32. 

Kharitonov, V. G., Sharma, V. S., Pilz, R. B., Magde, D. and Koesling, D. (1995). Basis 
of guanylate cyclase activation by carbon monoxide. Proc. Natl. Acad. Sci. U. S. 
A. 92, 2568-2571. 

King, G. M. and Weber, C. F. (2007). Distribution, diversity and ecology of aerobic 
CO-oxidizing bacteria. Nat. Rev. Microbiol. 5, 107-118. 

Kinsella, J. P., Cutter, G. R., Walsh, W. F., Gerstmann, D. R., Bose, C. L., Hart, C., 
Sekar, K. C., Auten, R. L., Bhutani, V. K., Gerdes, J. S., George, T. N., 
Southgate, W. M., Carriedo, H., Couser, R. J., Mammel, M. C., Hall, D. C., 
Pappagallo, M., Sardesai, S., Strain, J. D., Baier, M. and Abman, S. H. (2006). 
Early inhaled nitric oxide therapy in premature newborns with respiratory 
failure. New Engl. J. Med. 355, 354-64. 

Kirby, J. R. (2007). In vivo mutagenesis using EZ-Tn5. Methods Enzymol. 421, 17-21. 
Korshunov, S. and Imlay, J. A. (2006). Detection and quantification of superoxide 

formed within the periplasm of Escherichia coli. J. Bacteriol. 188, 6326-6334. 
Kostoglou-Athanassiou, I., Forsling, M. L., Navarra, P. and Grossman, A. B. (1996). 

Oxytocin release is inhibited by the generation of carbon monoxide from the rat 
hypothalamus-further evidence for carbon monoxide as a neuromodulator. Brain 
Res. Mol. Brain Res. 42, 301-6. 

Kumar, A., Deshane, J. S., Crossman, D. K., Bolisetty, S., Yan, B. S., Kramnik, I., 
Agarwal, A. and Steyn, A. J. C. (2008). Heme oxygenase-1-derived carbon 
monoxide induces the Mycobacterium tuberculosis dormancy regulon. J. Biol. 
Chem. 283, 18032-18039. 

Kumar, A., Toledo, J. C., Patel, R. P., Lancaster, J. R. and Steyn, A. J. C. (2007). 
Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia 
sensor. Proc. Natl. Acad. Sci. U. S. A. 104, 11568-11573. 

Laites, G. G. (1982). The cyanide-resistant, alternative path in higher plant respiration. 
Ann. Rev. Plant. Physiol 33, 519-555. 

Lambers, H. (1982). Cyanide-resistant respiration: A non-phosphorylating electron 
transport pathway acting as an energy overflow. Physiol. Plant. 55, 478-485. 

Lamrabet, O., Pieulle, L., Aubert, C., Mouhamar, F., Stocker, P., Dolla, A. and 
Brasseur, G. (2011). Oxygen reduction in the strict anaerobe Desulfovibrio 
vulgaris Hildenborough: characterization of two membrane-bound oxygen 
reductases. Microbiology 157, 2720-2732. 

Lancel, S., Hassoun, S. M., Favory, R., Decoster, B., Motterlini, R. and Neviere, R. 
(2009). Carbon monoxide rescues mice from lethal sepsis by supporting 
mitochondrial energetic metabolism and activating mitochondrial biogenesis. J. 
Pharmacol. Exp. Ther. 329, 641-648. 

Langridge, G. C., Phan, M. D., Turner, D. J., Perkins, T. T., Parts, L., Haase, J., Charles, 
I., Maskell, D. J., Peters, S. E., Dougan, G., Wain, J., Parkhill, J. and Turner, A. 
K. (2009). Simultaneous assay of every Salmonella typhi gene using one million 
transposon mutants. Genome Res. 19, 2308-2316. 

Lee, Y. and Kim, J. (2007). Simultaneous electrochemical detection of nitric oxide and 
carbon monoxide generated from mouse kidney organ tissues. Anal. Chem. 79, 
7669-75. 



234 
 

Lemberg, R. and Barrett, J. (1973). "Cytochromes". Academic Press, London. 
Lengeler, J. (1980). Characterisation of mutants of Escherichia coli K12, selected by 

resistance to streptozotocin. Mol. Gen. Genet. 179, 49-54. 
Letoffe, S., Delepelaire, P. and Wandersman, C. (2006). The housekeeping dipeptide 

permease is the Escherichia coli heme transporter and functions with two 
optional peptide binding proteins. Proc. Natl. Acad. Sci. U. S. A. 103, 12891-
12896. 

Li, L., Hsu, A. and Moore, P. K. (2009). Actions and interactions of nitric oxide, carbon 
monoxide and hydrogen sulphide in the cardiovascular system and in 
inflammation - A tale of three gases! Pharmacol. Ther. 123, 386-400. 

Liu, W. Q., Chai, C., Li, X. Y., Yuan, W. J., Wang, W. Z. and Lu, Y. (2011). The 
cardiovascular effects of central hydrogen sulfide are related to K(ATP) 
channels activation. Physiol. Res. 60, 729-738. 

Lloyd, D., James, C. J. and Hastings, J. W. (1985). Oxygen affinities of the 
bioluminescence systems of various species of luminous bacteria. J. Gen. 
Microbiol. 131, 2137 - 2140. 

Lo Iacono, L., Boczkowski, J., Zini, R., Salouage, I., Berdaux, A., Motterlini, R. and 
Morin, D. (2011). A carbon monoxide-releasing molecule (CORM-3) uncouples 
mitochondrial respiration and modulates the production of reactive oxygen 
species. Free Rad. Biol. Med. 50, 1556-1564. 

Lou, P. H., Hansen, B. S., Olsen, P. H., Tullin, S., Murphy, M. P. and Brand, M. D. 
(2007). Mitochondrial uncouplers with an extraordinary dynamic range. 
Biochem. J. 407, 129-140. 

Maines, M. D. and Panahian, N. (2001). The heme oxygenase system and cellular 
defense mechanisms. Do HO-1 and HO-2 have different functions? Adv. Exp. 
Med. Biol. 502, 249-72. 

Maness, P. C., Huang, J., Smolinski, S., Tek, V. and Vanzin, G. (2005). Energy 
generation from the CO oxidation-hydrogen production pathway in Rubrivivax 
gelatinosus. Appl. Environ. Microbiol. 71, 2870-4. 

Mann, B. E. (2012). CO-Releasing Molecules: A Personal View. Organometallics 31, 
5728-5735. 

Mann, B. E. and Motterlini, R. (2007). CO and NO in medicine. Chemical 
communications (Cambridge, England), 4197-208. 

Mansfield, J. W. (1983). "Antimicrobial compounds". Wiley, London. 
Marks, G. S., Brien, J. F., Nakatsu, K. and McLaughlin, B. E. (1991). Does carbon 

monoxide have a physiological function? Trends Pharmacol. Sci. 12, 185-8. 
Markwell, M. A. K., Haas, S. M., Bieber, L. L. and Tolbert, N. E. (1978). A 

modification of the Lowry procedure to simplify protein determination in 
membrane and lipoprotein samples. Anal. Biochem. 87, 206-210. 

Masip, L., Veeravalli, K. and Georgiou, G. (2006). The many faces of glutathione in 
bacteria. Antioxid. Redox Signal. 8, 753-62. 

Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., Poole, R. 
K. and Cooper, C. E. (2009). Cytochrome bd confers nitric oxide resistance to 
Escherichia coli. Nat Chem Biol 5, 94-6. 

Matsushita, K., Yamada, M., Shinagawa, E., Adachi, O. and Ameyama, M. (1983). 
Membrane-bound respiratory chain of Pseudomonas aeruginosa grown 
aerobically. A KCN-insensitive alternate oxidase chain and its energetics. J. 
Biochem., Tokyo 93, 1137 - 1144. 



235 
 

McCoubrey, W. K., Jr., Huang, T. J. and Maines, M. D. (1997). Isolation and 
characterization of a cDNA from the rat brain that encodes hemoprotein heme 
oxygenase-3. Eur. J. Biochem. 247, 725-32. 

McDonald, A. E. and Vanlerberghe, G. C. (2005). Alternative oxidase and plastoquinol 
terminal oxidase in marine prokaryotes of the Sargasso Sea. Gene 349, 15-24. 

McFall-Ngai, M., Heath-Heckman, E. A., Gillette, A. A., Peyer, S. M. and Harvie, E. A. 
(2012). The secret languages of coevolved symbioses: insights from the 
Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24, 3-8. 

McFall-Ngai, M. J. and Ruby, E. G. (2000). Developmental biology in marine 
invertebrate symbioses. Curr.Opin. Microbiol. 3, 603-7. 

McGrath, J. J. and Smith, D. L. (1984). Response of rat coronary circulation to carbon 
monoxide and nitrogen hypoxia. Proc. Soc. Exp. Biol. Med. 177, 132-6. 

McLean, S., Begg, R., Jesse, H. E., Mann, B. E., Sanguinetti, G. and Poole, R. K. 
(2013). Analysis of the bacterial response to Ru(CO)3Cl(glycinate) (CORM-3) 
and the inactivated compound identifies the role played by the ruthenium 
compound and reveals sulfur-containing species as a major target of CORM-3 
action. Antioxid. Redox Signal. 

McLean, S., Mann, B. E. and Poole, R. K. (2012). Sulfite species enhance carbon 
monoxide release from CO-releasing molecules: Implications for the 
deoxymyoglobin assay of activity. Anal. Biochem. 427, 36-40. 

Meeuse, B. (1975). Thermogenic respiration in aroids. Annu. Rev. Plant Physiol. Plant 
Mol. Biol. 26, 117-126. 

Megias, J., Busserolles, J. and Alcaraz, M. J. (2007). The carbon monoxide-releasing 
molecule CORM-2 inhibits the inflammatory response induced by cytokines in 
Caco-2 cells. Br. J. Pharmacol. 

Meister, K., Niesel, J., Schatzschneider, U., Metzler-Nolte, N., Schmidt, D. A. and 
Havenith, M. (2010). Label-free imaging of metal-carbonyl complexes in live 
cells by Raman microspectroscopy. Angew. Chem. Int. Ed. Engl. 49, 3310-2. 

Middendorff, R., Kumm, M., Davidoff, M. S., Holstein, A. F. and Muller, D. (2000). 
Generation of cyclic guanosine monophosphate by heme oxygenases in the 
human testis - a regulatory role for carbon monoxide in Sertoli cells? Biol. 
Reprod. 63, 651-7. 

Millar, A. H., Wiskich, J. T., Whelan, J. and Day, D. A. (1993). Organic acid activation 
of the alternative oxidase of plant mitochondria. FEBS Lett. 329, 259-62. 

Miller, J. H. (1972). "Experiments in Molecular Genetics". Cold Spring Harbor 
Laboratory, Cold Spring Harbor, New York 11724. 

Miller, M. J. and Gennis, R. B. (1986). Purification and reconstitution of the 
cytochrome d terminal oxidase complex from Escherichia coli. Methods 
Enzymol. 126, 87-94. 

Minagawa, N., Sakajo, S., Komiyama, T. and Yoshimoto, A. (1990). Essential role of 
ferrous iron in cyanide-resistant respiration in Hansenula anomala. FEBS Lett. 
267, 114-116. 

Mishra, S., Fujita, T., Lama, V. N., Nam, D., Liao, H., Okada, M., Minamoto, K., 
Yoshikawa, Y., Harada, H. and Pinsky, D. J. (2006). Carbon monoxide rescues 
ischemic lungs by interrupting MAPK-driven expression of early growth 
response 1 gene and its downstream target genes. Proc. Natl. Acad. Sci. U. S. A. 
103, 5191-6. 

Mitchell, L. A., Channell, M. M., Royer, C. M., Ryter, S. W., Choi, A. M. and 
McDonald, J. D. (2010). Evaluation of inhaled carbon monoxide as an anti-



236 
 

inflammatory therapy in a nonhuman primate model of lung inflammation. 
American journal of physiology. Lung cellular and molecular physiology 299, 
L891-7. 

Mitchell, R., Brown, S., Mitchell, P. and Rich, P. R. (1992). Rates of cyanide binding to 
the catalytic intermediates of mammalian cytochrome c oxidase, and the effects 
of cytochrome c and poly(L-lysine). Biochim. Biophys. Acta 1100, 40-8. 

Mogi, T., Nakamura, H. and Anraku, Y. (1994). Molecular structure of a heme-copper 
redox center of the Escherichia coli ubiquinol oxidase: Evidence and model. J. 
Biochem. 116, 471-477. 

Moore, A. L., Carre, J. E., Affourtit, C., Albury, M. S., Crichton, P. G., Kita, K. and 
Heathcote, P. (2008). Compelling EPR evidence that the alternative oxidase is a 
diiron carboxylate protein. Biochim. Biophys. Acta Bioen. 1777, 327-330. 

Motterlini, R., Clark, J. E., Foresti, R., Sarathchandra, P., Mann, B. E. and Green, C. J. 
(2002). Carbon monoxide-releasing molecules: characterization of biochemical 
and vascular activities. Circ. Res. 90, E17-24. 

Motterlini, R., Mann, B. E. and Foresti, R. (2005a). Therapeutic applications of carbon 
monoxide-releasing molecules. Expert Opin Investig Drugs 14, 1305-18. 

Motterlini, R. and Otterbein, L. E. (2010). The therapeutic potential of carbon 
monoxide. Nat. Rev. Drug Discov. 9, 728-743. 

Motterlini, R., Sawle, P., Hammad, J., Bains, S., Alberto, R., Foresti, R. and Green, C. 
J. (2005b). CORM-A1: a new pharmacologically active carbon monoxide-
releasing molecule. FASEB J. 19, 284-6. 

Muller, V. (2003). Energy conservation in acetogenic bacteria. Appl. Environ. 
Microbiol. 69, 6345-53. 

Murad, F. (1999). Discovery of some of the biological effects of nitric oxide and its role 
in cell signaling. Biosci. Rep. 19, 133-154. 

Murray, T. S., Okegbe, C., Gao, Y., Kazmierczak, B. I., Motterlini, R., Dietrich, L. E. P. 
and Bruscia, E. M. (2012). The carbon monoxide-releasing molecule CORM-2 
attenuates Pseudomonas aeruginosa biofilm formation. Plos One 7. 

Musameh, M. D., Green, C. J., Mann, B. E., Fuller, B. J. and Motterlini, R. (2007). 
Improved myocardial function after cold storage with preservation solution 
supplemented with a carbon monoxide-releasing molecule (CORM-3). J. Heart 
Lung Transplant. 26, 1192-1198. 

Nakao, A., Choi, A. M. and Murase, N. (2006a). Protective effect of carbon monoxide 
in transplantation. J Cell Mol Med 10, 650-71. 

Nakao, A., Faleo, G., Shimizu, H., Nakahira, K., Kohmoto, J., Sugimoto, R., Choi, A. 
M., McCurry, K. R., Takahashi, T. and Murase, N. (2008). Ex vivo carbon 
monoxide prevents cytochrome P450 degradation and ischemia/reperfusion 
injury of kidney grafts. Kidney Int. 74, 1009-1016. 

Nakao, A., Kimizuka, K., Stolz, D. B., Neto, J. S., Kaizu, T., Choi, A. M., Uchiyama, 
T., Zuckerbraun, B. S., Nalesnik, M. A., Otterbein, L. E. and Murase, N. (2003). 
Carbon monoxide inhalation protects rat intestinal grafts from 
ischemia/reperfusion injury. Am. J. Pathol. 163, 1587-98. 

Nakao, A., Toyokawa, H., Tsung, A., Nalesnik, M. A., Stolz, D. B., Kohmoto, J., Ikeda, 
A., Tomiyama, K., Harada, T., Takahashi, T., Yang, R., Fink, M. P., Morita, K., 
Choi, A. M. and Murase, N. (2006b). Ex vivo application of carbon monoxide in 
University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion 
injury. American journal of transplantation : official journal of the American 



237 
 

Society of Transplantation and the American Society of Transplant Surgeons 6, 
2243-55. 

Nakayama, M., Takahashi, K., Kitamuro, T., Yasumoto, K., Katayose, D., Shirato, K., 
Fujii-Kuriyama, Y. and Shibahara, S. (2000). Repression of heme oxygenase-1 
by hypoxia in vascular endothelial cells. Biochem. Biophys. Res. Commun. 271, 
665-71. 

Nath, K. A., Balla, G., Vercellotti, G. M., Balla, J., Jacob, H. S., Levitt, M. D. and 
Rosenberg, M. E. (1992). Induction of heme oxygenase is a rapid, protective 
response in rhabdomyolysis in the rat. J. Clin. Invest. 90, 267-70. 

Niesel, J., Pinto, A., N'Dongo, H. W. P., Merz, K., Ott, I., Gust, R. and Schatzschneider, 
U. (2008). Photoinduced CO release, cellular uptake and cytotoxicity of a 
tris(pyrazolyl) methane (tpm) manganese tricarbonyl complex. Chem. Commun., 
1798-1800. 

Nobre, L. S., Al-Shahrour, F., Dopazo, J. and Saraiva, L. M. (2009). Exploring the 
antimicrobial action of a carbon monoxide-releasing compound through whole-
genome transcription profiling of Escherichia coli. Microbiology-Sgm 155, 813-
824. 

Nobre, L. S., Seixas, J. D., Romao, C. C. and Saraiva, L. M. (2007). Antimicrobial 
action of carbon monoxide-releasing compounds. Antimicrob. Agents 
Chemother. 51, 4303-4307. 

Obirai, J. C., Hamadi, S., Ithurbide, A., Wartelle, C., Nyokong, T., Zagal, J., Top, S. 
and Bedioui, F. (2006). UV-visible and electrochemical monitoring of carbon 
monoxide release by donor complexes to myoglobin solutions and to electrodes 
modified with films containing Hemin. Electroanal 18, 1689-1695. 

Oelgeschlager, E. and Rother, M. (2008). Carbon monoxide-dependent energy 
metabolism in anaerobic bacteria and archaea. Arch. Microbiol. 190, 257-269. 

Ohnishi, T., Sled, V. D., Rudnitzky, N. I., Jacobson, B. W., Fukumori, Y., Meinhardt, S. 
W., Calhoun, M. W., Gennis, R. B., Leif, H., Friedrich, T. and Weiss, H. (1994). 
Biophysical and biochemical studies of bacterial NADH:quinone oxidoreductase 
(Ndh-1). Biochem. Soc. Trans. 22, S70. 

Ohta, K., Yachie, A., Fujimoto, K., Kaneda, H., Wada, T., Toma, T., Seno, A., 
Kasahara, Y., Yokoyama, H., Seki, H. and Koizumi, S. (2000). Tubular injury as 
a cardinal pathologic feature in human heme oxygenase-1 deficiency. Am. J. 
Kidney Dis. 35, 863-70. 

Okochi, M., Kurimoto, M., Shimizu, K. and Honda, H. (2007). Increase of organic 
solvent tolerance by overexpression of manXYZ in Escherichia coli. Appl. 
Microbiol. Biotechnol. 73, 1394-9. 

Onyiah, J. C., Sheikh, S. Z., Maharshak, N., Steinbach, E. C., Russo, S. M., Kobayashi, 
T., Mackey, L. C., Hansen, J. J., Moeser, A. J., Rawls, J. F., Borst, L. B., 
Otterbein, L. E. and Plevy, S. E. (2013). Carbon monoxide and heme oxygenase-
1 prevent intestinal inflammation in mice by promoting bacterial clearance. 
Gastroenterology 144, 789-98. 

Otterbein, L. E., Bach, F. H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R. J., 
Flavell, R. A. and Choi, A. M. (2000). Carbon monoxide has anti-inflammatory 
effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 
422-8. 

Otterbein, L. E., Mantell, L. L. and Choi, A. M. (1999). Carbon monoxide provides 
protection against hyperoxic lung injury. Am. J. Physiol. 276, L688-94. 



238 
 

Otterbein, L. E., May, A. and Chin, B. Y. (2005). Carbon monoxide increases 
macrophage bacterial clearance through toll-like receptor (TLR)4 expression. 
Cell. Mol. Biol. 51, 433-440. 

Parr, S. R., Wilson, M. T. and Greenwood, C. (1975). The reaction of Pseudomonas 
aeruginosa cytochrome c oxidase with carbon monoxide. Biochem. J. 151, 51-9. 

Parshina, S. N., Sipma, J., Nakashimada, Y., Henstra, A. M., Smidt, H., Lysenko, A. 
M., Lens, P. N. L., Lettinga, G. and Stams, A. J. M. (2005). Desulfotomaculum 
carboxydivorans sp nov., a novel sulfate-reducing bacterium capable of growth 
at 100% CO. Int. J. Syst. Evol. Microbiol. 55, 2159-2165. 

Patridge, E. V. and Ferry, J. G. (2006). WrbA from Escherichia coli and Archaeoglobus 
fulgidus is an NAD(P)H : Quinone oxidoreductase. J. Bacteriol. 188, 3498-
3506. 

Pena, A. C., Penacho, N., Mancio-Silva, L., Neres, R., Seixas, J. D., Fernandes, A. C., 
Romao, C. C., Mota, M. M., Bernardes, G. J. L. and Pamplona, A. (2012). A 
Novel Carbon Monoxide-Releasing Molecule Fully Protects Mice from Severe 
Malaria. Antimicrob. Agents Chemother. 56, 1281-1290. 

Petersen, L. C. (1977). The effect of inhibitors on the oxygen kinetics of cytochrome c 
oxidase. Biochim. Biophys. Acta 460, 299-307. 

Petrache, I., Otterbein, L. E., Alam, J., Wiegand, G. W. and Choi, A. M. (2000). Heme 
oxygenase-1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. 
American journal of physiology. Lung cellular and molecular physiology 278, 
L312-9. 

Petushkov, V. N. and Lee, J. (1997). Purification and characterization of flavoproteins 
and cytochromes from the yellow bioluminescence marine bacterium Vibrio 
fischeri strain Y1. Eur. J. Biochem. 245, 790-6. 

Pfeiffer, H., Rojas, A., Niesel, J. and Schatzschneider, U. (2009). Sonogashira and 
"Click" reactions for the N-terminal and side-chain functionalization of peptides 
with [Mn(CO)3(tpm)](+)-based CO releasing molecules (tpm = 
tris(pyrazolyl)methane). Dalton Trans., 4292-4298. 

Piantadosi, C. A. (2002). Biological chemistry of carbon monoxide. Antiox. Redox 
Signal. 4, 259-270. 

Pirt, S. J. (1985). "Principles of Microbe and Cell Cultivation". Blackwell Scientific 
Publications, Oxford. 

Pitchumony, T. S., Spingler, B., Motterlini, R. and Alberto, R. (2010). Syntheses, 
structural characterization and CO releasing properties of boranocarbonate 
[H3BCO2H]- derivatives. Org Biomol Chem 8, 4849-54. 

Pizarro, M. D., Rodriguez, J. V., Mamprin, M. E., Fuller, B. J. and Motterlini, R. 
(2009). Protective effects of a carbon monoxide-releasing molecule (CORM-3) 
during hepatic cold preservation. Cryobiology 58, 248-255. 

Poderoso, J. J., Carreras, M. C., Schopfer, F., Lisdero, C. L., Riobo, N. A., Giulivi, C., 
Boveris, A. D., Boveris, A. and Cadenas, E. (1999). The reaction of nitric oxide 
with ubiquinol: Kinetic properties and biological significance. Free Rad. Biol. 
Med. 26, 925-935. 

Poole, R. K. (1993). In "Biomembrane Protocols. 1. Isolation and Analysis" (J. M. 
Graham and J. A. Higgins, eds), vol. 19, pp. 109 - 122. Humana Press, Totowa, 
New Jersey. 

Poole, R. K. and Cook, G. M. (2000). In "Adv. Microb. Physiol." (R. K. Poole, ed.), vol. 
43, pp. 165-224. Academic Press Ltd, London. 



239 
 

Poole, R. K., Lloyd, D. and Kemp, R. B. (1973). Respiratory oscillations and heat 
evolution in synchronously dividing cultures of fission yeast 
Schizosaccharomyces pombe 972h. J. Gen. Microbiol. 77, 209-220. 

Poole, R. K., Williams, H. D., Downie, J. A. and Gibson, F. (1989). Mutations affecting 
the cytochrome d-containing oxidase complex of Escherichia coli K12: 
Identification and mapping of a fourth locus, cydD. J. Gen. Microbiol. 135, 
1865-1874. 

Poss, K. D. and Tonegawa, S. (1997). Heme oxygenase 1 is required for mammalian 
iron reutilization. Proc. Natl. Acad. Sci. U. S. A. 94, 10919-24. 

Preisig, O., Zufferey, R., Thonymeyer, L., Appleby, C. A. and Hennecke, H. (1996). A 
high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific 
respiratory chain of Bradyrhizobium japonicum. J. Bacteriol. 178, 1532-1538. 

Pudek, M. R. and Bragg, P. D. (1974). Inhibition by cyanide of the respiratory chain 
oxidases of Escherichia coli. Arch. Biochem. Biophys. 164, 682-693. 

Pullan, S. T., Gidley, M. D., Jones, R. A., Barrett, J., Stevanin, T. A., Read, R. C., 
Green, J. and Poole, R. K. (2007). Nitric oxide in chemostat-cultured 
Escherichia coli is sensed by Fnr and other global regulators: Unaltered 
methionine biosynthesis indicates lack of S-nitrosation. J. Bacteriol. 189, 1845-
1855. 

Puri, S. and O'Brian, M. R. (2006). The hmuQ and hmuD genes from Bradyrhizobium 
japonicum encode heme-degrading enzymes. J. Bacteriol. 188, 6476-6482. 

Puustinen, A., Finel, M., Haltia, T., Gennis, R. B. and Wikstrom, M. (1991). Properties 
of the two terminal oxidases of Escherichia coli. Biochemistry 30, 3936-3942. 

Puustinen, A., Finel, M., Virkki, M. and Wikstrom, M. (1989). Cytochrome o (bo) is a 
proton pump in Paracoccus denitrificans and Escherichia coli. FEBS Lett. 249, 
163-167. 

Queiroga, C. S. F., Almeida, A. S., Alves, P. M., Brenner, C. and Vieira, H. L. A. 
(2011). Carbon monoxide prevents hepatic mitochondrial membrane 
permeabilization. BMC Cell Biol. 12, 10. 

Ragsdale, S. W. (2004). Life with carbon monoxide. Crit. Rev. Biochem. Mol. Biol. 39, 
165-195. 

Ragsdale, S. W. and Kumar, M. (1996). Nickel-containing carbon monoxide 
dehydrogenase/acetyl-CoA synthase. Chem. Rev. 96, 2515-2539. 

Rasmusson, A. G., Fernie, A. R. and van Dongen, J. T. (2009). Alternative oxidase: a 
defence against metabolic fluctuations? Physiol Plant 137, 371-82. 

Ratliff, M., Zhu, W. M., Deshmukh, R., Wilks, A. and Stojiljkovic, I. (2001). 
Homologues of neisserial heme oxygenase in gram-negative bacteria: 
Degradation of heme by the product of the pigA gene of Pseudomonas 
aeruginosa. J. Bacteriol. 183, 6394-6403. 

Reichelt, J. L. and Baumann, P. (1973). Taxonomy of marine, luminous bacteria. Arch. 
Mikrobiol. 94, 283-330. 

Reizer, J., Michotey, V., Reizer, A. and Saier, M. H., Jr. (1994). Novel 
phosphotransferase system genes revealed by bacterial genome analysis: unique, 
putative fructose- and glucoside-specific systems. Protein Sci. 3, 440-50. 

Reynolds, M. F., Parks, R. B., Burstyn, J. N., Shelver, D., Thorsteinsson, M. V., Kerby, 
R. L., Roberts, G. P., Vogel, K. M. and Spiro, T. G. (2000). Electronic 
absorption, EPR, and resonance raman spectroscopy of CooA, a CO-sensing 
transcription activator from R-rubrum, reveals a five-coordinate NO-heme. 
Biochemistry 39, 388-396. 



240 
 

Ribas-Carbo, M., Berry, J. A., Azcon-Bieto, J. and Siedow, J. N. (1994). The reaction of 
the plant mitochondrial cyanide-resistant alternative oxidase with oxygen. 
Biochim. Biophys. Acta. Bioene 1188, 205-212. 

Rich, P. R., Meunier, B., Mitchell, R. and Moody, A. J. (1996). Coupling of charge and 
proton movement in cytochrome c oxidase. Biochim. Biophys. Acta 1275. 

Richardson, A. R., Dunman, P. M. and Fang, F. C. (2006). The nitrosative stress 
response of Staphylococcus aureus is required for resistance to innate immunity. 
Mol. Microbiol. 61, 927-939. 

Ridley, K. A., Rock, J. D., Li, Y. and Ketley, J. M. (2006). Heme utilization in 
Campylobacter jejuni. J. Bacteriol. 188, 7862-7875. 

Rimmer, R. D., Richter, H. and Ford, P. C. (2010). A photochemical precursor for 
carbon monoxide release in aerated aqueous media. Inorg Chem 49, 1180-5. 

Roberts, G. P., Thorsteinsson, M. V., Kerby, R. L., Lanzilotta, W. N. and Poulos, T. 
(2001). CooA: a heme-containing regulatory protein that serves as a specific 
sensor of both carbon monoxide and redox state. Prog.Nucleic Acid 
Res.Mol.Biol. 67, 35-63. 

Rodgers, K. R. and Lukat-Rodgers, G. S. (2005). Insights into heme-based O-2 sensing 
from structure-function relationships in the FixL proteins. J. Inorg. Biochem. 99, 
963-977. 

Rodkey, F. L., O'Neal, J. D., Collison, H. A. and Uddin, D. E. (1974). Relative affinity 
of hemoglobin S and hemoglobin A for carbon monoxide and oxygen. Clin. 
Chem. 20, 83-4. 

Romanski, S., Kraus, B., Schatzschneider, U., Neudorfl, J. M., Amslinger, S. and 
Schmalz, H. G. (2011). Acyloxybutadiene iron tricarbonyl complexes as 
enzyme-triggered CO-releasing molecules (ET-CORMs). Angewandte Chemie-
International Edition 50, 2392-2396. 

Romao, C. C., Blattler, W. A., Seixas, J. D. and Bernardes, G. J. L. (2012). Developing 
drug molecules for therapy with carbon monoxide. Chem. Soc. Rev. 41, 3571-
3583. 

Roughton, F. J. W. and Darling, R. C. (1944). The effect of carbon monoxide on the 
oxyhemoglobin dissociation curve. Am. J. Physiol. 141, 0017-0031. 

Ruby, E. G. and McFall-Ngai, M. J. (1999). Oxygen-utilizing reactions and symbiotic 
colonization of the squid light organ by Vibrio fischeri. Trends Microbiol. 7, 
414-20. 

Ruby, E. G., Urbanowski, M., Campbell, J., Dunn, A., Faini, M., Gunsalus, R., Lostroh, 
P., Lupp, C., McCann, J., Millikan, D., Schaefer, A., Stabb, E., Stevens, A., 
Visick, K., Whistler, C. and Greenberg, E. P. (2005). Complete genome 
sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. 
Proc. Natl. Acad. Sci. U. S. A. 102, 3004-9. 

Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, 
S., Wu, D., Eisen, J. A., Hoffman, J. M., Remington, K., Beeson, K., Tran, B., 
Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., Andrews-
Pfannkoch, C., Venter, J. E., Li, K., Kravitz, S., Heidelberg, J. F., Utterback, T., 
Rogers, Y. H., Falcon, L. I., Souza, V., Bonilla-Rosso, G., Eguiarte, L. E., Karl, 
D. M., Sathyendranath, S., Platt, T., Bermingham, E., Gallardo, V., Tamayo-
Castillo, G., Ferrari, M. R., Strausberg, R. L., Nealson, K., Friedman, R., 
Frazier, M. and Venter, J. C. (2007). The Sorcerer II Global Ocean Sampling 
expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5, 
e77. 



241 
 

Ryter, S. W., Morse, D. and Choi, A. M. (2004). Carbon monoxide: to boldly go where 
NO has gone before. Sci STKE 2004, RE6. 

Sambrook, J. and Russell, D. W. (2001). Molecular cloning: A laboratory manual. 
Molecular cloning: A laboratory manual. 

Sandouka, A., Balogun, E., Foresti, R., Mann, B. E., Johnson, T. R., Tayem, Y., Green, 
C. J., Fuller, B. and Motterlini, R. (2005). Carbon monoxide-releasing molecules 
(CO-RMs) modulate respiration in isolated mitochondria. Cell. Mol. Biol. 51, 
425-432. 

Sandouka, A., Fuller, B. J., Mann, B. E., Green, C. J., Foresti, R. and Motterlini, R. 
(2006). Treatment with carbon monoxide-releasing molecules (CO-RMs) during 
cold storage improves renal function at reperfusion. Kidney Int. 69, 239-247. 

Santos-Silva, T., Mukhopadhyay, A., Seixas, J. D., Bernardes, G. J. L., Romao, C. C. 
and Romao, M. J. (2011). CORM-3 Reactivity toward Proteins: The Crystal 
Structure of a Ru(II) Dicarbonyl-Lysozyme Complex. J. Am. Chem. Soc. 133, 
1192-1195. 

Santos, M. F., Seixas, J. D., Coelho, A. C., Mukhopadhyay, A., Reis, P. M., Romao, M. 
J., Romao, C. C. and Santos-Silva, T. (2012). New insights into the chemistry of 
fac-[Ru(CO)3]2

+ fragments in biologically relevant conditions: the CO releasing 
activity of [Ru(CO)3Cl2(1,3-thiazole)], and the X-ray crystal structure of its 
adduct with lysozyme. J. Inorg. Biochem. 117, 285-91. 

Sarady-Andrews, J. K., Liu, F., Gallo, D., Nakao, A., Overhaus, M., Ollinger, R., Choi, 
A. M. and Otterbein, L. E. (2005). Biliverdin administration protects against 
endotoxin-induced acute lung injury in rats. American journal of physiology. 
Lung cellular and molecular physiology 289, L1131-7. 

Sarady, J. K., Otterbein, S. L., Liu, F., Otterbein, L. E. and Choi, A. M. K. (2002). 
Carbon monoxide modulates endotoxin-induced production of granulocyte 
macrophage colony-stimulating factor in macrophages. Am. J. Respir. Cell Mol. 
Biol. 27, 739-745. 

Sarady, J. K., Zuckerbraun, B. S., Bilban, M., Wagner, O., Usheva, A., Liu, F., 
Ifedigbo, E., Zamora, R., Choi, A. M. K. and Otterbein, L. E. (2004). Carbon 
monoxide protection against endotoxic shock involves reciprocal effects on 
iNOS in the lung and liver. FASEB J. 18, 854-856. 

Sardana, M. K., Sassa, S. and Kappas, A. (1981). Differential responses to inducers of 
delta-aminolaevulinate synthase and haem oxygenase during pregnancy. 
Biochem. J. 198, 403-8. 

Sasakura, Y., Hirata, S., Sugiyama, S., Suzuki, S., Taguchi, S., Watanabe, M., Matsui, 
T., Sagami, I. and Shimizu, T. (2002). Characterization of a direct oxygen sensor 
heme protein from Escherichia coli - Effects of the heme redox states and 
mutations at the heme-binding site on catalysis and structure. J. Biol. Chem. 277, 
23821-23827. 

Sawle, P., Foresti, R., Mann, B. E., Johnson, T. R., Green, C. J. and Motterlini, R. 
(2005). Carbon monoxide-releasing molecules (CO-RMs) attenuate the 
inflammatory response elicited by lipopolysaccharide in RAW264.7 murine 
macrophages. Br. J. Pharmacol. 145, 800-810. 

Schatzschneider, U. (2010). Photoactivated biological activity of transition-metal 
complexes. Eur. J. Inorg. Chem., 1451-1467. 

Schatzschneider, U. (2011). PhotoCORMs: Light-triggered release of carbon monoxide 
from the coordination sphere of transition metal complexes for biological 
applications. Inorg. Chim. Acta 374, 19-23. 



242 
 

Schmitt, M. P. (1997). Utilization of host iron sources by Corynebacterium diphtheriae:  
identification of a gene whose product is homologous to eukaryotic heme 
oxygenases and is required for acquisition of iron from heme and hemoglobin. J. 
Bacteriol. 179, 838-845. 

Schuller, D. J., Zhu, W. M., Stojiljkovic, I., Wilks, A. and Poulos, T. L. (2001). Crystal 
structure of heme oxygenase from the Gram-negative pathogen Neisseria 
meningitidis and a comparison with mammalian heme oxygenase-1. 
Biochemistry 40, 11552-11558. 

Scott, R. I., Gibson, J. F. and Poole, R. K. (1980). Adenosine triphosphatase activity and 
its sensitivity to ruthenium red oscillate during the cell-cycle of Escherichia 
coli-K12. J. Gen. Microbiol. 120, 183-198. 

Scragg, J. L., Dallas, M. L., Wilkinson, J. A., Varadi, G. and Peers, C. (2008). Carbon 
monoxide inhibits L-type Ca2+ channels via redox modulation of key cysteine 
residues by mitochondrial reactive oxygen species. J. Biol. Chem. 283, 24412-
24419. 

Seaver, L. C. and Imlay, J. A. (2001). Alkyl hydroperoxide reductase is the primary 
scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 
183, 7173-7181. 

Seixas, J. D. (2010). Development of CO-releasing molecules for the treatment of 
inflammatory diseases. Doctoral Dissertaition, Instituto de Technoloia Quimica 
e Biologica da Universidade Nova de Lisbosa. 

Sharma, N., Bhattarai, J. P., Hwang, P. H. and Han, S. K. (2013). Nitric oxide 
suppresses L-type calcium currents in basilar artery smooth muscle cells in 
rabbits. Neurol. Res. 35, 424-8. 

Shelver, D., Kerby, R. L., He, Y. P. and Roberts, G. P. (1995). Carbon monoxide-
induced activation of gene expression in Rhodospirillum rubrum requires the 
product of cooA, a member of the cyclic AMP receptor protein family of 
transcriptional regulators. J. Bacteriol. 177, 2157-2163. 

Shelver, D., Kerby, R. L., He, Y. P. and Roberts, G. P. (1997). CooA, a CO-sensing 
transcription factor from  Rhodospirillum rubrum, is a CO-binding heme 
protein. Proceeding Of The National Academy Of Sciences Of The United States 
Of America 94, 11216-11220. 

Shi, L. B., Sohaskey, C. D., Kana, B. D., Dawes, S., North, R. J., Mizrahi, V. and 
Gennaro, M. L. (2005). Changes in energy metabolism of Mycobacterium 
tuberculosis in mouse lung and under in vitro conditions affecting aerobic 
respiration. Proc. Natl. Acad. Sci. U. S. A. 102, 15629-15634. 

Shi, R., Pineda, M., Ajamian, E., Cui, Q., Matte, A. and Cygler, M. (2008). Structure of 
L-xylulose-5-Phosphate 3-epimerase (UlaE) from the anaerobic L-ascorbate 
utilization pathway of Escherichia coli: identification of a novel phosphate 
binding motif within a TIM barrel fold. J. Bacteriol. 190, 8137-44. 

Shiva, S., Huang, Z., Grubina, R., Sun, J., Ringwood, L. A., MacArthur, P. H., Xu, X., 
Murphy, E., Darley-Usmar, V. M. and Gladwin, M. T. (2007). Deoxymyoglobin 
is a nitrite reductase that generates nitric oxide and regulates mitochondrial 
respiration. Circul. Res. 100, 654-61. 

Sipma, J., Henstra, A. M., Parshina, S. M., Lens, P. N., Lettinga, G. and Stams, A. J. 
(2006). Microbial CO conversions with applications in synthesis gas purification 
and bio-desulfurization. Crit. Rev. Biotechnol. 26, 41-65. 

Sirs, J. A. (1974). The kinetics of the reaction of carbon monoxide with fully 
oxygenated haemoglobin in solution and erythrocytes. J Physiol 236, 387-401. 



243 
 

Sjostrand, T. (1949). Endogenous formation of carbon monoxide in man under normal 
and pathological conditions. Nature 164, 580-581. 

Skaar, E. P., Gaspar, A. H. and Schneewind, O. (2004). IsdG and IsdI, heme-degrading 
enzymes in the cytoplasm of Staphylococcus aureus. J. Biol. Chem. 279, 436-
443. 

Skaar, E. P., Gaspar, A. H. and Schneewind, O. (2006). Bacillus anthracis IsdG, a 
heme-degrading monooxygenase. J. Bacteriol. 188, 1071-1080. 

Slayman, C. (1977). "The function of an alternative terminal oxidase in Neurospora. In 
functions of alternative terminal oxidase". Pergamon, Oxford. 

Smith, H., Mann, B. E., Motterlini, R. and Poole, R. K. (2011). The carbon monoxide-
releasing molecule, CORM-3 (Ru(CO)3Cl(Glycinate)), targets respiration and 
oxidases in Campylobacter jejuni, generating hydrogen peroxide. IUBMB Life 
63, 363-371. 

Snyder, S. H., Jaffrey, S. R. and Zakhary, R. (1998). Nitric oxide and carbon monoxide: 
parallel roles as neural messengers. Brain Res. Brain Res. Rev. 26, 167-75. 

Srisook, K., Han, S. S., Choi, H. S., Li, M. H., Ueda, H., Kim, C. and Cha, Y. N. 
(2006). CO from enhanced HO activity or from CORM-2 inhibits both O2

- and 
NO production and downregulates HO-1 expression in LPS-stimulated 
macrophages. Biochem. Pharmacol. 71, 307-318. 

Stabb, E. V., Reich, K. A. and Ruby, E. G. (2001). Vibrio fischeri genes hvnA and hvnB 
encode secreted NAD+ glycohydrolases. J. Bacteriol. 183, 309-17. 

Stenmark, P. and Nordlund, P. (2003). A prokaryotic alternative oxidase present in the 
bacterium Novosphingobium aromaticivorans. FEBS Lett. 552, 189-92. 

Stewart, R. D. (1974). The effects of low concentration of carbon monoxide in man. 
Scand. J. Respir. Dis. Suppl. 91, 56-62. 

Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N. and Ames, B. N. (1987). 
Bilirubin is an antioxidant of possible physiological importance. Science 235, 
1043-6. 

Stripp, S. T., Goldet, G., Brandmayr, C., Sanganas, O., Vincent, K. A., Haumann, M., 
Armstrong, F. A. and Happe, T. (2009). How oxygen attacks [FeFe] 
hydrogenases from photosynthetic organisms. Proc. Natl. Acad. Sci. U. S. A. 
106, 17331-17336. 

Sturr, M. G., Krulwich, T. A. and Hicks, D. B. (1996). Purification of a cytochrome bd 
terminal oxidase encoded by the Escherichia coli app locus from a delta cyo  
delta cyd strain complemented by genes from Bacillus firmus OF4. J. Bacteriol. 
178, 1742-1749. 

Suematsu, M., Kashiwagi, S., Sano, T., Goda, N., Shinoda, Y. and Ishimura, Y. (1994). 
Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. 
Biochem. Biophys. Res. Commun. 205, 1333-7. 

Suits, M. D. L., Pal, G. P., Nakatsu, K., Matte, A., Cygler, M. and Jia, Z. C. (2005). 
Identification of an Escherichia coli O157 : H7 heme oxygenase with tandem 
functional repeats. Proc. Natl. Acad. Sci. U. S. A. 102, 16955-16960. 

Suliman, H. B., Carraway, M. S., Tatro, L. G. and Piantadosi, C. A. (2007). A new 
activating role for CO in cardiac mitochondrial biogenesis. J. Cell Sci. 120, 299-
308. 

Sulzenbacher, G., Roig-Zamboni, V., Pagot, F., Grisel, S., Salomoni, A., Valencia, C., 
Campanacci, V., Vincentelli, R., Tegoni, M., Eklund, H. and Cambillau, C. 
(2004). Structure of Escherichia coli YhdH, a putative quinone oxidoreductase. 
Acta Crystallogr. D. Biol. Crystallogr. 60, 1855-62. 



244 
 

Sun, J., Hoshino, H., Takaku, K., Nakajima, O., Muto, A., Suzuki, H., Tashiro, S., 
Takahashi, S., Shibahara, S., Alam, J., Taketo, M. M., Yamamoto, M. and 
Igarashi, K. (2002). Hemoprotein Bach1 regulates enhancer availability of heme 
oxygenase-1 gene. EMBO J. 21, 5216-24. 

Svetlitchnyi, V., Peschel, C., Acker, G. and Meyer, O. (2001). Two membrane-
associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-
monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J. 
Bacteriol. 183, 5134-44. 

Svetlitchnyi, V., Sokolova, T. G., Gerhardt, M., Ringpfeil, M., Kostrikina, N. A. and 
Ga, Z. (1991). Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-
utilizing thermophilic anaerobic bacterium from hydrothermal environments of 
Kunashir Island. Syst. Appl. Microbiol. 14, 254–260. 

Sylman, J. L., Lantvit, S. M., Vedepo, M. C., Reynolds, M. M. and Neeves, K. B. 
(2013). Transport limitations of nitric oxide inhibition of platelet aggregation 
under flow. Ann. Biomed. Eng. 

Sylvester, J. T. and McGowan, C. (1978). The effects of agents that bind to cytochrome 
P-450 on hypoxic pulmonary vasoconstriction. Circul. Res. 43, 429-37. 

Szabo, C. (2010). Gaseotransmitters: New frontiers for translational science. Sci. 
Transl. Med. 2. 

Taguchi, S., Matsui, T., Igarashi, J., Sasakura, Y., Araki, Y., Ito, O., Sugiyama, S., 
Sagami, I. and Shimizu, T. (2004). Binding of oxygen and carbon monoxide to a 
heme-regulated phosphodiesterase from Escherichia coli - Kinetics and infrared 
spectra of the full-length wild-type enzyme, isolated PAS domain, and Met-95 
mutants. J. Biol. Chem. 279, 3340-3347. 

Taille, C., El-Benna, J., Lanone, S., Boczkowski, J. and Motterlini, R. (2005). 
Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the 
antiproliferative effect of carbon monoxide in human airway smooth muscle. J. 
Biol. Chem. 280, 25350-60. 

Takahashi, K., Nakayama, M., Takeda, K., Fujia, H. and Shibahara, S. (1999). 
Suppression of heme oxygenase-1 mRNA expression by interferon-gamma in 
human glioblastoma cells. J. Neurochem. 72, 2356-61. 

Tang, X. D., Xu, R., Reynolds, M. F., Garcia, M. L., Heinemann, S. H. and Hoshi, T. 
(2003). Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK 
channels. Nature 425, 531-535. 

Tavares, A. F., Teixeira, M., Romao, C. C., Seixas, J. D., Nobre, L. S. and Saraiva, L. 
M. (2011). Reactive oxygen species mediate bactericidal killing elicited by 
carbon monoxide-releasing molecules. J. Biol. Chem. 286, 26708-26717. 

Tenhunen, R., Marver, H. S. and Schmid, R. (1969). The enzymatic conversion of 
hemoglobin to bilirubin. Trans. Assoc. Am. Physicians 82, 363-71. 

Terry, C. M., Clikeman, J. A., Hoidal, J. R. and Callahan, K. S. (1999). TNF-alpha and 
IL-1alpha induce heme oxygenase-1 via protein kinase C, Ca2+, and 
phospholipase A2 in endothelial cells. Am. J. Physiol. 276, H1493-501. 

Thijs, L., Vinck, E., Bolli, A., Trandafir, F., Wan, X. H., Hoogewijs, D., Coletta, M., 
Fago, A., Weber, R. E., Van Doorslaer, S., Ascenzi, P., Alam, M., Moens, L. 
and Dewilde, S. (2007). Characterization of a globin-coupled oxygen sensor 
with a gene-regulating function. J. Biol. Chem. 282, 37325-37340. 

Thorn, J. M., Barton, J. D., Dixon, N. E., Ollis, D. L. and Edwards, K. J. (1995). Crystal 
structure of Escherichia coli QOR quinone oxidoreductase complexed with 
NADPH. J. Mol. Biol. 249, 785-799. 



245 
 

Tinajero Trejo, M., Jesse, H. E. and Poole, R. K. (2013). Gasotransmitters, Poisons and 
Antimicrobials: It’s a gas, gas, gas! F1000Prime Reports 5 (28). 

Torres, J., Sharpe, M. A., Rosquist, A., Cooper, C. E. and Wilson, M. T. (2000). 
Cytochrome c oxidase rapidly metabolises nitric oxide to nitrite. FEBS Lett. 475, 
263-266. 

Trumpower, B. L. and Gennis, R. B. (1994). Energy transduction by cytochrome 
complexes in mitochondrial and bacterial respiration: The enzymology of 
coupling electron transfer reactions to transmembrane proton translocation. 
Annu. Rev. Biochem. 63, 675-716. 

Tseng, C.-P., Albrecht, J.A. and Gunsalus, R.P. (1996). Effect of microaerophilic cell 
growth conditions on expression of the aerobic (cyoABCDE and cydAB) and 
anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in 
Escherichia coli. J. Bacteriol. 178, 1094 - 1098. 

Umbach, A. L. and Siedow, J. N. (1993). Covalent and noncovalent dimers of the 
cyanide-resistant alternative oxidase protein in higher plant mitochondria and 
their relationship to enzyme activity. Plant Physiol. 103, 845-854. 

Umbach, A. L., Wiskich, J. T. and Siedow, J. N. (1994). Regulation of alternative 
oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in 
soybean seedling mitochondria. FEBS Lett. 348, 181-4. 

Vadori, M., Seveso, M., Besenzon, F., Bosio, E., Tognato, E., Fante, F., Boldrin, M., 
Gavasso, S., Ravarotto, L., Mann, B. E., Simioni, P., Ancona, E., Motterlini, R. 
and Cozzi, E. (2009). In vitro and in vivo effects of the carbon monoxide-
releasing molecule, CORM-3, in the xenogeneic pig-to-primate context. 
Xenotransplantation 16, 99-114. 

Vanlerberghe, G. C. and McIntosh, L. (1997). Alternative oxidase: From gene to 
function. Annu Rev Plant Physiol Plant Mol Biol 48, 703-734. 

Vera, T., Henegar, J. R., Drummond, H. A., Rimoldi, J. M. and Stec, D. E. (2005). 
Protective effect of carbon monoxide-releasing compounds in ischemia-induced 
acute renal failure. J. Am. Soc. Nephrol. 16, 950-958. 

Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. and Snyder, S. H. (1993). Carbon 
monoxide - A putative neural messenger. Science 259, 381-384. 

Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. and Ruby, E. G. (2000). Vibrio 
fischeri lux genes play an important role in colonization and development of the 
host light organ. J. Bacteriol. 182, 4578-86. 

Visick, K. L. and Ruby, E. G. (2006). Vibrio fischeri and its host: it takes two to tango. 
Current Opinion in Microbiology 9, 632-638. 

Voggu, L., Schlag, S., Biswas, R., Rosenstein, R., Rausch, C. and Gotz, F. (2006). 
Microevolution of cytochrome bd oxidase in Staphylococci and its implication 
in resistance to respiratory toxins released by Pseudomonas. J. Bacteriol. 188, 
8079-8086. 

Wagner, A. M. and Moore, A. L. (1997). Structure and function of the plant alternative 
oxidase: its putative role in the oxygen defence mechanism. Biosci. Rep. 17, 
319-33. 

Wang, J., Karpus, J., Zhao, B. S., Luo, Z., Chen, P. R. and He, C. (2012). A selective 
fluorescent probe for carbon monoxide imaging in living cells. Angew. Chem. 
Int. Ed. Engl. 51, 9652-6. 

Wang, R. (2003). The gasotransmitter role of hydrogen sulfide. Antiox. Redox Signal. 5, 
493-501. 



246 
 

Wang, R. (2004). In "Signal Transduction and the Gasotransmitters. NO, CO and H2S in 
Biology and Medicine" (R. Wang, ed.), pp. 3-31. Humana Press, Totowa, New 
Jersey. 

Wang, R., Wu, L. and Wang, Z. (1997). The direct effect of carbon monoxide on KCa 
channels in vascular smooth muscle cells. Pflugers Arch. 434, 285-91. 

Ward, J. S., Lynam, J. M., Moir, J. W. B., Sanin, D. E., Mountford, A. P. and Fairlamb, 
I. J. S. (2012). A therapeutically viable photo-activated manganese-based CO-
releasing molecule (photo-CO-RM). Dalton Trans. 41, 10514-10517. 

Way, S. S., Sallustio,S., Magliozzo,R.S. and Goldberg,M.B. (1999). Impact of either 
elevated or decreased levels of cytochrome bd expression on Shigella flexneri 
virulence. J. Bacteriol. 181, 1229 - 1237. 

Wegele, R., Tasler, R., Zeng, Y. H., Rivera, M. and Frankenberg-Dinkel, N. (2004). 
The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. J. 
Biol. Chem. 279, 45791-45802. 

Weigel, P. H. and Englund, P. T. (1975). Inhibition of DNA replication in Escherichia 
coli by cyanide and carbon monoxide. J. Biol. Chem. 250, 8536-8542. 

White, K. A. and Marletta, M. A. (1992). Nitric oxide synthase is a cytochrome-P-450 
type hemoprotein. Biochemistry 31, 6627-6631. 

Wiesel, P., Patel, A. P., DiFonzo, N., Marria, P. B., Sim, C. U., Pellacani, A., Maemura, 
K., LeBlanc, B. W., Marino, K., Doerschuk, C. M., Yet, S. F., Lee, M. E. and 
Perrella, M. A. (2000). Endotoxin-induced mortality is related to increased 
oxidative stress and end-organ dysfunction, not refractory hypotension, in heme 
oxygenase-1-deficient mice. Circulation 102, 3015-22. 

Wikstrom, M., Krab, K. and Saraste, M. (1981). "Cytochrome Oxidase. A Synthesis". 
Academic Press, London. 

Wilkinson, W. J. and Kemp, P. J. (2011). The carbon monoxide donor, CORM-2, is an 
antagonist of ATP-gated, human P2X4 receptors. Purinergic Signal. 7, 57-64. 

Wilson, J. L. (2012). In "The Anti-microbial Effects of Carbon Monoxide and Carbon 
Monoxide-Releasing Molecule-3 (CORM-3), Department of Molecular Biology 
and Biotechnology", vol. Ph.D. The University of Sheffield. 

Wilson, J. L., Jesse, H. E., Hughes, B., Lund, V., Naylor, K., Davidge, K. S., Cook, G. 
M., Mann, B. E. and Poole, R. K. (2013). Ru(CO)3Cl(Glycinate) (CORM-3): A 
carbon monoxide-releasing molecule with broad-spectrum antimicrobial and 
photosensitive activities against respiration and cation transport in Escherichia 
coli. Antioxid. Redox Signal. 

Winterbourn, C. C. (1982). Superoxide dismutase-inhibitable reduction of cytochrome-c 
by the alloxan radical - Implications for alloxan cytotoxicity. Biochem. J. 207, 
609-612. 

Wood, P. M. (1983). Why do c-type cytochromes exist? FEBS Lett. 164, 223-226. 
Wood, P. M. (1984). Bacterial proteins with CO-binding b- or c-type haem. Functions 

and absorption spectroscopy. Biochim. Biophys. Acta 768, 293-317. 
Wu, L. Y. and Wang, R. (2005). Carbon monoxide: Endogenous production, 

physiological functions, and pharmacological applications. Pharmacol. Rev. 57, 
585-630. 

Wu, R. Y., Skaar, E. P., Zhang, R. G., Joachimiak, G., Gornicki, P., Schneewind, O. and 
Joachimiak, A. (2005). Staphylococcus aureus IsdG and IsdI, heme-degrading 
enzymes with structural similarity to monooxygenases. J. Biol. Chem. 280, 
2840-2846. 



247 
 

Xi, Q., Tcheranova, D., Parfenova, H., Horowitz, B., Leffler, C. W. and Jaggar, J. H. 
(2004). Carbon monoxide activates KCa channels in newborn arteriole smooth 
muscle cells by increasing apparent Ca2+ sensitivity of alpha-subunits. American 
journal of physiology. Heart and circulatory physiology 286, H610-8. 

Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., 
Kasahara, Y. and Koizumi, S. (1999). Oxidative stress causes enhanced 
endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 
103, 129-135. 

Yang, C. M., Hsieh, H. L., Lin, C. C., Shih, R. H., Chi, P. L., Cheng, S. E. and Hsiao, L. 
D. (2013). Multiple factors from bradykinin-challenged astrocytes contribute to 
the neuronal apoptosis: involvement of astroglial ROS, MMP-9, and HO-1/CO 
system. Mol. Neurobiol. 47, 1020-33. 

Yew, W. S. and Gerlt, J. A. (2002). Utilization of L-ascorbate by Escherichia coli K-12: 
assignments of functions to products of the yjf-sga and yia-sgb operons. J. 
Bacteriol. 184, 302-6. 

Youn, H., Conrad, M., Chung, S. Y. and Roberts, G. P. (2006). Roles of the heme and 
heme ligands in the activation of CooA, the CO-sensing transcriptional 
activator. Biochem. Biophys. Res. Commun. 348, 345-350. 

Zhang, Z., Aboulwafa, M., Smith, M. H. and Saier, M. H., Jr. (2003). The ascorbate 
transporter of Escherichia coli. J. Bacteriol. 185, 2243-50. 

Zhao, H., Joseph, J., Zhang, H., Karoui, H. and Kalyanaraman, B. (2001). Synthesis and 
biochemical applications of a solid cyclic nitrone spin trap: a relatively superior 
trap for detecting superoxide anions and glutathiyl radicals. Free Radic Biol 
Med 31, 599-606. 

Zhou, H., Lu, F., Latham, C., Zander, D. S. and Visner, G. A. (2004). Heme oxygenase-
1 expression in human lungs with cystic fibrosis and cytoprotective effects 
against Pseudomonas aeruginosa in vitro. Am. J. Respir. Crit. Care Med. 170, 
633-40. 

Zhu, W. M., Hunt, D. J., Richardson, A. R. and Stojiljkovic, I. (2000a). Use of heme 
compounds as iron sources by pathogenic Neisseriae requires the product of the 
hemO gene. J. Bacteriol. 182, 439-447. 

Zhu, W. M., Wilks, A. and Stojiljkovic, I. (2000b). Degradation of heme in gram-
negative bacteria: the product of the hemO gene of Neisseriae is a heme 
oxygenase. J. Bacteriol. 182, 6783-6790. 

Zlosnik, J. E. A., Tavankar, G. R., Bundy, J. G., Mossialos, D., O'Toole, R. and 
Williams, H. D. (2006). Investigation of the physiological relationship between 
the cyanide-sensitive oxidase and cyanide production in Pseudomonas 
aeruginosa. Microbiology 152, 1407-1415. 

Zuckerbraun, B. S., Chin, B. Y., Bilban, M., d'Avila, J. D., Rao, J., Billiar, T. R. and 
Otterbein, L. E. (2007). Carbon monoxide signals via inhibition of cytochrome c 
oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 21, 
1099-1106. 

 

 

 

 




