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Abstract

This Thesis will extend the current theory of propagating, linear
MHD waves into a cylindrical model containing a time-dependent
background density. The current observations of propagating waves
in the solar corona clearly show that the magnetic waveguides con-
tain many time-dependent features which have, to date, been ex-
cluded from the majority of theoretical models investigating MHD
wave propagation. Analysing a straight magnetic flux tube, to lead-
ing order in the WKB approximation, allows for the derivation of
two governing equations describing the perturbed total pressure and
the radial displacement. These governing equations allow for the for-
mation of the general dispersion relation and, taking the thin-tube
limit, a full expression for the wave phase can be determined. Using
the wave phase, it is possible to calculate the dynamic frequency,
dynamic wavenumber and amplitude of the various wave modes and
then the temporal evolution of these quantities can be explored.
By introducing a thin annular layer, smoothly joining the interior
and exterior of the flux tube, an investigation into the resonant
damping of the propagating MHD waves can be conducted. Analyt-
ical expressions for the resonant jump conditions and the damping
coefficient for the fast MHD wave can be found and their temporal
evolution explored.
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Chapter 1

Introduction

1.1 Introduction to the Solar Atmosphere

1.1.1 Solar Atmosphere

The solar atmosphere, and more specifically the solar corona, is an area con-

taining high concentrations of magnetic field and plasma flow activity and as

such has been a plentiful source of research areas into the nature of not only the

Sun, but into magnetically dominated plasma-phenomenon in many astrophysi-

cal plasmas. The corona, as the one of the more easily observable astrophysical

plasmas, gives a great deal of insight into how magnetic fields alter the flow

of plasma and the energy transfer as a result of disturbances within the many

and varied magnetic structures. The highly dynamic magnetic fields give rise

to many structures within the corona of which the loop-like structures, that are

anchored at the photosphere, will be the main, but not only, magnetic forma-

tion considered within this Thesis. Figure 1.1 highlights a small fraction of the

activity that can be seen within the solar atmosphere and can only hint and

the complexity of these events.

The density profile across the solar atmosphere is of paramount importance

for the work that is to follow. The large density gradients created by the pres-

ence of the magnetically dominated structures give rise to the resonant damping

of the propagating MHD waves, as considered later in this work. Now, we can

evaluate the general form of the solar atmosphere, i.e. in the absence of the

1



2 CHAPTER 1. INTRODUCTION

magnetic structures, various properties of the solar atmosphere arise and can

be evaluated. It can also be noted that the magnetic structures share many of

these physical properties, e.g. gravitational stratification. However, several of

the physical parameters are very different from the general background and will

be discussed separately in Section 1.2. We can deduce that the density is strati-

fied due to the gravitational effect of the Sun and hence different regions, where

the variation in the physical parameters follow specific trends, can be defined

for the purposes of further investigation. At the base of the solar atmosphere

is the photosphere and is considered to be the outer surface of the Sun. The

photosphere is kinetic pressure-dominated, i.e. the thermal pressure is much

greater than the magnetic pressure (this ratio is referred to as the plasma-beta

of the system). As a result much of the fluid flows take place under an approx-

imately hydro-dynamic model with a small magnetically driven change. Above

the photosphere is the chromosphere, a region of much lower density and a re-

gion where the magnetic and kinetic pressure forces are approximately equal

(i.e, the plasma-beta is approximately 1). However, one of the more interesting

aspects of the chromosphere is the increase in temperature with height above

the photosphere, such an increase in temperature has posed one of the greatest

problems in solar physics especially when considered in conjunction with a sim-

ilar manner of temperature increase in the corona. Above the chromosphere is

a thin layer known as the transition region where the magnetically generated

forces, i.e. the magnetic pressure begins to dominate the thermal pressure and

the rise in the temperature is extremely large. Investigations into modelling

the transition region have not been as common as those that have taken place

with regard to the photosphere, chromosphere and corona and hence this area

is not well understood in comparison to other regions in the solar atmosphere.

The last region of the solar atmosphere, and the region of greatest interest with

respect to this Thesis, is the corona. Density levels within the corona are very

low when compared to the other levels within the solar atmosphere, yet this

region also contains the highest temperature. A table of typical values for the

main physical parameters in the solar atmosphere is given in table (1.1).

The variation in temperature across the corona is an important part of the

coronal heating problem and has occupied many researchers since its discovery,
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Table 1.1: Approximate values of physical quantities at various points in the
solar atmosphere.

Parameter Photosphere Chromosphere Corona
Density (cm−3) 1023 1015 1012.
Temperature (K) 6× 103 25× 103 5×106

Magnetic Field (G) 500 50 10

therefore means of energy transport and release through and into the corona is

of interest to many people. There are many competing theories of energy release

into the corona, the two most common theories are magnetic reconnection and

the damping of magnetohydrodynamic (MHD) waves. Magnetic reconnection

is not under consideration here and will not be expanded upon further, how-

ever, an overview of the coronal heating problem is given by e.g. Erdélyi and

Ballai (2007), Parnell and De Moortel (2012). Whilst the MHD waves are the

main focus of the work, the heating (and therefore energy flux) associated with

these waves will not be considered further, instead this work will focus upon

the analytical forward modelling of these oscillations.

The dynamic nature of the magnetic field within the corona introduces con-

tinuous changes to the structures found therein. Many of the structures last

for minutes whilst others have lifetimes of the order of days or even months.

These temporal variations in the corona make the analysis of observational data

more difficult. The work performed in this Thesis is a first step into creating

analytical dynamic models that can improve our understanding of the current

data. For the structures with large life-times equilibrium models are very good

approximations to the true activity taking place within these structures. The

shorter the lifetime, however, the less accurate these equilibrium models be-

come, attempts into modelling these temporally varying structures has so far

been limited.
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Figure 1.1: SDO/HMI magnetogram of the magnetic field in the photosphere.
Image taken on 27th August 2011. Courtesy of NASA/SDO and the AIA, EVE,
and HMI science teams.

1.2 Various Formations in the Solar Atmosphere

In this section we discuss a small number of the magnetic structures found in

the solar atmosphere, the most important of which is the context of this Thesis

is the coronal loop. Other structures are discussed in order to give a general

background and for their possible use as an extension to the work done in this

Thesis.

1.2.1 Coronal Loops

The magnetic structure known as the coronal loop is one of the most numerous

and widely studied structures found in the solar corona, Figure (1.2) shows an

image provided by the TRACE satellite displaying one of the clearest images

of a series of loops in the solar atmosphere. Coronal loops are anchored, at

their foot points, to the photosphere and consist of closed magnetic field lines

stretching high into the solar atmosphere. This plasma is tied to these field

lines through the ‘frozen in’ condition, discussed in Section 1.3.1 below, en-
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abling us to observe these loops and hence gain further information on the Sun

and solar atmosphere in general. The plasma within the loop is estimated to

have a temperature of approximately 2.5 × 106K with very little variation due

to density, the density itself has been measured and found to be in the region of

5× 10−14m−3 to 5× 10−15m−3, many times that of the typical coronal density

(all values as stated by Aschwanden (2004)).

Since these closed loops are anchored in the photosphere, the change in the

exterior atmosphere as they travel through the chromosphere and the corona

necessarily implies that the structure of the loop, and the plasma tied to the

field lines, must change as well. These inhomogeneities in coronal loops make

the act of solar atmospheric magneto-seismology, determining various physi-

cal quantities from the observed properties of MHD waves, very difficult. The

forward-modelling (determination of physical quantities for a theoretical investi-

gation) of such loops is, therefore, of great importance to those who wish to gain

further information on the composition and the activities within the corona. Of

the various motions within the corona, the most relevant to this Thesis are the

wave-like motion observed throughout the solar atmosphere. An overview of the

current investigations into the modelling of the oscillations within coronal loops

is given in Section 1.4.3 and an review of the observational evidence for these

waves is given by e.g. Aschwanden and Title (2004), Nakariakov and Verwichte

(2005) or De Moortel and Nakariakov (2012).

1.2.2 Prominences

A prominence is a highly dense structure high in the solar atmosphere con-

sisting of plasma that is at a much lower temperature than the surrounding

atmosphere. Prominences generally fall into one of two categories, active or

quiescent, depending on the magnitude of the lifespan of the prominence. Ac-

tive prominences generally contain highly dynamic events that may well result in

large density losses through e.g. a Coronal Mass Ejection (CME), and, hence,

dramatically reduce the lifespan of the prominence. In contrast, a quiescent

prominence may well exist for a timescale of the order of several months which

provides many questions about their continued stability. Figure 1.3 shows a
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Figure 1.2: This image of coronal loops over the eastern limb of the Sun was
taken in the TRACE 171 pass band, characteristic of plasma at 1 MK, on
November 6, 1999, at 02:30 UT. Image credit: TRACE Team, NASA

large prominence as seen by SoHo and gives an indication of the size of these

structures in relation to the others discussed here.

Quiescent prominences have a density of approximately 1016−1017m−3 with

internal temperatures between 3000−6000K. Such values and the slowly chang-

ing nature of the prominence make such structures ideal candidates for an ex-

tension of the work and analysis performed within this Thesis. A review of the

observational evidence for oscillations in prominences and the theoretical model

associated with these oscillations is given by Arregui et al. (2012).
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Figure 1.3: Large, eruptive prominence in He II at 304Å, with an image of the
Earth added for size comparison. (Courtesy of SOHO consortium. SOHO is an
international cooperation project between ESA and NASA.)

1.2.3 Coronal Holes

Figure 1.4: Elongated coronal hole as observed on 27th December 2005. Cour-

tesy of NASA/SDO and the AIA, EVE, and HMI science teams.
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Coronal holes are regions on the solar surface where an open magnetic field

stretches out through the corona into open space. In order to ensure that no

magnetic monopoles exist (i.e. ∇ ·B = 0, see Section 1.3.1) the field lines are

assumed to close beyond the solar atmosphere. The open field lines allow high

velocity plasma to escape the solar atmosphere and, hence, is the source of the

fast solar wind. Within these regions the density and temperature are of the

order of three times less than the surrounding atmosphere and, as a result, is

of interest in the study of oscillations where energy is lost to the surrounding

atmosphere, see Chapter 4 for further details. Coronal holes are typically found

at the northern and southern poles of the Sun, however, at the solar maximum

they can occur at most point on the solar surface. The large, dark region in

Figure 1.4 is a coronal hole that was observed in late 2005 and is one the largest

coronal holes to have been detected. A review of the current observations of

propagating MHD waves in coronal loops is given by Banerjee et al. (2011).

1.3 Introduction to MHD

Magnetohydrodynamics (MHD) is the the study of how the presence of a mag-

netic field influences the flow of a highly ionised fluid. A combination of the

equations of fluid dynamics and Maxwell’s equations of electromagnetism allows

for a description of the bulk plasma flow, a plasma is here defined as a continu-

ous fluid with a high level of ionisation. The derivation of Maxwell’s equations

of electromagnetism from first principles as well as the continued derivation of

the equation of MHD are not considered here and can be found in many previ-

ous works, e.g. Goossens (2003) or Goedbloed and Poedts (2004).

Whilst the MHD equations are a very good description of magnetically in-

fluenced fluid flows, there are a number of potential areas where MHD can be

considered to be a potentially flawed investigative tool. Whilst these problems

are (in general) not applicable to MHD within the solar atmosphere, and MHD

waves observed currently, they do give an indication into limitations of MHD

applications in other research areas and physical applications.

The first of the assumptions made in constructed the MHD equations, is

that the plasma is strongly collisional, i.e. that the plasma is a perfect con-
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ductor. However, it can also be assumed that the typical length and velocity

scales are much greater than the Debye radius and, hence, the plasma can be

assumed to move as a single fluid. Models can be built which do account for

the collisional effects of electron flow and indeed there are many two, or three

(neutral atoms), fluid models, see again e.g. Goedbloed and Poedts (2004). The

rate of ionisation and the energy loss as a result of electrons colliding with the

positively charged and neutral atoms should not be ignored in a truly accurate

model. In the corona, however, the rate of ionisation is approximately 97% and

as such the neutral ions can be ignored.

These are just a small sample of the problems faced by MHD in all situations,

but given the conditions of the solar atmosphere the use of the MHD equations

is justified in order to make mathematical investigations into the magnetically

genereated phenomonen therein. The MHD equations, as used at all further

points in this Thesis, are given below.

1.3.1 MHD Equations

The MHD equations relate the magnetic field vector (B), the plasma density (ρ),

plasma pressure (p), plasma temperature (T ) and the velocity vector (V). The

recuring constant µ0 is the permeability of free space The following equations

are at the heart of the of MHD.

Equation of Mass Conservation

The equation of mass conservation, also known as the continuity equation, states

that the volume of fluid entering a volume must be equal to the volume leaving

and can be expressed as
∂ρ

∂t
+∇ · (ρV) = 0. (1.1)

If the fluid density is constant everywhere the equation of mass conservation

reduces to

∇ ·V = 0,

and as such is the expression for incompressible fluids.
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Induction Equation

The induction equation, equation (1.2), can be formed by eliminating the elec-

tric field components from Maxwell’s electromagnetic equations. As stated ear-

lier, the derivation has been done in many places and will not be shown here.

∂B

∂t
= ∇× (V ×B) + η∇2B (1.2)

Comparing the typical length scales of the convective component, ∇ × (V ×
B), and the diffusive component, η∇2B, allows us to write the dimensionless

magnetic Reynolds number, Rm, where

Rm =
vl

η
.

Rm describes the relative magnitudes of the typical velocity (v) and length (l)

scales to the magnetic diffusivity (η). Like its equivalent in fluid dynamics,

the magnetic Reynolds number gives an indication of the relative importance

of dissipative force within the flow of plasma. For a flow with a large magnetic

Reynolds number, i.e. Rm ≫ 1, the dissipation is only important on small

length scales. The magnetic field can be said to be ideal when plasma flows

over typical length scale are considered. This limit represents plasma which is

essentially ’frozen’ to the magnetic field lines and is a good approximation for

MHD in the corona. The frozen in condition states that the plasma is ’tied’

to the magnetic field lines and will move with the field lines when a force is

applied.

Momentum Equation

The momentum equation is a version of the Navier-Stokes Equation of Fluid

Dynamics, where a magnetic force component has been included. The Navier-

Stokes equation models packets of fluid (Lagrangian description) as they move

under external forces. The momentum equation as most commonly used in

MHD has a pressure gradient and a combination of magnetic tension and mag-
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netic pressure. The momentum equation is most commonly written as

ρ
DV

Dt
= −∇p+ (∇×B)× B

µ0

, (1.3)

where the magnetic component can be rewritten as

(∇×B)× B

µ0

=
1

µ0

(B · ∇)B−∇
(

B2

2µ0

)

.

The first term on the right hand side represents the magnetic tension and the

second term the magnetic pressure. The magnetic pressure is sometimes com-

bined with the plasma pressure and written as

P = p+
B ·B
2µ0

,

where P is the total pressure of the system. Equation (1.3) can therefore, with

the expansion of the material derivative, be rewritten as

ρ0

(

∂

∂t
+V · ∇

)

V = −∇P +
1

µ0

(B · ∇)B. (1.4)

If any other forces, e.g. gravitational or viscous, are considered their combined

effects can be included by a simple summation of the additional forces.

Energy Equation

The energy equation relates the change in the energy contained within a volume

to the presence of heat sources or sinks within the same volume. Here, γ is the

ratio of specific heats, also called the adiabatic invariant, and L is the total heat

loss function

ργ
D

Dt

(

p

ργ

)

= −L, (1.5)

L represents the various heat sources and sinks within the field, usually these

taking the form of energy losses through particle collisions, radiative losses or

background heating. If ideal energy conservation is applied L = 0 the energy
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equation then reduces to

∂p

∂t
+V · ∇p = −γp∇ ·V. (1.6)

Equation (1.6) is the the form of the energy equation that will be used through-

out the work presented here and represents an adiabatic plasma.

Viscous or dissipative effects have been neglected from this formulation of

the energy equation as in ideal, or approximately ideal, MHD these effects are

negligible to leading order.

Gauss’e Law of Magnetism

Magnetic flux through a closed surface (A), in the absence of magnetic monopoles,

is a conserved quantity and as such can be expressed by

∫

A

B · S = 0.

This expression can be written in a differential form, using Gauss’s theorem, as

∇ ·B = 0, (1.7)

which will be the form of the conservation law applied hereafter.

Ideal Gas Law

The above equations are joined by the ideal gas law of thermodynamics which

relate the plasma pressure, density and temperature.

p =
R

µ̂
ρT (1.8)

In equation (1.8) R and µ̂ are the gas constant and mean atomic weight respec-

tively.
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1.3.2 Perturbation Theory

Perturbation theory is a method of analysing a system that is disturbed from

its equillibrium state. This disturbance is usually considered to be small so that

the background state is not destroyed. These perturbations often give rise to

wave activity in flux tubes and therefore will be used as the starting point for

further calculations. The basis of perturbation theory is as follows: taking the

MHD equations (1.3)-(1.8) each variable will be written in the form,

f → f0 + f1nonumber (1.9)

where f0 is the background state of the system and f1 is the small perturbation.

f1 is now considered to be much less than the background values, enough so

that f 2
1 can be classed as insignificant. Using these perturbed variables it is

possible to form equations to describe wave activity within the system. To

clarify the future notation, all perturbed variables will not use the subscript 1

but all background values will continue with the 0 subscript.

1.4 Introduction to Linear MHD waves

Perturbations in a plasma can cause variations in e.g. the density, pressure,

temperature, velocity field and magnetic field. The frozen-in condition of the

magnetic field in ideal MHD scenarios implies that the fluctuations in the mag-

netic field cause the plasma to be dragged with the magnetic field. For plasmas

in which the displacement has a length-scale such that the square of the dis-

placement can be neglected with respect to the background parameters. The

periodic perturbations are called linear waves and have been the focus of much

study. In the absence of gravity or a buoyancy force, waves and oscillations

in the magnetic field can be divided into three distinct wave modes with three

distinct propagation speeds.

Using the fundamental equations of ideal MHD as discussed in the last sec-

tion it is possible to form the wave equation in a uniform magnetised plasma.

In a static equilibrium the three wave modes can be most clearly determined

and therefore the most logical starting point to start a review of MHD wave
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theory. We note that the derivation discussed below does not represent MHD

waves in a fully arbitrary system. However, it is relevant to the work performed

later in this Thesis.

1.4.1 Wave in a Uniform Plasma

For the initial investigation into linear wave propagation we consider an infinite,

uniform plasma with constant vertical magnetic field, constant plasma pressure

and constant density. We assume a time-independent perturbation and as such

every perturbation is proportional to exp[−iωt], thus reducing the linearised,

ideal MHD equations reduce to

−iωρ = −∇ · (ρ0V),

−iωB = ∇× (V ×B),

−iωρ0V = −∇
(

p+∇
(

B2

2µ0

))

+
1

µ0

(B · ∇)B,

−iωp = −ρ0c2∇ ·V.

Algebraically combining these equations for the perturbed velocity component

allows for the following to be written

ω(ω2 − (B · ∇)2)

(

ω4 − (c2 + V 2
A)ω

2∇2 + c2V 2
A

∂2

∂z2
∇2

)

V = 0.

By expressing the spatial derivatives using Fourier decomposition (or normal

mode analysis), i.e. exp[i(kxx̂+kyŷ+kzẑ)], where ki is the constant wavenumber

in the ith direction, thus reducing the dispersion relation to

ω(ω2 − ω2
A)(ω

4 − k2(c2 + V 2
A)ω

2 + k2zk
2c2V 2

A) = 0, (1.10)

where

k =
√

k2x + k2y + k2z , ωA = VAkz, VA =

√

B2
0

µ0ρ0
, and c =

√

γ
p0
ρ0
,
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are the magnitude of the wavenumbers, the Alfvén frequency, Alfvén speed

and sound speed, respectively. Equation (1.10) is the dispersion relation for

MHD waves in an unbounded, uniform medium. It is clear that there exist four

distinct solutions to the dispersion relation (if a single propogation direction

is considered), each relating to a different wave mode that can be considered

separately. The most obvious solution is that where ω = 0. This solutions rep-

resents the entropy wave and and is considered a null solution for the purposes

of this investigation into MHD wave modes and as such only three MHD wave

modes will be referred to.

The solution ω = VAkz is the second solution to equation (1.10) and de-

scribes the incompressible Alfvén wave. The unit eigenvector associated with

the Alfvén wave in this plasma is in the y direction and therefore the perturba-

tions associated with Alfvén wave can be considered to purely transverse to the

background magnetic field. Alfvén waves are also important in the context of

solar wave theory in that they propagate independently of the plasma pressure

and therefore will be present in the low-pressure regions of the solar corona.

The last two solutions are the two magneto-acoustic wave modes and the

propagation frequencies are given by

ω2
f,s =

k2

2
(V 2

A + c2)± k2

2

√

(V 2
A + c2)2 − 4

V 2
Ac

2k2z
k2

,

where the ′+′ is the fast mode and the ′−′ is the slow mode. The fast and slow

wave modes oscillate at orthogonal angles to each other, the slow wave oscillates

parallel to the field, i.e. with a unit eigenvector in the z direction and the fast

wave oscillates perpendicular to the magnetic field, i.e. in the x-direction. The

phase speeds of these waves can be written as

V 2
ph =

ω2

k2x
≈ V 2

A + c2, when k2=k2x, i.e for perpendicular propagation,

for the fast MHD wave and

V 2
ph =

ω2

k2
≈ V 2

Ac
2

c2 + V 2
A

, when k2=k2x, i.e for parallel propagation,
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for the slow MHD wave. We can use these results to define an Alfvén frequency

and a cusp, or tube, frequency at which the Alfvén and the slow wave would

propagate in an unbounded infinite medium. The squares of the Alfvén and

cusp frequencies are given by

ω2
A = V 2

Ak
2
z , ω2

c =
V 2
Ac

2k2z
c2 + V 2

A

.

The slow MHD wave has certain properties that make it of interest when

analysing data from the solar corona. If the cold-plasma limit is taken, the

plasma pressure, p0 tends to 0 and the slow wave ceases to exist. In a low-

pressure environment, more typical of the solar corona, the slow MHD wave

acts like a modified sound wave traveling within a wave guide defined by the

magnetic field. The slow wave ceases to propagate within the opposite limit,

when the sound speed becomes infinitely large the plasma can be considered to

be incompressible and the wave frequency tends to 0.

In contrast to the slow MHD wave, the fast wave continues to propagate

in the cold-plasma limit albeit at a much reduced phase speed. The fast wave

frequency tends to the Alfvén frequency although continues to oscillate in an

orthogonal direction to the Alfvén wave, which is itself completely unaffected by

the change in plasma pressure. Equally, the fast wave propagates differently in

the incompressible limit. If the sound speed is again taken to an infinite value,

the fast wave would propagate at an infinite speed, whilst this is obviously an

unphysical solution, the continuation of propagation is worthy of note. Given

that the fast wave continues to propagate in both these limits, the wave is

sometimes called the compressible Alfvén wave which is modified by the plasma

pressure.

Whilst the basic properties of the three main wave modes are revealed in

this way, physical systems are not uniform or unbounded in magnitude. A series

of works by Roberts (and later with Edwin and Benz) developed mathematical

models with increasing levels of sophistication in order to describe the wave

propagation around regions with discontinuities in the magnetic field. The

wave propagation within a cylindrical flux tube is the most relevant to the work
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done in later chapters and was detailed within, Edwin and Roberts (1983b), the

analysis below will follow their work.

1.4.2 Wave Propagation in Cylindrical Flux Tube

The following work is conducted in a cylindrical coordinate system described

by (r, φ, z) for the radial, azimuthal and vertical components. A magnetic flux

tube of constant radius R is embedded in a magnetised atmosphere of constant

density and plasma pressure. We now introduce a twisted component to the

magnetic field, i.e. B0φ is now finite, as well as the vertical magnetic field, B0z.

We assume that there exists a discontinuity between all interior and exterior

values allowing for a variety of propagating MHD wave modes. We will assume

the presence of trapped waves only, i.e. that the wave propagation in the

exterior region does not transfer energy away from the flux tube. We start from

the linearised MHD equations as given previously, except now the normal mode

analysis is no longer valid in the radial direction, i.e. ∂/∂r 6= ikr. Therefore we

can write the linearised, perturbed, MHD equations as

ρ = −∇ · (ρ0ξ),

ρ0
∂2ξ

∂t2
= −∇P +

B0

µ0

· ∇B,

B = (B0 · ∇)ξ,

p = −ρ0c2∇ · ξ,

P = p+
B0

µ0

·B.

Using the linearised MHD equations it is possible to write, after normal mode

analsyis (i.e. perturbations proportional to exp[−iωt+mφ+ kz]), two govern-

ing equations (sometimes called the Hain-Lüst Equations) by isolating the total

pressure perturbation, P and the radial displacement, ξr. The following equa-

tions have been derived in their current form in many works, see e.g. Sakurai
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et al. (1991), Tirry and Goossens (1996) or Goossens (2003),

D
1

r

d(rξr)

dr
= C1ξr − C2P, (1.11)

and

D
dP

dr
= C3ξr − C1P, (1.12)

where

D = ρ0(ω
2 − ω2

A)(ω
2 − ω2

c )(c
2 + V 2

A),

C1 = 2
B2

0φω
4

µ0r
− 2

m

r2
fBB0φ(ω

2 − ω2
c )(c

2 + V 2
A),

C2 = ω4 − (ω2 − ω2
c )(c

2 + V 2
A)

(

m2

r2
+ k2

)

,

C3 = D

[

ρ0(ω
2 − ω2

A) + 2
B0φ

µ0

d

dr

(

B0φ

r

)]

+

+4
ω4B4

0φ

µ2
0

− 4(ω2 − ω2
c )(c

2 + V 2
A)
B0φ

µ0r2
ω2
A,

fB = k ·B0, gB =
m

r
B0z − kB0φ, ω2

A =
f 2
B

µ0ρ0
,

and m and k are the azimuthal and vertical wavenumbers respectively. At this

point, for the discontinuous magnetic field, we exclude the singular solutions

which occur when the wave frequency matches that of the Alfvén frequency, ωA

or the cusp frequency, ωc. When a more realistic model is considered, i.e. a

transitional region is included, these solutions become feasible and the solutions

in the region of the singularities are discussed in the next section. Unless a

specific form of the azimuthal magnetic field component is specified it is difficult

to make analytical progress from this point. Therefore, for the rest of this section

we will reduce the problem to a constant, vertical magnetic field and hence the

governing equations reduce to

D
1

r

d(rξr)

dr
= −

[

ω2 − (c2 + V 2
A)(ω

2 − ω2
c )

(

m2

r2
+ k2

)

P,

]

(1.13)
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and
dP

dr
= ρ0(ω

2 − ω2
A)ξr. (1.14)

We now consider the two distinct regions, the interior and exterior atmo-

sphere. Within these regions it is possible to combine equations (1.13) and

(1.14) in to the following equation for the total pressure

[

d2

dr2
+

1

r

d

dr
−

(

m2

r2
+m2

0

)]

P = 0.

If we consider the interior of the flux tube this equation has to have a solution

regular at r = 0, as such we write

Pi = Ai

{

I|m|(mir) r < R,

J|m|(nir) r < R,

where Ai is a constant, Im and Jm are Bessel functions of order m, details of

which can be found in e.g. Abramowitz and Stegun (1972). Here the radial

wavenumbers, m2
i or n2

i , is given by

m2
i = −n2

i = −(ω2 − ω2
A)(ω

2 − c2k2)

(c2 + V 2
A)(ω

2 − ω2
c )

.

If m2
i > 0 the resulting wave is classed as a ’surface wave’, i.e. the displace-

ment is localised on the boundary of the flux tube and propagates along the

discontinuity; for m2
i < 0 the resulting wave is called a ’body wave’, i.e. the

wave propagates throughout the medium and contains maxima at various ra-

dial points, not just at the discontinuity. In the magnetised atmosphere we

require the solution to be evanescent as r → ∞, therefore we require that

Pe = AeKm(mer), r > R.

Here Km is the modified Bessel function of the second kind of order m and me

is given by

m2
e = −(ω2 − ω2

Ae)(ω
2 − c2ek

2)

(c2e + V 2
Ae)(ω

2 − ω2
c )
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and is the radial wavenumber for the magnetised atmosphere.

Thus, the expression for the radial displacement within the flux tube can be

written, using equation (1.14), as

ξri =
1

ρ0(ω2 − ω2
A)

d

dr

(

Ai

{

I|m|(mir) m2
i > 0,

J|m|(nir) n2
i > 0,

}

)

, (1.15)

and the external perturbation is given by

ξre =
Ae

ρe(ω2 − ω2
Ae)

dK(mer)

dr
. (1.16)

Using both of these perturbations it is possible to write the dispersion relation

for wave propagation in a cylindrical flux tube. We require that the radial

displacement and the total pressure perturbation across the discontinuity are

conserved, i.e.

[ξr] = ξri

∣

∣

∣

∣

r=R

− ξre

∣

∣

∣

∣

r=R

= 0, [P ] = Pi

∣

∣

∣

∣

r=R

− Pe

∣

∣

∣

∣

r=R

= 0. (1.17)

Therefore it is possible to write

ξri = ξre,

⇒ P ′
i

ρi(ω2 − ω2
A)

=
P ′
e

ρe(ω2 − ω2
Ae)

,

where a prime indicates a radial derivative. At this point we use the explicit form

of the perturbed total pressure and the conservation law above to determine the

ratio of the constants Ai and Ae.

Ai

Ae

=
Km

Jm or Im

∣

∣

∣

∣

r=R

with this ratio it is possible to write the dispersion relation as

ρi(ω
2 − ω2

A)me
K ′

m(meR)

Km(meR)
= ρe(ω

2 − ω2
Ae)mi

I ′m(miR)

Im(miR)
(1.18)
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for surface waves and

ρi(ω
2 − ω2

A)me
K ′

m(meR)

Km(neR)
= ρe(ω

2 − ω2
Ae)ni

J ′
m(niR)

Jm(niR)
(1.19)

for body waves. At this point we will neglect the discussion on propagating sur-

face waves as, under conditions typical of coronal loops and other magnetically

dominated coronal structures, only body waves propagate within the structures.

The surface waves are prevented from propagating under these conditions dues

to the ratio of the sound and Alfvén speeds, i.e. the radial wavenumber m2
i < 0

for typical values. As the surface wave does not propagate in these conditions,

all the work presented after this point will focus on the body waves, see Edwin

and Roberts (1983b) for further details on the propagation of surface waves.

The dispersion relation for propagating body waves can be reduced further

if we use the thin-tube approximation (TT), which is sometimes called the long

wavelength approximation. We assume that niR ≪ 1 the dispersion relation

can be reduced to

ρi(ω
2 − ω2

A) + ρe(ω
2 − ω2

Ae) = 0. (1.20)

The thin-tube assumption reduces the number of wave modes to the m ≥ 1

fast MHD wave modes. Rearranging equation (1.20) it is possible to write the

phase speed of the wave and the ′kink′ frequency of the transverse oscillations.

The phase speed can be written as

Vph =
ω

k
=

√

ρiV 2
A + ρeV 2

Ae

ρi + ρe
, (1.21)

and the frequency can be written as

ω2
k =

ρiV
2
A + ρeV

2
Ae

ρi + ρe
k2. (1.22)

Whilst the two quantities are intimately connected, they both represent impor-

tant quantities in solar magneto-seismology as they are two of the most eas-

ily acquired values from observations of propagating MHD waves in the solar

corona.
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1.4.3 Overview of Current Research

Over the years there have been many studies that have dedicated themselves

to wave propagation in the solar atmosphere. Early investigations by Defouw

(1976), Hollweg (1978) and Spruit (1982) was directed to describe the propaga-

tion of the magneto-sonic wave modes under conditions typical of the disparate

areas of the solar atmosphere. However, the foundation of the current the-

ory of MHD wave propagation took place in the series of works by Roberts

(1981a, 1981b) and Edwin and Roberts (1983b) for Cartesian geometry, which

has since been extended to different geometries and even into steady systems

in many later works (see e.g. Narayanan 1991, Goossens et al. (1992a), Terra-

Homem, Erdélyi and Ballai 2003). The extension into cylindrical geometry was

considered by Edwin and Roberts (1983a) and has since become a fundamental

paper on which most studies of propagating MHD waves in the solar atmo-

sphere are based. More recently, observations made by Transition Region and

Coronal Explorer (TRACE), Solar and Heliospheric Observatory (SoHO) and

Hinode have extensively indicated the complexity of the magnetic loops in the

solar atmosphere and therefore the complexity of wave propagation in highly

dynamic loops.

A result of this myriad of observational data, has been a series of investi-

gations into MHD wave propagation where spatial or temporal variation has

been taken into account. Spatial variation has been the more common of these

models, Andries et al. 2005, Dymova and Ruderman (2006), and Erdélyi and

Verth (2007) have all considered density stratification with magnetic flux tubes.

The alteration to the eigenfrequencies for longitudinal variation in density was

considered both numerically and analytically. The difference in eigenfrequen-

cies using these techniques was found to be less than 1% for thin mangetic flux

tubes. In order to model the observed expansion of magnetic flux tubes Verth

and Erdélyi (2008) derived governing equations for symmetrically expanding

loops, hence, determining the change to the fast kink wave as the loop ex-

pands. The inclusion of an azimuthal component to the background magnetic

field i.e. a twisted magnetic field, was considered by Erdélyi and Fedun (2010b)

and a dispersion relation for wave propagation was found. For an overview of
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MHD wave theory in magnetically structured loops see Roberts (2000), Andries

et al (2009), or Ruderman and Erdélyi (2009) for transverse oscillations, e.g.

Roberts (2006), de Moortel (2009) or Wang (2011) for longitudinal oscillations

and Mathioudakis et al. (2012) for a review of Alfvén waves.

This Thesis will concentrate on dynamic MHD wave propagation in the

high solar atmosphere, however, some the work performed later is applicable to

lower regions. As such we refer to Hasan (2008) for an overview of the dynam-

ics currently under discussion within the chromosphere. The work performed

in Chapters 3 and 6, in particular, may be of interest to people wishing to

investigate the lower solar atmosphere.

1.5 Introduction to Resonant Absorption

Resonant absorption was initially discussed as as means of heating fusion plas-

mas, see e.g. Tataronis and Grossmann (1973) or Hasegawa and Chen (1974),

and was introduced to the coronal heating debate by Ionson (1978). Hollweg

(1988) and Erdélyi and Goossens (1994), among others, have discussed reso-

nant absorption as a means of damping the numerous MHD waves observed in

the corona. The concept of resonant absorption explores the idea, previously

discounted in section (1.3.2), that the frequency of the transverse motions, ω,

is equal to the local Alfvén frequency, ωA, and/or the cusp frequency, ωc. In

the two governing equations, (1.11) and (1.12), we note that singularities ex-

ist at these points. In a model containing a radial discontinuity this is not a

problem as we only consider magnetic flux tubes for which these frequencies

are irrelevant. However, a more realistic model of naturally occurring plasmas

has a transitional layer smoothly joining the interior and exterior values across

the boundary. Such a model allows for these singular frequencies to be present.

If, however, we investigate the displacement either side of this singularity we

find that there is an drop in amplitude across the resonant point. The drop in

amplitude across this point is commonly referred to as the jump condition. The

expression for this jump in the amplitude is derived in Section 1.5.1 below.

For the purposes of this Thesis, the transitional layer is assumed to be thin

in comparison with the flux tube and the density is assumed to be monotonically
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decreasing across the layer, thus reducing the number of singular points, called

resonant points hereafter, to one per continuum. Whilst investigations into

multiple resonant points have taken place see, e.g. Ruderman (2011), the pos-

sibility of overlapping dissipative layers may complicate the underlying physics.

For simplicity this work will restrict itself to a single resonant point per contin-

uum.

In physical terms the propagating fast MHD waves, oscillating with a fre-

quency close to that of the local Alfvén frequency, will couple to local Alfvén

waves producing quasi-modes. The energy loss, indicated by the negative jump

in wave amplitude (as demonstrated in Section 1.5.1), is a result of the energy

stored within the fast MHD wave being converted into local continuum waves.

These locally generated waves have a much lower magnetic Reynolds number,

i.e. the diffusivity length scale is more important, causing the locally generated

waves to be damped and hence release the energy into the magnetised atmo-

sphere.

At this point a model analogous to that discussed in Section 1.4.2, i.e. a

stationary cylindrical model with a twisted magnetic field, however, we now

introduce a magnetic diffusion term in order to create a physical means of dis-

torting the singularity that exists in ideal MHD, as the linear wave theory, as

described in the previous section, is only valid in ideal MHD we only consider

the dissipation to be important in narrow bands in the neighborhood of the

resonant points. We, then, form the governing equations in the same manner

as in the case of no transition layer, except that with the inclusion of the dissi-

pation, the coefficient D, as given in equations (1.10) and (1.11), now becomes

the operator Dη which is given by

Dη = (ω2
η − ω2

A)(ω
2
η − ω2

c )(c
2 + V 2

A), ω2
η = ω2

(

1− i
η

ω

d2

dr2

)

.

We now note that when ω = ±ωA and ω = ±ωc the singularities that existed in

ideal MHD no longer exist. Given that the magnetic diffusivity is only important

in narrow bands around the two (formerly) singular points, we can approach

the problem in a similar manner as for ideal MHD. The jump conditions in ideal

MHD are not discussed here, but details may be found in e.g. Sakurai et al.
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(1991), Goossens et al. (2011). The derivation below will focus on the jump

conditions as derived by Goossens et al. (1995) in dissipative MHD. It should

be noted that the jump conditions in both ideal and dissipative MHD can be

shown to be identical.

1.5.1 Resonance in the Alfvén Continuum

We first consider the region where ω = ±ωA. We designate the radial point

at which the resonance occurs as rA and a new radial variable s = r − rA.

Following the method outlined by Goossens et al. (1995), we can now Taylor

expand around the point s and take the first non-zero term, the leading order

terms are given by

D1 = ρ0V
2
Aω

2
A∆,

C10 = −2B0φB0zω
2
AfBgB/ρ0rµ

2
0,

C20 = −ω2
Ag

2
B/ρ0µ0,

C30 = −4B2
0φB

2
0zω

2
A/r

2µ2
0,

where

∆A =
d

dr
(ω2 − ω2

A)|r=rA ,

and a subscript ’A’ indicates an evaluation at the resonant point. These ex-

pressions reduce the governing equations (1.10)-(1.11) to

(

s∆− iηω
d2

ds2

)

dξr
ds

=
gB
ρAB2

0

CA(s), (1.23)

and
(

s∆− iηω
d2

ds2

)

dP

ds
= 2

fBB0φB0z

µ0rAρAB2
0

CA(s), (1.24)

where

CA(s) = gBP − 2
fBB0φB0z

µ0s
ξs = const. (1.25)

Condition (1.25) is the fundamental conservation law for the Alfvén resonance

across the region where the Taylor expansion is valid. In ideal MHD CA is
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exactly conserved and, to leading order, in dissipative MHD CA can be shown

to be conserved, see Appendix A for details. An equivalent value can be derived

for the slow resonance and is discussed later.

Given that CA is constant, further progress can be made towards deriving

an analytic solution for the jump conditions across the point s = 0, hereafter

the jump conditions refers to the loss of amplitude across the resonant point.

A new radial variable, τA, is introduced and is scaled over the region in which

the dissipation, η is important, i.e. the area where s∆ and ηωd2/ds2 are of

comparable magnitude. This dissipative layer is designated δA and both τA and

δA are defined as

τA =
s

δA
, δA =

(

η
ω

|∆A|

)1/3

. (1.26)

The governing equations can, once again, be rewritten as

(

d2

dτ 2
+ isign(∆A)τ

)

dξr
dτ

= i
gB

ρAB2
0 |∆A|

CA, (1.27)

and
(

d2

dτ 2
+ isign(∆A)τ

)

dP

dτ
= 2i

fBB0φB0z

ρAB2
0µ0rA|∆A|

CA. (1.28)

Equations (1.26) and (1.27) can be solved in terms of two functions F (τ) and

G(τ), as shown by e.g. Erdélyi et al. (1995b), Goossens et al. (1995) or Goossens

et al. (2011), describing the asymptotic behavior of the perturbations at the

point τA = 0. The full derivation for both functions can be found in Appendix

A. Using the two functions, the full form of ξr and P in the region of the resonant

point can be expressed as

ξr ≈
gBCA

ρAB2
0∆A

(

ln |τ |+ 2ν

3
+

1

3
ln 3− i

π

2
sign(∆τ)

)

+ Cξ, (1.29)

P ≈ 2
fBB0φB0zCA

µ0rAρA∆AB2
0

(

ln |τ |+ 2ν

3
+

1

3
ln 3− i

π

2
sign(∆τ)

)

+ CP , (1.30)

where the constant ν is the Euler constant. The presence of the signum function

indicates a jump in wave amplitude across the resonant point. The jumps across
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this point can be written as

[ξr] = −iπ gB
ρAB2

0 |∆A|
CA, [P ] = −2iπ

fBB0φB0z

ρAB2
0µ0rA|∆A|

CA. (1.31)

It is interesting to note that the jump is independent of the dissipative constant

η and, instead, only depends upon the background plasma values as found in

ideal MHD. In the case of a purely vertical magnetic field the jump conditions

reduce to

[ξr] = −iπ m2

r2AρA|∆A|
P, [P ] = 0. (1.32)

The most interesting result of this reduction is that the jump in the total pres-

sure perturbation disappears and the resonance in the radial displacement is

simplified. The straight magnetic field is an important reduction to make at

this point, since the relative twist in the magnetic field in coronal, loop-like,

structures is very low and as such this approximation is accurate to leading

order. The second reason for this reduction is that the work conducted in chap-

ters 4 and 5 takes places in the presence of a straight magnetic field. Further

analysis using these jump conditions can be performed, however, first a similar

investigation into the resonance around the cusp frequency will be presented.

1.5.2 Resonance in the Slow Continuum

Now, we turn our attention to the singularity in the region of the cusp frequency,

i.e. when ω = ±ωc. For the slow MHD wave, such damping is only effective

given the compressible nature of the slow MHD wave and the radial motion

of a result of this compression. Given the relatively small (in comparison to

the Alfvén speed) magnitude of the sound speed in the corona, the damping is

generally considered less important than that found in the Alfvén continuum,

however, Chapter 5 will show that it is possible, under certain conditions, for

the resonant damping of a slow MHD wave to become more important.

By Taylor expanding around the radial point where ω = ±ωc, i.e. when

s = r − rc = 0, and taking the first non-zero term we find that the governing
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equations reduce to

(

s∆c − i
η

ω

ω2
c

ω2
A

d2

ds2

)

dξr
ds

=
µ0ω

4
c

B2
0ω

2
A

Cs(s), (1.33)

and
(

s∆c − i
η

ω

ω2
c

ω2
A

d2

ds2

)

dP

ds
=

2ω2
c

rcB2
0ω

2
A

Cs(s), (1.34)

where ∆c and Cs are given by

∆C =
d

dr

(

ω2 − ω2
c

)∣

∣

∣

∣

r=rc

, Cs = P − 2
B2

0φξr

µ0s
= const.

The conserved quantity, Cs is comparable to the conserved value CA as found

in the Alfvén continuum and can be derived in the same way (see e.g. Sakurai

et al. (1991), Erdélyi 1998). Such solutions are only valid in the dissipative

region designated δc, whose width is given by

δc =

(

η
ωω2

c

|∆c|ω2
A

)1/3

.

Given that Cs is conserved, we can seek solutions across the dissipative layer in

the same manner as in the previous section, see Appendix A for details. The

asymptotic solutions for the two functions F (τ) and G(τ) can be applied in a

similar manner to that of the resonant Alfvén wave, giving jump conditions as

[ξr] = −iπ µ0ω
4
c

B2
0 |∆c|ω2

A

Cs, [P ] = −2iπ
B2

0φω
2
c

B2
0rcω

2
A|∆c|

Cs. (1.35)

Unlike in the case of the resonant Alfvén wave we find that in the case of a

straight magnetic field, resonance exist for the slow, m = 0, sausage wave. If

we, again, consider a straight magnetic field the jump conditions reduce to

[ξr] = −iπ µ0ω
4
c

B2
0 |∆c|ω2

A

P, [P ] = 0. (1.36)

Similar to the Alfvén resonance in the case of a straight magnetic field in the

total pressure perturbation. Once again the jump across the resonant point is
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independent of the magnetic diffusivity. For full details on the derivation of

jump conditions in the slow continuum, see Erdélyi (1998) or Goossens et al.

(2011) for a full review.

1.6 Wave Dissipation

Now, that the jump conditions in both the Alfvén and slow regimes have been

introduced, we will use the resulting jump condition in the Alfvén continuum to

calculate the dissipation rate of the coupled fast and Alfvén wave. The deriva-

tion below follows the work carried out by Goossens et al. (1992a) and exploits

the assumption of a thin tube.

We return to the dispersion relation for the fast kink wave in a thin, straight

magnetic flux tube. In the case of a discontinuity in the magnetic field, as pre-

sented in Section 1.5.1, there is no jump in either the radial displacement or the

perturbed pressure and as such the dispersion relation found in equation (1.19)

holds. With the introduction of the transitional layer and, hence, the jump in

the radial displacement, the dispersion relation can be derived as follows,

ξri − ξre = −iπ m2

r2AρA|∆|P,

ρe(ω
2 − ω2

Ae)P
′
i − ρi(ω

2 − ω2
A)P

′
e = −iπρiρe(ω2 − ω2

A)(ω
2 − ω2

Ae)
m2

r2AρA|∆|Pi.

Now, by applying the thin tube approximation this expression can be reduced

to

ρi(ω
2 − ω2

A) + ρe(ω
2 − ω2

Ae) = iπ
mρiρe
rAρA|∆|. (1.37)

The dissipation rate can now be determined by either algebraically rearrang-

ing the dispersion relation, as in the manner of Terradas, Goossens and Verth

(2010), or by using the method as laid out by e.g. Krall and Trivelpiece (1973).

The method followed here will use the second method, however, both methods

will start by defining a complex frequency ω = ωr + iγ. The imaginary compo-

nent γ is assumed to be small in comparison to the real component ωr. Using
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the method of Krall and Trivelpiece (1973), γ is given by

γ = −Di(ωr, k)

∂Dr/∂ωr

, (1.38)

where Dr and Di are the real and imaginary parts of the dispersion relation. In

this example, where there is no background flow, γ has the following form

γ = −|m|π
2rA

ρ2i ρ
2
e

ρA(ρi + ρe)3
|ω2

A − ω2
Ae|

ωk|∆| , (1.39)

where ωk is the kink frequency as stated in equation (1.21) This dissipation is,

again, independent of the the magnetic diffusivity, η and indicates the need for a

large density gradient across the transitional layer. If the density gradient were

small, i.e. ρi ≈ ρe ≈ ρA, the dissipation would reduce to the difference in mag-

netic fields, which in the approximately zero plasma-β magnetic environment

typical of the corona diminishes the resonance to insignificant levels.

1.6.1 Overview of Resonant Absorption Investigations

Propagating waves in coronal loops have been identified by analysis of data

gained from the space satellites (see e.g. Berghmans and Clette, 1999, De

Moortel, Ireland and Walsh, 2000, O’Shea et al., 2001). The majority of the

observed waves are heavily damped, most within 4-5 periods, several studies

(see e.g. Ruderman and Roberts (2002), Terradas (2009) for a theoretical in-

vestigation of the damping period and Goossens et al. (2002), Verth et al. (2010)

for the observational detection of the resonant damping) have interpreted this

as due to resonant damping. In order to explain this rapid damping, devel-

opment of the resonant absorption model has continued apace. We know that

resonance appears in both the Alfvén and slow continua and that in different

regions of the solar atmosphere the different magneto-acoustic wave modes have

different levels of relative importance. Therefore, the investigations into both

phenomenon have been numerous and some of these are detailed below.

The jump in amplitude across the resonant point were first found by Saku-

rai, Goossens and Hollweg (1991) by evaluating solutions around the singularity



1.6. WAVE DISSIPATION 31

at the resonant point. Goossens, Ruderman and Hollweg (1995) expanded on

this method by finding analytic solutions across a scaled static dissipative layer.

The solution found therein is then expanded to more complicated systems, i.e.

systems containing both vetical and azimuthal flows see e.g. Goossens et al.

(1992a), Erdélyi et al. (1995b). A longitudinally stratified background density

was considered by Andries et al. (2005), where it was found that to leading

order the stratification has no impact upon the damping time, i.e. τdamping/P .

However, only a small longitudinal variation was considered. This work was

then extended to numerical analysis which included a thick transitional layer

in Arregui et al. (2005), showing that not only did the stratification have a

minimal effect on the resonance, but that the thin tube thin boundary approxi-

mation under estimates the damping by a factor of approximately 2. Ballai and

Ruderman (2011) reviews the recent advancements in the non-linear studies of

resonant absorption. These investigations have indicated that many instabili-

ties can occur and either enhance or disrupt the damping due to the resonance.

Given the volume of non-linear MHD waves in the solar corona such research

needs to be continued in order to expand our understanding of the observed

wave damping.

The importance of resonant absorption in slow continuum, as a means of

heating the corona, is an area of debate. Hollweg and Yang (1998) found the

jump conditions for compressible waves and found that in the low-beta environ-

ments typical of the solar corona the slow resonance is not as important as other

damping mechanisms. In a system with a larger plasma-beta the slow resonance

takes on a greater importance in the damping of the slow MHD wave. Cadez

and Ballester (1996) explored an arcade-model and showed that the resonance

in the vicinity of the cusp frequency can lead to a continuous slow mode spec-

tra. It is also worth noting that in the current work a variable background flow

is considered, such a flow must be considered in the context of the analytical

works done in e.g. Erdélyi, Goossens and Ruderman (1995a) and the numerical

analysis of Cśık, Erdélyi and Cadez (1997). The jump conditions for a steady

background as found by e.g. Erdélyi et al. (1995a) showed only an algebraic dif-

ference between the static case and the steady case, however the analytic work

was inconclusive on the effects of the flow under coronal conditions. Analysis of
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these new jump conditions by e.g. Erdélyi and Goossens (1996) or Cáık et al.

(1997) showed that the flow can cause a strong enhancement of the resonance

under the correct circumstances.

Non-linear investigations into the analogous jump conditions have been car-

ried out by Ballai and Erdélyi (1998) who introduced a small non-linear param-

eter and recover a jump condition comparable to that found in the linear works

discussed above. Erdélyi and Ballai (1999) then expanded upon this work with

the introduction of a shear flow to the non-linear parameter in the first part of

the work.

A full summary of the current research into the resonant absorption phe-

nomenon, including aspects of theory not discussed here, is given by Goossens

et al. (2011).

1.7 The WKB Approximation

1.7.1 Introduction to WKB Analysis

The WKB approximation was named after the three physicists (Wentzel, Kram-

mers and Brillouin) who first formalised its use as a method for approximating

the solution to linear differential equations. However, work had previously been

done by Liouville and Green prompting an alternative name of Liouville-Green

Theory. The WKB approximation isolates terms to orders of magnitude with

respect to a small parameter, δ, and removes all terms of a lesser magnitude.

This approximation is very useful for the work I will be presenting later due

to its ability to approximate a slowly changing background, if the background

changes with the same order as the parameter δ. The derivations below follow

the style of Bender and Orszag (1978).

Formal WKB Expansion

The formal WKB approximation is an ansatz of the form

y(x) ≈ exp

[

1

δ

∞
∑

n=0

δnSn(x)

]

, δ → 0.
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As higher orders of Sn are calculated the solution becomes increasingly accu-

rate. However, a full solution to a problem, using this method, would require a

solution for every order of magnitude within the problem. Therefore, in order to

save time, only the first two orders of magnitude need be calculated in order to

give an accurate representation whilst keeping calculations to a minimum. The

first two orders of magnitude can be expressed in a concise manner by using

the exponential approximation to the WKB method, as detailed below.

The Exponential Approximation

The form of the WKB approximation that is considered to be most useful, is

the Exponential Approximation, the form of which is below:

y(x) ≈ exp

[

S0

δ
+ S1

]

= Q(x) exp

[

Ŝ(x)

δ

]

.

Where

Q(x) = exp[S1], and, Ŝ1(x) = S0.

The function Ŝ(x) is assumed to be a non-constant function. When Ŝ(x) is

a real function the approximation represents a boundary layer problem. The

boundary layer will then have a thickness of δ.

If the function Ŝ(x) is imaginary, then the system can be shown to represent

a wave form with a wavelength δ. In this form Ŝ(x) represents the phase of the

wave and Q(x) is the amplitude of the wave. In all further work a waveform

solution will be sought and Ŝ(x) ∈ R will be assumed. Therefore, the standard

WKB approximation used will be of the form

y(x) ≈ Q(x) exp

[

i

δ
S(x)

]

,

where theˆnotation has now been dropped for convenience.

Extension into Multiple Variables

Due to the relation between the spatial and time variable indicated by the mass

conservation equation, each of the variables will need to vary over the same slow
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time period. For simpler problems, like the ones solved below, it is useful to

scale the wave numbers such that they vary over the timescale, δ. However, in

more complex problems it is not so simple and the Exponential Approximation

must be altered in order to account for this. The multi-variable approximation

is therefore as follows.

y(x, t) ≈ Q(x, t) exp

[

i

δ
S(x, t)

]

,

where x is the position vector.

1.7.2 Example of the WKB Approximation

To demonstrate the applicability of the WKB approximation we choose the one-

dimensional wave equation with a vertically stratified, static, fluid. The stan-

dard wave equation for wave prorogation in an infinite inhomogeneous medium

is known to be
∂2u

∂t2
− ∂

∂z

[

c2
∂u

∂z

]

= 0, c = c(z).

The WKB approximation is now applied, the form of which is

u = U(t, z) exp

[

i

δ
Θ(t, z)

]

, (1.40)

where δ is the relative size of the wavelength in comparison to the change in

the medium. The derivatives can be represented as

ut =

[

Ut +
i

δ
ΘtU

]

exp

[

i

δ
Θ(t, z)

]

, uz =

[

Uz +
i

δ
ΘzU

]

exp

[

i

δ
Θ(t, z)

]

,

utt =

[

Utt +
2i

δ
ΘtUt +

i

δ
ΘttU − U

δ2
Θ2

t

]

exp

[

i

δ
Θ(t, z)

]

,

uzz =

[

Uzz +
2i

δ
ΘtUz +

i

δ
ΘzzU − U

δ2
Θ2

z

]

exp

[

i

δ
Θ(t, z)

]

.

Therefore, to lowest order in δ

−Θ2
t + c2Θ2

z = 0,
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⇒ Θt = ±cΘz. (1.41)

The positive sign is taken in order to evaluate a single wave traveling in the

positive direction. The second lowest order of δ produces the following equation,

ΘttU + 2ΘtUt − c2ΘzzU − 2c2ΘzUz − (c2)zΘzU = 0. (1.42)

A solution for Θ is now sought

Θ = λt+

∫

λ

c
dz,

where λ is a separation constant. Equation (1.41) can now be reduced to

λU + 2Ut = U [λ− cz] + 2cUz + 2czU,

⇒ Ut = cUz +
1

2
czU. (1.43)

Equation (1.42) can be solved to give

U =
B̂

c
exp

[

ψt+

∫

ψ

c
dz

]

. (1.44)

The full solution is therefore given by

u =
B̂

c
exp

[

ψt+

∫

ψ

c
dz

]

exp

[

iÂ

δ

(

λt+

∫

λ

c
dz

)]

, (1.45)

where Â and B̂ are arbitrary constants of integration. Equation (1.43) can be

written in the form of d’Alembert’s solution for a single wave traveling in the

positive direction as

u(z, t) =
B̂

c
exp

[

ψf(z, t) +
iÂ

δ
λf(z, t)

]

, (1.46)

where

f = t+

∫

1

c
dz,
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which can be compared to d’Alembert’s solution of

f = z + ct, for c = const.

1.7.3 WKB Approximation

The WKB approximation, that is used in the following chapters, will take the

following form,

F = QF

(

r

ǫ
, z, t

)

exp

[

i

ǫ

(

θ(t, z) +mφ

)]

. (1.47)

In equation (1.47) F is any perturbed function, m is the azimuthal wave number

and ǫ is a small parameter, defined as the ratio of the period of oscillation and

the characteristic time of background density change within the loop. For more

details on the WKB approximation see e.g. Bender and Orszag (1978). At this

point it is also useful to define the following quantities

Ωw = −∂θ
∂t
, Kw =

∂θ

∂z
, ̟ = Ωw − V0zKw. (1.48)

The subscript ‘w′ indicates the individual MHD wave being considered. An ‘f ′

will indicate the fast wave mode and an ‘s′ will indicate the slow wave mode.

Ωw will represent the dynamic frequency and Kw will represent the dynamic

wavenumber. The perturbation amplitude, Q, will appear with different indices

in the following chapters. QP will represent the amplitude of the total pressure

perturbation, Qξ,r will represent the radial displacement amplitude and Qz will

represent the vertical displacement amplitude.



Chapter 2

MHD Wave Propagation in a

Zero-beta Dynamic Plasma

2.1 Introduction

MHD waves and oscillations in sharply structured magnetic plasmas have been

studied for static and steady systems in the thin tube approximation over many

years. This chapter will generalise these studies by introducing a slowly varying

background density in time. We determine the changes to the wave parameters

introduced by this temporally varying equilibrium. We investigate the ampli-

tude, frequency and wavenumber for the kink and higher-order propagating fast

magnetohydrodynamic wave in the leading order approximation to the WKB

approach in a zero-β plasma representing the upper solar atmosphere. In order

to progress the thin tube approximation is made, after which application of the

over-dense loop approximation and the moderate-activity approximation allow

for two separate methods of solution representing different physical systems.

Using such approximations it is shown that the amplitude of the kink wave

is enhanced in a manner proportional to the square of the Alfvén speed and

the frequency of the wave tends to the driving frequency of the system for an

over-denser scenario and to zero for a moderate-activity approximation as time

progresses. The over-dense loop has a wavenumber that approaches zero after a

large multiple of the characteristic density change timescale, indicating an ever

37
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increasing wavelength. In a similar manner it can be shown that the wavenum-

ber in the moderate-activity approximation decreases in an exponential manner

over time toward a constant level.

For the higher-order fluting modes the changes in amplitude are dependent

upon the wave mode; for the m = 2 mode the wave is amplified to a constant

level, however, for all m ≥ 3 the fast MHD wave is damped within a relatively

small multiple of the characteristic density change timescale. The changes in

the amplitude of the various fast MHD wave modes are similar in nature and,

therefore, the two results can be said to support each other.

The over-dense loop approximation and the analysis that goes along with

this approximation is based upon the work carried out by Williamson and

Erdélyi (2013-in Press).

2.2 The Governing Equations

An open cylinder of constant radius R and magnetic field B0ziẑ is now con-

structed inside an exterior region of constant, vertical magnetic field, B0zeẑ.

The interior density of the cylinder is designated ρi and is decreasing in time

with a constant exponential factor A. Due to the decrease in density a back-

ground flow is required to maintain mass conservation. The background flow

V=(0,0,V0z) is applied where the vertical component can be determined by the

use of mass conservation and is given by V0z = Az. The cold-plasma approxi-

mation is applied, the use of which implies that the thermal pressure, p0 ≈ 0,

of the cylinder can be neglected when compared to the magnetic pressure. The

application of the cold-plasma approximation gives a pressure balance across

the flux tube boundary which can only be satisfied by imposing a non-distinct

magnetic field, i.e. B0zi = B0ze. The exterior of the the cylinder is defined as a

constant density with no flow. The cylinder is excited at the base, i.e. z = 0,

with a constant driving frequency ω.

The ideal linearised, perturbed MHD equations can be written as

∂ρ

∂t
+∇ · (ρ0V + ρV0) = 0, (2.1)
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ρ0

[

∂V

∂t
+V · ∇V0 + V0z

∂V

∂z

]

+ ρV0z
∂V0

∂z
= −∇p+ 1

µ
(∇×B)×B0, (2.2)

∂B

∂t
= ∇× (V0 ×B) +∇× (V ×B0), (2.3)

∂p

∂t
+V0 · ∇p = −γ

(

p
∂V0z
∂z

)

. (2.4)

The radial components of equations (2.2) and (2.3) can be combined to give the

first governing equation, equation (2.5). The second governing equation can be

formed by taking the equation for the perturbed total pressure, P ≈ B0zBz/µ,

and eliminating all perturbed variables except P and Vr. Here P is given only

by the magnetic pressure as a result of the cold plasma assumption. The set of

governing equations, in operator form, are given by

ρ0

(

ˆ̟

(

ˆ̟ +
dV0z
dz

)

− ˆ̟ 2
A

)

Vr = −
(

ˆ̟ + 2
dV0z
dz

)

∂P

∂r
, (2.5)

and

ρ0V
2
A

(

ˆ̟

(

ˆ̟ +
dV0z
dz

)

− ˆ̟ 2
A

)

1

r

∂(rVr)

∂r
=

−
[(

ˆ̟

(

ˆ̟ +
dV0z
dz

)

− ˆ̟ 2
A

)

ˆ̟ − V 2
A

r2

(

ˆ̟ + 2
dV0z
dz

)

∂2

∂φ2

]

P, (2.6)

where

V 2
A =

B2
0

µρ0
, ˆ̟ =

∂

∂t
+ V0z

∂

∂z
, ˆ̟ 2

A = V 2
A

∂2

∂z2
.

Here, ˆ̟A is the Alfvén operator and ˆ̟ is the convective operator. These will

transform into frequencies if a harmonic dependence of the form exp[i(k·r−ωt)]
is assumed.

At this point the WKB approximation, as detailed in section 1.7, can be

applied allowing for algebraic manipulation of the governing equations. As

shown in Appendix 3, Equations (2.5) and (2.6) can now be combined into two

equations, in terms of the radial displacement, ξr = −i̟Vr, and the perturbed

total pressure, P , as

ρ0
r
(̟2 −̟2

A)V
2
A

∂(rξr)

∂r
= −

[

̟2 − V 2
A

(

m2

r2
+K2

)]

P, (2.7)
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and
∂P

∂r
= ρ0(̟

2 −̟2
A)ξr. (2.8)

Where Ω and K are the dynamic frequency and wavenumber respectively. The

operator forms of the Doppler-shifted frequency and the Alfvén frequency, ˆ̟

and ˆ̟A, are now replaced by the eikonal form of their respective values and are

indicated by the drop of the hat notation. The Doppler-shifted frequency and

the Alfvén frequency are now given by the following expressions

̟ = Ω− V0zK, ̟2
A = V 2

AK
2.

Equations (2.7) and (2.8) are in agreement with the results found by Edwin

and Roberts (1983a) for plane wave solutions in a magnetic cylinder. Now,

equations (2.7) and (2.8) can be evaluated for values inside and outside the

cylinder. The following equation is to be solved for interior and exterior values

of VA and ̟;

V 2
A

r

∂

∂r

(

r
∂QP

∂r

)

= −
[

̟2 − V 2
A

(

m2

r2
+K2

)]

QP . (2.9)

The most general solution to equation (2.9) is a linear combination of the Bessel

functions of first and second kinds. As indicated in section (1.4) we only consider

the body wave solution, as under coronal conditions surface waves will no longer

propagate. Therefore the solution to equation (2.9), for evanescent waves in the

exterior region and interior waves regular at r =0, is given below

QP =

{

AiJ|m|(M0r) r < R,

AeK|m|(Mer) r > R,
(2.10)

where

M2
0 =

(̟2
i −̟2

Ai)

V 2
Ai

, M2
e = −(̟2

e −̟2
Ae)

V 2
Ae

,

for the internal and external regions, respectively. In purely mathematical terms

the constants Ai and Ae should be considered to be arbitrary functions of t

and z. However, to leading order in the WKB approximation this dependence

can be neglected in comparison to the effect of the frequency and the vertical
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wavenumber. This is a result of the WKB approximation reducing Equations

(2.5) and (2.6) from coupled PDE’s to coupled ODE’s with respect to the radial

component. Using equation (2.10) it is now possible to write an expression

describing Qξ, i.e. the amplitude of the radial displacement. Application of the

thin tube approximation and continuity across the boundary, i.e. [Qξ] = [QP ] =

0, allows the dispersion relation to be written for m ≥ 1 modes, that is for the

kink and fluting wave modes, (for full details see e.g. Goossens, Hollweg and

Sakurai 1992b and Erdélyi and Goossens 1996),

ρi(̟
2
i − V 2

AiK
2) + ρe(̟

2
e − V 2

AeK
2) = 0. (2.11)

We also note that equation (2.11) is in agreement with equation (21) of Ruder-

man (2010) for time-dependent waves in a loop of fixed length. Solving equation

(2.11), using the definitions given in equation (1.47), permits the determination

of the eikonal functions Ω and K for two different approximate solutions.

2.3 Over-dense Loop Approximation

Application of the over-dense loop limit ρi ≫ ρe, valid for dense coronal loops,

allows for an analytic solution of equation (2.11). Equation (2.11) can be rewrit-

ten as

̟2 − V 2
AK

2 +
ρe
ρi
Ω2 − V 2

AK
2 = 0,

̟2 = 2V 2
AK

2.

Upon substitution of the differential forms of the dynamic frequency and wavenum-

ber, the above expression becomes

∂θ

∂t
+ (V0z +

√
2VA)

∂θ

∂z
= 0,

which can be solved for an arbitrary function F with an argument given by

θ = F

[

(V0z + 2
√
2VA)

exp[−At]
A

]

.



42CHAPTER 2. MHDWAVE PROPAGATION IN A ZERO-BETADYNAMIC PLASMA

At this point the driven boundary condition can be applied and we require that

θ(t, 0) = −ωt,

where ω is the driving frequency of the system. The full expression for the

phase, θ, is given by

θ =
2ω

A
ln

∣

∣

∣

∣

(

V0z + 2
√
2VA

)

exp(−At)
2
√
2VA0

∣

∣

∣

∣

. (2.12)

Therefore, Ω and K can be written as

Ω = 2ω
V0z +

√
2VA

V0z + 2
√
2VA

, K =
2ω

V0z + 2
√
2VA

. (2.13)

As we can see from Figure 2.1, Ω decays to the driving frequency ω relatively

Figure 2.1: Ω/ω plotted for characteristic change periods (t/τρ) against charac-
teristic flow speeds (V0z/VA0).

quickly in terms of characteristic times of density change, for background flows

typical to quiet coronal loops, i.e. those in the nearby region of V0z/VA0 < 1.

However, an argument can be made that for wave propagation in coronal loops

after a large eruption, e.g. a CME or a large solar flare, in the region of the

coronal loop, the background flow can feasibly be of comparable order to the

Alfvén speed itself and, thus, the impact could be much higher, see e.g. Terradas



2.3. OVER-DENSE LOOP APPROXIMATION 43

et al. (2011). This could arguably increase the decay timescale indefinitely. As

Figure 2.2: K/K0 (K0 = K(t = 0)) plotted for characteristic change periods
(t/τρ) against characteristic flow speeds (V0z/VA0).

plotted in Figure 2.2, the wavenumberK tends to zero over 8 to 10 characteristic

time periods, however, as the background flow increases the value of K tends

to zero more swiftly. Using these expressions, QP can now be rewritten as

QPi = AiJm

(

2ωr

V0z + 2
√
2VAi

)

, (2.14)

in the inner, over-dense region, while

QPe = AeKm

(

2ωr

(V0z ± 2
√
2VAi)VAe

[

V 2
Ae − (V0z +

√
2VAi)

2

]1/2)

, (2.15)

in the exterior of the magnetic environment. As is to be expected from the

assumption of evanescence made earlier, the exterior pressure perturbation de-

cays radially away from the loop, as well as in time, as the interior Alfvén speed

increases. The interior pressure perturbation also decreases in time and height

for all m ≥ 1 modes.

Unfortunately, with the current level of observational technology we are un-

able to use this result as a diagnostic tool in its own right. However, with

the total pressure now analytically determined we can make progress toward

determining the radial displacement, a value that is measurable using todays
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equipment.

2.3.1 Amplitude of the fast MHD wave

The amplitude of the fast MHD wave is given by the radial displacement of the

cylinder, and can be found by rearranging equation (2.8) for Qξ. Now, that the

frequency and wave function can be written explicitly, and therefore QP can

equally be determined in an explicit form, the amplitude of the fast MHD wave

can be obtained explicitly inside and outside the cylinder as

Qξi =
Aiµ0

KB2

[

m

Kr
Jm(Kr)− Jm+1(Kr)

]

, (2.16)

and

Qξe =
AeMe

ρe(Ω2 − V 2
AeK

2)

[

m

Mer
Km(Kr)−Km+1(Mer)

]

. (2.17)

By the assumption of no leaky modes, the exterior wave propagation is evanes-

cent and decays sharply as the distance from the tube increases. Using these

expressions, the propagation of the interior fast MHD wave can now be analysed

for the temporal changes introduced with the variation in background density

as well as the spatial changes brought about by the presence of the non-constant

background plasma flow.

2.3.2 Temporal Dependency of Individual Wave Modes

Edwin and Roberts (1983b) (see Figure 4 of their paper) have shown that the

axisymetric sausage (m = 0) mode has a cut-off frequency in the region of M0r

being of order unity. Such a result is excluded by the application of the thin

tube approximation and by the assumption of the zero-β plasma. Therefore,

only the kink and fluting modes remain, analysis of which can be conducted

separately.

Kink Oscillations

It is commonly said that the most interesting of the oscillations in the thin

loop approximation is the fast kink MHD oscillation. By interesting we refer
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to the fact that this is the most easily observed of all the fast MHD wave

modes, see e.g. Ofman and Wang (2008), and therefore the most useful tool

for magneto-seismology. By considering the full expression given in equation

(2.16) it is straightforward to show (see Figure 2.3) that the kink oscillation

will have an exponentially growing amplitude with respect to the characteristic

temporal change. This result, whilst interesting on its own, has obvious physical

limitations, as a wave of infinite amplitude is a physically impossible notion.

Hence, a limiting factor must be applied at the point where the linear analysis

conducted above is no longer viable. The most obvious point for which this

work can no longer be considered to be valid is when ρi and ρe of the same

order of magnitude, and the solution for θ as found in equation (2.12) is no

longer valid.

|m| > 1 Modes

The remaining fast MHD wave modes available for analysis are the fluting

modes, which are of order m ≥2. Whilst these modes will exist in both the thin

tube approximation and under coronal conditions, unlike the m = 0 sausage

mode, the current resolution of the current cohort of observational tools means

that we are yet to clearly determine these higher order wave modes. This anal-

ysis then, cannot be observationally verified at this point but may prove to be

useful to explain future data.

The m = ±2 mode can be shown to be amplified up to a saturation level,

(see Figure 2.4) the continuing propagation of this mode is then independent of

time. This analysis is true only for small values of the background flow when

compared to the Alfvén speed, i.e. V0z/VA0 ≪ 1, as is true in the coronal

approximation when the loop is not set in a region of high dynamic activity.

For very thin tubes, i.e. those where the radial wavenumber, M0r, is of order

less than unity, amplification is modest and can be considered to be negligible,

hence the wave mode can be considered to have a constant amplitude in time.

For higher values of m, the various modes will be damped by half their ini-

tial amplitude after just a few (i.e. after approximately 2 and a half) elapses of

the characteristic time of density variation, typical of the m = 3 mode. Higher
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order wave modes m will have increased rates of damping due to the density

variation within the flux tube.

Figure 2.3: Relative change in wave amplitude of the fast MHD kink waves for
a fixed loop radius(R = 1/K0).

2.3.3 Spatial Dependency of Wave Modes

The background time-dependent variation also plays a role in determining the

amplitude of the fast MHD wave. The background bulk flow, as defined in

section 2.2, has a linear relationship with height above the base of the loop.

For the results found above are obtained for values typical of coronal con-

ditions, the background flow values can be limited to small changes in height

above the driven point. This limiting factor implies that the changes introduced

by a time-dependent background are mostly insignificant when compared not

only to the Alfvén speed, but the change in Alfvén speed (due to the temporal

evolution of the wave). Exceptions occur in the region of large seismic events

on the solar surface, e.g. CME eruption (see e.g. Terradas et al. (2011) for

details). Flows driven by a CME have been observed to be of the order of the

Alfvén speed, therefore the generated flow may have a significant initial impact,

of the same magnitude as the Alfvén speed. The temporal change in Alfvén

speed, however, will have a greater impact upon the evolution in frequency,

wavenumber and amplitude as the system is allowed to develop.
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Figure 2.4: Relative change in wave amplitude of the m = 2 wave for a fixed
loop radius (R = 1/K0).

2.3.4 Increasing Density

Whilst the work outlined above is strictly relevant to a loop being evacuated

of plasma, the reverse has a high likelihood of occurrence and applicability,

e.g. due to plasma pumped into the corona via chromospheric evaporation, see

e.g. Milligan et al. (2006). Under more restrictive conditions to those applied

above, this result can be reversed in a straightforward manner. An increasing

density within the loop would act as a natural damping mechanism to the fast

MHD kink wave, albeit over large time with respect to the characteristic time of

density change. Complications would occur when the inflow speed of the plasma

becomes comparable to the decreasing Alfvén speed. When the two values are

of comparable magnitude, K changes sign and from that point onwards the

analysis of the Bessel functions present in section (1.7) must change. Further

investigation of this problem is not considered here.

2.4 Moderate-Activity Approximation

Whilst the over-dense loop approximation is very useful in examining many

of the structures found in the solar corona, the approximation does affect its

widespread use. Photospheric MHD waves are an active area of research within
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the solar community and this over-dense approximation will be of no use in

the much denser photospheric regions. To this end we develop another solution

which may well be applicable to more varied models. This approximation how-

ever, is less physically rigorous than the over-dense loop and as such may not

give such an accurate model as found previously.

Within this section we apply a different approximation to the dispersion

relation found in section 2.2. We can now investigate the effect of the chang-

ing density ratio, albeit in a system within which the background flow is much

less than was considered in the previous section. Given that the background,

bulk, flow is intrinsically linked to the temporal decay of the interior density,

this approximation may not be entirely representative of the physics involved

as a result of the decreasing density. However, the results gained herein are

a good chance to check the results found in the earlier part of this chapter

as well as provide a foundation for further work. It is also worth noting that

the moderate-activity approximation will mean that the spatial variation in

the vertical direction may be less accurate than the over-dense approximation,

therefore, the focus from here will be on the temporal variation only.

We now revisit the dispersion relation for the fast MHD wave,

ρi(̟
2 −̟2

A) + ρe(Ω
2 −̟2

Ae) = 0. (2.18)

Previously the over-dense loop approximation was applied in order to make

analytical progress. Here, however, we solve equation (2.18) in terms of the

frequency, Ω to arrive at

Ω(1 + χ) = V0zK +
√

2V 2
A(1 + χ)− V 2

0zχK, (2.19)

where χ is the density ratio, ρe/ρi. Now, we compare the relative sizes of the

terms within the square root. By assuming a background flow much smaller

than the Alfvén speed, V0z ≪ VA ,the above expression can be simplified into

a more reasonable format, where the eikonals Ω and K are written in their

differential form,
∂θ

∂t
+

[

V0z
1 + χ

+
√
2

VA√
1 + χ

]

∂θ

∂z
= 0. (2.20)
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Following the method developed for the over-dense loop case, equation (2.18)

can be solved using the method of characteristics to give an expression for the

wave phase in terms of an arbitrary function, F . Now, θ can then be written as

θ = F

[

V0z
A

(1 + χ) exp[−At] + 2
√
2VA0

A

(

√

exp[−At] + χ0−

√
χ0arctanh

[

√

χ0 + exp[−At]
√
χ0

])]

, (2.21)

for an initial density ration, χ0 = ρe/ρi0. Before the boundary condition describ-

ing the constant driver can be applied, the above expression must be simplified

into a more manageable solution. The only way to proceed is by approximating

the arctanh function to two terms in the Taylor series the following is gained,

θ = F

[

V0z exp[−At]
A

(1 + χ) + 2
√
2VA

(1 + χ)3/2

Aχ0

exp[−2At]

]

, (2.22)

However, the Taylor Series is not applicable in such a context as the argument

of the arctanh function is always greater than 1. In order to make analytical

progress, therefore, we return to equation (2.20) and the characteristics lines,

C, of equation (2.20). By taking the binomial expansion to leading order we

can write

C = V0z(1 + χ)−
√
2VA0

∫

√

1 + χ exp

[

− At

2

]

dt

≈ V0z(1 + χ)−
√
2VA0

∫
(

1 +
χ

2

)

exp

[

− At

2

]

dt.

A full solution can now be found, applicable in the region where χ < 1, i.e.

for trapped waves. The wave phase can now be solved in terms of an arbitrary

function F2

θ = F2(g) = F2

[(

V0z(1 + χ) + 2
√
2VA(1− χ/2)

)

exp[−At]
A

]

. (2.23)
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We again apply the constant driver boundary condition, i.e. θ(t, 0) = −ωt, and
can gain the full expression for the wave phase as

θ =
2ω

A
ln

∣

∣

∣

∣

1

4
√
2VA0

(

g +
√

g2 + 16V 2
A0
χ0

)∣

∣

∣

∣

, (2.24)

Using this new expression for the wave phase, it is now possible to find new

forms of the eikonal functions Ω and K. Once again, we can write

−∂θ
∂t

= Ω =
2ω

A

V0z +
√
2VA(1 + χ/2)

√

g2 + 16V 2
A0
χ0

exp[−At], (2.25)

and
∂θ

∂z
= K =

2ω

A

(1 + χ)
√

g2 + 16V 2
A0
χ0

exp[−At]. (2.26)

We can note at this point that in the limit of the density ratio being zero, this

Figure 2.5: Temporal evolution of the wave frequency under the moderate ac-
tivity approximation. All quantities are the same as detailed in Figure 2.1.

result reduces to the over-dense loop approximation made previously, despite

both the approximations made to get to this point. In the same manner as

before we investigate the dynamic frequency, Ω (see Figure 2.5), and vertical
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Figure 2.6: Temporal evolution of the vertical wavenumber under the moderate
activity approximation. All quantities are the same as detailed in Figure 2.2.

wavenumber, K (see Figure 2.6). The dynamic frequency once again decreases

in time with approximate exponential factor A/2, however, it now decreases

to constant determined by the driving frequency and the initial density ratio

instead of the driving frequency. The point at which the frequency can be

considered to be zero is past the point at which the density ratio exceeds the

limit of χ < 1 and therefore this asymptotic nature of the frequency is not

relevant when taken to extreme points in time.

The dynamic wavenumber likewise evolves in the same way as in the case of

the over-dense loop, however, the wavenumber now tends to a constant level.

Once again this change is well beyond the point at which the interior and

exterior densities will have reached the point of equality and hence gone beyond

the limits imposed by the use of the binomial approximation. We can also note

that the magnitude of the background plasma flow has an impact upon the

constant value to which the wavenumber tends. However, we reiterate the

point that the limitations imposed upon the flow mean that the analysis in the

spatial component are likely to be less accurate than those conducted for the

temporal evolution.
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In the moderate-activity approximation the expression for the phase speed

is given by

Vph =
Ω

K
=
V0z +

√
2VA(1 + χ/2)

1 + χ
, (2.27)

which again can be shown to reduce to the same phase speed as the over-

dense loop when χ → 0. The effect of the background flow now decreases as

the density ratio increases and the increase in the Alfvén speed dominates the

changing phase speed.

2.4.1 Temporal Evolution of the Individual Wave Modes

m = 1 kink mode

Using the eikonal functions calculated in the previous subsection, the amplitude

of the fast MHD wave can now be calculated using equation (2.8). Figure 2.7

describes the temporal evolution of the wave amplitude. The approximately

exponential increase of the wave amplitude matches that found in the case

of the over-dense loop. In the case of the moderate activity approximation,

however, the wave propagation has an additional, limiting, factor. Were Figure

2.7 extended, it would show that the displacement amplitude tends to a constant

limit at the point when the interior and exterior densities are equal, reinforcing

the idea that this analysis is only valid up until the point where leaky wave

propagation is likely.

m ≥ 2 mode

Comparison of Figure 2.4 and Figure 2.8 leads to a similar conclusion in that the

wave is amplified over time to a constant level, however, this saturation point is

reached after a shorter time period than in the over-dense loop approximation.

The evolution of the higher order modes leads to the same conclusions as drawn

in the previous section, namely that the m ≥3 modes are damped to nothing

at increasing rates, dependent upon the azimuthal wave number m.



2.5. CONCLUSION 53

Figure 2.7: Relative change in the amplitude of the fast, m = 1, MHD wave
under the moderate activity approximation.

2.5 Conclusion

This chapter has investigated the impact that a temporally decreasing density

has upon the propagation of the kink and fluting fast linear MHD modes present

in a coronal environment in a magnetic cylinder evolving dynamically. A set of

two governing equations describing the evolution in total pressure, P , and the

radial velocity, ξr, were found.

The assumption of a slowly varying plasma density allowed for the use of the

WKB approximation by relating the slowly changing background to the period

of oscillation of the fast MHD wave. By applying the WKB approximation to

leading order the two governing equations were then solved for P and the radial

displacement, ξr, for both the interior and exterior regions. The application

of continuity of magnetic pressure and displacement at the flux tube bound-

ary provided the general dispersion relation for MHD wave propagation in the

dynamic magnetic cylinder and permitted a solution to be found for the two

eikonal functions Ω and K. Using the explicit forms for the evolution of the fre-

quency and vertical wavenumber, the individual wave modes were investigated

for the effects of time and spacial dependency.
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Figure 2.8: Relative change in the amplitude of the fast, m = 2, MHD wave
under the moderate activity approximation.

The fast kink mode was found to be amplified exponentially. This result,

whilst unphysical in the extreme limit, gives at least an indication of the prop-

agation of fast kink waves under such conditions. The m = 2 mode is likewise

amplified, however, only to a saturation level after which the resulting wave is

practically time-independent. All other modes, with m ≥ 3, are damped to

insignificance within a few times the characteristic time of density change. The

non-constant flow acts in a similar manner to the decreasing density in that

the flow helps drive the amplification or damping of the individual wave modes.

However, in comparison with the effect of the increasing Alfvén speed this effect

can be neglected for a cylinder of finite length.

In Section 2.4 the application of the moderate-activity approximation al-

lowed a different form of solution to the dispersion relation. Analysis of this

solution provided a different form of the dynamic frequency and wavenumber,

however it can be shown that both quantities reduce to their counterparts in the

over-dense approximation. The expression for the frequency in the moderate

activity approximation gave a result similar to that found in the case of the

over-dense loop, an approximately exponential decrease over the time for which
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only trapped waves propagate. Likewise, the dynamic wavenumber decreases

in the same manner, with the small alteration of tending to a constant value.

These minor differences, however, create a limiting factor to the evolution in

the overall wave amplitude. The amplitude of the kink (i.e. the m = 1) wave

is amplified to a constant level around the point where the densities equalise,

much like in the manner of the m =2 wave in the over-dense loop approxima-

tion. Despite this difference, the initial amplification is in agreement and hence,

for the region where the density ratio is low, would imply that both these results

are consistent with the reality of wave propagation in the solar environment.

The main applications of this work done in this chapter, after its use as a

tool for analysing observed propagating waves, will be on the forward modelling

of standing wave observations in time dependent systems, by considering e.g.

propagating waves traveling in opposite directions, and as an aid to further

modelling in order to explain the observed damping in the corona. To aid in

this, given the applicability and the simple nature of the calculations performed

in the over-dense loop as well as the current level of observational data, the re-

sults from Section 2.3 should be preferred over those done in Section 2.4 which

have more potential for chromospheric and photospheric wave propagation.



Chapter 3

MHD Wave Propagation in a

Finite Plasma-beta

3.1 Introduction

The propagation of magnetohydrodynamic waves is an area that has been thor-

oughly studied for the idealised static and steady state magnetised plasma sys-

tems used in numerous theoretical models. By applying the generalisation of

a temporally varying background density to an open flux tube further investi-

gations into the propagation of both the fast and slow MHD waves can take

place. The assumption of a zero-beta plasma was used in Chapter 2 and that

assumption is now relaxed for further analysis here. The introduction of a finite

thermal pressure to the magnetic flux tube equilibrium modifies the existence

of fast MHD waves which are directly comparable to their counterparts found

in Chapter 2. Further, as a direct consequence of the non-zero kinetic plasma

pressure, the slow MHD wave now exists, and can be investigated in a similar

manner to the fast MHD wave. Analysis of the slow wave shows that, similar

to the fast MHD wave, wave amplitude amplification takes place in time and

height that is analytically determined here. We conclude that for a temporally

decreasing density both propagating the fast and slow MHD wave modes are

amplified for over-dense magnetic flux tubes. Most of the work within this

chapter is based upon the work done by Williamson and Erdélyi (Submitted

56
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Solar Physics 2013b).

3.2 Background Plasma

A magnetic cylinder of radius R is embedded in a magnetic atmosphere in an

equilibrium background analogous to those in Chapter 2 with pressure, density,

flow and magnetic field denoted by p, ρ, V and B. A subscript ‘i’ indicates a

value within the flux tube and an ‘e’ stands for exterior ones. From this point

a subscript ‘0’ means a background value as opposed to the perturbed values

defined in Section 3.3. The interior background density is assumed to decrease

in time such that ρi = ρi0 exp[−At] where A is a positive constant and ρi0 is

the density at t = 0. In order to maintain conservation of mass, plasma will

evacuate the flux tube, a background flow of Vi0z = Az is required. A constant

exterior density, ρe is assmued. Both the interior and exterior magnetic fields

are assumed to be constant but distinct from each other. Likewise, the interior

and exterior kinetic pressures are constant but distinct in order to satisfy the

radial pressure balance given by

pi +
B2

0zi

2µ0

= pe +
B2

0ze

2µ0

. (3.1)

The assumption of constant kinetic pressure gives rise to an exponentially in-

creasing sound speed, defined by

c2 = γ
p0
ρ0
,

where γ is the adiabatic gas index. The sound speed is noted to change in

time at the same rate as the Alfvén speed. Once again we can write the total

pressure as the sum of the thermal and magnetic pressures and therefore the

background total pressure can be written as

P0 = p0 +
B2

0z

2µ0

. (3.2)



58CHAPTER 3. MHDWAVE PROPAGATION IN A FINITE PLASMA-BETA

3.3 Governing Equations

Using the definitions as given in the previous Section, the perturbed, linearised

and ideal MHD equations can be written as

∂ρ

∂t
+∇ · (ρ0V + ρV0) = 0, (3.3)

ρ0

[

∂V

∂t
+V · ∇V0 + V0z

∂V

∂z

]

+ ρV0z
∂V0

∂z
= −∇p+ 1

µ
(∇×B)×B0, (3.4)

∂B

∂t
= ∇× (V0 ×B) +∇× (V ×B0) + (∇×B)×B0, (3.5)

∂p

∂t
+V0 · ∇p = −γ

(

p
∂V0z
∂z

+ p0∇ ·V
)

. (3.6)

By splitting equations (3.3)-(3.6) into vector components, the perturbed vari-

ables are governed by

ˆ̟ ρ = −∇ · (ρ0V), (3.7)
(

ˆ̟ + γ
dV0z
dz

)

p = −γp0∇ ·V − γp
dV0z
dz

, (3.8)

(

ˆ̟ +
∂V0z
∂z

)

Br = B0z
∂Vr
∂z

, (3.9)

(

ˆ̟ +
∂V0z
∂z

)

Bφ = B0z
∂Vφ
∂z

, (3.10)

ˆ̟Bz = B0z
∂Vz
∂z

−B0z∇ ·V − dB0z

dr
Vr, (3.11)

ρ0 ˆ̟ Vr = −∂P
∂r

+
B0z

µ0

∂Br

∂z
, (3.12)

ρ0 ˆ̟ Vφ = −1

r

∂P

∂φ
+
B0z

µ0

∂,Bφ

∂z
(3.13)

ρ0

(

ˆ̟ +
∂V0z
∂z

)

Vz = −∂P
∂z

+
B0z

µ0

∂Bz

∂z
+
dB0z

dr

Br

µ0

− ρV0z
dV0z
dz

, (3.14)

where

ˆ̟ =
∂

∂t
+ V0z

∂

∂z
. (3.15)
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Combination of these equations and the perturbed pressure balance equation,

equation (3.2), will lead to a set of governing equations for linear MHD wave

propagation for the perturbed variables P , Vr, ∇ ·V and Vz. These governing

equations are given by the following four expressions

ˆ̟

(

ˆ̟ + γ
dV0z
dz

)

P = −ρ0(c2 + V 2
A) ˆ̟∇ ·V + ρ0V

2
A

(

ˆ̟ + γ
dV0z
dz

)

∂Vz
∂z

−

−γ dV0z
dz

ρ0V
2
A∇ ·V − B0z

µ0

dB0z

dr
γ
dV0z
dz

Vr, (3.16)

ρ0

(

ˆ̟

[

ˆ̟ +
dV0z
dz

]

− ˆ̟ 2
A

)

∇ ·V = ρ0

(

ˆ̟

[

ˆ̟ +
dV0z
dz

]

− ˆ̟ 2
A

)

1

r

∂(rVr)

∂r
−

−
(

ˆ̟ + 2
dV0z
dz

)

1

r2
∂2P

∂φ2
+ ρ0

(

ˆ̟

[

ˆ̟ +
dV0z
dz

]

− ˆ̟ 2
A

)

∂Vz
∂z

, (3.17)

ρ0

(

ˆ̟

[

ˆ̟ +
dV0z
dz

]

− ˆ̟ 2
A)Vr = −

(

ˆ̟ + 2
dV0z
dz

)

∂P

∂r
, (3.18)

(

ˆ̟ − dV0z
dz

)

ρ0

[

ˆ̟

(

ˆ̟ +
dV0z
dz

)

− ˆ̟ 2
A

]

Vz = −
(

ˆ̟ 2 − dV0z
dz

2
)

∂P

∂z
−

−
(

ˆ̟ − dV0z
dz

)

ρ0V
2
A

∂

∂z
∇ ·V + V0z

dV0z
dz

∇ · (ρ0V). (3.19)

The non-commutability of the various combinations of ˆ̟ and ˆ̟A inhibit further

general progress. As a result, this work will now apply the WKB approximation

to leading order. By applying equation (1.47) to equations (3.16)-(3.19) allows

for leading order equations for Vr and P to be found. Then, using the expression

for the plasma displacement, V = −i̟ξ, where ξ is the displacement vector,

three governing equations can be obtained as,

ρ0(̟
2 −̟2

A)Qr =
∂QP

∂r
, (3.20)

ρ0
r
(c2 + V 2

A)(̟
2 −̟2

A)(̟
2 −̟2

c )
∂(rQr)

∂r
=

= −
[

̟4 − (c2 + V 2
A)(̟

2 −̟2
c )

(

m2

r2
+K2

)]

QP , (3.21)
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describing the total pressure amplitude (QP ), radial component of the displace-

ment vector (Qr) and for the longitudinal component of the displacement vector

(Qz)

ρ0̟
2Qz = iKP + iK

B2
0z

µ0r

∂(rQr)

∂r
. (3.22)

We can observe, that the equations for QP and Qr are coupled but form a closed

system. Once they are solved, equation (3.18) can be also solved to determine

the longitudinal perturbation. The Alfvén and cusp frequencies are now in their

standard form and are given by

̟2
A = V 2

AK
2, ̟2

c =
c2̟2

A

c2 + V 2
A

.

Using equations (3.20) and (3.21), solutions inside and outside the flux tube

can now be sought. QP and Qr can be written as

QP =

{

AiJ|m|(Mir) r < R,

AeK|m|(Mer) r > R,
(3.23)

where

M2
i =

(̟2 − c2K2)(̟2 −̟2
A)

(c2 + V 2
A)(̟

2 −̟2
c )

, M2
e = −(Ω2 −̟2

Ae)(Ω
2 − c2eK

2)

(c2e + V 2
Ae)(Ω

2 −̟2
ce)

.

Here Jm and Km are the Bessel functions of the first kind and the modified

Bessel function of the second kind of order m, respectively. The alternative

solutions, i.e. the Bessel I function, represents surface waves and consequently

are neglected. The individual Mi,e can be considered to be the wavenumbers in

the radial direction for the interior and exterior regions. We once again neglect

solutions which allow for energy losses to the exterior atmosphere and hence

the wave propagation in the exterior region is expressed using the Bessel K

function.
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3.4 Fast Wave Propagation

3.4.1 Over-Dense Loop Approximation

Using the definition for QP in equation (3.23) the dispersion relation for the

fast MHD wave modes can be found to be algebraically identical to that given

in Chapter 2 and is given by

ρi(̟
2
f −̟2

A) + ρe(Ω
2
f −̟2

Ae) = 0. (3.24)

The solution of equation (3.20) is close to that of Chapter 2 for coronal condi-

tions and can be written as

θf = 2
ω

A
ln

∣

∣

∣

∣

(

V0z + 2

√

B2
i + B2

e

µ0ρi

)

exp[−At]√µ0ρi0

2
√

B2
i + B2

e

∣

∣

∣

∣

. (3.25)

Let us introduce the following notation,

B̃ =

√

B2
i + B2

e

µ0ρi
, B̃0 =

√

B2
i + B2

e

µ0ρi0
.

Thus the wave phase can be rewritten as

θf = 2
ω

A
ln

∣

∣

∣

∣

(

V0z + 2B̃

)

exp[−At]√µ0ρi0

2B0

∣

∣

∣

∣

.

Using the definitions for Ωf and Kf , as given in Section 1.7.3, will give the

frequency and wavenumber as

Ωf = 2ω
V0z + B̃

V0z + 2B̃
, Kf =

2ω

V0z + 2B̃
. (3.26)

These definitions for Ωf and Kf follow a similar temporal evolution as their

counterparts in the zero plasma-beta environment and can be shown to reduce

to their respective corresponding expressions. For more details refer to Figures

1 and 2 in Chapter 2. Applying the new form of Ωf and Kf into QP , given by
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equation (3.19), gives

QP =

{

AiJ|m|(Mir) r < R,

AeK|m|(Mer) r > R,
(3.27)

Qri =
AiMi

ρiV 2
AK

2
f

J ′
|m|(Mir), (3.28)

Qre =
AeMe

ρe(Ω2
f − V 2

AeK
2)
K ′

|m|(Mer), (3.29)

where

M2
i = K2

f

V 2
A − c2 + B2

e/µ0ρi
c2 + V 2

A(1 + B2
i /B

2
e )
, M2

e = −
(Ω2

f −̟2
Ae)(Ω

2
f − c2eK

2)

(c2e + V 2
Ae)(Ω

2
f − ω2

c )
.

When comparing these expressions to those in Chapter 2 it is obvious to see that

not only do the results gained for the fast MHD wave mode here reduce to those

found under zero plasma-beta conditions, i.e. that pi = pe = 0 and Bi = Be.

Therefore, the temporal and spatial dependence of the wave amplitude are of

the same implicit form and, for the waves propagating inside the flux tube,

merely scaled down by the presence of the evolving sound speed. Again, for

details of the individual wave modes refer to Section 2.4.

3.4.2 Moderate-Activity Approximation

Like in the case of the over-dense loop, the moderate activity approximation

for the fast MHD wave is merely a correction to the work done in the previous

chapter. Using the governing equations for a magnetic flux tube with a constant

thermal pressure, the dispersion relation can be rewritten in the form

(1 + χ)
∂θ

∂t
= V0zK +

√

(1 + χ)B̃K.

The solution to which is similar in nature to that found for equation (2.20),

where

θ =
2ω

A
ln

∣

∣

∣

∣

1

2

(

g +
√

g2 + 2χ0

)
∣

∣

∣

∣

, (3.30)



3.5. SLOW WAVE PROPAGATION 63

but where g now has the form

g =

(

V0z(1 + χ) + 2B̃(1− χ/2)

)

exp[−At]
A

.

From this it can be easily seen that the evolution of the phase, and therefore the

frequency, wavenumber and wave amplitudes, takes place in exactly the same

fashion as shown in Figures 2.5, 2.6, 2.7 and 2.8 in Chapter 2. As such, we can

write the following expressions for the frequency and vertical wavenumber for

the fast MHD waves as

Ω =
2ω

A

V0z + B̃(1 + χ/2)
√

g2 + 16B̃0χ0

exp[−At] (3.31)

K =
2ω

A

(1 + χ)
√

g2 + 16B̃0χ0

exp[−At], (3.32)

which can, once again, be shown to reduce to their counterparts in the zero

plasma-β regime as well as to their counterparts in the over-dense loop approx-

imation.

3.5 Slow Wave Propagation

With the addition of a finite background pressure the propagating slow wave

is now enabled. Analysis of the slow MHD wave can be conducted in a similar

manner as for the fast wave. The slow MHD wave components can be found by

solving for the vertical velocity, Vz, or the vertical displacement, ξz. During this

process we focus entirely upon the wave propagation within the flux tube as

the exterior propagation is again considered to be evanescent. After the WKB

approximation is applied to leading order it is possible to establish that

Vz =
̟Kc2

ρ0(̟2
s −̟2

c )(c
2 + V 2

A)
P ξz =

iKsc
2

ρ0(̟2
s −̟2

c )(c
2 + V 2

A)
P. (3.33)

Whilst these equations govern the slow MHD wave amplitude, the frequency

and wavenumber have to be determined via another route. By limiting the
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slow MHD wave propagation to a rigid magnetic field, i.e. Br ≈ 0, allows

for a modified version of the classical sound wave equation to be formed from

the perturbed form of equation (3.1) and equations (3.8) and (3.14). As a

consequence of the rigid magnetic field, we expect that only the symmetric m =

0 sausage mode will propagate, such expectation is borne out by the following

analysis. Application of the definitions for the frequency and wavenumber, from

Section 1.7, allows the following governing PDE to be written for the wave phase

∂θ

∂t
+ (V0z ± c)

∂θ

∂z
= 0. (3.34)

When the condition θ(t, 0) = −ωt is applied to equation (3.30), we gain

θ =
2ω

A
ln

∣

∣

∣

∣

(V0z + 2c)
exp[−At]

2c0

∣

∣

∣

∣

, (3.35)

here c0 is the initial sound speed. With such result the frequency and wavenum-

ber can now be found in their explicit form, i.e.

Ωs = 2ω
V0z + c

V0z + 2c
, Ks =

2ω

V0z + 2c
. (3.36)

Whilst such a result gives an indication of the evolution of a slow MHD wave

in a time-dependent waveguide, the assumption of a rigid magnetic field has

consequences for the various slow MHD wave modes that would be expected

to propagate in a magnetic cylinder. When equation (3.36) is used to fully

explore the evolution of the amplitude of the wave, as given in equation (3.33),

all of the |m| ≥ 1 modes are removed from consideration by the lack of radial

motion. This is immediately obvious when the amplitude of the vertical velocity

component and the vertical displacement are written explicitly,

Vz =
Jm(0)

ρ0c
, ξz = i

V0z + 2c

ρ0c2
Jm(0). (3.37)

By considering the m = 0 sausage mode, the temporal and spatial evolution of

the slow wave is simple to read off. The velocity component does not vary with

the position above the driving point and varies only in time with respect to
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half the characteristic period of density change, i.e. exp[−At/2]. The vertical

displacement, however, varies linearly with respect to the background flow. The

temporal evolution takes the same form as that of the velocity albeit with an

increased initial value due to the presence of the background plasma flow.

3.6 Conclusion

This study has investigated the propagation of the magneto-sonic MHD waves

in a pressurised magnetic flux tube with a time-dependent density. A set of four

governing equations for wave action within the magnetic atmosphere is found.

Applying the leading order in the WKB approximation, the governing equations

for MHD wave propagation were found. By isolating the different directions of

displacement the individual wave modes were isolated and investigated sepa-

rately.

The first wave mode studied was the fast kink wave. Using the method of so-

lution outlined in Chapter 2, generalised forms of the frequency and wavenum-

ber were found and shown to correspond to their counterpart results found

previously in zero plasma-beta. The presence of the sound speed introduces

a scaling of absolute values, however, the temporal evolution of the eigenfunc-

tions is unaltered. When compared to the counterparts values, i.e. in the time-

independent system as investigated in Edwin and Roberts (1983a) the wave

frequency Ω tends to the driving frequency ω over large time periods. However,

when the time-dependent wavenumber, K, is compared to the time-independent

wavenumber, k, the result is very different. The temporally evolving wavenum-

ber becomes infinitely small over a large time period indicating a cessation of

the wave propagation assumed in this model, i.e. non-leaky waves. The result

conforms to current theory when the density decreases to that of the exterior

density the wave propagation will tend to that of a uniform medium and the

analysis performed here is no longer valid.

The fast MHD wave has an alternative solution for the moderate activity

which can be performed in the same manner as in Chapter 2, the results are

again algebraically similar to those found previously. As in the case of the over-

dense loop approximation, the presence of the sound speed induces a scaling
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within the perturbed total pressure and the evolution of the various components

of the propagating wave all evolve in the same manner as their counterparts in

the zero plasma-β regime.

In Section 3.5 we investigated the propagation and properties of the slow

MHD wave within a waveguide with a temporally varying density. The intro-

duction of a constant thermal pressure allows for the propagation of the slow

wave that was previously excluded from Chapter 2 by the zero plasma-beta

assumption. By finding the displacement parallel to the magnetic field the slow

MHD wave amplitude was obtained in terms of the undetermined frequency

and wavenumber. By considering the slow MHD wave as a propagating MHD

wave in a rigid magnetic field, an expression to determine the frequency and

vertical wavenumber was found simply. The frequency and wavenumber vary in

a similar manner as their counterparts in the fast MHD wave and are found by

solving the one-dimensional wave equation. With the explicit forms for Ωs and

Ks the amplitude of the slow wave was revisited and evaluated. The rigidity

assumption of the magnetic field reduced the number of potential slow wave

modes to one, namely the longitudinal (i.e. sausage) MHD mode. The evolu-

tion of the slow sausage wave is then simply read off, for either the velocity or

displacement of the wave. Note that the amplification of the slow MHD wave,

for a temporally decreasing density, is again in disagreement with the current

observational data and continues to emphasize the strong need for improved

wave damping theories in particular in temporally evolving magnetised plas-

mas. On the other hand just as in the case of the propagating fast MHD wave

an increasing density will cause a damping of the propagating wave.



Chapter 4

Leaky Wave Propagation in a

Zero-beta Dynamic Plasma

4.1 Introduction

In this chapter we consider a system which supports the propagation of fast

MHD waves with energy leakage into the magnetised atmosphere. In the previ-

ous chapters we discounted this possibility by constructing models based upon

over-dense structures in the solar corona, for which it is well known that leaky

waves do not propagate. The most simple system that would support leaky

waves is an under-dense structure. These under-dense structures are typically

found at lower atmospheric levels, e.g. in the photosphere, however, a possible

coronal exception to this is the coronal hole. The coronal hole is an area of open

magnetic field lines stretching from the solar surface out through the corona.

Density levels within a coronal hole are generally thought to be of the order of

three times less than the general surrounding coronal atmosphere. A coronal

hole though is a difficult place to search for these leaky waves, mainly due to the

very low density levels in both the interior and exterior regions. In this model

we make the assumption of zero plasma-β, perhaps less accurate for the leaky

waves found in the low levels of the solar atmosphere, but useful as an initial

step. We will use the governing equations found in Chapter 2 to explore the

damping of the fast MHD wave mode through energy leakage into the surround-

67
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ing atmosphere. After obtaining the analytical expressions for the amplitude

of the leaky waves we determine the damping coefficient, γ. In order to fully

explore the temporal evolution of these quantities our next step is to solve the

real part of the dispersion relation in the moderate activity approximation and

determine the wave phase, the dynamic frequency and wavenumber in terms

of the Lambert W function. The frequency and wavenumber can be shown to

decrease to a constant level, in approximately the same manner as found in

the moderate-activity approximations as detailed in the previous chapters. The

amplitude of the various wave modes behaves more like those in the over-dense

loop approximation as there no longer exists a limiting factor that occurs when

the densities become approximately equal.

The damping coefficient can be shown to decrease to zero in a relatively

short time period, e.g. 2-3 characteristic density change periods.

4.2 Introduction to leaky waves

Whilst the introductory work into MHD wave propagation laid the founda-

tions for the analysis of propagating waves, most of the early works restricted

themselves to models with purely real ω, representing conservation of energy.

Complex frequencies were considered by Wilson (1979) for a magnetic field-

free environment, whilst Spruit (1979), Goossens and Hollweg (1993) and Cally

(1986) made some of the first rigorous investigations into the damping as a re-

sult of energy losses into the surrounding magnetic atmosphere. Further works

have expanded upon the results found therein, perhaps the most relevant to

this Thesis were the efforts into combining the damping through energy leakage

and resonant absorption investigated by Stenuit et al. (1999) and Goossens et

al. (2009). The following discussion is based upon the derivation as presented

in Goossens et al. (2009).

In the previous chapters we have assumed that the wave propagation is

trapped within the flux tube and hence the eigen-modes are unaltered. By re-

laxing this assumption or, alternatively, assume that some energy is lost to the

magnetised atmosphere, we can find appropriate conditions under which this

energy loss is important. If we analyse a stationary, vertical flux tube with
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constant background parameters, equivalent to those detailed by Edwin and

Roberts (1983a), we can construct the following governing equations:

dP

dr
= ρ0(ω

2 − ω2
A)ξr, (4.1)

ρ0V
2
A

1

r

d(rξr)

dr
= −(ω2 − ω2

A)P. (4.2)

These governing equations can then be solved for e.g. the total pressure per-

turbation, P. Now, instead of assuming that P →0 as r → ∞ we allow for a

non-zero exterior perturbation and as such we can write

P =

{

AiJ|m|(mir) r < R,

AeH
1
|m|(mer) r > R,

(4.3)

where H1
m is the Hankel function of the first kind. We note that the H2

m solution

is neglected as this would represent an incoming wave that is of no interest to this

work at present. Using equation (4.3) we can now write the radial displacement

as

ξri =
Ai

ρi(ω2 − ω2
A)

dJm(Mir)

dr
, ξre =

Ae

ρe(ω2 − ω2
Ae)

dH1
m(Mer)

dr
(4.4)

The approach to solving for the wave propagation is mathematically identical

up until the point at which we form the dispersion relation for the fast MHD

wave. Again, making the assumption of continuity at the radial boundary of the

flux tube, as detailed in Equation (1.14), we can write the dispersion relation

as

ρi(ω
2 − ω2

A)
Jm(miR)H

1′

m(meR)

J ′
m(miR)H1

m(meR)

me

mi

= ρe(ω
2 − ω2

Ae). (4.5)

Application of the thin tube approximation allows the dispersion relation to be

reduced to

ρi(ω
2 − ω2

A) + ρe(ω
2 − ω2

Ae) = i
π

2
(meR)

2ρi(ω
2 − ω2

A). (4.6)
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The imaginary part of the dispersion relation indicates a damping of the kink

frequency that was not present in the trapped wave calculation. At this point

we make the assumption that ω = ωr + iγ where γ ≪ ωr, i.e., the damping

rate is small. The real part of the complex eigen-frequency, ωr, describes the

frequency of the waves in an undamped system and as such we can approximate

the real part of the frequency by the kink frequency, as calculated in the case

of trapped wave propagation, i.e.

ω2
k =

B2
i + B2

e

µ0(ρi + ρe)
k2. (4.7)

The damping coefficient, γ, can then be calculated by algebraically solving the

dispersion relation, whilst ignoring a damping rate of order γ2 or higher. γ can

therefore be written as

γ =
π

4
(meR)

2 ρiρe
(ρi + ρe)2

ω2
Ae − ω2

A

ωk

, (4.8)

The quantity γ is negative only if ̟2
Ae > ̟2

A, in a zero plasma-β this condition

implies ρe > ρi. The damping coefficient can then be rewritten as

γ = −π
8

(ρe − ρi)
2

(ρe + ρi)2
R2k2zωk, (4.9)

which is always negative, and hence causes the wave to be damped. Whilst this

condition is rarely satisfied high in the solar atmosphere, in the photosphere

such magnetic structures are common. In the corona the magnetic structure

most likely to satisfy this condition is a coronal hole, which does itself not satisfy

the thin tube approximation. However, these investigations are useful for giving

us some insight into the damping of MHD waves in these situations.

4.3 Governing Equations

For the purposes of this Thesis we wish to extend the analysis of leaky MHD

waves into a time-dependent background. In the same manner that the deriva-

tion above was based upon the background as described in Edwin and Roberts



4.3. GOVERNING EQUATIONS 71

(1983b), the work here will be based upon a model similar to that discussed in

Chapter 2, with the exception of an initial density ratio of approximate equality

instead of the over-dense loop structure typical of coronal loops.

We construct a magnetic flux tube in a magnetised atmosphere of constant

density, to which we again apply the zero plasma-β approximation and as such

we require that neither the interior region or the exterior region has finite plasma

pressure. In both regions the magnetic fields are constant and vertical. The

neglection of the plasma pressure directly implies that the magnetic fields are

identical. In this chapter, however, we consider an exterior plasma density that

is greater than or equal in magnitude to the initial interior density, ρi0 allowing

for the propagation of leaky MHD waves. We consider such solution as appro-

priate in the analysis of e.g. coronal holes, sunspots and magnetic pores. Given

these parameters we can construct two governing equations under the assump-

tion of ideal linearised MHD approximationn for the radial displacement and

perturbed total pressure. This analysis follows that performed in Chapter 2

and as such we merely state the two governing equations after the application

of the WKB approximation to leading order. The two governing equations are

ρ0(̟
2 −̟2

A)
1

r

∂(rξr)

∂r
= −

[

̟2 − V 2
A

(

K2 +
m2

r2
)

]

P, (4.10)

and
∂P

∂r
= ρ0(̟

2 −̟2
A)ξr. (4.11)

At this point we can, once again, solve the two governing equations for the

perturbed total pressure and the radial displacement. The differential equation

for the perturbed total pressure can therefore be written as

∂2P

∂r2
+

1

r

∂P

∂r
+

[

̟2
i,e −̟2

Ai,e

V 2
Ai,e

− m2

r2

]

P = 0, (4.12)

where subscripts i, e indicates background variables in either the interior or

exterior regions. The interior version of equation (4.12) can be solved in an

identical fashion to that found previously. However, given the relaxation of the

evanescent condition, the exterior solution will now take a very different form.
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4.4 Leaky Wave Solution

At this point we no longer require that the exterior wave propagation is evanes-

cent, indeed in the current regime of an under-dense flux tube it is far more likely

that the exterior waves will carry energy away from the flux tube and into the

surrounding magnetised atmosphere. Upon the relaxation of this assumption

we find the mathematical solution to equation (4.12) now has more physical

applications and therefore the perturbed total pressure, for body waves, can

now be written as

QPi = AiJm(Mir), QPe = AeH
1
m(Mer), (4.13)

where H1
m is the Hankel function of the 1st kind of order m. We discard the

Hankel function of the second kind for the reasons discussed in the previous

section, i.e. it represents an incoming wave, and do not consider it further

within this work. Using equation (4.13) and equation (4.11) we can therefore

write the expression for the radial displacement as

ξri =
Ai

ρi(̟2 −̟2
A)

∂Jm(Mir)

∂r
, ξre =

Ae

ρe(Ω2 − ω2
Ae)

∂H1
m(Mer)

∂r
. (4.14)

We now require that the continuity in the radial displacement across the dis-

continuity in the magnetic field, as defined in Equation (1.14), still holds and

using these conditions we can now write the dispersion relation for leaky waves

in a time-dependent flux tube as

ρi(̟
2 −̟2

A)Jm(MiR)H
1′

m(MeR)Me =

= ρe(Ω
2 − ω2

A)J
′
m(MiR)H

1
m(MeR)Mi. (4.15)

The thin-tube approximation can once more be applied in order to make ana-

lytical progress. Again, the imaginary component of the Hankel function will

represent damping of the propagating wave. Equation (4.15) can now be rewrit-

ten as

ρi(̟
2 −̟2

A) + ρe(Ω
2 − ω2

A) = i
π

2
(MeR)

2ρi(̟
2 −̟2

A). (4.16)
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In order to determine the damping rate and the evolution of the damping rate

we can follow one of two methods. In both cases we assume that the damping

can be written as, Ω = Ωr+iγ where Ωr is the real part of the frequency and can

be obtained by solving the real part of equation (4.16), where we also assume

that Ωr ≫ γ. An algebraic approach would see us solve equation (4.16) for the

damping coefficient γ, ignoring terms of order γ2. For this work we will use the

following differential approach, as detailed by e.g. Krall and Trivelpiece (1973).

The quantity γ can, therefore, be written as

γ = − Di

∂Dr/∂Ω

∣

∣

∣

∣

Ω=Ωr=Ωk

= −π
4
(MeR)

2ρi
̟2 −̟2

A

ρi̟ + ρeΩ

∣

∣

∣

∣

Ω=Ωk

. (4.17)

Whilst at this point other works have performed further analytically simplifica-

tion in order to understand this result we will, instead, determine the explicit

forms of the real parts of the frequency and the wavenumber in order to ex-

plore the evolution of the damping in time. The coronal approximation made

in Section 2.3 can now no longer be applied due to the density ratio now being

very large, therefore, the second of the approximation methods must be used.

By making the assumption of moderate activity (i.e. V0z ≪ VA as detailed in

Chapter 2) we can reduce real part of the dispersion relation to

∂θ

∂t
+

[

V0z
1 + χ

+

√
2VA√
1 + χ

]

∂θ

∂z
= 0. (4.18)

Previously, in the moderate activity approximation, we made the assumption

that χ < 1. Such an assumption will not allow for the propagation of leaky

waves. Therefore we state that the density ratio, χ, must fulfill the condition 1 <

χ with an initial density ratio χ0, we can then, in a similar manner to Chapter
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2, approximate the characteristic lines, C, using the binomial expansion, as

C =
V0z(1 + χ)

A
exp[−At]−

√
2VA0

∫

√

1 + χ exp[−At/2]dt,

=
V0z(1 + χ)

A
exp[−At]−

√

2χ0VA0

∫
(
√

1 +
1

χ

)

dt,

≈ V0z(1 + χ)

A
exp[−At]−

√

2χ0VA0

∫
(

1 +
1

2χ

)

dt.

The general solution of equation (4.18) can then be shown to be given by the

arbitrary function

θ = F (g) = F

(

V0z(1 + χ)

A
exp[−At]− 2

√

2χ0VA0

(

t− 1

2Aχ

))

. (4.19)

After the application of the constant driver condition equation (4.19) will be-

come

θ =
ω

A

[

A

2
√
2χ0VA0

g −W

(

1

2χ0

exp

[

Ag

2
√
2χ0VA0

])]

, (4.20)

where W is the Lambert W function. The Lambert W function is defined as

the function W where

W (x) exp[W (x)] = x,

(further details on the Lambert Function can be found in, e.g. Lambert 1996).

From equation (4.20) we can now find the explicit forms of the dynamic

frequency and wavenumber. The dynamic frequency, Ω, is given by

Ω =
ω

2
√
2χ0VA0

V0z exp[−At] + 2
√
2VA0(1 + (2χ)−1)

(1 +W )
, (4.21)

and the dynamic wavenumber is given by

K =
ω

2
√
2χ0VA0

1 + χ

(1 +W )
exp[−At]. (4.22)

The dynamic frequency, Ω, evolves in the manner shown in Figure 4.1, the

dynamic frequency can be shown to be decreasing in a manner comparable

to that found in the moderate activity approximations performed in Sections
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Figure 4.1: Dynamic frequency of propagating leaky waves. All quantities have
the same description as given in Figure 2.1.

2.4 and 3.4.2. The point at which the frequency becomes approximately con-

stant, i.e. past the point of rapid decrease, can be compared to the point at

which the interior of the flux tube is largely evacuated of density and hence

the change in frequency past that point is negligible. The same concept can be

applied to the dynamic wavenumber (see Figure 4.2), K, in that there is the

initial rapid decrease, again comparable to the moderate activity approxima-

tion, before tending to a constant limit after the point where the tube has been

effectively evacuated.

Now that the dispersion relation has been solved for the real values of the

dynamic frequency and wavenumber, the various wave modes can be explored.

For MHD wave propagation inside the flux tube we return to Equation (4.14).

Using the explicit forms of Ω and K we plot the amplitude of the radial per-

turbation for the m ≥ 1 wave modes. The m =1 kink wave mode is shown in

Figure 4.3 and has a similar initial amplification to that found in the over-dense

loop approximation. In this model, however, there is no such restriction upon

the time for which the wave can propagate and hence the wave can be amplified

in this manner until the density within the flux tube is approximately zero. The
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Figure 4.2: Dynamic wavenumber of propagating leaky waves. All quantities
have the same description as given in Figure 2.2.

higher-order wave modes, m ≥2, have the same evolution as their counterparts

in the over-dense loop and hence we can say that all wave modes with, m ≥ 3

will be damped to zero without the need for the energy losses into the magnetic

atmosphere. The amplitude of the m =2 wave mode is plotted in Figure 4.4 for

comparison with the m =1 mode.

With the explicit forms of the frequency and wavenumber now determined,

we can make analytical progress with the determination of the evolution of the

damping coefficient, γ. Substitution of these values into equation (4.17) gives

an expression which is difficult to clearly see the temporal changes as a result of

the decreasing density, hence, we plot the evolution of the damping coefficient

with respect to time and the height above the driving point. We also reiterate

the point made in Chapter 2 that the moderate activity approximation does

have potential implications for the evolution with respect to height and that

most of the focus here will be on the temporal evolution. Figure 4.5 shows

that the level of damping decreases approximately exponentially in time to a

negligible level. Given the amplification of the m = 1 kink mode this result

would appear to defy the current theory of wave damping through leaky waves.
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Figure 4.3: Relative change in the amplitude of the propagating m =1 body
waves.

In order to check this we can contrast the result found in Figure 4.5 with the

damping in the stationary model derived in Section 4.2 above. Equation (4.9)

can be rewritten in terms of the density ratio and is given below,

γ = −π
8

(χ− 1)2

(χ+ 1)2
R2k2

√

B2

µ0ρe(1 + χ)
. (4.23)

Plotting equation (4.23) for a fixed exterior density gives Figure 4.6 which

clearly indicates an increase in the damping rate as the density ratio increases

before decrease slowly to zero. However, this result presupposes a constant kink

frequency and, as such, ignores the rate of damping due to density variation

within the flux tube.

Whilst the dynamic result does seem to be in contradiction to the previous

results found in static and stationary systems, the energy flux as a result of the

damping is yet to be investigated and may allow for a full unification of these

not completely inconsistent ideas.

At this point it is worth revisiting one of the points made previously, that as

a result of the moderate-activity approximation the analysis with regard to the



78CHAPTER 4. LEAKYWAVE PROPAGATION IN A ZERO-BETADYNAMIC PLASMA

Figure 4.4: Relative change in the amplitude of the propagating m =2 body
wave.

height above the driving point is suspect. Therefore, different ratios of the inital

Alfvén speed and the background flow can change the initial evolution of the

quantities discussed above. However, all the cases tend to the same limit and,

therefore, we can consider them to be consistent. In several of these cases it is

possible to obtain an initial increase in the damping such that the stationary

and the dynamic damping coefficients follow the same, albeit over different time

periods, evolution. However, most of the ratios considered produced results

equivalent to those found above.

4.5 Conclusions

This chapter relaxed the assumption of evanescent wave propagation in the

magnetised atmosphere. The algebraic form of both the interior and the exte-

rior wave propagation, as well as the damping coefficient were determined and

their evolution in time and height explored. The moderate activity approxi-

mation, in a different limit to that found in Chapters 2 and 3, was applied in

order to find the real part of the frequency and the wavenumber. Using the
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Figure 4.5: Evolution of dimensionless damping coefficient, i.e. γ/γ(t = 0, z =
0).

expressions for the dynamic frequency and wavenumber, the full evolution of

the propagating wave modes can be simply shown. The various wave modes

all follow the same manner of propagation as found in Chapter 2 for the over-

dense loop approximation. The m =1 kink wave is amplified an approximately

exponential manner without any limiting factor as suggested in the case of the

over-dense loop, beyond that of an empty flux tube. The m = 2 wave mode

is amplified to a constant level after a small number of characteristic density

change periods. The higher order, ≥ 3, wave modes are damped after small

number of characteristic time periods of density change, with the damping rate

increased for higher values of the azimuthal wavenumber, m.

The main focus of this chapter was on the damping coefficient γ and its

evolution in time. The quantity γ is shown to decrease, approximately, expo-

nentially in time as the flux tube evacuates. The damping as a result of leaky

waves can therefore be considered to be negligible after a small number of char-

acteristic density change periods.

Further investigations into expanding upon these findings are required, e.g.

inclusion of a finite plasma pressure and relaxing of the thin tube approxima-
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Figure 4.6: Damping coefficient in a static system plotted against density ratio.

tion, in order to make this an even more useful tool into magneto-seismology of

photospheric structures.



Chapter 5

Resonant Damping of MHD

Waves in a Zero-beta Plasma

5.1 Introduction

This work explores the notion of resonant absorption in a dynamic magnetised

plasma background. A large number of studies have investigated resonance

in the Alfvén and slow MHD continua under both ideal and dissipative MHD

regimes. Jump conditions in static and steady systems have been found in pre-

vious studies connecting solutions at both sides of the resonant layer. Here, we

derive the jump conditions in a temporally dependent, magnetised, inhomege-

nous plasma background to leading order in the WKB approximation. Next

we exploit the results found in Chapter 2 to describe the evolution of the jump

condition in the dynamic model considered. The jump across the resonant point

is shown to increase exponentially in time. Over the same time period the dissi-

pation, as a result of the resonance, is determined and the temporal evolution of

the dissipation itself is investigated. It is found that the dissipation coefficient

decreases as the density gradient across the transitional layer decreases. This

has the consequence that in such time-dependent systems resonant absorption

may not be as efficient as time progresses.

81
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5.2 Governing Equations

We consider an open-ended magnetic cylinder of radius R embedded in a mag-

netic atmosphere with magnetic field B0zeẑ. A layer of thickness l smoothly

connects the flux tube interior and magnetic exterior environment. A thin

transition layer is assumed, i.e. l ≪ R, which allows for an approximate so-

lution for the eikonal functions Ω and K to be applied later. The magnetic

cylinder has a constant vertical magnetic field of strength B0zẑ. The initial

plasma density inside the cylinder, ρ0i, is assumed to be an order of magnitude

greater than the density in the exterior region, ρe. The density inside the flux

tube is defined to decrease exponentially in time and can therefore be written as

ρi = ρ0i exp[−At] where A is a positive constant equal to the reciprocal of the

characteristic density change period, τρ, which is assumed to be large in relation

to the characteristic oscillation period. Details of the WKB approximation, that

has been used in this chapter, can be found in Section (1.7). Use of the mass

conservation equation leads to an internal flow of V0z = Azẑ. The cold-plasma

approximation is applied, reducing the thermal pressure, p0, to approximately

zero, suitable for linear wave propagation under coronal conditions.

We assume that the wave propagation follows the style of that described in

Chapter 2 for the perturbed, linearised MHD equations and the Eikonal func-

tions Ω and K as well as the full expression for the amplitude of the fast MHD

wave, all the details in Chapter 2 and are reiterated later in this chapter. The

linearised dissipative MHD equations can be written as

∂ρ

∂t
+∇ · (ρ0V + ρV0) = 0,

ρ0

[

∂V

∂t
+V · ∇V0 + V0z

∂V

∂z

]

+ ρV0z
∂V0

∂z
= −∇p+ 1

µ
(∇×B)×B0,

∂B

∂t
= ∇× (V0 ×B) +∇× (V ×B0) + η∇2B,

∂p

∂t
+V0 · ∇p = −γ

(

p
∂V0z
∂z

)

.
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At this point the perturbed total pressure of the system P is defined as

P = p+
B0z

µ
Bz ≈

B0z

µ
Bz.

For a model containing a finite plasma beta P is the combination of magnetic

and thermal pressures, however, given the current zero plasma−β approxima-

tion only the magnetic pressure plays a role. Applying the WKB approximation

to leading order allows for all but two of the perturbed variables, P and the La-

grangian displacement, ξr = −i̟Vr, to be eliminated. The resulting governing

equations can be written in the following form,

∂P

∂r
= ρ0(̟

2
η −̟2

A)ξr, (5.1)

and

ρ0(̟
2
η −̟2

A)V
2
A

1

r

∂ξr
∂r

= −
[

̟2 − V 2
A

(

K2 +
m2

r2

)]

P (5.2)

where

̟ = Ω− V0zK, ̟2
η = ̟2 − iη̟

∂2

∂r2
, ̟2

A = V 2
AK

2, V 2
A =

B2
0z

ρ0µ
.

Equation (5.2) contains a potentially singular point in the region of the ̟ =

±̟A, called the Alfvén resonant point. In order to ensure a physical solution

across this point it is necessary to evaluate wave action in the thin layer across

the singularity.

To fully understand the results gained in later sections the decay of the MHD

wave in environments with decreasing density must be considered. Applying the

WKB approximation as stated above and then solving for the wave phase, θ,

gives the following solution.

QP =

{

AiJ|m|(M0r), r < R− l,

AeK|m|(Mer), r > R,
(5.3)

where

M2
e = −(Ω2 −̟2

Ae)

V 2
Ae

.
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Equation (5.3) is comparable to and will reduce to, under time-independent

conditions, those found by Edwin and Roberts (1983b) for evanescent waves in

a static background, however, the eikonal functions Ω and K must be deter-

mined from the dispersion relation for kink waves. The dynamic frequency and

wavenumber as explicitly determined in Chapter 2 , under the assumption of

the over-dense loop, are a vital tool in the analysis of the resonant quantities.

We recall

Ω = 2ω
V0z +

√
2VA

V0z + 2
√
2VA

, K =
2ω

V0z + 2
√
2VA

. (5.4)

The fast wave frequency, Ω, and the wavenumber, K, we derived in Chapter 2

and as such we do not expand upon their properties here. Within this chapter

we are concerned with the change in the resonant quantities, i.e. jump condition,

dissipative coefficient and magnitude of the dissipative layer.

5.3 Evaluation around the Alfvén Resonant Point

Evaluating wave action in the region of the Alfvén resonant point can lead

to a solution for the wave amplitude across the dissipative region where the

Doppler-shifter frequency is approximately equal to the local Alfvén frequency,

i.e. ̟ ≈ ±̟A. In order to simplify the calculation, a new variable sA is

introduced and it is defined as sA = r−rA where rA is the radial point at which

resonance occurs. Such a system is analogous to that analysed by Sakurai et

al. (1991) for ideal jump conditions and Erdélyi et al. (1995b), Goossens et

al. (1995) and Tirry and Goossens (1996) for dissipative jump conditions. The

decreasing density of the cylinder will have an additional effect on the position of

the point rA. The position of rA is dependent upon the density profile across the

transitional layer. When the resonance was considered in a stationary system

the density profile was considered to be a purely radial function and as such the

position of the resonant point has been fixed. In the present model, the density

profile is now a time-dependent function as well and varies its radial position

within the transition layer. However, the thin boundary approximation allows

us to write R ≈ rA ≈ R − l, which in turn allows us to consider the point rA

to be constant in the leading order approximation. A Taylor-expansion around
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sA reduces the governing equations to

(

sA∆A − i̟η
∂2

∂s2A

)

∂Qξ

∂sA
=

m2

ρAr2A
QP , (5.5)

and
(

sA∆A − iη̟
∂2

∂s2A

)

∂QP

∂sA
= 0, (5.6)

where ∆A is given by

∆A =
d

dr
(̟2 −̟2

A)|r=rA . (5.7)

These equations can then be solved using the method given by e.g. Goossens

et al. (1995) in terms of two functions G(τA) and F (τA), where τA is a radially

scaled variable over the dissipative layer of thickness δA and is expressed below.

For the time-dependent model the dissipative layer is variable with respect to

its time and spatial coordinate above the base of the flux tube. This reflects the

change in the size of the dissipative layer due to the changing wave frequency.

τ and the dissipative layer thickness δA are given by

τA =
sA
δA
, δA =

(

η̟

|∆A|

)1/3

. (5.8)

Applying the definitions for Ω and K given by equation (5.4) it can now be

shown, see Figure 5.1, that the thickness of the dissipative layer decreases to a

constant as time evolves. Whilst this result may seem to be counterintuitive,

it is plausible that the decrease in the density gradient across the transitional

layer, which would otherwise lower the rate of dissipation, is in a more physically

accurate system balanced by an increasing dissipation. Such a result could be

countered by the inclusion of a non-constant dissipation, however, the analysis

of such is not included in this work and is suggested as a topic to be investigated

further. Another potential limiting factor may not be due to the dissipative layer

itself as the transitional layer itself will be dynamic in its radial profile. After

the application of the thin tube-thin boundary (TTTB) condition this change

can be assumed to be negligible, but in a more physically accurate model this

change may produce significant effects. The underlying physics that occurs
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Figure 5.1: Evolution of the width of the dimensionless dissipative layer, i.e.
δA/δA(t = 0, z = 0).

when the width of the transitional layer and the dissipative layer approach

equality will not be explored here and is again suggested as worthy of further

investigation. It is noted that the impact of a thick transitional layer has been

previously investigated, absent the changing dissipative layer, the results of

which are useful to contrast with the potential dynamic transitional layer found

here. The numerical studies undertaken by van Doorsselaere et al. (2005) show

that the damping can be underestimated by a factor of up to approximately

25%, thus rendering the analysis, here and below, an underestatement of the

physics involved at the resonant point.

By considering τA as a purely radial parameter, a method analogous to

that by Goossens et al. (1995) can be applied to solve equation (5.5) in an

algebraically straightforward manner. The result is mathematically consistent

with those gained by Goossens et al. (1995), and are given as

Qξ ≈
m2

r2AρA∆A

(

ln |τ |+ 2ν

3
+

1

3
ln 3− i

π

2
sign(∆Aτ)

)

QP + Cξ, (5.9)

where ν is the Euler constant and Cξ is an arbitrary constant of integration.

The jump across the Alfvén resonant point can simply be read off from the
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above solution. The jump in Qξ is therefore given by

[Qξ] = −iπ m2

ρAr2A|∆A|
QP . (5.10)

This jump condition must now be considered in the context of the amplified

waves found in the case of an environment with no transitional layer. The solu-

tion to QP is given by equation (5.3) where Ω andK are given by equation (5.4).

When the explicit solution for QP , as given in equation (5.3), is considered, the

time-dependent jump condition can be found to be

[Qξ] = −iπ m2

r2AρA|∆A|
AiJm

[

2ωrA

V0z + 2
√
2VA

]

. (5.11)

The time and height dependency of the jump are plotted in Figure 5.2, noting

that the plot only shows the shape of the change and not the absolute values of

the jump. This result, whilst indicating the importance of resonant absorption

Figure 5.2: Evolution of the jump across the Alfvén resonant point as a function
in time

in the solar corona, does hint at a potential flaw in the assumptions made if the

results here are not considered carefully. The ever-increasing jump across the

resonant point is obviously unphysical if the temporal evolution were to continue
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under the assumptions made here. When the findings here are compared to the

constant limit of the dissipative layer it is clear that there is a limit at which the

jump condition becomes questionable or invalid, e.g. when leaky waves start to

propagate.

5.4 Wave Dissipation

The dynamic background plasma has an additional effect, the change in the den-

sity gradient across the transitional layer should cause a change in the thickness

of the layer itself, the decrease in density gradient, as specified here, will de-

crease the relative size of the transitional layer. Given that the thin-tube and

the thin-layer approximations have already been made this provides no mea-

surable difference to this model, however, when after a large period of time

the transitional layer should tend to zero as the densities inside and outside

the tube equalize. At this point the inhomogeneity that is the source of the

resonance should disappear and the the jump should itself tend to zero. The

jump condition above does not directly support this theory, however, using the

results found in section (5.3) the dissipation due to the resonant point can still

be found. The dissipative rate due to the presence of the resonance is calcu-

lated from the the general dispersion relation for ξr. The dispersion relation

is attained by applying continuity across a thin transition layer for the eikonal

functions Ω and K. The dispersion relation is given by

ρi(̟
2 −̟2

A) + ρe(Ω
2 − V 2

AeK
2) =

= −iπρiρe
ρA

(̟2 −̟2
A)(Ω

2 − V 2
AeK

2)
m

rA|∆A|
. (5.12)

Then, making the assumption that for Ω = ΩR + iγ, γ ≪ ΩR the following

definition for γ, see e.g. Krall and Trivelpiece (1973), holds

γ = − Di

∂Dr/∂Ω

∣

∣

∣

∣

r=τA

, (5.13)
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where Di,r is the imaginary/real part of the dispersion equation respectively. It

is straightforward to show that

γ = −ρ
2
i (̟

2 −̟2
A)

2π

2(ρi̟ + ρeΩ)|
|m|

rAρA|∆A|
. (5.14)

Equation (5.14) is algebraically equivalent to equation (76) given by Goossens

et al. (1992b), however, it is the time-dependent damping rate for a resonantly

coupled fast MHD wave in a cylindrical tube with time-dependent, slowly vary-

ing (i.e. decreasing) density.

The time-dependency is plotted in Figure 5.3. The dissipation tends to zero

as time evolves, which is to be expected as the over-dense plasma inside the loop

tends to the value of the exterior density and the resonance disappears. Once

again, Figure 5.3 is not representative of absolute values of the dissipation.

Figure 5.3: The evolution of the dimensionless wave dissipation, i.e. γ/γ(t =
0, z = 0).
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5.5 Resonance in the Moderate-Activity Ap-

proximation

Whilst wave damping in a quiet solar environment is of a lesser magnitude than

in active regions, the theoretical problem still exists and can be solved in a simi-

lar manner to that above. The altered forms of the frequency and wavenumber,

as calculated in section 2.4, can be substituted into equation (5.10) in order to

calculate the jump condition under the assumption of moderate-activity. Given

the more complicated nature of Ω and K plotting the jump condition is the best

way to examine the change in the jump across the resonant point, hence Figure

5.4 can be plotted. In this approximation we have a very different form of the

Figure 5.4: Jump condition under the moderate-activity approximation

jump condition. There is an initial amplification in the jump condition followed

by a decrease to a constant level. The initial amplification can be considered

to be in agreement with the amplification found in the case of the over-dense

loop approximation, however, given that the density ratio has a finite value the

decrease in the density gradient plays a large role in the decrease in the jump

condition. This result coincides, again, with the change in the amplitude of the

fast kink wave, now that the wave amplitude becomes constant the resonant

jump must either become constant or disappear. Given that the saturation
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level of the wave amplitude occurs at approximately the point of density equal-

ity we can say that the temporal evolution of the jump condition will be similar

in nature, but occur at a lower rate, to that of the wave amplitude.

In the manner discussed previously we can also analyse the changing width

of the dissipative layer and rate of dissipation. However, it must also be con-

sidered that in the moderate activity approximation, the amplitude of the fast

kink wave does not increase for all time and as such the consequence of the

matching densities will become more important.

Here, the dissipative layer decreases to a negligible amount during the pe-

Figure 5.5: Evolution of the width of the dissipative layer under the moderate-
activity approximation.

riod within which the density ratio is less than unity. When this result is put

into the context of the decreasing density gradient and hence the disappearance

of the transitional layer, this result would appear to be more representative of

the physics involved.

The rate of dissipation, as calculated by equation (5.14), can be found and

it is plotted in Figure 5.6. Once again there is a rapid decrease in the levels of

damping, matching the decrease in the dissipative layer as well as the relative

decrease in the effective resonant jump. Such a result is consistent with the

equivalent calculations done in the over-dense loop approximation and there-
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Figure 5.6: Evolution of the dimensionless dissipation coefficient under the
moderate-activity approximation.

fore can be considered to be an accurate representation of resonance in coronal

loops and other magnetic structures.

5.6 Conclusions

This work has investigated the impact of a time-dependent density (decreasing)

upon the resonant coupling of a magnetic flux tube embedded in an external

magnitised plasma environment. The first impact the time-dependent variation

of background has is the need for a non-constant flow as a mechanism for re-

moving the density. However, no physical mechanism for generating this flow

has been considered here. The governing equations for a slowly changing back-

ground were discussed in Chapter 2 and have been recalled here in a different

context. Using the seminal method laid down by Goossens et al. (1995) the

jump conditions across the resonant layer were found in a time-dependent res-

onant flux tube. When the explicit expressions for the eikonals, Ω and K, were

introduced, the evolution of the jump condition was obtained. Whilst the jump

condition is still a useful tool for analysis around the resonant point, for effects

beyond the wave damping, i.e energy flux, the exponentially increasing jump is
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seemingly unphysical in nature. However, when the rate of increase of the jump

condition is put into the context of the increasing fast MHD wave amplitude,

the relative size of the jump condition can be seen to decrease as the densities

tend to comparable values between the flux tube interior and the magnetised

exterior atmosphere.

The conclusion of a decreasing relative jump size is supported by the result

found in section (5.4), the decreasing density results in a decreasing level of

dissipation across the disappearing dissipative layer. Such a result is expected

from the decreasing density profile across the transitional layer as defined dur-

ing the initial construction of the problem. It is this prediction that allows for

the use of the damping rate as not only a result on its own but as a check for

the jump condition previously found.

It was noted in Chapter 2 that for an slowly increasing density, representing

for example a mass enhancement due to e.g. in-flow, i.e. A < 0, the fast MHD

kink wave is damped exponentially. If this notion is applied to the results found

here the jump condition will decrease in size albeit at a slower rate than the

damping of the propagating MHD wave. The resonance will then aid the damp-

ing rate instead of merely slowing the amplification, but if this idea is taken to

extremes in time the jump will exist in a fully damped wave and can not occur

in a physical system.

Under the consideration of moderate-activity in the Sun, the same analysis

can be performed and it was shown that the same style of exponential growth

in the jump conditions holds until the density gradient acts to limit the increase

in the jump condition and causes a decrease to a constant level as the densities

tend toward equality. In the same manner the relative size of the dissipative

layer and the dissipative rate could be calculated. The dissipative layer dis-

played a more physical evolution than in the case of the over-dense loop. The

decrease to a constant level is a much better match for the change in the jump

condition than in the case of the over-dense loop and is hence is more consistent

with the decrease in the dissipative rate, γ.



Chapter 6

Resonant Damping of MHD

Waves in a Finite Plasma-beta

6.1 Introduction

This Chapter focuses on the impact of a time-dependent density on the reso-

nance found in the slow continuum for a cylindrical flux tube. The introduction

of a finite plasma pressure enables the propagation of, not only, the slow MHD

wave but, with the introduction of an annular layer, the resonance in the slow

continuum. Four coupled governing equations describing wave propagation in

the flux tube are obtained, at which point the leading order in the WKB approx-

imation is taken recovering an eikonal form of the familiar governing equations

seen in many previous works. We briefly recall the resonance in the Alfvén con-

tinuum is briefly considered and, although a more general form of the results

found previously are obtained, the temporal evolution can be shown to be simi-

lar. The jump condition in the slow continuum can be shown to, with respect to

the temporal evolution, depend only upon the total pressure perturbation. By

assuming that the slow MHD wave propagates in the limit of a low plasma-beta

and rigid magnetic field, an investigation into the slow resonance can take place

in a similar manner as the analysis performed in the previous chapter. The

assumption of rigidity in the magnetic field only allows the m =0 slow sausage

mode to propagate. Evaluation of the jump condition reveals that, to leading

94
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order, the jump is constant in both time and height and hence becomes less

important in the context of the amplification due to the density variation. The

evolution of the dissipative layer is also investigated using the approximation

cderived in Chapter 3 and is shown to decrease in time to a constant level. This

constant level is entirely dependent upon the magnitude of the initial sound

speed and is compared to the dissipative layer in Chapter 5 for the over-dense

loop.

6.2 Background

In a manner similar to Chapter 5, we consider a magnetic atmosphere with

constant density and constant vertical magnetic field designated ρe and Bez.

To this a constant plasma pressure, pe is introduced. A magnetic cylinder with

constant vertical magnetic field Biz is then embedded in the atmosphere, where

the cylinder has a constant plasma pressure pi. We introduce a time-dependent

density and vertical flow inside the cylinder such that

ρi = ρ0 exp[−At], V0z = Az, A = τ−1
ρ . (6.1)

The characteristic time of density change, τρ, is considered to be large in com-

parison with the period of oscillation of the individual MHD waves. The cylinder

is then driven at the base, z = 0 at a constant frequency ω. The total pressure

can now be redefined as the sum of the plasma pressure and magnetic pressure,

like in the finite-pressure case considered in Chapter 3, and it is written as

P = p+ pmag = p0 +
B2

0

2µ0

. (6.2)

From here on a subscript ‘0′ indicates either the internal or external background

variable.
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6.3 Governing Equations

The linearised dissipative MHD equations are given by

∂ρ

∂t
+∇ · (ρ0V + ρV0) = 0,

ρ0

[

∂V

∂t
+V · ∇V0 + V0z

∂V

∂z

]

+ ρV0z
∂V0

∂z
= −∇p+ 1

µ
(∇×B)×B0,

∂B

∂t
= ∇× (V0 ×B) +∇× (V ×B0) + η∇2B,

∂p

∂t
+V0 · ∇p = −γ

(

p
∂V0z
∂z

)

.

η is the magnetic diffusivity and is considered to be important in narrow bands

around the Alfvén and slow resonant points, γ is the adiabatic index. Combining

Equations (6.3)-(6.3), allows for the following four equations to be written,

ˆ̟

(

ˆ̟ + γ
dV0z
dz

)

P = −ρ0(c2 + V 2
A) ˆ̟∇ ·V + ρ0V

2
A

(

ˆ̟ + γ
dV0z
dz

)

∂Vz
∂z

−

−γ dV0z
dz

ρ0V
2
A∇ ·V − B0z

µ0

dB0z

dr

(

ˆ̟ + γ
dV0z
dz

)

Vr, (6.3)

ρ0

(

ˆ̟

[

ˆ̟ η +
dV0z
dz

]

− ˆ̟ 2
A

)

∇ ·V = ρ0

(

ˆ̟

[

ˆ̟ +
dV0z
dz

]

− ˆ̟ 2
A

)

1

r

∂(rVr)

∂r
−

−
(

ˆ̟ + 2
dV0z
dz

)

1

r2
∂2P

∂φ2
+ ρ0

(

ˆ̟

[

ˆ̟ +
dV0z
dz

]

− ˆ̟ 2
A

)

∂Vz
∂z

, (6.4)

ρ0

(

ˆ̟

[

ˆ̟ +
dV0z
dz

]

− ˆ̟ 2
A)Vr = −

(

ˆ̟ + 2
dV0z
dz

)

∂P

∂r
, (6.5)

(

ˆ̟ − dV0z
dz

)

ρ0

[

ˆ̟

(

ˆ̟ +
dV0z
dz

)

− ˆ̟ 2
A

]

Vz = −
(

ˆ̟ 2 − dV0z
dz

2
)

∂P

∂z
−

−
(

ˆ̟ − dV0z
dz

)

ρ0V
2
A∇ ·V + V0z

dV0z
dz

∇ · (ρ0V). (6.6)

When comparing these equations to the ones found in the zero-beta model in

Chapter 5, the shifted resonant point is no longer immediately obvious. The

presence of the shifted Alfvén operator (̟2
η −̟2

A) in Equation (6.3) indicated
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that the shift still exists, however, the same idea of minimal difference due

to this shift still holds. Upon the application of the WKB approximation, to

leading order in ǫ, the four governing equations can then be combined into the

two familiar Hain-Lüst equations given by

ρ0(̟
2 −̟2

A)Qξ =
∂QP

∂r
, (6.7)

ρ0
r
(c2 + V 2

A)(̟
2
η −̟2

A)(̟
2
η −̟2

c )
∂(rQξ)

∂r
=

= −
[

̟4 − (c2 + V 2
A)(̟

2 −̟2
c )

(

m2

r2
+K2

)]

QP . (6.8)

From Equations (6.7) and (6.8) we can now deduce that, as in the zero-beta

case, the Alfvén and slow singularities are recovered in the form established in

previous works e.g. Goossens et al. (1992b), Erdélyi (1998) or Goossens et al.

(2011). Having regained both the singular points investigations can take place

in the regions around these points. For the sake of convenience we reintroduce

the following notation in the following sections

B̃2 =
B2

i + B2
e

µ0ρi
, and B̃0

2
=
B2

i + B2
e

µ0ρ0i.

6.4 Alfvén Resonance

Although not the main focus of this chapter, the jump condition in the Alfvén

continuum exists and can be found in the same manner as in Chapter 5. As

previously derived, the jump condition can be shown to be

[Qr] = −iπ m2

r2A|∆A|ρA
P. (6.9)

When the frequency and wave-function for the propagating fast wave, as derived

in Chapter 2 and given below, are substituted into equation (6.9) the evolution
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of the jump condition for the fast wave can be written simply:

Ωf = 2ω
V0z + B̃

V0z + 2B̃
, Kf =

2ω

V0z + 2B̃
. (6.10)

Although the form of Ω and K are different from their counterparts in Chapter

5, the change due to the temporal dependency is identical to that found previ-

ously. This change carries over into the variation in the jump condition, where

the sound speed introduces a slight scaling down from the value in the zero

plasma-beta. For the full analysis of the jump condition of the fast MHD wave

and the dissipation relating to the resonance see Chapter 5. For the purposes

of investigating the slow resonance point the explicit expression for the total

pressure is required. As can be shown in the calculation of the fast kink wave

the total pressure perturbation can be written as

QP = AiJm

(

2ωr

V0z + 2B̃

[

V 2
A − c2 + B2

e/µ0ρi
c2 + V 2

A(1 +B2
i /B

2
e )

]1/2)

, (6.11)

where Ai is an arbitrary constant, ω is the driving frequency and Jm is a Bessel

function of the first kind of order ’m’.

Likewise the Alfvén resonance under the moderate-activity approximation

can be so examined. Analogue to in Chapter 3, the new expressions for the

dynamic frequency and wavenumber are

Ω =
2ω

A

V0z + B̃(1 + χ/2)
√

g2 + 16B̃0χ0

exp[−At], (6.12)

K =
2ω

A

(1 + χ)
√

g2 + 16B̃0χ0

exp[−At]. (6.13)

Using these values, the temporal evolution of the jump condition, size of the

dissipative layer and the dissipative coefficient can now be all be explored. The

expressions for δA and γ are, once again, given by

δA =

(

η̟

|∆A|

)1/3

,
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and

γ = −ρ
2
i (̟

2 −̟2
A)

2

2(ρi̟ + ρeΩ

|m|π
rAρA|∆A|

.

The constant values of the background magnetic fields imply that the temporal

evolution of these quantities take a similar form as their counterparts in the

zero-beta environment.

6.5 Slow Resonance

The addition of the constant plasma pressure enables the propagation of the

slow wave and with the addition of the thin transition layer a resonance in

the slow continuum. When the Doppler-shifted frequency is in the region of

the cusp frequency we define a dissipative layer, labeled δc, which removes the

singularity. Within this dissipative layer the ideal MHD solutions found in

Chapter 3 are no longer valid and a new description for the propagating slow

wave must be investigated. Taylor expansion to leading order around the point

̟ = ±̟c of Equations (6.7) and (6.8) gives the following pair of equations:

(

s|∆c| − iη̟
̟2

c

̟2
A

∂2

∂s2

)

∂Qrs

∂s
=

̟4
cµ0

B2̟2
A

QP , (6.14)

∂QP

∂s
= − ̟2

AB
2

(c2 + V 2
A)µ0

, (6.15)

where s is defined as s = r − rs. From Equation (6.15) it is easy to spot that

there is no resonance in the total pressure, i.e. [QP ] ≡ 0. Further investigation

into Equation (6.14) can now take place, using the SGRH-method of analysis.

An analytic expression for the slow MHD wave in the dissipative layer can be

shown to be

Qrs = − ̟4
c

̟2
AV

2
Aρc|∆c|

QP

[

ln |τ |+ 2ν

3
+

1

3
ln(3)− i

π

2
sign(|∆c|τ)

]

. (6.16)

From equation (6.16) the jump condition can be simply read off as

[Qrs] = −iπ ̟4
c

̟2
AV

2
Aρc|∆c|

QP . (6.17)
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The jump condition can be shown to be explicitly independent of the wave-

function and frequency for the slow mode and is only dependent upon the

constant plasma-beta, magnetic field and the total pressure which was defined

in section (6.4). The complete time-dependence is contained within the evolving

total pressure perturbation. The revised jump condition can be written as

[Qrs] = −iπ β̟2
cµ0

(1 + β)B2
0 |̟′

c|
QP , (6.18)

where the ′ indicates a radial derivative. Given that for the results derived in

Chapter 3 are only valid for a propagating wave in a rigid magnetic field, only

one slow wave mode can be considered to propagate in this model, the m = 0

sausage mode. The lack of radial variation of the propagating slow sausage

MHD wave implies that the total pressure is constant and therefore the jump

across the resonant point is constant. Given that we expect the resonance to

decrease as the density gradient decreases this result appears to be unphysical,

however, in the context of the amplified slow MHD wave the relative jump in

amplitude decreases rapidly. Investigations into the varying magnitude of the

dissipative layer can show why the relative amplitude decreases.

6.6 Dissipative Layer

Given that the resonance is independent of the change to the propagating wave

the question of why the resonance disappears must be addressed. In order to an-

swer this we refer back to the Taylor-expanded governing equations, Equations

(6.14) and (6.15), and the definition given there for the dissipative layer, and,

more specifically the changing size of the dissipative layer. δc can be written

explicitly as

δc =

(

η̟̟2
c

|∆c|̟2
A

)1/3

=

(

η̟
c2

|∆c|(c2 + V 2
A)

)1/3

. (6.19)

The dissipative layer changes therefore like (̟/‖∆c)
1/3. In order to properly

examine the changes in the size of the layer, the particular forms of the frequency

and wave-function are required. By isolating the plasma displacement parallel

to the magnetic field, i.e. ξz, the frequency, wave-function and the amplitude
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of the propagating slow wave can be identified, with further details in Chapter

3. The frequency, Ωs, and the wave-function, K, are given by

Ω = 2ω
V0z + c

V0z + 2c
, K =

2ω

V0z + 2c
. (6.20)

Using these expressions the evolution of the dissipative layer can be plotted and

is shown in Figure 6.1. Examining Figure 6.1 it is clear that the overall trend is

of an exponential decrease in the size of the dissipative layer to a constant level

defined by the plasma-beta of the model. The background plasma flow acts as

a linear amplifier for the dissipative layer and determines the time taken for

the constant magnitude to be achieved. However, the relative size of the flow,

in comparison to that of the Alfvén and sound speeds, is assumed to be low in

order to avoid potential instabilities.

Figure 6.1: Evolution of the dimensionless dissipative layer, δc/δc(t = 0, z = 0).

6.7 Conclusion

This work has investigated the effect of a time-dependent density on the res-

onant point found in the slow continuum. Four governing equations for the

resistive MHD equations were constructed in operator form. Application of the
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WKB approximation to leading order enables the derivation of the two famil-

iar governing equations with both the Alfvén and slow resonance points. The

Alfvén resonance was explored only to the point of similarity with the work done

in the previous chapter. In the manner of Erdélyi (1998), investigations into

the slow resonant point took place. Examining the wave propagation within

the region, where dissipation can be considered to be important, leads to an

analytic expression for the jump across the resonant point. Such a result can be

easily shown to be independent of the propagation of the slow wave and depen-

dent only upon the total pressure. Applying the model for the frequency and

wavenumber of the slow MHD wave, as calculated in Chapter 3, it becomes clear

that under the low-β approximation, not only does the jump become constant

across all time, but only exists for the m = 0 sausage mode.



Chapter 7

Discussion and Further Work

7.1 Overview of Thesis and Summary of Re-

sults

The aims of the study presented in this Thesis were to investigate the effects

of a time-dependent background density upon the propagation and damping of

MHD waves in the solar corona. Recent observations have detailed the temporal

variation in plasma density within coronal loops and the current level of theo-

retical investigations have not yet addressed this issues. In order to understand

this observed change in the rate of damping of MHD waves, the propagation of

the MHD waves in a time-dependent background needed to be investigated and

the temporal evolution of the dynamic frequency, wavenumber and amplitude

explored. Chapter 2 focused on the propagating fast MHD wave in a pressure-

less environment, mimicking coronal conditions. The typical plasma-beta in the

corona is estimated to be in the region of 0.01 and, hence, the zero plasma-beta

approximation is a good initial step into investigating the corona. Analytic

expressions for the dynamic frequency, dynamic wavenumber and amplitude of

the fast MHD wave were found and upon further investigation it was shown

that the propagating fast kink waves were amplified exponentially in time. The

higher-order modes were damped to negligible levels, with the exception of the

m =2 mode which was amplified to a constant level. In the limit of a small

background flow, in relation to the Alfvén speed (moderate activity), the am-

103
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plification of the m = 1 kink mode was found to be limited in the region where

the interior and exterior densities are approximately equal. However, the initial

amplification occurred in a similar manner to that found in the over-dense loop

and hence both results can be considered to be in agreement with each other.

Chapter 3 expanded upon the work done in Chapter 2 by introducing a

constant, finite plasma pressure to the environment, in an attempt to mimic

the environment in the chromosphere and lower corona. The sound speed, now

a finite quantity as a result of the presence of the plasma pressure, introduced

a scaling for the analytical expression for the fast MHD wave. The temporal

evolution, as a result of the dynamic background, is shown to take the same

form as the fast MHD wave as calculated in Chapter 2. The second part of the

chapter examined the slow MHD wave by modelling a longitudinally propagat-

ing sound wave in a dynamic waveguide. The sound wave can then be shown

to have a similar form to that of the fast MHD wave and hence evolves in the

same manner.

Chapter 4 examined leaky wave modes in a zero plasma-β environment with

an initial density ratio more typical of photospheric environments, although the

lack of plasma pressure would refute this. Leaky wave modes are an important

part of MHD wave theory as the energy leakage results in a damping of the prop-

agating MHD waves. With the many observations of damped MHD waves, such

investigations are important to aid in the understanding of MHD waves propa-

gating under varied background conditions. Applying an altered version of the

moderate activity assumption, expressions describing the frequency, wavenum-

ber, wave amplitude and damping coefficient were found and the evolution of

these quantities explored. It was shown that when the density ratio, χ = ρe/ρi,

is of the order of 1, all the dynamic quantities were amplified. However, rapid

damping of all the quantities then followed as the density ratio grew, implying

a cessation of wave propagation in the flux tube.

MHD waves in the corona have been observed to be damped within a mere

handful of periods of oscillation, resonant absorption has been shown to be an

effective means of explaining this damping. Previous investigations into reso-

nant damping have been confined to static and steady systems, however, given

the temporal density variation in coronal loops the current analytical models
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need to be enhanced. To this end, Chapter 5 introduced a thin annular layer

to the flux tube, allowing for an examination of the resonant damping within

such a system. By studying the resonance in the Alfvén continuum, for a flux

tube in a zero-β environment, analytic expressions were found for the jump

condition and the damping coefficient. Such expressions were then applied in

the context of the evolving fast MHD wave as discussed in Chapter 2. Although

the jump condition could be shown to increase in an exponential fashion, the

amplification of the wave can be shown to outstrip this increase and hence the

damping as a result of the resonance will vanish. In the case of a flux tube

in a region of moderate activity the resonance was initially amplified in the

same manner before decreasing to a constant level as the interior and exterior

densities equalised. The other quantities evolved similarly to their counterparts

derived in the over-dense loop approximation.

In the same manner as for the resonance in the Alfvén continuum, the res-

onance in the slow continuum has been previously modelled in static and sta-

tionary systems. The effect of the temporal density variation had not yet been

examined, therefore, Chapter 6 introduced a finite plasma pressure and evalu-

ated the resonant damping of the slow MHD wave. The expression for the jump

condition was shown to be constant and, in light of the exponentially growing

slow wave amplitude, can be considered to become negligible in a short period

of time. A more accurate expression for the jump conditions and the damping

coefficient in the Alfvén continuum were also found and shown to have the same

temporal evolution as shown in Chapter 5 for their zero-β counterparts.

7.2 Further Work

The work presented here makes a good first step in explaining the variation in

linear wave propagation due to a time-dependent density. However, such first

steps are necessarily limited in how they explore the new concepts they intro-

duce. The first potential area this work could be extended into could explore

the propagation of the longitudinal wave mode into an arbitrary plasma-β sys-

tem. Whilst the low plasma-β assumption made in chapters 3 and 5 is a good

approximation for slow MHD wave propagation in the corona, time-dependent
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wave can propagate in many different environments in the solar region. The

slow MHD wave is known to be an effect means of transferring energy from

the photosphere up into the corona and, therefore, further investigations are

required in order to explain the high temperature levels in the solar corona, as

well as improving our ability to perform solar magneto-seismology.

As mentioned in Chapter 4, there exists, under certain conditions, a turning

point in the damping coefficient. Investigations into identifying this turning

point have not yet given an analytical answer and should be investigated fur-

ther. Also, in order to properly model the photospheric and chromospheric

conditions typical of the situations in which leaky waves propagate, additional

physics must be included. The first such inclusion should be a finite plasma

pressure and the extension into a thick tube, in order to more accurately rep-

resent structures such as pores, sunspots, etc.

For more complicated models mathematical issues may arise, solving the dis-

persion relation for the thin-tube required a physical reduction from the vastly

more complicated dispersion relation. The hidden problems of the TTTB ap-

proximations are discussed in e.g. Zhugzhda and Goossens (2001). Although,

the thin-flux-tube is a good approximation of coronal structures, magnetic struc-

tures in different arenas of study are not so accommodating of this reduction.

Similar problems will occur even in the thin-tube limit for a twisted magnetic

field, as found in e.g. Erdélyi and Fedun (2010a), even in the, relatively, sim-

ple case of studying the m = 0 sausage modes the increased detail will make

explicit solutions difficult to find. The dispersion relation is difficult to solve

unless multiple approximations are made and as such important elements of the

physics may be missed from the resulting solution.

Another avenue of exploration is MHD wave propagation in different ge-

ometries, e.g. infinite slab or elliptical loops. Mathematical problems will still

occur in such systems as can be shown in the infinite slab configuration. Whilst

most of the observed loops are currently modelled as cylindrical flux tubes,

the physical systems are not perfectly regular and, hence, elliptic tubes are a

more realistic description of coronal loops. Infinite slabs are a geometry used

to investigate MHD waves propagating in quiescent prominences which, despite

their long lifetimes, still contain time-dependent plasma density. The theory of
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MHD waves in a slab in an equilibrium setting is detailed in Roberts (1981b),

and the time-dependent equivalent of the kink wave in stationary equilibrium

can be considered to be algebraically similar and, for a system analogous to the

cylinder configuration in chapter 2, is given by

ρi(̟
2 −̟2

A)Mex0 + ρe(Ω
2 −̟2

Ae) = 0. (7.1)

Here Me is the wave number in the x-direction and x0 is the width of the

slab. For a model containing no shear perturbations, i.e. ky = 0 equation (7.1)

reduces to

ρi(̟
2 −̟2)x0 = ρeVAe

√

(Ω2 −̟2
Ae). (7.2)

The non-linearity of the dispersion relation makes the solution for the wave

phase to be difficult to find, further efforts should be made into solving this for

solutions constant with a constant driver. Furthermore, for any resonant effect

to be included the shear perturbation must be non-zero and, hence, the disper-

sion relation becomes even more complicated and difficult to solve. Details of

the formulation and the attempted solutions can be found in Appendix B.

Many of the observations of oscillations within coronal loops show that the

MHD wave amplitudes are large in comparison to the background values. There-

fore, the linear MHD wave theory is not an effective explanation for the observed

waves and non-linear wave theory is required to accurately determine the prop-

erties of such oscillations. It is also feasible that non-linear effects in a time-

dependent system could be responsible for limiting the exponential growth in

wave amplitude found in the work that was analysed earlier in this Thesis.

Further efforts into expanding upon both the Alfvén and slow resonant

damping mechanisms should take place in the same manner as the proposed

investigations into the wave propagation discussed above, namely the twisted

magnetic field or slab geometry. Otherwise, alternative damping mechanisms,

e.g. phase mixing, should be considered in the context of the propagating waves

discussed in chapters 2 and 3 in order for comparisons to be drawn with the

resonant damping discussed here.



Appendix A- SGRH Method of

Asymptotics

The Sakurai, Goossens, Ruderman, and Hollweg (1995) method of analytically

determining the jump conditions across the resonant point is explored below.

This was first constructed in Goossens et al. (1995) for a stationary system,

directly comparable to that discussed in Section 1.3.2. The two differential

equations that describe the wave propagation in the dissipative layer, Equations

(1.24) and (1.25), are rewritten here

(

s∆− iηω
d2

ds2

)

dξr
ds

=
gB
ρAB2

0

CA(s), (7.3)

and
(

s∆− iηω
d

ds2

)

dP

ds
= 2

fBB0φB0z

µ0rAρAB2
0

CA(s). (7.4)

We now introduce a scaling variable, τ , across the dissipative layer such that

τ =
s

δA
.

It is clear that τ is less than 1 when s is within the dissipative layer, and tends

to ±∞ when s→ ±sA, for sA defined by

sA =

∣

∣

∣

∣

2(ω2
A)

′

(ω2
A)

′′

∣

∣

∣

∣

,
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given that the Taylor-series is valid in the region [−sA, sA]. Using the new scaled

variable, Equations (7.3) and (7.4) can be rewritten as

(

d2

dτ 2
+ isign(∆)τ

)

dξr
dτ

= i
gB

ρAB2
0 |∆|CA (7.5)

and
(

d2

dτ 2
+ isign(∆)τ

)

dP

dτ
= 2i

fBB0φB0z

ρAB2
0µ0rA|∆|CA. (7.6)

In addition, similar differential equations can be sought for CA and ξ⊥. Whilst

the ξ⊥ solution is relevant for twisted magnetic fields, the work performed within

this Thesis will focus on models with B0φ = 0 and hence we only note that a

solution can be sought in the same manner. The equation for CA, however, is

required for the calculation of the jump conditions for the radial displacement

and total pressure. By taking a linear combination of Equations (7.5) and (7.6)

we can write
(

d2

dτ 2
+ isign(∆)τ

)

dCA

dτ
= 0. (7.7)

In order to progress we can seek solutions to the following second order differ-

ential equations
(

d2

dτ 2
+ isign(∆)τ

)

Ψ(τ) = 0, (7.8)

and
(

d2

dτ 2
+ isign(∆)τ

)

F (τ) = −1. (7.9)

For convenience we assume the following ansatz

Fi =

∫ a

b

exp

(

iuτsign(∆)− u3

3

)

du, (7.10)

which, when substituted into equation (7.9) gives

exp

(

iuτsign(∆)− u3

3

)∣

∣

∣

∣

a

b

= −1. (7.11)
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A series of solutions to Equation (7.11), if the lower limit, b, is assumed to be

the origin in the complex plane, can be shown to be

F1(τ) =

∫ ∞

0

exp

(

iuτsign(∆)− u3

3

)

du = −πBi(iπsign(∆)),

F2(τ) =

∫

Γ2

exp

(

iuτsign(∆)− u3

3

)

du = −iπAi(iπsign(∆)),

F3(τ) =

∫

Γ3

exp

(

iuτsign(∆)− u3

3

)

du = iπAi(iπsign(∆)),

where Γ2,3 are the lines in the complex plane starting at the origin and go to ∞
along the rays exp(±2πi/3) and Ai and Bi are the Airy Functions of the first

and second kind, respectively. Such solutions were found by finding values that

sent the dominant term in the exponential expression (u3/3) to ∞. From these

3 solution a solution for equation (7.8) can be found using linear combinations

of Fi’s. Therefore, we can write solutions for Ψ1,2 as

Ψ1(τ) = F3(τ)− F1(τ), Ψ2(τ) = F3(τ)− F2(τ).

Ψ can therefore be written as the sum of these linearly independent solutions

and is given by

Ψ = A1(F3 − F1) + A2(F3 − F2). (7.12)

For a physical solution we require that both Ψ and F are finite for all τ , hence

the solutions F1,2,3 can be tested for their boundedness. Details are not given

here, but it can be shown that only the F1 solution is bounded at τ → ±∞.

Therefore, the two constants, A1 and A2, must be 0 and hence

Ψ(τ) ≡ 0,

F (τ) ≡ F1(τ).

With these solution we return to Equation (7.7) and can therefore write

dCA

dτ
= 0, (7.13)
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which directly implies that the quantity CA is conserved across the dissipative

layer. Now that CA is known to be constant within the dissipative layer we can

return to Equations (7.5) and (7.6) and apply the solution found for Equation

(7.9), thus we can write

dξr
dτ

= −i gB
ρAB2

0 |∆|CAF (τ),

dP

dτ
= −i 2fBB0φB0z

µ0rAρAB2
0 |∆|CAF (τ).

Integration with respect to the scaling variable τ produces

dξr
dτ

= − gB
ρAB2

0∆
CAG(τ) + Cξ,

dP

dτ
= − 2fBB0φB0z

µ0rAρAB2
0∆

CAG(τ) + CP ,

where Cξ and CP are constants of integration and G(τ) is given by

G(τ) =

∫ τ

0

F (τ ′)dτ ′ =

∫ ∞

0

e−u3/3

u
(exp[iuτsign(∆)]− 1)du,

for the dummy variable τ ′. Now, in order to evaluate these functions at the

resonant point, τ = 0, we rewrite G(τ) as

G(τ) =

∫ ∞

0

1− cos(uτ)

u
exp

[−u3
3

]

du+ isign(∆)

∫ ∞

0

sin(τu)

u
exp

[−u3
3

]

du.

(7.14)

By examining the real and imaginary parts of equation (7.14) separately, an

asymptotic expression for G(τ) as τ → ∞ can be determined, i.e. in the points

where dissipative and real solutions are bounded and are equal. The imaginary

part of the solution will result in the jump condition and can be derived as

follows

sign(∆)

∫ ∞

0

sin(τu)

u
exp

[−u3
3

]

du = sign(∆τ)

∫ ∞

0

sin(u|τ |)
u|τ exp

[−u3
3|τ |3

]

d(uτ),

(7.15)
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= sign(∆τ)

∫ ∞

0

sin(u|τ |)
u|τ d(uτ) + o(1),

= −iπ
2
sign(∆τ) + o(1),

where o(1) is a function whose values tend to 0 as |τ | → 0. The real part

of equation (7.14) can be explored as follows, whilst making the substitution

u|τ | → u where appropriate,

∫ ∞

0

1− cos(uτ)

u
exp

[−u3
3

]

du =

(
∫ τ−2

0

+

∫ ∞

τ−2

)

1− cos(uτ)

u
exp

[−u3
3

]

du,

(7.16)

=

∫ 1/τ |

0

1− cos(u)

u
e−u3/3|τ |3du+

∫ ∞

τ−2

e−u3/3du

u
−
∫ ∞

1/‖τ |

cos(u)

u
e−u3/3|τ |3du,

= −1

3

∫ −1/3τ6

−∞

eu
du

u
−

∫ ∞

1/|τ |

cos(u)

u
du+ o(1),

=
1

3
Ei

(−1

3τ 6

)

+ Ci

(

1

|τ |

)

+ o(1).

Here, Ei is the integral exponent and Ci is the integral cosinus functions as

detailed in e.g. Abramowitz and Stegun (1972). The asymptotic expansions of

these functions as their arguments tend to 0 are well known and are given by

Ei(y) = ln(−y) + ν +O(y), for y → −0,

Ci(y) = ln(y) + ν +O(y), for y → +0,

where ν is the Euler constant and ±0 designated limits taken from above and

below 0. Thus, the real part of equation (7.14) can be written as

∫ ∞

0

1− cos(uτ)

u
exp

[−u3
3

]

du = − ln(τ)− 2
ν

3
− 1

3
ln(3) + o(1), (7.17)

and the expression for G(τ) can therefore be expressed, in an asymptotic man-

ner, as

G(τ) = − ln(τ)− 2
ν

3
− 1

3
ln(3) + i

π

2
sign(∆τ) + o(1). (7.18)



Appendix B- Slab Geometry

As mentioned in Section 7.2, an attempt has been made into describing the

propagation of the fast MHD wave with a time-dependent density in a slab

geometry, suitable for quiescent prominences in the solar atmosphere. However,

no progress into solving this problem analytically has been made, numerical

solutions could be sought but are beyond the scope of this work. A geometry

similar in nature to that found in the cylindrical case discussed in Chapter 2 is

constructed and explored to the point of solving the dispersion relation.

7.3 Background Geometry

A slab of high-density plasma is considered, for the purposes of this investigation

we assume that the slab is infinite with respect to the y and z co-ordinates and

has thickness 2x0 centered on x = 0. The slab is embedded in a region with

a constant vertical magnetic field, B0zẑ. The interior density of the slab is

designated ρi and is decreasing in time with a constant exponential factor A.

The cold-plasma approximation is applied, the thermal pressure, p0 of the slab

can be discarded. The exterior atmosphere can be considered to be a static

system and all quantities are designated by a subscript ’e’. The slab is excited

at the point z = 0 with a driving frequency ω.

The ideal perturbed, linearised MHD equations can be written as

∂ρ

∂t
+∇ · (ρ0V + ρV0) = 0, (7.19)

ρ0

[

∂V

∂t
+V · ∇V0 + V0z

∂V

∂z

]

+ ρV0z
∂V0

∂z
= −∇p+ 1

µ
(∇×B)×B0, (7.20)
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∂B

∂t
= ∇× (V0 ×B) +∇× (V ×B0), (7.21)

∂p

∂t
+V0 · ∇p = −γ

(

p
∂V0z
∂z

)

. (7.22)

Equations (7.20)-(7.22) can be combined in such a way as to eliminate all the

perturbed variable except for the perturbed total pressure, P ≈ B0zBz/µ, and

the perturbed velocity in the x-direction, Vx. Equations (7.20) and (7.21) can

be combined to give equation (7.23). The remaining equation can be found by

solving for P in terms of Vr. The two governing equations are given by

(

ˆ̟ +
dV0z
dz

)

∂P

∂x
= −ρ0( ˆ̟ 2 − ˆ̟ 2

A)Vx, (7.23)

and

ρ0V
2
A( ˆ̟

2 − ˆ̟ 2
A)
∂Vx
∂x

= −
[

ˆ̟ 2 − V 2
A

(

∂2

∂z2
+

∂2

∂y2

)]

P, (7.24)

where

V 2
A =

B2
0

µρ0
, ˆ̟ =

∂

∂t
+ V0z

∂

∂z
, ˆ̟ 2

A = V 2
A

∂2

∂z2
.

7.4 Application of the WKB Approximation

Now, the WKB application, as detailed in Section (1.7), is applied and the two

governing equations can be further explored in an analytical manner. Using the

definitions for Ω and K, as given in equation (1.45), equations (7.23) and (7.24)

can be rewritten as
∂P

∂x
= ρ0(̟

2 −̟2
A)ξx, (7.25)

and

ρ0V
2
A(̟

2 −̟2
A)
∂ξx
∂x

= −
[

̟2 − V 2
A(K

2
z + k2y)

]

P, (7.26)

where

̟ = Ω− V0zKz, ̟2
A = V 2

AK
2
z , −i̟ξx = Vx.
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Solving equations (7.25) and (7.26) in the interior and exterior regions gives the

solution for QP as

QP =











Ae1 exp(Me(x+ x0)) x < −x0,
A1 cosh(M0x) + A2 sinh(M0x) |x| < x0 − l,

Ae2 exp(−Me(x− x0)) x > x0,

, (7.27)

for M2
0 and M2

e written as

M2
0 =

V 2
Ak

2
y −̟2 +̟2

A

V 2
A

, M2
e =

V 2
Aek

2
y − Ω2 + V 2

AeK
2
z

V 2
Ae

. (7.28)

The dispersion relation for the infinite slab can be found by combining equations

(7.23), (7.24) and (7.27). The resulting equation, equation (7.30), can be shown

to be algebraically similar to equation (11) in Edwin and Roberts (1983b).

ρi(̟
2 −̟2

A)Me + ρe(Ω
2 − V 2

AeK
2
z )M0

{

tanh

coth
M0x0

}

= 0, (7.29)

where the tanh solution represents the sausage mode and the coth solution

represents the kink mode. To further progress we apply the thin slab approxi-

mation, reducing equation (7.30) to

ρi(̟
2 −̟2

A)Me + ρe(Ω
2 − V 2

AeK
2
z )M0

{

M0x0

(M0x0)
−1

}

= 0. (7.30)

7.5 Analysis of Kink Wave Mode with Differ-

ent ky

In the thin-slab approximation the axis-symmetric sausage mode will not prop-

agate, under coronal conditions, and hence only the propagating kink mode is

left. Solutions can be sought, depending on the wavenumber in the y-direction,

which is necessary for further investigations into resonant absorption or other

damping mechanisms.
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7.5.1 ky = 0

In the limit of ky=0 we can perform the following investigation. The dispersion

relation is given by

ρ0(̟
2 −̟2

A)Mex0 + ρe(Ω
2 − V 2

AeK
2) = 0. (7.31)

In the limit of ky = 0 the exterior wavenumber is reduced and the following

equation can be formed from equation (7.31)

x0(̟
2 −̟2

A) = VA

[

̟2
A − ρe

ρi
Ω2

]1/2

. (7.32)

Under coronal conditions, i.e. we assume that ρi ≫ ρe, this result can be

reduced to

Ω = V0zK + VA

√

K2 +
K

x0
, (7.33)

to which no rigorous solution has yet been found.

7.5.2 ky 6= 0

Now, we examine a model containing a finite wavenumber in the y-direction.

Equation (7.30) can now be written as

ρi(̟
2 −̟2

A)x0

(

k2y −
Ω2 − ω2

A

V 2
Ae

)1/2

+ ρe(Ω
2 − ω2

A) = 0. (7.34)

Analytical progress can only be made in the assumption that O(ky) ≈ O(Me)

such that the binomial expansion can be applied to equation (7.30). In this

limit and after several steps of algebra the following can be written,

(̟2 −̟2
A)x0ky +

ρe
ρi

(

Ω2 − ω2
A +

Ω4 + ω4
A − 2Ω2ω2

A

2k2yV
2
Ae

)

= 0. (7.35)

To which the coronal approximation can be applied, reducing equation (7.31)

to

(̟2 −̟2
A)x0ky −̟2

A +
̟2

A

2k2y
K2 = 0, (7.36)



7.5. ANALYSIS OF KINK WAVE MODE WITH DIFFERENT KY 117

for which, again, no rigorous solution can be found.

7.5.3 Solution Attempt

Equations (7.39) and (7.32) can be solved in general terms using the following

ansatz,

θ(t, z) = V0z
exp[−At]
x0A

+ f(t), (7.37)

i.e. attempting to mimic the solutions found in the cylindrical coordinate sys-

tem. However, neither of these solutions produces an f(t) such that the constant

driver boundary condition can be satisfied.



Appendix C-Application of the

WKB Approximation

In this Thesis we repeatedly used the WKB approximation to leading order, in

this appendix we will show the details of the the application to the governing

equations derived in the earlier chapters. Section 1.7.3 detailed the notation to

be used upon application of the WKB approximation and is revisited here.

F = QF

(

r

ǫ
, z, t

)

exp

[

i

ǫ

(

θ(t, z) +mφ

)]

Ω = −∂θ
∂t
, K =

∂θ

∂z
, ̟ = Ω− V0zK. (7.38)

Such expressions can be applied to the operator forms of the governing equations

as derived in Chapter 3. Firstly we recall equation (3.16), the first of the

governing equations to be analysed,

ˆ̟

(

ˆ̟ + γ
dV0z
dz

)

P = −ρ0(c2 + V 2
A) ˆ̟∇ ·V + ρ0V

2
A

(

ˆ̟ + γ
dV0z
dz

)

∂Vz
∂z

−

−γ dV0z
dz

ρ0V
2
A∇ ·V − B0z

µ0

dB0z

dr
γ
dV0z
dz

Vr (7.39)

Upon application of the WKB approximation, equation (7.39) can be written

as

−i̟
(

−i̟+ǫγ
dV0z
dz

)

P = −ρ0(c2+V 2
A)(−i)̟∇·V+ρ0V

2
A

(

(−i)̟+ǫγ
dV0z
dz

)

(iK)Vz−
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−ǫγ dV0z
dz

ρ0V
2
A∇ ·V − B0z

µ0

dB0z

dr
ǫγ
dV0z
dz

Vr (7.40)

Gathering together terms of equal order in ǫ allows for the following to be

written

−̟2P − iρ0(c
2 + V 2

A)̟∇ ·V −KV 2
A̟Vz =

+ǫ

(

i̟γ
dV0z
dz

P+iρ0V
2
Aγ

dV0z
dz

KVz−γρ0V 2
A

dV0z
dz

∇·V+i
B0z

µ0

dB0z

dr
̟Vr−γ

B0z

µ0

dB0z

dr

dV0z
dr

Vr

)

(7.41)

It is clear that to lowest order, in the small parameter, ǫ, equation (7.41) reduces

to

−̟2P = iρ0(c
2 + V 2

A)̟∇ ·V +KV 2
A̟Vz

We can note that all the temporal and vertical derivatives of the background

quantities have now been reduced to lower order effects and only the deriva-

tives of the perturbed quantities remain. This reduction is attributed to the

slowly varying nature of the background plasma, i.e. the constant A is small.

The radial derivatives of the background quantities remain as a result of the

stretching of the radial coordinate. A similar simplification can be seen from

the other four governing equations and they also reduce to

ρ0(̟
2−̟2

A)∇·V = ρ0(̟
2−̟2

A)
1

r

∂(rVr)

∂r
+i̟

m2

r2
P−iρ0(̟2−̟2

A)KVz (7.42)

ρ0(̟
2 −̟2

A)Vr = −i̟∂P
∂r

(7.43)

i̟ρ0(̟
2 −̟2

A)Vz = i̟2KP −̟ρ0V
2
AK∇ ·V (7.44)

At this point we have a series of expressions which can now be algebraically

combined into the two governing equations, as stated in equations (3.20) and

(3.21). The same analysis can be applied to the third of the governing equations

discussed in Chapter 3, giving equation (3.22).
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