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Abstract 

In tailed bacteriophages and evolutionarily related herpes viruses, the portal 

protein is a central component of the DNA packaging molecular motor, which 

translocates viral genomic DNA into a preformed procapsid. The motor is the most 

powerful molecular machine discovered in nature, generating forces reaching ~50 

pN and translocating DNA with a speed of several hundred bp/sec using ATP as an 

energy source. The oligomeric portal protein ring is situated at a unique vertex of 

the procapsid forming a conduit for DNA entry and exit. Although the 

three-dimensional structure has already been determined for portal proteins from 

bacteriophages P22, SPP1 and phi29, several important questions about the role of 

individual protein segments in DNA translocation and their interaction with other 

components of the motor remain unanswered. Structural information on portal 

proteins from other bacteriophages, like T4 for which a wealth of biochemical 

information is already available, will help to answer at least some of these 

questions. 

The portal protein of bacteriophage SPP1 (gp6) can form circular oligomers 

containing 12 or 13 subunits. It is found as a 12-subunit oligomer when 

incorporated into the viral capsid and as a 13-subunit assembly in its isolated form. 

The X-ray structure of the SPP1 portal protein is available only for the isolated 

13-subunit assembly of the N365K mutant form. Because this mutation results in a 

reduction in the length of packaged DNA, determining the structure of the wild 

type portal protein would shed light on the mechanism of DNA translocation. 

Elucidation of the mechanism of DNA packaging depends also on the availability of 

accurate structural information on the SPP1 portal protein in its 12-subunit 

biologically active state. Such structural knowledge would be particularly useful in 

future, for designing a stable molecular machine that can function in vitro.  

In this thesis, experiments were designed to promote the formation of the 

dodecameric gp6: viz fusing gp6 with TRAP protein that forms a stable circular 

dodecamer as well as the co-expression of gp6 with the SPP1 scaffolding protein 

gp11. The protein targets were cloned, expressed and purified, and the oligomeric 

state of gp6 was characterised by a combination of biochemical, biophysical and 

structural approaches. The structure of the wild type gp6 was solved at 2.8 Å 
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resolution, revealing a 13-fold symmetrical molecule.  The protein’s fold is the 

same as for the N365K mutant, with most significant conformational differences 

observed in the tunnel loop and in segments of the clip and crown domains. 

Comparison with the structure of N365K mutant reveals significant differences in 

subunit-subunit interactions formed by tunnel loops, including different hydrogen 

bonding and van der Waals interactions. It is likely that these differences account 

for the different amount of packaged DNA, indicating involvement of tunnel loops 

in DNA packaging. 

The portal protein of bacteriophage CNPH82, cn3, was also successfully cloned, 

expressed and purified. Promising crystallisation conditions have been identified 

that yield crystals diffracting to 4.2 Å. Further optimisation should lead to 

determination of the X-ray structure of this protein in not too distant future. 

Self-rotation function calculations and SEC-MALLS analysis indicate that the cn3 

protein forms 13-subunit assemblies, in common with the SPP1 portal protein. 

Foundation work has been carried out for the bacteriophage T4 portal protein, 

aimed at identifying suitable production and purification conditions. In addition, 

the full-length bacteriophage SPP1 scaffolding protein gp11 has been cloned, 

purified and crystallised. Degradation was observed in the full length gp11 protein 

and therefore a series of truncations were designed, cloned and purified aiming to 

improve the stability. Further studies on limited proteolysis of the full-length gp11 

should lead to a stable gp11 tuncation that will form crystals with better 

diffraction.  
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my supervision, and was presented earlier in his project summary report 

entitled” Molecular machinery: characterisation of the SPP1 B. subtilis 

bacteriophage portal protein”. 

3. Cloning and purification of the portal protein from bacteriophage CNPH82 was 

performed by Jochen M. Fesseler (MSc Biochemistry, University of Bayreuth, 

2010) in his project report entitled ”Portal protein and procapsid formation of 

the bacteriophage CNPH82”.  A paper on the crystallisation and 

crystallographic analysis of this protein was published in 2012 entitled 

“Recombinant portal protein from Staphylococcus epidermidis bacteriophage 

CNPH82 is a 13-subunit oligomer”.  
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1 Introduction 

1.1 The Bacteriophages 

Bacteriophages are viruses that infect and replicate within bacteria, often causing 

bacterial lysis following their replication. Bacteriophages were independently 

discovered by Frederick Twort and Félix d'Hérelle in the 1910s (Twort, 1925). 

However, due to their small size, bacteriophages were not visualised until the 

advent of the electron microscope in the 1940s (Luria et al, 1943). As the most 

abundant organisms in the biosphere, bacteriophages display striking diversity in 

their morphological properties - shape (spherical, helical, rod, polyhedral, etc.), 

size and auxiliary structures such as tails and envelopes (Orlova, 2009). Notably, 

the genetic material in the majority of bacteriophages is double-stranded DNA 

(dsDNA), but bacteriophages containing single-stranded DNA (ssDNA), 

double-stranded RNA (dsRNA) and single-stranded RNA (ssRNA) have also been 

discovered.  The morphology and nucleic acid properties provide the basis for the 

classification of bacteriophages, and nineteen families have now been defined 

(Calendar, 2006). 

Bacteriophages are obligate intracellular parasites of bacteria. Viral protein 

production and genome replication are fulfilled by bacterial machinery. These 

viruses are categorised as lytic bacteriophages or temperate bacteriophages based 

on the ability to cause lytic or lysogenic infection of the host cell (Bertani, 1953). 

Lytic bacteriophages can merely replicate throughout the lytic life cycle and cause 

lysis of the host bacteria, whereas temperate bacteriophages can also integrate 

their genetic materials into the bacteria's genome as a non-infectious “prophage”. 

During lytic infection by DNA bacteriophages, viral DNA replaces the bacterial 

genomic DNA as the template for both replication and transcription in host cells. 

Viral proteins, such as the coat proteins and tail proteins, are synthesised using 

host cell ribosomes, tRNAs and amino acids. The process of DNA replication, 

protein synthesis, and viral assembly is sequentially coordinated in the lytic life 

cycle (Figure 1-1). The first step of infection is adsorption, during which a phage 

recognises a specific receptor on the surface of the bacterial cell and adheres to the 

site, often by means of the tail fibres (Rakhuba et al, 2010). Following adsorption, 

http://en.wikipedia.org/wiki/Frederick_Twort
http://en.wikipedia.org/wiki/F%C3%A9lix_d%27H%C3%A9relle
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viral DNA is injected into the host cell. The synthesis of “early proteins” is 

triggered immediately after viral DNA penetration, to produce virus-specific DNA 

polymerases, which exclusively replicate phage DNA. “Late proteins” are 

synthesised after the replication of the bacteriophage genome, subsequently 

followed by the assembly of infectious virion particles. Mature virions are released 

from host cells with the assistance of phage-encoded lytic enzymes, such as 

lysozyme, to break down the peptidoglycan in bacterial cell walls. It takes about 

25-35 minutes for a T-phage to complete a life cycle, during which some 50 to 200 

phage particles may be produced from every infected bacterium (Calendar, 2006). 

 

Figure 1-1 The major steps in the lytic life cycle of a typical tailed bacteriophage.  
This figure was adapted from (Casjens, 2011). 

The potential for using bacteriophages to treat bacterial infections was recognised 

early on, with phages being introduced as antibacterial agents in the 1920s 

(Summers, 2001). The development of phage therapy was stalled because of the 

discovery and wide application of antibiotics. However, with the recent emergence 

of multi-antibiotic resistant bacteria, phage therapy is now considered a promising 

tool to treat bacterial infections that cannot be cured by conventional antibiotics 

(Thiel, 2004). Phage therapy has been successfully applied in the agricultural, 

food-processing and fishery industries (Inal, 2003). As the understanding of 

bacteriophage biology advances, the potential of phage therapy as a means of 

treating or preventing human diseases is likely to become more evident.  
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1.2 The Virus Assembly Process 

Research on the viral assembly process progressed rapidly with the isolation of 

conditional lethal mutants and the characterisation of the structures that 

accumulate in mutant-infected cells (Casjens & King, 1975). The viral assembly 

process, which proceeds along an ordered morphogenetic pathway, has been 

extensively studied. A more detailed understanding of the viral assembly process 

could enable the design of new antiviral agents, and lead to the development of 

new routes for designing nanoparticles (Harvey et al, 2009). 

This thesis is concerned with proteins involved in the assembly of tailed dsDNA 

bacteriophages. It is a tightly regulated and strictly ordered process, which often 

involves shell formation, DNA encapsidation and tail attachment. Bacteriophage 

heads and tails assemble independently and join together to form mature virions 

following the translocation of DNA into heads. The empty protein shell, termed the 

“procapsid”, can form spontaneously providing the capsid proteins are present at 

sufficient concentrations. In most cases, the formation of the procapsid is 

facilitated by other structural proteins, such as the auxiliary scaffolding proteins 

and the oligomeric portal protein. A DNA translocation molecular motor, located in 

one vertex of the procapsid, is responsible for driving the viral genome into the 

procapsid. The assembly process is often completed by the attachment of tail 

proteins. The morphogenic pathway of bacteriophage P22 is shown here (Figure 

1-2) as a typical example of tailed dsDNA bacteriophages (Teschke & Parent, 2010). 

 

Figure 1-2 The assembly pathway of bacteriophage P22.  
This figure was adapted from (Teschke & Parent, 2010). 
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1.3 The DNA Packaging Molecular Motor  

The double-stranded DNA bacteriophages and herpes viruses adopt common 

machinery – a DNA translocating molecular motor - to encapsidate the genomic 

DNA into a preformed procapsid protein shell. The packaging motor is powered by 

ATP hydrolysis, converting chemical energy into mechanical force to pump DNA 

into the procapsid against large internal pressure (Casjens, 2011).  

The DNA translocation process is initiated when the small terminase recognises 

and specifically binds to a recognition site on the concatemeric phage DNA (the 

pac site for phages P22, SPP1, T4 and T7 and the cos site for the λ-like and 

P2/P4-like phages) (Rao & Feiss, 2008). The small terminase also plays a role in 

recruiting the large terminase (Buttner et al, 2011). The large terminase displays 

endonuclease activity and makes an initial cut in the phage DNA at a specific site 

close to the recognition site. Following the initial cut, a small terminase - large 

terminase - DNA complex is formed and then docked to the portal protein, which is 

positioned at one vertex of the procapsid. Powered by ATP hydrolysis, the large 

terminase drives translocation of the viral DNA, via the portal protein, into the 

pre-formed procapsid. Once the capsid is filled, the large terminase is triggered to 

make a second cut in the DNA, thereby releasing the packaged DNA from the 

remainder of the concatemeric DNA (Rao & Feiss, 2008). Precisely one 

genome-length of DNA is packaged into phages in which both cuts are made in a 

sequence specific manner (for example bacteriophage λ). For phages in which the 

second cut is carried out in a sequence independent manner, slightly more than 

one genome length (102-110%) of phage DNA is normally packaged.  

The properties of the DNA packaging molecular motor can be investigated by 

single-molecule experiments, involving the use of optical tweezers (Figure 1-3). In 

this technique, a single active procapsid-motor complex is tethered to a 

microsphere coated with an anti-capsid protein antibody, and the distal end of the 

biotinylated DNA is tethered to another microsphere coated with streptavidin. 

Both microspheres are captured in optical traps (the narrowest point of a focused 

laser beam), and packaging is initiated by moving the packaging motor bead into 

close contact with the fixed DNA bead. The dynamics of the DNA packaging 
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molecular motor such as translocation speed, force and step size can then be 

studied by manipulating the microspheres (Rao & Feiss, 2008; Smith et al, 2001). 

 

Figure 1-3 Single-molecule analysis of DNA packaging using optical tweezers. 
This figure was adapted from (Casjens, 2011). 

The bacteriophage DNA packaging molecular motor is one of the most powerful 

biological motors reported. The dsDNA molecule is as compact as crystalline DNA 

in most mature capsids (Earnshaw & Casjens, 1980). In order to package genomic 

DNA, the motor has to work against a high internal pressure that builds up inside 

the capsid with the filling of DNA, and overcome the extremely unfavourable 

energetic environment resulted from extensive DNA bending and charge repulsion 

of the compacted phosphate backbone. The force generated by the motors of phi29, 

λ, and T4 is approximately 60 pN (Smith et al, 2001). 

An average translocation step size of two base pairs of DNA per molecule of ATP 

hydrolysed was deduced for phages phi29 and T3. The velocity of DNA 

translocation varies in different phages and appears to be correlated with the 

phage’s genome size.  The highest rate recorded to date was approximately 2000 

bp/sec in the case of bacteriophage T4 (Fuller et al, 2007). As packaging proceeds 

and internal pressure increases, the translocation rate decreases and eventually 

falls to zero when approximately 100% of the genome is packaged (Smith et al, 

2001). 
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The mechanism underlying the packaging of viral genomic DNA by the DNA 

packaging molecular motor is a fascinating research topic. A better understanding 

of the packaging motor will provide insights into the assembly of tailed 

bacteriophages, and also shed light on the potential applications of this nanomotor 

in nanotechnology and gene therapy. The structural basis of the motor 

components has been the subject of intensive research over the past two decades, 

and recent findings are reviewed in the following sections. 

1.4 Components of DNA Packaging Motors 

In general, a fully functional packaging motor relies on the co-operation of three 

essential components: the portal protein, the small terminase and the large 

terminase (Figure 1-4) (Casjens, 2011). One exception is the packing motor of 

phage phi29, which lacks the small terminase and instead requires a small 174-nt 

packaging RNA (pRNA), which docks the large terminase to the portal protein 

(Guo, 2002). 

 

Figure 1-4 Schematics of the bacteriophage DNA packaging molecular. 
TerL: Large terminase, TerS: Small terminase. The portal protein is shown as a dodecameric 

ring embedded in the 5-fold symmetrical vertex of an icosahedral bacteriophage capsid. The 

portal protein, large terminase and small terminase form the dsDNA translocating motor. 

The large and small terminase proteins are shown as rings made up of five and eight 

subunits, respectively, but their exact oligomeric states may differ in different 

bacteriophages. All known functional portal proteins are dodecamers (Rixon, 2008). The 

position of the small terminase is speculative. The arrow indicates the position and direction 

of dsDNA movement during translocation. This figure was adapted from (Casjens, 2011). 
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1.4.1 The Central Component - The Portal Protein 

The portal protein assembly is located at a unique vertex of the procapsid shell, 

and forms a passage through which DNA can be translocated. As an essential 

component of the DNA packaging motor, the portal protein plays several 

indispensable roles in the assembly of viral particles. Not only can the portal 

protein initiate procapsid assembly and control the size of the procapsid, but it is 

also a central component of the DNA translocating molecular motor, a headful 

sensor for DNA packaging and a connector for tail attachment (Bazinet & King, 

1988; Casjens et al, 1992; Droege & Tavares, 2005; Tavares et al, 1992).  

The portal proteins from different bacteriophage species are highly diverged 

homologues, and there is no detectable similarity in amino acid sequences. In spite 

of the lack of homology between the amino acid sequences, a close resemblance in 

the overall architecture of bacteriophage portal proteins was revealed by X-ray 

structural and cryo-electron microscopy studies (Guasch et al, 2002; Lebedev et al, 

2007; Leiman et al, 2004; Olia et al, 2011; Orlova et al, 2003; Simpson et al, 2000b). 

Portal proteins have a cone-shaped structure containing a central channel, with 

the wider end situated inside the capsid and the narrower end protruding out of 

the capsid. The channel is lined by 12 α-helices that expose several acidic residues 

which allow efficient passage of negatively charged DNA through the tunnel 

(Figure 1-5A). A single subunit of portal proteins can be subdivided into four 

regions, namely the clip, stem, wing and crown (Lebedev et al, 2007). The core 

domain of the portal protein from different phages demonstrated a strikingly 

similar fold, especially in the region spanning from helix α3 to helix α6 (Figure 

1-5B), which is observed in three-dimensional structures of all portal proteins.  
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Figure 1-5 Conservation of the overall architecture and core domain of portal 
proteins 
(A) Crystal structures of the portal proteins from bacteriophages phi29 gp10 (PDB: 

1FOU), SPP1 gp6 (PDB: 2JES) and P22 gp1 (PDB: 3LJ4) (Lebedev et al, 2007; Olia et 

al, 2011; Simpson et al, 2000a); (B) The core domains of the portal proteins show 

that the four α-helices, helices α3 to α6, are observed in all three structures. Cyan 

arrows correspond to β-strands, red ribbons correspond to α-helices and loop regions 

are coloured in grey. Variability is localised in the wing regions, which differ in both 

conformation and size (Veesler & Cambillau, 2011) .  

SPP1 gp6 

phi29 gp10 

P22 gp1 
A A 

B 
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The molecular mass of different portal proteins varies greatly, with the smallest 

one found in phage phi29 (~35 kDa per subunit) and the largest one found in 

phage P22 (~83 kDa per subunit). In phage P22, the portal protein has a 200 Å 

long C-terminal extension, which forms an α-helical barrel and extends into the 

cavity of the capsid (Olia et al, 2011). In comparison with phi29, the extra 

molecular weight of the SPP1 portal gp6 (57.3 kDa per subunit) resides in the 

considerably larger wing and longer C-terminal region (Lebedev et al, 2007; 

Orlova et al, 2003). Given the large differences in size, the length and spatial 

arrangement of the helices in the core domain is surprisingly comparable. This 

conserved core segment accounts for 46% of the phi29 portal protein sequence 

and is likely to be an ancient structural unit with an important role in genome 

packaging (Lebedev et al, 2007). The conservation of the core architecture of 

portal proteins also suggests bacteriophages employ a similar mechanism to 

translocate genomic DNA into procapsids. 

It is believed that the portal proteins exist exclusively as dodecamers in their 

biologically active state (Rao & Feiss, 2008). However, following ectopic 

expression and purification, the oligomeric state of the portal proteins from 

bacteriophages T7, T3, SPP1 and P22 has been found to range from an 11-mer to a 

14-mer in vitro, and heterogeneous populations have also been reported 

(Cingolani et al, 2002; Dube et al, 1993; Kocsis et al, 1995; Trus et al, 2004a; 

Valpuesta et al, 2000). Portal proteins retain a similar overall architecture in 

different oligomeric states with conformational changes occurring in specific 

segments such as helix α6 of the crown region and tunnel loops (Lebedev et al, 

2007). The factors determining the stoichiometry of the portal protein rings have 

not yet been identified conclusively. 

1.4.2 The Large Terminase - the ATPase and Endonuclease of the 
DNA Packaging Molecular Motor 

The genome of most dsDNA viruses is replicated as a concatemer without free 

ends, and a linear chromosome must be generated for packaging. The ter protein, 

from phage λ, was the first protein found to be required for termini formation 

(Mousset & Thomas, 1969). The term “terminase” remains in use because of the 

role of the terminases play in generating new DNA termini from viral genomic 
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concatemers. The nuclease activity actually only resides in the C-terminal domain 

of the large terminase (Bhattacharyya & Rao, 1993; Kuebler & Rao, 1998; Rentas & 

Rao, 2003), whereas the N-terminal domain, with its ATPase activity, fuels the 

motor to pump DNA into the procapsid. Interestingly, co-operation of the ATPase 

domain and the nuclease domain is thought to be crucial for the endonuclease 

activity. Evidence has shown that the nuclease activity of the C-terminal nuclease 

domain is completely lost, or significantly decreased, in the absence of the 

N-terminal domain (Alam et al, 2008; Alam & Rao, 2008; Smits et al, 2009). 

2.1.1.1 The Nuclease Domain of the Large Terminase 

During the packaging process, two events require nuclease activity, namely the 

initiation of DNA packaging and the “headful” termination cuts.  The initial 

cleavage of the concatemer is commonly sequence specific, and occurs near the 

recognition site of the small terminase, after the large terminase has been 

recruited to the small terminase:DNA complex (Gual et al, 2000). The packaging of 

genomic DNA starts from the end generated by this cut. The second cleavage is 

triggered when the virus particle is fully packaged. For λ-like phages the second 

cut is also sequence specific, and precisely one genome-length of DNA is packaged 

accordingly. For phages such as SPP1, T4 and P22, the second cut is 

sequence-independent and triggered by a headful-sensing mechanism when the 

capsid has been filled with DNA (Rao & Feiss, 2008). In this case, slightly more 

than one genome-length of DNA (102 -110%) is packaged (Smits et al, 2009). 

 

Figure 1-6 The headful packaging of genome DNA by tailed dsDNA phages. 
Top: one genome-length of DNA is packaged by λ-like phages with a sequence specific 

second cut; Bottom: “headful filling” packaging with a sequence-independent second 

cut as in phages SPP1, T4 and P22, etc. This figure was adapted from (Rao & Feiss, 

2008). 

Three-dimensional crystal structures of the nuclease domain of the large 

terminase have been determined for bacteriophages P22, SPP1, T4 and T4-like 
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RB49 (Alam et al, 2008; Smits et al, 2009; Sun et al, 2008).  Despite displaying 

low sequence homology, these proteins all share a similar RNase H fold, 

comprising a central β-sheet sandwiched between two clusters of α-helices, and 

conserved catalytic acidic residues (Smits et al, 2009). Notably, a structure-based 

alignment revealed that the large terminases possess several distinct, conserved 

features, for example extension of the central β-sheet and a C-terminal β-hairpin 

(β8 and β9) (Smits et al, 2009). These additional structural elements are not 

shared with other members of the RNase H family, indicating their importance for 

the function of the terminase.  

 

Figure 1-7 The structure of the nuclease domain of the SPP1 large terminase.  

The central β-sheet (blue) is surrounded by a three-helix bundle on the concave face 

(yellow) and two helices on the convex face (orange). The C-terminal β-hairpin (β8 

and β9) is shown in green, as shown in (A). The three conserved acidic residues are 

shown in (B). This figure was adapted from (Smits et al, 2009). 

RNase H family members catalyse the hydrolysis of RNA-DNA hybrids by means of 

a two metal ion-dependent mechanism (Tadokoro & Kanaya, 2009). During 

catalysis, it has been proposed that one metal ion activates a nucleophilic hydroxyl 

group and the other metal ion stabilises the transition state. Conserved acidic 

residues co-ordinate the two metal ions and are required for catalysis. The large 

terminases of some bacteriophages, such as bacteriophage λ and RB49, require 

magnesium ions (Mg2+) for catalysis (Sun et al, 2008; Tomka & Catalano, 1993). In 

contrast, the large terminases of the bacteriophage SPP1 and the evolutionarily 

related HSV-1 depend on manganese ions (Mn2+) (Cornilleau et al, 2013; Nadal et 

al, 2010). Sequence-based and structure-based alignments of large terminase 

A B 
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proteins revealed three highly conserved acidic residues within the catalytic site. 

Mutagenesis analyses showed that these three acidic residues are essential for the 

nuclease activity of the large terminases, (Alam et al, 2008; Smits et al, 2009; Sun 

et al, 2008). 

On the basis of the structures, several mechanisms have been proposed to explain 

the headful nuclease activity of the large terminases that occurs following DNA 

packaging. Due to the conformational changes that occur in the portal protein 

upon maturation (Figure 1-8), it was proposed that expansion of portal protein 

might potentiate the dissociation of the large terminase from the portal protein 

and thus trigger DNA cleavage (Alam et al, 2008; Xiang et al, 2006). After defining 

the unique fold of the C-terminal β-hairpin in the large terminase, a mechanism 

was proposed based on the regulation by the β-hairpin. The β-hairpin is flexible 

and can therefore adopt different conformations which can obstruct or promote 

interactions between large terminase with substrate DNA molecule (Smits et al, 

2009). 

 

Figure 1-8 Conformational changes of the portal protein upon phage maturation. 
(A) Model of the portal protein crystal structure (Cα trace in red) fitted into the 

cryo-EM density of the five-fold averaged reconstruction of the procapsid, prior to 

DNA packaging; (B) The cryoEM density of the asymmetric reconstruction of mature 

viral particles, following removal of the packaged DNA. The narrow end of the portal 

protein would have to increase its radius in order to fit into the density (dark blue) of 

the mature viral particle. This figure was adapted from (Xiang et al, 2006). 
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2.1.1.2 The ATPase domain of the large terminase 

Viral genomic DNA is packaged into the procapsid to near-crystalline density, 

using the energy released from ATP hydrolysis (Sun et al, 2007). The ATPase 

activity resides in the N-terminal domain of the large terminase proteins 

(Kanamaru et al, 2004; Rao & Mitchell, 2001). The N-terminal ATPase catalytic 

centre is strictly conserved in terms of sequence signatures and secondary 

structure motifs among different bacteriophages, which contains the 

adenine-binding motif, catalytic carboxylate, the walker A motif and the walker B 

motif (Feiss & Rao, 2012; Goetzinger & Rao, 2003; Walker et al, 1982).  

The atomic structure of the N-terminal domain of the T4 large terminase gp17 

with the D255E/E256D mutations (Figure 1-9) revealed a flat structure consisting 

of two spatially separate subdomains (Sun et al, 2007). Subdomain I contains the 

nucleotide-binding domain (NBD, Figure 1-9) with the characteristic 

Rossmann-fold motif - a conserved β-sheet core with six parallel β-strands (Rao & 

Feiss, 2008; Rossmann et al, 1974; Sun et al, 2007). The apo- and ADP/ATP-bound 

structures are very similar. The only difference is the conformation of the adenine 

binding loop, which may reflect the state of the ATP binding pocket (Sun et al, 

2007).  Subdomain II contains residues 1–58 from the N-terminus and residues 

314–360 from the C-terminus.  

 

Figure 1-9 The structure of the N-terminal domain of the T4 large terminase. 
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A ribbon diagram shows the structure of the N-terminal domain of the large 

terminase gp17 N360-ED mutant from the bacteriophage T4. The Rossmann-fold 

motif in Subdomain I follows a 324516 topology and the β strands are coloured in 

sequence with red, orange, yellow, green, cyan, and blue. The conformational change 

in the adenine binding loop is shown between the ATP-bound state (purple) and the 

apo state (yellow). This figure was adapted from (Sun et al, 2007). 

1.4.3 The Small Terminase  

The small terminase is the third component of the DNA packaging motor and is 

responsible for recognising the viral DNA for the initiation of packaging (Camacho 

et al, 2003). The small terminase binds to specific sequences in the viral DNA 

(either cos or pac sites) from where packaging is initiated (Lin et al, 1997). The 

role of the small terminase in the packaging process is not yet fully understood. It 

may actively participate in the regulation of the ATPase and nuclease activities of 

the large terminase during DNA translocation (Buttner et al, 2011). However, 

small terminases are not necessarily required for packaging pre-cut DNAs in most 

in vitro packaging systems (T4, T3, and λ) (Hamada et al, 1986; Rao & Black, 1988; 

Rubinchik et al, 1995).  

Biochemical and mutational analyses revealed that the small terminase consists of 

three domains, namely an N-terminal DNA-binding domain, a central 

oligomerisation domain, and a C-terminal large terminase-binding domain 

(Al-Zahrani et al, 2009). Over the past decade, considerable knowledge has been 

accumulated regarding the structure of the small terminases. The structures of the 

small terminase from several bacteriophages have been determined, including the 

cryo-EM and crystal structures of the small terminase from phage P22 (Nemecek 

et al, 2008; Roy et al, 2012), the NMR structure of the DNA-binding domain of the 

small terminase gpNu1 from phage λ (de Beer et al, 2002), the full-length crystal 

structures of the phage Sf6 (Podoviridae family) small terminase gp1 and the 

phage SF6 (Siphoviridae family) small terminase G1P (Buttner et al, 2011; Zhao et 

al, 2010) and the crystal structure of the central domain of the small terminase 

from a T4 family phage, phage 44RR, in two different oligomeric states (Sun et al, 

2012).  
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Although there is no significant overall sequence homology, the 3-D structures of 

the small terminases revealed several common structural motifs required for the 

DNA packaging process (Rao & Feiss, 2008). A helix-turn-helix (HTH) motif located 

at the N-terminus is often associated with DNA binding (Brennan & Matthews, 

1989). The central domain, consisting of two long antiparallel α-helices, plays a 

key role in oligomerisation (Kondabagil & Rao, 2006). The C-terminal domain is 

composed mainly of β-strands, which form an intersubunit β-Barrel. The crystal 

structure of the full-length small terminase from phage SF6 is shown in Figure 

1-10.  

 

Figure 1-10 A ribbon diagram of the full-length SF6 small terminase. 
For clarity, DNA binding domains (red ribbons) are shown only for five subunits. A 

10-bp dsDNA is fitted with the helix-turn-helix motif of a single subunit. The 

C-terminal β-barrel and the main body of the oligomerisation core domain are 

shown with individual subunits in alternating colours (white, yellow, blue). This 

figure was adapted from (Buttner et al, 2011). 

The oligomeric state of the small terminase varies from eightfold to twelve-fold, 

with full-length Sf6 small terminase dispaying eight-fold symmetry, the SF6 small 

terminase displaying nine-fold or ten-fold symmetry and the T4 family phage 

44RR small terminase displaying eleven-fold or twelve-fold symmetry (Sun et al, 

2012). Interestingly, the full-length SF6 small terminase exclusively forms 

nine-subunit assemblies, whereas protein constructs missing the C-terminal 

β-barrel form both nine-subunit and ten-subunit assemblies, indicating the 

importance of the C-terminus for defining the oligomeric state (Buttner et al, 

2011). 
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1.5 Aims of the Project  

As described above, the portal protein assembly is the major component of the 

DNA packaging molecular motor, which translocates the viral genomic DNA into a 

preformed procapsid protein shell fuelled by the energy of ATP hydrolysis. The 

oligomeric portal protein ring is situated at a unique vertex of the procapsid shell 

to form the conduit for DNA entry and exit.  The SPP1 portal protein is a circular 

homo-oligomer with an intrinsic 12-fold symmetry incorporated into the viral 

capsid, but forms a 13-mer assembly in its isolated form.  Although the 

three-dimensional structure of the isolated SPP1 portal protein is available, it is 

not for the wild-type form but for N365K mutant. This mutation results in 

reduction of the length of packaged DNA (Tavares et al, 1992). During my PhD 

studies, my work was mainly focused on the structural studies of the portal 

proteins from double-stranded DNA bacteriophages SPP1, T4 and CNPH82.  

My major aim was to produce gp6 in its biologically relevant dodecameric state for 

in vitro studies, to gain three-dimensional structural information on the wild-type 

portal protein and to understand structural reasons that result in the reduced 

length of packaged DNA in the case of capsid containing N365K portal protein. In 

order to promote the formation of the dodecameric gp6, two strategies involving 

protein engineering of fusion proteins and co-expression of gp6 with gp11, were 

designed and investigated using a combination of biochemical, biophysical and 

structural approaches. 

Finally, the portal proteins from bacteriophages CNPH82 and T4, cn3 and gp20 

respectively, were also studied to gain more general information about the 

assembly of portal proteins from other phages. The goal of this research was to 

explore methods of producing soluble proteins and to obtain diffracting crystals 

for structural studies. 
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2 Materials and Methods 

2.1 Introduction 

In this chapter, the general experimental procedures involved in the projects such 

as molecular cloning, protein production, purification and characterisation, 

protein crystallisation as well as macromolecular X-ray crystallography are 

summarised. The application of relevant techniques will be detailed in the 

following chapters.   

2.2 Molecular Cloning 

As a fundamental laboratory technique, molecular cloning facilitates the 

production of large quantities of protein, which would otherwise naturally be only 

found in small amounts, for use in structural and functional studies. It is also used 

to engineer protein molecules by allowing the introduction of mutations, 

truncations and tags etc. to the target protein. The process involves the insertion 

of a foreign DNA fragment into a vector capable of replicating autonomously in a 

host cell (usually Escherichia coli). Multiple copies of the inserted DNA will then be 

produced with the host cell growth.  

2.2.1 Insert Preparation  

2.2.1.1 Polymerase Chain Reaction (PCR) 

The polymerase chain reaction (PCR) has revolutionized molecular biology 

research since its invention by Kary Mullis in 1983 (Saiki et al, 1985). Nowadays, it 

has become a routine technique to amplify a large number of copies of a specific 

DNA fragment in vitro from trace amounts of the template material. PCR has a 

variety of applications in biological and medical research: gene isolation, 

DNA/genome sequencing, detection, diagnosis of genetic diseases, etc.  

Three distinct steps controlled by temperature are involved in PCR reactions – 

denaturation, annealing and elongation. Prior to the beginning of a PCR reaction, 

there is normally an extended denaturation step at ~95 °C for 2-5 minutes to 

ensure efficient denaturation of the template DNA. Double-stranded DNA template 

is first heated typically to 95 °C to separate its complementary single strands 

http://en.wikipedia.org/wiki/Infectious_disease
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during denaturation process. The reaction is then rapidly cooled to allow for 

primer-template hybridization, usually between 40 °C and 72 °C dependant on the 

melting temperature (Tm) of the oligonucleotide primers. Template single strands 

are too long and complex to reanneal within the same time frame. At last, DNA will 

be synthesised by a thermostable DNA polymerase at its optimal working 

temperature (e.g., 72 °C for Taq DNA polymerase). 20-40 cycles of the three PCR 

steps should be performed to obtain sufficient DNA products for a specific 

application purpose. Finally, there is an extended 72 °C incubation step to ensure 

full-length synthesis of PCR products. 

 

Figure 2-1 Schematic diagram of the PCR process.  

The three steps involved in PCR reactions – denaturation, annealing and elongation 

are illustrated. This figure was adapted from British Encyclopaedia. 

Short synthetic oligonucleotides are required in a PCR reaction, because DNA 

polymerases can only add new nucleotides to the 3’ end of an existing strand.  

Primers are designed to be reverse complementary sequences of the template 

DNA, and play a crucial role in guiding a precise DNA synthesis process. Optimal 

primer design is the most critical parameter for a successful PCR. Poorly designed 

primers can result in PCR reaction failure due to nonspecific amplification and/or 

primer-dimer formation even if all other parameters properly optimised (Apte & 

Daniel, 2009). Several factors should be taken into consideration for a successful 

PCR primer design, such as length, G-C content and Tm. It is crucial that the 

http://en.wikipedia.org/wiki/DNA_polymerase
http://en.wikipedia.org/wiki/DNA_polymerase
http://en.wikipedia.org/wiki/Nucleotides
http://en.wikipedia.org/wiki/Directionality_%28molecular_biology%29
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forward primer and reverse primer have similar melting temperature, since 

annealing ought to occur simultaneously for both primers. Meanwhile, formation 

of secondary structures by intermolecular or intramolecular interactions should 

be avoided, because the presence of primer secondary structures can lead to poor 

or no yield of the PCR product.  

2.2.1.2 Agarose Gel Electrophoresis  

Agarose gel electrophoresis is an easy and effective way to separate, identify, and 

purify DNA fragments. DNA fragments are separated according to their sizes and 

visualised under a UV transilluminator after staining with a fluorescent dye such 

as ethidium bromide or SYBR®  Safe stain. When an electrical field is conducted, 

DNA, negatively charged at neutral pH due to its phosphate backbone, will migrate 

toward the anode. The migration rate of a linear DNA fragment through an agarose 

gel is inversely proportional to the log10 of its molecular weight. The migration 

rate can also be affected by the agarose concentration, the conformation of the 

DNA, the applied current, base composition and temperature. DNA fragments with 

sizes varying from 50 base pairs to several mega base pairs can be separated with 

appropriate percentage of agarose gel (from 0.75% to 2.0%) and electrophoresis 

condition. A DNA ladder normally runs alongside samples, as a reference to 

estimate the size of samples. 

A solution of agarose at an appropriate concentration (w/v) for separating DNA 

fragments with particular sizes was prepared in 1x TAE electrophoresis buffer 

containing 40mM Tris pH 8.0, 20mM acetic acid, and 1mM EDTA . Agarose slurry 

was heated in a microwave oven until fully dissolved. SYBR®  Safe DNA gel stain 

(10,000x concentrate in DMSO) was then added to agarose gel solution to a 1x 

final concentration after the gel solution cooled. DNA samples were mixed with 

blue or orange dye before loading, and a suitable DNA ladder (e.g., 2-Log DNA 

Ladder, New England Biolabs) was also loaded alongside samples. Agarose gels 

were usually run at 100-120 V for approximately 60 minutes. Gel pictures were 

taken on the Syngene Bio Imager.  

2.2.1.3 Quantitation of DNA Concentration 

DNA concentration can be quantified by optical density measurement, because 

nucleic acids maximally absorb UV light at 260 nm wavelength. 
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Spectrophotometric analysis provides an easy way to assess the concentration of 

DNA in solution, especially with a NanoDrop Spectrophotometer - a microvolume 

spectrophotometer that utilises a patented sample retention system and thus 

eliminates the need for cuvettes and capillaries. 2 µL of sample is pipetted directly 

onto the pedestal when the arm is open. With a closed arm, a sample column is 

formed between two optical surfaces. Then, the pedestal moves to automatically 

adjust for an optimal path length in vertical direction (0.05 mm - 1 mm). The 

concentration range of dsDNA varying between 2 ng/µL and 3700 ng/µL can be 

assessed by the measurement of absorbance at 260 nm wavelength using 

NanoDrop Spectrophotometer. 

2.2.2 Vector Preparation 

2.2.2.1 Vector 

Vectors are DNA molecules carrying exogenous DNA insert into host cells for the 

purpose of DNA cloning. There are three common features for all cloning vectors : 

(i) a replication origin for independent replication; (ii) a multiple cloning site (also 

called the polylinker region) with a number of unique restriction endonuclease 

cleavage sites where exogenous DNA fragments can be inserted; (iii) a selectable 

marker, usually antibiotic resistance genes or enzyme genes absent in the host cell, 

to distinguish positively transformed cells. Four major types of vectors were 

categorised based on the capacity to accommodate insert DNA into plasmids, viral 

vectors, cosmids, and artificial chromosomes with insert size of 10, 20, 45 and 

several hundred kilobases (kb), respectively.  

2.2.2.2 Plasmid Vector 

Plasmids are circular double-stranded DNA molecules, which can be found in 

almost all bacteria and yeast, and in some fungi, protozoa, plants and animals. 

They are separated from the chromosomal DNA as extrachromosomal 

self-replicating DNA molecules, and range in size from 1 to over 1000 kb. Plasmids 

from E. coli are commonly used for molecular cloning, as many have been 

artificially constructed for the optimal usage as vectors - the length dramatically 

reduced for easy manipulation with little more than the above-mentioned three 

essential elements. The pET vector system were originally designed by Studier and 

colleagues in 1986 (Studier & Moffatt, 1986) and further developed at Novagen. It 

http://en.wikipedia.org/wiki/Multiple_cloning_site
http://en.wikipedia.org/wiki/Plasmid
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7455/
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is the most widely used vector system for gene cloning and expression in E. coli, 

with different selectable markers and different characteristics. Transcription of 

the insert DNA is controlled by the strong T7 RNA promoter, which is specifically 

recognised by bacteriophage T7 RNA polymerase. T7 RNA polymerase is not 

naturally existed in E. coli cells, and therefore host E. coli cells are genetically 

engineered to incorporate the T7 RNA polymerase gene in the host chromosome 

under the control of the lac promoter. Once Lactose or lactose analogue IPTG 

(isopropyl-beta-D-thiogalactopyranoside) triggers the production of T7 RNA 

polymerase, transcription and translation of the insert DNA will be induced 

subsequently (Garrett & Grisham, 2010).  

2.2.2.3 pBlueScript II Phagemid System and Blue/White Screen 

The pBluescript II phagemids - plasmids with a phage origin and 21 restriction 

enzyme recognition sites in the polylinker region, are designed for cloning, 

sequencing, in vitro mutagenesis, and so on. The polylinker region is located within 

the lacZ’ gene, which encodes the N-terminal fragment of β-galactosidase also 

known as the α-peptide. Host E. coli cells with lacZ deletion mutant can only 

produce inactive mutant β-galactosidase, so a α-peptide produced by pBluescript 

vector is required to rescue the function of β-galactosidase and cleave colourless 

X-gal into blue coloured 5-bromo-4-chloro-indoxyl. Thus, blue coloured colonies 

indicate the existence of uninterrupted vectors with no insert DNA.  

 

Figure 2-2 Schematic representation of blue white screen  
(A) pBluescript II KS (+/-) vector, and (B) blue white screen. This figure was adapted 

from Stratagene.  

A B 
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2.2.3 Ligation Dependent Cloning 

A restriction enzyme digestion step and a ligation step are required for the 

classical ligation dependent cloning approach. The vector and insert DNA should 

contain the same endonuclease recognition site in order to be recognised and cut 

by the specific restriction endonucleases. Complementary sticky ends or blunt 

ends will be generated after a digestion step. The digested insert and linearised 

vector are joined together with covalent bonds by DNA ligase, most commonly T4 

DNA ligase. Dephosphorylation of linearised vectors to remove the 5’ phosphate 

group and prevent self-ligation of vectors is a crucial step for a successful ligation 

reaction. 

Double digestion using two different restriction endonucleases is usually 

performed to generate non-complementary sticky ends, which will inhibit 

self-ligation of vectors and ensure target DNA fragments are incorporated into 

vectors in the desired orientation.  In the digestion reaction, an appropriate 

amount of DNA, restriction endonucleases, the particular buffer for the specific 

restriction endonucleases and sometimes BSA protein solution are mixed and 

incubated at the optimal temperature for enzyme activity, usually 37 °C, for about 

one hour. Composition of a typical restriction digestion reaction is shown in Table 

2-1. Most restriction enzymes can be inactivated by heating at 65 °C for 20 minutes. 

An extra dephosphorylation of vector is performed by incubation with 1 µL 

Antarctic phosphatase (5 U/µL) and 1X phosphatase buffer at 37 °C for 20 minutes 

and subsequent heat inactivation at 65 °C for 10 minutes. 

Table 2-1 Composition of a typical double digestion reaction 

Component Amount 

Insert/ Vector ~1 µg 

Restriction endonuclease I (20 U/ µL,NEB) 5 µL 

Restriction endonuclease II (20 U/ µL,NEB) 5 µL 

Restriction endonuclease buffer (10X,NEB) 5 µL 

Milli-Q water Up to 50 µL 

 

For a ligation reaction to take place, three main components are required: (1) DNA 

fragments with compatible ends; (2) A buffer containing 0.25 mM - 1 mM ATP to 

provide the necessary energy for the reaction; and (3) T4 DNA ligase. Composition 
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of a typical restriction digestion reaction is shown in Table 2-2, and the ideal ratios 

for ligating insert to vector with sticky ends ranges between 1:1 and 3:1. 5 µL of 

ligation product is transformed into 100 µL of E. coli competent cells after 

overnight ligation at room temperature or 16 °C. 

Table 2-2 Composition of a typical ligation reaction 

Component Amount 

Double digested vector 100 ng 

Double digested insert X ng* 

T4 DNA ligase (400 U/ µL, NEB) 1 µL 

T4 DNA ligase buffer (10X,NEB) 2 µL 

Milli-Q water Up to 20 µL 

*the amount (ng) of the double digested insert added in a typical ligation reaction 
is normally calculated by the formula: 

                      [
                   

                   
]                     

2.2.4 Transformation 

Transformation is the process of introducing foreign DNA into bacterial strains. 

With successful transformation, the bacteria cells will inherit specific 

characteristics owing to the acquisition of foreign DNA. The delivery of foreign 

DNA into competent cells can be achieved via two main approaches - chemical 

transformation and electroporation. Only chemical transformation is employed in 

the projects reported here. During chemical transformation, bacterial cells are 

heat-shocked in a water bath, which opens pores on the cell membrane to allow 

for the entry of plasmid DNA into cells. 

5 μL of the ligation product was added into 100 μL of freshly thawed competent E. 

coli cells, mixed gently and incubated on ice for 30 minutes. Exactly one minute 

heat shock was carried out at 42 °C, followed by a further incubation on ice for 2 

minutes. 200 μL LB medium was added and the mixture was incubated in a shaker 

at 37 °C for one hour. The transformed cells were plated out on a LB-agar plate 

with appropriate antibiotics. After overnight incubation at 37 °C, colonies growing 

on the plate should carry foreign DNA, however further verification is necessary to 
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confirm the successful transformation. Meanwhile, appropriate positive and 

negative controls were treated identically for results interpretation.  

For general cloning, E. coli strains DH5α and NovaBlue were used, because they 

are competent for plasmid maintenance with high transformation efficiency and 

high plasmid yield. For the purpose of protein production, BL21 (DE3 lys) and 

B834 (DE3 lys) strains were used, because the lacI gene, lacUV5 promoter and T7 

RNA polymerase gene are incorporated in the chromosome of these strains to 

make them suitable for hosting the pET vector system. Additionally, the lack of lon 

protease and ompT outer membrane protease in these strains may prevent protein 

degradation during purification process.  

2.2.5 Colony PCR  

The appearance of numerous antibiotic resistant E. coli colonies after 

transformation can be a good indicator of a successful cloning reaction. However, 

further verifications by colony PCR or/and restriction analysis always prove to be 

necessary to confirm the existence of foreign DNA insert, especially when a 

significant number of colonies are also shown on the control plate.   

Colony PCR is a fast way to screen numerous colonies, during which the PCR 

reaction will only work on condition that the insert DNA is present using vector 

flanking primer pairs.  PCR premix solution was prepared according to the 

number of colonies for screening (Table 2-3). Some random colonies was picked 

using a sterile yellow tip, and transferred into the reaction mixture by pipetting up 

and down several times and streaked onto a fresh replicate agar plate. If bands 

relating to the PCR products with the expected lengths were observed on an 

agarose gel, the corresponding colonies growing on a replicate agar plate were 

cultured.  
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Table 2-3 Components to set up colony PCR premix  

Components Final concentration 1 x pre-mix 

Primer 1 (2 μM) 0.2 μM 2.5 µL 

Primer 2 (2 μM) 0.2 μM 2.5 µL 

10 X PCR buffer  1X 2.5 µL 

dNTPs (25 mM each) 0.2 mM 0.2 µL 

Taq Polymerase (5 U/µL) 0.05 U 0.25 µL 

dH2O  17.05 µL 

2.3 Expression of Recombinant Protein  

The production of recombinant protein requires an expression system involving a 

combination of a plasmid and a host (Sorensen & Mortensen, 2005).  In microbial 

expression systems, Escherichia coli is a widely used host for recombinant 

expression of heterologous proteins (Baneyx, 1999). In this study, DE3 lysogenic 

strains of BL21 and B834 were used to host pET vector system for the 

over-expression of target proteins controlled by T7 promoter.  

2.3.1 Small Scale Protein Expression  

A small-scale protein expression experiment is normally performed before a 

large-scale cell culture and purification, to optimise conditions for the expression 

and solubilisation of the target protein. The key factors involved for optimal 

protein expression and solubility are as follows: induction condition, cell strains, 

growth medium, incubation temperature and lysis buffer (Sivashanmugam et al, 

2009).  

For small-scale expression trials, two vials of 5 mL LB media with appropriate 

antibiotics were inoculated with starter cultures in a ratio of 1:100 (v/v) at 37 °C 

until an OD600 of between 0.6 and 0.8 was reached. 1 mL of cell culture was 

harvested by centrifugation and the cell pellet was kept at – 20 °C, before addition 

of 1 mM IPTG to the rest of the cell culture. Overnight incubation at 16 °C or three 

to five hours incubation at 37 °C was carried out for the over-expression of the 

target protein. Four aliquots of 1 mL cell culture were harvested by centrifugation 
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at 13000 g for one minute after OD600 measurement. Cells were re-suspended in 

200 μL lysis buffer and lysed by sonication (10 s, 3 cycles, 50% power). Cell debris 

was pelleted by centrifugation at 13000 g for 10 minutes. 15 μL of lysate 

containing total proteins and supernatant containing soluble proteins were 

analysed by SDS-PAGE to evaluate the expression, yield and solubility of the target 

protein in different cell strains, induction temperatures and lysis buffers. The 

expression conditions were optimised based upon the pilot experimental results to 

maximise the production of target proteins. High-throughput protein expression 

screenings and buffer condition screenings can be performed to identify the best 

buffer condition for solubilisation of the target protein.  

The auto-induction strategy was developed by F. W. Studier based upon the ability 

of lactose to induce protein expression in E. coli when cells reach saturation 

(Grabski et al, 2005; Studier, 2005). In the growth medium ZY-P-5052 for 

auto-induction, glucose is used as the early carbon source and prevents induction 

by lactose, while glycerol is the late carbon source. With the depletion of glucose, 

lactose can enter cells to turn on the synthesis of the T7 RNA polymerase. Cell 

cultures are inoculated and incubated for 20-24 hours at 37 °C with shaking at 300 

rpm to reach a typical cell density of approximately OD600 5-6. The yields of 

proteins produced by the auto-induction method are typically several fold higher 

than the conventional way involving IPTG induction (Studier, 2005).  

2.3.2 Large Scale Protein Expression 

Once optimum conditions have been identified for the over-expression of a specific 

recombinant protein, the volume of cell culture can be scaled up to produce 

sufficient proteins for purification and further structural or functional studies. 

Overnight cell culture of a single colony was used to inoculate a large volume of LB 

medium, usually 1 litre to 2 litres, in a ratio of 1:100. The over-expression of the 

target protein was conducted under the optimum conditions determined by the 

expression test. Cells were harvested by centrifugation at 5000 rpm for 30 minutes 

at 4 °C (JLA-8.100 rotor, Beckman Coulter Avanti J-HC). After decanting the 

supernatant, cell pellets were re-suspended with lysis buffer (5 mL buffer per 

gram cell) for purification, or stored at -80 °C.  
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Table 2-4 Components of auto-induction medium for protein expression 

Stock solutions 

100 mL 50× 5052 25 g glycerol 

2.5 g glucose 

10 g α-lactose 

73 mL water 

autoclave 

100 mL 20× NPS 6.6 g (NH4)2SO4 

13.6 g KH2PO4 

14.2 g Na2HPO4 

90 mL water 

autoclave 

N.B. pH of 20-fold dilution in water should be ~6.75 

1 L ZY 10 g N-Z-amine AS (or tryptone) 

5 g Yeast extract 

925 mL water 

autoclave 

100 mL 1000× metals Autoclave individual solutions before mixing 

50 mL 0.1M FeCl3-6H2O (in 
0.1M HCl) 

2 mL 1M CaCl2 

1 mL 1M MnCl2-4H2O 

1 mL 1M ZnSO4-7H2O 

1 mL 0.2M CoCl2-6H2O 

2 mL 0.1M CuCl2-2H2O 

1 mL 0.2M NiCl2-6H2O 

2 mL 0.1M Na2MoO4-5H2O 

2 mL 0.1M Na2SeO3-5H2O 

2 mL 0.1M H3BO3 

36 mL water 

To make 1L of auto-induction medium with kanamycin 

1M MgSO4 (sterile) 1 mL 

1000× metals 1 mL 

50× 5052 200 mL 

Mix well 

20× NPS 50 mL 

30 mg/mL kanamycin 1 mL 

ZY  To 1 L 
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2.4 Protein Purification 

Obtaining pure protein is a prerequisite for structural studies and biochemical 

assays. Isolation of a specific protein from a crude mixture requires individual 

purification strategies dependent upon the properties of the desired protein, such 

as size, physico-chemical properties, binding affinity and biological activity. The 

key to successful and efficient protein purification relies in the application of 

appropriate purification methods and procedures specific to an individual protein.  

2.4.1 Cell Lysis and Protein Extraction 

Cell lysis is the first step for protein extraction and purification, because cellular 

contents are separated from the extracellular environment by a plasma membrane. 

The plasma membrane of bacterial cell is also surrounded by a rigid peptidoglycan 

cell wall.  

Physical disruption using a sonicator is a common way to extract cellular contents. 

Before sonication, cell pellets were re-suspended with 5 mL/g freshly prepared 

lysis buffer. Additive components in the lysis buffer included lysozyme and 

protease inhibitors such as serine protease inhibitor 4-(2-Aminoethyl) 

benzenesulfonyl fluoride hydrochloride (AEBSF) and aspartyl proteases inhibitor 

pepstatin. Lysozymes can help to damage bacterial cell walls, and protease 

inhibitors are required to prevent protein degradation by unregulated endogenous 

protease. Since overheating may cause the formation of aggregates (Stathopulos et 

al, 2004), it is crucial to keep the sample on ice and have an interval between each 

sonication period. Four to five rounds of 20-second sonication pulses were 

performed using a Soniprep 150 sonicator (MSE) with two minutes interval 

between each sonication pulse. After sonication, the lysate was cleared by 

centrifugation to precipitate cell debris, and the supernatant was syringe filtrated 

through a 0.45 µm filter to remove any remaining aggregates.  

2.4.2 Affinity Chromatography 

Affinity chromatography is a technique used as a capture step with high selectivity, 

high resolution, and usually high binding capacity based on the ligand specificity of 

target proteins. Affinity purification requires a biospecific ligand covalently 

http://en.wikipedia.org/wiki/Serine_protease
http://en.wikipedia.org/wiki/Enzyme_inhibitor
http://en.wikipedia.org/wiki/Aspartyl_protease
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attached to a chromatography matrix. The ligand can specifically bind to the target 

protein, and the binding between them should be reversible to allow for the 

elution of the target protein in an active form.  Target proteins are commonly 

engineered as fusion proteins to express the binding partner for affinity 

interaction with a specific ligand, such as poly-histidine for Ni2+ affinity 

chromatography and glutathione-S-transferase for GSH-affinity chromatography. 

Ni2+ based immobilized metal ion affinity chromatography (IMAC) is a purification 

method used to separate protein with poly-histidine tag based on the tendency of 

histidine to form complexes with divalent metal cations around neutral pH (Porath 

et al, 1975). A polyhistidine-tag is an amino acid motif of at least five histidine (His) 

residues, often at the N- or C-termini of proteins and can be cleavable or 

non-cleavable.  

In this study, the HiTrap Chelating HP and HisTrap HP columns (GE Healthcare) 

were used for Ni2+ affinity chromatography. The metal ions (Ni2+) have been 

coupled to the chelating agarose matrix of prepacked columns. Charged columns 

were first equilibrated with buffer A containing 20mM imidazole before loading 

cell lysate. A low concentration of imidazole (typically 20 mM) was included in 

buffer A to inhibit non-specific binding of contaminant proteins to the column. 

Separations were performed under the control of Äkta liquid chromatography 

equipment (GE Healthcare). After binding of the target protein to the column, 

around 10 column volumes of buffer A was washed through the column to 

eliminate any non-specifically bound impurity. The target protein was then eluted 

with a linear concentration gradient of imidazole by the addition of Buffer B, which 

normally contained the same components as buffer A except increasing the 

imidazole concentration to 500 mM. The elution fractions were collected and 

analysed by SDS-PAGE. The verified fractions were then pooled together for the 

following purification steps. Cleavable His-tag can then be removed by protease 

treatment and a second Ni2+ affinity chromatography 

2.4.3 Ion Exchange Chromatography 

Purification using ion exchange chromatography takes advantage of the 

interaction between charged solute molecules and immobilized ion exchange 
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groups. The ionic groups on the stationary phase surface electrostatically attract 

oppositely charged solute molecules, and molecules with the same charge will flow 

through. Anion exchange chromatography is usually performed to purify a 

negatively charged protein - dissolved in a buffer with a pH greater than its 

isoelectric point. Proteins with net negative charge interact with resin and are 

retained on column under low ionic strength condition, while positively charged 

molecules flow through the column. A wash step is then performed to remove any 

weakly or non-specifically bound proteins whilst the tightly bound proteins will be 

eluted by high ionic strength buffer.  

In this study, the low ionic loading buffer (referred to as buffer A) and the high 

ionic elution buffer (referred to as buffer B) were prepared to contain 50mM NaCl 

and 1M NaCl, respectively.  The pH values of both buffers were at least one unit 

greater than the pI value of the target protein predicted on the basis of its amino 

acids composition. MonoQ columns (GE Healthcare) were used for anion exchange 

chromatography, and separations were performed under the control of Äkta liquid 

chromatography equipment (GE Healthcare). The MonoQ column was 

pre-equilibrated with the buffer A before loading sample and a linear gradient 

concentration of NaCl was maintained by the Äkta to elute the target protein, after 

washing out any weakly or non-specifically bound proteins with 10 column 

volumes of buffer A. The elution fractions were collected and analysed by 

SDS-PAGE, and verified fractions were then pooled together for further 

purification. 

2.4.4 Ammonium Sulfate Precipitation 

Ammonium sulfate precipitation is a method used to purify proteins by altering 

their solubility in the solution, known as salting out. The solubility of proteins 

varies with the ionic strength of the solution. Salting in refers to the enhanced 

solubility of the protein with increasing salt concentration (i.e. increasing ionic 

strength), when the salt concentration is low. However, the solubility of the 

protein begins to decrease until a sufficiently high ionic strength is reached, at 

which point the protein completely precipitates out of solution. Salting out can be 

a very effective technique for separating proteins, because the solubility of 

proteins differs greatly at high ionic strength. 
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Ammonium sulfate is a commonly used salt for the purpose of purifying proteins 

by salting out. In this study, a certain amount of solid ammonium sulfate was 

added into protein solutions according to Table 2-5 to achieve a desired 

concentration of ammonium sulfate. The ammonium sulfate concentration that 

precipitated the maximum proportion of desired protein was identified by 

SDS-PAGE. Precipitated protein was recovered by dissolving precipitates in fresh 

buffer. 

 

2.4.5 Size Exclusion Chromatography 

Size Exclusion Chromatography (SEC), also called gel filtration chromatography, 

was used in the work described in this thesis as a polishing step to achieve the 

required level of purity by separating molecules on the basis of their size and 

shape (hydrodynamic radius). When molecules with different sizes pass through a 

gel filtration medium packed in a column, smaller molecules experience a more 

complex pathway to exit than larger molecules, causing differences in retention 

time. Both molecular weight and three-dimensional shape contribute to the degree 

of retention. Large molecules (e.g., aggregates) are eluted in or just after the void 

volume (Vo), which is equivalent to approximately 30% of the total column 

volume for a well-packed column. Small molecules (e.g., salts) are usually eluted 

just before one total column volume (Vt), since they have full access to the medium. 

Proteins are detected by monitoring UV absorbance at A280 nm, and salts are 

Table 2-5 Ammonium sulfate precipitation table  
 

This table was Adapted from (Dawson et al, 1986). 
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detected by monitoring the conductivity of the buffer. There are many types of 

media available, each with different fractionation ranges, such as Sephadex, 

Sephacryl, Superose. In conclusion, gel filtration is a useful technique in protein 

purification for final polishing, desalting and buffer exchange. 

A gel filtration column was chosen according to the size of the target protein, and 

the column was equilibrated with one column volume of elution buffer before 

loading the sample. The sample was concentrated to the volume that was less than 

2% of the column volume and precipitated aggregates were removed by 

centrifugation or syringe filtration. Separations were performed under the control 

of Äkta liquid chromatography equipment (GE Healthcare) with one column 

volume of elution buffer. The elution fractions containing protein of interest were 

collected and analysed by SDS-PAGE. 

2.5 Protein Characterisation 

2.5.1 Denaturing Polyacrylamide Gel Electrophoresis  

Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) is used for separating 

proteins merely according to their size (no other physical feature) ranging from 5 

to 2,000 kDa. The denaturing detergent SDS (sodium dodecyl sulphate) is used to 

convert all proteins into the same linear shape with only primary structures, and 

impart all proteins with large net negative charges. Polyacrylamide is a polymer of 

acrylamide monomers, and the pore size is controlled by the concentration. The 

polymerisation of acrylamide is driven by free radicals formed by the addition of 

ammonium persulfate (APS) and promoted by the addition of 

N,N,N',N'-Tetramethylethylenediamine (TEMED). Typically, resolving gels can be 

made in 6%, 8%, 10%, 12% or 15%, and the percentage chosen depends on the 

size of the protein to be identified in the sample - the smaller the protein’s size is, 

the higher percentage the resolving gel should be. Stacking gel (3%) is poured on 

top of the resolving gel to concentrate the protein sample into very narrow bands 

prior to separation on the resolving gel, and a gel comb is then inserted to form 

wells and define lanes. When an electrical field is applied across the gel, SDS 

coated proteins will migrate towards the anode.  
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In this study, stacking gel (3%) was prepared with Tris-HCl buffer pH 6.8; 

resolving gel (12% or 15%) was prepared with Tris-HCl buffer pH 8.8 according to 

the recipe in Table 2-6. The samples were prepared by mixing with loading dye 

and heating to 95 °C for 5 minutes to ensure complete denaturation of proteins. A 

low range molecular weight marker (Bio-Rad) with bands at 97.4, 66.2, 45, 31, 

21.5 and 14.4 kDa was applied to run along with samples for the estimation of 

sample’s molecular weight. After loading samples, gels were usually run at 200V 

until the tracking dye reached the bottom of the gel. Gels were stained with 

coomassie brilliant blue, and then destained in 5% propan-2-ol and 7% acetic acid 

before visualising protein bands. Approximately 1-10 µg of protein was loaded for 

a clear band.  
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Table 2-6 SDS-PAGE components 

Stacking gel (3%) 

0.13 M Tris-HCl (pH 6.8) 

0.1% SDS 

3% acrylamide 

0.04% bis-acrylamide 

For polymerisation: 

0.025% APS 

Approx. 10 µL TEMED per 10 mL gel mixture 

Resolving gel (example, 15% polyacrylamide) 

0.38 M Tris-HCl (pH 8.8) 

0.1% SDS 

15% acrylamide 

0.2% bis-acrylamide 

For polymerisation: 

0.025% APS 

Approx. 10 µL TEMED per 10 mL gel mixture 

Running buffer 

25 mM Tris 

200 mM Glycine (pH 8.8) 

Loading dye (4×) 

60 mM Tris-HCl (pH 6.8) 

10% glycerol 

2% SDS 

0.02% Bromophenol blue 

5% β-mercaptoethanol (for reducing conditions) 
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2.5.2 Size Exclusion Chromatography Multi-Angle Laser Light 
Scattering (SEC-MALLS) 

Size Exclusion Chromatography coupled with Multi-Angle Laser Light Scattering 

(SEC-MALLS) is a characterisation method to estimate the molecular mass and as 

well as determine the oligomeric state of proteins (Mogridge, 2004). Fractionation 

is performed by a HPLC system (Shimadzu) on a gel filtration column. Fractions 

are then delivered to three detection systems: 1) a UV/Visible light spectrometer 

to monitor the protein elution; 2) a Refractive Index (RI) monitor to enable 

measurement of the protein’s concentration; and 3) a Light Scattering (LS) 

detection system to record light scattering data. The amount of light scattered by 

proteins in solution is directly proportional to the product of the weight-averaged 

molar mass and the macromolecular solute concentration, i.e., LS ~ Mw·c (Wyatt, 

1993).  

 

60 μL of protein sample at a concentration of 0.5 mg/mL was applied to a 

pre-equilibrated gel filtration column BioSep-SEC-s3000 column (Phenomenex). 

Size-exclusion chromatography was carried out on a Shimadzu HPLC system 

comprising LC-20AD pump, SIL-20A Autosampler and SPD20A UV/Vis detector. 

The elution of the target protein was monitored at 280 nm by the SPD20A UV/Vis 

detector. The light-scattering data were recorded by a Dawn HELEOS-II 18-angle 

light scattering detector and the concentration of the eluted protein was measured 

by an in-line Optilab rEX refractive index monitor (Wyatt Technology). Data were 

analysed with the ASTRA V software package. Molecular mass was calculated 

based on Zimm’s formalism of the Rayleigh-Debye-Gans light scattering model for 

dilute polymer solutions using 0.183 mL/g as the refractive index increment 

(dn/dc) value.   

2.5.3 Matrix-Assisted Laser Desorption/Ionization Mass 
Spectrometry (MALDI-MS) 

Mass spectrometry is an effective analytical technique tool routinely used for 

measuring the molecular mass of a protein sample (Gross & Strupat, 1998; Strupat, 

2005). Matrix-assisted laser desorption/ionization (MALDI) was developed as a 

soft ionization technique to produce gas-phase ions of proteins by laser irradiation 

(Hillenkamp & Karas, 1990; Karas et al, 1987). It provides an accurate and 
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sensitive method for measuring the molecular weights of large, non-volatile and 

labile molecules like proteins by mass spectrometry (Li et al, 1994).  

Usually time-of-flight mass spectrometry is used, in which the mass-to-charge 

ratio of the ion can be determined by the time measurement. As little as one pmol 

of sample is required to be detected. The experiments were performed by Simon 

Grist.  

2.5.4 Negative Staining Electron Microscopy 

Electron microscopy is a useful visualisation tool to examine the shape and 

stoichiometry of a large protein assembly. The negative staining technique uses 

heavy metal salts (e.g. uranyl acetate) to enhance the contrast between the 

background and the image of protein assembly.  

Protein samples were diluted to a certain concentration (~ 0.05 mg/mL) for the 

single-particle imaging. A 2 μL aliquot of the sample was applied to 

glow-discharged, continuous-carbon and formvar covered copper grids with a 

300-square mesh. The dried sample was washed with MiliQ water and then 

stained with 2% uranyl acetate for two minutes. The grids were air dried before 

being inspected on a 200 kV FEI F20 electron microscope at a magnification of 100, 

000x. Imaging was performed in a low electron dose mode. Approximately 10 

micrographs were recorded and 1200 protein particles were selected for image 

analysis. The experiments were performed with Yuriy Chaban and Elena Orlova at 

Birkbeck College, University of London.  

2.6 Crystallisation 

2.6.1 Theory of Crystallisation 

High-quality crystals are required to obtain the three-dimensional structure of 

proteins by single crystal diffraction method. However, producing diffracting 

crystals can be very challenging and sometimes a bottleneck in structure 

determination (Durbin & Feher, 1996). Proteins normally need to be pure with 

homogeneity of 95% at high concentration (> 5 mg/mL) to form crystals. The 

crystallisation of molecules is a phase transition phenomenon driven by the 
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minimisation of free energy (Weber, 1991). When the concentration of protein is 

higher than its solubility limitation and it reaches the supersaturation state, the 

transformation from liquid phase to solid crystalline phase occurs. A phase 

diagram (Figure 2-3) is used to illustrate the process of crystallisation, during 

which the stable state as liquid, crystalline or precipitate is formed under a variety 

of crystallisation parameters such as the concentration of protein, precipitant(s), 

additive(s) and so on (Chayen, 2004).  

 

Figure 2-3 Schematic illustration of a typical protein crystallisation phase diagram.  
This figure was adapted from (Chayen, 2004).  

Four zones representing different degrees of supersaturation are shown on the 

diagram: proteins will precipitate in the zone of “high supersaturation”; 

spontaneous nucleation will take place in the zone of “moderate supersaturation”; 

the growth of well-ordered crystals will occur under suitable conditions in the 

metastable zone of “lower supersaturation”; and in the zone of “undersaturation”, 

proteins are fully dissolved and will never crystallise. Ideally, the concentration of 

protein solution will drop with the formation of nuclei, which will lead the system 

into the metastable zone to promote the growth of single crystals.  
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2.6.2 Initial Screening 

A crystallisation experiment is usually started with a flexible sparse matrix initial 

screen for the identification of initial crystallisation conditions. The roles of pH, 

precipitant, additives, and temperature are examined in the initial screen whilst 

precipitants are used to decrease the solubility of the protein. Polymers such as 

PEG, salts, and organic solvents are the most popular precipitants in protein 

crystallisation experiments. Since pH can greatly affect a protein’s solubility due to 

ionisation of charged residues at the surface, a suitable buffer must be present 

during crystallisation (e.g. MES, HEPES, Tris). Most proteins display a strong 

solubility dependence on temperature, and crystallisation experiments are usually 

carried out at 4 °C or 25 °C, because extreme temperature tends to cause 

denaturation of proteins. 

To enhance the possibility of crystal formation, initial crystallisation screens are 

usually designed based on a rational combination of chemical conditions. There 

are large numbers of commercial screens available, such as INDEX, PACT, JCSG, 

and MPD (D'Arcy et al, 2003). After setting up initial screening trays by a 

pipetting robot, plates should be inspected under a microscope at regular time 

intervals (e.g., after 1 day, 2 days, 5 days, and 10 days), and the conditions that 

generate initial crystallisation hits will be further optimised for better quality 

crystals.  

2.6.3 Crystallisation Optimisation 

Once an initial condition is identified through initial screenings, optimisation of 

the condition is usually necessary to grow a well-diffracting crystal. The 

optimisation process takes the initial conditions with promising hits and then 

varies the concentration of the protein, precipitant, salt and additives in a 

systematic manner. The additives could be biologically relevant cofactors, 

substrates and so on. The optimisation trays can be set up either manually or using 

a Mosquito robot. 
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3 Engineering Fusion Constructs between the SPP1 
Portal and TRAP Proteins 

3.1 Introduction 

3.1.1 The Bacteriophage SPP1 Portal Protein – Gp6  

Bacteriophage SPP1, a lytic phage that infects Bacillus subtilis, was first described 

by Riva et al. (Riva et al, 1968). SPP1 belongs to the Siphoviridae family and 

comprises an isometric icosahedral capsid attached to a long (177 nm), flexible, 

non-contractile tail (Riva et al, 1968). The tail fibre at the tip of the tail is 

responsible for host cell attachment (Alonso et al, 2006).   

 

Figure 3-1 Structure and genetic map of bacteriophage SPP1. 
(A): An SPP1 virion visualised by negative staining electron microscopy. The bar 

represents 50 nm. (B): A diagram illustrates the structural organisation of the 

mature SPP1 virion. (C): Physical and genetic map of bacteriophage SPP1. This figure 

was adapted from (Alonso et al, 2006). 

In the mature SPP1 phage, the viral genome, a linear double-stranded DNA 

molecule of ∼45.9 kb, is enclosed within the viral capsid (Droege & Tavares, 2005). 

The complete nucleotide sequence of the SPP1 genome was reported in 1997, with 
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a size of 44007 bp and a base composition of 43.7% dG + dC (Alonso et al, 1997). 

The complementary DNA strands can be separated into a purine-rich heavy strand 

and a light strand (Riva et al, 1968). The DNA circularises upon its infection of the 

Gram-positive bacterium Bacillus subtilis, and only the heavy strand is transcribed 

during the asymmetric transcription process (Alonso et al, 1997; Riva, 1969). 

Functionally related gene modules were identified, which comprise clusters of 

genes encoding proteins with complimentary functions. Approximately 47% of the 

genome encodes proteins involved in phage assembly and DNA packaging (Alonso 

et al, 1997). Bacteriophage SPP1 is used as a model system for viral capsid 

assembly, because it is one of the most highly characterised phages whose 

biochemistry and structure have been studied in considerable detail.  

The assembly of the SPP1 capsid follows a pathway common among tailed 

bacteriophages and herpes viruses, shown in Figure 3-2 (White et al, 2012). Firstly, 

a spherically shaped protein shell “procapsid” is formed by many copies of the 

major capsid protein gp13, 100–180 copies of internal scaffolding proteins gp11, 

one 12-subunit portal protein gp6, and several copies of the minor protein gp7 

(Becker et al, 1997; Droge et al, 2000). The scaffolding protein gp11 is often 

required for a functional procapsid to ensure the polymerisation of gp13 into a 

shell with the correct geometry (T=7). Stable complexes of portal protein gp6 and 

minor protein gp7 were detected both in vivo and in vitro. In vitro studies showed 

gp7 was not a structural necessity for the formation of biologically active 

procapsids, although the biological activity would be reduced 5 to 10-fold in the 

absence of gp7 (Droge et al, 2000). 

A complex consisting of the viral terminases and the viral DNA docks on to the 

portal protein to assemble the DNA translocation molecular motor. The DNA 

packaging motor is composed of the portal protein gp6, the small terminase gp1 

and the large terminase gp2, which pump the viral genome into the procapsid with 

~4% terminal redundancy controlled by a headful packaging mechanism. The 

packaging of DNA is accompanied by the release of the internal scaffolding protein 

and the expansion of the procapsid size from ~55 nm to ~61 nm in diameter 

(White et al, 2012). Upon the termination of DNA encapsidation, head completion 

proteins (gp15 and gp16) sequentially attach to the portal vertex to form a 

head-to-tail connector following the detachment of gp1 and gp2 from the portal. 
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Lastly, an independently assembled long non-contractile tail attaches to the portal 

protein to yield an infective virion.  

Figure 3-2 Morphogenesis process of bacteriophage SPP1. This figure was adapted 

from (Orlova et al, 2003). 

The portal protein of bacteriophage SPP1 is encoded by the gene gp6. Each subunit 

of the portal protein consists of 503 amino acids with a molecular weight of 57 

kDa. Although the amino acid sequence of gp6 shows no significant similarity to 

portal proteins from other bacteriophages, gp6 plays the same role in the 

morphogenesis process to initiate the formation of procapsid, whilst providing a 

site for the attachment of the DNA packaging motor to the procapsid and the tail to 

the filled capsid (Alonso et al, 2006; Droge et al, 2000; Tavares et al, 1992). 

The SPP1 portal protein gp6 is a circular homo-oligomer situated at a single vertex 

of the icosahedral capsid. The three-dimensional structure of gp6 was first 

determined using electron microscopy at liquid-helium temperatures and angular 

reconstitution, which revealed a 13-fold symmetric oligomer with three distinct 

regions: stem, wing and a fringe of small 'tentacles' (Orlova et al, 1999). The 

structures of the connector - a complex of gp6 and the head completion proteins 

gp15 and gp16, and the isolated gp6 alone were then determined at 10 Å and 9 Å 

resolution respectively by cryo-electron microscopy and single particle analysis 

(Orlova et al, 2003). Statistical analysis revealed the intrinsic 12-fold symmetry 

within gp6 from the connector in comparison to the 13-mer of isolated gp6. In 

spite of the difference in oligomeric state, similar overall structural organisations 

were observed from gp6, with the exception of some conformational changes at 

the bottom of the stem region. The base of the stem moved outwards to interact 

with and accommodate gp15 (Figure 3-3). 
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Figure 3-3 Cut-away views of the SPP1 connector and isolated portal protein by 
cryo-EM. 
The isolated portal protein is shown in yellow (A), and the portal protein in the 

connector is shown in blue, gp15 in green and gp16 in orange (B). The domains of 

gp6 are outlined: the crown in orange, the wing in green, the stem stalk in magenta, 

the stem foot in purple and the gp16 stopper in red. This figure was adapted from 

(Orlova et al, 2003). 

The X-ray structure of the 13-subunit assembly of isolated gp6 at 3.4 Å resolution 

provided more information to help elucidate the structural basis for DNA 

translocation (Lebedev et al, 2007). A single gp6 subunit can be divided into four 

regions, namely the clip, stem, wing and crown (Figure 3-4). The basal clip region 

has an α/β fold and is exposed to the viral head exterior. The stem is composed of 

two helices, α3 and α5, tilting relative to the central tunnel axis by ~50° and ~30°, 

respectively, and connects the clip to the wing. The wing region is largely made up 

of α-helices, with helix α6 being 40-residue long and spanning from the central 

tunnel to the peripheral rim. There is a 45° kink at the distal end of helix α6, which 

is stabilised by interaction with the C-terminus of helix α5. A 15-residue loop, 

referred to as the “tunnel loop”, protrudes into the tunnel and connects helix α5 

and α6. These tunnel loops constitute the most constrained part of the portal 

channel with a diameter of 27.7 Å in a 13-mer assembly. Meanwhile, the crown is 

composed of three α-helices and there are 40 additional residues at the C-terminus 

that are disordered. 

A B 
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Figure 3-4 X-ray structure of the SPP1 portal protein 13-subunit assembly. 
(A, B) Ribbon diagrams of the portal protein along and perpendicular to the 13-fold 

axis. (C) Ribbon diagram of a single portal protein subunit to illustrate the four 

major domains: crown, wing, stem and clip with the tunnel axis in vertical 

orientation. This figure was adapted from (Lebedev et al, 2007). 

Because no crystallographic structure is available for the dodecameric SPP1 portal 

assembly, the pseudo-atomic structure of the 12-mer gp6 was generated by fitting 

single subunits taken from the X-ray structure of the 13-mer into the EM map of 

the connector (10 Å resolution). The accuracy of such a procedure was assessed by 

fitting subunits as rigid bodies into the EM map of the isolated 13-mer of gp6 (9 Å 

resolution), and the reconstructed structure proved to be in excellent agreement 

with the X-ray structure. The overall architecture of gp6 subunits in the two 

different oligomeric states was very similar. However, conformational changes in 

some specific segments occurred when switching from the 13-mer to the 12-mer: 

(i) the N-terminal end of α6 moved ~3 Å towards helix α5 (Figure 3-5); (ii) an 

outer loop of the clip region moved outwards; and (iii) the tunnel loops had more 

conformational variability. Accompanying the oligomeric state transition from 

13-mer to 12-mer, the diameter of the tunnel loop belt was significantly decreased 

from 27.7 Å to 18.1 Å due to subunits reorientation - the decrease of 
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approximately 10 Å appeared to be much greater than a simple scaling down by a 

factor of 12/13 (Figure 3-5). 

The SPP1 portal protein is consistently found to be a dodecameric assembly 

incorporated into procapsids (Lurz et al, 2001), but presented as 13-mer in the 

isolated form (Dube et al, 1993). How is gp6 capable of assembling into different 

homo-oligomeric rings? A possible explanation lies in the flexible inter-subunit 

interactions (Lebedev et al, 2007). The direct main-chain/main-chain 

inter-subunit hydrogen bonds are only within the clip, which is the most stable 

region. The rest of the structure has relatively few contacts between neighbouring 

subunits, with only 4.3 hydrogen bonds observed per 1000 Å2 (12 per 2800 Å2), 

half the expected number of direct inter-subunit hydrogen bonds (Lebedev et al, 

2007). The determinant factor for the stoichiometric transition of SPP1 portal 

protein from 12-mer to 13-mer remains unknown, and there is no method to 

produce an isolated gp6 dodecamer for in vitro studies yet. 

It has been found that the 13-subuint assembly of purified gp6 is dependent on the 

ionic environment and forms a monodispersed population of 13-mers in the 

hundred millimolar range of univalent salt (≥ 250mM NaCl), or in the presence of a 

millimolar range of bivalent cations (≥ 5mM MgCl2). In the absence of bivalent 

cations and at univalent salt concentrations below 250 mM, there will be an 

association-dissociation equilibrium mainly between the monomer and the 

13-mer with a minor population of intermediate oligomers (Jekow et al, 1999). 
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Figure 3-5 Structural changes upon 13/12-mer transition of gp6. 

(A, B) The superposition of single subunits from the gp6 12-mer (coloured in 

magenta) and 13-mer (coloured in cyan) showed the N-terminal end of α6 moved ~3 

Å towards helix α5; (C,D) Two diametrically arranged subunits from the 13-mer and 

12-mer are shown for the clip, tunnel loops and crown areas with the van der Waals 

size of the tunnel diameter. The simple packing model schematized in black shows 

how the diameter of 12-mer tunnel is considerably reduced compared to the 13-mer 

tunnel by this rocking motion. This figure was adapted from (Lebedev et al, 2007).  

3.1.2 Engineering of the Portal-TRAP Fusion Proteins  

Protein engineering has proved to be pivotal in developing a fundamental 

molecular understanding of natural protein construction, and in the adaption of 

proteins to generate novel proteins. The coding sequence responsible for folding, 

structure, and function of the protein may be tractably manipulated during the 

protein engineering process. The approaches and technologies that have enabled 
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protein engineering include: simple site directed mutagenesis, advanced 

computational design, development of new and useful biocatalysts, integration of 

functional biological parts with fabricated devices, and construction of next 

generation biopharmaceuticals.  

In the case of the SPP1 portal protein, previous attempts to obtain 12-subunit 

SPP1 portal protein in vitro by means of truncation and site directed mutagenesis 

have been unsuccessful. In this study, SPP1 gp6 is fused at its C-terminus with the 

TRAP protein (Figure 3-6) in order to promote the formation of portal protein 

oligomers containing 12 subunits. The reason that TRAP is chosen to construct the 

fusion proteins with gp6 is that TRAP forms an extremely stable dodecameric ring 

with much stronger subunit-subunit interactions than gp6. It is hoped that the 

oligomeric state of the fusion proteins could be dominated by TRAP as shown in 

the model (Figure 3-6), when the fusion proteins are over-expressed in E. coli cells.  

 

Figure 3-6 Model of the portal-TRAP fusion protein assembly. SPP1 gp6 is fused at 
its C-terminus with the TRAP protein. 
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3.1.3 The Tryptophan RNA-Binding Attenuation Protein 

The tryptophan RNA-binding attenuation protein (TRAP), encoded by gene mtrB, 

is a ring-shaped oligomer involved in the regulation of tryptophan biosynthesis in 

Bacilli (Gollnick et al, 2005; Szigeti et al, 2004). TRAP regulates the trp operon by a 

transcription attenuation mechanism. When tryptophan is in excess, TRAP is 

activated and binds to the triplet repeats of the trp operon, favouring the 

formation of an intrinsic terminator hairpin to stop RNA synthesis (Figure 3-7B).  

When tryptophan is limiting, TRAP is not activated, allowing the formation of the 

alternative antiterminator hairpin and the transcription of the trp synthesis and 

transport genes (Figure 3-7A). 

 

Figure 3-7 Model of the B. subtilis trpEDCFBA operon transcription attenuation 
mechanism.   
(A) When tryptophan is limiting, TRAP is not activated, and antiterminator structure 

is formed to allow transcriptional readthrough. (B) When tryptophan is in excess, 

TRAP becomes activated by tryptophan and binds to the triplet repeats. The 

formation of an intrinsic terminator hairpin stops RNA synthesis of the downstream 

trp synthesis and transport genes. This figure was adapted from (McGraw et al, 

2009). 

TRAP from Bacillus halodurans, an alkaliphilic bacterium can grow at pH higher 

than 9.5, is 76-amino acid long and shares ~71% sequence identity with Bacillus 

subtilis TRAP. The Bacillus stearothermophilus mtrB gene encodes a 74-amino acid 

long polypeptide with 77% sequence identity compared to TRAP from B. subtilis. 

Three conserved residues - Lys37, Lys56 and Arg58 in B. subtilis TRAP - were 

identified to be involved in RNA binding (Yang et al, 1997). 
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X-ray structures of B. subtilis, B. stearothermophilus and B. halodurans TRAP 

revealed circular homo-oligomers with essentially identical architecture (Antson 

et al, 1995; Chen et al, 2011a; Chen et al, 1999). Like the bacteriophage portal 

protein, TRAP forms oligomers composed of multiple subunits. While B. subtilis 

TRAP and B. stearothermophilus TRAP exist as 11-mers, B. halodurans TRAP is a 

natural 12-subunit assembly. Removal of the five C-terminal residues in B. 

stearothermophilus TRAP or introducing a point mutation S72N in B. subtilis TRAP 

can induce the formation of  stable 12-subunit oligomers (Bayfield et al, 2012; 

Chen et al, 2011a). The β-strands are the fundamental secondary structural 

elements in the TRAP monomer, which is composed of two β-sheets lying 

face-to-face. These β-sheets form extended inter-subunit β-sheets through main 

chain-main chain interactions to reinforce the oligomeric structure.  

 

Figure 3-8 Structure of B. halodurans TRAP (3ZZL).  

Ribbon diagram viewed along the 12-fold axis. This figure was adapted from (Chen et 
al, 2011a). 
 

The stability of several wild type and mutant TRAP proteins in the presence of 

L-tryptophan were examined by dye-based scanning fluorimetry and CD 

spectroscopy (Figure 3-9). Among the wild type TRAPs, B. stearothermophilus 

TRAP is found to be the most stable, whilst B. subtilis TRAP is the least stable one. 

Significantly, the thermal stability of the mutant 12-subunit assemblies is 

increased compared to the wild-type 11-mers.  
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Figure 3-9 Melting temperatures of different TRAP oligomers assessed by dye-based 
scanning fluorimetry.  
The dependence of melting temperature as a function of L-tryptophan concentration 

for six TRAP oligomers is show. From the top: B. stearothermophilus E71stop 12-mer 

(triangle), B. stearothermophilus wild type 11-mer (square), B. halodurans wild type 

12-mer (diamond), B. subtilis K71stop 12-mer (open cross), B. subtilis S72N 12-mer 

(circle), B. subtilis wild type 11-mer (crossed square). This figure was adapted from 

(Bayfield et al, 2012).  
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3.2 Materials and Methods 

3.2.1 Cloning of Fusion Protein Constructs with N-terminal His-tag 

SPP1 genomic DNA was used as a template for PCR amplification of gp6 coding 

fragments; and plasmid DNA with B. halodurans mtrB gene in pET28a or plasmid 

DNA with B. stearothermophilus mtrB gene in pET9a was the template for TRAP 

encoding gene amplification.  Primers were designed to introduce specific 

restriction recognition sites to the termini of PCR products: NheI and BamHI 

restriction sites to gp6 fragments for fusions with B. halodurans TRAP, BamHI and 

XhoI sites to B. halodurans mtrB; BamHI and NotI restriction sites to gp6 fragments 

for fusions with B. stearothermophilus TRAP, and NotI and XhoI restriction sites to 

B. stearothermophilus mtrB. A summary of the primers used in this study is listed 

in Table 3-1. The primers were synthesised by Eurofins MWG Operon, Ebersberg, 

Germany (purification level: salt free). For gp6 and B. halodurans TRAP fusion 

constructs, double digested PCR products of gp6 and B. halodurans mtrB as well as 

NheI and XhoI double digested pET28a (Novagen) were ligated together in one vial 

using T4 DNA ligase (NEB, UK) at room temperature for two hours. For the ligation 

of gp6 and B. stearothermophilus TRAP fusion constructs, double digested PCR 

products of gp6 and B. stearothermophilus mtrB as well as BamHI and XhoI double 

digested pCDFDuet-1 vector (Novagen) were ligated together in one vial as above. 

The correct inserts were verified by DNA sequencing (GATC Biotech) and 

alignment analysis (Clustal W).  

3.2.2 Expression and Purification of Portal-TRAP Fusion Proteins 

The plasmids coding for gp6-B. halodurans TRAP fusion constructs were 

transformed into Escherichia coli expression strain BL21(DE3) cells, and the 

plasmids coding for gp6-B. stearothermophilus TRAP fusion constructs were 

transformed into Escherichia coli expression strain B834 cells. A single colony 

from a Luria–Bertani (LB) agar plate containing the appropriate antibiotics (30 

µg/mL kanamycin for pET28a vector and 50 µg/mL streptomycin for pCDFDuet-1 

vector) was picked to inoculate a small overnight culture at 37 °C. 5 ml aliquots of 

the overnight culture were used to inoculate a 500 mL culture the following day. 

The 500 mL Culture were grown at 37 °C until the mid-log phase (OD600 of 0.6–

0.8) was reached, at which point protein expression was induced by the addition 
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of isopropyl-d-1-thiolgalactopyranoside (IPTG) to a final concentration of 1 mM. 

Lastly, overnight incubation of the culture at 16 °C and 180 r.p.m was carried out 

for the over-expression of the fusion proteins. Cells were recovered by 

centrifugation in SORRALL®  RC 5B plus for 20 min at 5000 g, 4 °C. Supernatant 

was removed and cell pellet was stored at -20 °C.  

Table 3-1 Primers used for cloning of portal-TRAP fusion protein constructs  
Primer Sequence(5’-3’) 

Gp6-F 1 CCCCTAGCTAGCGCAGAACCGGACACAACCATG 

Gp6-R1 CGCGGATCCTTGGTTCATTTCCTCTTCTATGCG 

Gp6-R2 CGCGGATCCGCCCTGCATTTCAGCGTATTGG 

Gp6-R3 CGCGGATCCGCCCTCATCGTCGAGTAGGTTGC 

Gp6-R5 CGCGGATCCTGTAACGCCTTGTACCTGACTC 

TRAP-F1 CGCGGATCCTCATCAAACTTTTTTGTCATAAAAGCAAAGG 

TRAP-F2 CGCGGATCCTCAGGTTCTTCGTCAAACTTTTTTGTCATAAAAGCAAAGG 

TRAP-F3 CGCGGATCCTCAGGTTCTTCAGGATCATCGTCAAACTTTTTTGTCATAAAAGCAAAGG 

TRAP-F4 CGCGGATCCTCAGGTTCTTCAGGATCATCGATGAACGTGGGGGATAACTCAAAC 

TRAP-F5 CGCGGATCCTCAAACTTTTTTGTCATAAAAGCAAAGG 

TRAP-R1 GGGCCGCTCGAGTTATTCATCTTTCTCCGTATCTAGCG 

GP6_I425Q_F GACAGCGAGCAGGTTCAGAGT 

GP6_I425Q_R ACTCTGAACCTGCTCGCTGTC 

GP6N27EcoR GGAATTCGGCGGAACCGGATACCACCATGATTCAGAAACTG 

GP6R479Not1 ATAGTTTAGCGGCCGCAGCAGCGCCTTCATCATCCAGCAGGTTGCCCT 

TRAP_stea_F1 ATAAGAATGCGGCCGCAGCTAGCGACTTTGTTGTCATT 

TRAP_stea_F2 ATAAGAATGCGGCCGCAGCTGCTAGCGACTTTGTTGTCATT 

TRAP_stea_R1 CCGCTCGAGTTACTTTTTCCCTTCCGA 

 

The cell pellet was re-suspended in nickel affinity chromatography binding buffer 

supplemented with a combination of 100 µg/mL lysozyme and protease inhibitors 

(1 mM AEBSF and 0.7 µg/mL pepstatin). For all the gp6-B. halodurans TRAP fusion 

proteins, the binding buffer was 50 mM imidazole pH 8.0, 250 mM NaCl, and 10 

mM MgCl2. Cells were disrupted by sonication with a large probe in a glass beaker 

using short pulses of 30 seconds, with a two-minute resting time in between 
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pulses. The sonication was carried out on ice, with caution to minimise thermal 

damage to the protein extract. The cell debris was removed by centrifugation at 

38758 g for 30 minutes at 4 °C using a Sorvall SS34 rotor. The supernatant was 

collected and then cleared with a 0.45 mm filter (Millipore). The filtrate was 

digested overnight by a combination of RNase A and RNase T1 to remove RNA 

contamination at 4 °C. It was then loaded onto a 5 mL HiTrap column (GE 

Healthcare) and equilibrated with binding buffer for nickel affinity 

chromatography purification.  

The nickel-bound protein was eluted with an increasing proportion of elution 

buffer containing 500 mM imidazole. For all the gp6-B. halodurans TRAP fusion 

proteins, the elution buffer was 500 mM imidazole pH 8.0, 250 mM NaCl, 10 mM 

MgCl2 and 10% glycerol. Fractions containing the portal-TRAP fusion proteins 

were pooled together, and concentrated using Vivascience 30kDa molecular 

weight cut-off concentrators. The concentrated sample (less the 10 mg/mL) was 

applied to a Superose 6 size-exclusion chromatography column as a final polishing 

step to remove any high-molecular-weight aggregates and obtain fusion proteins 

with the appropriate molecular weight. The fusion proteins were eluted with GF 

buffer (50 mM imidazole pH 8.0, 250 mM NaCl, and 10 mM MgCl2), concentrated to 

at least 10 mg/mL and stored at -80 °C for crystallisation.  

3.2.3 Size-Exclusion Chromatography coupled with Multi-Angle 
Laser Light Scattering (SEC–MALLS) 

The molecular mass was determined by size-exclusion chromatography coupled 

with multi-angle laser light scattering (SEC–MALLS). The protein sample (60 µL, 

0.5 mg/mL) was applied on a BioSep SEC-s3000 gel filtration column 

(Phenomenex) equilibrated with buffer containing 50 mM imidazole pH 8.0, 250 

mM NaCl, and 10 mM MgCl2. Size-exclusion chromatography was carried out on a 

Shimadzu HPLC system and the elution was monitored at 280 nm by an SPD20A 

UV/Vis detector. Light-scattering data were recorded by a Dawn HELEOS-II 

18-angle light-scattering detector and the concentration of the eluting protein was 

measured by an in-line Optilab rEX refractive-index monitor (Wyatt Technology). 

Data were analysed with the ASTRA V software package (Wyatt Technology). 

Molecular mass was calculated using Zimm’s formalism of the Rayleigh–Debye–
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Gans light-scattering model for dilute polymer solutions and a refractive-index 

increment (dn/dc) of 0.183 mL/g was used for the protein molecular mass 

estimation. 

3.2.4 Crystallisation 

The sitting-drop vapour diffusion method was used for the initial crystallisation 

screening. Drops containing 150 nL protein solution and 150 nL reservoir solution 

were dispensed by a Mosquito Nanolitre Pipetting robot (TTP Lab-tech) in 96-well 

plates, and equilibrated against 60 µL of reservoir solution. To obtain initial crystal 

hits, crystal trays with several commercial screens such as Index, PACT, Clear 

Strategy Screens I and II, Morpheus and MPD were set up. Conditions in which 

small crystals grew were optimised in 24-well hanging-drop plates with manual 

pipetting. Crystals were tested using a Rigaku RU-H3R X-ray generator with 

rotating anode, equipped with Osmic multilayer optics and a MAR345 

(MarResearch) imaging-plate detector. 

3.2.5 Negative Staining Electron Microscopy 

The purified fusion proteins and the wild-type SPP1 portal protein were diluted to 

~ 0.05 mg/mL for the single-particle imaging. A 2 μL aliquot of the sample was 

applied to glow-discharged, continuous-carbon and formvar covered copper grids 

with a 300-square mesh. The dried sample was washed with MiliQ water and then 

stained with 2% uranyl acetate for two minutes. The grids were air-dried before 

being inspected on a 200 kV FEI F20 electron microscope at a magnification of 100, 

000x. Imaging was performed in a low electron dose mode. 10 micrographs were 

recorded and approximately 1200 protein particles were selected for image 

analysis. The experiments were performed with Yuriy Chaban and Elena Orlova at 

Birkbeck College, University of London.  

3.2.6 Dissociation-Reassociation Experiments of the Fusion 
Protein GP6(27-466)-GSSGSS-TRAP(7-76) (YM92) 

To probe if re-association could generate 12-subunit oligomers, a 

dissociation-re-association experiment was designed. This was based on the 

observation that the assembly of portal protein oligomer is dependent on the ionic 
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environment, forming a 13-subunit assembly at and above 250 mM NaCl or at and 

above 5 mM MgCl2. Subunit contacts in TRAP were deemed to be strong enough to 

preserve the 12-subunit oligomeric state of TRAP, which can then lead to the 

assembly of a 12-mer gp6-TRAP fusion construct after gp6 segment was 

dissociated at low salt concentration followed by re-association with the addition 

of MgCl2. The fusion protein GP6(27-466)-GSSGSS-TRAP(7-76) was partially 

dissociated by overnight dialysis from the original purification buffer to low salt 

buffer containing 20 mM HEPES pH7.7, 150 mM NaCl, 1 mM L-Tryptophan at 4 °C. 

The re-association was achieved by adding a 2 M MgCl2 solution to the final 

concentration of 10 mM. The re-associated assembly was inspected by negative 

staining electron microscopy to determine the subunit number. 

3.3 Results 

3.3.1 Design of the Portal-TRAP Fusion Proteins  

SPP1 portal protein and TRAP were fused together using a short peptide linker 

between the two proteins. The linkers were composed of flexible residues such as 

glycine and serine so that the adjacent proteins are free to move relative to one 

another. The linkers were designed to have an appropriate length, to impose 

enough assembling power from TRAP on the portal protein. We reasoned that if 

the linker was too long, the assemblies would not direct each other. However, if 

the linker was too short, the correct folding of each protein could be affected.  

I. Protein constructs (YM91-YM100) were designed to fuse the truncated SPP1 

portal protein Δ27-466, Δ27-472, Δ27-479 with a natural 12-subunit TRAP from B. 

halodurans using linkers GSS, (GSS)2 or (GSS)3.  

II.  In order to reduce the difference between the tunnel diameters of the portal 

and TRAP, two fusion constructs were designed with a longer truncation to the 

C-terminus of portal protein. The tunnel diameter of gp6 Δ27-434 is the same as in 

TRAP, at approximately 30 Å. Shorter linkers (GSS and GS) were chosen to 

strengthen the contact and reduce flexibility between the gp6 and TRAP domains 

of the fusion protein. 
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Table 3-2 Constructs of gp6-B. halodurans TRAP fusion proteins 
 
Plasmid Fusion protein constructs 

pYM91 GP6(27-466)-GSS-TRAP(7-76) 

 
pYM92 GP6(27-466)-GSSGSS-TRAP(7-76) 

 
pYM93 GP6(27-466)-GSSGSSGSS-TRAP(7-76) 

 
pYM94 Gp6(27-472)-GSS-TRAP(7-76) 

 
pYM95 Gp6(27-472)-GSSGSS-TRAP(7-76) 

 
pYM96 Gp6(27-472)-GSSGSSGSS-TRAP(7-76) 

 
pYM97 Gp6(27-479)-GSS-TRAP(7-76) 

 
pYM98 Gp6(27-479)-GSSGSS-TRAP(7-76) 

 
pYM99 Gp6(27-479)-GSSGSSGSS-TRAP(7-76) 

 
pYM100 Gp6(27-479)-GSS-TRAP(1-76) 

 
pYM147 Gp6(27- 434)-GS-TRAP(7-76) 

 
pYM148* Gp6(27- 434 L429Q I425Q)-GSS-TRAP(7-76) 

 
*Double mutations (L429Q and I425Q) are introduced to improve solubility and 

stability 

III. Based on the thermal stability analysis, the oligomeric state of B. 

stearothermophilus TRAP is the most stable among all TRAP species. Two 

constructs were designed to fuse the SPP1 portal protein (residues 27-479) with a 

natural 11-subunit TRAP from B. stearothermophilus (residues 5-74) using 

polyalanine linkers (6 x Ala and 7 x Ala).  

Table 3-3 Constructs of gp6-B. Stearothermophilus TRAP fusion proteins 

Plasmid Fusion protein constructs 

pYM198 Gp6 (27-479)-A6-TRAP (5-74) 

 
pYM199 Gp6 (27-479)-A7-TRAP (5-74) 
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3.3.2 Cloning, Expression and Purification of the Portal-TRAP 
Fusion Proteins  

3.3.2.1 Fusion proteins of truncated SPP1 gp6 with natural 12-subunit 

Bacillus halodurans TRAP 

The DNA segments encoding the truncated portal gp6-B. halodurans TRAP fusion 

proteins were cloned into the restriction sites BamHI and XhoI of vector pET28a 

for the expression of N-terminal hexahistidine-tagged protein.  

The fusion proteins were successfully overexpressed in E. coli B834 as a soluble 

form. Pure and homogenous proteins were obtained after Ni2+ affinity 

chromatography and size-exclusion chromatography in 50 mM imidazole pH 8.0, 

250 mM NaCl, and 10 mM MgCl2. Overnight digestion was performed to 

remove/eliminate RNA contamination during the purification process using a 

combination of RNase A and RNase T1. The eluted proteins from the major peak of 

the size-exclusion chromatography corresponded to the oligomer of portal-TRAP 

fusion proteins (Figure 3-10). 

 

 

 

 

 

(A) Typical elution profiles of the two-step purification process containing Ni2+ 

affinity chromatography and size-exclusion chromatography. The elution profiles of 

A 

B 

Figure 3-10 Purification of the gp6-B. halodurans TRAP fusion protein. 
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the protein YM92 duirng the purification process is shown here as an exmaple. (B) 

Characterisation of purified fusion proteins YM91-YM100 on a 12% SDS–PAGE gel.  

3.3.2.2 Fusion proteins of SPP1 gp6 Δ27-479 with natural B. 

stearothermophilus 11-subunit TRAP Δ5-74 

The DNA segments encoding the protein product gp6 Δ27-479 and B. 

stearothermophilus TRAP Δ5-74 were ligated and cloned into the restriction sites 

BamHI and XhoI of vector pCDFDuet-1 for the expression of fusion proteins with 

an N-terminal hexahistidine tag.  

The fusion proteins were successfully over-expressed in Escherichia coli strain 

B834 at 16 °C. However, the majority of the protein was insoluble (Figure 3-11A). 

To improve the solubility, a buffer screen was carried out to investigate the effect 

of pH, salt type, salt concentration or additive on the solubility of the target protein. 

According to SDS-PAGE results (Figure 3-11B), the overexpressed protein was 

found to show preference for 20 mM Tris, pH 6.5, 500 mM NaCl and 5% glycerol 

with regard to solubility.  

 

Figure 3-11 Expression and solubility test of the gp6-B. stearothermophilus TRAP 
fusion protein.  
(A) “-IPTG” indicates expression cell lysate obtained before induction of the fusion 

proteins; “+IPTG” indicates the sample after induction of protein expression. Intense 

bands with the molecular weight of 66 kDa, highlighted, from the ‘Total’ lanes of 

both constructs were detected. However, only a thin band was present in the soluble 

sample. (B) Solubility test of crude cell extract in different buffers. Lane T contained 

total protein, while the rest contained only the soluble proteins. Lanes 1-4: solubility 

comparison with buffers of different pH, the most intense band at 66 kDa was shown 
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with 20 mM Tris pH 6.5. Lanes 5-9: the effects of salt type and concentration on the 

protein solubility were compared, and protein showed preference towards NaCl, but 

was not sensitive to the concentration of NaCl. Lanes 10 and 11 tested two additives, 

5% glycerol and 0.1% triton X-100, an intense band was observed in lane 10, with 5% 

glycerol. 

Nickel affinity chromatography was then performed using the buffer identified 

from the solubility screen as promoting the highest solubility (20 mM Tris, pH 6.5, 

500 mM NaCl and 5% glycerol) with the addition of 10 mM MgCl2 and 0.1 mM 

L-tryptophan. The addition of 10 mM MgCl2 could facilitate the oligomerisation of 

gp6 (Jekow et al, 1999), and 0.1 mM L-tryptophan may bind and stabilise TRAP 

(McElroy et al, 2002). According to Figure 3-12, the fusion protein was eluted 

when the concentration of imidazole in the buffer was approximately 250 mM and 

300 mM (40%~50% buffer B).  However, the solubility and yield of the protein 

was insufficient for further characterisation and crystallisation.  

 

 

 

 

 

 

 

 

 

To further improve the stability, a buffer screen at pH 8.5 was carried out, because 

the theoretical isoelectric point of the fusion proteins is approximately 4.9. The 

Figure 3-12 Nickel affinity chromatography of gp6-B. stearothermophilus TRAP fusion 
protein. 
20 mM Tris, 500 mM NaCl, 5% glycerol, 10 mM MgCl2, 0.1 mM L-tryptophan, 10 mM 

imidazole, pH 6.5 was used as binding buffer. For the elution of bound his-tagged protein 

YM198, Gp6 (27-479)-A6-TRAP (5-74) , elution buffer with an imidazole concentration 

of 500 mM was used as Buffer B. Fractions indicated by arrows were resolved in SDS 

PAGE. The comparison of total and soluble samples of crude cell extract suspended in 

binding buffer showed the low solubility of the protein from a large-scale expression. FT: 

flow-through from the nickel column. 
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effect of MgCl2 on the solubility was also investigated. According to Figure 3-13, 

the fusion protein was shown to tolerate low NaCl concentrations, and was most 

soluble at 100 mM NaCl. By comparing lanes 2 and 5 of both gel images, the 

addition of 10 mM MgCl2 was shown to reduce the protein solubility. By comparing 

lane 3 of both gel images, the fusion protein was also shown to be more soluble in 

buffer with a pH of 8.5 than of 6.5. As a result, a buffer at pH 8.5 with no MgCl2  

was chosen for the following experiment.  

 

Figure 3-13 Solubility tests of gp6-B. stearothermophilus TRAP fusion protein. The 

target protein is protein construct YM198: Gp6 (27-479)-A6-TRAP (5-74). Comparing 

the solubility dependency on NaCl concentration and effects of 10mM MgCl2 in pH 6.5 

(left) and 8.5 (right). Lane 5 of both gels has the same buffer composition as lane 2 

but with 10mM MgCl2 added.  

To purify the fusion protein, nickel affinity chromatography followed by 

size-exclusion chromatography was performed. The N-terminal histidine tagged 

protein (6xHis-tag) could bind to a nickel column and eluted at 300 mM imidazole 

(Figure 3-14A, B). Purification by size-exclusion chromatography generated 

aggregates with either 100 mM NaCl or 500 mM NaCl in the purification buffer, 

impeding purification. Decreasing the sample’s concentration to ~1 mg/mL didn’t 

help to resolve this issue (Figure 3-14C). Anion exchange chromatography was 

performed using a 1mL HiTrap Q HP column (GE Healthcare). The initial binding 

buffer was 20 mM Tris pH 8.5, 0.1 mM L-tryptophan, and varied with different 

NaCl concentrations of 0, 20 and 50 mM (data not shown). This likewise proved 

unsuccessful in improving solubility or yield.  
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Figure 3-14 Purification of gp6- B. stearothermophilus TRAP fusion proteins.  

(A-B) Nickel affinity chromatography purification of YM199: binding buffer was 20 

mM Tris pH 8.5, 500 mM NaCl, 0.1 mM L-tryptophan, 20 mM imidazole, and 

imidazole concentration was raised to 500mM in elution buffer. Fractions indicated 

by arrows were resolved in SDS PAGE (B), FT: flow-through from the nickel column. 

(C) Gel filtration with different buffer conditions and sample concentrations. Protein 

concentration listed were final sample concentration loaded onto the gel filtration 

column, determined using the Bradford assay. Buffer conditions were varied with 

regard to NaCl concentration and buffer type. Chromatogram of 13-subunit control 

obtained from a previously characterised gp6-B. halodurans TRAP fusion protein.  

3.3.3 Characterisation of Portal-TRAP Fusion Proteins 

3.3.3.1 Molecular weight determination by MALDI-MS 

For the fusion proteins of SPP1 gp6 truncations fused with natural B. halodurans 

12-subunit TRAP, the purified protein was firstly analysed by MALDI-MS for rapid 

identification. The molecular weight of the fusion subunit detected by MALDI-MS 

was shown to be consistent with the theoretical molecular weight (an example 

shown in Figure 3-15). Also, the MALDI data excluded the possibility of 

contamination by Chaperone GroEL during the process of purification, because 

there was no peak corresponding to 57356.9 Da - the molecular weight of the 

GroEL subunit. 
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3.3.3.2 Protein Identification by Trypsin Digestion and Mass Spectrometry 

The gp6-B. stearothermophilus TRAP fusion proteins have a theoretical molecular 

weight of approximately 62 kDa. However, the estimated molecular weight of the 

over-expressed fusion protein based on the migration of protein band on a 12% 

SDS PAGE was significantly larger than expected. SDS PAGE bands of fractions 

from nickel affinity chromatography purification containing reasonably pure 

target protein were submitted for identification by trypsin digestion and mass 

spectrometry. Sequence alignment confirmed the purified proteins as gp6-TRAP 

fusions. 

3.3.3.3 Oligomeric State Analysis by size-exclusion chromatography coupled 

with multi-angle laser light scattering (SEC-MALLS)  

The theoretical molecular mass of each gp6-B. halodurans TRAP fusion protein was 

calculated by ProtParam based on the amino acids composition. During 

SEC-MALLS analysis, a single monodispersed peak was observed for samples 

YM91, YM92, YM93, YM96, and YM97, with a mean molecular weight of the eluted 

species close to that expected for 13 subunits per oligomer (Figure 3-16, Table 

3-4). In contrast, fusion protein YM94, YM95, YM98, YM99, and YM100 showed 

polydispersity, giving broad peaks in gel filtration elution profiles, probably due to 

the sample heterogeneity and potential aggregation. The molecular weight of the 

peak containing target proteins indicated 13 subunits per oligomer for YM95 and 

YM98 constructs and 12 subunits per oligomer for YM94, YM99, and YM100 

fusions (Figure 3-16, Table 3-4). 
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Figure 3-15 The molecular weight of the purified YM92 subunit characterised by 
MALDI-MS.  
Only one major peak was detected corresponding to the molecular weight of 

62325.07 Da, very close to theoretical molecular weight of 62399.3 Da.  

Table 3-4 Estimated molecular weight of the fusion proteins by SEC-MALLS 

Protein Length (aa) Mw (subunit, Da) SEC-MALLS data (kDa) Subunits number per 

oligomer 

YM91 536 61239.2 837.5 ± 6 13.7 

M92 539 61470.4 808.3 ± 8 13.1 

YM93 542 61701.6 805.2 ± 6 13.1 

YM94* 542 61919 766.0 ± 5 12.4 

YM95 545 62150.2 779.7 ± 5 12.5 

YM96 548 62381.4 795.4 ± 6 12.7 

YM97 549 62675.7 809.1 ± 6 12.9 

YM98 552 62906.9 815.5 ± 90 12.9 

YM99* 555 63138.2 757.3 ± 4 12.0 

YM100* 555 63306.4 768.9 ± 4 12.2 
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Figure 3-16 Characterisation of the oligomeric state by SEC–MALLS. 
The thin line corresponds to the absorbance monitored at 280 nm. The thick line 

shows the molecular weight calculated for the eluted species. Fusion protein YM91, 

YM92, YM93, YM96, and YM97 showed single monodispersed peaks from gel 
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filtration elution profiles, while the fusion proteins YM94, YM95, YM98, YM99, and 

YM100 showed polydispersity giving broad peaks in gel filtration elution profiles. 

3.3.3.4 Oligomeric State Characterisation by Negative Staining Electron 

Microscopy 

Negative staining electron microscopy was employed as an effective and accurate 

method in characterising the oligomeric state of the fusion assemblies. Ring-like 

particles were distributed throughout the electron micrographs, with a detectable 

extra ring of TRAP above the gp6 ring in the fused proteins compared to the 

wild-type gp6. The preliminary analysis of eigen images performed in Prof. 

Orlova’s laboratory (Birkbeck College, London) clearly showed the 13-fold 

symmetry for fusion proteins containing truncated gp6 Δ27-466, Δ27-472 and 

Δ27-479 (Figure 3-17). Furthermore, no oligomeric state change was observed 

from the 13-mer YM92 fusion protein (containing gp6 Δ27-466) after the 

dissociation-re-association procedure. For the fusion constructs containing gp6 

Δ27-434, the preliminary results indicated mixtures of 13-mer and 14-mer 

assemblies (data not shown).  
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Figure 3-17 Electron microscopy of negative stained fusion proteins of gp6-B. 
halodurans TRAP.  
Fragments of EM micrographs, selected raw particles, class averages and eigen 

images were shown for each sample: A- control wild type gp6, B - YM92, C - YM97 
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and D - YM96. Red circles indicate an extra ring corresponding to TRAP protein, and 

the bar represents 100 nm.  

3.3.3.5 Crystallisation 

Among all TRAP fusion constructs formed with Δ27-466, Δ27-472 and Δ27-479 

gp6 (YM91-YM100), the construct YM96, with truncated 26 N-terminal residues, 

31 C-terminal residues and (GSS)3 linker, formed crystals most readily. The 10 

mg/mL protein solution was in 50 mM imidazole pH 8.0, 250 mM NaCl, and 10 mM 

MgCl2. YM96 formed ~50 μm cubic crystals with the reservoir containing 0.2 M 

NaCl, 40% MPD. A number of different plate-like crystals were obtained with 

reservoirs containing either 0.2 M ammonium acetate, 0.1 M BIS-TRIS pH 5.5, 45% 

MPD, or 0.2 M ammonium acetate, 0.1 M BIS-TRIS pH 6.5, 45% MPD (Figure 3-18, 

IndexTM screen, Hampton Research). Crystals grown with 0.2 M MgCl2 and 40% 

MPD in the reservoir diffracted to ~16 Å and crystals grown with 0.2 M ammonium 

acetate, 0.1 M BIS-TRIS pH 5.5, 45% MPD in the reservoir diffracted to ~17 Å. 

Optimisation of the conditions giving initial crystal hits did not generate crystals 

with enhanced diffraction. There were no crystals obtained for fusion proteins 

containing gp6 Δ27-434 that appeared to be mixtures of 13-mers and 14-mers 

according to preliminary EM analysis (data not shown).  

 

3.4 Discussion 

The fusion proteins of the SPP1 portal protein with B. halodurans TRAP can be 

successfully overexpressed in E. coli BL21 cells with an N-terminal histidine tag. 

These fusion proteins can be purified by Nickel affinity chromatography followed 

by size-exclusion chromatography, in which the major peak was shown to 

Figure 3-18 Crystals of portal-TRAP fusion protein YM96. 
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correspond to the stable oligomer. According to the SEC-MALLS measurements, 

the molecular weights of most purified fusion proteins are closer to the theoretical 

molecular weight of a 13-subunit oligomer, with the exception of three 

polydispersed protein samples that appeared to contain 12-mer assemblies. The 

accuracy of the SEC-MALLS technique however does not allow for a decisive 

conclusion about the oligomeric state of proteins containing more than ~10 

subunits. This is due to a typical systematic error of 5% during the molecular 

weight determination (Folta-Stogniew & Williams, 1999).  

By electron microscopy studies, ring-like particles are distributed throughout the 

electron micrograph. Compared to the wild-type gp6, an extra ring corresponding 

to the TRAP assembly is detectable above the gp6 ring in the fusion proteins. The 

preliminary analysis of eigen images clearly demonstrated the 13-fold symmetry 

of fusion proteins with gp6 truncations Δ27-466, Δ27-472 and Δ27-479 (Figure 

3-17). However, whether the TRAP protein contains 12 or 13 subunits in these 

assemblies is unknown. 

For the fusion proteins with gp6 Δ27-434, the preliminary results indicated 

mixtures of 13-mer and 14-mer assemblies (data not shown). According to 

previous studies, the removal of the whole crown domain (α7- α9) would result in 

14-mer assembly of gp6 (personal communication with Paulo Tavares). Since gp6 

Δ27-434 keeps only the α7 helix in the crown domain, the removal of α8 and α9 

helices might explain the co-existence of the 13-mer and 14-mer assemblies in 

solution. The heterogeneous oligomeric state of these proteins is the likely reason 

for these proteins not forming crystals.  

The oligomeric state of the gp6 fusion construct YM92 did not change after the 

dissociation re-association procedure, with the protein still found in the 

13-subunit oligomerisation state. The dissociation-re-association experiment was 

aimed to determine which of the two oligomeric proteins (gp6 or TRAP) defines 

the oligomeric state of the fused construct. The result suggests that the oligomeric 

state of the fusion proteins is determined by gp6, whose size is significantly larger 

than TRAP (50.7 kDa per subunit versus 8.3 kDa in the case of TRAP), although its 

subunit-subunit interactions are much weaker than TRAP.  
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The study of the TRAP oligomer stability from different Bacilli showed that B. 

stearothermphilus wild type and E71Stop TRAP form the most stable oligomers. 

Hence, these are most likely suitable for further fusion proteins studies with the 

portal protein. However, several fusion proteins constructs with the B. 

stearothermphilus TRAP, generated in this study, proved to be insoluble. 
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4 Co-expression of the SPP1 Portal Protein with the 
Scaffolding Protein  

4.1 Introduction 

Viral assembly is a multistep process involving a specific order of protein-protein 

and protein-nucleic acid interactions. For the assembly of biologically active SPP1 

procapsids, three essential structural components are required - the major capsid 

protein gp13, the scaffolding protein gp11 and the portal protein gp6. The 

geometrically correct polymerisation of gp13 is directed by the scaffolding protein 

(Becker et al, 1997), while the formation of regularly sized procapsids is controlled 

by the portal protein, which influences the copolymerisation of gp11 and gp13 

(Droge et al, 2000). Procapsid-like structures formed when the scaffolding protein 

and major capsid protein encoding genes 11 and 13 were co-expressed in a 

heterologous host. However, there was no interaction observed between the two 

proteins, when they were produced alone and then mixed in vitro (Becker et al, 

1997; Droge et al, 2000). Similarly, stable interactions between the portal protein 

gp6 and scaffolding protein gp11 could be detected only when the proteins were 

coproduced (Droge et al, 2000). The interaction between the portal and scaffolding 

proteins was also observed in the cryo-EM studies of phage P22 (Chen et al, 

2011b). 

The SPP1 portal protein is a cyclical dodecamer in the virion (Lurz et al, 2001), 

while the protein produced in vitro is a 13-subunit assembly (Lebedev et al, 2007). 

It was proposed that the interaction of the portal protein with other procapsid 

proteins, scaffolding protein or major capsid protein, would impose an increased 

bend between gp6 subunits and maintain a 12-mer assembly (Lurz et al, 2001). In 

this study, the SPP1 portal protein and scaffolding protein were co-expressed in 

the heterologous host E. coli, with the aim of promoting the assembly of a 

12-subunit portal protein.  
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4.2 Methods and Materials 

4.2.1 Cloning Strategy for Co-Expression of Gp6 and Gp11 

The plasmid pYM70 encoding gp6 Δ27-472 was first transformed into E. coli B834 

cells. The transformant was treated with calcium chloride to make E. coli B834 

competent cells carrying plasmid pYM70. The plasmid pYM184 encoding 

full-length gp11 was transformed into the E. coli B834 competent cells with 

plasmid pYM70.  

4.2.2 Purification of the Gp6 and Gp11  

A single colony carrying plasmids pYM70 and pYM184 was picked from a Luria–

Bertani (LB) agar plate containing 30 µg/mL kanamycin and 50 µg/mL 

chloramphenicol to inoculate a small overnight culture at 37 °C. 5 mL aliquots of 

the overnight culture were used to inoculate 500 mL cultures the following day. 

The 500 mL cultures were grown at 37 °C until the mid-log phase (OD600 of 0.6–

0.8) was reached, at which point protein expression was induced by the addition 

of isopropyl-d-1-thiolgalactopyranoside (IPTG) to a final concentration of 1 mM. 

Lastly, overnight incubation of the culture at 16 °C and 180r.p.m was carried out 

for the over-expression of proteins. Cells were recovered by centrifugation at 5000 

g (SORVALL®  RC 5B Plus rotor) at 4 °C for 20 minutes. Supernatant was removed 

and cell pellet was stored at -20 °C.  

The cell pellet was re-suspended in nickel affinity chromatography binding buffer, 

20 mM Tris pH 7.5, 150 mM NaCl, 10 mM MgCl2, 50 mM Imidazole, supplemented 

with a combination of 100 µg/mL lysozyme and protease inhibitors (1 mM AEBSF 

and 0.7 µg/mL pepstatin). Cells were disrupted by sonication with large probe in 

glass beaker using short pulses of 30 seconds, with a 2 minutes resting time in 

between pulses. The sonication was carried out on ice, with caution to minimise 

thermal damage to protein extract. The cell debris was removed by centrifugation 

at 38758 g for 30 minutes at 4 °C using a Sorvall SS34 rotor. The supernatant was 

collected and then cleared with a 0.45 mm filter (Millipore). The filtrate loaded 

onto a 5 mL HiTrap column (GE Healthcare) equilibrated with binding buffer for 

nickel affinity chromatography purification. The bound protein was eluted with an 

increasing proportion of elution buffer containing 20 mM Tris pH 7.5, 150 mM 
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NaCl, 10 mM MgCl2, and 500 mM imidazole. Fractions containing both gp6 and 

gp11 were pooled together, and concentrated using Vivascience 30 kDa molecular 

weight cut-off concentrators. The concentrated sample (less the 10 mg/mL) was 

applied to a HiPrep 16/60 Sephacryl S-500 HR column (GE Healthcare) for size 

exclusion chromatography. The proteins were eluted with 20 mM Tris pH 7.5, 150 

mM NaCl, 10 mM MgCl2, and concentrated to at least 10 mg/mL and stored at -80 

°C before crystallisation.  

4.2.3 His Tag Pull-Down Assay 

400 µg of individually purified His6-gp11 were immobilized by 400 µL nickel 

chelate beads and incubated with 87.5 µg of individually purified untagged gp6 

Δ27-472 in 20 mM Tris pH 7.5, 150 mM NaCl, 10 mM MgCl2 (total volume: 465 µL) 

for one hour at room temperature. The beads were washed three times with 

binding buffer to remove unbound proteins. Samples of total proteins, unbound 

proteins and bound proteins were analysed by 12% SDS-PAGE. As a control, the 

untagged gp6 Δ27-472 alone and the untagged gp11 alone were also incubated 

with 200 µL nickel chelate beads in buffer 20 mM Tris pH 7.5, 150 mM NaCl, 10 

mM MgCl2 for one hour at room temperature.  

4.2.4 Size-Exclusion Chromatography coupled with Multi-Angle 
Laser Light Scattering (SEC–MALLS) 

The molecular mass was determined by size-exclusion chromatography coupled 

with multi-angle laser light scattering (SEC–MALLS). The protein sample, 60 µL of 

fraction A12 from size chromatography using a Superose 6 HR 10/30 column 

containing both gp6 Δ27-472 and gp11 at a concentration of 0.5 mg/mL, was 

applied to a BioSepTM SEC-s3000 gel filtration column (Phenomenex) equilibrated 

with buffer containing 20 mM Tris pH 7.5, 150 mM NaCl, 10 mM MgCl2. As a 

control, the separately purified gp6 Δ27-472 was analysed under the same 

conditions. Size-exclusion chromatography was carried out on a Shimadzu HPLC 

system and the elution was monitored at 280 nm by an SPD20A UV/Vis detector. 

Light-scattering data were recorded on a Dawn HELEOS-II 18-angle 

light-scattering detector and the concentration of the eluting protein was 

measured by an in-line Optilab rEX refractive-index monitor (Wyatt Technology). 

Data were analysed with the ASTRA V software package (Wyatt Technology). 
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Molecular mass was calculated using Zimm’s formalism of the Rayleigh–Debye–

Gans light-scattering model for dilute polymer solutions and a refractive-index 

increment (dn/dc) of 0.183 mL/g was used for the protein molecular mass 

estimation. 

4.2.5 Negative Staining Electron Microscopy 

The fraction A12 from size exclusion chromatography using a Superose 6 HR 

10/30 column containing both gp6 Δ27-472 and gp11 was diluted to a 

concentration suitable for single particle observation (~ 0.05 mg/mL). A 2 μL 

aliquot of the sample was applied to glow-discharged, continuous-carbon and 

formvar covered copper grids with a 300-square mesh. The dried sample was 

washed with MiliQ water and then stained with 2% uranyl acetate for two minutes. 

The grids were air-dried before inspection on a 200 kV FEI F20 electron 

microscope at a magnification of 100, 000x. Imaging was performed in a low 

electron dose mode. 10 micrographs were recorded and approximately 1200 

protein particles were selected for image analysis. These experiments were 

performed by Elena Orlova at Birkbeck College, University of London. 

4.2.6 Crystallisation and Data Collection 

The sitting-drop vapour diffusion method was used for initial crystallisation 

screening. Drops containing 150 nL protein solution and 150 nL reservoir solution 

were dispensed by a Mosquito Nanolitre Pipetting robot (TTP Lab-tech) in 96-well 

plates, and equilibrated against 60 µL of reservoir solution. To obtain initial crystal 

hits, crystal trays with the MPD screen were set up. Conditions in which small 

crystals grew were optimised in 24-well hanging-drop plates by manual pipetting. 

Crystals were tested in-house using a Rigaku RU-H3R rotating-anode generator 

equipped with Osmic multilayer optics and a MAR Research MAR345 

imaging-plate detector. Native data were collected from a single crystal on the 

Diamond I04-1 beamline at the synchrotron to 2.8 Å resolution at 0.92 Å 

wavelength. Cryosolutions were not added for crystal freezing as 40% MPD was 

already present in the crystallisation condition. The data were processed using 

XDS.  
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4.2.7 Structure Determination and Refinement 

All crystallographic calculations were performed using the CCP4 program package 

(Winn et al, 2011b). The X-ray structure of gp6 Δ27-472 was solved by molecular 

replacement using PHASER (Mccoy et al, 2007) with a single subunit of gp6 

Δ29-466 as the search model. The search model was generated by the combination 

of two structures - residues 29 to 340 (including the disordered wing region) from 

a 2.9 Å resolution structure of 14-mer (unpublished data available in the group), 

and residues 341 to 466 from the 3.4 Å resolution structure of 13-mer.  

Refinement was carried out by REFMAC (Murshudov et al, 1997). The model was 

built using COOT (Emsley & Cowtan, 2004), and further corrected using maps 

calculated with maximum likelihood-weighted coefficients 2|Fo| - |Fc| and |Fo| - |Fc|. 

All figures were generated using PyMOL (Schrodinger, 2010).  

4.3 Results 

4.3.1 Cloning, Co-expression and Purification of Portal Protein 
and Scaffolding Protein  

The gene encoding full-length gp11 was cloned into the restriction sites NdeI and 

XhoI of vector pET28a to form plasmid pYM184 for the expression of N-terminal 

hexahistidine-tagged protein, and the plasmid pYM70 was successfully cloned with 

the gene encoding gp6 Δ27-472 ligated into the NcoI and BamHI sites of vector 

pACYCDuet to express the untagged gp6 Δ27-472. The plasmids pYM70 and 

pYM184 with compatible replicon and antibiotic resistance were transformed into 

the same competent E. coli cell for the co-expression of the His-tagged full-length 

scaffolding protein gp11 and the untagged truncated portal protein gp6 Δ27-472.  

Gp6 Δ27-472 and full-length gp11 were both over-expressed in soluble form in the 

same E. coli B834 cells at 16 °C (Figure 4-1). The purification was performed by 

nickel affinity chromatography followed by size exclusion chromatography. The 

fractions containing both gp6 and gp11 were eluted at an imidazole concentration 

between 162 mM and 255 mM (Figure 4-2A). During size exclusion 

chromatography, the elution profile on a Superose 6 HR 10/30 column showed 

peaks corresponding to aggregate, fractions containing both gp6 and gp11 
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(A11-B2), and fractions containing excess gp11 (Figure 4-2B). However, the 

elution profile on a HiPrep 16/60 Sephacryl S-500 HR column corresponded to an 

overlapping elution of the two separate proteins, but no fraction containing both 

proteins was eluted before the gp6 fractions (Figure 4-2C). 

 

Figure 4-1 Co-expression of gp6 Δ27-472 and full-length gp11. 

The co-expression of the two proteins was carried out in E. coli B834 cells induced at 

16 °C.  

 

A 



89 

 

 

 

A 

B 

C 



90 

Figure 4-2 Purification of the co-expressed gp6 Δ27-472 and gp11.  
(A) Purification by nickel affinity chromatography; (B) Purification by size exclusion 

chromatography on a Superose 6 HR 10/30 column, the sample loaded on the 

column was the pool of fractions containing both gp6 and gp11 from nickel affinity 

chromatography (Fractions D3-F5), and the running buffer was 20 mM Tris pH 7.5, 

150 mM NaCl, 10 mM MgCl2; (C) Purification by size exclusion chromatography on a 

HiPrep 16/60 Sephacryl S-500 HR column, the sample loaded on the column was the 

pool of fractions containing both gp6 and gp11 from nickel affinity chromatography 

(Fractions D3-F5), and the running buffer was 20 mM Tris pH 7.5, 150 mM NaCl, 10 

mM MgCl2. The elution profile was shown on the top panel. The same protein samples 

at 16 mg/mL (coloured in blue) and 1 mg/mL (coloured in red) were separately run 

on the column to compare the effect of the sample’s concentration on the elution 

profile. Samples containing gp6 alone (coloured in black) and gp11 alone (coloured 

in green) were run as controls. As shown on the bottom panel, the elution fractions 

from the run of the concentrated sample at 16 mg/mL were analysed by 12% 

SDS-PAG. S: the sample for purification containing both gp6 and gp11 from nickel 

affinity chromatography (Fraction D3-F5). A1-B9: the purification fractions as 

illustrated on the elution profile on the top panel. 

4.3.2 Probing If a His-Tag Pull-Down Assay Could Be Used to 
Detect Interaction between the Portal Protein and the 
Scaffolding Protein 

Because the full-length gp11 was expressed with an N-terminal histidine affinity 

tag and the gp6 Δ27-472 didn’t contain a histidine tag, the initial plan was to detect 

the interaction between gp6 and gp11 by His-tag pull down assays. Unexpectedly, 

preliminary results showed that the untagged gp6 Δ27-472 and the untagged gp11 

were both able to bind to nickel-chelate beads in the absence of the polyhistidine 

tag (Figure 4-3). Consequently, His tag pull down assays cannot be employed to 

detect interactions between the two proteins. 
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Figure 4-3 His-tag pull down assays of gp6 Δ27-472 and gp11.  
Untagged gp6 Δ27-472 and untagged gp11 were able to bind to nickel chelate beads. 

(A) Pull down assay with samples: his-tagged gp11, untagged gp6, and the mixture of 

His-tagged gp11 with untagged gp6; (B) Pull down assay with samples his-tagged 

gp6 and untagged gp11. Total proteins, unbound proteins and bound proteins were 

analysed by 12% SDS-PAGE.  

4.3.3 Oligomeric State Analysis by SEC-MALLS  

The recombinant protein construct YM70 consists of 446-amino acid long 

untagged portal protein gp6 Δ27-472 and two residues introduced by the vector - 

Met and Gly. The theoretical molecular mass calculated by ProtParam is 51615.6 

Da. 
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In order to determine the oligomeric state of the portal protein after co-expression 

with the scaffolding protein, the fraction A12 from size-exclusion chromatography 

on a Superose 6 HR 10/30 column containing both gp6 and gp11 was investigated 

by SEC-MALLS on a BioSepTM SEC-s3000 gel filtration column (Phenomenex) 

equilibrated with 20 mM Tris (pH 7.5), 150 mM NaCl, and 10 mM MgCl2.  

The elution profile of the size-exclusion chromatography on a BioSepTM SEC-s3000 

gel filtration column showed separate peaks corresponding to gp6 alone and gp11 

alone respectively, but there was no peak corresponding to the complex of the two 

proteins. SEC-MALLS data showed the mean molecular weight of the peak 

corresponding to gp6 Δ27-472 alone as 629.2 kDa, or ~12.2 subunits per oligomer 

in solution (Figure 4-4). Meanwhile, the separately produced gp6 Δ27-472 was 

also subject to SEC-MALLS characterisation under the same experimental 

conditions as a control. The molecular weight of gp6 Δ27-472 control was 

determined to be 679.3 kDa, or ~13.2 mer subunits per oligomer, which suggested 

gp6 as a 13mer in solution.  

 

Figure 4-4 Characterisation of the oligomeric state of the co-expressed gp6 by SEC–
MALLS.  
The thin line corresponds to the absorbance monitored at 280 nm. The thick line 

shows the molecular weight calculated for the eluted species. Separately produced 

gp6 was applied as a control and coloured in blue, whereas the elution of 

co-expressed gp6 was coloured in red. 
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4.3.4 Determination of the Oligomeric State by Negative Staining 
Electron Microscopy 

The fraction A12 from size exclusion chromatography on a Superose 6 HR 10/30 

column containing both gp6 Δ27-472 and gp11 was also investigated by negative 

staining electron microscopy to characterise the oligomeric state of gp6, and the 

interaction between gp6 and gp11. Gp6 ring-like particles were observed and the 

preliminary analysis of eigen images clearly showed 13-fold symmetry of gp6 

(Figure 4-5). Interestingly, there seemed to be several gp11 molecules attached to 

the gp6 complex as well.  

 

Figure 4-5 Negative staining electron microscopy analysis of the co-expressed gp6 
and gp11.  
The bottom row represented averages of end views (not symmetrised), and arrows 

indicated possible positions of gp11. The sample subject to observation was the 

fraction from gel filtration purification containing the mixtures of gp6 Δ27-472 and 

gp11. 

4.3.5 Crystallisation of Gp6 Δ27-472 

The protein sample used for crystallisation was prepared after co-expression with 

gp11, nickel affinity chromatography and size exclusion chromatography on a 

HiPrep 16/60 Sephacryl S-500 HR column. The fractions containing gp6 alone 

were collected and concentrated to 19 mg/mL. Here, gp6 Δ27-472 exhibited a very 
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high crystallisation propensity under MPD screen conditions. The best diffracting 

crystals were produced under the conditions 0.2 M Lithium acetate, 40% MPD 

(condition B12 of MPD screen) and 0.1 M Tris pH 8.0, 40% MPD (condition F5 of 

MPD screen). Crystals from both conditions were tested in-house, with diffraction 

extending to approximately 3.7 Å resolution. The best crystals were stored and 

shipped to the Diamond Light Source for collection of a complete data set. Sets of 

complete X-ray data were collected from three different crystals. The best data set 

extended to a resolution of 2.8 Å (beamline I04-1, Diamond Light Source, Figure 

4-6).  

 

Figure 4-6 Diffraction image.   
Resolution at the edges of the plate is 1.88 Å. 

4.3.6 Structure Determination 

The X-ray dataset from the best crystal was indexed and integrated using XDS and 

the space group was determined to be C2 with unit cell dimensions of a=224.8 Å, 

b=176.8 Å, c=208.1 Å, β=112.45°. The data were further processed using the CCP4 

program AIMLESS. Statistics of the merged data are shown in Table 4-1. 
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The crystallographic calculations were performed using the CCP4 program 

package (Winn et al, 2011b). The structure of gp6 Δ27-472 was solved by 

molecular replacement using PHASER (Mccoy et al, 2007), with a single subunit of 

gp6 Δ29-466 as the search model. The model was refined at 2.8 Å to the final Rfree 

of 26.6% (Rfactor=20.7%) (Table 4-1). The electron density of the wild type gp6 is 

well defined for most amino acids, including Asn365 (Figure 4-7 shows electron 

density at 2 σ coutouring level). This is the residue which was substituted by lysine 

in the previously determined structure of gp6 (Lebedev et al, 2007).  

Like N365K mutant gp6, the isolated wild type protein forms 13-subunit assembly 

(Figure 4-8). The superposition of Cα traces for the subunits of the wild type and 

the N365K mutant gp6 reveals identical folds (Figure 4-9). Most significant 

conformational differences are found in the tunnel loop segment, a loop in the clip, 

and in the crown domain (Figure 4-9). In addition, the segment from residue 170 

to 238, which was poorly defined in the structure of N365K gp6, is well defined in 

the current model. 

 

Figure 4-7 Electron density of the residue Asn365 in the WT gp6 shown on 2|Fo| - |Fc| 
map. 
The coutouring level is 2 σ. 
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Figure 4-8 Structure of the wild-type gp6.                                 (A) 

(A) Ribbon diagram representing the top view of the wild-type gp6; (B) Ribbon 

diagram representing a side view of the wild-type gp6. 

 

Figure 4-9 Superposition of Cα traces for the subunit of the WT gp6 and the N365K 
mutant gp6.   
The wild type gp6 is coloured in green, and the N365K mutant gp6 structure is coloured in 

magenta.  

 
In both wild type and mutant gp6, residue 365 is involved in subunit-subunit 

interactions. In the wild type gp6, Asn356 participates in the formation of two 

hydrogen bonding interactions with Asn349 of adjacent subunit: one hydrogen 

bond is formed between the side chain amine hydrogen of Asn356 and the 

backbone carbonyl oxygen of Asn349, and the other hydrogen bond is formed 
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between the side chain carbonyl oxygen of Asn356 and the side chain amine 

hydrogen of Asn349 (Figure 4-10A). In contrast, in the N365K gp6, Lys365 forms 

only one hydrogen bonding interaction, between its side chain amine hydrogen 

and the backbone carbonyl oxygen of Gly357 from an adjacent subunit (Figure 

4-10B). The side chain of this lysine residue also makes van der waals interactions 

with Asn349 of this tunnel loop, being directed towards its centre by the hydrogen 

bonding interactions. These inter-subunit interactions could play an important 

role in maintaining the functional structure of the 15-residue tunnel loops 

(345-359), which constitute the most constricted part of the tunnel and would 

form close contacts with DNA during its translocation (Lebedev et al, 2007). The 

flexibility of tunnel loops is considered to be crucial for the packaging of DNA into 

procapsids. It is noteworthy that the residues involved in the hydrogen bonding 

contacts with Asn365/Lys356 are different - Gly357 in the mutant gp6 and Asn349 

in the wild type gp6. Both residues are located within the tunnel loop, however, 

occupy opposite positions - Gly357 is situated at the top , close to the C-terminus 

of the tunnel loop, while Asn349 is at the bottom in the N-terminal part of the loop. 

Compared to the wild type gp6, the inter-subunit hydrogen bonding interaction 

between Gly357 and Lys365 and van der Waals interactions in the mutant gp6 

could restrict tunnel loop’s conformation reducing its flexibility. This suggestion is 

supported by comparison of the tunnel loop’s electron density which reveals it is 

better defined in the case of the N365K mutant gp6. The reduced flexibility of the 

tunnel loops could account for the different behaviour of capsids containing the 

mutant gp6: previous studies showed that the N365K substitution resulted in 

reduction of the length of the encapsidated DNA, although the DNA packaging 

process was not impaired (Tavares et al, 1992).  
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Figure 4-10 Comparison of the hydrogen-bonding interactions formed by Asn365 in 
the WT gp6 and Lys365 in the mutant gp6.   

(A) Two hydrogen bonds are formed between Asn365 and Asn349 in the wild type 

gp6, (B) one hydrogen bond is formed between Lys365 and Gly357 in the mutant gp6. 

All strong hydrogen bonding interactions are shown as dotted lines, and the adjacent 

subunits are coloured in green and magenta, respectively.  

Table 4-1 Crystallographic statistics 

Data collection statistics  

X-ray source I04-1,  Diamond 

Wavelength, Å 0.92 

Temperature, K 100  

Space group C2 

Unit cell parameters, Å a=224.8, b=176.8, c=208.1 

 α=90°,  β=112.5°,  γ=90° 

Resolution Range, Å 48.30 – 2.80 (2.85-2.80) 

No. of unique reflections 179891(8876) 

Rmergea, % 10.1 (107.5) 

Completeness, % 98.9 (98.8) 

Redundancy 3.5 (3.5) 

Average I/ σ(I) 9.4 (1.1) 

Refinement statistics  

No. reflections 178069 

Rwork/ Rfree,% 20.7/26.6 

Number of water molecules 328 

R.m.s deviation from ideal bond length, Å 0.0046 

R.m.s deviation from ideal bond angles, ° 0.8391 

Ramachandran Plot, %  

  In preferred regions 94.72 

  In allowed regions 

 

4.72 

  Outliers 0.56 

aRmerge = ∑hkl ∑i |Ii (h,k,l)-<I(h,k,l)>| / ∑hkl ∑i Ii (h,k,l), where I(h,k,l) is the intensity of 

reflection, <I(h,k,l)> is the average value of the intensity, the sum ∑hkl is over all measured 

reflections and the sum ∑i is over i measurements of a reflection. Values in parentheses 

are for the highest-resolution shell. 
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4.4 Discussion 

In this study, the full-length SPP1 scaffolding protein gp11 was co-expressed with 

the portal protein gp6 Δ27-472 in E. coli cells with the aim to induce the formation 

of a 12-subunit gp6 assembly in the presence of the capsid morphogenesis protein 

gp11.  The two proteins were successfully co-expressed in the same cell. 

Purification of the two proteins was carried out by nickel affinity chromatography 

and size exclusion chromatography. Fractions containing both proteins were 

eluted from size exclusion chromatography with a Superose 6 HR 10/30 column, 

whereas fractions eluted from a HiPrep 16/60 Sephacryl S-500 HR column 

corresponded to separate proteins. His-tag pull-down assays revealed the 

untagged gp6 Δ27-472 was able to bind to nickel chelate beads. Therefore, the 

binding of untagged gp6 to a HiTrap affinity column was unlikely to be caused by 

the interaction with his-tagged gp11. Moreover, fractions containing both proteins 

that were eluted from size exclusion chromatography are more likely due to an 

overlapping elution of the two separate proteins instead of the gp6-gp11 complex.  

The SEC-MALLS data on the size-exclusion chromatography fraction containing 

both gp6 and gp11 showed two peaks corresponding to individual proteins. 

Calculated oligomeric state of the peak corresponding to gp6 was 12.2 subunits, 

suggesting a 12-mer assembly. A control experiment with separately produced 

gp6 had a calculated oligomeric state of 13.2 subunits, indicating a 13-mer 

assembly. However, the oligomeric state of the gp6 co-expressed with gp11 was 

shown to be 13 subunits by negative staining electron microscopy and by 

crystallographic analysis. These observations demonstrate that the SEC-MALLS 

data could be misleading in determining the oligomeric state of proteins 

containing more than ~10 subunits. This is due to the limitation on the accuracy of 

a single SEC/LS experiment, which is ±5% for protein standards ranging from 12 

to 475 kDa (Folta-Stogniew & Williams, 1999). Compared to SEC-MALLS, analysis 

of oligomers by negative staining electron microscopy can provide more reliable 

data for characterisation of large assemblies like gp6. 

The 2.8 Å resolution structure of the wild type gp6 Δ27-472 shows that the 

architecture of the 13-fold symmetrical molecule is the same as observed 
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previously in the 3.4 Å resolution structure of the  N365K mutant protein (PDB 

entry: 2JES). The structure reveals differences in interaction between tunnel loops 

of adjacent subunits, notably differences in hydrogen bonding interactions, which 

are likely to be important for normal functioning of the motor. Residues from 170 

to 238, poorly defined in the structure of the mutant gp6, are resolved in the 

current structure.  

Research described in this thesis used truncated gp6 protein lacking 31 residues at 

the C-terminus. Such truncation has led to better diffracting crystals of the portal 

protein. The C-terminal segment is negatively charged due to the presence of 

stretches of Asp and Glu residues. Since the C-terminus is exposed towards the 

interior of the capsid, this negatively charged segment could be important for the 

interaction with gp11. Future work should be directed towards co-expressing gp6 

containing a complete C-terminus with the full-length gp11 and characterising the 

oligomeric state of gp6 by negative staining electron microscopy. Crystallographic 

analysis would be carried out if the natural 12-mer assembly of portal protein, 

observed in mature viral particles, could be obtained.  
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5 The SPP1 Scaffolding Protein 

5.1 Introduction 

5.1.1 Scaffolding Proteins from dsDNA Bacteriophages  

The procapsid is a transient precursor structure composed of the portal protein, 

coat proteins and scaffolding proteins present in double-stranded DNA 

bacteriophages and herpes viruses. Some viruses require both internal scaffolding 

proteins and external scaffolding proteins to accomplish procapsid assembly, and 

others only require internal scaffolding proteins. Scaffolding proteins play a 

catalytic role in the polymerisation of coat proteins with correct geometry. In 

several viral systems, a mixture of purified scaffolding and coat proteins can yield 

virus-like particles in vitro (Cerritelli & Studier, 1996; Dokland et al, 2002; Fu et al, 

2007; Lee & Guo, 1995; Newcomb et al, 1999; Prevelige et al, 1988; Wang et al, 

2000). Absence of scaffolding proteins will result in an aberrant procapsid 

structure and thus a non-infectious viral particle. Scaffolding proteins act as 

chaperones to prevent improper interactions and ensure the fidelity of the 

assembly process (Morais et al, 2004), but are subsequently removed during DNA 

encapsidation and are absent from the mature virion (Chang et al, 2008; 

Ziegelhoffer et al, 1992). 

One of the most well characterised scaffolding proteins is from Salmonella 

typhimurium Bacteriophage P22, a member of the Podoviridae family. P22 

scaffolding protein is found to initiate shell assembly and regulate the 

polymerisation of coat subunits into icosahedral procapsids in vitro (Prevelige et al, 

1988). There are approximately 250 molecules of internal scaffolding proteins 

located in the interior of the procapsid. Truncation mutants designed to define the 

regions of scaffolding protein responsible for the different aspects of its function 

(Weigele et al, 2005) revealed that amino acids 1-20 are nonessential. The 

scaffolding protein interacts with the coat protein via the C-terminal coat 

protein-binding domain (residues 238-303), with residues 280-294 constituting 

the minimal coat protein-binding site. The observations indicated that the 

N-terminal 57 residues are important for sensing the scaffolding protein release 
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signal to allow the scaffolding protein to exit the procapsid. Several residues 

between 229 and 238 are required for portal protein recruitment. 

Structural characteristics of the C-terminus from P22 scaffolding protein have 

been studied using circular dichroism, and nuclear magnetic resonance (NMR) 

(Parker et al, 1997; Sun et al, 2000). Stable secondary structure elements are 

present in the 163-amino acid carboxyl-terminal fragment (Parker et al, 1997), 

and a helix-loop-helix motif stabilized by a hydrophobic core is defined by NMR in 

the solution structure of the coat protein-binding domain (residues 238-303, 

Figure 5-1) (Sun et al, 2000). The association of scaffolding and coat proteins is 

mediated mainly by ionic interactions. Residues R293 and K296 are particularly 

important for coat protein binding (Cortines et al, 2011; Padilla-Meier et al, 2012). 

There is limited knowledge of the structure of the P22 scaffolding protein beyond 

the NMR structure of the extreme C-terminus coat protein-binding domain. It is 

suggested that the full-length protein structure is predominantly composed of two 

α-helical elongated domains connected by unstructured regions (Tuma et al, 1998). 

A conformational change upon assembly occurs, because the N-terminus and the 

C-terminus are proximate in solution, however, the N-terminus is no longer 

accessible to the C-terminus when assembled into procapsids (Padilla-Meier & 

Teschke, 2011). 

 

Figure 5-1 The structure of the coat protein-binding domain of the P22 scaffolding 
protein.  
(A) The minimal coat binding domain is highlighted; (B) The hydrophobic residues 

involved in the hydrophobic core are illustrated in purple and basic residues in blue. 

A B 
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The structure was determined by NMR, and the figure was adapted from (Sun et al, 

2000).   

The reconstructed P22 procapsid at 8.7Å resolution by cryo-EM (Chen et al, 2011b) 

showed a set of scaffolding subunits interacting with both the portal and coat 

subunits (Figure 5-2). The “loop” in the helix-loop-helix motif of the scaffolding 

protein is in close contact with the wing domain of the portal protein indicating an 

extensive interaction, and the number of scaffolding protein interacting with the 

portal is suggested to be 10 (Figure 5-2).    

 

Figure 5-2 Cryo-EM reconstruction of the P22 procapsid. 
(A) The C termini of 10 scaffolding proteins are labelled from 1 to 10, from five 

hexamers (circled) surrounding the portal vertex. (B) Side view of the interaction 

model among the 10 scaffolding protein C termini (red cylinders), coat proteins 

(ribbons), and the 12-fold averaged portal density (grey). The figure was adapted 

from (Chen et al, 2011b). 

Scaffolding proteins have been successfully purified from other bacteriophages 

such as bacteriophage λ (Ziegelhoffer et al, 1992), SPP1 (Poh et al, 2008), and 

phi29. Biophysical data indicate that scaffolding proteins possess an unusually 

elongated shape (Ziegelhoffer et al, 1992). Currently, the only available x-ray 

structures of scaffolding proteins are from phi29, from both before and after 

prohead assembly (Figure 5-3). The structures revealed that phi29 scaffolding 

protein is a homodimer that resembles an arrow with a four helix bundle 

composing the arrowhead and a coiled coil forming the tail (Morais et al, 2003). 

A B 
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The α-helical structure of the scaffolding protein is shown to be a conserved 

characteristic, which assists the association of the major capsid protein (Morais et 

al, 2003; Sun et al, 2000).   

 

Figure 5-3 Ribbon diagram of the structure of the phi29 scaffolding protein.  

The figure was adapted from (Morais et al, 2003). 

5.1.2 The SPP1 Scaffolding Protein 

The SPP1 scaffolding protein is gp11, with the full-length protein being 214 amino 

acids in size and having a subunit molecular mass of 23.5 kDa. A study on head 

morphogenesis genes discovered the importance of gp11 in the formation of 

normal proheads by the major capsid protein gp13 (Becker et al, 1997). Gp11 

directs the polymerisation of major capsid protein subunits to form the required 

correct geometry for the icosahedral procapsid structure (Becker et al, 1997). 

Gp11 only interacts with gp13 when they are co-produced where they can yield 

procapsid-like structures, whilst no interaction was detected when synthesised 

separately and mixed in vitro (Droge et al, 2000).  When gp11 is co-expressed 

with gp6 and gp13, biologically active procapsids competent for DNA packaging in 

vitro can be formed. The stable interaction between gp6 and the two major 

procapsid proteins gp13 and gp11 was detected only when the three proteins 

were co-produced (Droge et al, 2000). 

As with internal scaffolding proteins from other phages, the SPP1 scaffolding 

protein is also predicted to be an α-helix rich molecule with a very elongated shape. 

The organisation of purified oligomeric gp11-His6 was characterised to be a 

tetramer in solution. The MALDI mass spectra of gp11-His6 cross-linked with 0.25% 
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glutaraldehyde implied the tetramer is a dimer formed from gp11-His6 dimers 

(Poh et al, 2008). There is very low amino acid sequence similarity shown among 

the scaffolding proteins from the bacteriophage SPP1, P22 and phi29. 

 

Figure 5-4 Multiple sequence alignment of scaffolding proteins from the 
bacteriophage SPP1, P22 and phi29. The alignment was performed using ClustalW. 

5.2 Methods and Materials 

5.2.1 Cloning of Gp11 Constructs 

The SPP1 genomic DNA was served as the template for the PCR reaction. The 

primers were designed to introduce specific endonuclease restriction sites and 

amplify the required DNA fragments (Table 5-3) and synthesised by Eurofins 

MWG Operon, Ebersberg, Germany (purification level: salt free).  Amplification of 

the required ORF by PCR was performed in a 50 L reaction vial with the 

components listed in Table 5-1 under thermocycling conditions shown in Table 

5-2. The insert was cloned into vectors pET28a, pCDFDuet-1, pGEX6P-3, Lic (-), Lic 

(+), and pET22b for different purposes. The correct inserts were verified by DNA 

sequencing (GATC Biotech) and alignment analysis (Clustal W).  



106 

   Table 5-1 PCR reaction components 

Component Amount in 50 μL reaction  Final concentration 

F Primer (2 µM) 12.5 µL 0.5 µM 

R Primer (2 µM) 12.5 µL 0.5 µM 

5X Phusion HF Buffer 10 µL 1X 

dNTPs (25 mM each) 0.4 µL 0.2 mM 

Phusion®  DNA Polymerase 0.5 µL 1.0 unit 

Template DNA 0.5 µL < 250 ng 

dH2O Up to 50 µL  

 

Table 5-2 Thermocycling conditions for a routine PCR 

Step Temperature Time 

Initial Denaturation  98 °C  2 minutes 

30 Cycles  98 °C 
55 °C 
72°C  

30 seconds 
30 seconds 
15-30 seconds per kb  Final Extension  72 °C  5 minutes  

Hold  4 °C    

Table 5-3 Primers for the cloning of gp11 constructs 

Primer Sequence (5’-3’) 

GP11-F1 GGG AAT TCC ATA TGA TGA GTT TGA AAG AGC AG 

GP11-R1 GAG CCG CTC GAG TTA CTG TGC TTC TGC TTG TAG 

GP11_F2_BamH1 CGG GAT CCA TGA GTT TGA AAG AGC AGT TAG  

GP11-R2  GAG GAG AAG GCG CGT TAC TGT GCT TCT GCT TGT AGC  

GP11-F3  CAC CAC CAC CAC CCG AAA GAA AAG TTT GAC GCT GTT  

GP11-F3_3c  CCA GGG ACC AGC ACC GAA AGA AAA GTT TGA CGC TGT T  

GP11-F4  CAC CAC CAC CAC TTT GAC GCT GTT AAC AGT GAG AAG  

GP11-F4_3c  CCA GGG ACC AGC ATT TGA CGC TGT TAA CAG TGA GAA G  

GP11-F5  CAC CAC CAC CAC GGC CCG GAT TTC AAC CTC A  

GP11-F5_3C  CCA GGG ACC AGC AGG CCC GGA TTT CAA CCT CA  

GP11-R3  GAG GAG AAG GCG CGT TAA CCT TTA AAG AGA TAG TCC TC 

Gp11_infusion_F1 AAG GAG ATA TAC ATA TGA TGA GTT TGA AAG AGC AGT TAG G 

Gp11_infusion_R1 GTG CGG CCG CAA GCT TTT ATT TAA AGA GAT AGT CCT CTT GT 

Gp11_infusion_F2 ATC ACC ACC ACC ACA TGA GTT TGA AAG AGC AGT TAG G 

Gp11_infusion_R2 TGA GGA GAA GGC GCG TTA TTT AAA GAG ATA GTC CTC TTG T 
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5.2.2 Expression and Purification of Gp11 

The plasmids were transformed into Escherichia coli expression strain Rosetta2 

cells. The plasmid pYM209 encoding the N-terminal GST tagged gp11 and the 

plasmids (pYM210, pYM212, pYM222, pYM223, and pYM224) encoding the 

truncated gp11 were transformed into E. coli expression strain B834. A single 

colony from a Luria–Bertani (LB) agar plate containing the appropriate antibiotics 

for the different vectors (e.g. 30 µg/mL kanamycin for pET28a vector and 50 

µg/mL streptomycin for pCDFDuet-1 vector) was picked to inoculate a small 

overnight culture at 37 °C. 5 mL aliquots of the overnight culture were used to 

inoculate a 500 mL culture the following day. The 500 mL Culture were grown at 

37 °C until the mid-log growth phase (OD600 of 0.6–0.8) was reached, at which 

point protein expression was induced by the addition of 

isopropyl-d-1-thiolgalactopyranoside (IPTG) to a final concentration of 1 mM. 

Lastly, overnight incubation of the culture at 16 °C and 180 r.p.m was carried out 

for the over-expression of proteins. Cells were recovered by centrifugation in 

SORRALL®  RC 5B plus for 20 minutes at 5000 g, 4 °C. Supernatant was removed 

and the cell pellet was stored at -20 °C.  

The cell pellet was resuspended in nickel affinity chromatography binding buffer, 

20 mM Tris pH 7.5, 150 mM NaCl, 50 mM Imidazole, supplemented with a 

combination of 100 µg/mL lysozyme and protease inhibitors (1 mM AEBSF and 0.7 

µg/mL pepstatin). Cells were disrupted by sonication with a large probe in glass 

beaker using short pulses of 30 seconds, with a two-minute resting time between 

pulses. The sonication was carried out on ice, with caution to minimise thermal 

damage to the protein extract. The cell debris was removed by centrifugation at 

38758 g for 30 minutes at 4 °C using a Sorvall SS34 rotor. The supernatant was 

collected and then cleared with a 0.45 mm filter (Millipore). The filtrate loaded 

onto a 5 mL HiTrap column (GE Healthcare) equilibrated with binding buffer for 

nickel affinity chromatography purification.  

The bound protein was eluted with an increasing proportion of elution buffer 

containing 20 mM Tris pH 7.5, 150 mM NaCl, and 500 mM imidazole. Fractions 

containing gp11 were pooled together. To obtain untagged gp11, a thrombin 

digestion step was performed to remove the histidine tag. Instead of a second 
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nickel affinity chromatography, MonoQ high-resolution ion-exchange 

chromatography was carried out to remove thrombin and the cleaved histidine tag, 

because the untagged gp11 can also bind to nickel. To ensure the complete 

removal of the histidine tag, an excess amount of thrombin (Amersham 

Biosciences) was used - 10 cleavage units of thrombin solution per mg for 

overnight digestion at 4 °C.  The cleavage of the tag was confirmed by MALDI-MS. 

Once digestion was complete, the buffer was exchanged by extensive dialysis 

against the low ionic loading buffer 20 mM Tris pH 7.5, 50 mM NaCl for ion 

exchange chromatography. 

Fractions containing gp11 from nickel affinity chromatography and buffer 

exchanged against the Ion exchange chromatography loading buffer were loaded 

onto an 8 ml column of Mono Q 10/100 GL (GE Healthcare) equilibrated with 

loading buffer 20 mM Tris pH 7.5, 50 mM NaCl, and washed with 10 column 

volumes of the loading buffer to wash out unbound proteins. The bound protein 

was eluted with an increasing proportion of elution buffer containing 20 mM Tris 

pH 7.5, 1 M NaCl. Fractions containing gp11 were pooled together, and 

concentrated using Vivascience 30 kDa molecular weight cut-off concentrators.  

The concentrated sample (less the 10 mg/mL) was applied to a HiPrep 16/60 

Sephacryl S-500 HR column (GE Healthcare) for size exclusion chromatography as 

the final polishing step to remove any high-molecular-weight aggregates and 

obtain the fusion proteins with the appropriate molecular weight. The proteins 

were eluted with GF buffer (20mM Tris pH 7.5, 150 mM NaCl), concentrated to at 

least 10 mg/mL and stored at -80 °C for crystallisation.  

5.2.3 Size-Exclusion Chromatography coupled with Multi-Angle 
Laser Light Scattering (SEC–MALLS) 

The molecular mass was determined by size-exclusion chromatography coupled 

with multi-angle laser light scattering (SEC–MALLS). The protein sample (60 µL) 

with a concentration of 0.5 mg/mL was applied on a BioSep SEC-s3000 gel 

filtration column (Phenomenex) equilibrated with buffer containing 20mM Tris pH 

7.5, 150 mM NaCl. Size-exclusion chromatography was carried out on a Shimadzu 

HPLC system and the elution was monitored at 280 nm by an SPD20A UV/Vis 
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detector. Light-scattering data were recorded by a Dawn HELEOS-II 18-angle 

light-scattering detector and the concentration of the eluting protein was 

measured by an in-line Optilab rEX refractive-index monitor (Wyatt Technology). 

Data were analysed with the ASTRA V software package (Wyatt Technology). 

Molecular mass was calculated using Zimm’s formalism of the Rayleigh–Debye–

Gans light-scattering model for dilute polymer solutions and a refractive-index 

increment (dn/dc) of 0.183 mL/g was used for the protein molecular mass 

estimation. 

5.2.4 Crystallisation 

The sitting-drop vapour diffusion method was used for the initial crystallisation 

screen. Drops containing 150/300 nL protein solution and 150 nL reservoir 

solution were dispensed by a Mosquito Nanolitre Pipetting robot (TTP Lab-tech) 

in 96-well plates, and equilibrated against 54 µL of reservoir solution at 20 °C or 

4 °C. The search for suitable crystallisation conditions was performed using 

several commercial screens such as Index, PACT, Clear Strategy Screens I and II, 

Morpheus, JCSG, Ammonium sulphate and MPD. Conditions from MorpheusTM 

screen (Molecular Dimensions) growing small crystals were optimised in 24-well 

hanging-drop plates with manual pipetting. Crystals were tested using a Rigaku 

RU-H3R rotating-anode X-ray generator equipped with Osmic multilayer optics 

and a MAR Research MAR345 imaging-plate detector. 

5.2.5 Limited Proteolysis 

Chymotrypsin concentration used in proteolysis studies was 50 ng/µL, and the 

protein concentration used was 2 mg/mL. The total volume of the reaction was 10 

µL, and 20mM Tris pH 7.5, 150mM NaCl was the buffer for the reaction. Untagged 

full-length gp11 (after tag removal from YM184) and chymotrypsin were mixed in 

ratios of 1:200, 1:100 and 1:50, and incubated for one hour at room temperature. 

The digestion of gp11 by chymotrypsin was monitored on 15% SDS – PAGE. The 

reaction was quenched by the addition of PMSF to the final concentration of 2 mM 

before the sample was sent for analysis by electrospray ionisation mass 

spectrometry.   
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Table 5-4 Conditions for chymotrypsin digestion of full length gp11 

 Reaction YM184  
(2 mg/ml) 

Chymotrypsin 
(50 ng/µL) 

Buffer Protease: protein 
ratio 

Time 

1 5 µL 1 µL 4 µL 1:200 1hr 

2 5 µL 2 µL 3 µL 1:100 1hr 

3 5 µL 4 µL 1 µL 1:50 1hr 

 YM184  
(2 mg/ml) 

Chymotrypsin 
(50 ng/µL) 

Buffer Protease: protein 
ratio 

Time 

4 5 µL 1 µL 4 µL 1:200 45 min 

5 5 µL 2 µL 3 µL 1:100 45 min 

6 5 µL 4 µL 1 µL 1:50 45 min 

7- Control 5 µL 0 µL 5 µL NA NA 
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5.3 Results 

5.3.1 Cloning, Expression and Purification of the Full-Length Gp11 

The gene encoding full-length gp11 was cloned into the restriction sites NdeI and 

XhoI of vector pET28a to form plasmid pYM184 for the expression of N-terminal 

hexahistidine-tagged protein, and cloned into the restriction sites NdeI and XhoI of 

vector pCDFDuet-1 to form plasmid pYM185 for the expression of untagged 

protein. Also, the full length gp11 encoding DNA sequence was cloned and ligated 

into the BamHI and XhoI sites of vector pGEX6P-3 to form plasmid pYM209 for the 

expression of the protein with an N-terminal glutathione S-transferase tag.  

The full-length gp11 with an N-terminal hexahistidine tag or N-terminal 

glutathione S-transferase tag were both successfully overexpressed in E. coli in 

soluble form. Pure and soluble His-tagged gp11 protein was obtained by a 

three-step purification procedure consisting of nickel affinity chromatography, 

MonoQ high-resolution ion-exchange chromatography, and size exclusion 

chromatography. The yield of the His-tagged gp11 from a 500 mL culture was up 

to ~75 mg with a concentration of 30 mg/mL in 20 mM Tris pH 7.5, 50 mM NaCl.  

An extra thrombin digestion step with an excess amount of thrombin and 

overnight digestion was used to completely remove the histidine tag. GST-tagged 

gp11 was purified by batch method with Glutathione SepharoseTM 4B, and then 

polished by gel filtration using a Superose®  6 HR 10/30 column. After the two-step 

purification the protein was not pure enough for further biochemical analysis, with 

several impurities still present (Figure 5-5A).  
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Figure 5-5 Purification of the GST-tagged full-length gp11.  
(A) The purification procedure of the GST-tagged gp11 by batch method using 

Glutathione Sepharose 4B beads was monitored on a 15% SDS PAGE gel, and the 

protein samples of cell lysate, soluble proteins, unbound proteins, bound proteins and 

eluted proteins were shown respectively; (B) The purification of the GST-tagged gp11 

by gel filtration using a Superose 6 HR 10/30. The elution profile was shown on the 

left panel with the red line indicating A260 abosorbance and the blue line indicating 

A280 absorbance. The corresponding fractions A8-B8 were analysed by 15% SDS 

PAGE gel as shown on the right panel. 

B 

A 
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5.3.2 Characterisation of the Full Length Gp11 by MALDI-MS and 
SEC-MALLS 

The hexahistidine-tagged gp11 consists of 234 amino acids including the 16-amino 

acid long thrombin cleavable histidine tag (HHHHHHSSGLVPRGSH) with a 

theoretical molecular mass of 25626.6 Da. The purified protein was analysed by 

MALDI-MS for the rapid identification and characterisation of the subunit 

molecular weight. The molecular weight detected by MALDI-MS was 25657.48 Da, 

which was in good agreement with the theoretical molecular weight (Figure 5-6 

A).  

A single monodispersed peak was observed during the size-exclusion 

chromatography, although the elution profile was broad, possibly due to the 

elongated shape of the scaffolding protein. SEC-MALLS data showed the mean 

molecular weight of the eluted species as 53.5 kDa, or ~2.1 subunits per oligomer, 

suggesting that gp11 is a dimer in solution (Figure 5-6 B).  

5.3.3 Gradual Degradation and Limited Proteolysis of Full-Length 
Gp11 

The full-length gp11 degraded gradually at 4 °C with a series of protein fragments 

detected on 15% SDS PAGE gel (Figure 5-7 A). A limited proteolysis experiment 

was performed to probe the stable truncated gp11. Gp11 was fully digested by 

chymotrypsin after 30 minutes at room temperature. The protein fragment after 

chymotrypsin digestion was subject to electrospray ionisation mass spectrometry, 

and the major peak detected corresponded to a molecular mass of 17.48 kDa 

(Figure 5-7 B). The potential digestion sites of gp11 by chymotrypsin were 

predicted using the ExPASy PeptideCutter tool (Wilkins et al, 1999). Chymotrypsin 

preferentially cleaves peptide amide bonds where the carboxyl side of the amide 

bond (the P1 position) is a tyrosine, tryptophan, or phenylalanine. According to 

the online tool and the molecular mass of the digested fragment determined by 

ESI-MS, three possible sets of digestion sites were predicted 40-199, 64-214, and 

1-153. 

http://en.wikipedia.org/wiki/Tyrosine
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Phenylalanine
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Figure 5-6 Analysis of His-tagged full-length gp11 by MALDI-MS (A) and SEC-MALLS 
(B).  

A 

B 
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Figure 5-7 Limited proteolysis analysis of full-length gp11. 
(A) Gradual degradation of the full-length gp11 was shown on a 15% SDS-PAGE gel; 

(B) The full length gp11 was digested with different protein: chymotrypsin ratios and 

digestion times, and the samples after digestion were analysed on a 15% SDS-PAGE 

gel shown on the top panel. The sample after digestion was also analysed by ESI-MS 

shown on the bottom panel, and the ESI-MS spectrum showed the major peak with a 

molecular weight of 17.48 kDa corresponding to the digested gp11 fragment that 

was highlighted on the top panel. 
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5.3.4 Design, Cloning, Expression and Purification of the 
Truncated Gp11 

Truncated constructs were designed based on the information from chymotrypsin 

digestion and disorder prediction, which suggested the C terminus starting from 

amino acid 155 was extremely disordered (Figure 5-8, Table 5-5). The 

corresponding DNA sequences were cloned and ligated into the vectors Lic (-), Lic 

(+), and pET22b to express the protein with: a non-cleavable N-terminal his tag, a 

cleavable N-terminal his tag and without any tag, respectively.  

 

Figure 5-8 Disorder in the C- terminal segment of gp11 starting from amino acid 
155. 
The prediction was performed by PrDOS (Ishida & Kinoshita, 2007). 

Table 5-5 List of truncated constructs of gp11 

plasmid Constructs Vector Tag 

pYM210 39-214 Lic(-) N-His6 

pYM212 39-155 Lic(-) N-His6 

pYM222 35-214 Lic(+) N-His6 

pYM223 39-155 Lic(+) N-His6 

pYM224 1-154 pET22b No tag 
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All the truncated gp11 proteins were produced in soluble form. Purification of the 

His-tagged protein was carried out by nickel affinity chromatography, MonoQ 

high-resolution ion-exchange chromatography, and lastly size exclusion 

chromatography. For the untagged protein, a Q FF column was used for the first 

step. Although it was possible to purify the truncated proteins, they proved to be 

less soluble and stable in comparison with the full-length gp11 and precipitated at 

protein concentrations higher than 10 mg/mL.  

5.3.5 Crystallisation of the Full-Length Gp11 

Among all the gp11 construct variants, the full-length gp11 exhibited higher 

crystallisation propensity than the constructs with truncated N- and C-termini. 

The hexahistidine-tagged gp11 at a concentration of 10 mg/mL in 20 mM Tris pH 

7.5, 50 mM NaCl was crystallised under reservoir conditions of 10% PEG 4000, 20% 

glycerol, 0.03 M of each divalent cation (CaCl2 and MgCl2), 0.1 M bicine/Trizma 

base pH 8.5 (condition A11 of MorpheusTM screen, Figure 5-9A). Optimisation 

based on this condition with variation of the PEG concentration generated more 

crystals of larger size - 50µm×45µm×35µm - that were checked for diffraction 

using the in-house Rigaku X-ray generator with Mar345 detector (Figure 5-9B). 

However, there was no diffraction observed from the optimised crystal. When the 

histidine tag was cleaved, the full length gp11 at a concentration of 14 mg/mL 

formed crystals under conditions of 10% PEG 4000, 20% glycerol, 0.03 M of each 

divalent cation (CaCl2 and MgCl2), 0.1 M bicine/Trizma base pH 8.5 (A11 of 

MorpheusTM screen, Figure 5-10 A), 10% PEG 8000, 20% ethylene glycol, 0.02 M of 

each alcohol, 0.1 M MOPS/HEPES-Na pH 7.5 (D6 of MorpheusTM screen, Figure 

5-10 B), and 10% PEG 8000, 20% ethylene glycol, 0.03 M of each ethylene glycol, 

0.1 M MOPS/HEPES-Na pH 7.5 (E6 of MorpheusTM screen,  Figure 5-10 C). 

Further optimisation of the untagged gp11 based on these conditions also failed to 

produce better diffracting crystals.  

 

 



118 

  

 

 

 

 

 

 

5.4 Discussion 

The full-length scaffolding protein gp11 from bacteriophage SPP1, with and 

without an N-terminal histidine tag, was successfully cloned, purified and 

crystallised. The GST-tagged version of the full-length gp11 was also cloned, but 

purification was not satisfactory, with considerable amounts of impurities 

presented after a two-step purification by batch method with Glutathione 

SepharoseTM 4B beads followed by size exclusion chromatography. The oligomeric 

state of the histidine tagged scaffolding protein in solution was determined to be 

dimeric. This result contradicts previous observations on the SPP1 gp11 that 

showed that a C-terminally histidine tagged protein formed tetramers in solution: 

a dimer of dimers was observed by sedimentation equilibrium centrifugation and 

MALDI mass spectrometry of cross-linked protein samples (Poh et al, 2008).  

The full-length gp11 protein was observed to degrade gradually and therefore a 

series of truncations were designed aiming to improve stability based on the 

Figure 5-9 Crystals of his-tagged full-length gp11.  
Crystals obtained using MorpheusTM screen condition A11 before (A) and after (B) 

optimisation. 

Figure 5-10 Crystals of untagged full-length gp11.  
Initial hits from MorpheusTM screen conditions A11 (A), D6 (B) and E6 (C). 
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results of limited proteolysis experiments and disorder prediction analysis. The 

truncated proteins were also successfully cloned and purified. Surprisingly the 

full-length gp11 exhibited higher crystallisation propensity than the N- and 

C-terminally truncated constructs, which were initially expected to feature less 

degradation and be more suitable for production of diffracting crystals. The N- and 

C-terminally truncated proteins showed less solubility and stability compared 

with the full-length gp11 during the purification process, and formed amorphous 

precipitates in the majority of drops during crystallisation, with no crystal 

formation. 
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6 Recombinant Portal Protein from Staphylococcus 
epidermidis Bacteriophage CNPH82 Is A 13-Subunit 
Oligomer 

6.1 Introduction 

CNPH82 is a bacteriophage infecting the opportunistic pathogen Staphylococcus 

epidermidis. S. epidermidis is normally a human skin commensal bacterium but 

turns into a very common nosocomial infection pathogen in immunocompromised 

patients with implanted medical devices (Otto, 2009; Ziebuhr et al, 2006). The 

therapeutic challenge of treating the S. epidermidis infections originates from its 

rapid development of antibiotic resistance and formation of biofilms (Otto, 2009). 

Upcoming multiresistency to several S. epidermidis strains was connected to 

horizontal gene transfer, which is commonly mediated by bacteriophages. One of 

those phages is CNPH82, a member of the Siphoviridae family and the Caudovirales 

order. 

Transmission electron microscopy micrographs showed that CNPH82 contains an 

isometric head and noncontractile tail (Figure 6-1) (Daniel et al, 2007). The 

complete genome of CNPH82 has been sequenced (Daniel et al, 2007). However, 

unlike the well characterised double-stranded DNA bacteriophages such as T4, T7, 

P22 and SPP1, no X-ray structural information has yet been deduced for proteins 

of this essential pathogen related phage.  

The portal protein serves as a major component of the ATP-dependent genome 

translocation molecular motor in tailed bacteriophages and herpes viruses 

(Casjens, 2011). As an essential requirement during viral morphogenesis process, 

the portal protein plays indispensable roles in several aspects: it initiates 

pro-capsid assembly, and is a central component of the DNA translocation 

molecular motor, headful sensor and connector assembly (Rao & Feiss, 2008). The 

portal proteins from different tailed bacteriophages and herpes simplex viruses 

vary dramatically in both amino acid sequence and molecular mass, but share a 

common characteristics: cyclical homo-oligomers arranged radially with a 

turbine-like shape and a central channel for DNA passage (Orlova et al, 1999; Rao 

& Feiss, 2008). In the functional mature virion or in the isolated connector bound 
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to tail factors, portal proteins were consistently presented as 12-subunit 

assemblies (Olia et al, 2011; Orlova et al, 2003; Simpson et al, 2000b). 

Nevertheless, the oligomeric state of portal proteins from some viruses, like SPP1 

and herpes virus, could change to 13 when heterologously expressed in E. coli, 

possibly due to conformational rearrangements (Cardone et al, 2007; Lebedev et al, 

2007; Orlova et al, 2003; Trus et al, 2004b). Each subunit of SPP1 portal protein 

consists of four regions – termed the clip, stem, wing and crown (Lebedev et al, 

2007). CNPH82 portal protein shares 32% amino acid sequence identity with the 

SPP1 portal protein. Moreover, high sequence similarity between other head 

morphogenesis proteins such as the major capsid and scaffolding proteins of 

CNPH82 and SPP1, imply similar morphogenesis processes. 

 

Figure 6-1 Ultrastructures of the phage CNPH82. 

The structure was observed by transmission electron microscopy, and the figure was 

adapted from (Daniel et al, 2007). 

6.2 Materials and Methods  

6.2.1 Cloning, Expression and Purification of CNPH82 Portal 
Protein 

The partial gene encoding truncated portal protein cn3 (E25-Q456) was amplified 

by PCR and ligated into the NheI/HindIII sites of vector pET28a (Novagen). 

Sequencing and alignment was performed to confirm the correct insert. The portal 

protein cn3 with a cleavable N-terminal hexahistidine tag was overexpressed in 

Escherichia coli strain B834 cells. Cells were grown in Luria–Bertani medium with 

30 µg/ml kanamycin at 310 K to the mid-log phase (OD600 around 0.6-0.8). The 

portal protein expression was induced by the addition of 1mM IPTG carried out for 
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20 h at 289 K. The cell pellet was lysed using a cell disruptor (Constant Cell 

Disruption Systems) at 4° C with a pressure of 25 kpsi in lysis buffer containing 20 

mM Tris (pH 7.5), 500 mM NaCl, 10 mM MgCl2, 10 mM Imidazole, 100 µg/ml 

lysozyme, 1 mM AEBSF, 0.7 µg/ml pepstatin. Nickel Affinity chromatography was 

performed on a 5 mL HiTrapTM chelating HP column (GE Healthcare) and the 

protein sample was further purified on a Superose 6 size-exclusion column (GE 

Life Sciences). Purity was assigned by denaturing polyacrylamide 

gel-electrophoresis. The molecular mass of the purified sample was confirmed by 

matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). 

6.2.2 Molecular weight determination by SEC-MALLS 

The molecular mass of cn3 (E25-Q456) was determined by Size Exclusion 

Chromatography coupled with Multi-Angle Laser Light Scattering (SEC-MALLS). 

The protein sample (60 μl) with a concentration of 0.5 mg/ml was applied on a 

BioSepTM SEC-s3000 Gel Filtration column (Phenomenex) equilibrated with 

buffer containing 20 mM Tris (pH 7.5), 500 mM NaCl, 10 mM MgCl2. Size-exclusion 

chromatography was carried out on a Shimadzu HPLC system and the elution was 

monitored at 280 nm by a SPD20A UV/Vis detector. Light-scattering data were 

recorded by a Dawn HELEOS-II 18-angle light scattering detector and the 

concentration of the eluting protein was measured by an in-line Optilab rEX 

refractive index monitor (Wyatt Technology). Data were analysed with ASTRA V 

software package. Molecular mass was calculated using Zimm’s formalism of the 

Rayleigh-Debye-Gans light scattering model for dilute polymer solutions and a 

refractive-index increment (dn/dc) of 0.183 ml g-1 was used for the protein 

molecular mass estimation. 

6.2.3 Crystallisation 

The protein cn3 (E25-Q456) was crystallized at 293 K by the sitting drop vapour 

diffusion method using 15 mg/ml protein solution in 20 mM Tris (pH 7.5), 500 mM 

NaCl, 10 mM MgCl2. Drops containing 300 nl cn3 solution and 150 nl reservoir 

solution were dispensed by a Mosquito Nanolitre Pipetting robot (TTP Lab-tech) 

and equilibrated against 60ul of reservoir solution. To overcome the hurdle of high 

salt concentration in the protein solution, 500mM NaCl was added into the 
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reservoir solution after the screen was set up. The best crystal was obtained with 

the reservoir containing 0.2 M ammonium acetate and 40 % (v/v) MPD. 

6.2.4 X-ray Data Collection and Processing 

X-ray data were collected from a single crystal at the ESRF beam line ID14-4 at a 

wavelength of 0.9393Å with the crystal-to-detector distance of 652.7 mm. Data 

were collected at 100 K using an oscillation range of 0.5 per image with a total 

crystal rotation of 180. Diffraction images were indexed and integrated using 

HKL-2000 (Otwinowski & Minor, 1997) and were further analysed with CCP4 

program package (Winn et al, 2011). The self rotation function was calculated 

using MOLREP (Vagin & Teplyakov, 2010), in the resolution range 5 – 10 Å with 

the radius of integration sphere of 87 Å. To solve the structure by molecular 

replacement, BALBES (Long et al, 2008), MOLREP (Vagin & Teplyakov, 2010) and 

Phaser (Mccoy et al, 2007) were tried and SPP1 portal protein gp6 was used as a 

search model (PDB access code 2JES ). 

6.3 Results  

6.3.1 Cloning, Expression and Purification 

The portal protein was cloned and overexpressed in E. coli B834 cells. 

Homogeneous protein was obtained after Ni-affinity and size-exclusion 

chromatography. The protein was concentrated to ~35 mg ml-1 in solution 

containing 20 mM Tris (pH 7.5), 500 mM NaCl, 10 mM MgCl2.  

6.3.2  Oligomeric State of CNPH82 Portal Protein Cn3 

The truncated CNPH82 portal protein cn3 (E25-Q456) consists of 432 amino acids 

with a theoretical molecular mass of 53.074 kDa. The molecular weight of the 

purified protein measured by matrix-assisted laser desorption/ionization mass 

spectrometry (MALDI-MS) is 53.094 kDa, in good agreement with the theoretical 

value. A single monodispersed peak was observed during the size-exclusion 

chromatography of cn3. SEC-MALLS showed the mean molecular weight of the 

eluted species of 685.9 kDa, or ~12.9 subunits per oligomer, suggesting that cn3 

contains 13-subunits per oligomer in solution (Figure 6-2). 
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Figure 6-2 Characterization of cn3 oligomeric state by SEC–MALLS.  

The thin line corresponds to the absorbance monitored at 280 nm. The thick line 

shows the molecular weight calculated for the eluted species. 

6.3.3 Crystallisation  

Several hits appeared in the initial MPD crystallisation screen (Hampton) with the 

best diffracting crystals growing from 40% MPD containing either 0.2 M 

ammonium nitrate or 0.2 M ammonium acetate. Both conditions were optimised. A 

complete native data set to a resolution of 4.2 Å was collected at ESRF using a 

crystal grown from 0.2 M ammonium acetate and 40 % (v/v) MPD (Figure 6-3). 

 

Figure 6-3 Diffraction image.  
Resolution at the edge of the plate is 3.9 Å. 
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6.3.4 Crystallographic Analysis  

The crystal belongs to the space group C2221, with a = 252.4 Å, b = 367.0 Å, c = 

175.5 Å (Table 6-1). The self-rotation function R (Φ,Ψ,К) (Crowther, 1972) was 

calculated to deduce the internal symmetry of the CNPH82 portal protein. The 

13-fold symmetry was identified from peaks appearing in κ sections 360°/13 and 

κ = 180° (Figure 6-4). Peaks in the κ = 180° section were spaced from each other 

by 27.7° (Figure 6-4A). Although the sequence identity between cn3 and the portal 

protein, gp6, of SPP1 is as high as 32%, attempts to solve the structure by 

molecular replacement proved unsuccessful. 

Table 6-1 X-ray data statistics  

X-ray source ID14-4,  ESRF 

Wavelength, Å 0.9393 

Temperature, K 100  

Space group C2221 

Unit cell parameters, Å a=252.4, b=367.0, c=175.5 

Resolution Range, Å 100 - 4.2 (4.35 – 4.20) 

No. of unique reflections 54776 (4970) 

Rmergea, % 12.6 (65.4) 

Completeness, % 98.1 (90.1) 

Redundancy 3.6 (2.9) 

Average I/sigma(I) 8.2 (1.4) 

Values in parentheses are for the highest resolution shell.  

a Rmerge = ∑hkl∑i|Ii(h) - <I(h)>|/∑hkl∑iIi(h), where I(h) is intensity of reflection h, 

<I(h)> is average value of intensity, the sum ∑hkl is over all measured reflections 

and the sum ∑i is over i measurements of a reflection.  
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Figure 6-4 Stereographic projections =180° (A) and κ = 27.7° (B) of the self-rotation   
function. 
 

6.4 Conclusions 

In conclusion, the truncated portal protein cn3 of bacteriophage CNPH82 was 

successfully purified and crystallised. The X-ray data set collected from a native 

crystal was to the resolution of 4.2 Å. The oligomeric state was characterised to be 

13 mer by SEC-MALLS and crystallographic analysis. Elucidating the structure of 

the portal protein will provide insights into the phage assembly, in particular the 

mechanism of viral DNA encapsidation. 
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7 The bacteriophage T4 portal protein – Gp20 

7.1 Introduction 

7.1.1 Bacteriophage T4 

Bacteriophage T4 is a large tailed double-stranded DNA (dsDNA) virus that infects 

Escherichia coli. It belongs to Myoviridae family, and is the the most thoroughly 

investigated representative of the T-even phages (Calendar, 2006). The mature T4 

virion consists of a 1200 Å long, 860 Å wide prolate icosahedral head with a 172 

kb dsDNA chromosome; a 1000 Å long, 210 Å diameter cocylindrical contractile 

tail, terminated with a 460 Å diameter baseplate; and six 1450 Å long fibers 

attached to the baseplate (Leiman et al, 2003). The assemblies of head, tail, and 

fibers are independent processes, and these components will join together to form 

a mature virion.  

The T4 DNA translocation machinery is one of the fastest and most powerful 

packaging motors reported to date, with a packaging velocity of 2,000 bp/s (Fuller 

et al, 2007). It is composed of three components: the dodecameric portal gp20 (61 

kDa), the pentameric large terminase gp17 (70 kDa) and the 11- or 12-meric small 

terminase gp16 (18 kDa). With the ubiquitous distribution of T4-type 

bacteriophage, the tailed DNA phage T4 has served as an excellent model for the 

elucidation of the mechanisms underlying head assembly of T-even phages as well 

as general large icosahedral viruses (Rao & Black, 2010). 

 

Figure 7-1 The DNA-packaging motor of phage T4. 
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(A): A three-dimensional cryo-electron microscopy reconstruction of the phage T4 

procapsid with bound subunits of the large terminase subunit (TerL). (B): A 

magnification of the portal vertex. The white areas represent electron density, in 

which ribbon diagrams for TerL and the portal protein are modeled. (C): A view 

along the central channel of the indicated ring of electron density. This figure was 

adapted from (Casjens, 2011). 

7.1.2 Studies of T4 Portal Protein Gp20 

Bacteriophage T4 portal protein is the product of gene 20, encoding a 61 kDa 

polypeptide of 524 amino acids. The T4 portal gp20 is well documented to 

perform multiple functions: initiation of prohead assembly, initiation of 

core/scaffolding assembly, terminase interaction in DNA packaging, the headful 

packaging gauge, prohead expansion and stabilization, and head to tail connection.  

Purification and crystallisation studies of gp20 began nearly two decades ago, but 

limited progress has been made due to its hydrophobic properties (Driedonks et al, 

1981). Gp20 was first purified from proheads in the presence of certain amount of 

detergents, such as 0.5% of Nonidet P-40 and 8M urea (Driedonks et al, 1981). 

Then, fusion proteins of gp20 with Green Fluorescent Protein (GFP), still purified 

in the presence of 8M urea, were constructed for in vitro functional study 

(Baumann et al, 2006). The gp20 structure was finally observed by negative 

staining electron microscopy with the majority of particles displaying a ring-like 

appearance (Driedonks et al, 1981)  (Figure 7-2). As expected, the overall 

structure of gp20 shares common characteristics with homologues from other 

double-stranded bacteriophages as a dodecamer with a central DNA channel 

(Driedonks, 1981). As observed by cryo electron microscopy, the narrower end of 

gp20 protrudes out of the capsid, and the wider end is inside the capsid (Leiman et 

al, 2004). However, a high-resolution atomic structure of gp20 remains 

unavailable, because high quality crystals cannot be obtained in conditions 

containing such high concentrations of urea. 
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Figure 7-2 Negative-staining EM analysis of the T4 portal protein.  
The portal protein from bacteriophage T4 was shown to be a 12-subunit assembly, and the 
figure was adapted from (Driedonks et al, 1981).  
 

As a central component of the DNA translocation machinery, gp20 forms a channel 

with a diameter of ~35 Å, through which the DNA is translocated into the 

procapsid. However, the exact role of gp20 in viral DNA translocation is not yet 

clear. A recent study using direct binding assays, mutagenesis, and structural 

analyses, confirmed the specific interaction between gp20 and the large terminase 

gp17, and identified the interaction sites: part of the protruding αβ domain in gp20 

and a conserved helix-turn-helix (HLH) in subdomain II of gp17. Therefore, a 

molecular lever mechanism coupling ATP hydrolysis to DNA movement has been 

proposed for the T4 DNA translocation motor (Hegde et al, 2012). 

7.1.3 Aim of the Project 

According to previous studies on the T4 portal protein gp20, a soluble protein can 

only be purified in the presence of harsh denaturing agents such as a high 

concentration of urea (Driedonks et al, 1981) which presents a big challenge for 

obtaining high quality crystals for X-ray structural studies. In this project, different 

cloning strategies and purification methods were carried out in order to produce 

soluble portal protein suitable for structural analysis. 
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7.2 Materials and Methods 

7.2.1  Cloning of the Gp20 Constructs  

The plasmid pAF20 with the full-length gene 20 in the expression vector pET14b 

was used as the template for the PCR reaction. The primers (Table 7-2) were 

designed to introduce NheI and XhoI restriction sites within the PCR product of 

gp20 DNA. Amplification of required ORF by PCR was performed in a 50 L 

reaction vial (Table 7-1). The cycling conditions were as follows: initial 

denaturation at 98 °C for 30 s, denaturation of the template at 98 °C for 10 s, 

primers annealing at 55 °C for 20 s, extension at 72 °C for 1 min and final 

extension at 72 °C for 5 min. The three steps – denaturation, annealing and 

extension were repeated 29 cycles. The insert was then cloned into vector pET28a 

to express gp20 with an N-terminal cleavable His tag, or vector pGEX 6P-3 to 

express the protein with a cleavable N-terminal GST tag. The correct inserts were 

verified by DNA sequencing (GATC Biotech) and alignment analysis (Clustal W).  

 
Table 7-1 Components of PCR reaction (items were added in this order) 

Total  reaction volume Amount/reaction (ul) Final concentration 

dH2O 13.6  

5 × Phusion®   HF buffer  10 1× 

dNTPs (25 mM each) 0.4 0.2 mM each 

Primer 1 (2 μM) 12.5  0.5 μM 

Primer 2 (2 μM) 12.5  0.5 μM 

Template DNA 0.5  

Phusion®  DNA Polymerase(2 U/μl) 0.5 0.02 U/ μl 
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Table 7-2 Primers for cloning of gp20 constructs 

Primer Sequence(5’- 3’) 

Gp20-F1 CCCCTAGCTAGCATGAAATTTAATGTATTAAGTTTGTTTG 

Gp20-R1 GGGCCGCTCGAGTTAAAAATCCTCTTGTTCTTGG 

Gp20-R2 GGGCCGCTCGAGTTAAGTCATCTGCAAAATGTC 

Gp20-R3 GGGCCGCTCGAGTTATTCTATTTCTTCATCAGTCAT 

GP20-R4 GGGCCGCTCGAGTTACTCTTTAGACTCTTCTTCAA 

Gp20-F2 CGCGGATCCGAAAAAGAAGATCTTGTTTCC 

 

7.2.2 Expression and Purification of the T4 Portal Protein Gp20 

7.2.2.1 Low Temperature (12 °C) Expression of Gp20  

The plasmid pYM145 was transformed into Escherichia coli ArcticExpressTM 

(DE3)RIL cells (Stratagene). A single colony from a Luria–Bertani (LB) agar plate 

containing 30 mg/µL kanamycin was picked to inoculate a small overnight culture 

at 37 °C. At this stage, 20 mg/µL gentamycin was also added into the LB medium 

for the selection of the chaperonin-encoding plasmid. 5 mL aliquots of the 

overnight culture were used to inoculate a 500 mL culture the following day. The 

500 mL culture was grown at 37 °C until the mid-log phase (OD600 of 0.6–0.8) was 

reached, at which point protein expression was induced by the addition of IPTG to 

a final concentration of 1 mM. Lastly, overnight incubation of the culture at 12 °C 

and 180 r.p.m was carried out for the over-expression of gp20. Cells were 

recovered by centrifugation in SORRALL®  RC 5B plus for 20 minutes at 5000g at 4 

°C. Supernatant was removed and cell pellet was stored at -20 °C.  

7.2.2.2 Autoinduction 

The plasmid pYM145 was transformed into Escherichia coli B834 cells 

(Stratagene). A single colony from a Luria–Bertani (LB) agar plate containing 30 

µg/mL kanamycin was picked to inoculate in LB medium overnight at 37 °C to 

make a starting culture. 1L of autoinduction medium with 30 µg/mL kanamycin 

was prepared. Cell cultures were inoculated (1:100) and grown overnight with 

shaking at 180 r.p.m at 16 °C to produce gp20. Cells were recovered by 
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centrifugation in SORRALL®  RC 5B plus for 20 minutes at 5000 g, 4 °C. Supernatant 

was removed and cell pellet was stored at -20 °C. 

7.2.2.3 Nickel affinity chromatography  

The cell pellet was re-suspended in nickel affinity chromatography binding buffer 

containing 20mM Tris pH 8.0, 250 mM NaCl, 10 mM MgCl2, and 50 mM imidazole 

supplemented with a combination of 100 µg/mL lysozyme and protease inhibitors 

(1 mM AEBSF and 0.7 µg/mL pepstatin). Cells were disrupted by sonication with a 

large probe in a glass beaker using short pulses of 30 seconds, with a 2 minutes 

resting time in between pulses. The sonication was carried out on ice, with caution 

to minimise thermal damage to protein extract. The cell debris was removed by 

centrifugation at 38758 g for 30 minutes at 4 °C using a Sorvall SS34 rotor. The 

supernatant was collected and then cleared with a 0.45 mm filter (Millipore). The 

filtrate loaded onto a 5 mL HiTrap column (GE Healthcare) equilibrated with 

binding buffer for nickel affinity chromatography purification. The bound protein 

was eluted with an increasing proportion of elution buffer containing 20 mM Tris 

pH 8.0, 250 mM NaCl, 10 mM MgCl2, and 500 mM imidazole. The samples were 

analysed by 12% SDS-PAGE. 

7.2.2.4 Ammonium sulphate purification of gp20 (M1-T494) 

Appropriate amount of solid ammonium sulphate, as indicated in the Table 2-5, 

was added into the protein solution to precipitate gp20 at room temperature in 

the presence of different concentrations of ammonium sulphate using the 

following step-wise increase of its concentration: 20%, 25%, 30%, 35% and 40%. 

Fresh buffer 20 mM HEPES pH 7.0, 50 mM NaCl and 10% glycerol was 

subsequently used to dissolve the precipitated gp20.  

7.2.2.5 Batch Purification of the GST Fused Gp20 Δ24-494 

The protein was produced from 1 litre of E. coli B834 cells grown in LB medium. A 

standard induction protocol entails shifting log-phase cultures (A600 = ~0.6) from 

37 °C to 16 °C and adding IPTG to a final concentration of 1 mM. After an overnight 

of constant vigorous shaking, bacterial cells were recovered by centrifugation at 

5000 g (SORVALL®  RC 5B Plus rotor) at 4 °C for 20 minutes and stored at -80 °C 

until purification.   
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A solubility screen was performed with conditions shown in Table 7-3 before 

attempting the affinity purification, and the solubility of the protein sample was 

visualised by 12% SDS-PAGE. The cell pellets were lysed by sonication in 20 mL 

lysis Buffer 20 mM Tris pH 8.5, 150 mM NaCl, and the insoluble cell debris was 

removed by centrifugation at 38758 g for 30 minutes at 4 °C using a Sorvall SS34 

rotor. To immobilise the GST fused gp20 Δ24-494 on Glutathione Sepharose, the 

clarified lysate was incubated with Glutathione-Sepharose 4B (AP Biotech) on a 

tumbler at 4 °C for 4 hours (or one hour at room temperature) in 20 mM Tris pH 

8.5, 150 mM NaCl. The resin was washed four times before elution of the GST-gp20 

Δ24-494 with 50 mM reduced glutathione added in 20 mM Tris pH 8.5, 150 mM 

NaCl. The samples were analysed by 10% SDS-PAGE. 

Table 7-3 Buffer conditions for solubility test 

 Buffer / 20mM Tris Salt (mM) Additives 

1 pH 5.5 150 mM NaCl - 

2 pH 6.5 - 

3 pH 7.5 - 

4 pH 8.5 - 

5 pH 7.5 50 mM NaCl - 

6 300 mM NaCl - 

7 500 mM NaCl - 

8 150 mM KCl - 

9 500 mM KCl - 

10 150 mM NaCl 5% glycerol 

11 0.1% Triton X-100 
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7.3 Results 

7.3.1 Cloning, Expression and Purification of the Full-Length T4 
Portal Protein Gp20 

The DNA segment encoding the full-length gp20 was cloned into the restriction 

sites NheI and XhoI of vector pET28a (forming construct pYM145) for the 

expression of a recombinant protein containing an N-terminal hexahistidine tag 

with a thrombin cleavage site. 

Results of the initial small-scale expression test showed temperature was the key 

factor affecting the solubility of the target protein. The low temperature 

expression in E. coli ArcticExpressTM (DE3)RIL cells at 12 °C and autoinduction in E. 

coli B834 cells at 16 °C both significantly improved the solubility (Figure 7-3). 

However, the solubility of gp20 from large-scale ArcticExpress cell culture was 

significantly reduced in comparison with the solubility shown from the small-scale 

expression test. In addition, a considerable amount of cold-adapted chaperones 

Cpn60/Cpn10 were co-purified with gp20 (Figure 7-3).  

The purification of full-length gp20 produced by autoinduction at 16 °C in E. coli 

B834 cells was performed by nickel affinity chromatography and size exclusion 

chromatography (Figure 7-4). The molecular mass of the protein sample after this 

two-step purification was determined by MALDI-MS. The major peak from the 

MALDI mass spectrum, with an approximate mass of 74 kDa (Figure 7-5), 

corresponded to the E. coli chaperone protein DnaK (Hsp70). However, there was 

no peak with the molecular mass of 63.1 kDa corresponding to the gp20 subunit 

with the N-terminal hexahistidine tag.  
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Figure 7-3 Purification of the full-length gp20. 
(A) Small-scale expression test of the full-length gp20. A considerable amount of 

gp20 was soluble when produced in E. coli ArcticExpress (DE3)RIL cells at 12 °C and 

in E. coli B834 cells by autoinduction at 16 °C. The red arrow indicated the 

co-expression of the cold-adapted chaperones Cpn60/Cpn10 in E. coli ArcticExpress 

cells at 12 °C. (B) Nickel affinity purification of the full-length gp20 over-expressed in 

ArcticExpress cells at 12 °C. The fractions corresponding to elution peaks were 

resolved on a 12% SDS-PAGE gel L: low molecular weight ladder; T: the total protein 

lysate; S: soluble proteins after centrifugation; FT: flow-through;X1-B12: fractions 

from nickel affinity chromatography. 

 

Figure 7-4 Purification of the full-length gp20 produced by autoinduction at 16°C.  
(A) Chromatogram profile of size exclusion chromatography of the full-length gp20 

on a Superdex 200 column. Absorption at 280 nm was shown in blue, 260 nm in red. 

(B)The fractions corresponding to elution peaks from size exclusion chromatography 

Cpn60/Cpn10 

A B 

A B 
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were analysed on a 12% SDS-PAGE gel. L: low molecular weight marker (BioRad); S: 

loaded sample; A9-B1: fractions from size exclusion chromatography. 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

7.3.2 Cloning, Expression and Purification of the C-terminally 
Truncated Gp20  

In order to design constructs with enhanced solubility, a secondary structure 

analysis by Jpred (Figure 7-6) and disorder prediction by PrDOS (Figure 7-7) were 

carried out to locate potentially disordered regions in gp20. The last 30 amino 

acids at the C-terminus appear to be disordered. Accordingly, a C-terminally 

truncated construct gp20 Δ1-494 was designed. 

Figure 7-5 MALDI-MS characterisation of the sample after purification of the full-length 
gp20.  
The protein was purified after the two-step purification. The major peak in the MALDI 

mass spectrum, with an approximate mass of 74 kDa, corresponds to the E. coli 

chaperone protein DnaK (Hsp70). 
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Figure 7-6 Secondary structure prediction of gp20.  
Only ~40 amino acid N-terminal and ~40 amino acid C-terminal segments are shown. The 
prediction was performed by Jpred. 

 

Figure 7-7 Disorder prediction of gp20. The prediction was performed by PrDOS. 
 

The DNA segment encoding the C-terminally truncated gp20 Δ1-494 was cloned 

into the restriction sites NheI and XhoI of vector pET28a (forming construct 

pYM149) for the expression of a recombinant protein containing an N-terminal 

hexahistidine tag with a thrombin cleavage site. 

The protein was over-expressed in E. coli B834 cells by autoinduction at 16 °C, and 

a solubility screen with different buffers was performed to optimise the solubility 

of the protein (Figure 7-8). According to SDS-PAGE, the over-expressed protein 

was soluble in 20 mM HEPES pH 7.0, 50 mM NaCl and 10% glycerol. The same 

SDS-PAGE gel was stained with His-tag in-gel stain for visualisation of the 



138 

His-tagged proteins, which confirmed the over-expressed protein as the target 

protein gp20. 

 

Figure 7-8 Solubility screen of the C-terminally truncated gp20 Δ1-494. 
(A) Solubility screen of gp20 Δ1-494 with different buffers produced in E. coli B834 

cells by autoinduction at 16°C. L: low molecular weight marker (BioRad); T: the total 

protein lysate; S: soluble protein after centrifugation. Proteins were resolved on a 12% 

SDS-PAGE gel; the red arrow indicated the His-tagged control sample. (B) The SDS 

PAGE gel was stained with His-tag In-gel stain to visualise His-tagged protein. 

Nickel affinity chromatography was then performed using the best buffer 

identified - 20 mM HEPES pH 7.0, 50 mM NaCl and 10% glycerol. However, the 

protein did not bind to the nickel column, with the majority of the soluble gp20 

Δ1-494 going directly to the flow-through (Figure 7-9). The incapability of gp20 

Δ1-494 to bind to nickel was also confirmed by a following nickel beads pull down 

assay. 

Other purification techniques without the involvement of histidine tag, such as 

ammonium sulphate precipitation and anion exchange chromatography were tried 

with no success. During ammonium sulphate precipitation, most soluble gp20 was 

precipitated in the presence of 40% ammonium sulphate (Figure 7-9). However, 

the precipitated protein could not be recovered by centrifugation and dissolved in 

fresh buffer. During anion exchange chromatography, the soluble gp20 Δ1-494 

protein didn’t bind to the MonoQ column or HiTrapQ column in the binding buffer 

20 mM HEPES pH 7.0, and 50 mM NaCl. 

A B 



139 

 

Figure 7-9 Purification of gp20 Δ1-494.  
(A)Nickel affinity chromatography showed that most of the soluble protein (S) went 

to the flow-through (FT). (B), Ammonium sulphate precipitation showed that most of 

the soluble gp20 Δ1-494 precipitated in the presence of 40% ammonium sulphate. L: 

low molecular weight marker (BioRad); T: total protein lysate; S: soluble protein 

after centrifugation; P: precipitated protein. Proteins were resolved on a 12% 

SDS-PAGE gel. 

7.3.3 Cloning, Expression and Purification of GST Fused Gp20 
Δ24-494 

The DNA fragment encoding the 80.6 kDa GST fused gp20 Δ24-494 with both 

N-terminal and C-terminal truncations was cloned within the BamH1-Xho1 sites of 

the vector pGEX 6P-3, forming construct pYM170, to express the recombinant 

protein with a cleavable N-terminal GST tag (26 kDa). GST fused gp20 Δ24-494 

was over-expressed in E. coli B834 cells. A solubility screen was performed to 

investigate the effect of pH and NaCl concentration on the solubility of the protein 

(Figure 7-10 A, buffer conditions shown in Table 7-3), during which the best buffer 

was identified as 20 mM Tris pH 8.5 and 150 mM NaCl.   

The GST fused gp20 Δ24-494 was purified by binding to Glutathione-Sepharose 

beads and then eluted with 50 mM glutathione. The protein was able to bind to 

Glutathione-Sepharose beads, and 50 mM glutathione successfully competed with 

GST tag to elute the fusion protein (Figure 7-10 B). Further purification of the 

eluted proteins using size exclusion chromatography or anion exchange 

chromatography was not successful. The protein (GST fused gp20 Δ24-494) was 

A 
B 
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lost during the purification process possibly due to precipitation. PreScission 

Protease Cleavage was used for the removal of the GST tag, and further 

concentrating of the cleaved protein induced precipitation. The eluted proteins 

from Glutathione-Sepharose beads during batch purification were concentrated 

and checked by MALDI-MS to confirm the existence of the GST fused gp20 Δ24-494. 

However, there was no signal detected corresponding to the GST fused gp20 

Δ24-494, which could be caused by protein precipitation during concentration. 

 

 

(A) Solubility screen of the GST fused gp20 Δ24-494 with different buffer conditions. 

Lane T indicates the total protein lysate, lanes 1 to 11 correspond to the soluble 

protein in different buffers listed in Table 7-3. (B) Batch purification of the GST fused 

gp20 Δ24-494 using Glutathione-Sepharose beads. Proteins were resolved on a 12% 

SDS-PAGE gel. 

A 

B 

Figure 7-10 Purification of GST fused gp20 Δ24-494. 
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7.4 Discussion  

Solubility is an intrinsic characteristic of a particular protein. The protein 

solubility can be affected by multiple factors including expression cell strains, the 

rate of protein synthesis, expression temperature and expression tags. In the case 

of the T4 portal protein gp20, the expressed protein is insoluble and accumulates 

in inclusion bodies when expressed at 37 °C. In this study, the solubility of the 

full-length gp20 was significantly improved when the protein was over-expressed 

in E. coli ArcticExpress RIL cells at 12 °C. The Cpn10 and Cpn60 chaperones were 

co-expressed to facilitate protein folding at 12 °C. However, the solubility of gp20 

in large-scale ArcticExpress cell culture was significantly reduced in comparison to 

its solubility during small-scale expression tests, with considerable amounts of 

chaperones co-purified.  

Solubility enhancement of the full-length gp20 was also observed when the 

protein was produced by autoinduction at 16 °C in E. coli B834 cells. The protein 

obtained after a two-step purification using nickel affinity chromatography and 

size exclusion chromatography turned out to be the E. coli chaperone protein DnaK, 

while soluble gp20 was lost during the purification process. 

The C-terminal truncated gp20 Δ1-494, with the C-terminal disordered region 

removed, showed significant improvement with regard to the solubility.  The 

protein was over-expressed in soluble form in E. coli B834 cells by autoinduction 

at 16 °C. However, this truncated protein could not bind to the nickel column with 

its N-terminal histidine tag, which might imply the misfolding of the protein. 

Alternative purification methods such as anion exchange chromatography and 

ammonium sulphate precipitation have also proved to be unsuccessful for the 

purification of gp20 Δ1-494.  

The gp20 Δ24-494 was fused to a GST tag, which can bind to 

Glutathione-Sepharose beads and be eluted by 50 mM glutathione. The further 

purification by size exclusion chromatography or anion chromatography was 

unsuccessful with protein lost during the purification process. The purity and yield 

of the GST fused gp20 Δ24-494 after the batch purification was insufficient for 

further characterisation and crystallisation.  
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The future work could be directed towards fusing maltose-binding protein (MBP, 

~42.5 kDa) as a tag, because MBP could serve as a solubility enhancer and permit 

one-step purification using amylose resin. It is also worth evaluating a potential 

use of the available GFP fused T4 portal protein constructs which are soluble in 

native buffer condition (Baumann et al, 2006).  
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8 Conclusions 

Obtaining the SPP1 portal protein gp6 in its 12-subunit biologically active state in 

vitro is considered to be extremely important for elucidating the mechanism of the 

DNA packaging molecular motor and for designing a stable molecular machine that 

can function in vitro. Two strategies involving protein engineering of fusion 

proteins and co-expression of gp6 with gp11, were designed and investigated 

using a combination of biochemical, biophysical and structural approaches.   

Several constructs of the SPP1 portal protein gp6 were fused with B. halodurans/B. 

stearothermphilus TRAP. The fusion proteins obtained with the B. 

stearothermphilus TRAP proved to be insoluble. The fusion proteins of gp6 with B. 

halodurans TRAP were successfully overexpressed in E. coli BL21 cells and 

purified, and their oligomeric states were analysed by SEC-MALLS and electron 

microscopy. The results revealed 13-fold symmetrical assemblies formed by 

construct containing gp6 truncations Δ27-466, Δ27-472 and Δ27-479, and 

mixtures of 13-mer and 14-mer assemblies for constructs containing gp6 Δ27-434. 

The oligomeric state remained 13 when the fusion protein containing gp6 Δ27-466 

was treated with the dissociation-re-association procedure. The ring 

corresponding to the TRAP assembly was detected by electron microscopy; 

however, the number of subunits contained in the TRAP ring can’t be deduced by 

EM due to the limited resolution. Because the study of the TRAP oligomer stability 

showed that B. stearothermphilus wild type and E71Stop TRAP are the most stable 

oligomers, future studies on fusion proteins could try to fuse B. stearothermphilus 

wild type and E71Stop TRAP with gp6.  

The oligomeric state of the C-terminally truncated gp6, co-expressed in E. coli with 

gp11, was characterised by SEC-MALLS, electron microscopy and crystallographic 

analysis, and the results showed that gp6 is still a 13-mer. Because the negatively 

charged C-terminus of gp6 could be important for interaction between gp6 and 

gp11, future work should be directed towards the co-expression of the full-length 

gp6 with gp11 and characterising the oligomeric state of gp6 by negative staining 

electron microscopy. Attempts to produce diffracting crystals of gp11 were 

unsuccessful; however, further solubility screening of various truncated constructs 

may prove useful. 
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The structure of the wild type gp6 Δ27-472 was solved at 2.8 Å resolution, 

revealing a 13-fold symmetrical molecule. The electron density maps 

corresponding to Asn365 are very clear. The protein’s fold is the same as for the 

N365K mutant, with most significant conformational differences observed in the 

tunnel loop and in segments of the clip and crown domains. Comparison with the 

structure of N365K mutant reveals significant differences in subunit-subunit 

interactions formed by tunnel loops, including different hydrogen bonds and van 

der Waals interactions. These differences may account for the different behaviour 

of capsids containing the mutant portal protein. 

The truncated portal protein cn3 of bacteriophage CNPH82 was successfully 

purified and crystallised. The X-ray data set from a crystal of the wild type protein 

was collected to the resolution of 4.2 Å. Self-rotation function calculation and 

SEC-MALLS experiments indicate that cn3 forms 13-subunit assemblies, like the 

SPP1 portal protein. 

The work on T4 portal protein gp20 aimed to produce soluble protein for 

structural studies. The full-length gp20 could not be purified in a soluble form; 

while a C-terminal truncated gp20 Δ1-494, as well as GST fused gp20 Δ24-494 

showed significant improvements in solubility, production of crystallisation 

quantities of pure soluble protein was not feasible. Further work could be directed 

towards exploring the effect of fusing the portal protein with a maltose-binding 

protein to improve its solubility.  

In summary, this work has focused on the study of the SPP1 portal protein gp6. In 

order to promote the formation of the dodecameric gp6, two strategies involving 

protein engineering of fusion proteins and co-expression of gp6 with gp11, were 

designed and investigated. The structure of the wild type gp6 was determined at 

2.8 Å resolution, providing structural basis for understand the effect of N365K 

substitution on the amount of packaged DNA. Finally, cloning, expression, 

purification and crystallisation studies on the SPP1 scaffolding protein gp11, 

CNPH82 portal protein cn3, and T4 portal protein gp20 were also performed. In 

the case of CNPH82 portal protein cn3, promising crystallisation conditions have 
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been identified. Further optimisation should lead to structure determination in 

future.  
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