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Abstract 

Radioactive barium sulphate scales raise a serious concern in the oil and gas 

industries. They are often classified as low level radioactive waste, but there are 

no clear methodologies established world widely to deal with this well know 

issue. The present study investigates a potential use of composite cement 

systems based on Portland cement to encapsulate the barium sulphate scales, 

aiming to provide a feasible option for safe handling, storage and disposal. The 

investigation was conducted on three different aspects: basic formulation, 

wasteform development and potential use as a high density support matrix. 

The first part studied the basic formulation to clarify the impact of BaSO4 loading 

and water contents on the physical properties of the composite cementing 

system. Fine BaSO4 powders and excess water were found to influence the 

product phases whereas coarse BaSO4 particles showed larger impact on 

strength of the products. The second part investigated the effect of mineral 

admixtures to develop practical wasteform formulations. Fine BaSO4 powder, 

metakaolin and quartz were found to improve the workability of the pastes as 

well as the microstructure by eliminating highly porous interfacial transition 

zone, resulting in the higher compressive strength and reasonable leaching 

rates of elements. Addition of quartz was found to be most effective to minimise 

the degradation caused by the high temperature environment, by initiating the 

formation of stable tobermorite phase.  
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defined in the text as they appear. 

Cement Nomenclature 
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H H2O Water 

   SO3 Sulphate 

C CO2 Carbon dioxide 

 

Roman letters 

BFS Blast furnace slag 
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ICP-MS Inductively coupled plasma optical emission spectroscopy 

ILW Intermediate level waste 

LLW Low level waste 

LSA-scale  Low Specific Activity scale 

MIP Mercury Intrusion Porosimetry 

NORM Naturally Occurring Radioactive Materials 

PC Portland cement  

SCM Supplementary Cementing Materials  

SEI Secondary electron imaging 

SEM Scanning electron microscopy  

TGA Thermal gravimetric analysis  

XRD  X-ray diffraction  
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1.1 Background 

Some petroleum industry operations have been responsible for environmental 

radioactive pollution [1, 2]. Pollutants include radioactive scale waste known as 

naturally occurring radioactive materials (NORM). This NORM scale waste is 

arising from processing oil and gas extraction processes as by-products of 

formation water and crude oil [1, 3, 4]. The management and disposal of NORM 

scale is becoming a significant environmental in recent years [5-8]. Therefore, 

the development of techniques for the disposal of this kind of radioactive waste 

is an area of increasing importance and concern. The NORM scale wastes are 

classified as low level radioactive waste (LLW) [9]. Cements are inorganic 

binder commonly used for encapsulation of LLW [10]. The cement matrix may 

be used for the encapsulation of NORM scale, because of the historically 

successful application in the nuclear industry and its flexibility with different 

types of additives [11].  

 

1.2 Scope of the project 

The aim of this research project is to provide experimental data on the 

fundamental properties of PC-BaSO4 systems. The effect of BaSO4 loading, 

particle size, water content and mineral admixtures on PC cement paste were 

evaluated, in order to develop commercially feasible cementing systems to 

encapsulate scales containing NORM from oil and gas industry. This project 

also investigated the applicability of the PC-BaSO4 system for the high-density 

support matrix (HDSM) in the deep bore hole geological disposal system 

(DBGD) for nuclear wastes [12]. 

The main objectives of the project are the following: 



Introduction 

 

3 

 

1) To establish the fundamental understanding on the effect of basic 

formulation on the PC-BaSO4 system, in particular BaSO4 loading and water 

content on the product phases, microstructure and compressive strength 

using BaSO4 powder and coarse granules. Such fundamental data would be 

useful to develop the formulation of the system for the encapsulation of 

BaSO4 NORM scale from oil and gas industry. 

2) To optimise the formulation of cement wasteform with the industrial 

application in mind. The effects of water content, BaSO4 loading and 

different mineral admixtures were studied focusing on setting time and the 

rheological properties of the cement pastes. The mechanical property, 

microstructure and leaching behavior of the products were also studied.  

3) To study the feasibility of PC-BaSO4 system as HDSM for DBGD. 

Preliminary investigation was conducted to establish the effect of high 

temperature on hardened PC-BaSO4 system, and the effect of hydrothermal 

curing of PC-BaSO4 in closed system was further studied with or without 

addition of mineral admixtures. The investigation focused on the phase 

evolution, microstructure alteration, and mechanical property change in the 

products. 

The materials to be used may not be exactly the same as the tailing materials 

arising from the oil industry. Substitute materials were used as a representative, 

keeping the properties similar to that of tailing materials.  
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1.3 Organisation of the thesis 

The thesis comprises the following chapters: 

Chapter 1 introduces the brief background, the aims and objectives of the 

study, and thesis organisation.  

Chapter 2 reviews the literature information on the related areas currently 

available. The first part from this review introduces the issues of NORM scale, 

by-product waste streams from the oil and gas industry and summarises the 

use of cementitious materials for waste disposal. The second part of this review 

focus on the applicability of PC-BaSO4 system as HDSM in DBGD.  

Chapter 3 describes the materials and experimental methods used in the 

project. This chapter is divided into three sections: the first section characterise 

the raw materials used in the experiments. The second section describes the 

sample preparation whereas the last section is an outline of the analytical 

techniques used to study the properties of the products.  

Chapter 4 covers the fundamental characterisation of PC-BaSO4 systems. 

Experimental data are presented, and the effect of BaSO4 loading, water 

contents, size of BaSO4 are discussed focusing on product phases, 

microstructure, and compressive strength. 

Chapter 5 optimise the formulation of the PC-BaSO4 systems for industrial 

application of this system for encapsulation of BaSO4 NORM scale. A good 

range of formulation and possible mineral admixture were tested. 

Chapter 6 covers the experimental data on the behaviour of PC-BaSO4 

systems under high temperature conditions. 

Chapter 7 summarises the obtained results, provides the conclusion of this 

thesis and offers recommendation. 
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Chapter 8 summarises the future work. 
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2.1 Introduction 

The following review introduces the issues of naturally occurring radioactive 

materials (NORM), a by-product waste stream from the oil and gas industry and 

summarises the use of cementitious systems to encapsulate the NORM scale 

and dispose as radioactive wasteforms. The usefulness of cement systems in 

terms of physical and chemical properties as well as that of the hardened 

composite cements for this application and their limitations are presented. 

Particular attention is given to Portland cement (PC), either alone or in 

conjunction with mineral admixtures to encapsulate the NORM scale in the form 

of barium sulphate (BaSO4). The review also extends to the alternative 

methodology to dispose of high level radioactive waste (HLW) using deep bore 

hole geological disposal system (DBGD) with the view to apply the PC-BaSO4 

system as a high density support matrix (HDSM) in DBGD. 

 

2.2 Naturally Occurring Radioactive Materials (NORM)  

2.2.1 NORM scale 

In many countries, a significant radioactive contamination in the oil and gas 

industrial processes occurs due to the solid precipitate scales containing natural 

radioactive elements, commonly known as Naturally Occurring Radioactive 

Materials (NORM), which are by-products present in varying concentrations in 

the hydrocarbon reservoirs [1-3]. For example, According to U.S. Environmental 

Protection Agency (EPA), about 25,000 tons of NORM scale are generated 

each year by the petroleum industry in the United States only [4]. As shown in 

Figure 2.1, NORM scales are deposited in processing equipment and vessels 
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[5], e.g. wellheads, tubular, and surface facilities including pipelines and plant 

equipment.  

 

Scales

 Figure 2.1 Schematic of oil and gas recovery process [5]. 

 

 

2.2.2 NORM radioactivity  

The petroleum industry has recognized that the deposit of BaSO4 and SrSO4 

can give a rise to the radioactive scale during the oil and gas production [6, 7]. 

The ionizing radiation originating from the BaSO4 and SrSO4 scales is derived 

from the radioactive decay of naturally occurring radium isotopes (226Ra and 

228Ra) and their decay products [3, 8, 9]. The sources of the radium in oil and 

gas NORM scales are long-lived isotopes of uranium-238 (238U) and thorium-

232 (232Th). As shown in Figure 2.2, the 226Ra isotope is the sixth member of 

the 238U decay series, and the 228Ra isotope is the second member of the 232Th 

decay series as shown in Figure 2.3. Both uranium and thorium are present in 

NORM 

scales 
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the oil environment with the activity concentration depending on the geologic 

formation and type of rock [2], which can produce several daughter 

radioisotopes through their decay series. Both of them are relatively insoluble 

and remain in the place of the subsurface formation. The decay products of 

these series are, however, more soluble and can become mobile in the 

produced water waste stream [8].    

 

 

 

Figure 2.2 Uranium-238 decay series [8]. 
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Figure 2.3 Thorium-232 decay series [8] 

 

 

The scale, also known as Low Specific Activity scale (LSA-scale) or low 

radioactive waste [5, 10, 11] emits alpha (α), beta (β), and gamma radiation (ϒ) 

[5], which can cause problems when the equipment containing the radioactive 

scale has to be handled or removed from service. For example, the NORM 

materials may become an inhalation risk (Figure 2.4) when the material is 

removed by mechanical forces, such as wire brushing [5]. Therefore, these 

scales require appropriate handling and disposal. These radiation and their 

potential health risks are: 
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Alpha (α) particle is a heavy particle which is equivalent to a helium nucleus 

that is positively charged. It interacts strongly with matter and can be stopped 

by a thin sheet of paper [5]. The primary health concern associated with alpha 

particles is that, when the alpha-emitting materials are ingested or inhaled, 

energy from the alpha particles is deposited in internal tissues [12]. 

Beta (β) particles have either one positive (+1) or negative (-1) charge. They 

are small, over 7000 times lighter than the alpha particles. The beta particles 

travel farther through the solid material than the alpha particles, which interacts 

slowly with the matter. It can be stopped by thin layers of metal or plastic [5]. 

The health concerns associated with beta particles arise primarily when beta-

emitting materials are ingested or inhaled [12]. 

Gamma (Ɣ) rays can pass completely through the human body. It is a form of 

high energy electromagnetic radiation similar to X-rays but much more 

energetic that interacts lightly with matter and may cause ionization in any 

organ in the body [5]. Gamma rays are best shielded by thick layers (six inches) 

of lead or three feet of concrete. It is considered as an external hazard to the 

living tissues [12]. 
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Figure 2.4 The potential NORM scale exposure scenarios [5] 

 

 

2.2.3   Scale formation  

The formation of scales in the oil and gas industry is due to the chemical-

physical processes which take place in the reservoir's production waters [2]. 

Figure 2.5 shows the mechanism of scale formation: (i) In order to keep the oil 

production stable and to maintain the well integrity with the production time, it is 

necessary to inject seawater into the wells; (ii) then  the injection seawater 

which contains of sulphate ion SO4
2- is mixed with the formation water which 

contains ions of the alkali earth elements including radium; (iii) the mixture of 

these incompatible water reaches the surface, and the change in the pressure, 

temperature or pH can lead to the radium isotopes (226Ra and 228Ra) to 

precipitate [1, 13-15].  
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                           Figure 2.5 Mechanism of radioactive scale formation 

 

 

Usually radium co-precipitates with divalent cations, barium and strontium, to 

form neutral compounds (primarily sulphates), i.e. (Ba,Ra)SO4 and (Sr,Ra)SO4 

solid solutions [1, 13-15] via Equation 2.1 and 2.2 

   

(Ba, Ra)2+
(formation water) + SO4

2-
(seawater) → (Ba, Ra) O4 (scale)                               (2.1) 

(Sr,Ra)2+
(formation water) + SO4 

2-
(seawater) → ( r, Ra)  O4 (scale)                                         (2.2) 

 

The affinity of radium with barium and strontium in the crystal lattice comes from 

the similar chemical properties [16, 17], and is most similar to barium [17]. 

Therefore, radium is expected to be well accommodated in their crystal 

structures [7, 18, 19]. Szabo et al. reported that both Ra and Ba do not undergo 

redox transformation, and they can form a neutral or anionic SO4 complex at 

high pH (near 10) [17]. Grandia et al. reported that the sulphate solid solution of 

(Ba, Ra)SO4 is thermodynamically more stable than the simple mechanical 

mixture between the solid end-members (BaSO4 and RaSO4) due to the 

(ii) 

(i) 
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reduction of the Gibbs free energy when a solid solution of (Ba,Ra)SO4 forms 

[19]. 

 

2.2.4 Concentration of radium in the scale  

According to the literature, the scale found in the piping and any other 

equipment used in the oil and gas stream processes do not contain 238U or 

232Th [20]. As noted before these elements are relatively insoluble and remain 

as the solid phase in the place of the subsurface formation. The scale contains 

only alkali earth elements such as barium, strontium, calcium and radium [20]. It 

has been known that barium and strontium sulphate precipitation will lead to a 

radium co-precipitation [5, 17]. A study by Al-Masri and Aba 2005 [13] reported 

the correlation among the concentration of these elements Ba, Sr and Ra in 

scale as shown in Figure 2.6. The concentration of radium in the scale 

increases in proportion with the concentration of barium and strontium increase.  

 

 

 
Figure 2.6 Correlation between Ra concentration and Ba, Sr concentration [13] 
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The chemical composition of various scales and the activity levels of 226Ra and 

228R from different oil and gas fields are presented in Table 2.1. Available data 

shows that the specific activity of 226Ra ranges from less than 0.1 Bq/g up to 

15000 Bq/g [8, 21, 22]. The values for 228Ra in scales are, in general, not much 

lower than that for 226Ra. The average of specific activity of scales can exceed 

the exemption level of 10 Bq/g for 226Ra and 228Ra recommended by the 

International Basic Safety Standards for protection against ionizing radiation 

and for the safety of radiation sources [23, 24]. The scale can be classified as 

radioactive when the concentration of 226Ra, 228Ra exceeds 10 Bq/g scale [10, 

21], and should be handled as low level radioactive wastes (LLW) or low 

specific wastes (LSW) [10]. 
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Table 2.1 Concentration of 226Ra and 228Ra in different scale samples 

 

 

2.3 Options for disposal of NORM in oil and gas industry  

2.3.1 Current technologies 

Disposal of oil and gas industry NORM scale is not simple due to its content of 

hazardous and radioactive materials. Although the presence of NORM in oil and 

gas wastes has been recognized since 1930s [31], the NORM was not 

recognized as a waste management issue until the mid-1980,s, when the 

                                              
1 1 Bq = 1 disintegration per second 

Materials Specific activity  Bq
1
/g Chemical content in 

scale (ppb)
 

location Ref 

226
Ra 

228
Ra 

226
Ra 

228
Ra 

(Ba,Sr)SO4 106 78 2.8 2.1 Brazil [14] 

BaSO4, 

CaCO3 

1-1000 - 0.02-27  [25] 

 

(Ba,Sr)SO4 

174 91 4.7 2.46 Syria [13] 

1050 - 28.3 - [26] 

(Ba,Sr)SO4, 

CaCO3 

1–950 - 0.02 25.6 - Algeria [26] 

Scale 7.54-143.26 - 0.2-3.87 - Egypt [27] 

(Ba,Sr)SO4, 

CaCO3 

4.3–658 - 0.11-17 - Tunis [28] 

BaSO4 21-250 48-300 0.56-6.75 1.3-8.1 Australia [20] 

scale 114.3-187.7 130-206 3 -5 3.5-5.5 Malaysia [15] 

scale 76.1
 - 

2 - Oklahoma [29] 

15.4 
- 

0.4 - Michigan 

(Ba,Sr)SO4, 

CaCO3 

3700 -  100 - USA [26] 

(Ba,Sr)SO4, 

CaCO3 

1–1000 - 0.027-27 - UK [30] 

Scale 0.1–15000 - 0.0027-405 - - [8] 
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industry and regulators realised that NORM occurrence was more widespread 

than originally thought and that radioactivity levels can be high [32]. This leads 

the petroleum industry to adopt more restrictive methods for the management 

and disposal of NORM-contaminated wastes than those previously accepted, 

which are likely to provide greater isolation of the radioactivity [32]. In Syrian oil 

companies for example, NORM scale waste from the decontamination of 

equipment and removal from the piping (Figure 2.7 a) using high pressure water 

system or mechanical cleaning are currently stored in standard storage barrels 

as shown in (Figure 2.7 b) in a controlled area prior to the transfer to the 

radioactive waste facilities [33]. 

 

 

 

Figure 2.7 NORM scales [34, 35]  

 

 

Some of the current options used by oil and gas companies for management 

and disposal of NORM are briefly outlined below.  

 Land spreading: This method has been available to the petroleum 

industry and used world widely. In this method NORM scales having an 

NORM 

scale 

a b 
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activity concentration higher than the acceptation level are mixed with 

clean soil to decrease the Ra concentration lower than the required level. 

The mixture is then disposed in a large area. However, the present use  

of this method is limited due to the increase of the Ra in ground water 

[36, 37]. 

 Landfill disposal: The burial of the wastes surrounded by a concrete 

barrier is one of the NORM disposal options. However, this method has 

remediation problems leading the negative human and environmental 

impacts, including long-term implications arising from groundwater 

contamination [38].   

 Well injection: This method put the NORM wastes back to the place they 

come from. In this method the NORM scale is mixed with water and then 

injected to old well. After the NORM injection, the well is usually plugged 

with cement to prevent the migration of fluids in the wellbore. Studies 

have shown that these solution are very safe [39]. However, the method 

is only available when no longer the well is used [40].  

 Deep underground disposal: The NORM scale is  stored, usually in the 

mined repositories, tunnels or other types of low level radioactive waste 

facilities [37, 39].  

 

2.3.2 Cementation of LLW 

As already mentioned, NORM scale can be categorised as LLW. Radioactive 

wastes are classified by the level of radioactivity worldwide, e.g. Low Level 

Wastes (LLW), Intermediate Level Wastes (ILW) and High Level Wastes 

(HLW). In the UK, LLW, ILW, HLW are defined as following [12]:  
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 LLW has a radioactivity of less than 4000 Bq/g alpha activity or 12000 

Bq/g beta or gamma activities and does not require shielding in handling 

or storage [12]. 

 ILW is highly radioactive, but is not significantly heat generating [12] 

such as the cladding of fuel rods.  

 HLW is highly radioactive, which generate heat and will be vitrified. HLW 

contains over 95% of the entire radioactivity in wastes from the 

generation of electricity by the nuclear power [12]. 

Cementitious, or cement-based, wasteforms are commonly used worldwide for 

storage and disposal of LLW and ILW, hazardous and mixed wastes [41]. 

Portland cement (PC), with or without Supplementary Cementing Materials 

(SCM), is being used in the UK to encapsulate the LLW and ILW [41-44]. The 

reasons for converting the raw wastes into more formal wasteforms are to allow 

a safer transport of the wastes to a repository using the existing transportation 

system and to reduce the probability of the total system failure. Therefore, the 

immobilisation of the waste ions in wasteform is the key to prevent diffusion of 

contaminants and making a manageable product. Cement has been studied 

extensively for incorporating wastes as there are many advantages, both 

physically and chemically, with the main points being as follows [41, 43]: 

1. The raw materials are readily available economically  

2. The products have a good durability and strength. 

3. The low temperature mixing process is simple and can provide a good 

workability [41, 43].  
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4. Cements can be combined with all kinds of additives that alter the 

products’ final properties, making them a flexible material. 

5. Hydrated cement has a reasonable chemical and thermal stability, also 

stable when irradiated and can provide a shield against radiation when it 

is thick enough [42, 45]. 

6. Cements can easily handle wet wastes because they need water for their 

solidification itself.  

7. The solid products are relatively non-toxic and non-flammable. 

In the UK, an PC-based cement matrix inside stainless steel containers has 

been used to encapsulate and immobilise LLW and ILW [44]. The waste is 

poured into 500 L stainless steel drums, followed by cement grout infilling as 

shown in Figure 2.8 

 

 

Figure 2.8: Schematic of encapsulation of ILW in composite cement [44] 
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The long-term durability and stability of the cement wasteform is of importance 

due to the long lifetime requirement for the hardened radioactive cement 

wasteforms. The waste packages may be stored above ground for a period of 

up to 200 years before ultimate disposal [46]. Figure 2.9 shows an example of 

ILW encapsulated in cement matrix. 

 

 

Figure 2.9 Cement-encapsulated solid ILW in 500 L drums. [47] 

 

 

2.3.3 Feasibility of cementation for BaSO4 NORM scale  

In general, the handling and disposal of waste from the oil and gas industry 

varies very much around the world. However, most of the methods described in 

the former section which have been used for long time to dispose the NORM 

waste do not fulfil the current regulatory regime of radiation protection and 
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environmental protection [48]. The NORM–contaminated scale can be treated 

before disposal, by solidification or chemical stabilisation to reduce the mobility 

of radionuclides. 

Radioactive waste is typically immobilised to provide higher safety of handling 

and transportation, and hardened Portland cement paste has been known as 

suitable medium for the immobilisation of low level radioactive wastes [41]. 

Cement is a complex material and when it hydrates, it produces many phases 

which can be either crystalline or amorphous. Some of these phases have very 

flexible structures and can accommodate many ions into their structures. Some 

of the radioactive species from the wastes have been shown to be contained in 

the structure of these cement phases and hence are considered immobilised 

[49, 50]. The interaction between the hardened cement matrix and the waste is 

strongly dependent on the chemical reactivity of the waste and cement paste 

and hydration reactions involving the waste and composite cement systems. 

These areas have generally been reviewed by Glasser 1992 [42], Gougar et al 

[51], and Sharp et al [41] among others. By controlling the conditions during 

hydration (i.e. curing temperature or composite cement composition) it is 

possible to form an efficient immobilising matrix with a desirable microstructure, 

physical properties and internal chemical environment for a specific ion 

encapsulation. 

R. Wang et.al [52] studied the feasibility of cement system containing BaSO4 for 

the 226Ra immobilisation and concluded, based on the compressive strength 

data and the solubility of sulfates, that their cement system could be an effective 

barrier for 226Ra disposal in the geological repository. More recently, Read et al. 

[1] has compared three cementing systems based on PC and recommended a 
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blend of Portland cement, fly ash and metakaolin with water to solid (w/s) ratio 

of 0.50 as a preferred encapsulant for the BaSO4-containing scale they studied 

up to 14 wt% owing to its good leach resistance. 

 

2.4 Cementing system 

2.4.1 Portland cement (PC) 

Cements are usually manufactured by heating a mixture of limestone and clay 

at an approximate temperature of 1450°C, producing an assembly of crystalline 

and amorphous phases known as clinker which are combinations of oxides [53]. 

The cement clinker is ground with few per cent of gypsum (CaSO4.2H2O) to a 

fine powder. The final product is called Portland Cement (PC) [49, 54, 55]. The 

four major constituents of clinker are alite (tricalcium silicate, 3CaO.SiO2, C3S), 

belite (dicalcium silicate, 2CaO.SiO2, C2S), the aluminate phase (tricalcium 

aluminate, 3Ca.Al2O3, C3A) and the ferrite phase (tetracalcium aluminoferrite, 

4CaO. .Al2O3.Fe2O3, C4AF). Approximately 50-70% of Portland cement clinkers 

consist of alite, 15-30% belite, 5-10% aluminate and 5-15% ferrite.  

 

2.4.2 Hydration of clinker phases 

Cement powder (anhydrous cement) and gypsum when mixed with water forms 

a paste that sets and hardens by means of hydration reactions and retains its 

strength after hardening. The overall hydration is exothermic and is generally 

addressed according to the hydration of clinker phases. Alite (C3S) is the most 

important phase as it reacts with water quickly for the strength development at 

the age up to 28 days. The reaction of belite (C2S) with water is very similar to 
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that of alite. However, belite reacts slower than alite, thus contributes 

significantly to the later strength development [49]. These two silicate phases 

react with water in the following manner: 

2C3S + 6H => C3S2H3 + 3CH                                 (2.3)  

2C2S + 4H => C3S2H3 + CH                                    (2.4) 

 

    Gel   Portlandite  

The C-S-H gel is a calcium silicate hydrate phase, which is the major binding 

phase in cements and constitutes up 60 to 70% of mass of the hardened 

Portland cement paste [56]. It is an essentially amorphous material, although it 

can be semi-crystalline based on the mineral structures of tobermorite and 

jennite [57, 58]. Portlandite, Ca(OH)2, composes about 20% of the volume of 

the hydrated cement product [56]. This phase is highly crystalline. The amount 

produced is different between the alite and belite. In the belite, the amount of 

CH has been reported to be between a fifth to a third of that produced in the 

alite [59].  

The aluminate phase (C3A) reacts very rapidly with water unless controlled by 

the addition of gypsum. These crystals could provoke a flash set of the 

hardening cement [56].. As shown in Eq. 2.5, the product of hydration is a 

trisulphoaluminate known as ettringite and commonly referred to as AFt. 

 

      C3A    +    3C  H2   +   26H     →    C6A  3H32          (2.5) 

Aluminate       Gypsum     water          Ettringite (AFt) 
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It has been reported that AFt is the most common substitutes for calcium with 

other divalent cations, such as magnesium, strontium, and barium [60]. Usually 

the amount of substitution is no more than a few percent [51]. If there is not 

enough sulphate available, ettringite is progressively replaced by a calcium 

monosulphoaluminate phase, known as monosulphate and commonly referred 

to as AFm [49] as shown in Eq. 2.6. 

 

2C3A          +      C6   3H32    +      4H   →   C4   3H12        (2.6) 

Aluminate        Ettringite (AFt)      water        Monosulphate (AFm)   

  

The last part of hydration involves calcium aluminoferrite (C4AF), which is 

considered to be similar to that of C3A. However, the kinetics of the reaction are 

much slower, and the hydration products formed have a substitution in a part of 

their Al3+ by Fe3+ [61, 62]. This phase is deficient in lime but if lime form from the 

hydration of alite then hexagonal hydrates (C4(A,F)H13) and cubic hydrogarnet 

(C3(A,F)H6) can be formed [63]. Figure 2.10 shows a typical example of the 

phase composition in the hardened PC. 
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Figure 2.10 Typical compositions of cement hydration products 

 

2.4.3 Hydration of cement 

Cement hydration is the sum of the reactions given above and can be 

characterised by four different stages. The works of Taylor [56], Scrivener [64] 

provide a comprehensive explanation of the microstructural development of 

hydrating PC which is represented graphically in Figure 2.11. 

 

 
Figure 2.11: Diagrammatic hydration of PC [56]  
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Pre-induction period (first minutes after mixing): When cement is mixed 

with water, there is nearly an immediate reaction associated with the release of 

heat. Alkali sulphates dissolve completely, producing K+, Na+ and SO4
2- ions. 

The solution becomes supersaturated with respect to calcium hydroxide, and 

this hydroxide starts to precipitate.  

Induction period (first few hours): During the early period (up to 

approximately 3 hours hydration), C3A, reacts very fast with the sulphate from 

gypsum to form gelatinous ettringite, allowing the cement paste to maintain 

most of its plasticity. This amorphous surface gel layer is formed around the 

particles of cement, forming a layer which partially prevents water from gaining 

access to grains for further hydration [56]. In this period, the reaction is 

continuing, but very slowly compared with the faster reactions involved at the 

start of the hydration reaction. At this stage of hydration, little needles of calcium 

sulfoaluminate hydrate (ettringite) appear within a few minutes at the surface of 

the cement grains and in the pore solution away from the hydrating cement 

grains [56]. 

Acceleration period (3-12 hours): After approximately between 3 and 12 

hours the unstable protective film formed around the cement grains is ruptured. 

The silica-rich solution inside the protective film can react with the Ca2+ in the 

external solution, and C-S-H and CH form rapidly accompanied by a large heat 

output [65]. This allows the mechanisms of hydration to resume at a normal 

rate. According to Taylor, the growth of the C-S-H shell layers outwards into the 

pore solution, forming a gap between the anhydrous cement grain and this shell 

layer, is considered to be the induction period [53]. After 24 hours, the rate of 

ettringite formation is accelerated, increasing in the reactivity of C3A with 
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sulphate, and inner C-S-H product starts to form from the continuing hydration 

of the C3S on the inside of the shell, which is usually poorly crystallised [49, 54, 

62]. 

Post-acceleration period (12 hours and later): The rapid progress of the 

previous stage slows down while the setting and hardening occur during this 

period. The ettringite initially formed transforms to monosulphate as a 

consequence of the decrease in the SO4
2-:Al3+ ratio with the progressive 

hydration reaction of the C3A during the first week of curing [54, 56]. The 

hydration is progressing, with continuing formation of inner C-S-H product. After 

approximately 2 weeks, the space between the grains is reduced and 

completely filled with the various hydrates, replacing the initial solution, and 

more outer C-S-H and CH are formed [56]. Within 4 weeks, the overlap 

structure of the various hydrates causes the hardening and the development of 

mechanical strength. In general, Portland cement attains most of its final 

strength after 4 weeks [46, 56]. 

 

2.4.4 Heat evolution 

The heat evolution during the hydration of PC is graphically shown in Figure 

2.12 as determined by isothermal conduction calorimetry (ICC) curve [66]. Peak 

I is associated with the initial reaction of the hydration and is attributed to a 

combination of wetting and the initial interaction between the cement powder 

and the water [56]. Peak II is the main exothermic reactions and corresponds to 

the hydration of C3S and the formation of C-S-H and CH [56], then the heat 

evolution gradually decreases after 24 h due to the limited ability of CH to 

interact with the available water through the outer layer (rim) [56]. Peak III has 



Literature review 

29 

 

often been associated with the replacement of Aft by Afm phases but it can also 

be associated with renewed formation of ettringite [56]. Peak IV has been 

associated with the conversion of Aft to Afm or the hydration of C4AF which 

continues as slowing exothermic reactions [56]. Peaks III and IV are not always 

observed.    

 

 
Figure 2.12: Graphical representation of heat evolved during hydration of PC [57] 

 

 

 

2.5 Composite cement systems relevant to the project 

2.5.1 PC- BaSO4 system 

Even if a small amount of BaSO4 is dissolved, barium has chemistry similar to 

that of calcium, and therefore, its incorporation in cement based waste forms is 

not expected to present a problem when considering cement hydration 

chemistry and mechanisms [67, 68]. According to the data found in the 

literature, Ba2+ will be released less easily because of its incorporation, or 

sorption, in or on the major cement hydrates, especially hydrated calcium 

aluminates [59, 68, 69]. Although, most of barium compounds are soluble in 
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alkaline solution, barium sulphate salt is very insoluble, only 3.11 mg/L(H2O) at 

20°C, pH7 [70]. The reaction of BaSO4 with cement is expected to be very little 

due to the strong bond between barium and sulphate [19].  

On the other hand, there are numbers of reports available on the concrete 

systems containing barite (a mineral based on BaSO4). Because of its high 

density (4.48 g/cm3 [70]), barite is usually used as an aggregate to produce 

heavyweight concretes, applied for nuclear utilities to provide radiation 

protection [71]. Due to this specific application, many of the studies concern the 

interaction of PC-barite concrete systems with different types of radiations [72-

75] and the physical properties of the system relevant to the practical usage as 

the structural materials, in particular workability and mechanical properties [75-

79]. Kilincarslan et al. [77] reported that it was possible to use barite as a part of 

aggregates without reducing the hardness of concretes. Khan [78] compared 

cement pastes and mortars blended with different amount of barite powder (5, 

10, 15 and 20 wt%), and reported that 5 and 10 wt% blends were the best 

based on the compressive strength data. Topcu [79] studied the effect of water 

to cement (w/c) ratio on the physical and mechanical properties of barite 

containing heavyweight concrete and reported that the most favourable w/c 

ratio was 0.40 based on the compressive strength and Schmidt hardness data. 

These data are useful for the specific products, but it is often difficult to 

understand the effect of barite (or BaSO4) or water content on the reported 

properties due to the other variables i.e., different amount of other aggregates 

co-existing in the system [77], the wide range of barite particle size [77, 79] or 

the varying w/c ratio to keep the consistency of the cement paste and mortar 

[78].   
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2.5.2 PC- metakaolin system 

As previously mentioned, Read et al. used a cementing system containing 

metakaolin [1]. Metakaolin (MK) is very fine powder produced from the 

calcination of kaolinite (clay) at the temperature between 650-800ºC [80]. The 

final product contains high reactive silica and alumina which is ready to react 

with cement hydration products [80]. When such fine powder is added to 

cement, the early strength is enhanced due to the filler effect [80]. Moreover, 

the filler effect of MK can improve the pore structure and increase the 

resistance to the harmful solution [80]. It has been reported that the inclusion of 

MK in the cement wasteform induces the formation of a larger amount of 

hydrated products as a consequence of pozzolanic reaction taking place 

between MK and the portlandite derived from cement hydration. The main 

hydration product of this reaction is C-S-H and a complex calcium 

aluminosilicate hydrate (C2ASH8)  that can coexist with hydrogarnet-katoite 

(C3AH6) solid solutions phases [80, 81]. MK can also raise the crystallinity of C-

S-H [82, 83]. However, PC-MK system may not be suitable for the applications 

under high curing temperatures, where the C2ASH8 produced during the 

pozzolanic reaction of MK with the cement hydration products can transform to 

more stable C3AH6 phase with volume reduction, leading to a more porous 

structure which can decrease the materials integrity [84]. In addition, it has been 

reported that MK adversely affects the workability of cement due to the water 

demand of MK [80]. 
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2.5.3 PC- quartz system 

Introduction of quartz to the cementing system may bring a variety of 

advantages. Glasser pointed out that the inclusion of quartz as a supplementary  

material to cement wasteform decreases permeability and increases sorption of 

metals and non-metals [42]. It has been reported that quartz can increase the 

thermal stability of the autoclaved cement systems by producing type (I) C-S-H 

with a low Ca:Si ratio [42, 85], which is closely related to the natural mineral 

tobermorite. Alhozaimy et al. studied the effect of two types of quartz on 

compressive strength of concrete in the normal and autoclave curing at 180ºC 

for 4-5 hours. They observed an improvement of compressive strength in both 

systems and suggested that the temperature has increased the reactivity of 

quartz to form C-S-H from the CH released during cement hydration [86].   

 

2.6 High density support matrices  

2.6.1 Deep bore hole geological disposal (DBGD) 

Deep borehole geological disposal is an alternative methodology for the 

disposal of nuclear wastes to increase the geological barriers for the transport 

of the radionuclide to the geosphere [87]. Figure 2.13 shows a schematic of 

DBGD suggested by Gibb et al [87]. In this method, the waste canisters are 

stack at the bottom of deep bore hole, and the space is grouted by high density 

support matrix (HDSM). One of the main challenges for this design is the 

accurate stacking of the containers in the borehole without creating stresses 

that could lead to the release of the radionuclides to the environment. Gibb et 

al. [88] suggested that, to reduce the risk in the deformation of the nuclear 

waste containers without any ruptures, a substantial clearance between the 
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canisters and casing is required. It was recommended to situate the canisters 

individually and grout the space with the cement, allowing them to set safely, 

and then placing the next canister on the top. One of the very important aspects 

of such a grouting system is the density, which has to be as high as 4 g/cm3 to 

support waste canister(s) [87], to prevent blow-out of the cement slurries. 

 

 
Figure 2.13 Schematic diagram of deep borehole geological disposal [87] 

 

 

2.6.2 High density support material (HDSM) 

In the deep borehole geological disposal systems, HDSM is used to surround 

the HLW containers and should flow into the voids and set under the predicted 
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temperature and pressure condition [88]. Cementitious grout is one of the 

candidate materials, which can be used to surround the containers so they can 

withstand deformation when the HDSM has solidified around them. The heat 

produced from radioactive decay waste can reach about 180ºC within 28 days 

of emplacement [88]. Also, the horizontal stresses in the borehole region will 

increase after waste containers emplacement due to the containers weight 

itself, meaning that the cement matrix has to withstand these conditions. In 

addition, the cement system for HDSM in DBGD has to be an optimal setting 

time and the cement slurry should have expectable viscosity to make it pump-

able [89].   

The cement properties required in such an application are similar as to in the 

oilwell cements. Oilwell cements are exposed to such high temperatures and 

pressure, and there has been variety of investigations on oil well cement 

systems [89-91]. The American Petroleum Institute (API) has defined the 

specifications for the materials and testing for the well cements. Class G and 

class H has been used for oil well cement in 2 km depth for high sulphate and 

high temperature (about 160ºC) resistance [90, 92]. In terms of properties, high 

mechanical strength is required to maintain the integrity during the operational 

life of the well at downhole conditions [89]. Oilwell cement slurries also need 

their densities to be raised so as to prevent blow-out of the cement slurries in 

such high pressure conditions. In addition to Portland cement, oil well cement is 

mixed with additives in order to tailor it to serve various purposes such as, 

providing support and protection of the casing,  or preventing the blow-out of the 

cement slurries [89, 90]. The blow-out of cement slurries is usually overcome by 

the use of heavyweight additives such as barite (BaSO4) to increase the density 
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of the final cement mix [93, 94]. Therefore, PC-BaSO4 containing BaSO4 scale 

may be utilised for this application.  

 
 
2.7 Potential issues of PC-BaSO4 system 
 
2.7.1 Sedimentation 
 
One of the main problems in the cement paste with high density particles is the 

sedimentation which can occur before the initial setting of cement paste takes 

place [95]. As the BaSO4 particles are much denser (4.48 g/cm3) [70] than the 

cement slurry (2 g/cm3) [63]. Sedimentation of BaSO4 granule is expected [96]. 

The phenomenon is related to many factors but the main reason is that the 

suspending fluid is not able to “carry” its particles [96]. Many researchers have 

studied the rheological properties of fresh cement pastes [97-102] in order to 

evaluate the effect of different factors, concentration, specific surface area, age 

and presence of mineral admixture on the viscosity and yield stress. 

Shaughnessy and Clark [98] reported that the rheological properties of cement 

pastes changed with the cement chemical composition, specific surface area of 

cement powder, hydration time, mixing procedures and curing temperatures. 

The literature shows that the incorporation of mineral admixtures such as 

metakaolin and quartz can help cement slurry to carry its particles and reduce 

the risk of sedimentation [100-102]. Shahriar pointed out that MK was found to 

enhance the yield stress of cement slurries and the intensity of this behaviour 

varied with amount of MK [103]. Felekoğlu et al. [104] reported that in general 

all finer powders increased the initial viscosity of the pastes compared with the 

plain cement paste. The mineral admixtures increase viscosity of the paste not 
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only through the added interparticle forces due to its fine particle size but also 

through the hydrodynamic interactions [96]. 

The rheological properties of fresh cement pastes are very important, since they 

affect the consistency, workability, and setting characteristics of cement paste. 

Cement pastes, from the industrial application point of view, have to be as fluid 

as possible to ensure that it would fill the formwork under its own weight. On the 

other hand, it has to be a stable mixture. Therefore, a compromise between the 

stability and fluidity has to be reached. The most straightforward approach is to 

find the minimum fluidity (or workability) that will guarantee the adequate filling 

of the formwork and assume that this minimum fluidity will ensure an acceptable 

stability.  

 

2.7.2 High temperature strength regression 
 
Due to the change in the microstructure during the curing at elevated 

temperatures, the physical properties of the cement also change. At elevated 

temperatures the initial strength of PC increases significantly, due to the faster 

rate of hydration of clinker phases [105]. However, at longer curing times, it has 

been reported that the strength was less than that of a sample cured at ambient 

temperatures, believed to be due to the higher porosity and the coarser and 

heterogeneous microstructure [61]. According to the literature, neat PC starts to 

lose its compressive strength at temperatures above 110ºC as a result of the 

breakdown of the main binding phase (C-S-H) at such temperatures [106]. This 

would render the Portland cement unusable for high temperature applications. It 

has been reported that the hydration of PC under high temperature resulted in 

the formation of lime-rich crystalline phases, such as alpha-dicalcium-silicate 
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hydrate (α-C2SH), which are known to weaken the mechanical strength of 

cements [106]. In order to avoid strength loses, crystalline silica, or quartz, is 

often added [106]. The addition of the crystalline silica or quartz allows the 

formation of silica-rich cement phases, such as tobermorite and xonotlite, which 

would not result in the significant strength regression in the cement [106]. 

 

2.6 Summary 

The review showed that scale contains NORM is one of the main radioactive 

contaminations in the oil and gas industrial processes. The formation of scales 

is due to chemical-physical processes which take place in the reservoir's 

production water. Barium sulphate (barite) was the main constituents found in 

the scales, and the abundant information from early researches indicates that 

Ra (II) is mainly associated with BaSO4 precipitation. Available data shows that 

the specific activity of 226Ra in scale ranged from less than 0.1 Bq/g up to 15000 

Bq/g. Therefore, NORM scale can be classified as LLW, and hence requires an 

appropriate handling and management. Also, the review has outlined the 

current usage of cement for radioactive waste management. As described 

previously, encapsulation of a variety of waste materials in cements is the 

favoured method in the UK, due to the favourable chemical and physical 

properties of cementitious systems. The hydration products favour the ion 

adsorption and substitution, and the overall microstructure decreases the 

mobility of waste species.   

NORM scale containing cement wasteform has been studied by Read et al. [1] 

and by Wang et.al [52]. It was concluded from these studies that the cement 

materials based on PC could be an effective barrier for BaSO4 scale, and it is 
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preferred encapsulant for BaSO4-containing scale up to 14 wt%. The important 

question as a next step is whether it is possible to increase the loading of 

BaSO4 scale without decreasing the integrity of the final products. It would be 

advantageous if the loading of BaSO4 scale is further increased, as it would 

reduce the volume of the produced wasteforms. To optimise the amount of 

BaSO4 scale loading, it is necessary to clarify the effect of increased BaSO4 

scale loading, as well as that of water content in the system on the properties of 

the products. There are numbers of reports available on the concrete system 

containing barite (or BaSO4) to produce heavyweight concretes. These data are 

useful for specific product, but it is often difficult to understand the effect of 

barite or water content on the reported properties due to the other variables. 

The sedimentation of BaSO4 granules is expected due to its density being 

significantly higher than the cement slurry. More research in this area is needed 

to develop cement formulations with low sedimentation of BaSO4 particles.  

High density grouting system is important to reduce the risk in the deformation 

of the nuclear waste containers in DBGD. In order to use the PC-BaSO4 system 

as the cement support matrix in DBGD, it is important to study the effect of high 

temperatures on the cement system in such environment. The interaction 

between a cement systems and BaSO4 and the changes in the microstructure 

of the hardened cement paste in such temperatures have not been studied, and 

more research in this area is needed to fully understand these effects.  
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3.1 Introduction 

This chapter provides the details of the experimental works undertaken in the 

present study. The chapter is divided into three sections. The first section 

characterises the raw materials used in experiments. The second section 

describes the sample preparation whereas the last section outlines the 

characterisation techniques used in the project.  

 

3.2 Raw materials  

3.2.1 Portland cement (PC)  

The PC used in this project was a CEM I type, provided by Castle Cements 

product UK. The oxide composition of the PC is shown in Table 3.1 [1]. The 

cement has a fineness of 352 m2/kg Blaine. Bogue analysis using the above 

oxide contents was performed and the percentage of the four major clinker 

phases in PC estimated in Table 3.2 [2]. Figure 3.1 shows the XRD trace of the 

anhydrous PC used in the present study. All of the four crystalline clinker 

phases C3S, C2S, C3A and C4AF can be identified. The calcium sulphate phase 

present is hemihydrate (CaSO4.½H2O) rather than gypsum (CaSO4.2H2O) 

indicating that the gypsum had been dehydrated probably during the grinding in 

production. A small peak of calcite is also identified. 
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Table 3.1: Composition of the raw materials 

Material Component Wt% 

 CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O Free 

Lime 

Loss on 

ignition 

Total 

PC 64.58 20.96 5.24 2.61 2.09 2.46 0.59 0.28 0.9 0.73 100 

MK 0.02 54.8 41.2 0.57 0.31 0.3 2.27 0.04 - 1.0 99.54 

Q 0.05 97.88 0.98 0.08 0.05 0.29 0.10 0.29 - - 99.72 

PC: Portland cement 

MK: Metakaolin 

Q: Quartz 

 

Table 3.2 Bogue Analysis for the clinker phases in PC used in the present study [2] 

Compound Chemical 
Formula 

Name Abbreviation Bogue analysis 
wt% 

Tricalcium silicate Ca3SiO5 alite C3S 53.2 

Dicalcium silicate Ca2SiO4 belite C2S 20.1 

Tricalcium aluminate Ca3Al2O6 alumiate phase C3A 9.54 

Tetracalcium 
aluminoferrite 

Ca4(Al,Fe)2O7 ferrite phase C4AF 8.60 

 

  

Figure 3.1 XRD trace of raw materials (PC) (*Al peak due to the sample holder)  

A-C3S 

B-C2S 

a-C3A 

af-C4AF 

H-CaSO4.0.5H2O 

C-CaCO3 
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3.2.2 BaSO4  

Three types of BaSO4 were used in this project: 

a) BaSO4 powder - Analytical grade BaSO4 of particle size less than 1 µm 

with 99.9% purity was used for the initial characterisation of PC-BaSO4 

system, and that with 98% purity for the rest of the project. Both were 

sourced from Acros organics. BaSO4 has been known to be insoluble in 

acids and water, and is therefore considered to be chemically inert [3]. 

Figure 3.2 shows the XRD trace of the BaSO4 powder which appears 

crystalline, indicated by the presence of clear peaks. 

 

 
Figure 3.2 XRD trace of BaSO4 powder 

 

 

b) BaSO4 granules were prepared using the BaSO4 powder with particle size 

less than 1 µm, 98% purity sourced from Acros organics. The BaSO4 

powder was mixed with distilled water at the water to BaSO4 ratio of 1 on 

mass basis, manually mixed using a spatula at room temperature for 2 

BS-barium sulphate (BaSO4) 
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minutes, dried in an oven at 90°C for 24 hours, then sintered in an Elite 

furnace in air at 1000°C for 24 hours. The final product was crushed to 

the size of between 0.6-5 mm to simulate scale products as shown in 

Figure 3.3. The XRD trace of the obtained BaSO4 granules shown in 

Figure 3.4 confirms that the crystal structure did not change, suggesting 

that BaSO4 is stable up to 1000°C. 

 

 

  

Figure 3.3: (a) the BaSO4 scale simulant obtained after sintering, (b) BaSO4 granules 

after sintering 

a b 
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Figure 3.4 XRD trace of BaSO4 granule 

 

 

c) Barite, provided by Richard Baker Harrison Ltd SGS with the particle size of 

between 2-3 mm, was also used in the present study. Barite is the mineralogical 

name for barium sulphate. The barite was used when the setting time of the PC-

BaSO4 system was studied. Table 3.3 shows the chemical composition of barite 

[4]. 

 

Table 3.3: The composition of barite  

Component wt% 

BaSO4 95 

CaO 0.264 

SiO2 3.02 

Fe2O3 1.51 

MgO 0.206 

 

 

 

 

BS-barium sulphate (BaSO4) 
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3.2.3 Metakaolin  

Commercial metakaolin (Imerys metastart 501) was used as a mineral 

admixture to study its effect on the setting time and rheological properties of 

cement paste as well as that on the microstructure of BaSO4-containing cement 

wasteforms. The oxide composition of metakaolin is shown in Table 3.1.  XRD 

trace of the metakaolin is shown in Figure 3.5. The glassy nature of this material 

is shown by the amorphous hump at approximately 15~35 ˚2θ, and the 

presence of a crystalline phase, quartz (SiO2) is also detected. 

 

 

 

Figure 3.5: X-ray diffraction pattern of metakaolin and identified mineral phases  

 

 

 

 

3.2.4 Quartz  

Commercial fine quartz sand (CERAC, USA, 99.5% purity) with the average 

particle size of 44 µm was also used as a mineral admixture. The oxide 

composition of the quartz is given in Table 3.1.   

Q-quartz 

*Al (sample holder) 
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3.3 Sample preparation 

3.3.1 Mixing procedure 

Table 3.4 outlines the sample formulations studied in the present project. The 

dry powders were firstly weighed to the correct proportions and dry mixed in 

plastic containers to have a total weight of 100g usually, and 200g for the 

setting time measurement. A desired amount of distilled water was weighed and 

poured into the pre-mixed powders in the plastic containers to form a paste. The 

paste was manually mixed for 2 minutes, for further 5 minutes using Whirh 

Mixer (UK) to remove air bubbles, then sealed and placed into environmental 

chamber. For the PC-BaSO4 granule systems, samples were placed further on 

a rolling mixer for an additional 20 hours before stored in the same 

environmental chamber to avoid the sedimentation of coarse BaSO4 particles. A 

minimum of 12 wt% and up to 60 wt% BaSO4 was introduced because one of 

the key objectives for the present study was to increase the BaSO4 loading.  

The maximum BaSO4 loading previously reported in the literature is 14 wt%. 

The w/s=0.53 used in the initial stage of present study was based on the w/s 

ratio used in a previous study by Read et al. [5]. For comparison, w/c=0.53 was 

also used for some samples, which was later adopted as our base formulation 

throughout the rest of the study owing to its sufficient workability and better 

product properties found during the study. Higher water content was used for 

the metakaolin samples to assure sufficient workability, compared to the 

samples with BaSO4 or quartz.   
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Table 3.4 Formulation of cement samples studied in the present project 

  

Sample ID 

PC 

 

(g) 

BaSO4 

Powder 

(g) 

Quartz 

 

(g) 

Meta-

kaolin 

(g) 

BaSO4 

Granule  

(g) 

Water 

 

(g) 

w/c
 

w/s 

 

 

 

Basic 

characterisation 

of PC-BaSO4 

system 

PC 100 0 - - 0 53 0.53 0.53 

CPC1 88 12 - - 0 46.6 0.53 0.46 

CPC2 64 36 - - 0 33.9 0.53 0.34 

CPC3 40 60 - - 0 21.2 0.53 0.21 

CPS1 88 12 - - 0 53 0.60 0.53 

CPS2 64 36 - - 0 53 0.83 0.53 

CPS3 40 60 - - 0 53 1.33 0.53 

CGC1 88 0 - - 12 46.6 0.53 0.46 

CGC2 64 0 - - 36 33.9 0.53 0.34 

CGC3 40 0 - - 60 21.2 0.53 0.21 

CGS1 88 0 - - 12 53 0.60 0.53 

CGS2 64 0 - - 36 53 0.83 0.53 

CGS3 40 0 - - 60 53 1.33 0.53 

 

 

 

 

 

Setting time 

study of cement 

paste 

C1 132 0 - 0 0 68 0.34 0.34 

C2 120 0 - 0 0 80 0.4 0.4 

C3 94 0 - 0 0 106 0.53 0.53 

C4 80 0 - 0 0 120 0.60 0.60 

CP1 140 60 - 0 0 74.2 0.53 0.37 

CG1 140 0 - 0 60 74.2 0.53 0.37 

CG2 80 0 - 0 120 74.2 0.53 0.37 

CB1 180 0 - 0 20* 95.4 0.53 0.47 

CB2 160 0 - 0 40* 84.8 0.53 0.42 

CB3 140 0 - 0 60* 74.2 0.53 0.37 

CB4 120 0 - 0 80* 63.6 0.53 0.31 

CB6 80 0 - 0 120* 42.4 0.53 0.21 

CMK1 180 0 - 20 0 95.4 0.53 0.47 

CMK2 160 0 - 40 0 84.8 0.53 0.42 

 
 

Development 
of wasteform 
formulation 

20P40G-A 40 20 0 0 40 17.2 0.43 0.28** 

20P40G 40 20 0 0 40 21.2 0.53 0.35** 

12P48G 40 12 0 0 48 21.2 0.53 0.41** 

12Q 48G 40 0 12 0 48 21.2 0.53 0.41** 

12MK48G 40 0 0 12 48 34.8 0.87 0.67** 

*Barite (details in 3.3.1 BaSO4) was used 
**(water)/(matrix) ratio was calculated, where matrix is a mix of PC with either BaSO4 powder, 
quartz or metakaolin. 
  

 



Materials & Methods 

54 

 

3.3.2 Curing procedure (standard curing) 

After the mixing process, the samples were placed into environmental chamber 

(Sayno Climatic Test Chamber) set at 40°C with a relative humidity (RH) of 95% 

for curing. After the curing period of 28 days, samples were de-moulded from 

the plastic container. Some of them were cut into a cylinder of 25mmØ×25mm 

for the immediate testing on compressive strength test, and the others were 

broken into smaller pieces and submerged in acetone for 3 days to arrest the 

hydration reactions for the other analysis. The broken samples were then dried 

and desiccated under vacuum to drive off the acetone, and stored in sealed 

containers prior to the analysis to avoid carbonation.    

 

3.3.3 Heat-treatment 

After the curing period of 28 days, some samples from the PC and CGC3 were 

further heat-treated in an Elite furnace in air to understand the behaviour of the 

hardened PC-BaSO4 system at a high temperature. The heating and cooling 

rate were both 5°C/min, and the samples were heated at 300°C for 24 hours in 

air. It has been reported that the temperature of the DBGD environment can rise 

up to ~300oC [6, 7]. After heating, the samples were left in the furnace, thus 

allowing the samples to cool slowly. After cooling, the samples were stored in 

sealed containers prior to analysis.  

 

3.3.4 Hydrothermal curing 

The cement pastes were prepared in accordance with the standard mixing 

procedure described in section 3.3.1. After mixing, the pastes were placed in a 

Teflon pot of 26 mm in diameter and 42 mm in height (Figure 3.6). The Teflon 
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pot containing the cement paste was placed in a stainless-steel vessel, of 35 

mm in diameter and 58 mm in height (Figure 3.6). The steel vessel was sealed 

tightly with an allen/hex key. Once the vessels were sealed, they were placed in 

an oven previously heated at 180°C and left for 28 days under its autogenous 

pressure. After the required curing time, samples are left to cool down slowly to 

prevent the samples cracking. The samples were de-moulded, some of them 

were cut into a cylinder of 20mmØ×20mm for the immediate compressive 

strength test, and the others were broken into smaller pieces and submerged in 

acetone for 3 days to arrest hydration reactions for other analysis. The broken 

samples were then dried and desiccated under vacuum to drive off the acetone, 

and stored in sealed containers prior to analysis to avoid carbonation.  

 

 

  

 

Figure 3.6 Stainless-steel cylinders for high temperature curing samples  

 

Teflon pot 

Stainless-steel 
vessel 
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3.4 Characterisation 

3.4.1 X-ray diffraction (XRD) 

Principle 

An X-ray tube, the main part of an X-ray machine is schematically shown in 

Figure 3.7. The first component of the X-ray tube is the source of electrons (or 

cathode). Heated tungsten (or molybdenum) filament (1) connected to a 

generator of voltage (2), emits electrons (3). These are accelerated by applied 

high voltage (typically in the range of 30 to 60 kV) and collide with a metal target 

(or anode) (4) such as Cu, Co, Fe, and Cr. If the bombarding electrons have 

sufficiently high kinetic energy in comparison to the binding energy of the inner 

shell electrons in the atoms of the target metal, they can eject a core shell 

electron leaving behind a core hole (Figure 3.8). Then an electron from a higher 

energy level fills in the core hole. This is accompanied by an emission of X-ray 

photons giving rise of the characteristic radiation. They are passed out of the 

tube through beryllium windows (5). Beryllium is used because of its low atomic 

number (Z=4) and therefore low X-ray absorption. The X-ray tubes are highly 

inefficient as only 1% of the electron kinetic energy is radiated as X-rays. The 

heat generated at the anode is removed from the tube usually by water coolant. 
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Figure 3.7 Schematic cross section of an X-Ray tube [8]  

 

 

Figure 3.8: Schematic of X-ray photon generation 

 

 

English physicists Sir W.H. Bragg and his son Sir W.L. Bragg introduced a 

relationship known as Bragg’s Law in 1913 to explain why the cleavage faces of 

crystals appear to reflect X-ray beams at certain angles of incidence (theta, θ). 

Bragg’s Law states: 

M NK L

Electron shell

e-

Hole

Core

X- ray photon

5 1 

4 

3 
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nλ = 2d sinθ                                                    3.1  

The variable d is the difference between two lattice planes of the crystal, θ is the 

X-ray incidence angle (Bragg angle), and the variable lambda λ is the 

wavelength of the characteristic X-ray beam and n is an integer usually set 

equal to 1. The scattering of x-rays from a crystalline solid is shown 

schematically in Figure 3.9. The distance AB and BC is corresponding to d sin 

θ. 

 

 

Figure 3.9 Schematic of the diffraction of X-rays 

 

 

XRD measurement 

XRD was used to identify the crystalline phases present in the samples. Two 

models of XRD machine were used in the present study; a Siemens D500 and a 

Philips PW1373. In both cases, an X-ray diffractometer with monochromatic Cu 

Kα radiation with a wavelength of 1.5405 Å was operated at voltage of 40 kV 
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and current of 30 m  .The 2θ scans were used to examine the samples over 

the range of 5-65ο with a step size of 0.02ο and scanning speed of 2ο 2θ /min. 

The specimens were prepared by crushing samples using a percussion mortar 

then grinding using an agate mortar and a pestle, sieving with a brass sieve, to 

the particle size less than 63 µm and placed in an aluminium sample holder. 

The resulting traces were interpreted using the ICDD files in the standard 

JCPDF card on STOE WinXPOW software.  

 

3.4.2 Thermogravimetric analysis (TGA)  

This technique works by measuring the weight loss of the sample over time with 

a set temperature programme. TGA was used to identify the phases present in 

each sample based on their dehydration and decomposition up on heating. The 

TGA was carried out using a Perkin Elmer Pyris 1 TGA. Powder was obtained 

crushing specimens by an agate mortar and pestle. Samples were sieved to 

<63μm, and approximately 40 mg of sample was weighed and used in an 

alumina crucible. The samples were heated under flowing nitrogen. A uniform 

heating rate of 10°C per minute from room temperature up to 1000°C was 

selected. Temperature and weight measurements were taken every 0.1S. The 

data was analysed based on the information available in the literature [9, 10], a 

summary of which can be found in Table 3.5. Differential thermogravimetric 

(DTG) curves were also obtained from the TG data to clarify the temperature 

range of the observed thermal events. 
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Table 3.5 Temperatures of water loss and decomposition of cement phases [9, 10] 

Cement phases Formula Temperature(oC) 

C-S-H Amorphous calcium silicate 

hydrate 

110-120 

Ettringite Ca6Al2 (OH)12 (SO4)3.26H2O 130-140 

Monosulphate Ca4Al2 (OH)12 (SO4).6H2O 180-210, 300 

Stratlingite Ca2Al2SiO7.8H2O 220-230 

Hydrogarnet Ca3Al2 (OH)12 380-400 

Portlandite Ca(OH)2 480-520 

Calcite CaCO3 600-700 

 

 

3.4.3 Scanning electron microscopy (SEM) 

Principle 

In this technique, an electron gun is used to emit a beam of electrons (Figure 

3.10). The electron source is usually a tungsten filament. The filament is heated 

until a steam of electron is produced. The electrons are accelerated to energy of 

between 1 and 30 keV, usually around 15 keV for powders and 20 keV for bulk 

samples. Before electron beam pass through aperture, a set of lenses are used 

to condense the stream of monochromatic electron to demagnify the beam. 

Then a set of coils scans the beam in a grid fashion, and the beam is focused 

by the objective lens onto the desired part of the specimen. 
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Figure 3.10 SEM Schematic [11] 

 

 

 

 

The collision of a high energy electron beam with matter results in secondary 

electrons as well as backscattered electrons. With secondary electrons image 

(SEI), primary electrons generated escape from the specimen with low energies 

(<50eV) and have negligible element information. Because they have low 

energy they can provide information about the topographical layout of the 

surface of the sample. Backscattered electrons (BSE) are the result of the 

deflection of an electron by the electrons of an atom in the sample, causing the 

high energy electron to emerge at a wide angle scattering, approaching 180o, 

from the incident beam direction having lost little or none of its energy. These 

electrons are used for imaging and analysis because the intensity of the signal 

is proportional to the atomic number of the interacted elements. This shows the 

contrast of the elements, producing the image of varying shades of grey, e.g. a 

heavier element such as barium will appear much brighter than a lighter 
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element such as calcium. The porous areas of a sample are displayed as black. 

Electron specimen interactions are outlined in Figure 3.11. 

 

 

 

Figure 3.11 Secondary and backscattered electron sources and characteristic x-rays 

[12]  

 

 

Energy dispersive X-ray spectroscopy (EDS) 

EDS was used to determine the elements present in samples studied by SEM. 

With the same principle outlined in the X-ray photon generation (Figure 3.8), the 

collision of a high energy electron beam with matter ejects electron from an 

inner shell and a higher energy electron moves to fill this lower energy vacancy. 

The difference between the two energy shells is released as an electrical pulse 

in the form of an X-ray photon which has a characteristic energy unique to the 

element of origin. By measuring the energy released, it is possible to determine 

the elements present in the specimen. EDS generally provides the chemical 

analysis of the local area as shown in Figure 3.11. 
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SEM measurement 

Scanning electron microscopy (SEM) is the main technique used to 

characterise the microstructure, morphology to gain information about the 

surface or near surface of the specimen. SEM images were taken by JEOL 

electron microscope; model JSM 6400 linked to EDS analyser. The acceleration 

voltage was 20 KeV with a spot size of 9. Most of the samples investigated with 

SEM were carried out in backscattered electron imaging mode (BSE), which 

shows the distribution of elements in different contrast. All samples for BSE 

analysis require a smooth, polished section representative of the whole sample. 

Samples were prepared by mounting a small solid portion of the specimen in a 

cold set epoxy resin using a cylindrical plastic mould. The epoxy resin was 

poured over the samples, and the mould was left under vacuum to fill as many 

pores as possible. The samples were removed from the vacuum after 

approximately 15 minutes and left for 24 hours to harden before grinding 

manually with grinding papers of 250, 400, 800 and 1200 grits. Samples were 

then polished with 6, 3, 1, and 1/4 μm diamond pastes, and finally coated with 

carbon using an Edwards ‘speedivac’ carbon coating unit and silver dagged to 

make them electrically conductive before being analysed in the microscope.  

 

3.4.4 Mercury intrusion porosimetry (MIP) 

Principle 

With the assumption that pores are cylindrical and entirely and equally 

accessible to mercury, Washburn [13] showed that the pressure, P, required to 

force a non-wetting fluid into a circular cross section capillary of diameter, d, is 

given by.  
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                                                              3.2 

 

where, d is the equivalent pore diameter of the mercury filled pores, P is the 

applied pressure, ɣ is the surface tension of mercury and θ is the contact angle 

between mercury and solids.   

The mercury porosity is defined as the ratio between the total injected mercury 

volume and the total volume of the sample. The intrusion pressure values can 

be converted into pore diameter, d, using the above equation. The pore size 

distribution of the samples can then be estimated in terms of the volume of 

pores intruded for a given radius. MIP is based on the assumption that the 

pores are cylindrical and the contact angle between mercury and solids is 130˚, 

and also mercury sometimes does not pass through the narrowest pores 

connecting the pore network. Therefore, Mercury porosimetry usually indicate 

smaller than actual porosity values, which is called “ink bottle” effect.  

 

MIP measurement 

The size of pores, pore size distribution and total porosity of the samples were 

studied using Mercury Intrusion Porosimetry (MIP) technique. The 

measurement was carried out using Micromeritics Pore Sizer 9320 porosimeter 

that can generate a maximum pressure of 414 MPa and can evaluate a 

theoretical pore diameter by assuming a contact angle of 130˚ and a mercury 

surface tension of 485×10-3 N/m. Small piece of approximately 3 mm in 

diameter were taken from different regions from each sample, first dried to 

remove water from pores. The dried specimen were weighted and placed into 
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sample holder. The sample holder was evacuated, then mercury was 

introduced into the sample holder, and the sample was surrounded by mercury.  

The pressure on the mercury was gradually increased initially from about 7 to 

345 kPa. The pressure was further increased from 345 kPa to 414 MPa. The 

mercury intrusion volumes and the corresponding applied pressures within a 

period of 8 hours were recorded at every pressure steps to provide the basic 

data for the analysis of pore structure. All tests were performed to achieve the 

manufacturer’s recommendation of a mercury stem volume between 25% and 

90%. 

 

3.4.5 Compressive strength test 

Compressive tests were carried out in accordance with the American Society for 

Testing and Materials (ASTM) C39-9620. The tests were performed on 25 mm 

Ø x 25 mm cylindrical specimens, two cylindrical samples of each formulation. 

Grinding papers of 250 grit were used to produce smooth parallel surfaces for 

measurement. The measurements were carried out using a HTE Hounsfield 

automatic compressive strength testing machine, shown in Figure 3.12, with the 

normal loading capacity of 50 KN and a displacement rate of 0.4 mm/ min. The 

maximum load reached prior to cement paste failure was taken as the 

maximum compressive resistive load during the compression test. The 

compressive strength was calculated based on the maximum compressive 

resistive load divided by the cross sectional area of the sample. An average 

compressive strength was then calculated from the two specimen tested for 

each formulation. As that the aspect ratio of the specimens tested was 1.0, a 

correction factor of 0.87 was applied to the measured data according to the 
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recommendation of the Standard test ASTM C39/ C39M-09a (Compressive 

strength of cylindrical concrete specimens).  

 

 

 

Figure 3.12 HTE Hounsfield automatic compressive strength testing machine 

  

 

3.4.6 Rheology test 

In this technique, two parallel plates are used to characterise the rheology of 

cement pastes. The upper plate is usually rotated at a specified shear rate and 

the resulting torque is measured. From the measurement of the torque, the 

viscosity and the relation between shear stress  and shear rate (  are 

evaluated. Cement slurries are usually described by the Bingham model [14], 

and often characterised by two parameters, yield stress ( ) and plastic 

viscosity (η) as defined by the Bingham equation (Eq. 3.3).  
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                                                            (3.3) 

where:  is the shear stress (Pa) and is the shear strain rate (s−1). 

A rheometer RC 2000 flow test was used to measure rheological properties of 

cement pastes in the present study. Figure 3.13 shows the main components of 

the rheometer. The upper plate was a rotable plate attached to rotor and the 

lower was a fixed base plate (diameter = 40 mm). The upper plate had a 

standard cone geometry made from plastic (diameter = 40 mm, angle = 2o). 

Samples of approximately 25 g of selective formulation cement powder were 

mixed by hand for 1 minute. The cement pastes were prepared by adding the 

hand-mixed cement powder to the distilled water in a small plastic cup, and the 

total mixing time was about 3 minutes. The cement paste sample was put in 

between the cone and the fixed base plate. The strain rate was then increased 

gradually over 10 min to a final value of 200 s−1. The gap between the upper 

plate and the fixed base plate 2 mm were kept constant during the 

measurements. The temperature of the specimen was kept constant during the 

test through a water circulation system inside the fixed base plate. Water trap 

was used to prevent evaporation from the tested cement paste sample by 

covering the parallel plates and top of the hollow cylinder. Continuous flow 

conditions tests were used and the shear rate, shear stress, and viscosity were 

recorded.  
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Figure 3.13 The rheometer used in the present study 

 

 

3.4.7 Vicat setting test  

Setting time tests were carried out in accordance with a British standard (BS EN 

196-3: 1995) using Vicatronic automatic recording apparatus (vicat needle 

method) (Figure 3.14). This method is the most commonly used to identify the 

initial and final setting time for hydrating cementitious mixtures [15, 16]. A 200 g 

of paste was prepared for each measurement according to the mixing 

procedure described in the former section and placed in a wide-mouth 

polypropylene mould (height, 40 mm; diameter, 40mm). The repeated 

penetration of a 1.13 mm diameter needle forced by its own weight (300 g), on 

the surface of cement paste at different positions was monitored. The setting 
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time was measured from the instant when the cement was placed in the Vicat 

mould. Initial setting time was considered in the present study as the time when 

the needle penetration is 35 mm ±0.5 mm. The final setting time corresponds to 

less than 0.5 mm of penetration. The measurements were carried out at 20-23 

oC and 30-38% relative humidity.  

 

 

Figure 3.14 Vicat setting test machine 
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3.4.8 Leaching test 

A series of static leaching test was performed to study the leaching of elements 

from the hardened cement samples. Distilled water was used as the leachant. 

For each sample, after the required curing time, a one disc with a diameter of 

20 mm and 7 mm thickness was prepared (Figure 3.15) and placed in plastic 

container filled with distilled water (Figure 3.16) for 30 days at room 

temperature. The surface area of samples to the water volume (SA/V) ratio was 

set as 6.8 m-1. At the end of leaching period, about 5 ml of the leachate was 

collected in a centrifuge tube and sent to the Department of Chemistry where 

the inductively coupled plasma optical emission spectroscopy (ICP/MS) was 

performed.  

In the ICP, there is a flow of argon gas within a high energy field, in which argon 

plasma is created, causing intense heating as the gas is ionised. A nebulised 

mist from the leachate solution is injected into the centre of the argon plasma. 

Due to the high temperature, the chemical compounds of the mist dissociate 

into the component atoms. These atoms absorb the energy resulting in 

ionisation energy transitions which then produce spectral emission of the 

elements involved. The Ca, Si, Ba and S content were analysed in addition to 

Al, Na, Fe and Mg. 
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Figure 3.15 Leaching test samples 

 

 

  

 

Figure 3.16 Typical leaching experiment container with samples submerged in water 
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Chapter 4: Characterisation of PC-BaSO4   
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4.1 Introduction 

In this chapter, basic characterisation of PC-BaSO4 systems cured at 40oC is 

presented. A slightly high curing temperature of 40oC was used to represent the 

climate of the areas some oil wells are located. Such a curing temperature at 

this level is expected to lead to a faster initial progress of hydration resulting a 

higher early strength as well as a coarser porosity due to the heterogeneous 

distribution of the hydration products [1, 2].  

The chapter has two sections. The first section presents the characterisation of 

neat PC system at early age of 28 days and after long curing at 360 days. The 

second section contains results for PC-BaSO4 system. For each system, the 

phases formed in the products were analysed using XRD and TG. The 

microstructures of the products were studied using SEM and MIP, while the 

compressive strength was also measured. The labelling used in the XRD and 

TGA results is outlined in Table 4.1. 

 

Table 4.1 Key to XRD and TGA labelling 

Labeling Name Cement 
nomenclature 

Chemical formula 
 

JCPDS 
card 

A Alite (tricalcium 
silicate) 

C3S 3CaO.SiO2 49-442 

B Belite 
(dicalcium 

silicate) 

β-C2S 2CaO.SiO2 33-0302 

af Tetracalcium 
aluminoferrite 

C4AF 4CaO. .Al2O3.Fe2O3 30-0226 

C Calcite C  CaCO3 05-0586 

P Portlandite CH Ca(OH)2 44-1481 

E Ettringite (AFt) C6A 3H32 
Ca6Al2(OH)12(SO4)3.26H2O 41-1451 

MS Monosulphate 
(AFm) 

C4A 3H12 
Ca4Al2(OH)12(SO4).6H2O 45-0158 

BS Barium sulphate BaSO4 BaSO4 72-1390 

Hg Hydrogarnet C3AH6 Ca3Al2 (OH)12 38-0368 

CSH calcium silicate 
hydrate 

C-S-H - Taylor [3] 
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4.2 Neat PC 

4.2.1 Phase analysis 

Figure 4.1 shows XRD traces for the neat PC samples, hydrated at 40oC for 28 

and 360 days. For the PC cured for 28 days, the main crystalline hydrated 

phases detected are: portlandite (Ca(OH)2, P), and calcium 

monosulphoaluminate (monosulphate, MS). Strong portlandite peaks illustrates 

the rapid reaction of clinker phases with water at 40oC, but alite (A) and belite 

(B), associated with the unreacted cement in the system were also present, 

suggesting that the system had not completely hydrated. Crystalline or 

semicrystalline phase of monosulphate is often observed in the neat PC [3]. 

Calcium carbonate in its calcite form was also detected due to the reaction of 

portlandite and /or the C-S-H with CO2 in atmosphere. 

When the PC is cured for 360 days, the peaks attributed to portlandite became 

more prominent, with less intensity of peaks attributed to the alite and belite, 

indicating a greater degree of hydration. Usually, ettringite initially formed 

transforms to monosulphate as a consequence of the decrease in the SO4
2-:Al3+ 

ratio with the progressive hydration reaction of the C3A during the first few 

weeks of curing [3, 4]. Ettringite was not observed after 28 days of curing as 

expected. However, clear peaks for ettringite were observed in the XRD pattern 

of 360 days sample. This may imply that a delayed formation of ettringite was 

occurred. XRD pattern for 360 days sample also showed a further formation of 

monosulphate and the presence of a hydrogarnet-type phase. Taylor 

documented the formation of a cubic hydrate (C3AH6) in significant quantities 

from older Portland cements, but not as a major hydration product of typical 
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modern Portland cements under room temperature [3]. Calcium carbonate in its 

calcite form (CaCO3) was also detected.  

 

 

Figure 4.1 XRD traces for neat PC cured at 40oC: (a) for 28 days, (b) for 360 days  

 

 

 

The TGA and DTG curves for the neat PC after 28 and 360 days hydration are 

presented in Figure 4.2. The curves after 28 days were similar to the data 

available in the literature [3]. The first mass loss identified at ~100°C in both 

samples is attributed to the elimination of evaporable water, along with the 

dehydration of the calcium silicate hydrate (C-S-H) gel. In PC systems, 

evaporable water is removed below 120°C [5]. The weight loss at around 180°C 

was the result of the dehydration of monosulphoaluminate hydrate (AFm) 

phases [5] while a small peak observed at about 380°C is assigned to the 

decomposition of poorly crystallined hydrogarnet (C3AH6) [3]. Hydrogarnet 
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phase was not observed in the XRD result for the 28 days sample, likely 

because it was present as a poorly crystalline phase or in a small quantity to be 

observed by XRD. The most significant weight loss at around 480 °C was due 

to the dehydroxylation and consequent decomposition of portlandite [5] to form 

calcium oxide. The gradual weight loss at 550-750°C could be due to the loss of 

CO2 from CaCO3.
 

A small mass losses around 120°C is assigned to the decomposition of 

ettringite phase [6], consistent with the XRD observations (Figure 4.1), 

suggesting that the raised curing temperature has delayed the formation of 

ettringite. Further weight losses at ~150ºC and ~280ºC were attributed to the 

decomposition of monosulphate, identified in the XRD results. In contrast with 

28 days sample, PC cured for 360 days shows larger weight loss at 380-400ºC, 

which was thought to be from the decomposition of the hydrogarnet-type phase. 

The weight loss due to the decomposition of Ca(OH)2 and CaCO3 were also 

more significant in the sample cured for 360 days.  

 

 Figure 4.2 TG-DTG curves for PC cured at 40ºC for 28 and 360 days  
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4.2.2 Microstructural analysis    

A backscattered electron (BSE) image of the neat PC after 28 days is shown in 

Figure 4.3. Based on the grey level scales, the microstructure of hydrated 

cement can be analysed [7]. The lighter grey particles are the anhydrous 

Portland cement, as the average elemental number in the unreacted clinker 

phases is expected to be higher than that in the hydration products. A grey rim 

forming around the unreacted PC particles is the formation of an ‘inner’ C-S-H 

type product, surrounded by darker ‘outer’ C-S-H type products. The differences 

in brightness between inner and outer C-S-H type products are associated with 

the differences in the Ca/Si ratio and in the microporosity products [8]. As the 

inner products form closer to the clinker phases, they likely to have higher Ca/Si 

ratio and a lower amount of fine pores than the outer product [8]. Dark grey 

areas for C–S–H gel in the outer product most likely also contain AFm phases 

as observed in XRD. However, is not possible to distinguish between these two 

phases on the grey level alone at this magnification. The light grey 

agglomerations forming near partially reacted PC particles are attributed to 

portlandite. 
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Figure 4.3 BSE image of PC after 28-days of curing 

 

BSE image of the neat PC sample hydrated for 360 days at 40°C is shown in 

Figure 4.4. The basic features in the microstructure of the product were similar 

to that of the 28 days sample. However, it seems that anhydrous cement 

particles decreased after 360 days compared with that cured for 28 days. 

Ca(OH)2
 
constituted a higher proportion of the microstructure alongside outer 

hydration products which is consistent with the TG results. Fewer pores were 

visually observed after 360 days compared to 28 days.  
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Figure 4.4 BSE images of PC cured at 40 oC for 360 days. 

 

 

 

4.3 PC-BaSO4 systems 

4.3.1 Phase analysis of PC-BaSO4 systems 

4.3.1.1 Effect of BaSO4 powder  

Figure 4.5 (a) and (b) show XRD patterns of the PC-BaSO4 powder samples (0, 

12, 36, 60 wt% BaSO4) cured at 40oC for 28 days for w/c=0.53 and w/s=0.53 

series, respectively. The main crystalline phases detected from the hydration of 

neat PC were calcium hydroxide (P) and monosulphate (MS). Some of 

unreacted alite (A) and belite (B) were also present in addition to calcium 

carbonate (C). In w/c=0.53 series, XRD results showed a gradual change in the 

peak intensity; those attributed to the cement clinker phases and hydration 

products decreased whereas those for BaSO4 increased as BaSO4 loading was 

increased. XRD patterns for w/s=0.53 series were very similar to those for 

Ca(OH)2
  

 

 

Inner C-S-H gel  

 

Outer C-S-H 

 

 

Pores 

 

Partially reacted 

cement grain  



Characterisation of PC-BaSO4 

81 

 

w/c=0.53 in general. However, the peaks attributed to calcium carbonate were 

prominent for w/s=0.53 series (e.g. at 29 o 2θ) when Ba O4 was 36 and 60 wt%, 

which suggests extra amount of water in the system caused a significant 

carbonation in these systems. For both series, no obvious product from the 

reaction between BaSO4 and PC was identified from the obtained XRD 

patterns. These results suggest that BaSO4 was encapsulated without obvious 

reactions with the cement matrix. 

 



Characterisation of PC-BaSO4 

82 

 

 

Figure 4.5 XRD patterns of PC-BaSO4 powder samples: (a) w/c=0.53 and (b) w/s=0.53 

series cured at 40 oC for 28 days 
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Typical TG-DTG curves for w/c=0.53 and w/s=0.53 series are presented in 

Figures 4.6 and 4.7, respectively. These Figures also show the data for BaSO4 

used in the present study for comparison. The data for BaSO4 did not show any 

significant features in TG and DTG curves due to its stability up to about 

1100οC of decomposition temperature [9, 10]. The DTG curves for both series 

were similar at lower temperature, with comparable amounts of free water, C-S-

H, and monosulphate. In w/c=0.53 series Ca(OH)2 peak gradually decreased 

with BaSO4 loading. CaCO3 in this system increased when BaSO4 was 

introduced into the system, suggesting that the introduction of fine BaSO4 

powder encouraged the formation of CaCO3, probably by increasing the surface 

area for nucleation site and growth [11]. However, the amount of CaCO3 

decreased with the increase of BaSO4 and corresponding to decrease of PC, 

showing the formation of CaCO3 is also related to the amount of PC in the 

system. In the w/s =0.53 series, on the other hand, the Ca(OH)2 dehydration 

peak did not change much at 12 wt% of BaSO4 loading compared to that of the 

neat PC, most likely due to the extra amount of water in the system helped 

further hydration of PC in the system, but decreased at 36 and 60 wt% due to 

the significant reduction of PC in the system (64 and 40 wt%, respectively). 

Differing from the w/c=0.53 series, the peak associated with CaCO3 

decomposition in w/s=0.53 series generally increased with BaSO4 loading, 

which corresponds the XRD results. These results suggest the excess water 

content in w/s=0.53 series had positive effects on the formation of Ca(OH)2 and 

CaCO3 in the PC-BaSO4 powder system.  
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Figure 4.6 Typical TG data of cement samples for PC-BaSO4 powder system with 

w/c=0.53: (a) TG data and (b) DTG data. 
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Figure 4.7 Typical TG data of cement samples for PC-BaSO4 powder system with 

w/s=0.53: (a) TG data and (b) DTG data. 
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4.3.1.2 Effect of BaSO4 granules 

XRD results for the PC-BaSO4 granule systems cured at 40oC for 28 days, both 

w/c=0.53 and w/s=0.53 series are shown in Figure 4.8. The feature of the 

results was very similar to those for the PC-BaSO4 powder systems. Calcium 

hydroxide (P) and monosulphate (Ms) were identified as hydration phases in 

addition to the unreacted alite (A) and belite (B). A significant difference from 

the PC-BaSO4 powder systems was the lack of the distinctive reflection peak at 

approximately 29 o2θ in w/s=0.53 series. This suggests that excess water in the 

system did not lead to the large amount of CaCO3 formation when BaSO4 was 

introduced in the system as granules. Reflection peaks for ettringite were also 

observed in the w/s=0.53 systems and w/c=0.53 system with 12 wt% BaSO4. 

The formation of ettringite may be related to the carbonation of monosulphate 

phase. The carbonation of monosulphate can result in the formation of hemi- 

and/or mono-carbonate phases, which usually leads to the formation of 

ettringite [12, 13]. The w/s=0.53 series indicate reflection peaks at 10-11 o 2θ 

which may be due to these phases. 
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Figure 4.8 XRD patterns of PC-BaSO4 granule samples: (a) w/c=0.53 and (b) w/s=0.53 

series. (*Al peak due to the sample holder) 
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Typical TG-DTG curves of PC-BaSO4 granule systems, w/c=0.53 series and 

w/s=0.53 series are presented in Figures 4.9 and 4.10, respectively. The TG 

curves indicated a gradual shift for both series, showing less weight loss when 

the BaSO4 loading increased and the fraction of PC decreased. The DTG 

curves also showed similar trend. Although the basic feature of the results was 

similar to those of the PC-BaSO4 powder system, the PC-BaSO4 granule 

systems indicated much less weight loss associated with the decarbonation of 

CaCO3 at 550-750 oC, both in w/c=0.53 and w/s=0.53 series. It is evident that 

the surface area of BaSO4 in the system is an important factor for CaCO3 

formation in the PC-BaSO4 systems. Some of the PC-BaSO4 granule system 

also appears to have a slightly less weight change than the PC-BaSO4 powder 

system at the lower temperature region up to 250 oC, suggesting that the 

granule system formed less C-S-H. It has been known that the C-S-H formation 

can be controlled both by homogeneous and heterogeneous nucleation [1, 14], 

thus less surface area available in the PC-BaSO4 granule system may have 

contributed to the less C-S-H formation. Some of the data indicated broad 

shoulder in the DTG curves at ~150 oC, which could be due to monocarbonate 

phase as well as ettringite identified in the XRD results. 

.    
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Figure 4.9 Typical TG data of cement samples for PC-BaSO4 granule system with 

w/c=0.53 cured at 40 oC for 28 days: (a) TG data and (b) DTG data. 
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 Figure 4.10 Typical TG data of cement samples for PC-BaSO4 granule system with 

w/s=0.53 cured at 40 oC for 28 days: (a) TG data and (b) DTG data. 
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4.3.2 Microstructure of PC- BaSO4 systems 

4.3.2.1 Effect of BaSO4 powder 

The BSE images of PC-BaSO4 powder systems, w/s=0.53 and w/c=0.53 series 

are presented in Figures 4.11 and 4.12, respectively. The fine BaSO4 particles 

are dispersed throughout the microstructure, which indicates that the BaSO4 

particles were incorporated well in the products. Both in w/s=0.53 and w/c=0.53 

series, anhydrous cement particles seemed to decrease as the quantity of 

added BaSO4 increased. The w/s=0.53 series appears more porous compared 

with w/c=0.53 series at all BaSO4 loading probably due to the larger amount of 

water in the system. Hydration products were difficult to distinguish within the 

microstructure due to the brightness of the BaSO4 particles in BSE. 
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Figure 4.11 BSE images of PC-BaSO4 powder system with w/c=0.53: ( a) 12 wt% 

BaSO4, ( b) 36 wt% BaSO4, (c) 60 wt% BaSO4.  
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Figure 4.12 BSE images of PC-BaSO4 powder system with w/s=0.53: ( a) 12 wt% 

BaSO4, ( b) 36 wt% BaSO4, (c) 60 wt% BaSO4. 

a 

b 

c 

10µ

m 

10µm 

10µm 



Characterisation of PC-BaSO4 

94 

 

Figure 4.13 and 4.14 show cumulative pore volume obtained via MIP for 

w/c=0.53 and w/s=0.53 series respectively. It is important to note that the 

diameters shown in the MIP analysis may not directly represent the pore size of 

the real system. One of the limitations of MIP is that the larger voids and pore 

structures cannot be detected, resulting in a smaller average pore size [15]. 

In neat PC, the largest concentration of pores lies in the range of < 1.2 μm. 

BaSO4 addition at 12 wt% in w/c=0.53 series (Fig. 4.13) increased the 

cumulative pore volume in the diameter range from 1 to 0.1 μm. The pores in 

this range appeared to decrease in the 36 wt% sample, and further additions of 

BaSO4 up to 60 wt% caused a reduction in smaller pores approximately < 0.03 

μm. In contrast, the cumulative pore volume was increased significantly in 

w/s=0.53 series due to the excess water in the system, since the w/c ratio in the 

w/s=0.53 series increases with the increase of BaSO4. The excess water 

generates a large capillary porosity. This system also showed an increase of 

cumulative pore volume, when 12 wt% of BaSO4 was introduced, in the 

diameter range from 1 to 0.1 μm. 
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Figure 4.13 Typical pore size distribution of PC-BaSO4 powder systems, w/c=0.53 

series 

 

 
Figure 4.14 Typical pore size distribution of PC-BaSO4 powder systems, w/s=0.53 

series 

 

Figure 4.15 illustrates the total porosity of samples obtained from MIP data 

using the following equation. 

 

                 
                 

               
               %             (4.1) 
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In w/s=0.53 series, the total porosity of the samples clearly increased with 

BaSO4 loading whereas that in w/c=0.53 series slightly decreased at high 

BaSO4 loading. The difference between these series accounts for the difference 

in the w/c ratio, which increases significantly in the w/s=0.53 series because of 

the reduction in the amount of PC due to the BaSO4 loading.  The w/c ratio was 

kept constant as 0.53 for the w/c=0.53 series, the slight decrease in total 

porosity in the w/c=0.53 series may suggest a gradual filling of large pores by 

BaSO4. Similar results have also been reported elsewhere [16, 17]. These 

results also confirm the observation in BSE images. It is evident from MIP 

results that, for the same degree of BaSO4 loading, the porosity of the products 

is higher in w/s=0.53 series than in w/c=0.53 series.  

 

 

Figure 4.15: Total porosity of PC-BaSO4 powder systems cured at 40 oC for 28 days. 
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4.3.2.2 Effect of BaSO4 granules 

The BSE images of PC- BaSO4 granule systems, w/s=0.53 and w/c=0.53 series 

are presented in Figs. 4.16 and 4.17, respectively. In both series, because of 

the localised distribution of BaSO4 due to the larger size of granule, the 

microstructure of cement matrix appeared quite similar for all granule samples 

and resembles the neat PC more compared with the PC-BaSO4 powder 

system. w/c=0.53 series has slightly more anhydrous cement particles than 

w/s=0.53 series, suggesting more hydration took place in w/s=0.53 series. This 

higher degree of hydration in w/s=0.53 series did not appear to result in the 

denser microstructure than that of w/c=0.53 series, which was also observed in 

the PC-BaSO4 powder systems. Additionally, formation of a needle-like 

ettringite (AFt) phase was observed in w/s=0.53 series (Figure 4.17 (b) and (c)), 

in accordance with the XRD results. One of the microstructural features of the 

observed in the PC- BaSO4 granule system (both in w/c=0.53 and w/s=0.53 

series) is a porous region surrounding the BaSO4 granules, filled with 

portlandite. Typical examples are shown in Figure 4.18, in which a higher 

amount of portlandite formation is easily observable around the BaSO4 

granules. This type of feature, often referred as interfacial transition zone is 

usually observed between aggregates and cement matrix in mortars and 

concretes [18, 19]. This suggests that BaSO4 granules used in the present work 

acted in the same way as aggregates, leaving a more porous zone around the 

granules by disrupting the packing of cement particles [18, 19], and then 

portlandite was deposited in the porous region with the progress of hydration 

reaction. 
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Figure 4.16 BSE images of PC-BaSO4 granule system with w/c=0.53: ( a) 12 wt% 

BaSO4, ( b) 36 wt% BaSO4, (c) 60 wt% BaSO4 
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Figure 4.17 BSE images of PC-BaSO4 granule system with w/s=0.53: ( a) 12 wt% 

BaSO4, ( b) 36 wt% BaSO4, (c) 60 wt% BaSO4. 
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Figure 4.18 BSE image of 36 wt% BaSO4 granule system: (a) w/c=0.53, (b) w/s=0.53, 

showing the formation of an interfacial transition zone.  

 

 

The elemental mapping based on the EDS analysis over the area of an 

encapsulated BaSO4 (Figure 4.19) suggests that the BaSO4 did not react with 

cement hydration product. The barium was not detected over cement hydration 

products and was only detected on BaSO4 granule in the entire sample 

 
 

 

 
 

Fig. 9 BSE images of OPC-BaSO4 granule system with 36 wt% BaSO4: ( a) w/c=0.53, ( b) 

w/s=0.53. 

 

 

 

 

 

a 

b 

BaSO4 granule Ca(OH)2 around 
BaSO4 granule 

Pores 

Inner CSH 

Partially reacted 
cement particle 

Ca(OH)2 

Highly porous 
area 

OPC+36wt% BaSO4, w/c=0.53 

BaSO4 granule 

Ca(OH)2 around 
BaSO4 granule 

Pores 

Inner CSH 

Partially reacted 
cement particle 

Ca(OH)2 

Highly porous 
area 

OPC+36wt% BaSO4, w/s=0.53 



Characterisation of PC-BaSO4 

101 

 

hydrated for 28 days. These results, suggest that the BaSO4 granules when 

encapsulated without reacting with the cement hydration products. 

 

  

Figure 4.19 BSE image of PC+60 wt% BaSO4, w/s 0.53 cured at 40ºC for 28 days and 

elemental maps  

 

Figure 4.20 and 4.21 show cumulative pore volume obtained via MIP for 

w/c=0.53 and w/s=0.53 series respectively. The change in porosity was not very 

significant in the w/c=0.53 series whereas it indicated a general increase in the 

w/s=0.53 series. These trends are similar to the PC-BaSO4 powder systems 

previously discussed. However, the increase in the pores in the diameter range 

from 1 to 0.1 μm, observed for the PC-BaSO4 powder systems, was not 
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observed for the PC-BaSO4 granule systems. It appears that this effect is 

specific for the addition of BaSO4 powder. Based on the total intrusion volume, 

the total porosity was estimated as shown in Figure 4.22  

 

 
Figure 4.20 Typical pore size distribution of PC-BaSO4 granule systems, w/c=0.53 

series 

 

 
Figure 4.21 Typical pore size distribution of PC-BaSO4 granule systems, w/s=0.53 

series 
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Figure 4.22 illustrates the porosity data. The level of the total porosity was 

similar both in w/s=0.53 and w/c=0.53 series up to 36 wt% of BaSO4 loading, 

and w/s=0.53 series become significantly more porous at 60 wt% of BaSO4 

loading. Similar to the PC-BaSO4 powder system, w/c=0.53 series did not show 

a significant change in total porosity with BaSO4 loading except a possible 

reduction at larger BaSO4 granule contents. This suggests that the effect of 

BaSO4 particle size on the total porosity is very small when the w/c is fixed as 

0.53. In w/s=0.53 series, the porosity of the sample increased with BaSO4 

loading, which confirms the observation in BSE images. The increased amount 

of water in the w/s=0.53 series (w/c > 0.53) resulted in the higher porosity than 

in the w/c=0.53 series, but the extent of this effect appears to be different 

depending on the type of BaSO4 in the system. With the BaSO4 powder, the 

excess water in the system contributed to the increase of porosity at all level of 

BaSO4 loading whereas its contribution did not become clear with the BaSO4 

granule until the BaSO4 loading exceeds 12 wt%. The amount of water directly 

contributing to increase porosity must have been less in the PC-BaSO4 granule 

system. This could be related to the formation of the interfacial transition zone. 

It has been reported that the effective w/c ratio of the bulk paste becomes lower 

than overall w/c ratio due to the locally increased w/c ratio in the interfacial 

transition zone [19].  
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Figure 4.22: Total porosity of cement samples with different amount of BaSO4 loading 

for PC-BaSO4 granules systems cured at 40 oC for 28 days. 

 

 

 

4.3.3 Compressive strength of PC-BaSO4 systems 

4.3.3.1 Effect of BaSO4 powder 

Figure 4.23 show the compressive strength data obtained for PC-BaSO4 

powder system. All formulation except BaSO4 60 wt% sample of w/s=0.53 

series satisfied the minimum compressive strength of 7 MPa required for the 

radioactive wasteform [20, 21], which is indicated as a dotted line in Figure 

4.23. The general decrease in strength can be observed in both series with the 

increase in BaSO4 loading due to the decrease in the binding PC matrix.  

In the w/c=0.53 series, the compressive strength of the samples slightly 

increased at 12 wt% of BaSO4 loading and gradually decreased at higher 

BaSO4 loading. The strength of hardened cement is generally described based 

on the effect of porosity, the amount (volume) of hydrated cement[22, 23]. In the 

case of w/c=0.53 series, because the porosity of the products showed no 

significant change with BaSO4 loading, the physical filling effect of pore by the 
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fine BaSO4 powders is expected to be minimal.. Cyr et al. [23] explained, for the 

similar increase in strength of cement systems caused by the addition of inert 

powder, it was mainly because of the enhanced hydration of the system owing 

to the larger surface area available for nucleation. These aspects can be 

examined using the average values of the weight loss associated with different 

phases observed in the TG data (examples shown in Figures 4.6 and 4.7) 

presented in Figure 4.24 (a1), (b1) and (c1). These weight losses are due to 

dehydration of C-S-H, dehydroxylation of Ca(OH)2 and decarbonation of 

CaCO3, respectively, and thus directly related to the amount of the 

corresponding phases; the more weight loss is observed, the more the phase 

exists. It should be noted that the weight losses at lower temperature region 

associated with C-S-H also contains that with monosulphate (and possibly 

ettringite and monocarbonate) due to the difficulty in separation of peaks in the 

data, which may be due to the heating rate of 10 oC/min used for the TGA in the 

present study. As expected, the amount of hydration products, C-S-H and 

Ca(OH)2 decreased with the replacement of PC with BaSO4 powder. On the 

other hand, the amount of CaCO3 in the w/c=0.53 series increased when 

BaSO4 was introduced, with the maximum CaCO3 formed at 12 wt% BaSO4. 

These results suggest that the solid products in the system, including calcite 

formed in the system contributed to the compressive strength of the products 

and that the calcite formation was a likely reason for the increase in 

compressive strength of the product at 12 wt% BaSO4 loading. The weight loss 

shown Figure 4.24 (a1), (b1) and (c1) were normalised by the amount of the PC 

(divided by the wt% of PC) in the system and shown in Figure 4.24 (a2), (b2) 

and (c2) to estimate amount of hydration products per unit PC. Although the 
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increase in CaCO3 is evident, no significant change was observed for the C-S-H 

and Ca(OH)2.  

In the w/s=0.53 series, although the compressive strength of the products 

generally decreased with the amount BaSO4 powder in the system, the effect 

was more significant compared with the w/c=0.53 series. This corresponds to 

the more porous microstructures in w/s=0.53 series due to the increased w/c 

ratio in this series as discussed in former section. It is also clear based on the 

data shown in Figure 4.24 (a1), (b1) and (c1) that the amount of solid products 

including calcite is contributing to the strength of the products also in the 

w/s=0.53 series. 

 

 

Figure 4.23: Compressive strength of cement samples with different amount of BaSO4 

loading for PC-BaSO4 powder systems cured at 40 oC for 28 days. 
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Figure 4.24: PC-BaSO4 powder systems: (a1) C-S-H and other phases, (b1) Ca(OH)2, 

(c1) CaCO3. The (a2), (b2) and (c2) show the corresponding values normalised by the 

amount of the PC (wt% of PC) in the system. 
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4.3.3.2 Effect of BaSO4 granules 

Figure 4.25 shows the compressive strength data obtained for PC-BaSO4 

granule systems. Although these systems also showed a general decrease in 

strength in both series with the increase in BaSO4 loading due to the decrease 

in the binding PC matrix, the trends are different from those for PC-BaSO4 

powder systems shown in Figure 4.23. When BaSO4 was added in the form of 

granules to PC, the compressive strength decreased to approximately 20 MPa 

for w/c=0.53 series, and approximately 14 MPa for w/s=0.53 series, and did not 

change significantly with increase in the replacement level of BaSO4. 

The results for the w/c=0.53 series can be analysed based on the amount of 

solid phases in the products, as the porosity of this system showed no 

significant change with BaSO4 loading similar to the PC-BaSO4 powder systems 

as already discussed (Figure 4.24). Figure 4.26 show the average values of the 

weight loss associated with different phases observed in the TG data (examples 

shown in Figures 4.9 and 4.10) for PC-BaSO4 granule systems and their 

normalised values by the amount of the PC in the system. These data show 

significantly large deviations compared with those for the PC-BaSO4 powder 

system due to the general inhomogeneity of the samples associated with the 

large BaSO4 particle size. It is difficult to draw a clear conclusion for the weight 

loss at the lower temperature associated with C-S-H (and other phase) because 

of the large deviation, but the weight losses associated with Ca(OH)2 show a 

general decrease resembling the decrease in the compressible strength. It is 

also noticeable that CaCO3 did not form in this system to the extent of the PC-

BaSO4 powder system. 
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The results for the w/s=0.53 series indicated the similar trend. More hydration 

product appeared to be present, which seems to be the main effect of increased 

water in the w/s=0.53 series. Similar to the PC-BaSO4 powder system, the PC-

BaSO4 granule system indicated less compressive strength in the w/s=0.53 

series compared with w/c=0.53 series due to the higher porosity originated from 

the increased w/c ratio in this series.  

 

 

 

Figure 4.25 Compressive strength of cement samples with different amount of BaSO4 

loading for PC-BaSO4 granule systems cured at 40 oC for 28 days  
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Figure 4.26 Weight loss associated with different phases observed in the TG data for 

PC-BaSO4 granule systems: (a1) C-S-H and other phases, (b1) Ca(OH)2, (c1) CaCO3. 

The (a2), (b2) and (c2) show the corresponding values normalised by the amount of 

the PC (wt% of PC) in the system. 
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4.3.4 Effect of BaSO4 powder and water on CaCO3 formation 

Increased carbonation was observed in the PC-BaSO4 powder system. 

Carbonation of cement samples can occur either as an intrinsic reaction during 

the hydration and curing process or as an extrinsic reaction during the sample 

preparation for different testing. Because such an increase in carbonation was 

not observed in the PC-BaSO4 granule samples, despite the fact that they were 

handled in the same manner as the PC-BaSO4 powder samples for the 

preparation of samples for testing, the increased carbonation in the PC-BaSO4 

powder systems is considered to be intrinsic.  

The significant increase in CaCO3 formation caused by the introduction of fine 

BaSO4 powder, as shown in Figure 4.24 (c1), was most likely by increasing the 

surface area for nucleation site and growth. The surface area available for 

nucleation is one of the key factors influencing the precipitation kinetics of 

CaCO3 in high pH solution [11, 24]. The effect of the increased surface area can 

be confirmed by the weight loss associated with CaCO3 normalised by amount 

of CaCO3-PC (divided by the wt% of PC) represented in Figure 4.24 (c2). The 

Figure also shows that in the PC-BaSO4 powder system, the amount of water 

available is another important for CaCO3 formation. The formation of CaCO3 per 

unit PC increases with replacement level of BaSO4 in the w/s=0.53 series 

whereas it remains at a constant level in the w/c=0.53 series. As shown in 

Figure 4.27, the amount of water in the system available for PC (w/c ratio) 

increases with replacement level of BaSO4 in the w/s=0.53 series whereas it is 

constantly 0.53 in the w/c=0.53 series. It appears that a minimum amount of 

water is required for the increased surface area to work as nucleation site for 

the enhanced CaCO3 formation. The water in the system could also influence 
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carbonation either directly increasing the amount of Ca2+ and CO3
2- ions in the 

system for CaCO3 formation through the reaction with CO2 in the atmosphere or 

increasing porosity of the hardened products allowing easier ingress of CO2. 

The alkalinity of the system would decrease due to the increase in the w/c ratio 

with replacement level of BaSO4, which may decrease the formation of CaCO3. 

The obtained results suggest that the influence of surface area, water and 

porosity was greater than that of the decreased alkalinity in the condition in the 

present work.  

 

 

 

 

 

 
Figure 4.27 Schematic diagrams of formulations: (a) w/c=0.53 series, (b) w/s=0.53 

series, (c) w/c=0.53 series per unit cement, (b) w/s=0.53 series per unit cement. The 

amount of BaSO4 corresponds to the increase in surface area, which is significant in 

PC- BaSO4 powder system. 
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4.5 Summary 

Both in PC–BaSO4 powder and PC–BaSO4 granule systems, it was possible to 

produce solid products with high BaSO4 loading which satisfies the minimum 

compressive strength of 7 MPa required for the radioactive wasteforms. 

Introduction of fine BaSO4 powder resulted in an increased formation of CaCO3, 

which appeared to contribute to the compressive strength of the products. 

Although the strength decreased with the introduction of BaSO4 granules, it was 

maintained at approximately 20 MPa for w/c=0.53 series and around 10 MPa 

for w/s=0.53 series, and did not change significantly with an increase in the 

replacement level of BaSO4. Increase in water in the system resulted in the 

increase in porosity of products, which was more significant in the PC–BaSO4 

powder system than in the PC–BaSO4 granule system. There was no significant 

difference in porosity between BaSO4 powder and BaSO4 granule systems 

when w/c was 0.53. Maintaining the w/c ratio at this level would be beneficial to 

maintain a low porosity of the products. Based on the obtained results, it is 

concluded that it is possible to achieve high BaSO4 loadings whilst retaining the 

initial integrity of the wasteform products. It would be beneficial to incorporate 

small amount of fine BaSO4 powder of about 12 wt% to maximise the strength 

of the product if the formation of CaCO3 in the product is not an issue. BaSO4 

may be further incorporated, in the form of coarse granules to give a total of 60 

wt% without reducing the strength of the product below 7 MPa. It is important to 

maintain w/c ratio at around 0.53 to keep the level of porosity in the final waste 

product around 25 % similar to the reference PC system. 
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5.1 Introduction 

The previous chapter provided a few important information associated with the 

size of BaSO4 particles. Fine powders were effective to maintain the 

homogenous microstructure and sufficient strength of the product, but appeared 

to enhance the carbonation under tested curing condition. Coarse granules 

were able to suppress the carbonation of the product, but caused the formation 

of highly porous interfacial transition zone, resulting in the significant reduction 

in the strength.  

Another issue noted during the preparation of PC-BaSO4 granule systems was 

the sedimentation of coarse BaSO4 granule occurred before the initial setting of 

the cement paste. The BaSO4 particles are much denser (4.48 g/cm3) [1] than 

the cement slurry (1.8 g/cm3), and the coarse particles can separate out or 

settle down from the rest of the cement matrix. The specific surface of these 

particles is much lower than the cement particles, and consequently the surface 

forces between particles are of very much less significance than those of the 

cement particles. 

In this chapter, wasteform formulations were developed to encapsulate coarse 

BaSO4 granules. The sedimentation of BaSO4 particle and the rheological 

behaviour of cement pastes were investigated with or without incorporation of 

BaSO4 powder or mineral admixtures such as quartz or metakaolin. The 

chemical and physical effects of these mineral admixtures in the developed 

wasteform formulations were also studied through the microstructure 

development, mechanical strength, and chemical durability. The labelling used 

for XRD and TGA graphs in the following chapter is outlined in Table 5.1. 
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Table 5.1 Key to XRD and TGA labelling  

Labelling Chemical name Cement 
nomenclature 

Chemical formula 
 

JCPDS 
card 

A Alite (tricalcium 
silicate) 

C3S 3CaO.SiO2 49-442 

B Belite (dicalcium 
silicate) 

β-C2S 2CaO.SiO2 33-0302 

af Tetracalcium 
aluminoferrite 

C4AF 4CaO. .Al2O3.Fe2O3 30-0226 

C Calcite C  CaCO3 05-0586 

P Portlandite CH Ca(OH)2 44-1481 

E Ettringite (AFt) C6A 3H32 
Ca6Al2(OH)12(SO4)3.26H2O 41-1451 

MS Monosulphate 
(AFm) 

C4A 3H12 
Ca4Al2(OH)12(SO4).6H2O 45-0158 

BS Barium sulphate BaSO4 BaSO4 72-1390 

St Stratlingite C2ASH8 Ca2Al2SiO7.8H2O 29-0285 

Hg Hydrogarnet C3AH6 Ca3Al2 (OH)12 38-0368 

CSH calcium silicate 
hydrate 

C-S-H - Taylor [2] 

Q Quartz  SiO2 46-1045 

 

 

5.2 Sedimentation of BaSO4 particles 

5.2.1 Static curing 

A clear sedimentation of BaSO4 particles within the products was observed in 

the PC-BaSO4 granule systems when they were cured directly after the manual 

mixing. The sedimentation is thought to occur when the mixtures are placed in 

the environmental chamber statically before the cement develops a sufficient 

viscosity. Figure 5.1 shows the cross section of PC+36 wt% BaSO4 granule 

sample. The upper part of the sample is mainly cement matrix with little amount 

of BaSO4 whereas the lower part contains most of the BaSO4 granules. This 

visual observation was confirmed by XRD results shown in Figure 5.2. The XRD 

pattern of the lower part showed predominantly the reflection peaks for BaSO4 

whereas that of the upper part indicated the peaks for BaSO4 in much lower 
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intensity. The clear peaks of Ca(OH)2, as well as small peaks attributed to 

monosulphate, alite, belite and calcite suggest that the upper part is composed 

of mainly hydrated cement.   

 

 

 

Figure 5.1 PC+36 wt%BaSO4 granules, w/c=0.53 
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Figure 5.2 XRD traces for the PC+36 wt% BaSO4 granule sample, w/c=0.53 statically 

cured for 28 days: (a) upper part, (b) lower part statically cured for 28 days 

 

In contrast, the visual observations of PC-BaSO4 powder systems, suggested a 

homogenous dispersion of BaSO4 powder, showing no apparent sign of 

sedimentation. The XRD results for PC+36 wt% BaSO4 powder sample also 

support these observations by showing no obvious difference between upper 

and lower parts of samples (Figure 5.3), confirming that the sedimentation of 

BaSO4 did not occur in the PC-BaSO4 powder samples. 
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Figure 5.3 XRD traces for the PC+36 wt% BaSO4 powder samples, w/c=0.53: (a) lower 

part, (b) upper part 

 

5.2.2 Rolling mix curing  

 In order to avoid the sedimentation of BaSO4 granule an additional mixing 

procedure for all PC-BaSO4 granule samples were tested by rotating the pastes 

continuously for up to 20 hours using a rolling mixer. The visual observations of 

PC+36 wt% BaSO4 granule sample rolled for 20 hours did not show any sign of 

sedimentation as shown in Figure 5.4, suggesting that the rolling procedure up 

to 20 hours was a good method to avoid the sedimentation of BaSO4 granule. 

However, for industrial application, this procedure may be not best option to 

avoid the sedimentation as rolling a large amount of cement slurry for a long 

time requires a significant amount of energy input.   
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Figure 5.4 PC+36 wt% BaSO4 granule, w/c=0.53, rolled 20 hours 

 

 

5.3 Setting property 

5.3.1 Effect of water 

The initial and final setting time of neat PC pastes at different w/c ratios are 

shown in Figure 5.5. Both the initial and final setting times of Portland cement 

generally increased when the w/c ratio increased: from 3 to 7.5 hours for the 

initial set and from 8 to 15 hours for the final set. Similar results have been 

obtained by Stefanou et al. [3]. Detailed reviews and discussion on setting time 

have been previously published in the literature [2, 4-6]. Bogue [6]  outlined the 

hydration and crystallisation of the calcium aluminate C3A and or C3S phases 

which are the main phases responsible for the initial set. At a lower w/c, 
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because of the higher possibility of the cement particles contacting each other, 

the hydration products bind the particles more efficiently. A fully connected solid 

frame and solid phase might be higher in this case. Consequently, the system 

with lower w/c needs a smaller volume of hydration products to form a stress-

resisting network. On the other hand, the solid to solid space in the higher w/c 

ratio samples is greater than that in the lower w/c ratio samples. Therefore, 

more hydration product is needed to form a stress-resisting network.  

More recently, Barnes et al. [7] pointed out that setting time is not always well 

defined and depends on w/c ratio. They described that the setting time 

increases with increasing amount of water in the system due to the reduction in 

the density of the cement hydrates and the delayed consolidation stage of the 

system. For general applications, according to the British Standard (BS12), the 

initial setting time should not be less than 45 min, and the final setting time not 

greater than 10 hours [2, 7]. The tested w/c ratio satisfied the initial setting 

requirement, but the final setting time for w/c=0.53 and 0.6 exceeds the 

maximum of the required final set.  
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Figure 5.5 Setting times of neat PC cement pastes 

 

 

5.3.2 Effect of BaSO4  

Figure 5.6 shows the initial and final setting time of PC-Barite system with 

different barite loading (10, 20, 30, 40, 60 wt%) for w/c=0.53. The Figure also 

shows the setting times for the chemical grade BaSO4 powder and granule 

samples for comparison. Barite used in this test contains impurity which is no 

more than 5% whereas the chemical grade was 98% purity. The result shows 

that the introduction of barite generally reduced both the initial and final setting 

times. The initial setting time did not very differ from the typical values found in 

Portland cements at low barite loading, and gradually decreased with at higher 

barite loading. The final setting time also tended to decrease as the barite 

loading increased. The reduction of the initial and final setting times suggests 

that the barite may increase the initial rate of hardening. Since BaSO4 is 

chemically inert, this must be a physical effect caused by the introduction of 

barite/ BaSO4. Hewlett [8] pointed out that the surface area and the particle size 

distribution of inert additives have a major effect on setting behaviour and in 
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particular on water demand in the cement paste. Small amounts of silica (5 %) 

have been reported to increase the reactivity of the C3A, leading to a faster 

setting [8]. Our results confirms the effect of surface area and the particle size 

as the fine BaSO4 powder (<1µm) reduced the setting time more significantly 

than larger barite (<2µm) or the coarse granule (3-5mm). 

 

 

Figure 5.6 Initial setting and final setting times of PC-Barite and PC-BaSO4 pastes. I- 

Initial, F- Final 

 

5.3.3 Effect of metakaolin 

The test results for initial and final setting times of PC-MK cement pastes at 10 

and 20 wt% MK loading are shown in Figure 5.7. The results reveal that the 

metakaolin reduces the initial and final setting times of cement paste with 

increasing replacement level of PC by MK slightly more than barite. A similar 

trend has been reported with the PC replaced by up to 30% of MK [9]. Zhang 

and Malhotra reported that a 10% MK concrete showed a final setting time of 
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4.24 hours, compared with 5.12 hours for the control concrete with the 

water/binder ratio of 0.40 [10]. The effect of MK can be explained by the 

pozzolanic reactivity in addition to the increase in the surface area explained for 

the inert additives. MK as pozzolanic materials reacts with cement hydration 

product calcium hydroxide to form C-S-H gel. Metakaolin has a higher water 

demand compared to barite. Therefore it was difficult to prepare a sample with 

30 wt% MK using the same w/c=0.53 ratio due to the higher water demand and 

flash set. 

 

 
Figure 5.7 Setting times of PC-MK pastes 

 

 

5.4 Rheological characteristics  

5.4.1 Introduction 

The rheological characteristics are one of the most important factors in 

workability of the cement slurry [11]. This is practically important for PC-BaSO4 

system because the sedimentation of the coarse BaSO4 granules can occur 

due to its higher density compared with the cement slurry as mentioned before. 
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Establishing knowledge in the rheological characteristics of cement slurry would 

help to understand the behaviour of cementing systems containing coarse 

BaSO4 granules and avoid their sedimentation, maintaining a homogenous 

suspension. 

Five cement slurries, candidate cementing matrices for the coarse BaSO4 

granules, were examined in comparison with neat PC system to establish their 

ability to sustain the coarse BaSO4 granules in the suspension without their 

sedimentation. Mineral admixtures are introduced to enhance the viscosity of 

the slurry, and their rheological characteristics were studied in terms of viscosity 

and yield stress. Table 5.2 shows the formulation of cement samples used. The 

best formulation was identified in chapter 4; the incorporation of 12 wt% BaSO4 

powder maximises the compressive strength, and the use of w/c ratio of 0.53 

maintains the porosity of PC- BaSO4 cement system minimum. Based on this 

best formulation, a slight increase in BaSO4 loading to 20 wt% and slight 

reduction of water to w/c=0.43 were tested. The effects of mineral admixtures 

were also studied at the same loading level of 12 wt%. The w/c ratio for the MK 

containing system was determined through try-and-error to workable 

consistency. The w/c ration of this level has been used to study PC-MK system 

[12]. 

 

 

Table 5.2 Formulation of the cement samples 

Formulation w/c Notation 

PC 0.53 PC 

PC+20wt% BaSO4 (powder) 0.43 20P 0.43 

PC+20wt% BaSO4 (powder) 0.53 20P 0.53 

PC+12 wt% BaSO4 (powder) 0.53 12P 0.53 

PC+12 wt% MK 0.87 12MK 0.87 

PC+12 wt% quartz 0.53 12Q 0.53 



Development of cement formulation for BaSO4 NORM scale encapsulation 

128 

 

 5.4.2 Bingham plastic behaviour of slurries 

Figure 5.8 shows the correlation between shear stress  and shear rate ) 

for Newtonian fluid and that for non-Newtonian fluid expressed by Bingham 

plastic model. The simplest liquid behaviour is that of the Newtonian fluid whose 

shear stress linearly increases with shear rate as expressed by Equation 5.1 

and pass through the origin as shown in Figure 5.8. The ratio of shear stress to 

shear rate is the viscosity .  

                                                                       (5.1) 
 
 

The behaviour of cement slurry is more complex. Cement paste usually does 

not flow until the shear stress reaches a certain minimum value [13] called yield 

stress ( ). The yield stress must be applied to a fluid in order to change its 

behaviour from that of a solid to a liquid [14]. This behaviour of cement slurry is 

described by the Bingham plastic model given in equation 5.2  and shown in the 

Figure 5.8 [15, 16].  

 

                                                                    (5.2) 
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Figure 5.8 Bingham plastic model of non-Newtonian fluids 

 

 

Figure 5.9 shows the shear rate - shear stress curves for the tested cement 

slurry. The Figure also shows the linear fitting for each data set based on 

Bingham plastic model. Because of the differences in their compositions, 

cement slurries incorporating fine powder of BaSO4, quartz, and MK exhibited 

different rheological behaviour compared to the neat PC. 
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Figure 5.9 cement slurry shear rate - shear stress curves for different formulation 

based on Bingham model 

 

 

The neat PC tested in the present study showed a linear correlation between 

shear stress and shear rate, indicating an ideal Bingham plastic behaviour. 

When fine BaSO4 powder of 12 wt% was introduced, the yield stress appears to 

have increased. Overall, the slurry shows Bingham plastic behaviour. As the 

amount of BaSO4 powder increased to 20 wt%, the deviation from the ideal 

Bingham plastic model became larger. But the average behaviour of this slurry 

appears to be similar to that of 12 wt% BaSO4 system. When the amount of 

water in the system is reduced (20 wt% BaSO4, w/c=0.43), the behaviour of the 

slurry was significantly different, indicating a strong influence of water content 

on the slurry. The introduction of quartz and metakaolin both resulted in a 
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similar result, indicating a small deviation from the ideal Bingham plastic model, 

with the average behaviour between the neat PC and the 12 wt% BaSO4 (or 20 

wt% BaSO4, w/c=0.53). The average particle size of quartz is 44 µm which is 

less than the cement particle and greater than the BaSO4 powder. The particle 

size of metakaolin was similar to that of the BaSO4 powder, but the effect of 

metakaolin was less significant compared to the BaSO4 powder, this result 

shows the importance of water content in the PC-metakaolin system. This slurry 

had a much higher water content of 0.87. 

 

5.4.3 Viscosity 

The plastic viscosity obtained as the gradient of the linear fitting of the shear 

stress - shear rate curves in Figure 5.9 for each slurry are shown in Figure 5.10. 

The viscosity of the cement slurry increased from 0.12 Pa.s to 0.27 and 0.26 

Pa.s when fine BaSO4 powder were introduced at 12 and 20 wt%, respectively.  

 

 

 

Figure 5.10 the plastic viscosity obtained from shear stress-shear rate curves for each 

formulation 
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The important factors for the rheological behaviour of the cement slurry include 

the specific surface area and chemical composition of cement, alkalis content, 

presence of additives, and w/c of the mixture [17]. Shaughnessy et al. reported 

that the hydration time, mixing procedures and curing temperature can also 

affect the rheological properties of fresh cement pastes [18]. Because BaSO4 

powder is considered to be chemically inert, these results suggest a physical 

effect of BaSO4 powder on the viscosity of the slurry, most likely the large 

surface area. However, the difference between 12 wt% and 20 wt% was not 

significant in terms of the viscosity. On the other hand, when w/c ratio was 

decreased to 0.43, the viscosity of the 20 wt% BaSO4 slurry increased from 

0.26 to 0.76 Pa.s. Hence the effect of water content is significant. A higher 

value of viscosity may be advantage to avoid the sedimentation of larger BaSO4 

particles, but it may have a negative impact on the workability of the cement 

slurry. It is important to maintain the viscosity low enough for the industrial 

application such as 1.005 Pa.s for oilwell cement slurry [19]. The slurries 

containing quartz and metakaolin both indicated a similar level of viscosity to 

the neat PC system. Because of the relatively short duration of the 

measurement, the effect of these admixtures must be also the physical effect 

neither than the chemical effect associated with the pozzolanic reaction. 

Metakaolin requires large amount of water to maintain a similar level of viscosity 

as PC slurry to assure a sufficient workability. 

 

5.4.4 Yield stress 

Figure 5.11 shows the yield stress obtained as the intercept of the linear fitting 

of the shear stress - shear rate curves (Figure 5.9) for each slurry. The increase 
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of the yield stress induced by the incorporation of additives agrees with 

published studies which suggest that fine powder increases the yield stress and 

viscosity of cement slurry [20, 21]. The general trend of the yield stress is 

similar to that of the viscosity; the higher the viscosity, the higher the yield 

stress. The higher yield stress value of the slurry prepared with fine BaSO4 

powder may be due to the following reasons [15]: 

 Physical effects: increased the thickening of cement slurry by occupying a 

significant volume in the liquid phase due to the Blaine fineness (large 

specific surface) of Ba O4 powder. 

 Physico-chemical effects: a higher percentage of smaller particles, making 

the interaction forces between them stronger (modification of interparticle 

forces)  

 

 

 

Figure 5.11 the yield stress obtained from shear stress-shear rate curves for each 

formulation 
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These values were used to estimate the maximum particle size of BaSO4 which 

can be sustained in each slurry without sedimentation. BaSO4 particles in 

cement slurry would receive the forces due to the gravity (Fg) and yield stress 

(Fy) as shown in Figure 5.12 

 

 

Figure 5.12 forces acting on BaSO4 particles in cement slurry  

 

Dimensionless factor Y, proportional to the ratio of these two forces, is often 

used to discuss the sedimentation of particles [22]. By supposing a spherical 

particle, they are expressed as Eqs. 5.3- 5.5. 

 

                                                                                 (5.3) 

                                                                               (5.4) 

                                                          (5.5) 
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where 𝒈 is gravity constant (9.8 m/s2),  and    are the densities of BaSO4 

granule and cement slurry respectively. Therefore, the simplest definition of Y is: 

 

                                                                 (5.6) 

 

It has been suggested, by Chhabra and Richardson that the value of Y between 

0.048-0.088 can be used to calculate the minimum diameter of spherical 

particles which can suspend in the cement slurry [22]. A more conservative 

value of Y =0.212 has also been mentioned [22]. When Y is larger than these 

values, BaSO4 particles will stay in suspension, but if Y is smaller than these 

values, BaSO4 particles will sediment. 

Table 5.3 summarises the maximum BaSO4 particle diameter which will be 

sustained in each cement slurry without sedimentation, obtained from Eq. 5.6 

using three different values of Y. The result shows that the PC cement slurry 

with w/c=0.53 is capable of suspending BaSO4 particle with diameter no more 

than 1.6 mm when Y=0.212. Because, the diameter of the BaSO4 granules 

used in this project is 0.6-5 mm, and thus sedimentation of the coarse BaSO4 

granules can occur. On the other hand, diameter of BaSO4 powder is less than 

1μm, and the sedimentation does not occur in this system.  

When fine BaSO4 powder is introduced to the slurry at 12 wt%, the slurry will be 

able to sustain the coarse BaSO4 particles of 13.9 mm in diameter. Introduction 

of the fine BaSO4 powder is a good way to reduce the possible sedimentation of 

the coarse BaSO4 particles. The increase in fine BaSO4 powder up to 20 wt% 



Development of cement formulation for BaSO4 NORM scale encapsulation 

136 

 

can further increase the yield stress, and the slurry is able to suspend up to 

15.4 mm of BaSO4 particles. The reduction of water showed a similar result, an 

increase in yield stress and the increase in the maximum diameter of the 

particle which can be suspended in the slurry.  

The slurries containing quartz and metakaolin showed a milder increase in the 

yield stress and are estimated to be able to suspend the BaSO4 particles up to 

8.0 and 7.4 mm in diameter, respectively. The effect of quartz was less than 

that of BaSO4 powder because of the less specific surface area. The mild effect 

of metakaolin must be attributed to the increased amount of water in the 

system. 

 

 Table 5.3 the BaSO4 particle diameter 

 *ρp 

(kg/m
3
) 

**ρs  

(kg/m
3
) 

  
(Pa) 

dp 
 (mm) 

  Y=0.048 Y=0.088 Y=0.212 

PC  
 
 
 

3800 

1800 4.53 7.2 3.9 1.6 

12P 0.53 2000 34.68 61.3 33.4 13.9 

20P 0.53 2000 38.60 68.4 37.3 15.4 

20P 0.43 2000 49.48 87.6 47.8 19.8 

12Q 0.53 2000 20.01 35.4 19.3  8.0 

12MK 0.87 1900 19.52 34.5 17.8 7.4 

*ñp= 3800 kg/m
3
  

**The density of slurry, (ρs) for each mixes determined from the weight and volume 

measurements after mixing for 10 minutes at ambient condition. 
 

 

5.5 Development of wasteform formulation 

5.5.1 Introduction 

The results of setting time and the rheological performance of BaSO4-including 

mineral admixtures pointed out that the sedimentation problems can be 
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overcome by including a moderate content of powdered BaSO4 into the system 

or, incorporation of mineral admixtures such as quartz and metakaolin, without 

impacting the workability of the cement pastes. Based on these results, 

potential wasteform formulations were further investigated. The structural 

changes induced by the inclusion of mineral admixtures such as fine BaSO4 

powder, metakaolin and quartz in the BaSO4-containing cement system were 

investigated through XRD, DTG analysis and SEM. A series of leaching test 

was also conducted.   

 

5.5.2 Phase analysis  

The formulations used in the rheological study (Table 5.2 except 20P0.43) were 

applied to encapsulate coarse BaSO4 granules. Figure 5.13 shows XRD 

patterns for the cement samples cured for 28 days. The major crystalline 

phases identified in sample containing 20 wt% BaSO4 powder (Figure 5.13 b) 

were CH and AFm. The initially-formed AFt transforms to AFm as a 

consequence of the decrease in the SO4
2-:Al3+ ratio with the progressive 

hydration reaction of the C3A during the first few weeks of curing [2, 23]. 

Calcium carbonate in its calcite form was also detected. Sharp reflection peaks 

for BaSO4 were detected, suggesting that this material did not reacting to a 

major extent with the cement paste. In samples containing 12 wt% BaSO4 

powder (Figure 5.13 c), similar reaction products to those observed in the 

specimen with 20 wt% BaSO4 powder were identified, along with the formation 

of hydrogarnet (C3AH6). Also, a substantial increment in the intensity of the 

main peak assigned to  Fm (9.89° 2θ) was identified. It should be noted that 

the peaks for CH were significantly reduced in this sample. 
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The replacement of the 12 wt% BaSO4 powder by MK in the cement wasteform 

(Figure 5.13 d) led to a dramatic decrease in the intensity of the peaks assigned 

to CH, as a consequence of pozzolanic reaction taking place between MK and 

this phase. Amorphous silica produced from MK usually reacts with the CH 

generated by the cement hydration reaction, resulting in extra C-S-H phase [24, 

25]. In this specimen hydrogarnet was not identified as a reaction product, 

instead stratlingite (C2ASH8) was formed. Figure 5.14 shows the lower angle 

region (5.6-17° 2θ) of these XRD traces. The formation of stratlingite might be 

related to the hydration of C3A. The hydration of C3A can form metastable 

C2AH8 and C4AH13, which later transform into the thermodynamically stable 

hydrogarnet [8] as observed in the blended systems based on high-alumina 

cements [26] and in aged Portland cements [2]. In a silicate-rich environment 

(with the presence of MK), it is possible that a part of the metastable C2AH8 

transforms to stratlingite [27, 28]. The reduced portlandite content in the sample 

with MK also favours stratlingite formation, as it has been reported that 

stratlingite is unstable in the presence of calcium hydroxide and usually 

converts into hydrogarnet [29]. The inclusion of MK (5.14 d) also leads to the 

reductions in the intensities of the peaks assigned to AFm compared with 

specimens including 12 wt% BaSO4 powder. It has been reported [25] that in 

Al2O3-saturated systems, such as when MK is added as a supplementary Al 

source, the formation of ettringite can be hindered, and only monosulphate will 

be formed.  

The substitution of 12 wt% BaSO4 powder by quartz (Figure 5.13 e) did not 

seem to cause a significant interaction either with the granulated BaSO4 or with 

the cement paste on the XRD result, as comparable phases to those identified 
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in the PC-BaSO4 systems were observed. In this system, monosulphate and 

hydrogarnet were not identified as reaction products. Ettringite is identified as 

the sole sulphate-rich hydrate phase in this cement. High intensity peaks of 

quartz (SiO2) were also identified due to the addition of this less reactive 

material, along with clear peaks of portlandite in the absence of a pozzolanic 

additive.   

 

 
Figure 5.13 X-ray traces of wasteform formulation. Refer to Table 5.2 for notations. The 

peak marked with an asterisk is due to the Al sample holder used in XRD analysis. 

(a) PC 

(b) 20P40G 

(c) 12P48G 

(d) 12MK48G 

(e) 12Q48G 
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Figure 5.14 X-ray traces of wasteform formulation: the lower angle region (5.6-17° 2θ). 

Refer to Table 5.2 for notations. 

 

 

The TG and DTG curves for the cements systems after 28 days are shown in 

Figure 5.15. The first mass loss identified at ~60°C (Figure 5.15) in all the 

samples is attributed to the elimination of evaporable water, along with the 

dehydration of the calcium silicate hydrate (C-S-H) gel around 100°C. In PC 

systems, evaporable water is removed below 120°C [30]. The mass losses 

between 100°C and 200°C are assigned to the decomposition of AFt (E) [31] 

and AFm (MS) [30] phases.  
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Figure 5.15 TG and DTG curves for cement systems  

 

 

A peak at 250°C is attributed to the decomposition of stratlingite [32]. A 

significant mass loss is identified between 425°C and 550°C, especially in the 

neat PC, associated with the dehydroxylation and consequent decomposition of 

portlandite [30]. The peak for the decomposition of calcium carbonates between 

600°C and 750°C is notably smaller compared in the PC-BaSO4 powder system 

investigated in the former section. 

TG 

DTG 
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In the paste with 20 wt% of powdered BaSO4, it is possible to observe a low 

intensity peak assigned to the formation of AFm (MS), which was not 

identifiable through XRD probably due to the low concentration and/or 

crystallinity of this phase presented in the sample. A reduction of the content of 

powdered BaSO4 to 12 wt% led to a similar result.  

In the 12 wt% MK sample, the dehydration and decomposition of the C-S-H 

product was observed as a broad peak at temperatures up to 300°C, differing 

from PC-BaSO4 system in which the dehydration of C-S-H was observed in a 

narrow temperature range. The C-S-H formed in MK-blended cement usually 

shows incorporation of aluminium into its structure [33], leading to the formation 

of a binding phase with a higher degree of crosslinking and therefore with water 

more tightly bonded. In this specimen, mass loss peaks attributed to the 

decomposition of ettringite, monosulphate and stratlingite are observed, 

consistent with the XRD results. A significant reduction in the peak intensity 

assigned to the dehydroxylation of portlandite is observed, as a consequence of 

the pozzolanic reaction as discussed above. 

The DTG curve for the 12 wt% quartz sample shows the same features 

identified in the PC-BaSO4 system. In this case, the peak assigned to the 

dehydroxylation of portlandite is sharper than that in the other samples, which 

could be attributed to the development of more crystalline portlandite [34].  

 

5.5.3 Microstructural analysis 

The BSE image of the 20 wt% powdered BaSO4 (Figure 5.16) shows the bright 

colour (almost white) particles corresponding to the BaSO4. These particles are 

brighter than Ca-containing compounds as Ba has a higher elemental number. 
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A highly dispersed powdered BaSO4 is observed throughout the cement matrix. 

It is possible to identify the rims of inner C-S-H products forming around PC 

particles. The identification of other reaction products is quite difficult, as grey-

scale differences within the matrix containing powdered BaSO4 are not easily 

observable at this magnification.  

 

 

Figure 5.16 BSE image of 20wt% powder / 40wt% granulated BaSO4 sample 

 

 

In the specimens with a lower content of powdered BaSO4 (12 wt%) (Figure 

5.17), similar features are identified. Distinct particles of monosulphate are 

visible in this specimen, as observed in XRD. The important feature of these 

systems with BaSO4 powders (both 12 and 20 wt%) is that the highly porous 

BaSO4 granule 
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interfacial zone previously observed in the PC-BaSO4 granule system is less 

significant.  

 

 

Figure 5.17 BSE image of 12 wt% powder / 48 wt% granulated BaSO4 sample 

 

A higher magnification of BSE image for this system (Figure 5.18) reveals that 

powdered BaSO4 particles, filling the interfacial transition zone between the 

BaSO4 granule and the cement matrix. As discussed in the former section, large 

BaSO4 particles can disrupt the packing of the cement particles, leaving a more 

porous zone around aggregates [34, 35], and then with the progress of the 

hydration reaction, portlandite is deposited in the pores in this region together 

with the fine BaSO4 particles. 
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Figure 5.18 BSE image of 12 wt% powder / 48 wt% granulated BaSO4 blended paste, 

showing the formation of portlandite around the BaSO4 granule.  

 

 

In the cement system including 12 wt% MK (Figure 5.19), the region around the 

BaSO4 granule seems to be less porous compared with that further away from 

the BaSO4 granules. It is likely that the pozzolanic reaction took place to a 

higher extent in that region, as a higher content of portlandite is expected to 

form in the areas close to BaSO4 particles favouring the densification of the 

interfacial zone. In this system, formation of distinctive monosulphate 

morphology was again observed in a region (A) due to the increased 

concentrations of aluminium in the system as discussed in the former section. 

Additionally, formation of a needle-like phase (B) is observed in this specimen. 

As the content of aluminium is high as shown in EDS, it is likely that C-A-S-H 

   10µm 
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type gel and AFt type products are coexisting in this region, consistent with the 

presence of sulphates identified through EDS analysis.  

 

Figure 5.19 BSE image of 12 wt.% MK / 48 wt.% granulated BaSO4 blended paste 

showing: A – a monosulphate particle, and B – formation of needle-like phases, 

probably a C-S-H product. EDS for B and C are also shown.  

 

The substitution of MK by quartz has a different effect on the structure of the 

cement wasteform. In this case (Figure 5.20), the region around the BaSO4 

granule appeared slightly more porous than that far away from these particles, 

consistent with the formation of the ITZ zone as previously observed in 

specimens including powdered and granulated BaSO4. As the XRD and TG 

results revealed, quartz particles were not participating to a major extent in the 

hydration reaction of the PC, but rather acting as inert filler in the system similar 

to the BaSO4 powder.  
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Figure 5.20 BSE image of 12 wt.% quartz / 48 wt.% granulated BaSO4 blended paste 

sample, showing a highly porous interfacial transition zone between the BaSO4 granule 

(top right) and the cement matrix  

 

The total porosity of the cement systems studied is presented in Figure 5.21. 

The total porosity clearly decreased in the sample with 12 wt% and 20 wt% 

BaSO4 powder, suggesting that this content of powdered BaSO4 favours good 

particle-packing. These results confirm the observation in BSE images where 

the BaSO4 powder fills the pore and decreases the highly interfacial transition 

zone. A similar result was obtained with the quartz, which appeared to be 

performing as a fine aggregate in the specimen. The total porosity in the 

metakaolin sample did not increase very much compared with neat PC even at 

a high w/c=0.87 ratio, which is known as the main reason to increase the 

porosity of cement paste. This is a well-known effect that has been previously 

10 mm
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reported in MK blended cements [24], and is not notably disrupted by the 

presence of the BaSO4 granule. 

 

 

Figure 5.21 the total porosity of cement systems after 28 days 

 

 

5.5.4 Compressive strength  

The compressive strengths of the cement systems studied are presented in 

Figure 5.22. Even with 60 wt% PC replacement with other materials, the 

mechanical strengths of all of the systems are comparable to the reference PC 

sample. In the systems solely including powdered and granulated BaSO4, the 

mechanical strength retention after replacing the PC in the system is attributed 

to the particle reinforcing effect where BaSO4 is acting as an aggregate 

reinforcing the cement matrix. The slight reduction in the mechanical strength of 

the specimens with quartz suggests that this effect in this sample is slightly less. 

The quartz particle may have reduced the highly porous interfacial transition 

zone to a less extent than the powders due to the slightly larger particle size. 
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In the case of the cement a system including MK, the mechanical strength 

retention was probably not simply due to a physical effect. It was also a 

consequence of the pozzolanic reaction taking place between MK and 

portlandite, favouring the formation of C-S-H type gels that enhance the 

mechanical performance of the systems, and contributing to the densification of 

the system, even at a high w/c ratio. 

 

 
Figure 5.22 Compressive strength of cement systems after 28 days 

 

 

5.5.5 Leaching test 

Table 5.4 and 5.5 show the concentration of the major elements in the leachate 

after 30 and 180 days of leaching periods, respectively. The results of key 

elements for each wasteform formulation are summarised in Figure 5.23.  
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Table 5.4: Summary of leach tests for 30 days  

Sample ID Elements concentration 

mg/L 

 Ca Si Ba S Al Fe Na Mg 

PC 251 0.90 1.68 0.52 1.04 0.015 38.2 0.011 

20 wt% P / 40 wt% G BaSO4 91.30 2.16 1.92 0.63 1.88 0.005 60.3 0.018 

12 wt% P / 48 wt% G BaSO4 12.4 5.87 0.64 1.06 2.24 0.009 56.7 0.029 

12 wt% MK / 48 wt% G BaSO4 4.18 6.55 0.076 4.41 4.27 0.008 28.3 0.038 

12 wt% Q / 48 wt% G BaSO4 11.5 6.25 0.40 1.43 2.49 0.009 50.9 0.021 

 

 

Table 5.5: Summary of leach tests for 180 days 

Sample ID Elements concentration 

mg/L 

 Ca Si Ba S Al Fe Na Mg 

PC 142 2.57 2.37 <0.1 1.52 0.047 42.1 <0.1 

20 wt% P / 40 wt% G BaSO4 62.4 1.73 2.36 0.21 2.53 0.22 59.1 0.16 

12 wt% P / 48 wt% G BaSO4 6.36 9.93 0.43 1.77 2.47 0.13 57.8 0.39 

12 wt% MK / 48 wt% G BaSO4 4.33 5.92 0.12 9.65 4.43 0.14 40.2 0.29 

12 wt% Q / 48 wt% G BaSO4 3.14 13.4 0.28 3.61 2.37 0.048 56.7 0.29 

 

  

The neat PC sample showed a significantly large amount of Ca release within 

30 days resulting in a high concentration of Ca in the solution. This should be 

attributed to the higher initial Portlandite (CH) content in this sample. It is known 

that the portlandite is usually the first cement phase to leach out [36]. The 

reduction in the concentration of Ca after 180 days could be due to the reaction 

of Ca ions with CO2 in the atmosphere to form CaCO3. For the 20P48G sample, 

the amount of leached Ca was lower, reflecting the less amount of CH. Since 

the wasteform formulations contain only 40 wt% of PC in solid mass basis, if 

they behave same as the PC sample, the level of Ca leaching and thus 
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concentration should be approximately 40% of that for PC sample (indicated in 

the Figure 5.23 by dotted line). The 20P40G sample indicated the predicted 

level of Ca concentration. The level of Ca leaching appeared to be much less 

for the other wasteform formulations, suggesting a reduced amount of CH 

available to leach. The XRD (Figure 5.13) and TG (Figure 5.15) data indicated 

that these samples had a less CH compare with the 20P40G sample. 

Interestingly, the Si leaching and concentration showed an opposite trend, 

indicating the level of Si concentration higher than expected. It is known that the 

dissolution of C-S-H phase is the main source of Si leaching, which usually 

takes place after CH has leached [36]. Therefore, the C-S-H leaching at the 

early stage can occur in the system containing less CH. For the neat PC 

sample, the concentration of Si in the leachate was very little in 30 days, 

suggesting that the system still had enough CH at this stage to minimise the 

dissolution of C-S-H. Similar results were obtained for 20P48G, corresponding 

to the less amount of CH in the sample. The other wasteform formulation 

showed increased amount of Si leaching, corresponding to the reduced amount 

of CH. After 180 days, the 12MK48G sample indicated less amount of Si 

leached out compared with the 12P48G and 12Q48G samples. This may be 

attributed to the different types of C-S-H gel in the system. As already 

discussed in the former section, the C-S-H in this sample may have a significant 

amount of aluminium with more cross-linking structure. It has been also 

reported that the solubility of the C–S–H gel is a function of Ca/Si ratio of the gel 

[37, 38].  

The concentration of S in the leaching solution was detected in all formulation 

but was more significant in the sample containing metakaolin. This must be due 
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to the significant amount of the sulphate-related phases (AFt and AFm) 

observed in this particular sample. It is not clear whether this S is from the 

cement or BaSO4. Although the level of S concentration exceeded the expected 

level, this may be due to the increased dissolution of other phases such as AFt 

or AFm phases.  

The behaviour of Ba was somewhat similar to that of Ca. As the neat PC 

sample does not contain any BaSO4, the Ba concentration at this level is 

considered to be the impurity in the cement. However, the 20P40G sample 

showed a Ba concentration higher than expected, which may suggest that some 

of Ba is originated from BaSO4. Further investigation is required to appreciate 

whether the Ba was released from BaSO4 or from the impurity of the cement 

matrix. For the 12P48G, 12MK48G, and 12Q48G samples, the concentration of 

Ba did not exceed the expected level. The slight reduction in the concentration 

of Ba after 180 days may be due to the carbonation of Ba ions, possible 

incorporation of Ba in other phases or measurement error. The concentration of 

the leached Ba from these wasteform formulations was less than in some of the 

standardised leaching test for the stabilised toxic wastes [39]. The low 

concentration of Ba shows a good potential of these wasteform formulations.  

Based on the concentration of the elements, normalised elemental mass loss 

(NL) was calculated using Equation 5.7.  

 

SAF

VM
NL

i

Wi
i




                                                                            (5.7) 

The NLi is the normalised elemental mass loss of element i (g/cm2), Mi is the 

concentration of element i in the leachate (g), Fi is the fraction of element i in 
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the cement sample (unitless) before leaching, and SA is the surface area (cm2) 

of the sample. Because the NLi is normalised by the fraction of elements, when 

the elements dissolve congruently with the reacted cement mass, all of NLi 

must indicate the same value. In the present calculation, the mass fractions of 

elements in the fresh cement pastes for each formulation were used.  

Figure 5.24 shows the normalised elemental mass loss of key elements for 

each formulation, in comparison to a literature data by Banba et al. [40]. In 

general, the normalised elemental mass loss is obtained in the present study is 

less by maximum of approximately one order compared with the literature data. 

This is probably attributed to the experimental condition. Banba et al. used the 

(Surface area) / (water volume) ratio of 0.12 cm-1 [40] whereas it was much less 

value of 6.8 m-1 (0.068 cm-1) was used in the present study. Less surface area 

should provide less leaching of elements. The general trend of the results 

agrees with their data. Na indicated significantly higher mass loss compared 

with other elements, indicating its high mobility in cement matrix. The behaviour 

of Ca and Ba are very similar in all formulations, which may confirm that the Ba 

found in the leachate was an impurity in the cement matrix. The behaviour of Si 

and Al also appear to be similar. This may be related to their interaction via C-

S-H phase. The behaviour of S is in general similar to those of Si and Al, except 

the sample containing metakaolin. The increased mass loss of S in this 

particular sample must be related to the sulphate related phases such as AFt 

and AFm as already discussed. The relation of the leaching behaviour of 

different elements can be further analysed in Figure 5.25. When elements are 

dissolving congruently, their data should be on the same straight line. A weak 

correlation between Ca and Ba can be observed. There could also be a 
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correlation between Si and S. However, a further investigation is required to 

draw a clear conclusion. 

 

  

  

  

 
 

 

Figure 5.23 Total concentration of Ca, Si, Ba, and S in solution after: 30 days and after 

180 days for each cement formulation 
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Figure 5.24 Normalised elemental mass loss from a cement wasteform:  (a) literature 

data [5], (b) PC sample, (C) 20P40G sample, (d) 12P48G sample, (e) 12MK48G 

sample and (f) 12Q48G sample. 
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Figure 5.25 Normalised elemental mass loss from a cement wasteform: (a) plotted 

against the data for Ca, (b) plotted against the data of Si.  
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5.6 Summary 

Sedimentation of BaSO4 particles can occur in the cement paste due to its high 

density. Careful control of the setting time and the viscosity of cement slurry 

were necessary in order to avoid the sedimentation of BaSO4 granules and 

obtain homogenous products.  

The study on the rheological properties revealed that the neat PC cement slurry 

with w/c=0.53 is capable of suspending the BaSO4 granules only with diameters 

less than 1.6 mm. Introduction of fine BaSO4 powder was effective in improving 

the rheological properties of the cement paste. 12 wt% of BaSO4 introduction 

was found sufficient to increase the viscosity and yield stress of the cement 

paste which can suspend the BaSO4 granule of 13.9 mm in diameter. The same 

amount of metakaolin or quartz was also found to be effective to suspend 

coarse BaSO4 granules without sedimentation.  

Based on the information gained, the wasteform formulations were developed. 

Using both fine BaSO4 powder and coarse BaSO4 granules, it was possible to 

reduce the amount of highly porous interfacial zone around the coarse BaSO4 

granules, which resulted in the reduction of porosity, suppression of carbonation 

and improvement in the compressive strength. Replacing the fine BaSO4 

powder with metakaolin or quartz was also found effective in improving the 

microstructure of the wasteform. Although the metakaolin required more water, 

the pozzolanic reaction of metakaolin helped to maintain the strength of the 

product at a similar level as other formulations. 

The results of leaching tests were comparable with the literature data for 

nuclear wasteforms, suggesting that the developed formulation had sufficient 

durability. The amounts of Portlandite and C-S-H in the system have a 
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significant effect on the leaching behaviour. The behaviour of Ba and S 

indicated a possible correlation with those of Ca and Si, respectively. Most of 

the Ba found in the leachant was considered to be from the cement matrix, 

although this was not conclusive.    
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 6.1 Introduction 

Considering the sufficient mechanical strength of the BaSO4-contaning cement 

systems shown in the former section together with the high thermal stability of 

BaSO4, and the reduced radiation permeability of BaSO4-containg cement [1], it 

may be possible to apply this system as a support matrix for the deep borehole 

geological disposal (DBGD) of high level radioactive wastes (HLRW). The 

support matrix for the DBGD needs to withstand the high temperature and 

pressure environment [2]. It has been known that the cementitious materials 

changes their microstructure and mechanical behaviour when subjected to high 

service temperatures [3]. This chapter studies the stability of BaSO4-containing 

cement formulations studied as wasteforms in the former section under 

elevated temperatures. Firstly, hardened PC-BaSO4 system was subjected to 

300ºC in air to understand the basic responses of the material at a high 

temperature. It has been reported that the temperature of the DBGD 

environment can rise up to ~300oC [2, 4]. Secondly, in order to evaluate the 

feasibility for the deep borehole disposal concept, PC-BaSO4 pastes with 

different admixtures were subjected to a hydrothermal condition, which can 

affect the hydration process of cementitious material, and the properties of the 

products. The structural changes caused by the condition and the effects of 

mineral admixtures such as metakaolin and quartz were investigated using 

XRD, TGA, SEM, MIP, and mechanical strength. The labelling used for XRD 

and TGA graphs in the following chapter is outlined in Table 6.1. 
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Table 6.1: Key to XRD and TGA labelling 

Labelling Chemical name Cement 
nomenclature 

Chemical formula 
 

ICDD 
Card No 

A Alite (tricalcium silicate) C3S 3CaO.SiO2 49-442 

B Belite (dicalcium 
silicate) 

β-C2S 2CaO.SiO2 33-0302 

af Tetracalcium 
aluminoferrite 

C4AF 4CaO. .Al2O3.Fe2O3 30-0226 

C Calcite C  CaCO3 05-0586 

P Portlandite CH Ca(OH)2 44-1481 

E Ettringite (AFt) C6A 3H32 Ca6Al2(OH)12(SO4)3.26H2O 41-1451 

MS Monosulphate (AFm) C4A 3H12 Ca4Al2(OH)12(SO4).6H2O 45-0158 

BS Barium sulphate BaSO4 BaSO4 72-1390 

St Stratlingite C2ASH8 Ca2Al2SiO7.8H2O 29-0285 

Hg Hydrogarnet C3AH6 Ca3Al2 (OH)12 38-0368 

CSH calcium silicate hydrate C-S-H -  Taylor [5] 

J Jaffeite 
(tricalcium silicate 
hydrate) 

C6S2H3 
 

Ca6(Si2O7)(OH)6 77-0960 
29-375 

Z α-dicalcium silicate 
hydrate 

α- C2SH Ca2(SiO3)(OH)2 29-0373 
15-641 

R Reinhardbraunsite C5S2H Ca5(SiO4)2(OH)2   29-0380 

T 11 ˚ Tobermorite [6] C5S6H5  45-1480 

Q Quartz  SiO2 46-1045 

  

 

6.2 Heat treatment at 300°C 

6.2.1 Visual observation  

Figure 6.1 shows the neat PC sample and PC with 60 wt% BaSO4 granules 

after the heat treatment.  A significant change in color occurred in both of them. 

The effect of the heat treatment were considerably severe for the neat PC which 

appeared to suffer from cracking due to the shrinking upon heating [7] and 

became fragile as shown in Figure 6.1. It has been reported that PC cement 

paste tend to lose their strength at such high temperatures due to the change in 

the main binding phase, C-S-H, as a result of the loss of capillary and 
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chemically bound water and that in other cement hydration phases such as 

ettringite, monosulphate [7, 8].  

 

 

 
 

 

Figure 6.1 PC-BaSO4 after heat treatment. (a) Neat PC, (b) PC+ 60 wt% BaSO4 

granule 

  

6.2.2 Neat PC  

Figure 6.2 shows the XRD patterns for the hydrated neat PC system before and 

after the heat-treatment at 300°C. The reflection peaks for monosulphate (AFm) 

disappeared after the heat treatment, suggesting that AFm phase had 
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dehydrated [9, 10]. It has been reported that AFm and C-S-H phases are readily 

destroyed, with loss of water, by heating in air at 300°C [7, 11]. The reflection 

peaks attributed to Ca(OH)2, the main crystalline phase of cement hydration, are 

still clearly observed. This was expected as the dehydroxylation of Ca(OH)2 

occurs at higher temperature about 450°C. In addition, clear peaks attributed to 

CaCO3 phases were also observed. Lee et al. [12] summarised the processes 

of decomposition of cement hydration phases in the different heating regime as 

shown in Table 6.2. 

 

 

Figure 6.2 XRD patterns for hydrated PC: (a) before and (b) after heat treatment at 

300°C, (*peak due to the Al sample holder)  
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Table 6.2 Processes of decomposition depending on the heating regime [12] 

Temperature Decomposition 

20–120 °C Evaporation of free water, dehydration of C-S-H and ettringite 

120–400 °C Dehydration of C-S-H 

400–530 °C Dehydration of C-S-H, dehydroxylation of CH 

530–640 °C Dehydration of C-S-H, decomposition of poorly crystallized 

CaCO3 

640–800 °C Dehydration of C-S-H, decomposition of CaCO3 

 

 

TG-DTG curves for neat PC system before and after heat-treatment at 300°C 

are presented in Fig 6.3. The total weight loss of the heat-treatment sample up 

to 300°C during TG measurement were decreased compared to that without the 

heat-treatment, indicating that the heat-treated samples contained less water in 

the system. Corresponding DTG curves (Figure 6.3 b) show the significant 

decrease in the peaks around 100-200oC associated with the water loss of C-S-

H and AFm phases which are typically observed in the PC cement paste. Some 

C-S-H could remain, since DTG analysis show that the broad peak between 

60°C and 180°C due to the dehydration of C-S-H and AFm. This confirms that 

the amount of water in the C-S-H structure was decreased due to heat-

treatment [7]. The DTG curve shows the clear evidence of Ca(OH)2 phase. The 

weight loss from this phase is slightly increased after heat treatment. The peak 

associated with CaCO3 was more significant in the heat-treatment sample.  
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Figure 6.3 (a) TG and (b) DTG for PC before and after heat treatment at 300°C 

 

 

BSE images of the sample are shown in Figure 6.4. The microstructure of PC 

was clearly affected by heating, and the heated sample appeared to be more 

porous. This is confirmed by the total porosity measured by MIP, which 

increased from 25% to 30% after the heat treatment. The increase in porosity is 

mainly associated with the loss of chemically bound water from C-S-H gel 

induced by the high temperatures, resulting in the decrease in the volume of the 
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C-S-H phase. Similar consequences have been reported for the PC cement 

paste [7]. The shade of grey level for the inner C-S-H became lighter after 

heating, confirming the increase in density of this phase due to loss of water. It 

is now difficult to distinguish from Ca(OH)2 which is supposed to be the majority 

of the remaining original hydrated  phase. 

 

 

 
Figure 6.4 BSE of PC: (a) before heat -treatment, (b) after heat -treatment 
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6.2.3 PC-BaSO4 granule system 

Figure 6.5 shows the XRD patterns of the PC with 60 wt% BaSO4 granule 

sample before and after heat-treatment at 300°C. As was the case for pure PC 

system, the XRD pattern of PC-BaSO4 granule sample showed a slight 

alteration after heating. No peaks for AFm, and smaller peaks for CaCO3 were 

detected in the samples after heat treatment. Clear peaks for Ca(OH)2 were 

observed, but it is difficult to identify other cement hydration products due to the 

high intensity peaks for BaSO4. 

 

 

 

Figure 6.5 XRD patterns for PC with 60 wt% BaSO4 granule: (a) before and (b) after 

heat treatment at 300°C. (*Al peak due to sample holder)  

 

 

TG-DTG curves for the sample before and after the heat treatment at 300°C are 

presented in Figure 6.6. Similar to the neat PC system, the weight loss of the 
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granule samples up to 300oC during TG measurement was significantly less 

compared to that before the heat treatment. The broad peak on DTG curve 

between 50°C and 150°C was thought to be due to the dehydration of  

remaining C-S-H and AFm [7, 13]. Ca(OH)2 did not show any significant 

change. The amount of weight loss due to CaCO3 between 600°C and 750°C 

was more significant in the heat-treated sample. Since XRD results did not 

show this phase clearly, thus it might be either poorly crystallined or from the 

carbonation by the exposure to the air during cooling and storage [14].  
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Figure 6.6 TG and DTG curves of PC with 60 wt% BaSO4 granule before and after 

heat-treatment at 300°C, w/c=0.53  

 

 

BSE images of those specimens are shown in Figure 6.7. The heated PC-

BaSO4 granule sample shows more pores, suggesting that the loss of water 

from the binding phase, C-S-H, increased the porosity of the cement matrix. A 

distinctive white rim was observed in the interface of inner C-S-H and 

anhydrited cement particle, the reasons of which are unclear.  
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Figure 6.7 BSE images of PC with 60 wt% BaSO4 granule: (a) before heat treatment, 
(b) after heat treatment at 300°C 

 

Table 6.3 illustrates the total porosity of the samples before and after heat 

treatment. The total porosity of the neat PC and the PC-BaSO4 granule samples 

has changed after the heat treatment, which confirms the observation in BSE 

images. The PC-BaSO4 granule sample was slightly more porous than neat PC 

after the heat treatment. 

 

  

  

a 

BaSO4 granule 

 

CH 

Pores 

 

Partially reacted 

cement grain 

 

White rim Inner 

product 

 

 

 

Outer product 

 

 

10 μ  

10 μ  

BaSO4 granule 

 

 

Inner CSH 

 

Partially reacted 

cement grain 

CH 

Pores 

 

Outer CSH 

 

b 



Behaviour of PC-BaSO4 system in high temperature environment 

173 

 

Table 6.3 the total porosity of the samples before and after heat treatment 

Formulation Total porosity % 

before after 

PC 24.47 30.25 

PC with 60 wt% BaSO4 granule 22.53 33.06 

 

 

Figure 6.8 illustrates the pore size distribution of PC and PC-BaSO4 granule 

samples before and after heat treatment. In both samples the most pores 

distribute at the diameter ranging from 0.1-0.01 μm before heat treatment.   fter 

the heat-treatment, the neat PC increased its porosity ranging from 1 to 0.01 

μm. The sample containing Ba O4 granules also showed an increase in the 

porosity, especially pores ranging from 10 to 0.01 μm. 

 

 
Figure 6.8 pore size distributions of PC and PC-BaSO4 granule samples: (a) before 

and (b) after heat treatment 
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6.3 Hydrothermal curing at 180oC  

6.3.1 Neat PC  

Figure 6.9 shows the XRD trace of the hardened PC after 28 days cured in the 

hydrothermal condition. The figure also shows the XRD trace of the PC cured at 

40oC for comparison. Increasing the curing temperature resulted in more 

complex hydration phases. The major crystalline phases identified in the sample 

cured in the hydrothermal condition (Figure 6.9 b) are unhydrated alite and 

belite, along with the hydrated phases, being portlandite and hydrogarnet. The 

formation of hydrogarnet has been observed in PC samples cured at  a higher 

temperature, 85 oC for up to 8.4 years [15]. Calcium carbonate in its calcite form 

(CaCO3) was also detected. In this specimen monosulphate was not identified 

as a reaction product. Formation of lime-rich phases, Jaffeite (C6S2H3), 

reinhardbraunsite (C5S2H), and α-dicalcium silicate hydrate (α- C2SH) must be 

related to the decomposition/dehydration of C-S-H. It has been reported that C-

S-H is not stable at high temperatures and often replaced by such crystalline 

phases with a high Ca/Si ratios [16-19]. The formation of Jaffeite and 

reinhardbraunsite agrees with published data[19, 20]. Sarp reported that Jaffeit 

can form between 175 oC and 235 oC in high pH environment [21]. α-C2SH has 

been also observed in PC cured above 110oC [14, 16]. Saout et al. also 

reported that an increase of pressure and temperature leads to form crystallise 

phases [22-24].   
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Figure 6.9 XRD trace of neat PC samples: (a) cured at 40°C, (b) cured under 

hydrothermal condition 

 

 

Figure 6.10 shows TG and DTG data for the neat PC sample cured at 40°C and 

that cured under the hydrothermal condition for 28 days. The lack of the water 

loss below 300°C in the PC cured under hydrothermal condition confirms the 

absence of the C–S–H and AFm phases. The presence of hydrogarnet (Hg) is 

confirmed by a shoulder in the DTG curve at 370°C. A sharp peak due to the 

dehydroxylation of Ca(OH)2
 
was observed between approximately 425°C and 

475°C. The reduction of portlandite compared with the 40°C curing can be 

attributed to its reaction with the calcium silicates to form jaffeite and other Ca 

rich phases [18], which are previously identified through XRD (Figure 6.9 b). 

Further small peak at around 490-540°C is due to the decomposition of α-

dicalcium silicate hydrate to dicalcium silicate which is slightly different from 

a 

b A
rb

it
ra

ry
 u

n
it

 



Behaviour of PC-BaSO4 system in high temperature environment 

176 

 

clinker phase (β-C2S)  [6, 13, 19, 25]. Finally, the broad peak between 600°C 

and 700°C is attributed to the decomposition of calcium carbonates [26, 27]. 

 

 
Figure 6.10 TG and DTG of neat PC cured at 40 °C and under hydrothermal condition  

 

 

Figure 6.11 shows the BSE image of the neat PC cured at 40°C and that under 

hydrothermal condition for 28 days. The microstructure was clearly affected by 

the hydrothermal condition. The sample is much more porous when cured 

under hydrothermal condition. It has been reported that the curing of PC at 
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higher temperatures results in a non-uniform distribution of the hydration 

products in the microstructure [28]. A high concentration of hydration products 

tend to build up around the hydrating grains and retard the subsequent 

hydration at high temperatures, whereas the hydration products have sufficient 

time to diffuse at low temperatures and precipitate relatively more uniformly 

throughout the cement matrix [28]. In this particular case, however, this porous 

microstructure is more likely attributed to the lack of the usual C-S-H gel. The C-

S-H gel formed in the early hydration reaction of C3S is known to lose its 

interlayer water under a similar condition (high pressure steam, 100-300°C) 

[16], which can be accompanied by a shrinkage of the layer thickness of C-S-H 

[13]. This usually leads to the formation of crystalline silicate hydrate phases 

with a high Ca/Si ratio such as Jaffeite and reinhardbraunsite by reacting with 

portlandite [13, 24], as observed in the XRD analysis (Figure 6.9). Because the 

C-S-H has less water content, the inner and outer products appear almost in the 

same grey level and are not easily identified at this magnification. It is believed 

that the unreacted β-dicalcium silicate (C2 ) directly changed to α-dicalcium 

silicate hydrate (α-C2SH) rather than C-S-H gel when hydrated in the condition 

of the present study [18].  
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Figure 6.11 BSE images of PC, w/c=0.53: (a) cured at 40oC, (b) under hydrothermal 

condition at 180 oC 

 

 

6.3.2 PC- BaSO4 granule system   

Figure 6.12 shows XRD trace of PC with 60 wt% BaSO4 granule sample cured 

at 40°C and that cured at 180°C under hydrothermal condition for 28 days. The 

reaction products were similar to those observed in neat PC cured under 
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hydrothermal condition. Clear peaks of lime rich phases were also observed in 

addition to the high intensity peaks of BaSO4 and calcite phase. 

 

 
Figure 6.12 XRD trace for PC+ 60 wt% BaSO4 granule w/c=0.53: (a) cured at 40oC, (b) 

cured under hydrothermal condition at 180 oC  

  

 

Figure 6.13 shows TG and DTG for the same specimens. In the sample cured 

in the hydrothermal condition, the presence of hydrogarnet (Hg) is evident by a 

shoulder in the DTG curve at 350°C. The addition of BaSO4 granule has 

increased the weight loss due to the decomposition of α-C2SH as clearly seen 

by the sharp peak at 530°C. The broad peak between 700°C and 800°C , which 

is attributed to the decomposition of calcium carbonates of varying crystallinity 

[26, 27], was also observed. 
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Figure 6.13 (a) TG and (b) DTG for PC+ 60 wt% BaSO4 granule w/c=0.53, cured at 

40oC and in hydrothermal condition at 180 oC for 28 days 

 

 

Figure 6.14 shows the BSE image of the specimen. The effect of hydrothermal 

curing appeared to be less uniform in comparison to the neat PC sample 

(Figure 6.11b). The microstructure appeared more heterogeneous compared 

with the neat PC sample after the hydrothermal curing. This may be owing to 

the formation of the hydrogarnet and α-C2SH phases to fill some space 

produced by the reduction of C-S-H.  
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Figure 6.14 BSE image for PC+ 60 wt% BaSO4 granule w/c=0.53: (a) cured at 40oC, 

(b) cured under hydrothermal condition at 180 oC 

 

 

In general the area around BaSO4 granules became more porous in the 

hydrothermally cured sample. This was confirmed by the EDS line scan as 

shown in Figure 6.15. The general decrease of the especially Ca is observed 

towards the BaSO4 granule, suggesting that the less materials around BaSO4 

granule. Within the microstructure, anhydrous PC particles were observed 
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surrounded by slightly dark grey hydration rims which are considered to consist 

of Ca rich phase base on EDS analysis. It was difficult to distinguish between 

the inner and outer products.  

 

 

Figure 6.15 line scan for transition zone of PC+ 60 wt% BaSO4 granule in hydrothermal 

condition  
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6.4 Hydrothermal curing with mineral admixtures   

6.4.1 Visual observation 

As discussed in chapter 5, mineral admixtures promote different properties of 

BaSO4-containing cement materials. After the hydrothermal curing, as shown in 

Figure 6.16, the colour of the samples was different from that cured at 40oC. A 

clear difference was observed in the sample containing metakaolin and slightly 

less in the PC-BaSO4 powder system. The colour difference of the samples 

may be related to either the dehydration of hydrated phases or a less degree of 

hydration itself because a significant amount of water was found inside the 

container after the curing of these samples. The sample containing quartz 

powder did not show any obvious difference in the appearance and no water 

was found in the container after curing. 

 

 

 

 

Cured at 40°C for 28 days 

 

 

Hydrothermal curing at 

180°C for 28 days 

 

Figure 6.16 PC-mineral admixture samples cured at 40 oC and cured under 

hydrothermal condition at 180 oC 
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6.4.2 Phase analysis 

Figure 6.17 shows XRD trace of the specimens after the hydrothermal curing at 

180°C for 28 days. In samples containing 12 wt% BaSO4 powder (Figure 6.17 

a), reaction products were similar to those observed in the neat PC (Figure 6.9 

b). Hydrogarnet, jaffeite and reinhardbraunsite were observed along with the 

formation of α-dicalcium silicate hydrate (α-C2SH). 

The replacement of the powdered BaSO4 by metakaolin in the cement system 

(Figure 6.17 b) led to a slightly decrease in the intensity of portlandite, as a 

consequence of pozzolanic reaction took place with metakaolin [29]. One of the 

interesting effects of the hydrothermal curing to the 12MK48Gsample is the loss 

of the stratlingite which was observed in the same formulation cured at 40°C 

(Figure 5.13 and 5.15). It has been known that the high curing temperature 

contributes to the conversion of stratlingite to more stable hydrogarnet phase 

[30]. Formation Jaffeite, reinhardbraunsite and α-dicalcium silicate hydrate (α-

C2SH) phases were also observed.   

The substitution of powdered BaSO4 by quartz (Figure 6.17 c) led to a clear 

decrease in the portlandite peaks and the formation of tobermorite. It has been 

reported that autoclaving cement with finely ground quartz prevents the 

formation of portlandite, and results in the formation of tobermorite [31]. At high 

curing temperatures, the dissolution of quartz  provides sufficient siliceous 

material to bring the Ca/Si ratio down to 1 or lower [6, 18]. The siliceous 

material reacts with Ca(OH)2 initially, reducing the amount of Ca(OH)2 [6]. Upon 

further dissolution of quartz and production of siliceous material, calcium from 

semicrystalline calcium-silicate hydrates reacts to give C-S-H (I) [6]. The Ca:Si 

ratios drop gradually to 0.8 as the reaction proceeds, and finally the C-S-H (I) 
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recrystallizes to 11 ˚ tobermorite [6, 31].  XRD analysis for 12Q48G confirms 

that portlandite was totally consumed during the production of tobermorite as no 

peaks of Ca(OH)2 was detected. The tobermorite formed appear to be poorly 

crystallined as it shows less defined peaks. Rather coarse quartz used in the 

present study must have caused the formation of tobermorite with a lower 

crystallinity [31] 

 

 

 
Figure 6.17 XRD trace of the specimens cured under hydrothermal condition at 180°C 

for 28 days. 

 

 

TG-DTG data for the specimens are shown in Figure 6.18. The sample with 

12wt% BaSO4 and 12wt% metakaolin showed similar peaks in the DTG curves. 

A small peak observed at 370°C is assigned to the decomposition of 

hydrogarnet [5], in agreement with the XRD results (Figure 6.17). The weight 
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loss due to the dehydroxylation of Ca(OH)2 at 450°C did not change 

significantly after the replacement of BaSO4 powder by metakaolin, suggesting 

that the metakaolin had a weak pozzolanic reaction. This may be explained by 

the possible formation of an inhibiting layer of reaction product around the 

metakaolin particles under hydrothermal condition, which reduces their reaction 

with CH and further formation of hydration product as suggested by Khatib and 

Wild [32]. The peak assigned to the decomposition of α-dicalcium silicate 

hydrate phase was significantly increased in the 12MK48G sample. Metakaolin 

may have enhanced the formation of this phase by providing sufficient siliceous 

material. CaCO3 was detected only in the 12P48G sample.  

In the quartz-containing specimens (12Q48G), the mass losses between 70°C 

and 120°C are assigned to the loss of molecular water from tobermorite [6]. 

This specimen did not show a clear weight loss at 450, and thus CH may have 

totally consumed during the production of tobermorite, consistent with XRD 

observation. The peak of α-dicalcium silicate hydrate phase was not observed 

in this sample, suggesting that the most hydration product was tobermorite. 

Small peak for CaCO3 was also detected. 
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Figure 6.18 TG-DTG data for specimens cured under hydrothermal condition at 180°C 

for 28 days: (a) TG and (b) DTG 

 

 

The total mass loss of each cement system, during the TG measurement are 

summarised in Table 6.4. In general, the total weight loss of all specimens 

significantly decreased when hydrothermally cured in comparison with the same 

samples cured at 40°C, suggesting that the hydrothermal curing had a 

significant effect on the cement hydration reaction. The specimen containing 12 
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wt% quartz presents a higher mass loss than the pastes formulated with 12 wt% 

BaSO4 and 12 wt% MK, suggesting that the sample with 12 wt% quartz 

contained more bound water and was therefore hydrated to a greater extent. 

These results, in conjunction with XRD analyses, provide further evidence that 

the C-S-H formed in the samples with 12 wt% BaSO4 and 12wt% MK are not 

stable during the hydrothermal curing.  

 

Table 6.4 Total mass losses at 1000°C of PC-mineral admixture samples cured at 

180°C for 28 days. 

Sample ID Total mass 

loss (%) 

12 wt% P / 48 wt% G BaSO4 6.23 

12 wt% MK / 48 wt% G BaSO4 5.38 

12 wt% Q / 48 wt% G BaSO4 7.77 

 

 

6.4.3 Phase evolution 

In order to assess the effect of curing time on cement hydration reaction under 

hydrothermal curing, TG analysis was performed on 12wt% BaSO4 sample after 

7 and 28 days of hydrothermal curing at 180°C. The result is shown in Figure 

6.19. Differing from the sample cured for 28 days, the sample cured for 7 days 

showed the conventional cement hydration phases i.e. C-S-H and AFm. At 28 

days, as already discussed, neither C-S-H nor AFm was observed, which 

suggests that the C-S-H phase progressively disappears during the 

hydrothermal curing and replaced by more stable phases with a higher Ca/Si 

ratio with a possible CH consumption [16]. In addition, more weight loss due to 

the decomposition of α-dicalcium silicate hydrate phase was observed after 7 
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days, compared with 28 days curing. The total weight loss of 12P48G cured for 

7 days was significantly more than the same formulation cured for 28 days. The 

results show that the hydration products formed initially react each other to form 

more stable phases in this condition, and release the excess water as 

mentioned before. 

 

 
Figure 6.19 TG and DTG of 12P48G cured in hydrothermal condition for 7 and 28 days 

  

 

 

6.4.4 Microstructure 

Figure 6.20 shows the BSE of the 12P48G sample cured under hydrothermal 

for 28 days. The effect of hydrothermal condition on 12P48G was more uniform 

compared with the PC+60 wt% BaSO4 granule sample (Figure 6.14b).  The total 

porosity of 33.3% was also less than the 39% in the hydrothermally cured 

PC+60 wt% BaSO4 granule system. The possible reason is the filler effect of 

fine BaSO4 particles. The large surface area of BaSO4 powder can enhance the 
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hydration reaction and fill the porous interfacial transition zone between the 

cement paste and BaSO4 granule, resulting in more homogenous 

microstructure. 

 

   

Figure 6.20 BSE images of 12P48G cured under hydrothermal condition for 28 days 

 

EDS analysis for the same sample (Figure 6.21) shows that the outer product 

was mainly composed of calcium and silicon with a high Ca/Si ratio of 

approximately 2.88. This indicates that the matrix was most likely Jaffeite which 

has a Ca/Si ratio of 3 [18]. Higher silicon concentration was observed both in 

inner products and the anhydrous particles. The unreacted calcium silicate 

clinker phase was most likely C2S due to its lower reactivity compared to C3S. 

The inner products had a significantly lower Ca/Si ratio than the outer products 

of approximately 1.83, implying that the inner products are likely α-C2SH.  
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Figure 6.21 EDS of 12P48G cured under hydrothermal condition for 28 days 
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Figure 6.22 shows BSE images of 12MK48G. The microstructure is quite 

uniform with very fine porosity. The total porosity increased slightly compared to 

12P48G sample.  When used in cement pastes with a higher water content 

such as w/c=0.87, metakaolin causes smaller pore sizes but higher total 

porosity [33]. In addition, the shrinkage from the transformation of stratlingite to 

hydrogarnet also increases the porosity of the system. It has been reported that 

the transformation of this type can cause a reduction in the volume of cement 

hydration product approximately 13.3% [34]. Figure 6.23 shows EDS of the 

same sample. The point A corresponds to hydrogarnet, and point B α-C2SH 

phase.  

 

 

  

Figure 6.22 BSE images of 12MK48G cured under hydrothermal condition for 28 days 
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Figure 6.23 EDS of 12MK48G cured under hydrothermal condition for 28 days 

 

 

Figure 6.24 shows BSE of the 12Q48G sample cured under the hydrothermal 

condition for 28 days. Fully hydrated cement grains can be easily distinguished 

and only a few partially hydrated grains are observed. It can be seen that the 

sample has a denser microstructure with small pores compared with the 

12P48G and 12MK48G samples. The sample has limited amount of unreacted 

cement particles observed is likely because the pozzolanic reaction between 

portlandite and quartz took place to a higher extent in this sample as a result of 
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the steam effect under the curing condition so-called internal autoclaving effect 

[35]. Figure 6.25 shows EDS analysis of the same sample. The trace of point A 

shows the presence of fully reacted cement particle and that of B tobermorite 

phase. 

 

 

   

Figure 6.24 BSE images of 12Q48G cured under hydrothermal condition for 28 days 
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Figure 6.25 EDS of 12Q48G cured under hydrothermal condition for 28 days 
 

 

Figure 6.26 compares the total porosity of the samples after the curing at 40°C 

and the hydrothermal treatment at 180°C for 28 days. The porosity was greater 

in all samples after hydrothermal curing, showing that the hydrothermal curing 

increases the porosity of the systems. The neat PC showed 48% increase in 

porosity. The 12P48G and 12MK48G samples showed a greater increase of 

63% and 66%, respectively, whereas the 12Q48G sample had a smaller 

increase of approximately 39%. 
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Figure 6.26 the total porosity of the samples before and after hydrothermal treatment at 

180°C for 28 days 

 

 

6.4.5 Strength regression 

Figure 6.27 shows the compressive strength obtained for all samples cured 

under hydrothermal condition at 180°C for 28 days. All samples met the API 

recommended minimum of 6.9 MPa for compressive strength [20]. The values 

obtained ranged from just under 10 MPa to over 20 MPa, where PC has the 

lowest and 12Q48G has the highest strength value. The figure also shows the 

compressive strength data for these cured at 40°C for 28 days (same as in 

Figure 5.22). In hydrothermal curing, the mechanical strength clearly decreased 

compared to the same samples cured at 40°C. The impact of hydrothermal 

curing was significantly different depending on the samples. The impact of 

strength regression was most significant in the neat PC (76%). The 12P48G 

and 12MK48G showed a less strength regression of 59% and 63%, 

respectively, and the least strength regression was observed in the 12Q48G 
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(44%). As expected, the strength of neat PC sample was low, where the cement 

paste lost the main binding phase (C-S-H) as a result of the hydrothermal curing 

and formation α-C2SH [7, 8]. The α-C2SH has been known to increase in the 

permeability and strength reduction due to the volume reduction as a 

consequence of the formation of this phase under hydrothermal condition [6, 

36]. The strength regression for the 12P48G sample probably because the less 

PC content in this system compared with the neat PC. The strength regression 

in the 12MK48G sample can be explained in terms of the extensive formation of 

α-C2SH and hydrogarnet, which is known to reduce the strength of cement 

paste [34]. It has been reported that metastable phases in PC-MK system can 

transfers to stable hydrogarnet phase with reduction in the cement paste 

volume about 13.3%, leading to the increase in porosity and decreasing  the 

mechanical strength [34]. The 12Q48G sample indicated the least strength 

regression. It has been reported that the strength of the system in the 

hydrothermal condition can be maintained by the formation of crystalline 

tobermorite [37], while the low strength is usually ascribed to the presence of α-

C2SH hydrate [13]. The formation of tobermorite phase was observed in this 

sample. Figure 6.28 show the general correlation between the strength 

regression and the porosity increase. 
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Figure 6.27 Compressive strength of the samples before and after hydrothermal 

treatment at 180°C for 28 days 

 

 

 

 

Figure 6.28 Correlation between the strength regression and the porosity increase of 

the samples after hydrothermal treatment at 180°C for 28 days. 
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6.5 Summary 

The study on the heat treatment samples revealed that the neat PC and the PC 

with 60 wt% BaSO4 granules indicated a similar response towards the heat 

treatment at 300ºC. After 24 hours of heat treatment, they lost a significant 

amount of the main binding phase C-S-H, as a result of the loss of chemically 

bound water from this phase and other cement hydration phases such as 

ettringite and monosulphate. This resulted in an increase of porosity, and a 

coarse pore structure that was significant in the system containing BaSO4 

granules.  

The neat PC and the PC with 60 wt% BaSO4 granules, when they were cured 

under hydrothermal condition at 180ºC for 28 days, did contain C-S-H or 

monosulphate phase, but showed the present of Jaffeite (C6S2H3), 

reinhardbraunsite (C5S2H), and α-dicalcium silicate hydrate (α- C2SH). 

It was found that initially C-S-H and monosulphate forms through conventional 

hydration of PC cement, in addition to α- C2SH through direct hydration of C2S. 

These phases are then replaced by more stable lime rich phases such as 

Jaffeite and reinhardbraunsite, possibly with a partial consumption of CH and α- 

C2SH. The significant level of porosity after the hydrothermal curing is probably 

due to this phase evolution. 

The formation of lime-rich phases, Jaffeite, reinhardbraunsite, and α-dicalcium 

silicate hydrate, was also observed when the fine BaSO4 powder or metakaolin 

was introduced to the system. The amount of the hydrates was in proportion to 

the amount of PC in the system for the 12P48G sample due to the inert BaSO4 

powder. In the 12MK48G sample, increased α-C2SH and hydrogarnet were 

observed. These systems resulted in a similar level of porosity increase and 
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strength regression after the hydrothermal curing. On the other hand, the 12Q48G 

sample formed tobermorite without forming the lime-rich phases observed in the 

other systems. The low CH content may indicate a stronger pozzolanic 

behaviour of the quartz in the early stages of hydration, resulting in the 

formation of tobermorite. The formation of tobermorite instead of Jaffeite, 

reinhardbraunsite or α-dicalcium appeared to be very beneficial for the 

application of the cement paste under hydrothermal conditions as it indicated 

the minimal porosity increase and strength regression.  
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7.1 Characterisation of PC-BaSO4 with high BaSO4 loading 

The present study investigated the effect of basic formulation on the PC-BaSO4 

system in particular BaSO4 loading and water content using fine BaSO4 powder 

and coarse granules. These data were used to establish the ability of cement 

matrix to encapsulate NORM scale waste. In the present study, both in PC-

BaSO4 powder and PC-BaSO4 granule systems, it was possible to produce sold 

products up to 60 wt% of BaSO4 loading which satisfied the minimum 

compressive strength of 7 MPa required for the radioactive cement wasteforms 

[1]. In both systems, the basic cement hydration products, C-S-H, portlandite, 

and monosulphate were formed, suggesting that BaSO4 was encapsulated 

without obvious chemical reactions with the cement matrix.   

Introduction of fine BaSO4 powder, owing to the large surface area, resulted in 

an increased formation of CaCO3 in the system investigated, which appeared to 

have significantly contributed to the compressive strength of the products. The 

amount of solid products in the system both hydration products and CaCO3 

appeared to contribute towards the strength of the system. The amount of water 

available in the system was found to be another important factor for CaCO3 

formation. A clear correlation between the w/c ratio of the system and the 

amount of CaCO3 per unit PC was obtained. The BaSO4 granules had different 

effects on the compressive strength of the products. The introduction of coarse 

BaSO4 granules resulted in a significant decrease in strength due to the 

formation of highly porous interfacial transition zone. Increase of water in the 

system resulted in the increase in the porosity of products, which was more 

significant in the PC-BaSO4 powder system than in the PC-BaSO4 granule 

system. There was no significant difference in porosity between BaSO4 powder 
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and BaSO4 granule systems when w/c was 0.53. Maintaining the w/c ratio at 

this level would be beneficial to maintain a low porosity of the products. 

Based on the obtained results, it is concluded that it is possible to achieve high 

BaSO4 loadings whilst retaining the initial integrity of the wasteform products. It 

would be beneficial to incorporate small amount of fine BaSO4 powder of about 

12 wt% to maximise the strength of the product if the formation of CaCO3 in the 

product is not an issue. BaSO4 may be further incorporated, in the form of 

coarse granules to give a total of 60 wt% without reducing the strength of the 

product below 7 MPa. It is important to maintain w/c ratio at around 0.53 to keep 

the level of porosity in the final waste product around 25 % similar to the 

reference PC system. 

 

7.2 Development of cement formulation for BaSO4 NORM scale 

encapsulation  

Sedimentation of BaSO4 particles can occur in the cement paste due to its high 

density. Careful control of the setting time and the viscosity of cement slurry 

were necessary in order to avoid the sedimentation of BaSO4 granules and 

obtain homogenous products.  

The setting time of the neat PC was a function of the water content of the 

mixture, where the initial and final setting increased when w/c ratio increased. 

Introduction of fine BaSO4 powder decreased both the initial and final setting 

times of the cement paste. Introduction of inert fine powder must have 

enhanced the hydration reaction owing to the large surface area. The 

introduction of metakaolin also resulted in the decrease in the initial and final 
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setting times. In this case, pozzolanic reaction must have contributed to the 

reduction of setting time in addition to increased surface area. 

The study on the rheological properties revealed that the neat PC cement slurry 

with w/c=0.53 is capable of suspending BaSO4 granules only with diameters 

less than 1.6 mm. Introduction of fine BaSO4 powder was effective in improving 

the rheological properties of the cement paste. 12 wt% of BaSO4 introduction 

was found sufficient to increase the viscosity and yield stress to give a cement 

paste which can suspend BaSO4 granules 13.9 mm in diameter. The same 

amount of metakaolin or quartz was also found to be effective to suspend 

coarse BaSO4 granules without sedimentation.  

Based on the information gained, wasteform formulations were developed. 

Using both fine BaSO4 powder and coarse BaSO4 granules, it was possible to 

reduce the amount of highly porous interfacial zone around the coarse BaSO4 

granules, which resulted in the reduction of porosity, suppression of carbonation 

and improvement in the compressive strength. Replacing the fine BaSO4 

powder with metakaolin or quartz was also found effective to improve the 

microstructure of the wasteform. Although the metakaolin required more water, 

the pozzolanic reaction of metakaolin helped to maintain the strength of the 

product approximately at 40 MPa, a similar level as that of PC system. 

The results of leaching tests were comparable with the literature data for 

nuclear wasteforms, suggesting that the developed formulation had sufficient 

durability. The amounts of Portlandite and C-S-H in the system have a 

significant effect on the leaching behaviour. The behaviour of Ba and S 

indicated a possible correlation with those of Ca and Si, respectively. Most of 
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the Ba found in the leachant was considered to be from the cement matrix, 

although this was not conclusive.   

 

7.3 Behaviour of PC-BaSO4 system in high temperature 

environment  

The behaviour of PC-BaSO4 cement system in high temperature environment 

was studied to assess the feasibility of using BaSO4-containing cement systems 

as a potential support matrix for the deep bore geological disposal.  

Both the neat PC and PC with 60 wt% BaSO4 granules indicated a similar 

response towards the heat treatment at 300ºC. After 24 hours of heat treatment, 

the lost a significant amount of the main binding phase C-S-H, as a result of the 

loss of chemically bound water from this phase and other cement hydration 

phases such as ettringite and monosulphate. This resulted in an increase of 

porosity, and a coarse pore structure that was significant in the system 

containing BaSO4 granules.  

The neat PC and PC with 60 wt% BaSO4 granules, when they were cured 

under hydrothermal condition at 180ºC for 28 days, did contain C-S-H or 

monosulphate phase, but showed the present of Jaffeite (C6S2H3), 

reinhardbraunsite (C5S2H), and α-dicalcium silicate hydrate (α- C2SH). 

It was found that initially C-S-H and monosulphate forms through conventional 

hydration of PC cement, in addition to α- C2SH through direct hydration of C2S. 

These phases are then replaced by more stable lime rich phases such as 

Jaffeite and reinhardbraunsite, possibly with a partial consumption of CH and α- 
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C2SH. The significant level of porosity after the hydrothermal curing is probably 

due to this phase evolution. 

The formation of lime-rich phases, Jaffeite, reinhardbraunsite, and α-dicalcium 

silicate hydrate, was also observed when fine BaSO4 powder or metakaolin was 

introduced to the system. The amount of the hydrates was in proportion to the 

amount of PC in the system for the 12P48G sample due to the inert of the 

BaSO4 powder. In the 12MK48G sample, increased of α-C2SH and hydrogarnet 

was observed. These systems resulted in a similar level of porosity increase 

after hydrothermal curing and strength regression despite having quite different 

microstructures. On the other hand, the 12Q48G sample formed tobermorite 

without forming the lime-rich phases observed in the other systems. The low CH 

content may indicate a stronger pozzolanic behaviour of the quartz in the early 

stages of hydration, resulting in the formation of tobermorite. The formation of 

tobermorite instead of Jaffeite, reinhardbraunsite or α-dicalcium appeared to be 

very beneficial for the application of the cement paste under hydrothermal 

conditions as it indicated the minimal porosity increase and strength regression.  

Based on the obtained results, it is concluded that it would be possible to apply 

PC-BaSO4 granule system as a high density support matrix for the deep 

borehole geological disposal. It is important to include quartz particles in the 

formulation to assure the sufficient rheological property and short-term strength. 

 

7.4 References 

1. Milestone, N.B., et al., Carbonation of geothermal grouts-part 2: CO2 attack at 250°C. 
Cement and Concrete Research, 1987. 17: p. 37-46. 

 



Future work 

209 

 

 

 

 

 

 

 

Chapter 8: Future work 

 

 

 

 

 

 

 

 

 

 

 

 



Future work 

210 

 

A number of questions remain unanswered from this project. If a complete 

understanding of the physical and chemical interactions between materials is 

required, further work should be performed in the following areas.  

1. Both BaSO4 powder and granule appeared to be incorporated into the 

cement hydration product without obvious chemical reactions with the 

cement matrix. However, there is a report suggesting the interaction 

between BaSO4 and C3A [1]. More investigation is needed to confirm 

this. 

2. Although the present study revealed that the initially formed C-S-H is 

replaced by Jaffeite, reinhardbraunsite later possibly with the aid of CH 

and α- C2SH, under hydrothermal condition, this reaction was not 

positively identified. It would be useful to understand the chemistry of 

these phase evolutions. 

3. Most of the works in this project were up to 28 days. Considering the 

objective of the wasteforms or the high density support matrix, longe-

term studies are necessary. 

4. Most of the works in this project were focused on the pure BaSO4 which 

would contain radioactive radium in the real NORM scale. Even though 

leach tests were performed on the PC doped with BaSO4 acting as the 

representative of the scale, investigation on a cemented active BaSO4 as 

(Ba, Ra) SO4 scale would provide more accurate results on the durability 

of the wasteform produced in the industrial process. 

5. Using radioactive Ra would be important to evaluate the stability of the 

cement matrix. Alternatively, gamma -ray irradiation can be used to study 

the effect of radiation on the cement wasteforms 
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