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Abstract

The nature of the transitions that occur between the quantized plateaux observed in the
quantum Hall effect (QHE) have been classified as second order quantum phase transi-
tions. These transitions occur between the localized and the extended states found with-
in a Landau level band of energies. The theory of the critical phenomena associated
with these quantum Hall transitions (QHTS) predicts a universal behaviour irrespective
of any microscopic detail of the two-dimensional system (2DES) within which they are
observed such as carrier concentration or mobility. This proposed universality of QHTs
can be verified by measuring the value of certain critical exponents governing the tran-
sitions. If valid, these critical exponents should be measured as a universal constant in
all instances.

This thesis investigates the universality of QHTs using a finite-size scaling the-
ory and attempts to address disagreements that exist in the literature on the critical ex-
ponents associated with QHTSs. The scaling theory of QHTS presented here involves
experimental studies based on varying either the temperature of the 2DES or the fre-
quency of the applied electric field.

It was found that the critical exponents of QHTs are not universal across all sys-
tems investigated. It is shown that changing the nature of disorder within the system
influences the value of the critical exponent measured. In generd, it was found that the
experimental observation of quantum criticality, as expected from the critical phenome-

na theory of QHTS, depends on the competition between three key length scales charac-



terizing the 2DES; the size of system, the phase coherent length and the typical size of
the electron clusters forming within the system.

A study on the limit of the observation of the QHE is also undertaken in the
millimetre wave regime. It was found that localization within the 2DES, and as a result
the QHE, is destroyed at frequencies below the millimetre wave regime for a GaAs

based 2DES.
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1. Introduction to the scaling
theory of quantum Hall transi-

tions

1.1 Introduction

The quantum Hall effect (QHE), discovered just after the centenary of the discovery of
the original Hall effect by Edwin Hall [1] in 1879, has led to alarge and varied field of
research. First reported by von Klitzing, Dorda, and Pepper [2] in 1980, the QHE re-
veals a peculiar behaviour of atwo-dimensiona electron system (2DES) in the presence
of astrong magnetic field. The most remarkable aspect of the effect is the precise quan-
tization of the Hall conductivity o, at integer multiples of e?/h irrespective of the mi-
croscopic details of the 2DES.

The QHE is explained in terms of localized and delocalized states within the
2DES [3-5]. Electrons occupying localized states are restricted in their dissipation to a
finite region of space which is very small compared with the size of the 2DES, while
electrons occupying delocalized or extended states can freely propagate throughout the
entire system.

The distinction between these two types of states originates from the disorder or

the degree of randomness within the system, and this is generally studied as a theory of



localization. The 2DES exhibits different transport properties depending on whether
electron transport is due to the propagation of electrons occupying localized states or
€l ectrons occupying extended states.

By gradually changing a physical parameter of the 2DES like the magnetic field
or carrier concentration, the states of the electrons contributing to transport can be
changed from localized states to extended states or vice versa. This transition is known
as a quantum phase transition (QPT) [6] and is observed in transitions between the
quantized Hall conductivitiesin the QHE.

A QPT isacritica phenomenon [7] observed in systems where there is a sud-
den change of the properties of the system from one phase to another. Critical phenom-
ena have been extensively studied long before the discovery of the QHE [8-10]. A fa-
miliar example is the transition of afluid from aliquid to a gaseous state. Systems ex-
hibiting critical phenomena can be divided into broad groups known as universaity
classes, such that all members belonging to a given class possess identical critica prop-
erties that can be defined by certain power or scaling laws.

Quantum Hall transitions (QHTS) are associated with the scaling law,
¢(E) ~ |E — E.|”Y, which describes the divergence of the localization length ¢(E) (i.e.
the length defining the degree of spatial restriction of an electron at a given energy state
E), as the critical energy separating localized states and extended states E., is ap-
proached. According to the theory of critical phenomena, the localization length expo-
nent v, is expected to be a constant value for all members belonging to this universality
class. In other words, if al QHTSs belong to the same university class, they will all pos-

sess the same value of v irrespective of any microscopic detail of the 2DES.



The verification of the universality of QHTSs, however, has yielded many con-
tradictory results as summarised in areview by Huskestein et al. [11]. Even though it is
accepted that some systems exhibit the expected universal behaviour [12-14], thereis a
growing body of experimenta results that show a non-universal behaviour of QHTs
[15-17]. In addition, it has recently been discovered that the nature of disorder within a
2DES plays an important role is determining universality [18].

The aim of this thesis is to investigate the nature of the critical phenomena ob-
served within QHTs and to determine the factors influencing both the observation of
universality and the lack of universality of QHTs within 2DESs.

In this thesis, the effects of temperature, the frequency of an applied electric
field, the amount of electric current injected, and the nature of disorder on QHTSs are
studied within awide range of 2DESs of varying characteristic properties.

The outline of the thesisis as follows. In Chapter 1, we review the formation of
2DES in semiconductor heterostructure. We also introduce aspects of the theory of lo-
calization that will be key to the analysis of results presented in this thesis. We then re-
view the physics and features of the QHE and provided an in-depth discussion on QPTs
and the critical phenomena observed in QHTSs. Finally, we developed the analytic tools
used in experimental determination of the universality or non-universality of QHTs and
conclude with a discussion on previous experimental results present on the investigation
of QHTs.

In Chapter 2, we investigate the effect of temperature on QHTSs on four differ-
ent samples. We also investigate the effect of a varying applied current on the nature of

QHTSs.



In Chapter 3, we develop a high resolution radio frequency (RF) technique that
uses a varying frequency of an applied electric field to investigate QHTSs. A frequency
range between 100 MHz and 20 GHz is studied. In this chapter we aso investigate the
influence of disorder on the nature of QHTs using the frequency based technique.

In Chapter 4, a quantum percolation model is developed to interpret the various
results presented in Chapters 2 and 3. The percolation model explains the occurrence of
universality within QHTS, and crucially, it aso explains the reason why universality is
not observed in many experimental investigations.

In Chapter 5, a free space millimetre wave experimental technique is
used to investigate QHTs between the frequency range of 70 GHz and 110 GHz in order

to explore the high frequency limit of the QHE.

1.2 Two-dimensional electron systems (2DEYS)

In the classical degrees of freedom (3D Cartesian coordinates), a two-dimensional elec-
tron system (2DES) can be formed by restricting the movement of an electron gas in
one direction while retaining freedom in the remaining two dimensions. All the work
presented in this thesis is based on the transport properties and quantum effects ob-
served in 2DESs. Studies of these systems have had a profound influence on our under-
standing of condensed matter systems and are also of practical importance in the devel-
opment of high electron mobility transistors. Below, we discuss the formation of 2DES

and briefly illustrate some of their properties and quantum nature.



1.2.1 Formation of a 2DESin a GaAdAlGaAs heter ostructure

Quas two-dimensional electron systems were formed initially in oxide based structures
such as S-MOSFETSs [19], where a voltage applied to a metal gate deposited on an in-
sulating Si0, layer was used to create an inversion layer of carriers at the Si — Si0,
interface. These devices provided the foundation for the development of modern elec-
tronics in the form of miniature, fast switching transistors. These structures, however,
experience strong Coulomb scattering by charged impurities at the oxide-semiconductor
interface [20-22] and as aresult are largely unsuitable for the study of quantum mechan-
ica effects in 2DESs. This led to advances in new growth techniques capable of an
atomic scale control of the growth process, making it possible for the formation of high

quality, low dimensiona el ectron systems in semiconductor heterostructures.

(a) (b) (c)
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Figure 1.1. (@) The band structure of undoped AlGaAs and GaAs. (b) The band structure of the
heterostructure with n-doped AlGaAs before equilibrium. (¢) Band bending within the hetero-
structure at equilibrium where the dipping of the conduction band below the chemical potential

produces a 2-dimensional potential well in the plane of the junction between the two materials.



We shall consider such a 2DES formed at the interface between two I11-V com-
pound semiconductors, GaAs and Al,Ga;,As, as this is the heterostructure used to fab-
ricate all devices reported in this work. GaAs forms a cubic zinc blende structure where
each Ga atom is surrounded by four As atoms and vice versa. In Al,Ga;.,As, some Ga
atoms in the crystal are substituted for Al, giving Al,Ga,,As avery similar structure to
GaAs but with awider band gap (Fig. 1.1(a)) making it highly suitable to interface with
GaAs. The Al,Gay,As layer is doped with Si donors while the GaAs remains undoped,
and the structure is grown by a process known as molecular-beam epitaxy (MBE). At
zero temperature, the chemical potential in the Al,Ga;.,As layer lies at the bound states
of the donors, which is higher than the bottom of the conduction band of the GaAs lay-
er. Fig. 1.1(b) illustrates the band structure of the two semiconductors before equilibri-
um is reached. Since the chemical potential must be constant throughout the structure at
equilibrium, electrons bound to the donor states move into the GaAs conduction band in

order to move the system towards equilibrium.

GaAs cap

Si: AlGaAs doner layer

2DES

GaAs substrate

Figure 1.2. Schematic of a 2DES formed at the interface of the AlGaAs spacer layer and the
GaAslayer in a GaAs/AlGaAs heterostructure.



This leaves the Al,Gay.,As positively charged and the GaAs negatively charged and sets
up an in-built electric field opposing further electron migration, resulting in equilibra-
tion of the chemical potential. The process causes the conduction bands of both layersto
bend (as shown in Fig 1.1 (c)) to compensate for the movement of charge carriers. As
the GaAs conduction band edge bends it dips below the chemical potential forming a
quantum well with a typical width comparable to the wavelength of electrons at the

chemical potential, Ay~ 10 nm. The mobile eectrons which are now in the GaAs well

are trapped in the vicinity of the interface. Coulomb attraction prevents the electrons
from moving away from the interface and into the GaAs, while the band edge disconti-
nuity prevents electrons from moving back into the Al,Gay.,As layer. The movement of
the trapped e ectrons is therefore restricted to the plane of the interface and forbidden in
the perpendicular direction.

2DESs of the form described above are subject to random potential scattering
from the ionized donors |eft behind in the AlGaAs layer. The effect of the impurity po-
tential can be reduced by placing a layer of undoped AlGaAs, commonly referred to as
a spacer layer, between the doped AlGaAs and undoped GaAs layersto cut off the core
of the random potential fluctuations originating from the ionized donors in the AlIGaAs
layer. This modification allows for very high electron mobilities to be achieved. Fig. 1.2
illustrates a typical GaAs/AlGaAs heterostructure. The growth process begins with the
growth of a high quality layer of GaAs on top of a GaAs substrate in the chamber of an
MBE machine, followed by the AlGaAs spacer layer. These two layers form the inter-
face at which the 2DES is formed. The Si doped AlGaAs layer is then grown on top of
the spacer layer and finally the heterostructure is capped with athin layer of GaAs. The

cap layer isimportant because the fabrication of these heterostructures into devices usu-



ally requires the deposition of some material on top of the sample surface and it is there-
fore necessary to have a layer separating the Si doped AlGaAs and these deposits. The
cap layer prevents oxidation that would occur if AlIGaAsis exposed to air.

The invention of MBE, beginning with the concept of modulation-doping intro-
duced by Stormer [23], has allowed for significant progress in producing high quality

2DESs which have made possible arange of discoveriesin condensed matter systems.
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Figure 1.3. The history of improvements of electron mobility for GaAs based heterostructures
over the last three decades taken from Ref. [24], and annotated with technical innovation respon-
sible for the improvement.



Improvements in the MBE technique, which have largely been achieved by eliminating
unwanted or unintended charged impurities in the MBE vacuum, have led to a signifi-
cant increase in the low temperature bulk mobility of charged carriers from roughly
5 X 103cm?/Vs in 1977 to 36 x 10°cm?/Vs by 2008 (see Fig. 1.3), aremarkable 7000
times increase in low temperature mobility. The great pace of progress is expected to
continue with a possible 100 x 106cm?/Vs mobility being achieved in the near future
[25]. These improvements in mobility have been crucial to the study of condensed mat-
ter systems as they make it possible for quantum effects, previously hidden in low quali-
ty samples, to be observable in the cleaner and higher quality samples grown using the

improved techniques.

1.2.2 Density of states

The band structure of the GaAs/AlGaAs heterostructure described above forms a trian-
gular quantum well (Fig. 1.1(c)) at the interface which contains the 2DES. The width of
this quantum well (i.e. the length in z or direction perpendicular to the interface) is ex-
tremely thin (<10 nm). For the purpose of analysing the distribution of states, the barri-
er or electric potential on the AlGaAs side of the interface forming the 2DES can be
considered to be infinite. One may then approximate the electric potential on the GaAs
side to be linear as one moves away from the interface. This oversimplified description
isthe basis for the triangular potential approximation [20] for the energy states of wave-

functionsin the z direction caused by the confinement of the system.
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Figure 1.4. (&) A diagram of an approximation of the triangular quantum well that develops in
GaAgAlGaAs heterostructure where V(2) describes the potential barrier moving away from the
interface and in the GaAs layer. Only wavefunctions that satisfy the boundary conditions of the
well can exist within the well. (b) Discrete density of states occurs at the corresponding energies

found within the potential well.

The wavelengths of the carriersin the well must be comparable to the width of the well
(as defined by the confining electric potential) and therefore carrier motion perpendicu-
lar to the interface cannot be viewed in a classical manner but must be quantized into
discrete energy levels according to the Fermi wavelength, as illustrated in Fig. 1.4. It
can be seen in Fig. 1.4(a) that only certain discrete energy levels that fulfil the wave-
length and boundary condition in the z direction imposed by the well can exist within
the well.

Without any excitation, motion in the z direction is impossible but carriers are
still free to move in the plane of the interface, meaning that each discrete energy level in
the z axis congtitutes a subband of energies in the x — y plane which exist due to the

kinetic energy of carriersin that plane. Based on the description of an unconfined elec-
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tron in free space by the Schrédinger equation, the energy spectrum of a single subband

in a2DES is shown to be,

n*k? h?
E=—r=——(k’ +k?), (L1

2m

where ky and k, are the wave-vector components for motion parallel to the interface. In
this two-dimensional plane, the number of states in the wave-vector space is given by

(2m)~2, and accounting for spin degeneracy the density of statesis given as

2

(1.2)

Using polar coordinates, dk = k?sinfdkd, and from Eq. (1.1), the density of statesis

expressed in terms of energy as

D(E) = —. (13)
Eq. (1.3) suggests that the density of states in a subband of a 2DES is constant and in-
dependent of energy. Thisis afundamental feature of a 2DES which makesit extremely
useful for studying quantum-mechanical effects.

As the triangular quantum well begins to fill up with carriers from ionized do-
norsin the Si:AlGaAs layer, the states at the lowest subband E,, are the first to be popu-
lated. If the carrier concentration is low enough, then only the first subband will be
filled and the system behaves like a quas 2DES. At higher numbers of carriers, howev-

er, more than one subband will befilled and this leads to parallel conduction of different

planes within the 2DES and non-ideal two-dimensional conditions.



12

1.2.3 Disorder in 2DESs

Even though advancements in the growth of semiconductor heterostructures have pro-
duced some of the highest quality 2DESs formed to date, e ectron transport in 2DESs is
still vulnerable to some amount of disorder which introduces random potential fluctua-
tions into the system.

Disorder in 2DESs can be divided into Coulomb induced disorder and non-
Coulomb disorder. The dominant source of disorder in 2DES formed from a
GaAs/AlGaAs heterostructure originates from the remote ionized donors in the
Si:AlGaAs layer [26]. The potentia arising from these ionized donors can scatter elec-
trons within the 2DES introducing disorder into the system. However, since these
charged centres are separated from the 2DES by a spacer layer, the 2DES only experi-
ences the tail end of a decaying (1/r) potentia. Thisis known as a long-range induced
disorder. This disorder can be reduced by increasing the width of the spacer layer,
though the donor layer must remain close enough to maintain a reasonable electron den-
sity. High electron density systems are more able to efficiently screen random potential
fluctuations (the effects of screening on the potential landscape of a 2DES are discussed
in more detail in Chapter 4). The doped silicon therefore plays the dual role of the
source of both carriers and disorder.

An additional source of Coulomb disorder arise from the background ionized
impurities in the GaAs layer itsdf. The prominence of this source of disorder depends
on the purity of the GaAs layer which usually stems from the MBE chamber within
which the growth takes place. In high quality 2DESs grown in modern MBE machines,

thisisusualy negligible and isless of a concern.
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Sources of non-Coulomb disorder include phonon induced deformations, sur-
face roughness and aloy disorder. Phonons in the system originate from thermally in-
duced vibrations which distort the lattice. This kind of disorder is greatly reduced (but
still present) at low temperatures typically below 1 K.

Interface roughness is responsible for a small amount of scattering. Roughness-
es a the interface arise owing to imperfect lattice matching between the GaAs and Al-
GaAs but are usually negligible in GaAs/AlGaAs systems.

In a typical GaAgAlGaAs heterostructure, about 30% of Ga atoms are substi-
tuted by Al in the AlGaAs layer, but these replacements occur randomly. The resulting
aloy therefore contains a non-periodic potential and thus introduces alloy disorder scat-
tering. Random potentials of this form cause scattering on an atomic length scale. This
type of disorder is therefore referred to as short-range disorder since it causes scattering
to occur on a length scale comparable to length between atoms (as opposed to long-
range disorder discussed above). The 2DES in GaAs/AlGaAs heterostructures amost
entirely residesin the GaAs side of the interface, but the exponentially vanishing tails of
the electron wavefunction in the 2DES penetrates into the AlGaAs alloy and produces a
small amount of electron scattering. Once again, scattering from this form of disorder is
usually irrdlevant in a typica GaAgAlGaAs heterostructure. In Chapter 3, however,
aloy disorder is employed extensively in creating short-range systems. We shall see
that increasing the short-range disorder within a typical GaAs/AlGaAs system has pro-

found consequences on the nature of quantum Hall transitionsin a 2DES.
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1.2.4 Measurement of transport coefficientsin a 2DES

Based on the effect of the simultaneous conditions of both an applied in-plane electric
fidd E and a magnetic field B perpendicular to plane of the 2DES, we consider the
conductivity and resistivity of a 2DES for the current component in the direction paral-
lel to E, the diagonal component, and the component in the direction perpendicular to
E, the Hall component.

Fig. 1.5. shows a schematic of a typical device, known as a Hal bar, used to
perform these measurements. The 2DES is fabricated into the illustrated pattern (see
section 2.1.1 for the detailed fabrication process) and a current (or an electric field) is
applied from the S to D Ohmic terminals, while simultaneously measuring the voltage
between either A and C or A and B.

When amagnetic field is applied to a 2DES, the motion of carriersin an electric
field is no longer strictly paralel to E but exhibits an orbita motion as a result of the
Lorentz force. The resistivity p and conductivity o are no longer scalar but instead are
tensors which describe the two dimensional nature of the motion of carriers. A current
density j and the applied field E arerelated by, j = oF or where g, represent the diag-

ona conductivity in the direction of E (terminals A-B), and o, represents the Hall

conductivity perpendicular to E (terminals A-C).

Jx\ _ (Oxx  Oxy\ (Ex
(jy) B (ny ayy) (Ey)’ (14
If the 2DES isisotropic (a reasonable assumption) then from the symmetry of the kinet-

ic coefficients, o, = 0y, and g;,, = —0y,,.
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Figure 1.5. Diagram of a Hall bar made out of a 2DES (GaAgAlGaAs heterostructure) used to

measure transport coefficients. The x, y, z axes are shown including the direction of the electric

field E and the magnetic field B.

Theresistivity tensor is an inverse matrix of ¢ and given as

( Oxx O-xy)_1 _ 1 (axx _ny)

Oxx?+0xy? \Oxy  Oxx

(pxx pxy)

Pyx  Pyy —Oxy Oxx

Conversely, a can be expressed in terms of p as

(axx axy) 1 (pxx _pxy)'

O'yx O'yy pxxz‘l'pxyz Pxy Pxx

The Hall and diagonal resistivity or conductivity can therefore we written as

Oxy Pxy
= or g. =,
pxy Oxx?+ nyz xy Pxx? +ny2
and
Oxx Pxx
Pxx Oxx® 0y XXt p?

(1.5)

(1.6)

.7

(1.8)

In order to evaluate Egs. (1.7) and (1.8), both the Hall and diagonal resistivity must be

measured based on the physical dimensions of the Hall bar deviceillustrated in Fig. 1.5.
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Figure 1.6. The locus of the Hall vector as a function of magnetic field (black circle)

The diagona resigtivity is determined using the applied electric field and cur-
rent density in the diagona direction, p,, = E,/j,, Where E, = V,5/L (V45 is voltage
applied between terminals A and B) and j, = I,.,/W (I, is the current measured along S

and D). The dimensions L and W are shown in Fig. 1.5. p,,,. therefore can be calculated

from
Vap W
Pxx = %- (1.9
Similarly, the Hall resigtivity from p,,, = E, /j, where E;,, = V. /W yields
_Vap _
Pxy == = Ryy. (1.10)

Iy
We see from Eq. (1.10) an interesting characteristic of 2DESs, the Hall resistivity coin-
cides with the Hall resistance, and in addition, they are both independent of any physi-
cal dimensions of the system.

A classica analysis of conductivity can be evaluated using the Drude formal-
ism. First, we introduce a component known as the Hall vector Z which takes into ac-
count both the effects of the electric field and the magnetic field on the current density,

Jj=00Z, (1.11)
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where g, = n% the Drude conductivity. The dectric field can be described in terms
of the Hall vector (see Fig. 1.6) as
E=Z-<BxZ. (1.12)
m
Substituting Eq. (1.11) into (1.12) yields,
et j

E=L_Zpxi (113)

gy, m* gy

which can be expressed as the following tensor

1 et 1 B
E oo m* oo Jx
(Ei): e, T (1y> (1.14)
m* gg [

It is observed that Eq. (1.14) contains the resistivity tensor (E = pj) where the diagonal

resistivity is py = — and the Hall resistivity is p,y = =
0

-—B = 2. Thisresult predicts
m* oy en

that the diagonal resitivity is independent of the magnetic field while the Hall resistivi-
ty islinearly dependent on the magnetic field.

This is the classical case of a 2DES under a magnetic field. We discuss the

gquantum-mechanical scenario in the next section.

1.3 Theory of Localization

Localization in charged particle systems is the concept that describes the spatial re-
striction imposed on single-particle wavefunctions in a disordered quantum mechanical
system. The theory proposes that at the absolute zero of temperature the amplitude of a
wavefunction of a charged particle can be exponentially localized or confined within a
finite region of space given a sufficient amount of disorder. The consequence of this

limitation on the displacement of charged particles within a system is manifested in a
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variety of physica phenomena that have profound effects on the transport properties of
these charged particles. The work presented in this thesis is underpinned by various lo-
calization effects and in the sections below we explore the nature and theory of electron

locdlization.

1.3.1 Localized and extended states

For a perfectly periodic crystal with no defects or impurities, it can be shown [27] that
the solution of the one-electron Schrodinger equation results in a plane wave modul ated
by the periodicity of the lattice. This is known as Bloch's theorem. Due to the energy
they possess, electrons found in such a crystal are arranged in energy bands separated
by regions for which no wavelike electron orbitas exist [27]. These forbidden regions
are known as energy gaps or band gaps. Electrons fill up states within the allowed re-
gions of the energy spectrum, with electron possessing the lowest energies occupying
states at the bottom of the band while those of the highest energy occupy states higher
up the band. Each energy level within the energy band can be described by a wave vec-
tor. Electrons occupying the highest energy level (known as the Fermi level) of the en-
ergy band respond to an applied electric field as if they possess an effective mass m*
and are able to freely propagated within the system. Since electrons within this system
are represented by plane wavefunctions with perfect periodicity, the probability of find-
ing an electron within this system is the same for all locations. In this sense, electrons
are considered to be delocalized and the energy states they occupy are referred to as
extended states since their wavefunctions extend (with equal probability) throughout the

entire system.
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(b)

Figure 1.7: Possibly types of lattice disorder. (a) ordered lattice, (b) mixed-crystal formation of
two different atoms in alattice, (c) positional disorder through distortion of lattice, and (d) topo-

logical disorder with spontaneous formation of dangling bonds.

The Bloch formalism, which leads to extended states, applies to crystals with a
period lattice and with little or no defects. However, in reality this crystaline state is the
exception rather than the rule, particularly in semiconductors where impurities play an
important role. Imperfection or disorder in crystalline materials exists in varying de-
grees and different forms. The most important crystalline imperfections are caused by
chemical impurities, vacant sites, and interstitial atoms. Some of the effects of these
imperfections on the lattice structure are described in Fig. 1.7. All these imperfections
share a common feature of producing bound states that can bind to or release electrons
[28]. If one considers a periodic lattice structure, the periodicity of this structure will be

perturbed by defectsin the lattice.
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A single defect in an otherwise periodic potential will lead to a splitting off of
one state from the band of extended (Bloch) states (see Fig. 1.8(a)). Electrons can be
bound or repelled by this defect state and thus the state acts as a trap for electrons or
holes. An electron occupying this isolated split-off state will be localized and its wave-
function vanishes rapidly as one moves away from the localized site. Sincethereis like-
ly no correlation (periodic arrangement) between the defects that create these localized
states, the spatial probability of find an electron occupying a localized state is not even-
ly distributed throughout the system, as with Bloch or extended states, but are resolved
to afinite region of space. Localized states therefore cannot contribute towards dissipa-
tive conductivity at zero temperature. As the number of defects (disorder) increases, the

density of states of the energy band takes on a Gaussian shape as shown in Fig. 1.8(b).

(a) E (b) E

N(E)

Figure 1.8: (@) The energy band of a simple periodic potential model as a function of the devia-
tion V of the defect potential from the potential of an undisturbed lattice. The split off state is
spatialy localized to the vicinity of the defect. (b) The density of states of band of energy with
many defects. The defects produce a Gaussian shaped band where al states are localized with
the exception of states at the centre of the band.
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States within the tail regions on the band are localized while only states at the centre of
the band remain extended.

A convenient distinction between localized states and extended states arises
when we consider the spatial extension of the wavefunctions of these states. As dis-
cussed above, for a perfect crystalline | attice the probability of finding an electron with-
in the system is the same for all locations. An electron in such a system can propagate
without being scattered throughout the entire system, in other words, the mean free path
extends over the entire length of the system. Disorder can be introduced into this model
through the distortion of the perfect lattice; phonon induced scattering, impurity scatter-
ing or other mechanisms that cause an eectron wavefunction to lose its phase coher-
ence. As the degree of disorder increases, the mean free path reduces. A sufficient in-
crease in disorder however, can lead to localized states where an electrons occupying
such a state is restricted to finite and small regions within the system. The extent of lo-
calization of wavefunctions can be described by a localization length &, which will be

large as the system size for extended states and vanishingly small for localized states.

(a) (b)

ANANAANAANN e T Nl
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Figure 1.9: A description of localized and extended states. (a) Wavefunction of an extended state
with alocalization length that extends to infinity. (b) Wavefunction of a localized state, the am-
plitude if the wavefunction is maximum within a finite region of space but vanishes exponential-

ly asr goesto infinity.



22

This provides a simple criterion for differentiating between the two types of wavefunc-
tions. A description of the two types of wavefunction is shown in Fig. 1.9. A more de-

tailed description of localization is discussed in the following section.

1.3.2 Anderson Localization

In 1958 Anderson [29] was the first to prove that a sufficient amount of disorder would
result in a lattice with no diffusion of charge carriers and thus an absence of extended
states. This was not at all apparent at the time as it was considered that an increase in
disorder would simply lead to a reduction in the mean free path, but the states would
remain extended and electrons will still diffuseto infinity given t — co. The model used
by Anderson also provided the first quantitative definition of localization.

He considered a perfect lattice with each site occupied by one atom, each with a
single energy state E,,. Given the perfect periodicity of the lattice, aregular and periodic
potential (as shown in Fig. 1.10(a)) will be felt by an electron moving through the lat-
tice. This will result in a tight binding energy band of width B with extended states
based on the Bloch formalism described above. Disorder in the form of a random poten-
tial was then introduced such that E,, at each site takes on a value statistically distribut-
ed over arange of potential of width V, as shown in Fig. 1.10(b). Anderson showed that
if the value /B is greater than a certain critical value (V,/B) i+, the solution for the
Schrédinger equation for any energy in the band will no longer result in an extended
Bloch state but will be localized in space. As a result, the probability of an electron re-

maining at its current location ast — oo isvery large value.
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Figure 1.10. Anderson model: (a) Potential wells of equal depth in a near perfect lattice with a
tight binding band of energy of width B. (b) Potential wells in a disordered lattice with potential
fluctuation statistically distributed over arange of width V.

In other words, without any elementary excitation it becomes likely that an electron will
never move from its current site. The localized wavefunction as described by Anderson

has the following form [30];

()] ~ exp(— 7% (1.15)
where ¢ is the localization length (as described above) and r is some distance in space
away from the location r, of the localized state.

Mott [31] first pointed out that even if /B lies below the critical value, local-
ized states will nonetheless exist near the extremities (tail regions) of the energy band
since any amount of disorder, however small, will create some localized states. Mott
also showed that an energy E,,, must mark the boundary between the localized states
and extended states within the energy band. The critical energy E,,, was later referred to

as the mobility edge [32]. As shown in Fig. 1.11, a mobility edge can be found at both
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ends of the disorder energy band. As the range of distribution of the potentid V,, isin-
creased (corresponding to increased disorder), E,on both sides of the band approach
each other until they merge at (Vy/B)rit, & Which point al states within the band are
localized [31, 33]. Considering the left hand side of the energy band shown in Fig. 1.11,
if the parameters of the system were to change such that the Fermi energy Ep, relative to
the mobility edge moved from the regimein which Ep < E, to Ep > E,, (i.e. Ep Crosses
over from the localized states into the extended states), we arrive at a metal-to-insul ator
transition (MIT) aso known as the Anderson transition [33, 34]. If the Fermi energy
lies in the extended regime, conductivity will be of afinite valueas T — 0. The system
istherefore described as possessing metallic properties. If, however, E liesin the local-

ized regime, the conductivity vanishesto zeroasT — 0.

N(E) Conductivity

Extended
states

A 4

E —> E

Critical region

Figure 1.11. Density of states of a partialy localized band where (on the left) all states are local-
ized for Er < E,, and extended for E > E,. Conductivity below E,, is zero (at zero temperature)
but of a finite value above E,. Increasing disorder will move the mobility edge on both sides

towards each other until they merge at the centre of the band when the critical level of disorder is
reached.
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In this case, the system behaves as an insulator.

The position of Er relative to E, can be changed by manipulating intrinsic
properties of the system such as. compositional and impurity doping, changing the
structural properties of the system, and by changing the carrier concentration. The tran-
sition can aso be influenced by external factors such as the magnetic field, the tempera-

ture and the frequency of the applied electric field.

1.3.3 Transport in extended states of disordered systems

We begin the discussion on transport in disordered systems by first considering weakly
disordered systems (such as the kind that can be approximated by unperturbed Bloch
states) in which the mgjority of the electron states are extended. The electron transport
theory of these systems, where the Fermi energy remains within the extended states, is
based on the Boltzmann formalism whose condition applies if

AL, (1.16)
where 1 is the De Broglie wavelength and [ is the mean free path. Boltzmann theory
expresses the transport dynamics of a system in terms of acceleration and decel eration
due to collisions with weakly scattering centres originating from a small degree of dis-
order. At finite temperatures the expression for conductivity from Boltzmann transport

theory can be written [33] as,

8
o= [ o) (-L2)dE, (1.17)
where f(E) is the electron density function and o(E) is the energy dependent conduc-

tivity. The conductivity of the system is obtained by summing the expression in Eq.
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(1.17) over al states in the energy band. In a weakly disordered system the Boltzmann

formalism can be reduced [35] to Drude's expression for conductivity,

2

et

*

0=—n-=eun, (1.18)

where e is the eectric charge of the carrier, t is the momentum relaxation time, m* is
the effective mass of the carrier, u isthe carrier mobility and n is the carrier density.
Contributions to conductivity from the extended states will be given by Eg.
(1.18) but if the energy band includes localized states, at a sufficiently high temperature,
carriers can be excited from localized states, across the mobility edge, and into extended
states where the carrier will contribute towards the conductivity. Thisis known as acti-

vated conductivity and is given by the following expression [36],

E,—Er
kpT

0, = 0gexp(— ), (1.19)
where g, is the exponential prefactor which is determined by the conduction of states
near the mobility edge. Theterm, E,, — E, isreferred to as the mobility gap, and corre-

sponds to the distance between the Fermi energy and the mobility edge.
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Figure 1.12. A schematic illustrating the mobility edge E, and its proposed relationship to con-
ductivity. The solid line of conductivity describes an abrupt minimum conductivity as proposed
by Mott, and the dashed line represents a continuous vanishing conductivity supported by scaling
theory.
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The mobility gap defines the minimum energy required for activated conductivity. It
should be noted that thisis a purely thermionic process and as a result g, tends to zero
asT — 0.

An intriguing question emerges when, a T = 0, one considers what happens to
conductivity as E crosses the mobility edge. Given that conductivity is expected to be
zero in the localized regime and finite in the extended regime, will the transition be con-
tinuous or not? Based on the idea of loffe and Regel [37], Mott [38] argued that for an
extended state, there is a minimum limit to metallic conductivity since the mean free
path cannot be smaller than the interatomic spacing or k1. For alocalized state on the
other hand, the mean free path must be zero. Given that conductivity is zero on one side
of the transition and of a non-zero value on the other side, Mott concludes that there
must be a jump in conductivity at the mobility edge. This discontinuity in conductivity
is depicted by the solid linein Fig. 1.12. Thistheory is, however, chalenged by the one
parameter scaling theory of localization which predicts a continuous transition as the
Fermi energy approaches the mobility edge (dashed line in Fig. 1.12). The one parame-

ter scaling theory will be discussed below in section 1.3.6.

1.3.4 Transport in localized states of disordered systems

The metallic conductivity described above for extended states is valid only if the mean
free path is much larger than the De Broglie wavelength (Eg. (1.16)). It is clear that this
condition is violated for localized states where electrons are restricted to finite regions

in space. Conductivity in this regime is zero at zero temperature, but conductivity can
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be of afinite value at non-zero temperatures since transport maybe possible via phonon
assisted hopping between localized states.

In the first instance we consider how an electron transition can occur between
two neighbouring localized states, i and j at distances R; and R;. From Eq. (1.15), the
amplitude of the wavefunction of localized states decays exponentialy from the centre.
As aresult there is afinite probability that a transition between these two states will oc-
cur by the tunnelling of an electron from one site to the other. The factor that determines
the tunnelling probability is the integral of the overlap of the wavefunctions [28] of the
two states (Fig. 1.13) and this probability increasesas R = |R; — R;| decreases. Assum-
ing that the localization length is similar for both states, the tunnelling probability will

have the form [30],
Py o exp(-%). (1.20)
Though Eg. (1.20) describes a possible means of electron transport, without as-
sistance from phonons it is unlikely that tunnelling alone would yield any conductivity

as the nature of localization resultsin a statistical distribution of states over a relatively

large range of energies, V,/B.

Y; Y;

.
T T .

R; R; E

Figure 1.13. A diagram showing the overlapping wavefunctions of the neighbouring states i and
j.
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Distribution of states of this sort produces neighbouring states that may be close spatial-
ly but separated by comparatively large energies [30] as shown in Fig. 1.14(a). In the
case of the transition between the localized states i and j, now accurately depicted in
Fig. 1.14(b), the energy W = W; — W; must be provided by a phonon. The hopping
probability must therefore be modified to include the number of phonons of energy W
available at thermal equilibrium. For sufficiently low temperatures (k, T < W) this will
be given by the Boltzmann factor, exp(—W /k, T). The hopping probability can then be

written as,
pij X exp (— 2R K) (1.21)
Hops between localized states such as that described above, were first tackled

by Miller and Abrahams [39]. In their seminal paper, Miller and Abrahams viewed the

probability of each hop as aresistance, turning the problem into arandom resistor net-

work.
(a) (b)
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Figure 1.14. (a) The energetic and spatial distribution of states within a disordered system where
states that are close in energy tend to be far in distance. (b) The overlap of wavefunctions dis-

playing the required hopping energy.
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They suggested that the overall resistance of the network was governed by certain one-
dimensional critical resistor chains that connected one side of the network to the other.
They assumed that hopping occurs between nearest-neighbour sites with the least re-
sistance in the forward direction, and is determined solely by the spatial separation R,
ignoring the energy separation W. However, as pointed out by various authors [40, 41],
the paths produced by the Miller-Abrahams model leads to hard hops, or hops with dis-
tances much larger than the system’s average hopping distance. In other word, the Mil-
ler-Abrahams model essentially leads an electron to dead ends.

Nonetheless, developing the nearest-neighbour idea of Miller and Abrahams
further, if the spectrum of phonons available to the system allows for an average hop-
ping distance of R, some measure of eectron transport can be achieved within the sys-
tem. If R is very small (as compared with the mean nearest neighbour distance) it is
clear that electron will still be effectively localized as at some point an electron would
be confronted with a hard hop for which there are no phonons available with sufficient
energy. However, if R should be gradually increased (by increasing the temperature of
the system), a point is reached, R = R,, at which a set of localized states can be con-
nected from one side of the system to the other. This forms a continuous path which
enables some amount of dissipative conductivity. These two scenarios are described by
Fig. 1.15. If the energy required for an averaging hopping distance of R, to be achieved

is W, then conductivity of this nature can be described as[28],
We
o = orexp(— m). (1.22)

This mechanism of electron transport within localized systems is known as fixed range

hopping (FRH) [28] sinceit is based on jumps that are, on average, of fixed distances.
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Figure 1.15. A diagram of nearest neighbour hopping showing two scenarios. The solid line
demonstrates the case where R < R,. Electrons in this scenario encounter hard hops which in-
hibit dissipative conductivity. The dashed lineillustrates the case for R > R, where a continuous

path across the entire system exists and dissipative conductivity is possible.

Mott [42] noted that as the temperature drops and phonons of energy W, are no
longer available, transport is ill possible within a narrow band of energies near the
Fermi level. However, unlike FRH, this kind of conductivity comprises hops of varying
lengths, typically larger than the mean separation between nearest neighbour (R > R.,).

Mott considered only energies around the Fermi level, as at very low tempera-
tureit isthelikeliest location for filled and empty states to be in close energetic proxim-
ity of each other. At such low temperature, the available phonons only permit small
changes in energy for each hop. As a result, conduction takes place over a very narrow
range of energies around the Fermi level (see Fig. 1.16). The width of the band of ener-
gies within which hopping occurs, shown in Fig. 1.16 as 2AE, is determined by the

temperature; the lower the temperature, the narrower the width and vice versa.



32

E A&
= =Om =
=Om == o=
o N r _______________
2 == B IZAE >
== 1
————— o T N(E)
=Om
o =0
. =Om

Figure 1.16. Conduction band containing states separated by the Fermi level. 2AE represents the
band of energies within which phonons are available to mediate hopping. Given such a narrow
band, electrons will prefer to hop to longer and varying distancesin order to find available site as

shown by arrow 1, than to hop to nearer but energetically higher sites asillustrated by arrow 2.

If one assumes a constant density of states at the Fermi level, the conductivity in this

low temperature regime is defined as [33],

c

o= o‘Oexp[—( To/T)l/(d+1)]l 0= kbN(H)fy

(1.23)

where d is the dimensionality of the system, N (u) is the density of states at the Fermi
level and C is anumerica coefficient. It should be noted that the assumption of a con-
stant density of states at the Fermi level is not always valid. The issue will be discussed
further in the section 2.3.1. Since available states for hopping within this narrow band
will be rare, the hopping distances will vary depending on the location of available emp-
ty states. Electrons will prefer to hop to empty states that further away in distance but
require asmaller change in energy than to hop to states that close in distance but require
alarger change in energy (see Fig. 1.16). Thiskind of conduction is known as variable-
range hopping (VRH). Eq. (1.23) is more famously known as Mott’s T~1/# |aw.

As has been discussed, there are various possible mechanisms responsible for

conductivity within localized states. The dominant mechanism at any moment in time



33

depends on the temperature of the system. At very high temperatures, electron are able
to hop from one site to practically any other side, conductivity of this sort is more akin
to metallic conductivity. Asthe temperature is reduced, FRH takes over as the dominant
transport mechanism where the hopping distance is fixed. At even lower temperatures

thereis acrossover from FRH to VRH.

1.3.5 Weak localization and single parameter scaling

The presence of disorder in solids produces profound effects usually associated with
randomness or non-periodic potential caused by disorder. A sufficiently small degree of
randomness in a system can produces coherent quantum mechanical backscattering
which gives rise to arich variety of quantum transport phenomena such as the logarith-
mic increase of the resistances of thin metal films with decreasing temperatures [43],

universal conductance fluctuations [44] and metal-insulator transitions [45].

Figure 1.17. (a) Diagram showing an example of the quantum mechanically possible paths
through which a transition between sites i and j can occur. (b) A graphical representation of

backscattering of electron transport between sitesi and ;.
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In the above discussions on electron transport, we indirectly adopted a particle
view of transport for simplicity. In reality a transition between two sites would involve
considering all the possible paths, however unlikely, a charged particle could use to
achieve atransition from R; to R; asshown in Fig. 1.17(a). Coherent backscattering can
then be understood as the interference of the different quantum mechanically allowed
paths between R; and R;. In particular, due to the multiple paths between two sites, an
electron can be backscattered to its point of origin asillustrated in Fig. 1.17(b). The in-
terference of waves travelling along time revered loops introduces a quantum correction
to conductivity which is responsible for the quantum phenomena listed above. These
effects occur in a regime where scattering events are predominately elastic and the
phase coherence time is much larger than the elastic scattering time. This is known as
the weak localization regime.

One of the most important works to emerge from the study of weak localization
is the single parameter scaling theory [46]. It is based on the initial work of Thouless
[47] who attempted to provide a practical description of localization in finite-size sys-
tems (as oppose to Anderson’s mathematical definition). Thouless redefined the mean-
ing of conductance of these systemsin terms of Anderson localization and how it relates
to Ohmic conductance.

Thouless imagined a system or solid made up of many blocks of size L¢ (Fig.
1.18) where d is the dimension of system. If we consider the conductivity of just one of
these blocks, a wave-packet moving from one end of the block to the other will exhibit a
classical diffusive behaviour. In the first instance the packet will diffuse independent of

the boundary conditions asif the block was of infinite length.
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(2L)*

Figure 1.18. Thouless concept of scaling where a system is made out of blocks of size L%.

After atime t, the wave-packet will arrive at the opposite boundary. The diffusion time
is defined by,

tp, = L2/D, (1.24)
where D is the diffusion constant. According to the uncertainty principle, the energy
level of the packet will be smeared or can be shifted by an amount of the order

AE ~ h/tp, (1.29)
after travelling for a time t,. If two similar blocks (2L%) are joined end to end, the
probability of the wave packet being transmitted (or reflected at the boundary) from the
first block to the second block will depend on the typical spacing between energy levels
within the block 6W, and the coupling between energy levels in the two blocks, AE. If
AE > 6W, the wave-packet will be in insensitive to the boundary [48] since the change
in energy between the two blocks is within the energy the shift AE (uncertainty band-
width of the level). The wave-packet will therefore be extended within the enlarged
(two block) system. Conversely, if AE < §W, the wave-packet will be reflected at the

boundary and will remain localized within the first block.
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(a) Extended system (b) Localized system
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Figure 1.19.A schematic illustrating boundary conditions defining extended and localized sys-
tems. (a) In systems where AE > §W, wavefunctions are able to transfer from one unit block to
another making wavefunctions within the system extended. (b) In systems where AE < §W,
wavefunctions are reflected at the boundary and stay within the unit block. Such a system will be
localized.

These two scenarios are described in Fig. 1.19. The scaling of the size of the system can

be related to the conductivity of the system by considering the ratio,

_AE(L)
T sw(L)

(1.26)
If § is exponentialy small within a block, states will be localized in the larger system
but if § islarge within a block, it will be extended in the larger system. Eqg. (1.26) is
known as Thouless' criterion or number. Sensitivity to boundary conditions appear to be
a single parameter controlling the nature of transport within the system asits szeisin-
creased.

Combining Einstein’s relation for conductivity, o = e2D Z—Z, with Eq. (1.25), §

can be expressed in terms of electrical conductance G [49] by,

g =26 =65 whereG = gL%~2. (1.27)
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The crucial point emphasized here is that the scaling behaviour of a system in terms of
conductance is related to a physical measureable quantity (Eq. (1.27)) and is determined

by a single parameter (Eq. (1.26)).

1.3.6 Thescaling theory of localization

The scaling theory of localization tries to understand the localization problem by con-
sidering the behaviour of the conductance g as a function of system size L. The follow-
ing analysis was first presented in the seminal paper by Abrahams, Anderson, Lic-
ciardello and Ramakrishnan [46]. This approach to localization provides a description
of transitions between extended and localized states. Considering a block (L%) of infini-
tesimal size, it is noted that all states will effectively be extended (this assumes that
& > L which is reasonable for a system of infinitesimal size). From the discussion on
the Thouless criterion above, as the size of the system is increased, states in the block
will emerge as either extended or localized in the larger system. Transitions between
localized and extended states can therefore be examined by simply considering the ef-
fect of an increasing L on g(L). This forms the basis of the scaling theory of localiza-
tion.

If § isvery small, the system will be localized and from the previous discussion
on localized transport (section 1.3.4), conductance in this regime will be defined by

[50],
9(L) = geexp (=) (1.28)

On the other hand, if § islarge g will be given by the Drude form of conductance which

resultsin Ohm's Law,
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g(L) = oL%2, (1.29)

We note that there must exist a critical value §, which defines the mobility edge below

which a system of increasing size will ultimately end up as a localized system and

above which the increase in system size results in an extended system. g, is the con-
ductance associated with 6,

For the scaling analysis we must define a scaling function that allows conduct-

ance to be represented as a function of system size. Such a scaling function can be de-

fined as the derivative of the logarithmic change of conductance with respect to size

[50],

dln
Blg) = (1.30)

In this function a negative value of B(g) (i.e. anegative derivative) means a decrease in
g with size and as a result represents a localized system. Correspondingly, if S(g) is
positive then g increases with size and therefore the system is extended. In the localized
regime, from Eq. (1.28) and (1.30), 8(g) will be given by [46]

B(g) = In(g/gc). (1.31)

Since g < g, in the localized regime, B(g) will always be negative for Eg. (1.31). In
the Ohmic regime (g > g.) described by Eq. (1.29), £(g) yields an asymptotic form
B(g) =d—2. (1.32)
The dependence on dimensionality d of the system in the Ohmic limit of the scaling
function B(g) therefore reveals an interesting result of these systems. For one dimen-
siona systems (d = 1), the scaling function B(g) is aways negative. In other words,

for d = 1 the system is always localized and therefore there is no metal-to-insulator like
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transition in such systems. All states are localized irrespective of disorder and g always
tends towards zero with increasing L. This was a confirmation of a result that was al-
ready well known in disordered one-dimensional systems [51]. In two dimensions
(d = 2), B(g) tends to zero from Eq. (1.32). Thisis a margina case which reflects the
fact that there is a change from logarithmic localization to exponential localization.
Neverthelessit is expected that d = 2 will dways belocdized. For d = 3, (g) isposi-
tive in the Ohmic limit and so one expects to find a metal-to-insulator transition in
three-dimensional systems.

The anaysis of the scaling function (Eq. (1.28 — 1.32)) is summarized in Fig.

1.20.

4
B(9)
d=3
1 b .
Extended g
regime < d=2
Localized //(/_ Ing
regime ” a-1 ”

Figure 1.20. Dependence of $(g) onln g for d = 1, 2 and 3. The arrows show the movement of
In g asthe size of the system is varied. d = 3 is the only case where bidirectional change is pos-
sible and thus a critical point g, exists that separated the system from localized and extended
behaviour. For all other cases, d = 1, 2, the system is always localized.
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We see that the d = 3 curve must cross the S(g) = 0 line a some point as the size of
the system increases, and thus g, in the plot represents the metal-to-insulator transition
point. Implicit in Fig. 1.20 isthat B(g) is continuous for al curves. Thisisin disagree-
ment with the minimum metallic conductivity proposed by Mott [38] depicted in Fig.
1.12. The assumption that S(g) is continuous is based on the fact that as g is afunction
of the size of the system and L evolves continuoudy, therefore $(g) must aso be con-
tinuous. Though this issue is still debated, it is widely accepted that metal-to-insulator
transitions are continuous.

We will now discuss the d = 3 scenario, which involves a meta-to-insulator
transition. Suppose a small block, with size L of the order of the mean free path, possess
conductance g,, Where g, is considered to be the initial conductance of the system. If
9o > g. then g, will be found somewhere in the positive half of the 8(g) plot in Fig.
1.20. On the other hand, g, will be found in the negative half of B(g) if gy < gc-
Whether g, resides in the positive or negative haf of S(g) is determined by the
Thouless number, in other words, by the microscopic disorder. If B(g) is positive for
the initial system, according to Eq. (1.30) an increase the size of the system will result
in an increase in conductance. On the other hand if B(g) is negative in the initia sys-
tem, the natural consequence of the negative derivative is that an increase in size must
result in a decrease in conductance. Therefore for a system with g, > g. anincreasein
size represents moving upwards along the d = 3 curve in Fig. 1.20 until at very large L
the asymptotic limit of S(g) = 1 isreached, i.e. a very large L, the system possesses a

characteristic Ohmic or metalic behaviour. Similarly, for a system with g, < g, the
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negative derivative demands that the system moves downwards along the d = 3 curve
until at very large L, localized or insulating behaviour is dominant. These two types of
movements along the d = 3 curve are illustrated by the arrows in Fig. 1.20 which de-
part in opposite directions from the critical point g.. We aso note that for d = 1 and 2,
the movement along the curve with increasing size is aways downwards since f(g) is
aways negative.

It is therefore clear that for afixed amount of disorder the characteristic behav-
iour of the system is determined by theinitial conductance g, and its location relative to
gc- The g = g, point a B(g) = 0 is an unstable fixed point since any small deviation
from this position will lead to one of two extremes, a metal or an insulator. The scaling
theory of localization alows us to further investigate this critical point. As discussed
previoudy, the initial conductance g, is determined by the Thouless number § (i.e. dis-
order within the system), but we note that this can be changed simply by varying Ep of
a weakly disordered energy band (Fig. 1.5), for example from the region of extended
states towards the localized states. For a small change from the critica point, if 8(g)

has aslope of v~ so that [50]

B(g) =354, (1.33)
then as Er approaches the critical point g. (mobility edge) from extended region to-
wards the localized region the conductivity (which is Ohmic in the extended region)
must quickly vanish and tend towards zero with an exponent v according to

o« (69)". (1.34)
If the conductivity is written as ¢ < 1/¢ [50], it is found that the locaization length

must diverge as at the critical point is approached
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£ o (69)7". (1.35)
Since thisis a description of a phase transition from an extended system towards a lo-
calized system, the exponent v is expected to be a universal constant, as in any critical
phenomenon involving a single correlation length (£). Critical phenomena are discussed
in more detail below in asection 1.4.2.

Eq. (1.35) is one of the most important predictions of the scaling theory of lo-
calization and the centre piece of thisthesis. In the following chapters we shall investi-
gate the nature of this critical phenomenon in two-dimensiona systems, where scaling
will be achieved by varying the effective length of the system, and disorder will be con-

trolled by the varying position of Er in the energy band.

1.4 Thequantum Hall effect (QHE)

The quantum Hall effect (QHE) is one of the most remarkable features of a 2DES. It is
characterized by the formation of plateaux in the Hall resistivity and the formation of
oscillations and peaks in the diagona conductivity. Key to the understanding of QHE
was the concept of localization which was reasonably developed at the time of the dis-
covery of the QHE. In this section we describe the QHE using concepts already devel-
oped above on the theory of localization and two-dimensional systems. Of great interest
to this thesis is the transition between adjacent plateaus in the QHE. The central aim of
most of the work presented in this thesisis to investigate the nature of these plateau-to-

plateau transitions.
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1.4.1 Introduction tothe QHE

The discovery of the QHE, including the initial discoveries that led to it, were largely
unexpected since the classical analysis of the effect of magnetic field on a 2DES (as
described in section 1.2.4) does not predict the QHE. The QHE, illustrated in Fig. 1.21,
has the pronounce features of a Hall resistivity plateauing at precisaly quantized values
of h/ie?, where i is an integer, and a diagonal resistivity that vanishes to zero where

these quantized levels appear. The resistivity tensor which takes the form,

h

0 ie?
p=l_a (1.36)

ie?

isclearly in opposition to the classical form shown in Eq. (1.14).
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Figure 1.21. The Hall resistivity p,, and diagonal resistivity p,, of the quantum Hall effect

measured from aHall bar. p,,, is quantized at values of h/ie? where i isan integer.
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Figure 1.22. Density of states of 2DES, (a) at zero magnetic field, (b) and in the presence of a
magnetic field. In strong fields, each Landau level splitsinto two spin resolved levels.

Although largely unexpected, a theoretical prediction suggesting the existence of the
QHE was made by Ando, Matsumoto and Uemura [52]. Initia experiments hinting of
the existence of the QHE were carried out by Wakabayshi and Kawaji [53, 54] on sili-
con MOSFETSs but they were unable to discover the full extent of the QHE features
mainly due to the low quality of semiconductor devices at that time. The observation of
quantized Hall plateaus was first observed by von Klitzing, Dorda and Pepper in 1980
[2]. The observation was most profound because of its quantised nature and the realiza-
tion that the quantized Hall resistances are dependent only on fundamental constants of
nature, h/e?.

Under an applied perpendicular magnetic field electronsin a 2DES move in an
orbital manner with a frequency w, = eB/m*, known as the cyclotron frequency. Solv-
ing the Schrodinger equation for these electrons in amagnetic field, it can be shown that

the eigenvalues of atwo-dimensiona system lie on odd integer multiples of Aw, /2,

E, = hw, (n +%) = hfrﬁ (n +%) (1.37)
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Figure 1.23. Random potential fluctuations experienced by the 2DES shown in (a) cause a
smearing of LLs forming a narrow band of energies centred about the LL, shown in (b). Thisis

known as disorder broadening.

where n is an odd positive integer and E, denotes the Nth energy level. The sub-band
or energy spectrum of a 2DES under a magnetic field is therefore no longer a seemingly
continuous band of energies but is divided into discrete energy levels known as Landau
levels (LLs). Fig. 1.22 shows the separation of the sub-band into LLs. Each of these
LLs, due to the spin degeneracy, further splits into two separate energy levels, spin up
and spin down, at high magnetic fields.

Disorder within the 2DES, discussed above, has the effect of smearing out or
broadening the LL into Gaussian-like peaks due to the random potential introduced by
various sources of disorder (see discussion of disorder in 2DESs above). Eq. (1.37) is

therefore rewritten as
1
En = hwe (1 +3) + Vogey), (1.38)
where V) represents the random potential experienced by carriers within the sys-

tems.
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Figure 1.24. An illustration of the Fermi level passing through successive LLs as the magnetic

field isincrease.

The broadened LLs are no longer discrete energy levels but take the form of Gaussian
bands of energies as shown in Fig. 1.23. The amount of broadening will be determined
by the strength of the random potential .

The degeneracy of each LL isequal to the number of flux quanta within a given

areaand thisis given by,

n, =2, (1.39)

The carrier density of the entire 2DES is thus made up of the sum of all filled (and par-

tidly filled) Landau levels,

n,p = v%, (1.40)

where v, known as the filling factor, is the number of filled Landau levels.
Under a finite applied magnetic field, states accommodate e ectrons which will
fill up from the lowest state in the lowest LL up to the Fermi energy. The number of

filled LL will be determined by the carrier concentration and will be indicated by the
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filling factor v (Eq. (1.40)). As the magnetic field is increased, the degeneracy of each
LL will increase according to Eq. (1.39), and eectrons at the Fermi energy will there-
fore drop down to fill up the empty states below and as a result the Fermi energy will
adjust accordingly. Increasing the field therefore has the effect of moving the Fermi en-
ergy through successive LLs. This processisillustrated in Fig. 1.24.

In a weakly disordered 2DES where some degree of LL broadening occurs, the
density of states will be greatest at the centre of the LL. From the discussion on extend-
ed and localized states in the previous sections above, it would be expected that statesin
the tails of the band will be localized while those close to the centre will remain extend-
ed throughout the system [5] as shown in Fig 1.25. When the Fermi energy coincides
with the centre of the LL (half filling factors) where states are extended, electrons will
be scattered in the diagonal direction under an applied electric field. o, is greatest in
this region due to the availability of extended states. On the other hand, electrons are
able to scatter in the Hall direction (i.e. the direction perpendicular to the electric field)
due to the applied magnetic field. The change in o, with magnetic field islinear in this
region as described by the classical case presented in Eq. (1.14).

When the Fermi energy isin between LLs, however, the density of statesis vanishingly
small. Electrons in this region are less able to screen random disorder potentials and
therefore states in this region are localized. Electrons are no longer able to scatter in the
diagonal direction and o, goes to zero. Similarly, electron are unable to drift any fur-

ther in the Hall direction and oy, is held at a constant value which is an integer multiple

of e2/h. Theresult of the preceding analysisisthe plot shown in Fig. 1.21.
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Figure 1.25. The diagram shows the extended and localized regions with of two consecutive

Landau levels.

1.4.2 Quantum phasetransitionsin the QHE and critical uni-

versal singularities

A broadened Landau level band contains both extended states (at its centre) and local-
ized states (in the tail regions). It is therefore expected that an Anderson like metal-to-
insulator transition occurs within the QHE as the Fermi level moves through aLL band
at high magnetic fields. It has been shown by many authors [55-58] that in the limit of a
system of infinite size and temperature of absolute zero, states are extended only at a
single unique energy which corresponds to the discrete non-broadened energy of a Lan-
dau level, this is known as the critical energy E.. Anderson transitions in the QHE, or
quantum Hall transitions (QHTS), are therefore insulator-to-insulator transitions with a
metallic or extended state at E,.. Critical transitions in the QHE are also known as plat-
eau-to-plateau transitions since they occur in the region that joins adjacent Hall plat-

eaus. We aso recall from the scaling theory of localization discussed in section 1.3.6
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that, as the transition boundary is approached (in this case E.) the localization length &
diverges. Thisisthe hallmark of acritical phenomenon.

Critical phenomena in physics are one of the most striking aspects of the mac-
roscopic physical world. They describe seemingly abrupt changes between different
phases of matter which occur at a certain critical point in some parameter of the Hamil-
tonian (a parameter that changes the quantum state) of the system. These phase transi-
tions are characterized by the divergence of a measurable quantity of the system, known
as the order parameter [59], to infinity as the critical point is approached. The order pa-
rameter is a physical characteristic quantity of a system which is a numeric measure of
both the type and amount of ordering in a system close to the critical point. For exam-
ple, in aliquid-to-gas phase transition the appropriate order parameter is related to den-
sity which describes the ordering of particles within the system [7, 10]. The Hamiltoni-
an parameter, of which the critical point isafunction, is usually some externally applied
parameter that causes a change in the order parameter, for example, temperature, pres-
sure, magnetic field or electric field. Critical phenomena include observations such as
phase transitions in classical fluids (water), opalescence of carbon, superconductor-to-
insulator transitions, transitions in superfluids (Helium: He® and He®), ferroel ectrics and
ferromagnetism [7, 9, 10].

Criticality of the type observed in the QHE are known as continuous quantum
phase transitions (QPTS) [6] or second order phase transitions. These transitions can
take place with zero latent heat. QPTSs are referred to as continuous transitions, because
the order parameter changes continuously as the critical point is approached unlike, for

example, the thermal (first order) transition from liquid to a gaseous state where thereis
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an abrupt and discontinuous change in the order parameter (the density, or in other
words the volume) of system on either side of the critical point.

Based on either empirical or heuristic arguments, it has been observed that there
are similarities between these apparently very different phase transitions [59], and in a
vast number of cases these different system have demonstrated similar behavioursin the
region close to the critical point. These similarities can be summarized in certain as-
ymptotic laws, known as scaling laws [8], that define the nature of transitions as the
critical point is approached.

In the case of the QPT in the QHE, the appropriate order parameter is observed
to be the locaization length, which serves as the correlation length of a wavefunction
within the 2DES. The localization length contains information relating to the order
within the system (¢ is dependent on, and a numeric measure of, disorder). Thus, the
divergence of the order parameter as the critical point is approached can be related to
the scaling law [11]

§~|E—E™, (1.41)
where v is the critica exponent that describes the nature of the divergence of ¢. Eq.
(1.41) describes the observed singularity (divergence to infinity) in QHTs. It is noted
that Eqg. (1.41) which in this context refers to QHTS is the equivalent of Eq. (1.35)
which was formulated for metal-to-insulator transition. Both equations describe the
same critical transition. The order parameter in both equations is the same but in the
case of QHTS, the critical point occurs in the energy spectrum whereas in the case of
metal-to-insulator transitions discussed in Eq. (1.35), criticality occurs in the conduct-

ance of the system.
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Within systems that exhibit critical phenomena the correlation length ¢ of the
system represents the distance over which the system maintains some amount of order
or coherence. In other words, the divergence of ¢ signifies a divergence of the length
over which order is maintained. In the context of localized systems, the length over
which the wavefunction of an electron behaves like a Bloch-like extended state (the
length of coherence) diverges as the critical point is approached. Microscopic disorder
on length scales much smaller than & are insignificant to the behaviour of the system, as
an electron will remain extended over the entire length of correlation regardless. As the
critical point E, is approached, ¢ is extended over larger and larger regions of space.
The system therefore begins to look more homogenous, or independent of disorder,
since electron transport will not be characterized by the specific microscopic details on
length scales smaller than &. One redlises that various individual systems of different
characteristics will become similar and indistinguishable near the critical point. It there-
fore follows that systems exhibiting criticality can be divided in to broad groups, known
as universal classes[7, 60], that are only defined by very general characteristics such as
symmetry or dimensionality [6]. These universal classes possess identica critical prop-
erties, and in particular can be identified by the value of the critical exponent related to
the divergent correlation length. For QHTs occurring in any 2DES, the value of v in Eq.
(1.41) is expected to be universal for al 2DES [6, 11] in accordance with the theory of
critical phenomena [7] and independent of microscopic details of the system such as
mobility and carrier concentration.

In the following section we discuss the value of the universal critical exponent
v of the correlation length and how it can be experimentally determined using a finite-

size scaling analysis.
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1.4.3 Finite-size scaling of quantum Hall transitions

Strictly speaking, the theory of critical phenomena of QPTs requires a divergence of the
order parameter to infinity, i.e. asingularity, in a system of infinite size and at the abso-
lute zero of temperature. In redity, these transitions occur at non-zero temperatures and
in systems of finite size. In finite-size systems, long distance correlation is cut-off by
the restriction imposed by the physical boundaries of the system, but in the smultane-
ous limit of the temperature approaching zero and the system size tending to infinity,
the scaling laws of infinite systems can be approximated in finite systems. This forms
the essence of finite-size scaling.

Using various numerical methods and after considerable theoretical efforts (re-
view in Ref. [11]), avast amount of data have been obtained on the estimated value of v
based on finite-size scaling arguments. These results have been summarized in Table
1.1. It is observed from Table 1.1 that the estimated value of v is expected to be be-
tween 2.0 and 2.5, however most values appear to centre around v ~ 2.3. The most ac-
curate numerical value obtained so far [11, 61] isv = 2.35 + 0.03 reported by Huck-
estein and Kramer [56] is based on arandom Landau matrix model.

On the experimental front, the physical scaling of the size of a 2DES was ini-
tially considered somewhat impractical for experimenta investigation as it would in-
volve fabricating numerous samples with only small variations in size. It was also not
apparent that such an approach would yield results that could be combined to describe
the nature of a single system. A better approach would involve somehow expanding or

contracting the size of asingle system.
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Table 1.1 Critical exponent of the localization length v of quantum Hall transition obtained by
various theoretical methods taken from Kramer et al [61].

v Model Method Reference
© Short-range impurities Self-consistent perturbation [62]

=2 Peierls tight binding Transfer matrix scaling [63]
=20 Short-range impurities Recursive green function [64, 65]
2.35+0.03 Random Landau matrix Recursive green function [11, 56]
23+01 Random Landau matrix Recursive green function [66]
24+0.2 Random Landau matrix Recursive green function [67]
24+01 Finite range impurities Chern number scaling [55]
=23 Spin-orbit scattering Thouless number scaling [68]
=2 Double layer system Thouless number scaling [69]
=2 Random matrix model Scaling of level statistics [70]
25+05 Chalker-Coddington Transfer matrix scaling [71]
2402 Random saddle points Transfer matrix scaling [72]
2505 Chalker-Coddington type Real space renormalization [73]
2.39+0.01 Chalker-Coddington type Real space renormalization [74-76]
25+04 Super spin chain Density matrix renormalization  [77]
2.33+0.03 Counter-propagating chiral Fermions  Monte Carlo [78]

Inspired by the work of Thouless and the single parameter scaling theory of localiza-
tion, Pruisken [79] observed that if the phase coherence length L, of the 2DES is less
than the physical dimensions of the system, then the 2DES can be considered to contain
within it many subsystems, where the size of a subsystem is defined by the length L,

such that adjacent lengths of L, can be considered as two separate systems. Defined in



54

this manner, electrons in a system possess an effective size L,¢ and will experience the
same boundary conditions as described by the Thouless number. We note that in this
case Less = L, Similar to the Thouless block described above in section 1.3.5, if
Lesr < & in 2DES, an electron will defuse for atime 7, defined by the phase coherence
time after which it is scattered, analogous to the scattering at the boundary of a Thouless
block. As described by Thouless, as the size of the system increases the conductivity in
the system will resolve into one of two asymptotic extremes. Similarly, as the effective
L¢ss (the phase coherence length) is increased, an electron is alowed to coherently ex-
plore more and more of the system, revealing the intrinsic nature of disorder within the
system. If the condition L.r; «< & dtill remains after L, is equal to the physical size
of the system L, the system will have metallic behaviour. Conversely, as Ly is in-
creased, if Losp > & occurs before L,qr = L, then the system will exhibit localized be-
haviour. For atemperature dependent phase coherent length
L, = /D1, wheret, < T7?, (1.42)
the effective size can therefore be expressed as
Lo o T7P/2, (1.43)
where p is the temperature exponent of the inelastic scattering length. It is noted that
Egs. (1.42) and (1.43) are the same as the Thouless argument in Eq. (1.24), and as are-
sult L is also known as the Thouless length. In light of the above scaling argument, it
can be seen that the conductivity of the system is dependent on the ratio of L.;r and €.
From Eq. (1.41) and (1.43) it is observed that the scaling (or power) law of conductivity
as the critical point is approached will depend on the critical exponent k = p/2v. We

defineanatural scale u = (Lorr/€)*/Y such that [79]
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u=|E—ET7", (1.44)
so that 4 < 1 describes metallic behaviour while u > 1 describes localized behaviour.
The conductivity tensor near the critical point will be dependent on u and reflect its
power law behaviour inthe following scaling law [11, 79],

Gup(T,E) = Sapl|E — Ec|T ], (1.45)
where o,z represent the various coefficients of the conductivity tensor and S, is the
corresponding constant of the scaling function. The derivative of the scaling function in
Eqg. (1.45) near the critical point therefore provides direct experimental access to the
critical exponent k asfollows:

dogp(Ec)
dE

< T7%, (1.46)
Substituting a changing Fermi energy with its analogous change in magnetic field and
noting that the above expression only applies close to the critical point, for the Hal
conductivity oy, Eq. (1.46) represents a temperature dependence of the slope of oy,

near the critical point (as shownin Fig. 1.26)

doyy(Bc) —K
—5 & T~*. (1.47)

Kk can be measured as the gradient of Eq. (1.47) on a double log scale. On the other
hand, it is observed that the derivative in Eq. (1.46) near the critical point for the diago-
nal conductivity o,,, is a measure of the width of the conductivity peak in magnetic
field

AB

Oxx

o T, (1.48)
such that x is obtained as the gradient of the double log plot of Eq. (1.48). Equivalents
of Eq. (1.47) and (1.48) exist for the resistivity coefficients as dp,, /dB o« T™* and

AB, o T* respectively.
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Figure 1.26. A schematic showing the relation between the scaling exponent x and measured

resistivities of a Landau level.

If the value of the inelastic scattering exponent is taken to be p = 2 as predicted
by Fermi liquid theory [56], and giving the theoretical calculated value of v = 2.35,
Kk =~ 0.42. Thefirst experimental investigation of the critical exponents based on the Eq.
(1.47) and (1.48) was reported by Wei et al. [12] where remarkably k was measured to
be k = 0.42 in both the Hall and diagonal component for a 2DES formed in a In-
GaA¢d/InP heterostructure, and as would be expected with critical phenomena, this value
was independent of LL index. It was therefore declared that the highly anticipated criti-
cal phenomena of QHTs did in fact exist and that these QHTSs are indeed continuous

second order quantum phase transition.
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1.5 Experimental resultson the scaling of QHTs

The result reported by Wei et al. [12] on the criticality of QHTs was truly remarkable,
owing largely to its precise agreement with the general consensus on the theoretical val-
ue of v. However, subsequent results on the criticality QHTs have been contradictory at
best and chaotic at worse [11]. As described above, the criticality v is determined based
on a composite exponent k = p/2v, where p is assumed to be 2. Therefore, in order for
K to be a universal critical exponent, the inelastic scattering exponent p has to be uni-
versal, a point on which some disagree [80]. In addition it is not clear why the value of
the clean limit of a Fermi liquid, p = 2, is used rather than the disordered (or dirty) val-
ueof p =1[81].

The Wei et al. experiment on InGaAs/InP systems was quickly followed by
similar investigations in GaAs/AlGaAs heterostructures, where it was found that the
value of x was not universa as previoudy reported and was dependent on the strength
of impurity scattering [15]. Wei et al. consequently performed their own experiments on
GaAgAlGaAs devices where they found that k¥ was only universal (with the expected
value of ~0.42) for temperatures below 200 mK [82]. Systematic studies on Si metal-
oxide-semiconductor 2DESs also found x to be non-universal and dependent on Landau
level [83, 84]. With the universality of p in question, investigations based solely on de-
termining p in INnGaA</InP 2DESs using current dependent measurements (current scal-
ing) reported the inelastic scattering exponent to be universal and Landau level depend-
ent with p = 2 [14], but this contradicted experiments on GaAgAlGaAs structures that

found p to vary between avalueof p = 2.7 and p = 3.4 [17, 85].
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In general, universality of critical exponents (of either x or p) was observed in
INGaAdInP systems but it was almost always absent in GaAa/AlGaAs systems. It was
therefore suggested that that the differencein criticality reported by various experiments
depended on the nature of disorder potentials within a 2DES, as this was the fundamen-
tal difference between a InGaAdInP system and a GaAgdAlIGaAs system. In In-
GaAdInP systems, the electron gas is formed in an aloy with disorder originating from
short-range alloy scattering (as discussed in section 1.2.3) and therefore random poten-
tials within this system vary on an atomic length scale. The electron gas in
GaAgAlGaAs systems on the other hand are situated in the high quality GaAs layer,
and the dominant mechanism of disorder in these systems stems from random long-
range potentials of ionized impurities remote from the electron gas. This short-
range/long-range argument based on disorder potential was given some standing from
the experimental results of Li et al. [18], who showed that by changing the nature of
disorder with the system from long-range to short-range, the value of x will crossover
from the non-universality to universal criticality demonstrating the importance of disor-
der potentials. It till, however, remains unclear why this is the case and thus this thesis
will propose atheory for this discrepancy.

It is noted that though x was the value being determined in these early experi-
ments on scaling theory, the exponent of interest is the localization length exponent v,
which is the determinant of the critical phenomenon. While efforts to measure v indi-
rectly through x have been fraught with contradictions, the determination of v via the
more direct means of estimating the localization length ¢ have yielded better success
though these results are not completely free of controversy. By sampling the conductivi-

ty in localized regions around the critical point and at different temperatures ¢ can be
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estimated in proportion to the approaching critical point, ¢ « |B — B.|™V, and thus v
can be determined. Using this method it was reported [86] that v was found to be
v = 2.35 and universal across al samples investigated.

Another method that has been used to estimate ¢ is the measurement of QHTS
at very low temperatures in samples of different physical size. As the temperature is
lowered it is possible for the phase coherence length to exceed the physical dimensions
L of the system. This scenario is characterized by the saturation in conductivity as a
function of temperature, since further reduction in temperature no longer has an effect
on electron transport. As the critical point is approached, the divergence of & (now no

longer determined by L,,) will be cut off by the physical dimensions of the system such

that at or below the saturation temperature, ¢ = L. & in Eq. (1.41) can therefore be re-
placed by L and the critical exponent can be determined from a double log plot of
L < AB™V. Using this physical scaling argument, the critical exponent was consistently
found to bev ~ 2.3 [85, 87] and independent of Landau level. However, inthis Ly > L
regime the system is non-self-averaging [30] due to coherent backscattering (section
1.35 and Fig. 1.17(b)). One therefore expects pronounced manifestations of quantum
interference induced conductance fluctuations [30, 88-90] which appear to be absent in
the data provided by size scaling investigations.

It is possible to vary the phase coherence length by varying the frequency of the
applied current (or electric field). This technique is discussed in greater detail in Chap-
ter 3. It was observed, through dynamic scaling, that the width of the conductivity peaks
follow the scaling power law of Eq. (1.48) where k was found to be universal [13] in

one report but non-universal in others[16, 91].
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The main focus of this thesis is therefore the verification of criticality within
QHTs and in particular there is afocus on why there are numerous discrepancies within
the field. Universal criticality will be investigated using a broad range of techniques that
require the application of various aspects of low temperature eectron transport. We
shall individually and independently investigate each of the critical scaling exponents
discussed above. The critical phenomena will be investigated as function of tempera-
ture, frequency and current. We will also investigate the effect of disorder on the criti-
cality of phase transitions within the QHE. In dynamic or finite-frequency scaling, we
extended the frequency range of scaling beyond that reported in the literature and pre-
sent the highest data resolution ever reported. We then propose a unifying model for of
the scaling theory of QHTs which attempts to explain most of the discrepancies ob-

served within the literature.
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2. Thetemperature dependent
scaling of quantum criticality

In quantum Hall transitions

2.1 Introduction

In this chapter, we investigate the nature of quantum Hall transitions (QHTS) using
temperature dependent processes. As discussed in Chapter 1, al QHTSs are expected to
belong to the same universality class of phase transitions [6]. As a result, the critical
exponent of these transitions will possess the same value of v ~ 2.3 [56], though not all
experimental investigations agree with this statement [11]. In section 1.4.3, it was
shown that the temperature dependent analysis of the critical phenomenon of QHTs re-
sults in a composite scaling exponent k¥ = p/2v, which has aso been suggested to be a
universal constant [12, 79]. In this chapter we investigate all three exponents inde-
pendently in order to verify their universality and the relationship between them.

v is determined using a variable range hopping analysis which takes into ac-
count the temperature dependent conductivity of the 2DES as the critical point at the
centre of aLL band is approached. x is determined using the finite-size analysis devel -
oped in section 1.4.3, where the width of the LL conductivity peaks and the slope of

plateau-to-plateau transitions are considered. And p is determined using a current scal-
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ing analysis which examines the electron indlastic scattering rate by increasing the elec-

tron temperature through the applied electric current.

2.2 Samplesand experimental techniques

The characteristic details of all the various samples used in this chapter are provided
below, along with a description of the experimenta setup used for the results presented

in this chapter.

2.2.1 Sample characteristics

All the samples used in the chapter were fabricated from GaAs/AlGaAs wafers grown
by molecular beam epitaxy. Four different wafers with the structure shown in Fig.
2.1(a) were grown. Beginning with a GaAs substrates, the growth sequence is as fol-
lows: an undoped 1-um-thick high quality GaAs layer, an undoped Alg33Gag67AS Spacer
layer (which is either 20 nm or 40 nm thick), a40 nm Si-doped Al 33Gags7AS layer with
dopant concentration of 2 x 1018 cm™3, and athin 10 nm GaAs cap layer.

A Hall bars with a channel width of 100 um and length of 300 um between
voltage probe arms was patterned onto each sample using optical lithography. Low re-
sistance ohmic contacts were prepared by evaporating 170 nm of a Au/Ge/Ni eutectic
onto the ends of the probe arms of the Hall bar, which was then annealed at 430 °C for
80 seconds under an atmosphere of nitrogen. The Hall bar pattern with ohmic contacts
isshown in Fig. 2.1(b). The device contains of ten ohmic contacts. The two ohmic con-
tacts at the left and right ends of the device (as shown in Fig. 2.1(b)) are used to inject

current into the device while the other eight contacts on either side of the channel are
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used as voltage probe arms. The fabricated Hall bar device is attached to a chip package
and wire bonded as shown in Fig. 2.2.

For each sample (one from each of the four wafers investigated) the electron
density n,, and mobility u are obtained from low field measurements of the Hall and
the zero-field diagonal resistivities (see measurement calculationsin section 1.2.4). The
sample characteristics are summarized in Table 2.1. The table includes two different
electron scattering times, the transport or classical lifetime of an electron 7., and the
quantum lifetime of an electron z,. We briefly discuss these two lifetimes as they con-
vey alot about the characteristics of the samples being investigated. In addition, distin-

guishing between them will be become important in analysing the results presented in

thisthesis.
(a) (b)
Au/Ge/Ni Au/Ge/Ni
iaAs 10 i Ohmic contacts
Si: AlGaAs 40 nm
GaAs 1pum

GaAs substrate

Figure 2.1. (a) Device structure of the 2DES GaAgAlGaAs heterostructure with Au/Ge/Ni,
which form the ohmic contacts, annealed into the heterostructure. (b) Top view of the Hall bar

device with length between probe arms of L = 300 um and with a channel width of W= 100 pm
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Figure 2.2. A picture of the finished Hall bar device attached and wire bonded to a chip package.
The deviceitself isthe dark square sample in the middle of the package. The ohmic contacts can

be seen asthe tiny gold coloured squares on the sample.

When the relaxation time of a system is determined from a simplified Boltz-

mann equation, the mean time between collisionsis weighted by afactor of 1 — cosé
1 T
== J, Q(6)(1 = cosb)db, (2.1)

where Q(6) is proportional to the probability of scattering an electron through an angle
6. At zero magnetic field, the transport mobility as determined from the Drude formal-
ism, u = et./m", relies on the expression in EqQ. (2.1). The classical lifetime therefore
includes only a fraction of actual collisions since small angle collisions are effectively
ignored due to the weighted factor. At zero magnetic field, the Drude mobility is an ac-
curate reflection of scattering events occurring in the system since the majority of
dephasing events will consist of short-range scattering off impurities within the vicinity
of the 2DES. These short-range collisions produce large scattering angles that are less

supressed in Eq. (2.1).
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TABLE 2.1. Heterostructure and transport characteristics measured at 100 mK

Sample AlGaAs Ne e T, Tq
spacer (x10" em?)  (x10° cm? (ps) (pS)
(nm) Vish
L1 20 2.99 3.8 14.78 0.92
L2 40 155 1.09 4.15 125
L3 20 2.45 0.51 1.94 0.53
L4 40 1.92 8.68 33.07 147

At high magnetic fields, however, small perturbations can result in the dephas-
ing of cyclotron orbits making small angle scattering events significant. The quantum

lifetime 7, expressed as,
% = [ Q(6)ds, (2.2)

is therefore a measure of all collisions within the system, irrespective of scattering an-
gle, and a better measure of dephasing events at high fields. The phase sensitivity of
cyclotron orbits is evident in the collision broadening of Landau levels which is related
to the quantum lifetime through I = 4/27,. The quantum lifetime can be measured
from the envelope of the amplitude of Shubnikov-de Haas (SdH) oscillations (i.e. the
low field oscillations of the QHE) [92]. The amplitude of the SdH oscillation Ap is giv-

en by the Dingle formula[93] as
Ap = 4poX (T)exp(— r> (2.3)

where p, isthe zero field resistivity and X(T) is athermal damping factor given as

X(T) = (2 w2kT /hw,)/ sinh(2 m2kT /hw,). (2.4)



66

100 - (@) —— SdH (100 mK) — i
fffff Ap Envelope e

60

P (D)

40 -

0.2

09 F
08 F
0.7 F

0.6 F
0.5

0.4

0.3

Apl[p X(M)]

0.2

0.1 1 A 1 A 1 A 1 A 1 A 1 A 1 A
1.2 14 1.6 1.8 2.0 2.2 2.4 2.6

B (T

Figure 2.3. (a) A plot of the SdH oscillation of sample L1 at 100 mK. The dashed line is a least
squared fit of the amplitude of the oscillations. (b) 7, determined from the Dingle plot of L1 at

three different temperatures which have been dightly offset on the y-axis for clarity.
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Eq. (2.3) was originally derived by Ando [94] for oscillationsin o,.,,. From Eq (2.3) and
(2.4), 1/7,4 can be determined from the slope of alogarithmic plot of the SdH amplitude
divided by X (T) to correct for thermal damping, against 1/B. Fig. 2.3(a) shows the SdH
oscillations of sample L1 at 100 mK and the fitted envelope of the amplitudes. In Fig.
2.3(b) 7, is found to be approximately 0.92 ps at three different temperatures for the
sample. The agreement between different temperatures indicates that the temperature
dependence is correctly accounted for by the damping factor [93].

The quantum lifetimes for al four samples are listed above in Table 2.1. The
first thing one notices it that 7, is consistently smaller than 7., and this is because 7,
counts both large and small angle scattering events. Secondly, the effect of the spacer
width is observed in the measured value of 7,; the 20 nm spacer samples have quantum
lifetimes that are smaller than the 40 nm spacer samples. This is not observed for the
classical lifetimes. Varying the spacer width affects the Coulomb scattering from re-
mote ionized impurities in the donor layer (Section 1.2.3), which are predominantly
small angle scattering events. The smaller the spacer width, the greater the effect of this
long-range ionized impurity scattering. Thisis reflected in Table 2.1. The difference in
7, for samples with the same spacer width (and comparable electron densities) will
therefore be determined by short-range scattering mechanisms within the samples. It is
observed in Table 2.1 that between samples with the same spacer widths, the sample
with the larger 7. is also the sample with the larger 7,,. Theratio 7./, is a measure of
whether scattering events are dominated by short-range interaction (large angle scatter-
ing) or long-range interaction (small angle scattering). If the predominant scattering

mechanism is short-range (i.e. large angle scattering occurs on much shorter times
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scales than the small angle scattering time), 7./t, will tend towards unity. This is be-
cause large angle scattering events are equaly accounted for by both lifetimes. But if
the dominant scattering mechanism is long-range (small angle) scattering there will be a
greater difference between 7, and 7, since 7, suppresses the contribution of smaller
angle scattering events. For high quality samples which are mainly limited by long-
range scattering from ionized impurities 7. /7, is expected to be between 10 and 100
[26, 93, 95].

Finally, we note the importance of carrier density in these GaAa/AlGaAs sam-
ples. At high carrier concentration, long-range potential fluctuations are more effective-
ly screened by the 2DES and therefore small angle scattering is reduced (increasing ;).
Using this simplified argument we note that for samples with the same spacer widthsin
Table. 2.1, 7, increases as afunction of carrier density. At high density the majority of
small angle scattering is screened and 7./74~ 1, and the sample tends towards the
short-range scattering regime. The effect of carrier densities and screening will be dis-
cussed in more detail in Chapter 4.

Asobserved in Table 2.1, awide range of sample characteristics are used in this
work in order to verify the universal critical phenomena, which should be independent

of sample details such as those described in Table 2.1.

2.2.2 Experimental setup

The samples are attached to the base plate of a *He/*He dilution refrigerator with a base
temperature of less than 14 mK as measured by a ruthenium oxide (RuO,) senor at-

tached to the base plate. The diagonal and Hall resistivities (or voltages) are measured
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from the probe arms of the Hall bar using two lock-in amplifiers. A low frequency cur-

rent (usually between 7 Hz and 215 Hz) is injected into the device and along the longi-

tudinal channel of the Hall bar.
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Figure 2.4. Plots of the p,,, and p,,, taken at atemperature of 100 mK for all four samplesinves-

tigated.
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The Hall resistivity is determined from the voltage measured from opposite probe arms
while the diagonal resistivity is measured from adjacent probes arms as described in
section 1.2.4. It was found that excitation currents below 50 nA did not cause heating
within the samples; this was determined by varying the excitation current by small in-
crements and observing the effect of temperature on the SdH oscillations. Unless other-
wise stated a fixed current of 10 nA was used for al the temperature scaling measure-
ments below.

Fig. 2.4 shows the 100 mK plot of p,, and p,, for al sample. Our analysis
would mainly be centred on both spins of the N = 1 Landau level since these are the

only ones with spin resolved energy levels available.

2.3 Direct determination of the critical exponent of the

localization length, v

We now begin with the investigation of critical phenomena in quantum Hall transitions
by attempting to directly determine v, which is expected to be ~ 2.35, from the locali-
zation length in the tail regions of a Landau level conductivity peak. At low tempera-
tures the transport mechanism in this region is well understood to allow the localization

length to be calculated.

2.3.1 Adaptation of localized hopping

Transport between strongly localized states (as found in the tail regions of a disorder

broadened Landau level) is only possible through hopping between localized states. As
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discussed previously (Section 1.3.4), in the low temperature limit variable range hop-
ping (VRH) is the predominant transport mechanism and is defined by Mott's T/ |law
[33] as

0z (T) o< exp[(=To/T)"/4*1], (2.5)
where d is the dimensionality of the system. For d = 2, the exponential temperature
dependent term is reduced to T~1/3,

Mott's law, however, is based on the assumption that the density of states near
the Fermi level is congtant. Thisis valid when a wide range of energies around the Fer-
mi level are involved in the hopping process, but in the low temperature limit, only a
very narrow range of energies around the Fermi level contribute towards the hopping
conductivity. In this regime it was pointed out that electron-electron interaction should
reduce the density of states near the Fermi level. Efros and Shklovskii [96] demonstrat-
ed that Coulomb interaction in this regime does in fact reduce the density of states and

creates a Coulomb gap such that Mott’s VRH conductivity is redefined as

0xx(T) = apexp[(=Ty/T)*?], (2:6)
where
eZ
kBTO = C4-Tl.'6r6()f. (27)

The prefactor of the exponential in Eq. (2.6) has been observed to be temperature de-
pendent, o, « 1/T [97-99]. The dimensionless constant C is expected to be of the order
of unity and isbelieved to be C ~ 6 [100].

Therefore at very low temperatures where a Coulomb gap is expected, the local -

ization length can be determined from a double log plot of Eq. (2.6) where T, will be
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the gradient of alinear fit to the plot. From Eq. (2.7) we note that, ¢ « 1/T,. The diver-

gence of ¢ asthe critical field is approached ¢ o< |B — B.|™", can then be rewritten as
Ty < |B — B.|". (2.8)

The critical exponent v can therefore be determined as the gradient of the double log

plot of EQ. (2.8).
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Figure 2.5. Analysis of VRH conductivity in the tail regions of the N =1 { LL of sample L3
between 2.5 T and 2.54 T. The solid lines are linear fitsto Eq. (2.6). Theinset showsthe LL ana-
lysed and the two vertical dotted lines indicate the range sampled.

Fig. 2.5 shows the Efros-Shklovskii VRH equation applied to the localized region of

theN = 1] LL of sample L3. We notice aweak temperature dependence of conductivi-
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ty a very low temperatures (< 200 mK). We do, however, find good agreement with
Eq. (2.6) at temperatures above 200 mK indicated by the linear fit of the solid linesin
Fig. 2.5. The gradient of each linear fit represents afield dependent value of T, whichis
inversely proportional to ¢(B). We notice that the gradient of the linear fit becomes
gentler as the centre of the LL is approached. Thisindicates agrowing or diverging & on
approaching the critical field. We also notice that the linear fits appear to converge to-
wards some finite conductivity when extrapolated to high temperatures. The conver-
gence point is argued to be the minimum metallic conductivity proposed by Mott (see
section 1.3.3).

A tendency for the conductivity to saturate at lower temperatures is observed in
al the four samples investigated, with al samples possessing the same saturation tem-
perature of ~200 mK. In addition, the saturation region is independent of magnetic field
(or energy within the LL). These two observations suggest that the saturation is due to a
finite-size effect. Similar saturation regions are commonly observed in transport meas-
urements of samples of small sizes[82, 85, 87, 101]. It has been previously shown that
changing the size of the sample does indeed change the cut off saturation temperature

[85]. We therefore neglect the saturation region in the remainder of our analysis.

2.3.2 vin spinresolved Landau levels

It is important to discuss briefly how the critical field of the data presented below is de-
termined. We recall that the critical point is important because it is the point at which
the localization length diverges to infinity (the point of singularity) and this coincidence
with the location of a LL. According to the theory of the QHE, within a two-

dimensional system LLs are found at discrete energy values corresponding to the inte-
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ger values, n, of Aw,(n + 1/2), (see section 1.4.1). In the presence of disorder, howev-
er,aLL isnolonger asingle or discrete point but rather aband of energies consisting of
both localized and extended states. The singularity of the localization length occurs
within the extended states, and strictly speaking, at thermodynamic limit. However,
since the data presented below are of systems of finite-size, the critical point, according
to finite-size scaling theory, is approximated by the peak in the density of extended
states. This is roughly located at the centre of a LL conductivity peak of a,.,, but may
not necessarily coincide with the geometric centre of the peak due to contributions of
localized states transport to o,,. On the other hand, any measurement of a,, about a
specific LL must pass through a critical value oy, *, which corresponds to the Hall con-
ductivity at the critical energy or field. Experimentaly, it is well known that o,,,* is not
affected by disorder mechanisms such as temperature, unlike its equivalent in the diag-
onal conductivity o,,* = 0.5e?/h. The existence of oxy" 1S cCONfirmed in Fig. 2.6 below
where it can be seen that al traces within the plot passes through a single point inde-
pendent of temperature. It can be seen from the figure that as the temperature is re-
duced, though the plateau-to-plateau transition becomes steeper, it passes through the
axy," point. It is obvious that the critical point must be within this transition region. In
the limit of the absolute zero of temperature the transition will be a step function of in-
finitesimal width but, as shown in Fig. 2.6, must till pass through o,," and since the
critical point must be within the plateau-to-plateau transition width, a,,* must be the

critical point.
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Figure 2.6. The Hall resistivity for the N = 1 | LL for sample L1. It is observed that all tempera-
ture traces pass through and intersect at a single point which coincides with the critical field at
the centre of the LL.

Having dealt with the issue of the location of the critica field, we apply the
VRH analysis to all four samples under investigation in order to determine the critical
exponent v. Fig. 2.7 shows a similar plot to Fig. 2.5. The plot in Fig. 2.7(b) is obtained
according Eq. (2.6) for the low field side of the LL shown in Fig. 2.7 (a). It is observed
from the plot that VRH is in good agreement with the data and extends deep into the
tails of the broadened LL. From the field dependent values of T, obtained for each sam-
ple, v is determined from Eq. (2.8). Applying this analysis to all samples, the plots in
Fig. 2.8 are obtained. For each sample, T, is plotted against 6B = |B — B,|. This can be

plotted twice for each sample, one from approaching the B, from the high field side of



76

the LL and another from the low field side approach. The critical exponent v is there-
fore determined twice for each sample. The values are summarized in Table 2.2.

It is noted that in determining the range of data included in Fig. 2.8, the critica
point it determined using the Hall conductivity as discussed above, and far away from
the critical point, the data is limited by the zeroing of the conductivity of the lowest
temperature.

In Table 2.2, it is observed that the data is in remarkable agreement with the

theoretically predicted value of v = 2.35 [11] for dl sample.
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Figure 2.7. (a) Temperature dependence of the N = 1 | LL transition peak for sample L4. The
peak width increases with temperature. (b) Semi-log plot of the temperature dependence of o,
taken from the dataiin (a), using Eq. (2.6).
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Figure 2.8. Logarithmic plot of T, as afunction of distance in magnetic field away from the criti-
cal point, 8B, for the N =11 LL. v is measured as the gradient of the linear fit to In(T,) =
v In(dB). v is determined for all four samples investigated, m shows measurements taken on the
low-B side of the critical point, while A show measurements on the high-B side. The values
determined are in good agreement with the expected value of v = 2.3. The insets show o,(B) as
afunction of temperature for all samples; strong temperature dependent LL coupling is observed
in sample L3 preventing the determination of v for the high-B sided of the LL. The values of v
obtained are summarized in Table 2.2.

TABLE 2.2. The localization length exponent v, measured for the N = 1| Landau level. Each
sample has two measured values of v, one from the low field side of the LL and the other from
the high field side.
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N=1]

Sample B<B; B> B;
L1 2.37+0.05 2.34+0.02
L2 2.05+0.03 2.28+0.05
L3 2.36+0.03 1.79+0.01
L4 2.39+0.08 2.39+ 0.06

It should be noted that the range of error in the determination of v presented in the table
represent the error incurred in fitting a linear line to the data in Fig. 2.8. Both the high
field and low field values of v in all samples are in good agreement with the exception
of sample L3 where the high field value obtained was v = 1.79 + 0.01. This discrepan-
cy is attributed to the strong onset of LL coupling betweenthe N =1l and N =11
LLswith increasing temperature evident in the inset of Fig. 2.8(c). Thisis caused by the
relatively high level of disorder broadening in this particular heterostructure. As dis-
cussed above, the broadening of aLL isrelated to the quantum lifetime by I' = 4/27,,
and from Table 2.1 it is observed that sample L3 has the smallest quantum life time,
74 = 0.53, making it the sample with the most disordered LL broadening. It is observed
from the insets of Fig. 2.8 that spin coupling in the other samplesis negligible.
Assuming C = 6 [100, 102] and using €, = 12.6 for GaAs, the localization
length calculated from Eq. (2.7) is consistently found to grow to é = 3 um as the criti-
cal point of the LL is approached and ¢ = 200 nm as the Fermi energy enters the tail

region.
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Figure 2.9. Plot (a) and (b) show pronounced conductance fluctuations in the N =1 T LL of
samples L1 and L3 respectively. These fluctuations make it impossible to determine v to any

reasonable accuracy.

These values are consistent with measurements on devices of comparable heterostruc-
tures of similar sizes[100, 103].

It is noted that v was only determined for one of the spin resolved LLs. Data
fromthe N = 1 T LL could not be used as the conductivity peaks exhibited pronounced
conductance fluctuations as shown in Fig. 2.9. These fluctuations show strong correla-
tion between various independent temperature traces, it therefore possible that these are
universal conductance fluctuations (UCFs) [30, 104]. UCFs are irregular but neverthe-
less reproducible fluctuations of conductance in mesoscopic samples and can occur
when the phase coherence length is comparable to the size of sample. The conductance
fluctuations are also observed in the spin up peaks of higher LL indices but never on the
spindown LLs.

From the results obtained in Table 2.2, it can be concluded that critical phenom-
ena (as determined from measurements of v) in QHTs are indeed universal, independent

of any microscopic sample detail, and in accordance with continuous quantum phase
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transition as proposed by the theory [6]. In the following section we measure the com-

posite critical exponent x and investigate its universal criticality.

2.4 Determination of the composite critical exponent, k

We determine k using the Pruisken formalism [79] discussed in section 1.4.3 where it
was proposed that the composite exponent k can be measured from the temperature de-
pendence of the width of the diagonal conductivity or resistivity peak,
AB, o T*, (2.9)
or the gradient of the Hall transition between the insulating phases of the QHE,
dpyy/dB « T, (2.10)
where k isrelated to v by k = p/2v. k can be experimentally determined as the gradi-

ent of alinear fit of the double log plot of either Eq. (2.9) or (2.10). We note that the

exponent of interest is v, which is the critical exponent of the divergent localization

length.
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Figure 2.10. The temperature dependence of () p,, and (b) p,, as afunction of magnetic field
for N = 1] for sample L4.
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v is expected to possess a universal value independent of the microscopic details of the
system. If it is assumed (for the time being) that p = 2 according to Fermi liquid theory
[105], then k is simply the reciprocal of v, k = 1/v. Thus auniversa value of k¥ = 0.43
will confirm the universality of v = 2.35. Thisis the approach that has been use by pre-
viousinvestigations[12, 15, 18].

Unlike the previous section, results are presented for both spins of N = 1 since
the observed fluctuations do not introduce any significant error in the data when the pa-
rameter under consideration is the width of the peak. The fluctuation only affect the di-
agonal resitivity data and are completely absent from the Hall resistivity data. Fig. 2.10

shows an exampl e of the data consider in determining x, taken from one of the samples.
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Figure 2.11. Finite-size effects are also evident in resistivity data. The plot shows a saturation of
the width of the resistivity peak at very low temperature for sample L4.
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For each sample, p,, and p,, are measured at many different temperatures between
100 mK and 1 K. From Fig. 2.10, it is clear that as the temperature is increased the
width of the peaks aso increases and the gradient of the transition slope decreases ac-
cording to Egs. (2.9) and (2.10).

The finite-size effects observed in the previous section are aso evident in the
resistivity data. Fig. 2.11 shows the saturation of the width of p,., at low temperatures.
The width AB, is determined as the full-width-at-hal f-maximum (FWHM) of the peak.
Once again the saturation region is not considered in the analysis. The cause of the satu-
ration region will be discussed in more detail in Chapter 4.

Table 2.3 show the results for k for both spins of the N = 1 LL as determined
from both the FWHM of the resistivity peaks and the maximum gradient of the Hal
trangitions (see Fig. 2.12). Once again, the error shown in Table 2.3 originates from the
linear fit to the data. In general the results obtained from Eq. (2.9) and (2.10) agree well

with each other.

TABLE 2.3. The exponent k measured for Landau levels N = 1| and N = 11 using both
the width of the trangition peaks, AB, , and the maximum gradient of quantum Hall
transitions, dp,,/dB.

N=1l N=11
Sample AB, dpyy,/dB AB,, dpyy/dB
L1 042001  023:002  041:001  044:002
L2 067+002  066+003  044:002  042:003
L3 055£004  060:002  046+002  043:003
L4 054002  054:002  034+001  0.16%0.02
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The results however do not depict a universal behaviour of the critical exponent. Even
though the value of k forthe N = 1 T LL isclosely distributed about the predicted value
of Kk = 0.43 (i.e. v = 2.35), thevaue of k forthe N = 1 | LL in not. Thisis especidly
surprising since, for the same samples, v was found conclusively to be universal for the
N = 1! LL when universal criticality was determined using the hopping conductivity
analysis above.

The results presented in Table 2.3 are consistent with previous investigations on
the critical phenomena of QHTs in GaAs/AlGaAs heterostructures where universality of
the critical exponent was not conclusive [15]. The results on k present an interesting
picture where, for the same sample, v isfound to possess the theoretically expected uni-
versal value but x does not. The discrepancy between the v and k results could be due
to a non-universal behaviour of the third exponent p. We therefore complete the inves-
tigations of the critical phenomena using temperature dependent methods to study the

temperature exponent p.
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Figure 2.12. Double log plotsof AB vs. T for @ N =11 and (b) N =1 T for sample L4. k is

measured as the gradient of the linear fits and presented in Table 2.3.
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2.5 Current scaling of the QHE

The scaling exponent p is the least studied exponent involved in the temperature de-
pendent analysis of the critical phenomena of QHTSs. The value of p is aways assumed
to be p = 2, but this value is derived from the Fermi liquid theory of clean metallic
films [106]. Thisis especialy questionable since there appears to be no obvious justifi-
cation of using the clean limit result of a 2DES instead of the disordered result of p = 1
[105], since 2DES in any practical sense are generally disordered systems. It is also not
obvious that p should be universal as it is dependent on disorder according to Fermi
liquid theory. Even more important is whether p is due to electron-electron scattering or
electron-phonon scattering or a combination of both. In addition, the theoretical values
of p stated above are based on zero magnetic field conditions of a 2DES, it is not clear
whether they apply at high magnetic fields. Results on p are presented below and it is

shown that this scaling exponent depends on both disorder and magnetic field.

2.5.1 Thermal coupling and the inelastic scattering exponent of

two-dimensional Fermi liquids

The origins of the exponent p in the scaling argument of QHTSs (discussed in section
1.4.3), stems from its influence on the effective size of the system. From our discussion
on the Thouless length [48] in Chapter 1, it was noted that the size of system L acts as
the cut-off of coherence electron transport such that states with £(E) < L appear local-
ized while states with ¢(E) > L behave as extended states. If one realises that it is not

simply the size of system that determines this cut-off but rather the loss of phase coher-
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ence on arrival at the boundary of the system, then a coherent system is defined by an
effective length based on the phase coherent length L,,. It is therefore noted that L,
among other things, can be determined by the physical boundaries of the system. Within
a system with any degree of disorder, the phase coherent length can be defined as [50]

L, = (D1y)'?, (2.11)
where D is the diffusion constant for an electron within the system and z,, is the phase
breaking time or inelastic scattering time. At sufficiently high temperatures, the phase
coherence length is determined by a temperature dependent inelastic scattering time,
7, (T). Itisthereforeintuitive to assume that 7, = aT~? [105] such that,

L, o« T7P/2, (2.12)

where a isthe constant of proportionality and p isthe inelastic scattering exponent.

We attempt to measure p in our samples by using an electron heating model
proposed by Anderson et al. [107]. In an experimental investigation of electron
transport in thin metallic films, it was observed that a low temperatures a sufficiently
high applied electric field E has a similar dependence of conductivity as an increase in
temperature [108]. Based on this observation, Anderson et al. [107] noted that at very
low temperatures where the inelastic scattering length is long, electrons are almost out
of thermal contact with phonons and therefore under an applied electric field these elec-
trons will heat up, absorbing the power being delivered to the sample through the accel-
eration of charge under the electric field. Thermal energy being absorbed by electrons
from the electric field increases until this excess energy can be transferred to the lattice
through a callision. During this time interval the electron temperature T, will be out of

equilibrium with the lattice temperature T,.. These hot electrons will therefore maintain
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their temperature (or energy) for adistance L, or time t,, such that T, can be defined as
[107]
kgT,~ eEL,. (2.13)
where E here represents the applied electric field. From Eq. (2.12) and (2.13) the coeffi-
cient of theratio of In(T,) toIn(E) isn = 1/(1 + p/2) such that
T, < E". (2.14)
Eq. (2.14) can aso be expressed in terms of the applied current I (or voltage) as T, «
I". By bringing T, out of equilibrium with T; by applying a high electric field (or cur-
rent), the temperature exponent p can be measured (this is discussed in the next sec-
tion). This is only possible at low temperatures where thermal coupling between the
electron gas and the lattice is weak. At higher temperatures however, energy will be

efficiently transferred between the lattice and the electron gas (i.e. 7, is very small)

@

which makes causing an imbalance in the equilibrium difficult.

2.5.2 Determination of the temperature exponent p, at the criti-

cal fied

The experiments yielding the results presented above (sections 2.3 and 2.4) were con-
ducted in the strong thermal couple regime, where T, = T,, by using a very low current.
We also note that due to effective thermal sinking, the ambient temperature or bath
temperature T}, of the sample chamber of the dilution refrigerator was in good equilibri-
um with T}, of the sample. The sampleis placed in good thermal contact with the mixing
chamber plate which is aso the location of the temperature sensor used to control the

bath temperature. In the strong thermal coupling regime therefore, a steady state is es-
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tablished between al relevant temperatures (T, = T, = T,) by the transfer of energy
through phonon emissions. In all experiments discussed in this thesis a sufficient time
delay aways follows a manual change in the T}, setting of the fridge to allow this equi-
librium to be established. Thus moving forward, we will aways assumethat T, = T}.
Transport coefficients measured in the strong coupling regime reflect T; which
in this regime is equal to T,. At high applied currents (or electric fields) T, will come
out of equilibrium with T, such that T, > T; . The transport coefficients measured in this
regime hence reflect T, rather than T, . By calibrating T, with transport measurements in
the strong coupling regime where the value of T, is known (since T, = T}), the relation-

ship between the applied current I and T, can be established.
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Figure 2.13. Transport coefficients measured at three different applied d.c. currents. Electron

heating is evident in the broadening of peaks and the reduction in transition slopes between plat-

eaus.
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This is achieved by comparing the transport measurements taken in the weak coupling
regime (T, > T;) with those taken in the strong coupling regime (T, = T;). To deter-
mine p, we compare the resistivity at the critical field (at the centre of each LL) within
the two regimes in order to establish the relationship between I and T,. It is noted that
the applied current representation of Eq. (2.14) issmply

T, o« I7. (2.15)
Since the 2DES most resembles metallic behaviour at the critical field withinalLL, itis
the most appropriate place to apply Anderson’s electron heating model (originally used
to study metalic films) [107].

The effect of increasing the sample current is shown in Fig. 2.13. It is clearly
observed that the increase in the d.c. current has a similar effect on transport coeffi-
cients as an increase in temperature. The only difference here is that the relevant tem-
perature of the system is being controlled by the electric field rather than the bath tem-
perature of the dilution fridge. As mentioned above, the relation in Eq. (2.15) will be
determined by taking measurements at the critical field, in particular, the maximum
slope observed between plateau-to-plateau transitions will be the calibrating thermome-
ter used in measuring T,. The maximum slope dpy., /dBp,q,, OCCUrs at or very close to
the critical field. Fig. 2.14 shows p,,,, determined for both a varying temperature and a
varying current, for the transition about the N = 1 | LL in sample L1. All the curvesin
Fig. 2.14 intersect at the critical field which isaso the dpy,, /dBp,qx point. The similari-
ties between the two plots are evident. The effects are similar because the underlining

mechanism is a temperature dependent scaling phenomenon.
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In the case of Fig. 2.14(a), scaling (of the phase coherent length) is controlled by the
lattice temperature while in Fig. 2.14(a), scaling is controlled by the electron tempera-
ture. Fig. 2.15isaplot of dpy, /dBpq, Using the datain Fig. 2.14(b). It shows the two
coupling regimes. At low currents, electron heating is negligible, the lattice is easily
able to soak up the excess heat due to T, and therefore continually maintains the equi-
librium. dp,., /dBp,,, does not change with increasing current in this regime. At high
currents, however, we observe alogarithmic dependence on transport coefficients due to
the weak thermal coupling between electrons and the lattice. Scaling is observed within

thisregime as T, takes over as the relevant or operative temperature.
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Figure 2.15. Dependence of the dp,,, /dB,,, 0N current. In the strong coupling regime, increas-
ing the current has negligible effect on the slope of the plateau-to-plateau transition. At higher
currents however, there is weak coupling between T, and T;. The significantly higher T, is able

to influence the transport coefficients of the system.
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We now proceed to the experimental determination of p using Eg. (2.15). Fig.
2.16 describes how T, is calibrated using dpy, /dBp - It is noted that the underlining
scaling mechanism is the same irrespective of whether T, or T;, is the relevant tempera-
ture. The aim of the plotsin Fig. 2.16 is to discern what the electron temperatureis at a
given current in order to apply Eg. (2.15). To do this, we first measure the value of
dpyy/dBmay @ various temperatures in the weak coupling regime. This is shown in
Fig. 2.16(a). Though the temperature is changed by varying T;, we recal that in this
regime T, = T;. Fig. 2.16(a) therefore presents the relationship between T, and dpy., /
dBrax-

In Fig. 2.16(b), dpyy/dBqy is measured again, but this time as a function of
the applied current. Having already calibrated T, using dp,.,, /dBp, 4, the €lectron tem-
perature corresponding to a given current is smply the temperature that produces the
equivalent value of dpy, /dBm,, in the weak coupling regime. Therefore from Fig.

2.16, the current I; corresponds to the temperature T .
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Figure 2.16. dpy, /dBmq, for the N = 1 | of sample L4 measured both as function of tempera-
ture and current. The dashed line indicates, for example, that T, at I; = 1000 nA is equivalent to
T, = 600 mK.
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Figure 2.17. A double log plot of T, vs. I for N = 1 | LL for al four samples. p is determined
from the gradient of the least-squared linear fit to the data.
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TABLE 2.4. The temperature exponent p determined for various transitionsin all four samples.
Plateau to plateau transition

Sample N=11! N=217 N=21
L1 2.01+0.04 2.02+0.08 2.06 + 0.05
L2 3.09 + 0.06 311+0.13 3.23+0.26
L3 3.29+0.09 - -

L4 1.27+0.02 1.55+0.09 1.64+0.09

Using the Anderson electron heating model, p is determined in all samples for
theN=1!,N=2Tand N =21 LLs. Werecal that the gradient of the linear fit of
the double log plot of Eq. (2.15) isn = 1/(1 + p/2). Fig. 2.17 shows p determined for
theN =11 LL for al four samples. It is noted that all plots show a good linear fit to
the heating model, where the solid linesin Fig. 2.17 represents a least-square fit to the
data. The results are summarized in Table 2.4.

The value of p is not found to be universal between the samples investigated.
The value of the exponent, however, is similar amongst LLs of the same sample with
slight increases at higher LL indices (mostly likely due to the increasing degeneracy at
higher LLs, see Fig. 2.4). Due to the strong disorder broadening in sample L3, al but
one LL were completely spin degenerate and thus p was only obtainable for one LL.
However, a striking dependence of p on mobility is observed in the results, thisis plot-
tedin Fig. 2.18. p is consistently found to increase with decreasing mobility. The results
suggest that the rate of phonon emission is different for each sample, and in particular,
depends on the nature of disorder within the sample. The more disordered the sample

the greater the rate of phonon emissions, and therefore, the greater the value of p.
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Initial scaling investigations of QHTs assumed the value p = 2, taken from the
Fermi liquid theory value for a metallic film in the clean limit. This proved necessary
for a good agreement with the universally expected value of k~0.43 [12] to be obtained
given that k = p/2v. This seemly fortuitous coincidence, however, has lead to confu-
sion in the literature regarding the temperature dependence of the critical phenomena of
QHTs. The temperature exponent p (t, « TP), is mainly determined by electron-
electron (e-€) scattering and electron-phonon (e-ph) scattering. At very low tempera-
tures e-e scattering is the dominant dephasing process in thin metalic films [109]. The
dephasing process occurs through multiple scattering events involving small energy

transfers Ae, between electrons (where Ae < kgT).
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Figure 2.18. Figure showing the dependence of p on the mobility of the samples investigated.
The valve of p are averaged over each sample a clear increase with decreasing mobility is ob-

served. The solid lineis a guide for the eye.
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These scattering events arise from fluctuations in background potential generated by the
ensemble of eectrons and other Coulomb sources (remote ionized impurities). In this e-
e scattering regime, an electron can lose phase coherence without relaxing its excess
energy (through numerous Ae transfers), this is known as Nyquist dephasing [106]. In
the presence of disorder, the scattering time in a 2DES is expected to favour a linear
dependence on temperature, p = 1, [105, 109-111] at zero magnetic field but, in the
clean limit, p = 2 [109, 110, 112] is predicted.

At higher temperatures however, the loss of phase coherence is dominated by e-
ph scattering with electron relaxation occuring through inelastic collisions where Ae is
of the order of kzT. Unlike the case for e-e scattering, the temperature dependence of
7,, is not expected to have a universal behaviour in either the clean or dirty limit [109].

It is therefore of great interest to the work presented here to determine whether
the dephasing mechanism occurring close to the centre of the LL is dominated by e-e
scattering or e-ph scattering as this will confirm the validity of the assumption of p = 2
and by extension the scaling relationship k = p/2v. The temperature at which the tran-
sition between e-e and e-ph scattering occurs is somewhat disputed; some studies favour
a transition to e-e scattering below ~10 K [109] while others suggest a temperature of
~0.2 K [113]. The results presented here, however, favour an e-ph scattering mecha-
nism near the centre of the LL for the temperature range investigated. Thisis indicated
by the non-universality of p typical of e-ph scattering and the dependence of p on mo-
bility. These results confirm the theoretical studies of t,, in the integer QHE regime
where p was found to be dominated by e-ph interaction and depend on electron mobility

[114, 115]. Our results are aso in agreement with the experimental investigation of
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Koch et al. [85]. Even though the method for determining p was different from that
used by Koch et al., the results are similar as p was also found to be non-universal and
dependent on mobility. The values of p and the corresponding mobilities obtained from
Koch et al. are in good agreement with the curve in Fig. 2.18.

The results favouring the universality of p and e-e scattering obtained by Wel et
al. [14, 116, 117] therefore appear inconsistent. First, according to the theory of e-e and
e-ph scattering, one expects p = 1 for disordered films if e-e scattering is the operative
mechanism [109]. This would invalidate the assumption of p = 2 used by Wei et al.
[12]. It istherefore unexpected that p = 2 was abtained in the low mobility short-range
alloy disordered InGaA</InP systems used by Wei et al [14].

If p isnot universal, then one does not expect the proposed universal relation-
ship k = p/2v to be valid. This describes the results presented here, no correlation is
found between values of p in table 2.4 and the corresponding values of k in table 2.3
even though v was found to be universal in all samplesin table 2.2. It is also important
to note that the variation in p observed in the results presented above does not show any
correlation with carrier concentration, spacer width or quantum life time, quantities that
are related to e-e scattering. Instead, the results presented here show that p depends on
the zero field classical mobility of the samples measured, the quantity that is least relat-
ed to e-e interaction and more representative of microscopic disorder.

The collection of the results present here therefore suggests that p is not crucia

to the critical phenomena observed in QHTS.
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2.6 Conclusion

In the study of critical phenomena of QHTSs presented in this chapter, we have attempt-
ed to verify the expected divergence of ¢ asthe critical point within a LL is approached.
A universal critical exponent of value v = 2.3 is expected. The results presented here
have independently investigated all three scaling exponents in the scaling relationship
K = p/2v using temperature dependent methods. It was found that v, determined from
the localized hopping regime, is in good agreement with theoretical predictions and is
observed to be universal and independent of sample characteristics. x, however, was
found to non-universal in our experiments. Further, investigations of the temperature
exponent p based on electron heating al'so did not yield universal values. The results on
p suggest that the dephasing process near the critical point is dominated by e-ph scatter-
ing and therefore the assumption of p = 2 is not justified. The results presented here do
not confirm the relationship x = p/2v, especially since p cannot be universal and must
be dependent on disorder. These investigations therefore support universality in v but
does not support the casefor k = p/2v.

Even though it is argued here that p must not be crucid to the critical phenom-
ena of QHTS, the role of k is less obvious. As discussed above, the assumption p = 2
appears to be only a fortuitous coincidence which is required to explain the initial ex-
perimental results obtain on x [12]. One cannot, however, dismiss the result of k¥ = 0.43
which is so widely observed that it cannot be coincidence. It has been suggested [102,
118] that the correct dependence of x on v is simply an inverse relationship, k = 1/v,
without any dependence on p. Given the results presented here, this seems to be more

likely since an (incorrect) assumption of p = 2 will result in the same relation. This till
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does not explain why the reciprocal relation was not observed in our results on k. The
explanation for this will be left for Chapter 4 after further results on x have been pre-
sented in Chapter 3.

The work presented in this chapter represents the first and only attempt to in-
vestigate al scaling exponents independently within the same sample in order to pro-
vide a coherent picture of the nature of criticality in QHTs and study the relationships
between the proposed critical exponents. All previous investigation have only looked at
a subset of exponents and rely on various assumptions for non-measured exponents. A

summarized version of this chapter has been published in Refs. [119, 120].
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3. Finite-frequency scaling of

guantum Hall transitions

3.1 The effect of frequency on critical phenomena and

localized systems

So far, we have investigated the quantum criticality of quantum Hall transitions (QHTS)
in localized systems using techniques that involved changing the temperature of the sys-
tem. In this chapter we look at how a similar analysis can be made using a high resolu-
tion frequency technique which has many advantages over a temperature based method.
In this section we describe the effect of a varying electric field on the transport proper-

ties of interest in the finite-size scaling of QHTSs.

3.1.1 Dynamic scaling

We introduce the concept of dynamic scaling in order to explain how the scaling analy-
sis of the critical phenomena observed in QHTSs can be studied by varying the frequency
of an externally applied electric potential. It should be noted that any mention of fre-
quency henceforth will exclusively refer to the frequency of the applied electric field.

In the foregoing analysis, critical phenomena were discussed in terms of the

thermodynamic or static properties of the system [7], in particular the correlation in po-
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sition of electron transport. We considered a divergent correlation length, which acted
as the order parameter, as the critical point was approached (see section 1.4.2). It was
shown that fluctuations on length scales smaller than the correlation length were insig-
nificant to the behaviour of the system. At the critical point where the correlation length
diverges to infinity (or the boundary of the system), the system becomes homogenous.
Asaresult, individual systems of different characteristics are indistinguishable near the
critical point, forming a universality class possessing identical behaviours. Discussed in
the context of zero temperature, this view of the criticality represents the static descrip-
tion of the critical phenomena where the correlation in the spatia dimension is the only
parameter considered. It was implicitly assumed that fluctuations that affected the tem-
poral component of the system were infinitely long. In other words, it was assumed that
the system remained correlated over time throughout the entire process.

At non-zero temperatures however, this time invariance assumption is violated
and fluctuations in the temporal dimension are introduced in the form of time dependent
correlation functions such as relaxation rates, spin-diffusion constants, thermal induced
conductivities and other time dependent perturbations [8, 9]. The order parameter there-
fore now includes a temporal dimension over which order must be maintained. As the
critical point is approached, fluctuations in both the spatial dimension and the temporal
dimension must diverge towards infinity for quantum criticality to be realised. In the
context of QHTS, an electron wavefunction must maintain correlation (i.e. maintain its
eigenstate of energy) in space as determined by its localization length and also in time
as determined by its phase coherence time as dictated by its relaxation rate. It is noted
that the relevant relaxation rate will be determined by the rel axation mechanism that has

the shortest time period as this will be the limiting factor on correlation. The conditions
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for universality are still maintained if both the temporal correlation and spatial correla
tion simultaneoudly diverge on approaching the critical point such that the systems ap-
pear homogenous at the critical point. If on the other hand the spatia correlation diverg-
es without a divergence in temporal correlation then the properties of the system as the
critical point is approached will be defined temporal fluctuations which are dependent
on the specific characteristics of the system such as the relaxation mechanism. In other
words, universality will not be observed as electron transport will retain sample specific
properties.

The spatial and temporal dimensions can be combined into a single dimensional
space by introducing a dynamic exponent z [6, 11]. z relates the spatial correlation
length & (in distance) to the temporal correlationslength &, (intime) as[6],

$e~87. (3.1)
The exponent z is therefore a measure of how skewed time is relative to space near the
critical point. In the temperature dependent investigations discussed in Chapter 2, even
though it was not explicitly mentioned, the temporal correlation length was converted to
the spatial dimension using the Thouless boundary argument or the Thouless length,
first introduced in section 1.3.5. We now define the general form of this conversion
which will be applicableto all temporal perturbations (both temperature and frequency).

& ismanifested in the spatial dimension as a dephasing or coherence length L,
which acts as the order parameter controlled by temporal events. In other words, order
in this case refers to the length L, over which an electron maintains its eigenstate of

energy or remains unperturbed, where L, is related to the phase braking time z,,. The

relationship between &, and L, will depend on the specific form of the temporal pertur-
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bation. Similar to the finite size scaling argument developed in Eq. (1.42) to (1.45), the
conductivity of the system will depend on both L, and ¢ (B) through the finite-size scal -
ing form
0up(Lyg B) = Fapl§(B)/Ly""1, (32)

where Fy is auniversal scaling function. The width of the conductivity peak is related
to the dephasing length through (see section 1.4.3 for full derivation),

AB ~ L, (3.3)

Tempora perturbationsintroduced by temperature and frequency can be de-

fined in terms of the dephasing length as

Ly ~T™ (3.4
and

Ly~ %, (3.5)
where z; and z,, are dynamic scaling exponents for T and f, respectively. From Eq.
(3.3) the width of the conductivity peak asafunction of T and f isgiven as

AB ~ TY/V7r, (3.6)
and

AB ~ f1/V?0, (3.7)
If we recall from the temperature dependent investigations in Chapter 2, that
Ly ~ T~P/2, then the temperature scaling function used in the Chapter 2 is recovered
from Eq. (3.4) and (3.6) if dynamic exponent istakento be z; = 2/p.

From experimental observations [12-14, 116], it is suggested that close to the

critical point the value the dynamic exponent is z; = z,, = 1 [6]. Thisisin accordance

with the theory of critical phenomena since close to the critical point the system be-
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comes homogenous and is independent of spatial and temporal perturbations. Therefore
the method of temporal perturbation, be it temperature dependent or frequency depend-
ent, should not matter.

Bearing in mind that finite-size scaling is an approximation of critical phenom-
enawhich occursat T, f = 0, both the temperature and frequency must be made to tend
towards zero in the critical region in order for there to be an approximate divergence of
¢z (or L,) or else universality between equivalent systems will not be observed. This
could be a possible explanation for the dependence of z; on the disorder of the system
as observed in the current scaling results reported in the previous chapter. It is possible
that the temperature was not low enough to alow an adequate divergence of &, near the
critical point. Thisargument is discussed in greater detail in Chapter 4 (section 4.5.1).

Finaly, we note that the relevant parameter controlling the dynamic scaling
depends on theratio hf /kgT. For kgT > hf, dueto its higher dephasing rate, the tem-
perature is the relevant parameter that determines ;. Conversely, if kgT < hf, the fre-
quency becomes the relevant parameter. A crossover between the two parameters is
therefore expected a kzT = hf. In the scaling regime where the frequency is the domi-
nant phase breaking mechanism, L, (f) represents the distance an electron diffuses
within the disordered medium during one cycle, 1/f, of the applied alternating electric

field [121].

3.1.2 A.C. hoppingin localized systems

The non-zero frequency of the applied electric field imposes a phase breaking mecha-

nism L, (f), where the system is coherent on a time scale proportiona to the period of
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the field, 1/f. In this section we describe the phenomenological process underpining
decoherence through the application of a high frequency field to a disordered system.
We consider the process of conduction in the localized regime of a disordered 2DES.

In the d.c. conduction of disordered systems, a continuous flow of current is
setup between two el ectrodes where the direction of electron transport is determined by
the direction of the applied field. Losses due to conduction therefore stem from elec-
trons moving from one electrode towards the other. In a.c. conduction, the direction of
electron transport is revered after each half cycle of the applied eectric field. At very
high frequencies, electron may only be able to hop to one state (or a few states) before
the electric field is revered. In the high frequency limit therefore, losses in disordered
systems can be occur through the back and forth transfer of electrons between pairs of
states. A.C. losses can be accounted for by resonant transitions between pairs of states.
Thisis generally known as the pair approximation [122, 123].

Consider a pair of sites i and j within alocalized system and let the transition rate be-
tween the two states be r{jl such that transitions between i and j will only occur if
7;; < 1/f, where f is the frequency of the applied electric field. The frequency, or pe-
riod of the alternating field, acts as a cut off limit on the transfer of eectrons between
states, restricting transitions that take too long to occur. It is reasonable to assume that
the coupling of wavefunctions between states decreases with increasing separation,
hence for a random distribution of states of the kind describe by Anderson localization,
pairs of states which lie close together will have shorter transition times or higher transi-
tion rates than pairs of states that are further apart. At very high frequencies of the ap-
plied field, the cut-off for transitions will be so restrictive that only the closest pairs of

states will have a transition time quick enough to contribute towards a.c. losses. Fig. 3.1
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demonstrates such a scenario, where two such pairs of states are shown, i < j and
k < 1. From the discussion on the distribution of states in Anderson localization in
Chapter 1, we recall that the occurrence of these closest pairs of states, that are both
close in energy and space, within a disordered system will be rare. Pairs of this kind will
therefore be widely separated as shown in Fig. 3.1. In other words, 7;; < 7y, Ty
Charge transfer occurring within pairs can therefore be considered to be independent
and decoupled from their surroundings. A.C. conduction is then due to pair-hopping
between resonant pairs of states which are determined by the frequency of the applied
field.

Of interest to the scaling problem being discussed is the frequency dependent
effective length of the system which in this high frequency regime will be determined
by the average distance AR between the states of a resonant pair. The pairs i, j and k, [
in the scaling sense, can be considered as two separate systems since they are effective-

ly decoupled.

k = m

o )
g

i--

"R

Figure 3.1. A diagram showing resonant pairs i, j and k, L. In the high frequency limit coupling
to states that are far apart is cut off such that electron transfer is restricted to only states that are
closest. Adjacent pairs of resonating states are therefore effectively decoupled from the rest of
the system.



106

This is very similar to the Thouless argument that has been used throughout this work
where a dephasing length defines the size of independent subsystems within a disor-
dered system. It is clear from the discussion above that AR acts as the length of coher-
ence, L, (f) ~ AR, since coupling to sites larger than AR cannot occur.

As the frequency is reduced, the time within which coherent transitions occur
increases and an electron is able to travel further within a half cycle of the applied field.
Thus reducing the frequency increases AR, allowing an electron to interact with more of
its surroundings. This is depicted in Fig. 3.2(a), which is a modification to Fig. 3.1. As
the frequency is lowered, 1/f becomes large enough to include transitions over larger
distances. In Fig 3.2(a), 7j, < 1/f and asaresult AR increases. Reducing the frequency
therefore introduces variable range hopping within the system, which enables the cou-

pling of previously isolated pairs.

1 Sy 5V
s [ v

j
AR : -

=Y

Figure 3.2. As the frequency is decreased, longer distance transitions begin to occur. (@) shows
coupling between two resonant pairs, the blue arrow shows the introduction of longer distance
VRH into the system. (b) Asthe frequency is further decreased, allowing multiple hops, conduc-

tion occurs between previously isolated clusters of states.
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In this multiple hopping regime [124, 125] e ectron transport occurs between clusters of
pairs [126] as shown in Fig. 3.2(b). Further decreasing the frequency (f — 0) progres-
sively increases the effective area of conduction until the entire system is included or
until the dephasing mechanism, hitherto controlled by frequency, is taken over by tem-
perature. Further decreases in frequency cannot increase L, (f) beyond the temperature
dependent dephasing length L,,(T) since beyond this point the dephasing length will be
determined by temperature dependent events.

Changing the measurement frequency, in a smilar way to changing the meas-
urement temperature, varies the effective size of the system and allows the scaling anal-
ysis to be extended into the frequency regime through the temporal perturbation of the
system. Therefore in the smultaneous limit of decreasing frequency (diverging L, (f) )
and the divergence of ¢ asthe critical point is approached, universal criticality of QHTs
can be observed within a 2DES as described by Eq. (3.7). It is noted that this statement
assumes that the temperature dependent dephasing length is already larger than the
sample size otherwise it would place arestriction on the divergence of L,.

Using this hopping approach it has been shown that the rea part of the high fre-
quency conductivity has the following logarithmic dependence on frequency [125]

a(f) < f?, (38)
Where the exponent s isusually found in theinterval 0.5 < s < 1 [123, 126].
In the following sections, the frequency scaling analysis will be used to investi-

gate the universality of QHTs within systems of varying degrees of disorder.
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3.1.3 Previous experimental result on finite-frequency scaling

As discussed in the previous section, the dynamic scaling exponent relates the correla-
tion time to the correlation length (§;~&?) and L, is the spatial equivalent of the corre-
lation time as determined by temporal events. In the frequency regime L,, is related to

the dynamic exponent through Ly ~ f ~1/Z (Eq. (3.5)). For non-interacting electrons it

can be shown [127, 128] that Ly = 1/,/pohf where p, is the density of states a the
critical point. Comparing this with the frequency dependent relation for Ly yields aval-
ueof z = 2. Theresult z = 2 isredised if the frequency dependent length is defined by
a density-density correlation function Ly = [D(f)/f]*? [121] where D(f) is the fre-
quency dependent diffusion coefficient.

The first experimental results on the dynamic exponent as measured from fre-
quency by Engel et al. [13] reported avalue of z = 1 but this disagreed with the preced-
ing non-interaction theory. Shortly after the publication of this result, numerical calcula-
tions reported that a value of z = 1 ought to be found if Coulomb interaction between
electrons near the QHT is considered [128-130]. To be consistent with v = 2.3, which
hitherto had also been based on non-interacting single-particle analysis (but unlike z,
proven correct by experimental results), numerical analysis was used to show that even
though the value of z is modified under Coulomb interaction, v still maintains its value
of v = 2.3 [129]. It has also been predicted that the range of interaction (short or long-
range) affects the value of z [131]. The result reported by Engel et al. of z = 1 was con-
firmed by Hohls et al. [132] but other results do not agree [16].

Experimentally, the most thorough high frequency investigation of critical ex-

ponent still remains the work of Engel et al. [13] where frequencies between 0.2 — 14
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GHz was considered, the largest bandwidth hitherto reported in the literature. Most in-
vestigations following Engel et al. were carried out at lower frequencies, 0.1 — 6 GHz
[133] and 0.7 — 7 GHz [16]. Two other studies exist at higher frequencies although the
results presented appear to be somewhat controversial. A range between 35 — 52 GHz
was investigated by Kuchar et al. [91], and although a value of k = 0.4 was reported,
the robustness of this study is not at all clear as no plots of the frequency range or even
the fit are shown. The result is even more gquestionable when presented again in Ref.
[132], since the plot shown is obscure and appears to shows little evidence of scaling.
Investigations of QHTs at even higher frequencies have reported the observation of Hall
plateaus in the terahertz frequency regime; but this result has to be treated with caution,
asitislikely that quantum Hall plateaus are destroyed in the terahertz regime in much
the same way they are destroyed at high temperatures. The unlikelihood of these high
frequency results being correct will be discussed further in Chapter 5.

Experimental techniques that have been employed in finite-frequency scaling
investigations include coplanar waveguide (CPW) techniques [13], coaxial cables[133],
rectangular waveguides [91, 134] and free-space systems (though not finite-frequency)
[135]. In the studies reported below, a high resolution CPW technique is used. Both the
bandwidth and the frequency range investigated are extended beyond that report by En-
gel et al. Scaling is observed from close to d.c. up to 30 GHz, and the critical exponent
is determined within a 20 GHz bandwidth. This work replaces the work of Engel et al.
as the most extensive frequency dependent investigation conducted on scaling expo-

nents.
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3.2 High frequency devices and experimental tech-

niques

Details about sample fabrication, the CPW device used, and the experimental setup for
measuring the high frequency devices are discussed below. The device used in this
work consists of a CPW with a dielectric that contains a 2DES. The operating, design
and significant features of the device are discussed below. The fabrication and mounting
of the device is also discussed, followed by the experiment arrangement used to meas-

ure ultra-low temperature losses in the device.

3.2.1 Coplanar waveguide devices

The high frequency excitation of the 2DES is performed using metallic conductors, that
form a CPW, and are deposited on the surface of a sample containing the 2DES. A
CPW [136] is a structure in which all conductors supporting the propagation of a wave
are found within the same plane. The CPW structure consists of central conducting line
which is separated from two ground planes on either side by narrow gaps or slots as
shown in Fig. 3.3. These three conducting planes are placed on a dielectric slab with an
electric and a magnetic permittivity of &, and u,., respectively. An ideal CPW requires
ground planes of infinite width but in practice a width many times the wavelength of the
propagating wave is sufficient for a good CPW approximation. The electromagnetic
wave that propagates along the CPW consists of an electric field and a magnetic field
that oscillate in planes orthogonal to the direction of propagation, this is known as a

transverse electromagnetic mode or TEM mode.
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Figure 3.3. A structure of a conventional CPW which consists of three metallic conductors sepa-
rated by a distance s and placed on top of dielectric substrate. The conducting planes on either

side of the centre conductor are known as ground planes.

Though in practice a CPW transmission supports a quasi-TEM mode, the error made in
evaluating propagation as a pure TEM is negligible for microwave and lower millimetre
wave frequencies.

The structure of a conventional CPW permits the propagation of two fundamen-
tal modes; an even mode and an odd mode. The even mode is excited when the two
ground planes have the same electric potential but differ from that of the centre conduc-
tor. The odd mode, on the other hand, is excited when the potentials of the ground
planes have different signs but the same magnitude. The distribution lines of electric
and magnetic fields for these two modes are shown in Fig.3.4. The even mode is often
described as the symmetric mode while the odd mode is referred to as the anti-
symmetric mode; this originates from the symmetry in field lines evident in Fig. 3.4(a)
and the lack of it in Fig. 3.4(b). The field lines distribution in the even mode causes low
dispersion (or signal loss) of the propagating wave over a large range of frequencies

making it suitable for very broadband application and circuit designs.
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Figure 3.4. Electric (solid red) and magnetic (dashed blue line) field distribution of (a) the even
mode and (b) the odd mode of a CPW. The even mode is known as the symmetric mode and the
odd mode, the anti-symmetric mode. The mode excited depends on the relative potential of the

conducting planes.

This is the mode excited in the work presented below thus we shall henceforth only
concern ourselves with even mode propagation. We note that the quass TEM nature of
propagation attributed to the CPW stems from the existence of dispersion (even if min-
imal) inherent in CPW transmission. Dispersion, however, can be reduced by using a
substrate with a high dielectric constant thereby confining most of the field lines within
the substrate or having slot lines of very small widths.

In the devices presented here, the conducting planes constituting the CPW are
deposited on top of a GaAs substrate containing a 2DES. The 2DES itself lies about 70
nm below the surface. The propagating wave on top of the sample is therefore capaci-
tively coupled to the 2DES below as shown in Fig. 3.5(a). The real part of the conduc-
tivity of the 2DES Re[a,,] can therefore be modelled as a shunt resistance to ground as
shown in Fig. 3.5(b) where the 2DES absorbs some amount of power from the propa-

gating signal. This acts as an additiona loss incurred by the signal.
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(a) (b)

Figure 3.5. (a) A cross-section view of the electric field lines of the propagating wave coupling
with the 2DES system below. (b) A model of the circuit formed by the 2DES-CPW, where L,
C,, and Y are the inductance, the capacitance and the admittance per unit length of the 2DES-
CPW, respectively. Y, represent losses of the CPW due to the 2DES or power absorbed by the
2DES from the CPW.

Measuring the magnitude of this loss alows Re[o,,] of the 2DES to be calculated and
since g, IS dependent on magnetic field, Re[o,,] determined at different magnetic
fields will provide the magneto-conductivity data of the embedded 2DES.

The high magnetic field characteristics of the 2DES-CPW device are as fol-
lows. In the plateau region of the QHE, a,, of the 2DES vanishes to zero (as expected
in the QHE) and therefore the 2DES is effectively invisible or transparent to the propa-
gating wave above. In this region the 2DES is non-dissipative and thus losses in the
propagating signa due to the 2DES are extremely small and, as we shall see below,
negligible. As the centre of the LL is approached the 2DES becomes highly conductive
and dissipative, akin to a metallic sheet. At this point, the losses in the propagating sig-
nal due to the presence of the 2DES become relatively more pronounce and significant.

The characteristic impedance of the CPW is designed to be 50 Q in the plateau
region. This is achieved by considering the ratio between the width of the centre con-

ductor w and the width of the slot or gap s in the CPW design (see Fig. 3.3).
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Figure 3.6. Schematic of the two designs used for the 2DES-CPW, they include (a) a straight
centre conductor of length 5.5 mm and (b) a meandering centre conductor of length 20 mm. In
both designs s =30 um and w = 50 um and the pattern has whole dimensions 3 mm by

5.5 mm.

Matching the CPW to 50 () is done to suppress reflections at boundary between the
CPW and the external transmission lines, which is aso matched at 50 Q.

The CPW designs used in this work, consists of two patterns; a CPW with a
straight centre conductor (Fig. 3.6(a)) and a CPW with a meandering centre conductor
(Fig. 3.6(b)). The width and length of both devices are the same; 3 mm by 5.5 mm. The
width of the centre conductor, w = 50 um, and the width of the slot, s = 30 um, are
the same in both designs. The main difference between the two patterns is the length of
the centre conductor which determines the area of the 2DES excited. The straight CPW
has a centre conductor of length [ = 5.5 mm while the meandering line has [ = 20 mm.
The meandering line therefore probes an area just over 3.5 times greater than the
straight CPW. A longer meandering line increases the signal-to-noise ratio by increas-
ing the sensitivity of the signal to losses occurring in the 2DES. The disadvantages of a

meandering line include a pattern which is more difficult to fabricate and a complex
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geometry that is susceptible to resonances and cross coupling (cross talk) between par-
alel lengths of the meandering line.

Finally, we discuss the issue of the active or excited region of the 2DES. Alt-
hough the CPW sits on top of alarge surface area covering the 2DES, the active region
under excitation is the region between the centre conductor and the ground plane, i.e,
the gap or dot width s. All other areas are under zero or very weak excitation. The ef-
fective physical length of the 2DES is therefore ~ 30 um (the width of the gap). Charge
carriers within the 2DES move between the ground plane and centre conductor line.
Charge transport within the 2DES therefore occurs in the direction perpendicular to the
direction of the propagating wave and along the electric field lines. Fig. 3.7(a) indicates
the active length of the 2DES, which is largely located within the dot regions of the
CPW. Fig. 3.7(b) shows atop view of the active region excited beneath the CPW.

A look at the time varying electric field within the active region shows a field

which aternates with the frequency of the propagating wave (Fig. 3.8).

Active length of 2DES

(a) ;/ i, (b)

Active width of 2DES

Figure 3.7. The schematic in (a) shows the active region of the 2DES below the surface. The
highlighted region of the 2DES shows the active length of the 2DES excited. The figure in (b)
shows a top view of the active area excited by the CPW. The active width shown in (b) corre-
sponds to the length of the centre conductor. It is noted that the direction of electron transport in
the 2DES is aong the active length (and not the active width) shown in both (a) and (b).
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Figure 3.8. The time varying electric field of the even mode as the wave propagates along the
CPW.

In the context of a.c. hopping discussed in section 3.1.2, for a low frequency signa
where the period of the electric fields is much greater than the time required for charge
carriers to move between the centre conductor and the ground plane, electron transport
will possess d.c. characteristics. In other words, if the half cycle period of the applied
electric field is greater than the time it takes for an electron to move across the gap, the

2DES will behave asiif it is being excited by ad.c. signal.

3.2.2 Device and sample fabrication

As discussed in the previous section, the devices used for high frequency excitation of
the 2DES consists of conducting planes deposited on top of a dielectric where the die-
lectric in this case refers to the 2DES sample or the GaAs/AlGaAs heterostructure. In
addition to the CPW pattern shown in Fig. 3.6, the devices used in this work also in-

clude ohmic contacts placed on the edges of an etched mesa which defines the borders



117

of the 2DES. The complete design of the device pattern is shown in Fig. 3.9. The ohmic
contacts alow for simultaneous d.c measurements to be obtained while a.c. measure-
ments are taken using the CPW. The d.c. measurements are important as they verify the
a.c. results and also to identify the location of LLs observed in the a.c measurements.
The process involved in fabricating the devices is as follows. The surface of the
2DES sample is chemically etched to a depth of about 200 nm to reveal a square mesa
(raised surface) containing the 2DES as shown by the dashed line in Fig. 3.9. Ohmic
contacts formed from an aloy of Au/Ge/Ni are deposited (through thermal evaporation)
across the edge of the etched mesa after the contact regions have been lithographically
defined. The contacts are then annealed at 430 °C for 80 seconds in an atmosphere of
nitrogen. The pattern of the conducting planes of the CPW is lithographically defined
and then formed from a 30/350 nm layer of Ti/Au evaporated onto the surface of the

sample.

| Etched
2DES mesa

/

Ohmic contacts &

Ground planes

Centre conductor

Figure 3.9. Complete design of 2DES-CPW devices showing the ohmic contacts and the con-
ducting plane of the CPW.
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Figure 3.10. A schematic showing a cross-section of the 2DES-CPW device. The diagram de-
picts the various layers of the GaAs/AlGaAs heterostructure, the Ti/Au deposits that form the
conducting planes of the CPW, and the ohmic contacts formed from annealed Au/Ge/Ni deposits
on the edge of the etched mesa.

Figure 3.11. A photograph of the fabricated device which shows the CPW with ohmic contacts

on either side.
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Fig. 3.10 shows a cross-section of the sample after completion of the fabrication pro-
cess. The figure depicts al elements of the device including the various layers of the
GaAs/AlGaAs heterostructure. A photograph of the fabricated device is shown in Fig.
311

The device is mounted into a sample holder which consists of two coaxia con-
nectors attached to both sides of the device by copper strips as shown in Fig. 3.12.
These copper strips connect the grounding and centre conductor of the coaxia connect-
ors to the ground planes and centre conductor of the CPW using silver epoxy. This was
found to be the most effective method of delivering the high frequency signal to the de-

vice.

Figure 3.12. Sample mounted in a sample holder which consists of coaxial connectors attached

to the CPW via copper strips.



120

Figure 3.13. Pictures showing previous versions of 2DES-CPW mounts. (a) A coaxia cable di-
rectly attached the device with silver epoxy. (b) An attempt to connect the 2DES-CPW device

with a microstrip transmission line.

The most significant difficulty encountered in mounting the device originated
from establishing electrical contact with the externa transmission line. The high fre-
quency signal was delivered to the device through coaxial cables and establishing a
good coaxial to CPW transition was problematic; when cold, the eectrical contact,
which was made using a conductive silver epoxy, tended to shrink and break contact
with the device. Fig. 3.13 shows two previous version of the device mount that were

ultimately unsuitable due to the breaking of electrical contact when cooled down.

3.2.3 Experimental setup

The experimental setup is centred around a dilution fridge as the 2DES-CPW device has
to be cooled down to very low temperatures in order to observe the high frequency re-

sponse of the QHE. The devices in the following experiments are inserted into a
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*He/*He dilution fridge with a base temperature of < 14 mK and a12 T superconducting
magnet. The 2DES-CPW is thermally attached to the base plate of the fridge by a cop-
per rod that screws into the button of the device mount shown in Fig. 3.12. The device
is connected to the external circuit through coaxial cables. The cables come down from
the top of the dilution fridge and extend to the base plate where they are connected to
the device viathe coaxial connectors seenin Fig. 3.12.

Outside the fridge, the input of the 2DES-CPW is connected to a vector net-
work analyser (via coaxial cables) which is capable of generating very low noise and
high frequency signals up to 40 GHz. The output of the 2DES-CPW isfirst connected to
a 20 dB amplifier which in turn is connected back to the network analyser which dou-

bles both as the signal generator and detector.

Dilution Fridge

SMA coaxial cables

L Vector Network Analyser

@ OR[N
Beryllium oo O O oo
copper — =
comial @oono
cables

DooE) |
Amplifier

Figure 3.14. A schematic showing the experimental setup for the high frequency measurement of
2DES-CPW devices.
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The schematic of the setup is shown in Fig. 3.14.The view of the internal structure of
the dilution fridge is shown in Fig. 3.15. The coaxial cables from the network analyser
are connected to coaxial inputs found on top of the dilution fridge. Beryllium copper
coaxia cables then carry the signal all the way down to the base plate, beneath which

the sample holder is mounted. The mounted deviceis shown in see Fig. 3.14.

Beryllium
copper
cables

Coaxial

connectors

Base plate

Figure 3.15. A picture showing the internal structure of the dilution refrigerator. The beryllium
copper coaxial cables, coming from the top of the fridge, are connected between successive tem-
perature plates by coaxial connectors.
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The plates shown in Fig. 3.15 act as dividers for different temperature regions within
the dilution fridge. The beryllium copper cables are connected to successive tempera-
ture regions by coaxial connectors.

In operationa mode, high frequency or microwave signals are sent from the
network analyser, down the dilution fridge, and launched into the 2DES-CPW. During
CPW transmission, the signal interacts with and simultaneoudly probes the 2DES. The
output signal from the 2DES-CPW devices is then passed through a 20 dB amplifier to
amplify the output since the input or injected signal must be of very low power (more
on this below). The magnitude and the phase of the amplified signal are then measured
by the network analyser, and contain information on the conductivity of the 2DES. This
processis carried out over several frequencies per magnetic field point in order to gen-
erate a high frequency and magnetic field dependent response of the 2DES. The results

obtained are presented in the following section.

3.3 Frequency dependent measurementson 2DES-

CPW devices

Measurements taken on a standard GaAs/AlGaAs-based 2DES-CPW are reported be-
low. Results on microwave measurements carried out are presented and similarities be-
tween d.c. and a.c. measurements discussed. This is then followed by determination of
the scaling exponent x in the high frequency regime. Features of the high frequency

response of QHTsin the 2DES are a so discussed.
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3.3.1 Microwave measur ements

The results presented in this section are taken from a 2DES-CPW device fabricated
from a GaAg/AlGaAs heterostructure with a carrier density of n = 2.89 x 10! cm™2
and amobility of u = 380,000 cm?V~1s~! (measured at 100 mK). The deviceisincor-
porated into the setup described above (Fig. 3.14), where the 2DES-CPW is excited
with microwave frequencies of very low power. The power ratio of the received signal
to the transmitted signal, or the S,; parameter, is measured as a logarithmic scalar (in
decibels or dB)

Sz1 (dB) = 101log:(|P¢/Pol), (3.9)
where P, is the power of the signal |eaving the network analyser and P; is the power of

the transmitted signal received by the analyser. It should be noted from Eq. (3.9) that we

|

s,, (dB)

_40 i L | L | L | L | L |

B(T)

Figure 3.16. A plot showing the transmission characteristics of the 2DES-CPW at 100 MHz as a

function of magnetic field. The S, appearsto follow an inverted trace of the diagonal conductiv-

ity.
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are only interested in the magnitude of the S,, parameter.

Fig. 3.16 shows a plot of the magnetic field dependence of the S,; parameter
measured from the 2DES-CPW device excited with a signal of frequency 100 MHz.
The most striking observation from Fig. 3.16 is that it is of remarkable resemblance to
an inverted diagonal magneto-conductivity (o,.) trace of the QHE. It is aso noticed
that the trace hits an asymptotic value (illustrated by the dashed line in Fig. 3.16) which
appearsto be the zero conductivity value of the S, parameter.

Transmission is most impeded close to the zero field (O T) where the S,; pa
rameter is observed to possess its lowest value. This means that the 2DES, which has
been integrated into the transmission circuit, is most conductive at these field causing
significant losses to the power of the transmitted signal since (as shown in Fig. 3.5(b))
the 2DES acts as a shunt resistance or short circuit to ground. At higher fields however,
the 2DES becomes highly resistive and essentially acts as an open circuit allowing more
of the signal to be transmitted. At very high fields (from 2 T onwards in Fig. 3.16) the
2DES isfound to oscillate between states of zero conductivity, where the S, parameter
hits the dashed line, and a small finite conductivity observed as dipsin the S,;. S,; =
—4 dB therefore represents transmission losses due to al other parts of the circuit ex-
cept the 2DES since within this zero conductivity region the 2DES is effectively invisi-
ble to the circuit.

It is clear from Fig. 3.16 and the discussion above that the high frequency plot
reflects the QHE of the 2DES. In order to confirm this however, it is essential to com-
pare the high frequency responses to the conventional d.c. measurements of the 2DES.

Thisis done using the Ohmic contacts (see Fig. 3.9) on the same device.
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Figure 3.17. This figure shows a set of magnetic field dependent plots of the resistance of the
2DES at d.c. and the S,; measurements at high frequency. Good agreement is found between LL
peaks observed at d.c. and the dips observed at high frequency. A broadening of the LL dipsin

S,1 measurementsis observed as the frequency isincreased.
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Fig. 3.17 presents such a measurement. It is observed in thisfigure that LL peaks occur-
ring in the d.c. trace correspond to dips in the S,; measurements at high frequencies.
The dipsin the S,; parameter can therefore be conveniently matched with their corre-
sponding LL. Due to the nature of the excitation of the 2DES, only ., can be obtained
from the transmission measurements. The Hall data cannot be measured with this high
frequency setup. As explained in section 3.2.1, losses in the transmitted signal are due
to the movement of charged particles along the electric field lines (see Fig. 3.8), there-
fore S,; measurements reflect the diagonal conductivity. The use of Ohmic contacts,
which enable Hall data to be taken from the 2DES-CPW device, are therefore essential
in verifying the LLs observed in the transmission measurements.

The S,; value at the zero conductivity regions (i.e. the regions with the maxi-
mum value of S,,) is frequency dependent. It can be seen from Fig. 3.17 that the zero
conductivity value of the S,; for these regions decreases with increasing frequency,
startingat S,;,~ — 4 dB at 100 MHz t0 S,;~ — 54 dB at 20 GHz. This behaviour simply
reflects the frequency dependent lossy nature of the transmission lines, and especialy
losses due to the coaxia connectors that connect the beryllium copper coaxial cables
between the successive temperature plates within the dilution fridge (see Fig.3.15).

The plot in Fig. 3.18(a) shows the magnetic field response of the S, parameter
coveringtheN = 1l and N = 17T LLs of the 2DES-CPW. It is observed from this
plot that the transmission loss become significantly worse as the frequency is increased,
offsetting the zero conductivity asymptote accordingly. The frequency response of the
setup is measured at three different magnetic fieldsin the plot presented in Fig. 3.18(b).
Thethree fields considered in this plot are taken from the centreof theN = 1 | LL and

the two insulating zero conductivity regions on either side of the LL.
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Figure 3.18. (a) The magnetic field dependence of S,, coveringtheN = 1landN = 1T LLs
shown at different frequencies, where greater offsets are observed at higher frequencies. The

frequency responses of fields indicated by the dashed linesin (a) are plotted in (b).
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The precise field points considered in Fig. 3.18(b) are represented by the dashed lines
seen in Fig. 3.18(a). It is even clearer from Fig. 3.18(b) that the setup becomes increas-
ingly lossy as the frequency isincreased. It is important to appreciate, however, that the
majority of these losses are not due to the 2DES but other parts of the circuit. It is ob-
served in Fig. 3.18(b) that the frequency response is exactly the same for both of the
zero conductivity regions located on either side of the LL. In these zero conductivity
regions the 2DES is effectively invisible to the circuit. At the centre of the LL where the
conductivity is greatest, however, we notice both an offset and change in the frequency

response that do not match the zero conductivity responses.

SZl (2DES)(dB)

0 2 4 6 8 10 12 14 16 18 20
F (GH2)

Figure 3.19. The frequency response of the 2DES at the centre of the N = 1 | LL minus the
zero conductivity response. This plot represents the intrinsic response of the 2DES at its most

conductive.
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The losses intrinsic to the 2DES alone therefore are the differences between the two
curves. This difference is plotted in Fig. 3.19. This plot, which describes the frequency
response at the centreof theN = 1| LL (at B=3.36T), isobtained by subtracting the
zero conductivity response from the response at the centre of the LL. The S,; valuesin
this plot represent losses intrinsic only to the 2DES. Although the response in Fig. 3.19
applied only to the centre of the LL, the intrinsic 2DES responses for all fields are ob-
tained by the same method; subtracting the zero conductivity response from the raw S,
response.

We now consider the nature of the response in Fig. 3.19. According to Eq.
(3.8), one expects the 2DES to become increasingly lossy at higher frequencies (with a
linear dependence on a double log scale). Such a general trend is observed in Fig. 3.19
but we also note the observation of severa resonances of different magnitudes within
the spectrum. These resonances are believed to originate from frequency dependent in-
teractions between the 2DES and its environment. This includes the characteristic and
physical features of the substrate (such as physical size and permittivity) within which
the 2DES islocated and the characteristic of the CPW above the 2DES. The two strong-
est resonances in the frequency response appear to be related, through a fundamental
frequency that occurs at 7.5 GHz and a first harmonic at 15 GHz. It is found that the

fundamental frequency occurs when the length of the sample coincides with

Aefr _ ¢
T (3.10)

where 4. is the effective wavelength in the GaAs substrate with a dielectric constant
of &, = 12.9 and c is the speed of light. For a sample of length 5.5 mm, aresonant fre-

quency is expected at ~7.5 GHz according to Eq. (3.10). Thisisin good agreement with
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Fig. 3.19. Though Eg. (3.10) appears to account for the strongest resonances, the partic-
ular origins of the other resonance are difficult to pinpoint, it is however possible that
they must stem from some characteristic of the 2DES-CPW device and not due to in-

trinsic electron transport of the 2DES.

3.3.2 Conductivity of a 2DESin a high frequency network

As touched on above, the setup containing the 2DES-CPW device can be modelled by
an equivalent circuit to represent a two-port network with characteristic impedance
Zy = \[Lo/Co. The 2DES beneath the CPW appears as a load in the network with ad-
mittance Y as shown in Fig. 3.20. The two-port network shown in Fig. 3.20 represents a
transmission or ABCD matrix [137]. The relation between Y and S,, from transmission

line theory is given as [137]

2

Soy=——.
217 o4 zyy

(3.11)
The conductance of the 2DES, which isthered part of admittance (Re[Y] = G) isgiven

asG = 2Re[0,y] é where the factor 2 is due to existence of two dots linesin the CPW,

each of width w and length [, within which the 2DES is excited.

L
P 0 1 ©
ort Port
1 :> S T Y(ZDES) <:I ;r
(o, o)

Figure 3.20. A two-port network model of 2DES-CPW circuit with a characteristic impedance
Zy = /Ly /Cy- The 2DES appears as admittance Y in the model.
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Figure 3.21. Conductivity measured from the (intrinsic) S,; (;pgs) Of the 2DES-CPW device at

four different frequencies

Eq. (3.11) can then be rewritten as

Syy=———— (3.12)

w+ZoRe[Oxx]l |
In order to take into account the effect of frequency and the separation g be-
tween the conducting planes of the CPW and the 2DES below, two correction factors,

A(f) and B(g, Re[o,]), areintroduced such that

_ w+B
SZ 1 - .
w+B+(A+Zy)Re[0xx]l

(3.13)

These correction factors are computed through simulations carried out on a finite-

element electromagnetic field solver (HFSS).
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From Eq. (3.13), the conductivity of the 2DES can be calculated from the mag-
netic field response of the S,; parameter after the zero conductivity response has been
subtracted (the method described in Fig. 3.19). The results obtained from applying Eq.
(3.13) are shown in Fig 3.21 for four different frequencies. It can be observed from Fig.
3.21 that Eq. (3.13) has the visua effect of inverting the S,, response. The values ob-
tained from Fig. 3.21 are in good agreement with d.c. values obtained from the sample

investigated.

3.3.3 High resolution frequency measur ements

From the measurement techniques and analysis described in the sections above, a high
resolution description of the QHE can be obtained by combining the magnetic field re-
sponse of Re[o,,] with small increments in frequency. In practice, the data is taken as
follows: at a given magnetic field, frequencies between 10 MHz and 20 GHz are trans-
mitted through the 2DES-CPW circuit. The frequencies are sent one after the other (fi-
nite-frequency transmission) separated by a small time delay that takes into account the
distance travelled by the signal and the relaxation time of the interacting 2DES. The
interval in frequency between successive signas is ~ 40 MHz. The ratio between the
incident and transited signal is then measured by the analyser after which the data is
converted into conductivity using Eq. (3.13). All measurements are carried out at a tem-
perature below 100 mK where small deviations in the temperature of the system (+ 50
mK) have no significant effect on measured values and the QHE. This technique yields
avery high resolution description of the frequency dependent evolution of the QHE that

can be used in the investigation of the scaling of QHTSs.
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Figure 3.22. High resolution plot of the (normalized) diagonal conductivity of the QHE taken
from2 T to 12 T and from 10 MHz to 20 GHz, at intervals of 40 MHz.

The result of this measurement is shown in Fig. 3.22. The familiar outline of
0y, Of the QHE can be seen from the cross-section of the data. It is also very clear that
there is a broadening of the widths of the LL conductivity peaks, a central feature of the
scaling theory of QHTSs. Fig. 3.22 also shows both abrupt discontinuities, these features
originate from the resonances discussed in Fig. 3.19. The measurement range presented
inFig. 3.22 islimited to 20 GHz because of the onset of a significant drop in the signal-
to-noise ratio at higher frequencies. The noise at frequencies close to 20 GHz observed
in Fig. 3.22 is predominantly due to alimitation in the coaxial connectorsin the dilution
fridge (shown in Fig. 3.15) and also due to the deviation from the quasi-TEM approxi-

mation of the CPW at higher frequencies.
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B(T)

Figure 3.23. A top view (in the frequency-field plane) of the frequency dependence of the QHE
up to 30 GHz. Though the data between 20 GHz to 30 GHz contains a significant amount of

noise, the broadening of the LL conductivity peaksis observed within the entire frequency range.

Nevertheless, Fig. 3.23 presents measurements taken up to 30 GHz where the noise
within the system is extremely high. These results, however, prove that the broadening
of LL peaks are observable up to 30 GHz. Fig. 3.23 represents the largest scaling band-
width reported to date, a significant improvement on the 14 GHz bandwidth results re-
ported previoudly by Engel et al. [13].

Another peculiar feature of these high resolution measurements is the observa-
tion of a shoulder on the high field side of the N = 01 LL (between 6 T and 12 T)

prominent in Fig. 3.22.
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Figure 3.24. A plot illustrating the shoulder effect onthe N = 0 | LL. The traces have been off-
set for clarity.

Though the observation of this shouldering effect is first recognized in the results pre-
sented in Figs. 3.17 and 3.21, it is briefly discussed below.

The emergence of a strong shoulder at lower filling factors (or high fields),
clearly observed inthe N = 0 | LL, represents an asymmetry in the density of states.
This asymmetry originates from the formation of an impurity band in the energy spec-
trum due to the attractive scattering centres close to the 2DES [138]. Fig. 3.24, which
showsthe N = 0 | LL conductivity peak for various frequencies, provides clearer evi-
dence of the shouldering effect. The shape of the density of states is influenced by the

polarity and the amount of the scatterers present in the system.
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Figure 3.25. The asymmetry of a LL which depends on the nature of the scatterers within the
system. Systems dominated by either attractive scatterers or repulsive scatterers will have oppo-
site features in their asymmetry, while systems with equal amount of repulsive and attractive

scatterers maintain a symmetric density of states.

In the case of the scatterers being repulsive only, the asymmetry will be reversed, while
a symmetric density of states will exists if there are equal amounts of attractive and re-
pulsive scatterers [138]. The schematic representation of these three scenarios is shown
in Fig. 3.25 based on numerical solutions presented by Wegner [139] and discussed by
Aoki [138]. The conductivity measured from the system therefore is the result of the
overlap in states between the 2DES and the impurity band. As the frequency (or tem-
perature) is increased, the broadening of the LL peak, aswell as the impurity band peak,
reveals the asymmetry in the density of states. This effect has been previously observed

by several authors in both temperature and frequency dependent measurements of the
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QHE [91, 133, 140]. The asymmetry of the LL peaks is only pronounced at low filing
factors and almost non-existent at higher filling factors (low fields), and as aresult, LLs
at higher filling factors (higher than N = 0 | LL) can be investigated without effects

from the impurity band being a significant concern.

3.4 Finite-frequency scaling of QHTs in GaAgAlIGaAs

systems

We now return to the central focus of this work, the investigation of the criticality of
transitions between the insul ating states of the QHE, or QHTS, by evaluating the scaling
exponents of these transitions. In particular, we have concerned ourselves with a central
question of whether these transitions belong to the same universality class and whether
universality is contingent on any condition. In the previous chapter, the temperature de-
pendence of the QHTs was investigated. In this section, we perform a similar analysis

based on the frequency dependent measurements discussed above.

3.4.1 Power scalingof QHTs

The critical exponent k is measured from the full-width-at-half maximum (FWHM) of
the LL conductivity peak according to Eq. (3.7) restated below

AB ~ f¥, (3.14)

As discussed in section 3.1.1, the frequency regime is dominant when hf >

kgT. Inthisregime, frequency controls the phase breaking mechanism and therefore the

scaling process. The application of microwave signas to the 2DES-CPW device re-
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quires the injection of some amount of power. It is therefore important to stay within a
regime where the microwave power does not heat up the 2DES and reduce the domi-
nance of frequency within the system (i.e bring the systems out of the hf > kgT re-
gime). This is achieved by measuring the effect of varying powers of the microwave
signal on the conductivity of the 2DES. Since the width AB of the LL conductivity peak
is the essential characteristic being measured, this width is determined for different
powers. The results are shown below in Fig. 3.26. The figure shows the dependence of
AB on the power of the applied signal at three different frequencies. An increase in the
power of the applied signal is accompanied an increase in the temperature of the system.
We noticein Fig. 3.26 that initially there is no effect on the AB (i.e. the conductivity) of
the 2DES at lower powers. Within this saturated region, frequency will be the dominant
parameter of scaling. Thisis clearly observed in Fig. 3.26 by comparing AB for differ-
ent frequencies, it is noticed that AB increases with frequency within this regime as ex-
pected from Eq. (3.14). Thisindicates that hf is dominant in this regime. As the power
(and as aresult, the temperature) is increased, however, a power scaling effect does oc-
cur, AB begins to increase with power and it is observed that the curves of the discrete
frequencies shown begin to merge at higher signal power levels. This signifies a transi-
tion from a frequency dominated regime towards a temperature dominated regime
(hf = kgT). At even higher powers, all frequency curves will merge onto the same line
(observed by extrapolating the curves shown in Fig. 3.26). At this point a varying fre-
guency no longer has any influence on the 2DES and conductivity is predominantly de-
termined by the temperature parameter (kz T dominated regime).

In determining the scaling exponent k, it isimportant to keep the system within

the saturated regime.
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Figure 3.26. Plots showing the dependence of AB on microwave power at three different fre-

guencies for two LLs. The saturated regions (< 1nW) represent the frequency dependent regime

while the non-saturated region (>1nW) signify atransition to the temperature dependent regime.
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All results presented in this section are therefore carried out a P < 0.01 nW, well
within the frequency dominated regime. In performing the frequency scaling experi-
ments presented below, the temperature of the dilution fridge is initialy set to its base
temperature < 14 mK and the signal power kept within the saturated region. As the ex-
periment is carried out the temperature of the fridge increased dightly but remains be-
low 35 mK. The dlight increase is due to a small and unavoidable amount of heat origi-
nating from dissipation in the current carrying cables and thermal dissipation from the
2DES-CPW device itself (even within the saturated region). As discussed above (from
Fig. 3.26), however, this is not sufficiently high to influence the measurements being

taken.

3.4.2 Frequency dependent determination of the scaling expo-

nent K

In measuring k we will only considerthe N =11land N =1TLLs. TheN=0lLL s
not considered due to significant contribution to conductivity of the impurity band at
higher fields. Higher LLs are aso not considered in this analysis due to spin degenera-
cy. Fig. 3.27 shows a contour plot of the normalized conductivity of the N =1 and
N =2 LLs, it illustrates the extent of spin resolution and spin degeneracy of the LLs.
The N = 1 LLs are found to be spin resolved for the frequency range considered while
the N = 2 LLs are largely degenerate.

The dependence of the AB on frequency is more clearly presented in Fig. 3.28
which shows the normalized conductivity of the N =11 LL. The dashed line in the

figure denotes the FWHM.
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Figure 3.27. A contour plot of the frequency response of the 2DES illustrating the degree of spin
degeneracy of theN =1and N = 2 LLs.

The plots of AB vs. f forboth N =11 and N=1T LLs are shown in Fig.
3.29. The plots largely consist of two regions, a frequency insensitive region and a fre-
quency dependent region. The insensitive region, which isfound a f < 2 GHz, repre-
sents a saturated region where increases in frequency have negligible effect on the width
of the conductivity peak. It is noted that this saturated region also observed in al higher
LLs not considered below (for f < 2 GHz). Similar to the saturation regions observed
in the temperature dependent measurements discussed in Chapter 2 (Fig. 2.5), the ori-
gins of the saturated region observed here originate from the effect of the finite-size of

the device.
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Figure 3.28. A plot showing the dependence of AB on frequency forthe N = 1 | LL. The dashed
line represents the FWHM.

It isimportant to note that the transition between the saturation region and the frequency
dependent region in Fig. 3.29 is not atransition between kT and hf dominated regions
as observed in Fig. 3.26 since we are sure that the temperature plays no role for the mi-
crowave powers used in these measurements. The transition is therefore due to a size
effect of the device. The size effect is discussed in detail in Chapter 4.

Within the frequency dependent region we notice a somewhat abrupt dip repre-
senting a sudden constriction in the width of the conductivity peak. This constriction
stems from resonances within the frequency response discussed in section 3.3.1. The
scaling exponent « is determined from the linear fit of the frequency dependent region

according to Eq. (3.14).
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Figure 3.29. Frequency dependence of AB for the (@) N=1! and (b) N=11T LL. The solid
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In determining the fit the resonance dip is excluded. It is noted that the data excluded
does little to change the value of x which is measured to be k = 0.6 + 0.05 and
k=0.611+0.05for N=1landN =1 TLLS, respectively.

From previous discussions on the universal criticality of QHTS, we recall that
the critical value of k is expected to be = 0.42. The value of k measured here, however,
is more congistent with the non-universal values obtained from the temperature scaling
results presented in Chapter 2 where value of k tended to be higher than 0.42. Universa
transitions (as determined by the value of the scaling exponent) are not observed within
these frequency dependent measurements. These results further call into question the

universality theory of QHTSs.

3.5 Short-range disorder in finite-frequency scaling of

QHTs

A commonly suggested reason for the non-universality of critical exponents has been
the nature of the disorder experienced by the 2DES. Universdl criticality of the phase
transitions occurring in the QHE was initially investigated in 2DESs formed in In-
GaAdInP heterostructures. The major source of disorder within these systems originates
from the dloy scattering inherent in the InGaAs, which occur on an atomic length scale.
This makes InGaAs/InP 2DESs systems dominated by short-range scattering in contrast
to GaAgAlGaAs systems discussed so far in this work in which long-range scattering

dominates. Below, we discuss the formation of a short-range 2DES in a GaAs based
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heterostructure and determine the nature of criticality within this system by measuring

the scaling exponent k.

3.5.1 Induction of short-range disorder in GaAs based hetero-

structures

In the sample considered so far in this chapter, the 2DES is formed from a standard
GaAgAlGaAs heterostructure where the disorder with the system is predominantly
caused by random potentials fluctuations from ionized impurities in the donor layer.
The 2DES system is separated from these charged centres by a spacer layer, and this
cuts off the core of the Coulomb potential |eaving the 2DES to experience only the slow
varying tails of the potential. In addition, part of the potential is screened by the elec-
trons in the 2DES. This makes the nature of disorder within GaAs/AlGaAs systems
weak and long-ranged. This long-range nature of the potentia fluctuations greatly re-
duces scattering within the 2DES.

In order to change the nature of disorder in GaAs based heterostructures from
long-range to short-range, Al impurities were introduced into the GaAs layer during the
growth of the heterostructure to induce alloy scattering within the vicinity of the 2DES.
This causes electrons to scatter on much shorter length scales than in a long-range sys-
tem (similar to the scattering in InGaAs systems). The result is a Al,Ga.
A Al 23Gay67AS heterostructure where x is the concentration of impurity as a ratio of
Al to Ga atoms. The aloy scattering centres are randomly distributed within the GaAs
layer to produce scattering events that are independent and uncorrelated creating the

type of disorder described by Anderson [29].
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0.015 = ~0.985
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Figure 3.30. A schematic of the heterostructures of the long-range disorder and short-range dis-
order wafers. Both wafers are grown with similar characteristics with the exception the Al dop-
ing of the GaAs layer in the short-range wafer (and no such doping the long-range wafer).

In our samples the Al concentration was chosen to be x = 0.015 (or 1.5%) based on pre-
vious studies reported by Li et al. [141] where it was found that the amplitude of the
aloy potential fluctuations of such aratio was significantly larger than the background
potential fluctuations ensuring that scattering events are dominated by short-range dis-
order.

The schematic of both the long-range and short-ranged GaAs based heterostructures are
shown in Fig. 3.30. Using the long-range disorder wafer as a reference, the short-range
disorder wafer was grown in a similar manner with the exception of the Al doping of
the GaAs layer. The sample characteristics of the heterostructures are summarized in
Table 3.1. Both samples were grown with the same Si doping, spacer layer and had

comparable carrier concentration.
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TABLE 3.1. Characteristics for long-range (L-range) and short-range (S-range) samples.

e (ae TS AL (M (a0 -
e E:m‘3) (nm) X (%) ( 2 cm?yv. fe (ps)  7q (P Te/Tq
11
s)
L-range 2 20 0 2.89 3.8 14.78 1.14 13.0
S-range 2 20 1.5 2.57 1.09 4.15 0.76 55

Included in Table 3.1 are the classical lifetimes 7. and the quantum lifetimes 7,
of both heterostructures. As discussed in Chapter 2 (section 2.1.1), the classical lifetime
is predominantly a reflection of large angle scattering events, typica of short-range
scattering, occurring within the 2DES. The quantum life time on the other hand is
equally sensitive to all scattering events including small angle scattering events, typical
of long-range scattering systems. The Dingle plots used to evaluate the quantum life-
time determined from the amplitude of the SdH oscillations of the samples are shown in
Fig. 3.31 (see Chapter 2 for details on the Dingle method).

Theratio 7. /7, isaparameter that indicates the dominant scattering type; 7./,
tends towards unity for a system dominated by short-range (large angle) scattering,
while 7. /7, is typically between 10 and 100 for systems dominated by long-range
(small angle) scattering [26, 93, 95]. It is observed from Table 3.1 that Al impurity sig-
nificantly reduces the lifetime ratio towards unity suggesting a change in the nature of

disorder of the 2DES towards short-range scattering.
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Figure 3.31. Dingle plots for (a) the short-range sample and (b) the long-range sample,
determined from the SdH oscillations (shown as insets).

3.5.2 Microwave characteristics of short-range 2DES

Similar to the characteristics shown above for the long-range sample, the microwave
frequency characteristics of the short-range sample are briefly discussed.

Fig. 3.32 shows the magnetic field response of the S,, parameter measured at
different frequencies for the short range 2DES-CPW device. The figure also includes
the d.c. magnetoresistance taken from the Ohmic contacts which is used to identify the
LL peaksin the high frequency response. It is evident from the figure that the LL peaks
are in dignment with the dipsin the S, response confirming the location of the various
LLs. Similar to the long-range device measured above, we notice that the S,; response
rises to an asymptotic limit which determines the zero conductivity point of the short-
range system.

Fig. 3.33(a) snows the response of the short-range 2DES-CPW device at zero

magnetic field.
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Figure 3.32. The magnetic field response of the S,; parameter at different frequencies compared

with the d.c. magnetoresi stance for the short-range sample.
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Figure 3.33. (a) The zero field frequency response of the short range 2DES-CPW device and (b)

the intrinsic 2DES frequency response take from the maximum of the N = 1 | LL.
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Subtracting the frequency response at the zero conductivity point from the entire data
set yields the intrinsic S,; response of the 2DES shown in Fig. 3.33(b). In Fig. 3.33(a),
as expected, the response is more lossy at high frequencies due to the frequency de-
pendent losses of the transmission line. Fig. 3.33(b) on the other hand shows the intrin-
sic S,; response determined at the peak of the N =11 LL, and just like in the long-
range equivalent, we observed a moderately flat response which is only dightly lossy at
higher frequencies. A difference between the devices, however, is that the magnitude of
the resonances observed in the short-range device is smaller compared with that of the

long-range device.

Figure 3.34. High resolution frequency measurements of the short-range 2DES-CPW device
showing spinresolved N = 1 LLsand spin degenerate N = 2 LLs.
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The results of high resolution frequency measurement of the short-range device
Is shown in Fig.3.34 where four LLs can be observed, two from the degenerate LLs of
N = 2 LLsand two spin resolved LLsfromthe N = 1 LLs. Just as before, we shall on-
ly consider the spin resolved LLsof the N =1 LL. The N =0l LL isnot considered
here due to the same high field effect of the impurity band discussed above. We notice
from Fig. 3.34 that the LLs broaden with increasing frequency as expected and required
by the scaling theory analysis. We will now consider the nature of scaling within the

short-range device.

3.5.3 Determination of k of short-range sample

The scaling exponent is determined for a frequency range between 2 GHz to 20 GHz,
which excludes the size effects which occur below 2 GHz. As confirmation of the insig-
nificance of the temperature increase introduced from the microwave power, Fig. 3.35
shows the power scaling plot at 5 GHz for both N = 1 LLs considered. Measurements
are carried out at microwave powers of P < 0.01 nW and from Fig. 3.35 it is observed
that thisregion liesin the temperature independent part of the curve.

As has been employed in the previous analysis, the scaling exponent x is de-
termined from the width of the LL conductivity peaks. Fig. 3.36 illustrates the evolution
of the peak width throughout the frequency range investigated. The double log plots
from which « is determined for the N = 1 LLs are shown in Fig. 3.37. The critical ex-
ponent determined in the short-range device appears to be in good agreement with the
expected universal value of k ~ 0.42, where the solid line in the figure represents a

guidetotheeyefor k = 0.42.
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Figure 3.35. Power scaling of the N = 1 LLs at 5 GHz in the short-range 2DES-CPW device. It
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Thisis a considerable change in the gradient as compared to that obtained for the long-
range device of k¥ ~ 0 .6. These results strongly suggest a correlation between the nature
of criticality of QHTs and the nature of disorder in the 2DES, a relationship that will be
further developed in the next chapter. Just as with the temperature scaling results pre-
sented in the previous chapter, these results do not conclusively support the uncondi-
tional universality of QHTSs. The discrepancies between the results presented here and

the theory are tackled in the next chapter.

3.6 Conclusion

In this chapter we have discussed the effect of frequency on eectron transport within a
2DES and how it can be used to investigate QHTs through the concept of dynamic scal-
ing. These investigations on the criticality of QHTs have been performed using high
frequency measurement techniques applied to 2DES-CPW devices.

The measurements have been carried out on two different heterostructures that
are differentiated by the nature of disorder. In the GaAs/AlGaAs system, disorder origi-
nates from remote ionized impurities that are remnants of Si doping in the spacer layer.
Random fluctuations from these remote point charge sources only weakly perturb the
2DES and are classified as long-range disorder potentials. The other heterostructure in-
vestigated was an AlGaAS/AlGaAs heterostructure which included Al impurities in the
GaAs layers, changing the nature of disorder from long-range scattering to short-range
aloy scattering. Frequency dependent scaling analysis carried out on these heterostruc-
tures revedled a universal nature in the short-range device and a non-universal behav-

iour in the long-range device judged by the value of the scaling exponent expected from
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the scaling theory of QHTS. The result strongly supports the view that the nature of dis-
order within the system plays an integral part in the critical behaviour of QHTSs.

In the following chapter the discrepancies in the criticality of QHTs observed so
far, in both temperature and frequency, are explained using a quantum percolation mod-
e which offersinsightful answers to the seemly indecipherable collection of results pre-
sented so far on the scaling theory QHTSs.

Parts of this of this chapter has been published in Refs[142, 143].
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4. Theguantum percolation
modeé of the scaling theory of

QHTs

4.1. Introduction

In this chapter, the critical behaviour of QHTs occurring at the centre of LLsis explored
in the context of a quantum percolation theory. The scaling theory of the QHE is per-
haps the one of the most misunderstood aspect of plateau-to-plateau transitions but re-
mains crucia to the understanding of the QHE. The bulk of the confusion, apparent
from our discussion on the topic so far, revolves around the nature the universal critical-
ity of scaling exponents associated with QHTS.

The experimental results presented so far are summarized below. We are re-
minded that the main objective of this work is to investigate the nature of the critical
behaviour of the localization length exponent v as the centre of the LL is approached. It
is hypothesized by the scaling theory [6] that all QHTSs experienced in 2DESs are uni-
versal processes that belong to the same universality classes and as such v is a constant
value of v ~ 2.35 [11] in dl QHTSs. In the temperature dependent scaling analysis pre-
sented in Chapter 2, the universal criticality of v is measured through a composite ex-
ponent k = p/2v = 0.42 [79] which is determined close to the centre of the LL. The

temperature dependent results on x do not confirm the expected universal behaviour. In
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an dternative approach where v is determined directly within the tail regions of the
same LL and away from the centre, v is conclusively found to be in good agreement
with the universal theory. In addition, the relationship between x and the temperature
exponent p is not found to hold. The results presented for p suggests that the assump-
tion that p = 2 does not hold and it is proposed in section 2.4.2 that k may not have any
dependence on p, aresult that still maintainsthe value of k = 0.42 (i.eif k = 1/v). The
questions to be answered in the temperature dependent investigations are threefold, ()
why is universality conclusively found within the tail regions of the LL but inconclusive
around the centre of the same LL (an ambiguity backed by previous results [86]), (b)
though universality is not found in x (i.e. around the centre of the LL) why do some
studies observe universality in this exponent [12] while others do not [15], and (c) what
isthe correct relationship between k, p and v.

As regards to the frequency dependent investigates, the major question that
arises from the results presented is the question of the role of disorder in the universal
criticality of QHTs as it was observed that increasing the amount of disorder within a
2DES changes the nature of QHTs from a non-universal critical constant (in a long-
range system) towards the expected universal critical constant (in a short-range system).

In an attempt to answer these questions a percolation model is employed which
alows for various features and seemingly contradictory results obtained from the exper-
imental investigations of QHTs to be explained in a physically transparent and visually
intuitive manner, providing a unifying model of plateau-to-plateau transitions. The
model presented here is founded on the quantum mechanical interpretation of the classi-
cal theory of percolation. The model is based on interactions between clusters of elec-

trons that form within the bulk of the 2DES and how these interactions relate to tem-
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poral perturbations experienced by the system as the Femi level approaches the centre
of theLL.

Three crucia crossovers between the quantum and classical percolation are
identified that government the nature of criticality within QHTS, and associated with
these crossover are three different length scales. These crucial length scales dictate the
quantum-classical nature of plateau-to-plateau transitions which are manifested in the
various results discussed above.

The model presented below is the first attempt made in the literature to explain
the various seemingly contradictory features observed in the experimental determination
of the universal criticdity of QHTs using crossovers of various length scales to provide

aunified picture of plateau-to-plateau transitions.

4.2. The effect of Coulomb interaction and screening in

2DESs

The two main sources of disorder within the 2DES, we recall, are both associated with
charged impurities; the remote ionized impurities (or donors) which are separated from
the 2DES by the spacer layer, and the residual ion impurities located within the vicinity
of the 2DES (i.e. unintentional charged impurities present in the MBE vacuum during
the growth process). Residual ions are important in determining the zero field or Drude
mobility of the system. The classical or Drude mobility is less dependent on the remote
ions [144] but the long-range fluctuations from these remote ionized impurities however
have profound effects on the 2DES at high magnetic fields. These high field effects in-

fluenced by long-range fluctuations will be the focus of our present interest.
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Due to the separation imposed by the spacer layer, the potential fluctuations
from the remote ions felt by electrons in the 2DES tend to be smooth and slow varying
[145]. The long-range potential fluctuations are random fluctuation as they arise from
the randomly (uncorrelated) positioned impurities in the donor layer. The statistical
properties of the long-range potential can be easily evaluated in the two limiting cases
of the effective potential; at high densities of the 2DES and at the bare potentia or low
density limit of the 2DES. At a high electron density, the 2DES is able to effectively
screen the potential fluctuations by small redistributions in the electron density [146]
which suppresses or flattens out the external long-range fluctuations of the bare poten-
tial. Thisis known as linear screening [20] and the 2DES takes the form of a homoge-
nous electron fluid. At low electron densities however, non-linear screening [147] oc-
curs where the éectron density becomes strongly non-homogenous. In the non-linear
regime, due to the low density, the degree of eectron redistribution available is not suf-
ficient to compensate for potentia fluctuations and therefore the electron liquid is torn
apart into isolated clusters of electrons by the random potential [147, 148].

In a strong magnetic field a regime of inhomogeneity and non-linear screening
exists within the tail regions of the LL. Within the tails of the LL, the Fermi energy lies
in aregion where the electron density is low. Fig. 4.1(a) shows the bare potentia expe-
rience along a cross-section of the 2DES. Initially electrons start filling up from the bot-
toms of the potential wells formed by the bare potential up to the Fermi level. A top
view of Fig. 4.1(a) trandates into alandscape covered with pools or clusters of electrons
corresponding to the locations of the potential wells as shown in Fig. 4.1(b), everywhere

el se represents regions of high potential corresponding to hillsillustrated in Fig. 4.1(a).
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Figure 4.1. A schematic representing non-linear screening within the tail regions of the LL band.
(a) shows the bare potential generated by the remote impurities in the donor layer along a line
xy' in the plane of the 2DES. Electrons fill up from the bottom of the wells up to the Fermi lev-
. (b) illustrates the view of the 2DES at the current Fermi level. Filled wells appear as electron
clustersin the 2DES surface. (c) shows the position of the Fermi level within the LL band.

The average concentration of electrons in the system is determined by the position of
the Fermi level within the density of states of the LL band illustrated in Fig. 4.1(c). This
scenario is descriptive of a non-linear screening regime. It clear that due to their low
density, electrons are only able to partially screened by the bare potential, so that the
2DES exigts in an inhomogeneous state where the electron liquid is separated into iso-
lated electron clusters by regions of high potential caused by the long-range potential
fluctuations. As the filling factor isincreased (by varying the magnetic field for exam-
ple), the LL band increasingly fills up with electrons. Consequently, the wells in the

bare potential areincreasingly filled with electrons at higher electron densities.



163

(a) (c)

V(xy/) A N(E) A

(b)

Figure 4.2. As the carrier density increases local potentials well become filled with electrons,

and electron clusters merge to form clusters of larger sizes.

Adjacent wells begin to merge forming larger and larger clusters of eectrons. The Fer-
mi liquid begins to cover larger surface areas screening more of the bare potential. The
progression from the previous scenarioisillustrated in Fig. 4.2.

As this processes progresses, a point is reached where the electron density is
sufficiently high to compensate for the entirety of the bare potential. At this point we
have perfect screening and the system enters a linear screening regime. The effective
potential is completely flat. In this linear screening regime, which is illustrated in Fig.
4.3, the Femi level lies a the centre of the LL band where the electron density is the

highest.
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Figure 4.3. When the Fermi level is close to the centre of the LL, the 2DES acquires a density
modulation that compensates for bare potential, leading to a linear regime where the effect of

small fluctuationsin the potential isirrelevant.

From the above descriptions, we notice that when the filling factor is closeto a
half integer value (centre of the LL band), the system isin alinear screening regime and
the long-range potential fluctuations experienced in the plane of the 2DES is greatly
reduced. On the other hand, when the filling factor is close to an integer value, the sys-
tem enters a non-linear screening regime and potential fluctuations will be large.

Even though the system as a whole may be within the non-linear regime, dueto
electron-electron interaction small regions within the 2DES exist where the screening is
locally linear. From the present description of the Fermi liquid in the non-linear regime,
two regions are easily identified: regions of high electron density where the eectron
density is close to the bulk value ny = eB/h of the LL, and regions of depletion in

which no eectrons are found. The former is located at the bottom of a partially filled
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potential well, where the carrier concentration approaches the bulk value, n(r) = n,,
and the latter region represents the depleted high potentia hills which are without any
concentration of electrons, n(r) = 0. This picture describes a non-interacting view of
the 2DES at high fields where a sharp boundary (with respect to n(r)) will exist be-
tween the bulk and depleted regions. These two regions are sometimes referred to as
incompressible fluids [149], since they are completely filled to capacity with either elec-
trons or holes. An incompressible fluid (electrons or holes) describes as a fluid for
which al states within the bulk are occupied such that no adjustment or redistribution in
the density is possible to compensate for an external potential [150]. These regions are
naturally completely incapable of screening the bare potential .

The presence of electron-electron interaction however introduces a third region
which is found between the incompressible bulk region and the incompressible depleted
regions. In the case of interaction, Coulomb repulsion between electrons at the edge of
the incompressible fluid smears outs the sharp boundary. As one moves from the zero
density in the depleted region towards n, in the bulk, n(r) will gradualy grow from 0
to n, [151]. There therefore exists an intermediate region where the density varies be-
tween 0 and n, and not completely full. The intermediate region contains unoccupied
states such that compressihility is possible. When exposed to an external potential, elec-
trons within this compressible region are able to arrange themselves (redistribute) in a
manner which screens the bare potential [150], just asin a metal. The effective potential
within the compressible (or metallic) region is therefore flat and screening within this
regionislinear (local linear screening).

Fig. 4.4 illustrates the properties of the various regions discussed for a single

potential well found within the potential landscape of a 2DES.
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(a)

Figure 4.4. A schematic showing areas of local linear screening and non-linear screening. (a)
shows electrons in a potential where the local redistribution of electron density close to the Fer-
mi level is sufficient to attain linear screening, metallic region therefore is found at the Fermi
level. The bulk of the cluster remains non-linear. (b) shows a top view the electron cluster. (c)

shows the profile of the carrier density across the cluster.

Itisseenin Fig. 4.4(a) that statesin the middle of the well are all occupied, representing
the incompressible electron fluid. Screening is absent from in this region and the elec-
tron states bend according to the bare potential. At the boundary of the well however, a
compressible or metallic region exists with unoccupied states in its interior. Strong line-
ar screening in this region flattens out the bare potential by small redistributions of the
local electron density. As one moves further away from the centre of the well, a higher
potential or depleted region is found, this region represents an incompressible hole fluid

which aso bends in accordance with the bare potentia [150].
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(a)

L)

Figure 4.5. (a) The scenario of a network of completely isolated clusters. (b) The outermost edg-

es of these clusters merge to form a percolation network of the metallic region. F, E, and M de-

note the full, empty and metallic regions respectively.

Fig.4.4(b) illustrates the top view of the resulting electron cluster where the dark area
represents the incompressible electron fluid while the dotted region denotes the com-
pressible metallic region. Everywhere else (white space) can be considered to contain an
incompressible hole fluid. Fig.4.4(c) shows the corresponding density of states which is
constant in both the incompressible electron and hole regions but varies within the me-
tallic region between the bulk value and total depletion.

As the filling factor is increased, additiona electrons will be added to the
boundary of the electron cluster beginning with the lowest available states in the metal -
lic region, growing the clusters until they begin to merge forming a percolating network
of metallic regions as shown in Fig. 4.5. It clear that in case of isolated states (as shown
in Fig.4.5(a)) the dissipative flow of electronsis not possible. At percolation however,
when enough clusters have merge to form a path from one side of the system to the oth-
er, afinite amount of dissipative conduction through the metallic regions of the system

becomes possible. Thiswill be further discussed in the section on percolation below.
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The above analysis is essentially a description of the formation of edge states
[152] from the point of view of the non-linear screening of an external potential by the
2DES, as first considered by Beenakker [153] and Chang [150], and based on earlier
work by Efros [146-148, 154] on the effect of Coulomb interaction on the 2DES. This
was expanded on by Chklovskii, Shklovkii and Glazman [151] where these edge states
were described as electrostatic channels consisting of alternating strips of compressible
and impressible regions. Following these developments in the interaction of the 2DES,
Copper and Chalker applied the influence of Coulomb interaction to the percolating

network description of the QHE first proposed by Chalker and Coddington [155].

4.3. The percolation mode

In the previous section, the nature of the density of the 2DES was discussed in terms of
linear and non-linear screening. In the presence of long-range fluctuations from remote
ions, the 2DES breaks up into clusters of electrons. Below we expand this view of the
2DES by considering the percolation network model which emphasises the nature of
electron transport within the 2DES as the critical point at the centre of the LL is ap-
proached. Further, quantum tunnelling and inelastic scattering are introduced into the

model to form afuller picture of temperature/frequency dependent scaling of the QHTSs.

4.3.1. Classical percolation

The study of percolation, which originated in the mathematical anaysis of a fluid
spreading randomly through a non-uniform medium [156], is applicable to a variety of

physical phenomena and systems [157-161]. The problem can be defined as follows.
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Imagine alarge lattice in which each site can be in one of two states, occupied or empty.
The occupation of sites occur in a random manner and is defined by a single parameter
p, Where p is the probability of a site being occupied and (1 — p) is the probability of a
site being empty. p therefore represents the concentration of particles in the lattice. If
p = 0, all of the sites will be unoccupied but on the other hand if p is closeto unity then
amost all sites are occupied. As p increases the population of sites generally occur in a
way which leads to the formation of clusters. These emerging clusters will continue to
grow with increasing p with neighbouring clusters coalescing into larger clusters until at
a critica value p, an infinitely extending cluster is formed. This infinite cluster perco-
lates through the lattice, connecting one edge of the lattice to the other in the same way
water percolates through sand along an extending network of the fluid. Above the criti-
cal point p., only one such infinite cluster can exist [162]. The onset of an infinite clus-
ter, i.e. the percolation threshold, is sharply defined such that for p < p. no percolation
network exists but for p > p,. one percolation network exists. In this sense percolation,
which occurs at the critical point, is a phase transition and the behaviour of the system
close to the phase transitions can be described in the usual way by critical exponents
through a scaling theory [162]. The phase transition and the formation of the infinite
cluster is characterised by a divergence of the typicd cluster size as p,. is approached. A
consequence of this critical phenomenon isthe scaling relationship [162]

§p < Ip — o™, (4.1)
where &, represents the typical cluster radius and v,, is the critical exponent of the clus-

ter correlation length &,.
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Figure 4.6. A diagram illustrating the dual nature of electron motion within a strong magnetic
field which consists of an orbital motion of radius [, and slow drift of the guiding centres of long

equipotential lines of contours.

It is obvious that there is a striking resemblance between the percolation prob-
lem and the localization problem of 2DESs. The connection between percolation theory
and the localization-del ocalization transitions in electron systems was first addressed by
Ziman [163]. A quantitative semi-classical relationship between the two problems was
verified for a 2DES in an applied magnetic field by Trugman [164]. The basic picture
provided by the semi-classical analysis is as follows. In the presence of a strong mag-
netic field and a smooth random potential varying on a length scales larger than
Iy = W , the solution of Schrodinger equation in atwo-dimensional system produc-
es eigenstates with invariant or constant potential energies V(r) . Electrons are there-
fore restricted to move along trgectories in the 2DES that maintain a constant potential
[165]. The essentia simplifying feature of this result is that electrons possess two un-
correlated components of motion. The first is an orbital motion of frequency w, =
eB/m and radius [,. The second takes the form of a slow drift of the guiding centres of
these orbits along equipotential lines described by the background potential [54, 166] as

shownin Fig. 4.6.
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Figure 4.7. () Aniillustration of confining or localized contours. (b) A merger of contours form-

ing an infinite or extended equipotential on the outmost edges of previoudly isolated contours.

It was shown that these equipotential lines form enclosed contours for al ener-
gies except the equipotential at the critical percolating energy E. which coincides with
the centre of a LL band [164]. As aresult away from E,. (i.e. in the tail regions of LL
band) the enclosing contours confine the movement of electrons to its cluster (as shown
in Fig. 4.7(a)) where an electrons can only be displaced by drifting along its equipoten-
tial. Electrons are therefore effectively localized to a well-defined region within the
2DES. The microscopic formation of these clusters has already been discussed in detall
in the previous section. The important contribution to this picture isthe drift of electrons
aong equipotential lines within these clusters. As the centre of the LL band is ap-
proached the outmost equipotential of neighbouring clusters merge to form an ever ex-
tending path until at E. a single infinite equipotential line moving across the entire sys-
temisformed asseein Fig. 4.7(b).

There is no dissipative conductivity through the system below the percolation
threshold but at percolation a finite conductivity is achieved. The critical exponent from

Eq. (4.1) hasavalue of v, = 4/3 or 1.33 which is a well-known result for the solution
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of the percolation problem in two-dimensions [61, 162] and has been calculated exactly
[167]. This result however, does not take into account quantum tunnelling and interfer-
ence effects. The consequence of these effects on the percolation model is considered

below.

4.3.2. The quantum correction to semi-classical percolation

The classical description of percolation is only valid for vanishingly small magnetic
length [, since it assumes that there is no interference between equipotentia lines. This
assumption however breaks down as the percolation threshold or critical point is ap-
proached. Close to the centre of the LL band the outmost equipotential of neighbouring
clusters approach each other and just before they coaesce, when the distance between
them is less than [,, quantum tunnelling between adjacent clusters is possible through

minimain potential known as saddle points (see Fig. 4.8).

Figure 4.8. When two equipotential are within the magnetic length of each other a minimum in
potential occurs known as a saddle point. Electrons are able to quantum tunnel from one electron

cluster to another through these saddle points. The grey region represents areas of high potential.
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Figure 4.9. An illustration of the outmost equipotential of a group of clusters extended through
saddle point tunnelling close to the percolation threshold.

Aided by these saddle points, it is possible for dissipative conductivity to be achieved
before the percolation threshold is reached as depicted in Fig. 4.9. Electron transport
from one side of the system to the other is possible through conducting networks of
saddle points. In order to determine the localization length, this form of coherent
transport has to be taken into account [168]. Using this network model Chalker and
Coddington [71] were able to show that quantum tunnelling changes the critical expo-
nent from it classical value of v, = 4/3 to avalue of v = 7/3 or 2.33 and this quantum
critical value of the exponent coincides with the value expected in finite-size scaling
discussed throughout this work. This result suggests that there is a strong link between
saddle point tunnelling and the observation of quantum criticality of the scaling expo-
nent. This argument has been supported by some authors [169] where through numeri-
cal analysisit has been shown that the inclusion of saddle point tunnelling distinguishes
the two universality classes of quantum criticality v of classical criticality v,,. We de-
velop this idea further to provide a qualitative interpretation of the results obtained in

this work. It will be argued that the presence of quantum tunnelling is crucial to the ex-
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perimental observation of quantum criticality in 2DES as expected in the finite-size
scaling analysis of QHTs. A detailed treatment of the percolation model can be found in
arecent report by Kramer et al. [61].

Finally, experimental evidence on nonlinear screening and the percolation
through saddle point tunnel is briefly discussed. In recent times, advanced probing tech-
niques have been developed that for first time allow a more precise and detailed de-
scription of electron transport in a 2DES to be studied. By performing scanning probe
experiments on the surface of a 2DES in particular, the local electric potential at differ-
ent locations of the 2DES surface can be determined, and an image formed of the
charge distribution in the 2DES. These experiments, which have largely verified the
percolation and non-linear screening description of the 2DES, include scanning tunnel-
ling spectroscopy (STS) [170-172], photoluminescence [173], scanning force micro-
scope (SFM) [174], atomic force microscope (AFM) [175] imaging, surface charge ac-
cumulation [176] imaging, and single-electron transistor spectroscopy [177].

The most remarkable demonstration of percolation and non-linear screen how-
ever isin a STS experiment reported by Hashimoto et al. [178] illustrating a QHT in
real space of the N = 0 1 LL. Their main result is shown in Fig. 4.10. The local density
of states of the 2DES is probed using point by point measurements of the local deferen-
tial conductivity di/dV [179] through a stabilized tip. The map produced by the meas-
urements illustrate the non-linear and screened disorder potential of density of states
within the 2DES.

The bright areas in Fig. 4.10(a)-(g) represent areas of high electron concentra-
tion or clusters of incompressible eectron fluid region while dark and empty regions

represent areas of |ow electron concentration or incompressible hole regions.
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Figure 4.10. Taken from Hashimoto et al (2008). The local density of states is obtained by scan-
ning the surface of a 2DES around the lowest spin down Landau level. (a)-(b) shows electron
density in the localized regions on the low energy side of the Landau level, and (f) and (g) shows
the corresponding picture on the high energy side of the Landau level. (c)-(e) shows electron
density close to the percolation threshold. (h) indicates points on the Landau-level corresponding
to (a)-(g). And (j) shows the density image for the entire sample, while the marked rectangle is
the area shown for (a)-(g).

The compressible metallic regions can be seen around the edges of the electron clusters.
Fig. 4.10(h) shows the spatialy averaged dI/dV curve about the N = 0! LL and is
annotated with the locations of Figs. 4.10(a)-(g). Asthe critical point at the centre of the
LL is approached the electron clusters grow in size (illustrated in Fig.4.10(a) and (b))

and merge until at the percolation threshold located at the centre of the LL an extended
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path forms seen in Fig.4.10(d). As the Fermi energy moves away from the critical ener-
gy the process is reversed and the clusters decrease in size, this is shown in Fig.4.10(f)
and (g) by the green arrows which indicates shrinking features. It is noticed that identi-
cal features indicated by the white arrows in Figs. 4.10(a), (b) and 4.10(f), (g), appear
on both sides of the LL, verifying the consistency of the localized regions in the tails of
theLL.

Our main focus here isthe QHT itsdlf which occurs at the centre of the LL. As
the percolation threshold is approached saddle points between adjacent clusters are ob-
served. Examples of these quantum tunnelling points are indicated by the red and yel-
low arrows in Fig.4.10(c) and (€) where minima is potential between pairs of clusters
was measured.

This remarkable collection of scanned images validates the key features of the
percolation model and non-linear screening and crucialy demonstrates how they de-

scribe QHTSs.

4.3.3. Quantum correlation and coherence of 2DESs in the per-

colation model

A key feature in the percolation model is its emphasis on critical behaviour and linking
thisto a physical picture of randomly expanding clusters. In this section we define three
key length scales that form the basis of the analysis of QHTSs presented in the following
sections. These length scales determine the correlation and coherence of e ectrons with-

in the percolation model.
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As presented in the foregoing description of the electrons clusters, electrons
drift along equipotentia lines which make up these clusters. At very high magnetic
fields the width of these lines, which is determined by the magnetic length [, is vanish-
ingly small such that neighbouring equipotential do not inference with each other. The
equipotential lines can therefore be thought of as one-dimensional quantum wires each
belonging to a discrete eigenstate of energy.

Electrons on the outmost equipotential of a cluster will undergo the maximum
displacement within a given cluster. The localization length & of an electron, which is
simply a measure of the displacement of an electron wavefunction in space, will there-
fore be limited to the typical size of an electron cluster within the system, &,,. From the
classical description of percolation, as the critical point is approached &, increases and
as aresult ¢ also increases. However, as saddle points begin to form within the system
there is abreak between ¢ and &, since an extended quantum wire can be formed before
two adjacent clusters have merged by the linking of the outmost equipotentials of the
two clusters through a saddle point. The onset of saddle points allows a previously lo-
calized electron to escape its cluster by quantum tunnelling through a saddle point. In
this case ¢ will become greater than &,,. This split between the classical correlation
length and the quantum correlation length will become important in the discussions of
criticality given below. An electron drifting along an extended quantum wire will dif-
fuse throughout the system from one cluster to another until it arrives into a cluster for
which there exists no outgoing saddle point. As the percolation threshold is further ap-

proached it is obvious that the extended wire will eventually become an infinite equipo-
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tentia connecting one side of the system to the other (typical of percolation systems
discussed above).

Thus far the effect of temperature (or frequency) has not been considered. At
non-zero temperatures a new length scale, the phase coherence length, isintroduced into
the problem. Until the introduction of temperature, an electron remains in its eigenstate
of energy indefinitely (assuming negligible influence of other dephasing mechanisms).
As the temperature is increased an e ectron-phonon collision will transfer an eectron
from its quantum wire to another and therefore change its eigenstate. An electron will
therefore have a finite lifetime within a quantum wire corresponding to a phase coher-
ence length L,,. Aslong as L, of an electron is longer than the length of quantum wire
(i.e &) the effect of temperature is negligible but at high temperatures when L, < ¢,
electron localization is of no practical importance since a phonon will cause a transition
of an electron from one state to another states before the electron experiences any effect
of localization. That is, an electron will be transferred from one quantum wire to anoth-
er before it is able to fully explore its localized environment. The electron is therefore
unaware of its localization and does not exhibit any localized behaviour. This argument,
first present by Thouless [48] while considering transport in one-dimensional wires,
illustrates the destruction of localization in the system. The system now takes up the
characteristics of a bulk metal.

Phonon callisions, unlike saddle point tunnelling, are incoherent processes. At
zero temperature therefore, an el ectron maintains coherence (i.e. remainsin its quantum

wire) over the length scale & but at finite temperature coherence is limited to L,. A de-

creasing L,, reflects an increase in the inelastic scattering rate or relaxation mechanism
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and this is expected to occur with an increase in either temperature or frequency. The
temperature dependent relaxation mechanism is discussed in section 2.4.1 while relaxa-
tion due to a high frequency applied electric field is discussed in section 3.1.2. The im-
portant point to note here is that after diffusing a length L,,, a relaxation event occurs
(either induced by temperature of frequency) which transitions an electron from one

quantum wire to another.

4.4. Crossoversin criticality observed in the percolation

model

Using the length scales that describe correlation and quantum coherence in the 2DES, €&,
&p and L,,, we discuss how competition between these relevant lengths bring about var-

ious crossovers which determine the nature of criticality of QHTSs.

4.4.1. Phase coherencelength dependent crossover

In this section we consider the effect of a varying L, on nature of the criticality of
QHTs. In both temperature and frequency scaling, we recall that criticality was deter-
mined by measuring the FWHM width of the conductivity peak, through the expres-
SonsAB ~ TY/V?T and AB ~ f1/VZ» (see Eq. (3.6) and Eq. (3.7)), where z; is expected
tobez; = 2/p (such that k = 1/vz;) and z,, is predicted to be unity [6, 128]. Thein-
consistencies of the dynamic exponents z; and z,, have already been discussed in quite
some detail in sections 2.5.2 and 3.1.3 respectively and will not be repeated here. How-

ever, given that it is expected that z; = z,, = 1 [6], the controversy of the dynamical
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scaling exponent can, for the moment, be set aside by expressing the scaling functions
asAB ~TYV and AB ~ f'/V where a universal quantum critical value of v ~ 2.35 is
expected according to the scaling theory of QHTs [11]. The issue of the dynamic expo-
nent in the context of the percolation theory will be dealt with in detail in section 4.5.1
below.

In Egs. (3.4) and (3.5) from Chapter 3, T and f was related to L, where in-
creasing either T or f causes adecreasein L, dueto an increase in the rate of relaxation
or inelastic scattering and this process in turn causes an increase in AB. The measure-
ment of AB is determined from transport measurements at magnetic fields (or band of
energies) close to the centre of the LL. To interpret these measurements in terms of the
percolation model we therefore consider the nature of transport close to the percolation

threshold.

Figure 4.11. Close to the percolation threshold an extended wire is formed through a network of
saddle points. At very low temperatures an electron drifting allow such an extended wire will be

have phase coherence length which will be much longer than the sample size of the 2DES.
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Figure 4.12. As the temperature is increased L, becomes smaller than the sample size such that

an electron is scattered before it us able to diffuse through the entire length of the sample.

In such a scenario, at zero temperature, dissipative conductivity is solely achieved
through electron transport along quantum wires extended via saddle point tunnelling. At
finite but low temperatures (or frequency) and for any practica size of a 2DES, L, will
be very large compared with the sample size L, and will theoretically be extended be-
yond the boundaries of the system. This is illustrated in the schematic of Fig. 4.11
which shows an example of a quantum wire extended via saddle points. The length of
the wire, which (theoretically) extends beyond the boundaries of the system, represents
Ly > Lyp. An electron is able to drift from one side of the system to the other along the
extended wire generating a finite amount of dissipative conductivity which results in a
narrow width AB to be measured about the LL. It isimportant to note that the influence
of temperature or frequency is negligible in this scenario since an electron, on average,
is able to make it from one side of the system to the other before being scattered due to

therelatively large value of L,,.
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Figure 4.13. At very high temperatures when L, < ¢, an electron will be displaced through

scattering beforeit is able to escape its cluster via a saddle point.

As the temperature or frequency isincreased L, decreases but initialy this will
have no effect on dissipative conductivity (and as result AB) as long as the condition
Ly, > Lyp remains. AB therefore remains constant over this temperature/frequency
range and this explains the saturated region at low values of temperature/frequency ob-
served in many of the scaling results presented above. It should now be clear why the
saturated region was attributed to finite-size effects.

Once L, < L,p, conductivity will be influenced by scattering. In localized sys-
tems, scattering will aid conductivity by displacing electrons to clusters that would have
been otherwise isolated and remote from the electron. Though quantum tunnelling re-
mains dominate, conductivity no longer solely depends on the propagation of electrons
aong lengthy and interlinked networks of saddle points. Rather, electrons can be scat-
tered to great distances in-between tunnelling events. The coexistence of tunnelling and
scattering increases or enhances dissipative conductivity which will now increase with

decreasing L,,. AB in this regime therefore increases with temperature/frequency. This
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state of affairsis illustrated in the schematic of Fig. 4.12. It is important to note that
QHTs in this regime are quantum critical according to the Chalker and Coddington cri-
teria[61, 71, 169] since saddle point tunnelling is still present in the system. The critical
exponent measured within this regime will therefore be v ~ 2.35 according to both scal-
ing theory and the Chaker and Coddington quantum correction to classical percolation
[71]. It is also noted that in this regime ¢ is now limited by L, since an electron cannot
be coherent beyond L.

As Ly is decreased further, the condition Ly, ¢ <$p will be reached. In other
words, ¢ will be smaller than the typical cluster size and on average an electron will be
scattered before it is able to escape its cluster through a saddle point. Saddle point tun-
nelling will therefore cease to exist. This scenario is shown in Fig. 4.13. The absence of
quantum tunnelling will reduce the system to a purely classica fluid in arandom poten-
tial [162] exhibiting no quantum mechanically behaviour with respect to the percolation
model. In this regime, quantum criticality islost and the critical exponent measured for
the range of temperatures/frequencies over which this condition exists will be that of the
classica value of v, ~ 1.33 [164].

The preceding anaysis suggests that though quantum criticality existsin QHTs
it can be hidden at high temperatures or frequencies where it is replaced by a classical
critical transition. We therefore return to the long 2DES-CPW sample (investigated in
Chapter 3) where the high resolution technique that was developed to measure the criti-

cal exponent may allow the experimental observation of this proposed crossover.
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Figure 4.14. A high resolution frequency plot of the critical exponent reveals a quantum critical
regime at lower frequency and a classical percolation regime at higher frequencies that corre-

spond with their respective expected value of the critical exponent.

Since this transition is expected at low rather than higher frequencies, the frequency
parameter is swept at a high resolution from the saturated region a f = 0.1 GHz to
f =7 GHz, which marks the onset of the first resonance feature (see Fig. 3.29(a)). The
result from the determination of the critical exponent within this range and according to
AB ~ f1/V is shown in Fig. 4.14. Remarkable, varying L, a very small decrements re-
veals al three regimes discussed in the analysis above. The saturated regime, which has
aways been observed and attributed to the finite size of the sample L,p, is found at
lowest frequencies. As L, is gradualy decreased, the L, < L,, regime in entered
where the localization length exponent is determined to be v = 2.38 + 0.11 in accord-

ance with quantum criticality. As L, is further decreased the classical regime, L, < &,
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is reached where exponent is measured asv = 1.35 + 0.02 and in good agreement with
classical criticality.

The quantum critical regime therefore exists within the range L, > L, > &,.
Lack of consideration of the locations of the different regimes can lead the investigator
to measure quantum criticaity in the wrong region. In addition, not being able to distin-
guish between these regimes, which is very likely with a low resolution setup, will al-
most certainly cause one to fit a line across different regimes which should be consid-
ered separately. This perhaps explains why many reports, including some of the meas-
urements presented in thisthesis, fail to observe quantum criticality within 2DESs.

The chances of observing the quantum critical regime can be better enhanced
by reaching the L, = L,p, point sooner (in frequency) and/or delaying the arrival at the
L, =& point. In the case of the former, the duration (in frequency) of the saturated
regime is determined by the size of the sample. A large sample size allows L, = L,p to
occur a a much lower frequency, while a small sample size will push the L, = L),
point to a higher frequency, delaying the entrance into the quantum critical regime. As
indicated by the annotations in Fig. 4.14, increasing the sample size lowers the satura-
tion value of AB revealing more of the quantum critical regime whiles decreasing the
sample size erodes the quantum critical regime. It is aso obvious from Fig. 4.14 that at
smaller sample sizes, L,, becomes increasingly comparable to &, such that quantum
critical regime is barely observable. Though investigation on sample sizes have not been
conducted in the work presented in this thesis, experimental investigations on the effect
of sample size on conductivity have been reports by some authors [85, 87] where this

correlation is very clearly observed verifying the present analysis.
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In order to move the Ly, = $p point however, one needs to consider the influ-
ence of disorder within the system and thisis discussed in the following section.

The crossover observed in Fig. 4.14 is the first such crossover ever reported in
the literature for frequency scaling (published in Ref. [180]). A similar effect in the
temperature dependence of QHT slope dp,,, /dB however is suggested in a recent tem-

perature dependent work by Li et al. [101].

4.4.2. Disorder dependent crossover

The impact of disorder on the nature of criticality presents yet another crossover. Thisis
precisely the crossover observed in the combined results of Fig. 3.29 and Fig. 3.37
where by increasing the disorder within the system the nature of the critical exponent
was changed from a classical like behaviour for a broad range of frequencies to a quan-
tum critical behaviour for the same range of frequencies. Though the results presented
in Chapter 3 describe a one-step change in disorder (see Table. 3.1), a more systematic
investigation of disorder on criticality is presented in Ref [18] where the crossover is
even clearer. Both results show that an increase disorder will bring about quantum criti-
cality.

In terms of the percolation model, an increase in disorder, especialy of the form
introduced in the short-range 2DES-CPW, increases scattering within the vicinity of the
2DES. The introduction of static and randomly placed alloy impurities into the GaAs
layer, within which the 2DES is formed, will increase large angle collision and it is intu-

itive that thiswill invariably produce clusters that are more fragmented.
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Figure 4.15. As L,, decreases with increasing temperature or frequency, saddle point tunnelling
will be cut of in the long-range sample before the short-range sample due to the comparatively

different typical cluster sizesin the two types of samples.

As aresult, clusters will be of smaller sizes than would otherwise occur if these large
angle scattering events were not introduced. Increased disorder therefore means a de-
creasein &,.

As discussed above, the elimination of saddle point tunnelling when L, <&,
brings about classical criticality within a 2DES. A smaller value of &, will therefore
dlow for a quantum critical regime to persist for a wider range of tempera-
ture/frequency than alarge value of &,. Thisis exactly the outcome observed in Chapter
3 where by increasing the disorder within a predominantly long-range system one ar-
rives at system that appears to be quantum critical for a wide range of frequencies. Fig.
4.15 illustrates this effect showing two systems at the same temperature/frequency. As
the temperature/frequency is increased, it is clear that the long-range system enters the
L, < &, regime before the short-range system. The temperature/frequency will have to

be significantly increased for L, to become smaller than &, in the short-range system.
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Anincreasein disorder in the plot shown in Fig. 4.14 can be explained as a sig-
nificant movement of the L, = &, point to the left (towards higher frequencies). This
explains the popular view that short-range systems such as InGaAg/InP systems in gen-
eral are more suitable than long-range systems GaAs/AlGaAs system for the observa-

tion of quantum criticdity [11, 82].

4.4.3. Field dependent crossover

In the discussion on the nature of criticality so far, we have only considered the scenario
of a 2DES close to the percolation threshold. We now consider the nature of criticality
as one moves away from critical point and into the tail regions of the LL band. In the
classical view of percolation and according to §,, < |E — E.|~ "7, the typica cluster size
decreases as the system moves away from the critical energy (see Fig. 4.1-4.3). At re-
duced cluster sizes, similar to the disorder argument presented above, quantum criticali-
ty will persist over a longer range of scaling parameter. A departure from the disorder
argument however, isthat there is a decrease in carrier density as the Fermi level moves
away from the critical point, and as a result, there is a reduction in the availability of
saddle points. Thisisillustrated in Fig. 4.1and Fig. 4.2, where it is noticed that the dis-
tance between adjacent clusters is greater in Fig. 4.1 than in Fig. 4.2, therefore saddle
points are more likely to occur in the latter than the former. Nevertheless, an electron is
till able to move from one side of the system to other, evident in the finite but vanish-
ing amount of dissipative conductivity which exists in the tail regions of the LL band.
This of course is possible due to variable range hopping (VRH) which is the dominant

form of electron transport in this region (discussed in detail in sectionl1.3.4 and 2.2.1).
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Figure 4.16. (@) Saddle point tunnelling close to the percolation threshold. (b) VRH becomes

dominate as the Fermi energy moves away from the percolation threshold

Although the boundaries of electron clusters are increasing retreating from each other
such that the occurrence of saddle points are increasingly rare, the increasing distance
between the clustersis bridged by VRH (as shown in Fig. 4.16). VRH therefore, allows
an electron to maintain coherence [181] beyond the borders of its cluster, similar to sad-
dle point tunnelling. As discussed above, this is the requirement (L, > ¢;,) for the ob-
servation quantum critically, i.e. v ~ 2.3. For any value of |E — E.| however, at a high
enough temperature/frequency the condition L, > &, can be broken, such that an elec-
tron is no longer able to quantum coherently escape its cluster. Beyond this point, VRH
is destroyed and quantum transport is replaced by a classic activated-like transport. The
transition between classica and quantum transport within the tail regions of the LL is
discussed in detail by Shimshoni [181].

Owing to the fact that cluster sizes are smaller in the tail region of the LL than
close to the centre, and the maintenance of the quantum critical condition of L, > &,
through VRH, the quantum critical exponent is more easily observed in measurement
taken within the tail regions of the LL than close to the centre. In other words, for any

given temperature or frequency range, the condition L, > &, is more easily broken
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closer to the centre of the LL than further away since cluster size are large closer to the
centre of the LL.

This explains the temperature dependent scaling results in Chapter 2 where
within the same sample v was consistently found to be universal at v ~ 2.3 when de-
termined in the tail regions of the LL but non-universal and closer to the classical value
when determined through x which is dependent on electron transport close to the centre
of theLL.

This crossover between the classical percolation and quantum criticality isillus-
trated in Fig. 4.17. The dashed lines in the figure denote the quantum-classical crosso-
ver in criticality. The vertical axis represents a decreasing L, with increasing tempera-
ture of frequency. The schematic shows that quantum criticality persists at all fields
within the 2DES. At any finite field however, a sufficiently high temperature or fre-
quency will cause the system to transition into a classic system which will yield classi-
cal characterigtics for criticality. The extent to which this crossover is achieved depends
on how far the system is from the critical point. Close to the critical point the crossover
occurs at relatively low temperatures or frequencies, and far from the critical point the
crossover occurs at relatively high temperatures or frequencies due to the dependence of
clusterssizeon |B — B,|.

The diagram present in Fig. 4.17 isadirect product of the results presented here
on the dependencies of criticality and has not been derived from any previous work.
However, independently a similar schematic has been predicted by Kapitulnik et al.
[182] to explain superconductor-to-insulator transitions (SITs). In considering these
SITs Kapitulnik et al. employs a percolation framework to explain the critical behaviour

within these systems.
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Figure 4.17. A representation of classica and quantum criticality with respect to |B — B,| and

L. Moving across the dashed line represents a crossover between the two regimes.

An adopted feature from this work in Fig. 4.17 regards the nature of criticality at the
critical point B,.. Kapitulnik et al. argues that at alow enough temperature, any classical
percolation approach must break down and therefore at very low temperatures a system
at B isquantum critical and not classical and thisisillustrated in Fig,. 4.17. The simi-
larities between the Kapitulnik et al. result and that presented here is not surprising
since unifying models bases on the percolation method have been developed [183] that
successfully incorporated QHTS, classical percolation, superconductivity and metal-to-
insulator transitions into a framework where each of the classes mentioned above repre-

sent different but related phases of a 2DES.

4.5. Implications of the quantum percolation model on

scaling theory

From the percolation model of QHTSs and the criticality of these transitions described

above, we return to the finite-size scaling view of phase transition and suggest an inter-
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pretation based on the percolation analysis. We also discuss the implication of these

results on the limits of the scaling theory regarding the QHE.

4.5.1. Finite-size scaling inter pretation of the percolation result

Second order quantum phase transitions and how they relate to critical universal singu-
larities were discussed in sections 1.3.2 and 3.1.1. In section 1.3.2 it was discussed that
as the 2DES moves from the localized region and into the extended region a phase tran-
sition occurs. This phase transition is indicated by the divergence of an order parameter
as the critical point between the two phases is approached. The order parameter, which
represents the length over which the system maintains correlation, was identified in
QHTs to be the locdization length, ¢ « |E — E.|™" [6]. In the percolation model this
corresponds to the typical size of the clusters or &, since this is the length that defines
the explorerable region of the electron, i.e., electrons are locaized within &, such that
they are unaware of their environment beyond &,,. The cluster within which an electron
finds itself therefore defines the extent of order experienced by the electron. The excep-
tion to this however concerns electrons that exist at the outmost edges of clusters. Elec-
trons occupying these outmost equipotential states are able to explorer the system be-
yond individual clusters through saddle point tunnelling. According to Thouless [48], an
electron must travel a distance comparable to its localization length before it can be in-
fluenced by localization effects smply because unless it has travelled such a distance,
an electron cannot be aware of its localization. Relaxation mechanisms that occur on a
length scale less than ¢, therefore destroy localization. The outermost wavefunctions of

electrons clusters therefore provide a measure of whether localization has been de-
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stroyed or not, and this indication is given through saddle point tunnelling. In so far as
saddle point tunnelling persists, the coherence length of electron wavefunctions
throughout the entire system (not just at the edge) must be larger than &, and therefore
even though afew carriers at edges of cluster are extended through saddle point tunnel-
ling, majority of electrons are localized. In other words, the mgjority of electronswithin
the system will travel distances sufficient enough for localization effects to be felt. Un-
der these conditions the critical phenomena as described by finite-size scaling of QHTs
isvalid. The absence of saddle point tunnelling however marks the point where all elec-
trons within the system are unable to travel distances comparable to their cluster sizes
and as aresult, localization as required by finite-size scaling is destroyed.

In terms of the theory of critical phenomena, this can be understood as follows.
In section 3.1.1 the concept of dynamic scaling was introduced where critical phenome-
na was described not just as a divergence of the spatial order but also a divergence of
the temporal order. In other words, correlation must diverge both in space and in time.
If correlation is space refersto o correlation in time refers to the coherence time T, O,
as used above, the correlation length L. It is only in the case of simultaneous diver-
gence in both these parameters that criticality as defined by finite-size scaling (quantum
criticality) applies[6, 9]. In the case of QHTS, L, must be equal to or greater than &, as
the critical point the centre of the LL is approached. This condition is easily met at low
temperatures or frequencies where L, > &,,, however at higher temperatures or frequen-
cies this condition is invalid therefore quantum criticality is lost. In short, for quantum

criticality as defined by finite-size scaling to be experimentally observed, L, must stay
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head of &, every step of the way as the critical point is approached to satisfy the condi-
tion of asimultaneous divergence in time and space.

According to this analysis the exact nature of the divergence of L, does not
matter aslong as L, > &, this may suggest a reason why criticality appears not to de-
pend on the temperature scaling exponent p in the results presented in Chapter 2 and
explain the fortuitous but incorrect assumption of p = 2 (see results on current scaling
in section 2.4). We recall from the current scaling results in Chapter 2 that p depended
on disorder or mobility. The relation between x and v may therefore smply the relation
Kk = 1/v, rather than k = p/2v withp = 2, where L, oc T7P/2,

The discussion above highlights the difficulties in the experimental observation
of quantum criticality. Experimentally, inquiries of the critical nature of QHTs can only
be made by varying L. As has been presented in this thesis, this can be achieved using
anumber of phase breaking mechanisms (temperature, frequency or current scaling). In
each case it is realised that the experimental range of the phase breaking mechanism
may or may not vary L, across the crossover point discussed above. If the experimental
range chosen is at very low temperatures or frequenciesiit is clear that there is a greater
chance that L, will be varied within the quantum critical regime, ie, in the regime
where L, > &,. The value of the critical exponent determined within this experimental
range will be expected to be in agreement with the quantum critical value of v ~ 2.35.
On the other hand if the experimental range chosen is too high in temperature or fre-
quency, it likely that the regime probed will be the classical percolation regime (L, <
¢p) and the value of the critical exponents determined from such investigations will be

closer to that of the classical value of criticality of v = 1.35 [164].
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Investigations in criticality are further complicated if a low resolution of the
varying scaling parameter (temperature or frequency) is used. In this case it is possible
to go through the crossover point without experimentally observing it due to the low
density of data points. One could erroneoudly fit a linear line across the two regimes
such that the value of the critical exponent determined will be between the quantum and
classical values, i.e. 1.35 < v < 2.35. Without explicitly observing the crossover point,
an experimenta investigation of the critical nature of QHTSs runs the risk of misinter-
preting the value of the critical exponent. Thisis likely to be the reason why there are
numerous inconsistencies and disputes between previous measurements of scaling ex-
ponent especially since most of these investigations have been low resolution tempera-
ture based measurements.

It is noted that the crossover observed in Fig. 4.14 was only possible due to the
high resolution in the variation of the frequency parameter used and if one were reduce
the density of data point in the plot the crossover point will be indistinguishable. It is
therefore possible that the data present in Chapter 2 (Table 2.3 and Fig. 2.12) contains
both the classical and quantum regimes but due to lack of resolution in data, the crosso-
ver point cannot be observed. This explains why the values in Table 2.3 are mostly

found between 0.74 < k < 0.42,i.e.1.35 <v < 2.35giventhatk = 1/ v.

4.5.2. Thescalinglimit of QHTSs

We now discuss the possible limits of the scaling theory, this is directly linked to the
persistence of the QHE since the scaling theory of the QHTs can be view as a shift from

a quantum system towards a classical system in the high temperature or frequency limit.
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In the work presented here the scaling theory has been verified for a temperature range
up to about 1 K while frequency dependent scaling has been observed up to 30 GHz
(see Fig. 3.23). The QHE itsdlf has been experimentally observed at frequency as high
as 35 GHz [140]. Temperature measurement of the QHE in atypica GaAJAIGaAs sys-
tems on the other hand is only robust up to afew kelvin or the boiling point of liquid He
[184]. It is clear that investigations on scaling provided a way to study the evolution
from the quantum behaviour to the classical behaviour of 2DESs at high fields. It is
simpler to discuss this in terms of the scaling of the slope between plateau-to-plateau
transitions dp,,, /dB < T~* rather than AB o« T*. We recal that the transition slope
possess a similar scaling relationship and behaviour to that of the width of the LL peak
(see section 1.4.3) with the exception of the critical scaling exponent possessing a nega-
tive sign. The advantage of considering dp,, /dB isthat the classica limit of any sam-
ple can be obtained from the carrier concentration of the 2DES. In the classical Hall
effect, which occurs at very high temperatures, p,.,, is absent of plateaux and is simply a
linear dependence in magnetic field with gradient dp,, /dB = 1/en,,. At the other
extreme at very low temperatures, we have seen that scaling theory can be described
using the percolation model. The two extremes are put together in Fig. 4.18. Due to the
finite-size of any sample measured, a saturated regime is expected at the lowest temper-
atures. As the temperature is increased, the system enters into the quantum critical re-
gime and then crosses over into the classical percolation regime. At the highest tem-
peratures, which is the domain of the classical Hall effect, dp,, /dB is constant and in-
dependent of temperature. In between these two known areas is an unknown and unex-

plored regionillustrated in Fig. 4.18.
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Figure 4.18. An illustrative plot combining all experimentally observable regions of the QHE
determined from the results of the scaling of QHTs. The final evolution of the curve towards the
classical Hall effect is till unknown.

It is unclear if the classical percolation regime extended all the way to the classical Hall
regime or whether there exists any intermediate regimes. It of course makes no differ-
ence whether it is the temperature or the frequency that is being varied, therefore the
same analysis can be applied to frequency scaling. A recent publication by Ikebe et al.
[135] has reported observations of plateaux at terahertz frequencies using a Faraday ro-
tation technique [185] to measure the Hall component of conductivity. This report pro-
vokes a few questions. The experiment performed is not at finite-frequency but rather
the 2DES is probed by a band of frequencies with a terahertz bandwidth. Apart from the

mention of the experiment being conducted in the terahertz regime the exact bandwidth
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is not stated. Though the nature of scaling is unclear when a 2DES is probed simultane-
ously by aband of frequencies, it is reasonable to assume that the highest frequency will

determine L,,. Given that the characteristics of the GaAs/AlGaAs sample used in the

Ikebe et al. investigation (n,p, = 2.7 X 101*cm™2, y = 1.4 x 10°cm?/Vs) are compa-
rable to those reported on here, it is seems unlikely that the classical Hall limit will not
be reached before the terahertz regime. At terahertz frequencies (just as at room temper-
atures) localization should be completely destroyed. The most conservative extrapola-
tion of scaling results present in Chapter 3 suggests that all oscillations would be flat-
tened out before the terahertz regime is reached, which is of two orders of magnitudes
higher than the frequencies reported in Chapter 3.

The next chapter is devoted to investigating the final evolution of the scaling of
QHTstowards the classical Hall regime. In order to shed light on the unexplored region
shown in Fig. 4.18, scaling is attempted within the millimetre wave ranges covering a
frequency range between 75 GHz and 150 GHz. The millimetre wave regime is precise-
ly the region that sits between the gigahertz regime reported in Chapter 3 and the te-

rahertz regime.

4.6. Conclusion

In this chapter, we have formulated the scaling problem in terms of a percolation model
that seems to explain several observations made on the scaing of QHTs. We first dis-
cussed the microscopic view of a 2DES under a strong magnetic field and linked it to a
classical percolation effect. The Chalker-Coddington quantum correction [71] was in-

troduced to account for quantum effects.
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The use of percolation-like models in describing the QHTs were among the ear-
liest to be used to explain the phenomenon [54, 164, 165, 186-190] and has gained sig-
nificant consideration since the development of the much celebrated Chalker-
Coddington model. It has since been heavy supported by numerous experimental reports
(see references in section 4.3.2). Though this work provides a qualitative description
based on insights from the Chalker-Coddington model, many numerical [61, 74, 169,
183, 191, 192] and analytical works [193] exist in support of the model. The description
presented here has focused on providing an understanding of experimental observations
which hitherto have not been coherently explained.

Using the various crossover descriptions we have been able to answer the ques-
tions posed in the introduction. The key insight gained is that quantum criticality de-
pends on the maintenance of the localization effect and thisis only the case if an elec-
tron is able to coherently travel a distance greater than or comparable to the dimensions
of its confinement. It is only then that an electron can experience the effects of localiza-
tion. Relaxation mechanisms on length scales short than the cluster size will destroy
localization.

A summary of this chapter has been published as Ref. [180].
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5. Millimetre wave inter action
of two-dimensional electron

systems

5.1. Introduction

In this chapter an attempt is made to investigate QHTs in the millimetre wave frequency
regime. In previous results presented in this thesis, scaling of QHTs was shown to exist
at frequencies up to at least 30 GHz through the broadening of LL conductivity peak
(see Fig. 3.23). This work (Chapter 3) constitutes the largest bandwidth over which
QHTs have been studied. Single frequency measurements of the QHE however have
been carried at 35 GHz [140], this stands as the highest frequency at which the QHE has
been observed. Though the evidence of the QHE at terahertz frequencies was recently
report [135], the theory following from the percolation model provided above strongly
suggests that thisis unlikely in atypical GaAs/GaAs heterostructure, in fact, the extrap-
olation of the data provided in this thesis does not support any quantum behaviour at
frequencies close to or within the terahertz region. The compelling diagram presented in
Fig. 4.18 shows that at sufficiently high frequencies (or temperature) the classical Hall
regime should be established. The region between the upper microwave frequencies and
moving towards the classical Hall regime however is completely unexplored by any

previous experimental work and this is the region this chapter seeksto investigate.
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The 2DES will be excited by frequencies between 75 GHz and 110 GHz. Un-
like the guided wave setup used in Chapter 4, afree space system is adopted here. Using
parabolic mirrors, the generated high frequency radiation was focus onto 2DES samples
while is under a magnetic field and in a cryogenic environment. The frequency depend-
ent response of the 2DES was collected and then detected using a superheterodyne de-

tection technique.

5.2. Device and experimental technique

The device used in the millimetre wave measurements and the experimental setup is

discussed bel ow.

5.2.1. Deviceand sample characteristics

The devices used in following investigation consists of GaAs/AlGaAs samples with an
etched 11 mm by 11 mm mesa and eight ohmic contacts distributed along the edges of
the mesa (a schematic of the devices is shown in Fig. 5.1). The mesa is formed from
chemically etching of the sample to a depth of about 200 nm and the Ohmic contacts,
which are formed from a Au/Ge/Ni aloy, are processed in the usual way (see section
2.1.1 for further processing details). As with the 2DES-CPW device, the Ohmic con-
tacts allow for the d.c. characterisation of the sample. The transmission nature of the
free space setup only requires a clear and large surface area containing the 2DES on
which the high frequency radiation can be focused. Similar to considerations made in
the design of the 2DES-CPW device, the excitations of a large area of the 2DES should

provide greater sensitivity and increased signal-to-noise ratio.
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Figure 5.1. Diagram of devices used in millimetre wave experiment.

The size of the 2DES mesa is therefore chosen (11 mm x 11 mm) to maximize the ex-
citable area of the 2DES given the minimum beam width of the focused radiation.

The sample used is characterized by a dark carrier concentration of n = 2.26 x
10! cm? and mobility of 4 = 1.01 X 10° cm?V~1s~! determined at a temperature of
12 K. A d.c. plot of p,, and p,, measured using the Ohmic contacts is shown in Fig.

5.2

5.2.2. Experimental setup

The 2DESs were inserted into an optical access cryostat with a base temperature of 1.2
K, and with a split-pair magnet allowing a magnetic field perpendicular to the sampleto
be applied. The transmission setup consisted of a millimetre wave source which gener-

ated a signal with afrequency between 75 GHz and 110 GHz.
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Figure 5.2. D.c. magnetotransport characteristics of millimetre wave sample taken at 1.2 K.

The path of the generated signal is directed by parabolic mirrors which focuses the sig-
nal on to the surface of the 2DES through an optical widow of the cryostat. The milli-
metre wave radiation then interacts with the 2DES asiit is transmitted through the sam-
ple. The signa transmitted through the 2DES then exits the cryostat through another
optical window and is directed into areceiver. A schematic of the setup is shown in Fig.
53.

The signal generation unit is made up of a MMW extender which is essentially
asignal multiplier which multiplies the input signal by afactor of 6. The MMW extend-

er isonly operable within the range 75 GHz — 110 GHz.
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Figure 5.3. A schematic of the experimental setup showing the cryostat within which the sample

isinserted, the signal generating unit and the signal detection unit.

The input to the MMW extender is supplied by an RF (radio frequency) source capable
of generating frequencies within the required range of 12.5 GHz and 18.33 GHz (to ac-
cess the operable bandwidth of the MMW source). Attached to the output of MMW ex-
tender is a horn antenna which emits the RF signal into free space.

The detection unit of the RF setup consisted of a harmonic mixer, an RF source,
a 30 dB amplifier and a spectrum analyser. The harmonic mixer, which also operates
within the range 75 GHz — 110 GHz, takes in two inputs, the MMW RF signal (from
the output of the 2DES) and an RF source also known as the local oscillator or LO. The
mixer produces a single output known as the intermediate frequency or IF. The aim of

the detection unit is to receive and measure asignal that iswithin the MMW band.
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Figure 5.4. A schematic of the detection unit. The incoming MMW signal is downconverted by
the mixer to an intermediate signal of lower frequency that can be easily measured by the spec-

trum analyser.

Thisis not a straightforward task since most spectrum analysers used in measuring RF
signals operate up to a few gigahertz, and in particular, the spectrum analyser used in
this setup is able to measure frequencies up to 3 GHz. The detection unit therefore uses
a superheterodyne technique which downconverts the received MMW signal to 100
MHz, a frequency easily measured by the spectrum analyser. The mixer also contains a
harmonic generator which produces harmonics of the LO. The mixer used in the setup is
designed to select the 18th harmonic which is then mixer with the incoming MMW RF
signal. The output signa of this frequency multiplication consists of the sum frr +
18f.0 and the difference fzr — 18f,. The frequency of the local oscillator can there-
fore be chosen such that the difference component of the output results in the desired
intermediate frequency, fir = frr — 18f10. FoOr the frequency band under considera-
tion, the local oscillator was only required to be tuneable between approximately 4.2
GHz and 6.1 GHz. Due to the weak MMW RF signal received and the conversion loss

of the mixer, the IF signal is amplified by a 30 dB amplifier and then sent to the spec-



206

trum analyser which is tuned to detect an IF signal at 100 MHz. The processisillustrat-
edinFig. 5.4.

The significant quantity of interest in the measurement setup is the magnitude
of the received signa as measured by the spectrum analyser. At a certain MMW fre-
guency, a magnitude measurement of the received signal can be taken at each magnetic
field point to produce a magnetotransport measurement, and much like that presented in
Chapter 3, the magnitude measured can then be related to the conductivity of the 2DES
[134, 194].

Finally it is noted that the sample and the transmission path is shielded from
unwanted external radiation and signal reflections through the use of anechoic absorb-
ers. The widows of cryostat are also cover with black tape that is transparent to the

MMW signal but opague to visible light.

(a) (b)

Z

Figure 5.5. (@) An illustration of the TE;o mode in a rectangular waveguide where the direction
of the electric field (represented by the arrows) is perpendicular to the direction of propagation,
z (b) A time varying view of the electromagnetic wave propagating along the z axis.
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5.3. Transmission of an electromagnetic wave through a 2DES

The transmission configuration discussed in the experimental setup above is known as
the Faraday geometry or configuration. This configuration is characterised by a trans-
mission setup where the direction of the propagating electromagnetic wave is paralld to
the magnetic fied.

On the millimetre wave source, the emitting horn antenna is attached to a rec-
tangular waveguide (see Fig. 5.3). The mode of propagation of the emitted electromag-
netic wave is therefore a transverse electric TE;o mode [137]. In a TE mode, the electric
field is perpendicular to the direction of propagation E, = 0. The electric field pattern
of aTE;x modeisillustrated in Fig. 5.5. As seen from Fig. 5.5(a), the TE;o mode excites
an electric field in the direction of the shorter dimension of the rectangular waveguide

while thereis zero excitation in the direction of the longer dimension.

2DES
Einc Exx

Figure 5.6. The incident electric E;,,. excites electron transport within the 2DES under a magnet-
ic field which in turn induces an eectric field E;,4. The induced field is made up of electron
transport due to diagonal conductivity along the incident electric field and Hall conductivity per-

pendicular to the incident field.
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The wave emitted from the waveguide is transmitted through space and onto the
surface of the 2DES. The electromagnetic wave incident on the surface of the 2DES
induces e ectron transport in 2DES and in the presence of a magnetic field this produces
Hall and diagonal conductivities within the system [195]. The propagation of an elec-
tromagnetic wave through a plasma of free carriers in the presence of a magnetic field
has already been extensively studied [195, 196]. It can be shown that the electric field of
the induced electric field corresponds to oy, and a,,, and is proportional to the intensity
of the transmitted wave [195, 197]. Fig. 5.6 illustrates the transmission process. The
incident electric fidd E;,. induces an electric field E;,; which contains the diagonal

component of conductivity Ey, and Hall the component E,,, [134, 197].

(a) 2DES

Figure 5.7. (a) Anillustration of a crossed waveguide configuration which selects the Hall com-
ponent of the induced wave. (b) A configuration that selects the diagonal conductivity compo-
nent of the induced electric field.
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The component of interest can be selected by considering the orientation of the receiv-
ing waveguide attached the detection unit (the harmonic mixer). A crossed waveguide
configuration, shown in Fig. 5.7(a), will pick up the Hall component of the transmitted
wave. As was previously mentioned, the mode permitted in a rectangular waveguide
only alows dectric fields varying along the shorter dimension of the waveguide there-
forein the crossed configuration the diagonal conductivity component of the transmitted
wave will be rejected while the Hall component is alowed to propagate. Likewise in
Fig. 5.7(b), the Hall component will be rejected while the diagonal component is select-
ed for transmission. This method of excitation and detection was first used by Kuchar et
al. [134, 197] who employed this technique in measuring microwave induced conduc-
tivity in a2DES.

The amplitude of the received wave is precisely measured by a spectrum ana-
lyser using the heterodyne detection technique described in the previous sections. It is
therefore expected that the magnetic field dependence of the amplitude of the received

wave will follow the outline of the magneto-transport QHE if it present in the 2DES.

2.4. Millimetre wave experimental results

We discuss results obtained from the millimetre wave setup below. Just asin Chapter 3,
we focus on measuring the g, and set the orientation of the receiving waveguide ac-
cordingly (as described in Fig. 5.7(b)). It should be noted that the measurements present
below only investigate the QHE for afew frequencies spread across the accessible range
of frequencies. Unlike Chapter 3, these measurements do not present a high resolution

investigation. There are many difficulties in preserving the integrity of afree space sys-
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tem with a cryostat (undisturbed) for days at a time as required for such high resolution
measurements (such as those presented in Chapter 3).

In obtaining the measurements, the magnetic field is initial set to the desired
point, and a queued series of finite millimetre wave signals then transmitted through the
free space system, via the cryostat, one at atime. The power of the transmitted signal is
then measured at the receiver. The magnetic field is adjusted by a small increment and
the process repeated for the next field point.

To begin, areference of the magnetic field dependence of the transmitted signal
and the free space setup is taken. In these reference measurements, the setup is just as

described in Fig. 5.3 but without the 2DES samplein the cryostat.
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Figure 5.8. Reference measurements of the magnetic field dependence of the transmitted signal
at various freguencies. These measurements are taken in the absence of a 2DES in path of the

transmitted signal. The measurements have been offset in the y-axis for clarity.
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Figure 5.9. The field dependent reference measurement at 105 GHz.

Ideally, one would expect a constant dependence of the signal with magnetic field in the
absence of the 2DES. The reference signal also provides information about the back-
ground noise at various frequencies. Fig. 5.8 shows the signal measured by the receiver
at various frequencies within the investigated bandwidth. The plots have been offset on
the y-axis to clearly and independent show the field dependence of each frequency,
however, Fig. 5.9 shows the data of one of the frequencies. The noise floor of the sys-
tem was determined to be ~100 dB. Any change in the signal above this level is easily
detected by the setup. We also note that it isthe relative change in power of the received
signal as the magnetic field is swept that is of interest here and not the absolute value.
The reference measurements for all frequencies investigate were well above the noise

floor.
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Figure 5.10. Two plots showing the repeatability of the magnetic noise for (a) 75 GHz and (b) 90
GHz. Measurements are taken at three different sweeps of the magnetic field. Every sweep

shows the same features in the reference measurement.
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Figure 5.11. Fields dependent measurements of the transmitted signal with a 2DES at room tem-
peraturein its path.

From Fig. 5.8 and 5.9, one notices that the transmitted signal is fairly constant
for most frequencies but some frequencies exhibit some amount of “magnetic” noise.
The origin of this field dependent noise stems from the very slight mechanical move-
ments of the parabolic mirrors used in the setup. These mirrors unfortunate contain tiny
springs, used for positional adjustment, that appear to be influenced by stray magnetic
fields from the cryostat. These springs cannot be done away with without great difficul-
ty and sacrifice to signal strength. However, the magnetic noise is repeatable and can
therefore be subtracted or accounted for. The effect of the noise on results is therefore
greatly reduced (less than 0.5 dB). Fig. 5.10 shows the repeatability of the noise for two
of the worst affected frequencies, where three separate measurements show the same
features. It is noted that the features change when the parabolic mirrors are mechanical

disturbed (for example, unscrewing and re-screwing them), confirming that these fea-



214

tures are a consequence of the effect of a strong magnetic field on the parabolic mirrors.
For a consistent set of measurements, the setup remains untouched once fitted.

Another set of measurements are taken with the sample inserted into the cryo-
stat and in the path of the transmitted signal but 2DES is kept at room temperature. The
results are shown in Fig. 5.11. It is observed that the plots are similar to that those
shown in Fi.g 5.8 where there was no 2DES. This verifies that the 2DES is not active at
room temperatures.

As the temperature is cooled however, the effect of the QHE should be signifi-
cant in the field dependent measurements if localization has not been destroyed at mil-
limetre wave frequencies. Since g, is being probed in this setup, if the QHE is present,
one should notice oscillation in the transmitted signal that correspond to the location of
the LL peaks seen in Fig. 5.2 (as was observed in Chapter 3 for microwave frequen-
cies).

Fig. 5.12 shows the results obtain at 1.2 K. Fig. 5.12(a) shows the field depend-
ent measurement at 90 GHz. The signal absorption due to the cyclotron resonance of the
2DES is abserved in the plot. For a frequency f, the resonance is expected at the field
B = 2nfm* /e, where m” is the effect mass of an electron in GaAs and e is the charge
of an electron. At 90 GHz, the cyclotron resonance should occur a B = 0.215T when
the effect massistakento be m* = 0.067m,. Thisis good agreement with Fig. 5.12(a).
It should be noted however that the magnetic field is swept at intervals of 0.05 T and
therefore the location of the absorption can only be accurate to within this value. The
measurements for other frequencies are shown in Fig. 5.12(b) where the cyclotron reso-

nanceis observed for all frequencies.
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Figure 5.12. Measurements of the transmitted signal taken at 1.2 K for (a) 90 GHz and (b) the
frequency range investigated. A cyclotron absorption dip can be observed at all frequencies but
there is no observed evidence of the QHE, even at high magnetic fields.
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Figure 5.13. The field dependence of the transmitted signal after the background and mechanical
noise has been subtracted. The dashed line should the expected location of the cyclotron reso-

nance abortion. Thereis still no evidence of the QHE in these measurements.

The observation of the cyclotron resonance provides evidence of the interaction of the
2DES with the probing signal and confirms that the system is sensitive enough to detect
magnetic field dependent quantum effects within the 2DES. Crucialy, however, thereis
no evidence of any features of the QHE, even at very high fields. Fig. 5.13 shows the
results obtained when the background and mechanical noise have been subtracted from
the measurements taken. The dashed line in Fig. 5.13 denotes the expected location of
the cyclotron absorption dips in the transmitted signal. It is estimated that sensitivity of
the system is within about 0.5 dB or ~10% of the power loss. Even so, the results clear-
ly show that the system is sensitive enough to observe the cyclotron resonance. The lack
of any QHE features therefore confirms the discussion on the limit of the scaling theory

of the QHE discussed in section 4.5.2. At millimetre wave frequencies and above, one
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expects localization to be completely destroyed and thus one does not expect to observe
any feature of the QHE.

Finally, the effect of an increase in carrier concentration is presented in Fig.
5.14, where two measurements are taken, one under illumination and the other in the
dark. Theincrease in carrier concentration has no effect on the observation of the fea-
ture of the QHE at high fields but we observe greater absorption of the transmitted sig-
nal by the cyclotron resonance of the 2DES due to an increased number of electrons

interacting with the transmitted signal.
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Figure 5.14. Measurements of the transmitted signal taken under illumination and in the dark at

two frequencies.



219

5.5. Discussion and conclusion

In this chapter we have investigated the existence of the QHE at millimetre wave fre-
guencies where a free space setup was used to probe the 2DES. Through a series of
measurements, interaction between the 2DES and the transmitted electromagnetic signal
is observed. The QHE, on the other hand, is not observed within the measurements tak-
en. This strongly suggests that the QHE cannot be maintained at millimetre wave fre-
quency just as one would expect a breakdown of the QHE at room temperature. Any
possible observation of the QHE at terahertz frequencies, as suggested by some studies
[135], istherefore unlikely. The results presented in Chapter 3 measures the QHE up to
30 GHz. It is observed from this data (shown in Fig. 3.32) that as the frequency of in-
teraction increases, the broadening of LL peaks worsens. This is due to the increased
scattering rate implied by a reducing phase coherence length as the frequency is in-
creased (see sections 1.4.3 and 3.1.1). The increased scattering rate smears out the well-
defined energy levelsor LLs that exist at T, f = 0, reverting transport within the 2DES
to that observed in the classical Hall effect. The limit of the QHE was also probed by
Kuchar et al. [134, 197] where at 33 GHz it was also clear that the QHE could not sur-
vive an increase in frequency of an order of magnitude.

All three investigates discussed in this section, Chapter 4 (up to 30 GHz), Ku-
char et al. [134, 197] (33 GHz) and Ikebe et al. [135] (terahertz regime), used
GaAs/AlGaAs heterostructures samples of comparable characteristics. Even though the
probing method is dightly different in each of these three cases, the underlining physic
should produce the same (consistent) result in these investigate. The study of the scaling

of QHTs discussed in previous chapters, as a by-product, have made easier to under-
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stand the limits of the QHE. The most transparent analysis lies in the scaling theory of
the slope of plateau-to-plateau transitions (of the Hall resistance) presented in section
4.5.2. Scaling can be abserved in the gradual decreasing of the slope plateau-to-plateau
transitions as the temperature or frequency is increased. In this analysis, two limits or
extremes are evident; the absolute zero temperature limit and the classical limit. The
absolute zero temperature limit produces a transition slope with a gradient tending to
infinity (for systems of very large sizes). On the other hand, we know that in the classi-
cal limit (where no quantum phenomena can be maintained) the slope is simply the gra-
dient of classical Hall resistance which has the precise value of 1/en,,. As one in-
creases the temperature or the frequency of the applied electric field, the gradient of the
slope gradually changes from infinity to 1/en,, where at 1/en,p the classical limit, at
room temperature for example, is reached. This process is determined by the scattering
mechanism being controlled by the temperature or frequency. Therefore if one wish to
observe the QHE at higher and higher temperatures and frequencies, one has to produce
samples with alower 1/en, value, in other words, one has to increase the carrier con-
centration. Consequently, according to the scaling analysis, increasing the carrier con-
centration will push the classical limit to higher temperature or frequencies. This seem-
ingly simple remedy however produces a challenging experimental difficulty. At higher
carrier concentrations, the LLs of the QHE are pushed to higher magnetic fields since an
increase in n,p increase the energy spacing between LLs or the cyclotron gap Aw.
These higher field LLs can only be reached at great (technological) expense. Another
challenge is faced when one realises that the carrier concentrations required for the
QHE to be observed at higher temperatures or frequencies is beyond the single subband

capacity of atypica GaAs heterostructure.
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These two difficulties were solved in a recent investigation [198] where the
QHE was observed at room temperature and at the extraordinarily high field of 45 T
using a graphene sample. Graphene devices allow for very high carrier concentrations
within a single subband. The high magnetic field on the other hand was achieved using
a45 T hybrid magnet.

In practical terms, the analysis of the scaling theory of QHTS reveas what one
must do in order to experimentally observe the QHE effect, and this requires the manip-
ulation of the magnetic field and the carrier concentration. In theory however, the pro-
cess of scaling, discussed throughout this thesis, is simply the varying of the phase co-
herence length or the scattering parameter. If the energy separation between LLs can be
sufficiently increased, then a higher activation energy will be required to scatter elec-
trons from one LL band to other and therefore at greater energy gaps these discrete
quantum states can be distinguishable and maintained at room temperature. The energy
separation is achieved through the magnetic field and the carrier concentration since the
degeneracy of each LL isfield dependent. It is also noted that a large electron lifetime
(in other words, a high mobility) produces narrower disorder broadening of LLs and
therefore assists in distinguishing between adjacent LLs at high temperatures.

The conclusion of the above analysisis that is a typical GaAs heterostructure,
the required energy separation cannot be achieved at room temperatures or frequencies
at or beyond the millimetre wave regime, without the aid of very high fields and carrier
concentration. Therefore for the typical samples used here (and the other investigation
referred to above), one would not expect to observed the QHE in the millimetre wave or

terahertz regime.
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6. Summary and conclusion

This thesis investigates the nature of the critical phenomena associated with QHTSs
which occur between plateau-to-plateau transitions in the QHE in 2DESs. Theoretically,
it has been suggested that these QHTS, which are expected to be quantum phase transi-
tions, exhibits certain universal behaviours that can be observed by investigating the
charge transport of 2DESs.

Previous experimental studies of on the nature and universality of QHTs have
produced results that are both contradictory to the expected theoretical behaviour and
inconsistent among experimental results. At the heart of the dispute is the universaity
of the critical exponents associated with QHTSs, which according to critical phenomena
theory, should be universal constants which are independent of the specific microscopic
details of the 2DES under investigation.

This thesis independently investigates all three proposed critical exponents, v,
K, and p, in order to reveal the nature of their universality. The critical exponents are
suggested to be related through the relation ¥ = p/2v. The exponents are studied using
afinite-size scaling analysis.

In Chapter 2, using experimental techniques based on the variation of various
temperatures associated with the 2DES, it is observed that the exponents v is universal
within al samples studied, however, the exponents k and p were not found to be uni-
versal across al sample investigated. The value of k tended to be higher than expected
and the exponent p exhibited dependence on the mobility of the sample, the opposite of

the nature of universality which is precisely the independence of critical exponents on
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the microscopic details of the 2DES. An argument is present in Chapter 2 to support the
disorder dependence of p which is unsurprising if one considers the dephasing mecha-
nisms within the 2DES.

In Chapter 3, a high resolution frequency based technique is used to further the
investigations in the critical nature of QHTSs. In this chapter, the scaling anaysisis stud-
ies by varying the frequency of the applied electric field driving electron transport with-
in the 2DES. In addition, the influence of disorder on the nature of QHTs is studied. It
has previously been suggested that by increasing the disorder within a 2DES the nature
of criticality approaches the expected universal behaviour. This was confirmed by the
results presented in this chapter. It was found that increasing the disorder within the
2DES yields a universal exponent while a less disordered system produces a critical
value inconsistent with theoretical predictions.

In Chapter 4, the vast collection of results including the peculiar features ob-
served in the results present in the two preceding chapters are explained using an intui-
tive and transparent quantum percolation model which had previously been used in ex-
plain certain features attributed to the QHE in 2DESs. This chapter attempts to explain
why the exponent v is consistently measured to be universal within the tail regionsaLL
band but the measured value of x within the same sample and LL does not exhibit the
universal behaviour. It also explains the reason and nature of the influence of disorder
on the nature of criticality. It explains the dependence of p on disorder and finaly it
also suggests why the observation of the quantum criticality, as expected by theoretical
predictions, is so difficult to observe experimentally. Underpinning these explanations
is the competition between three key length scales, the localization length &, the typical

cluster size of electrons within a 2DES ¢,, and the phase coherence length L,,. Crosso-
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vers between these length scales define transitions between the universal and the non-
universal behaviour of QHTs in 2DESs. Varying the temperature or frequency of the
applied electric field of the 2DES changes L,. The expected universa quantum critical
behaviour persistsaslong as L, > ¢, on the other hand a classical critical behaviour is
observed when L, < ¢,. Mistakes in the experimental observation of the universal
(quantum critical) behaviour occur when the investigator does not consider the distinc-
tion between these two regimes.

An interesting question arises from the analysis of the scaling theory of QHTSs.
What defines the limit of the observation of the QHE and how high in frequency (or
temperature) can the QHE be observed? Thisis investigated in Chapter 5 using a milli-
metre wave free space transmission setup (between 75 GHz to 110 GHz). Just as in
temperature, one anticipates the existence an upper limit to the frequency at which the
QHE can be observed but arecent result suggested that the QHE can be observed within
the terahertz regime (0.3 to 3 THZz). The millimetre wave results however did not find
any evidence of the QHE at such high frequencies. It is suggested that at such high fre-
quencies the separation between LLs are smeared out (as expected for high tempera-
tures).

The work presented in this thesis deals with some novel areas not previous in-
vestigated in scaling theory of QHTSs. These investigations are the first to independently
study all scaling exponents related to QHTs in a single work and on the same sample.
Though such a study is required in order to coherently explain the disagreements be-

tween scaling exponents, it had hitherto not be investigated.
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The result on the frequency based measurements presented here is the largest
bandwidth of frequencies over which the scaling theory has been observed and investi-
gated (between 100 MHz and 30 GHz).

The high resolution of the results present in Chapter 3 is aso the most detailed
work published in literature, with a resolution of an order of magnitude higher than the
next detailed investigation.

The investigation of a short-range disordered system using a high frequency
electromagnetic wave isthe first ever presented in the literature.

The experimental observation of the frequency dependent crossover in criticali-
ty in a2DES presented in Chapter 4 isfirst to be published in the literature.

And finally, the results in Chapter 5 are the first attempts to probe the millime-

tre wave regime for the observation of the QHE.
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