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Abstract

The nature of the transitions that occur between the quantized plateaux observed in the

quantum Hall effect (QHE) have been classified as second order quantum phase transi-

tions. These transitions occur between the localized and the extended states found with-

in a Landau level band of energies. The theory of the critical phenomena associated

with these quantum Hall transitions (QHTs) predicts a universal behaviour irrespective

of any microscopic detail of the two-dimensional system (2DES) within which they are

observed such as carrier concentration or mobility. This proposed universality of QHTs

can be verified by measuring the value of certain critical exponents governing the tran-

sitions. If valid, these critical exponents should be measured as a universal constant in

all instances.

This thesis investigates the universality of QHTs using a finite-size scaling the-

ory and attempts to address disagreements that exist in the literature on the critical ex-

ponents associated with QHTs. The scaling theory of QHTs presented here involves

experimental studies based on varying either the temperature of the 2DES or the fre-

quency of the applied electric field.

It was found that the critical exponents of QHTs are not universal across all sys-

tems investigated. It is shown that changing the nature of disorder within the system

influences the value of the critical exponent measured. In general, it was found that the

experimental observation of quantum criticality, as expected from the critical phenome-

na theory of QHTs, depends on the competition between three key length scales charac-
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terizing the 2DES; the size of system, the phase coherent length and the typical size of

the electron clusters forming within the system.

A study on the limit of the observation of the QHE is also undertaken in the

millimetre wave regime. It was found that localization within the 2DES, and as a result

the QHE, is destroyed at frequencies below the millimetre wave regime for a GaAs

based 2DES.
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1. Introduction to the scaling

theory of quantum Hall transi-

tions

1.1 Introduction

The quantum Hall effect (QHE), discovered just after the centenary of the discovery of

the original Hall effect by Edwin Hall [1] in 1879, has led to a large and varied field of

research. First reported by von Klitzing, Dorda, and Pepper [2] in 1980, the QHE re-

veals a peculiar behaviour of a two-dimensional electron system (2DES) in the presence

of a strong magnetic field. The most remarkable aspect of the effect is the precise quan-

tization of the Hall conductivity ௫௫ߪ at integer multiples of ݁ଶ/ℎ irrespective of the mi-

croscopic details of the 2DES.

The QHE is explained in terms of localized and delocalized states within the

2DES [3-5]. Electrons occupying localized states are restricted in their dissipation to a

finite region of space which is very small compared with the size of the 2DES, while

electrons occupying delocalized or extended states can freely propagate throughout the

entire system.

The distinction between these two types of states originates from the disorder or

the degree of randomness within the system, and this is generally studied as a theory of
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localization. The 2DES exhibits different transport properties depending on whether

electron transport is due to the propagation of electrons occupying localized states or

electrons occupying extended states.

By gradually changing a physical parameter of the 2DES like the magnetic field

or carrier concentration, the states of the electrons contributing to transport can be

changed from localized states to extended states or vice versa. This transition is known

as a quantum phase transition (QPT) [6] and is observed in transitions between the

quantized Hall conductivities in the QHE.

A QPT is a critical phenomenon [7] observed in systems where there is a sud-

den change of the properties of the system from one phase to another. Critical phenom-

ena have been extensively studied long before the discovery of the QHE [8-10]. A fa-

miliar example is the transition of a fluid from a liquid to a gaseous state. Systems ex-

hibiting critical phenomena can be divided into broad groups known as universality

classes, such that all members belonging to a given class possess identical critical prop-

erties that can be defined by certain power or scaling laws.

Quantum Hall transitions (QHTs) are associated with the scaling law,

(ܧ)ߦ ~ −ܧ| ,௖|ିఔܧ which describes the divergence of the localization length (ܧ)ߦ (i.e.

the length defining the degree of spatial restriction of an electron at a given energy state

,(ܧ as the critical energy separating localized states and extended states ,௖ܧ is ap-

proached. According to the theory of critical phenomena, the localization length expo-

nent ,ߥ is expected to be a constant value for all members belonging to this universality

class. In other words, if all QHTs belong to the same university class, they will all pos-

sess the same value of ߥ irrespective of any microscopic detail of the 2DES.
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The verification of the universality of QHTs, however, has yielded many con-

tradictory results as summarised in a review by Huskestein et al. [11]. Even though it is

accepted that some systems exhibit the expected universal behaviour [12-14], there is a

growing body of experimental results that show a non-universal behaviour of QHTs

[15-17]. In addition, it has recently been discovered that the nature of disorder within a

2DES plays an important role is determining universality [18].

The aim of this thesis is to investigate the nature of the critical phenomena ob-

served within QHTs and to determine the factors influencing both the observation of

universality and the lack of universality of QHTs within 2DESs.

In this thesis, the effects of temperature, the frequency of an applied electric

field, the amount of electric current injected, and the nature of disorder on QHTs are

studied within a wide range of 2DESs of varying characteristic properties.

The outline of the thesis is as follows. In Chapter 1, we review the formation of

2DES in semiconductor heterostructure. We also introduce aspects of the theory of lo-

calization that will be key to the analysis of results presented in this thesis. We then re-

view the physics and features of the QHE and provided an in-depth discussion on QPTs

and the critical phenomena observed in QHTs. Finally, we developed the analytic tools

used in experimental determination of the universality or non-universality of QHTs and

conclude with a discussion on previous experimental results present on the investigation

of QHTs.

In Chapter 2, we investigate the effect of temperature on QHTs on four differ-

ent samples. We also investigate the effect of a varying applied current on the nature of

QHTs.
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In Chapter 3, we develop a high resolution radio frequency (RF) technique that

uses a varying frequency of an applied electric field to investigate QHTs. A frequency

range between 100 MHz and 20 GHz is studied. In this chapter we also investigate the

influence of disorder on the nature of QHTs using the frequency based technique.

In Chapter 4, a quantum percolation model is developed to interpret the various

results presented in Chapters 2 and 3. The percolation model explains the occurrence of

universality within QHTs, and crucially, it also explains the reason why universality is

not observed in many experimental investigations.

In Chapter 5, a free space millimetre wave experimental technique is

used to investigate QHTs between the frequency range of 70 GHz and 110 GHz in order

to explore the high frequency limit of the QHE.

1.2 Two-dimensional electron systems (2DES)

In the classical degrees of freedom (3D Cartesian coordinates), a two-dimensional elec-

tron system (2DES) can be formed by restricting the movement of an electron gas in

one direction while retaining freedom in the remaining two dimensions. All the work

presented in this thesis is based on the transport properties and quantum effects ob-

served in 2DESs. Studies of these systems have had a profound influence on our under-

standing of condensed matter systems and are also of practical importance in the devel-

opment of high electron mobility transistors. Below, we discuss the formation of 2DES

and briefly illustrate some of their properties and quantum nature.
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1.2.1 Formation of a 2DES in a GaAs/AlGaAs heterostructure

Quasi two-dimensional electron systems were formed initially in oxide based structures

such as Si-MOSFETs [19], where a voltage applied to a metal gate deposited on an in-

sulating ܵ݅ ܱଶ layer was used to create an inversion layer of carriers at the ܵ݅ − ܵ݅ ܱଶ

interface. These devices provided the foundation for the development of modern elec-

tronics in the form of miniature, fast switching transistors. These structures, however,

experience strong Coulomb scattering by charged impurities at the oxide-semiconductor

interface [20-22] and as a result are largely unsuitable for the study of quantum mechan-

ical effects in 2DESs. This led to advances in new growth techniques capable of an

atomic scale control of the growth process, making it possible for the formation of high

quality, low dimensional electron systems in semiconductor heterostructures.

Figure 1.1. (a) The band structure of undoped AlGaAs and GaAs. (b) The band structure of the

heterostructure with n-doped AlGaAs before equilibrium. (c) Band bending within the hetero-

structure at equilibrium where the dipping of the conduction band below the chemical potential

produces a 2-dimensional potential well in the plane of the junction between the two materials.

ߤ

ୡܧ

୴ܧ

AlGaAs GaAs

2D potential
well

(a) (b) (c)
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We shall consider such a 2DES formed at the interface between two III-V com-

pound semiconductors, GaAs and AlxGa1-xAs, as this is the heterostructure used to fab-

ricate all devices reported in this work. GaAs forms a cubic zinc blende structure where

each Ga atom is surrounded by four As atoms and vice versa. In AlxGa1-xAs, some Ga

atoms in the crystal are substituted for Al, giving AlxGa1-xAs a very similar structure to

GaAs but with a wider band gap (Fig. 1.1(a)) making it highly suitable to interface with

GaAs. The AlxGa1-xAs layer is doped with Si donors while the GaAs remains undoped,

and the structure is grown by a process known as molecular-beam epitaxy (MBE). At

zero temperature, the chemical potential in the AlxGa1-xAs layer lies at the bound states

of the donors, which is higher than the bottom of the conduction band of the GaAs lay-

er. Fig. 1.1(b) illustrates the band structure of the two semiconductors before equilibri-

um is reached. Since the chemical potential must be constant throughout the structure at

equilibrium, electrons bound to the donor states move into the GaAs conduction band in

order to move the system towards equilibrium.

Figure 1.2. Schematic of a 2DES formed at the interface of the AlGaAs spacer layer and the

GaAs layer in a GaAs/AlGaAs heterostructure.

GaAs substrate

AlGaAs spacer layer

Si: AlGaAs doner layer

GaAs cap

GaAs layer

2DES



7

This leaves the AlxGa1-xAs positively charged and the GaAs negatively charged and sets

up an in-built electric field opposing further electron migration, resulting in equilibra-

tion of the chemical potential. The process causes the conduction bands of both layers to

bend (as shown in Fig 1.1 (c)) to compensate for the movement of charge carriers. As

the GaAs conduction band edge bends it dips below the chemical potential forming a

quantum well with a typical width comparable to the wavelength of electrons at the

chemical potential, ~ఓߣ 10 nm. The mobile electrons which are now in the GaAs well

are trapped in the vicinity of the interface. Coulomb attraction prevents the electrons

from moving away from the interface and into the GaAs, while the band edge disconti-

nuity prevents electrons from moving back into the AlxGa1-xAs layer. The movement of

the trapped electrons is therefore restricted to the plane of the interface and forbidden in

the perpendicular direction.

2DESs of the form described above are subject to random potential scattering

from the ionized donors left behind in the AlGaAs layer. The effect of the impurity po-

tential can be reduced by placing a layer of undoped AlGaAs, commonly referred to as

a spacer layer, between the doped AlGaAs and undoped GaAs layers to cut off the core

of the random potential fluctuations originating from the ionized donors in the AlGaAs

layer. This modification allows for very high electron mobilities to be achieved. Fig. 1.2

illustrates a typical GaAs/AlGaAs heterostructure. The growth process begins with the

growth of a high quality layer of GaAs on top of a GaAs substrate in the chamber of an

MBE machine, followed by the AlGaAs spacer layer. These two layers form the inter-

face at which the 2DES is formed. The Si doped AlGaAs layer is then grown on top of

the spacer layer and finally the heterostructure is capped with a thin layer of GaAs. The

cap layer is important because the fabrication of these heterostructures into devices usu-
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ally requires the deposition of some material on top of the sample surface and it is there-

fore necessary to have a layer separating the Si doped AlGaAs and these deposits. The

cap layer prevents oxidation that would occur if AlGaAs is exposed to air.

The invention of MBE, beginning with the concept of modulation-doping intro-

duced by Stormer [23], has allowed for significant progress in producing high quality

2DESs which have made possible a range of discoveries in condensed matter systems.

Figure 1.3. The history of improvements of electron mobility for GaAs based heterostructures

over the last three decades taken from Ref. [24], and annotated with technical innovation respon-

sible for the improvement.



9

Improvements in the MBE technique, which have largely been achieved by eliminating

unwanted or unintended charged impurities in the MBE vacuum, have led to a signifi-

cant increase in the low temperature bulk mobility of charged carriers from roughly

5 × 10ଷcmଶ/Vs in 1977 to 36 × 10଺cmଶ/Vs by 2008 (see Fig. 1.3), a remarkable 7000

times increase in low temperature mobility. The great pace of progress is expected to

continue with a possible 100 × 10଺cmଶ/Vs mobility being achieved in the near future

[25]. These improvements in mobility have been crucial to the study of condensed mat-

ter systems as they make it possible for quantum effects, previously hidden in low quali-

ty samples, to be observable in the cleaner and higher quality samples grown using the

improved techniques.

1.2.2 Density of states

The band structure of the GaAs/AlGaAs heterostructure described above forms a trian-

gular quantum well (Fig. 1.1(c)) at the interface which contains the 2DES. The width of

this quantum well (i.e. the length in z or direction perpendicular to the interface) is ex-

tremely thin (≤10 nm). For the purpose of analysing the distribution of states, the barri-

er or electric potential on the AlGaAs side of the interface forming the 2DES can be

considered to be infinite. One may then approximate the electric potential on the GaAs

side to be linear as one moves away from the interface. This oversimplified description

is the basis for the triangular potential approximation [20] for the energy states of wave-

functions in the z direction caused by the confinement of the system.
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Figure 1.4. (a) A diagram of an approximation of the triangular quantum well that develops in

GaAs/AlGaAs heterostructure where V(z) describes the potential barrier moving away from the

interface and in the GaAs layer. Only wavefunctions that satisfy the boundary conditions of the

well can exist within the well. (b) Discrete density of states occurs at the corresponding energies

found within the potential well.

The wavelengths of the carriers in the well must be comparable to the width of the well

(as defined by the confining electric potential) and therefore carrier motion perpendicu-

lar to the interface cannot be viewed in a classical manner but must be quantized into

discrete energy levels according to the Fermi wavelength, as illustrated in Fig. 1.4. It

can be seen in Fig. 1.4(a) that only certain discrete energy levels that fulfil the wave-

length and boundary condition in the z direction imposed by the well can exist within

the well.

Without any excitation, motion in the z direction is impossible but carriers are

still free to move in the plane of the interface, meaning that each discrete energy level in

the z axis constitutes a subband of energies in the −ݔ ݕ plane which exist due to the

kinetic energy of carriers in that plane. Based on the description of an unconfined elec-
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tron in free space by the Schrödinger equation, the energy spectrum of a single subband

in a 2DES is shown to be,

ܧ =
ℏమ௞మ

ଶ௠
=

ℏమ

ଶ௠
( ௫݇

ଶ + ௬݇
ଶ), (1.1)

where kx and ky are the wave-vector components for motion parallel to the interface. In

this two-dimensional plane, the number of states in the wave-vector space is given by

,ଶି(ߨ2) and accounting for spin degeneracy the density of states is given as

(࢑)ܦ =
ଶ

(ଶగ)మ
. (1.2)

Using polar coordinates, ݀࢑ = ݇ଶ݅ߠ݀݊ݏ ݇݀ ,ߠ and from Eq. (1.1), the density of states is

expressed in terms of energy as

(ܧ)ܦ =
௠

గℏమ
. (1.3)

Eq. (1.3) suggests that the density of states in a subband of a 2DES is constant and in-

dependent of energy. This is a fundamental feature of a 2DES which makes it extremely

useful for studying quantum-mechanical effects.

As the triangular quantum well begins to fill up with carriers from ionized do-

nors in the Si:AlGaAs layer, the states at the lowest subband ,଴ܧ are the first to be popu-

lated. If the carrier concentration is low enough, then only the first subband will be

filled and the system behaves like a quasi 2DES. At higher numbers of carriers, howev-

er, more than one subband will be filled and this leads to parallel conduction of different

planes within the 2DES and non-ideal two-dimensional conditions.
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1.2.3 Disorder in 2DESs

Even though advancements in the growth of semiconductor heterostructures have pro-

duced some of the highest quality 2DESs formed to date, electron transport in 2DESs is

still vulnerable to some amount of disorder which introduces random potential fluctua-

tions into the system.

Disorder in 2DESs can be divided into Coulomb induced disorder and non-

Coulomb disorder. The dominant source of disorder in 2DES formed from a

GaAs/AlGaAs heterostructure originates from the remote ionized donors in the

Si:AlGaAs layer [26]. The potential arising from these ionized donors can scatter elec-

trons within the 2DES introducing disorder into the system. However, since these

charged centres are separated from the 2DES by a spacer layer, the 2DES only experi-

ences the tail end of a decaying (ݎ/1) potential. This is known as a long-range induced

disorder. This disorder can be reduced by increasing the width of the spacer layer,

though the donor layer must remain close enough to maintain a reasonable electron den-

sity. High electron density systems are more able to efficiently screen random potential

fluctuations (the effects of screening on the potential landscape of a 2DES are discussed

in more detail in Chapter 4). The doped silicon therefore plays the dual role of the

source of both carriers and disorder.

An additional source of Coulomb disorder arise from the background ionized

impurities in the GaAs layer itself. The prominence of this source of disorder depends

on the purity of the GaAs layer which usually stems from the MBE chamber within

which the growth takes place. In high quality 2DESs grown in modern MBE machines,

this is usually negligible and is less of a concern.
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Sources of non-Coulomb disorder include phonon induced deformations, sur-

face roughness and alloy disorder. Phonons in the system originate from thermally in-

duced vibrations which distort the lattice. This kind of disorder is greatly reduced (but

still present) at low temperatures typically below 1 K.

Interface roughness is responsible for a small amount of scattering. Roughness-

es at the interface arise owing to imperfect lattice matching between the GaAs and Al-

GaAs but are usually negligible in GaAs/AlGaAs systems.

In a typical GaAs/AlGaAs heterostructure, about 30% of Ga atoms are substi-

tuted by Al in the AlGaAs layer, but these replacements occur randomly. The resulting

alloy therefore contains a non-periodic potential and thus introduces alloy disorder scat-

tering. Random potentials of this form cause scattering on an atomic length scale. This

type of disorder is therefore referred to as short-range disorder since it causes scattering

to occur on a length scale comparable to length between atoms (as opposed to long-

range disorder discussed above). The 2DES in GaAs/AlGaAs heterostructures almost

entirely resides in the GaAs side of the interface, but the exponentially vanishing tails of

the electron wavefunction in the 2DES penetrates into the AlGaAs alloy and produces a

small amount of electron scattering. Once again, scattering from this form of disorder is

usually irrelevant in a typical GaAs/AlGaAs heterostructure. In Chapter 3, however,

alloy disorder is employed extensively in creating short-range systems. We shall see

that increasing the short-range disorder within a typical GaAs/AlGaAs system has pro-

found consequences on the nature of quantum Hall transitions in a 2DES.
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1.2.4 Measurement of transport coefficients in a 2DES

Based on the effect of the simultaneous conditions of both an applied in-plane electric

field ࡱ and a magnetic field ࡮ perpendicular to plane of the 2DES, we consider the

conductivity and resistivity of a 2DES for the current component in the direction paral-

lel to ,ࡱ the diagonal component, and the component in the direction perpendicular to

,ࡱ the Hall component.

Fig. 1.5. shows a schematic of a typical device, known as a Hall bar, used to

perform these measurements. The 2DES is fabricated into the illustrated pattern (see

section 2.1.1 for the detailed fabrication process) and a current (or an electric field) is

applied from the S to D Ohmic terminals, while simultaneously measuring the voltage

between either A and C or A and B.

When a magnetic field is applied to a 2DES, the motion of carriers in an electric

field is no longer strictly parallel to ࡱ but exhibits an orbital motion as a result of the

Lorentz force. The resistivity ߩ and conductivity ߪ are no longer scalar but instead are

tensors which describe the two dimensional nature of the motion of carriers. A current

density ࢐and the applied field ࡱ are related by, ࢐= ࡱ࣌ or where ௫௫ߪ represent the diag-

onal conductivity in the direction of ࡱ (terminals A-B), and ௫௬ߪ represents the Hall

conductivity perpendicular to ࡱ (terminals A-C).

൬
௫݆

௬݆
൰= ቀ

௫௫ߪ ௫௬ߪ
௬௫ߪ ௬௬ߪ

ቁ൬
௫ܧ
௬ܧ
൰, (1.4)

If the 2DES is isotropic (a reasonable assumption) then from the symmetry of the kinet-

ic coefficients, ௫௫ߪ = ௬௬ߪ and ௬௫ߪ = .௫௬ߪ−
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Figure 1.5. Diagram of a Hall bar made out of a 2DES (GaAs/AlGaAs heterostructure) used to

measure transport coefficients. The x, y, z axes are shown including the direction of the electric

field ࡱ and the magnetic field .࡮

The resistivity tensor is an inverse matrix of ࣌ and given as

ቀ
௫௫ߩ ௫௬ߩ
௬௫ߩ ௬௬ߩ

ቁ= ቀ
௫௫ߪ ௫௬ߪ
௫௬ߪ− ௫௫ߪ

ቁ
ିଵ

=
ଵ

ఙೣೣ
మାఙೣ೤

మቀ
௫௫ߪ ௫௬ߪ−
௫௬ߪ ௫௫ߪ

ቁ, (1.5)

Conversely, ࣌ can be expressed in terms of ࣋ as

ቀ
௫௫ߪ ௫௬ߪ
௬௫ߪ ௬௬ߪ

ቁ=
ଵ

ఘೣೣ
మାఘೣ೤

మቀ
௫௫ߩ ௫௬ߩ−
௫௬ߩ ௫௫ߩ

ቁ. (1.6)

The Hall and diagonal resistivity or conductivity can therefore we written as

௫௬ߩ =
ఙೣ೤

ఙೣೣ
మାఙೣ೤

మ or ௫௬ߪ =
ఘೣ೤

ఘೣೣ
మାఘೣ೤

మ, (1.7)

and

௫௫ߩ =
ఙೣೣ

ఙೣೣ
మାఙೣ೤

మ or ௫௫ߪ =
ఘೣೣ

ఘೣೣ
మାఘೣ೤

మ. (1.8)

In order to evaluate Eqs. (1.7) and (1.8), both the Hall and diagonal resistivity must be

measured based on the physical dimensions of the Hall bar device illustrated in Fig. 1.5.

A

B

C

S

D

L W
2DES

ݖ

ݕ

ݔ

࡮
ࡱ
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Figure 1.6. The locus of the Hall vector as a function of magnetic field (black circle)

The diagonal resistivity is determined using the applied electric field and cur-

rent density in the diagonal direction, ௫௫ߩ = /௫ܧ ௫݆, where ௫ܧ = ஺ܸ஻/ܮ ( ஺ܸ஻ is voltage

applied between terminals A and B) and ௫݆ = ܹ/௫ܫ ௫ܫ) is the current measured along S

and D). The dimensions ܮ and ܹ are shown in Fig. 1.5. ௫௫ߩ therefore can be calculated

from

௫௫ߩ =
௏ಲಳ�ௐ

௅�ூೣ
. (1.9)

Similarly, the Hall resistivity from ௫௬ߩ = /௬ܧ ௫݆ where ௬ܧ = ஺ܸ஼/ܹ yields

௫௬ߩ =
௏ಲಳ

�ூೣ
= ܴ௫௬. (1.10)

We see from Eq. (1.10) an interesting characteristic of 2DESs, the Hall resistivity coin-

cides with the Hall resistance, and in addition, they are both independent of any physi-

cal dimensions of the system.

A classical analysis of conductivity can be evaluated using the Drude formal-

ism. First, we introduce a component known as the Hall vector ࢆ which takes into ac-

count both the effects of the electric field and the magnetic field on the current density,

࢐= ,ࢆ଴ߪ (1.11)

ݕ݇

0ݔ݇

−
݁߬

݉ ∗
ܤ × ܼ

ܧ

ܼ
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where ଴ߪ = ݊
௘మఛ

௠ ∗ , the Drude conductivity. The electric field can be described in terms

of the Hall vector (see Fig. 1.6) as

ࡱ = −ࢆ
௘ఛ

௠ ࡮∗ ×Z. (1.12)

Substituting Eq. (1.11) into (1.12) yields,

ࡱ =
࢐

ఙబ
−

௘ఛ

௠ ࡮∗ ×
࢐

ఙబ
. (1.13)

which can be expressed as the following tensor

൬
௫ܧ
௬ܧ
൰= ቌ

ଵ

ఙబ

௘ఛ

௠ ∗

ଵ

ఙబ
ܤ

−
௘ఛ

௠ ∗

ଵ

ఙబ
ܤ

ଵ

ఙబ

ቍ൬
௫݆

௬݆
൰. (1.14)

It is observed that Eq. (1.14) contains the resistivity tensor ࡱ) = ࣋࢐) where the diagonal

resistivity is ௫௫ߩ =
ଵ

ఙబ
and the Hall resistivity is ௫௬ߩ =

௘ఛ

௠ ∗

ଵ

ఙబ
ܤ =

஻

௘௡
. This result predicts

that the diagonal resistivity is independent of the magnetic field while the Hall resistivi-

ty is linearly dependent on the magnetic field.

This is the classical case of a 2DES under a magnetic field. We discuss the

quantum-mechanical scenario in the next section.

1.3 Theory of Localization

Localization in charged particle systems is the concept that describes the spatial re-

striction imposed on single-particle wavefunctions in a disordered quantum mechanical

system. The theory proposes that at the absolute zero of temperature the amplitude of a

wavefunction of a charged particle can be exponentially localized or confined within a

finite region of space given a sufficient amount of disorder. The consequence of this

limitation on the displacement of charged particles within a system is manifested in a
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variety of physical phenomena that have profound effects on the transport properties of

these charged particles. The work presented in this thesis is underpinned by various lo-

calization effects and in the sections below we explore the nature and theory of electron

localization.

1.3.1 Localized and extended states

For a perfectly periodic crystal with no defects or impurities, it can be shown [27] that

the solution of the one-electron Schrödinger equation results in a plane wave modulated

by the periodicity of the lattice. This is known as Bloch’s theorem. Due to the energy

they possess, electrons found in such a crystal are arranged in energy bands separated

by regions for which no wavelike electron orbitals exist [27]. These forbidden regions

are known as energy gaps or band gaps. Electrons fill up states within the allowed re-

gions of the energy spectrum, with electron possessing the lowest energies occupying

states at the bottom of the band while those of the highest energy occupy states higher

up the band. Each energy level within the energy band can be described by a wave vec-

tor. Electrons occupying the highest energy level (known as the Fermi level) of the en-

ergy band respond to an applied electric field as if they possess an effective mass ݉ ∗

and are able to freely propagated within the system. Since electrons within this system

are represented by plane wavefunctions with perfect periodicity, the probability of find-

ing an electron within this system is the same for all locations. In this sense, electrons

are considered to be delocalized and the energy states they occupy are referred to as

extended states since their wavefunctions extend (with equal probability) throughout the

entire system.
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Figure 1.7: Possibly types of lattice disorder. (a) ordered lattice, (b) mixed-crystal formation of

two different atoms in a lattice, (c) positional disorder through distortion of lattice, and (d) topo-

logical disorder with spontaneous formation of dangling bonds.

The Bloch formalism, which leads to extended states, applies to crystals with a

period lattice and with little or no defects. However, in reality this crystalline state is the

exception rather than the rule, particularly in semiconductors where impurities play an

important role. Imperfection or disorder in crystalline materials exists in varying de-

grees and different forms. The most important crystalline imperfections are caused by

chemical impurities, vacant sites, and interstitial atoms. Some of the effects of these

imperfections on the lattice structure are described in Fig. 1.7. All these imperfections

share a common feature of producing bound states that can bind to or release electrons

[28]. If one considers a periodic lattice structure, the periodicity of this structure will be

perturbed by defects in the lattice.

(a) (b)

(c) (d)
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A single defect in an otherwise periodic potential will lead to a splitting off of

one state from the band of extended (Bloch) states (see Fig. 1.8(a)). Electrons can be

bound or repelled by this defect state and thus the state acts as a trap for electrons or

holes. An electron occupying this isolated split-off state will be localized and its wave-

function vanishes rapidly as one moves away from the localized site. Since there is like-

ly no correlation (periodic arrangement) between the defects that create these localized

states, the spatial probability of find an electron occupying a localized state is not even-

ly distributed throughout the system, as with Bloch or extended states, but are resolved

to a finite region of space. Localized states therefore cannot contribute towards dissipa-

tive conductivity at zero temperature. As the number of defects (disorder) increases, the

density of states of the energy band takes on a Gaussian shape as shown in Fig. 1.8(b).

Figure 1.8: (a) The energy band of a simple periodic potential model as a function of the devia-

tion V of the defect potential from the potential of an undisturbed lattice. The split off state is

spatially localized to the vicinity of the defect. (b) The density of states of band of energy with

many defects. The defects produce a Gaussian shaped band where all states are localized with

the exception of states at the centre of the band.

E

V

E

N(E)

(a) (b)
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States within the tail regions on the band are localized while only states at the centre of

the band remain extended.

A convenient distinction between localized states and extended states arises

when we consider the spatial extension of the wavefunctions of these states. As dis-

cussed above, for a perfect crystalline lattice the probability of finding an electron with-

in the system is the same for all locations. An electron in such a system can propagate

without being scattered throughout the entire system, in other words, the mean free path

extends over the entire length of the system. Disorder can be introduced into this model

through the distortion of the perfect lattice; phonon induced scattering, impurity scatter-

ing or other mechanisms that cause an electron wavefunction to lose its phase coher-

ence. As the degree of disorder increases, the mean free path reduces. A sufficient in-

crease in disorder however, can lead to localized states where an electrons occupying

such a state is restricted to finite and small regions within the system. The extent of lo-

calization of wavefunctions can be described by a localization length ,ߦ which will be

large as the system size for extended states and vanishingly small for localized states.

Figure 1.9: A description of localized and extended states. (a) Wavefunction of an extended state

with a localization length that extends to infinity. (b) Wavefunction of a localized state, the am-

plitude if the wavefunction is maximum within a finite region of space but vanishes exponential-

ly as r goes to infinity.

ߦ ߦ

r r

(a) (b)
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This provides a simple criterion for differentiating between the two types of wavefunc-

tions. A description of the two types of wavefunction is shown in Fig. 1.9. A more de-

tailed description of localization is discussed in the following section.

1.3.2 Anderson Localization

In 1958 Anderson [29] was the first to prove that a sufficient amount of disorder would

result in a lattice with no diffusion of charge carriers and thus an absence of extended

states. This was not at all apparent at the time as it was considered that an increase in

disorder would simply lead to a reduction in the mean free path, but the states would

remain extended and electrons will still diffuse to infinity given →ݐ ∞. The model used

by Anderson also provided the first quantitative definition of localization.

He considered a perfect lattice with each site occupied by one atom, each with a

single energy state .௡ܧ Given the perfect periodicity of the lattice, a regular and periodic

potential (as shown in Fig. 1.10(a)) will be felt by an electron moving through the lat-

tice. This will result in a tight binding energy band of width ܤ with extended states

based on the Bloch formalism described above. Disorder in the form of a random poten-

tial was then introduced such that ௡ܧ at each site takes on a value statistically distribut-

ed over a range of potential of width ଴ܸ as shown in Fig. 1.10(b). Anderson showed that

if the value ଴ܸ/ܤ is greater than a certain critical value ( ଴ܸ/ܤ)௖௥௜௧, the solution for the

Schrödinger equation for any energy in the band will no longer result in an extended

Bloch state but will be localized in space. As a result, the probability of an electron re-

maining at its current location as →ݐ ∞ is very large value.
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Figure 1.10. Anderson model: (a) Potential wells of equal depth in a near perfect lattice with a

tight binding band of energy of width B. (b) Potential wells in a disordered lattice with potential

fluctuation statistically distributed over a range of width ଴ܸ.

In other words, without any elementary excitation it becomes likely that an electron will

never move from its current site. The localized wavefunction as described by Anderson

has the following form [30];

|߰( )࢘| ~ exp(−
|࢘ି ૙࢘|

క
) (1.15)

where ߦ is the localization length (as described above) and ࢘ is some distance in space

away from the location ૙࢘ of the localized state.

Mott [31] first pointed out that even if ଴ܸ/ܤ lies below the critical value, local-

ized states will nonetheless exist near the extremities (tail regions) of the energy band

since any amount of disorder, however small, will create some localized states. Mott

also showed that an energy ,ఓܧ must mark the boundary between the localized states

and extended states within the energy band. The critical energy ,ఓܧ was later referred to

as the mobility edge [32]. As shown in Fig. 1.11, a mobility edge can be found at both
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ends of the disorder energy band. As the range of distribution of the potential ଴ܸ, is in-

creased (corresponding to increased disorder), ఓonܧ both sides of the band approach

each other until they merge at ( ଴ܸ/ܤ)௖௥௜௧, at which point all states within the band are

localized [31, 33]. Considering the left hand side of the energy band shown in Fig. 1.11,

if the parameters of the system were to change such that the Fermi energy ,ிܧ relative to

the mobility edge moved from the regime in which ிܧ < ఓܧ to ிܧ > ,ఓܧ (i.e. ிܧ crosses

over from the localized states into the extended states), we arrive at a metal-to-insulator

transition (MIT) also known as the Anderson transition [33, 34]. If the Fermi energy

lies in the extended regime, conductivity will be of a finite value as ܶ→ 0. The system

is therefore described as possessing metallic properties. If, however, ிܧ lies in the local-

ized regime, the conductivity vanishes to zero as ܶ→ 0.

Figure 1.11. Density of states of a partially localized band where (on the left) all states are local-

ized for ிܧ < ఓܧ and extended for ிܧ > .ఓܧ Conductivity below ఓܧ is zero (at zero temperature)

but of a finite value above .ఓܧ Increasing disorder will move the mobility edge on both sides

towards each other until they merge at the centre of the band when the critical level of disorder is

reached.
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In this case, the system behaves as an insulator.

The position of ிܧ relative to ఓܧ can be changed by manipulating intrinsic

properties of the system such as: compositional and impurity doping, changing the

structural properties of the system, and by changing the carrier concentration. The tran-

sition can also be influenced by external factors such as the magnetic field, the tempera-

ture and the frequency of the applied electric field.

1.3.3 Transport in extended states of disordered systems

We begin the discussion on transport in disordered systems by first considering weakly

disordered systems (such as the kind that can be approximated by unperturbed Bloch

states) in which the majority of the electron states are extended. The electron transport

theory of these systems, where the Fermi energy remains within the extended states, is

based on the Boltzmann formalism whose condition applies if

≫ߣ ,݈ (1.16)

where ߣ is the De Broglie wavelength and ݈is the mean free path. Boltzmann theory

expresses the transport dynamics of a system in terms of acceleration and deceleration

due to collisions with weakly scattering centres originating from a small degree of dis-

order. At finite temperatures the expression for conductivity from Boltzmann transport

theory can be written [33] as,

ߪ = −ቀ(ܧ)ߪ∫
ఋ௙(ா)

ఋா
ቁ݀ܧ, (1.17)

where (ܧ݂) is the electron density function and (ܧ)ߪ is the energy dependent conduc-

tivity. The conductivity of the system is obtained by summing the expression in Eq.
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(1.17) over all states in the energy band. In a weakly disordered system the Boltzmann

formalism can be reduced [35] to Drude’s expression for conductivity,

ߪ =
௘మఛ

௠ ∗ ݊= ߤ݁݊ , (1.18)

where ݁ is the electric charge of the carrier, ߬ is the momentum relaxation time, ݉ ∗ is

the effective mass of the carrier, ߤ is the carrier mobility and ݊ is the carrier density.

Contributions to conductivity from the extended states will be given by Eq.

(1.18) but if the energy band includes localized states, at a sufficiently high temperature,

carriers can be excited from localized states, across the mobility edge, and into extended

states where the carrier will contribute towards the conductivity. This is known as acti-

vated conductivity and is given by the following expression [36],

௔ߪ ≈ −)଴expߪ
ாഋିாಷ

௞್்
), (1.19)

where ଴ߪ is the exponential prefactor which is determined by the conduction of states

near the mobility edge. The term, ఓܧ − ,ிܧ is referred to as the mobility gap, and corre-

sponds to the distance between the Fermi energy and the mobility edge.

Figure 1.12. A schematic illustrating the mobility edge ఓܧ and its proposed relationship to con-

ductivity. The solid line of conductivity describes an abrupt minimum conductivity as proposed

by Mott, and the dashed line represents a continuous vanishing conductivity supported by scaling

theory.
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The mobility gap defines the minimum energy required for activated conductivity. It

should be noted that this is a purely thermionic process and as a result ௔ߪ tends to zero

as ܶ⟶ 0.

An intriguing question emerges when, at ܶ = 0, one considers what happens to

conductivity as ிܧ crosses the mobility edge. Given that conductivity is expected to be

zero in the localized regime and finite in the extended regime, will the transition be con-

tinuous or not? Based on the idea of Ioffe and Regel [37], Mott [38] argued that for an

extended state, there is a minimum limit to metallic conductivity since the mean free

path cannot be smaller than the interatomic spacing or ி݇
ିଵ. For a localized state on the

other hand, the mean free path must be zero. Given that conductivity is zero on one side

of the transition and of a non-zero value on the other side, Mott concludes that there

must be a jump in conductivity at the mobility edge. This discontinuity in conductivity

is depicted by the solid line in Fig. 1.12. This theory is, however, challenged by the one

parameter scaling theory of localization which predicts a continuous transition as the

Fermi energy approaches the mobility edge (dashed line in Fig. 1.12). The one parame-

ter scaling theory will be discussed below in section 1.3.6.

1.3.4 Transport in localized states of disordered systems

The metallic conductivity described above for extended states is valid only if the mean

free path is much larger than the De Broglie wavelength (Eq. (1.16)). It is clear that this

condition is violated for localized states where electrons are restricted to finite regions

in space. Conductivity in this regime is zero at zero temperature, but conductivity can
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be of a finite value at non-zero temperatures since transport maybe possible via phonon

assisted hopping between localized states.

In the first instance we consider how an electron transition can occur between

two neighbouring localized states, ݅and ݆at distances ௜ࡾ and .௝ࡾ From Eq. (1.15), the

amplitude of the wavefunction of localized states decays exponentially from the centre.

As a result there is a finite probability that a transition between these two states will oc-

cur by the tunnelling of an electron from one site to the other. The factor that determines

the tunnelling probability is the integral of the overlap of the wavefunctions [28] of the

two states (Fig. 1.13) and this probability increases as ܴ = −௜ࡾ| |௝ࡾ decreases. Assum-

ing that the localization length is similar for both states, the tunnelling probability will

have the form [30],

௜௝݌ ∝ expቀ−
ଶோ

క
ቁ. (1.20)

Though Eq. (1.20) describes a possible means of electron transport, without as-

sistance from phonons it is unlikely that tunnelling alone would yield any conductivity

as the nature of localization results in a statistical distribution of states over a relatively

large range of energies, ଴ܸ/ܤ.

Figure 1.13. A diagram showing the overlapping wavefunctions of the neighbouring states ݅and

.݆

ܴ௜ ௝ܴ

߰௜ ߰௝

ܧ
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Distribution of states of this sort produces neighbouring states that may be close spatial-

ly but separated by comparatively large energies [30] as shown in Fig. 1.14(a). In the

case of the transition between the localized states ݅and ,݆ now accurately depicted in

Fig. 1.14(b), the energy ܹ = ܹ௝− ܹ ௜ must be provided by a phonon. The hopping

probability must therefore be modified to include the number of phonons of energy ܹ

available at thermal equilibrium. For sufficiently low temperatures ( ௕݇ܶ≪ ܹ ) this will

be given by the Boltzmann factor, exp(−ܹ / ௕݇ܶ). The hopping probability can then be

written as,

௜௝݌ ∝ expቀ−
ଶோ

క
−

ௐ

௞್்
ቁ. (1.21)

Hops between localized states such as that described above, were first tackled

by Miller and Abrahams [39]. In their seminal paper, Miller and Abrahams viewed the

probability of each hop as a resistance, turning the problem into a random resistor net-

work.

Figure 1.14. (a) The energetic and spatial distribution of states within a disordered system where

states that are close in energy tend to be far in distance. (b) The overlap of wavefunctions dis-

playing the required hopping energy.
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They suggested that the overall resistance of the network was governed by certain one-

dimensional critical resistor chains that connected one side of the network to the other.

They assumed that hopping occurs between nearest-neighbour sites with the least re-

sistance in the forward direction, and is determined solely by the spatial separation ܴ,

ignoring the energy separation ܹ . However, as pointed out by various authors [40, 41],

the paths produced by the Miller-Abrahams model leads to hard hops, or hops with dis-

tances much larger than the system’s average hopping distance. In other word, the Mil-

ler-Abrahams model essentially leads an electron to dead ends.

Nonetheless, developing the nearest-neighbour idea of Miller and Abrahams

further, if the spectrum of phonons available to the system allows for an average hop-

ping distance of തܴ, some measure of electron transport can be achieved within the sys-

tem. If തܴ is very small (as compared with the mean nearest neighbour distance) it is

clear that electron will still be effectively localized as at some point an electron would

be confronted with a hard hop for which there are no phonons available with sufficient

energy. However, if തܴ should be gradually increased (by increasing the temperature of

the system), a point is reached, തܴ= ܴ௖, at which a set of localized states can be con-

nected from one side of the system to the other. This forms a continuous path which

enables some amount of dissipative conductivity. These two scenarios are described by

Fig. 1.15. If the energy required for an averaging hopping distance of ܴ௖ to be achieved

is ܹ௖ then conductivity of this nature can be described as [28],

ߪ = −)௙expߪ
ௐ ೎

௞ಳ்
). (1.22)

This mechanism of electron transport within localized systems is known as fixed range

hopping (FRH) [28] since it is based on jumps that are, on average, of fixed distances.
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Figure 1.15. A diagram of nearest neighbour hopping showing two scenarios. The solid line

demonstrates the case where തܴ< ܴ௖. Electrons in this scenario encounter hard hops which in-

hibit dissipative conductivity. The dashed line illustrates the case for തܴ> ܴ௖ where a continuous

path across the entire system exists and dissipative conductivity is possible.

Mott [42] noted that as the temperature drops and phonons of energy ܹ௖ are no

longer available, transport is still possible within a narrow band of energies near the

Fermi level. However, unlike FRH, this kind of conductivity comprises hops of varying

lengths, typically larger than the mean separation between nearest neighbour ( തܴ> ܴ௖).

Mott considered only energies around the Fermi level, as at very low tempera-

ture it is the likeliest location for filled and empty states to be in close energetic proxim-

ity of each other. At such low temperature, the available phonons only permit small

changes in energy for each hop. As a result, conduction takes place over a very narrow

range of energies around the Fermi level (see Fig. 1.16). The width of the band of ener-

gies within which hopping occurs, shown in Fig. 1.16 as ,ܧ∆2 is determined by the

temperature; the lower the temperature, the narrower the width and vice versa.

Hard hop

ܴ௖

ഥܴ < ܴ௖
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Figure 1.16. Conduction band containing states separated by the Fermi level. ܧ∆2 represents the

band of energies within which phonons are available to mediate hopping. Given such a narrow

band, electrons will prefer to hop to longer and varying distances in order to find available site as

shown by arrow 1, than to hop to nearer but energetically higher sites as illustrated by arrow 2.

If one assumes a constant density of states at the Fermi level, the conductivity in this

low temperature regime is defined as [33],

ߪ = ,଴exp[−(�ܶ଴/T)ଵ/(ௗାଵ)]ߪ ଴ܶ =
஼

௞್ே(ఓ)కయ
, (1.23)

where ݀ is the dimensionality of the system, (ߤ)ܰ is the density of states at the Fermi

level and ܥ is a numerical coefficient. It should be noted that the assumption of a con-

stant density of states at the Fermi level is not always valid. The issue will be discussed

further in the section 2.3.1. Since available states for hopping within this narrow band

will be rare, the hopping distances will vary depending on the location of available emp-

ty states. Electrons will prefer to hop to empty states that further away in distance but

require a smaller change in energy than to hop to states that close in distance but require

a larger change in energy (see Fig. 1.16). This kind of conduction is known as variable-

range hopping (VRH). Eq. (1.23) is more famously known as Mott’s ܶିଵ/ସ law.

As has been discussed, there are various possible mechanisms responsible for

conductivity within localized states. The dominant mechanism at any moment in time

ܧ∆2

(ܧ)ܰ

ிܧ
1

2

ܧ
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depends on the temperature of the system. At very high temperatures, electron are able

to hop from one site to practically any other side, conductivity of this sort is more akin

to metallic conductivity. As the temperature is reduced, FRH takes over as the dominant

transport mechanism where the hopping distance is fixed. At even lower temperatures

there is a crossover from FRH to VRH.

1.3.5 Weak localization and single parameter scaling

The presence of disorder in solids produces profound effects usually associated with

randomness or non-periodic potential caused by disorder. A sufficiently small degree of

randomness in a system can produces coherent quantum mechanical backscattering

which gives rise to a rich variety of quantum transport phenomena such as the logarith-

mic increase of the resistances of thin metal films with decreasing temperatures [43],

universal conductance fluctuations [44] and metal-insulator transitions [45].

Figure 1.17. (a) Diagram showing an example of the quantum mechanically possible paths

through which a transition between sites ݅and ݆can occur. (b) A graphical representation of

backscattering of electron transport between sites ݅and .݆
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In the above discussions on electron transport, we indirectly adopted a particle

view of transport for simplicity. In reality a transition between two sites would involve

considering all the possible paths, however unlikely, a charged particle could use to

achieve a transition from ௜ࡾ to ௝ࡾ as shown in Fig. 1.17(a). Coherent backscattering can

then be understood as the interference of the different quantum mechanically allowed

paths between ௜ࡾ and .௝ࡾ In particular, due to the multiple paths between two sites, an

electron can be backscattered to its point of origin as illustrated in Fig. 1.17(b). The in-

terference of waves travelling along time revered loops introduces a quantum correction

to conductivity which is responsible for the quantum phenomena listed above. These

effects occur in a regime where scattering events are predominately elastic and the

phase coherence time is much larger than the elastic scattering time. This is known as

the weak localization regime.

One of the most important works to emerge from the study of weak localization

is the single parameter scaling theory [46]. It is based on the initial work of Thouless

[47] who attempted to provide a practical description of localization in finite-size sys-

tems (as oppose to Anderson’s mathematical definition). Thouless redefined the mean-

ing of conductance of these systems in terms of Anderson localization and how it relates

to Ohmic conductance.

Thouless imagined a system or solid made up of many blocks of size ௗܮ (Fig.

1.18) where ݀ is the dimension of system. If we consider the conductivity of just one of

these blocks, a wave-packet moving from one end of the block to the other will exhibit a

classical diffusive behaviour. In the first instance the packet will diffuse independent of

the boundary conditions as if the block was of infinite length.
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Figure 1.18. Thouless’ concept of scaling where a system is made out of blocks of size .ௗܮ

After a time ஽ݐ the wave-packet will arrive at the opposite boundary. The diffusion time

is defined by,

஽ݐ = ,ܦ/ଶܮ (1.24)

where ܦ is the diffusion constant. According to the uncertainty principle, the energy

level of the packet will be smeared or can be shifted by an amount of the order

ܧ∆ ≈ ℏ/ݐ஽ , (1.25)

after travelling for a time ஽ݐ . If two similar blocks (ௗܮ2) are joined end to end, the

probability of the wave packet being transmitted (or reflected at the boundary) from the

first block to the second block will depend on the typical spacing between energy levels

within the block ߜܹ , and the coupling between energy levels in the two blocks, .ܧ∆ If

ܧ∆ > ߜܹ , the wave-packet will be in insensitive to the boundary [48] since the change

in energy between the two blocks is within the energy the shift ܧ∆ (uncertainty band-

width of the level). The wave-packet will therefore be extended within the enlarged

(two block) system. Conversely, if ܧ∆ < ߜܹ , the wave-packet will be reflected at the

boundary and will remain localized within the first block.

ௗܮ

ௗ(ܮ2)



36

Figure 1.19.A schematic illustrating boundary conditions defining extended and localized sys-

tems. (a) In systems where ܧ∆ > ߜܹ , wavefunctions are able to transfer from one unit block to

another making wavefunctions within the system extended. (b) In systems where ܧ∆ < ߜܹ ,

wavefunctions are reflected at the boundary and stay within the unit block. Such a system will be

localized.

These two scenarios are described in Fig. 1.19. The scaling of the size of the system can

be related to the conductivity of the system by considering the ratio,

=ߜ
∆ா(௅)

ఋௐ (௅)
. (1.26)

If ߜ is exponentially small within a block, states will be localized in the larger system

but if ߜ is large within a block, it will be extended in the larger system. Eq. (1.26) is

known as Thouless’ criterion or number. Sensitivity to boundary conditions appear to be

a single parameter controlling the nature of transport within the system as its size is in-

creased.

Combining Einstein’s relation for conductivity, ߪ = ݁ଶܦ
ௗ௡

ௗா
, with Eq. (1.25), ߜ

can be expressed in terms of electrical conductance ܩ [49] by,

݃ =
ℏ

௘మ
ܩ ≅ ,ߜ where ܩ = .ௗିଶܮߪ (1.27)

ܧ∆
ߜܹ ܧ∆ߜܹ

ܧ∆ > ߜܹ ܧ∆ < ߜܹ

(a) (b)Extended system Localized system
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The crucial point emphasized here is that the scaling behaviour of a system in terms of

conductance is related to a physical measureable quantity (Eq. (1.27)) and is determined

by a single parameter (Eq. (1.26)).

1.3.6 The scaling theory of localization

The scaling theory of localization tries to understand the localization problem by con-

sidering the behaviour of the conductance ݃ as a function of system size .ܮ The follow-

ing analysis was first presented in the seminal paper by Abrahams, Anderson, Lic-

ciardello and Ramakrishnan [46]. This approach to localization provides a description

of transitions between extended and localized states. Considering a block (ௗܮ) of infini-

tesimal size, it is noted that all states will effectively be extended (this assumes that

<ߦ ܮ which is reasonable for a system of infinitesimal size). From the discussion on

the Thouless criterion above, as the size of the system is increased, states in the block

will emerge as either extended or localized in the larger system. Transitions between

localized and extended states can therefore be examined by simply considering the ef-

fect of an increasing ܮ on .(ܮ)݃ This forms the basis of the scaling theory of localiza-

tion.

If ߜ is very small, the system will be localized and from the previous discussion

on localized transport (section 1.3.4), conductance in this regime will be defined by

[50],

(ܮ)݃ = ௖݃expቀ−
௅

క
ቁ. (1.28)

On the other hand, if ߜ is large ݃ will be given by the Drude form of conductance which

results in Ohm’s Law,
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(ܮ)݃ = .ௗିଶܮߪ (1.29)

We note that there must exist a critical value ௖ߜ which defines the mobility edge below

which a system of increasing size will ultimately end up as a localized system and

above which the increase in system size results in an extended system. ௖݃ is the con-

ductance associated with .௖ߜ

For the scaling analysis we must define a scaling function that allows conduct-

ance to be represented as a function of system size. Such a scaling function can be de-

fined as the derivative of the logarithmic change of conductance with respect to size

[50],

(݃)ߚ =
ௗ୪୬௚

ௗ୪୬௅
. (1.30)

In this function a negative value of (݃)ߚ (i.e. a negative derivative) means a decrease in

݃ with size and as a result represents a localized system. Correspondingly, if (݃)ߚ is

positive then ݃ increases with size and therefore the system is extended. In the localized

regime, from Eq. (1.28) and (1.30), (݃)ߚ will be given by [46]

(݃)ߚ = ln(݃/ ௖݃). (1.31)

Since ݃≪ ௖݃ in the localized regime, (݃)ߚ will always be negative for Eq. (1.31). In

the Ohmic regime (݃≫ ௖݃) described by Eq. (1.29), (݃)ߚ yields an asymptotic form

(݃)ߚ = ݀− 2. (1.32)

The dependence on dimensionality ݀ of the system in the Ohmic limit of the scaling

function (݃)ߚ therefore reveals an interesting result of these systems. For one dimen-

sional systems (݀ = 1), the scaling function (݃)ߚ is always negative. In other words,

for ݀ = 1 the system is always localized and therefore there is no metal-to-insulator like
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transition in such systems. All states are localized irrespective of disorder and ݃ always

tends towards zero with increasing .ܮ This was a confirmation of a result that was al-

ready well known in disordered one-dimensional systems [51]. In two dimensions

(݀ = 2), (݃)ߚ tends to zero from Eq. (1.32). This is a marginal case which reflects the

fact that there is a change from logarithmic localization to exponential localization.

Nevertheless it is expected that ݀ = 2 will always be localized. For ݀ = 3, (݃)ߚ is posi-

tive in the Ohmic limit and so one expects to find a metal-to-insulator transition in

three-dimensional systems.

The analysis of the scaling function (Eq. (1.28 – 1.32)) is summarized in Fig.

1.20.

Figure 1.20. Dependence of (݃)ߚ on ln݃ for d = 1, 2 and 3. The arrows show the movement of

ln݃ as the size of the system is varied. d = 3 is the only case where bidirectional change is pos-

sible and thus a critical point ௖݃ exists that separated the system from localized and extended

behaviour. For all other cases, d = 1, 2, the system is always localized.
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We see that the ݀ = 3 curve must cross the (݃)ߚ = 0 line at some point as the size of

the system increases, and thus ௖݃ in the plot represents the metal-to-insulator transition

point. Implicit in Fig. 1.20 is that (݃)ߚ is continuous for all curves. This is in disagree-

ment with the minimum metallic conductivity proposed by Mott [38] depicted in Fig.

1.12. The assumption that (݃)ߚ is continuous is based on the fact that as ݃ is a function

of the size of the system and ܮ evolves continuously, therefore (݃)ߚ must also be con-

tinuous. Though this issue is still debated, it is widely accepted that metal-to-insulator

transitions are continuous.

We will now discuss the ݀ = 3 scenario, which involves a metal-to-insulator

transition. Suppose a small block, with size ܮ of the order of the mean free path, possess

conductance ଴݃, where ଴݃ is considered to be the initial conductance of the system. If

଴݃ > ௖݃ then ଴݃ will be found somewhere in the positive half of the (݃)ߚ plot in Fig.

1.20. On the other hand, ଴݃ will be found in the negative half of (݃)ߚ if ଴݃ < ௖݃.

Whether ଴݃ resides in the positive or negative half of (݃)ߚ is determined by the

Thouless number, in other words, by the microscopic disorder. If (݃)ߚ is positive for

the initial system, according to Eq. (1.30) an increase the size of the system will result

in an increase in conductance. On the other hand if (݃)ߚ is negative in the initial sys-

tem, the natural consequence of the negative derivative is that an increase in size must

result in a decrease in conductance. Therefore for a system with ଴݃ > ௖݃ an increase in

size represents moving upwards along the ݀ = 3 curve in Fig. 1.20 until at very large ܮ

the asymptotic limit of (݃)ߚ = 1 is reached, i.e. at very large ,ܮ the system possesses a

characteristic Ohmic or metallic behaviour. Similarly, for a system with ଴݃ < ௖݃, the
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negative derivative demands that the system moves downwards along the ݀ = 3 curve

until at very large ,ܮ localized or insulating behaviour is dominant. These two types of

movements along the ݀ = 3 curve are illustrated by the arrows in Fig. 1.20 which de-

part in opposite directions from the critical point ௖݃. We also note that for ݀ = 1 and 2,

the movement along the curve with increasing size is always downwards since (݃)ߚ is

always negative.

It is therefore clear that for a fixed amount of disorder the characteristic behav-

iour of the system is determined by the initial conductance ଴݃ and its location relative to

௖݃. The ݃ = ௖݃ point at (݃)ߚ = 0 is an unstable fixed point since any small deviation

from this position will lead to one of two extremes, a metal or an insulator. The scaling

theory of localization allows us to further investigate this critical point. As discussed

previously, the initial conductance ଴݃ is determined by the Thouless number ߜ (i.e. dis-

order within the system), but we note that this can be changed simply by varying ிܧ of

a weakly disordered energy band (Fig. 1.5), for example from the region of extended

states towards the localized states. For a small change from the critical point, if (݃)ߚ

has a slope of ଵିߥ so that [50]

(݃)ߚ =
ଵ

ఔ
ߜ݃ , (1.33)

then as ிܧ approaches the critical point ௖݃ (mobility edge) from extended region to-

wards the localized region the conductivity (which is Ohmic in the extended region)

must quickly vanish and tend towards zero with an exponent accordingߥ to

ߪ ∝ ߜ݃) )ఔ. (1.34)

If the conductivity is written as ߪ ∝ ߦ/1 [50], it is found that the localization length

must diverge as at the critical point is approached
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∝ߦ ߜ݃) )ିఔ. (1.35)

Since this is a description of a phase transition from an extended system towards a lo-

calized system, the exponent ߥ is expected to be a universal constant, as in any critical

phenomenon involving a single correlation length .(ߦ) Critical phenomena are discussed

in more detail below in a section 1.4.2.

Eq. (1.35) is one of the most important predictions of the scaling theory of lo-

calization and the centre piece of this thesis. In the following chapters we shall investi-

gate the nature of this critical phenomenon in two-dimensional systems, where scaling

will be achieved by varying the effective length of the system, and disorder will be con-

trolled by the varying position of ிܧ in the energy band.

1.4 The quantum Hall effect (QHE)

The quantum Hall effect (QHE) is one of the most remarkable features of a 2DES. It is

characterized by the formation of plateaux in the Hall resistivity and the formation of

oscillations and peaks in the diagonal conductivity. Key to the understanding of QHE

was the concept of localization which was reasonably developed at the time of the dis-

covery of the QHE. In this section we describe the QHE using concepts already devel-

oped above on the theory of localization and two-dimensional systems. Of great interest

to this thesis is the transition between adjacent plateaus in the QHE. The central aim of

most of the work presented in this thesis is to investigate the nature of these plateau-to-

plateau transitions.
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1.4.1 Introduction to the QHE

The discovery of the QHE, including the initial discoveries that led to it, were largely

unexpected since the classical analysis of the effect of magnetic field on a 2DES (as

described in section 1.2.4) does not predict the QHE. The QHE, illustrated in Fig. 1.21,

has the pronounce features of a Hall resistivity plateauing at precisely quantized values

of ℎ/݅݁ ଶ, where ݅is an integer, and a diagonal resistivity that vanishes to zero where

these quantized levels appear. The resistivity tensor which takes the form,

=ߩ ቎
0

௛

௜௘మ

−
௛

௜௘మ
0
቏, (1.36)

is clearly in opposition to the classical form shown in Eq. (1.14).
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Figure 1.21. The Hall resistivity ௫௬ߩ and diagonal resistivity ௫௫ߩ of the quantum Hall effect

measured from a Hall bar. ௫௬ߩ is quantized at values of ℎ/݅݁ ଶ where i݅s an integer.
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Figure 1.22. Density of states of 2DES, (a) at zero magnetic field, (b) and in the presence of a

magnetic field. In strong fields, each Landau level splits into two spin resolved levels.

Although largely unexpected, a theoretical prediction suggesting the existence of the

QHE was made by Ando, Matsumoto and Uemura [52]. Initial experiments hinting of

the existence of the QHE were carried out by Wakabayshi and Kawaji [53, 54] on sili-

con MOSFETs but they were unable to discover the full extent of the QHE features

mainly due to the low quality of semiconductor devices at that time. The observation of

quantized Hall plateaus was first observed by von Klitzing, Dorda and Pepper in 1980

[2]. The observation was most profound because of its quantised nature and the realiza-

tion that the quantized Hall resistances are dependent only on fundamental constants of

nature, ℎ/݁ଶ.

Under an applied perpendicular magnetic field electrons in a 2DES move in an

orbital manner with a frequency ௖ݓ = ݉/ܤ݁ ∗, known as the cyclotron frequency. Solv-

ing the Schrödinger equation for these electrons in a magnetic field, it can be shown that

the eigenvalues of a two-dimensional system lie on odd integer multiples of ℏݓ௖/2,

௡ܧ = ℏݓ௖ ቀ݊ +
ଵ

ଶ
ቁ= ℏ

௘஻

௠ ∗ ቀ݊ +
ଵ

ଶ
ቁ, (1.37)
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Figure 1.23. Random potential fluctuations experienced by the 2DES shown in (a) cause a

smearing of LLs forming a narrow band of energies centred about the LL, shown in (b). This is

known as disorder broadening.

where ݊ is an odd positive integer and ேܧ denotes the ܰ th energy level. The sub-band

or energy spectrum of a 2DES under a magnetic field is therefore no longer a seemingly

continuous band of energies but is divided into discrete energy levels known as Landau

levels (LLs). Fig. 1.22 shows the separation of the sub-band into LLs. Each of these

LLs, due to the spin degeneracy, further splits into two separate energy levels, spin up

and spin down, at high magnetic fields.

Disorder within the 2DES, discussed above, has the effect of smearing out or

broadening the LL into Gaussian-like peaks due to the random potential introduced by

various sources of disorder (see discussion of disorder in 2DESs above). Eq. (1.37) is

therefore rewritten as

௡ܧ = ℏݓ௖ ቀ݊ +
ଵ

ଶ
ቁ+ ଴ܸ(௫,௬), (1.38)

where ଴ܸ(௫,௬) represents the random potential experienced by carriers within the sys-

tems.
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Figure 1.24. An illustration of the Fermi level passing through successive LLs as the magnetic

field is increase.

The broadened LLs are no longer discrete energy levels but take the form of Gaussian

bands of energies as shown in Fig. 1.23. The amount of broadening will be determined

by the strength of the random potential.

The degeneracy of each LL is equal to the number of flux quanta within a given

area and this is given by,

௅݊ =
௘஻

௛
. (1.39)

The carrier density of the entire 2DES is thus made up of the sum of all filled (and par-

tially filled) Landau levels,

ଶ݊஽ = ߥ
௘஻

௛
, (1.40)

where ,ߥ known as the filling factor, is the number of filled Landau levels.

Under a finite applied magnetic field, states accommodate electrons which will

fill up from the lowest state in the lowest LL up to the Fermi energy. The number of

filled LL will be determined by the carrier concentration and will be indicated by the
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filling factor ߥ (Eq. (1.40)). As the magnetic field is increased, the degeneracy of each

LL will increase according to Eq. (1.39), and electrons at the Fermi energy will there-

fore drop down to fill up the empty states below and as a result the Fermi energy will

adjust accordingly. Increasing the field therefore has the effect of moving the Fermi en-

ergy through successive LLs. This process is illustrated in Fig. 1.24.

In a weakly disordered 2DES where some degree of LL broadening occurs, the

density of states will be greatest at the centre of the LL. From the discussion on extend-

ed and localized states in the previous sections above, it would be expected that states in

the tails of the band will be localized while those close to the centre will remain extend-

ed throughout the system [5] as shown in Fig 1.25. When the Fermi energy coincides

with the centre of the LL (half filling factors) where states are extended, electrons will

be scattered in the diagonal direction under an applied electric field. ௫௫ߪ is greatest in

this region due to the availability of extended states. On the other hand, electrons are

able to scatter in the Hall direction (i.e. the direction perpendicular to the electric field)

due to the applied magnetic field. The change in ௫௬ߪ with magnetic field is linear in this

region as described by the classical case presented in Eq. (1.14).

When the Fermi energy is in between LLs, however, the density of states is vanishingly

small. Electrons in this region are less able to screen random disorder potentials and

therefore states in this region are localized. Electrons are no longer able to scatter in the

diagonal direction and ௫௫ߪ goes to zero. Similarly, electron are unable to drift any fur-

ther in the Hall direction and ௫௬ߪ is held at a constant value which is an integer multiple

of ݁ଶ/ℏ. The result of the preceding analysis is the plot shown in Fig. 1.21.
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Figure 1.25. The diagram shows the extended and localized regions with of two consecutive

Landau levels.

1.4.2 Quantum phase transitions in the QHE and critical uni-

versal singularities

A broadened Landau level band contains both extended states (at its centre) and local-

ized states (in the tail regions). It is therefore expected that an Anderson like metal-to-

insulator transition occurs within the QHE as the Fermi level moves through a LL band

at high magnetic fields. It has been shown by many authors [55-58] that in the limit of a

system of infinite size and temperature of absolute zero, states are extended only at a

single unique energy which corresponds to the discrete non-broadened energy of a Lan-

dau level, this is known as the critical energy .௖ܧ Anderson transitions in the QHE, or

quantum Hall transitions (QHTs), are therefore insulator-to-insulator transitions with a

metallic or extended state at .௖ܧ Critical transitions in the QHE are also known as plat-

eau-to-plateau transitions since they occur in the region that joins adjacent Hall plat-

eaus. We also recall from the scaling theory of localization discussed in section 1.3.6
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that, as the transition boundary is approached (in this case (௖ܧ the localization length ߦ

diverges. This is the hallmark of a critical phenomenon.

Critical phenomena in physics are one of the most striking aspects of the mac-

roscopic physical world. They describe seemingly abrupt changes between different

phases of matter which occur at a certain critical point in some parameter of the Hamil-

tonian (a parameter that changes the quantum state) of the system. These phase transi-

tions are characterized by the divergence of a measurable quantity of the system, known

as the order parameter [59], to infinity as the critical point is approached. The order pa-

rameter is a physical characteristic quantity of a system which is a numeric measure of

both the type and amount of ordering in a system close to the critical point. For exam-

ple, in a liquid-to-gas phase transition the appropriate order parameter is related to den-

sity which describes the ordering of particles within the system [7, 10]. The Hamiltoni-

an parameter, of which the critical point is a function, is usually some externally applied

parameter that causes a change in the order parameter, for example, temperature, pres-

sure, magnetic field or electric field. Critical phenomena include observations such as

phase transitions in classical fluids (water), opalescence of carbon, superconductor-to-

insulator transitions, transitions in superfluids (Helium: He3 and He4), ferroelectrics and

ferromagnetism [7, 9, 10].

Criticality of the type observed in the QHE are known as continuous quantum

phase transitions (QPTs) [6] or second order phase transitions. These transitions can

take place with zero latent heat. QPTs are referred to as continuous transitions, because

the order parameter changes continuously as the critical point is approached unlike, for

example, the thermal (first order) transition from liquid to a gaseous state where there is
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an abrupt and discontinuous change in the order parameter (the density, or in other

words the volume) of system on either side of the critical point.

Based on either empirical or heuristic arguments, it has been observed that there

are similarities between these apparently very different phase transitions [59], and in a

vast number of cases these different system have demonstrated similar behaviours in the

region close to the critical point. These similarities can be summarized in certain as-

ymptotic laws, known as scaling laws [8], that define the nature of transitions as the

critical point is approached.

In the case of the QPT in the QHE, the appropriate order parameter is observed

to be the localization length, which serves as the correlation length of a wavefunction

within the 2DES. The localization length contains information relating to the order

within the system ߦ) is dependent on, and a numeric measure of, disorder). Thus, the

divergence of the order parameter as the critical point is approached can be related to

the scaling law [11]

~�ߦ −ܧ| ,௖|ିఔܧ (1.41)

where ߥ is the critical exponent that describes the nature of the divergence of .ߦ Eq.

(1.41) describes the observed singularity (divergence to infinity) in QHTs. It is noted

that Eq. (1.41) which in this context refers to QHTs is the equivalent of Eq. (1.35)

which was formulated for metal-to-insulator transition. Both equations describe the

same critical transition. The order parameter in both equations is the same but in the

case of QHTs, the critical point occurs in the energy spectrum whereas in the case of

metal-to-insulator transitions discussed in Eq. (1.35), criticality occurs in the conduct-

ance of the system.
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Within systems that exhibit critical phenomena the correlation length ߦ of the

system represents the distance over which the system maintains some amount of order

or coherence. In other words, the divergence of ߦ signifies a divergence of the length

over which order is maintained. In the context of localized systems, the length over

which the wavefunction of an electron behaves like a Bloch-like extended state (the

length of coherence) diverges as the critical point is approached. Microscopic disorder

on length scales much smaller than areߦ insignificant to the behaviour of the system, as

an electron will remain extended over the entire length of correlation regardless. As the

critical point ௖ܧ is approached, ߦ is extended over larger and larger regions of space.

The system therefore begins to look more homogenous, or independent of disorder,

since electron transport will not be characterized by the specific microscopic details on

length scales smaller than .ߦ One realises that various individual systems of different

characteristics will become similar and indistinguishable near the critical point. It there-

fore follows that systems exhibiting criticality can be divided in to broad groups, known

as universal classes [7, 60], that are only defined by very general characteristics such as

symmetry or dimensionality [6]. These universal classes possess identical critical prop-

erties, and in particular can be identified by the value of the critical exponent related to

the divergent correlation length. For QHTs occurring in any 2DES, the value of ߥ in Eq.

(1.41) is expected to be universal for all 2DES [6, 11] in accordance with the theory of

critical phenomena [7] and independent of microscopic details of the system such as

mobility and carrier concentration.

In the following section we discuss the value of the universal critical exponent

ߥ of the correlation length and how it can be experimentally determined using a finite-

size scaling analysis.
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1.4.3 Finite-size scaling of quantum Hall transitions

Strictly speaking, the theory of critical phenomena of QPTs requires a divergence of the

order parameter to infinity, i.e. a singularity, in a system of infinite size and at the abso-

lute zero of temperature. In reality, these transitions occur at non-zero temperatures and

in systems of finite size. In finite-size systems, long distance correlation is cut-off by

the restriction imposed by the physical boundaries of the system, but in the simultane-

ous limit of the temperature approaching zero and the system size tending to infinity,

the scaling laws of infinite systems can be approximated in finite systems. This forms

the essence of finite-size scaling.

Using various numerical methods and after considerable theoretical efforts (re-

view in Ref. [11]), a vast amount of data have been obtained on the estimated value of ߥ

based on finite-size scaling arguments. These results have been summarized in Table

1.1. It is observed from Table 1.1 that the estimated value of ߥ is expected to be be-

tween 2.0 and 2.5, however most values appear to centre around ~�ߥ 2.3. The most ac-

curate numerical value obtained so far [11, 61] is =ߥ 2.35 ± 0.03 reported by Huck-

estein and Kramer [56] is based on a random Landau matrix model.

On the experimental front, the physical scaling of the size of a 2DES was ini-

tially considered somewhat impractical for experimental investigation as it would in-

volve fabricating numerous samples with only small variations in size. It was also not

apparent that such an approach would yield results that could be combined to describe

the nature of a single system. A better approach would involve somehow expanding or

contracting the size of a single system.
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Table 1.1 Critical exponent of the localization length ߥ of quantum Hall transition obtained by

various theoretical methods taken from Kramer et al [61].

ߥ Model Method Reference

∞ Short-range impurities Self-consistent perturbation [62]

≈ 2 Peierls tight binding Transfer matrix scaling [63]

≈ 2.0 Short-range impurities Recursive green function [64, 65]

2.35 ± 0.03 Random Landau matrix Recursive green function [11, 56]

2.3 ± 0.1 Random Landau matrix Recursive green function [66]

2.4 ± 0.2 Random Landau matrix Recursive green function [67]

2.4 ± 0.1 Finite range impurities Chern number scaling [55]

≈ 2.3 Spin-orbit scattering Thouless number scaling [68]

≈ 2 Double layer system Thouless number scaling [69]

≈ 2 Random matrix model Scaling of level statistics [70]

2.5 ± 0.5 Chalker-Coddington Transfer matrix scaling [71]

2.4 ± 0.2 Random saddle points Transfer matrix scaling [72]

2.5 ± 0.5 Chalker-Coddington type Real space renormalization [73]

2.39 ± 0.01 Chalker-Coddington type Real space renormalization [74-76]

2.5 ± 0.4 Super spin chain Density matrix renormalization [77]

2.33 ± 0.03 Counter-propagating chiral Fermions Monte Carlo [78]

Inspired by the work of Thouless and the single parameter scaling theory of localiza-

tion, Pruisken [79] observed that if the phase coherence length ఝܮ of the 2DES is less

than the physical dimensions of the system, then the 2DES can be considered to contain

within it many subsystems, where the size of a subsystem is defined by the length ఝܮ

such that adjacent lengths of ఝܮ can be considered as two separate systems. Defined in
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this manner, electrons in a system possess an effective size ௘௙௙ܮ and will experience the

same boundary conditions as described by the Thouless number. We note that in this

case ௘௙௙ܮ = ఝܮ . Similar to the Thouless block described above in section 1.3.5, if

௘௙௙ܮ ≪ ߦ in 2DES, an electron will defuse for a time ఝ߬ defined by the phase coherence

time after which it is scattered, analogous to the scattering at the boundary of a Thouless

block. As described by Thouless, as the size of the system increases the conductivity in

the system will resolve into one of two asymptotic extremes. Similarly, as the effective

௘௙௙ܮ (the phase coherence length) is increased, an electron is allowed to coherently ex-

plore more and more of the system, revealing the intrinsic nature of disorder within the

system. If the condition ௘௙௙ܮ ≪ ߦ still remains after ௘௙௙ܮ is equal to the physical size

of the system ,ܮ the system will have metallic behaviour. Conversely, as ௘௙௙ܮ is in-

creased, if ௘௙௙ܮ ≫ ߦ occurs before ௘௙௙ܮ = ,ܮ then the system will exhibit localized be-

haviour. For a temperature dependent phase coherent length

ఝܮ = ඥܦ ఝ߬ where ఝ߬ ∝ ܶି௣, (1.42)

the effective size can therefore be expressed as

௘௙௙ܮ ∝ ܶି௣/ଶ, (1.43)

where ݌ is the temperature exponent of the inelastic scattering length. It is noted that

Eqs. (1.42) and (1.43) are the same as the Thouless argument in Eq. (1.24), and as a re-

sult ௘௙௙ܮ is also known as the Thouless length. In light of the above scaling argument, it

can be seen that the conductivity of the system is dependent on the ratio of ௘௙௙ܮ and .ߦ

From Eq. (1.41) and (1.43) it is observed that the scaling (or power) law of conductivity

as the critical point is approached will depend on the critical exponent =ߢ .ߥ2/݌ We

define a natural scale =ߤ ଵ/ఔ(ߦ/௘௙௙ܮ) such that [79]
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=ߤ −ܧ| ,௖|ܶି఑ܧ (1.44)

so that ≥ߤ 1 describes metallic behaviour while <ߤ 1 describes localized behaviour.

The conductivity tensor near the critical point will be dependent on ߤ and reflect its

power law behaviour in the following scaling law [11, 79],

)ఈఉߪ (ܧܶ, = ఈܵఉ[|ܧ− ,[௖|ܶି఑ܧ (1.45)

where ఈఉߪ represent the various coefficients of the conductivity tensor and ఈܵఉ is the

corresponding constant of the scaling function. The derivative of the scaling function in

Eq. (1.45) near the critical point therefore provides direct experimental access to the

critical exponent ߢ as follows:

ௗఙഀഁ(ா೎)

ௗா
∝ �ܶ ି఑. (1.46)

Substituting a changing Fermi energy with its analogous change in magnetic field and

noting that the above expression only applies close to the critical point, for the Hall

conductivity ,௫௬ߪ Eq. (1.46) represents a temperature dependence of the slope of ௫௬ߪ

near the critical point (as shown in Fig. 1.26)

ௗఙೣ೤(஻೎)

ௗ஻
∝ �ܶ ି఑. (1.47)

ߢ can be measured as the gradient of Eq. (1.47) on a double log scale. On the other

hand, it is observed that the derivative in Eq. (1.46) near the critical point for the diago-

nal conductivity ,௫௫ߪ is a measure of the width of the conductivity peak in magnetic

field

ఙೣೣܤ∆ ∝ �ܶ ఑, (1.48)

such that ߢ is obtained as the gradient of the double log plot of Eq. (1.48). Equivalents

of Eq. (1.47) and (1.48) exist for the resistivity coefficients as ܤ݀/௫௬ߩ݀ ∝ �ܶ ି఑ and

ఘೣೣܤ∆ ∝ �ܶ ఑ respectively.
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Figure 1.26. A schematic showing the relation between the scaling exponent ߢ and measured

resistivities of a Landau level.

If the value of the inelastic scattering exponent is taken to be =݌ 2 as predicted

by Fermi liquid theory [56], and giving the theoretical calculated value of ≈ߥ 2.35,

≈ߢ 0.42. The first experimental investigation of the critical exponents based on the Eq.

(1.47) and (1.48) was reported by Wei et al. [12] where remarkably wasߢ measured to

be ≈ߢ 0.42 in both the Hall and diagonal component for a 2DES formed in a In-

GaAs/InP heterostructure, and as would be expected with critical phenomena, this value

was independent of LL index. It was therefore declared that the highly anticipated criti-

cal phenomena of QHTs did in fact exist and that these QHTs are indeed continuous

second order quantum phase transition.

ߩ
௫௬

ܤ

݅+ 1

݅

ߩ
௫௫

ݔݔܤ∆ ∝ ߢܶ

ߩ݀
ݕݔ

ܤ݀
∝ ߢ−ܶ
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1.5 Experimental results on the scaling of QHTs

The result reported by Wei et al. [12] on the criticality of QHTs was truly remarkable,

owing largely to its precise agreement with the general consensus on the theoretical val-

ue of .ߥ However, subsequent results on the criticality QHTs have been contradictory at

best and chaotic at worse [11]. As described above, the criticality ߥ is determined based

on a composite exponent =ߢ ,ߥ2/݌ where ݌ is assumed to be 2. Therefore, in order for

ߢ to be a universal critical exponent, the inelastic scattering exponent ݌ has to be uni-

versal, a point on which some disagree [80]. In addition it is not clear why the value of

the clean limit of a Fermi liquid, =݌ 2, is used rather than the disordered (or dirty) val-

ue of =݌ 1 [81].

The Wei et al. experiment on InGaAs/InP systems was quickly followed by

similar investigations in GaAs/AlGaAs heterostructures, where it was found that the

value of ߢ was not universal as previously reported and was dependent on the strength

of impurity scattering [15]. Wei et al. consequently performed their own experiments on

GaAs/AlGaAs devices where they found that ߢ was only universal (with the expected

value of ~0.42) for temperatures below 200 mK [82]. Systematic studies on Si metal-

oxide-semiconductor 2DESs also found ߢ to be non-universal and dependent on Landau

level [83, 84]. With the universality of ݌ in question, investigations based solely on de-

termining ݌ in InGaAs/InP 2DESs using current dependent measurements (current scal-

ing) reported the inelastic scattering exponent to be universal and Landau level depend-

ent with =݌ 2 [14], but this contradicted experiments on GaAs/AlGaAs structures that

found ݌ to vary between a value of =݌ 2.7 and =݌ 3.4 [17, 85].
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In general, universality of critical exponents (of either ߢ or (݌ was observed in

InGaAs/InP systems but it was almost always absent in GaAa/AlGaAs systems. It was

therefore suggested that that the difference in criticality reported by various experiments

depended on the nature of disorder potentials within a 2DES, as this was the fundamen-

tal difference between a InGaAs/InP system and a GaAs/AlGaAs system. In In-

GaAs/InP systems, the electron gas is formed in an alloy with disorder originating from

short-range alloy scattering (as discussed in section 1.2.3) and therefore random poten-

tials within this system vary on an atomic length scale. The electron gas in

GaAs/AlGaAs systems on the other hand are situated in the high quality GaAs layer,

and the dominant mechanism of disorder in these systems stems from random long-

range potentials of ionized impurities remote from the electron gas. This short-

range/long-range argument based on disorder potential was given some standing from

the experimental results of Li et al. [18], who showed that by changing the nature of

disorder with the system from long-range to short-range, the value of ߢ will crossover

from the non-universality to universal criticality demonstrating the importance of disor-

der potentials. It still, however, remains unclear why this is the case and thus this thesis

will propose a theory for this discrepancy.

It is noted that though ߢ was the value being determined in these early experi-

ments on scaling theory, the exponent of interest is the localization length exponent ,ߥ

which is the determinant of the critical phenomenon. While efforts to measure ߥ indi-

rectly through ߢ have been fraught with contradictions, the determination of ߥ via the

more direct means of estimating the localization length ߦ have yielded better success

though these results are not completely free of controversy. By sampling the conductivi-

ty in localized regions around the critical point and at different temperatures ߦ can be
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estimated in proportion to the approaching critical point, ∝�ߦ ܤ| − ,௖|ିఔܤ and thus ߥ

can be determined. Using this method it was reported [86] that ߥ was found to be

≈ߥ 2.35 and universal across all samples investigated.

Another method that has been used to estimate ߦ is the measurement of QHTs

at very low temperatures in samples of different physical size. As the temperature is

lowered it is possible for the phase coherence length to exceed the physical dimensions

ܮ of the system. This scenario is characterized by the saturation in conductivity as a

function of temperature, since further reduction in temperature no longer has an effect

on electron transport. As the critical point is approached, the divergence of ߦ (now no

longer determined by ఝܮ ) will be cut off by the physical dimensions of the system such

that at or below the saturation temperature, =ߦ .ܮ ߦ in Eq. (1.41) can therefore be re-

placed by ܮ and the critical exponent can be determined from a double log plot of

∝ܮ .ఔିܤ∆ Using this physical scaling argument, the critical exponent was consistently

found to be ≈ߥ 2.3 [85, 87] and independent of Landau level. However, in this థܮ > ܮ

regime the system is non-self-averaging [30] due to coherent backscattering (section

1.35 and Fig. 1.17(b)). One therefore expects pronounced manifestations of quantum

interference induced conductance fluctuations [30, 88-90] which appear to be absent in

the data provided by size scaling investigations.

It is possible to vary the phase coherence length by varying the frequency of the

applied current (or electric field). This technique is discussed in greater detail in Chap-

ter 3. It was observed, through dynamic scaling, that the width of the conductivity peaks

follow the scaling power law of Eq. (1.48) where ߢ was found to be universal [13] in

one report but non-universal in others [16, 91].
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The main focus of this thesis is therefore the verification of criticality within

QHTs and in particular there is a focus on why there are numerous discrepancies within

the field. Universal criticality will be investigated using a broad range of techniques that

require the application of various aspects of low temperature electron transport. We

shall individually and independently investigate each of the critical scaling exponents

discussed above. The critical phenomena will be investigated as function of tempera-

ture, frequency and current. We will also investigate the effect of disorder on the criti-

cality of phase transitions within the QHE. In dynamic or finite-frequency scaling, we

extended the frequency range of scaling beyond that reported in the literature and pre-

sent the highest data resolution ever reported. We then propose a unifying model for of

the scaling theory of QHTs which attempts to explain most of the discrepancies ob-

served within the literature.
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2. The temperature dependent

scaling of quantum criticality

in quantum Hall transitions

2.1 Introduction

In this chapter, we investigate the nature of quantum Hall transitions (QHTs) using

temperature dependent processes. As discussed in Chapter 1, all QHTs are expected to

belong to the same universality class of phase transitions [6]. As a result, the critical

exponent of these transitions will possess the same value of ~�ߥ 2.3 [56], though not all

experimental investigations agree with this statement [11]. In section 1.4.3, it was

shown that the temperature dependent analysis of the critical phenomenon of QHTs re-

sults in a composite scaling exponent =ߢ ,ߥ2/݌ which has also been suggested to be a

universal constant [12, 79]. In this chapter we investigate all three exponents inde-

pendently in order to verify their universality and the relationship between them.

ߥ is determined using a variable range hopping analysis which takes into ac-

count the temperature dependent conductivity of the 2DES as the critical point at the

centre of a LL band is approached. ߢ is determined using the finite-size analysis devel-

oped in section 1.4.3, where the width of the LL conductivity peaks and the slope of

plateau-to-plateau transitions are considered. And ݌ is determined using a current scal-
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ing analysis which examines the electron inelastic scattering rate by increasing the elec-

tron temperature through the applied electric current.

2.2 Samples and experimental techniques

The characteristic details of all the various samples used in this chapter are provided

below, along with a description of the experimental setup used for the results presented

in this chapter.

2.2.1 Sample characteristics

All the samples used in the chapter were fabricated from GaAs/AlGaAs wafers grown

by molecular beam epitaxy. Four different wafers with the structure shown in Fig.

2.1(a) were grown. Beginning with a GaAs substrates, the growth sequence is as fol-

lows: an undoped 1-μm-thick high quality GaAs layer, an undoped Al0.33Ga0.67As spacer

layer (which is either 20 nm or 40 nm thick), a 40 nm Si-doped Al0.33Ga0.67As layer with

dopant concentration of 2 × 10ଵ଼ cmିଷ, and a thin 10 nm GaAs cap layer.

A Hall bars with a channel width of 100 μm and length of 300 μm between 

voltage probe arms was patterned onto each sample using optical lithography. Low re-

sistance ohmic contacts were prepared by evaporating 170 nm of a Au/Ge/Ni eutectic

onto the ends of the probe arms of the Hall bar, which was then annealed at 430 °C for

80 seconds under an atmosphere of nitrogen. The Hall bar pattern with ohmic contacts

is shown in Fig. 2.1(b). The device contains of ten ohmic contacts. The two ohmic con-

tacts at the left and right ends of the device (as shown in Fig. 2.1(b)) are used to inject

current into the device while the other eight contacts on either side of the channel are
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used as voltage probe arms. The fabricated Hall bar device is attached to a chip package

and wire bonded as shown in Fig. 2.2.

For each sample (one from each of the four wafers investigated) the electron

density ଶ݊஽ and mobility ߤ are obtained from low field measurements of the Hall and

the zero-field diagonal resistivities (see measurement calculations in section 1.2.4). The

sample characteristics are summarized in Table 2.1. The table includes two different

electron scattering times, the transport or classical lifetime of an electron ௖߬, and the

quantum lifetime of an electron ௤߬. We briefly discuss these two lifetimes as they con-

vey a lot about the characteristics of the samples being investigated. In addition, distin-

guishing between them will be become important in analysing the results presented in

this thesis.

Figure 2.1. (a) Device structure of the 2DES GaAs/AlGaAs heterostructure with Au/Ge/Ni,

which form the ohmic contacts, annealed into the heterostructure. (b) Top view of the Hall bar

device with length between probe arms of L = 300 μm and with a channel width of W = 100 μm 

GaAs substrate

      GaAs                     1 μm 

AlGaAs 20/40 nm

Si: AlGaAs 40 nm

GaAs 10 nm

Au/Ge/Ni Au/Ge/Ni

Ohmic contacts

100 μm

300 μm

(a) (b)
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Figure 2.2. A picture of the finished Hall bar device attached and wire bonded to a chip package.

The device itself is the dark square sample in the middle of the package. The ohmic contacts can

be seen as the tiny gold coloured squares on the sample.

When the relaxation time of a system is determined from a simplified Boltz-

mann equation, the mean time between collisions is weighted by a factor of 1 − cosߠ

ଵ

ఛ೎
= ∫ 1)(ߠ)ܳ − cosߠ݀(ߠ

గ

଴
, (2.1)

where (ߠ)ܳ is proportional to the probability of scattering an electron through an angle

.ߠ At zero magnetic field, the transport mobility as determined from the Drude formal-

ism, =ߤ ݁߬ ௖/݉ ∗, relies on the expression in Eq. (2.1). The classical lifetime therefore

includes only a fraction of actual collisions since small angle collisions are effectively

ignored due to the weighted factor. At zero magnetic field, the Drude mobility is an ac-

curate reflection of scattering events occurring in the system since the majority of

dephasing events will consist of short-range scattering off impurities within the vicinity

of the 2DES. These short-range collisions produce large scattering angles that are less

supressed in Eq. (2.1).
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TABLE 2.1. Heterostructure and transport characteristics measured at 100 mK

Sample AlGaAs

spacer

(nm)

ne

(×1011 cm2 )

μe

(×105 cm2

V-1s-1)

௖߬

(ps)
௤߬

(ps)

L1 20 2.99 3.8 14.78 0.92

L2 40 1.55 1.09 4.15 1.25

L3 20 2.45 0.51 1.94 0.53

L4 40 1.92 8.68 33.07 1.47

At high magnetic fields, however, small perturbations can result in the dephas-

ing of cyclotron orbits making small angle scattering events significant. The quantum

life time ௤߬ expressed as,

ଵ

ఛ೜
= ∫ ߠ݀(ߠ)ܳ

గ

଴
, (2.2)

is therefore a measure of all collisions within the system, irrespective of scattering an-

gle, and a better measure of dephasing events at high fields. The phase sensitivity of

cyclotron orbits is evident in the collision broadening of Landau levels which is related

to the quantum lifetime through Γ = ℏ/2 ௤߬. The quantum lifetime can be measured

from the envelope of the amplitude of Shubnikov-de Haas (SdH) oscillations (i.e. the

low field oscillations of the QHE) [92]. The amplitude of the SdH oscillation Δߩ is giv-

en by the Dingle formula [93] as

Δߩ= −)଴ܺ(ܶ)expߩ4
గ

ఠ೎ఛ೜
), (2.3)

where ଴ߩ is the zero field resistivity and ܺ(ܶ) is a thermal damping factor given as

ܺ(ܶ) = ଶ݇ܶߨ�2) /ℏ߱௖)/ sinh(2ߨ�ଶ݇ܶ /ℏ߱௖). (2.4)
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Figure 2.3. (a) A plot of the SdH oscillation of sample L1 at 100 mK. The dashed line is a least

squared fit of the amplitude of the oscillations. (b) �߬௤ determined from the Dingle plot of L1 at

three different temperatures which have been slightly offset on the y-axis for clarity.
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Eq. (2.3) was originally derived by Ando [94] for oscillations in .௫௫ߪ From Eq (2.3) and

(2.4), 1/ ௤߬ can be determined from the slope of a logarithmic plot of the SdH amplitude

divided by ܺ(ܶ) to correct for thermal damping, against .ܤ/1 Fig. 2.3(a) shows the SdH

oscillations of sample L1 at 100 mK and the fitted envelope of the amplitudes. In Fig.

2.3(b) ௤߬ is found to be approximately 0.92 ps at three different temperatures for the

sample. The agreement between different temperatures indicates that the temperature

dependence is correctly accounted for by the damping factor [93].

The quantum lifetimes for all four samples are listed above in Table 2.1. The

first thing one notices it that ௤߬ is consistently smaller than ௖߬, and this is because ௤߬

counts both large and small angle scattering events. Secondly, the effect of the spacer

width is observed in the measured value of ௤߬; the 20 nm spacer samples have quantum

lifetimes that are smaller than the 40 nm spacer samples. This is not observed for the

classical lifetimes. Varying the spacer width affects the Coulomb scattering from re-

mote ionized impurities in the donor layer (Section 1.2.3), which are predominantly

small angle scattering events. The smaller the spacer width, the greater the effect of this

long-range ionized impurity scattering. This is reflected in Table 2.1. The difference in

௤߬ for samples with the same spacer width (and comparable electron densities) will

therefore be determined by short-range scattering mechanisms within the samples. It is

observed in Table 2.1 that between samples with the same spacer widths, the sample

with the larger ௖߬ is also the sample with the larger ௤߬. The ratio ௖߬/ ௤߬ is a measure of

whether scattering events are dominated by short-range interaction (large angle scatter-

ing) or long-range interaction (small angle scattering). If the predominant scattering

mechanism is short-range (i.e. large angle scattering occurs on much shorter times
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scales than the small angle scattering time), ௖߬/ ௤߬ will tend towards unity. This is be-

cause large angle scattering events are equally accounted for by both lifetimes. But if

the dominant scattering mechanism is long-range (small angle) scattering there will be a

greater difference between ௖߬ and ௤߬ since ௖߬ suppresses the contribution of smaller

angle scattering events. For high quality samples which are mainly limited by long-

range scattering from ionized impurities ௖߬/ ௤߬ is expected to be between 10 and 100

[26, 93, 95].

Finally, we note the importance of carrier density in these GaAa/AlGaAs sam-

ples. At high carrier concentration, long-range potential fluctuations are more effective-

ly screened by the 2DES and therefore small angle scattering is reduced (increasing ௤߬).

Using this simplified argument we note that for samples with the same spacer widths in

Table. 2.1, ௤߬ increases as a function of carrier density. At high density the majority of

small angle scattering is screened and ௖߬/ ௤߬~ 1, and the sample tends towards the

short-range scattering regime. The effect of carrier densities and screening will be dis-

cussed in more detail in Chapter 4.

As observed in Table 2.1, a wide range of sample characteristics are used in this

work in order to verify the universal critical phenomena, which should be independent

of sample details such as those described in Table 2.1.

2.2.2 Experimental setup

The samples are attached to the base plate of a 3He/4He dilution refrigerator with a base

temperature of less than 14 mK as measured by a ruthenium oxide (RuO2) senor at-

tached to the base plate. The diagonal and Hall resistivities (or voltages) are measured
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from the probe arms of the Hall bar using two lock-in amplifiers. A low frequency cur-

rent (usually between 7 Hz and 215 Hz) is injected into the device and along the longi-

tudinal channel of the Hall bar.
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Figure 2.4. Plots of the ௫௫ߩ and ௫௬ߩ taken at a temperature of 100 mK for all four samples inves-

tigated.
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The Hall resistivity is determined from the voltage measured from opposite probe arms

while the diagonal resistivity is measured from adjacent probes arms as described in

section 1.2.4. It was found that excitation currents below 50 nA did not cause heating

within the samples; this was determined by varying the excitation current by small in-

crements and observing the effect of temperature on the SdH oscillations. Unless other-

wise stated a fixed current of 10 nA was used for all the temperature scaling measure-

ments below.

Fig. 2.4 shows the 100 mK plot of ௫௫ߩ and ௫௬ߩ for all sample. Our analysis

would mainly be centred on both spins of the ܰ = 1 Landau level since these are the

only ones with spin resolved energy levels available.

2.3 Direct determination of the critical exponent of the

localization length, ࣇ

We now begin with the investigation of critical phenomena in quantum Hall transitions

by attempting to directly determine ,ߥ which is expected to be ~ 2.35, from the locali-

zation length in the tail regions of a Landau level conductivity peak. At low tempera-

tures the transport mechanism in this region is well understood to allow the localization

length to be calculated.

2.3.1 Adaptation of localized hopping

Transport between strongly localized states (as found in the tail regions of a disorder

broadened Landau level) is only possible through hopping between localized states. As
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discussed previously (Section 1.3.4), in the low temperature limit variable range hop-

ping (VRH) is the predominant transport mechanism and is defined by Mott’s ܶଵ/ସ law

[33] as

(ܶ)௫௫ߪ ∝ exp[(− ଴ܶ/ܶ)ଵ/ௗାଵ], (2.5)

where ݀ is the dimensionality of the system. For ݀ = 2, the exponential temperature

dependent term is reduced to ܶିଵ/ଷ.

Mott’s law, however, is based on the assumption that the density of states near

the Fermi level is constant. This is valid when a wide range of energies around the Fer-

mi level are involved in the hopping process, but in the low temperature limit, only a

very narrow range of energies around the Fermi level contribute towards the hopping

conductivity. In this regime it was pointed out that electron-electron interaction should

reduce the density of states near the Fermi level. Efros and Shklovskii [96] demonstrat-

ed that Coulomb interaction in this regime does in fact reduce the density of states and

creates a Coulomb gap such that Mott’s VRH conductivity is redefined as

(ܶ)௫௫ߪ = −)]଴expߪ ଴ܶ/ܶ)ଵ/ଶ], (2.6)

where

஻݇ ଴ܶ = ܥ
௘మ

ସగఢೝఢబక
. (2.7)

The prefactor of the exponential in Eq. (2.6) has been observed to be temperature de-

pendent, ଴ߪ ∝ 1/ܶ [97-99]. The dimensionless constant ܥ is expected to be of the order

of unity and is believed to be ܥ ≈ 6 [100].

Therefore at very low temperatures where a Coulomb gap is expected, the local-

ization length can be determined from a double log plot of Eq. (2.6) where ଴ܶ will be
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the gradient of a linear fit to the plot. From Eq. (2.7) we note that, ∝ߦ 1/ ଴ܶ. The diver-

gence of asߦ the critical field is approached ∝ߦ ܤ| − ,௖|ିఔܤ can then be rewritten as

଴ܶ ∝ ܤ| − .௖|ఔܤ (2.8)

The critical exponent ߥ can therefore be determined as the gradient of the double log

plot of Eq. (2.8).
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Figure 2.5. Analysis of VRH conductivity in the tail regions of the ܰ = 1 ⇃ LL of sample L3

between 2.5 T and 2.54 T. The solid lines are linear fits to Eq. (2.6). The inset shows the LL ana-

lysed and the two vertical dotted lines indicate the range sampled.

Fig. 2.5 shows the Efros–Shklovskii VRH equation applied to the localized region of

the ܰ = 1 ⇃ LL of sample L3. We notice a weak temperature dependence of conductivi-
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ty at very low temperatures (< 200 mK). We do, however, find good agreement with

Eq. (2.6) at temperatures above 200 mK indicated by the linear fit of the solid lines in

Fig. 2.5. The gradient of each linear fit represents a field dependent value of ଴ܶ which is

inversely proportional to .(ܤ)ߦ We notice that the gradient of the linear fit becomes

gentler as the centre of the LL is approached. This indicates a growing or diverging onߦ

approaching the critical field. We also notice that the linear fits appear to converge to-

wards some finite conductivity when extrapolated to high temperatures. The conver-

gence point is argued to be the minimum metallic conductivity proposed by Mott (see

section 1.3.3).

A tendency for the conductivity to saturate at lower temperatures is observed in

all the four samples investigated, with all samples possessing the same saturation tem-

perature of ~200 mK. In addition, the saturation region is independent of magnetic field

(or energy within the LL). These two observations suggest that the saturation is due to a

finite-size effect. Similar saturation regions are commonly observed in transport meas-

urements of samples of small sizes [82, 85, 87, 101]. It has been previously shown that

changing the size of the sample does indeed change the cut off saturation temperature

[85]. We therefore neglect the saturation region in the remainder of our analysis.

2.3.2 ࣇ in spin resolved Landau levels

It is important to discuss briefly how the critical field of the data presented below is de-

termined. We recall that the critical point is important because it is the point at which

the localization length diverges to infinity (the point of singularity) and this coincidence

with the location of a LL. According to the theory of the QHE, within a two-

dimensional system LLs are found at discrete energy values corresponding to the inte-



74

ger values, ,݊ of ℏݓ௖(݊+ 1/2), (see section 1.4.1). In the presence of disorder, howev-

er, a LL is no longer a single or discrete point but rather a band of energies consisting of

both localized and extended states. The singularity of the localization length occurs

within the extended states, and strictly speaking, at thermodynamic limit. However,

since the data presented below are of systems of finite-size, the critical point, according

to finite-size scaling theory, is approximated by the peak in the density of extended

states. This is roughly located at the centre of a LL conductivity peak of ,௫௫ߪ but may

not necessarily coincide with the geometric centre of the peak due to contributions of

localized states transport to .௫௫ߪ On the other hand, any measurement of ௫௬ߪ about a

specific LL must pass through a critical value ௫௬ߪ
∗, which corresponds to the Hall con-

ductivity at the critical energy or field. Experimentally, it is well known that ௫௬ߪ
∗ is not

affected by disorder mechanisms such as temperature, unlike its equivalent in the diag-

onal conductivity ௫௫ߪ
∗ = 0.5݁ଶ/ℎ. The existence of ௫௬ߪ

∗ is confirmed in Fig. 2.6 below

where it can be seen that all traces within the plot passes through a single point inde-

pendent of temperature. It can be seen from the figure that as the temperature is re-

duced, though the plateau-to-plateau transition becomes steeper, it passes through the

௫௬ߪ
∗ point. It is obvious that the critical point must be within this transition region. In

the limit of the absolute zero of temperature the transition will be a step function of in-

finitesimal width but, as shown in Fig. 2.6, must still pass through ௫௬ߪ
∗ and since the

critical point must be within the plateau-to-plateau transition width, ௫௬ߪ
∗ must be the

critical point.
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Figure 2.6. The Hall resistivity for the ܰ = 1 ↓ LL for sample L1. It is observed that all tempera-

ture traces pass through and intersect at a single point which coincides with the critical field at

the centre of the LL.

Having dealt with the issue of the location of the critical field, we apply the

VRH analysis to all four samples under investigation in order to determine the critical

exponent .ߥ Fig. 2.7 shows a similar plot to Fig. 2.5. The plot in Fig. 2.7(b) is obtained

according Eq. (2.6) for the low field side of the LL shown in Fig. 2.7 (a). It is observed

from the plot that VRH is in good agreement with the data and extends deep into the

tails of the broadened LL. From the field dependent values of ଴ܶ obtained for each sam-

ple, ߥ is determined from Eq. (2.8). Applying this analysis to all samples, the plots in

Fig. 2.8 are obtained. For each sample, ଴ܶ is plotted against δܤ = ܤ| − .|௖ܤ This can be

plotted twice for each sample, one from approaching the ௖ܤ from the high field side of



76

the LL and another from the low field side approach. The critical exponent ߥ is there-

fore determined twice for each sample. The values are summarized in Table 2.2.

It is noted that in determining the range of data included in Fig. 2.8, the critical

point it determined using the Hall conductivity as discussed above, and far away from

the critical point, the data is limited by the zeroing of the conductivity of the lowest

temperature.

In Table 2.2, it is observed that the data is in remarkable agreement with the

theoretically predicted value of ≈ߥ 2.35 [11] for all sample.
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Figure 2.7. (a) Temperature dependence of the ܰ = 1 ↓ LL transition peak for sample L4. The

peak width increases with temperature. (b) Semi-log plot of the temperature dependence of ௫௫ߪ�

taken from the data in (a), using Eq. (2.6).



77

0.15 0.2 0.25 0.3 0.35 0.4

10

20

30

40

50

3.0 3.5 4.0 4.5 5.0
0.0

0.1

0.2


x
x

(e
2
/h

)

B (T)

100 mK

300 mK
400 mK
500 mK

600 mK
650 mK

(a) L1

B<B
c

T
0

|B|

B>B
c

0.1 0.2 0.3 0.4
5

10

15

20

25

30

35
40

1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5


x
x

(e
2

/h
)

B (T)

100 mK
200 mK

300 mK
400 mK
500 mK

600 mK

T
0

|B|

(b) L2

0.16 0.18 0.2 0.22 0.24
6

8

10

12

14

16

18

2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6


x
x

(e
2

/h
)

B (T)

100 mK

300 mK
400 mK
500 mK

600mK
700 mK

T
0

|B|

(c) L3

0.1 0.15 0.2 0.25

5

10

15

20

25

30

T
0

|B|

2.0 2.5 3.0
0.00

0.05

0.10

0.15


x
x

(e
2

/h
)

B (T)

100 mK
300 mK

400 mK
500 mK
600 mK

700 mK

(d) L4

Figure 2.8. Logarithmic plot of ଴ܶ as a function of distance in magnetic field away from the criti-

cal point, δܤ, for the ܰ = 1 ↓ LL. ߥ is measured as the gradient of the linear fit to ln( ଴ܶ) =

.(ܤδ)�lnߥ�  is determined for all four samples investigated, ■ shows measurements taken on the ߥ

low-B side of the critical point, while ▲ show measurements on the high-B side. The values 

determined are in good agreement with the expected value of ≈ߥ 2.3. The insets show σxx(B) as

a function of temperature for all samples; strong temperature dependent LL coupling is observed

in sample L3 preventing the determination of ߥ for the high-B sided of the LL. The values of ߥ

obtained are summarized in Table 2.2.

TABLE 2.2. The localization length exponent  measured for the N = 1↓ Landau level. Each ,ߥ

sample has two measured values of ,ߥ one from the low field side of the LL and the other from

the high field side.
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N = 1↓ 

Sample B < Bc B > Bc

L1 2.37 ± 0.05 2.34 ± 0.02

L2 2.05 ± 0.03 2.28 ± 0.05

L3 2.36 ± 0.03 1.79 ± 0.01

L4 2.39 ± 0.08 2.39 ± 0.06

It should be noted that the range of error in the determination of presentedߥ in the table

represent the error incurred in fitting a linear line to the data in Fig. 2.8. Both the high

field and low field values of ߥ in all samples are in good agreement with the exception

of sample L3 where the high field value obtained was =ߥ 1.79 ± 0.01. This discrepan-

cy is attributed to the strong onset of LL coupling between the ܰ = 1 ↓ and ܰ = 1 ↑

LLs with increasing temperature evident in the inset of Fig. 2.8(c). This is caused by the

relatively high level of disorder broadening in this particular heterostructure. As dis-

cussed above, the broadening of a LL is related to the quantum life time by Γ = ℏ/2 ௤߬,

and from Table 2.1 it is observed that sample L3 has the smallest quantum life time,

௤߬ = 0.53, making it the sample with the most disordered LL broadening. It is observed

from the insets of Fig. 2.8 that spin coupling in the other samples is negligible.

Assuming ܥ ≈ 6 [100, 102] and using ௥߳ ≈ 12.6 for GaAs, the localization

length calculated from Eq. (2.7) is consistently found to grow to ≈ߦ ߤ3�݉ as the criti-

cal point of the LL is approached and ≈ߦ 200�݊݉ as the Fermi energy enters the tail

region.
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Figure 2.9. Plot (a) and (b) show pronounced conductance fluctuations in the ܰ = 1 ↑ LL of

samples L1 and L3 respectively. These fluctuations make it impossible to determine ߥ to any

reasonable accuracy.

These values are consistent with measurements on devices of comparable heterostruc-

tures of similar sizes [100, 103].

It is noted that ߥ was only determined for one of the spin resolved LLs. Data

from the ܰ = 1 ↑ LL could not be used as the conductivity peaks exhibited pronounced

conductance fluctuations as shown in Fig. 2.9. These fluctuations show strong correla-

tion between various independent temperature traces, it therefore possible that these are

universal conductance fluctuations (UCFs) [30, 104]. UCFs are irregular but neverthe-

less reproducible fluctuations of conductance in mesoscopic samples and can occur

when the phase coherence length is comparable to the size of sample. The conductance

fluctuations are also observed in the spin up peaks of higher LL indices but never on the

spin down LLs.

From the results obtained in Table 2.2, it can be concluded that critical phenom-

ena (as determined from measurements of (ߥ in QHTs are indeed universal, independent

of any microscopic sample detail, and in accordance with continuous quantum phase
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transition as proposed by the theory [6]. In the following section we measure the com-

posite critical exponent ߢ and investigate its universal criticality.

2.4 Determination of the composite critical exponent, ࣄ

We determine ߢ using the Pruisken formalism [79] discussed in section 1.4.3 where it

was proposed that the composite exponent ߢ can be measured from the temperature de-

pendence of the width of the diagonal conductivity or resistivity peak,

Δܤఘೣೣ ∝ �ܶ ఑, (2.9)

or the gradient of the Hall transition between the insulating phases of the QHE,

ܤ݀/௫௬ߩ݀ ∝ �ܶ ି఑, (2.10)

where ߢ is related to ߥ by =ߢ .ߥ2/݌ ߢ can be experimentally determined as the gradi-

ent of a linear fit of the double log plot of either Eq. (2.9) or (2.10). We note that the

exponent of interest is ,ߥ which is the critical exponent of the divergent localization

length.
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Figure 2.10. The temperature dependence of (a) ௫௫ߩ and (b) ௫௬ߩ as a function of magnetic field

for N = 1↓ for sample L4.



81

ߥ is expected to possess a universal value independent of the microscopic details of the

system. If it is assumed (for the time being) that =݌ 2 according to Fermi liquid theory

[105], then ߢ is simply the reciprocal of ,ߥ =ߢ .ߥ/1 Thus a universal value of ≈ߢ 0.43

will confirm the universality of ≈ߥ 2.35. This is the approach that has been use by pre-

vious investigations [12, 15, 18].

Unlike the previous section, results are presented for both spins of ܰ = 1 since

the observed fluctuations do not introduce any significant error in the data when the pa-

rameter under consideration is the width of the peak. The fluctuation only affect the di-

agonal resistivity data and are completely absent from the Hall resistivity data. Fig. 2.10

shows an example of the data consider in determining ,ߢ taken from one of the samples.
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Figure 2.11. Finite-size effects are also evident in resistivity data. The plot shows a saturation of

the width of the resistivity peak at very low temperature for sample L4.
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For each sample, ௫௫ߩ and ௫௬ߩ are measured at many different temperatures between

100 mK and 1 K. From Fig. 2.10, it is clear that as the temperature is increased the

width of the peaks also increases and the gradient of the transition slope decreases ac-

cording to Eqs. (2.9) and (2.10).

The finite-size effects observed in the previous section are also evident in the

resistivity data. Fig. 2.11 shows the saturation of the width of ௫௫ߩ at low temperatures.

The width Δܤ, is determined as the full-width-at-half-maximum (FWHM) of the peak.

Once again the saturation region is not considered in the analysis. The cause of the satu-

ration region will be discussed in more detail in Chapter 4.

Table 2.3 show the results for ߢ for both spins of the ܰ = 1 LL as determined

from both the FWHM of the resistivity peaks and the maximum gradient of the Hall

transitions (see Fig. 2.12). Once again, the error shown in Table 2.3 originates from the

linear fit to the data. In general the results obtained from Eq. (2.9) and (2.10) agree well

with each other.

TABLE 2.3. The exponent measuredߢ for Landau levels N = 1↓ and N = 1↑ using both 

the width of the transition peaks, Δܤఘೣೣ, and the maximum gradient of quantum Hall

transitions, dρxy/dB.

ܰ = 1 ↓ ܰ = 1 ↑

Sample Δܤఘೣೣ ܤ݀/௫௬ߩ݀ Δܤఘೣೣ ܤ݀/௫௬ߩ݀

L1 0.42 ± 0.01 0.23 ± 0.02 0.41 ± 0.01 0.44 ± 0.02

L2 0.67 ± 0.02 0.66 ± 0.03 0.44 ± 0.02 0.42 ± 0.03

L3 0.55 ± 0.04 0.60 ± 0.02 0.46 ± 0.02 0.43 ± 0.03

L4 0.54 ± 0.02 0.54 ± 0.02 0.34 ± 0.01 0.16 ± 0.02
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The results however do not depict a universal behaviour of the critical exponent. Even

though the value of ߢ for the ܰ = 1 ↑ LL is closely distributed about the predicted value

of ≈ߢ 0.43 (i.e. ≈ߥ 2.35), the value of ߢ for the ܰ = 1 ↓ LL in not. This is especially

surprising since, for the same samples, wasߥ found conclusively to be universal for the

ܰ = 1 ↓ LL when universal criticality was determined using the hopping conductivity

analysis above.

The results presented in Table 2.3 are consistent with previous investigations on

the critical phenomena of QHTs in GaAs/AlGaAs heterostructures where universality of

the critical exponent was not conclusive [15]. The results on ߢ present an interesting

picture where, for the same sample, ߥ is found to possess the theoretically expected uni-

versal value but ߢ does not. The discrepancy between the ߥ and ߢ results could be due

to a non-universal behaviour of the third exponent .݌ We therefore complete the inves-

tigations of the critical phenomena using temperature dependent methods to study the

temperature exponent .݌
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Figure 2.12. Double log plots of ܤ∆ vs. ܶ for (a)�ܰ = 1 ↓ and (b) ܰ = 1 ↑ for sample L4. ߢ is

measured as the gradient of the linear fits and presented in Table 2.3.
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2.5 Current scaling of the QHE

The scaling exponent ݌ is the least studied exponent involved in the temperature de-

pendent analysis of the critical phenomena of QHTs. The value of ݌ is always assumed

to be =݌ 2, but this value is derived from the Fermi liquid theory of clean metallic

films [106]. This is especially questionable since there appears to be no obvious justifi-

cation of using the clean limit result of a 2DES instead of the disordered result of =݌ 1

[105], since 2DES in any practical sense are generally disordered systems. It is also not

obvious that ݌ should be universal as it is dependent on disorder according to Fermi

liquid theory. Even more important is whether ݌ is due to electron-electron scattering or

electron-phonon scattering or a combination of both. In addition, the theoretical values

of ݌ stated above are based on zero magnetic field conditions of a 2DES, it is not clear

whether they apply at high magnetic fields. Results on ݌ are presented below and it is

shown that this scaling exponent depends on both disorder and magnetic field.

2.5.1 Thermal coupling and the inelastic scattering exponent of

two-dimensional Fermi liquids

The origins of the exponent ݌ in the scaling argument of QHTs (discussed in section

1.4.3), stems from its influence on the effective size of the system. From our discussion

on the Thouless length [48] in Chapter 1, it was noted that the size of system ܮ acts as

the cut-off of coherence electron transport such that states with (ܧ)ߦ < ܮ appear local-

ized while states with (ܧ)ߦ > ܮ behave as extended states. If one realises that it is not

simply the size of system that determines this cut-off but rather the loss of phase coher-
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ence on arrival at the boundary of the system, then a coherent system is defined by an

effective length based on the phase coherent length ఝܮ . It is therefore noted that ఝܮ ,

among other things, can be determined by the physical boundaries of the system. Within

a system with any degree of disorder, the phase coherent length can be defined as [50]

ఝܮ = ܦ) ఝ߬ )ଵ/ଶ, (2.11)

where ܦ is the diffusion constant for an electron within the system and ఝ߬ is the phase

breaking time or inelastic scattering time. At sufficiently high temperatures, the phase

coherence length is determined by a temperature dependent inelastic scattering time,

ఝ߬ (ܶ). It is therefore intuitive to assume that ఝ߬ = ௣ିܶߙ [105] such that,

ఝܮ ∝ ܶି௣/ଶ. (2.12)

where ߙ is the constant of proportionality and ݌ is the inelastic scattering exponent.

We attempt to measure ݌ in our samples by using an electron heating model

proposed by Anderson et al. [107]. In an experimental investigation of electron

transport in thin metallic films, it was observed that at low temperatures a sufficiently

high applied electric field ܧ has a similar dependence of conductivity as an increase in

temperature [108]. Based on this observation, Anderson et al. [107] noted that at very

low temperatures where the inelastic scattering length is long, electrons are almost out

of thermal contact with phonons and therefore under an applied electric field these elec-

trons will heat up, absorbing the power being delivered to the sample through the accel-

eration of charge under the electric field. Thermal energy being absorbed by electrons

from the electric field increases until this excess energy can be transferred to the lattice

through a collision. During this time interval the electron temperature ௘ܶ will be out of

equilibrium with the lattice temperature ௅ܶ. These hot electrons will therefore maintain
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their temperature (or energy) for a distance ఝܮ or time ఝ߬ such that ௘ܶ can be defined as

[107]

஻݇ ௘ܶ~�݁ܮܧఝ . (2.13)

where ܧ here represents the applied electric field. From Eq. (2.12) and (2.13) the coeffi-

cient of the ratio of ln( ௘ܶ) to ln(ܧ) is =ߟ 1/(1 + (2/݌ such that

௘ܶ ∝ .ఎܧ (2.14)

Eq. (2.14) can also be expressed in terms of the applied current or)ܫ voltage) as ௘ܶ ∝

.ఎܫ By bringing ௘ܶ out of equilibrium with ௅ܶ by applying a high electric field (or cur-

rent), the temperature exponent ݌ can be measured (this is discussed in the next sec-

tion). This is only possible at low temperatures where thermal coupling between the

electron gas and the lattice is weak. At higher temperatures however, energy will be

efficiently transferred between the lattice and the electron gas (i.e. ఝ߬ is very small)

which makes causing an imbalance in the equilibrium difficult.

2.5.2 Determination of the temperature exponent ,࢖ at the criti-

cal field

The experiments yielding the results presented above (sections 2.3 and 2.4) were con-

ducted in the strong thermal couple regime, where ௅ܶ = ௘ܶ, by using a very low current.

We also note that due to effective thermal sinking, the ambient temperature or bath

temperature ௕ܶ of the sample chamber of the dilution refrigerator was in good equilibri-

um with ௅ܶ of the sample. The sample is placed in good thermal contact with the mixing

chamber plate which is also the location of the temperature sensor used to control the

bath temperature. In the strong thermal coupling regime therefore, a steady state is es-
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tablished between all relevant temperatures ( ௕ܶ = ௅ܶ = ௘ܶ) by the transfer of energy

through phonon emissions. In all experiments discussed in this thesis a sufficient time

delay always follows a manual change in the ௕ܶ setting of the fridge to allow this equi-

librium to be established. Thus moving forward, we will always assume that ௕ܶ = ௅ܶ.

Transport coefficients measured in the strong coupling regime reflect ௅ܶ which

in this regime is equal to ௘ܶ. At high applied currents (or electric fields) ௘ܶ will come

out of equilibrium with ௅ܶ such that ௘ܶ > ௅ܶ. The transport coefficients measured in this

regime hence reflect ௘ܶ rather than ௅ܶ. By calibrating ௘ܶ with transport measurements in

the strong coupling regime where the value of ௘ܶ is known (since ௘ܶ = ௅ܶ), the relation-

ship between the applied current andܫ ௘ܶ can be established.
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Figure 2.13. Transport coefficients measured at three different applied d.c. currents. Electron

heating is evident in the broadening of peaks and the reduction in transition slopes between plat-

eaus.
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This is achieved by comparing the transport measurements taken in the weak coupling

regime ( ௘ܶ > ௅ܶ) with those taken in the strong coupling regime ( ௘ܶ = ௅ܶ). To deter-

mine ,݌ we compare the resistivity at the critical field (at the centre of each LL) within

the two regimes in order to establish the relationship between andܫ ௘ܶ. It is noted that

the applied current representation of Eq. (2.14) is simply

௘ܶ ∝ .ఎܫ (2.15)

Since the 2DES most resembles metallic behaviour at the critical field within a LL, it is

the most appropriate place to apply Anderson’s electron heating model (originally used

to study metallic films) [107].

The effect of increasing the sample current is shown in Fig. 2.13. It is clearly

observed that the increase in the d.c. current has a similar effect on transport coeffi-

cients as an increase in temperature. The only difference here is that the relevant tem-

perature of the system is being controlled by the electric field rather than the bath tem-

perature of the dilution fridge. As mentioned above, the relation in Eq. (2.15) will be

determined by taking measurements at the critical field, in particular, the maximum

slope observed between plateau-to-plateau transitions will be the calibrating thermome-

ter used in measuring ௘ܶ. The maximum slope ௠ܤ݀/௫௬ߩ݀ ௔௫, occurs at or very close to

the critical field. Fig. 2.14 shows ,௫௬ߩ determined for both a varying temperature and a

varying current, for the transition about the ܰ = 1 ↓ LL in sample L1. All the curves in

Fig. 2.14 intersect at the critical field which is also the ௠ܤ݀/௫௬ߩ݀ ௔௫ point. The similari-

ties between the two plots are evident. The effects are similar because the underlining

mechanism is a temperature dependent scaling phenomenon.
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Figure 2.14. The transition slope between adjacent plateaus is shown (a) as a function of varying

temperature at 10 nA and (b) as a function of the applied current at 40 mK. The effect in both

cases is observed to be similar.
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In the case of Fig. 2.14(a), scaling (of the phase coherent length) is controlled by the

lattice temperature while in Fig. 2.14(a), scaling is controlled by the electron tempera-

ture. Fig. 2.15 is a plot of ௠ܤ݀/௫௬ߩ݀ ௔௫ using the data in Fig. 2.14(b). It shows the two

coupling regimes. At low currents, electron heating is negligible, the lattice is easily

able to soak up the excess heat due to ௘ܶ and therefore continually maintains the equi-

librium. ௠ܤ݀/௫௬ߩ݀ ௔௫ does not change with increasing current in this regime. At high

currents, however, we observe a logarithmic dependence on transport coefficients due to

the weak thermal coupling between electrons and the lattice. Scaling is observed within

this regime as ௘ܶ takes over as the relevant or operative temperature.

Figure 2.15. Dependence of the ௠ܤ݀/௫௬ߩ݀ ௔௫ on current. In the strong coupling regime, increas-

ing the current has negligible effect on the slope of the plateau-to-plateau transition. At higher

currents however, there is weak coupling between ௘ܶ and ௅ܶ. The significantly higher ௘ܶ is able

to influence the transport coefficients of the system.
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We now proceed to the experimental determination of ݌ using Eq. (2.15). Fig.

2.16 describes how ௘ܶ is calibrated using ௠ܤ݀/௫௬ߩ݀ ௔௫. It is noted that the underlining

scaling mechanism is the same irrespective of whether ௘ܶ or ௅ܶ is the relevant tempera-

ture. The aim of the plots in Fig. 2.16 is to discern what the electron temperature is at a

given current in order to apply Eq. (2.15). To do this, we first measure the value of

௠ܤ݀/௫௬ߩ݀ ௔௫ at various temperatures in the weak coupling regime. This is shown in

Fig. 2.16(a). Though the temperature is changed by varying ௅ܶ, we recall that in this

regime ௘ܶ = ௅ܶ. Fig. 2.16(a) therefore presents the relationship between ௘ܶ and /௫௬ߩ݀

௠ܤ݀ ௔௫.

In Fig. 2.16(b), ௠ܤ݀/௫௬ߩ݀ ௔௫ is measured again, but this time as a function of

the applied current. Having already calibrated ௘ܶ using ௠ܤ݀/௫௬ߩ݀ ௔௫, the electron tem-

perature corresponding to a given current is simply the temperature that produces the

equivalent value of ௠ܤ݀/௫௬ߩ݀ ௔௫ in the weak coupling regime. Therefore from Fig.

2.16, the current ଵܫ corresponds to the temperature ଵܶ.

Figure 2.16. ௠ܤ݀/௫௬ߩ݀ ௔௫ for the ܰ = 1 ↓ of sample L4 measured both as function of tempera-

ture and current. The dashed line indicates, for example, that ௘ܶ at ଵܫ = 1000 nA is equivalent to

ଵܶ = 600 mK.
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Figure 2.17. A double log plot of ௘ܶ vs. forܫ ܰ = 1 ↓ LL for all four samples. ݌ is determined

from the gradient of the least-squared linear fit to the data.
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TABLE 2.4. The temperature exponent ݌ determined for various transitions in all four samples.

Plateau to plateau transition

Sample ܰ = 1 ↓ ܰ = 2 ↑ ܰ = 2 ↓

L1 2.01 ± 0.04 2.02 ± 0.08 2.06 ± 0.05

L2 3.09 ± 0.06 3.11 ± 0.13 3.23 ± 0.26

L3 3.29 ± 0.09 - -

L4 1.27 ± 0.02 1.55 ± 0.09 1.64 ± 0.09

Using the Anderson electron heating model, ݌ is determined in all samples for

the ܰ = 1 ↓, ܰ = 2 ↑ and ܰ = 2 ↓ LLs. We recall that the gradient of the linear fit of

the double log plot of Eq. (2.15) is =ߟ 1/(1 + .(2/݌ Fig. 2.17 shows ݌ determined for

the�ܰ = 1 ↓ LL for all four samples. It is noted that all plots show a good linear fit to

the heating model, where the solid lines in Fig. 2.17 represents a least-square fit to the

data. The results are summarized in Table 2.4.

The value of ݌ is not found to be universal between the samples investigated.

The value of the exponent, however, is similar amongst LLs of the same sample with

slight increases at higher LL indices (mostly likely due to the increasing degeneracy at

higher LLs, see Fig. 2.4). Due to the strong disorder broadening in sample L3, all but

one LL were completely spin degenerate and thus ݌ was only obtainable for one LL.

However, a striking dependence of ݌ on mobility is observed in the results, this is plot-

ted in Fig. 2.18. ݌ is consistently found to increase with decreasing mobility. The results

suggest that the rate of phonon emission is different for each sample, and in particular,

depends on the nature of disorder within the sample. The more disordered the sample

the greater the rate of phonon emissions, and therefore, the greater the value of .݌
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Initial scaling investigations of QHTs assumed the value =݌ 2, taken from the

Fermi liquid theory value for a metallic film in the clean limit. This proved necessary

for a good agreement with the universally expected value of 0.43~ߢ [12] to be obtained

given that =ߢ .ߥ2/݌ This seemly fortuitous coincidence, however, has lead to confu-

sion in the literature regarding the temperature dependence of the critical phenomena of

QHTs. The temperature exponent ݌ ( ఝ߬ ∝ ܶି௣), is mainly determined by electron-

electron (e-e) scattering and electron-phonon (e-ph) scattering. At very low tempera-

tures e-e scattering is the dominant dephasing process in thin metallic films [109]. The

dephasing process occurs through multiple scattering events involving small energy

transfers ,ߝ∆ between electrons (where ≫ߝ∆ ஻݇ܶ).
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Figure 2.18. Figure showing the dependence of ݌ on the mobility of the samples investigated.

The valve of ݌ are averaged over each sample a clear increase with decreasing mobility is ob-

served. The solid line is a guide for the eye.
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These scattering events arise from fluctuations in background potential generated by the

ensemble of electrons and other Coulomb sources (remote ionized impurities). In this e-

e scattering regime, an electron can lose phase coherence without relaxing its excess

energy (through numerous ߝ∆ transfers), this is known as Nyquist dephasing [106]. In

the presence of disorder, the scattering time in a 2DES is expected to favour a linear

dependence on temperature, =݌ 1, [105, 109-111] at zero magnetic field but, in the

clean limit, =݌ 2 [109, 110, 112] is predicted.

At higher temperatures however, the loss of phase coherence is dominated by e-

ph scattering with electron relaxation occuring through inelastic collisions where ߝ∆ is

of the order of ஻݇ .ܶ Unlike the case for e-e scattering, the temperature dependence of

ఝ߬ is not expected to have a universal behaviour in either the clean or dirty limit [109].

It is therefore of great interest to the work presented here to determine whether

the dephasing mechanism occurring close to the centre of the LL is dominated by e-e

scattering or e-ph scattering as this will confirm the validity of the assumption of =݌ 2

and by extension the scaling relationship =ߢ .ߥ2/݌ The temperature at which the tran-

sition between e-e and e-ph scattering occurs is somewhat disputed; some studies favour

a transition to e-e scattering below ~10 K [109] while others suggest a temperature of

~0.2 K [113]. The results presented here, however, favour an e-ph scattering mecha-

nism near the centre of the LL for the temperature range investigated. This is indicated

by the non-universality of ݌ typical of e-ph scattering and the dependence of ݌ on mo-

bility. These results confirm the theoretical studies of ఝ߬ in the integer QHE regime

where was݌ found to be dominated by e-ph interaction and depend on electron mobility

[114, 115]. Our results are also in agreement with the experimental investigation of



96

Koch et al. [85]. Even though the method for determining ݌ was different from that

used by Koch et al., the results are similar as was݌ also found to be non-universal and

dependent on mobility. The values of ݌ and the corresponding mobilities obtained from

Koch et al. are in good agreement with the curve in Fig. 2.18.

The results favouring the universality of ݌ and e-e scattering obtained by Wei et

al. [14, 116, 117] therefore appear inconsistent. First, according to the theory of e-e and

e-ph scattering, one expects =݌ 1 for disordered films if e-e scattering is the operative

mechanism [109]. This would invalidate the assumption of =݌ 2 used by Wei et al.

[12]. It is therefore unexpected that =݌ 2 was obtained in the low mobility short-range

alloy disordered InGaAs/InP systems used by Wei et al [14].

If ݌ is not universal, then one does not expect the proposed universal relation-

ship =ߢ ߥ2/݌ to be valid. This describes the results presented here, no correlation is

found between values of ݌ in table 2.4 and the corresponding values of ߢ in table 2.3

even though wasߥ found to be universal in all samples in table 2.2. It is also important

to note that the variation in ݌ observed in the results presented above does not show any

correlation with carrier concentration, spacer width or quantum life time, quantities that

are related to e-e scattering. Instead, the results presented here show that ݌ depends on

the zero field classical mobility of the samples measured, the quantity that is least relat-

ed to e-e interaction and more representative of microscopic disorder.

The collection of the results present here therefore suggests that ݌ is not crucial

to the critical phenomena observed in QHTs.
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2.6 Conclusion

In the study of critical phenomena of QHTs presented in this chapter, we have attempt-

ed to verify the expected divergence of asߦ the critical point within a LL is approached.

A universal critical exponent of value ≈ߥ 2.3 is expected. The results presented here

have independently investigated all three scaling exponents in the scaling relationship

=ߢ ߥ2/݌ using temperature dependent methods. It was found that ,ߥ determined from

the localized hopping regime, is in good agreement with theoretical predictions and is

observed to be universal and independent of sample characteristics. ,ߢ however, was

found to non-universal in our experiments. Further, investigations of the temperature

exponent ݌ based on electron heating also did not yield universal values. The results on

݌ suggest that the dephasing process near the critical point is dominated by e-ph scatter-

ing and therefore the assumption of =݌ 2 is not justified. The results presented here do

not confirm the relationship =ߢ ,ߥ2/݌ especially since ݌ cannot be universal and must

be dependent on disorder. These investigations therefore support universality in ߥ but

does not support the case for =ߢ .ߥ2/݌

Even though it is argued here that must݌ not be crucial to the critical phenom-

ena of QHTs, the role of ߢ is less obvious. As discussed above, the assumption =݌ 2

appears to be only a fortuitous coincidence which is required to explain the initial ex-

perimental results obtain on ߢ [12]. One cannot, however, dismiss the result of ≈ߢ 0.43

which is so widely observed that it cannot be coincidence. It has been suggested [102,

118] that the correct dependence of ߢ on ߥ is simply an inverse relationship, =ߢ ,ߥ/1

without any dependence on .݌ Given the results presented here, this seems to be more

likely since an (incorrect) assumption of =݌ 2 will result in the same relation. This still
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does not explain why the reciprocal relation was not observed in our results on .ߢ The

explanation for this will be left for Chapter 4 after further results on ߢ have been pre-

sented in Chapter 3.

The work presented in this chapter represents the first and only attempt to in-

vestigate all scaling exponents independently within the same sample in order to pro-

vide a coherent picture of the nature of criticality in QHTs and study the relationships

between the proposed critical exponents. All previous investigation have only looked at

a subset of exponents and rely on various assumptions for non-measured exponents. A

summarized version of this chapter has been published in Refs. [119, 120].
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3. Finite-frequency scaling of

quantum Hall transitions

3.1 The effect of frequency on critical phenomena and

localized systems

So far, we have investigated the quantum criticality of quantum Hall transitions (QHTs)

in localized systems using techniques that involved changing the temperature of the sys-

tem. In this chapter we look at how a similar analysis can be made using a high resolu-

tion frequency technique which has many advantages over a temperature based method.

In this section we describe the effect of a varying electric field on the transport proper-

ties of interest in the finite-size scaling of QHTs.

3.1.1 Dynamic scaling

We introduce the concept of dynamic scaling in order to explain how the scaling analy-

sis of the critical phenomena observed in QHTs can be studied by varying the frequency

of an externally applied electric potential. It should be noted that any mention of fre-

quency henceforth will exclusively refer to the frequency of the applied electric field.

In the foregoing analysis, critical phenomena were discussed in terms of the

thermodynamic or static properties of the system [7], in particular the correlation in po-
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sition of electron transport. We considered a divergent correlation length, which acted

as the order parameter, as the critical point was approached (see section 1.4.2). It was

shown that fluctuations on length scales smaller than the correlation length were insig-

nificant to the behaviour of the system. At the critical point where the correlation length

diverges to infinity (or the boundary of the system), the system becomes homogenous.

As a result, individual systems of different characteristics are indistinguishable near the

critical point, forming a universality class possessing identical behaviours. Discussed in

the context of zero temperature, this view of the criticality represents the static descrip-

tion of the critical phenomena where the correlation in the spatial dimension is the only

parameter considered. It was implicitly assumed that fluctuations that affected the tem-

poral component of the system were infinitely long. In other words, it was assumed that

the system remained correlated over time throughout the entire process.

At non-zero temperatures however, this time invariance assumption is violated

and fluctuations in the temporal dimension are introduced in the form of time dependent

correlation functions such as relaxation rates, spin-diffusion constants, thermal induced

conductivities and other time dependent perturbations [8, 9]. The order parameter there-

fore now includes a temporal dimension over which order must be maintained. As the

critical point is approached, fluctuations in both the spatial dimension and the temporal

dimension must diverge towards infinity for quantum criticality to be realised. In the

context of QHTs, an electron wavefunction must maintain correlation (i.e. maintain its

eigenstate of energy) in space as determined by its localization length and also in time

as determined by its phase coherence time as dictated by its relaxation rate. It is noted

that the relevant relaxation rate will be determined by the relaxation mechanism that has

the shortest time period as this will be the limiting factor on correlation. The conditions
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for universality are still maintained if both the temporal correlation and spatial correla-

tion simultaneously diverge on approaching the critical point such that the systems ap-

pear homogenous at the critical point. If on the other hand the spatial correlation diverg-

es without a divergence in temporal correlation then the properties of the system as the

critical point is approached will be defined temporal fluctuations which are dependent

on the specific characteristics of the system such as the relaxation mechanism. In other

words, universality will not be observed as electron transport will retain sample specific

properties.

The spatial and temporal dimensions can be combined into a single dimensional

space by introducing a dynamic exponent ݖ [6, 11]. ݖ relates the spatial correlation

length ߦ (in distance) to the temporal correlations length ఛߦ (in time) as [6],

.௭ߦ~ఛߦ (3.1)

The exponent ݖ is therefore a measure of how skewed time is relative to space near the

critical point. In the temperature dependent investigations discussed in Chapter 2, even

though it was not explicitly mentioned, the temporal correlation length was converted to

the spatial dimension using the Thouless boundary argument or the Thouless length,

first introduced in section 1.3.5. We now define the general form of this conversion

which will be applicable to all temporal perturbations (both temperature and frequency).

ఛߦ is manifested in the spatial dimension as a dephasing or coherence length ఝܮ

which acts as the order parameter controlled by temporal events. In other words, order

in this case refers to the length ఝܮ , over which an electron maintains its eigenstate of

energy or remains unperturbed, where ఝܮ is related to the phase braking time ఝ߬ . The

relationship between ఛߦ and ఝܮ will depend on the specific form of the temporal pertur-
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bation. Similar to the finite size scaling argument developed in Eq. (1.42) to (1.45), the

conductivity of the system will depend on both ఝܮ and (ܤ)ߦ through the finite-size scal-

ing form

ఝܮఈఉ൫ߪ =൯ܤ, ఝܮ/(ܤ)ߦ]ఈఉܨ
ଵ/ఔ], (3.2)

where ఈఉܨ is a universal scaling function. The width of the conductivity peak is related

to the dephasing length through (see section 1.4.3 for full derivation),

ఝܮ�~�ܤ∆
ଵ/ఔ. (3.3)

Temporal perturbations introduced by temperature and frequency can be de-

fined in terms of the dephasing length as

ఝܮ ~�ܶ ିଵ/௭೅ , (3.4)

and

ఝܮ ~�݂ ିଵ/௭ഘ , (3.5)

where ݖ் and ఠݖ are dynamic scaling exponents for ܶ and ,݂ respectively. From Eq.

(3.3) the width of the conductivity peak as a function of ܶ and ݂ is given as

ܶ�~�ܤ∆ ଵ/ఔ௭೅ , (3.6)

and

݂�~�ܤ∆ ଵ/ఔ௭ഘ . (3.7)

If we recall from the temperature dependent investigations in Chapter 2, that

ఝܮ ~�ܶ ି௣/ଶ, then the temperature scaling function used in the Chapter 2 is recovered

from Eq. (3.4) and (3.6) if dynamic exponent is taken to be ݖ் = .݌/2

From experimental observations [12-14, 116], it is suggested that close to the

critical point the value the dynamic exponent is ݖ் = ఠݖ = 1 [6]. This is in accordance

with the theory of critical phenomena since close to the critical point the system be-
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comes homogenous and is independent of spatial and temporal perturbations. Therefore

the method of temporal perturbation, be it temperature dependent or frequency depend-

ent, should not matter.

Bearing in mind that finite-size scaling is an approximation of critical phenom-

ena which occurs at ,݂ܶ= 0, both the temperature and frequency must be made to tend

towards zero in the critical region in order for there to be an approximate divergence of

ఛߦ (or ఝܮ ) or else universality between equivalent systems will not be observed. This

could be a possible explanation for the dependence of ݖ் on the disorder of the system

as observed in the current scaling results reported in the previous chapter. It is possible

that the temperature was not low enough to allow an adequate divergence of ఛߦ near the

critical point. This argument is discussed in greater detail in Chapter 4 (section 4.5.1).

Finally, we note that the relevant parameter controlling the dynamic scaling

depends on the ratio ℎ /݂ ஻݇ .ܶ For ஻݇ܶ≫ ℎ ,݂ due to its higher dephasing rate, the tem-

perature is the relevant parameter that determines .ఛߦ Conversely, if ஻݇ܶ≪ ℎ ,݂ the fre-

quency becomes the relevant parameter. A crossover between the two parameters is

therefore expected at ஻݇ܶ = ℎ .݂ In the scaling regime where the frequency is the domi-

nant phase breaking mechanism, ఝܮ ( )݂ represents the distance an electron diffuses

within the disordered medium during one cycle, 1/ ,݂ of the applied alternating electric

field [121].

3.1.2 A.C. hopping in localized systems

The non-zero frequency of the applied electric field imposes a phase breaking mecha-

nism ఝܮ ( )݂, where the system is coherent on a time scale proportional to the period of
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the field, 1/ .݂ In this section we describe the phenomenological process underpining

decoherence through the application of a high frequency field to a disordered system.

We consider the process of conduction in the localized regime of a disordered 2DES.

In the d.c. conduction of disordered systems, a continuous flow of current is

setup between two electrodes where the direction of electron transport is determined by

the direction of the applied field. Losses due to conduction therefore stem from elec-

trons moving from one electrode towards the other. In a.c. conduction, the direction of

electron transport is revered after each half cycle of the applied electric field. At very

high frequencies, electron may only be able to hop to one state (or a few states) before

the electric field is revered. In the high frequency limit therefore, losses in disordered

systems can be occur through the back and forth transfer of electrons between pairs of

states. A.C. losses can be accounted for by resonant transitions between pairs of states.

This is generally known as the pair approximation [122, 123].

Consider a pair of sites ݅and ݆within a localized system and let the transition rate be-

tween the two states be ௜߬௝
ିଵ such that transitions between ݅and ݆will only occur if

௜߬௝ < 1/ ,݂ where ݂ is the frequency of the applied electric field. The frequency, or pe-

riod of the alternating field, acts as a cut off limit on the transfer of electrons between

states, restricting transitions that take too long to occur. It is reasonable to assume that

the coupling of wavefunctions between states decreases with increasing separation,

hence for a random distribution of states of the kind describe by Anderson localization,

pairs of states which lie close together will have shorter transition times or higher transi-

tion rates than pairs of states that are further apart. At very high frequencies of the ap-

plied field, the cut-off for transitions will be so restrictive that only the closest pairs of

states will have a transition time quick enough to contribute towards a.c. losses. Fig. 3.1
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demonstrates such a scenario, where two such pairs of states are shown, ݅↔ ݆ and

݇↔ .݈ From the discussion on the distribution of states in Anderson localization in

Chapter 1, we recall that the occurrence of these closest pairs of states, that are both

close in energy and space, within a disordered system will be rare. Pairs of this kind will

therefore be widely separated as shown in Fig. 3.1. In other words, ௜߬௝≪ ௜߬௟, ௜߬௞.

Charge transfer occurring within pairs can therefore be considered to be independent

and decoupled from their surroundings. A.C. conduction is then due to pair-hopping

between resonant pairs of states which are determined by the frequency of the applied

field.

Of interest to the scaling problem being discussed is the frequency dependent

effective length of the system which in this high frequency regime will be determined

by the average distance ∆ܴ between the states of a resonant pair. The pairs ,݅�݆ and ,݇�݈

in the scaling sense, can be considered as two separate systems since they are effective-

ly decoupled.

Figure 3.1. A diagram showing resonant pairs ,݅ ݆and ,݇ .݈ In the high frequency limit coupling

to states that are far apart is cut off such that electron transfer is restricted to only states that are

closest. Adjacent pairs of resonating states are therefore effectively decoupled from the rest of

the system.

Δܴ

ܧ

ܴ

݅

݆

݇

݈
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This is very similar to the Thouless argument that has been used throughout this work

where a dephasing length defines the size of independent subsystems within a disor-

dered system. It is clear from the discussion above that ∆ܴ acts as the length of coher-

ence, ఝܮ ( )݂ ∼ ∆ܴ, since coupling to sites larger than ∆ܴ cannot occur.

As the frequency is reduced, the time within which coherent transitions occur

increases and an electron is able to travel further within a half cycle of the applied field.

Thus reducing the frequency increases ∆ܴ, allowing an electron to interact with more of

its surroundings. This is depicted in Fig. 3.2(a), which is a modification to Fig. 3.1. As

the frequency is lowered, 1/݂ becomes large enough to include transitions over larger

distances. In Fig 3.2(a), ௝߬௞ < 1/݂ and as a result ∆ܴ increases. Reducing the frequency

therefore introduces variable range hopping within the system, which enables the cou-

pling of previously isolated pairs.

Figure 3.2. As the frequency is decreased, longer distance transitions begin to occur. (a) shows

coupling between two resonant pairs, the blue arrow shows the introduction of longer distance

VRH into the system. (b) As the frequency is further decreased, allowing multiple hops, conduc-

tion occurs between previously isolated clusters of states.

ܧ

ܴ

Δܴ݅

݆

݇

݈

(a) (b)
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In this multiple hopping regime [124, 125] electron transport occurs between clusters of

pairs [126] as shown in Fig. 3.2(b). Further decreasing the frequency (݂→ 0) progres-

sively increases the effective area of conduction until the entire system is included or

until the dephasing mechanism, hitherto controlled by frequency, is taken over by tem-

perature. Further decreases in frequency cannot increase ఝܮ ( )݂ beyond the temperature

dependent dephasing length ఝܮ (ܶ) since beyond this point the dephasing length will be

determined by temperature dependent events.

Changing the measurement frequency, in a similar way to changing the meas-

urement temperature, varies the effective size of the system and allows the scaling anal-

ysis to be extended into the frequency regime through the temporal perturbation of the

system. Therefore in the simultaneous limit of decreasing frequency (diverging ఝܮ ( )݂ )

and the divergence of ߦ as the critical point is approached, universal criticality of QHTs

can be observed within a 2DES as described by Eq. (3.7). It is noted that this statement

assumes that the temperature dependent dephasing length is already larger than the

sample size otherwise it would place a restriction on the divergence of ఝܮ .

Using this hopping approach it has been shown that the real part of the high fre-

quency conductivity has the following logarithmic dependence on frequency [125]

)ߪ )݂ ∝ ݂௦, (3.8)

Where the exponent isݏ usually found in the interval 0.5 < >ݏ 1 [123, 126].

In the following sections, the frequency scaling analysis will be used to investi-

gate the universality of QHTs within systems of varying degrees of disorder.
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3.1.3 Previous experimental result on finite-frequency scaling

As discussed in the previous section, the dynamic scaling exponent relates the correla-

tion time to the correlation length (௭ߦ~ఛߦ) and ఝܮ is the spatial equivalent of the corre-

lation time as determined by temporal events. In the frequency regime ఝܮ is related to

the dynamic exponent through ௙ܮ ~�݂ ିଵ/௭ (Eq. (3.5)). For non-interacting electrons it

can be shown [127, 128] that ௙ܮ = 1/ඥߩ଴ℎ݂ where ଴ߩ is the density of states at the

critical point. Comparing this with the frequency dependent relation for ௙ܮ yields a val-

ue of =ݖ 2. The result =ݖ 2 is realised if the frequency dependent length is defined by

a density-density correlation function ௙ܮ = )ܦ] )݂/ ]݂ଵ/ଶ [121] where )ܦ )݂ is the fre-

quency dependent diffusion coefficient.

The first experimental results on the dynamic exponent as measured from fre-

quency by Engel et al. [13] reported a value of ≈ݖ 1 but this disagreed with the preced-

ing non-interaction theory. Shortly after the publication of this result, numerical calcula-

tions reported that a value of =ݖ 1 ought to be found if Coulomb interaction between

electrons near the QHT is considered [128-130]. To be consistent with ≈ߥ 2.3, which

hitherto had also been based on non-interacting single-particle analysis (but unlike ,ݖ

proven correct by experimental results), numerical analysis was used to show that even

though the value of ݖ is modified under Coulomb interaction, ߥ still maintains its value

of ≈ߥ 2.3 [129]. It has also been predicted that the range of interaction (short or long-

range) affects the value of .[131]ݖ The result reported by Engel et al. of ≈ݖ 1 was con-

firmed by Hohls et al. [132] but other results do not agree [16].

Experimentally, the most thorough high frequency investigation of critical ex-

ponent still remains the work of Engel et al. [13] where frequencies between 0.2 – 14
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GHz was considered, the largest bandwidth hitherto reported in the literature. Most in-

vestigations following Engel et al. were carried out at lower frequencies, 0.1 – 6 GHz

[133] and 0.7 – 7 GHz [16]. Two other studies exist at higher frequencies although the

results presented appear to be somewhat controversial. A range between 35 – 52 GHz

was investigated by Kuchar et al. [91], and although a value of ≈ߢ 0.4 was reported,

the robustness of this study is not at all clear as no plots of the frequency range or even

the fit are shown. The result is even more questionable when presented again in Ref.

[132], since the plot shown is obscure and appears to shows little evidence of scaling.

Investigations of QHTs at even higher frequencies have reported the observation of Hall

plateaus in the terahertz frequency regime; but this result has to be treated with caution,

as it is likely that quantum Hall plateaus are destroyed in the terahertz regime in much

the same way they are destroyed at high temperatures. The unlikelihood of these high

frequency results being correct will be discussed further in Chapter 5.

Experimental techniques that have been employed in finite-frequency scaling

investigations include coplanar waveguide (CPW) techniques [13], coaxial cables [133],

rectangular waveguides [91, 134] and free-space systems (though not finite-frequency)

[135]. In the studies reported below, a high resolution CPW technique is used. Both the

bandwidth and the frequency range investigated are extended beyond that report by En-

gel et al. Scaling is observed from close to d.c. up to 30 GHz, and the critical exponent

is determined within a 20 GHz bandwidth. This work replaces the work of Engel et al.

as the most extensive frequency dependent investigation conducted on scaling expo-

nents.
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3.2 High frequency devices and experimental tech-

niques

Details about sample fabrication, the CPW device used, and the experimental setup for

measuring the high frequency devices are discussed below. The device used in this

work consists of a CPW with a dielectric that contains a 2DES. The operating, design

and significant features of the device are discussed below. The fabrication and mounting

of the device is also discussed, followed by the experiment arrangement used to meas-

ure ultra-low temperature losses in the device.

3.2.1 Coplanar waveguide devices

The high frequency excitation of the 2DES is performed using metallic conductors, that

form a CPW, and are deposited on the surface of a sample containing the 2DES. A

CPW [136] is a structure in which all conductors supporting the propagation of a wave

are found within the same plane. The CPW structure consists of central conducting line

which is separated from two ground planes on either side by narrow gaps or slots as

shown in Fig. 3.3. These three conducting planes are placed on a dielectric slab with an

electric and a magnetic permittivity of ௥ߝ and ,௥ߤ respectively. An ideal CPW requires

ground planes of infinite width but in practice a width many times the wavelength of the

propagating wave is sufficient for a good CPW approximation. The electromagnetic

wave that propagates along the CPW consists of an electric field and a magnetic field

that oscillate in planes orthogonal to the direction of propagation, this is known as a

transverse electromagnetic mode or TEM mode.
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Figure 3.3. A structure of a conventional CPW which consists of three metallic conductors sepa-

rated by a distance s and placed on top of dielectric substrate. The conducting planes on either

side of the centre conductor are known as ground planes.

Though in practice a CPW transmission supports a quasi-TEM mode, the error made in

evaluating propagation as a pure TEM is negligible for microwave and lower millimetre

wave frequencies.

The structure of a conventional CPW permits the propagation of two fundamen-

tal modes; an even mode and an odd mode. The even mode is excited when the two

ground planes have the same electric potential but differ from that of the centre conduc-

tor. The odd mode, on the other hand, is excited when the potentials of the ground

planes have different signs but the same magnitude. The distribution lines of electric

and magnetic fields for these two modes are shown in Fig.3.4. The even mode is often

described as the symmetric mode while the odd mode is referred to as the anti-

symmetric mode; this originates from the symmetry in field lines evident in Fig. 3.4(a)

and the lack of it in Fig. 3.4(b). The field lines distribution in the even mode causes low

dispersion (or signal loss) of the propagating wave over a large range of frequencies

making it suitable for very broadband application and circuit designs.

s w

Dielectric
substrate

Metallic conductors

s
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Figure 3.4. Electric (solid red) and magnetic (dashed blue line) field distribution of (a) the even

mode and (b) the odd mode of a CPW. The even mode is known as the symmetric mode and the

odd mode, the anti-symmetric mode. The mode excited depends on the relative potential of the

conducting planes.

This is the mode excited in the work presented below thus we shall henceforth only

concern ourselves with even mode propagation. We note that the quasi TEM nature of

propagation attributed to the CPW stems from the existence of dispersion (even if min-

imal) inherent in CPW transmission. Dispersion, however, can be reduced by using a

substrate with a high dielectric constant thereby confining most of the field lines within

the substrate or having slot lines of very small widths.

In the devices presented here, the conducting planes constituting the CPW are

deposited on top of a GaAs substrate containing a 2DES. The 2DES itself lies about 70

nm below the surface. The propagating wave on top of the sample is therefore capaci-

tively coupled to the 2DES below as shown in Fig. 3.5(a). The real part of the conduc-

tivity of the 2DES Re[ߪ௫௫] can therefore be modelled as a shunt resistance to ground as

shown in Fig. 3.5(b) where the 2DES absorbs some amount of power from the propa-

gating signal. This acts as an additional loss incurred by the signal.

+V –V

(a) (b)
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Figure 3.5. (a) A cross-section view of the electric field lines of the propagating wave coupling

with the 2DES system below. (b) A model of the circuit formed by the 2DES-CPW, where ,଴ܮ

,଴ܥ and ଴ܻ are the inductance, the capacitance and the admittance per unit length of the 2DES-

CPW, respectively. ଴ܻ represent losses of the CPW due to the 2DES or power absorbed by the

2DES from the CPW.

Measuring the magnitude of this loss allows Re[ߪ௫௫] of the 2DES to be calculated and

since ௫௫ߪ is dependent on magnetic field, Re[ߪ௫௫] determined at different magnetic

fields will provide the magneto-conductivity data of the embedded 2DES.

The high magnetic field characteristics of the 2DES-CPW device are as fol-

lows. In the plateau region of the QHE, ௫௫ߪ of the 2DES vanishes to zero (as expected

in the QHE) and therefore the 2DES is effectively invisible or transparent to the propa-

gating wave above. In this region the 2DES is non-dissipative and thus losses in the

propagating signal due to the 2DES are extremely small and, as we shall see below,

negligible. As the centre of the LL is approached the 2DES becomes highly conductive

and dissipative, akin to a metallic sheet. At this point, the losses in the propagating sig-

nal due to the presence of the 2DES become relatively more pronounce and significant.

The characteristic impedance of the CPW is designed to be 50 Ω in the plateau

region. This is achieved by considering the ratio between the width of the centre con-

ductor ݓ and the width of the slot or gap inݏ the CPW design (see Fig. 3.3).

70 nm
2DES

L
0
dx

C
0
dx Y

0
dx

(a) (b)
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Figure 3.6. Schematic of the two designs used for the 2DES-CPW, they include (a) a straight

centre conductor of length 5.5 mm and (b) a meandering centre conductor of length 20 mm. In

both designs =ݏ 30 μm and ݓ = 50 μm and the pattern has whole dimensions 3 mm by

5.5 mm.

Matching the CPW to 50 Ω is done to suppress reflections at boundary between the

CPW and the external transmission lines, which is also matched at 50 Ω.

The CPW designs used in this work, consists of two patterns; a CPW with a

straight centre conductor (Fig. 3.6(a)) and a CPW with a meandering centre conductor

(Fig. 3.6(b)). The width and length of both devices are the same; 3 mm by 5.5 mm. The

width of the centre conductor, ݓ = 50 μm, and the width of the slot, =ݏ 30 μm, are

the same in both designs. The main difference between the two patterns is the length of

the centre conductor which determines the area of the 2DES excited. The straight CPW

has a centre conductor of length ݈= 5.5 mm while the meandering line has ݈= 20 mm.

The meandering line therefore probes an area just over 3.5 times greater than the

straight CPW. A longer meandering line increases the signal-to-noise ratio by increas-

ing the sensitivity of the signal to losses occurring in the 2DES. The disadvantages of a

meandering line include a pattern which is more difficult to fabricate and a complex

4 mm

5.5 mm

(a) (b)
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geometry that is susceptible to resonances and cross coupling (cross talk) between par-

allel lengths of the meandering line.

Finally, we discuss the issue of the active or excited region of the 2DES. Alt-

hough the CPW sits on top of a large surface area covering the 2DES, the active region

under excitation is the region between the centre conductor and the ground plane, i.e,

the gap or slot width .ݏ All other areas are under zero or very weak excitation. The ef-

fective physical length of the 2DES is therefore ~ 30 μm (the width of the gap). Charge

carriers within the 2DES move between the ground plane and centre conductor line.

Charge transport within the 2DES therefore occurs in the direction perpendicular to the

direction of the propagating wave and along the electric field lines. Fig. 3.7(a) indicates

the active length of the 2DES, which is largely located within the slot regions of the

CPW. Fig. 3.7(b) shows a top view of the active region excited beneath the CPW.

A look at the time varying electric field within the active region shows a field

which alternates with the frequency of the propagating wave (Fig. 3.8).

Figure 3.7. The schematic in (a) shows the active region of the 2DES below the surface. The

highlighted region of the 2DES shows the active length of the 2DES excited. The figure in (b)

shows a top view of the active area excited by the CPW. The active width shown in (b) corre-

sponds to the length of the centre conductor. It is noted that the direction of electron transport in

the 2DES is along the active length (and not the active width) shown in both (a) and (b).

Active length of 2DES

Active area

Active width of 2DES

(a) (b)
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Figure 3.8. The time varying electric field of the even mode as the wave propagates along the

CPW.

In the context of a.c. hopping discussed in section 3.1.2, for a low frequency signal

where the period of the electric fields is much greater than the time required for charge

carriers to move between the centre conductor and the ground plane, electron transport

will possess d.c. characteristics. In other words, if the half cycle period of the applied

electric field is greater than the time it takes for an electron to move across the gap, the

2DES will behave as if it is being excited by a d.c. signal.

3.2.2 Device and sample fabrication

As discussed in the previous section, the devices used for high frequency excitation of

the 2DES consists of conducting planes deposited on top of a dielectric where the die-

lectric in this case refers to the 2DES sample or the GaAs/AlGaAs heterostructure. In

addition to the CPW pattern shown in Fig. 3.6, the devices used in this work also in-

clude ohmic contacts placed on the edges of an etched mesa which defines the borders

Direction of wave
propagation
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of the 2DES. The complete design of the device pattern is shown in Fig. 3.9. The ohmic

contacts allow for simultaneous d.c measurements to be obtained while a.c. measure-

ments are taken using the CPW. The d.c. measurements are important as they verify the

a.c. results and also to identify the location of LLs observed in the a.c measurements.

The process involved in fabricating the devices is as follows. The surface of the

2DES sample is chemically etched to a depth of about 200 nm to reveal a square mesa

(raised surface) containing the 2DES as shown by the dashed line in Fig. 3.9. Ohmic

contacts formed from an alloy of Au/Ge/Ni are deposited (through thermal evaporation)

across the edge of the etched mesa after the contact regions have been lithographically

defined. The contacts are then annealed at 430 °C for 80 seconds in an atmosphere of

nitrogen. The pattern of the conducting planes of the CPW is lithographically defined

and then formed from a 30/350 nm layer of Ti/Au evaporated onto the surface of the

sample.

Figure 3.9. Complete design of 2DES-CPW devices showing the ohmic contacts and the con-

ducting plane of the CPW.

Ohmic contacts

Ground planes
Centre conductor

Etched
2DES mesa

3 mm

5.5 mm
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Figure 3.10. A schematic showing a cross-section of the 2DES-CPW device. The diagram de-

picts the various layers of the GaAs/AlGaAs heterostructure, the Ti/Au deposits that form the

conducting planes of the CPW, and the ohmic contacts formed from annealed Au/Ge/Ni deposits

on the edge of the etched mesa.

Figure 3.11. A photograph of the fabricated device which shows the CPW with ohmic contacts

on either side.

GaAs substrate

AlGaAs 200 Å

Si: AlGaAs 400 Å

GaAs 100 Å

Ti/Au
30/350 nm

2DES-CPW: GaAs/AlGaAs

2DES

                   GaAs                  1 μm

Au/Ge/Ni
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Fig. 3.10 shows a cross-section of the sample after completion of the fabrication pro-

cess. The figure depicts all elements of the device including the various layers of the

GaAs/AlGaAs heterostructure. A photograph of the fabricated device is shown in Fig.

3.11.

The device is mounted into a sample holder which consists of two coaxial con-

nectors attached to both sides of the device by copper strips as shown in Fig. 3.12.

These copper strips connect the grounding and centre conductor of the coaxial connect-

ors to the ground planes and centre conductor of the CPW using silver epoxy. This was

found to be the most effective method of delivering the high frequency signal to the de-

vice.

Figure 3.12. Sample mounted in a sample holder which consists of coaxial connectors attached

to the CPW via copper strips.
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Figure 3.13. Pictures showing previous versions of 2DES-CPW mounts. (a) A coaxial cable di-

rectly attached the device with silver epoxy. (b) An attempt to connect the 2DES-CPW device

with a microstrip transmission line.

The most significant difficulty encountered in mounting the device originated

from establishing electrical contact with the external transmission line. The high fre-

quency signal was delivered to the device through coaxial cables and establishing a

good coaxial to CPW transition was problematic; when cold, the electrical contact,

which was made using a conductive silver epoxy, tended to shrink and break contact

with the device. Fig. 3.13 shows two previous version of the device mount that were

ultimately unsuitable due to the breaking of electrical contact when cooled down.

3.2.3 Experimental setup

The experimental setup is centred around a dilution fridge as the 2DES-CPW device has

to be cooled down to very low temperatures in order to observe the high frequency re-

sponse of the QHE. The devices in the following experiments are inserted into a

(a) (b)
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3He/4He dilution fridge with a base temperature of < 14 mK and a 12 T superconducting

magnet. The 2DES-CPW is thermally attached to the base plate of the fridge by a cop-

per rod that screws into the button of the device mount shown in Fig. 3.12. The device

is connected to the external circuit through coaxial cables. The cables come down from

the top of the dilution fridge and extend to the base plate where they are connected to

the device via the coaxial connectors seen in Fig. 3.12.

Outside the fridge, the input of the 2DES-CPW is connected to a vector net-

work analyser (via coaxial cables) which is capable of generating very low noise and

high frequency signals up to 40 GHz. The output of the 2DES-CPW is first connected to

a 20 dB amplifier which in turn is connected back to the network analyser which dou-

bles both as the signal generator and detector.

Figure 3.14. A schematic showing the experimental setup for the high frequency measurement of

2DES-CPW devices.
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The schematic of the setup is shown in Fig. 3.14.The view of the internal structure of

the dilution fridge is shown in Fig. 3.15. The coaxial cables from the network analyser

are connected to coaxial inputs found on top of the dilution fridge. Beryllium copper

coaxial cables then carry the signal all the way down to the base plate, beneath which

the sample holder is mounted. The mounted device is shown in see Fig. 3.14.

Figure 3.15. A picture showing the internal structure of the dilution refrigerator. The beryllium

copper coaxial cables, coming from the top of the fridge, are connected between successive tem-

perature plates by coaxial connectors.
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The plates shown in Fig. 3.15 act as dividers for different temperature regions within

the dilution fridge. The beryllium copper cables are connected to successive tempera-

ture regions by coaxial connectors.

In operational mode, high frequency or microwave signals are sent from the

network analyser, down the dilution fridge, and launched into the 2DES-CPW. During

CPW transmission, the signal interacts with and simultaneously probes the 2DES. The

output signal from the 2DES-CPW devices is then passed through a 20 dB amplifier to

amplify the output since the input or injected signal must be of very low power (more

on this below). The magnitude and the phase of the amplified signal are then measured

by the network analyser, and contain information on the conductivity of the 2DES. This

process is carried out over several frequencies per magnetic field point in order to gen-

erate a high frequency and magnetic field dependent response of the 2DES. The results

obtained are presented in the following section.

3.3 Frequency dependent measurements on 2DES-

CPW devices

Measurements taken on a standard GaAs/AlGaAs-based 2DES-CPW are reported be-

low. Results on microwave measurements carried out are presented and similarities be-

tween d.c. and a.c. measurements discussed. This is then followed by determination of

the scaling exponent ߢ in the high frequency regime. Features of the high frequency

response of QHTs in the 2DES are also discussed.
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3.3.1 Microwave measurements

The results presented in this section are taken from a 2DES-CPW device fabricated

from a GaAs/AlGaAs heterostructure with a carrier density of ݊ = 2.89 × 10ଵଵ cmିଶ

and a mobility of =ߤ 380,000 cmଶVିଵsିଵ (measured at 100 mK). The device is incor-

porated into the setup described above (Fig. 3.14), where the 2DES-CPW is excited

with microwave frequencies of very low power. The power ratio of the received signal

to the transmitted signal, or the Sଶଵ parameter, is measured as a logarithmic scalar (in

decibels or dB)

Sଶଵ (dB) = 10 logଵ଴(| ௧ܲ/ ଴ܲ|), (3.9)

where ଴ܲ is the power of the signal leaving the network analyser and ௧ܲ is the power of

the transmitted signal received by the analyser. It should be noted from Eq. (3.9) that we
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Figure 3.16. A plot showing the transmission characteristics of the 2DES-CPW at 100 MHz as a

function of magnetic field. The Sଶଵ appears to follow an inverted trace of the diagonal conductiv-

ity.
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are only interested in the magnitude of the Sଶଵ parameter.

Fig. 3.16 shows a plot of the magnetic field dependence of the Sଶଵ parameter

measured from the 2DES-CPW device excited with a signal of frequency 100 MHz.

The most striking observation from Fig. 3.16 is that it is of remarkable resemblance to

an inverted diagonal magneto-conductivity (௫௫ߪ) trace of the QHE. It is also noticed

that the trace hits an asymptotic value (illustrated by the dashed line in Fig. 3.16) which

appears to be the zero conductivity value of the Sଶଵ parameter.

Transmission is most impeded close to the zero field (0 T) where the Sଶଵ pa-

rameter is observed to possess its lowest value. This means that the 2DES, which has

been integrated into the transmission circuit, is most conductive at these field causing

significant losses to the power of the transmitted signal since (as shown in Fig. 3.5(b))

the 2DES acts as a shunt resistance or short circuit to ground. At higher fields however,

the 2DES becomes highly resistive and essentially acts as an open circuit allowing more

of the signal to be transmitted. At very high fields (from 2 T onwards in Fig. 3.16) the

2DES is found to oscillate between states of zero conductivity, where the Sଶଵ parameter

hits the dashed line, and a small finite conductivity observed as dips in the Sଶଵ. Sଶଵ =

−4 dB therefore represents transmission losses due to all other parts of the circuit ex-

cept the 2DES since within this zero conductivity region the 2DES is effectively invisi-

ble to the circuit.

It is clear from Fig. 3.16 and the discussion above that the high frequency plot

reflects the QHE of the 2DES. In order to confirm this however, it is essential to com-

pare the high frequency responses to the conventional d.c. measurements of the 2DES.

This is done using the Ohmic contacts (see Fig. 3.9) on the same device.
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Fig. 3.17 presents such a measurement. It is observed in this figure that LL peaks occur-

ring in the d.c. trace correspond to dips in the Sଶଵ measurements at high frequencies.

The dips in the Sଶଵ parameter can therefore be conveniently matched with their corre-

sponding LL. Due to the nature of the excitation of the 2DES, only ௫௫ߪ can be obtained

from the transmission measurements. The Hall data cannot be measured with this high

frequency setup. As explained in section 3.2.1, losses in the transmitted signal are due

to the movement of charged particles along the electric field lines (see Fig. 3.8), there-

fore Sଶଵ measurements reflect the diagonal conductivity. The use of Ohmic contacts,

which enable Hall data to be taken from the 2DES-CPW device, are therefore essential

in verifying the LLs observed in the transmission measurements.

The Sଶଵ value at the zero conductivity regions (i.e. the regions with the maxi-

mum value of Sଶଵ) is frequency dependent. It can be seen from Fig. 3.17 that the zero

conductivity value of the Sଶଵ for these regions decreases with increasing frequency,

starting at Sଶଵ~− 4 dB at 100 MHz to Sଶଵ~− 54 dB at 20 GHz. This behaviour simply

reflects the frequency dependent lossy nature of the transmission lines, and especially

losses due to the coaxial connectors that connect the beryllium copper coaxial cables

between the successive temperature plates within the dilution fridge (see Fig.3.15).

The plot in Fig. 3.18(a) shows the magnetic field response of the Sଶଵ parameter

covering the N = 1 ↓ and N = 1 ↑ LLs of the 2DES-CPW. It is observed from this

plot that the transmission loss become significantly worse as the frequency is increased,

offsetting the zero conductivity asymptote accordingly. The frequency response of the

setup is measured at three different magnetic fields in the plot presented in Fig. 3.18(b).

The three fields considered in this plot are taken from the centre of the N = 1 ↓ LL and

the two insulating zero conductivity regions on either side of the LL.
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The precise field points considered in Fig. 3.18(b) are represented by the dashed lines

seen in Fig. 3.18(a). It is even clearer from Fig. 3.18(b) that the setup becomes increas-

ingly lossy as the frequency is increased. It is important to appreciate, however, that the

majority of these losses are not due to the 2DES but other parts of the circuit. It is ob-

served in Fig. 3.18(b) that the frequency response is exactly the same for both of the

zero conductivity regions located on either side of the LL. In these zero conductivity

regions the 2DES is effectively invisible to the circuit. At the centre of the LL where the

conductivity is greatest, however, we notice both an offset and change in the frequency

response that do not match the zero conductivity responses.
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Figure 3.19. The frequency response of the 2DES at the centre of the N = 1 ↓ LL minus the

zero conductivity response. This plot represents the intrinsic response of the 2DES at its most

conductive.
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The losses intrinsic to the 2DES alone therefore are the differences between the two

curves. This difference is plotted in Fig. 3.19. This plot, which describes the frequency

response at the centre of the N = 1 ↓ LL (at B = 3.36 T), is obtained by subtracting the

zero conductivity response from the response at the centre of the LL. The Sଶଵ values in

this plot represent losses intrinsic only to the 2DES. Although the response in Fig. 3.19

applied only to the centre of the LL, the intrinsic 2DES responses for all fields are ob-

tained by the same method; subtracting the zero conductivity response from the raw Sଶଵ

response.

We now consider the nature of the response in Fig. 3.19. According to Eq.

(3.8), one expects the 2DES to become increasingly lossy at higher frequencies (with a

linear dependence on a double log scale). Such a general trend is observed in Fig. 3.19

but we also note the observation of several resonances of different magnitudes within

the spectrum. These resonances are believed to originate from frequency dependent in-

teractions between the 2DES and its environment. This includes the characteristic and

physical features of the substrate (such as physical size and permittivity) within which

the 2DES is located and the characteristic of the CPW above the 2DES. The two strong-

est resonances in the frequency response appear to be related, through a fundamental

frequency that occurs at 7.5 GHz and a first harmonic at 15 GHz. It is found that the

fundamental frequency occurs when the length of the sample coincides with

ఒ೐೑೑

ଶ
=

௖

ଶ௙√ఌೝ
, (3.10)

where ௘௙௙ߣ is the effective wavelength in the GaAs substrate with a dielectric constant

of ௥ߝ = 12.9 and ܿ is the speed of light. For a sample of length 5.5 mm, a resonant fre-

quency is expected at ~7.5 GHz according to Eq. (3.10). This is in good agreement with
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Fig. 3.19. Though Eq. (3.10) appears to account for the strongest resonances, the partic-

ular origins of the other resonance are difficult to pinpoint, it is however possible that

they must stem from some characteristic of the 2DES-CPW device and not due to in-

trinsic electron transport of the 2DES.

3.3.2 Conductivity of a 2DES in a high frequency network

As touched on above, the setup containing the 2DES-CPW device can be modelled by

an equivalent circuit to represent a two-port network with characteristic impedance

଴ܼ = ඥܮ଴/ܥ଴. The 2DES beneath the CPW appears as a load in the network with ad-

mittance ܻ as shown in Fig. 3.20. The two-port network shown in Fig. 3.20 represents a

transmission or ABCD matrix [137]. The relation between ܻ and Sଶଵ from transmission

line theory is given as [137]

Sଶଵ =
ଶ

ଶା௓బ௒
. (3.11)

The conductance of the 2DES, which is the real part of admittance (ܴ [ܻ݁] = (ܩ is given

as ܩ = 2ܴ [௫௫ߪ݁]
௟

௪
where the factor 2 is due to existence of two slots lines in the CPW,

each of width ݓ and length ,݈ within which the 2DES is excited.

Figure 3.20. A two-port network model of 2DES-CPW circuit with a characteristic impedance

଴ܼ = ඥܮ଴/ܥ଴. The 2DES appears as admittance ܻ in the model.
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Figure 3.21. Conductivity measured from the (intrinsic) Sଶଵ�(ଶ஽ாௌ) of the 2DES-CPW device at

four different frequencies

Eq. (3.11) can then be rewritten as

Sଶଵ =
௪

௪ା௓బோ௘[ఙೣೣ]௟
. (3.12)

In order to take into account the effect of frequency and the separation ݃ be-

tween the conducting planes of the CPW and the 2DES below, two correction factors,

)ܣ )݂ and ܴ,݃)ܤ ,([௫௫ߪ݁] are introduced such that

Sଶଵ =
௪ା஻

௪ା஻ା(஺ା௓బ)ோ௘[ఙೣೣ]௟
. (3.13)

These correction factors are computed through simulations carried out on a finite-

element electromagnetic field solver (HFSS).
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From Eq. (3.13), the conductivity of the 2DES can be calculated from the mag-

netic field response of the Sଶଵ parameter after the zero conductivity response has been

subtracted (the method described in Fig. 3.19). The results obtained from applying Eq.

(3.13) are shown in Fig 3.21 for four different frequencies. It can be observed from Fig.

3.21 that Eq. (3.13) has the visual effect of inverting the Sଶଵ response. The values ob-

tained from Fig. 3.21 are in good agreement with d.c. values obtained from the sample

investigated.

3.3.3 High resolution frequency measurements

From the measurement techniques and analysis described in the sections above, a high

resolution description of the QHE can be obtained by combining the magnetic field re-

sponse of ܴ [௫௫ߪ݁] with small increments in frequency. In practice, the data is taken as

follows: at a given magnetic field, frequencies between 10 MHz and 20 GHz are trans-

mitted through the 2DES-CPW circuit. The frequencies are sent one after the other (fi-

nite-frequency transmission) separated by a small time delay that takes into account the

distance travelled by the signal and the relaxation time of the interacting 2DES. The

interval in frequency between successive signals is ~ 40 MHz. The ratio between the

incident and transited signal is then measured by the analyser after which the data is

converted into conductivity using Eq. (3.13). All measurements are carried out at a tem-

perature below 100 mK where small deviations in the temperature of the system (± 50

mK) have no significant effect on measured values and the QHE. This technique yields

a very high resolution description of the frequency dependent evolution of the QHE that

can be used in the investigation of the scaling of QHTs.
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Figure 3.22. High resolution plot of the (normalized) diagonal conductivity of the QHE taken

from 2 T to 12 T and from 10 MHz to 20 GHz, at intervals of 40 MHz.

The result of this measurement is shown in Fig. 3.22. The familiar outline of

௫௫ߪ of the QHE can be seen from the cross-section of the data. It is also very clear that

there is a broadening of the widths of the LL conductivity peaks, a central feature of the

scaling theory of QHTs. Fig. 3.22 also shows both abrupt discontinuities, these features

originate from the resonances discussed in Fig. 3.19. The measurement range presented

in Fig. 3.22 is limited to 20 GHz because of the onset of a significant drop in the signal-

to-noise ratio at higher frequencies. The noise at frequencies close to 20 GHz observed

in Fig. 3.22 is predominantly due to a limitation in the coaxial connectors in the dilution

fridge (shown in Fig. 3.15) and also due to the deviation from the quasi-TEM approxi-

mation of the CPW at higher frequencies.



135

Figure 3.23. A top view (in the frequency-field plane) of the frequency dependence of the QHE

up to 30 GHz. Though the data between 20 GHz to 30 GHz contains a significant amount of

noise, the broadening of the LL conductivity peaks is observed within the entire frequency range.

Nevertheless, Fig. 3.23 presents measurements taken up to 30 GHz where the noise

within the system is extremely high. These results, however, prove that the broadening

of LL peaks are observable up to 30 GHz. Fig. 3.23 represents the largest scaling band-

width reported to date, a significant improvement on the 14 GHz bandwidth results re-

ported previously by Engel et al. [13].

Another peculiar feature of these high resolution measurements is the observa-

tion of a shoulder on the high field side of the N = 0 ↓ LL (between 6 T and 12 T)

prominent in Fig. 3.22.
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Figure 3.24. A plot illustrating the shoulder effect on the N = 0 ↓ LL. The traces have been off-

set for clarity.

Though the observation of this shouldering effect is first recognized in the results pre-

sented in Figs. 3.17 and 3.21, it is briefly discussed below.

The emergence of a strong shoulder at lower filling factors (or high fields),

clearly observed in the N = 0 ↓ LL, represents an asymmetry in the density of states.

This asymmetry originates from the formation of an impurity band in the energy spec-

trum due to the attractive scattering centres close to the 2DES [138]. Fig. 3.24, which

shows the N = 0 ↓ LL conductivity peak for various frequencies, provides clearer evi-

dence of the shouldering effect. The shape of the density of states is influenced by the

polarity and the amount of the scatterers present in the system.
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Figure 3.25. The asymmetry of a LL which depends on the nature of the scatterers within the

system. Systems dominated by either attractive scatterers or repulsive scatterers will have oppo-

site features in their asymmetry, while systems with equal amount of repulsive and attractive

scatterers maintain a symmetric density of states.

In the case of the scatterers being repulsive only, the asymmetry will be reversed, while

a symmetric density of states will exists if there are equal amounts of attractive and re-

pulsive scatterers [138]. The schematic representation of these three scenarios is shown

in Fig. 3.25 based on numerical solutions presented by Wegner [139] and discussed by

Aoki [138]. The conductivity measured from the system therefore is the result of the

overlap in states between the 2DES and the impurity band. As the frequency (or tem-

perature) is increased, the broadening of the LL peak, as well as the impurity band peak,

reveals the asymmetry in the density of states. This effect has been previously observed

by several authors in both temperature and frequency dependent measurements of the
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QHE [91, 133, 140]. The asymmetry of the LL peaks is only pronounced at low filing

factors and almost non-existent at higher filling factors (low fields), and as a result, LLs

at higher filling factors (higher than N = 0 ↓ LL) can be investigated without effects

from the impurity band being a significant concern.

3.4 Finite-frequency scaling of QHTs in GaAs/AlGaAs

systems

We now return to the central focus of this work, the investigation of the criticality of

transitions between the insulating states of the QHE, or QHTs, by evaluating the scaling

exponents of these transitions. In particular, we have concerned ourselves with a central

question of whether these transitions belong to the same universality class and whether

universality is contingent on any condition. In the previous chapter, the temperature de-

pendence of the QHTs was investigated. In this section, we perform a similar analysis

based on the frequency dependent measurements discussed above.

3.4.1 Power scaling of QHTs

The critical exponent ߢ is measured from the full-width-at-half maximum (FWHM) of

the LL conductivity peak according to Eq. (3.7) restated below

݂�~�ܤ∆ ఑. (3.14)

As discussed in section 3.1.1, the frequency regime is dominant when ℎ݂≫

஻݇ .ܶ In this regime, frequency controls the phase breaking mechanism and therefore the

scaling process. The application of microwave signals to the 2DES-CPW device re-
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quires the injection of some amount of power. It is therefore important to stay within a

regime where the microwave power does not heat up the 2DES and reduce the domi-

nance of frequency within the system (i.e bring the systems out of the ℎ݂≫ ஻݇ܶ re-

gime). This is achieved by measuring the effect of varying powers of the microwave

signal on the conductivity of the 2DES. Since the width ܤ∆ of the LL conductivity peak

is the essential characteristic being measured, this width is determined for different

powers. The results are shown below in Fig. 3.26. The figure shows the dependence of

ܤ∆ on the power of the applied signal at three different frequencies. An increase in the

power of the applied signal is accompanied an increase in the temperature of the system.

We notice in Fig. 3.26 that initially there is no effect on the ܤ∆ (i.e. the conductivity) of

the 2DES at lower powers. Within this saturated region, frequency will be the dominant

parameter of scaling. This is clearly observed in Fig. 3.26 by comparing ܤ∆ for differ-

ent frequencies, it is noticed that ܤ∆ increases with frequency within this regime as ex-

pected from Eq. (3.14). This indicates that ℎ݂ is dominant in this regime. As the power

(and as a result, the temperature) is increased, however, a power scaling effect does oc-

cur, ܤ∆ begins to increase with power and it is observed that the curves of the discrete

frequencies shown begin to merge at higher signal power levels. This signifies a transi-

tion from a frequency dominated regime towards a temperature dominated regime

(ℎ݂→ ஻݇ܶ). At even higher powers, all frequency curves will merge onto the same line

(observed by extrapolating the curves shown in Fig. 3.26). At this point a varying fre-

quency no longer has any influence on the 2DES and conductivity is predominantly de-

termined by the temperature parameter ( ஻݇ܶ dominated regime).

In determining the scaling exponent ,ߢ it is important to keep the system within

the saturated regime.
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while the non-saturated region (>1nW) signify a transition to the temperature dependent regime.
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All results presented in this section are therefore carried out at ܲ < 0.01 nW, well

within the frequency dominated regime. In performing the frequency scaling experi-

ments presented below, the temperature of the dilution fridge is initially set to its base

temperature < 14 mK and the signal power kept within the saturated region. As the ex-

periment is carried out the temperature of the fridge increased slightly but remains be-

low 35 mK. The slight increase is due to a small and unavoidable amount of heat origi-

nating from dissipation in the current carrying cables and thermal dissipation from the

2DES-CPW device itself (even within the saturated region). As discussed above (from

Fig. 3.26), however, this is not sufficiently high to influence the measurements being

taken.

3.4.2 Frequency dependent determination of the scaling expo-

nent ࣄ

In measuring weߢ will only consider the ܰ = 1 ↓ and ܰ = 1 ↑ LLs. The ܰ = 0 ↓ LL is

not considered due to significant contribution to conductivity of the impurity band at

higher fields. Higher LLs are also not considered in this analysis due to spin degenera-

cy. Fig. 3.27 shows a contour plot of the normalized conductivity of the ܰ = 1 and

ܰ = 2 LLs, it illustrates the extent of spin resolution and spin degeneracy of the LLs.

The ܰ = 1 LLs are found to be spin resolved for the frequency range considered while

the ܰ = 2 LLs are largely degenerate.

The dependence of the ܤ∆ on frequency is more clearly presented in Fig. 3.28

which shows the normalized conductivity of the ܰ = 1 ↓ LL. The dashed line in the

figure denotes the FWHM.
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Figure 3.27. A contour plot of the frequency response of the 2DES illustrating the degree of spin

degeneracy of the�ܰ = 1 and ܰ = 2 LLs.

The plots of ܤ∆ vs. ݂ for both ܰ = 1 ↓ and ܰ = 1 ↑ LLs are shown in Fig.

3.29. The plots largely consist of two regions, a frequency insensitive region and a fre-

quency dependent region. The insensitive region, which is found at ݂< 2 GHz, repre-

sents a saturated region where increases in frequency have negligible effect on the width

of the conductivity peak. It is noted that this saturated region also observed in all higher

LLs not considered below (for ݂< 2 GHz). Similar to the saturation regions observed

in the temperature dependent measurements discussed in Chapter 2 (Fig. 2.5), the ori-

gins of the saturated region observed here originate from the effect of the finite-size of

the device.
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Figure 3.28. A plot showing the dependence of ܤ∆ on frequency for the ܰ = 1 ↓ LL. The dashed

line represents the FWHM.

It is important to note that the transition between the saturation region and the frequency

dependent region in Fig. 3.29 is not a transition between ஻݇ܶ and ℎ݂ dominated regions

as observed in Fig. 3.26 since we are sure that the temperature plays no role for the mi-

crowave powers used in these measurements. The transition is therefore due to a size

effect of the device. The size effect is discussed in detail in Chapter 4.

Within the frequency dependent region we notice a somewhat abrupt dip repre-

senting a sudden constriction in the width of the conductivity peak. This constriction

stems from resonances within the frequency response discussed in section 3.3.1. The

scaling exponent ߢ is determined from the linear fit of the frequency dependent region

according to Eq. (3.14).
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Figure 3.29. Frequency dependence of ܤ∆ for the (a) ܰ = 1 ↓ and (b) ܰ = 1 ↑ LL. The solid

line is a fit to the data where the scaling exponent ߢ is the gradient of the fit.

(a) ܰ = 1 ↓

=ߢ 0.6 ± 0.05

(b) ܰ = 1 ↑

=ߢ 0.61 ± 0.05
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In determining the fit the resonance dip is excluded. It is noted that the data excluded

does little to change the value of ߢ which is measured to be =ߢ 0.6 ± 0.05 and

=ߢ 0.61 ± 0.05 for ܰ = 1 ↓ and ܰ = 1 ↑ LLs, respectively.

From previous discussions on the universal criticality of QHTs, we recall that

the critical value of measuredߢ is expected to be ≈ 0.42. The value of ߢ here, however,

is more consistent with the non-universal values obtained from the temperature scaling

results presented in Chapter 2 where value of ߢ tended to be higher than 0.42. Universal

transitions (as determined by the value of the scaling exponent) are not observed within

these frequency dependent measurements. These results further call into question the

universality theory of QHTs.

3.5 Short-range disorder in finite-frequency scaling of

QHTs

A commonly suggested reason for the non-universality of critical exponents has been

the nature of the disorder experienced by the 2DES. Universal criticality of the phase

transitions occurring in the QHE was initially investigated in 2DESs formed in In-

GaAs/InP heterostructures. The major source of disorder within these systems originates

from the alloy scattering inherent in the InGaAs, which occur on an atomic length scale.

This makes InGaAs/InP 2DESs systems dominated by short-range scattering in contrast

to GaAs/AlGaAs systems discussed so far in this work in which long-range scattering

dominates. Below, we discuss the formation of a short-range 2DES in a GaAs based
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heterostructure and determine the nature of criticality within this system by measuring

the scaling exponent .ߢ

3.5.1 Induction of short-range disorder in GaAs based hetero-

structures

In the sample considered so far in this chapter, the 2DES is formed from a standard

GaAs/AlGaAs heterostructure where the disorder with the system is predominantly

caused by random potentials fluctuations from ionized impurities in the donor layer.

The 2DES system is separated from these charged centres by a spacer layer, and this

cuts off the core of the Coulomb potential leaving the 2DES to experience only the slow

varying tails of the potential. In addition, part of the potential is screened by the elec-

trons in the 2DES. This makes the nature of disorder within GaAs/AlGaAs systems

weak and long-ranged. This long-range nature of the potential fluctuations greatly re-

duces scattering within the 2DES.

In order to change the nature of disorder in GaAs based heterostructures from

long-range to short-range, Al impurities were introduced into the GaAs layer during the

growth of the heterostructure to induce alloy scattering within the vicinity of the 2DES.

This causes electrons to scatter on much shorter length scales than in a long-range sys-

tem (similar to the scattering in InGaAs systems). The result is a AlxGa1-

xAs/Al0.33Ga0.67As heterostructure where x is the concentration of impurity as a ratio of

Al to Ga atoms. The alloy scattering centres are randomly distributed within the GaAs

layer to produce scattering events that are independent and uncorrelated creating the

type of disorder described by Anderson [29].
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Figure 3.30. A schematic of the heterostructures of the long-range disorder and short-range dis-

order wafers. Both wafers are grown with similar characteristics with the exception the Al dop-

ing of the GaAs layer in the short-range wafer (and no such doping the long-range wafer).

In our samples the Al concentration was chosen to be x = 0.015 (or 1.5%) based on pre-

vious studies reported by Li et al. [141] where it was found that the amplitude of the

alloy potential fluctuations of such a ratio was significantly larger than the background

potential fluctuations ensuring that scattering events are dominated by short-range dis-

order.

The schematic of both the long-range and short-ranged GaAs based heterostructures are

shown in Fig. 3.30. Using the long-range disorder wafer as a reference, the short-range

disorder wafer was grown in a similar manner with the exception of the Al doping of

the GaAs layer. The sample characteristics of the heterostructures are summarized in

Table 3.1. Both samples were grown with the same Si doping, spacer layer and had

comparable carrier concentration.

GaAs substrate

AlGaAs 200 Å

Si: AlGaAs 400 Å

GaAs 100 Å

Long-range
Scattering

GaAs/AlGaAs

      GaAs              1 μm

GaAs substrate

AlGaAs 200 Å

Si: AlGaAs 400 Å

GaAs 100 Å

Short-range
Scattering

AlGaAs/AlGaAs

Al
0.015

Ga
0.985

As       1 μm
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TABLE 3.1. Characteristics for long-range (L-range) and short-range (S-range) samples.

Sample
Si ߜ

(×1018

cm-3 )

spacer
(nm)

Al
x (%)

ne

(×1011

cm2 )

μe

(×105

cm2 V-

1s-1)

௖߬ (ps) ௤߬ (ps) ௖߬/ ௤߬

L-range 2 20 0 2.89 3.8 14.78 1.14 13.0

S-range 2 20 1.5 2.57 1.09 4.15 0.76 5.5

Included in Table 3.1 are the classical lifetimes ௖߬ and the quantum lifetimes ௤߬

of both heterostructures. As discussed in Chapter 2 (section 2.1.1), the classical lifetime

is predominantly a reflection of large angle scattering events, typical of short-range

scattering, occurring within the 2DES. The quantum life time on the other hand is

equally sensitive to all scattering events including small angle scattering events, typical

of long-range scattering systems. The Dingle plots used to evaluate the quantum life-

time determined from the amplitude of the SdH oscillations of the samples are shown in

Fig. 3.31 (see Chapter 2 for details on the Dingle method).

The ratio ௖߬/ ௤߬ is a parameter that indicates the dominant scattering type; ௖߬/ ௤߬

tends towards unity for a system dominated by short-range (large angle) scattering,

while ௖߬/ ௤߬ is typically between 10 and 100 for systems dominated by long-range

(small angle) scattering [26, 93, 95]. It is observed from Table 3.1 that Al impurity sig-

nificantly reduces the lifetime ratio towards unity suggesting a change in the nature of

disorder of the 2DES towards short-range scattering.
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Figure 3.31. Dingle plots for (a) the short-range sample and (b) the long-range sample,

determined from the SdH oscillations (shown as insets).

3.5.2 Microwave characteristics of short-range 2DES

Similar to the characteristics shown above for the long-range sample, the microwave

frequency characteristics of the short-range sample are briefly discussed.

Fig. 3.32 shows the magnetic field response of the Sଶଵ parameter measured at

different frequencies for the short range 2DES-CPW device. The figure also includes

the d.c. magnetoresistance taken from the Ohmic contacts which is used to identify the

LL peaks in the high frequency response. It is evident from the figure that the LL peaks

are in alignment with the dips in the Sଶଵ response confirming the location of the various

LLs. Similar to the long-range device measured above, we notice that the Sଶଵ response

rises to an asymptotic limit which determines the zero conductivity point of the short-

range system.

Fig. 3.33(a) shows the response of the short-range 2DES-CPW device at zero

magnetic field.
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Figure 3.33. (a) The zero field frequency response of the short range 2DES-CPW device and (b)

the intrinsic 2DES frequency response take from the maximum of the ܰ = 1 ↓ LL.
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Subtracting the frequency response at the zero conductivity point from the entire data

set yields the intrinsic Sଶଵ response of the 2DES shown in Fig. 3.33(b). In Fig. 3.33(a),

as expected, the response is more lossy at high frequencies due to the frequency de-

pendent losses of the transmission line. Fig. 3.33(b) on the other hand shows the intrin-

sic Sଶଵ response determined at the peak of the ܰ = 1 ↓ LL, and just like in the long-

range equivalent, we observed a moderately flat response which is only slightly lossy at

higher frequencies. A difference between the devices, however, is that the magnitude of

the resonances observed in the short-range device is smaller compared with that of the

long-range device.

Figure 3.34. High resolution frequency measurements of the short-range 2DES-CPW device

showing spin resolved ܰ = 1 LLs and spin degenerate ܰ = 2 LLs.
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The results of high resolution frequency measurement of the short-range device

is shown in Fig.3.34 where four LLs can be observed, two from the degenerate LLs of

ܰ = 2 LLs and two spin resolved LLs from the ܰ = 1 LLs. Just as before, we shall on-

ly consider the spin resolved LLs of the ܰ = 1 LL. The ܰ = 0 ↓ LL is not considered

here due to the same high field effect of the impurity band discussed above. We notice

from Fig. 3.34 that the LLs broaden with increasing frequency as expected and required

by the scaling theory analysis. We will now consider the nature of scaling within the

short-range device.

3.5.3 Determination of ࣄ of short-range sample

The scaling exponent is determined for a frequency range between 2 GHz to 20 GHz,

which excludes the size effects which occur below 2 GHz. As confirmation of the insig-

nificance of the temperature increase introduced from the microwave power, Fig. 3.35

shows the power scaling plot at 5 GHz for both ܰ = 1 LLs considered. Measurements

are carried out at microwave powers of ܲ < 0.01 nW and from Fig. 3.35 it is observed

that this region lies in the temperature independent part of the curve.

As has been employed in the previous analysis, the scaling exponent ߢ is de-

termined from the width of the LL conductivity peaks. Fig. 3.36 illustrates the evolution

of the peak width throughout the frequency range investigated. The double log plots

from which ߢ is determined for the ܰ = 1 LLs are shown in Fig. 3.37. The critical ex-

ponent determined in the short-range device appears to be in good agreement with the

expected universal value of ~�ߢ 0.42, where the solid line in the figure represents a

guide to the eye for =ߢ 0.42.
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This is a considerable change in the gradient as compared to that obtained for the long-

range device of ~�ߢ 0 .6. These results strongly suggest a correlation between the nature

of criticality of QHTs and the nature of disorder in the 2DES, a relationship that will be

further developed in the next chapter. Just as with the temperature scaling results pre-

sented in the previous chapter, these results do not conclusively support the uncondi-

tional universality of QHTs. The discrepancies between the results presented here and

the theory are tackled in the next chapter.

3.6 Conclusion

In this chapter we have discussed the effect of frequency on electron transport within a

2DES and how it can be used to investigate QHTs through the concept of dynamic scal-

ing. These investigations on the criticality of QHTs have been performed using high

frequency measurement techniques applied to 2DES-CPW devices.

The measurements have been carried out on two different heterostructures that

are differentiated by the nature of disorder. In the GaAs/AlGaAs system, disorder origi-

nates from remote ionized impurities that are remnants of Si doping in the spacer layer.

Random fluctuations from these remote point charge sources only weakly perturb the

2DES and are classified as long-range disorder potentials. The other heterostructure in-

vestigated was an AlGaAs/AlGaAs heterostructure which included Al impurities in the

GaAs layers, changing the nature of disorder from long-range scattering to short-range

alloy scattering. Frequency dependent scaling analysis carried out on these heterostruc-

tures revealed a universal nature in the short-range device and a non-universal behav-

iour in the long-range device judged by the value of the scaling exponent expected from
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the scaling theory of QHTs. The result strongly supports the view that the nature of dis-

order within the system plays an integral part in the critical behaviour of QHTs.

In the following chapter the discrepancies in the criticality of QHTs observed so

far, in both temperature and frequency, are explained using a quantum percolation mod-

el which offers insightful answers to the seemly indecipherable collection of results pre-

sented so far on the scaling theory QHTs.

Parts of this of this chapter has been published in Refs [142, 143].
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4. The quantum percolation

model of the scaling theory of

QHTs

4.1. Introduction

In this chapter, the critical behaviour of QHTs occurring at the centre of LLs is explored

in the context of a quantum percolation theory. The scaling theory of the QHE is per-

haps the one of the most misunderstood aspect of plateau-to-plateau transitions but re-

mains crucial to the understanding of the QHE. The bulk of the confusion, apparent

from our discussion on the topic so far, revolves around the nature the universal critical-

ity of scaling exponents associated with QHTs.

The experimental results presented so far are summarized below. We are re-

minded that the main objective of this work is to investigate the nature of the critical

behaviour of the localization length exponent ߥ as the centre of the LL is approached. It

is hypothesized by the scaling theory [6] that all QHTs experienced in 2DESs are uni-

versal processes that belong to the same universality classes and as such ߥ is a constant

value of ~�ߥ 2.35 [11] in all QHTs. In the temperature dependent scaling analysis pre-

sented in Chapter 2, the universal criticality of ߥ is measured through a composite ex-

ponent =ߢ ≈ߥ2/݌ 0.42 [79] which is determined close to the centre of the LL. The

temperature dependent results on ߢ do not confirm the expected universal behaviour. In
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an alternative approach where ߥ is determined directly within the tail regions of the

same LL and away from the centre, ߥ is conclusively found to be in good agreement

with the universal theory. In addition, the relationship between ߢ and the temperature

exponent ݌ is not found to hold. The results presented for ݌ suggests that the assump-

tion that =݌ 2 does not hold and it is proposed in section 2.4.2 that mayߢ not have any

dependence on ,݌ a result that still maintains the value of ≈ߢ 0.42 (i.e if =ߢ .(ߥ/1 The

questions to be answered in the temperature dependent investigations are threefold, (a)

why is universality conclusively found within the tail regions of the LL but inconclusive

around the centre of the same LL (an ambiguity backed by previous results [86]), (b)

though universality is not found in ߢ (i.e. around the centre of the LL) why do some

studies observe universality in this exponent [12] while others do not [15], and (c) what

is the correct relationship between ,ߢ ݌ and .ߥ

As regards to the frequency dependent investigates, the major question that

arises from the results presented is the question of the role of disorder in the universal

criticality of QHTs as it was observed that increasing the amount of disorder within a

2DES changes the nature of QHTs from a non-universal critical constant (in a long-

range system) towards the expected universal critical constant (in a short-range system).

In an attempt to answer these questions a percolation model is employed which

allows for various features and seemingly contradictory results obtained from the exper-

imental investigations of QHTs to be explained in a physically transparent and visually

intuitive manner, providing a unifying model of plateau-to-plateau transitions. The

model presented here is founded on the quantum mechanical interpretation of the classi-

cal theory of percolation. The model is based on interactions between clusters of elec-

trons that form within the bulk of the 2DES and how these interactions relate to tem-
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poral perturbations experienced by the system as the Femi level approaches the centre

of the LL.

Three crucial crossovers between the quantum and classical percolation are

identified that government the nature of criticality within QHTs, and associated with

these crossover are three different length scales. These crucial length scales dictate the

quantum-classical nature of plateau-to-plateau transitions which are manifested in the

various results discussed above.

The model presented below is the first attempt made in the literature to explain

the various seemingly contradictory features observed in the experimental determination

of the universal criticality of QHTs using crossovers of various length scales to provide

a unified picture of plateau-to-plateau transitions.

4.2. The effect of Coulomb interaction and screening in

2DESs

The two main sources of disorder within the 2DES, we recall, are both associated with

charged impurities; the remote ionized impurities (or donors) which are separated from

the 2DES by the spacer layer, and the residual ion impurities located within the vicinity

of the 2DES (i.e. unintentional charged impurities present in the MBE vacuum during

the growth process). Residual ions are important in determining the zero field or Drude

mobility of the system. The classical or Drude mobility is less dependent on the remote

ions [144] but the long-range fluctuations from these remote ionized impurities however

have profound effects on the 2DES at high magnetic fields. These high field effects in-

fluenced by long-range fluctuations will be the focus of our present interest.
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Due to the separation imposed by the spacer layer, the potential fluctuations

from the remote ions felt by electrons in the 2DES tend to be smooth and slow varying

[145]. The long-range potential fluctuations are random fluctuation as they arise from

the randomly (uncorrelated) positioned impurities in the donor layer. The statistical

properties of the long-range potential can be easily evaluated in the two limiting cases

of the effective potential; at high densities of the 2DES and at the bare potential or low

density limit of the 2DES. At a high electron density, the 2DES is able to effectively

screen the potential fluctuations by small redistributions in the electron density [146]

which suppresses or flattens out the external long-range fluctuations of the bare poten-

tial. This is known as linear screening [20] and the 2DES takes the form of a homoge-

nous electron fluid. At low electron densities however, non-linear screening [147] oc-

curs where the electron density becomes strongly non-homogenous. In the non-linear

regime, due to the low density, the degree of electron redistribution available is not suf-

ficient to compensate for potential fluctuations and therefore the electron liquid is torn

apart into isolated clusters of electrons by the random potential [147, 148].

In a strong magnetic field a regime of inhomogeneity and non-linear screening

exists within the tail regions of the LL. Within the tails of the LL, the Fermi energy lies

in a region where the electron density is low. Fig. 4.1(a) shows the bare potential expe-

rience along a cross-section of the 2DES. Initially electrons start filling up from the bot-

toms of the potential wells formed by the bare potential up to the Fermi level. A top

view of Fig. 4.1(a) translates into a landscape covered with pools or clusters of electrons

corresponding to the locations of the potential wells as shown in Fig. 4.1(b), everywhere

else represents regions of high potential corresponding to hills illustrated in Fig. 4.1(a).
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Figure 4.1. A schematic representing non-linear screening within the tail regions of the LL band.

(a) shows the bare potential generated by the remote impurities in the donor layer along a line

ᇱݕݔ in the plane of the 2DES. Electrons fill up from the bottom of the wells up to the Fermi lev-

el. (b) illustrates the view of the 2DES at the current Fermi level. Filled wells appear as electron

clusters in the 2DES surface. (c) shows the position of the Fermi level within the LL band.

The average concentration of electrons in the system is determined by the position of

the Fermi level within the density of states of the LL band illustrated in Fig. 4.1(c). This

scenario is descriptive of a non-linear screening regime. It clear that due to their low

density, electrons are only able to partially screened by the bare potential, so that the

2DES exists in an inhomogeneous state where the electron liquid is separated into iso-

lated electron clusters by regions of high potential caused by the long-range potential

fluctuations. As the filling factor is increased (by varying the magnetic field for exam-

ple), the LL band increasingly fills up with electrons. Consequently, the wells in the

bare potential are increasingly filled with electrons at higher electron densities.
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Figure 4.2. As the carrier density increases local potentials well become filled with electrons,

and electron clusters merge to form clusters of larger sizes.

Adjacent wells begin to merge forming larger and larger clusters of electrons. The Fer-

mi liquid begins to cover larger surface areas screening more of the bare potential. The

progression from the previous scenario is illustrated in Fig. 4.2.

As this processes progresses, a point is reached where the electron density is

sufficiently high to compensate for the entirety of the bare potential. At this point we

have perfect screening and the system enters a linear screening regime. The effective

potential is completely flat. In this linear screening regime, which is illustrated in Fig.

4.3, the Femi level lies at the centre of the LL band where the electron density is the

highest.

(ܧ)ܰ

ᇱݕݔܧ

(ᇱݕݔ)ܸ

′ݕ

ܨܧ

ܨܧ

(a) (c)

(b)



164

Figure 4.3. When the Fermi level is close to the centre of the LL, the 2DES acquires a density

modulation that compensates for bare potential, leading to a linear regime where the effect of

small fluctuations in the potential is irrelevant.

From the above descriptions, we notice that when the filling factor is close to a

half integer value (centre of the LL band), the system is in a linear screening regime and

the long-range potential fluctuations experienced in the plane of the 2DES is greatly

reduced. On the other hand, when the filling factor is close to an integer value, the sys-

tem enters a non-linear screening regime and potential fluctuations will be large.

Even though the system as a whole may be within the non-linear regime, due to

electron-electron interaction small regions within the 2DES exist where the screening is

locally linear. From the present description of the Fermi liquid in the non-linear regime,

two regions are easily identified: regions of high electron density where the electron

density is close to the bulk value ଴݊ = ℎ/ܤ݁ of the LL, and regions of depletion in

which no electrons are found. The former is located at the bottom of a partially filled

(ܧ)ܰ

ᇱݕݔܧ

(ᇱݕݔ)ܸ

′ݕ

ܨܧ

ܨܧ
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potential well, where the carrier concentration approaches the bulk value, (݊ )࢘ ≈ ଴݊,

and the latter region represents the depleted high potential hills which are without any

concentration of electrons, (݊ )࢘ = 0. This picture describes a non-interacting view of

the 2DES at high fields where a sharp boundary (with respect to (݊ )࢘) will exist be-

tween the bulk and depleted regions. These two regions are sometimes referred to as

incompressible fluids [149], since they are completely filled to capacity with either elec-

trons or holes. An incompressible fluid (electrons or holes) describes as a fluid for

which all states within the bulk are occupied such that no adjustment or redistribution in

the density is possible to compensate for an external potential [150]. These regions are

naturally completely incapable of screening the bare potential.

The presence of electron-electron interaction however introduces a third region

which is found between the incompressible bulk region and the incompressible depleted

regions. In the case of interaction, Coulomb repulsion between electrons at the edge of

the incompressible fluid smears outs the sharp boundary. As one moves from the zero

density in the depleted region towards ଴݊ in the bulk, (݊ )࢘ will gradually grow from 0

to ଴݊ [151]. There therefore exists an intermediate region where the density varies be-

tween 0 and ଴݊ and not completely full. The intermediate region contains unoccupied

states such that compressibility is possible. When exposed to an external potential, elec-

trons within this compressible region are able to arrange themselves (redistribute) in a

manner which screens the bare potential [150], just as in a metal. The effective potential

within the compressible (or metallic) region is therefore flat and screening within this

region is linear (local linear screening).

Fig. 4.4 illustrates the properties of the various regions discussed for a single

potential well found within the potential landscape of a 2DES.
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Figure 4.4. A schematic showing areas of local linear screening and non-linear screening. (a)

shows electrons in a potential where the local redistribution of electron density close to the Fer-

mi level is sufficient to attain linear screening, metallic region therefore is found at the Fermi

level. The bulk of the cluster remains non-linear. (b) shows a top view the electron cluster. (c)

shows the profile of the carrier density across the cluster.

It is seen in Fig. 4.4(a) that states in the middle of the well are all occupied, representing

the incompressible electron fluid. Screening is absent from in this region and the elec-

tron states bend according to the bare potential. At the boundary of the well however, a

compressible or metallic region exists with unoccupied states in its interior. Strong line-

ar screening in this region flattens out the bare potential by small redistributions of the

local electron density. As one moves further away from the centre of the well, a higher

potential or depleted region is found, this region represents an incompressible hole fluid

which also bends in accordance with the bare potential [150].
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Figure 4.5. (a) The scenario of a network of completely isolated clusters. (b) The outermost edg-

es of these clusters merge to form a percolation network of the metallic region. F, E, and M de-

note the full, empty and metallic regions respectively.

Fig.4.4(b) illustrates the top view of the resulting electron cluster where the dark area

represents the incompressible electron fluid while the dotted region denotes the com-

pressible metallic region. Everywhere else (white space) can be considered to contain an

incompressible hole fluid. Fig.4.4(c) shows the corresponding density of states which is

constant in both the incompressible electron and hole regions but varies within the me-

tallic region between the bulk value and total depletion.

As the filling factor is increased, additional electrons will be added to the

boundary of the electron cluster beginning with the lowest available states in the metal-

lic region, growing the clusters until they begin to merge forming a percolating network

of metallic regions as shown in Fig. 4.5. It clear that in case of isolated states (as shown

in Fig.4.5(a)) the dissipative flow of electrons is not possible. At percolation however,

when enough clusters have merge to form a path from one side of the system to the oth-

er, a finite amount of dissipative conduction through the metallic regions of the system

becomes possible. This will be further discussed in the section on percolation below.

M

E
F

(a) (b)
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The above analysis is essentially a description of the formation of edge states

[152] from the point of view of the non-linear screening of an external potential by the

2DES, as first considered by Beenakker [153] and Chang [150], and based on earlier

work by Efros [146-148, 154] on the effect of Coulomb interaction on the 2DES. This

was expanded on by Chklovskii, Shklovkii and Glazman [151] where these edge states

were described as electrostatic channels consisting of alternating strips of compressible

and impressible regions. Following these developments in the interaction of the 2DES,

Copper and Chalker applied the influence of Coulomb interaction to the percolating

network description of the QHE first proposed by Chalker and Coddington [155].

4.3. The percolation model

In the previous section, the nature of the density of the 2DES was discussed in terms of

linear and non-linear screening. In the presence of long-range fluctuations from remote

ions, the 2DES breaks up into clusters of electrons. Below we expand this view of the

2DES by considering the percolation network model which emphasises the nature of

electron transport within the 2DES as the critical point at the centre of the LL is ap-

proached. Further, quantum tunnelling and inelastic scattering are introduced into the

model to form a fuller picture of temperature/frequency dependent scaling of the QHTs.

4.3.1. Classical percolation

The study of percolation, which originated in the mathematical analysis of a fluid

spreading randomly through a non-uniform medium [156], is applicable to a variety of

physical phenomena and systems [157-161]. The problem can be defined as follows.
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Imagine a large lattice in which each site can be in one of two states, occupied or empty.

The occupation of sites occur in a random manner and is defined by a single parameter

,݌ where �is݌ the probability of a site being occupied and (1 − (݌ is the probability of a

site being empty. ݌ therefore represents the concentration of particles in the lattice. If

=݌ 0, all of the sites will be unoccupied but on the other hand if ݌ is close to unity then

almost all sites are occupied. As ݌ increases the population of sites generally occur in a

way which leads to the formation of clusters. These emerging clusters will continue to

grow with increasing with݌ neighbouring clusters coalescing into larger clusters until at

a critical value ௖݌ an infinitely extending cluster is formed. This infinite cluster perco-

lates through the lattice, connecting one edge of the lattice to the other in the same way

water percolates through sand along an extending network of the fluid. Above the criti-

cal point ,௖݌ only one such infinite cluster can exist [162]. The onset of an infinite clus-

ter, i.e. the percolation threshold, is sharply defined such that for >݌ ௖݌ no percolation

network exists but for <݌ ௖݌ one percolation network exists. In this sense percolation,

which occurs at the critical point, is a phase transition and the behaviour of the system

close to the phase transitions can be described in the usual way by critical exponents

through a scaling theory [162]. The phase transition and the formation of the infinite

cluster is characterised by a divergence of the typical cluster size as ௖݌ is approached. A

consequence of this critical phenomenon is the scaling relationship [162]

௣ߦ ∝ −݌| ௖|ିఔ೛݌ , (4.1)

where ௣ߦ represents the typical cluster radius and ௣ߥ is the critical exponent of the clus-

ter correlation length .௣ߦ
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Figure 4.6. A diagram illustrating the dual nature of electron motion within a strong magnetic

field which consists of an orbital motion of radius ଴݈ and slow drift of the guiding centres of long

equipotential lines of contours.

It is obvious that there is a striking resemblance between the percolation prob-

lem and the localization problem of 2DESs. The connection between percolation theory

and the localization-delocalization transitions in electron systems was first addressed by

Ziman [163]. A quantitative semi-classical relationship between the two problems was

verified for a 2DES in an applied magnetic field by Trugman [164]. The basic picture

provided by the semi-classical analysis is as follows. In the presence of a strong mag-

netic field and a smooth random potential varying on a length scales larger than

଴݈ = ඥℏ/ ,ܤ݁ the solution of Schrödinger equation in a two-dimensional system produc-

es eigenstates with invariant or constant potential energies ܸ( )࢘ . Electrons are there-

fore restricted to move along trajectories in the 2DES that maintain a constant potential

[165]. The essential simplifying feature of this result is that electrons possess two un-

correlated components of motion. The first is an orbital motion of frequency ߱௖ =

݉/ܤ݁ and radius ଴݈. The second takes the form of a slow drift of the guiding centres of

these orbits along equipotential lines described by the background potential [54, 166] as

shown in Fig. 4.6.

ܸ0

ܸ1

ܸ2

0݈
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Figure 4.7. (a) An illustration of confining or localized contours. (b) A merger of contours form-

ing an infinite or extended equipotential on the outmost edges of previously isolated contours.

It was shown that these equipotential lines form enclosed contours for all ener-

gies except the equipotential at the critical percolating energy ௖ܧ which coincides with

the centre of a LL band [164]. As a result away from ௖ܧ (i.e. in the tail regions of LL

band) the enclosing contours confine the movement of electrons to its cluster (as shown

in Fig. 4.7(a)) where an electrons can only be displaced by drifting along its equipoten-

tial. Electrons are therefore effectively localized to a well-defined region within the

2DES. The microscopic formation of these clusters has already been discussed in detail

in the previous section. The important contribution to this picture is the drift of electrons

along equipotential lines within these clusters. As the centre of the LL band is ap-

proached the outmost equipotential of neighbouring clusters merge to form an ever ex-

tending path until at ௖ܧ a single infinite equipotential line moving across the entire sys-

tem is formed as see in Fig. 4.7(b).

There is no dissipative conductivity through the system below the percolation

threshold but at percolation a finite conductivity is achieved. The critical exponent from

Eq. (4.1) has a value of ௣ߥ = 4/3 or 1.33 which is a well-known result for the solution

(a) (b)

݈ܿ݋ ݖ݈݁݅ܽ ݀
ݑݍ݁ ݐ݁݋݅݌ ݈ܽݐ݅݊
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ݑݍ݁ ݐ݁݋݅݌ ݈ܽݐ݅݊
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of the percolation problem in two-dimensions [61, 162] and has been calculated exactly

[167]. This result however, does not take into account quantum tunnelling and interfer-

ence effects. The consequence of these effects on the percolation model is considered

below.

4.3.2. The quantum correction to semi-classical percolation

The classical description of percolation is only valid for vanishingly small magnetic

length ଴݈ since it assumes that there is no interference between equipotential lines. This

assumption however breaks down as the percolation threshold or critical point is ap-

proached. Close to the centre of the LL band the outmost equipotential of neighbouring

clusters approach each other and just before they coalesce, when the distance between

them is less than ଴݈, quantum tunnelling between adjacent clusters is possible through

minima in potential known as saddle points (see Fig. 4.8).

Figure 4.8. When two equipotential are within the magnetic length of each other a minimum in

potential occurs known as a saddle point. Electrons are able to quantum tunnel from one electron

cluster to another through these saddle points. The grey region represents areas of high potential.

ݔ

ݕ
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Figure 4.9. An illustration of the outmost equipotential of a group of clusters extended through

saddle point tunnelling close to the percolation threshold.

Aided by these saddle points, it is possible for dissipative conductivity to be achieved

before the percolation threshold is reached as depicted in Fig. 4.9. Electron transport

from one side of the system to the other is possible through conducting networks of

saddle points. In order to determine the localization length, this form of coherent

transport has to be taken into account [168]. Using this network model Chalker and

Coddington [71] were able to show that quantum tunnelling changes the critical expo-

nent from it classical value of ௣ߥ = 4/3 to a value of =ߥ 7/3 or 2.33 and this quantum

critical value of the exponent coincides with the value expected in finite-size scaling

discussed throughout this work. This result suggests that there is a strong link between

saddle point tunnelling and the observation of quantum criticality of the scaling expo-

nent. This argument has been supported by some authors [169] where through numeri-

cal analysis it has been shown that the inclusion of saddle point tunnelling distinguishes

the two universality classes of quantum criticality ߥ of classical criticality .௣ߥ We de-

velop this idea further to provide a qualitative interpretation of the results obtained in

this work. It will be argued that the presence of quantum tunnelling is crucial to the ex-

ݏܽ ݈݀݀݁
݅݋݌ ݐ݊
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perimental observation of quantum criticality in 2DES as expected in the finite-size

scaling analysis of QHTs. A detailed treatment of the percolation model can be found in

a recent report by Kramer et al. [61].

Finally, experimental evidence on nonlinear screening and the percolation

through saddle point tunnel is briefly discussed. In recent times, advanced probing tech-

niques have been developed that for first time allow a more precise and detailed de-

scription of electron transport in a 2DES to be studied. By performing scanning probe

experiments on the surface of a 2DES in particular, the local electric potential at differ-

ent locations of the 2DES surface can be determined, and an image formed of the

charge distribution in the 2DES. These experiments, which have largely verified the

percolation and non-linear screening description of the 2DES, include scanning tunnel-

ling spectroscopy (STS) [170-172], photoluminescence [173], scanning force micro-

scope (SFM) [174], atomic force microscope (AFM) [175] imaging, surface charge ac-

cumulation [176] imaging, and single-electron transistor spectroscopy [177].

The most remarkable demonstration of percolation and non-linear screen how-

ever is in a STS experiment reported by Hashimoto et al. [178] illustrating a QHT in

real space of the ܰ = 0 ↓ LL. Their main result is shown in Fig. 4.10. The local density

of states of the 2DES is probed using point by point measurements of the local deferen-

tial conductivity ܸ݀/ܫ݀ [179] through a stabilized tip. The map produced by the meas-

urements illustrate the non-linear and screened disorder potential of density of states

within the 2DES.

The bright areas in Fig. 4.10(a)-(g) represent areas of high electron concentra-

tion or clusters of incompressible electron fluid region while dark and empty regions

represent areas of low electron concentration or incompressible hole regions.
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Figure 4.10. Taken from Hashimoto et al (2008). The local density of states is obtained by scan-

ning the surface of a 2DES around the lowest spin down Landau level. (a)-(b) shows electron

density in the localized regions on the low energy side of the Landau level, and (f) and (g) shows

the corresponding picture on the high energy side of the Landau level. (c)-(e) shows electron

density close to the percolation threshold. (h) indicates points on the Landau-level corresponding

to (a)-(g). And (j) shows the density image for the entire sample, while the marked rectangle is

the area shown for (a)-(g).

The compressible metallic regions can be seen around the edges of the electron clusters.

Fig. 4.10(h) shows the spatially averaged ܸ݀/ܫ݀ curve about the ܰ�= 0 ↓ LL and is

annotated with the locations of Figs. 4.10(a)-(g). As the critical point at the centre of the

LL is approached the electron clusters grow in size (illustrated in Fig.4.10(a) and (b))

and merge until at the percolation threshold located at the centre of the LL an extended
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path forms seen in Fig.4.10(d). As the Fermi energy moves away from the critical ener-

gy the process is reversed and the clusters decrease in size, this is shown in Fig.4.10(f)

and (g) by the green arrows which indicates shrinking features. It is noticed that identi-

cal features indicated by the white arrows in Figs. 4.10(a), (b) and 4.10(f), (g), appear

on both sides of the LL, verifying the consistency of the localized regions in the tails of

the LL.

Our main focus here is the QHT itself which occurs at the centre of the LL. As

the percolation threshold is approached saddle points between adjacent clusters are ob-

served. Examples of these quantum tunnelling points are indicated by the red and yel-

low arrows in Fig.4.10(c) and (e) where minima is potential between pairs of clusters

was measured.

This remarkable collection of scanned images validates the key features of the

percolation model and non-linear screening and crucially demonstrates how they de-

scribe QHTs.

4.3.3. Quantum correlation and coherence of 2DESs in the per-

colation model

A key feature in the percolation model is its emphasis on critical behaviour and linking

this to a physical picture of randomly expanding clusters. In this section we define three

key length scales that form the basis of the analysis of QHTs presented in the following

sections. These length scales determine the correlation and coherence of electrons with-

in the percolation model.
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As presented in the foregoing description of the electrons clusters, electrons

drift along equipotential lines which make up these clusters. At very high magnetic

fields the width of these lines, which is determined by the magnetic length ଴݈, is vanish-

ingly small such that neighbouring equipotential do not inference with each other. The

equipotential lines can therefore be thought of as one-dimensional quantum wires each

belonging to a discrete eigenstate of energy.

Electrons on the outmost equipotential of a cluster will undergo the maximum

displacement within a given cluster. The localization length ߦ of an electron, which is

simply a measure of the displacement of an electron wavefunction in space, will there-

fore be limited to the typical size of an electron cluster within the system, .௣ߦ From the

classical description of percolation, as the critical point is approached ௣ߦ increases and

as a result ߦ also increases. However, as saddle points begin to form within the system

there is a break between andߦ ௣ߦ since an extended quantum wire can be formed before

two adjacent clusters have merged by the linking of the outmost equipotentials of the

two clusters through a saddle point. The onset of saddle points allows a previously lo-

calized electron to escape its cluster by quantum tunnelling through a saddle point. In

this case ߦ will become greater than .௣ߦ This split between the classical correlation

length and the quantum correlation length will become important in the discussions of

criticality given below. An electron drifting along an extended quantum wire will dif-

fuse throughout the system from one cluster to another until it arrives into a cluster for

which there exists no outgoing saddle point. As the percolation threshold is further ap-

proached it is obvious that the extended wire will eventually become an infinite equipo-
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tential connecting one side of the system to the other (typical of percolation systems

discussed above).

Thus far the effect of temperature (or frequency) has not been considered. At

non-zero temperatures a new length scale, the phase coherence length, is introduced into

the problem. Until the introduction of temperature, an electron remains in its eigenstate

of energy indefinitely (assuming negligible influence of other dephasing mechanisms).

As the temperature is increased an electron-phonon collision will transfer an electron

from its quantum wire to another and therefore change its eigenstate. An electron will

therefore have a finite lifetime within a quantum wire corresponding to a phase coher-

ence length ఝܮ . As long as ఝܮ of an electron is longer than the length of quantum wire

(i.e. (ߦ the effect of temperature is negligible but at high temperatures when ఝܮ < ,ߦ

electron localization is of no practical importance since a phonon will cause a transition

of an electron from one state to another states before the electron experiences any effect

of localization. That is, an electron will be transferred from one quantum wire to anoth-

er before it is able to fully explore its localized environment. The electron is therefore

unaware of its localization and does not exhibit any localized behaviour. This argument,

first present by Thouless [48] while considering transport in one-dimensional wires,

illustrates the destruction of localization in the system. The system now takes up the

characteristics of a bulk metal.

Phonon collisions, unlike saddle point tunnelling, are incoherent processes. At

zero temperature therefore, an electron maintains coherence (i.e. remains in its quantum

wire) over the length scale ߦ but at finite temperature coherence is limited to ఝܮ . A de-

creasing ఝܮ reflects an increase in the inelastic scattering rate or relaxation mechanism
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and this is expected to occur with an increase in either temperature or frequency. The

temperature dependent relaxation mechanism is discussed in section 2.4.1 while relaxa-

tion due to a high frequency applied electric field is discussed in section 3.1.2. The im-

portant point to note here is that after diffusing a length ఝܮ , a relaxation event occurs

(either induced by temperature of frequency) which transitions an electron from one

quantum wire to another.

4.4. Crossovers in criticality observed in the percolation

model

Using the length scales that describe correlation and quantum coherence in the 2DES, ,ߦ

௣ߦ and ఝܮ , we discuss how competition between these relevant lengths bring about var-

ious crossovers which determine the nature of criticality of QHTs.

4.4.1. Phase coherence length dependent crossover

In this section we consider the effect of a varying ఝܮ on nature of the criticality of

QHTs. In both temperature and frequency scaling, we recall that criticality was deter-

mined by measuring the FWHM width of the conductivity peak, through the expres-

sions ܶ�~�ܤ∆ ଵ/ఔ௭೅ and ݂�~�ܤ∆ ଵ/ఔ௭ഘ (see Eq. (3.6) and Eq. (3.7)), where ݖ் is expected

to be ݖ் = ݌/2 (such that =ߢ ݖ்ߥ/1 ) and ఠݖ is predicted to be unity [6, 128]. The in-

consistencies of the dynamic exponents ݖ் and ఠݖ have already been discussed in quite

some detail in sections 2.5.2 and 3.1.3 respectively and will not be repeated here. How-

ever, given that it is expected that ݖ் = ఠݖ = 1 [6], the controversy of the dynamical
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scaling exponent can, for the moment, be set aside by expressing the scaling functions

as ܶ�~�ܤ∆ ଵ/ఔ and ݂�~�ܤ∆ ଵ/ఔ where a universal quantum critical value of ~�ߥ 2.35 is

expected according to the scaling theory of QHTs [11]. The issue of the dynamic expo-

nent in the context of the percolation theory will be dealt with in detail in section 4.5.1

below.

In Eqs. (3.4) and (3.5) from Chapter 3, ܶ and ݂ was related to ఝܮ where in-

creasing either ܶ or ݂ causes a decrease in ఝܮ due to an increase in the rate of relaxation

or inelastic scattering and this process in turn causes an increase in .ܤ∆ The measure-

ment of ܤ∆ is determined from transport measurements at magnetic fields (or band of

energies) close to the centre of the LL. To interpret these measurements in terms of the

percolation model we therefore consider the nature of transport close to the percolation

threshold.

Figure 4.11. Close to the percolation threshold an extended wire is formed through a network of

saddle points. At very low temperatures an electron drifting allow such an extended wire will be

have phase coherence length which will be much longer than the sample size of the 2DES.

ܮ߮
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Figure 4.12. As the temperature is increased ఝܮ becomes smaller than the sample size such that

an electron is scattered before it us able to diffuse through the entire length of the sample.

In such a scenario, at zero temperature, dissipative conductivity is solely achieved

through electron transport along quantum wires extended via saddle point tunnelling. At

finite but low temperatures (or frequency) and for any practical size of a 2DES, ఝܮ will

be very large compared with the sample size ଶ஽ܮ and will theoretically be extended be-

yond the boundaries of the system. This is illustrated in the schematic of Fig. 4.11

which shows an example of a quantum wire extended via saddle points. The length of

the wire, which (theoretically) extends beyond the boundaries of the system, represents

ఝܮ > ଶ஽ܮ . An electron is able to drift from one side of the system to the other along the

extended wire generating a finite amount of dissipative conductivity which results in a

narrow width ܤ∆ to be measured about the LL. It is important to note that the influence

of temperature or frequency is negligible in this scenario since an electron, on average,

is able to make it from one side of the system to the other before being scattered due to

the relatively large value of ఝܮ .
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Figure 4.13. At very high temperatures when ఝܮ < ,௣ߦ an electron will be displaced through

scattering before it is able to escape its cluster via a saddle point.

As the temperature or frequency is increased ఝܮ decreases but initially this will

have no effect on dissipative conductivity (and as result (ܤ∆ as long as the condition

ఝܮ > ଶ஽ܮ remains. ܤ∆ therefore remains constant over this temperature/frequency

range and this explains the saturated region at low values of temperature/frequency ob-

served in many of the scaling results presented above. It should now be clear why the

saturated region was attributed to finite-size effects.

Once ఝܮ < ଶ஽ܮ , conductivity will be influenced by scattering. In localized sys-

tems, scattering will aid conductivity by displacing electrons to clusters that would have

been otherwise isolated and remote from the electron. Though quantum tunnelling re-

mains dominate, conductivity no longer solely depends on the propagation of electrons

along lengthy and interlinked networks of saddle points. Rather, electrons can be scat-

tered to great distances in-between tunnelling events. The coexistence of tunnelling and

scattering increases or enhances dissipative conductivity which will now increase with

decreasing ఝܮ . ܤ∆ in this regime therefore increases with temperature/frequency. This
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state of affairs is illustrated in the schematic of Fig. 4.12. It is important to note that

QHTs in this regime are quantum critical according to the Chalker and Coddington cri-

teria [61, 71, 169] since saddle point tunnelling is still present in the system. The critical

exponent measured within this regime will therefore be ~�ߥ 2.35 according to both scal-

ing theory and the Chalker and Coddington quantum correction to classical percolation

[71]. It is also noted that in this regime ߦ is now limited by ఝܮ since an electron cannot

be coherent beyond ఝܮ .

As ఝܮ is decreased further, the condition ఝܮ , >ߦ ௣ߦ will be reached. In other

words, willߦ be smaller than the typical cluster size and on average an electron will be

scattered before it is able to escape its cluster through a saddle point. Saddle point tun-

nelling will therefore cease to exist. This scenario is shown in Fig. 4.13. The absence of

quantum tunnelling will reduce the system to a purely classical fluid in a random poten-

tial [162] exhibiting no quantum mechanically behaviour with respect to the percolation

model. In this regime, quantum criticality is lost and the critical exponent measured for

the range of temperatures/frequencies over which this condition exists will be that of the

classical value of ௣ߥ ~ 1.33 [164].

The preceding analysis suggests that though quantum criticality exists in QHTs

it can be hidden at high temperatures or frequencies where it is replaced by a classical

critical transition. We therefore return to the long 2DES-CPW sample (investigated in

Chapter 3) where the high resolution technique that was developed to measure the criti-

cal exponent may allow the experimental observation of this proposed crossover.
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Figure 4.14. A high resolution frequency plot of the critical exponent reveals a quantum critical

regime at lower frequency and a classical percolation regime at higher frequencies that corre-

spond with their respective expected value of the critical exponent.

Since this transition is expected at low rather than higher frequencies, the frequency

parameter is swept at a high resolution from the saturated region at ݂= 0.1 GHz to

݂= 7 GHz, which marks the onset of the first resonance feature (see Fig. 3.29(a)). The

result from the determination of the critical exponent within this range and according to

݂�~�ܤ∆ ଵ/ఔ is shown in Fig. 4.14. Remarkable, varying ఝܮ at very small decrements re-

veals all three regimes discussed in the analysis above. The saturated regime, which has

always been observed and attributed to the finite size of the sample ଶ஽ܮ , is found at

lowest frequencies. As ఝܮ is gradually decreased, the ఝܮ < ଶ஽ܮ regime in entered

where the localization length exponent is determined to be =ߥ 2.38 ± 0.11 in accord-

ance with quantum criticality. As ఝܮ is further decreased the classical regime,ܮ�ఝ < ,௣ߦ
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is reached where exponent is measured as =ߥ 1.35 ± 0.02 and in good agreement with

classical criticality.

The quantum critical regime therefore exists within the range ଶ஽ܮ > ఝܮ > .௣ߦ

Lack of consideration of the locations of the different regimes can lead the investigator

to measure quantum criticality in the wrong region. In addition, not being able to distin-

guish between these regimes, which is very likely with a low resolution setup, will al-

most certainly cause one to fit a line across different regimes which should be consid-

ered separately. This perhaps explains why many reports, including some of the meas-

urements presented in this thesis, fail to observe quantum criticality within 2DESs.

The chances of observing the quantum critical regime can be better enhanced

by reaching the ఝܮ = ଶ஽ܮ point sooner (in frequency) and/or delaying the arrival at the

ఝܮ = ௣ߦ point. In the case of the former, the duration (in frequency) of the saturated

regime is determined by the size of the sample. A large sample size allows ఝܮ = ଶ஽ܮ to

occur at a much lower frequency, while a small sample size will push the ఝܮ = ଶ஽ܮ

point to a higher frequency, delaying the entrance into the quantum critical regime. As

indicated by the annotations in Fig. 4.14, increasing the sample size lowers the satura-

tion value of ܤ∆ revealing more of the quantum critical regime whiles decreasing the

sample size erodes the quantum critical regime. It is also obvious from Fig. 4.14 that at

smaller sample sizes, ଶ஽ܮ becomes increasingly comparable to ௣ߦ such that quantum

critical regime is barely observable. Though investigation on sample sizes have not been

conducted in the work presented in this thesis, experimental investigations on the effect

of sample size on conductivity have been reports by some authors [85, 87] where this

correlation is very clearly observed verifying the present analysis.
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In order to move the ఝܮ = ௣ߦ point however, one needs to consider the influ-

ence of disorder within the system and this is discussed in the following section.

The crossover observed in Fig. 4.14 is the first such crossover ever reported in

the literature for frequency scaling (published in Ref. [180]). A similar effect in the

temperature dependence of QHT slope ܤ݀/௫௬ߩ݀ however is suggested in a recent tem-

perature dependent work by Li et al. [101].

4.4.2. Disorder dependent crossover

The impact of disorder on the nature of criticality presents yet another crossover. This is

precisely the crossover observed in the combined results of Fig. 3.29 and Fig. 3.37

where by increasing the disorder within the system the nature of the critical exponent

was changed from a classical like behaviour for a broad range of frequencies to a quan-

tum critical behaviour for the same range of frequencies. Though the results presented

in Chapter 3 describe a one-step change in disorder (see Table. 3.1), a more systematic

investigation of disorder on criticality is presented in Ref [18] where the crossover is

even clearer. Both results show that an increase disorder will bring about quantum criti-

cality.

In terms of the percolation model, an increase in disorder, especially of the form

introduced in the short-range 2DES-CPW, increases scattering within the vicinity of the

2DES. The introduction of static and randomly placed alloy impurities into the GaAs

layer, within which the 2DES is formed, will increase large angle collision and it is intu-

itive that this will invariably produce clusters that are more fragmented.



187

Figure 4.15. As ఝܮ decreases with increasing temperature or frequency, saddle point tunnelling

will be cut of in the long-range sample before the short-range sample due to the comparatively

different typical cluster sizes in the two types of samples.

As a result, clusters will be of smaller sizes than would otherwise occur if these large

angle scattering events were not introduced. Increased disorder therefore means a de-

crease in .௣ߦ

As discussed above, the elimination of saddle point tunnelling when ఝܮ < ௣ߦ

brings about classical criticality within a 2DES. A smaller value of ௣ߦ will therefore

allow for a quantum critical regime to persist for a wider range of tempera-

ture/frequency than a large value of .௣ߦ This is exactly the outcome observed in Chapter

3 where by increasing the disorder within a predominantly long-range system one ar-

rives at system that appears to be quantum critical for a wide range of frequencies. Fig.

4.15 illustrates this effect showing two systems at the same temperature/frequency. As

the temperature/frequency is increased, it is clear that the long-range system enters the

ఝܮ < ௣ߦ regime before the short-range system. The temperature/frequency will have to

be significantly increased for ఝܮ to become smaller than ௣ߦ in the short-range system.

݊݋ܮ ݃− ݎܽ ݏܽ݁݃݊ ݉ ݈݁݌ ℎܵݐݎ݋− ݎܽ ݏܽ݁݃݊ ݉ ݈݌ ݁
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An increase in disorder in the plot shown in Fig. 4.14 can be explained as a sig-

nificant movement of the ఝܮ = ௣ߦ point to the left (towards higher frequencies). This

explains the popular view that short-range systems such as InGaAs/InP systems in gen-

eral are more suitable than long-range systems GaAs/AlGaAs system for the observa-

tion of quantum criticality [11, 82].

4.4.3. Field dependent crossover

In the discussion on the nature of criticality so far, we have only considered the scenario

of a 2DES close to the percolation threshold. We now consider the nature of criticality

as one moves away from critical point and into the tail regions of the LL band. In the

classical view of percolation and according to ௣ߦ ∝ −ܧ| ௖|ିఔ೛ܧ , the typical cluster size

decreases as the system moves away from the critical energy (see Fig. 4.1-4.3). At re-

duced cluster sizes, similar to the disorder argument presented above, quantum criticali-

ty will persist over a longer range of scaling parameter. A departure from the disorder

argument however, is that there is a decrease in carrier density as the Fermi level moves

away from the critical point, and as a result, there is a reduction in the availability of

saddle points. This is illustrated in Fig. 4.1and Fig. 4.2, where it is noticed that the dis-

tance between adjacent clusters is greater in Fig. 4.1 than in Fig. 4.2, therefore saddle

points are more likely to occur in the latter than the former. Nevertheless, an electron is

still able to move from one side of the system to other, evident in the finite but vanish-

ing amount of dissipative conductivity which exists in the tail regions of the LL band.

This of course is possible due to variable range hopping (VRH) which is the dominant

form of electron transport in this region (discussed in detail in section1.3.4 and 2.2.1).
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Figure 4.16. (a) Saddle point tunnelling close to the percolation threshold. (b) VRH becomes

dominate as the Fermi energy moves away from the percolation threshold

Although the boundaries of electron clusters are increasing retreating from each other

such that the occurrence of saddle points are increasingly rare, the increasing distance

between the clusters is bridged by VRH (as shown in Fig. 4.16). VRH therefore, allows

an electron to maintain coherence [181] beyond the borders of its cluster, similar to sad-

dle point tunnelling. As discussed above, this is the requirement ఝܮ) > (௣ߦ for the ob-

servation quantum critically, i.e. ~�ߥ 2.3. For any value of ܧ| − |௖ܧ however, at a high

enough temperature/frequency the condition ఝܮ > ௣ߦ can be broken, such that an elec-

tron is no longer able to quantum coherently escape its cluster. Beyond this point, VRH

is destroyed and quantum transport is replaced by a classic activated-like transport. The

transition between classical and quantum transport within the tail regions of the LL is

discussed in detail by Shimshoni [181].

Owing to the fact that cluster sizes are smaller in the tail region of the LL than

close to the centre, and the maintenance of the quantum critical condition of ఝܮ > ௣ߦ

through VRH, the quantum critical exponent is more easily observed in measurement

taken within the tail regions of the LL than close to the centre. In other words, for any

given temperature or frequency range, the condition ఝܮ > ,௣ߦ is more easily broken

ݏܽ ݈݀݀݁ ݅݋݌ ݐ݊
݈݁݊݊ݑݐ ݈݅݊݃

ℎܿ݋ ݎ݁݁ ݐ݊
ܪܴܸ
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closer to the centre of the LL than further away since cluster size are large closer to the

centre of the LL.

This explains the temperature dependent scaling results in Chapter 2 where

within the same sample ߥ was consistently found to be universal at ~�ߥ 2.3 when de-

termined in the tail regions of the LL but non-universal and closer to the classical value

when determined through whichߢ is dependent on electron transport close to the centre

of the LL.

This crossover between the classical percolation and quantum criticality is illus-

trated in Fig. 4.17. The dashed lines in the figure denote the quantum-classical crosso-

ver in criticality. The vertical axis represents a decreasing ఝܮ with increasing tempera-

ture of frequency. The schematic shows that quantum criticality persists at all fields

within the 2DES. At any finite field however, a sufficiently high temperature or fre-

quency will cause the system to transition into a classic system which will yield classi-

cal characteristics for criticality. The extent to which this crossover is achieved depends

on how far the system is from the critical point. Close to the critical point the crossover

occurs at relatively low temperatures or frequencies, and far from the critical point the

crossover occurs at relatively high temperatures or frequencies due to the dependence of

clusters size on ܤ| − .|௖ܤ

The diagram present in Fig. 4.17 is a direct product of the results presented here

on the dependencies of criticality and has not been derived from any previous work.

However, independently a similar schematic has been predicted by Kapitulnik et al.

[182] to explain superconductor-to-insulator transitions (SITs). In considering these

SITs Kapitulnik et al. employs a percolation framework to explain the critical behaviour

within these systems.



191

Figure 4.17. A representation of classical and quantum criticality with respect to ܤ| − |௖ܤ and

ఝܮ . Moving across the dashed line represents a crossover between the two regimes.

An adopted feature from this work in Fig. 4.17 regards the nature of criticality at the

critical point ܤ .ܿ Kapitulnik et al. argues that at a low enough temperature, any classical

percolation approach must break down and therefore at very low temperatures a system

at ௖ܤ is quantum critical and not classical and this is illustrated in Fig,. 4.17. The simi-

larities between the Kapitulnik et al. result and that presented here is not surprising

since unifying models bases on the percolation method have been developed [183] that

successfully incorporated QHTs, classical percolation, superconductivity and metal-to-

insulator transitions into a framework where each of the classes mentioned above repre-

sent different but related phases of a 2DES.

4.5. Implications of the quantum percolation model on

scaling theory

From the percolation model of QHTs and the criticality of these transitions described

above, we return to the finite-size scaling view of phase transition and suggest an inter-
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pretation based on the percolation analysis. We also discuss the implication of these

results on the limits of the scaling theory regarding the QHE.

4.5.1. Finite-size scaling interpretation of the percolation result

Second order quantum phase transitions and how they relate to critical universal singu-

larities were discussed in sections 1.3.2 and 3.1.1. In section 1.3.2 it was discussed that

as the 2DES moves from the localized region and into the extended region a phase tran-

sition occurs. This phase transition is indicated by the divergence of an order parameter

as the critical point between the two phases is approached. The order parameter, which

represents the length over which the system maintains correlation, was identified in

QHTs to be the localization length, ∝ߦ −ܧ| ௖|ିఔܧ [6]. In the percolation model this

corresponds to the typical size of the clusters or ௣ߦ since this is the length that defines

the explorerable region of the electron, i.e., electrons are localized within ௣ߦ such that

they are unaware of their environment beyond .௣ߦ The cluster within which an electron

finds itself therefore defines the extent of order experienced by the electron. The excep-

tion to this however concerns electrons that exist at the outmost edges of clusters. Elec-

trons occupying these outmost equipotential states are able to explorer the system be-

yond individual clusters through saddle point tunnelling. According to Thouless [48], an

electron must travel a distance comparable to its localization length before it can be in-

fluenced by localization effects simply because unless it has travelled such a distance,

an electron cannot be aware of its localization. Relaxation mechanisms that occur on a

length scale less than ௣ߦ therefore destroy localization. The outermost wavefunctions of

electrons clusters therefore provide a measure of whether localization has been de-
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stroyed or not, and this indication is given through saddle point tunnelling. In so far as

saddle point tunnelling persists, the coherence length of electron wavefunctions

throughout the entire system (not just at the edge) must be larger than ௣ߦ and therefore

even though a few carriers at edges of cluster are extended through saddle point tunnel-

ling, majority of electrons are localized. In other words, the majority of electrons within

the system will travel distances sufficient enough for localization effects to be felt. Un-

der these conditions the critical phenomena as described by finite-size scaling of QHTs

is valid. The absence of saddle point tunnelling however marks the point where all elec-

trons within the system are unable to travel distances comparable to their cluster sizes

and as a result, localization as required by finite-size scaling is destroyed.

In terms of the theory of critical phenomena, this can be understood as follows.

In section 3.1.1 the concept of dynamic scaling was introduced where critical phenome-

na was described not just as a divergence of the spatial order but also a divergence of

the temporal order. In other words, correlation must diverge both in space and in time.

If correlation is space refers to ,௣ߦ correlation in time refers to the coherence time ఝ߬ or,

as used above, the correlation length ఝܮ . It is only in the case of simultaneous diver-

gence in both these parameters that criticality as defined by finite-size scaling (quantum

criticality) applies [6, 9]. In the case of QHTs, ఝܮ must be equal to or greater than ௣ߦ as

the critical point the centre of the LL is approached. This condition is easily met at low

temperatures or frequencies where ఝܮ > ,௣ߦ however at higher temperatures or frequen-

cies this condition is invalid therefore quantum criticality is lost. In short, for quantum

criticality as defined by finite-size scaling to be experimentally observed, ఝܮ must stay
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head of ௣ߦ every step of the way as the critical point is approached to satisfy the condi-

tion of a simultaneous divergence in time and space.

According to this analysis the exact nature of the divergence of ఝܮ does not

matter as long as ఝܮ > ,௣ߦ this may suggest a reason why criticality appears not to de-

pend on the temperature scaling exponent ݌ in the results presented in Chapter 2 and

explain the fortuitous but incorrect assumption of =݌ 2 (see results on current scaling

in section 2.4). We recall from the current scaling results in Chapter 2 that ݌ depended

on disorder or mobility. The relation between ߢ and mayߥ therefore simply the relation

=ߢ ,ߥ/1 rather than =ߢ withߥ2/݌ =݌ 2, where ఝܮ ∝ ܶି௣/ଶ.

The discussion above highlights the difficulties in the experimental observation

of quantum criticality. Experimentally, inquiries of the critical nature of QHTs can only

be made by varying ఝܮ . As has been presented in this thesis, this can be achieved using

a number of phase breaking mechanisms (temperature, frequency or current scaling). In

each case it is realised that the experimental range of the phase breaking mechanism

may or may not vary ఝܮ across the crossover point discussed above. If the experimental

range chosen is at very low temperatures or frequencies it is clear that there is a greater

chance that ఝܮ will be varied within the quantum critical regime, ie, in the regime

where ఝܮ > .௣ߦ The value of the critical exponent determined within this experimental

range will be expected to be in agreement with the quantum critical value of ≈ߥ 2.35.

On the other hand if the experimental range chosen is too high in temperature or fre-

quency, it likely that the regime probed will be the classical percolation regime ఝܮ) <

(௣ߦ and the value of the critical exponents determined from such investigations will be

closer to that of the classical value of criticality of ≈ߥ 1.35 [164].
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Investigations in criticality are further complicated if a low resolution of the

varying scaling parameter (temperature or frequency) is used. In this case it is possible

to go through the crossover point without experimentally observing it due to the low

density of data points. One could erroneously fit a linear line across the two regimes

such that the value of the critical exponent determined will be between the quantum and

classical values, i.e. 1.35 < >ߥ 2.35. Without explicitly observing the crossover point,

an experimental investigation of the critical nature of QHTs runs the risk of misinter-

preting the value of the critical exponent. This is likely to be the reason why there are

numerous inconsistencies and disputes between previous measurements of scaling ex-

ponent especially since most of these investigations have been low resolution tempera-

ture based measurements.

It is noted that the crossover observed in Fig. 4.14 was only possible due to the

high resolution in the variation of the frequency parameter used and if one were reduce

the density of data point in the plot the crossover point will be indistinguishable. It is

therefore possible that the data present in Chapter 2 (Table 2.3 and Fig. 2.12) contains

both the classical and quantum regimes but due to lack of resolution in data, the crosso-

ver point cannot be observed. This explains why the values in Table 2.3 are mostly

found between 0.74 < >ߢ 0.42, i.e. 1.35 < >ߥ 2.35 given that =ߢ .ߥ�/1

4.5.2. The scaling limit of QHTs

We now discuss the possible limits of the scaling theory, this is directly linked to the

persistence of the QHE since the scaling theory of the QHTs can be view as a shift from

a quantum system towards a classical system in the high temperature or frequency limit.
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In the work presented here the scaling theory has been verified for a temperature range

up to about 1 K while frequency dependent scaling has been observed up to 30 GHz

(see Fig. 3.23). The QHE itself has been experimentally observed at frequency as high

as 35 GHz [140]. Temperature measurement of the QHE in a typical GaAs/AlGaAs sys-

tems on the other hand is only robust up to a few kelvin or the boiling point of liquid He

[184]. It is clear that investigations on scaling provided a way to study the evolution

from the quantum behaviour to the classical behaviour of 2DESs at high fields. It is

simpler to discuss this in terms of the scaling of the slope between plateau-to-plateau

transitions ܤ݀/௫௬ߩ݀ ∝ ܶି఑ rather than ܤ∆ ∝ ܶ఑. We recall that the transition slope

possess a similar scaling relationship and behaviour to that of the width of the LL peak

(see section 1.4.3) with the exception of the critical scaling exponent possessing a nega-

tive sign. The advantage of considering ܤ݀/௫௬ߩ݀ is that the classical limit of any sam-

ple can be obtained from the carrier concentration of the 2DES. In the classical Hall

effect, which occurs at very high temperatures, ௫௬ߩ is absent of plateaux and is simply a

linear dependence in magnetic field with gradient ܤ݀/௫௬ߩ݀ = 1/݁݊ ଶ஽ . At the other

extreme at very low temperatures, we have seen that scaling theory can be described

using the percolation model. The two extremes are put together in Fig. 4.18. Due to the

finite-size of any sample measured, a saturated regime is expected at the lowest temper-

atures. As the temperature is increased, the system enters into the quantum critical re-

gime and then crosses over into the classical percolation regime. At the highest tem-

peratures, which is the domain of the classical Hall effect, ܤ݀/௫௬ߩ݀ is constant and in-

dependent of temperature. In between these two known areas is an unknown and unex-

plored region illustrated in Fig. 4.18.
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Figure 4.18. An illustrative plot combining all experimentally observable regions of the QHE

determined from the results of the scaling of QHTs. The final evolution of the curve towards the

classical Hall effect is still unknown.

It is unclear if the classical percolation regime extended all the way to the classical Hall

regime or whether there exists any intermediate regimes. It of course makes no differ-

ence whether it is the temperature or the frequency that is being varied, therefore the

same analysis can be applied to frequency scaling. A recent publication by Ikebe et al.

[135] has reported observations of plateaux at terahertz frequencies using a Faraday ro-

tation technique [185] to measure the Hall component of conductivity. This report pro-

vokes a few questions. The experiment performed is not at finite-frequency but rather

the 2DES is probed by a band of frequencies with a terahertz bandwidth. Apart from the

mention of the experiment being conducted in the terahertz regime the exact bandwidth
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is not stated. Though the nature of scaling is unclear when a 2DES is probed simultane-

ously by a band of frequencies, it is reasonable to assume that the highest frequency will

determine ఝܮ . Given that the characteristics of the GaAs/AlGaAs sample used in the

Ikebe et al. investigation ( ଶ݊஽ = 2.7 × 10ଵଵcmିଶ, =ߤ 1.4 × 10ହcmଶ/Vs) are compa-

rable to those reported on here, it is seems unlikely that the classical Hall limit will not

be reached before the terahertz regime. At terahertz frequencies (just as at room temper-

atures) localization should be completely destroyed. The most conservative extrapola-

tion of scaling results present in Chapter 3 suggests that all oscillations would be flat-

tened out before the terahertz regime is reached, which is of two orders of magnitudes

higher than the frequencies reported in Chapter 3.

The next chapter is devoted to investigating the final evolution of the scaling of

QHTs towards the classical Hall regime. In order to shed light on the unexplored region

shown in Fig. 4.18, scaling is attempted within the millimetre wave ranges covering a

frequency range between 75 GHz and 150 GHz. The millimetre wave regime is precise-

ly the region that sits between the gigahertz regime reported in Chapter 3 and the te-

rahertz regime.

4.6. Conclusion

In this chapter, we have formulated the scaling problem in terms of a percolation model

that seems to explain several observations made on the scaling of QHTs. We first dis-

cussed the microscopic view of a 2DES under a strong magnetic field and linked it to a

classical percolation effect. The Chalker-Coddington quantum correction [71] was in-

troduced to account for quantum effects.
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The use of percolation-like models in describing the QHTs were among the ear-

liest to be used to explain the phenomenon [54, 164, 165, 186-190] and has gained sig-

nificant consideration since the development of the much celebrated Chalker-

Coddington model. It has since been heavy supported by numerous experimental reports

(see references in section 4.3.2). Though this work provides a qualitative description

based on insights from the Chalker-Coddington model, many numerical [61, 74, 169,

183, 191, 192] and analytical works [193] exist in support of the model. The description

presented here has focused on providing an understanding of experimental observations

which hitherto have not been coherently explained.

Using the various crossover descriptions we have been able to answer the ques-

tions posed in the introduction. The key insight gained is that quantum criticality de-

pends on the maintenance of the localization effect and this is only the case if an elec-

tron is able to coherently travel a distance greater than or comparable to the dimensions

of its confinement. It is only then that an electron can experience the effects of localiza-

tion. Relaxation mechanisms on length scales short than the cluster size will destroy

localization.

A summary of this chapter has been published as Ref. [180].
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5. Millimetre wave interaction

of two-dimensional electron

systems

5.1. Introduction

In this chapter an attempt is made to investigate QHTs in the millimetre wave frequency

regime. In previous results presented in this thesis, scaling of QHTs was shown to exist

at frequencies up to at least 30 GHz through the broadening of LL conductivity peak

(see Fig. 3.23). This work (Chapter 3) constitutes the largest bandwidth over which

QHTs have been studied. Single frequency measurements of the QHE however have

been carried at 35 GHz [140], this stands as the highest frequency at which the QHE has

been observed. Though the evidence of the QHE at terahertz frequencies was recently

report [135], the theory following from the percolation model provided above strongly

suggests that this is unlikely in a typical GaAs/GaAs heterostructure, in fact, the extrap-

olation of the data provided in this thesis does not support any quantum behaviour at

frequencies close to or within the terahertz region. The compelling diagram presented in

Fig. 4.18 shows that at sufficiently high frequencies (or temperature) the classical Hall

regime should be established. The region between the upper microwave frequencies and

moving towards the classical Hall regime however is completely unexplored by any

previous experimental work and this is the region this chapter seeks to investigate.
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The 2DES will be excited by frequencies between 75 GHz and 110 GHz. Un-

like the guided wave setup used in Chapter 4, a free space system is adopted here. Using

parabolic mirrors, the generated high frequency radiation was focus onto 2DES samples

while is under a magnetic field and in a cryogenic environment. The frequency depend-

ent response of the 2DES was collected and then detected using a superheterodyne de-

tection technique.

5.2. Device and experimental technique

The device used in the millimetre wave measurements and the experimental setup is

discussed below.

5.2.1. Device and sample characteristics

The devices used in following investigation consists of GaAs/AlGaAs samples with an

etched 11 mm by 11 mm mesa and eight ohmic contacts distributed along the edges of

the mesa (a schematic of the devices is shown in Fig. 5.1). The mesa is formed from

chemically etching of the sample to a depth of about 200 nm and the Ohmic contacts,

which are formed from a Au/Ge/Ni alloy, are processed in the usual way (see section

2.1.1 for further processing details). As with the 2DES-CPW device, the Ohmic con-

tacts allow for the d.c. characterisation of the sample. The transmission nature of the

free space setup only requires a clear and large surface area containing the 2DES on

which the high frequency radiation can be focused. Similar to considerations made in

the design of the 2DES-CPW device, the excitations of a large area of the 2DES should

provide greater sensitivity and increased signal-to-noise ratio.
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Figure 5.1. Diagram of devices used in millimetre wave experiment.

The size of the 2DES mesa is therefore chosen (11 mm x 11 mm) to maximize the ex-

citable area of the 2DES given the minimum beam width of the focused radiation.

The sample used is characterized by a dark carrier concentration of ݊ = 2.26 ×

10ଵଵ cmଶ and mobility of =ߤ 1.01 × 10ହ cmଶVିଵsିଵ determined at a temperature of

1.2 K. A d.c. plot of ௫௫ߩ and ௫௬ߩ measured using the Ohmic contacts is shown in Fig.

5.2.

5.2.2. Experimental setup

The 2DESs were inserted into an optical access cryostat with a base temperature of 1.2

K, and with a split-pair magnet allowing a magnetic field perpendicular to the sample to

be applied. The transmission setup consisted of a millimetre wave source which gener-

ated a signal with a frequency between 75 GHz and 110 GHz.
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Figure 5.2. D.c. magnetotransport characteristics of millimetre wave sample taken at 1.2 K.

The path of the generated signal is directed by parabolic mirrors which focuses the sig-

nal on to the surface of the 2DES through an optical widow of the cryostat. The milli-

metre wave radiation then interacts with the 2DES as it is transmitted through the sam-

ple. The signal transmitted through the 2DES then exits the cryostat through another

optical window and is directed into a receiver. A schematic of the setup is shown in Fig.

5.3.

The signal generation unit is made up of a MMW extender which is essentially

a signal multiplier which multiplies the input signal by a factor of 6. The MMW extend-

er is only operable within the range 75 GHz – 110 GHz.
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Figure 5.3. A schematic of the experimental setup showing the cryostat within which the sample

is inserted, the signal generating unit and the signal detection unit.

The input to the MMW extender is supplied by an RF (radio frequency) source capable

of generating frequencies within the required range of 12.5 GHz and 18.33 GHz (to ac-

cess the operable bandwidth of the MMW source). Attached to the output of MMW ex-

tender is a horn antenna which emits the RF signal into free space.

The detection unit of the RF setup consisted of a harmonic mixer, an RF source,

a 30 dB amplifier and a spectrum analyser. The harmonic mixer, which also operates

within the range 75 GHz – 110 GHz, takes in two inputs, the MMW RF signal (from

the output of the 2DES) and an RF source also known as the local oscillator or LO. The

mixer produces a single output known as the intermediate frequency or IF. The aim of

the detection unit is to receive and measure a signal that is within the MMW band.
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Figure 5.4. A schematic of the detection unit. The incoming MMW signal is downconverted by

the mixer to an intermediate signal of lower frequency that can be easily measured by the spec-

trum analyser.

This is not a straightforward task since most spectrum analysers used in measuring RF

signals operate up to a few gigahertz, and in particular, the spectrum analyser used in

this setup is able to measure frequencies up to 3 GHz. The detection unit therefore uses

a superheterodyne technique which downconverts the received MMW signal to 100

MHz, a frequency easily measured by the spectrum analyser. The mixer also contains a

harmonic generator which produces harmonics of the LO. The mixer used in the setup is

designed to select the 18th harmonic which is then mixer with the incoming MMW RF

signal. The output signal of this frequency multiplication consists of the sum ோ݂ி +

18 ௅݂ை and the difference ோ݂ி − 18 ௅݂ை . The frequency of the local oscillator can there-

fore be chosen such that the difference component of the output results in the desired

intermediate frequency, ூ݂ி = ோ݂ி − 18 ௅݂ை. For the frequency band under considera-

tion, the local oscillator was only required to be tuneable between approximately 4.2

GHz and 6.1 GHz. Due to the weak MMW RF signal received and the conversion loss

of the mixer, the IF signal is amplified by a 30 dB amplifier and then sent to the spec-

ܯ ܯ ܹ ܨܴ

ܮܱ

ܪ ݎܽ݉ ݊݋ ݅ܿ
݉ ݔ݅݁ ݎ

ூ݂ி = ோ݂ி − 18 ௅݂ை

30 ܤ݀ ݁ܵ݌ ݉ݑݎݐܿ ܽ݊ ݈ܽ ݏ݁ݕ ݎ
100ݐܽ MHz
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trum analyser which is tuned to detect an IF signal at 100 MHz. The process is illustrat-

ed in Fig. 5.4.

The significant quantity of interest in the measurement setup is the magnitude

of the received signal as measured by the spectrum analyser. At a certain MMW fre-

quency, a magnitude measurement of the received signal can be taken at each magnetic

field point to produce a magnetotransport measurement, and much like that presented in

Chapter 3, the magnitude measured can then be related to the conductivity of the 2DES

[134, 194].

Finally it is noted that the sample and the transmission path is shielded from

unwanted external radiation and signal reflections through the use of anechoic absorb-

ers. The widows of cryostat are also cover with black tape that is transparent to the

MMW signal but opaque to visible light.

Figure 5.5. (a) An illustration of the TE10 mode in a rectangular waveguide where the direction

of the electric field (represented by the arrows) is perpendicular to the direction of propagation,

z. (b) A time varying view of the electromagnetic wave propagating along the z axis.

ݖ

ݖ

ݔ

ݕ

(a) (b)
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5.3. Transmission of an electromagnetic wave through a 2DES

The transmission configuration discussed in the experimental setup above is known as

the Faraday geometry or configuration. This configuration is characterised by a trans-

mission setup where the direction of the propagating electromagnetic wave is parallel to

the magnetic field.

On the millimetre wave source, the emitting horn antenna is attached to a rec-

tangular waveguide (see Fig. 5.3). The mode of propagation of the emitted electromag-

netic wave is therefore a transverse electric TE10 mode [137]. In a TE mode, the electric

field is perpendicular to the direction of propagation ௭ܧ = 0. The electric field pattern

of a TE10 mode is illustrated in Fig. 5.5. As seen from Fig. 5.5(a), the TE10 mode excites

an electric field in the direction of the shorter dimension of the rectangular waveguide

while there is zero excitation in the direction of the longer dimension.

Figure 5.6. The incident electric ௜௡௖ܧ excites electron transport within the 2DES under a magnet-

ic field which in turn induces an electric field .௜௡ௗܧ The induced field is made up of electron

transport due to diagonal conductivity along the incident electric field and Hall conductivity per-

pendicular to the incident field.

ܵܧܦ2

ܤ

௫௫ܧ

௫௬ܧ

௜௡ௗܧ

௜௡௖ܧ
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The wave emitted from the waveguide is transmitted through space and onto the

surface of the 2DES. The electromagnetic wave incident on the surface of the 2DES

induces electron transport in 2DES and in the presence of a magnetic field this produces

Hall and diagonal conductivities within the system [195]. The propagation of an elec-

tromagnetic wave through a plasma of free carriers in the presence of a magnetic field

has already been extensively studied [195, 196]. It can be shown that the electric field of

the induced electric field corresponds to ௫௫ߪ and ,௫௬ߪ and is proportional to the intensity

of the transmitted wave [195, 197]. Fig. 5.6 illustrates the transmission process. The

incident electric field ௜௡௖ܧ induces an electric field ௜௡ௗܧ which contains the diagonal

component of conductivity ௫௫ܧ and Hall the component ௫௬ܧ [134, 197].

Figure 5.7. (a) An illustration of a crossed waveguide configuration which selects the Hall com-

ponent of the induced wave. (b) A configuration that selects the diagonal conductivity compo-

nent of the induced electric field.

(a)ܵܧܦ2

(b)
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The component of interest can be selected by considering the orientation of the receiv-

ing waveguide attached the detection unit (the harmonic mixer). A crossed waveguide

configuration, shown in Fig. 5.7(a), will pick up the Hall component of the transmitted

wave. As was previously mentioned, the mode permitted in a rectangular waveguide

only allows electric fields varying along the shorter dimension of the waveguide there-

fore in the crossed configuration the diagonal conductivity component of the transmitted

wave will be rejected while the Hall component is allowed to propagate. Likewise in

Fig. 5.7(b), the Hall component will be rejected while the diagonal component is select-

ed for transmission. This method of excitation and detection was first used by Kuchar et

al. [134, 197] who employed this technique in measuring microwave induced conduc-

tivity in a 2DES.

The amplitude of the received wave is precisely measured by a spectrum ana-

lyser using the heterodyne detection technique described in the previous sections. It is

therefore expected that the magnetic field dependence of the amplitude of the received

wave will follow the outline of the magneto-transport QHE if it present in the 2DES.

5.4. Millimetre wave experimental results

We discuss results obtained from the millimetre wave setup below. Just as in Chapter 3,

we focus on measuring the ௫௫ߪ and set the orientation of the receiving waveguide ac-

cordingly (as described in Fig. 5.7(b)). It should be noted that the measurements present

below only investigate the QHE for a few frequencies spread across the accessible range

of frequencies. Unlike Chapter 3, these measurements do not present a high resolution

investigation. There are many difficulties in preserving the integrity of a free space sys-
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tem with a cryostat (undisturbed) for days at a time as required for such high resolution

measurements (such as those presented in Chapter 3).

In obtaining the measurements, the magnetic field is initial set to the desired

point, and a queued series of finite millimetre wave signals then transmitted through the

free space system, via the cryostat, one at a time. The power of the transmitted signal is

then measured at the receiver. The magnetic field is adjusted by a small increment and

the process repeated for the next field point.

To begin, a reference of the magnetic field dependence of the transmitted signal

and the free space setup is taken. In these reference measurements, the setup is just as

described in Fig. 5.3 but without the 2DES sample in the cryostat.
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Figure 5.8. Reference measurements of the magnetic field dependence of the transmitted signal

at various frequencies. These measurements are taken in the absence of a 2DES in path of the

transmitted signal. The measurements have been offset in the y-axis for clarity.
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Figure 5.9. The field dependent reference measurement at 105 GHz.

Ideally, one would expect a constant dependence of the signal with magnetic field in the

absence of the 2DES. The reference signal also provides information about the back-

ground noise at various frequencies. Fig. 5.8 shows the signal measured by the receiver

at various frequencies within the investigated bandwidth. The plots have been offset on

the y-axis to clearly and independent show the field dependence of each frequency,

however, Fig. 5.9 shows the data of one of the frequencies. The noise floor of the sys-

tem was determined to be ~100 dB. Any change in the signal above this level is easily

detected by the setup. We also note that it is the relative change in power of the received

signal as the magnetic field is swept that is of interest here and not the absolute value.

The reference measurements for all frequencies investigate were well above the noise

floor.
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Figure 5.10. Two plots showing the repeatability of the magnetic noise for (a) 75 GHz and (b) 90

GHz. Measurements are taken at three different sweeps of the magnetic field. Every sweep

shows the same features in the reference measurement.
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Figure 5.11. Fields dependent measurements of the transmitted signal with a 2DES at room tem-

perature in its path.

From Fig. 5.8 and 5.9, one notices that the transmitted signal is fairly constant

for most frequencies but some frequencies exhibit some amount of “magnetic” noise.

The origin of this field dependent noise stems from the very slight mechanical move-

ments of the parabolic mirrors used in the setup. These mirrors unfortunate contain tiny

springs, used for positional adjustment, that appear to be influenced by stray magnetic

fields from the cryostat. These springs cannot be done away with without great difficul-

ty and sacrifice to signal strength. However, the magnetic noise is repeatable and can

therefore be subtracted or accounted for. The effect of the noise on results is therefore

greatly reduced (less than 0.5 dB). Fig. 5.10 shows the repeatability of the noise for two

of the worst affected frequencies, where three separate measurements show the same

features. It is noted that the features change when the parabolic mirrors are mechanical

disturbed (for example, unscrewing and re-screwing them), confirming that these fea-
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tures are a consequence of the effect of a strong magnetic field on the parabolic mirrors.

For a consistent set of measurements, the setup remains untouched once fitted.

Another set of measurements are taken with the sample inserted into the cryo-

stat and in the path of the transmitted signal but 2DES is kept at room temperature. The

results are shown in Fig. 5.11. It is observed that the plots are similar to that those

shown in Fi.g 5.8 where there was no 2DES. This verifies that the 2DES is not active at

room temperatures.

As the temperature is cooled however, the effect of the QHE should be signifi-

cant in the field dependent measurements if localization has not been destroyed at mil-

limetre wave frequencies. Since ௫௫ߪ is being probed in this setup, if the QHE is present,

one should notice oscillation in the transmitted signal that correspond to the location of

the LL peaks seen in Fig. 5.2 (as was observed in Chapter 3 for microwave frequen-

cies).

Fig. 5.12 shows the results obtain at 1.2 K. Fig. 5.12(a) shows the field depend-

ent measurement at 90 GHz. The signal absorption due to the cyclotron resonance of the

2DES is observed in the plot. For a frequency ,݂ the resonance is expected at the field

ܤ = ݂݉ߨ2 ∗/ ,݁ where ݉ ∗ is the effect mass of an electron in GaAs and ݁ is the charge

of an electron. At 90 GHz, the cyclotron resonance should occur at ܤ = 0.215T when

the effect mass is taken to be ݉ ∗ = 0.067݉ ଴. This is good agreement with Fig. 5.12(a).

It should be noted however that the magnetic field is swept at intervals of 0.05 T and

therefore the location of the absorption can only be accurate to within this value. The

measurements for other frequencies are shown in Fig. 5.12(b) where the cyclotron reso-

nance is observed for all frequencies.



215

0 1 2 3 4 5 6

-60

-59

-58

-57

-56

-55

(a)
S

2
1

(d
B

)

B (T)

90 GHz

0 1 2 3 4 5 6

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(b)

105 GHz

S
2
1

(d
B

)

B (T)

75 GHz

80 GHz

85 GHz

90 GHz

95 GHz

100 GHz

Figure 5.12. Measurements of the transmitted signal taken at 1.2 K for (a) 90 GHz and (b) the

frequency range investigated. A cyclotron absorption dip can be observed at all frequencies but

there is no observed evidence of the QHE, even at high magnetic fields.
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Figure 5.13. The field dependence of the transmitted signal after the background and mechanical

noise has been subtracted. The dashed line should the expected location of the cyclotron reso-

nance abortion. There is still no evidence of the QHE in these measurements.

The observation of the cyclotron resonance provides evidence of the interaction of the

2DES with the probing signal and confirms that the system is sensitive enough to detect

magnetic field dependent quantum effects within the 2DES. Crucially, however, there is

no evidence of any features of the QHE, even at very high fields. Fig. 5.13 shows the

results obtained when the background and mechanical noise have been subtracted from

the measurements taken. The dashed line in Fig. 5.13 denotes the expected location of

the cyclotron absorption dips in the transmitted signal. It is estimated that sensitivity of

the system is within about 0.5 dB or ~10% of the power loss. Even so, the results clear-

ly show that the system is sensitive enough to observe the cyclotron resonance. The lack

of any QHE features therefore confirms the discussion on the limit of the scaling theory

of the QHE discussed in section 4.5.2. At millimetre wave frequencies and above, one
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expects localization to be completely destroyed and thus one does not expect to observe

any feature of the QHE.

Finally, the effect of an increase in carrier concentration is presented in Fig.

5.14, where two measurements are taken, one under illumination and the other in the

dark. The increase in carrier concentration has no effect on the observation of the fea-

ture of the QHE at high fields but we observe greater absorption of the transmitted sig-

nal by the cyclotron resonance of the 2DES due to an increased number of electrons

interacting with the transmitted signal.
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Figure 5.14. Measurements of the transmitted signal taken under illumination and in the dark at

two frequencies.
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5.5. Discussion and conclusion

In this chapter we have investigated the existence of the QHE at millimetre wave fre-

quencies where a free space setup was used to probe the 2DES. Through a series of

measurements, interaction between the 2DES and the transmitted electromagnetic signal

is observed. The QHE, on the other hand, is not observed within the measurements tak-

en. This strongly suggests that the QHE cannot be maintained at millimetre wave fre-

quency just as one would expect a breakdown of the QHE at room temperature. Any

possible observation of the QHE at terahertz frequencies, as suggested by some studies

[135], is therefore unlikely. The results presented in Chapter 3 measures the QHE up to

30 GHz. It is observed from this data (shown in Fig. 3.32) that as the frequency of in-

teraction increases, the broadening of LL peaks worsens. This is due to the increased

scattering rate implied by a reducing phase coherence length as the frequency is in-

creased (see sections 1.4.3 and 3.1.1). The increased scattering rate smears out the well-

defined energy levels or LLs that exist at ,݂ܶ= 0, reverting transport within the 2DES

to that observed in the classical Hall effect. The limit of the QHE was also probed by

Kuchar et al. [134, 197] where at 33 GHz it was also clear that the QHE could not sur-

vive an increase in frequency of an order of magnitude.

All three investigates discussed in this section, Chapter 4 (up to 30 GHz), Ku-

char et al. [134, 197] (33 GHz) and Ikebe et al. [135] (terahertz regime), used

GaAs/AlGaAs heterostructures samples of comparable characteristics. Even though the

probing method is slightly different in each of these three cases, the underlining physic

should produce the same (consistent) result in these investigate. The study of the scaling

of QHTs discussed in previous chapters, as a by-product, have made easier to under-
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stand the limits of the QHE. The most transparent analysis lies in the scaling theory of

the slope of plateau-to-plateau transitions (of the Hall resistance) presented in section

4.5.2. Scaling can be observed in the gradual decreasing of the slope plateau-to-plateau

transitions as the temperature or frequency is increased. In this analysis, two limits or

extremes are evident; the absolute zero temperature limit and the classical limit. The

absolute zero temperature limit produces a transition slope with a gradient tending to

infinity (for systems of very large sizes). On the other hand, we know that in the classi-

cal limit (where no quantum phenomena can be maintained) the slope is simply the gra-

dient of classical Hall resistance which has the precise value of 1/݁݊ ଶ஽ . As one in-

creases the temperature or the frequency of the applied electric field, the gradient of the

slope gradually changes from infinity to 1/݁݊ ଶ஽ , where at 1/݁݊ ଶ஽ the classical limit, at

room temperature for example, is reached. This process is determined by the scattering

mechanism being controlled by the temperature or frequency. Therefore if one wish to

observe the QHE at higher and higher temperatures and frequencies, one has to produce

samples with a lower 1/݁݊ ଶ஽ value, in other words, one has to increase the carrier con-

centration. Consequently, according to the scaling analysis, increasing the carrier con-

centration will push the classical limit to higher temperature or frequencies. This seem-

ingly simple remedy however produces a challenging experimental difficulty. At higher

carrier concentrations, the LLs of the QHE are pushed to higher magnetic fields since an

increase in ଶ݊஽ increase the energy spacing between LLs or the cyclotron gap ℏ߱ .

These higher field LLs can only be reached at great (technological) expense. Another

challenge is faced when one realises that the carrier concentrations required for the

QHE to be observed at higher temperatures or frequencies is beyond the single subband

capacity of a typical GaAs heterostructure.
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These two difficulties were solved in a recent investigation [198] where the

QHE was observed at room temperature and at the extraordinarily high field of 45 T

using a graphene sample. Graphene devices allow for very high carrier concentrations

within a single subband. The high magnetic field on the other hand was achieved using

a 45 T hybrid magnet.

In practical terms, the analysis of the scaling theory of QHTs reveals what one

must do in order to experimentally observe the QHE effect, and this requires the manip-

ulation of the magnetic field and the carrier concentration. In theory however, the pro-

cess of scaling, discussed throughout this thesis, is simply the varying of the phase co-

herence length or the scattering parameter. If the energy separation between LLs can be

sufficiently increased, then a higher activation energy will be required to scatter elec-

trons from one LL band to other and therefore at greater energy gaps these discrete

quantum states can be distinguishable and maintained at room temperature. The energy

separation is achieved through the magnetic field and the carrier concentration since the

degeneracy of each LL is field dependent. It is also noted that a large electron lifetime

(in other words, a high mobility) produces narrower disorder broadening of LLs and

therefore assists in distinguishing between adjacent LLs at high temperatures.

The conclusion of the above analysis is that is a typical GaAs heterostructure,

the required energy separation cannot be achieved at room temperatures or frequencies

at or beyond the millimetre wave regime, without the aid of very high fields and carrier

concentration. Therefore for the typical samples used here (and the other investigation

referred to above), one would not expect to observed the QHE in the millimetre wave or

terahertz regime.
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6. Summary and conclusion

This thesis investigates the nature of the critical phenomena associated with QHTs

which occur between plateau-to-plateau transitions in the QHE in 2DESs. Theoretically,

it has been suggested that these QHTs, which are expected to be quantum phase transi-

tions, exhibits certain universal behaviours that can be observed by investigating the

charge transport of 2DESs.

Previous experimental studies of on the nature and universality of QHTs have

produced results that are both contradictory to the expected theoretical behaviour and

inconsistent among experimental results. At the heart of the dispute is the universality

of the critical exponents associated with QHTs, which according to critical phenomena

theory, should be universal constants which are independent of the specific microscopic

details of the 2DES under investigation.

This thesis independently investigates all three proposed critical exponents, ,ߥ

,ߢ and ,݌ in order to reveal the nature of their universality. The critical exponents are

suggested to be related through the relation =ߢ .ߥ2/݌ The exponents are studied using

a finite-size scaling analysis.

In Chapter 2, using experimental techniques based on the variation of various

temperatures associated with the 2DES, it is observed that the exponents ߥ is universal

within all samples studied, however, the exponents ߢ and ݌ were not found to be uni-

versal across all sample investigated. The value of ߢ tended to be higher than expected

and the exponent ݌ exhibited dependence on the mobility of the sample, the opposite of

the nature of universality which is precisely the independence of critical exponents on
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the microscopic details of the 2DES. An argument is present in Chapter 2 to support the

disorder dependence of ݌ which is unsurprising if one considers the dephasing mecha-

nisms within the 2DES.

In Chapter 3, a high resolution frequency based technique is used to further the

investigations in the critical nature of QHTs. In this chapter, the scaling analysis is stud-

ies by varying the frequency of the applied electric field driving electron transport with-

in the 2DES. In addition, the influence of disorder on the nature of QHTs is studied. It

has previously been suggested that by increasing the disorder within a 2DES the nature

of criticality approaches the expected universal behaviour. This was confirmed by the

results presented in this chapter. It was found that increasing the disorder within the

2DES yields a universal exponent while a less disordered system produces a critical

value inconsistent with theoretical predictions.

In Chapter 4, the vast collection of results including the peculiar features ob-

served in the results present in the two preceding chapters are explained using an intui-

tive and transparent quantum percolation model which had previously been used in ex-

plain certain features attributed to the QHE in 2DESs. This chapter attempts to explain

why the exponent ߥ is consistently measured to be universal within the tail regions a LL

band but the measured value of ߢ within the same sample and LL does not exhibit the

universal behaviour. It also explains the reason and nature of the influence of disorder

on the nature of criticality. It explains the dependence of ݌ on disorder and finally it

also suggests why the observation of the quantum criticality, as expected by theoretical

predictions, is so difficult to observe experimentally. Underpinning these explanations

is the competition between three key length scales, the localization length ,ߦ the typical

cluster size of electrons within a 2DES ௣ߦ and the phase coherence length ఝܮ . Crosso-
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vers between these length scales define transitions between the universal and the non-

universal behaviour of QHTs in 2DESs. Varying the temperature or frequency of the

applied electric field of the 2DES changes ఝܮ . The expected universal quantum critical

behaviour persists as long as ఝܮ > ,௣ߦ on the other hand a classical critical behaviour is

observed when ఝܮ < .௣ߦ Mistakes in the experimental observation of the universal

(quantum critical) behaviour occur when the investigator does not consider the distinc-

tion between these two regimes.

An interesting question arises from the analysis of the scaling theory of QHTs.

What defines the limit of the observation of the QHE and how high in frequency (or

temperature) can the QHE be observed? This is investigated in Chapter 5 using a milli-

metre wave free space transmission setup (between 75 GHz to 110 GHz). Just as in

temperature, one anticipates the existence an upper limit to the frequency at which the

QHE can be observed but a recent result suggested that the QHE can be observed within

the terahertz regime (0.3 to 3 THz). The millimetre wave results however did not find

any evidence of the QHE at such high frequencies. It is suggested that at such high fre-

quencies the separation between LLs are smeared out (as expected for high tempera-

tures).

The work presented in this thesis deals with some novel areas not previous in-

vestigated in scaling theory of QHTs. These investigations are the first to independently

study all scaling exponents related to QHTs in a single work and on the same sample.

Though such a study is required in order to coherently explain the disagreements be-

tween scaling exponents, it had hitherto not be investigated.
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The result on the frequency based measurements presented here is the largest

bandwidth of frequencies over which the scaling theory has been observed and investi-

gated (between 100 MHz and 30 GHz).

The high resolution of the results present in Chapter 3 is also the most detailed

work published in literature, with a resolution of an order of magnitude higher than the

next detailed investigation.

The investigation of a short-range disordered system using a high frequency

electromagnetic wave is the first ever presented in the literature.

The experimental observation of the frequency dependent crossover in criticali-

ty in a 2DES presented in Chapter 4 is first to be published in the literature.

And finally, the results in Chapter 5 are the first attempts to probe the millime-

tre wave regime for the observation of the QHE.
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