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Abstract

Interference suppression for satellite navigation system has become one of the hottest

topic in the research area. By far, there are two main methods for reducing the effect of

jamming signals: traditional adaptive array signal processing and blind signal processing

techniques. Normally, we need to know where the navigation signals come from when we

are using the traditional adaptive array signal processing technique. For blind techniques,

the main advantage is that we do not need any information about DOA angles of the

desired signals, but its performance is worse than the traditional adaptive techniques. One

of the most popular methods is the power minimization method, which belongs to the

class of blind methods.

In this thesis, I focus on the research of blind signal processing techniques. Based on

the traditional power minimization approach, we propose an improved algorithm for sup-

pressing strong interferences for satellite navigation based on antenna arrays. It is known

that the principle component analysis (PCA) technique can extract the principle compo-

nents from the original data. Thus, the idea is to replace the auxiliary antenna outputs in

the traditional power minimization method by the principal components of received array

signals. leading to an improved performance, as verified by our simulations.

Moreover, we also give an in-depth study of the power minimization method. Using

the same approach adopted in the performance analysis of the minimum variance beam

former. We analyze the performance of the power minimization method in detail in terms

of its output signal to interference plus noise ratio (SINR). The results are very close to

the expected value when the sample size is small.
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Chapter 1

Introduction

1.1 Introduction

The current design of the Global Positioning System (GPS) was proposed in the late

1960s, which is based on a constellation of 24 man-made satellites orbiting around the

earth at an attitude of 20000 km. Each satellite keeps on transmitting a position message

with precision timing among all system components and between satellites.

By far, the satellite-based navigation system has been improved for more than 40

years, which can provide the informiation of position, velocity and timing for people in

all kinds of environment conditions. A special case of the three-dimensional space-time

processor (3D STAP) was proposed for radar systems to cancel ground interference has

been proposed in [1, 2, 3, 4]. As a result, it has been not only used as a worldwide military

algorithm, but also applied widely in civil communities. However, the performance of the

GPS or a general satellite navigation system is significantly susceptible to interference

from either intentional or unintentional sources, due to that the satellite signals arrive at

the receiver with a very low power, typically 20-30 dB below the received thermal noise

level [5]. Therefore, interference suppression has become one of the hot topics for using

GPS without distortion of desired GPS signal.

Interference suppression has been studied by many researchers in this field and many

methods have been proposed based on either the specific structure (such as cyclostation-

arity) or the direction of arrival (DOA) information of the signals or both, employing

1



1.1. Introduction 2

traditional adaptive beamforming algorithms or some blind signal processing techniques.

[6, 7, 8, 9]. Adaptive beamforming approaches are very traditional ways to suppress inter-

ference, which employ spatial degrees to form nulls in the direction of interfering signals

and give good performance over very narrow bandwidths. In order to form broadband

nulls, both spatial and temporal adaptive degrees of freedom are required [10, 11, 12]. In

a general environment, an algorithm is proposed which uses derivative constraints on the

directions of interferers into Hung-Turner and sample matrix inversion (SMI) algorithms

to broaden the width of nulls [13, 14].

Blind signal processing methods stand an important position in the area of interfer-

ence suppression. Although they are not as good as the normal adaptive beam forming

methods, like the linearly constraint minimum variance (LCMV) beam former, they can

be applied in highly dymanic environments when the DOA information of the desired

signal is not available. In [15], an interference suppression method based on space-time

adaptive processing (STAP) without loss or distortion of the desired signal is proposed. A

self-coherence anti-jamming scheme is introduced in [9, 16], which relies on the unique

structure of the coarse/acquisition (C/A) code of the satellite signals. To reduce the com-

putational complexity of the STAP system, reduced-rank processing methods are studied

in [17]. A blind interference suppression method by applying the cyclic adaptive beam

forming (CAB) algorithm with a subspace technique is proposed in [18]. Unlike the tra-

ditional beam forming methods, the power minimization method can form deep nulls in

the interference directions without knowledge of the desired satellite signals when the

interfering signals are much stronger than the desired signals, and it also has a rather

low computational complexity due to its simple structure [19, 20]. An improved algo-

rithm based on the power minimization method is proposed in [21]. Moreover, Domain

Weighted Principle Component Analysis (DW-PCA) is an effective way to cancel inter-

fering signals [22, 23]. Applying this technique to form a robust adaptive beam former,

an improved performance can be obtained, as the principal components are exracted from

the received data [24, 25].

Nowadays, the minimum variance beam former has become one of the most important

interference suppression techniques. For improving the performance of this beam form-

ing technique, the output signal-to-interference-plus-noise ratio (SINR) is considered as
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the parameter of interest. This ratio is related to many parameters including the input

signal-to-noise ratio (SNR), the input interference-to-noise ratio (INR) or the signal-to-

interference ratio (SIR). However, most of the researches so far have not considered all

of the parameters. The approaches that consider the effect of SNR and angular separation

are proposed in [26, 27, 28]. [11, 29] have proposed the analysis by considering the effect

of finite sample size. In 1996, a complete analysis of the SINR was presented as a func-

tion of all parameters in [30]. The approach is based on the case that the signal and the

noise are Gaussian and the number of samples is large compared with the array size.

In this section, I will give a brief description of the proposed methods, which constitute

original contribution of this thesis.

1.2 Original Contributions

The following is a list of the original contributions of the thesis:

• Blind interference suppression for satellite navigation signals based on antenna

arrays

The traditional power minimization method can cancel the effect of interference

and provide good performance effectively, when the power of interference is large

compared to that of the desired signal. However, the degradation of the output

SINR will occur with this method, when the power of the desired signal is getting

closer to that of interfering signal. Built on the success of the power minimiza-

tion method, a novel technique is proposed by incorporating principal component

analysis (PCA) into the structure and replacing the auxiliary antenna outputs by the

principal components of the received array signal. The principal components ex-

tracted by the PCA operation can be considered as a better representation of the very

strong interfering signals and therefore can cancel the interfering signas present in

the refenrece antenna more effectively, leading to an improved performance. Ac-

cording to the simulation results, the performance of the proposed method has not

been degraded the high power of the desired signal, while the traditional one has

suffered as the power of the desired signal is increasing. In [22, 23, 24, 25], the

power of the desired signal is higher than that of interfering signals, so the effect of
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the desired signal will be enhanced by applying PCA.

• Performance analysis of the power minimization method

Generally, the traditional performance analysis is based on the asssumption that the

sample size is large and the signals and noise are Gaussian which is widely used

signal model, and presented as a function of all parameters. However, this method is

very complex and difficult to use for the power minimization method, as the power

minimization method does not need any information of the directions of signals. To

transfer the general expression to a simple one, a novel method is presented, which

can analyze the performance of the power minimization method. Meanwhile, the

proposed expression can also analyze the performance of LCMV with consideration

of finite sample number and the error of direction of signals. An approximation of

the expected value of the output SINR for the power minimization method has been

derived in this thesis, and the simulation results show that it can be considered as

an effective representation of the true values.

1.3 Thesis Outline

The thesis is structured as follows:

In Chapter 2, an introduction is given to the model and characteristic of GPS satellite

signal. Some common features of GPS are discussed. Then turning our eyes to the ba-

sics of array signal processing, and the signal model is introduced. Some adaptive beam

forming approaches based on different parameters are introduced, including optimization

using reference signal, null-steering beam forming and beamforming for maxmizing the

output SINR. Subsequently, LCMV beam former, one of the approaches in minimum

variance beam forming, is discussed in detail. The constraints form a response on the

direction of the desired signal and suppress interfering signals effectively. Another struc-

ture is also introduced, which is called Generalize Sidelobe Canceller (GSC). It is an

alternative implementation of the LCMV beam former. Moreover, compared with a gen-

eral beam forming structure, the advantages of space-time adaptive processing (STAP)

are discussed. The STAP technique has been widely used to reduce the effect of inter-

fering signals because it greatly increases the freedom of degree under the same antenna
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conditions.

Chapter 3 focuses on blind interference suppression algorithms. In general, it is very

difficult to obtain the knowledge of directions of signals normally. Therefore, the power

minimization method is proposed, which does not need any prior information of direc-

tions of signals. This approach forms nulling in the directions of the jamming signal, so it

can reduce or cancel the effect of interference effectively. More importantly, a useful tech-

nique for separating interfernces from the received data is presented, which is called PCA.

Finally, I propose an improved algorithm for interference suppression which is based on

a combination of the power minimization method and PCA.

In Chapter 4, I continue to investigate the power minimization method and give fur-

ther insight of it. Firstly, the traditional performance analysis of the minimum variance

beam former is discussed. The general expression is obtained, but it is too complex for

us to apply it to the algorithm of power minimization directly. Thus, based on the gen-

eral expression, an alternative expression is presented, which can be used for analyzing

performance of the power minimization method and LCMV beam former.

Finally, conclusions and an outlook on possible future work are given in Chapter 5.



Chapter 2

Review of Interference Suppression

Algorithms for Satellite Navigation

In this chapter, the background of interference suppression for satellite navigation signals

will be introduced. Many approaches, which are investigated frequently these years, will

be reviewed and discussed. Subsequently, I will mainly introduce the adaptive beamform-

ing algorithms and nulling steering technology. We will provide and explain more details

and informantion of some interference suppression algorithms, such as the LCMV beam-

former and the power minimization approach. Besides, the GSC will be discussed, which

is an alternative implementation of the LCMV beam former.

2.1 GPS Background

2.1.1 Overview of GPS

Nowadays, GPS has been widely used in every aspect of our lives, which was established

in the 1960s for an optimum positioning system. The users can be provided with postion,

velocity and worldwide information by the equipment of GPS receivers. This design is

based on the constellation which consists of twenty four satellites arranged in 6 orbital

planes with 4 satellites on each plane. GPS can provide service to every user becasue

the receivers operate passively. The satellites transmit ranging codes and navigation in-

formation on two frequencies with the code division multiple access (CDMA) technique.

6
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Table 2.1: GPS signal structure

Signal priority Primary Secondary

Signal designation L1 L2

Carrier frequency ( MHz) 1575.42 1227.6

Pseudorandom noise code

(106 chips/sec)
P(Y)=10.23, C/A=1.023 P(Y)=10.23, C/A=1.023

Navigation message data

rate (bps)
50 50

Two frequencies are L1 = 1575.42 MHz and L2 = 1227.6 MHz, respectively. Each

satellite transimits on these two frequenices, but with different ranging codes, which will

be discussed later. The navigation data provides the means for GPS receivers to ensure

where the satellite is, when the sigal is transmitted, and for the receiver to determine the

transmit time of the signal. The user receiver must contain a clock to apply this technique

to measure the receiver’s three dimensional location. Only three range measurements are

required when the receiver clock is synchronized with the satellite clocks. A crystal clock

is employed in GPS receivers to minimize their size.

Besides, GPS consits of two services. One is the Standard Positioning Service (SPS),

which is designated for civil community, and the other one is Precise Positioning Service

(PPS), which is reserved for U.S military and government agency users.

2.1.2 GPS Satellite Signal Characteristics

Modulation Format of GPS

As shown in Fig. 2.1, both L1 and L2 carrier frequencies are modulated by the binary

product in the modulator using the Binary Phase Shift Keying (BPSK) scheme. The L1

frequency (1575.42 MHz) is modulated by two pseudorandom noise (PRN) codes (plus

the navigation message data), the coarse/acquisition code (C/A code) and the precision

code (P code), respectively. The GPS C/A code is a Gold code with a sequence length of

1023 chips [31]. Because the chipping rate of the C/A code is 1023 MHz, the period of

the pseudorandom sequence is 1023 or 1 millisecond. The P code sequence length will be



2.1.2. GPS Satellite Signal Characteristics 8

50 bps data

Navigation
Message

C/A Code
Generator

P(Y) Code
Generator

L1       Carrier

L2          Carrier
BPSK

Modulator

BPSK
Modulator

BPSK
Modulator

Switch

L2 Signal
1227.6 MHz

L1 Signal
1575.42 MHz

Fig. 2.1: Block diagram of the GPS satellite transmitter structure.

more than 38 weeks in length, but is divided into 37 unique sequences that are truncated

at the end of each week. The L2 frequency is transmitted by only one PRN code. Besides,

navigation message is 50 bps data with binary values +1 and −1, which is combined with

PRN codes before modulating with L1 and L2 carriers. The navigation message consists

of the ephemeris and the almanac data that are needed for the navigation solution.

I summarize the GPS structure on L1 and L2 in Table 2.1. For the GPS receiver, the

C/A code has a chipping rate of 1.023× 106 chips/sec and the P code has a chipping rate

of 10.23× 106 chips/sec.

Acquisition

• Acquisition

The first step of the GPS signal processing scheme is acquisition. The GPS receiver
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must detect the presence of the signals before they can be tracked and decoded for

positioning computation. The received signal must be acquired at the correct code

phase and carrier frequency in the acquisition.

• Acquisition Scheme and Search Band

Many acquisition methods have been improved to acquire the GPS signal more

effectively [32, 33]. A method called circular correlation by Fourier transforms

performs a faster acquisition over other approaches and was proposed in [31].

The satellite movement induces a Doppler shift of up to 5 kHz from the GPS L1

frequency [34]. The line of sight velocity of the satellite causes a Doppler effect

in different frequencies. In most of cases, it is sufficient to search the frequencies

when the maximum error will not be more than 500 Hz [35].

• Detection Thresholds

The correlation process has a number of peaks. A threshold signal detector is re-

quired to determine the presence of GPS signals [36]. The correlation peak in the

minimum value should exceed the threshold for the acquisition process to declare

the signal.

Tracking

The key purpose of the tracking channel is to achieve precise Doppler and code delay

estimation [37]. In carrier correlation, the input digital IF signal from the front-end is cor-

related with the carrier signals to obtain In-phase (I) and Quadrature-phase (Q) data. The

carrier signals are synthesized by the carrier Numerically Controlled Oscillator (NCO)

and the discrete sine and cosine mapping functions. In general, the I and Q signals are

correlated with replica code synthesized by the code generator. In the case that the code

phase is not tracked properly, the correlations between the replica code phase and the

incoming Space Vehicles (SV) code phase are different.

Signal Level

The minimum received signal powers for three kinds of GPS signals are summarized in

Table 2.2. The main feature of GPS signals is their low signal power level. The power
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Table 2.2: Minimum received GPS signal power.

Power (dBW) L1 (C/A Code) L1 (P Code)
L2 (P Code

or C/A Code)

At 3 dB gain linearly polarized antenna -160 -163 -166

At unity gain antenna -3 -3 -3

At typical RHCP antenna 3.4 3.4 3.8

At unity gain RHCP antenna -159.6 -162.6 -165.2

of the signals received at a user equipment is nearly 10−16 watt, or one-billionth of a

billionth of the power consumed by a single 100 watt light bulb. In normal operation, the

C/A signal power density at a receiver is below the noise floor and it is not clear on a

spectrum analyser. For an antenna with a 3 dB gain, the minimum received signal power

of a L1 C/A signal is −160 dBW [38], while that of a L1 P code signal is -163 dBw.

Moreover, L1 signal with either C/A code or P code has -3 dB for a unity gain antenna.

The minimum received GPS signal power is 3.4 dB, for both either C/A code and P code,

for a typical Right-Hand Circular Polarization (RHCP) antenna.

2.1.3 Effects of Interference on GPS Satellite Signal Receivers

GPS Signal Model

The complex baseband GNSS signal received by an N-element antenna array of arbitrary

structure can be expressed as

x(nTs) =

M∑

m=0

αmd(nTs − τm)c(nTs − τm)ame
jφm+j2πfmnTs

+
J∑

j=0

vj(nTs)bj + η(nTs) (2.1)

where M and J are the numbers of multipath and interferer components, respectively. Ts

is the sample interval, τm is the code delay, φm is the phase shift, αm is the gain factor and

fm is the Doppler frequency. The general GPS x(nTs) stands for the transmitted naviga-

tion data bits and c(nTs) is a PRN code. We suppose that vi(nTs) is the waveform of the

jth interferer and η(nTs) represents the spatial temporal white zero-mean Gaussian noise
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and its variance σ2. Moreover, am and bj are the steering vectors of the mth multipath

and the jth interferer components, respectively.

Therefore, I can put the received data x in a more compact form by defining the steer-

ing matrices A and B, and the vectors of GPS and interfering signals can be transformed

as

x = As + Bv + n (2.2)

where

A = [a0, · · · , aM ]

B = [b1, · · · , bJ ]

s = [α0c(nTs − τ0)e
jφM+j2πf0nTs, · · · , αMc(nTs − τM)ejφM+j2πfMnTs]T

v = [v1(nTs), · · · , vj(nTs)]
T (2.3)

noting that the steering matrice A and B incorporate the whole spatial characteristics of

the array and have full rank. Therefore, it is assumed that all samples are located in the

same bit [39].

Interference Suppression at GPS Receivers

Any navigation system can be affeceted by an interferer with a high power. GPS signal

is very easy to be influenced by interfering signals from unknown directions because it

arrives at the receiver at a very low-power level, 20-30 dB below the receiver’s thermal

noise level. Therefore, the performance of GPS navigation degrades significantly in the

presence of high-power interference.

Interference is normally defined as eirher wideband or narrowband, which depend on

its bandwidth relative to the bandwidth of the desired GPS signal. Here the L1 C/A signal

is discussed. The ultimate limit in narrowband interference is a signal consisting of a

single tone, referred to as a Continuous Wave (CW). Table 2.4 and Table 2.3 summarize

various types and potential sources of interferers [37].
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Table 2.3: Types of interference and potential sources for wideband environment

Type Potential Sources

Band-limited Gaussian
International matched

bandwidth noise jammers

Phase/frequency modulation
Television transmitters or

nearband microwave link transmitters

Matched spectrum International matched-spectrum jammers

Pulse
Any type of burst transmitter

such as radar or ultrawideband

Table 2.4: Types of interference and potential sources for narrowband environment

Type Potential Sources

Phase/frequency modulation Intentional chirp jammers from AM radio station

Swept continuous wave Intentional swept CW jammers or FM stations

Continuous wave near-band unmodulated transmitted’s carriers

The main strategy of interference mitigation is to eliminate the jamming signal or

reduce the power of interference. Many interference mitigation techniques have been

carried out for GPS receivers , including the RF/IF filtering, the use of sufficient number of

bits and AGC, augmentation of GPS by adaptive antenna array processing [40, 31, 7, 10].

Interference can be filtered out by either a GPS antenna or RF/IF filters in the front end

of a commercial GPS receiver. The use of augmentation of GPS by ground is too rich to

implement. Since interference in a GPS environment comes from specific directions, the

adapive antenna array processing techniques are considered in most of the time [37, 38].

There are two representative adaptive array algorithms. One is known as a nulling

antenna system [41, 42], which is used to cancel interfering signals, and the other one

is called a beam former [43, 44, 45], which does not only cancel the interfering signals,

but also leads to the components of the satellite signals at each element aligned in phase,

providing useful gain in the direction of the signal of interest.

Although the adaptive nulling technique can adaptively place nulls in the directions

of interfering signals, it may be inadequate for wideband operation. Thus, space-time
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Fig. 2.2: The structure of self-coherence of GPS signal.

adaptive processing (STAP) [7] has been proposed in recent years to solve these problems.

The STAP technique has been widely used to reduce the effect of interference because it

greatly increases the degree of freedom under the same antenna conditions.

An interference suppression method based on STAP technique has been proposed

which uses self-coherent feature of GPS signals [46]. This approach is based on the

structure of GPS signal. A block diagram of the proposed algorithm is shown in Fig 2.2,

which consists of a main channel and a reference channel. The samples in both channels

are processed by the beam forming weight vector w and another processor f. The samples

of the reference channel are lP chips (P = 1022, 1 ≤ l < 20) delay of the main channel’s

data. The model of the main channel is given by

x[n] = a0s0[n] +

J∑

j=1

ajsj[n] + n[n] (2.4)

where x[n] is the M × 1 data vector, s0(n) is the desired GPS signal and sj[n] is the jth

interferer, a0 and aj are the M × 1 steering vectors of the desired GPS signal and the

jth interferer, respectively, and n[n] is the noise vector. I assumed in these thesis that the

desired signal, interference and noise are uncorrelated.

Because of the repetition of the GPS signal, the GPS signals of two channels in Fig

2.2 have the same values as long as they are within the same symbol period. However,

the interferer samples have different values because they have a different periodic signal
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structure from that of the GPS signal. The samples of the reference channel are given by

x[nT − lPTs] = a0s0[n] +
J∑

j=1

ajsj [nT − lPTs] + n[nT − lPTs] (2.5)

The algorithm can find the weight vectors w and f by maximizing the cross-correlation

between the output of both the main channel and the reference channel.

The main advantage of the algorithm is that is makes full use of the strucure of GPS

signals and does not need any prior knowledge of the transmitted signal or the direction

of the satellites. Besides, this method is not susceptible to steering vector errors and

therefore very robust. So the algorithm may be used more widely in GPS interference

cancellation.

Although the STAP technique is effective in interference suppression, it has a high

computational complexity. Some techniques for solving this problem are proposed in

[6, 15, 47, 48].

Moreover, we can provide better performance by improving equipment with jammer

rejection and more robust receiver signal processing with complex correlators. We can

also avoid interferer environments by using navigation systems. Finally, the interfering

signals can be cancelled effectively by attacking the jammer directly.
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2.2 General Array Signal Model

In the beam forming research [6, 15, 47, 48], an array of sensors is employed, and the

signal of interest or the desired signal is assumed to arrive from some specific directions

with interfering signals from other directions. These sensors are located at different spatial

positions. The main task of interference suppression is that collecting spatial samples and

processing them to null out or reduce the effect of interfering signals and extract the

desired signal. Thus, a specific beam pattern of the array system is achieved with the

main beam pointing to the desired signals and nulls towards the interferers.

According to the bandwidth, beam forming systems can be divided into two cate-

gories: narrowband and wideband.

A narrowband beam forming structure based on a linear array with M sensors is

shown in Fig. 2.3. The output y(t) at time t is given by a linear combination of these

spatial samples xm(t), m = 0, 1, 2, . . . ,M − 1, as

y(t) =

M−1∑

m=0

xm(t)w
∗
m (2.6)

where wm and * denotes the coefficients of the sensors and the complex conjugate, re-

spectively.

This model is only useful for sinusoidal or narrowband signals, where the bandwidth

of the impinging signal should be small enough to make sure the time delay between

received sensor signals can be approximated by a simple phase shift. Besides, I normally

assume the sensors are identical and omnidirectional [49, 50, 51].

Now I study the array’s response to an impinging complex plane wave ejωt with an

angular frequency ω and a DOA angle θ, where θ is measured from the broadside of the

linear array. Without loss of generality, I assume the phase of the signal is zero at the first

sensor. Hence the signal received by the first sensor is x0(t) = ejωt and by the mth sensor

is xm(t) = ejω(t−τm), m = 1, 2, 3, . . . ,M − 1, where τm is the propagation delay for the

signal from sensor zero to sensor m and it is a function of θ. Therefore, the beam former

output is given by

y(t) = ejωt
M−1∑

m=0

e−ωτmw∗
m (2.7)



2.2. General Array Signal Model 16

with τ0 = 0. The response of the output changes to:

P (ω, θ) =

M−1∑

m=0

e−jωτmw∗
m = wHa(ω, θ) (2.8)

where {·}H is the Hermitian transpose operation and the weight vector w holds the M

coefficients of the sensors, given by:

w = [w0, w1, . . . , wM−1]
T (2.9)

and a(ω, θ) is known as the steering vector, which is given by:

a(ω, θ) = [1, e−jωτ1 , . . . , e−jωτM−1 ]T (2.10)

where {·}T is transpose operation.

In array processing, if the inter-element spacing of the impinging signals array is too

large, then the sources at different locations may have the same array steering vector,

which leads to the spatial aliasing problem, because I cannot determine their locations

based on the received array signals.

We assume a uniformly spaced linear array with an inter-element spacing d, and I

have τm = mτ = m(dsinθ)/c and ωτm = m(2πdsinθ)/λ, where λ is the corresponding

wavelength and ω is the angular frequency. Then the steering vector can change to

a(ω, θ) = [1, e−jωτ1 , . . . , e−jωτM−1 ]T

= [1, e−j(2πdsinθ)/λ, . . . , e−j(M−1)(2πdsinθ)/λ]T (2.11)

To avoid aliasing, the condition |2π(sin θ)d/λ| < π has to be satisfied. Then I have

|d/λ sin θ| < 1/2. Therefore the sensor spacing should be less than half of the signal

wavelength λ.

Normally, I always set d = λ/2, so ωτm = mπ sin θ and the steering vector is given

by:

a(θk) = [1, e−jπ sin θk , · · · , e−j(M−1)π sin θk ]T (2.12)

If there are K signals impinging from different DOA angles θ0, · · · θK−1, then the steering
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vector can be written into a matrix form as

A =




1 e−jπ sin θ0 . . . e−j(M−1)π sin θ0

1 e−jπ sin θ1 . . . e−j(M−1)π sin θ1

...
...

. . .
...

1 e−jπ sin θK−1 . . . e−j(M−1)π sin θK−1




(2.13)

the matrix A can be briefly written as

A = [a0(ω, θ0), a1(ω, θ1), a2(ω, θ2), · · · , aK−1(ω, θK−1)]
T (2.14)

then the array output x(t) can be computed as

x(t) = A · s(t) + n(t) (2.15)

where

x(t) = [x0(t), x1(t), · · ·, xM−1(t)]
T

and

s(t) = [s0(t), s1(t), · · ·, sK−1(t)]
T

are the received array signal vector and source signal vector, respectively. n(t) is a random

noise vector.

As the signal bandwidth increases, the performance of a narrowband beam former

will degrade. For wideband signals, each of them consists of infinite number of differ-

ent frequency components, and the value of the weights should be different for different

frequencies. Thus, the new weight vector for wideband environment should be written as

w(ω) = [w0(ω), w1(ω), · · · , wM−1(ω)]
T (2.16)

Traditionally, a method to form such a set of frequency dependent weights is to use

tapped delay-lines (TDLs) and FIR/IIR filters in its dicrete form. Either TDLs or FIR/IIR

filters perform a temporal filtering process to form a frequency dependent response for

each of the received wideband sensor signals to cancel out the difference of phase for

different frequency components. The output of such a wideband beam former can be

computed as:

y(t) =

M−1∑

m=0

F−1∑

f=0

xm(t− fTs)× w∗
m,f (2.17)
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where F − 1 is the number of delay elements associated with each of the M sensors and

Ts is the delay between adjacent taps of the TDLs.

The weight vector of a wideband beam former can be expressed as

w = [w0,w1, · · · ,wF−1]
T (2.18)

where each vector wf , f = 0, 1, · · · , F−1, contains the M complex conjugate coefficients

found at the ith tap position of F TDLs, and is expressed as

w = [w0,f , w1,f , · · · , wM−1,f ]
T (2.19)

Note that aw(θ, ω) is the steering vector for wideband signals and its elements correspond

to the complex exponentials ejω(τm+iTs)

aw(θ, ω) = [e−jωτ0 , · · · , e−jωτM−1 , · · · , e−jω(τ0+Ts), · · · , e−jω(τM−1+Ts)

, · · · , e−jω(τ0+(F−1)Ts), · · · , e−jω(τM−1+(F−1)Ts)]T (2.20)

Written the array output as a digital form, then the nth snapshot vector x[n] of the

received array signals can be expressed as

x[n] = A · s[n] + n[n] (2.21)

where

x[n] = [x0[n], x1[n], · · ·, xM−1[n]]
T ∈ C

M×1

and

s[n] = [s0[n], s1[n], · · ·, sL−1[n]]
T ∈ C

L×1

For finding out a weight vector, it is very important to estimate an effective correlation

matrix of received array data Rxx.

2.3 Basics of Beam Former

2.3.1 Optimization Using a Reference Signal

If there is a reference signal r[n] available, a narrowband beam forming structure can

employ it to estimate the weights of the beam former [52], which is shown in Fig 2.4. The
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Fig. 2.4: The reference signal based (RSB) beam forming structure.

array output is substracted from an available reference signal to generate an error signal,

and I have:

e[n] = r[n]− y[n]

= r[n]− wHx[n] (2.22)

Using the minimum mean-squared error (MSE), given by

MSE = E{e[n]e∗[n]}

= E{(r[n]−w
H [n]x[n])H(r[n]−w

H[n]x[n])}

= E{|r[n]|2} − E{wH[n]x[n]r∗[n]} −

E{r[n]xH [n]w[n]}+ E{wH [n]}RxxE{w[n]}. (2.23)

Taking the gradient of (2.23) with respect to w
∗ leads to

∇
w

∗ = −zxr +Rxxw[n] (2.24)

where

zxr = E{x[n]r∗[n]}

let ∇
w

∗ equal to zero and solving it leads to the following optimum weight vector, which

is the well-known Wiener-Hoff equation,

wMopt = R
−1
xxzxr. (2.25)

The scheme is employed to acquire a weak signal in the presence of a strong interferer

by setting the reference signal to zero and initializing the weights to provide an omnidi-

rectional pattern [53]. Besides, the MSE minimization scheme is also called the Wiener
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filter. In general, the Wiener filter provides higher output SNR compared to the MVDR

in the presence of a weak signal source. The two processors provide almost the same

performance because the input signal power is much lower than the background noise.

This result is discussed in [54, 55].

The required reference signal for the Wiener filter may be produced in many different

ways, depending upon the application. The approaches based on using reference signals

to estimate array weights have been discussed in [43, 44, 45].

Although the reference signal based beam former may look unrealistic, it provides

a chance for the standard adaptive algorithms to be employed in many adaptive beam

formers, such as the least mean square (LMS) algorithm and the recursive least squares

(RLS) algorithm [56, 57].

2.3.2 Null-Steering Beam Former

The nulling-steering beam forming method is used to cancel a plane wave arriving from

a direction and produces a null in the response pattern in the DOA of the plane wave.

DICANNE is an early scheme, which achieves this by the estimation of the signal arriving

from a specific direction by steering a conventional beam in the direction of the source

and substracting the output of this from each element [41, 42]. It is very effective to cancel

strong interference and could be repeated for multiple interference cancellation.

A beam with unity response in the direction of the desired signal and nulls in the

directions of interferers may be formed by estimation of the weights of a beam former,

using some constraints. Assume that ao is the steering vector in the direction where unity

response is required and that a1, · · · , aK−1 are K − 1 steering vectors corresponding to

K − 1 directions where nulls are required. the desired weight vector can be obtained by

solving the following equation:

wHa0 = 1 (2.26)

wHak = 0, (2.27)

the solution is given by using matrix notation

wHA = cT (2.28)
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where A is a matrix associated with all directional sources, given by

A = [a0, a1, · · · , aK−1] (2.29)

and c is a vector of all zero except for the first element, given by

c = [1, 0, · · · , 0]T (2.30)

Assume that the inverse of A is valid, which requires that all steering vectors are linearly

independent. Thus, the solution of the weight vector is given by

w = A−1c (2.31)

Because of the structure of the vector c, the first row of matrix A−1 forms the weight

vector. In other words, the weights have the desired properties of unity response in the

desired direction and nulls in the directions of interferers.

When the number of required nulls is less than M − 1, i.e. K < M − 1, the matrix A

is not a square matrix. So the solution of the weight vector is given by

w = A(AHA)−1c (2.32)

Although this beam forming method has nulls in the directions of interferers, it is not

effective to minimize the uncorrelated noise at the array output. It is possible for us to

minimize the mean output power subject to some constraints [58].

An application based on null-steering beam forming for detecting an amplitude mod-

ulated signal by placing nulls in the known directions of interference is described in [59],

which can reduce the power of the strong interference in a mobile communications sys-

tem. The application of a null-steering scheme for a transmitting array employed at a

station is discussed in [60], by minimizing the interference toward other channel mobile

users. Moreover, the performance analysis of a null-steering algorithm is presented in

[61].

2.3.3 Beam Former for Maximizing the Output SINR

The shortcoming of null-steering beam forming is that it needs the knowledge of the

directions of interferers to estimate the weight vectors instead of maximizing the output



2.3.3. Beam Former for Maximizing the Output SINR 22

SNR. In this section, the optimal beam forming method is introduced, which overcome

the limitations.

Assume that an M-dimensional complex vector ŵ represent the weights of a beam

former, which can maximize the output SNR without any constraints. An expression for

ŵ can be given by [52, 62]

w = µ0R
−1
N a0 (2.33)

where

RN = E{n[n]nH [n]} (2.34)

with

n[n] = [n0[n], n1[n], · · · , nM−1[n]]
H (2.35)

is the correlation matrix of the noise alone, and n[n] is theM×1 noise vector. It means that

it does not contain any information about the directions of desired signals and jamming

signals and µ0 is a constant. For an array constrained to have a unit response in the

direction of the desired signal, µ0 can be given by

µ0 =
1

a0R−1
N a0

(2.36)

when g = 1, a distorted response will be achieved. Thus, the weight vector can be

expressed as

w =
R−1

N a0

aH
0 R−1

N a0

(2.37)

In practice, the correlation matrix of noise alone is not usually available, so the

Rxx = E{x[n]xH [n]} (2.38)

is used to estimate the weight vector instead of RN . An expression for the weight is given

by

ŵ =
R−1

xxa0

aH
0 R−1

xx a0

(2.39)

For the optimal beam former to maximize the SNR by cancelling interferers, the

number of interfering signals must be less than (M − 2), because a linear array with M
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elements has (M−1) degrees of freedom and one is for the direction of the desired signal.

However, the array beam former may not be truly able to achieve the maximization of the

output SNR by reducing in every interferer because of environment effects.

According to the researches of mobile communication, the optimal beam former is

often seen as the optimal combiner. Discussion on the application of the optimal combiner

to improve the performance of output SINR can be found in [63, 64, 65].

2.4 Linearly Constrained Minimum Variance Beam For-

mer

This adaptive beam forming algorithm assumes that the reference signal is not available,

but the information of DOA angle of the signal of interest and their bandwidth range are

known. Thus, some constraints can be applied on the array coefficients and minimize the

power of the output subject to the applied constraints. The response of the beam former

is constrained by some specific directions of the impinging desired signals, which are

preserved subject to a phase response. Therefore, the output components will obtain a

gain due to the interfering signals being minimized.

The main idea of LCMV beam forming is to ensure that any signal having a frequency

ω0 and DOA angle θ0 passes the beam former with a specified response f , where f is a

constant, given by:

wHa0(θ0) = f (2.40)

and the value of the mean output power is given by

E{‖y[n]‖2} = E{wHx[n]x[n]Hw}

= wE{x[n]x[n]H}w

= wHRxxw (2.41)

Thus, the LCMV problem can be computed as:

min
w

wHRxxw

subject to wHa0(θ0) = f (2.42)
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This single constraint formulation can be generalized by applying to multiple linear

constraints for more control of the beam former’s response, for example, by using more

information of DOA angles and frequencies.

To find the optimum weight vector w, the method of Lagrange can be used. Firstly, a

new function FLCMV is formulated to transform the constrained optimizing problem into

a unconstrained one by using the Lagrange multiplier method, which is given by

FLCMV = wHRxxw + λ1(w
Ha(θ0)−G0) + λH

1 (w
Ha(θ0)−G0)

H (2.43)

where λ1 is an indeterminate parameter. Secondly, differentiating the function in Equation

(2.43) with wH , I have:

∇wHFLCMV = Rxxw + λa(θ0) (2.44)

Thirdly, setting this result equal to zero, the optimal weight vector wopt can be calcu-

lated in term of the Lagrange multiplier:

wopt = −R−1
xx a(θ0)λ (2.45)

Noticing that the parameter λ satisfies the constraint Equation (2.43), I have:

−a(θ0)
HR−1

xxa(θ0)λ = f (2.46)

Finally, solving this equation for λ and substituting λ into Equation (2.45) yields:

wopt =
fR−1

xx a(θ0)

a(θ0)HR−1
xxa(θ0)

(2.47)

which is the final solution to the LCMV problem.

As described, the processor weights are selected by minimizing the output power of

the processor while maintaining a non-zero response in the look direction. The LCMV

beam former is an optimum beam former in terms of maximizing the output SINR. This

is also known as minimum variance distortionless response (MVDR) [66], if I constrain

the array with a unit response to the desired signal, namely, f = 1.

For other cases, i.e. a non-broadside arrival, the constraint matrix can be formulated

by sampling the frequency band of interest of the signal and constrain the response of

beam former to those frequency points to be the desired ones, which are usually some

pure delays or zero if we want to null out those signals.
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2.5 Generalized Sidelobe Canceller

Generalized Sidelobe Canceller can be viewed as a method for transforming the con-

strained minimization problem like LCMV into an unconstrained one in order that the

well-known standard unconstrained adaptive algorithms can be employed in this struc-

ture, which is shown in Fig. 2.5.

The LCMV beam former can be considered as having two conditions: one is the

constraint:

wHa(θ0) = f, (2.48)

and the other one is to minimize the output variance:

min
w

wHRxxw. (2.49)

Then w can be decomposed into two orthogonal component wq and −v, which is defined

as [67, 68]

w = wq − v (2.50)

subject to

aH(θ0)wq = f (2.51)

lies in the range of the steering vector a(θ0), which can be rewritten by

wq = a(θ0)(a
H(θ0)a(θ0))

−1f (2.52)
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while the component v is the null space of a(θ0), i.e, the space of all v fulfilling aH(θ0)v =

0. We can use a vector wa to linearly combine the basis vectors in an M ×M matrix B to

form v, then I have:

v = Bwa (2.53)

where B is the blocking matrix which can be obtained from a(θ0) using some orthogonal-

ization methods such as the cascaded columns of difference (CCD) method, the singular

value decomposition (SVD) method and QR decomposition [69].

Given the choice for wq and B, Equation (2.50) can be changed into

w = wq − Bwa (2.54)

which satisfies the constraint equation for any choice of wa.

Then the LCMV problem is reduced to that of finding the weights wa without any

constraints any more. A modified LCMV formulation is given by:

wa,opt = argmin
wa

[wq − Bwa]
HE{x[n]xH [n]}[wq − Bwa]

= argmin
wa

[wq − Bwa]
HRxx[wq − Bwa] (2.55)

The solution to the problem in Equation (2.55) can be given by Equation (3.9). Ac-

cording to wopt = wq − Bwa,opt, I have:

Bwa,opt = wq −
G0R−1

xxa(θ0)

a(θ0)HR−1
xx a(θ0)

(2.56)

Multiplying both sides of Equation (2.56) by BHRxx, for BHa(θ0) = 0, I have:

BHa(θ0)B
Hwa,opt = BHa(θ0)wq − BHa(θ0)

G0R
−1
xxa(θ0)

a(θ0)HR−1
xxa(θ0)

= BHa(θ0)wq − 0 (2.57)

Then multiplying both sides by (BHRxxB)−1, the solution to wa can be obtained by:

wa,opt = (BHRxxB)−1BHRxxwq (2.58)

2.6 Other Interference Suppression Algorithms

The traditional LCMV beam former and GSC introduced are two classical algorithms for

interference suppression. In addition, there are many adaptive beam forming algorithms
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which are not introduced in this thesis, such as the soft constrained minimum variance

(SCMV) beam former and the correlation constrained minimum variance beamformer

(CCMV). All of those algorithms are mainly proposed for two reasons, one is improving

the performance of output SINR, the other one is the computational complexity.

A new beam forming technique to suppress interfering signals is proposed in [39].

This method consists of two stages. Firstly, using the fact that the global navigation

system signal (GNSS) is well below the noise floor, the subspace method is applied to find

the interference subspace. Next, after despreading the signal, the interference subspace is

used as a constraint in the following optimization problem.

Another method is proposed in [70], where based on circular antennas arrays, the min-

imum norm (min-norm) and LCMV methods are considered for interference suppression.

In theory, I usually assume that the signals are uncorrelated with each other, the anten-

nas are ideal and the position is correct. However, in practice, many factors invalidating

these ideal assumptions exist and sometimes some of them are very serious and can not

be ignored. Thus, robust adaptive beam forming algorithms are developed to deal with

this problem [71, 72, 73, 74, 75, 76, 77].

Among them, many approaches have tried to overcome the mismatch error between

the real DOA of signal of interest and the designed look direction of the array to obtain

the better improve the robustness of the beam former. For example, I can use a calibration

signal to find the quiescent vector and the blocking matrix in GSC, or I can apply some

target tracking methods to estimate the true DOA angle or the signal subspace to reduce

or even cancel the mismatch error. If only the desired signal is present during a period I

know, it can be used to adjust the array data to the right direction.

2.7 The Computational Complexity Analysis

The computational complexities of RSB algorithm, null-steering beam former, LCMV

Beam former and the GSC algorithm are compared in term of real multiplications with

respect to the sensor number M , which is shown in Table 2.4.

For RSB algorithm, I need O(NM2) real multiplications to calculate Rxx and O(NM)
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Table 2.5: A summary of computational complexities.

RSB Null-steering LCMV GSC

O(NM2) +O(NM) KM2 + 4M O(NM2) + 22M 8M2 + 4M − 4

−20 −15 −10 −5 0 5 10
−40

−30

−20

−10

0

10

20

S
IN

R
(d

B
)

SNR(dB)

 

 
RSB
Null−steering
LCMV
GSC

Fig. 2.6: Output SINR versus the input SNR with one interfering signal for M = 5.

real multiplications to obtain zxr. We also need additional 4M real multiplication to get

the weight vector. Thus, the total computational complexity will be O(NM2)+O(NM).

For null-steering beam former, the total computational complexity will be KM2+4M .

For LCMV Beam former, the total computational complexity will be O(NM2)+22M .

For GSC Beam former, the total computational complexity will be 8M2 + 4M − 4.

2.8 Simulation

In this part of simulation, the reference signal beam former, null-steering beam former,

LCMV beam former and GSC beam former are compared. I suppose it is based on a

uniform linear array with 5 antennas and half-wavelength spacing. One arriving angle

of narrowband interferer is randomly generated between −π and π, and the input INR is
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Fig. 2.7: Output SINR versus the input SNR with two interfering signals for M = 5.

fixed at 15 dB. The SNR is varied from −20 dB to 10 dB The input SINR is varied from

0.0014 dB to 1.1933 dB. The output SINR versus the input SNR, averaged over 1000

simulation runs, is shown in Fig. 2.6.

In this four algorithms, the null-steering algorithm provides the worst performance as

it does not need any information of DOA angles and just forms null in the direction of

interfering signals. The performance of LCMV algorithm and GSC algorithm are quite

similar although LCMV provides better performance than GSC algorithm when SNR is

getting closer to INR.

Then I add one more interfering signal to the received data. The results are very

similar as the previous simulations.

2.9 Summary

In this chapter, firstly, I have reviewed the background of GPS, and introduced the struc-

ture of GPS signals. GPS signals are susceptible to all kinds of interferers from different

sources, such as television and microwave. Then I introduce the signal level of GPS signal
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and different steps of GPS. All kinds of interference suppression methods are reviewed,

such as the STAP method. In particular, I have focused on methods based on antenna

array signal processing. A review about general reference signal beam former model and

null-steering model are provided and two representative beam formers, the LCMV beam

former and the GSC are described in detail. GSC algorithm can be looked as an improved

method compared with LCMV. Other algorithms for interference suppression which are

not mentioned in this thesis are also important, like SCMV and CCMV. In the simulation

part, I compare with these four difference algorithms by varying the input SINR.



Chapter 3

Blind Interference Suppression

Algorithms Based on Antenna Arrays

In Chapter 2, some adaptive beam forming algorithms for interference suppression are

discussed, such as the LCMV beam former, which needs to know the directions of the

desired signals. However, in practice, it is very difficult for us to gain the knowledge of

directions of signals. Thus, the power minimization method is reviewed in this chapter,

which does not need any prior information about directions of signal. This algorithm

forms nulls in the the directions of interference, so it can reduce or cancel interfering sig-

nals effectively. Besides, a useful technique for separating interference from the received

array data is also introduced in this chapter, called PCA. Finally and more importantly,

I will propose an improved power minimization structure for interference suppression

which combined with PCA. Simulation results show that the proposed method is more

effective to increase the output SINR than the conventional power minimization method.

3.1 Power Minimization Method

3.1.1 Basics of the Power Minimization Method

The null steering technique has been widely used in signal navigation system, because it

provides good performance for cancelling interference or reducing the effect of interfer-

ence. The power minimization method is applied when the power of the desired signal is

31
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well below the noise level and the power of interference [6]. In a highly dynamic envi-

ronment, it is very difficult to acquire the prior information about the signals. The main

advantage of the power minimization method is that I do not exploit any priori information

on the angular directions of the impinging signals [21].

As mentioned, only narrowband signals are discussed in this thesis. Consider a uni-

form linear array with M antennas. The array receives a narrowband desired signal s1

from the direction θ1 measured from the broadside of the array, and K − 1 narrowband

interferers sk, k = 1, · · · , K − 1 from directions θk, k = 2, · · · , K − 1, respectively. We

suppose that the signals are uncorrelated with each other and of zero mean, and the sensor

noise is temporally and spatially white. Thus, I can rewrite the array data in a matrix

format:

XM×N = AM×KSK×N + NM×N (3.1)

where N is the sample number, and X, S and N are data matrices denoting the received

signals, source signals and noise, respectively, which are defined as

S = [s[1], s[2], . . . , s[N ]]

X = [x[1], x[2], . . . , x[N ]] (3.2)

with

x[n] = [x1[n], x2[n], . . . , xM [n]]T , (3.3)

s[n] = [s1[n], s2[n], . . . , sK [n]]
T

for n = 1, . . . , N .

The structure of the power minimization method is shown in Fig 3.1, where the first

received signal x1[n] is estimated as the reference antenna. The remaining antennas are

viewed as auxiliary elements with the remaining received signals xm[n], m = 2, · · · ,M .

The weight vector is formed as

w = [w1, w2, · · · , wM ]T (3.4)

where w1 = 1 for the power minimization method.

The main idea behind this method is to minimize the average power Py of the output

signal y[n] subject to the constraint of w1 = 1. Thus, the problem can be formulated as
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Fig. 3.1: Structure of the power minimization method.

min
w

Py

subject to wHc = 1 (3.5)

where

Py = E{y2[n]}

= wHRxxw (3.6)

and c = [1, 0, · · · , 0]T is an M × 1 vector.

As the sample number N is finite, it is impossible for us to find the true covariance

matrix Rxx in practice. Thus, the approximation of Rxx is used instead, which is given by

Rxx ≈
1

L
XXH (3.7)

To find an optimum solution to the power minimization problem, I can again apply the

method of Lagrange multipliers. Firstly, a new function F1 is formulated to transfer the

constrained optimizing problem into an unconstrained one using the Lagrange multiplier

method, which is given by

F1 = wHRxxw + λ(wHc − 1) + λH(wHc − 1)H (3.8)

where λ is the Lagrange multiplier.
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solving this equation for λ and obtain the optimal solution:

wopt =
R−1

xx c

cHR−1
xx c

(3.9)

Compared with the LCMV beam former, the power minimization method replaces

the steering vector of the desired signal a(θ0) by an M × 1 vector c. This method do

not need any angular information about directions of the signals, either the desired signal

or interference. The power minimization method is very effective in a highly dynamic

environment since it is very difficult for the GPS receivers to obtain directions of signals.

Moreover, this method can form M − 1 nulls in the directions of M − 1 interferers.

3.1.2 Eigen-Decomposition of the Covariance Matrix

Eigen-decomposition based on the subspace technique has been carried out and applied

to GPS signal in [6]. The estimation of array correlation matrix Rxx has been used in the

power minimization method, which is defined as

Rxx =

K−1∑

k=0

σ2
kakaH

k + σ2
nI (3.10)

where E{·} represents the expectation operation, I is the identity matrix, σ2
k and σ2

n de-

notes the power of the kth source signal and the noise, respectively. Since signals and

noise are uncorrelated, all cross-terms are cancelled out, i.e.

E{si[n]s
∗
j [n]} = 0 for any i 6= j

E{si[n]s
∗
j [n]} = σ2

i for i = j

E{si[n]n
∗[n]} = 0 for any i

(3.11)

Then, Rxx can be expressed by its eigenvalues and their corresponding eigenvectors.

Moreover, the eigenvalues of Rxx can be divided into two sets when the received array

data consists of uncorrelated directional source signals and uncorrelated white noise.

The eigenvalues that are of equal values are contained in one set. Their value is equal

to the variance of the noise. The eigenvalues which are a function of the parameters of the
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directional sources are contained in the second set, and their number is equal to the num-

ber of these sources. The Rxx of an array of M elements immersed in K directional source

signals and spatially white noise has K signal eigenvalues and M-K noise eigenvalues.

Denoting the M eigenvalues of Rxx in a descending order by λm, m = 1, 2, · · · ,M

and their associated eigenvectors by Um, m = 1, 2, · · · ,M , the matrix Rxx can be written

by using eigen-composition as:

Rxx = ΣΛΣ
H (3.12)

with a diagonal matrix

Λ =




λ1 0 . . . 0

0 λ2 . . . 0

0 0
. . . 0

0 0 . . . λM




(3.13)

and eigenvector matrix

Σ = [U1,U2, · · · ,UM ] (3.14)

where Um is the mth eigenvector corresponding to the mth eigenvalue λm.

Using the fact that the eigenvectors form an orthonormal set, the following expression

for Rxx is given by

R =
M∑

m=1

λmUmUH
m + σ2

nI (3.15)

3.1.3 Signal Subspace Based on Power Minimization

For the general GPS case, the spatial covariance matrix can be divided into three compo-

nents: the covariance matrix of the desired GPS signal, the covariance matrix of interfer-

ence and the covariance matrix of noise. Equation (3.10) can be expressed as

Rxx = ρ2gpsagpsa
H
gps + AIPIAH

I + σ2
nI (3.16)

where agps is an M × 1 steering vector of the GPS signal, ρ2gps is the power of the GPS

signal, AI is an M ×K matrix containing the steering vectors for the K interferers, which

is defined as

AI = [a0, a1, · · · , aK−1] (3.17)
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with

ak = [a1,k, a2,k, a3,k, · · · , aM,k], (3.18)

PI is an K × K diagonal matrix with the powers of the interfering sources because the

interference is uncorrelated with each other, which is defined as

PI =




ρ0 0 . . . 0

0 ρ1 . . . 0

0 0
. . . 0

0 0 . . . ρK−1



. (3.19)

Finally, σ2
n is the noise power. Since the GPS signal is well below the noise floor, Equation

(3.17) can be simplified into

Rxx ≈ AIPIA
H
I + σ2

nI (3.20)

Note that RI = AIPIAH
I , whose rank is equal to the number of interferers. Thus, the

number of interference K must be less than that of antennas M . The Equation (3.21) can

be decomposed into

Rxx =
K∑

m=1

λmUmUH
m +

M∑

m=K+1

σmUmUH
m (3.21)

where λm and Um, m = 1, · · · , K are K larger eigenvalues and the associated eigen-

vectors, respectively, and Um, m = K + 1, · · · ,M , are the eigenvectors associated with

the smaller eigenvalues σ2
n. Subsequently, Um, m = 1, · · · , K form the K-dimensional

interference subspace and Um, m = K + 1, · · · ,M form the N −K-dimensional noise

subspace. The inverse of Rxx can be expressed as

R−1
xx =

K∑

m=1

1

λm
UmUH

m +

M∑

m=K+1

1

σ2
n

UmUH
m

=

K∑

m=1

1

λm
UmUH

m +
1

σ2
m

[I −

K∑

m=1

UmUH
m]

=
K∑

m=1

σ2
m

σ2
nλm

UmUH
m +

1

σ2
m

[I −
K∑

m=1

UmUH
m]

=
1

σ2
n

[

K∑

m=1

σ2
n

λm
UmUH

m + I −

K∑

m=1

UmUH
m]

=
1

σ2
n

[I −
K∑

m=1

(1−
σ2
n

λm

)UmUH
m] (3.22)
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Assume that the power of interference is significantly greater than that of noise, I can

consider that 1− σ2
n

λm
≈ 1. Equation (3.22) can be given by

R−1
xx =

1

σ2
n

{I −
K∑

m=1

UmUH
m} (3.23)

where
K∑

m=1

UmUH
m is the interference subspace and I−

K∑
m=1

UmUH
m is the orthogonal com-

plement of the interference subspace.

According to Equation (3.23), I can easily see that when the interference is much

stronger than noise, the orthogonal complement of the interference subspace can be sub-

stituted by R−1
xx . Thus, when the weight vector is calculated, I do not need any information

of the directions of arriving interference or GPS signals.

However, to calculate the weight vector for interference suppression by the power

minimization method, the following conditions must be satisfied:

Firstly, the desired signal must be well below the noise floor in order that I can ignore

the effect of the desired signal.

Secondly, the power of interference must be significantly greater than that of noise in

order that the inverse of Rxx can be replaced by the the orthogonal complement of the

interference subspace.

Thirdly, the number of interference is not allowed to be more than that of antennas.

Although the interference can be cancelled and optimize the output SINR using the

power minimization method, it is unavoidable that its performance degrades significantly

when the input SNR is increases, which will be shown in the simulation section.

3.2 Principal Component Analysis

3.2.1 Introduction

PCA is the oldest and best known techniques of multivariate analysis. It was first intro-

duced and improved by Pearson and Hotelling. Nowadays, as the advance of computing

technologies, it is widely used in some statistical programming packages.
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In this section, the PCA technique will be applied to the area of array signal process-

ing. The main idea of PCA is to reduce the dimensionality of a data set in which there are

a large number of signal samples.

3.2.2 Definition of Principle Components

Suppose that x[n] is a vector of M random variables, and the variances of the M random

variables and the structure of the covariances or correlations are considered. As usual,

I can not simply look at the M variables and all of the covariances and correlations.

PCA allows us to find a few derived variables that keep most of information given by

the original data. Firstly, I need find a linear combination wH
1 x[n] which contains the

maximum variance of x[n], where

w1 = [w1,1, · · · , w1,M ]T (3.24)

is an M × 1 vector and {·}H denotes conjugate transpose, that

wH
1 x[n] =

M∑

m=1

w1,mxm[n] (3.25)

Secondly, find a linear combination wH
2 x[n], which is uncorrelated with wH

1 x[n] and

having maximum variance. At the kth stage, a linear combination wH
k x[n] is found which

has maximum variance and is uncorrelated with wH
1 x[n], wH

2 x[n],· · · wH
k−1x[n]. In other

words, the kth linear combination wH
k x[n] denotes the kth principal component of the

original data x[n]. Generally, The number of principal components is less than that of the

random variables, i.e. k ≤ m. The matrix for transforming the original data into principal

components can be obtained by many methods, such as singular value decomposition

(SVD).

To apply principal component analysis to the study of array signal processing, I need

to find the weight vectors w1,w2, · · ·wM . Firstly, consider the covariance matrix Rxx of

data vector x[n], which has been defined in the previous section. This matrix contains the

covariance between the ith and the jth elements of x[n] when i 6= j and the variance of

the jth element of x[n] when i = j. In practice, the covariance matrix is unknown, and I

can replace it by a sample covariance matrix, which has been defined as Equation (3.7).
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Then I define the output vector y[n] as

y[n] = WHx[n] (3.26)

where

W = [w1,w2, · · · ,wM ] (3.27)

and

y[n] = [y1[n], y2[n], y3[n], · · · , yM [n]]T (3.28)

As the linear functions wH
1 x[n], wH

2 x[n],· · · wH
Mx[n] are uncorrelated with each other,

I can consider var(y1[n], y2[n]) = 0, var(y1[n], y3[n]) = 0 and so on. We denote that

E{ym[n]ym[n]
T } = δ2m, m = 1, 2, · · · ,M . The correlation matrix Ryy can be defined as

Ryy = E{y[n]yH [n]}

=




δ21 0 . . . 0

0 δ22 . . . 0

0 0
. . . 0

0 0 . . . δ2M




(3.29)

Secondly, to derive the form of the principal components, wH
1 x[n] is considered first.

The problem can be formulated as

max
w1

wH
1 Rxxw1

subject to wH
1 w1 = 1 (3.30)

The constraint wH
1 w1 = 1 means that the sum of squares of elements of w1 equals 1 in

order that the maximum is achieved for a non-zero w1. To solve the problem (3.30), the

approach is to use the method of Lagrange multipliers. Maximize

wH
1 Rxxw1 − λ(wHw − 1) (3.31)

where λ is a Lagrange multiplier. Differentiating with respect to w1, I have:

Rxxw1 − λw1 = 0 (3.32)
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Then I have:

(Rxx − λIm)w1 = 0, (3.33)

where Im is an M × M identity matrix. Therefore, λ is an eigenvalue of Rxx and w1 is

the eigenvector. Thus, to maximize the function wH
1 Rxxw1, the optimal weight vector is

the associated eigenvector. The quantity to be maximized is

wH
1 Rxxw1 = wH

1 λw1 = wH
1 w1λ = λ, (3.34)

so λ is the largest eigenvalue, denoted as λ1, corresponding to the eigenvector w1. Thus,

Equation (3.34) can be written as

wH
1 Rxxw1 = λ1 (3.35)

Similarly, the kth principal component of x[n] is wH
k x[n] and wH

k Rxxwk = λk, where

λk is the kth largest eigenvalue of Rxx, and wk is the corresponding eigenvector.

In summary, the correlation matrix Ryy can be also defined as

Ryy = E{y[n]y[n]}

=




δ21 0 . . . 0

0 δ22 . . . 0

0 0
. . . 0

0 0 . . . δ2M




=




λ1 0 . . . 0

0 λ2 . . . 0

0 0
. . . 0

0 0 . . . λM




(3.36)

As shown above, the eigenvectors w1,w2, · · · ,wM correspond to the eigenvalues

λ1, λ2, · · · , λM , which are the first largest, the second largest, · · · , and the smallest eigen-

values, respectively.

3.3 The Proposed Structure Based on PCA only

The theory of principal component analysis has been discussed in the last section. The

eigenvectors can be used to separate the principal components from the original data x[n],
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Fig. 3.2: Proposed Structure of the PCA technique.

and the output vector y[n] contains the principal components from large to small, i.e. y1[n]

contains the largest component and yM [n] contains the smallest component. The structure

for PCA is shown in Fig 3.2.

In this case, I can apply the PCA technique to the original data x[n] for interference

suppression, as the PCA technique can separate the components of interfering signals

from original data effectively. If there is one interferer in the received data, the principal

component of the interference is mostly contained in the first row of output y[n], that is

y1[n]. Thus, the remaining M−1 outputs are only affected by noise and the desired signal.

As the desired signal is very weak compared to noise, it is difficult decide which element

of output contains the component of the desired signal. Thus, by taking the average of the

remaining M − 1 components, I expect that I can obtain good performance in terms of

the output SINR. The weight vector is given by

wpca =
1

M − 1

M∑

m=2

wm (3.37)

If there are K interferers contained in the original data, K outputs contain the principal

components of interferers and M −K elements of output y[n] are applied to calculate the

weight vector. The weight vector for multiple interferers can be expressed as

ŵpca =
1

M −K

M∑

m=K+1

wm (3.38)

In practice, the PCA technique is carried out by SVD. Assume that the received data

X is an M ×N matrix and it is expressed as Equation (3.2).
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Fig. 3.3: The improved power minimization method based on PCA.

Then apply SVD to decompose X into the following form,

X = ULVH (3.39)

where

(i) U is an M×M matrix with the property UHU = I, which contains the eigenvectors

of XXH ;

(ii) L is an M × N matrix with nonnegative values on the diagonal and zeros off the

diagonal;

(iii) V is an N×N matrix with the property VHV = I, which contains the eigenvectors

of XHX.

3.4 Improved Power minimization Method

PCA can separate the principal components from the original data and keep most of in-

formation and characteristics. It means that good estimation of the strong signals can

be provided by applying principal component analysis when the interference is much

stronger than the desired navigation signals and noise. In this case, I can combine this

kind of technique with the traditional power minimization method. In the power mini-

mization method , the key is to minimize the difference between the reference antenna

and the auxiliary antennas in order to cancel the interfering components at the reference
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antenna effectively. We here propose a new method which combines the power minimiza-

tion method and the PCA technique. The new structure is shown in Fig. 3.3. We replace

the auxiliary paths of the traditional power minimization method by the output of PCA

which contains principal components of original data. As the principal components can

be a better representation of strong interference than the original data. I hope that the

interference at the reference antenna will be cancelled more effectively in this way.

Suppose that there are K−1 strong interfering signals contained in the original signal,

and K−1 outputs of PCA are represent as the auxiliary elements. Each auxiliary element

contains the component of a strong interferer. To formulate the new problem, I construct

an M ×K transformation matrix T as follows

T = [c, u1, u2, · · · , uK−1] (3.40)

where c = [1, 0, 0, 0, · · · ]T is an M × 1 vector, and u1, u2, · · · , uK−1 are the eigenvector

associated with the principal components. Then applying T to the original data X, I have

a new set of data X̂

X̂ = THX, (3.41)

where

X̂ = [x̂[1], x̂[2], x̂[3], . . . , x̂[N ]]

Then applying the power minimization method to the transformed data X̂, I have

min
ŵ

ŵ
H

R̂xxŵ (3.42)

s.t. cHŵ = 1

where

R̂xx = E{x̂[n]x̂[n]H} = THE{x[n]x[n]H}T , (3.43)

ŵ = [1, ŵ2, . . . , ŵK ]
T , and c = [1, 0, 0, . . .]T is an K × 1 vector. Following the solution

in the power minimization method, I can obtain the optimum solution for the new weight

vector ŵopt

ŵopt = (cH1 (T
HRxxT)−1c1)

−1(THRxxT)−1c1 (3.44)
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Table 3.1: A summary of computational complexities.

Power Minimization PCA Proposed Method

O(NM2) + 16M O(M3) + 4(M −K) O(M3) +O(M2) + 16K

3.5 The Computational Complexity Analysis

The computational complexities of the traditional power minimization method, the pro-

posed algorithm and the PCA algorithm are compared in term of real multiplications with

respect to the sensor number M , which is shown in Table 3.1.

For traditional power minimization method, O(NM2) real multiplications are needed

to calculate the R−1
xx c, 8M real multiplications are needed to calculate the cHR−1

xx c, 4M

real multiplications are needed to calculate the optimal weight vector wopt and additional

4M2 are needed to obtain R−1
xx , so it totally to O(NM2) + 16M real multiplications.

For PCA algorithm, the eigenvectors wM , m = K + 1, . . . ,M are calculated by

SVD, which need O(M3) real multiplications. The weight vector need M − K real

multiplications. So it totally to O(M3) + 4(M −K) real multiplications.

For the proposed algorithm, I need O(M3) real multiplications to calculate the SVD to

obtain eigenvectors by SVD, O(M2) real multiplications are needed to calculate THRxxT

and 16K real multiplications is needed to calculate the optimal weight vector, so so it

totally to O(M3) + 8M2 + 16K real multiplications.

3.6 Simulations

In this section, compare the performances of our the improved power minimization method,

the traditional power minimization method, the principal component analysis technique

and the LCMV beam former by using computer simulations with different sample num-

ber, antenna number and the input signal to noise ratio (SNR). We assume that the desired

signal, interference and noise are uncorrelated with each other and they are all narrow-

band signals. The optimal solution of the LCMV beam former can be found in Chapter

2.



3.6.1. Simulation I 45

−80 −60 −40 −20 0 20 40 60 80
−60

−50

−40

−30

−20

−10

0
dB

Degree

 

 

Power Minimization Approach
The Proposed Method

Fig. 3.4: The beam pattern of the proposed method and power minimization method.

3.6.1 Simulation I

In this set of simulations, the beam pattern of our improved power minimization method

is compared with that of the traditional power minimization method. There are M = 10

sensors and L = 1000 samples for each sensor. The aim is to receive a desired signal

from the broadside (θ = 20◦) and suppress one narrowband interfering signals arriving

from DOA angle θ = −60◦. The input SNR is 5 dB and the input INR is 10 dB.

We can see the result in Fig. 3.4. Both the improved power minimization method and

the power minimization method have a deep null in the direction of interference. However,

the traditional power minimization method also forms a deep null in the direction of the

desired signal. We can realize that the desired signal is seen as interference and cancelled

by minimizing the difference between the reference antenna and auxiliary elements when

the SNR is close to the INR. Apparently, the proposed method has overcome the limitation

and achieved better performance as long as the SNR is lower than the INR.
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Fig. 3.5: Output SINR versus the input SNR with one interfering signal for M = 5.

3.6.2 Simulation II

Part A

In this part, the input SNR of the SOI varies from -20 dB to 10 dB. Firstly, I suppose

it is based on a uniform linear array with 5 antennas and half-wavelength spacing. One

arriving angle of narrowband interference is randomly generated between −π and π, and

the input INR is fixed at 15 dB. The input SINR is varied from 0.0014 dB to 1.1933 dB.

The output SINR versus the input SNR, averaged over 1000 simulation runs, is shown in

Fig. 3.5. It can be seen that the performance of the power minimization method declines

when the input SNR increases, while the improved method has always achieved a better

performance and the improvement becomes significant for larger SNR values. For the

PCA method, when the input SNR is less than about −10 dB, it gives the worst perfor-

mance, and it outperforms the power minimization method when SNR is larger than about

−10 dB, but still not as good as the improved power minimization method. Moreover, the

performance of the LCMV beam former is always the best in all of methods.



3.6.3. Simulation III 47

−20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

20
S

IN
R

(d
B

)

SNR(dB)

 

 
Proposed method based on PCA
Improved power minimization
LCMV
Power minimization method

Fig. 3.6: Output SINR verus the input SNR with two interfering signals for M = 5.

Part B

We add one more interfering signal with random angle between −π and π to the received

data. The INR is fixed at 15 dB and 20 dB, respectively. All of settings is the same as Part

A. Figure 3.6 shows the result, which is very similar to the result in Part A. The LCMV

method always gives the best performance among the four solutions. However, compared

with Part A, the PCA only method has reached a worse performance. The performance

of four methods degrades because of the effect of two interfering signals.

3.6.3 Simulation III

In the third set of simulations, I increase the antenna number to 10 and the remaining pa-

rameters are the same as in Simulation II. Firstly, I discuss the case of one interferer. The

output SINR versus input SNR is shown in Fig. 3.7, with a similar result as in Fig. 3.5.

The main difference is that now the turning point is not −10 dB, but about −15dB. When

SNR is 10 dB, the output SINR of the improved power minimization method method

reaches almost 9 dB, while that in Simulation II is only 6 dB. Now I increase the number

of interference to two. The result is shown in Fig. 3.8. A difference between Fig. 3.6 and
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Fig. 3.7: Output SINR verus the input SNR with one interfering signal for M = 10.

Fig. 3.8 is that the output SINR of the traditional power minimization method begins to

decrease after SNR is −10 dB with 10 sensors, while the output SINR of the traditional

power minimization method begins to decrease after SNR is −5 dB with 5 sensors. When

the input SNR is increasing, the output SINR of the PCA method is getting closer to that

of the improved method.

3.6.4 Simulation IV

In this set of simulation, a uniform linear array with 10 antennas and half-wavelength

spacing is used. I suppose that there are seven interfering signals arriving from 20◦, 30◦,

10◦, 50◦, 80◦, −40◦, −60◦, respectively. The INRs of these signals are fixed as 15 dB.

There is also a deisired signal arriving from 0◦ and SNR is −10 dB.

Fig. 3.9 shows that when the number of interfering signals is close to the number

of sensors, the performance of the proposed method is much better than that of PCA

operation before the SNR is 5 dB. When the SNR is higher than 5 dB and closer to the

INR. the curves of PCA operation and the improved power minimization method method

decrease dramatically.
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Fig. 3.8: Output SINR verus the input SNR with two interfering signals for M = 10.
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Fig. 3.9: Output SINR verus the input SNR with seven interfering signals for M = 10.
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Fig. 3.10: Output SINR versus number of samples.

3.6.5 Simulation V

In this section, the sample number is varied from 10 to 500. The received data is tested

every 10 samples. There are one narrowband interferer and one narrowband desired sig-

nal, and SNR and INR are fixed as −10 dB and 10 dB, respectively. A antenna number

is M = 10. The desired signal arrives from the broadside (θ = 0◦) and the narrowband

interfering signals arrives from θ = −60◦.

Figure 3.10 shows the result of simulation. When the number of samples is increasing

from 10 to 50, the output SINRs rise significantly, especially for the LCMV method. The

performance of PCA method is almost the same as that of the proposed method, and the

difference between these two methods is extremely small and can be ignored. All of the

four methods can provide better output SINRs with a larger number of samples. More

importantly, the proposed method can achieve better performance than the traditional

power minimization method whether the number of samples is smaller or larger. The

LCMV method provides the best SINR among the four methods because it forms beam

adaptively with the additional information of the direction of the desired signal.
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3.7 Summary

In this chapter, I have introduced a classic blind algorithm for interference suppression,

which is called power minimization. It can achieve good performance if the power of the

desired signal is very small compared with that of interference and noise. Then principal

component analysis is reviewed, which is a well-known statistical approach. Here I ap-

pled it to suppress interference, as it can separate the principal components of interference

from the original data effectively. Combining PCA and the traditional power minimiza-

tion method, a novel method is proposed by replacing the auxiliary elements of power

minimization by principal components of interference, which are a better representation

of the strong interference than the original signal. As shown in our simulation results,

LCMV beam former provides the best performance in the four algorithms as it contains

the information of DOA angles. The proposed method can be looked as an improved

method compared with the traditional power minimization method and provide the better

performance. When the number of the interfering signal is very small. the results of PCA

operation provide better output SINR thant that of the proposed method. However, when

the number of the interference is getting closer to the sensor number the proposed method

has apparent advantage compared with the PCA operation.



Chapter 4

Performance Analysis of the Minimum

Variance Beam Former

In this chapter, I will continue investigating the power minimization method. The beam

former performance is measured by the ratio of the desired signal power to the interference-

plus-noise power, referred to as the SINR. The output SINR is affected by many parame-

ters, such as sample number, information of DOA and the correlation between the desired

signal and interference. Firstly, a conventional performance analysis of the minimum

variance beam former will be reviewed, one of the popular and important adaptive beam

forming techniques. However, the expression of this conventional method is extremely

complex and is affected by a lot of parameters. Then a simplified SINR analysis of the

minimum variance beam former is considered and it is applied to the power minimization

method. Finally, simulation results are provided for a comparison between our derived

SINR results and the simulated one.

4.1 Problem Formulation

The signal model has been discussed in Chapter 2, which is given by

x[n] = As[n] + n[n]

= a(θ0)s0[n] +

K−1∑

k=1

a(θk)sk[n] + n[n]

= a(θ0)s0[n] + v[n] (4.1)

52
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where

v[n] =
K−1∑

k=1

a(θk)sk[n] + n[n] (4.2)

denotes the interference-plus-noise vector and s0[n] is the desired signal.

The output of the minimum variance beam former can be expressed as

ŷ[n] = wHx[n], (4.3)

I can obtain the weight vector w by minimizing the output power subject to a unity gain

constraint. The expression has been discussed before:

w =
1

aH(θ0)R
−1
xxa(θ0)

R−1
xxa(θ0) (4.4)

where Rxx is the covariance matrix, a(θ0) is the steering vector of the desired signal.

We set that the weight vector satisfies the unity gain constraint toward the direction of

the desired signal:

wHa(θ0) = 1 (4.5)

The SINR of the beam former output can be analyzed through (4.4). For analyzing the

SINR at the beam former output, firstly, another expression will be derived for the weight

vector, and then apply it to calculate the SINR performance.

The covariance matrix can be expressed as

Rxx = σ2
s0a(θ0)a

H(θ0) + a(θ0)r
H + Q (4.6)

where σ2
s0

is the power of the desired signal s0, r denotes the correlation matrix between

the desired signal and the interference-plus-noise, which is given by

r = E{s⋆0v} (4.7)

and Q denotes the correlation matrix of interference-plus-noise

Q = E{vvH} (4.8)

In practice, the real value of the correlation matrix can not be obtained because of the

finite sample number. Thus, they will be replaced by the approximation

r =
1

N

N∑

n=1

s0[n]
⋆v[n] (4.9)
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Q =
1

N

N∑

n=1

v[n]vH [n] (4.10)

Thus, (4.6) can be rewritten as

Rxx = D + bbH (4.11)

where

b = σs0a(θ0) + σ−1
s0 r (4.12)

and

D = Q − σ−2
s0 rrH (4.13)

Using the matrix inversion lemma in (4.11), then I get

R−1
xx = (D + bbH)−1

= D−1 − D−1b(bHD−1b + 1)−1bHD−1 (4.14)

Applying the same method to (4.13)

D−1 = (Q − σ−2
s0

rrH)−1

= Q−1 − Q−1r(rHQ−1r − σ2
s0)

−1rHQ−1

= Q−1 +
Q−1rrHQ−1

σ2
s0 − rHQ−1r

(4.15)

Thus, (4.14) can be rewritten as

R−1
xx =

1

rHQ−1r
[(rHQ−1r)Q−1 + Q−1rrHQ−1]I −

{bbH [(σ2
s0
− rHQ−1r)Q−1 + Q−1rrHQ−1]}/

{(σ2
s0
− rHQ−1r) + bH

[(σ2
s0
− rHQ−1r)Q−1 + Q−1rrHQ−1]b} (4.16)

According to (4.16), (4.12) and (4.1), the weight vector can be expressed by

w =
1

aH(θ0)Q
−1a(θ0)

Q−1a(θ0)− [I −
Q−1a(θ0)a

H(θ0)

aH(θ0)Q
−1a(θ0)

]Q−1r (4.17)

According to (4.17), the matrix

P = I −
Q−1a(θ0)a

H(θ0)

aH(θ0)Q
−1a(θ0)

(4.18)
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is a projection matrix, which obeys

PP = P (4.19)

The definition of this type of projection can be found as oblique projections [78, 79].

Using the projection notation, (4.17) can be rewritten as

w =
1

aH(θ0)Q
−1a(θ0)

Q−1a(θ0)− PQ−1r (4.20)

Notice that the sample correlation is nonzero, even though the interference is uncor-

related with the desired signal because of the finite sample number.

This approximation of the weight vector is valid for a large number of samples and

even for a moderate sample number, but it provides poor performance for very low sample

numbers.

4.2 Performance Analysis for the Power Minimization Method

4.2.1 Weight Vector

The probability density function for the Sample Matrix Inversion method has been pro-

posed in [80, 81]. We can apply the results to the case of power minimization method,

and then calculate the expected value and the covariance matrix of the weight vector wopt,

which are denoted as E{wopt} and Cov(wopt), respectively. We can derive the closed-

form approximation of the expected value of the SINR accounting for both the effect of

finite sample number and interference.

The problem formulation of the power minimization method has been discussed in

Chapter 3. To begin, X can be represented as a linear transformation of Z, which is

expressed as

X
d
= R

1

2

xxZ (4.21)

where X is the matrix of the received data, Z is an M by L matrix comprised of zero mean

i.i.d. normal complex random variables with unit variance. R
1

2

xx is the positive square root

matrix of Rxx, i.e., R
1

2

xxR
1

2

xx = Rxx. Note that
d
= is the equality in distribution.
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Suppose that there is such an M × M unitary matrix U that Z
d
= UHZ, is independent

of Z, and UUH = IM . Then I have

X
d
= R

1

2

xxUHZ (4.22)

Applying (??) into (4.22), I obtain

R̄
−1
xx = R

−1

2

xx UH(ZZH)−1UR
−1

2

xx L (4.23)

This outer product matrix arises in multivariate statistical analysis. After a bit of

algebra then a stochastic expression for the weight vector wopt can be expressed as

ŵopt
d
=

R
− 1

2

xx UH(ZZH)−1UR
− 1

2

xx c

cHR
− 1

2

xx UH(ZZH)−1UR
− 1

2

xx c
(4.24)

The unitary matrix U can be chosen such that

UR
− 1

2

xx c = (cHR−1
xx c)

1

2 p (4.25)

where p is an M × 1 vector with p = [1, 0, · · · , 0]T .

Note that

R−1
xx c = R

−1

2

xx UHUR
−1

2

xx c

= (cHR−1
xx c)

1

2 R
−1

2

xx UHp (4.26)

Applying (4.25) into (4.24), I have

ŵopt
d
=

R
− 1

2

xx UH(ZZH)−1p

(cHR−1
xx c)

1

2 pH(ZZH)−1p
(4.27)

Then I can partition R
−1

2

xx UH as

R
−1

2

xx UH = [g,G] (4.28)

where g is an M × 1 vector and G is and M × (M − 1) matrix.

Substituting (4.28) into (4.26), I have

g = (cHR−1
xx c)

1

2 R−1
xx c (4.29)
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With the relation R−1
xx = ggH + GGH , I have

GGH = R−1
xx − ggH

= R−1
xx −

R−1
xx ccHR−1

xx

cHR−1
xx c

(4.30)

We partition Z into Z = [z1,Z2]
H , where z1 is an N × 1 vector with a normal dis-

tribution and unity variance as η(0, 1), and Z2 is an N × (M − 1) matrix with the same

distribution as ηM−1(0, IM−1). z1 and Z2 are independent of each other. Then ZH
2 Z2 has

a Wishart distribution and (ZH
2 Z2)

−1 has the inverse-Wishart distribution [82].

Inserting the Wishart distribution into (4.28), (4.27) and (4.26), I can get

ŵopt
d
=

R−1
xx c

cHR−1
xx c

+
Gf

(cHR−1
xx c)

1

2

(4.31)

where f = −(ZH
2 Z2)

−1ZH
2 z1

Since z1 is independent of Z2 and has zero mean, I have E{Gf}=0. Therefore, the

expected value of wopt is

E {ŵopt} = wopt =
R−1

xx c

cHR−1
xx c

(4.32)

The covariance matrix of wopt is

Cov(ŵopt) = E{(ŵopt − E{ŵopt})(ŵopt −E{ŵopt})
H}

=
E{GffHGH}

cHR−1
xx c

=
GE{ffH}GH

cHR−1
xx c

(4.33)

Also with the fact that z1 is independent of Z2, the expectation E{ffH} can be calcu-

lated from the conditional expectation as

E{ffH} = E{E{ffH |Z2}}

= E{(ZH
2 Z2)

−1ZH
2 E{z1zH1 }Z2(Z

H
2 Z2)

−1}

= E{(ZH
2 Z2)

−1ZH
2 INZ2(Z

H
2 Z2)

−1}

= E{(ZH
2 Z2)

−1}

=
IM−1

N −M + 1

(4.34)

then I have

Cov(ŵH
opt) = γ

(
R−1

xx −
R−1

xx ccHRxx−1

cHR−1
xx c

)
(4.35)
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where

γ =

(
cHR−1

xx c
)−1

N −M + 1

Then the correlation matrix E
{

ŵoptŵ
H
opt

}
can be calculated as

E
{

ŵoptŵ
H
opt

}
= Cov(ŵopt) + E {ŵopt}E {ŵopt}

H

= γ

[
R−1

xx + (N −M + 1)
R−1

xx ccHRxx−1

cHR−1
xx c

] (4.36)

4.2.2 The Approximation of the Expected Value of the SINR

The SINR associated with ŵopt can be expressed as [83]

SINR(ŵopt) =
σ2
s0
|ŵH

opta(θ0)|
2

ŵ
H
optRinŵopt

(4.37)

where Rin is the correlation matrix of interference-plus -noise data.

Then a close-form approximation can be calculated to the expected value of the output

SINR for the power minimization based beam former, where the effect of finite sample

size has been considered. The expected value of SINR can be expressed as

E {SINR(ŵopt)} = E

{
σ2
s0
|ŵH

opta(θ0)|
2

ŵ
H
optRinŵopt

}
(4.38)

Therefore, (4.38) can be divided into two parts: numerator and denominator, which

can be viewed as two functions of random variable ŵ
H
opt.

Assume C and D are these two parts, then the expected value E
{

C
D

}
can be given by

[84]

E

{
C

D

}
= E

{
E {C}+ C −E {C}

D

}

= E

{
E {C}

D

}
+ E

{
C −E {C}

D

}

= E

{
E {C}

E {D}

E {D}

D

}
+ E

{
C − E {C}

D

}

=
E {C}

E {D}
E

{
E {D}

D

}
+ E

{
C − E {C}

D

}

(4.39)

Then (4.38) can be transformed as

E {SINR(ŵopt)} = SINRaprΓ +∆ (4.40)
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where SINRapr is an approximation of E {SINR(ŵopt)}, Γ is a multiplicative factor and

∆ is an additive factor. Therefore E {SINR(ŵopt)} is given by

SINRapr =

{
σ2
s0|ŵ

H
opta(θ0)|

2
}

{
ŵ

H
optRinŵopt

}

=
σ2
s0a(θ0)

HE
{

wwH
}

a(θ0)

tr
[
RinE

{
ŵoptŵ

H
opt

}]
(4.41)

where tr {} is the trace operator. The multiplicative factor Γ and the additive factor ∆ are

given by

Γ = E

{
E{ŵ

H
optRinŵopt}

ŵ
H
optRinŵopt

}

= E

{
tr
[
RinE

{
wwH

}]

ŵ
H
optRinŵopt

}
(4.42)

∆ = E

{
σ2
s0
|ŵH

opta(θ0)|
2 − E{σ2

d|ŵ
H
opta}

ŵ
H
optRinŵopt

}

= E




σ2
s0 |ŵ

H
opta(θ0)|

2 − σ2
s0aH(θ0)E

{
ŵoptŵ

H
opt

}
a(θ0)

ŵ
H
optRinŵopt



 (4.43)

Γ is close to one and ∆ is very small compared with SINRapr [84]. Then SINRapr can

be used as the approximation of E {SINR(ŵopt)}, i.e.,

E {SINR(ŵopt)} ≈ SINRapr (4.44)

By substituting (4.41) and (4.36), the approximation of SINR can be expressed as

SINRapr =
σ2
s0

{
aH(θ0)R

−1
xxa(θ0) + (N −M) cHR−1

xx a(θ0aH (θ0)R−1
xx c

cHR−1
xx c

}

tr
(
RinR−1

)
+ (N −M) cHR−1RinR−1

xx c

cHR−1
xx c

(4.45)

This equation is a general result for approximation considering the effect of finite

sample size. When the sample size is infinite, the expression can be simplified as

SINRapr|N→∞ =
σ2
s0

cHR−1
xx a(θ0)a

H(θ0)R
−1
xx c

cHR−1
xxRinR−1

xx c
(4.46)

Besides, the closed-form approximation of the expected value of output SINR for the

LCMV beam former has been already study and the approximation can be expressed as
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[84]

SINRapr|LCMV =
σ2
s0aH(θ0)R

−1
xx a(θ0)

tr(RinR−1
xx )

N −M + 1
+

N −M

N −M + 1

aH(θ0)R
−1
xx RinR−1

xxa(θ0)

aH(θ0)R
−1
xxa(θ0)

(4.47)

When the sample covariance matrix is estimated in the absence of the desired signal,

i.e., Rxx = Rin, σ2
s0

aH(θ0)R
−1
xxa(θ0) is the optimal SINR. Therefore, the ratio of the

approximation value to the expected value is (N +1−M)/N . It means that the SINRapr

is a very good approximation to the real expected value of that for the LCMV beam former

[84].

4.3 Simulation and Results

A uniform linear array with different sensors is considered in this simulation section. In

all examples, the DOA angle of the desired signal is fixed at θ0 = 0◦. The interference-to-

noise ratio is fixed at 10 dB. The performance of power minimization method is compared

with that of LCMV. The approximation and the expected value of SINR for the power

minimization method are given. The approximation SINR is calculated by (4.45), and the

expected value of SINR is given by (4.38), which is averaged over 1000 runs, as the pa-

rameters are changing randomly. For LCMV, the approximation SINR is given by (4.47),

and the expected value of SINR is expressed as SINR(wlcmv) = σ2
s0 |w

H
lcmva(θ0)|

2/wH
lcmvRinwlcmv.

We will change the number of samples, sensors and interference for comparison with

these results.

4.3.1 SINR Versus SNR

In this part, the figures are plotted by altering the input SNR of the desired signal. The

input SNR is varied from −30 dB to −5 dB and the input SINR is varied from 0.0014

dB to 1.1933 dB. I consider that there is only one interference in the array data, which

arrives at −60◦. The INR is fixed at 10 dB. Firstly, the sample size used is N = 20 and

the sensor number is M = 5. The results are shown in Fig. 4.1 and Fig. 4.2, respectively.

According to the results, the values of SINR for LCMV are always higher than that for

power minimization, as LCMV has the information of DOA angles of the desired signal,
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Fig. 4.1: Output SINR versus the input SNR for N = 20,M = 5.

while power minimization method is a blind algorithm. Although the sample size is small,

the approximation SINR of LCMV is almost the same as the expected SINR value. For

power minimization method, the approximation value of SINR is about 1 dB higher than

the expected value SINR, especially at higher INR values.

When the sample size used is increased to N = 100, the main advantage is that the

simulation SINR for the power minimization method becomes very close to the expected

value, while the curves of LCMV still coincide with each other very well.

Similar results are shown in Fig. 4.3 and Fig. 4.4, with sensor number M = 10. When

the sample size is N = 20, there is 3 dB gap between the simulated and the desired results

for the power minimization method, while it reduces to much smaller than 1 dB for the

N=100. For LCMV, both curves match each other very well.

4.3.2 SINR Versus Sample Size

In the second part, figures with different sample sizes are plotted. The sample size is

varied from 10 to 300. The DOA angle of the desired signal is fixed at θ0 = 0◦, and the

input SNR is -10 dB. Firstly, I set the sensor number to be M = 5, and only one interferer

is considered, which arrives from −60◦. The INR is 10 dB. The results are shown in Fig.
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Fig. 4.2: Output SINR versus the input SNR for N = 100,M = 5.
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Fig. 4.3: Output SINR versus the input SNR for N = 20,M = 10.
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Fig. 4.4: Output SINR versus the input SNR for N = 100,M = 10.
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Fig. 4.5: Output SINR versus the sample size with one interference for M = 5.
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Fig. 4.6: Output SINR versus the sample size with two interfering signals for M = 5.

4.5. The curves for LCMV increase much quickly than those for the power minimization

method. For LCMV, its SINR reaches the constant level at 40 samples, while the SINR

of power minimization reaches the steady state at almost 80 samples. Then one more

interference is added, arriving from 30◦. The INR is also fixed at 10 dB. The simulation

curves are shown in Fig. 4.6. For power minimization, the curves converge at 120 samples

and its SINR reaches the constant level at 150 samples.

4.4 Summary

In this chapter, based on some early work about the output SINR analysis of traditional

beam forming schemes, I derived the statistical properties of the optimum weight vevtor

of the power minimization method considering the finite sample effect. Then a closed-

form approximation output SINR value is given for this method. Simulation results have

compared between our derived SINR results and the simulated one and shown that the

derived results of LCMV have a close match to the simulated ones, especially for larger

sample sizes. Besides, the approximation of the output SINR for power minimization

method does not have a close match to the simulated ones. The reason is that the factor Γ

is not close to one and ∆ is not small enough compared with SINRapr. In the future, the
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further research is needed to have a better representation to the real output SINR for those

ranges.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, I have been mainly focused on the study of interference suppression for

satellite navigation systems based on the antenna array signal processing techniques.

First of all, I have given a review of the GPS system, and considered the charac-

teristics and model of GPS, and the effects of interference in navigation environments.

General GPS background is discussed as well, such as signal level, the source of interfer-

ing signals and the format of GPS signal. After that, the basics of array signal model is

reviewed, both narrowband and wideband array signal models are mentioned. Then ba-

sics of beam former are reviewed. There are three beam former models mentioned here:

null-steering beam forming, maximizing output SINR and minimizing mean square er-

ror. Most of interference suppression algorithms are based on these three models. I have

also discussed a well-known adaptive array signal processing algorithms: LCMV and its

alternative implementation generalized sidelobe canceller (GSC). LCMV beam former

has two conditions on the weight vector. The first one is the response on the direction

of the desired signal, the second one is minimize the output variance. The GSC can be

considered as a scheme for transforming the LCMV beam former. Besides, a space-time

adaptive processing algorithms was also discussed, which has been widely used in GPS

area in the recent years.

Secondly, I focus on the blind interference suppression algorithms, which is absence

66
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of the direction of DOA angles. It may accurate the speed of algorithms. The power min-

imization method is a classical interference suppression algorithm, which is well-known

and effective way to reduce or cancel the interferer effects, it only works when the power

of the desired signal is small compared with that of interfering signals. However, its main

advantage is that it does not need the information of angles. Moreover, principal com-

ponent analysis was introduced and applied to the interference suppression area, where

the weight vector is calculated by averaging the eigenvectors of the received data corre-

sponding to those minor components. PCA is a technique which can extract the principal

components from the original data. The PCA technique is applied to the received data

in this thesis and the results show that the output SINR has been improved. More im-

portantly, the improved power minimization method is proposed, which combined the

PCA technique and the power minimization method, Based on this improved method,

the auxiliary elements of the structure of the power minimization method are replaced

by the principal components of the received array signals in order to cancel interfering

signals more effectively. When the input SNR is very close to the input INR, the output

SINR of my improved power minimization method always stand at a higher level com-

pared with the power minimization method, as shown in our simulations. Besides, my

proposed method based on PCA only also provide similar performance as the improved

power minimization method.

Lastly, an in-depth study of the power minimization method is proposed, Based on the

results in [84], the approximation values can be a good representation as the simulated

ones when the sample number is lower. Thus, I have developed a novel expression of the

output SINR and try to apply it to the power minimization method by considering the finite

sample size effect. Simulation results have shown that the approximation of the output

SINR for power minimization method does not have a close match to the simulated ones.

The reason is that the factor Γ is not close to one and ∆ is not small enough compared

with SINRapr. In the future, the further research is needed to have a better representation

to the real output SINR for those ranges.



5.2. Future Work 68

5.2 Future Work

In this thesis, I focus on the interference suppression algorithms based on satellite array. I

review some basics of beam former, well-know LCMV algorithm and GSC structure. Af-

ter presenting a classical power minimization method , an improved way combined PCA

and power minimization structure is proposed. Then I try to only use PCA technique to

suppress interfering signals. Furthermore, a performance analysis of the power minimiza-

tion method and LCMV is present in Chapter 4. However, there is still a lot of work to do

based on the array property.

Firstly, I have assumed that the signals are uncorrelated and narrowband, the anten-

nas are ideal and their positions are correct, and besides, there is no multipath existed

in the propagation environment, etc. However, in real communication environments, the

signal is not completely uncorrelated and its banwidth is increasing. The gaps between

each antenna have to be considered reasonably. All kinds of factors exist to affect those

assumptions. As a result, if some real factors are considered, the performance of the algo-

rithms may degrade significantly. How to improve algorithms to mitigate those influences

as much as possible is one of the major future works.

Secondly, I focus on the determined structure of array signals, where the number of

sources is less or equal to the number of antennas and most algorithms introduced were

designed for such problems. However, in practice, the number of sources is unknown and

indefinitely. It may well exceed the antenna number. This problem is very challenging

and can be improved from many aspects. Future research can focus on this area [85].

Thirdly, the method of performance analysis is used in LCMV beam former previ-

ously. I can see for very small sample sizes, the gap between our derived results and the

simulated ones are relating big when I applied the same method to power minimization

method. The further research is needed to have a closer approximation to the real output

SINR for those ranges.



Bibliography

[1] P. Techau, J. Guerci, T. Slocumb, and L. Griffiths, “Performance bounds for inter-

ference mitigation in radar systems.” in Proc. IEEE Radar Conference, November

1999, pp. 12–17.

[2] P. Techau, “Effects of receiver filtering on hot clutter mitigation,” in Proc. IEEE

Radar Conference, November 1999, pp. 84–89.

[3] D. Marshall and R. Gabel, “Simultaneous mitigation of multipath jamming and

ground clutter,” in Proc. Adaptive Sensor Array Processing (ASAP) Workshop,

March 1996.

[4] J. Ward, “Space-time adaptive processing for airborne radar.” in Lincoln Laboratory,

March 1994.

[5] P. T. Capozza, B. J. Holland, T. M. Hopkinson, and R. L. Landrau, “A single-chip

narrow-band frequency-domain excisor for a global positioning system receiver,”

IEEE Journal of Solid-State Circuits, vol. 35, pp. 401–411, May 2000.

[6] G. F. Hatke, “Adaptive array processing for wideband nulling in GPS system,” in

Proc. the 32nd Asilomar Conference on Signals Systems and Computers, 1998, pp.

1332–1336.

[7] D. Lu, Q. Feng, and R. B. Wu, “Survey on interference mitigation via adaptive array

processing in GPS,” in Proc. Progress in Electronmagnetics Research Symposium,

vol. 2, no. 4, pp. 357–362, March 2006.

[8] P. Li, D. Lu, R. B. Wu, and Z. G. Su, “Adaptive anti-jamming algorithm based on the

characteristics of the GPS signal,” in Proc. International Symposium on Intelligent

69



BIBLIOGRAPHY 70

Signal Processing and Communication Systems, Tianjin, China, December 2007,

pp. 192–195.

[9] W. Sun and M. G. Amin, “A self-coherence anti-jamming GPS receiver,” in Proc.

IEEE Trans Signal Process, vol. 53, 2005, pp. 3910–3915.

[10] R. Fante and J. Torres, “Cancellation of diffuse jammer multipath by an airborne

adaptive radar.” IEEE Trans.Aerospace and Electronic Systems, vol. 31, pp. 805–

820, 1995.

[11] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays. New York:

Wiley and Sons, 1980.

[12] A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless communica-

tions,” in Proc. IEEE Signal Processing Magazine, November 1997, pp. 49–83.

[13] A. B. Gershman, G. V. Serebryakov, and J. F. Bohme, “Constrained Hung-Turner

adaptive beam-forming algorithm with addi- tional robustness to wideband and mov-

ing jammers,” in Proc. IEEE Trans Antennas Propagate, vol. 44, 1996, pp. 361–366.

[14] A. B. Gershman, U. Nickel, and J. F. Bohme, “Adaptive beamforming algorithms

with robustness against jammer motion,” in Proc. IEEE Trans Signal Process,

vol. 45, 1997, pp. 1878–1885.

[15] R. L. Fante and J. J. Vaccaro, “Wideband cancellation of interference in a GPS

receiver array,” IEEE Transaction on Aerospace and Electronic Systems, vol. 36,

no. 2, pp. 549–564, April 2000.

[16] W. Sun and M. G. Amin, “A novel interference suppression scheme for global nav-

igation satellite systems using antenna array,” IEEE Journal on Selected Areas in

Communication, vol. 36, pp. 999–1012, May 2005.

[17] H. Yao, “A reduced-rank stap method based on solution of linear equation,” in Proc.

the International Conference on Computer Design and Applications, vol. 1, Octor-

ber 2010, pp. 235–238.



BIBLIOGRAPHY 71

[18] W. Huang, R. B. Wu, and D. Lu, “A novel blind GPS anti-jamming algorithm based

on subspace technique,” Proc. International Conference of Signal Processing, vol. 1,

pp. 447–450, 2006.

[19] M. D. Zoltowski and A. S. Gecan, “Advanced adaptive null steering concepts for

GPS,” in Proc. Military Communications Conference, pp. 1214–1218, November

1995.

[20] R. S. Jay, “Interference mitigation approaches for the global positioning system,”

Lincoln Laboratory Journal, pp. 167–180, 2003.

[21] R. B. Wu, C. Li, and D. Lu, “Power minimization with derivative constraints for

high dynanmic GPS interference suppression,” in Proc. Sci China Inf Sci, vol. 55,

2012, pp. 857–866.

[22] P. D. Baxter and J. G. McWhirter, “Robust adaptive beamforming based on domain

weighted PCA,” in Proc. European Signal Processing Conference, Antalya, Turkey,

September 2005.

[23] I. T. Jolliffe, Principal Component Analysis. New York: Springer, 1986.

[24] L. Yu, W. Liu, and R. J. Langley, “Robust adaptive beamforming for multi-path en-

vironment based on domain weighted PCA,” in Proc. the International Conference

on Digital Signal Processing, pp. 583–586, July 2007.

[25] ——, “Beamspace adaptive beamforming based on principle component analysis,”

in Proc. IEEE Workshop on Sensor Array and Multichannel Signal Processing, pp.

325–329, Octorber 2008.

[26] H. C. Lin, “Spatial correlation in adaptive arrays,” IEEE Trans. Antennas Propagat.,

vol. AP-30, pp. 212–223, 1982.

[27] J. E. Hudson, Adaptive Array Principles. London: Peter Peregrinus-Institute of

Electrical Engineers, 1981.

[28] H. Cox, “Resolving power and sensitivity to mismatch of optimum array proces-

sors,” J. Acoust. Soc. Amer, vol. 54, pp. 771–785, 1973.



BIBLIOGRAPHY 72

[29] D. Feldman and L. J. Griffiths, “A constrait projection approach for robust adaptive

beamforming,” in Proc. ICASSP., vol. 91, 1991, pp. 1381–1384.

[30] M. Wax and Y. Anu, “Performance Analysis of the minimum variance beamformer,”

in IEEE Trans. Signal Processing, vol. 44, no. 4, 1996, pp. 928–937.

[31] K. Borre, D. M. Akos, N. Bertelsen, P. Rindeer, and S. H. Jensen, A Software-

Defined GPS and Galileo Receiver: A Single-Frequency Approach, Boston, 2007.

[32] N. I. Ziedan, GNSS Receivers for Weak Signals. Norwood, MA, US: Artech House.,

2006.

[33] J. Li and M. Trinkle, “Miniaturized GPS interference canceller for UAV applica-

tion,” in Proc. International Global Navigation Satellite Systems Symposium on

GPS, 2007.

[34] Y. Tsui and J. Bao, Fundamentals of Global Navigation Satellite System Receivers:

A Software Approach, New York, 2000.

[35] D. Akos, A Software Radio Approach to Global Navigation Satellite System Receiver

Design, Ohio University, Athens, 1997.

[36] P. Ward, “GPS Receiver Search Technique,” in Proc. IEEE Position Location and

Navigation Symposium, vol. 163, November 1996, pp. 604–611.

[37] E. D. Kaplan and C. Hegarty, Understanding GPS: Principles and Applications,

Second Edition. UK: Artech House., 2005.

[38] B. W. Parkinson, “Global Positioning System: Theory and Applicaions Volume I,”

in Proc. Astronautics and Aeronautics Series, vol. 163, 1996, pp. 57–119.

[39] S. Daneshmand, A. Broumandan, and G. Lachapelle, “GNSS interference and mul-

tipath suppression using array antenna,” in Proc. the 24th International Technical

Meeting of The Satellite Division of the Institute of Navigation, pp. 1183–1192,

September 2011.

[40] S. Daneshmand, A. Jafarnia-Jahromi, A. Broumandon, and G. Lachapelle, “A low-

complexity GPS anti-spoofing method using a multi-antenna array,” in Proc. the



BIBLIOGRAPHY 73

25th International Technical Meeting of The Satellite Division of the Institute of

Navigation, pp. 1233–1243, September 2012.

[41] V. C. Anderson and P. Rudnick, “Rejection of a coherent arrival at an array,” J.

Acoust. Soc. Amer, vol. 45, pp. 406–410, 1969.

[42] V. C. Anderson, “DICANNE, a realizable adaptive process,” in J. Acoust. Soc. Amer,

vol. 45, 1969, pp. 398–405.

[43] S. Anderson, M. Milnert, M. Vilberg, and B. Wahlberg, “An adaptive array for

mobile communication systems,” IEEE Trans. Veh. Technol., vol. 40, pp. 230–236,

1991.

[44] T. Gebauer and H. G. Gockler, “Channel-individual adaptive beamforming for mo-

bile satellite communications,” IEEE J. Select. Areas Commun., vol. 13, pp. 439–

448, 1995.

[45] J. F. Diouris, B. Feuvrie, and J. Saillard, “Adaptive multisensor receiver for mobile

communications,” Ann. Telecommun, vol. 48, pp. 35–46, 1993.

[46] W. Sun and M. G. Amin, “A self-coherence based anti-jam GPS receiver,” IEEE

International Symposium on Signal Processing and Information Technology, pp. 62–

65, December 2003.

[47] W. Myrick, J. Goldstein, and M. Zoltowski, “Low complexity anti-jam space-time

processing for GPS,” in Proc. the 2001 IEEE International Conference on Acoustics,

Speech, and Signal Processing, vol. 4, 2001, pp. 1332–1336.

[48] D. Moelker, T. van Der Pol, and Y. Bar-Ness, “Adaptive antenna arrays for interfer-

ence cancellation in GPS and GLONASS receivers,” in Proc. the IEEE 1996 Position

Location and Navigation Symposium, 1996, pp. 191–198.

[49] H. L. Van Trees, Optimum Array Processing, Part IV of Detection, Estimation, and

Modulation Theory. New York, U.S.A.: John Wiley & Sons, Inc., 2002.

[50] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal

Processing. McGraw-Hill, 2005.



BIBLIOGRAPHY 74

[51] L. Wang, Y. Cai, and R. C. de Lamare, “Low-complexity adaptive step size con-

strained constant modulus SG-based algorithms for blind adaptive beamforming,”

in Proc. ICASSP, Las Vegas, NV, April 2008.

[52] S. Applebaum and D. Chapman, “Adaptive arrays with main beam constraints,”

IEEE Transactions on Antennas and Propagation, vol. AP-24, pp. 650–662,

September 1976.

[53] C. L. Zahm, “Application of adaptive arrays to suppress strong jammers in the pres-

ence of weak signals,” IEEE Trans. Aerosp. Electron. Syst, vol. 9, pp. 260–271,

1973.

[54] L. J. Griffiths, “A comparison of multidimensional Weiner and maximum-likelihood

filters for antenna arrays,” IEEE, vol. AES-15, pp. 803–814, 1967.

[55] A. Flieller, P. Larzabal, and H. Clergeot, “Applications of high resolution array

processing techniques for mobile communication system,” IEEE Intelligent Vehcles

Symp., pp. 606–611, 1994.

[56] S. Haykin, Adaptive Filter Theory, 1996, cited By (since 1996) 6422.

[57] P. M. Clarkson and P. R. White, “Simplified analysis of the lms adaptive filter using

a transfer function approximation,” IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 7, pp. 987–993, 1987.

[58] Y. Bresler, V. U. Reddy, and T. Kailath, “Optimum beamforming for coherent signal

and interferences,” IEEE Trans. Acoust, Speech, Signal Processing, vol. 36, pp. 833–

843, 1988.

[59] S. Choi, T. K. Sarkar, and S. S. Lee, “Design of two-dimensional Tseng window

and its application to antenna array for the detection of AM signal in the presence

of strong jammers in mobile communications,” in Signal Process, vol. 34, 1993, pp.

297–310.

[60] I. Chiba, T. Takahashi, and Y. Karasawa, “Transmitting null beam forming with

beam space adaptive array antennas,” in Proc. IEEE 44th Vehcular Technology Con-

ference, 1994, pp. 1498–1502.



BIBLIOGRAPHY 75

[61] B. Friedlander and B. Porat, “Performance analysis of a null-steering algorithm

based on direction-of-arrival estimation,” IEEE Trans. Acoust, Speech, Signal Pro-

cessing, vol. 37, pp. 461–466, 1989.

[62] I. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid convergence rate in adaptive

arrays,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-10, pp. 853–863, 1994.

[63] J. H. Winters, “Optimum combining in digital mobile radio with cochannel interfer-

ence,” IEEE J. Select. Areas Commun., vol. SAC-2, pp. 528–539, 1984.

[64] ——, “Optimum combining for indoor radio systems with multiple users,” IEEE

Trans. Commun., vol. COM-35, pp. 1222–1230, 1987.

[65] A. F. Naguid and A. Paulraj, “Performance of CDMA cellular networks with base-

station antenna arrays,” in Proc. IEEE Int. Zurich Seminar on Communications,

1994, pp. 87–100.

[66] W. Liu and S. Weiss, Wideband Beamforming. West Sussex, UK: Concepts and

Techniques, 2010.

[67] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained adap-

tive beamforming,” IEEE Transactions on Antennas and Propagation, vol. 30, no. 1,

pp. 27–34, January 1982.

[68] K. M. Buckley and L. J. Griffith, “An adaptive generalized sidelobe canceller with

derivative constraints,” IEEE Transactions on Antennas and Propagation, vol. 34,

no. 3, pp. 311–319, March 1986.

[69] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, Mary-

land: Johns Hopkins University Press, 1996.

[70] R. H. Di, H. L. Qin, and X. B. Li, “Research of GPS anti-jamming based on circular

antenna array,” Data Science Journal, vol. 6, pp. 732–740, October 2007.

[71] H. Cox, R. M. Zeskind, and M. M. Owen, “Robust adaptive beamforming,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 10,

pp. 1365–1376, October 1987.



BIBLIOGRAPHY 76

[72] S. A. Vorobyov, A. B. Gershman, and Z. Q. Luo, “Robust adaptive beamforming

using worst-case performance optimization: A solution to the signal mismatch prob-

lem,” IEEE Transactions on Signal Processing, vol. 51, no. 2, pp. 313–324, February

2003.

[73] J. Li, P. Stoica, and Z. Wang, “On robust capon beamforming and diagonal loading,”

IEEE Transactions on Signal Processing, vol. 51, no. 7, pp. 1702–1715, July 2003.

[74] R. G. Lorenz and S. P. Boyd, “Robust minimum variance beamforming,” IEEE

Transactions on Signal Processing, vol. 53, no. 5, pp. 1684–1696, May 2005.

[75] S. Shahbazpanahi, A. B. Gershman, Z. Q. Luo, and K. M. Wong, “Robust adaptive

beamforming for general-rank signal models,” IEEE Transactions on Signal Pro-

cessing, vol. 51, no. 9, pp. 2257–2269, September 2003.

[76] O. Besson and F. Vincent, “Performance analysis of beamformers using generalized

loading of the covariance matrix in the presence of random steering vector errors,”

IEEE Transactions on Signal Processing, vol. 53, pp. 452–459, 2005.

[77] J. Li and P. Stoica, Robust adaptive beamforming. New Jersey, U.S.A.: John Wiley

& Sons, Inc., 2005.

[78] S. N. Afriat, “Orthogonal and oblique projectors and the characteristics of pairs of

vector spaces,” in Proc. Cambridge Phil. Soc., vol. 53, pp. 800–816, 1957.

[79] T. N. E. Greville, “Solution of the matrix equations xax=X, and the relations be-

tween oblique and orthogonal projectors,” SIAM J. Appl. Math., vol. 26, pp. 828–

832, 1974.

[80] A. O. Steinhardt, “The PDF of adaptive beamforming weights,” IEEE Transactions

on Signal Processing, vol. 39, no. 5, pp. 1232–1235, 1991.

[81] C. D. Richmond, “PDF’s confidence regions, and relevant statistics for a class of

sample covariance-based array processors,” IEEE Transactions on Signal Process-

ing, vol. 44, no. 7, pp. 1779–1783, July 1996.

[82] C. Chatfield and A. J. Collins, Introduction to Multivariate Analysis. London, UK:

Chapman & Hall, 1980.



BIBLIOGRAPHY 77

[83] D. D. Feldman and L. J. Griffiths, “A projection approach to robust adaptive beam-

forming,” IEEE Transactions on Signal Processing, vol. 42, no. 4, pp. 867–876,

April 1994.

[84] L. Yu, W. Liu, and R. Langley, “SINR Analysis of the Substraction-based SMI

Beamformer,” IEEE Trans. Signal Processing, vol. 58, no. 11, pp. 5926–5932, 2010.

[85] L. Boccia, G. Amendola, and D. Massa, “Shorted annular patches as flexible anten-

nas for space applications,” Applied Electromagnetics and Communications, 2003.

ICECom 2003, pp. 189–192, October 2003.


