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ABSTRACT 

Some antigens can induce B-cell activation and antibody production without ‘T cell help’ and 

hence are called T-independent (TI) antigens. Similarly to bacterial capsular polysaccharides, anti-

IgD­conjugated dextran (α-δ-DEX) is a TI type 2 mimic which stimulates B lymphocytes by cross-

linking of numerous B-cell receptor molecules. This thesis demonstrates that α-δ-DEX-activated 

B-cells directly inhibit TCR-induced CD4+ T-cell proliferation and activation in vitro. Experiments 

performed with purified cell populations excluded the possibility of α-δ-DEX acting directly on 

CD4+ T lymphocytes and confirmed that B lymphocytes exposed to α-δ-DEX for a period of 24 

hours become activated and acquire a suppressive phenotype. Interestingly, these suppressor B-

cells appear to be effective even when they are present at numbers below the physiological T:B 

ratio. Although the exact mechanism of action remains obscure, this is the first evidence of TI type 

2 antigen activated B-cells mediating inhibition of activation and proliferation of helper T 

lymphocytes. 

Neisseria meningitidis is a bacterium which rarely causes invasive disease and sepsis, but 

perpetuates colonisation in the nasopharynx by avoiding immune recognition and killing. Because 

several N. meningitidis constituents are TI type 2 antigens and/or provide second signals to B-cells 

via TLRs, it was hypothesized that paraformaldehyde fixed meningococcus could exert 

immunomodulatory properties. A deep suppression of CD4+ T-cell responses occurred when 

αCD3-stimulated PBMCs where incubated with small meningococci counts (ratios between 0.1 to 

10:1 bacteria per cell). A clear TH1 cytokine profile and IL-10 secretion was observed in 

supernatants from these cultures. Interestingly, outer membrane vesicles (OMVs) from N. 

meningitidis and N. lactamica replicated the suppression phenomenon induced by the whole 

organism. Bacterial capsule, lipooligosaccharides and Opa are not responsible for the suppressive 

effect. Depletion of B-cells, monocytes or NK cells does not reverse the meningococcus-mediated 

inhibition in PBMC cultures.  

Several bacterial components stimulate nitric oxide (NO) production, however N. meningitidis can 

counteract the bactericidal effect of reactive nitrogen intermediates by a partial denitrification 

pathway. Since NO is also produced as a result of TCR engagement, it was investigated whether 

NO donation or inhibition could influence CD4+ T-cell responses. A novel specific eNOS inhibitor 

(Cavtratin) derived from the caveolin-1 structure was tested for the first time in PBMC cultures. 

Cavtratin concentrations of 10 and 15 μM increases proliferation of CD4+ T lymphocytes and 

reduce the percentage of cell death in the PBMC culture after anti-CD3 stimulation.  
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TH Helper T-cell 

TH1 Helper T-cell subset 1 

TH2 Helper T-cell subset 2 

TI T-cell independent 

TLR Toll-like receptors 

TNF-α Factor de necrosis tumoral alfa 

Treg T regulatory cell 

µl Microliter 

µM Micromolar 

µg Microgram 
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1.1    ADAPTIVE IMMUNE RESPONSES  

 

1.1.1   Innate and adaptive immune system  

 

Since the early 1890s, two distinctive immune systems were identified: the innate and the 

adaptive. The innate immune response is a rapid first line of defence, recruits immune cells and 

triggers inflammation at the site of infection. Dendritic cells, macrophages, monocytes, 

neutrophils, eosinophils, basophils, mast cells and natural killers all play a role in the innate 

immunity. Most of the cells from this system recognise and pick up common microbial 

constituents through pattern recognition receptors, such as Toll-like receptors, scavenger 

receptors, mannose and glucan receptors (Janeway & Medzhitov 2002). Apart from the well 

known phagocytosis, secreted preformed molecules such as antimicrobial enzymes (lysozyme, 

phospholipase A2), antimicrobial peptides (defensins, cathelicidins and histatins) and the 

complement system, are mechanisms that the innate system uses for the lysis of microorganisms.  

In contrast, the adaptive immune system evolves during the lifetime of an individual, specifically 

targeting pathogens or its products and providing long-term protection (immunological memory). 

Adaptive immune responses are initiated in peripheral lymphoid tissues where antigen presenting 

cells (APCs) or free antigens become in contact and induce activation of T and B lymphocytes, 

respectively. T and B lymphocytes are the effector cell types of the adaptive immune system.  T-

cells produce regulatory pro/anti-inflammatory cytokines and lyse infected cells, whereas B-cells 

are specialised in producing antibodies.  

Even though the adaptive and innate immune systems are functionally different, they work 

together in a sequence of events integrating a complex cooperation network to mount the 

offensive against invasive microorganisms.   

 

1.1.2   T lymphocytes  

 

T lymphocytes undergo their maturation and differentiation in the thymus, where self-reactive 

cells will be eliminated whilst functional competent cells capable of recognising foreign antigens 

are selected and allowed to mature (Carpenter & Bosselut 2010). 

T lymphocytes recognise antigens and become activated by engagement of their T-cell receptor 

(TCR). TCR is a complex of membrane proteins, composed of ligand-sensing subunits (α and β) 
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which determine the affinity for antigens and three proximal CD3 signalling dimers (γε, δε and ζζ) 

(Call et al. 2002; Janeway 1992). It is in the thymus where the gene rearrangement of α and β 

chains occurs by random association of genes, resulting in a large TCR diversity (1015) against 

antigens (Delves & Roitt 2000).   

Through a major histocompatibility complex (MHC), APCs will expose antigenic peptides to T-cells 

and trigger the TCR-dependent intracellular signalling that leads to activation, proliferation and 

differentiation into effector T-cells (section 1.1.4). T-cells can also be activated by certain mitogens 

which non-specifically bind to TCR but induce proliferation of T-cells. For example, 

phytohaemagglutinin (PHA), concanavalin A (ConA) and superantigens such as staphylococcal 

enterotoxin B (SEB).  

 

1.1.2.1   T-cell  subsets 
 

Based on the expression of surface markers and their function, Dong & Martinez (2010) have 

described 10 distinctive T-cell subsets: Naive, Helper, Cytotoxic, Regulatory (Treg), Natural killer T 

(NKT), Memory, CD8αα, γδ T, Exhausted and Anergic. Although it was originally considered that T-

cells will differentiate into only one effector subset, nowadays many T-cells have been 

characterised and reported to evolve from one phenotype to another or to be a mixture of two 

subsets. Such quality has received the name of “T-cell plasticity” (Hirahara et al. 2013). In this 

section however, we will only revise some of the major populations. 

Depending on their restriction to bind to MHC class I or II is that thymocytes differentiate into 

CD8+ or CD4+, respectively (Carpenter & Bosselut 2010). Naive T lymphocytes (either CD4+ or CD8+) 

are cells that have not encountered their specific antigen yet; they have just left the thymus and 

started traffic towards lymphoid tissue. Once in contact with the antigen they become effector 

cells and preferentially migrate to peripheral tissues. The function of CD8+ Cytotoxic T-cells is to 

kill infected cells expressing pathogenic molecules on the surface of MHC class I. Cytotoxic T-cells 

destroy infected cells by inducing apoptosis via death-receptors ligation (mainly Fas) and by 

delivering cytotoxic granules (containing granzymes and perforin) into endosomes which get 

released in the cytoplasm of the affected cell (Harari et al. 2009; Russell & Ley 2002; Rouvier et al. 

1993). In contrast, CD4+ Helper T-cells recognise molecules on MHC class II and their function is 

not to kill but to regulate other immune cells. 

Depending on the cytokines they produce and their function, Helper CD4+ T lymphocytes can 

further differentiate into TH1, TH2, TH9, TH17, TH22, TFH (follicular) or iTreg (antigen-induced Treg) . 
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Whether a TH differentiates along any of these pathways is influenced by many factors, such as: 

the amount, type and affinity of antigen recognition, the APC which presents the antigen, the 

cytokine environment, and direct DNA or histones modifications (epigenetics) (Hirahara et al. 

2013; Kaiko et al. 2008).  

After exposure to two different antigens, Del Prete et al (1991) corroborated the existence of two 

opposite T Helper populations in humans: TH1 and TH2, which were previously described in mouse 

(Mosmann & Sad 1996; Mosmann et al. 1986). TH1 are characterised by IL-2, IFN-γ and TNF-β 

production, thus evoking a cell-mediated immunity and phagocyte-dependent inflammation. TH2 

secrete IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13 which promote IgE antibody production. IFN-γ, IL-12 

and TGF-β drives TH1 development, whilst IL-4 induces TH2 differentiation. After commitment into 

one lineage, cytokines produced by one pathway will switch off the cytokine gene transcription of 

the other pathway (Nakamura et al. 1997). For example, IL-4 from TH2 cells promotes a TH2 

response but inhibits expression of the IL­12 receptor crucial for TH1 cells; whereas IFN-γ from TH1 

inhibits TH2 responsiveness. Cell mediated TH1 responses are mainly involved in the clearance of 

intracellular organisms and in the pathogenesis of organ autoimmune diseases (delayed 

hypersensitivity responses). Humoral TH2 responses have been associated with allergic disorders 

such as asthma (Akdis et al. 2004; Walker et al. 1991) and are important for the clearance of 

extracellular pathogens. It has been suggested that if naive T-cells get primed by dendritic cells 

they will tend to a TH1 differentiation; whilst priming by B-cells will lead a predominant TH2 lineage 

(Hilkens et al. 1997; Macaulay et al. 1997; Stockinger et al. 1996; Heufler et al. 1996). However, 

the TH1/TH2 outcome seems to be more complex, as a reciprocal feedback occurs between the T-

cell and the antigen presenting cell (Rissoan et al. 1999). 

TH17 cells were identified by the production of large quantities of the pro­inflammatory cytokine 

IL-17 (IL-17A and IL-17F), IL-21 and also by the induction of many chemokines (Bettelli et al. 2008; 

Park et al. 2005). The simultaneous presence of TGF-β and IL-6 initiates TH17 differentiation, but 

it is IL-23 and IL-21 that maintain their development. In contrast, products of the TH1 and TH2 

lineages (IL-12, IL-4 and IFN-γ) block TH17 development (Harrington et al. 2005; Park et al. 2005). 

Since the TH17 subset also secretes IL-6, IL-1β, TNF-α and nitric oxide; TH17 cells have been 

implicated in autoimmune diseases involving neutrophil recruitment, metalloproteinases activity 

and subsequent tissue inflammation, such as encephalomyelitis  (Bettelli et al. 2008;  Park et al. 

2005; Langrish et al. 2005).  

Firstly described by the Sakaguchi group (1995), T-regulatory cells (Treg) have acquired major 

importance in the last decade due to their role as downregulators of immune responses and 
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maintenance of self-tolerance, as lack of Tregs in the periphery results in T-cell mediated 

autoimmunity and allergic disorders (Sakaguchi et al. 2008). Foxp3 was found to be the 

transcription factor responsible of the development and suppressive function in Tregs (Fontenot 

et al. 2003). Tregs can be naturally created in thymus or induced in periphery from naive TH. A 

Treg suppressive phenotype with induction of Foxp3 in naive helper cells can be achieved in the 

presence of IL-2 together with TGF-β1 and can be synergized by retinoic acid produced by 

dendritic cells in the gut (Benson et al. 2007; Marie et al. 2005; Fantini et al. 2004). Activated Tregs 

express high amounts of the surface receptors CD25 (IL-2Rα) and CTLA-4 (Shevach 2009). After 

antigen-stimulation Tregs mediate suppression by secretion of anti-inflammatory cytokines (IL-10, 

TGF-β, IL-35), by repression of IL-2, IL-4 and IFN-γ, by cell cycle arrest, by inducing anergy or by 

cytolisis (Shevach 2009; Sakaguchi et al. 2008; Taylor et al. 2006). 

Follicular Helper T-cells (TFH) only produce small amounts of cytokines but are specialised in 

travelling to lymphoid nodes and germinal centres to provide support to B-cells in the production 

of IgA and IgG antibodies (Breitfeld et al. 2000). Thus, TFH are associated to the expression of 

several molecules important for B-cell co-stimulation (CXCR5high, ICOShigh, PD1high, BTLAhigh, 

CD200high, SLAMlow). A type I Interferon signalling in dendritic cells and T-B interactions with 

expression of the transcription factor Bcl6 drive TFH development (Johnston et al. 2009; Cucak et 

al. 2009). 

TH9 is a recently identified T-helper subset that preferentially secretes IL-9 (Dardalhon et al. 2008), 

which is involved in the resistance against parasites but is pathologically present in allergic airway 

and gut diseases (Staudt et al. 2010). Although they also produce IL-10, no suppressive properties 

have been observed in this population (Dardalhon et al. 2008). TH9 differentiation is initiated by a 

combination of TGF-β and IL-4 (Stassen et al. 2012), but it is the expression of the transcription 

factor Interferon regulatory factor 4 (IFR4) that leads IL-9 production in these cells (Staudt et al. 

2010). In vivo, IL-9 enhances the activity of mast cells, induces mucus and chemokine production 

in lung epithelial cells, expands the B-cell subset 1 and increases secretion of IgE and IgG (Stassen 

et al. 2012).   

Finally, the TH22 subset is characterised by their large IL-22 secretion and moderate amounts of 

IL-10, IL-13 and TNF-α (Eyerich et al. 2009; Trifari et al. 2009). IL-1β and IL-23 lead to the 

development of IL-22 producing T-cells from naive T-cells (Trifari et al. 2009). IL-22 is a member of 

the IL-10 family, which in combination with TNF-α seem to play an important role in the activation 

of keratinocytes. Thus, is believed to influence regenerative and inflammatory responses in skin 

conditions, such as psoriaris (Eyerich et al. 2009 Trifari et al. 2009). 



CHAPTER 1: INTRODUCTION            
 

7 
 

Even though each of the TH subsets are represented by key regulators or features, recent evidence 

has shown that it is not infrequent for one cell to contain more than one key regulator or marker. 

Indeed, this ‘subset’ approach might be over-simplistic and underestimates the plasticity of TH 

cells (Hirahara et al. 2013). Moreover, balance between subsets of T-helper is delicate and broken 

balance (such as less Tregs and more Th1 or Th2) can lead to disease (Akdis et al. 2004). Some 

publications suggest that the strong activation signals overcome the downregulation of Tregs and 

so they propose it will be possible to treat allergic disorders by increasing Tregs and decreasing 

Th2 simulatenously (Ling et al. 2004). 

Figure 1.1 illustrates an overview of some of the effector Helper T-cells. 
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Figure 1.1:  Major CD4+ T-cell subsets and their cytokines. 

Upon antigen presentation and in the presence of IL-2, TH0 cells polarize into one of the several 
TH subsets. Depending on the cytokines present at the environment, TH0 can differentiate into TH1, 
TH2, TH17 or Treg among others. Cytokines produced by these subsets will have secondary effects 
on cells from the innate and adaptive immune system.   

TH = Helper CD4+ T-cell; CD8+= Cytotoxic CD8+ T-cell; Treg= T-regulatory cell; B= B-cell;  NK= Natural 
killer cell. 
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1.1.3   B lymphocytes   

 

B lymphocytes are produced and differentiated in the bone marrow through the immature stages 

pro-B and pre-B where the rearrangement of immunoglobulin genes occurs until reaching 

complete maturity (Delves & Roitt 2000). Auto-reactive B lymphocytes are eliminated in the bone 

marrow, while mature effective B lymphocytes are sent to the circulation to finally home in 

peripheral lymphoid tissue.  

B lymphocytes are well known by their ability to produce antibodies that directly neutralise the 

pathogenic action or antibodies which opsonise the microorganism facilitating phagocytosis and 

complement-mediated killing. Antibodies can be induced by previous infections or vaccination 

and play an important role in secondary responses. B lymphocytes can also perform as APCs 

displaying the antigen to T-cells and driving their differentiation (section 1.1.4), in particular late 

at the primary response or in a secondary response (Rivera et al. 2001). In this respect, recent 

evidence has elucidated the importance of B-cells as regulators of T-cells.  

B-cells can modulate the intensity and quality of the T-cell response to antigens via antibody-

independent mechanisms, such as secretion of cytokines or direct cell-contact (co-stimulatory 

molecules). Upon antigen recognition, effector B-cells can secrete cytokines which lead to 

polarization of naive CD4+ T lymphocytes into TH1 or TH2 (section 1.1.2.1). The importance of B 

regulation has been recognised in several T-cell mediated autoimmune disorders, either by 

influencing TH differentiation, T-cell activation or the number of Treg (Lund & Randall 2010). 

Moreover, B-cells have been considered essential effectors in the regulation of T-cell expansion 

(Crawford et al. 2006; Linton et al. 2003), T-cell re-activation and generation of long-term T-cell 

memory against certain virus (Whitmire et al. 2009; Iijima et al. 2008; Thomsen et al. 1996). A 

mouse model of encephalomyelitis which depleted B-cells before and after the instalment of the 

disease, determined a biphasic therapeutic role of B-cells capable of suppressing or exacerbating 

auto-reactive T-cells over the course of the autoimmune disease (Matsushita et al. 2008). 

 

 
1.1.3.1   B-cel l  subsets 
 

B effector-1 cells (Be-1) secrete IFN-γ, IL-12, IL-10, IL-6 and TNF-α which enhance TH1 

differentiation and further production of TH1 cytokines. Be-1 cells are present in mucosal tissue, 

pleural and peritoneal cavities, and their differentiation is not driven by T lymphocytes (Lund & 

Randall 2010; Harris et al. 2000).  
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In contrast, B effector-2 cells (Be-2) secrete IL-2, Lymphotoxin-α, IL-4 and IL-13 in large 

concentrations, but minimal amounts of IL-10, TNFα and IL-6 (Lund & Randall 2010; Harris et al. 

2000). Thus, Be-2 cells can act as APCs and exert a preferential TH2 differentiation (Macaulay et al. 

1997). Be-2 cells are the main B population found in peripheral lymphoid organs and their 

development is dependent on T cells that produce IL-4 and engagement of CD40 as well as 

CD80/CD86 molecules (Harris et al. 2005) (section 1.1.4.3).  

B-regulatory cells (Bregs or B10) are a newly accepted subset of B-cells with 

immunoregulatory/immunosuppressive properties (Mauri & Bosma 2012), present in small 

numbers in spleen and peritoneal cavity but rare in blood or lymph nodes (Matsushita et al. 2008). 

The inhibitory function of Bregs is mediated to a great extent through IL-10 secretion  (Bouaziz et 

al. 2010; Fillatreau et al. 2002). However, TGF-β1 production, cell-contact suppression via CD40 or 

CD80/86 molecules, dampening of dendritic cell activity and neutralising antibodies against 

harmful factors are also well supported mechanisms of downregulation (Blair et al. 2010; 

Mizoguchi & Bhan 2006). IL-10 is a suppressive cytokine which blocks TH1 polarization by 

suppressing IL-12, also downregulates pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-8) 

produced by neutrophils, macrophages and other ganulocytes, and suppresses antigen 

presentation (Asadullah et al. 2003). An interaction T-B cell is essential to occur, as the main 

stimulus for IL-10 production in Bregs is provided by CD40 engagement (Blair et al. 2010). 

Nowadays, Bregs have been phenotypically identified by a combination of markers, such as CD5+ 

CD19high CD24high CD38high CD1d+ (Mauri & Bosma 2012; Blair et al. 2010; Yanaba et al. 2008). 

Plasma cells are terminally differentiated end-stage cells, they do not divide and their lifespan is 

between few days up to months. Their main function is antibody production and these cells lack 

many of their development transcription factors and the receptors for antigen presentation 

(Calame 2001). XBP-1 and Blimp-1 are key transcription factors for the differentiation of B-cells 

into antibody-secreting plasma cells within lymph nodes (Reimold et al. 2001; Turner et al. 1994).  

Memory B-cells are mature long-lived cells mainly originated at the germinal centres and which 

can be re-activated to become plasma cells after secondary challenge. Their main feature is to go 

under Ig class switching (section 1.1.3.2) and produce highly specific antibodies for a long period 

of time. Development of a memory B-cell requires T-cell co-stimulation or ‘help’, particularly 

through binding of their CD40 receptor (sections 1.1.4.3 and 1.1.5.1) and by some T-derived 

cytokines such as IL-4, IL-5 and IL-6. Although markers for this subset seem to be highly 

heterogeneous, loss of IgD and expression of CD27 and/or IgG can be considered good indicators 
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of B-cell memory. Achievement and maintenance of memory is driven by several factors, such as 

the antigen’s characteristics and the strength of the immune response (Yoshida et al. 2010). 

Figure 1.2 illustrates the cytokine profile and the action of these B-cell subsets. 

 

 

1.1.3.2   Antibodies 
 

Antibodies (secreted immunoglobulins) are proteins produced by the terminally differentiated 

and effector B lymphocyte or plasma cell (section 1.1.3.1). Although some antibodies can directly 

neutralise pathogens or toxins, others coat the surface of the pathogen to facilitate phagocytosis 

(opsonisation) or induce complement activation to destroy bacteria by permeabilising the cell-

wall.  

Based on their heavy chain, five different classes of immunoglobulins (Ig) with different biological 

properties are produced. IgM is the first class expressed by immature B lymphocytes in bone 

marrow, is the most widely secreted Ig in primary antibody responses. IgD is expressed on the cell 

surface together with IgM, and denotes B-cell maturity to respond to antigen in peripheral 

lymphoid organs (naive B-cells). IgG is secreted in large quantities in secondary humoral 

responses, activates the complement system and is the only one capable to confer passive 

immunity to fetus by crossing the placenta barrier. IgA is the most abundant in saliva, tears, milk, 

respiratory and gut secretions. Secreted IgE binds to the surface of mast cells and basophils as 

passive receptor of antigens, leading to their activation and secretion of histamine and cytokines.   

In germinal centres, upon activation of B lymphocytes by the antigen, membrane IgD is lost and 

B-cells can either produce just IgM or ‘class switch’ to other Ig class. Class switching occurs 

followed by DNA recombination and somatic hypermutation (point mutations), which together 

aim to produce new IgG, IgA or IgE with higher affinity for a specific antigen and memory cells 

(Shih et al. 2002; Liu et al. 1996). Indeed, this secondary antibody response lasts longer and results 

in higher titers.        

 

1.1.3.3   B-cel l  receptor engagement  
 

The B-cell receptor (BCR) is comprised by a membrane bound immunoglobulin which confers the 

antigen recognition and two adjacent subunits (Igα and Igβ) in charge of downstream signalling. 

Diverse specificities of the antigen receptors are produced by gene rearrangements during the 

early developmental stages of the lymphocyte, but further diversity takes place by splicing as B-
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cells continue to mature (Delves & Roitt 2000). The BCR of mature B lymphocytes is composed by 

membrane-bound IgD and IgM, but is the former the one that has been attributed with the most 

of the signalling properties (Geisberger et al. 2006; Kim & Reth 1995).  

B cells become activated via BCR cross-linking after encountering an antigen. The outcome of the  

BCR engagement is influenced by a combination of factors, such as positive and negative 

regulators or co-stimulatory molecules, the abundance of the antigen, the antigenic epitopes and 

the extension of the BCR cross-linking. Moreover, it has been proposed that the strength of the 

BCR signal received by the antigen sets a threshold of susceptibility to self-reactivity that varies in 

each individual (Grimaldi et al. 2005).  

The intracellular cascade after BCR engagement starts with the phosphorylation of the Igα and Igβ 

tyrosine-based activation motifs (ITAMs) by protein kinases of the Src family. This event recruits 

and activates Syk, a tyrosine kinase that activates other targets such as BLNK, phospholipase C-γ 

and the Bruton’s tyrosine kinase (Btk). This leads to inositol triphosphate (IP3) production and 

subsequent Ca2+ release, which activates the protein kinase C cascade and downstream nuclear 

transcription factors, such as NF-κβ and the nuclear factor of activated T-cells (NFAT) (Dal Porto 

et al. 2004). The mitogen activated protein kinase (MAPK) is a Ca2+-independent downstream 

pathway also involved after BCR engagement, especially though its member ERK (Gauld et al. 

2002).  

BCR is further modulated by a co-receptor complex formed by CD19, CD22 and FcγRIIB (Grimaldi 

et al. 2005). CD19 is a transmembrane glycoprotein which stays in proximity with BCR, gets 

phosphorylated upon BCR engagement and helps IgM/IgD receptor-antigen microclusters 

formation (Depoil et al. 2008). CD19 works as an adaptor-like protein, initiates activation of 

phosphatidylinositol 3-kinase (PI-3K) needed for Ca2+ mobilisation and also establishes BCR-

mediated Btk activation (Fujimoto et al. 2000; Buhl & Cambier 1999; Tuveson et al. 1993). In 

contrast, CD22 has tyrosine-based inactivation motifs (ITIMs) which if get activated by Lyn (a 

member of Src family), they result in inhibition of BCR signalling (Cornall et al. 1998). With a similar 

Lyn mechanism as CD22, FcγRIIb is another negative regulator of antigen-induced B-cell activation, 

acting by limiting Ca2+ mobilisation and preventing IP3 accumulation (Nakamura et al. 2000).    
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Figure 1.2:  Major B-cell subsets and their role. 

Upon antigen recognition or contact with effector T-cells, B lymphocytes become effector cells. 
Cytokines produced by the subsets Be-1 and Be-2 induce polarization of T-cells into TH1 and TH2, 
respectively. Breg exerts inhibitory properties mainly via IL-10 secretion. Antibody production and 
immune memory are the major roles of plasmatic B-cells.      

Be= Effector B-cell; Breg= B-regulatory cell; TH = Helper CD4+ T-cell. 
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1.1.4   Interactions between antigen presenting cells and T lymphocytes   

 

For a T lymphocyte to become activated, it requires to be exposed to its TCR specific antigen and 

a series of co-stimulatory signals. Antigen presenting cells (APCs) will accomplish this task by taking 

up the pathogen (section 1.1.4.1) and then processing it into peptides that can be displayed in 

MHC molecules on the cell surface (section 1.1.4.2). Once the MHC bound peptide gets in contact 

with the antigen-binding site of the TCR, several molecules will intervene to stabilise the 

interaction and to provide further co-stimulation to the T-cell (section 1.1.4.3). Finally, T-cell signal 

transduction pathways will be initiated to produce transcription factors needed for T-cell 

activation and differentiation (section 1.1.4.4).  

 

1.1.4.1   Pathogen recognition by APCs  
 

Dendritic cells, macrophages and monocytes are all APCs specialised in the phagocytosis and 

destruction of pathogens but incapable of developing immunological memory. APCs take up the 

antigen by either phagocytosis (complement-mediated), macropinocytosis (liquid egulfment) or 

by using signalling receptors.      

APCs recognise pathogens though a set of constitutively expressed pattern recognition receptors 

(PRRs). Common microbial constituents known as pathogen-associated molecular patterns 

(PAMPs) are molecules detected by PRRs. From all the PRRs, Toll-like receptors (TLRs) are the best 

characterised and can be found in several immune cells, such as dendritic cells, macrophages, B 

lymphocytes and even some subsets of T lymphocytes. TLRs can be expressed extracellularly or 

associated to intracellular vesicles, but upon antigen recognition all lead downstream signalling 

cascades via one of the 4 adapters (MyD88, TRIF, TRAM or TIRAP). In humans, 10 different TLRs 

have been identified and categorised depending on the molecules they target. For example the 

extracellular located TLR-1, TLR-2 and TLR-6 mainly bind to lipoproteins; whilst TLR-3 TLR-7, TLR-

8 and TLR-9 are intracellular and bind to double or single stranded nucleic acids (Akira et al. 2006). 

Of relevance is the extracellular TLR-4 which recognises LPS and heat shock proteins, both involved 

in the pathogenesis of sepsis (Lu et al. 2008; Leon et al. 2008). From the TLR adapter molecules 

MyD88 is the most common to all TLRs, although combinations among the other adapters are also 

common. In general, TLRs pathways culminate with the activation of NF-κβ and MAP kinase, which 

in turn induce transcription of pro-inflammatory cytokines (Kawai & Akira 2011).   
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As mentioned previously, B-cells can function as competent APCs (Chesnut & Grey 1981) priming 

naive T-cells preferentially with proteins (Constant et al. 1995) and being almost as effective as 

dendritic cells (Cassell & Schwartz 1994). In contrast to the innate APCs, B-cells recognise and 

perform endocytosis of the antigen through their BCR. Indeed, B lymphocytes do not phagocytose 

the antigen and only use the TLRs as accessory activation signals (section 1.1.5.2.1). Furthermore, 

it has been published that the same TLR stimulation results in a distinctive cytokine profile 

between dendritic cells and B-cells, as they seem to prefer distinct signalling pathways (Barr et al. 

2007). 

 

1.1.4.2   Processing of antigen and its expression on MHC molecules  
 

Once the antigen is internalised by the APC, pathogens will get degraded into small peptides that 

can be bound to MHC molecules. Finally, the complex antigen-MHC is exported to the cell surface.   

The two MHC molecules differ in their cellular distribution, structure and function. MHC class I is 

contained in every cell type in the body, apart from erythrocytes; whilst MHC class II is restricted 

to dendritic cells, macrophages, monocytes and B-cells. MHC class I molecules bind to peptides 

from intracellular pathogens that have been degraded in the cytosol by the proteasome, for 

example viruses (Grommé & Neefjes 2002). In contrast, MHC class II bind to peptides from 

extracellular pathogens that have been degraded by digestive enzymes in endocytic acidified 

vesicles, such as most bacteria (Villadangos 2001). In the case of B-cells, the cross-linked BCR is 

rapidly internalised into early endosomes and finally transported to reach the MHC class II loading 

compartments (Cheng et al. 1999).   

APCs expressing MHC class I will present the antigen to CD8+ Cytotoxic T lymphocytes, whereas 

the ones with MHC class II will present to CD4+ Helper T lymphocytes.  Although B lymphocytes 

and macrophages constitutively express high levels of MHC class II, dendritic cells are the most 

specialised in antigen processing and presentation to naive T-cells. Dendritic cells can present on 

MHC class I or II molecules, are able to phagocyte any pathogen and constitutively express co-

stimulatory molecules for T-cells. 

 

1.1.4.3   TCR activation and the need of co -stimulatory molecules  
 

The activation process starts when an APC become in physical contact with a T lymphocyte, so the 

first activation signal is provided when the MHC bound peptide is recognised by its specific TCR.  

As mentioned in section 1.1.2, TCR is formed by the antigen binding region (chains α and β) in co-
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expression with the CD3 signalling dimers (γε, δε and ζζ). Upon TCR ligation, protein kinases 

become activated and trigger production of transcription factors (section 1.1.4.4).  

Beyond the binding between MHC and TCR, a second signal via several co-stimulatory 

ligands/receptors pairs and adhesion molecules is required to achieve complete T-cell activation, 

differentiation and expansion (Schwartz 1990; Huet et al. 1987). If no specific binding occurs 

between the MHC-bound peptide and the TCR, the cells will rapidly dissociate. However, if the 

TCR has encounter a compatible antigen then TCR signalling will be triggered (1st signal) and 

additional co-stimulation (2nd signal) will take place to make the interaction more durable. If only 

the first TCR signal is provided the T lymphocyte will enter into anergy/tolerance; indeed, naive 

lymphocyte must engage both antigen and co-stimulatory ligands on the same APC. A reciprocal 

constant regulation between APCs and T lymphocytes occurs through co-stimulatory molecules 

and cytokines. 

During the contact between APC and T-cell, TCR-CD3 complexes cluster on the cell surface to be 

in close contact with MHC molecules, facilitating also intracellular kinases to interact with the 

cytoplasmic domains (Dustin 2008; Monks et al. 1998). Simultaneously, the co-receptors CD8 and 

CD4 bind to the invariant lateral region of the MHC class I and II, respectively. Since CD4/CD8 are 

physically associated to the TCR, their binding helps in stabilising the MHC-TCR interaction 

(Janeway 1992). In addition, the intracellular adhesion molecule 1 (ICAM-1) is known to be central 

to achieve a persistent polarization between APC and naive T lymphocyte (Dustin 2008).  

Just after the specific antigen-TCR ligation takes place, T Helper lymphocytes upregulate 

expression of the integral membrane protein CD154 (also known as CD40 ligand or CD40L). CD40L 

binds to the transmembrane glycoprotein CD40 present on dendritic cells and B lymphocytes. This 

provides a feedback signal to boost their maturation increasing their antigen presentation 

capacity, to perpetuate APCs survival and to induce cytokine production (Quezada et al. 2004). 

Moreover, CD40 engagement enhances clonal expansion of B-cells, triggers their Ig class switching 

and generates long-lived/memory plasma cells (Elgueta et al. 2009; Garside et al. 1998; Allen et 

al. 1993). As discussed in section 1.1.5.1, is this cognate interaction what defines a T-dependent 

B-cell response. Reciprocally, the APC will upregulate co-stimulatory molecules to induce TH 

differentiation, proliferation and cytokine production. Therefore, blocking of CD40L with a 

monoclonal antibody results in deep suppression of T responses via diverse mechanisms; for 

example, by abolishing the CD40-dependent IL-12 production from APCs (Stuber et al. 1996). 

Manipulation of the CD40/CD40L has been studied for the treatment of autoimmune disorders, 

to enhance tolerance in transplants and to target cancer cells (Elgueta et al. 2009; Quezada et al. 
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2004). In addition to the above mentioned, the OX40L molecule upregulated on B-cells after CD40 

ligation, has been implicated in T-cell expansion, survival and TH2 development (Linton et al. 2003; 

Gramaglia et al. 2000).   

CD28 is expressed constitutively on most of the CD4+ Helper T-cells and on 50% of the CD8+ 

Cytotoxic T-cells. CD28 is a strong co-stimulatory molecule for T-cells as gets involved with the TCR 

signalling to boost proliferation, cytokine production (particularly IL-2) and resistance to apoptosis 

(Rudd et al. 2009; Jenkins et al. 1991; Linsley et al. 1991). In support, CD28 deficient mice suffer 

ablated T-dependent antigen responses (Green et al. 1994). When CD28 binds to its pair of ligands 

B7-1 (CD80) and B7-2 (CD86) on the surface of APCs (Linsley et al. 1991), it becomes activated by 

phosphorylation at its cytoplasmic domain, leading to a very similar tyrosine kinases activation 

pathway as the TCR (Rudd et al. 2009) (section 1.1.4.4).  

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is the second molecule that also binds to B-

7 ligands (Linsley, Brady, Urnes, et al. 1991). It is not expressed on resting T lymphocytes but in 

activated ones and resides in intracellular membranes before migrating to the cell surface after 

TCR ligation (Rudd et al. 2009). CTLA-4 has higher affinity than the CD28 interaction (Linsley, Brady, 

Urnes, et al. 1991), so acts as an important negative feedback system by blocking CD28-dependent 

stimulation (Linsley et al. 1992). Apart from blocking CD28 binding it has been proposed that CTLA-

4 exerts its inhibitory effects by other means. For example, it might limit the physical contact 

between T lymphocyte and APC by affecting T-cell adhesion or by reversing the TCR-induced 

signals (Rudd et al. 2009).  

Program death-1 (PD-1), is also a member of the CD28 family which is upregulated in activated T 

lymphocytes. PD-1 can bind to two B7 homologs: PD-L1 (B7-H1) and PD-1L2 (B7-DC). PD-1 is an 

immunoinhibitory receptor, engagement of PD-1 by both of its ligands leads to suppression of 

CD3-mediated T-cell proliferation by stopping the cell cycle progression, not by apoptosis 

(Latchman et al. 2001; Freeman et al. 2000). PD-1 blocks activation of PI-3K, an important 

molecule needed to provide enough intracellular glucose during the proliferation stage (Riley 

2009). The PD-1 pathway might also act by reducing production of cytokines, in particular the key 

TH1 cytokine IL-2. Therefore, it is believed that PD-1 is involved in controlling tolerance, blocking 

activation of self-reactive T lymphocytes (Riley 2009; Latchman et al. 2001).  

Inducible co-stimulator (ICOS), another member of the CD28 family, is a co-stimulatory molecule 

expressed upon T-cell activation. In contrast to CD28, ICOS stimulation fails to induce long-term 

T-cell expansion because does not induce IL-2 production (Hutloff et al. 1999). Rather than in T-
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cell priming, ICOS might be more important in later stages of the response or in those scenarios 

where T clonal expansion has to be limited (Riley & June 2005). 

The B- and T-lymphocyte attenuator (BTLA) is the last member of the CD28 family, expressed on 

T and B lymphocytes. BTLA binds to the tumour necrosis factor herpes virus entry mediator 

expressed on APCs, including naive B-cells (Sedy et al. 2005). BTLA exerts inhibitory properties 

similar to PD-1 and CTLA-4, attenuating T-cell proliferation dependent on IL-2 production 

(Watanabe et al. 2003) and reducing phosphorylation of Syk after BCR cross-linking in B-cells  

(Vendel et al. 2009).   

 

1.1.4.4    T-cell  downstream activation  
 

Similar to the activation process occurred after BCR cross-linking (section 1.1.3.3.), TCR ligation 

results in signal transduction pathways involving a pathway of mitogenic tyrosine kinases 

(MAPKs). 

Immediately after TCR ligation, ITAMs motifs at the CD3 and CD28 cytoplasmic tails get 

phosphorylated by Lck, resulting in the ZAP-70 recruitment to the membrane, binding and 

activation. ZAP-70 is a tyrosine kinase member of the Syk family that phosphorylates a couple of 

adapter proteins (LAT and SLP-76), which in turn phosphorylate the phospholipase C-γ. Activated 

phospholipase C-γ leads to inositol triphosphate (IP3) production and subsequent internal Ca2+ 

release. Simultaneously, diacylglycerol (DAG) recruits protein kinase C and leads to Ras activation 

pathway. Finally, the transcription factors NF-κβ, NFAT and AP-1 induce gene transcription (Smith-

Garvin et al. 2009).  

At the end, is this gene transcription that determines the fate of a T lymphocyte towards an 

effector cytokine producing cell, a memory cell or simply apoptosis. 
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Figure 1.3: Major molecules involved at the interaction between CD4+ T-cell and APC. 

APCs recognise and capture the antigenic particles trough pattern recognition receptors, such as 
TLRs. The antigen is then processed and presented to CD4+ T lymphocytes on a MHCII molecule. 
The TCR/CD3 complex recognises the antigenic particle and initiates intracellular signalling. 
Second signals via several co-stimulatory ligands/receptors pairs and adhesion molecules are 
required to achieve complete T-cell activation. At this point, some molecules could provide 
regulatory signals, inhibiting T-cell responses rather than activating, for example CTLA-4 and   PD-
1. Production of cytokines is the final result of the interaction between T-cells and APCs. 
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1.1.5   T-Dependent and T-Independent B-cell  responses  

 

1.1.5.1   T-dependent (TD) responses  
 

As mentioned in section 1.1.4, cell-contact between a T-cell and an APC is required to trigger 

activation of T lymphocytes, TH differentiation and clonal expansion. Similarly, B lymphocytes 

cannot be fully activated by the antigenic cross-link of their BCR only and require reciprocal ‘T cell 

help’ to develop into plasma and memory cells. The interaction between a helper T-cell and a B-

cell specific for the same antigen (‘cognate interaction’) is what delivers a second signal to naive 

B lymphocytes. Via co-stimulatory molecules and cytokines, T-cells induce B-cell differentiation 

into short-lived antibody producing plasma cells (‘T-dependent humoral response’) or into long-

lived memory cells (McHeyzer-Williams & McHeyzer-Williams 2005). Be-2 cells are the major B-

cell subset involved in T-dependent (TD) responses (section 1.1.3.1). 

From the secondary co-stimulatory signals which induce Ig class switching, the most important 

comes from the CD40-CD40L interaction between the B-cell and the Helper T-cell (Allen et al. 

1993) (section 1.1.4.3). CD40 engagement recruits the adapter proteins TRAFs, which lead cluster 

and activation of several kinases followed by downstream signalling through MAPK or NF-κβ and 

finally gene transcription (Elgueta et al. 2009).  

In addition to CD40, other molecules such as the B-cell activating factor (BAFF), OX40L (CD252) 

and the inducible costimulator ligand (ICOSL) play a role for the cognate priming of B-cells 

(McHeyzer-Williams & McHeyzer-Williams 2005). Cytokines IL-4, IL-21, IFN-γ and IL-10 are also 

involved in the class switching to IgG, IgA and IgE; whilst IL-5, IL-6 and IL-2 are more involved in 

the maintenance of specific Ig producing cells (Ozaki et al. 2002; Cerutti et al. 1998; Takeda et al. 

1996; McHeyzer-Williams 1989; Sonoda et al. 1989). Moreover, Pasare & Medzhitov (2005) 

describe a critical role of TLRs in TD antigen-specific antibodies, suggesting that TLR activation is 

essential for the production of some Ig classes (especially IgG and IgM).   

Overall, TD antigens require a large number of secondary signals but generate B lymphocytes with 

the potential to develop immunological memory and to mount secondary antibody responses.  

 

1.1.5.2   T-independent (TI) responses  
 

Few antigens are capable of inducing antibody production without ‘T cell help’ and hence are 

called T-independent (TI) antigens (Mond et al. 1995). These antigens do not require cognate 
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interactions to induce fully B-cell activation and a rapid but short-lasting antibody production (in 

particular IgM).  

Be-1 cells (section 1.1.3.1) are usually classified as effectors of TI responses, although some 

evidence has demonstrated that they are also capable of performing some TD responses and 

secrete IgA and IgG isotypes (Herzenberg 2000). 

TI antigens are further classified as type 1 (TI-1) and type 2 (TI­2) antigens on the basis of their 

antigenic properties and the way they stimulate B lymphocytes (Mond et al. 1995). 

 

1.1.5.2.1   TI type 1 antigens 

In large concentrations these antigens act as mitogens, inducing non-antigen specific polyclonal 

B-cell activation and antibody production, even in neonates (Mond et al. 1995). The typical 

examples include bacterial lipopolysaccharides (LPS) and bacterial DNA, which cross-link the BCR 

(1st signal) but can be also be recognised by TLRs (2nd signal) expressed on B lymphocytes 

(Bekeredjian-Ding & Jego 2009) (sections 1.1.4 and 1.1.5.2.2). LPS activate B lymphocytes through 

TLR-4 signalling (Chow et al. 1999), while bacterial DNA does it via TLR-9 (Ruprecht & Lanzavecchia 

2006).  

LPS can directly exert polyclonal B-cell proliferation and IgM antibody production (Goud et al. 

1990; Dziarski 1982; Coutinho et al. 1974). More importantly, LPS-activated B-cells can gain T-cell 

modulatory properties depending on the LPS amount they are exposed to. Low LPS concentrations 

direct TH2 polarization, whereas high concentrations induce IFN-γ and IL-10 secreting T-cells that 

resemble a Treg phenotype (Xu et al. 2008).  

 

1.1.5.2.1   TI type 2 antigens 

TI type 2 antigens consist of large, flexible, slowly degraded molecules with highly repetitive 

identical antigenic epitopes, which can also activate the complement cascade (Mond et al. 1995; 

Dintzis et al. 1983). TI type 2 antigens activate mature B lymphocytes only, thus they fail to induce 

an immune response in neonates. Polysaccharides from the bacterial capsule and from the cell 

wall are the classic example of TI type 2 antigens, but other examples include dextran and Ficoll 

(Mond et al. 1995).  

The major activation signal starts when the antigen cross-links several BCR simultaneously, in a 

multivalent manner. Dintzis et al. (1983) found that a minimum of 20 epitopes distributed in a two 

dimensional spacing of 5-10nm should be contained in a molecule in order to be TI immunogenic. 
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This translates into a minimum of 10 BCR bound to a single ligand to achieve B-cell stimulation 

(Sulzer & Perelson 1997). As reviewed in section 1.1.3.3, BCR engagement is followed by protein 

tyrosine kynase activity and subsequent activation of Btk, dependent on    PI-3K (Li et al. 1997). 

Because Btk allows extracellular calcium to enter into the cell (Fluckiger et al. 1998), it plays an 

important role in BCR signal transduction, proliferation and IgM responses  (Khan 2001; Khan et 

al. 1995). TI type 2 antigens generate multivalent Ig clusters that attract and activate several Btk 

molecules, thus resulting in persistent calcium influxes and subsequent recruitment of nuclear 

transcription factors, such as NF-κβ (Bajpai et al. 2000; Vos et al. 2000). The fact that TI type 2 

antigens require functional Btk involvement is what differentiates them from the TI type 1 group 

(Rawlings et al. 1993).  

BCR cross-linking with TI type 2 antigens might be enough to induce B-cell proliferation, but a 

second signal is essential to trigger antibody production (Vos et al. 2000). TLRs expressed in human 

B-cells can recognise bacterial components (section 1.1.4.1) and indeed provide a secondary aid 

for B-cell proliferation, differentiation, Ig class switching and migration (homing) to specific 

lymphoid tissue (Bekeredjian-Ding & Jego 2009). For example, addition of TLR-2 and/or TLR-9 

agonists together with BCR engagement (anti-Ig) resulted in enhanced IL-10 secretion, extensive 

sustained B-cell proliferation and Ig class switching (Liang et al. 2011; Bouaziz et al. 2010; Ruprecht 

& Lanzavecchia 2006). Moreover, TLR activity via MyD88 was found to be as strong stimuli as Btk 

to induce secretion of pathogen-specific IgM (Alugupalli et al. 2007). However, it has been shown 

that the effects of TLRs stimulation vary depending on the B-cell subset, their phenotypic 

receptors and the tissue where they home (Ganley-Leal et al. 2006).  

Moreover, T-cells can be recruited and respond to the presence of multivalent antigens (Siliciano 

et al. 1985), secreting cytokines that influence Ig production (Pike & Nossal 1984). The Snapper 

group has demonstrated that TH-derived IL-2, IL-3, IL-4, IL-5, IL-6, IL-10 and IFN-γ can modulate Ig 

secretion after TI type 2 stimulation (Vos et al. 2000).  

In conclusion, TI type 2 antigens which are also recognised by TLRs and/or induce secretion of 

cytokines by other leukocytes or dendritic cells, will successfully lead secondary intracellular 

pathways to enhance B-cell activity, differentiation and Ig class switch. There is also some 

evidence from model systems that Ig responses against capsular polysaccharides vary depending 

if the polysaccharides are presented on whole organisms or in a purified form (Khan et al. 2004). 

A publication has reported that TI type 2 responses can even generate a big pool of memory-like 

B-cells with the special feature of becoming downregulated in their secondary response by IgG 
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antibodies specific to the immunising antigen, thus avoiding antibody overproduction 

(Obukhanych & Nussenzweig 2006). 
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1.2    NEISSERIA MENINGITIDIS   

 

1.2.1   Generalities and epidemiology  

 

Neisseria meningitidis (N. meningitidis, meningococcus) is an encapsulated diploccocus gram 

negative β-Proteobacterium which exclusively infects humans and is the leading cause of bacterial 

meningitis. Bacterial meningitis has a prevalence of 4 to 6 cases per 100,000 adults and from 

those, 80% are caused by N. meningitidis or S. pneumoniae (van de Beek et al. 2006). Morbidity 

rates for meningococcal meningitis are reported as 3 to 7%, representing 1.2 million cases per 

annum worldwide with a prevalence of 1-12 cases/100,000 (1,000/100,000 in African epidemics) 

(Stephens et al. 2007; Rosenstein et al. 2001). After the vaccine introduction, the incidence of 

meningococcal disease in the UK remains low (2.05 cases/100,000) (“Health Protection Agency” 

2012).  Adolescents (15-24 years old) and infants between 3 and 7 months have the highest rate 

of disease (Stephens et al. 2007).  

The first official description of meningococcal meningitidis occurred in 1805 when Vieusseux 

reported an outbreak of cerebrospinal fever in Geneva (Vieusseux 1806). However, it was not until 

1887 that Anton Weichselbaum first isolated the bacterium from the cerebrospinal fluid of a 

patient with meningitis, calling this organism Diplococcus intracellularis (Weichselbaum 1887). It 

was in 1909 when C. Dopter first reported the presence of the meningococcus in the human 

nasopharynx (Dopter 1909). 

Twelve serogroups have been established based on the immunochemistry of the capsular 

polysaccharides, but only six (A, B, C, X, W and Y) are responsible of causing more than the 90% of 

meningococcal invasive disease worldwide (Harrison et al. 2013; Stephens et al. 2007). Of these 

12 serogroups, pathogenic strains from the groups A, B, C and X have been fully sequenced.  

Serogroup A shows a tendency to cause large-scale epidemics in developing countries, being the 

zone of the African “meningitis belt” the one with the highest prevalence of the disease in kids 

aged between 7 and 14 years. In contrast, serogroups B, C and Y are associated with sporadic 

disease or severe outbreaks in North America, Zealand, South America and Europe. Serogroup B 

is endemic in industrialised countries, it is responsible for 30-40% of all meningococcal disease 

cases in the United States, 30–80% in the European Union and some epidemic outbreaks in Latin-

American countries (WHO 2012; Harrison et al. 2009). Global incidence of meningococcus B has 

been estimated at 20 000 and 80 000 cases per year, accounting for 2000–8000 deaths annually 
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(Stephens et al. 2007; Rosenstein et al. 2001). Most serogroup B cases are sporadic and a long-

lasting hyperendemic wave of disease may occur.  

Further characterisation of N. meningitidis serotypes has been accomplished on the basis of 

multilocus sequence typing, a modern technique performed through DNA sequencing in 

housekeeping genes (Maiden et al., 1998). Genes such as PorA, PorB, NadA, fHBP, GNA2132  and 

FetA are included in this mapping (Harrison et al. 2009; Caugant 2008). 

 
 

1.2.2   Colonisation and meningococcal disease  

 

The human nasopharynx is the only natural reservoir for N. meningitidis, so spread of the 

bacterium occurs person to person by droplets of respiratory tract secretions. Whether or not the 

infection is acquired, depends on the type of contact with the carrier, the virulence of the strain, 

its effective evasion of the immune system response and the genetic susceptibility of the host. At 

the colonisation stage, meningococci proliferate on the surface of human non-ciliated epithelial 

cells, forming small microcolonies at the site of initial attachment (Rosenstein et al. 2001). In most 

cases, the organism is carried asymptomatically in the nasopharynx. Between 10 and 30% of 

healthy individuals will carry N. meningitidis in the upper respiratory tract at any time (Caugant et 

al. 1994). The duration of the carriage state can be chronic, intermittent or transient. Most of the 

times, the colonisation is transient and ends up in elimination of the meningococcus. Generation 

of natural immunity is thought to be the result of cumulative immunising episodes by recurrent 

meningococci colonisation in nasopharynx. Thus, natural generation of protective IgG serum 

bactericidal antibodies (SBA) against the colonising strain is accomplished (Robinson et al. 2002).   

Occasionally, in the presence of certain factors that impair the integrity of the nasopharyngeal 

mucosa or when immune mechanisms against the bacteria are unsuccessful, N. meningitidis can 

gain entry to the blood stream. Meningococci can penetrate the epithelial barrier by moving 

through epithelial or endothelial cell junctions, by transcytosis or being carried across the 

epithelial and endothelial barriers inside immune cells such as monocytes.  

Meningococcal disease usually occurs within 1–14 days post-acquisition of the bacterium, but its 

diagnosis is often missed or confused because the early stages of disease mimic common viral 

infections such as influenza. Once in the blood stream, bacteria can multiply and cause diverse 

forms of meningococcal disease (Figure 1.4). Meningococcal meningitis is the most common 

disease form and occurs when the bacterium cross the blood-brain barrier to establish in the 
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meninges. Classical clinical features in adults include fever, severe headache, nausea/vomiting, 

dislike of bright lights, neck stiffness, drowsiness, altered mental status (Glasgow scale below 14) 

and a non-specific or maculo-papular rash (van de Beek et al. 2004). Less severe infections such 

as purulent or immune arthritis, pneumonia, purulent pericarditis, conjunctivitis, otitis, sinusitis 

and genitourinary infections are less common.  

Meningococcal sepsis is the most severe and life-threatening form of the disease. It is 

characterised by an abrupt onset of fever and a non-blanching petechial or purpuric rash that may 

progress to purpura fulminans, followed by a rapid onset of hypotension and acute adrenal 

haemorrhage. Meningococcemia is triggered by activation of the complement and the excessive 

release of pro-inflammatory cytokines, among which TNF-α, IFN-γ, IL-1β, IL-6, IL-8 and IL-12p70 

play a crucial role (Hellerud et al. 2008; Van Deuren et al. 1995). Carrol et al. (2005) found that 

this initial pro-inflammatory profile is altered in patients with severe meningococcal sepsis as 

higher levels of the anti-inflammatory IL-1R are present in blood, perhaps as a manner of 

downregulation and counterbalance. Fulminant meningococcal septicaemia is characterised by a 

rapid proliferation of the meningococci in circulation, with bacterial numbers up to 105–108/mL 

and high levels of meningococcal endotoxin (101–103 EU/mL) (Hellerud et al. 2008; Stephens et al. 

2007). Septic patients with high endotoxin concentrations will suffer disseminated intravascular 

coagulation due to activation of the coagulation system and concomitant down regulation of the 

fibrinolytic system. Later, progressive circulatory collapse and severe coagulopathy can result in 

multiple organ failure, thrombosis, necrosis and death within a few hours (Hellerud et al. 2008; 

Stephens et al. 2007). Despite the use of antibiotics fatality rates for meningococcal disease are 

still high (3 to 15%), rising up to 40% in the case of meningococcal septic shock (van de Beek et al. 

2004). Up to 25% of the survivors are left with permanent sequelae, including hearing loss, motor 

nerve deficits, visual impairment, cognitive impairment and limb amputations as result of necrosis 

(Stephens et al. 2007). 
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Figure 1.4: Progression of meningococcal disease.  

Meningococci colonise the nasopharynx and remains silent avoiding killing by the immune system 
(carriage stage). Occasionally, the bacterium crosses into the bloodstream and causes 
meningococcal disease, meningitis and/or meningococcal septicaemia. Release of pro-
inflammatory cytokines and nitric oxide play an important role in the severity of the disease.   
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1.2.3   Diagnosis, treatment and v accination  

 

Although the clinical presentation of meningococcal meningitis is well known, early diagnosis in 

infants can be difficult due to a late onset of the classical symptoms and because the course of the 

disease is not always the same. Hence, a hazardous lumbar puncture with isolation of the 

pathogen will be required to confirm a meningococcal meningitis case (van de Beek et al. 2006). 

Recently, suspected cases of meningococcal disease have been definitively confirmed and typed 

by PCR (Corless et al. 2001; Maiden et al. 1998) or multilocus sequence typing (Maiden et al. 1998). 

Parenteral benzylpenicillin should be given in suspected meningococcal disease (meningitis with 

non-blanching rash or meningococcal septicaemia) (Health Protection Agency 2012). Once 

confirmed, the antibiotic therapy includes a third-generation cephalosporin (ceftriaxone or 

cefotaxime) with or without adjunctive dexamethasone (Theilen et al. 2008). Intensive care is 

needed to restore electrolytes imbalance and monitor neurological, cardiovascular and 

respiratory functions in those patients suffering septic shock.    

Due to the severity of the disease and its unpredictable course, prevention through vaccination is 

the best option to control the disease by N. meningitidis. In the 1960’s, the first successful vaccines 

based on meningococci capsular polysaccharides against serogroups A, C, W and Y were 

administrated. However, these vaccines resulted to be poorly immunogenic in children under 2 

years old as they only elicited a T-independent type 2 response, with no memory and with low 

antibodies titers (section 1.1.5.2.1). Thus, the susceptibility to meningococcus is higher in infants 

and young children than adults.  

Conjugated vaccines combining capsular polysaccharides with a protein were manufactured to 

overcome this problem and to achieve an effective T-dependent long-lasting response (section 

1.1.5.1). The MenC vaccine was the first of this type to be introduced and be successful against 

the serogroup C, proving to be effective to induce long-term protection in 1 year old children and 

with a single dose (Miller et al. 2002). Nowadays, two conjugated tetravalent vaccines against the 

serogroups A, C, Y and W have been licensed and are effective in infants. MenACWY-D (Sanofi 

Pasteur) contains polysaccharides of the 4 serogroups conjugated to diphtheria toxid (Pace et al. 

2009). MenACWY-CRM (Novartis) is made from oligosaccharides from the capsule but linked to a 

diphtheria mutant carrier protein (CRM-197) and with the addition of an adjuvant (aluminum 

phosphate) (Pace et al. 2009; Snape et al. 2008). Recently, a conjugated vaccine against the same 

serogroups but using tetanus toxoid (MenACWY-TT) suggested a slightly broader effectiveness 

when compared to MenACWY-CRM (Knuf et al. 2013). Another vaccine of this type has been 
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manufactured to control epidemic outbreaks of the N. meningitidis serogroup A in the African 

‘meningitis belt’ region. MenAfriVac is affordable, has shown to be safe until now and is now part 

of an extensive vaccination campaign (WHO 2013). 

Regardless of the success of these conjugated vaccines, a polysaccharide-based approach against 

the serogroup B is impossible to use, as the major component of its serogroup capsule is a 

common carbohydrate (α2-8-linked N-acetyl neuramic acid) present in mammalian brain cells  

(Serrato et al. 2004; Gotschlich et al. 1969). The fact that this polysaccharide is poorly 

immunogenic, plus the risk of eliciting autoimmunity against this component on the host cells, has 

prevented the development of a MenB vaccine under the conventional approach (Tan et al. 2010). 

Novel vaccines against the serogroup B have been under development based on certain proteins 

contained within the Neisseria outer membrane vesicles (OMVs) (section 1.2.4.6). Although they 

have been effective in controlling epidemics caused by a single strain like the one that occurred in 

New Zealand (Holst et al. 2009), these vaccines represent major problems owing to the high 

variability of the immunodominant components (Urwin et al. 2004). Indeed, within a vaccine 

formulation it will be necessary to include multiple variants of a single antigen to account for its 

diversity; for example different types of PorA protein (Tan et al. 2010). New engineered 

approaches have been additive into the effort of improving OMVs vaccines against MenB. The 

identification of immunogenic candidates by the reverse vaccinology technique (Pizza et al. 2000) 

is possibly the main example. Released in January 2013, Bexsero (Novartis) is the newest 

successful vaccine formulation which is immunogenic in infants, children, adolescents and adults. 

Bexsero contains 3 antigens identified by reverse vaccinology: adhesin A (NadA), factor H–binding 

protein (fHbp) and neisserial heparin binding antigen (NHBA), in addition to OMVs from the New 

Zealand vaccine containing PorA P1.4 (Gorringe & Pajón 2012; Giuliani et al. 2006). This vaccine 

has been already licensed in Australia and Europe but not yet in the UK. The JCVI has advice that 

toddler routine vaccination with Bexsero is unlikely to be cost effective in the UK, as it will only 

reduce up to half of the cases in infants and does not prevent acquisition of the bacterium in 

adolescents (JCVI 2013). 
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Figure 1.5:  Schematic representation of the major outer membrane constituents of N. 

meningitidis.  
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1.2.4   Main virulence and immunogenic factors of N. meningitidis  

 

The main N. meningitidis components and a schematic representation of its Gram negative 

structure is presented in Figure 1.5. 

 

1.2.4.1   Capsule polysaccharide  

The majority of serogroup B, C, Y and W135 isolates have a capsule composed of polysialic acid 

and derivatives (Gotschlich et al. 1969). However, the meningococcus capsule has to be absent to 

effectively adhere and colonise epithelial cells in the nasopharynx (Claus et al., 2002). Non-

capsulated organisms have been isolated from the nasopharynx of carriers (Claus et al. 2002); 

whereas isolates from blood and cerebrospinal fluid from patients with meningococcal disease 

are almost exclusively capsulated (Cartwright et al. 1987). This dichotomy can be explained by the 

meningococcus ability of switching on/off the capsular polysaccharide expression via a genetic 

modification within the SiaD and SiA genes (Hammerschmidt et al. 1996). The capsule plays an 

important role in invasive meningococcal disease, as once in the bloodstream the capsule protects 

the microorganism from phagocytosis and from being destroyed by the complement system 

(section 1.2.5).  

 

1.2.4.2   Lipooligosaccharyde   

Lipooligosaccharyde (LOS) constitutes 50% of the meningococcal outer membrane. It is composed 

of a hydrophobic lipid A anchored to the membrane and linked to a short hydrophilic chain of 8-

12 saccharide units exposed on the surface. Although LOS is indifferently referred to as LPS by 

many authors, meningococcus lacks of a repeating O-polysaccharide region present in enteric LPS 

(Zughaier et al. 2004; Brandtzaeg et al. 2001). Protein LpxA is responsible for adding the O-linked 

3-OH fatty acid to UDP-N-acetylglucosamine, which is the first step in the lipid A synthesis (Steeghs 

et al. 1997).  

Twelve different immunotypes have been detected based on the LOS structure, being the 

immunotypes L3, L7 and L9 the most associated with rapid progressive meningitis and septicaemia 

due to serogroups B and C; whereas the L1, L8 and L10 immunotypes are mainly seen in carriers 

(Mackinnon et al. 1993). This can be explained by the aggressive immunotypes inducing higher 

levels of TNF-α and IL-6 as compared with other immunotypes (Braun et al. 2002). Moreover, 

several immunotypes can mask their terminal lactosamine by adding sialic acid on their LOS 
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structure, a condition that reduces antibody opsonisation and complement activity (Estabrook et 

al. 1997).  

The lipid A from LOS is the endotoxin which triggers a strong systemic inflammation responsible 

of many of the clinical features in bacterial septicaemia, such as coagulopathy, endothelial 

disruption, hypotension and organ failure. The presence of LOS in blood can be recognised by the 

soluble LPS-binding protein, by the membrane receptor CD14 and by the TLR-4. In monocytes, 

macrophages and granulocytes, CD14 together with TLR-4 and the soluble TLR-4 associated 

protein MD-2, form a complex to recognise LPS (Zughaier et al. 2004). But it is the TIR domain of 

the TLR-4 that triggers intracellular signalling through adaptor proteins. Signalling via the adaptor 

MyD88 activates transcription factors NFκβ and MAPK, resulting in production of pro-

inflammatory cytokines TNF-α, IL-6, IL-8 and IL-12p (Lu et al. 2008). On the other side, signalling 

through the adaptor TRIF induces interferon type I transcription, important for antibacterial and 

antiviral responses (Lu et al. 2008). LOS variations from different strains can influence the 

magnitude of the TLR signalling and the cytokine output (Pridmore et al. 2003). Similarly to the 

observation in monocytes, infection by meningococci induces maturation and secretion of IL-6, IL-

8 and TNF-α from dendritic cells (Unkmeir, Kämmerer, et al. 2002; Kolb-Mäurer et al. 2001).    

Pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 and IL-8 are extremely upregulated in 

patients with meningococcal septicaemia and high plasmatic levels of LPS/LOS. But as a counter-

balance, the anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist (IL-1RA) are also 

elevated in those patients (Brandtzaeg et al. 2001). Thus, the balance among these cytokines and 

the compartment in which they are being secreted (blood or cerebrospinal fluid) play an important 

role in the clinical prognosis. 

 

1.2.4.3   Pil i  and adhesins    

Adherence of capsulate meningoccoci to nonciliated columnar cells in the nasopharynx is 

dependent on and driven by long thin homopolymeric flexible filaments type IV pili, which extend 

from the inner membrane to the bacterial surface (Carbonnelle et al. 2009). Pilus is crucial to the 

niche specialisation of the meningococci because it mediates tropism, specifically for human 

respiratory tract epithelia (Virji et al. 1991; Rayner et al. 1995; Stephens & McGee 1981). Constant 

binding and retraction of the pilus allows a form of bacterial movement called “twitching motility” 

whereby bacteria crawl over a surface to spread along the apical cell surface (Lee et al. 2005). 

Although it was first suggested that pilus binds to the membrane cofactor protein CD46 expressed 

on all human cells except erythrocytes, it was later discover that other CD46-independent binding 
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mechanisms exist (Källström et al. 1997; Kirchner et al. 2005). Type IV pilus is also involved in the 

bacteria-bacteria interaction and in the formation of the polarity complex (cytoplasmic proteins 

and adhesins) on microvascular endothelial cells (Coureuil et al. 2009). It creates a ‘cortical plaque’ 

that protects bacterial colonies from the blood flow shear and induces opening of cell-cell 

junctions (Lécuyer et al. 2012; Merz et al. 1999). In addition, pili are essential for natural 

competence and DNA transformation; antigenic variations in pili allow N. meningitidis to colonise 

different niches and avoid clearance (Nassif et al. 1994). 

Apart from pili, Opa and Opc are considered major meningococcal adhesins (section 1.2.4.4); 

whereas Neisseria hia homolog A (NhhA) (Scarselli et al. 2006), HrpA (Schmitt et al. 2007) and 

Neisserial adhesin A (NadA) (Franzoso et al. 2008) are referred as minor adhesins.  

 

1.2.4.4   Outer Membrane Proteins:  Opa and Opc  

After the pili initial attachment, the opacity associated adhesin proteins Opa and Opc generate a 

tight secondary binding that lead to meningococci engulfment or transcytosis throughout host 

cells (Sadarangani et al. 2011; Carbonnelle et al. 2009). They participate in the meningococcus 

internalisation and synergise the action of pili (Rowe et al. 2007). Opa is an eight-stranded 

transmembrane β-barrel structure with four surface-exposed loops; while Opc is a 10-stranded β-

barrel molecule with five surface-exposed loops.  

Opc facilitates bacterial adhesion and invasion of epithelial cells and brain-derived endothelial 

cells by interacting with heparan sulfate proteoglycans (HSPGs) (de Vries et al. 1998), integrins, 

cytoskeletal proteins and the extracellular matrix proteins vitronectin and fibronectin (Unkmeir, 

Latsch, et al. 2002). 

Opa is a highly diverse protein because N. meningitidis contains 4 different opa alleles with the 

capacity of going through phase variation (Sadarangani et al. 2011). Although Opa can also bind 

to HSPGs, the majority of Opa variants bind to carcinoembryonic antigen-related cell adhesion 

molecules (CEACAMs) (Carbonnelle et al. 2009; Gray-Owen et al. 1997). The CEACAMs are 

members of the immunoglobulin superfamily with cell adhesion properties (Beauchemin et al. 

1999). From the group, CEACAM1, CEACAM3, CEACAM5 and CEACAM6 have been shown to bind 

to Neisseria spp Opa variants (Bos et al. 2002). CEACAM3 is expressed only on neutrophils and 

CEACAM5 exclusively on epithelial cells; whereas CEACAM 6 is expressed on both. CEACAM1 is 

widely found on epithelial and endothelial cells, as well as on granulocytes and activated 

lymphocytes (Sadarangani et al. 2011). In the presence of pro-inflammatory cytokines, such as 

TNF-α and IL-2, CEACAM expression become upregulated in endothelial cells, activated CD4+ T -
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cells, CD19+ B-cells and NK-cells (Muenzner et al. 2000; Kammerer et al. 1998). Since high levels of 

CEACAM1 are also induced upon TCR-crosslinking, it has been suggested to be involved in T-cell 

signalling and proliferation (Nagaishi et al. 2006; Kammerer et al. 1998). CEACAM1 can express a 

long cytoplasmic tail with an inhibitory motif (ITIM), thus Opa-CEACAM1 binding has been 

associated to T-cell suppression (Lee et al. 2008; Nagaishi et al. 2006; Nakajima et al. 2002; Boulton 

& Gray-Owen 2002). However, T-cell co-stimulation has been reported to occur in the presence 

of Opa or if a monoclonal antibody is directed against CEACAM1 (Donda et al. 2000; Kammerer et 

al. 1998; Wiertz et al. 1996). Indeed, the outcome seems to depend on the balance among 

CEACAM1 splice variants (long or short cytoplasmic tail), the amounts of bacterial Opa proteins 

and the cellular environment (Nagaishi et al. 2006; Muenzner et al. 2000).    

 

1.2.4.5    Outer Membrane Proteins:  PorA and Por B  

The porins PorA and PorB are the most abundant outer membrane proteins, with PorB being the 

most important of the two. Meningococcus is capable of expressing the two porin proteins 

simultaneously: Por A (class 1) and one of two mutually exclusive PorB2 or PorB3. A N. meningitidis 

classification into serosubtypes is done based on the phase-variable PorA, whilst serotypes are 

based on PorB (Frasch et al. 1985). Porins are located in the bacterial outer membrane to allow 

small hydrophilic nutrients to diffuse into the cell, and they might be also be involved in bacterial 

up-take by re-arranging the cytoskeleton.   

PorA binds a complement inhibitor to reduce complement-mediated bactericidal activity and thus 

improving bacterial survival in plasma (Jarva et al. 2005). PorB targets host cells to localise within 

the mitochondrial inner membrane, it binds to the voltage-dependent anion channel and thus can 

modify the mitochondrial membrane potential. Both pro-apoptotic (Kozjak-Pavlovic et al. 2009) 

and anti-apoptotic (Massari et al. 2000) effects have been associated to PorB.  

Both porins are immunogenic, enhance expression of CD86 on APCs and induce TLR-2/TLR-1 

downstream signalling through MyD88 (Massari et al. 2006; Wetzler 1994); therefore have been 

used in the past as vaccine adjuvants to enhance T-dependent responses (Fusco et al. 1997).  

 

1.2.4.6   Outer Membrane Vesicles 

During log-phase growth and as a virulence mechanism, N. meningitidis releases into the 

surrounding medium blebs or vesicles from its outer membrane. Outer membrane vesicles 

(OMVs) are primarily composed by LOS (50%), in addition to outer-membrane proteins, 

phospholipids and capsular polysaccharides (Rosenstein et al. 2001). Indeed, released OMVs from 
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rapidly growing meningococci contributes to the very high plasmatic levels of endotoxin 

(LOS/LPS), which characterise fatal meningococcal septicaemia (Namork & Brandtzaeg 2002; 

Brandtzaeg et al. 1989). 

The biological effects of OMVs are similar to the ones of purified meningococcal LPS, as OMVs 

induce secretion of TNF-α, IL-6 and procoagulant activity in a dose-dependent manner (Bjerre et 

al. 2000). If LOS is removed from the vesicles, the non-LOS components will be still able to 

generate a pro-inflammatory response (TNF-α, IL-1β and IFN-γ), although much higher 

concentrations of the vesicles will be required (Hellerud et al. 2008; Sprong et al. 2001). 

Several studies have shown that proteins contained within OMVs are good immunogenic 

candidates (section 1.2.3) and that whole OMVs can be safely used in vaccine preparations after 

LOS removal, either by detergent-extraction or using LOS-deficient engineered strains (van de 

Waterbeemd et al. 2012). Although is well known that porins are the major inducers of bactericidal 

antibodies, Marzoa et al. (2012) suggests that protein complexes formed by porins and accessory 

proteins (RmpM, CxChap or FetA) offer the advantage of preserving the conformational structure 

seen in native OMVs. This principle facilitates exposure of epitopes and indeed promotes a more 

efficient immune response, with complement activation and opsonophagocytosis.    

 

1.2.4.7   Bacterial genome and phase variation  

N. meningitidis has one of the most dynamic genomes studied so far, possessing many hundreds 

of repetitive elements and phase variable genes, plus the ability of performing horizontal DNA 

transfer (Tettelin et al. 2000; Caugant 2008). Interestingly, meningococci have acquired DNA from 

commensal Neisseria spp., from other bacteria (e.g. Haemophilus) and from phages. Genome 

plasticity and phenotype diversity result in evolution of a pool of genes implicated in cellular 

invasion or virulence of the strain, as well as in a differential survival of variant genotypes within 

a clonal complex over an extended time period (Buckee et al. 2008). Buckee et al. (2008) proposes 

a selective model built on the assumption that strains with slight differences in transmissibility 

and which could co-infect a host, are in constant competition. Hence, a small subset of the most 

transmissible strain will persist during long-term and will become the central persisting genotype. 

It has been previously observed that populations of carried meningococci comprise multiple 

lineages, whereas meningococcal isolates from cases of invasive disease typically contain a limited 

subset of lineages (Jolley et al., 2005; Yazdankhah et al., 2004). The meningococcus serogroup B 

wild type strain MC58 has a genome of 2,272,351 bp and 2158 predicted coding regions with an 

average G-C content of 51.5%. It has 2158 ORFs identified, from which 71% are similar to ORFs 
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from g-Proteobacteria (mainly H. influenzae) suggesting a common ancestor for these two 

microorganisms (Tettelin et al. 2000). Genome analysis shows that strain MC58 has a far greater 

number of phase-variable genes and contains several putative phage-derived ORF’s (Masignani et 

al. 2001). Several phase variation events take place during N. meningitidis infection, including 

modifications to LOS, outer membrane proteins and pilin, as well as on/off expression of the 

capsule (van der Woude & Bäumler 2004). 

 

1.2.5   N. meningitidis  is capable of evading some immune responses.  

 

N. meningitidis must evade the immune system to invade host cells and induce systemic disease. 

The presence of a capsule is fundamental to many of the bacterial survival mechanisms. 

Meningococcus capsule limits the adhesion with phagocytic cells and impairs 

complement­mediated killing by blocking antibody binding and complement deposition; thus 

reducing opsonisation and subsequent phagocytosis by macrophages and dendritic cells (McNeil 

and Virji, 1997; Read et al., 1996).  

In addition to the capsule, LOS is an important mechanism to escape innate immune responses. 

Meningococci strains containing sialylated LOS phenotypes avoid immune recognition by anti-LOS 

antibodies and they become protected against complement-mediated bacteriolysis (Estabrook et 

al. 1997). When LOS are sialylated, phagocytosis and phagocytic killing become restricted, most 

likely because sialylation masks Opa and Opc proteins and reduce their interactions with 

polymorphonuclears, monocytes and dendritic cells (Unkmeir, Latsch, et al. 2002; McNeil & Virji 

1997).  

In order to survive and replicate inside epithelial cells, meningococcus overcome the action of 

bactericidal lysosomes. The meningococcal IgA1 protease prevents phagosomal maturation and 

bacterial lysis by cleaving and reducing the amount of lysosome-associated membrane proteins 

(LAMPs) and affecting other lysosome structures (Ayala et al. 1998). In addition, IgA1 proteases 

degrade immunoglobulins produced in mucosal surfaces.   

Phase variation of many of the N. meningitidis genes may confer it advantage to escape from the 

recognition by the immune system (section 1.2.4.7). For example, a recent publication has found 

a phase variant of PorA with reduced levels of surface expression that allows the bacterium to 

avoid killing by specific PorA bactericidal antibodies (Tauseef et al. 2013). 
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1.2.6   N. meningitidis  and nitric oxide 

 

Nitric (NO) has been directly implicated in the pathogenesis of septic shock because it increases 

vascular permeability, reduces cardiac contractility and generates hypotension with 

hyporesponsiveness to systemic vasoconstrictors (Petros et al. 1994). In this context, high levels 

of NO, nitrate and nitrite have been detected in blood and cerebrospinal fluid from patients with 

severe meningococcal disease and sepsis (Wong et al. 1996; Kornelisse et al. 1996; Petros et al. 

1994).  

In addition to its vasodilator properties, NO is well known as a bactericidal molecule (section 

1.3.3). Mononuclear cells, but mostly macrophages are responsible of the NO overproduction 

during infections. Within the nasopharynx at the site of N. meningitidis colonisation, mononuclear 

cells and macrophages account for between 14-18% of the total cells (Pipkorn et al. 1988). Indeed, 

the nitric oxide output is particularly high due to the presence of NO producer cells and the 

abundance of commensal organisms colonising the nasopharynx (Busch et al. 2000; Lundberg & 

Weitzberg 1999). 

Bacterial LOS/LPS and pro-inflammatory cytokines, are the main stimuli for NO production during 

bacterial infections. However, NO production is not always dependent on the amount of LPS and 

is more correlated to the source of LPS, free calcium levels and the cell type (Azenabor et al. 2009; 

Zughaier et al. 2004). IFN-γ is the major stimulus for NO production from macrophages (Ding et 

al. 1988). In meningococcal disease TNF-α, IFN-γ and IL-1β are recognised major stimuli for the 

induction of NO production in different cell types (Kwon et al. 2001; Taylor et al. 1998; de Vera et 

al. 1996). Vice versa, local variations in NO levels can alter the pattern of the cytokines secreted 

by macrophages. For instance, macrophages treated with small amounts of an NO donor secreted 

less IL-10 but more IL-12 and TNF-α in comparison with the non-treated control. Since infection 

with N. meningitidis reduces the overall amount of NO present in the environment by a 

denitrification system (section 1.2.6.1), it is expected for the NO-related cytokines to suffer 

modifications (Stevanin et al. 2007). 

 

1.2.6.1   N. meningit idis  has a partial denitrif ication system  

Several pathogens have evolved a variety of strategies to counteract the bactericidal effect of the 

reactive nitrogen intermediates of their host cell. Microbes can inhibit NO synthesis by blocking 

or reducing the enzymes or substrates necessary for NO production, by presenting a LPS phase-
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variant that no longer induces NO, and by repairing DNA damage caused by reactive nitrogen 

products (Chakravortty & Hensel 2003; Eriksson et al. 2000; Cowley et al. 1996).  

N. meningitidis posses a developed partial denitrification system, that allows the reduction of 

soluble nitrite into nitric oxide and finally into non-bactericidal N2O. Moreover, this denitrification 

system seems physiologically relevant to enhance meningococcus survival during mucosal 

colonisation and within macrophages. Since meningococcus is likely to encounter 

microenvironments rich in NO but reduced in oxygen, the bacterium has become adapted to 

support growth by using the denitrification pathway (Anjum et al. 2002). Denitrification is a 

respiratory process which involves the use of nitrogen oxides as alternative electron acceptors 

under oxygen-limited conditions (Rock et al. 2005). The N. meningitidis denitrification system is 

comprised of two stages, each catalysed by a distinct enzyme (Barth et al. 2009; Anjum et al. 2002; 

Berks et al. 1995). Within the process, the substrates at each step can serve as electron acceptors 

to supplement bacterial growth: 

1.  NO2 to NO, by the nitrite reductase (AniA). 

2.  NO to N2O, by the nitric oxide reductase (NorB). 

AniA was first identified in Neisseria gonorroheae, as a copper-containing inducible nitrite 

reductase which is attached to the outer membrane and reside in the periplasm (Boulanger & 

Murphy 2002). It is coded by the gene aniA (NMB1623) (Tettelin et al. 2000) and its expression is 

induced by anaerobiosis (Householder et al. 1999). The homologue of the fumarate and nitrate 

reductase regulator (FNR) is a transcriptional regulator that controls the expression of 11 genes 

involved in anaerobic respiration and carbon metabolism, and has been demonstrated to act as a 

transcriptional activator for the expression of aniA (Lissenden et al. 2000). FNR is normally 

regarded as an oxygen-sensitive activator protein, but has been shown to be sensitive to NO by 

reaction of its [4Fe-4S]2+ cluster with NO (Cruz-Ramos et al. 2002). Reaction of FNR with NO 

lowers the affinity of FNR to its DNA binding sequence, then FNR become inactivated and is no 

longer able to induce aniA transcription.  

Gene norB (NMB1623) codes for the nitric oxide reductase NorB, which is part of the superfamily 

of haem/copper cytochrome oxidases (Householder et al. 2000; van der Oost et al. 1994). NorB is 

bound to the membrane and its structure consists of 12 transmembrane helices that contain six 

invariant histidines at defined positions. Using electrons derived from soluble electron donors and 

as part of the respiratory chain, NorB catalyses the reduction of two molecules of NO to N2O and 

water. Although NorB is expressed in all the Neisseria spp., the meningococcal reductase activity 

is one of the most powerful (Barth et al. 2009). NorB is the major player within the denitrification 
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system because has a dual role in both the protection against the bactericidal effect of 

macrophage-derived NO and the utilisation of internally generated NO as part of a bacterial 

metabolic pathway. As compared with wild type strains, norB mutants are killed more by 

macrophages in the early stage of infection (Stevanin et al. 2005). Furthermore, NorB together 

with PorB prevent macrophage apoptosis and prolong survival of the phagocyted meningococci 

(Tunbridge et al. 2006). In infected macrophages, NorB activity and the subsequent reduction in 

NO levels results in high concentrations of NO-regulated pro-inflammatory cytokines such as TNF-

α, IL-12 and CCL5 (Stevanin et al. 2007). 

NsrR (NMB0437) codes for the NO-sensitive repressor protein (NsrR) member of the Rrf2 family 

of putative transcription regulators (Tettelin et al. 2000). The NsrR regulon of N. meningitidis 

contains only a very small number of genes and regulates the transcription of the two 

denitrification genes, aniA and norB in a NO-dependent manner (Heurlier et al. 2008; Rock et al. 

2007). When the concentration of NO is very low NsrR binds to DNA and repress gene expression, 

in particular norB. In contrast, concentrations above ~1µM cause the protein to dissociate from 

the DNA, allowing the expression of the detoxification genes (Heurlier et al. 2008). In this context, 

to ensure that AniA does not overproduce NO from nitrate, aniA expression is tightly regulated by 

both FNR and NsrR (Heurlier et al. 2008; Rock et al. 2007). 
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1.3    N ITRIC OXIDE  

 

Nitric oxide (NO) is a simple diatomic gas, composed of one atom of nitrogen and one atom of 

oxygen. NO is poorly soluble in water, does not go undergo hydration reaction and as an 

uncharged molecule is capable of traversing cellular membranes, making it freely diffusible. In 

addition, NO contains an unpaired electron and is therefore a highly reactive free radical.  

The biological synthesis of NO was first studied by the Ignarro (Ignarro et al. 1987) and Mocada 

groups (Palmer et al. 1987), when they identified that the Endothelium Derived Relaxant Factor 

(EDRF) which exhibited vasorelaxant properties was in fact NO. It was in 1992 when NO was 

named the molecule of the year, after discovering its role as biological messenger in many 

physiological and pathological conditions (Gibaldi 1993; Culotta & Koshland 1992). In biological 

tissues the half life of NO is only 3-5 seconds, owing to the propensity of the molecule to rapidly 

react with the metal centres (free iron, iron within iron-sulphur centres, or iron within 

haemproteins) and with the superoxide radical (O2-) (Ignarro et al. 1993). In aqueous solution, in 

the presence of oxygen, NO is oxidised almost entirely to nitrite (NO2-) with very low levels of 

nitrate (NO3-) (Ignarro et al. 1993). Under mildly acidic conditions, NO2- can be reduced to NO and 

the same cycle continues. 

  

1.3.1   Production of  NO  

 

In mammalian organisms, NO is produced by the family of enzymes called nitric oxide synthases 

(NOS). In the presence of NADPH and O2 serving as co-substrates, NOS oxidize one molecule of   L-

arginine to produce Nw-OH-L-arginine as an intermediate, which is further oxidized to yield one 

molecule of NO and L-citrulline (Knowles & Moncada 1994). 

Three different cytoplasmatic isoforms of NOS are defined: the 157kD neuronal NOS (nNOS or 

NOS1), the 135kD inducible NOS (iNOS or NOS2) and the 140kD endothelial NOS (eNOS or NOS3). 

Each isoform is well conserved among species (80-94% identity) but have fewer similarities 

between the isoforms in any given species (50-60%) (Knowles & Moncada 1994).  

Each NOS polypeptide consists of an N-terminal oxygenase domain and a C-terminal reductase 

domain, separated by a 30-40 amino acids long recognition sequence for calmodulin, a Ca2
+ 

binding protein (Bredt & Snyder 1990). Dimerisation is needed to achieve the active state of all 

three NOS and involves the interaction between the oxygenase domains and the formation of the 
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active-site pocket for binding of L-arginine and haem (Stuehr 1997; Masters et al. 1996). The 

binding regions of calmodulin act as a hinge between the N-terminal oxidase and C-terminal 

reductase. In this manner, calmodulin binding triggers electron transfer to the haem group by 

bringing the domains into alignment (Abu-Soud et al. 1994). nNOS and eNOS are constitutively 

expressed and dependent in their activity on increased intracellular Ca2
+ fluxes (Salerno et al. 

1997). In contrast, iNOS requires a stimulus to be expressed and is considered Ca2
+ independent. 

Whilst nNOS and eNOS produce small amounts of NO during short periods of time, iNOS has the 

ability to produce large quantities and remain permanently active due to a tight irreversible 

calmodulin-Ca2
+ binding (Salerno et al. 1997)  (Figure 1.6  and Table 1.1).  

Among cells from various peripheral tissues and brain, basal levels of each of the three NOS 

mRNAs and proteins expressed are different in their sizes and sequences, suggesting the 

possibility that these variants are produced by alternative splicing (Park et al. 2000).  

iNOS is mainly present within macrophages, dendritic and natural killers cells (Bogdan 2001). 

Although various bacterial components (via TLR recognition) and several cytokines induce 

activation of the iNOS promoter (Bogdan 2001), the combination of LPS, TNF-α, IFN-γ and IL-1β 

remain known as the major stimuli (Xie et al. 1992). Transcriptional activation of the human iNOS 

gene requires the presence of cytokine responsive elements and inducible NFκβ elements 

upstream of the gene (Taylor et al. 1998). Among the iNOS inhibitors, TGF-β and the TH2 cytokine 

IL-4 are recognised as the most potent (Bogdan 2001). iNOS has been found to be elevated in 

bacterial meningitis and iNOS-derived NO has been suggested to be involved in the disruption of 

the blood-brain barrier and in the secretion of pro-inflammatory cytokines (Winkler et al. 2001). 

eNOS is located as a membrane-anchored protein in the Golgi apparatus and in plasmalemmal 

vesicles (caveolae), and is heavily expressed by vascular endothelial cells and T-cell lines (Bogdan 

2001). eNOS is reversibly inhibited by S-nitrosylation (section 1.3.2) in resting cells, being targeted 

to caveolae by reversible thiopalmitoylation of eNOS Cys15 and Cys26. But after agonist 

stimulation, eNOS undergoes denitrosylation and is transported to internal membrane structures 

(Erwin et al. 2006). Such translocation to the cytoplasmic compartment is indispensable for eNOS 

denitrosylation and requires the presence of the CD8-transmembrane domain (CD8-Myr) (Erwin 

et al. 2006). Later on, the membrane-associated eNOS is re-nitrosylated and returns to its basal 

state. eNOS-derived NO has been thoroughly studied within cardiovascular conditions for many 

years, whereas the implication of eNOS in T-cell activation and TCR signalling has been just 

recently pointed out (section 1.3.7).  
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The role of nNOS is almost exclusively limited to the central and peripheral nervous systems as is 

widely expressed in neurons, spinal cord, sympathetic and adrenal ganglia (Knowles & Moncada 

1994). nNOS-derived NO plays a role in synaptic plasticity, acts as a neurotransmitter  and controls 

blood pressure in the brain (Garthwaite 2008).     

 

1.3.2   S-Nitrosylation 

 

In the presence of a strongly oxidizing cofactor, the NO radical is covalently attached with cysteine 

thiol residues of proteins, peptides or amino acids, forming stable low molecular weight-S-

nitrosothiol (SNO) compounds (Stamler et al. 1992). The S-nitrosylation process provides a route 

through which NO-derived bioactivity is not restricted to the site of its production and represents 

a form of reversible post-translational modification of proteins. S-nitrosylation is implicated in 

NOS regulation and diverse cell responses, such as activation of soluble guanylate cyclase and 

cGMP production, transcriptional activity of NFκβ and the regulation of caspases and other 

apoptotic factors (Hess et al. 2005; M. W. Foster et al. 2009).   

A related chemical event is “transnitrosation”, which involves the heterolytic cleavage of the S-

nitrosothiol bond to yield nitrosium (NO+) that is later transferred to another thiol (Arnelle & 

Stamler 1995). The major example of this, is the selectively denitrosylation of S- nitrosoglutathione 

(GSNO) by the glutathione-dependent alcohol dehydrogenase or GSNO reductase, which is 

capable of catalyzing the NADH/NADPH-dependent degradation of GSNO to GSSG and ammonia 

(Jensen et al. 1998). The predominant low molecular weight S-nitrosothiol GSNO works as a 

reservoir of NO within cells and is maintained in balance by the action of its GSNO reductase. 
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Figure1.6:  Nitric oxide (NO) production. 

Nitric oxide is produced by the family of nitric oxide synthases (NOS), which catalyze the oxidation 
of L-ariginine into L-citrulline. Endothelial NOS (eNOS) and neuronal NOS (nNOS) are constitutively 
expressed within cells and require Ca2

+ for its activity. In contrast, transcription of the inducible 
NOS (iNOS) requires external stimuli and is not Ca2

+/dependent.   

 

 

Table 1.1:  Features of human Nitric Oxide Synthases (NOS)  

Nitric 
Oxide 

Synthases 

Gene 
locus 

Cellular expression (Subcellular 
localisation) 

Stimuli for induction Role of the NO produced 

nNOS 
(NOS1) 

12q   
24.2-

31 

Neuronal cells and myocytes        
(Cytosol, endoplasmic reticulum, 

postsynaptic densities, sarcolemma) 

Constitutively expressed and 
Ca2+ dependent 

Neurotransmitter/neuromodulator in 
both the central and the peripheral 

nervous systems. 

iNOS  
(NOS2) 

17q  
11.2-

12 

Macrophages (Phagosomes), 
dendritic cells and NK cells  

Cytokines, cellular activation, 
TLR engagement, etc 

Cytotoxic or cytostatic effector in the 
immune system. Not typically 

expressed in resting cells, must be 
induced by cytokines or microbial 

products. 

eNOS 
(NOS3) 

 

7q       
35-36 

Endothelial cells, cardiomyocytes 
and platelets (Golgi apparatus, 

plasmalemmal caveolae) 

Constitutively expressed and 
Ca2+ dependent 

Vasodilator in the cardiovascular 
system. 
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1.3.3   Bactericidal activi ty of NO 

 

NO is well known as a bactericidal agent because exerts inhibitory, cytotoxic and genotoxic effects 

on microorganisms. NO has been shown to inhibit cellular respiration by reversible inhibition of 

cytochrome c oxidase (complex IV in the mitochondrial respiratory chain) (Cleeter et al. 1994); 

mobilises intracellular zinc targeting DNA-binding zinc metalloproteins (Schapiro et al. 2003) and 

cause deamination of deoxynucleotides resulting in DNA mutations (Wink et al. 1991).  

Antimicrobial properties have been attributed to the various reaction products of NO or reactive 

nitrogen intermediates, such as NONOates, S-nitrosothiols, peroxynitrite, nitrite and nitrous acid. 

Interaction between reactive oxygen species and reactive nitrogen species seems to play a 

synergistic role in respiratory burst and NO synthesis. During a response against infection, high 

concentrations of NO and O2
- radicals can interact to increase their bactericidal actions. The rapid 

reaction of NO with O2
- generates peroxynitrite (ONOO–), an effective potent oxidizing compound 

for SH groups, lipids and DNA, capable of causing nitration of tyrosine residues of proteins 

(Vazquez-Torres et al. 1995). With the oxygen intermediate H2O2, NO can be synergized to cause 

double-stranded DNA breakage, bacterial Fe2
+ release, depletion of the antioxidant glutathione 

and death in E. coli  (Pacelli et al. 1995).  

 

1.3.4   NO as a regulator of intracellular pathways  

 

Through S-nitrosylation (section 1.3.2) NO has been implicated in numerous physiological 

conditions, especially as intracellular messenger modulating a large number of downstream 

signalling pathways (Figure 1.7). Nitrosylation/denitrosylation as a redox switch, are dynamically 

regulated and can lead to activation of some proteins but inhibition of others (Stamler et al. 2001).  

The main example of intracellular signalling is the NO binding to the ferrous state of the heme 

prosthetic group of the β1 subunit of soluble guanylyl cyclase (sGC), which results in the 

consequent production of guanosine 3’,5’-cyclic monophosphate (cGMP). An increase in cGMP 

causes downstream activation of cGMP-dependent protein kinase (PKG) and further 

mitochondrial hyperpolarisation (Friebe & Koesling 2003).   

Studies have demonstrated that NF-kβ sites are essential in the promoter region of the iNOS gene 

to induce its transcription (de Vera et al. 1996). Because both activation and inhibition of NF-kβ 

have been observed in response to NO, evidence suggests that high levels of NO may perform a 
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negative feedback on NF-kβ; whereas low levels enhance the TNF-α or PMA induced NF-kβ DNA-

binding activity and transactivation (Janssen-Heininger et al. 2000). Proposed mechanisms for NF-

kβ inhibition are S-nitrosylation on the p-50 protein that would obstruct NF-kβ binding to DNA 

(DelaTorre et al. 1997) and S-nitrosylation of the subunit IKKβ at the IKK complex (Reynaert et al. 

2004). Similarly, the presence of eNOS causes S-nitrosylation at the TIR domain of MyD88, 

resulting in negative functioning by retarding MyD88-dependent signalling events, such as the NF-

kβ and TNF pathways. Thus, S-nitrosylation of TIR may represent a control for the acute-phase 

inflammatory responses (Into et al. 2008). 

 

1.3.5   Involvement of NO in mitochondrial respiration and function  

 

Since NO is also produced within the mitochondria, some studies have suggested that eNOS may 

be targeted to the mitochondrial outer membrane (Gao et al. 2004), or that a specific 

mitochondrial NOS (mtNOS) isoform may exist at the mitochondrial inner membrane (Giulivi et al. 

1998). NO has an important role in controlling mitochondrial biogenesis and cellular respiration.  

Long exposure to eNOS-derived NO has been found to be responsible of triggering mitochondrial 

biogenesis, due to its ability to generate cGMP which interacts with the main mitochondrial 

regulators (Nisoli et al. 2003). Nisoli et al. (2004) reported that this NO/cGMP-dependent 

mitochondrial biogenesis increases O2 consumption, cellular respiration and ATP content. In 

support, eNOS-/- mice presented a metabolic syndrome phenotype characterised by low 

mitochondrial numbers, small mitochondrial size, reduced energy expendure, obsesity and insulin 

resistance(Nisoli et al. 2004; Nisoli et al. 2003). 

NO has been recognised as a controller for mitochondrial respiration because the respiratory 

chain offers 40 different potential metal target sites among the four respiratory complexes (Brown 

2001; Henry & Guissani 1999). Donation of NO causes an immediate oxygen-dependent inhibition 

of respiration and ATP synthesis in a variety of cells (Brown 2001). A reversible inhibition of 

complex I is driven by S-nitrosylation of essential thiols (Brown 2001; Henry & Guissani 1999). The 

complex IV (cytochrome c oxidase) is also reversibly inhibited when NO competes with oxygen at 

the oxygen binding site of cytochrome c oxidase (Brown & Cooper 1994). In contrast, peroxynitrite 

irreversibly inhibits mitochondrial respiration by causing oxidative damage to all the respiratory 

complexes, disrupts the inner mitochondrial membrane potential, induces permeability transition 

and calcium release with ROS accumulation (Kim et al. 2001; Ghafourifar et al. 1999). Such 

reversible/irreversible nature of the respiratory chain inhibition, will mainly depend on the 
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relation between NO and oxygen and on how long the complex has been repressed. Beltrán et al. 

(2000) proposed that under conditions of cellular stress, inhibition of cytochrome c by NO may 

exert an early protective action on mitochondria by reversal of the ATP synthase, maintaining the 

mitochondrial transmembrane potential and avoiding its collapse.  

 

1.3.6   NO involvement in cell  death  

 

NO has been described as a bifunctional modulator either stimulating or inhibiting apoptosis 

(Figure 1.7).  

The NO anti-apoptotic effect involves several mechanisms, such as cGMP-dependent cyclic 

nucleotides (Dimmeler et al. 1998), upregulation of the anti-apoptotic protein Bcl-2 (Genaro et al. 

1995), upregulation of heat shock proteins (Kim et al. 2001), inactivation of caspases by S-

nitrosylation (Mannick et al. 2001) and inhibition of Fas-induced apoptosis (Mannick et al. 1997). 

S-nitrosylation on catalytic sites of caspase members is a well known example where NO exhibits 

anti-apoptotic properties. In resting cells the majority of mitochondrial Caspase-3 and Caspase-9 

are normally inhibited by S-nitrosylation, preventing their auto-activation inside the mitochondria 

and an uncontrolled apoptotic activity (Mannick et al. 2001). Fas is able to reverse the effect, 

stimulating denitrosylation at the caspase active-site thiol (“thiolation”) (Mannick et al. 2001; 

Mannick et al. 1999). A similar example of apoptosis downregulation, occurs on the apoptosis 

signal-regulating kinase 1 (ASK1); S-nitrosylation of ASK1 inhibits further binding to its substrate 

kinases (Park et al. 2004).  

The pro-apoptotic NO effect has been attributed to several mechanisms, such as direct DNA 

damage (Kim et al. 2001), activation and expression of the tumour suppressor gene p53 (Messmer 

et al. 1994), proteasome inhibition (Glockzin et al. 1999) and lipid peroxidation (Ghafourifar et al. 

1999). NO induces mitochondria hyperpolarisation and reactive oxygen species production (Perl 

et al. 2004). At high concentrations NO induces changes in the mitochondrial transmembrane 

potential, leading to cell necrosis by inhibiting cytochrome c activity and releasing it from the 

mitochondria into the cytosol (Brookes et al. 2000; Ghafourifar et al. 1999; Ushmorov et al. 1999). 

Peroxynitrite (ONOO-) also promotes irreversible mitochondrial damage and the opening of the 

permeability transition pore, allowing calcium and cytochrome c release (Ghafourifar et al. 1999). 

Finally, cytochrome c release can result in apoptosis by the activation of caspases -8, -3 and -9 

(Ushmorov et al. 1999; Chlichlia et al. 1998; Melino et al. 1997). Intracellular NO can also signal 

apoptosis by S-nitrosylation of GAPDH, triggering its binding with the E3 ubiquitin ligase (Siah1) 
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and making it more stable to degrade nuclear proteins (Hara et al. 2005). Other example of NO 

leading to apoptosis is the conversion of the inactive guanosine diphosphate-bound Ras to the 

active form guanosin triphosphate-bound (Williams et al. 2003). At last and depending on the ATP 

storages, cells make a death decision either for apoptosis (ATP-dependent) or necrosis. 

The switch between apoptotic or anti-apoptotic effects is probably cell type dependent and seems 

to be influenced by the concentrations of NO and the time of exposure to NO donors (Kim et al. 

2001). NO at low concentrations (<1 µM) and for short periods is considered anti-apoptotic and 

may inhibit cytochrome oxidase c in a reversible manner; whereas high levels of NO (>1 µM) and 

for a prolonged exposure may generate an irreversible inhibition of respiration and severe 

mitochondrial damage (Brown 2001; Melino et al. 1997; Cleeter et al. 1994). Depending on the 

concentration, GSNO is also capable of controlling the apoptosis switch that occurs during the 

natural selection of thymocytes. Low intracellular concentrations of GSNO (<0.6 mmol/L) 

promotes acidification of thymocyte lysosomes and triggers apoptosis; whilst higher 

concentrations (>2 mmol/L) prevent apoptosis of thymocytes (Sandau & Brüne 1996).   

 

1.3.7   T lymphocytes and NO. 

 

Within the immune system and under both healthy and pathological conditions, 

nitrosylation/denitrosylation reactions have been reported to influence cell proliferation, 

differentiation, activation and apoptosis of immune cells (Hess et al. 2005; M. W. Foster et al. 

2009). 

In T-cells, TCR cross-linking via CD3/CD28 co-stimulation results in a series of mitochondrial 

events: 1) Mitochondrial hyperpolarisation; 2) Elevation of cytoplasmatic and mitochondrial Ca2
+; 

3) reactive oxygen intermediates (ROI) production; and 4) Expression of constitutive NOS with the 

corresponding NO production (Sena et al. 2013; Ibiza et al. 2006; Perl et al. 2004; Nagy et al. 2003) 

(Figure 1.8).   
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Figure 1.7: The dual role of NO in cell signalling and apoptosis. 

NO is able to regulate intracellular processes via the signalling molecule cGMP and through 
nitrosylation of proteins. NO leads to activation or inhibition of diverse pathways and becomes 
regulated through feedback loops. From these, GSNO and activation of sGC are the major 
feedback signals. Depending on NO concentrations, both apoptotic and anti-apoptotic effects 
have been observed. Nitrosylation of caspases and inhibition of the Fas pathway represent the 
main mechanisms for avoiding apoptosis, whilst inhibition of mitochondrial respiration is the key 
event for NO-induced apoptosis.  
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Figure 1.8:  NO production and activity at the moment of TCR cross-linking. 

TCR cross-linking leads to NO production, mitochondrial hyperpolarysation, ROIs production and 
increased intracellular Ca2

+. NO is produced in the cytoplasm by eNOS, which requires Ca2
+ and 

calmodulin (calm) for its activation. NO produced is mainly involved within the mitochondrial 
hyperpolarysation and reversible inhibits the respiratory chain, causing ATP depletion and ROIs 
production. In addition, NO regulates several proteins by S-nitrosylation, induces transcription of 
some cytokines and is present at the immunological synapse. However, NO produced by other 
cells (such as macrophages) could lead to suppression of T-cell proliferation and activation. 
Reaction of NO with O2 generates ONOO-, which cause irreversible damage to the respiratory 
complex.  
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Nagy et al. (2003) demonstrated that treatment of activated T lymphocytes with a NO donor (NOC-

18, 600µM) increased cytosolic and mitochondrial Ca2
+ levels, ROI generation and mitochondrial 

hyperpolarisation. In contrast, inhibition of NO by a specific NO chelator (C-PTIO) caused a deeply 

inhibitory effect on mitochondrial hyperpolarisation and ROI production, also blocking elevation 

of cytoplasmatic and mitochondrial Ca2
+ levels. Therefore it is likely that TCR-activation-induced 

mitochondrial hyperpolarisation is mediated through NO and that NO is primarily regulated by 

Ca2
+ and ROIs.  

Cytoplasmic and mitochondrial Ca2
+ levels increase rapidly five to ten minutes after TCR cross-

linking, lasting at least 48 hours (Imboden & Weiss 1987). Ca2
+ works as an intracellular messenger 

activating some molecules, such as protein kinase C, calmodulin and the calmodulin-dependent 

protein kinase (Premack & Gardner 1992). As mentioned in section 1.3.1, intracellular presence of 

Ca2
+ and subsequent calmodulin binding are essential to achieve an active state on the 

constitutively expressed NOS. Thus, is not surprising to find the constitutive eNOS as the dominant 

producer of NO in T-cells (Ibiza et al. 2006; Nagy et al. 2003). Reiling et al. (1996) and Nagy et al. 

(2003) confirmed the presence of eNOS and nNOS but absence of iNOS in primary human B and T 

lymphocytes. eNOS undergoes a rapid specific and sustained activation in response to the TCR 

engagement and in a Ca2
+-dependent manner via the PI3K-Akt pathway through phosphorylation 

of Ser (Ibiza et al. 2006; Fulton et al. 1999). eNOS protein levels increased up to 15-fold by 

CD3/CD28 co-stimulation, and a six-fold increment of NO levels was detected in T-cells activated 

via CD3/CD28 co-stimulation for a period of 24 hours  (Nagy et al. 2003; Reiling et al. 1996). 

In peripheral lymphocytes, a transitory increment in the mitochondrial transmembrane potential 

occurs in two contradictory scenarios, either triggered by cellular activation or as an early event 

in apoptosis (Perl et al. 2004). Mitochondrial hyperpolarisation is followed by just a transient 

inhibition of F0F1-ATPase, ATP depletion and sensitisation to necrosis (Gergely et al. 2002). 

However, in pathological conditions like systemic lupus erythematosus, an elevated and constant 

Ca2
+ flux into the mitochondria induces persistent mitochondrial hyperpolarisation and disruption 

of the mitochondrial transmembrane potential (Nagy et al. 2004; Gergely et al. 2002) Finally, this 

leads to ROI overproduction, ATP depletion, spontaneous apoptosis and necrosis  (Nagy et al. 

2004). Using human Jurkat cells, Banki et al. (1999) showed that mitochondrial hyperpolarisation 

together with an increment in ROIs accumulation precedes Fas-induced apoptosis.  

Forty minutes after TCR engagement, either by superantigens or CD3/CD28 co-stimulation, NO 

can be found at a concentration of 20 nM in highly purified T lymphoblasts and primary human T 

lymphocytes (Ibiza et al. 2006). eNOS is normally present in the Golgi apparatus but is translocated 



CHAPTER 1: INTRODUCTION            
 

51 
 

to the membrane when contact between T-cell and antigen presenting cell occurs, remaining at 

that site for at least 30 min (Ibiza et al. 2006). The onsite production of NO by eNOS promotes and 

synergizes phosphorylation of the CD3ζ chain and ZAP-70, followed by downstream 

phosphorylation of the ERK pathway (section 1.1.4.4). T lymphoblasts from eNOS-deficient mice 

and T-cells incubated with a NOS inhibitor (N-nitro-L-arginine, 500 µM) did not maintain ERK 

activation (Ibiza et al. 2006). eNOS-derived NO acts on the redox-active Cys residue 118 at the 

Golgi-localised N-Ras, achieving its activation and the consequent downstream activation of the 

ERK pathway towards cell death (Ibiza et al. 2008; Lander et al. 1997). The C118 residue is so 

critical that mutations on this site leads to impaired activation of N-Ras and abolish TCR-

dependent apoptosis (Ibiza et al. 2008).  

In addition to the involvement in TCR activation and mitochondrial hyperpolarisation, NO has been 

suggested to be a regulator for the cytokines balance among TH1 and TH2 cells. As mentioned in 

section 1.2.6, NO production can be induced by the main TH1 cytokine IFN-γ (van der Veen, Dietlin, 

Pen, et al. 2000). Niedbala et al. (1999) established that high concentrations of a NO donor (SNAP, 

500 µM) lead to suppression of IFN-γ production by TH1 cells whereas low concentrations of SNAP 

(10 µM) increase IFN-γ. Within this model, culture of a TH1 cell line in the presence of IL-12 and 

SNAP (10 µM) enhanced even more the IFN-γ production; however little or no effect was seen on 

the TH2 line or on proliferation of both TH1 and TH2 cells. The explanation to this phenomenon 

came in a later work that showed how low levels of NO selectively enhance IL-12Rβ2 via a cGMP-

dependent mechanism during TH1 differentiation (Niedbala et al. 2002; Niedbala et al. 2006). 

Similarly, overexpression of eNOS increased IFN-γ production while reduced IL-2 production (Ibiza 

et al. 2006). On the other hand, Gomes et al. (2006) demonstrated that incubation of TH2 

lymphocytes with NO donors generates high levels of intracellular cGMP, which trigger a sustained 

Ca2
+ response and subsequent expression of the TH2 cytokine IL-4. Controversial results were 

reported earlier by (Nukaya et al. 1995), who found that addition of a NO donor (SNP, 0.1µM) was 

enough to inhibit IL-4 production in the TH2 clone, but did not inhibit IL-2 production in TH1 cells. 

Moreover, TH2 cells were more susceptible to detrimental NO effects and suffered more inhibition 

of DNA synthesis in comparison with the TH1 clone (Nukaya et al. 1995). 

Other studies have suggested that NO may regulate T-cell function but is not TH1/TH2 selective, 

neither for proliferation nor for cytokine production (Macphail et al. 2003; van der Veen et al. 

1999; Bauer et al. 1997). Van der Veen et al. (1999) did not find any significant difference on the 

in vitro secretion of TH1 or TH2 cytokines when a NO donor was added to TH1 and TH2 clones 

activated with an anti-CD3 antibody. In an in vivo model where mice were injected in the footpad 

with carrageenin to induce local inflammation, Ianaro et al. (1994) observed that cells obtained 
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from the draining lymph node from injected mice with carrageenin plus a NOS inhibitor (L-NMMA) 

developed a different pattern of cytokine production but not TH1 or TH2 specific. In comparison 

with carrageenin controls, cells which were exposed to L-NMMA showed reduced secretion of IL-

1, IL-2, IL-6 and IFN-γ but increased IL-10 production. Surprinsingly, L-NMMA did reduce local 

edema formation although almost no effect was seen on the number of cells at the inflammation 

site, IL-4, TNF-α or TGF-β levels. Macphail et al. (2003) proposes that the effects seen on TH1 and 

TH2 lymphocytes depend mainly on the exposure time to NO. Incubation with NO donors prior to 

stimulation abolishes proliferation of both TH populations in a time-dependent manner. 

Simultaneously, reduction of IL-2 mRNA, IL-13 mRNA and IFN-γ mRNA is observed as time of NO 

exposure increases (Macphail et al. 2003).    

NO has also been associated with T-cell suppression because NO production from macrophages  

(van der Veen, Dietlin, Dixon Gray, et al. 2000; Bingisser et al. 1998; Strickland et al. 1996; Isobe 

& Nakashima 1992) suppressor monocytes (Slaney et al. 2011) and myeloid-derived suppressor 

cells (Movahedi et al. 2008; Mazzoni et al. 2002) causes inhibition of T-cell proliferation via NO-

dependent dephosphorylation of intracellular signalling molecules or proteins. Bingisser et al. 

(1998) and Mazzoni et al. (2002) describe that NO induces a reversible type of T-cell anergy by 

reducing phosphorylation of tyrosine residues in Jak3/STAT5, an essential molecule for 

proliferation and cycle progression in activated T-cells (Moriggl et al. 1999). Even in presence of 

mesenchymal stem cells which generally suppress T-cell proliferation, addition of a NOS inhibitor 

(L-NAME) restored not only the T-cell proliferation but also Stat5 phosphorylation (Sato et al. 

2007). Similarly, Strickland et al. (1996) observed that alveolar macrophage-derived NO reversibly 

blocks downstream phosphorylation of the IL-2 receptor associated proteins. van der Veen et al. 

(1999), also reported that the NO donor SNAP at a concentration of up to 0.1mM inhibited the 

proliferation of TH1 and TH2 clones; whereas higher concentrations induced apoptosis of both 

cellular subtypes. In prostate cancer, the immunosuppression/anergy of CD8+ tumor-infiltrating 

cytotoxic lymphocytes against cancer cells was reverted by inhibiting the activity of the enzyme 

arginase I and by adding NOS inhibitors (Bronte et al. 2005). The suppressive effect on T-cells could 

be indirectly related to the L-arginine deprivation caused by an increased NOS enzymatic activity. 

Choi et al. (2009) reported that in the absence of L-arginine T-cells cannot be activated, proliferate 

or produce cytokines efficiently.  

Valenti et al. (2005) suggest that NO blocks T-cell proliferation by arresting the cells in late G1 

phase of the cell cycle, just before DNA synthesis. These cells will be committed to apoptosis or 

necrosis if the harmful NO stimulus persists, as the protein p53 starts to accumulate (Valenti et al. 

2005). Niedbala et al. (2002) reinforced that T-cell exposure to high concentrations of NO (NOC-
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18 >100µM) consistently increased the level of apoptosis; whilst low concentrations (NOC-18 

<10µM) enhanced the differentiation of the of CD8+ cytotoxic T-cells. Earlier work reported that a 

NOS inhibitor (L-NMMA) protected mature T lymphocytes from TCR-triggered death by reducing 

the TCR-stimulated expression of functional Fas ligand and thus stopping the downstream 

apoptosis signalling (Williams et al. 1998).  

 

1.3.8 Paradoxical effect of nitric oxide in bacterial toxin induced -disease 

 

For some time glucocorticoids have been used in the treatment of toxic shock syndrome, due to 

its ability to prevent NO production induced by Staphylococcus aureus toxins or LPS (Zembowicz 

& Vane 1992). However, animal models that studied the effect of NO in Staphylococcal enterotoxin 

B-induced shock and LPS-induced cytotoxicity derived controversial conclusions. 

Some authors reported that administration of a NOS inhibitor affords a protective effect against 

endotoxemia, preventing hypotension and secondary organ failure (Kilbourn et al. 1990). In 

contrast, others demonstrated that endogenous NO is beneficial and that NOS inhibition increases 

thrombosis and mortality rates in T-cell-dependent shock induced by superantigens (Florquin et 

al. 1994; Shultz & Raij 1992; Billiar et al. 1990). Florquin et al. (1994) showed that NOS inhibition 

with L-NAME enhanced IFN-γ and TNF-α production, inducing lethal prothrombotic events in mice. 

This observation together with the fact that IFN-γ and TNF-α normally induces NO synthesis, 

denotes that NO might downregulate IFN-γ and TNF-α to counteract their prothrombotic 

properties (Florquin et al. 1994). To overcome this problem,  Jaimes et al. (2001) propose that 

prevention of glomerular thrombosis and restitution of vascular tone can be achieved in vivo with 

concomitant administration of a NO and TNF-α inhibitors. Sundrani et al. (2000) observed that 

superfusion of a non-selective NOS inhibitor is deleterious in septic rats because increases 

leukocyte rolling and leukocyte adhesion (Grisham et al. 1998); resulting in long lasting stickier 

leukocytes that can block the microvasculature. In the other hand, Brás et al. (1997) found that 

administration of NO donors to mice injected with Staphylococcal enterotoxin B have 

contradictory effects, inducing thymic clonal expansion of CD4+ thymocytes but inhibiting 

proliferation of peripheral TH1 lymphocytes. Presence of NO donors delay Staphylococcal 

enterotoxin B-triggered apoptosis and replenish the pool of thymocytes (Brás et al. 1997). 
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1.4    A IMS OF THIS PROJECT  
 

 

Well established models of B-cell stimulation using T-independent antigens have been reported 

in the literature. The finding that became of big interest in our lab was that combination of T-

independent type 2 mimics with TCR T-cell stimulation (anti-CD3 + anti-CD28), unexpectedly 

results in suppression of T-cell proliferation and activation within a PBMC culture. The work 

described in Chapter 3 aims to identify the cells involved in the T cell suppression caused by TI-2 

mimics and if possible to identify the mechanism of action.  

N. meningitidis is a bacterium which rarely causes invasive disease and sepsis, but perpetuates 

colonisation in the nasopharynx by avoiding immune recognition and killing. Because several N. 

meningitidis constituents are TI type 2 antigens and/or provide second signals to B-cells via TLR, 

it was hypothesized that paraformaldehyde fixed meningococcus could exert immunomodulatory 

properties. Chapter 4 aims to explore this possibility and intends to elucidate bacterial 

constituents that could function as immunosuppressor molecules. 

Several bacterial components stimulate nitric oxide production; however N. meningitidis can 

counteract the bactericidal effect of reactive nitrogen intermediates by a partial denitrification 

pathway. Nitric oxide is produced in T-cells as a result of TCR engagement. Fluctuations of NO 

concentrations have been associated to activation or inhibition of several intracellular pathways, 

which lead to either proliferation or apoptosis. Chapter 5 investigates whether NO donation or 

inhibition could influence CD4+ T-cell responses and provide a link with bacterial infections. 

It is expected that the knowledge generated from this project will help to understand those 

bacterial infections that initiate colonisation and evade the immune the system. In particular, 

those bacteria which remain ‘silent’ in the host before inducing severe and rapidly progressive 

systemic infections, such as sepsis.     
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2.1    ISOLATION OF PERIPHERAL BLOOD MONONUCLEAR CELLS  

 

For all experiments, an amount of peripheral blood was taken from the cubital vein of adult 

healthy volunteers and collected into 50 ml tubes containing heparin (10 IU of heparin per ml of 

blood). At room temperature, blood was diluted 1:1 with sterile PBS and slowly poured onto half 

the volume of lymphocyte separation medium (LymphoprepTM, BioWhittaker, Lonza, UK). 

Centrifugation at 400 rcf, ACCN=0, Brake=0, 20oC for 35 min allowed layers formation. The layer 

of peripheral blood mononuclear cells (PBMCs), located at the interface between the lymphocyte 

separation buffer and the plasma, was carefully removed with a plastic pasteur pipette. Plasma 

was also removed and stored on ice for cell culture media preparation.  

Collected PBMCs were washed four times with 20ml sterile chilled PBS (centrifugation at 600 rcf, 

ACCN=8, Brake=8, 4oC, 10 min). After discarding supernantant, the final pellet was resuspended 

in 1 ml of cell culture media preparation: RPMI 1640 media (BioWhittaker, Lonza, UK) containing 

20% autologous plasma and supplemented with 2 mM L-Glutamine (Lonza, UK). On the basis of 

tryptan blue (0.1%, Sigma, UK), live PBMCs were counted with an improved Neubauer chamber, 

and were further resuspended in the RPMI preparation to obtain a final concentration of 1 x 107 

cells per ml. 

Students and members of the staff at the Medical School from Sheffield University and the Royal 

Hallamshire Hospital gave informed consent and participated as voluntary blood donors. The 

procedure was approved by the Central Office for Research Ethics.  

 

 

2.2    ISOLATION OF PRIMARY CELL TYPES  

 

2.2.1   Enrichment of cell  populations 

 

In all cases, negative selection was preferred to purify cell populations from PBMCs. Without using 

columns but using antibody complexes linked to magnetic particles (EasySep™, Stemcell 

Technologies), cross-linked undesired cells remained attached to the magnet while desired cells 

were found free in the supernatant.  
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Briefly the procedure is as follows, cells were placed in a sterile polystyrene round-bottom tube 

and resuspended in the recommended medium RoboSep™ (sterile PBS + 2% fetal bovine serum + 

1 mM EDTA, calcium and magnesium free). Subsequent incubation for 10-15 min with the 

provided antibody cocktail, targeted the phenotypic antigens from all the undesired PBMCs (Table 

2.1). At this stage, the magnetic dextran nanoparticles were added and incubated for further 5-10 

min to allow formation of magnetic antibody complexes. Before magnetic separation, the mixture 

was gently mixed with a pipette and more RoboSep medium was added according to 

manufacturer’s instructions. The EasyPlate EasySep magnet™ was preferred over other magnets 

because it allows maximal recovery out from small numbers of cells. After 10 min on the plate 

magnet, supernatants were collected from the wells and washed with RPMI media to obtain a cell 

pellet. Following manufacturer’s instructions, >95% pure and viable cell populations were 

obtained. 

 

Table 2.1:  Enrichment of cell populations. 

 

Cell population  
to be purified 

Negative selection Kit  
(EasySep™ Stemcell Technologies) 

Antibodies contained  
in the cocktail (anti-) 

CD4+ T-cells Human CD4+ T-cell enrichment kit.  
Cat# 19052 

CD8, CD14, CD16, CD19, 
CD20, CD36, CD56, CD66b, 
CD123, TCRγ/δ and 
glycophorin A 
 

B-cells Human B-cell enrichment kit.  
Cat# 19054 

CD2, CD3, CD14, CD16, 
CD36, CD43, CD56, CD66b 
and glycophorin A 

Monocytes Human Monocyte enrichment kit. 
Cat#19059 

CD2, CD3, CD16, CD19, 
CD20, CD56, CD66b, CD123 
and glycophorin A 
 

 

 

2.2.2   Depletion of cell  populations  

 

Cell depletions were achieved by performing a positive selection on the undesired cell type. The 

cell fraction to be depleted was labeled with antibody complexes linked to magnetic particles 

(EasySep®, Stemcell Technologies) and remained attached to the magnet, while the unlabelled 

PBMCs were collected from the supernatant.  
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Similarly to the enrichment procedure, PBMCs were incubated for 15 minutes with the antibody 

of interest and then labeled with magnetic dextran nanoparticles for 10 minutes. Next, the sample 

tube was placed in the magnet and left on the side for 10 minutes. Finally, the depleted fraction 

was poured out from the tube whilst the targeted undesired cells remained attached to the sides 

of the magnet. This last step was repeated twice in order to increase purity of the depleted 

fraction. Table 2.2 contains a full description of the depletion kits used for this procedure. 

Almost absolute cell removal was achieved (>99%) by following manufacturer’s depletion 

procedure.  

 

Table 2.2: Depletion of cell populations. 

 

Cell population 
to be depleted 

Positive selection Kit  
(EasySep™ Stemcell Technologies) 

Antibodies contained  
in the cocktail (anti-) 

B-cells HLA B-cell positive selection kit.  
Cat# 18454HLA 

CD19 and CD20 

Monocytes Human CD14 selection kit.  
Cat#18058 

CD14 

NK cells Human CD56 selection kit. 
Cat #18055 

CD56 

 

 

 

2.3    STIMULATION OF T  AND B-CELLS  

 

2.3.1   Stimulation of T -cells  

 

2.3.1.1   anti -CD3 

Purified anti-human CD3 antibody (αCD3) (Invitrogen, UK) was used to achieve T-cell activation by 

direct binding with the cell surface CD3 molecule and subsequent engagement of the TCR 

(Geppert & Lipsky 1987). More effective than free αCD3 is plate-bound αCD3, perhaps because 

the tissue culture flat bottom provides a physical platform upon which the purified antibody can 

be easily exposed to T-cells and be cross-linked (Vayuvegula et al. 1990). 
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A 48-well tissue culture plate was pre-coated with 0.1-0.3 µg/ml of αCD3 in sterile PBS, allowing 

incubation at 4oC for at least 18 hours to achieve plate binding. Prior to performing the assay, 

wells containing the immobilised αCD3 were carefully washed 3 times with sterile PBS.  

It was demonstrated previously in our lab (J.B. Wing and R.A. Foster, unpublished data), that these 

concentrations of plate-bound αCD3 stimulate CD4+ T-cells sufficiently to prime them. The 

resultant proliferation and activation are suboptimal and so allow detecting changes in both 

directions.  

 

2.3.1.2   Concanaval in A 

Concanavalin A (ConA) is a lectin extracted from castor beans, which interacts with receptors 

containing mannose carbohydrates. ConA provides a non-specific mitogenic effect on CD4 and 

CD8 T-cells, but only in presence of accessory cell contact (Chatila et al. 1987).   

At a final concentration of 5 µg/ml, ConA (Sigma, UK) was directly added to wells containing 500µl 

of cell culture media and 1 x106 PBMCs. 

 

2.3.1.3   S. aureus  Enterotoxin B  

Staphylococcus aureus enterotoxin B (SEB) was selected for being a classical superantigen TCR 

agonist in humans. Superantigens are proteins of bacterial or viral origin which engage a particular 

region of the variable chain at the TCR (Vβ domain), located outside the peptide-binding groove 

(Choi et al. 1989). Thus, regardless the antigen specificity of the receptor, superantigens are able 

stimulate up to 20% of the total T-cell population depending on the Vβ family against which the 

superantigen is reactive to. 

At a final concentration of 400 ng/ml SEB (Sigma, UK) was directly added to wells containing 500µl 

of cell culture media and 1 x106 PBMCs. 

 

2.3.1.4   αCD3/αCD28 Dynabeads  

Evidence suggests that highly purified primary T-cells are unresponsive to solid-phase bound αCD3 

alone (Palacios 1985). However, simultaneous cross-linking of the CD28 molecule with a 

monoclonal antibody augments T-cell stimulation by providing a helper signal. An anti-CD28 

antibody (αCD28) will mimic the CD80/86 co-stimulation, even in absence of accessory cells 

(Jenkins et al. 1991; Baroja et al. 1988).      
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Therefore, in every assay performed with purified T lymphocytes, Dynabeads® Human T-Activator 

CD3/CD28 (Invitrogen, UK) were preferred over the usual plate-bound αCD3. Dynabeads® Human 

T-Activator CD3/CD28 are magnetic beads coated with anti-CD3 and anti-CD28 monoclonal 

antibodies that mimic in vivo T-cell activation from antigen presenting cells and provide an 

effective TCR signalling.  

Prior addition of enriched T-cells (1 x106 per well), Dynabeads® Human T-Activator CD3/CD28 

were washed once with PBS, resuspended in RPMI 1640 media and added directly to the cell 

culture well at a ratio of 1:1 bead per T-cell. 

 

2.3.2   B-cell  stimulation with T -independent mimics   

 

2.3.2.1   Anti-IgD-conjugated dextran  

Anti-IgD-conjugated dextran (α-δ-dex) is a T-independent type II mimic (section 1.1.5.2.1) which 

consists of multivalent anti-IgD antibodies conjugated to a dextran molecule (Rehe et al. 1990; 

Brunswick et al. 1988). When prepared as previously described (Peçanha et al. 1993; Snapper et 

al. 1992), a concentration of 1 µg/ml was sufficient for B-cell stimulation when added directly to 

a well containing 1 x106 PBMCs (R. a Foster et al. 2009). 

For this work, α-δ-dex was manufactured and kindly provided by Dr. Andrew Lees, Biosynexus 

(Gaithersburg, MD, USA). 

 

2.3.2.2   Moraxella  IgD-binding protein  

The high molecular weight adhesin surface protein Moraxella IgD-binding protein (MID) displays 

a high affinity for soluble and surface-bound IgD (Forsgren et al. 2001). The tetrameric MID 

sequence containing the amino acid residues 962 to 1200, has been detected as the essential IgD 

binding subunit of this protein (Nordström et al. 2002). A truncated protein containing the amino 

acids MID962-1200 has been shown to induce B-cell activation and proliferation in a T-independent 

fashion. Concentrations of 0.5-1 µg/ml are enough to detect an effect in peripheral blood 

lymphocytes (Nordström et al. 2006). 

For this work, MID962-1200 (from now on only referred as MID) was manufactured and kindly 

provided by Kristian Riesbeck (Lund University, Sweden). 
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2.4    PROLIFERATION ASSAY  

 

To quantify proliferation of T and B cells, a protocol based on carboxyfluorescein diacetate 

succinimidyl ester (CFSE) was applied. CFSE is a non-fluorescent molecule which passively diffuses 

into cells and reacts with intracellular amines. Inside the cells, its succinimidyl ester group is 

hydrolyzed by non-specific esterases to become a fluorescent conjugate. The dye is then retained 

and divides equally between daughter cells upon division cycles (Lyons & Parish 1994). Thus, CFSE 

labeling allows identification of cell populations which have undergone multiple rounds of 

meiosis, being possible to track up to 10 generations (Lyons 2000). 

According to manufacturer’s instructions (Molecular Probes, Invitrogen, UK), a 10 mM stock CFSE 

solution was prepared with 90 µl of sterile high quality DMSO and stored frozen in aliquots. From 

these, a 0.1mM CFSE solution was prepared on the day with sterile PBS. Following extraction, 

washing and resuspension of PBMCs in RPMI (section 2.1), 20 µl of the CFSE solution was added 

per 1 x 107 cells per ml, obtaining a final CFSE concentration of 2 µM. Immediately after, PBMCs 

were incubated at 37oC for 10 min in the dark. Next, the reaction was quenched with an equal 

volume of cold autologous plasma and incubated for other 10 min at room temperature in the 

dark. After centrifugation (600 rcf, 20oC for 10 min) and decanting of supernatant, pellets were 

washed three times with 10 ml of the RPMI preparation (section 2.1). The resultant pellet was 

then resuspended in 1ml of RPMI and cells were counted as described before (section 2.1). Finally, 

1 x106 PBMCs were added to 48-well flat-bottomed cell culture plates (TC treated, sterile; Costar, 

UK) in a final volume of 500 µl of RPMI preparation per well, allowing cell incubation (37oC, 5% 

CO2) until further flow cytometric analysis.   

In flow cytometry, the sequential halving of CFSE fluorescence intensity is represented as an 

histogram with series of distributions or peaks, which can be analysed using a proliferation 

analysis package from a specialised software (FlowJo 7.6®). All proliferation results and graphs 

were reported as division index, which is defined as the average number of divisions undergone 

in the starting population, including undivided cells (section 2.5.5). 
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2.5    ANALYSIS OF SAMPLES BY MULTICOLOR FLOW CYTOMETRY  

 

Except where otherwise noted, cells were seeded at 1 x 106 cells per well in a final volume of 500µl 

of RPMI preparation and incubated at 37oC, 5% CO2 in a humidified atmosphere for 96 hours 

before harvesting. Incubation of PBMCs for 4 days has previously demonstrated to be enough to 

detect maximal cell proliferation and activation, before excessive numbers of cells die and the 

culture media become exhausted (J.B. Wing and R.A. Foster, unpublished data). 

 

2.5.1   Flow Cytometer LSRII  

 

For all samples, FACS analysis was done with the LSRII flow cytometer (BDbiosciences, UK). The 

BD LSRII™ is fully configurable and comes with 4 lasers (UV, violet, blue and red), allowing analysis 

up to 13 fluorochromes simultaneously. Along the project, multicolour panels were design to 

assess several phenotypic, activation and viability parameters simultaneously. Table 2.3 shows the 

instrument settings at the Core Flow Cytometry facilities at the University of Sheffield. 

In every experiment, digital acquisition and experimental layout was performed with the FACS 

DIVA™ software (BDbiosciences, UK). 

 

Table 2.3:  BD LSRII Flow Cytometer customised setup 

 

Laser Excitation channel (nm) Filters 

UV 355 450/50 

530/30 

Violet 405 450/50 

525/50 

Blue 488 530/30 

575/26 

610/20 

660/20 

695/40 

780/60 

Red 633 660/20 

730/45 

780/60 
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2.5.2   Extracellular staining for phenotypic and activation markers  

 

An extracellular staining was required to label surface molecules that determine cell phenotype 

and expression of activation markers. Table 2.4 provides a full description of the antibodies and 

their fluorochromes.  

Cells were harvested from the 48-well plates and transferred into 1.1 ml racked micro test tubes 

(Elkay Laboratories, UK) for immunofluorescence labeling. Then, samples were washed three 

times with Fluorescence Activated Cell Sorting (FACS) buffer [PBS supplemented with 0.1% bovine 

serum albumin (First Link, UK)].  

1 x 106 cells were stained with 1 µl (approx 0.025 µg) of each of the desired antibodies into 80 µl 

of FACS buffer, which also contained a cell viability dye (section 2.6.1). After incubation for 1 hour 

in the dark at 4oC, cells were washed three times with FACS buffer to remove unbound antibodies. 

Finally, samples were fixed with 300 µl of 2% paraformaldehyde and analysed by flow cytometry.  

 

2.5.3   Intracellular staining 

 

Only in a couple of experiments (sections 5.4.3 and 5.5.4), an intracellular staining protocol was 

carried out to assess expression of Foxp3 within T-cells. APC-Foxp3 antibody (eBioscience, UK) 

together with a Foxp3 staining buffer kit (eBioscience, UK), were used according to manufacturer’s 

instructions at a concentration of 0.5 µg per 1 x 106 cells.   

 

2.5.4   Selection of f luorochromes  

 

Seeking for the best possible combination of fluorophores to investigate T and B-cells interactions 

within a single assay, an extensive optimisation of multicolour panels has been carried out in our 

lab. Along this research work, further optimisation and modifications to the initial multicolour 

matrix were made to cover the aims of this project (Table 2.4).   
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Table 2.4: Description of the fluorescently-labeled antibodies used. 

 

Molecule Antigen 
Location 

Fluorochrome FACS Channel Supplier 

CD4 EC Allophycocyanin conjugate 
(APC) 

Red 660/20 Invitrogen 

CD4 EC PerCP Cy 5.5 Blue 695/40 eBioscence 

CD19 EC PE Cy-7  Blue 780/60 Invitrogen 

CD20 EC APC Red 660/20 eBioscence 

CD14 EC Pacific blue conjugate (PB) 
 

Violet 450/50 Invitrogen 

CD56 EC Brilliant Violet 510 Violet 525/50 Biolegend 

CD25 EC R- Phycoerythrin (PE) Blue 575/26 eBioscence 

CD86 EC PE Alexa-700 Blue 695/40 Invitrogen 

IgD EC PE Blue 575/26 Invitrogen 

Foxp3 IC APC Red 660/20 eBioscence 

Free amines IC LIVE/DEAD® Fixable Blue 
Dead Cell Stain  
(UV dead/live)  

UV 450/50 Molecular probes-
Invitrogen 

Nucleic acids IC TOPRO-3 Red 660/20 Molecular probes-
Invitrogen 

Phospholipid 
phosphatidylserine 

IC Annexin-V Blue 575/26 BD Pharmingen 

EC= extracellular; IC= intracellular. 

 

 

2.5.5    Post-acquisit ion analysis  

 

Collected data was analysed with the FlowJo 7.6® Windows software (TreeStar Inc, USA), a 

powerful, fast and reliable program dedicated to digital analysis of FACS data. 

As in any polychromatic flow cytometry matrix, compensation was necessary to correct for 

spectral overlap. Compensation was done post-hoc with the dedicated tool of FlowJo 7.6 

software, in conjunction with anti-mouse Ig, к compensation beads (CompBeads, BDbiosciences, 

UK), isotype controls and cell based single staining in the cases of CFSE, UV Live/Dead, Annexin-V 

and TO-PRO-3. After compensation, biexponential transformation (logicle implementation) 

improved visualisation and clustering of populations with negative values. Such transformation 

causes the scale to compress in the lower range so distributions around zero are seen, thus the 

comparison in between low and high fluorescence looks more precise.    

Applying a consequential gating strategy to all individual experiments, the different cell 

populations were established in the following order:  

http://en.wikipedia.org/wiki/Fluorescent_labeling
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Gating cells (FSC-Area versus SSC-Area) > Doublet discrimination and singlets inclusion (FSC-Area 

versus FSC-Height) > selection of live cells by gating on the UV Live/Dead low population > Gating 

on CD14 negative cells to exclude CD14+ monocytes > and finally, gating of T-cells (CD4+ CD19-) 

and B cells (CD19+ CD4-) (Figure 2.1).  

Cell proliferation was evaluated by the CFSE method (section 2.4) using a proliferation platform 

also contained within the FlowJo 7.6 software. The tool provides constant ‘best-fit’ gates for a 

CFSE histogram, but has the advantage of being adjustable for the numbers of peaks (cell 

generations), the peak 0 (generation 0), the ratios between adjacent peaks and the width of each 

peak. For this project, division index was the proliferation parameter chosen to report as it reflects 

what the entire system is doing, including the non-responding cells (i.e., includes the cells in peak 

0 that never divided) (section 2.4).    

 

 

2.6    V IABILITY ASSAYS  

 

2.6.1   Cell  death 

 

As a routine, the viability dye LIVE/DEAD® Fixable Blue Dead Cell Stain Kit for UV excitation 

(Molecular Probes, Invitrogen, UK) was included in every experiment to monitor cell death. Such 

dye reacts with free amines, yielding intense fluorescence from cells with compromised 

membranes in which the dye reacts with free amines both in the cell interior and on the cell 

surface. In contrast, viable cells will show relatively dim staining as the dye's reactivity is restricted 

to the cell-surface amines (Perfetto et al. 2006). On this basis, results were expressed as 

percentage of live cells. 

To reconstitute the reactive dye, 50 µl of DMSO were added directly to the vial and small aliquots 

were frozen for future use. On the day the stock was diluted 1:500 in FACS buffer. Subsequently, 

all fluorochromes included in the extracellular staining panel (section 2.5.2) were incorporated 

into this FACS/fixable blue solution.  

 

 

 



           CHAPTER 2:  METHODOLOGY 
 

67 
 

 

 

 

Figure 2.1: Sequential gating strategy. 

Example of the gating strategy applied to detect the different cell populations. Gating cells (FSC-
Area versus SSC-Area) > Doublet discrimination and singlets inclusion (FSC-Area versus FSC-Height) 
> selection of live cells by gating on the dye live/dead > Gating on CD14 negative cells to exclude 
CD14+ monocytes > and finally, gating of T-cells (CD4+ CD19-) and B cells (CD19+ CD4-). 

Plots are representative of a single donor stimulated with αCD3. Results are given in % of cells 
within each gate.  
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2.6.1   Apoptosis  

 

For more specific and sensitive viability assays, apoptosis was evaluated after 24, 48, 72 and/or 

96 hour incubation. Detection of membrane disruption as an indicator of cell death was conducted 

by using simultaneous staining with Annexin-V and TO-PRO-3 (Vermes et al. 2000). Loss of plasma 

membrane integrity occurs as an early event in apoptotic cells, and is characterised by the 

translocation of phospholipid phosphatidylserine (PS) residues from the inner to the outer leaflet 

of the plasma membrane. Annexin-V is a Ca2+ dependent phospholipid-binding protein with high 

affinity for those externalised PS and thus serves for detection of early apoptotic cells  (Vermes et 

al. 1995). TO-PRO-3 is a cell-impairment cyanine single dye which has strong affinity for DNA. Thus, 

when the cell membrane integrity is broken and becomes leaky, TOPRO-3 incorporates with the 

nuclear DNA and becomes fluorescent (Matsuzaki et al. 1997). Positive cells for TO-PRO-3 are 

indicative of going through late apoptosis or necrosis; however, does not distinguish between 

both stages (Vermes et al. 2000). 

After the usual extracellular staining protocol (section 2.5.2) but without fixation, 4 µl of Annexin-

V antibody (BD Pharmingen, UK) into 80 µl of 1X Annexin binding buffer (BD Pharmingen, UK) were 

added to each sample. Incubation in the dark for 30 min at room temperature was enough to 

allow binding. A 100nM stock solution of TO-PRO-3 (Molecular probes, UK) was prepared into 1X 

Annexin binding buffer. Immediately prior to flow cytometry analysis, 200 µl of this TO-PRO-3 

solution was added to each sample.  

 

 

2.7    CYTOKINE ANALYSIS  

 

Measurement of cytokines in collected supernatants was carried out using Cytometric Bead Array 

(CBA) Flexsets (Becton Dickinson FACS array™) according to manufacturer’s instructions. Results 

were collected on a BD FACSArray using BD FACSArray software for acquisition and FCAP array 

software (Soft Flow) for analysis. Results were reported as median fluorescence intensity and 

cytokine concentration (pg/ml).  

Run and analysis of samples was carried out by the technical support team (Sue Clark and Kay 

Hopkinson) at the Flow Cytometry facilities, Medical School, University of Sheffield.  



           CHAPTER 2:  METHODOLOGY 
 

69 
 

2.8    BACTERIAL STRAINS AND DERIVED COMPONENTS  

 

2.8.1   Neisseria meningitidis  

 

2.8.1.1   Strains   

Different strains of the bacterium N. meningitidis were used along this project:  

a) Wild type serogroup B meningococci (strain MC58): 

The MC58 strain was originally isolated in 1991 from a confirmed case of meningococcal 

meningitis in the UK (McGuinness et al. 1991) and its genome was later fully sequenced  

(Tettelin et al. 2000).  

 

b) LPS-deficient mutant and its parental strain H44/76: 

An LPS deficient strain was kindly provided and manufactured by Dr. Peter van der Ley 

(National Institute of Public Health, The Netherlands). Briefly, the mutant was constructed 

as an lpxA-knockout by inserting a kanamycin-resistance cassette at position 293 in the 

lpxA gene contained in a plasmid. The resulting plasmid (pLAK33) was linearised and 

transformed to strain H44/76 (Steeghs et al. 1998). For this project, absence of the lpxA 

gen was further confirmed in our lab by selection of kanamycin resistant colonies and PCR 

of the lxpA fragment (section 4.5).  

Similar to MC58, the wild type serogroup B meningococci H44/76 strain was initially 

isolated in Norway from patients with invasive meningococcal infection (Holten 1979). 

 

c) Opa-deficient serogroup B (strains MC58/h18.18-Opa-1 and ¢2): 

The MC58 Opa-deficient strain is a capsulated piliated variant from MC58/h18.18, which 

was isolated through a procedure of receptor-overlay colony blots using soluble CEACAM-

1Fc constructs (Bradley et al. 2005; Virji et al. 1995).  

The ¢2 Opa-deficient strain was also included in our assays (characterised by Virji et al. 

(1995). ¢2 is a meningococcus Opa negative variant from the MC58 group (B15:P1.7,16) 

which lacks of capsule by mutation, but expresses Opc and Pili.  

Absence of Opa proteins from both strains was previously confirmed in our lab by 

immunoblotting (J Laver and L Green). 
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In our lab, frozen stocks of viable bacteria were maintained in cryopreservation fluid (ProtectTM, 

TSC) at -80°C until their use. 

 

2.8.1.2   Bacterial growth  

The frozen bacteria stocks were allowed to thaw and then streaked over Columbia blood agar 

(CBA) plates. In case of the LPS-deficient mutant, CBA plates were supplemented with kanamycin 

(50 µg/ml) for antibiotic selection. Streak plates were incubated at 37oC, 5% CO2 for 16-20 hours, 

when bacterial colonies reach a macroscopic size of approximately 2-3 mm.  

Mueller-Hinton Broth (MHB) (Oxoid, UK) was prepared by adding 21 g of powdered MHB to 1 L of 

distillated water. The suspension was mixed and sterilised by autoclaving at 120°C for 15 min and 

stored in glass bottles at room temperature. Individual bacterial colonies (between 6 and 8 

colonies) were randomly taken from the plate and inoculated into 10 ml of MHB. The tube was 

then incubated at 37°C under a 5% CO2 condition and with mild agitation provided by a plate 

mixer.  

In case of these three strains, mid-log phase culture was reached in about 2.5 or 3 hours with an 

average absorbance (OD600nm)= 0.3 to 0.4   

 

2.8.1.3   Stock preparation for experiments  

The mid-log phase culture was pelleted and washed 3 times with sterile PBS. Fixation was 

performed by adding 2% paraformaldehyde solution and incubating for 25 minutes.  The number 

of colony forming units (cfu) per ml was determined by the Miles and Misra technique. A stock 

solution of 5 x108 bacteria/ml was prepared in PBS or RPMI culture media. Aliquots were frozen 

at -20oC and defrosted on the day of the experiment.   

 

2.8.2   Streptococcus pneumoniae   

 

The Streptococcus pneumoniae virulent serotype 2 strain D39, was chosen due to its widely 

accepted use in research as a model strain to study pathogenicity. Strain D39 was obtained from 

a clinical isolate in 1916, but not sequenced until 2007 (Lanie et al. 2007).       

We thank Dr. David Dockrell (Medical School, the University of Sheffield) for providing us with the 

strain. 
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2.8.2.1   Bacterial growth  

The frozen bacteria stocks were allowed to thaw and then streaked over CBA plates containing 

horse blood. Plates were incubated over night at 37OC and 5% CO2.  

From the plate, around 6-7 colonies of S. pneumoniae D39 were selected and inoculated into 20 

ml of Brain-Heart Infusion (BHI) broth supplemented with 20% heat inactivated fetal calf serum. 

Mid-log phase was typically reached at 5 or 6 hours incubation with mild agitation at 37OC and 5% 

CO2.  An average absorbance (OD610nm) of around 0.5-0.6 was reached in about 4 hours. 

 

2.8.1.3   Stock preparation for experiments  

Same as described for N. meningitidis (section 2.8.1.3). 

 

2.8.3   Escherichia coli    

 

The non-pathogenic Escherichia coli serotype O6 biotype 1 strain (ATCC 25922) (ATCC 2012) was 

used in this project.   

We thank Dr. Mark Thomas (Medical School, the University of Sheffield) for providing us with the 

strain. 

 

2.8.3.1   Bacterial growth 

The frozen bacteria stocks were allowed to thaw and then streaked over LB plates. Plates were 

incubated over night at 37OC and 5% CO2.  

From the plate, around 6-7 colonies of E. coli 25922 were selected and inoculated into 20 ml of 

MHB broth. With mild agitation at 37OC and 5% CO2, mid-log phase was typically reached at 2 

hours with an average absorbance (OD610nm) of around 0.5-0.6. 

 

2.8.3.3   Stock preparation for experiments  

Same as described for N. meningitidis (section 2.8.1.3). 
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2.8.4   Outer membrane vesicles  

 

Outer membrane vesicles (OMVs) are ‘blebs’ from the bacterial outer membrane (Rosenstein et 

al. 2001) (section 1.2.4.6). 

Purified OMVs from both N. meningitidis (MC58 strain) and Neisseria lactamica (strain NL1009) 

were produced and kindly donated by Andrew Gorringe (Health Protection Agency UK) (Gorringe 

et al. 2009; Oliver et al. 2002).  

   

 

2.9    N ITRIC OXIDE (NO)  DONATION AND INHIBITION  

 

2.9.1   Nitric Oxide donor 

 

2,2′-(Hydroxynitrosohydrazino)bis-ethanamine or NOC-18 (Sigma-Aldrich, UK) was selected as the 

NO donor in our system because it is a stable NO-amine complex that spontaneously releases 2 

molecules of NO under physiological conditions. NOC-18 is a slow NO generator, with a half life of 

21 hours at 37oC and under a pH of 7.4.   

According to manufacturer’s instructions NOC-18 was diluted into 0.1 M NaOH and stored in 

aliquots, frozen and protected from light. A titration of the compound was performed from 1µM 

to 1000 µM, selecting 300 µM as optimal concentration for not causing cellular death and keeping 

a maximal effect (section 5.4.1).  

 

2.9.2   Nitric Oxide synthases inhibitors  

 

Two widely used arginine analogues, Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) 

and NG-monomethyl L-arginine citrate (L-NMMA) were selected as inhibitors of NO synthases.  L-

arginine analogues work by competitive interaction with the substrate L-arginine, binding at the 

NOS catalytic site, avoiding L-arginine uptake by the enzyme and further NO formation (Rees et 

al. 1990) (Kerwin & Heller 1994). Indeed, L-NAME and L-NMMA are capable of blocking NO 

production from the three NO synthases (iNOS, eNOS and nNOS).  
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Following manufacturer’s instructions (Sigma-Aldrich, UK), L-NAME and L-NMMA solutions were 

freshly prepared and diluted into RPMI. A titration of L-NAME was performed from 0.5 mM to 10 

mM, choosing 10 mM as optimal concentration for showing the maximal inhibitory effect. 

 

2.9.3   Cavtratin Peptide  

 

The caveolin-1-derived peptide named cavtratin and designed by (Bucci et al. 2000), contains the 

amino acids sequence (82-101) corresponding to the scaffolding domain of caveolin-1 

(DGIWKASFTTFTVTKYWFYR), attached to the antennapedia internalisation sequence 

(RQIKIWFQNRRMKWKK). Amino acids 82-101 from the caveolin-1 sequence have been shown to 

interact directly with eNOS and block its catalytic activity via inhibition of calmodulin binding  

(Bucci et al. 2000; Kwok et al. 2009; Ju et al. 1997).  

The peptide was customised and manufactured by Genecust (Luxembourg) with a purity >80%. 

Additionally, a second peptide was manufactured containing the caveolin-1 domain but lacking 

internalisation sequence (SI Biologics, United Kingdom).  

According to manufactures instructions, both peptides were resuspended in DMSO and stored in 

small aliquots frozen. 

 

 

2.10    STATISTICAL ANALYSIS  

 

Graphics and statistical analysis were performed using the GraphPad Prism 5® software.  

Experiments with only two groups were compared by a paired student t- test, while experiments 

containing more than 2 groups were compared by one way ANOVA or paired ANOVA. In addition, 

the post-tests Dunnett’s (when compared to a control data set) and Bonferroni’s (selected pairs 

comparisons) were applied.     

In all cases, significance was defined by a p value <0.05 and the following significance intervals:  * 

p= 0.01-0.05, ** p= 0.001-0.01, *** p= <0.001. Along this work, graphics are shown as means and 

standard errors of the mean (SEM).  
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3.1    INTRODUCTION  

 

Section 1.1.4 has explained in detail how T and B lymphocytes interact in synergy with each other 

to coordinate immune responses against pathogens. Normally, the TCR will bind to a compatible 

antigen-MHC complex on B-cells, triggering intracellular pathways within T lymphocytes and 

ultimately producing the up or downregulation of surface antigens and cytokines which can in turn 

regulate B-cell and other immune cells. Simultaneously and via co-stimulatory molecules such as 

CD40, B lymphocytes will gain T-cell ‘help’ for further activation, expansion and production of 

memory B-cells or antibody producing plasma cells. 

There are two broad types of antigen, distinguished by the necessity for T-cell ‘help’ to be 

delivered to B-cells before the B-cells can respond properly. Responses to T-dependent (TD) 

antigens require T-cell ‘help’ by engagement of the CD40 molecule on B-cells by the CD40 ligand 

(CD154) on T-cells (cognate ‘help’) (section 1.1.5.1). In contrast, T-independent (TI) antigens 

activate B-cells in the absence of T-cell ‘help’ (section 1.1.5.2). 

TI antigens are further classified as type 1 and type 2 (section 1.1.5.2). TI type 1 antigens such as 

bacterial cell wall components induce polyclonal B-cell responses via cross-linking TLRs along with 

the B-cell receptor (BCR). TI type 2 antigens are large molecules with repeating epitopes (as 

polysaccharides), which extensively cross-link surface immunoglobulins within the BCR. 

Anti-IgD­conjugated dextran (α-δ-DEX) is a model TI type 2 antigen that stimulates B lymphocytes 

by cross-linking of numerous B-cell receptor molecules in a similar manner to bacterial capsular 

polysaccharides (Peçanha et al. 1993). α-δ-DEX consists of multivalent anti-IgD antibodies 

covalently linked to a high molecular weight dextran molecule (Brunswick et al. 1988). α-δ-DEX is 

a potent stimulator of resting B cells which can be used in cellular function assays as a polyclonal 

B-cell mitogen and activator (Peçanha et al. 1991), although does not initiate immunoglobulin 

production or isotype switching  (Snapper & Mond 1996). 

It has been previously demonstrated that α-δ-DEX induces effective activation and proliferation 

of B-cells in a PBMC culture and that such response can be strongly synergistic if simultaneous 

bystander T-cell help occurs (R. a Foster et al. 2009; Snapper et al. 1995). 

The finding that became of big interest in our lab was that combination of α-δ-DEX with TCR T-cell 

stimulation (anti-CD3 + anti-CD28), unexpectedly results in suppression of T-cell proliferation and 

activation within a PBMC culture. In comparison with the control sample containing TCR activators 
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only, additional B-cell stimulation with α-δ-DEX reduced the division index and expression of 

activation markers of CD4+ T-cells (Figure 3.1) (J.B. Wing and R.A. Foster, unpublished data).  

In the recent years before the start of this PhD project, several experiments carried out by a 

colleague in our lab (Dr. J.B. Wing, unpublished data) aimed at identifying the mechanism of action 

by which TI type 2 analogous compounds (α-δ-DEX and MID) could restrain T-cell proliferation and 

activation. Among of the most relevant observations made, was the fact that both CD4+ and CD8+ 

T lymphocytes appeared to be inhibited by TI stimulation. An extensive cytokine analysis also 

revealed that samples with TCR stimulation plus α-δ-DEX had reduced supernatant concentrations 

of IL-5, IL-10, IL-13, IL-17 and TNF- as compared with the samples with TCR stimulation only. 

Levels of IFN-γ remained unaffected across the board, while release of IL-1β was highly induced 

by α-δ-DEX even on its own (Figure 3.2). Although the precise role of B-cells in inducing this 

suppression remained uncertain, activation-induced T-cell death and involvement of T-regulatory 

cells were excluded as possible mechanisms of action (J.B. Wing, unpublished data).  

The work described in this chapter aimed to further identify the cells involved in the T cell 

suppression caused by TI-2 mimics and if possible to identify the mechanism of action.  
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Figure 3.1: T-cell proliferation and activation by TCR receptor stimulation is suppressed by -∂-
dex stimulation of B-cells (J.B. Wing, unpublished data). 

PBMCs were extracted from human blood and stimulated for 96 hours with plate bound αCD3 + 
αCD28 and/or the TI-II antigen mimic, α-δ-dex. Proliferation of CD4+ T-cells was reported as 
division index; while expression of the CD25 marker as median fluorescence intensity (MFI) 
represented T-cell activation. Bars represent means and SEM, n=53. ANOVA, Bonferroni’s selected 
pairs. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 3.2: TI type 2 activation of B-cells blocks release of several T-cell cytokines (J.B. Wing, 
unpublished data). 

PBMCs were extracted from human blood and stimulated for 96 hours with plate bound anti-CD3 
+ anti-CD28 and/or the TI type 2 antigen mimic, α-δ-dex. Supernatants were then collected and 
cytokines assayed by Cytometric Bead Array. Bars represent means and SEM, n=22. Paired ANOVA, 
Bonferroni's Multiple Comparison Test. *p<0.05, **p<0.01, ***p<0.001. 
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3.2    GENERAL METHODOLOGY  

 

PBMCs were isolated from fresh heparinised blood by centrifugation with lymphocyte separation 

media and removal of the buffy coat (section 2.1). Cells were washed 3 times and resuspended in 

RPMI media supplemented with L-glutamine and 20% of autologous plasma. PBMCs were then 

stained with the proliferation dye CFSE (section 2.4), followed by 3 washes to remove the excess 

dye. Finally, cells were enumerated by hemocytometer and added to 48-well plates at a 

concentration of 1x106 cells per well in a final volume of 500 µl RPMI preparation.  

T-cells were stimulated with 0.1-0.3 µg/ml plate-bound anti-CD3 (section 2.3.1.1) or with anti-

CD3/CD28 dynabeads (section 2.3.1.4) in the case of enriched CD4+ T-cells. TI type 2 B-cell 

stimulation was provided by 1 µg/ml -∂-DEX (section 2.3.2.1) or 2 µg/ml MID (section 2.3.2.2), in 

the presence or absence of T-cell stimulators. The negative control for all experiments consisted 

of PBMCs in the complete absence of stimuli, cells which will not divide or become activated at 

all. On the other hand, the positive control was represented by the sample containing T-cell 

stimulators (plate bound αCD3 or αCD3/αCD28 dynabeads) which will induce a constant T-cell 

division and large expression of the surface activation marker.  

Except where otherwise noted, cells were incubated at 37oC and 5% CO2 in a humidified 

atmosphere for 96 hours before harvesting.  

Extracellular immunofluorescence staining for flow cytometric analysis was performed by 

incubating 1x106 PBMCs with the relevant antibodies (section 2.5.2). The sequential gating 

strategy excluded doublets, dead cells and monocytes (CD14+) from the analysis, allowing 

identification of live T and B lymphocytes (CD4+ and CD19+ respectively) (section 2.5.5).  

Employing a CFSE dilution method (section 2.4), proliferation was reported as the average number 

of cell divisions (division index) for T and B-cell populations. Median fluorescence intensity (MFI) 

of the surface markers CD25 and CD86 represented T and B-cell activation, respectively. CD25 is 

the α-chain of the IL-2 receptor, which gets over-expressed during T-cell activation and in a 

dependent manner to the presence of IL-2 (Robb et al. 1984). Thus, measurement of CD25 is 

widely used as an activation marker in T lymphocytes. Similarly, expression of the B7 molecule 

CD86 is known to be enhanced on activated B lymphocytes after CD40 ligation (Elgueta et al. 

2009). 

See Figure 3.3 for a simplified methodology flow chart. 
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Figure 3.3: Schematic diagram of the general methodology applied applied in Chapter 3. 

Human PBMCs were isolated from peripheral blood using LymphoprepTM density gradient 
centrifugation. T-cells were stimulated with anti-CD3 (αCD3) or anti-CD3 + anti-CD28 (αCD3 + 

αCD28) coated dynabeads, while B-cells received TI type 2 stimulation with -∂-DEX or MID. Cells 
were plated and incubated for 96 hours at 37oC and 5% CO2. Finally, samples were stained with 
the desired fluorescently-labeled antibodies and analysed by flow cytometry.   
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3.3    T-INDEPENDENT TYPE 2  STIMULATION OF B-CELLS INHIBITS T-CELL 

ACTIVATION AND PROLIFERATION  
    

This section aimed to reproduce the observation previously recorded in our lab, in which addition 

of α-δ-DEX in the presence of a T-cell stimulus (plate-bound αCD3) resulted in proliferation and 

activation of B-cells but suppression of T-cell responses to CD3 cross-linking (section 3.1). 

Figure 3.4-A shows the proliferation index of CD19+ B lymphocytes that have been exposed to    α-

δ-DEX for 96 hours, in the presence or absence of αCD3. As expected, α-δ-DEX alone induced a 

substantial B-cell proliferation as compared with the negative control (non-stimulated PBMCs). 

Moreover, a synergistic effect was observed when both α-δ-DEX and αCD3 were present, possibly 

due to activated T-cells that provided cognate co-stimulation (T-cell help) to B-cells.  

Figure 3.4-B represents the level of B-cell activation reported by CD86 expression. The same trend 

can be seen here, demonstrating how α-δ-DEX achieves B-cell activation on its own but the 

presence of a T-cell stimulus results in a boost for such B-cell response.     

The finding of greatest relevance to this thesis, however, occurred on CD4+ T-cells. In comparison 

with the group containing αCD3 only in which T-cells proliferated as expected via TCR cross-

linking, the group exposed to αCD3 and α-δ-DEX showed at least a 50% reduction of their division 

index (Figure 3.5-A). There was a corresponding, dramatic fall in the expression of the activation 

marker CD25 by T-cells (Figure 3.5-B) in those samples containing both stimuli. It is important to 

mention that α-δ-DEX on its own did not have any effect on CD4+ T-cell proliferation or activation.  

Thus it was possible to reproduce the observation made by previous colleagues in our laboratory, 

in which TI type 2 stimulation with α-δ-DEX activates B lymphocytes but inversely inhibits αCD3-

derived T-cell responses (Figure 3.6).  
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Figure 3.4: CD19+ B-cell proliferation and activation are induced by the TI type II mimic α-δ-DEX.  

A. Proliferation CD19+ B-cells, reported as division index. B. Activation CD19+ B-cells, expression 
of the CD86 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=8. 
Paired ANOVA, Bonferroni's Multiple Comparison Test. *p<0.05, **p<0.01, ***p<0.001. 

-VE= negative control, non-stimulated PBMCs. α-δ-DEX= B-cell stimulation, 1 µg/ml. αCD3 = T-cell 
stimulation, plate-bound 0.1 µg/ml. 
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Figure 3.5: CD4+ T-cell activation and proliferation by TCR receptor stimulation is suppressed by 

-∂-DEX stimulation of B-cells.  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=8. 
Paired ANOVA, Bonferroni's Multiple Comparison Test. *p<0.05, **p<0.01, ***p<0.001.   

-VE= negative control, non-stimulated PBMCs. α-δ-DEX= B-cell stimulation, 1 µg/ml. αCD3 = T-cell 
stimulation, plate-bound 0.1 µg/ml. 
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Figure 3.6: Examples of overlaid histograms presenting B and T cell responses following 
incubation with various stimuli. 
A. Proliferation assessed by the CFSE dilution method, the x axis represents intensity of CFSE 
fluorescence and the y axis % of maximum. B. Activation as MFI of activation markers, the x axis 
represents intensity of CD25-PE or CD86-PE Alexa700 fluorescence, while the y axis % of 
maximum. Representative examples from 4 different experiments and 4 different donors. 
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3.4    CD80,  CD86  AND IL-1  DO NOT APPEAR TO PLAY A ROLE AS 

SUPPRESSOR MOLECULES  

 

From the molecules at the immunological synapse, it is well known that binding of the B7 ligands 

CD80/CD86 to CTLA-4 expressed on the surface of activated T lymphocytes mediates a suppressive 

activity on these cells (Linsley et al. 1992) (section 1.1.4.3). Thus, a blocking experiment was 

designed in order to investigate if an engagement between CD80/CD86 and CTLA-4 was 

responsible for the inhibition. 

Blockade of the CD80 and CD86 molecules was carried out with low endotoxin, azide free purified 

monoclonal antibodies, αCD80 (Biolegend, clone 2D10) and αCD86 (Biolegend, clone IT2.2) 

respectively. At concentrations of 10 µg/ml, these monoclonal antibodies were added directly to 

the wells containing αCD3-stimulated PBMCs plus α-δ-DEX and incubated over a 96 hour period.   

Although this experiment is representative of only 2 donors, there is no evidence that blocking of 

CD80 or CD86 could overcome the T-cell suppression induced by α-δ-DEX. As shown in Figure 3.7, 

not even a slight recovery was detected on T-cell proliferation or activation in the presence of 

these monoclonal antibodies.  

In addition and in relation to the previous finding that IL-1β release was highly induced by α-δ-

DEX (Figure 3.1), we aimed to block this cytokine using recombinant IL-1 receptor antagonist (IL-

1RA). The protein IL-1RA naturally competes with IL-1β for binding to the IL-1 receptor, preventing 

downstream signalling and subsequent inflammatory effects mediated via IL-1β (Goldbach-

Mansky 2012).  

IL-1RA was produced and kindly provided by Dr. Martin Nicklin (Medical School, the University of 

Sheffield). Based on personal communication and advice with Dr. Nicklin, IL-1RA at a final 

concentration of 10 ng/ml was added to the well containing PBMCs stimulated with αCD3 and α-

δ-DEX.    

As shown in Figure 3.7, IL-1RA was also unable to restore T-cell proliferation and activation if α-δ-

DEX was present in the cell culture.  

Even though the sample size is small for this set of conditions, it can be suggested that CD80, CD86 

and the IL-1 receptor do not play an essential role in the α-δ-DEX inhibitory phenomenon.   

 



 CHAPTER 3: T-CELL INHIBITION BY TI TYPE 2 B-CELL ACTIVATION 

88 
 

Proliferation CD4+ T-cells

0.0

0.1

0.2

0.3

0.4

0.5

CD3

- -DEX

CD80 CD86 IL-1RA

D
iv

is
io

n
 i
n

d
e
x

      
 

    

Activation CD4+ T-cells

0

2000

4000

6000

8000

10000

CD3

- -DEX

CD80 CD86 IL-1RA

C
D

2
5
 e

x
p

re
s
s
io

n
 (

M
F

I)

 

 
 
Figure 3.7: Blockade of the B-cell molecules CD80 and CD86 does not restore the suppression 
induced by α-δ-DEX on CD4+ T lymphocytes. Similarly, blockade of IL-1 receptor does not 
reestablish normal T-cell proliferation or activation.  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Lines represent means, n=2.                             
PBMCs were stimulated with αCD3 (plate-bound 0.1 µg/ml), in the presence of α-δ-DEX (1 µg/ml) 
and one of the following: purified anti-CD80 (10 µg/ml), purified anti-CD86 (10 µg/ml) or IL-1 
receptor antagonist (IL-1RA, 10 ng/ml). The group containing αCD3 only represents our positive 
control (red squares), while the group containing αCD3+ α-δ-DEX (green triangles) provides the 
baseline of suppression to compare against.  
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3.5    A  POSSIBLE M INOR EFFECT OF INTERLEUKIN-10  (IL-10) 

 

Although a previous cytokine analysis from supernatants did not reveal an increase in IL-10 

production after α-δ-DEX stimulation (Figure 3.1), the impact of this T-cell down-regulatory 

cytokine as a possible mechanism of suppression in our system was further examined.  

For this set of experiments IL-10 blocking was performed using a functional grade anti-IL-10 

monoclonal antibody (αIL-10, eBioscence clone JES3-9D7), added directly to the wells containing 

αCD3 and α-δ-DEX. Three different concentrations of αIL-10 were tested (5, 10, 20 µg/ml) and 

compared against the isotype control (Rat IgG1, 20 µg/ml) or the positive control (αCD3- 

stimulated).  

The addition of αIL10 may have had a small effect in reversing the suppression of T cell 

proliferation caused by α-δ-DEX, but this was only statistically significant at one of the three 

concentrations assessed (10µg/ml). Even in this case T cell proliferation remained significantly 

suppressed in comparison with the αCD3 control group (Figure 3.8-A) 

An αIL-10 blockade benefit was unclear for T-cell activation, since not even a partial recovery was 

found on expression of CD25 for any of the dose groups when compared with the isotype control 

(Figure 3.8-B). In contrast, αIL10 caused a substantial increase in CD25 expression by αCD3-

stimulated B cells in the absence of α-δ-DEX (Figure 3.8-B). 
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Figure 3.8: A possible minor effect of IL-10 in the α-δ-DEX inhibitory effect.  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=6. 
Paired ANOVA, Dunnett's Multiple Comparison Test (vs. αCD3 or αCD3+α-δ-DEX+isotype). 
*p<0.05, **p<0.01, ***p<0.001, ns= not significant.   

PBMCs were stimulated with αCD3 (plate-bound 0.1 µg/ml), in the presence of α-δ-DEX (1 µg/ml) 
and one of the following: αIL-10 at 5, 10 or 20 µg/ml (blue bars) or the isotype control at 20 µg/ml 
(Isot, green empty bar). The group containing αCD3 only represents the positive control (red filled 
bar), while the group containing αCD3+ α-δ-DEX (green filled bar) provides the baseline of 
suppression to compare against. The additional control sample (n= 3) containing αCD3+αIL-10 at 
10 µg/ml is also shown (empty red bar). 
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3.6                  DOES NOT HAVE A D IRECT SUPPRESSIVE EFFECT ON PURIFIED 

CD4+  T-CELLS  

 

Although α-δ-DEX should bind to and affect only cells expressing IgD, we wanted to be certain 

there was no direct effect on T lymphocytes. To address this question, a simple experiment was 

carried out with purified CD4+ T-cells. 

Primary human CD4+ T-cells were enriched from PBMCs using a negative selection kit (section 

2.2.1), obtaining a final purity greater than 95% in all cases (Figure 3.9). As mentioned in section 

2.3.1.4, αCD3/αCD28 dynabeads were preferred over plate-bound αCD3 to induce cell 

proliferation and activation on purified populations. A ratio of 1:1 dynabead per cell was sufficient 

to provide a good baseline to assess changes on T-cell division index and CD25 expression, thus it 

was chosen as our positive control.   

Figure 3.10 provides strong evidence that addition of α-δ-DEX had not direct effect on T 

lymphocytes. Neither proliferation nor activation of purified CD4+ T-cells were diminished in the 

presence of α-δ-DEX over 4 days of incubation.  

Therefore it can be concluded that in the absence of accessory cells, α-δ-DEX does have any 

suppressor effect on CD4+ T-cells. 
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Figure 3.9: Dot plot examples of primary human enriched CD4+ T-cells illustrating purity greater 

than 95%.  

Purified CD4+ T lymphocytes were obtained from PBMCs by negative selection. After a sequential 
gating strategy for exclusion of doublets and dead cells, dot plots illustrate the final gating for 
selection of CD4+ cells (x- axis= CD4-APC) vs.CD19+ cells (y- axis = CD19 PE Cy-7). Plots are 
representative examples from 2 donors. 
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Figure 3.10: α-δ-DEX does not have a direct suppressive effect on purified CD4+ T-cells.                

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ 
T-cells, expression of the CD25 marker as median fluorescence intensity (MFI). Bars represent 
means, n=7. Paired student t-test, ns= not significant.   

Primary CD4+ T-cells were enriched by negative selection from PBMCs and stimulated with 
αCD3/αCD28 dynabeads (1:1 ratio beads:cells), in the absence or presence of α-δ-DEX (1 µg/ml).  
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3.7  PURIFIED B-CELLS ARE CAPABLE OF SUPPRESSING T-CELL PROLIFERATION 

BUT ONLY WHEN PRIMED WITH               

 

Having excluded the possibility that α-δ-DEX could affect T-cells directly (section 3.6), we aimed 

to investigate whether activated B-cells exposed to α-δ-DEX could subsequently suppress CD4+ T-

cells.    

As in the previous experiment, purified negative selected CD4+ T-cells were obtained from whole 

PBMCs on day 0. Similarly, CD19+ and/or CD20+ B-cells were enriched on the same day using also 

a negative selection principle (section 2.2.1). In the conditions containing both populations, T and 

B-cells were seeded at an approximate 6 to 1 ratio, up to 1 x 106 cells per well in total. These T-

cell : B-cell proportions were ultimately chosen based on the proportions of these lymphocytic 

populations found in whole peripheral blood, 72.6% (54.90-84.03%) CD3+ T-cells and 11% (4.0-

20%) CD19+ or CD20+ B-cells (Bisset et al. 2004). Figure 3.11 shows how optimisation of the 

protocol was achieved and how the initial T:B ratios were more or less maintained over 4 days of 

incubation. For this experiment, αCD3/αCD28 Dynabeads were used again for T-cell stimulation 

and as positive control. In all conditions, 1 x106 beads were placed in each well on day 0 just prior 

to T-cells. From the moment T-cells were enriched and stimulated (day 0), 96 hours of incubation 

took place before analysis. 

Preliminary experiments accomplished to optimise T and B-cell ratios, raised the suspicion that 

direct administration of α-δ-DEX to pure T and B-cells will not show a suppressive effect (data not 

shown). Therefore two main conditions were tested: Purified T-cells plus B-cells both isolated on 

day 0 in the presence or absence of α-δ-DEX; and T-cells isolated (on day 0) plus pre-activated B-

cells isolated on day 1 from PBMCs exposed to α-δ-DEX over 24 hours. For a schematic 

representation of this protocol, see Figure 3.12.  

From the data in Figure 3.13-A and in comparison with the control group containing only 

stimulated CD4+ T-cells, it is evident that α-δ-DEX was unable of generating an inhibitory effect 

when the culture contained only purified non-stimulated B and T-cells. However, when B-cells 

were first primed with α-δ-DEX in the presence of whole PBMCs, those pre-activated B-cells 

acquired a suppressive phenotype that markedly decreased T-cell proliferation. More importantly, 

since the activation beads were present in the well 24 hours before the primed cells were co-

cultured with T-cells (Figure 3.12), it can be inferred that those pre-activated B-cells were powerful 

enough to restrict cell division that had already started.    

α-δ-DEX 
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Irrespective of whether B-cells were pre-activated with α-δ-DEX there was no change on CD4+ T-

cell activation as measured by CD25 expression in relation to the control group (Figure 3.13-B). 

This might be explained, by the fact that over-expression of activation markers is an early 

phenomenon, so the presence of a T-cell stimulus for 24 hours prior co-culture with pre-activated 

B-cells could had been sufficient for starting an unstoppable activation cascade.  

These findings suggest that accessory cells are required during the α-δ-DEX stimulation stage to 

induce a suppressive phenotype on B lymphocytes but once the phenotype is acquired then 

enriched B-cells are sufficient to inhibit T-cell proliferation.  
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Figure 3.11: Dot plot examples illustrating different ratios between enriched CD4+ T and CD19+ 

B lymphocytes.  

Purified CD4+ T and B lymphocytes were obtained from PBMCs by negative selection on day 0 and 
cultured over 4 days. Labels represent T:B ratios at which the cells were seeded on day 0, while 
the plots show the proportion of both populations after 4 days in incubation. After a sequential 
gating strategy for exclusion of doublets and dead cells, these dot plots illustrate the final gating 
for selection of CD4+ T cells (x- axis= CD4-APC) and CD19+ B cells (y- axis = CD19 PE Cy-7). 
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Figure 3.12:  Schematic representation of the experimental protocol involving purified T and B 

lymphocytes in the presence of α-δ-DEX.  

1st condition: Enriched CD4+ T and B lymphocytes were obtained from PBMCs on day 0, following 
co-culture and stimulation with αCD3/αCD28 dynabeads plus/minus α-δ-DEX over 4 days. 2nd 
condition: PBMCs were stimulated with α-δ-DEX over a 24 hours period. At this time, ‘pre-
activated’ B-cells were enriched and transferred to a well containing purified CD4+ T-cells isolated 
on day 0 and which already contained αCD3/αCD28 dynabeads. Finally, 3 more days were allowed 
in co-culture before analysis. Although is not illustrated within this schema, a well containing only 
enriched T-cells plus αCD3/αCD28 dynabeads was used a positive control.  

T= CD4+ T-cell, B= B-cell, pB= α-δ-DEX pre-activated B-cell, X= accessory cell. 
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Figure 3.13: B-cells are capable of suppressing proliferation of purified CD4+ T-cells, but only when 
primed with α-δ-DEX.  
A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ T-
cells, expression of the CD25 marker as median fluorescence intensity (MFI). Bars represent means, 
n=3. Paired ANOVA, Dunnett's Multiple Comparison Test (vs. T); *p<0.05, ns= not significant.  All 
conditions were stimulated with αCD3/αCD28 dynabeads (1:1 ratio). Primary CD4+ T and B lymphocytes 
were enriched by negative selection from PBMCs. In red, control group containing T-cells alone. In 
blue, co-cultures of T and B-cells without and with α-δ-DEX. In green, co-culture of T and pre-activated 

B-cells, after 24 hours exposure to α-δ-DEX. T= CD4+ T-cell, B= B-cell, pB= α-δ-DEX pre-activated B-cell.                                                                                                                         
C and D. Histograms of representative examples. C. CD4+ T-cell proliferation assessed by the CFSE 
dilution method, the x axis represents intensity of CFSE fluorescence and the y axis % of maximum. D. 
Activation as MFI of activation marker CD25, the x axis represents intensity of CD25-PE, while the y 
axis % of maximum 
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3.8    THE SUPPRESSIVE EFFECT OF                PRE-ACTIVATED B-CELLS IS 

CONTACT DEPENDENT  

 

As reported in section 3.7, 24 hours incubation with α-δ-DEX in the presence of PBMCs was 

sufficient to achieve B-cell stimulation and subsequent suppression of purified T-cells. To attempt 

to determine whether B-cell mediated this suppression through cell-cell contact or via a soluble 

mediator a supernatant transfer experiment was designed.   

After 24 hours incubation (day 1), supernatants from non-stimulated or α-δ-DEX-stimulated 

PBMCs were transferred to wells containing purified CD4+ T lymphocytes and αCD3/αCD28 

dynabeads. As an extra control and to exclude the possibility that α-δ-DEX could exhaust any cell 

culture media component, the supernatant from a well without cells and just RPMI preparation 

plus α-δ-DEX was also transferred. In all conditions, only 200 μl of supernatant were transferred 

to avoid that the culture media became exhausted faster over the remaining 3 days of incubation. 

The additional 300 μl of the usual RPMI preparation, to complete a final volume of 500 μl, were 

already present in the well from day 0 when purified CD4+ T-cells were seeded. In total, from when 

T-cells were enriched and stimulated (day 0), 4 days of incubation passed before flow cytometric 

analysis. For a better understanding of the overall experimental protocol refer to Figure 3.14. 

Within this experiment, purified CD4+ T-cells were also co-cultured with either non pre-activated 

B-cells or α-δ-DEX pre-activated B-cells, both enriched from PBMCs on day 1. In the same way as 

previous experiments, the overall purity for enriched populations was kept equal to or above 95% 

and the starting ratio was 6:1 T-cells:B-cells (Figure 3.15). 

From Figure 3.16-A which presents the proliferation of purified CD4+ T lymphocytes, we were able 

to re-assure that purified α-δ-DEX pre-activated B-cells are able of restraining T-cell division in co-

culture, as there was a significant difference between the non pre-activated and pre-activated 

groups. Unexpectedly, co-culture with B lymphocytes taken from unstimulated PBMCs resulted in 

a small but significant fall in the number of cell divisions in comparison with the positive control 

group containing only enriched CD4+ T-cells.  Some possible explanations could be given about 

these non pre-activated B-cells which also decreased T-cell proliferation (discussed in section 

3.16).  

Similar to the observation in section 3.7, T-cell activation did not differ between unstimulated and 

pre-activated B lymphocytes or against the control sample containing only T-cells. (Figure 3.16-B). 

α-δ-DEX 
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To confirm the fact that α-δ-DEX acts through a B-cell-contact mechanism, no significant 

differences were found in any of the groups receiving supernatants. Division index and expression 

of CD25 remained unaffected, even after transfer of the supernatant coming from an            α-δ-

DEX-stimulated sample (Figure 3.16).   

Simultaneous analysis of the marker CD86 expressed on B-lymphocytes reassures that 24 hour 

incubation with α-δ-DEX is enough to activate B-lymphocytes. In comparison with enriched B-cells 

that were not exposed to the TI mimic, pre-activated B-cells had a 2.5 fold increment on the 

expression of CD86 on day 4 of the experiment (Figure 3.16-C). A relevant finding was that these 

α-δ-DEX pre-activated B-cells did not proliferate (data not shown). 

In summary, such evidence supports that cell-contact is required to suppress T-cell responses and 

suggests that no soluble factor seems to be responsible for the effect. Moreover, these results 

consolidate the fact that α-δ-DEX priming in the presence of accessory cells generates a special B-

cell phenotype sufficient to deeply inhibiting T-cell proliferation.  
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Figure 3.14:  Schematic representation of supernatant transfer experiment involving α-δ-DEX.  

Enriched CD4+ T lymphocytes were obtained from PBMCs on day 0, following stimulation with 
αCD3/αCD28 dynabeads. On the same day, PBMCs were incubated in the presence or absence of 
α-δ-DEX. After a 24 hours incubation, non pre-activated B-cells and pre-activated B-cells were 
enriched and co-cultured with the purified CD4+ T-cells. In parallel, 200 μl of supernatants from 
those wells containing PBMCs plus/minus α-δ-DEX were transferred to purified CD4+ T-cells that 
already had 300 μl of RPMI preparation. Although is not illustrated within this schema, in addition 
to the usual control group including T-cells only and αCD3/αCD28 dynabeads, a single well 
containing no cells but only RPMI media and α-δ-DEX functioned as a secondary control. 

T= CD4+ T-cell, B= B-cell, pB= α-δ-DEX pre-activated B-cell, X= accessory cell. 
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Figure 3.15: Dot plot examples demonstrating enriched CD4+ T-cells in co-culture with non-

stimulated or α-δ-DEX pre-activated CD19+ B-cells.  

Purified CD4+ T and CD19+ B lymphocytes were obtained separately from PBMCs by negative 
selection and co-cultured at an approximate 6 to 1 ratio. After a sequential gating strategy for 
exclusion of doublets and dead cells, dot plots illustrate the final gating for selection of CD4+ T 
cells (x- axis= CD4-APC) and CD19+ B cells (y- axis = CD19 PE Cy-7). Note that purity of both T+B 
lymphocytes exceeds 95% in both conditions. 

T= CD4+ T-cell, B= B-cell, pB= α-δ-DEX pre-activated B-cell. 
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Figure 3.16: α-δ-DEX pre-activated B-cells suppress proliferation of purified CD4+ T-cells by a cell 
contact dependent mechanism.  

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ T-
cells, expression of the CD25 marker as median fluorescence intensity (MFI). C. Activation CD19+ B-
cells, expression of the CD86 marker as median fluorescence intensity (MFI). Bars represent means 
and SEM, n=8. Paired ANOVA, Dunnett’s (vs. T) and Bonferroni’s Multiple Comparison Test; *p<0.05, 
**p<0.01, ***p<0.001, ns= not significant.  Primary CD4+ T and B lymphocytes were enriched by 

negative selection from PBMCs and all conditions were stimulated with αCD3/αCD28 dynabeads. In 
red (solid bar), control group containing T-cells alone. In blue (solid bar), co-culture of T and non pre-
activated B-cells. In green (solid bar), co-culture of T and α-δ-DEX pre-activated B-cells. Square bars 
represent the wells containing T-cells plus the respective PBMCs supernatant, with and without α-δ-
DEX. T= CD4+ T-cell, B= B-cell, pB= α-δ-DEX pre-activated B-cell. 
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3.9    TI-II  M IMICS STILL HAVE AN EFFECT ON B-CELL DEPLETED PBMCS   

 

Moraxella IgD-binding protein (MID) is an outer membrane protein with specific affinity for human 

IgD (Forsgren et al. 2001). A truncated form of this protein containing the amino acid residues 

962-1200 binds to soluble and membrane IgD, inducing B-cell activation and proliferation in a 

culture of peripheral blood lymphocytes (Nordström et al. 2006; Nordström et al. 2002). It had 

previously been reported by colleagues in our lab that MID shares very similar T-cell inhibitory 

properties to the ones described for α-δ-DEX (J.B. Wing, unpublished data), suggesting in this 

manner a generic TI phenomenon rather than an isolated α-δ-DEX property. Therefore, to 

establish that only B-cells were capable to respond to TI type II stimulation and subsequently 

restrain CD4+ T responses, B-cell depleted PBMCs were exposed to α-δ-DEX and MID. The use of 

MID would also help to exclude the possibility that the α-δ-DEX preparation had a contaminant or 

that the effect was unspecific via FcR or the dextran molecule.  

  

3.9.1 α-δ-DEX suppresses T-cell  responses even in B-cell  depleted PBMCs, 

although the effect is stronger when B lymphocytes are present.    

Almost absolute B-cell removal from PBMCs (<1% CD19+ cells left) was achieved from day 0 

(sections 2.2.2 and 3.10) and remained following incubation over 4 days with or without α-δ-DEX 

(1 μg/ml). In parallel, whole PBMCs were exposed to the same TI stimuli and used as control 

groups.    

Figure 3.17 compares B-cell depleted groups against whole PBMCs, showing proliferation and 

activation of CD4+ T lymphocytes when exposed to α-δ-DEX. Is in this figure where the most 

striking observation was found. Even after B-cell elimination addition of α-δ-DEX resulted in 

impaired T-cell proliferation and activation. Around 50% reduction of division index and CD25 

expression occurred in those samples lacking of B-cells. 

In relation to the respective positive control containing αCD3 alone, PBMCs free from B 

lymphocytes and stimulated with αCD3 plus α-δ-DEX induced a dramatic drop on the division 

index of CD4+ T-cells. Furthermore, there was no difference between the suppression reported by 

the B-cell depleted sample and whole PBMCs (Figure 3.17-A). Exactly the same trend can be 

observed for the activation marker CD25, which also suffered a large reduction on its expression 

regardless the absence of B lymphocytes (Figure 3.17-B). Again, no statistical difference was 

detected between the non-depleted and depleted groups containing αCD3 plus α-δ-DEX.   
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In a further attempt to discover if the intensity of the α-δ-DEX inhibitory effect was the same in B-

cell depleted PBMCs than in whole PBMCs, a statistical analysis was carried out comparing not 

division index or CD25 expression levels but percentages of T-cell inhibition in relation to the αCD3 

positive control. Thus, the αCD3 sample which proliferated and activated normally had 0% 

suppression, while the samples exposed to αCD3+α-δ-DEX were plotted as % of the reduction they 

caused in relation with their paired αCD3 control (Figure 3.18). From this approach, it was able to 

determine that although downregulation of T-cell responses occurs in PBMCs lacking of B 

lymphocytes, a trend to a deeper negative effect is induced by α-δ-DEX when B-cells are present 

within the co-culture. In the case of CD4+ T-cell proliferation, there was a statistical difference of 

means for the % of suppression shown by the whole PBMCs sample (69.76%, SD+16.04) versus the 

B-cell depleted sample (52.98%, SD+13.0) (Figure 3.18-A). However, the significance between 

these two groups appeared lost (p=0.08) when the same % of suppression was quantified for T-

cell activation (Figure 3.18-B). Since expression of activation markers is always more variable, a 

larger sample size could sustain the possibility of a stronger α-δ-DEX inhibitory effect driven by B 

lymphocytes.    

In summary, these data indicate that CD4+ T-cell responses can be significantly restricted by α-δ-

DEX regardless of whether almost all of B lymphocytes are removed. However, the inhibition is 

stronger when B lymphocytes are present in the culture. 

 

3.9.2  MID also inhibits T -cell  responses in B-cell  depleted PBMCs.    

In order to clarify if such unexpected phenomenon was exclusive to α-δ-DEX, MID was investigated 

as a second TI type 2 mimic under the same conditions.  

First, MID activity as B-cell stimulant was tested on whole PBMCs and compared against α-δ-DEX. 

Over a 4 day period, PBMCs were stimulated with αCD3 plus either α-δ-DEX (1 µg/ml) or MID (2 

µg/ml) (section 2.3.2.2). 

Even though MID failed to significantly augment B-cell proliferation compared with the αCD3 

control, Figure 3.19 confirms the ability of MID to induce an effective CD19+ B-cell activation 

almost as potent as the one induced by α-δ-DEX. Most importantly, according to the data in Figure 

3.20 it was possible to confirm what was reported previously in our lab, that MID also suppresses 

CD4+ T-cell proliferation and activation with a similar strength to α-δ-DEX.      
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Once established the inhibitory properties of MID as TI mimic, the same B-cell depletion 

experiment as the one described in section 3.9.1 was performed. B-cells were removed from 

PBMCs by positive selection (section 2.2.2) and stimulated with αCD3 and MID for 4 days before 

analysis. In addition, equivalent groups were prepared using whole PBMCs. 

From Figure 3.21-A, is evident that addition of MID resulted in an impaired T-cell division index 

even among B-cell depleted PBMCs. In parallel, expression of the activation marker CD25 was 

sharply decreased by MID regardless of whether B lymphocytes were present or not within the 

culture (Figure 3.21-B). Similar to the experiment with α-δ-DEX, groups containing αCD3 plus MID 

did not show significant differences in CD4+ T-cell proliferation or activation between B-cell 

depleted and non-depleted PBMCs.   
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Figure 3.17: α-δ-DEX suppressive properties still occur on B-cell depleted PBMCs.                          

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM. PBMCs 
groups n= 5; B-cell depleted n=8. One way ANOVA, Bonferroni’s Multiple Comparison Test. 
*p<0.05, **p<0.01, ***p<0.001, ns= not significant.   

Whole PBMCs (in red) and B-cell depleted PBMCs (in blue) were stimulated with αCD3 (plate-
bound 0.3 µg/ml) and/or α-δ-DEX (1 µg/ml). Groups containing αCD3 only represent the positive 
control (filled bars) under each condition.  
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Figure 3.18: Comparison of the % of suppression between whole PBMCs and B-cell depleted 

PBMCs stimulated with α-δ-DEX.  

A. Proliferation CD4+ T-cells, reported as % of suppression. B. Activation CD4+ T-cells, reported as 
% of suppression. Bars represent means and SEM, n= 5. Paired student t- test; *p<0.05, ns= not 
significant.   

Whole PBMCs (in red) and B-cell depleted PBMCs (in blue) were stimulated with αCD3 (plate-
bound 0.3 µg/ml), with or without α-δ-DEX (1 µg/ml). Groups containing αCD3 only represent a 
0% suppression baseline under each condition.  
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Figure 3.19: CD19+ B-cell activation is induced by the TI type II mimic MID.                                     

A. Proliferation CD19+ B-cells, reported as division index. B. Activation CD19+ B-cells, expression 
of the CD86 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=5. 
Paired ANOVA, Bonferroni's Multiple Comparison Test. *p<0.05, **p<0.01, ns= not significant.                                                                                                        

 -VE= negative control, non-stimulated PBMCs. αCD3 = plate-bound 0.2 µg/ml. α-δ-DEX= 1 µg/ml. 
MID= 2 µg/ml. 
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Figure 3.20: MID suppresses proliferation and activation of CD4+ T lymphocytes in a similar way 
as α-δ-DEX.  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=5. 
Paired ANOVA, Bonferroni's Multiple Comparison Test; *p<0.05, **p<0.01, ***p<0.001, ns= not 
significant. 

-VE= negative control, non-stimulated PBMCs. αCD3 = plate-bound 0.2 µg/ml. α-δ-DEX= 1 µg/ml. 
MID= 2 µg/ml. 
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Figure 3.21: MID suppressive properties still occur on B-cell depleted PBMCs.  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Lines represent means, n= 3. Paired 
ANOVA, Bonferroni’s Multiple Comparison Test; *p<0.05, **p<0.01, ***p<0.001, ns= not 
significant.   

Whole PBMCs (in red) and B-cell depleted PBMCs (in blue) were stimulated with αCD3 (plate-
bound 0.3 µg/ml) with or without MID (2 µg/ml).  
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3.10    CONFIRMATION OF DEPLETION EFFICIENCY AND EXCLUSION OF RARE 

CD19-  CELLS EXPRESSING IGD 

 

Since both TI type 2 mimics had an effect on B-cell depleted PBMCs, I returned to check the 

efficacy of the depletion protocol. The kit used for these experiments (section 2.2.2), positively 

selects for cells expressing CD19 and CD20, which are classical phenotypic markers of B 

lymphocytes in peripheral blood (Bisset et al. 2004).  

The number of CD19+ lymphocytes remaining was evaluated on day 0 immediately after 

performing the depletion protocol, having a successful outcome of only 0 to 0.1% events within 

the CD19 gate as compared with its PBMC equivalent. In correlation, no more than 1% events 

were found within the CD19 gate after 4 days of incubation (Figure 3.22).  

Since α-δ-DEX and MID act by multiple cross-linking of surface IgD on B lymphocytes, persistence 

of cells expressing IgD was another investigated aspect. It was first excluded the existence of rare 

non B-cells which could interact with the TI mimics, being CD19- or CD20- but expressing IgD 

molecules on their surface. As Figure 3.23 illustrates, among PBMCs less than 0.5% events will be 

either CD19- or CD20- but IgD+; a situation which remains unmodified irrespective of the 

stimulation with αCD3 plus/minus α-δ-DEX. Further confirmation of this was achieved when no 

events lacking the phenotypic marker CD19 but expressing IgD were discovered in any of the 

depleted samples on day 4 post-incubation, in the absence or presence of any stimulus (Figure 

3.24). From the non-stimulated and αCD3 samples, is clear that the depletion protocol achieves 

almost absolute removal of CD19+ and IgD+ cells. Moreover, whole PBMC samples containing    α-

δ-DEX and MID corroborate that both TI mimics bind to IgD, as the staining of IgD molecules 

becomes masked.  

This section allowed us to confirm the efficacy of our depletion protocol in removing almost all B 

lymphocytes expressing IgD on their surface. Moreover, it was possible to exclude the existence 

of rare cells CD19- and CD20- but IgD+ which could interact with the TI mimics. 
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Figure 3.22: Representative dot plot examples of the efficiency of our depletion protocol at day 

0 and day 4 from non-stimulated PBMCs.  

Top plots illustrate PBMCs on day 0 before and after the depletion procedure. Bottom plots are 
representative of non-depleted PBMCs and depleted PBMCs on day 4 post-incubation. After a 
sequential gating strategy for exclusion of doublets and dead cells, dot plots show the final gating 
for selection of CD4+ cells (x- axis= CD4-APC) vs.CD19+ cells (y- axis = CD19 PE Cy-7). 
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Figure 3.23: Representative dot plot examples of whole PBMCs showing less than 0.5% rare 

events being CD19- or CD20- but expressing IgD.  

Top row illustrates whole PBMCs stained for the B-cell phenotypic marker CD19 (y- axis, PE Cy-7) 
and surface IgD (x- axis, PE). Bottom row shows expression of CD20 as second B lymphocyte 
marker (x- axis, APC) and IgD (x- axis, PE). To exclude the possibility of inducing more IgD 
expression after stimulation, PBMCs were inspected under different conditions: no stimulus       (-
VE), αCD3 plate-bound (0.2 µg/ml) or αCD3 + α-δ-DEX (1 µg/ml). 
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Figure 3.24: Representative dot plot examples of PBMCs before and after B-cell depletion, 

proving almost complete elimination of CD19+ IgD+ events.  

To leave out the possibility of inducing more IgD expression after stimulation, PBMCs were inspected 
under different conditions: no stimulus (-VE), αCD3 plate-bound (0.2 µg/ml), α-δ-DEX (1 µg/ml) or MID 
(2 µg/ml). After exclusion of dead cells, dot plots show the final gates for selection of CD19+ cells (y- 
axis, PE Cy-7) expressing IgD (x- axis, PE). 
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3.11    IL-10  AND B-CELL DEPLETION  

 

Based on the fact that IL-10 might have a minor effect in the α-δ-DEX suppressive mechanism 

(section 3.5), it was decided to explore whether over-production of IL-10 was taking place within 

B-cell depleted samples and was responsible for T-cell suppression. We hypothesized that if T-cell 

inhibition was due to large amounts of IL-10 being produced by cell populations other than B 

lymphocytes, then blockade of this cytokine could reverse the negative effect among B-cell 

depleted PBMCs. 

A similar IL-10 blocking experiment to the one described in section 3.5 was designed, but this time 

using B-cell depleted PBMCs.  A functional grade anti-IL-10 monoclonal antibody (αIL-10) at 10 

µg/ml was chosen for this set of experiments due to the partial but significant restoration effect 

that this concentration showed for T-cell proliferation (Figure 3.7-A). Whole PBMCs and B-cell 

depleted PBMCs were stimulated with αCD3 plus α-δ-DEX, in the presence of either αIL-10 or its 

isotype control. 

From the data in Figure 3.25, it can be observed how IL-10 blocking failed to restore CD4+ T-cell 

proliferation or activation when B-cells are not present in the culture. Even though a trend could 

be suspected, αIL-10 did not significantly increase the division index of CD4+ T lymphocytes in the 

presence of α-δ-DEX (Figure 3.25-A). Equally, expression of the activation marker CD25 remained 

low despite the addition of αIL-10 (Figure 3.25-B). No differences were reported either between 

the whole PBMCs groups containing αCD3+ α-δ-DEX+ αIL-10 and its B-cell depleted equivalents.  

To further support the inefficacy of IL-10 blocking in the absence of B lymphocytes, exactly the 

same experiment was carried out using MID. Although the sample size is smaller, addition of αIL-

10 resulted in partial restoration of T-cell proliferation in comparison with the isotype control 

(Figure 3.26-A). However, such positive effect disappeared against the sample that was only 

stimulated with αCD3 plus MID. Surprisingly, whole PBMCs and B-cell depleted PBMCs containing 

αCD3+ MID+ αIL-10 were also significantly different by their division index. In contrast, inhibition 

of T-cell activation was not reversed by IL-10 blocking and none of the compared groups were 

statistically different.  
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Figure 3.25: Blocking of IL-10 does not reverse α-δ-DEX effect among B-cell depleted PBMCs.  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=6. 
Paired ANOVA, Bonferroni's Multiple Comparison Test; ns= not significant.   
Whole PBMCs (red bars) and B-cell depleted PBMCs (blue bars), were stimulated with αCD3 (plate-
bound 0.3 µg/ml) plus α-δ-DEX (1 µg/ml) in the presence of either αIL-10 (10 µg/ml) or the isotype 
control (10 µg/ml). The groups containing αCD3 alone represent the positive controls (solid bars), 
while the group containing αCD3+ α-δ-DEX provides the baseline of suppression to compare 
against. 
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Figure 3.26: Blocking of IL-10 does not reverse MID effect among B-cell depleted PBMCs.  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Lines represent means, n=3. Paired 
ANOVA, Bonferroni's Multiple Comparison Test; *p<0.05, **p<0.01, ***p<0.001, ns= not 
significant.   

Whole PBMCs (red groups) and B-cell depleted PBMCs (blue groups), were stimulated with αCD3 
(plate-bound 0.3 µg/ml) plus MID (2 µg/ml) in the presence of either αIL-10 (10 µg/ml) or the 
isotype control (10 µg/ml). The groups containing αCD3 alone represent the positive controls, 
while the group containing αCD3+ MID provides the baseline of suppression to compare against. 
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3.12    ASSESSING THE M INIMAL NUMBER OF B-CELLS REQUIRED TO ACHIEVE 

SUPPRESSION    

 

To further address the ability and strength of α-δ-DEX pre-activated B lymphocytes to suppress 

enriched CD4+ T-cells, two opposite titration experiments were performed. 

The first assay was designed to determine how many TI pre-activated B-cells is the minimal 

number to achieve inhibition of T-cell proliferation. Following the same protocol to the one in 

section 3.7, α-δ-DEX pre-activated B lymphocytes were put in co-culture with enriched CD4+ T 

lymphocytes but this time larger ratios of T to B cells were evaluated: 6:1, 18:1, 54:1, 162:1 and 

486:1. Since both donors reached the maximal effect at the physiological T:B ratio of 6:1, it is 

possible to infer that the inhibition on T-cell proliferation is dependent on the number of  α-δ-DEX 

pre-activated B lymphocytes (Figure 3.27-A). It is important to point out that whilst one donor was 

moderately repressed by low numbers of pre-activated B-cells (ratios 18:1 and 54:1) (Figure 3.27-

B), the other donor remained unaffected. As we found previously (Figures 3.13 and 3.16) addition 

of pre-activated B lymphocytes on day one was unable to suppress the T-cell activation marker 

CD25 (Figure 3.27-C).  

In all the experiments using α-δ-DEX pre-activated B-cells, these were added one day after T-cell 

stimulation was initiated with αCD3/αCD28 dynabeads (Figure 3.12). Therefore, we wondered 

whether the degree of inhibition could be enhanced by adding the T-cell stimulus on the same day 

as the α-δ-DEX pre-activated B-cells. In this assay we compared proliferation and activation of 

enriched CD4+ T-cells stimulated one day prior addition of α-δ-DEX pre-activated B lymphocytes 

(day 0) versus T-cells stimulated on the same day of the co-culture with pre-activated B-cells (day 

1). Figure 3.28-A demonstrates that TI activated B-cells are capable of dampening proliferation 

irrespective whether T-cell stimulation was initiated one day prior co-culture or on the same day. 

Interestingly and as observed in previous experiments, α-δ-DEX suppressive B-cells do not reduce 

CD25 expression not even when the activation stimulus was added on the same day as the T:B co-

culture began (Figure 3.28-B).  
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Figure 3.27: α-δ-DEX pre-activated B lymphocytes might suppress CD4+ T-cell proliferation even 
at small non-physiological numbers.  

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Histogram of 
representative example: CD4+ T-cell proliferation assessed by the CFSE dilution method, the x axis 
represents intensity of CFSE fluorescence and the y axis % of maximum.  C. Activation of enriched 
CD4+ T-cells, expression of the CD25 marker as median fluorescence intensity (MFI). Lines 
represent means, n=2. 
On day 0, all conditions were stimulated with αCD3/αCD28 dynabeads (1:1 ratio). Primary CD4+ T 
and B lymphocytes were enriched by negative selection from PBMCs. In red, control group 
containing T-cells alone. In green, co-culture groups of CD4+ T-cells plus different ratios of          24 
hour α-δ-DEX pre-activated B-cells: 6:1, 18:1, 54:1, 162:1 and 486:1 T-to-B cell.   

A 

C 

 

B 



         CHAPTER 3: T-CELL INHIBITION BY TI TYPE 2 B-CELL ACTIVATION 
 

121 
 

Proliferation CD4+ T-cells

T 

T+ p
B
 (6

:1
) T 

T+ p
B
 (6

:1
)

0.0

0.2

0.4

0.6

0.8

1.0

T-cell stimulation

prior co-culture

(day 0)

D
iv

is
io

n
 i
n

d
e
x

T-cell stimulation

on co-culture day

(day 1)
 

Activation CD4+ T-cells

T

T+ p
B
 (6

:1
) T

T+ p
B
 (6

:1
)

0

10000

20000

30000

40000

50000

T-cell stimulation

prior co-culture

(day 0)

T-cell stimulation

prior co-culture

(day 0)

T-cell stimulation

on co-culture day

(day 1)

C
D

2
5
 e

x
p

re
s
s
io

n
 (

M
F

I)

 
 

Figure 3.28: α-δ-DEX pre-activated B lymphocytes suppress CD4+ T-cell proliferation, even when 
T-cell stimulation is initiated 1 day prior co-culture. However, α-δ-DEX pre-activated B 
lymphocytes do not restrain CD25 expression in any situation.   
 

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ 
T-cells, expression of the CD25 marker as median fluorescence intensity (MFI). Lines represent 
means, n=2.  
Enriched CD4+ T-cells were stimulated with αCD3/αCD28 dynabeads (1:1 ratio) one day prior co-
culture (day 0) or on the same day (day 1). In red the control groups containing T-cells alone and 
in green the co-culture groups of T-cells plus α-δ-DEX pre-activated B-cells (ratio 6:1).  
T= CD4+ T-cell, pB= α-δ-DEX pre-activated B-cell.          
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3.13   PURIFIED                   PRE ACTIVATED MONOCYTES DO NOT SUPPRESS 

T-CELLS  

 

Although α-δ-DEX is a biological compound which should exclusively act on and stimulate B-cells, 

it was decided to perform an experiment with purified monocytes to exclude any remote chance 

of an effect on these accessory cells, perhaps through the dextran molecule or through a Fc 

receptor interaction, or through a contaminant of the α-δ-DEX preparation. 

A similar protocol to the one described in section 3.7 was followed. Briefly, purified CD4+ T-cells 

were enriched from PBMCs by negative selection on day 0 and stimulated with αCD3/αCD28 

dynabeads. On the same day, PBMCs were incubated for a 24 hour period in the absence or 

presence of α-δ-DEX. Then, CD14+ monocytes were negatively selected from those PBMCs as 

described in section 2.1.1. Finally, monocytes and purified T lymphocytes were co-cultured on day 

1, leaving 3 more days in incubation before analysis. The right ratio between purified T-cells and 

monocytes was chosen again based on what the literature reports as normal range in peripheral 

blood of healthy adults, from all leukocytes 20-40% T-cells against 3-8% monocytes. Indeed, a ratio 

of 6 to 1 T-cells to monocytes was decided. Figure 3.29 illustrates a schematic representation of 

the methodology applied. 

Data in Figure 3.30-A demonstrates the division index of αCD3/αCD28 stimulated purified CD4+ T 

lymphocytes alone and in co-cultured with CD14+ monocytes that had or had not been exposed 

to α-δ-DEX. Surprisingly and similarly to what we were able to detect with non pre-activated B-

cells (section 3.8), even non-stimulated monocytes significantly reduced T-cell proliferation when 

compared against the sample containing T-cells. However, such inhibition does not seem to be 

associated with an α-δ-DEX effect since there was no statistical difference between the monocyte 

group that was incubated with α-δ-DEX and the one that was not. 

As seen in previous experiments, expression of the activation marker CD25 remained unaffected 

regardless co-culture with monocytes (Figure 3.30-B). Again, this may have been due to an early 

activation from day 0 (prior co-culture), which led to an irreversible expression of the surface 

marker despite contact with monocytes. 

In conclusion, there is no evidence to assume there is a direct α-δ-DEX influence on CD14+ 

monocytes. But the question whether non pre-activated enriched cells (either B lymphocytes or 

monocytes) could develop a spontaneous suppressive phenotype in vitro stills remains unclear 

(discussed in section 3.16). 

α-δ-DEX 
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Figure 3.29: Schematic representation of the experimental protocol involving purified T 
lymphocytes and monocytes in the presence of α-δ-DEX.  

Enriched CD4+ T lymphocytes were obtained from PBMCs on day 0, followed by stimulation with 
αCD3/αCD28 dynabeads. On the same day, PBMCs were incubated in the presence or absence of 
α-δ-DEX. After a 24 hour incubation, non pre-activated monocytes and pre-activated monocytes 
were enriched and co-cultured with the purified CD4+ T-cells. Although is not illustrated within 
this schema, a positive control group including T-cells alone and αCD3/αCD28 dynabeads was 
included.  

T= CD4+ T-cell, M= monocyte, pM= α-δ-DEX pre-activated monocyte. 
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Figure 3.30: α-δ-DEX pre-activated monocytes do not suppress proliferation or activation of 
purified CD4+ T-cells.  

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ 
T-cells, expression of the CD25 marker as median fluorescence intensity (MFI). Bars represent 
means and SEM, n=7. Paired ANOVA, Bonferroni’s Multiple Comparison Test; *p<0.05, **p<0.01, 
***p<0.001, ns= not significant.   

Primary CD4+ T lymphocytes and monocytes were enriched by negative selection from PBMCs and 
all conditions were stimulated with αCD3/αCD28 dynabeads. In red, control group containing T-
cells only. In blue, co-culture of T and non pre-activated monocytes. In green, co-culture of T and 
α-δ-DEX pre-activated monocytes.   

T= CD4+ T-cell, M= monocyte, pM= α-δ-DEX pre-activated monocyte. 

B 

A 



         CHAPTER 3: T-CELL INHIBITION BY TI TYPE 2 B-CELL ACTIVATION 
 

125 
 

3.14    MONOCYTE DEPLETION REDUCES PROLIFERATION AND ACTIVATION 

BASELINE LEVELS IN THE IN V ITRO  MODEL  

 

Although purified α-δ-DEX pre-activated B lymphocytes could exert T-cell suppression, because 

suppression could not be completely ablated by depletion of B-cells, we wanted to investigate 

whether other cells within the PBMC fraction might be involved in the suppression induced by α-

δ-DEX. Monocytes are known to have suppressive properties, so we decided to further explore 

any possible role they might play. Although section 3.13 concluded that enriched CD14+ 

monocytes failed to inhibit T-cell proliferation after 24 hour stimulation with α-δ-DEX, it was 

decided to reinforce this by performing a monocyte depletion experiment. 

CD14+ monocytes were depleted from the PBMC fraction using a positive selection protocol 

(section 2.2.2), achieving almost absolute monocyte removal (<1% CD14+ cells left) (Figure 3.31-

C) Whole PBMCs as well as the monocyte depletion fraction were stimulated with plate-bound 

αCD3, with or without α-δ-DEX (1 μg/ml) and incubated over 4 days.  

In comparison with whole PBMCs, the positive control of the monocyte-depleted fraction 

stimulated with αCD3 alone shows a small drop in the proliferation and activation baseline levels 

of CD4+ T-cells. This situation makes difficult to evaluate whether the α-δ-DEX-induced inhibition 

still occurs after monocyte removal (Figure 3.31). If individual donors and their patterns are 

considered we can then suggest that α-δ-DEX effect is not dependent on the presence of 

monocytes. However, more repeats are necessary to clarify the involvement of these cells.  
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Figure 3.31: Monocyte depletion reduces proliferation and activation baseline levels in the in 
vitro model.                          

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). C. Representative dot plot example of 
the efficiency of the depletion protocol at day 4 non-stimulated cells; x-axis FSC-A and y-axis 
CD14 (Pacific blue). Lines represent means, n=3.  
Whole PBMCs (in red) and CD14+ monocyte-depleted PBMCs (in blue) were stimulated with αCD3 
(plate-bound 0.3 µg/ml), with or without α-δ-DEX (1 µg/ml). Groups containing αCD3 only 
represent the positive control, whilst non-stimulated groups represent the negative control (-VE). 
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3.15  DEPLETION OF NK  CELLS DOES NOT AFFECT THE SUPPRESSION INDUCED 

BY                 

 

Searching for another candidate within the PBMC populations that could influence the activity of 

TI stimulated B lymphocytes, NK cells were next studied. Snapper & Mond (1996) reported that 

NK cells secrete IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF) that are 

essential for IgM secretion by α -δ-DEX activated B lymphocytes.  

Similarly to the experiments performed in sections 3.9 and 3.14, CD56+ NK cells were depleted 

from the PBMC fraction applying a positive selection procedure (section 2.2.2), allowing almost 

absolute NK removal (<1% CD56+ cells left) (Figure 3.32-C). Whole PBMCs as well as the NK 

depletion fraction were stimulated with plate-bound αCD3, with or without α-δ-DEX (1 μg/ml) and 

incubated over 4 days.  

From Figure 3.32 we can conclude that NK cells are not involved in the α-δ-DEX mechanism of 

action. Although the sample size is small, it was clear for the 3 individual donors that both 

proliferation and activation of CD4+ T-cells were reduced if α-δ-DEX was present. As an incidental 

observation, it appears that removal of NK cells increases the baseline levels of T-cell division and 

CD25 expression after αCD3 stimulation.  
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Figure 3.32:  α-δ-DEX suppressive properties still occur after depletion of CD56+ NK cells.                          

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). C. Representative dot plot example of 
the efficiency of the depletion protocol at day 4 non-stimulated cells; x-axis FSC-A and y-axis 
CD56 (Brilliant Violet 510). Lines represent means, n=3. 
Whole PBMCs (in red) and CD56+ NK-cell depleted PBMCs (in blue) were stimulated with αCD3 
(plate-bound 0.3 µg/ml) with or without α-δ-DEX (1 µg/ml). Groups containing αCD3 only 
represent the positive control, whilst non-stimulated groups represent the negative control (-VE). 
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3.16    D ISCUSSION  

 

Some antigens can induce antibody production without ‘T cell help’ and hence are called T-

independent (TI) antigens (Mond et al. 1995) (section 1.1.5.2) Anti-IgD-conjugated dextran             

(α-δ-dex) and the truncated Moraxella IgD-binding protein (MID) are TI type II mimics that induce 

activation and proliferation of B lymphocytes by cross-linking of numerous B-cell receptor 

molecules in a similar manner to bacterial capsular polysaccharides (sections 1.1.5.2.1 and 3.1). 

α-δ-DEX consists on multivalent anti-IgD antibodies conjugated to a dextran molecule (Rehe et al. 

1990; Brunswick et al. 1988); whilst MID consists of the IgD binding site (aminoacids 92-1200) of 

the outer membrane IgD-binding protein from the bacterium Moraxella catarrhalis  (Nordström 

et al. 2006; Nordström et al. 2002). 

It was previously observed in our lab that B-cell activation by these TI type 2 mimics resulted in 

inhibition of T-cell responses to TCR stimulation in vitro (J.B. Wing and R.A. Foster, unpublished 

data) (section 3.1). However, since the mechanism of action by which B lymphocytes could 

downregulate T lymphocytes had not been determined, the work presented in this chapter 

focused on assessing two main possibilities: a cell-contact dependent mechanism and the role of 

soluble factors.        

This initial observation was corroborated, demonstrating that the TI type 2 mimic α-δ-DEX was 

effective in enhancing CD19+ B-cell proliferation and activation but suppressing TCR-induced CD4+ 

T-cell proliferation and activation within a PBMC culture (section 3.3). The same pattern was 

observed in the presence of MID, another TI type 2 mimic that was able to activate B lymphocytes 

while simultaneously inhibiting CD4+ T lymphocytes (section 3.10.2). In this manner, we 

established that the phenomenon might be a general TI type 2 property rather than α-δ-DEX 

specific.       

The B-cell molecules CD80 and CD86 (B7-1 and B7-2) can co-stimulate or downregulate T 

lymphocytes depending if they bind to the ligand CD28 or CTLA-4, respectively (section 1.1.4.3).   

In our assay, antibody blockade of CD80 and CD86 had no effect on the α-δ-DEX-mediated 

inhibition in 2 separate donors (section 3.4).  

Whether IL-1 was involved in the mechanism of suppression was investigated because an increase 

in IL-1β production was demonstrated among the samples containing α-δ-DEX and αCD3 (section 

3.1). However, this increase in IL-1 appears to be coincidental since IL-1 blocking using soluble      

IL-1RA had no impact on the suppressive effect of the B-cells (section 3.4).  
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IL-10 is by far the most pleiotropic anti-inflammatory cytokine because selectively inhibits the 

transcription factor NF-κβ (Driessler et al. 2004; Wang et al. 1995). IL-10 blocks production of pro-

inflammatory cytokines and the expression of adhesion and co-stimulatory molecules on almost 

all cell types, reduces the antigen presenting capacity and promotes the development of TH2 cells 

whilst blocking TH1 polarisation (Asadullah et al. 2003; Moore et al. 2001). IL-10 is produced in 

high amounts by the immunomodulatory regulatory lymphocytic subsets Treg (Shevach 2009; 

McGeachy et al. 2005) and Breg (Bouaziz et al. 2010; Fillatreau et al. 2002). IL-10 is also secreted 

by effector lymphocytes, such as T helper TH2 cells (section 1.1.2.1), B-effector 1 cells (section 

1.1.3.1) and monocytes/macrophages (Asadullah et al. 2003). Of major relevance for this work is 

the well known property of IL-10 to suppress T-cell expansion by affecting secretion of IL-2, IFN-γ, 

IL-4 and IL-5 mainly (Taylor et al. 2006; Asadullah et al. 2003; Akdis & Blaser 1999). Taking all this 

into consideration, it was important to exclude IL-10 as the suppressive soluble factor in our α-δ-

DEX in vitro model. In contrast to the negative effect on T lymphocytes, IL-10 promotes growth of 

B lymphocytes and function as a secondary signal to boost TI type 2 responses after BCR cross-

linking. The Snapper group has demonstrated that TH-derived IL-2, IL-3, IL-4, IL-5, IL-6, IL-10 and 

IFN-γ act as secondary signals to modulate Ig secretion after TI type 2 stimulation (Vos et al. 2000). 

If further TLR signaling occurs, this results in enhanced IL-10 secretion, extensive sustained B-cell 

proliferation and Ig class switching after BCR engagement (Liang et al. 2011; Bouaziz et al. 2010; 

Ruprecht & Lanzavecchia 2006). Under our experimental conditions, we concluded that IL-10 has, 

if any role at all, only a very minor role in the suppression induced by α-δ-DEX (section 3.5). There 

was a hint of partial reversal of the α-δ-DEX suppression of CD4+ T-cell proliferation by blocking 

IL-10, but this was only significant at the middle of the three concentrations of αIL-10 mAb (10 

µg/ml) used. However, no effect was observed in the expression of the T-cell activation marker, 

even with the higher concentration of αIL-10 mAb (20 µg/ml). These results suggest that IL-10 is 

not the responsible mechanism involved in the T-cell suppression and that its minor effect might 

come not from α-δ-DEX activated B-cells, but from naturally present Tregs, Bregs or accessory 

cells which produce IL-10 independently to the culture environment.  

The next part of this chapter aimed to confirm that TI type 2 mimics induce a suppressive 

phenotype on IgD+ B lymphocytes and that these cells are the ones which inhibit proliferation and 

activation of CD4+ T lymphocytes.  

Experiments performed with purified CD4+ T-cells showed that α-δ-DEX is unable of restraining 

αCD3/αCD28-induced proliferation and activation in the absence of other PBMCs (section 3.6). 

Since CD4+ T lymphocytes lack IgD expression, they are not expected to respond in any way to the 
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presence of α-δ-DEX. Therefore, we can confidently reject any unspecific α-δ-DEX phenomenon 

on CD4+ T lymphocytes.  

During the last few years, several publications have provided evidence of an immunomodulatory 

role exerted by B lymphocytes, either upregulating or downregulating the intensity and quality of 

T-cell responses. In non pathological conditions, B-cells act as antigen presenting cells providing 

co-stimulation during TCR downstream activation, secreting cytokines to initiate TH polarisation 

and reactivating memory T-cells (sections 1.1.3 and 1.1.4.3). Autoimmune disorders such as 

idiopathic thrombocytopenic purpura and systemic lupus erythamatosus are examples in which B 

lymphocytes activate and maintain T-cell responses even to self-antigens. In these diseases B-cell 

depletion with Rituximab (αCD20) was shown to be beneficial by decreasing the number of auto-

reactive T-cells (producers of IL-4 and IFN-γ) whilst enhancing the number of Treg producers of IL-

10 (Lund & Randall 2010). On the other hand, IL-10 producing B-cells (Bregs) act as a brake, 

suppressing effector T lymphocytes and promoting expansion of Tregs from naïve T-cells (Lund & 

Randall 2010; Fillatreau et al. 2002) (section 1.1.3.1).  

One of the most relevant findings within this chapter is that addition of α-δ-DEX into a mixed 

PBMC culture induces a suppressive phenotype on B lymphocytes. After just 24 hour stimulation 

with α-δ-DEX, enriched CD19+/CD20+ B-cells are capable of restraining the proliferation of purified 

CD4+ T-cells in co-culture (sections 3.7 and 3.8). In comparison with the enriched B lymphocytes 

that were not exposed to α-δ-DEX, TI type 2 activated B lymphocytes reduced the T-cell division 

index by a third. Unexpectedly, these pre-activated B lymphocytes failed to reduce the expression 

of the activation marker CD25 (discussed below). Of major importance is the fact that priming in 

a PBMC culture is essential, as addition of α-δ-DEX to a pure co-culture of B-cells and CD4+ T-cells 

had no effect (sections 3.7). Indeed, this phenomenon suggests that accessory cells might be 

playing a role during the α-δ-DEX priming stage, perhaps by secreting cytokines or by cell-contact 

interactions. In contrast to the strong B-cell responses observed in PBMC cultures containing          

α-δ-DEX, these primed B lymphocytes had enhanced CD86 expression but did not proliferate 

(section 3.8), perhaps because 24 hours stimulation was not sufficient to trigger proliferation. 

In relation to this, recent studies have explained that Bregs only become suppressive and secrete 

IL-10 after appropriate BCR engagement and secondary signals occur (Mauri & Bosma 2012). 

CD40-dependent cognate interactions (Yoshizaki et al. 2012; Blair et al. 2010; Fillatreau et al. 

2002), the presence of IL-21 (Yoshizaki et al. 2012) and TLR activation (Yanaba et al. 2009) are 

examples of events which drive the generation of functional Bregs. Lampropoulou et al. (2008) 

demonstrated that B-cells are able to produce IL-10 and suppress CD4+ T-cells after TLR-4 and   
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TLR-9 engagement with LPS and CpG, respectively; and that the degree of suppression was 

proportional to the exposure time and the concentration of the TLR agonists. Moreover, it was 

found that the resultant MyD88 signalling in B-cells appears to block MyD88 activation in T 

lymphocytes, limiting T-cell proliferation and differentiation into TH1 and TH17 cells in a mouse 

model of autoimmune encephalomyelitis (Lampropoulou et al. 2008). Thus, it might be possible 

that α-δ-DEX-activated B lymphocytes are receiving a secondary signal from other PBMCs present 

at the pre-activation stage, which in turn triggers a suppressive phenotype in B-cells. 

A transfer experiment clearly demonstrated that the supernatant from 24 hour α-δ-DEX-

stimulated PBMCs does not reduce proliferation or activation of enriched CD4+ T-cells (section 

3.8). Based on this finding, along with those in section 3.5 it is unlikely that IL-10 or any other 

inhibitory soluble molecules are essential for the α-δ-DEX suppression mechanism. These findings 

fitted with the hypothesis that cell-cell contact was required for the α-δ-DEX-mediated 

suppression.  

A similar work to ours is the one published by (Tretter et al. 2008), which showed that large highly 

activated CD25+ B cells stimulated with S. aureus Cowan I antigen (polyclonal activation) are able 

to inhibit proliferation of pure CD4+ T-cells in vitro via induction of long-lasting cell division arrest 

and apoptosis. Although we found no evidence of T-cell apoptosis (James B. Wing, unpublished 

data) and expression of activation markers was also affected in the phenomena we have described 

in this chapter, our results are consistent with those of Tretter et al. (2008) in that constant 

presence and cell-contact between T and pre-activated B-cells is required to achieve suppression. 

The possibility of B-cells inducing a suppressive T-cell phenotype within the PBMC culture was also 

addressed. Tregs constitute an effector TH subset that can deeply suppress other effector T-cells 

(section 1.1.2.1). Tregs mediate suppression by secretion of anti-inflammatory cytokines (IL-10, 

TGF-β, IL-35), by repression of IL-2, IL-4 and IFN-γ, by cell cycle arrest or by cytolisis (Shevach 2009; 

Sakaguchi et al. 2008; Taylor et al. 2006). Allogeneic CD40-activated B-cells can generate human 

Tregs (CD4+ CD25+ FoxP3
+ CD45RO+ CCR7-) from a naïve CD4+ CD25- T-cell population (Tu et al. 

2008). Chen et al. (2009) demonstrates that is possible to expand suppressive FoxP3+ T-cells using 

allogeneic B-cells in co-culture, at a B-to-T cell ratio of 4:1 and adding co-stimulation with αCD28 

+ IL-2. Work performed in our laboratory indicated that an increase in FoxP3 expression by T-cells 

occurs in our α-δ-DEX model from 48 hours post-stimulation onwards. However, we concluded 

that induction of Tregs is not the primary mechanism of suppression, as depletion of these cells 

had no impact on the suppressive action of α-δ-DEX (James B. Wing, unpublished data).  
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To further confirm whether B lymphocytes were the only cell population able to directly suppress 

T-cells, the same α-δ-DEX pre-activation experiment was performed with enriched CD14+ 

monocytes. Three monocyte subsets have been identified, each one differing in their cytokine 

profile and the migration/homing pattern. CD14++CD16- are termed classical monocytes and 

account for 90% of all monocytes. The other 10% are CD14+CD16+ monocytes which can be further 

divided into intermediate (CD14++CD16+) and non-classical (CD14+CD16++), both secreting more 

TNF-α and less IL-10 as compared with the classical subset (Ziegler-Heitbrock et al. 2010; Ziegler-

Heitbrock 2007; Geissmann et al. 2003). Thus, CD14+ CD16+ monocytes have been associated with 

autoimmune diseases and severe bacterial infections, such as sepsis (Ziegler-Heitbrock 2007; 

Fingerle et al. 1993). Like B-cells, monocytes express vesicles with MHCII molecules and present 

antigens to T lymphocytes (Bunbury et al. 2009). 

Under the same experimental conditions as the above mentioned B-cell pre-activation 

experiment, purified CD14+ monocytes which were exposed for 24 hours to α-δ-DEX failed to 

further reduce proliferation of purified CD4+ T-cells as compared with the monocytes that were 

not exposed to the TI mimic (section 3.13). Thus, the initial hypothesis that α-δ-DEX generates a 

suppressive phenotype exclusively on B-cells was supported.  

An unanticipated finding among this set of pre-activation experiments (sections 3.8 and 3.13) was 

the fact that enriched CD19+/CD20+ B lymphocytes and CD14+ monocytes reduced the 

proliferation baseline of purified CD4+ T-cells, even though they were not exposed to α-δ-DEX or 

any other stimulant. It is actually difficult to understand this phenomenon but might be related to 

exogenous conditions unrelated to the assay itself. An explanation could be that their inherent 

inhibitory properties become evident if taken out from their PBMC environment, in the absence 

of accessory cells which might normally prevent such phenotype. In the case of B-cells this is more 

likely due to the presence of naturally peripheral suppressive B lymphocytes which became 

activated under our T-B co-culture conditions. As mentioned above, Bregs circulate in blood 

without much activity in healthy individuals; however several stimuli or secondary signals can 

trigger their suppressive function (Mauri & Bosma 2012). It has been also reported that monocytes 

can modulate T-cells and polarise towards an anti-inflammatory lineage. For example, naïve blood 

CD11b+ Ly6G- monocytes suppress CD4+/CD8+ T-cell proliferation induced by peptide presentation 

or by αCD3/αCD28 stimulation, via a cell contact mechanism (Slaney et al. 2011). Similarly, 

myeloid-derived suppressor cells which resemble inflammatory monocytes restrain antigen-

driven T-cell responses by production of nitric oxide (Movahedi et al. 2008). Binding of CD83 (a 

glycoprotein found on activated T and B lymphocytes) to a putative CD83 receptor expressed on 

monocytes, initiates prostaglandin E2 secretion which in turn decreases T-cell proliferation and 
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production of IL-2 and IFN-γ upon αCD3/αCD28 stimulation in a PBMC culture (Chen et al. 2011). 

Indeed, several suppressive mechanisms could have become activated in purified B-cells or 

monocytes that may justify the drop in T-cell proliferation in the absence of α-δ-DEX. Although 

the three purified populations were obtained as untouched cells by negative selection and without 

using columns (section 2.2.1), one remote possibility is that the physical stress during the 

enrichment procedure affects how B-cells and monocytes function in co-culture with CD4+ T-cells.   

Another point to consider in these purification experiments is that in contrast to the assay 

performed with PBMCs in which both T-cell proliferation and activation were dampened, the 

inhibitory effect of enriched α-δ-DEX pre-activated CD19+/CD20+ B lymphocytes was only evident 

at the proliferation parameter. We initially attributed this finding to the experimental design, as 

purified CD4+ T lymphocytes were activated with αCD3/αCD28 dynabeads from one day prior 

addition of the pre-activated B lymphocytes and so it was thought the activation signaling cascade 

and expression of CD25 was unstoppable (sections 3.7 and 3.8). However, this hypothesis was 

disproved by a subsequent experiment which showed that even when αCD3/αCD28 beads and     

α-δ-DEX pre-activated B-cells are put in co-culture with T-cells on the same day, the expression of 

CD25 does not become downregulated. Moreover, there is a tendency for upregulation on this 

activation marker (section 3.12). Therefore, it is likely that 24 hour α-δ-DEX-activated B 

lymphocytes are only able to directly restrain T-cell proliferation while the repression on 

activation occurs as a secondary phenomenon driven by other PBMCs in culture. Guy et al. (2013) 

elucidates that even though T-cell proliferation and cytokine production are both initiated as a 

consequence of CD3 signalling after phosphorylation of ITAMs (section 1.1.4.4), T-cell activation 

can occur without proliferation. Guy et al. (2013) establishes that initiation of activation starts 

with as few as 2 or 3 functional phosphorylated ITAMS. In contrast, proliferation requires around 

10 ITAMS to activate the Notch pathway and c-Myc, which ultimately leads to a more complex 

cascade of cytoskeleton modifications. Alternatively it might be the case that B-cells require 

constant α-δ-DEX stimulation to downregulate the expression of T-cell activation markers and 

thus the presence of the TI type 2 mimic for only 24 hours was not sufficient. In support of this 

hypothesis, we observed that the amount of the B-cell activation marker CD86 expressed on 

enriched pre-activated cells is less than half in comparison with the amount detected on B 

lymphocytes that were stimulated with α-δ-DEX for 4 days in a whole PBMC culture (sections 3.3 

and section 3.8).    

Contrary to expectations, depletion of CD19+ CD20+ B lymphocytes did not prevent T-cell 

suppression from occurring. Addition of α-δ-DEX or MID to both whole PBMCs and B-cell depleted 

PBMCs resulted in a significant reduction of CD4+ T-cell proliferation and activation (sections 3.9.1 
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and 3.9.2). However, a further analysis on these experiments found that a larger % of α-δ-DEX-

induced suppression occurs when B-cells are present than when they are removed from PBMCs 

(section 3.9.1). Due to this unexpected observation, we assessed whether our B-cell depletion 

protocol was efficient enough to remove all CD19+/20+ B lymphocytes which express surface IgD. 

By performing a simultaneous CD19-CD20-IgD staining on day 0 and day 4 after the B-cell 

depletion protocol it was possible to confirm its efficacy because no more than 0.1% positive 

events for CD19, CD20 or IgD were detected (section 3.10). 

A titration experiment using enriched CD4+ T-cells and α-δ-DEX pre-activated B-cells at low ratios 

T-to-B cells (from 6:1 down to 486:1), showed that the suppression of T-cell proliferation is 

dependent on the ratio T-to-B lymphocytes. A maximal inhibitory effect is observed when more 

B-cells are included into the co-culture (ratio 1:6), while the effect disappears at ratios of around 

18:1 to 54:1 (section 3.13). In this respect, the suppressive effect of these suppressor B 

lymphocytes might be more obvious as we increased the number of B-cells per T-cell. Blair et al. 

(2010) observed that Bregs (CD19+ CD24hi CD38hi) inhibit TNF-α and IFN-γ production from CD4+T 

cells in a ratio dose dependent fashion. In similar in vitro settings to the ones used in this chapter, 

Blair et al. (2010) detected an inhibitory effect only in ratios between 1:1 and 4:1 T-to-Breg. In 

support, the same ratio of 4:1 PBMC-to-Breg was found to reduce the percentage of CD8+ T-cells 

producers of IFN-γ during chronic hepatitis B infection (Das et al. 2012). Thus, our α-δ-DEX pre-

activated B lymphocytes might be even more powerful in dampening T lymphocytes than these 

characterised Bregs.  

Monocyte and NK depletion experiments were also performed due to the possible involvement 

of accessory cells in helping α-δ-DEX pre-activated B lymphocytes to develop a regulatory 

function. The monocyte depletion assay also aimed to exclude any remote chances of undesired 

effects on monocytes, perhaps through the dextran molecule, through Fc receptor interaction or 

by a contaminant contained within the α-δ-DEX preparation. Although the results obtained from 

this experiment do not suggest that α-δ-DEX mediated suppression is dependent on the presence 

of monocytes (section 3.14), this assumption should be re-confirmed with a larger sample size. 

Especially because in our in vitro settings, removal of monocytes will result in a lack of co-

stimulation via IL-6 or CD80/CD86 molecules that may indirectly reduce the baseline of αCD3-

induced T-cell proliferation and activation (Jenkins et al. 1991; Baroja et al. 1988). On the other 

hand, several regulatory functions have been attributed to NK cells either promoting or inhibiting 

T-cell responses and regulating antibody production, in particular during autoimmune disorders 

related to autoreactive T-cells or auto-antibodies (Lünemann et al. 2009; Liu et al. 2006; Shi et al. 

2000). Moreover, IFN-γ and GM-CSF secreted by NK cells have been recognised as important 
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soluble factors to stimulate IgM and IgG secretion from α-δ-DEX activated B lymphocytes (Snapper 

& Mond 1996). In this chapter, an NK depletion assay was conclusive in showing that NK cells are 

not necessary to achieve α-δ-DEX-dependent inhibition on CD4+ T-cells (section 3.15).   

In summary, even though we were unable to explain the mechanism of action by which TI type 2 

mimics α-δ-DEX and MID downregulate CD3/CD28-induced CD4+ T-cell responses, we discovered 

that α-δ-DEX acts on B lymphocytes triggering an immunomodulatory phenotype. Soluble factors 

contained in supernatants, such as IL-10 are not responsible for the suppressive effect and cell-

contact between CD4+ T-cells and α-δ-DEX pre-activated B-cells is essential. Since these B 

lymphocytes only become suppressive after α-δ-DEX pre-activation in the presence of PBMCs, it 

is possible that accessory cells are involved in providing secondary signals to initiate a regulatory 

B-cell phenotype. Monocytes and NK cells do not appear to drive directly the α-δ-DEX inhibitory 

effect, but they do influence the baseline levels of T-cell proliferation and activation in this in vitro 

assay. Overall, our findings suggest that this suppressive α-δ-DEX phenomenon is complex and is 

influenced by the ratio T-to-B lymphocytes in co-culture. Moreover, the degree of the suppression 

varies among individual donors and seems to depend on the amount of B-cell activation induced 

by the TI type 2mimic. Unsolved until now was the unexpected observation in which addition of 

α-δ-DEX to B-cell depleted PBMC still resulted in a moderate inhibition of T-cell responses, 

regardless of almost absolute removal of all CD19+/CD20+/IgD+ cells. Clearly, suppression can be 

mediated in some donors at quite low ratios of B cells to T cells and although our depletion 

appeared to remove almost all B cells expressing IgD, it is possible perhaps that a few residual cells 

(not detected by our FACS CD19 antibody) were the effector cells. As compared with the purified 

α-δ-DEX pre-activated B-cells that were stimulated for only one day, the few contaminating B cells 

left after the depletion and which stayed in culture for 4 days in the presence of α-δ-DEX might 

have expanded up slightly and exerted the residual suppressive effect.    
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4.1    INTRODUCTION  
 
 

As reviewed in section 1.1.5.2, T-independent (TI) antigens are those which fail to associate with 

MHC II molecules but are capable of inducing antibody production by cross-linking the B-cell 

receptor (BCR) in the absence of T-cell ‘help’. Bacterial capsular polysaccharides are examples of 

TI type 2 antigens because they contain highly repetitive epitopes that interact simultaneously 

with a large number of surface immunoglobulins on B lymphocytes (Vos et al. 2000; Mond et al. 

1995).  

As reported in the literature, N. meningitidis survives in humans by evading immune responses 

(section 1.2.5). For example, avoids immune recognition and lysis through sialylation of 

lipooligosaccharides (Unkmeir, Kämmerer, et al. 2002; Estabrook et al. 1997), overcome the action 

of bactericidal lysosomes by preventing phagosomal maturation (Ayala et al. 1998) and induces 

phase variable genes to increase virulence and survival at the colonisation site (Buckee et al. 

2008). In particular, the meningococcus capsule limits the adhesion with phagocytic cells and 

impairs complement­mediated killing by blocking antibody binding and complement deposition 

(Unkmeir, Kämmerer, et al. 2002; McNeil and Virji, 1997, Read et al., 1996). 

The capsule from N. meningitidis consists of repeating carbohydrate moieties, so contains multiple 

identical antigenic epitopes. During natural infection, polysaccharides from this encapsulated 

bacterium will ligate the BCR and TLRs on B-cells, launching a TI response in addition to cytokine 

production from the innate immune system (Brunswick et al. 1988; Snapper & Mond 1996). 

Capsular polysaccharides are recognised via TLR-2 and TLR-4/MD-2 pathway (Zughaier 2011), 

providing positive downstream signalling to B-cells and other antigen presenting cells. However, 

a parallel downregulatory role has been identified for the N. meningitidis capsule. In comparison 

with capsule-deficient meningococci, capsulated serogroups (A, B and C) generated a weaker         

IL-6, IL-8 and TNF-α cytokine secretion by dendritic cells (Unkmeir, Kämmerer, et al. 2002, Giardina 

et al. 2001) and monocytes (Kocabas et al. 2007).    

The B-cell response towards TI type 2 antigens benefits from a secondary signal (Vos et al. 2000), 

indeed other immunogenic components such as lipooligosaccharides (LOS) could provide this 

extra boost (Snapper & Mond 1996). LOS constitutes 50% of the meningococcal outer membrane 

but large concentrations are also secreted into the host inside vesicles (section 1.2.4.2). LOS is a 

major stimulus for inflammation and is responsible for the severity in septicaemia (Brandtzaeg et 

al. 1989) by producing large quantities of pro-inflammatory cytokines such as IL-1β, IL-6, IL-8 and 

TNF-α (Kolb-Mäurer et al. 2001; Unkmeir, Kämmerer, et al. 2002; Hellerud et al. 2008). LOS  has a 
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1000-fold greater bioactivity for TLR-4 than capsular polysaccharides (Zughaier 2011) and its 

recognition occurs via the complex CD14 TLR-4/MD-2 which leads to downstream NFκβ activation 

(Zughaier et al. 2004; Calvano et al. 2003; Pridmore et al. 2003; Pridmore et al. 2001).   

In addition to the capsule and LOS, other Neisseria components can enhance a TI type 2 response 

by providing second signal through TLRs present on APCs such as dendritic cells or monocytes, 

which in turn induce activation on other immune cells like lymphocytes. Using a LOS deficient 

meningococci strain, Sprong et al. (2001) demonstrated that non-LOS bacterial components from 

the outer membrane layer also induce a substantial secretion of pro-inflammatory cytokines          

IL-1β, TNF-α and mainly IFN-γ.  

Neisseria outer membrane vesicles (OMVs) are blebs from the outer membrane, which contain 

mainly LOS and all the associated proteins from this layer (section 1.2.4.6). OMVs have been 

recognised as important immunogenic complexes and its use has been successful in the 

development of effective vaccines against N. meningitidis serogroup B (Holst et al. 2009; Giuliani 

et al. 2006) (section 1.2.3). For example, the novel Bexsero vaccine which is immunogenic both  in 

adults and infants, combines OMVs with the highly immunogenic conserved surface proteins 

factor H binding protein (fHbp), Neisseria adhesin A (NadA) and Neisseria heparin binding antigen 

(NHBA) (Serruto et al. 2012). PorB is another outer membrane protein (section 1.2.4.5) which also 

stimulates antibody production by binding to the TLR-2/TLR-1 complex, triggering B-cell activation 

via MyD88 signalling, increasing IL-8 secretion and up-regulating expression of CD86 and MHC II 

molecules (Massari et al. 2006; Massari et al. 2002; Snapper et al. 1997). 

We have demonstrated in Chapter 3 that TI type 2 mimics (α-δ-DEX and MID) suppress 

proliferation and activation of CD4+ T lymphocytes whilst inducing B-cell proliferation and 

activation. Since some bacterial constituents are TI type 2 antigens and/or provide second signals 

to B-cells via TLR, we have hypothesized that exposure of PBMCs to paraformaldehyde fixed N. 

meningitidis could have a similar inhibitory effect. 

To our knowledge, the colony opacity-associated adhesin (Opa) (section 1.2.4.4) is the only 

neisserial outer membrane protein that has been linked to suppression of T lymphocytes. Gray-

Owen’s research group has published that binding of Opa proteins to the cellular receptor 

CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule) present on T-cells, results 

in a restrained proliferation and activation (Sadarangani et al. 2011; Gray-Owen & Blumberg 

2006). However, this data is considered conflicting by others who believe the suppression by 

meningococci is only transitory and not exclusive on the Opa-CEACAM interaction (Youssef et al. 

2009). In addition, recent work has shown that exposure of dendritic cells to N. gonorrhoeae 
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ablates the ability of these APCs to induce proliferation on T lymphocytes in co-culture (Zhu et al. 

2012).   
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4.2    GENERAL METHODOLOGY   
 
 

Within this chapter, the same general methodology described in Chapter 3 was applied. First, a 

buffy coat layer was obtained from fresh heparinised blood by density centrifugation (section 2.1). 

PBMCs were then washed, resuspended in RPMI media supplemented with 20% autologous 

plasma and stained with the proliferation dye CFSE (section 2.4). Ultimately, PBMCs were counted 

and added to 48-well plates at a density of 1x106 cells per well in a final volume of 500 µl RPMI 

media supplemented with 20% autologous plasma.  

T-cells were stimulated with 0.1-0.3 µg/ml plate-bound αCD3 (section 2.3.1.1) or with 

αCD3/αCD28 dynabeads (section 2.3.1.4) in the case of purified CD4+ T-cells. The negative control 

for all experiments consisted of PBMCs in the absence of stimuli, whereas the positive control was 

represented by the sample containing T-cell activators (αCD3 or αCD3/αCD28 dynabeads). In 

addition to T-cell triggers, cells were exposed to different ratios of paraformaldehyde fixed N. 

meningitidis: 0.1:1, 1:1, 10:1 and 100:1 bacteria per cell.  

Cell cultures were incubated at 37oC and 5% CO2 in a humidified atmosphere for 4 days before 

harvesting. Extracellular immunofluorescence staining for flow cytometric analysis was performed 

by incubating 1x106 PBMCs with the relevant antibodies (section 2.5.2). 

A sequential gating strategy selected for the relevant T or B lymphocyte populations and excluded 

dead cells and monocytes (section 2.5.5). Like in chapter 3 (section 3.2), cell proliferation was 

assessed by the division index obtained from the CFSE dilution method; whilst T and B-cell 

activation were reported as median fluorescence intensity (MFI) of the surface markers CD25 and 

CD86, respectively. 

Using this assay, different wild type bacterial strains, mutants and derived components (section 

2.8) were studied in each of the subsections along this chapter. 

Figure 4.1 describes a general overview of the experimental steps. 
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Figure 4.1: Overview of the experimental methodology applied in Chapter 4. 

Human PBMCs were isolated from fresh peripheral blood using LymphoprepTM density gradient 
centrifugation. T-cell stimulation was achieved with αCD3 or αCD3 + αCD28 coated dynabeads. 
Simultaneously, cells were exposed to paraformaldehyde (PF) fixed N. meningitidis at different 
ratios bacteria per cell: 0.1:1, 1:1, 10:1 and 100:1. Cells were plated and incubated for 96 hours at 
37oC and 5% CO2. Finally, samples were stained with the desired fluorescently-labeled antibodies 
and analysed by flow cytometry.   

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Fluorescent_labeling
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4.3   SMALL INOCULA OF W ILD TYPE N.  MENINGITIDIS  SUPPRESS T-CELL 

PROLIFERATION AND ACTIVATION WITHOUT  ACTIVATING B-CELLS   

 

4.3.1  Small  inocula of N. meningitidis  suppress T-cell  proli feration and 

activation.  

In Chapter 3, we demonstrated how TI- type II mimics are capable of suppressing T-cell responses. 

Since bacterial polysaccharides are TI-type II antigens (sections 1.1.5.2 and 4.1), we hypothesized 

that exposure of PBMCs to paraformaldehyde fixed N. meningitidis could have a similar inhibitory 

effect.  

To address this question we performed a simple experiment incubating PBMCs with plate-bound 

αCD3 (T-cell stimulator), in the presence or absence of wild type N. meningitidis (strain MC58) and 

at different ratios of bacteria per cell: 1:1, 10:1 and 100:1 (section 2.8.1). A sample containing 

αCD3 plus α-δ-DEX was also included in this experiment to compare the degree of suppression 

observed with TI-type II mimics.   

Figure 4.2-A shows how the smallest ratio bacteria per cell (1:1) resulted in profound inhibition of 

CD4+ T-cell division when compared with the group containing αCD3 alone, in which T-cells 

proliferated normally via TCR cross-linking. Similarly, a significant 50% reduction of division index 

was found with the next inoculum 10:1 bacteria per cell. In contrast, the highest bacterial count 

(100:1) failed to affect T-cell proliferation as no significant difference was detected against the 

αCD3 positive control. 

Expression of the activation marker CD25 followed the same suppressive trend (Figure 4.2-B). In 

relation to the αCD3 control group, T-cell activation declined after exposure to low bacterial 

counts (1:1 and 10:1). Again, expression of CD25 seemed to be restored with the largest ratio of 

100:1 bacteria per cell.  

From the data in Figure 4.2 it is clear that the presence of wild type N. meningitidis at 1:1 and 10:1 

ratios resulted in a dramatic reduction of CD4+ T-cell proliferation and activation, just like the one 

induced by α-δ-DEX. Moreover, the smallest bacterial count 1:1 had a significantly greater effect 

than α-δ-DEX on restraining cell division (Figure 4.2-A).  

To establish if N. meningitidis had a stimulatory TI- type II effect, proliferation and activation of 

CD19+ B-cells were examined. Figure 4.3-A, illustrates clearly how small numbers of meningococci 
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(1:1 and 10:1 ratios) are incapable of enhancing the division index of B lymphocytes. However, the 

largest bacterial inoculum (100:1) intensified B-cell proliferation to a similar extent as α-δ-DEX.      

Expression of the B-cell activation marker was not induced by bacterial ratios of 1:1 and 10:1 

(Figure 4.3-B). A mild but significant increase of CD86 expression was detected with the largest 

meningococcal inoculum (100:1), although this activation was not as powerful as the one achieved 

with α-δ-DEX. 

Histograms illustrating T and B cell responses following incubation with αCD3 with different ratios 

of N. meningitidis can be seen in Figure 4.4. 

In summary, these findings suggest that the CD4+ T-cell suppression observed in the presence of 

low numbers of fixed wild type N. meningitidis is unlikely to be related to an enhanced B-cell 

activity, as seems the case for the TI-type II mimics.    

 

4.3.2  N. meningitidis  and α-δ-DEX suppressive effects do not appear to 

be synergistic.   

An experiment combining N. meningitidis and α-δ-DEX was designed to further confirm lack of 

enhancement of proliferation and activation of B lymphocytes, and to address possible synergism 

between them.  

During 96 hours, PBMCs were stimulated with αCD3 plus either α-δ-DEX (1 µg/ml), meningococci 

(ratio 1:1 bacteria per cell) or both.   

From Figure 4.5 (A and B) is evident that combination of α-δ-DEX and meningococcus is not 

synergistic in decreasing T-cell proliferation or activation than each individually, but it can be 

concluded that N. meningitidis and α-δ-DEX were at a maximal inhibitory level at the 

concentrations used. 

In support of the conclusions made from the data shown in Figure 4.3, the combination of both 

stimuli did not result in more B-cell proliferation or activation than the group containing only α-δ-

DEX (Figure 4.5-C and D). As previously shown, bacteria failed to trigger responses on B 

lymphocytes.      

Although it is clear that bacteria do not induce B-cell responses, another experiment using 

suboptimal amounts of meningococci (ratios > 10:1) and of the TI mimic (reducing the 

concentration by half), could address whether a synergistic suppression exists between them. 
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Figure 4.2: CD4+ T-cell proliferation and activation by TCR stimulation is suppressed by small 

inocula of fixed wild type N. meningitidis. 

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=>6. 
Paired ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3) and paired student t-test (α-δ-DEX 
vs.N. meningitidis 1:1). *p= 0.01-0.05, **p= 0.001-0.01, ***p= <0.001, ns= not significant.   

-VE= negative control, non-stimulated PBMCs (black bar). αCD3= T-cell stimulation (plate-bound 
0.1 µg/ml). N. meningitidis= PF fixed, ratios 1:1, 10:1 and 100:1 bacteria per cell (blue bars).               
α-δ-DEX= B-cell stimulation (1 µg/ml). 
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Figure 4.3: Small inocula of wild type N. meningitidis do not induce CD19+ B-cell proliferation or 

activation. 

A. Proliferation CD19+ B-cells, reported as division index. B. Activation CD19+ B-cells, expression 
of the CD86 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=>6. 
Paired ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3). *p= 0.01-0.05, **p= 0.001-0.01, 
***p= <0.001, ns= not significant. 

-VE= negative control, non-stimulated PBMCs (black bar). αCD3= T-cell stimulation (plate-bound 
0.1 µg/ml). N. meningitidis= PF fixed, ratios 1:1, 10:1 and 100:1 bacteria per cell (blue bars).               
α-δ-DEX= B-cell stimulation (1 µg/ml). 
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Figure 4.4: Examples of overlaid histograms illustrating T and B cell responses following 
incubation with αCD3 plus different ratios of N. meningitidis. 
 
A. Proliferation assessed by the CFSE dilution method, the x axis represents intensity of CFSE 
fluorescence and the y axis % of maximum. B. Activation as MFI of activation markers, the x axis 
represents intensity of CD25-PE or CD86-PE Alexa700 fluorescence, while the y axis % of 
maximum. 
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Figure 4.5: N. meningitidis and α-δ-DEX suppressive effects do not appear to be synergistic. 

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). C. Proliferation CD19+ B-cells, reported 
as division index. D. Activation CD19+ B-cells, expression of the CD86 marker as median 
fluorescence intensity (MFI). Lines represent means, n=4.  

-VE= negative control, non-stimulated PBMCs. αCD3= T-cell stimulation (plate-bound 0.1 µg/ml). 
α-δ-DEX= B-cell stimulation (1 µg/ml). N. meningitidis= ratio of 1:1 bacteria per cell. 
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4.  4    N.  MENINGITIDIS  DOES NOT AFFECT CELL V IABILITY 

 

To exclude N. meningitidis induced-cell death as the reason of the inhibitory effect, we assessed 

percentages of cell death using a dead/live dye which strongly stains cells with compromised 

membranes going into cell death (section 2.6.1). Although this method reflects the totality of dead 

PBMCs and does not allow us to differentiate compromised CD4+ T-cells within the cell culture, 

we decided to include this viability dye as routine in every experiment to monitor cell death. 

Figure 4.6 is representative of 14 different donors and illustrates the percentages of total cell 

death found on day 4 of the assay, after exposure to three different meningococcal inocula. As is 

evident, none of the groups containing bacteria reported a significant higher percentage of cell 

death in relation to the αCD3 control with no bacteria. Furthermore, the largest bacterial count 

(100:1) had a small but significant reduction on the % of cell death.  

Therefore, we can infer that the presence of N. meningitidis does not appear to suppress 

responses of CD4+ T lymphocytes by inducing cell death. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



           CHAPTER 4: N. MENINGITIDIS SUPPRESS T-CELLS 
 

151 
 

Cell death induced by N. meningitidis

0.0

2.5

5.0

7.5

10.0

12.5

15.0

-VE CD3
1:1 10:1 100:1

N. meningitidis

ns
ns

*

%
 D

e
a
d

 c
e
ll
s

 
 

 

 

Figure 4.6: N. meningitidis does not affect viability of PBMCs. 

A. Percentage of cell death induced by N. meningitidis, at ratios of 1:1, 10:1 and 100:1 bacteria per cell. 
Bars represent means and SEM, n=14. Paired ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3). *p= 
0.01-0.05, **p= 0.001-0.01, ***p= <0.001, ns= not significant. -VE= negative control, non-stimulated PBMCs. 
αCD3= T-cell stimulation (plate-bound 0.2 µg/ml). B. Dot plot examples showing the live/dead gate applied 
for all conditions, on the y-axis fluorescence of the UV dead/live dye and on the x-axis FSC-A. These 4 
samples are representative of 1 single donor and show % of live cells within the gate.  
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4.5    LOS  IS NOT INVOLVED IN THE MECHANISM OF SUPPRESSION  

 

In order to discover if Neisseria lipooligosaccharyde (LOS) is implicated in inducing a suppressive 

response, we investigated the outcome of a LOS-deficient mutant strain made as a complete lpxA-

knockout by insertion of a kanamycin-resistance cassette (Steeghs et al. 1998). In this way, 

blockade on the first step of lipid A biosynthesis occurs and the mutant lacks LPS completely    

(sections 1.2.4.2 and 2.8.1.1).    

Although the LOS-deficient colonies were always selected by Kanamycin resistance, we further 

corroborated the absence of the lpxA gene by PCR. Figure 4.7 shows the expected lpxA gene bands 

of around 650pb for the genomic DNA extracts from the wild type strain MC58 and mutant’s 

parental wild type strain H44/76. The largest band of around 1800pb was obtained from the LOS-

deficient mutant and corresponds to the lpxA gene insertion with a Kanamycin cassette. 

Having established disruption of the lpxA gene in our mutant, our basic experiment was carried 

out comparing the LOS-deficient mutant against its wild type parental strain H44/76 and our 

standard wild type strain MC58 (section 2.8.1.1). As before, bacterial ratios of 1:1, 10:1 and 100:1 

were tested. 

Figure 4.8 demonstrates how the LOS-deficient mutant is still effective in restraining CD4+ T-cell 

responses in a similar manner to the wild type strains. Again, the smallest inoculum (1:1) had the 

largest inhibitory effect on T lymphocytes by reducing their division index by less than half in 

comparison with the αCD3 control group. The same negative correlation was observed with the 

mutant, as the largest bacterial count (100:1) was unsuccessful in stopping T-cell division (Figure 

4.8-A).   

This is consistent with the large reduction of T-cell activation observed after exposure to  the LOS-

deficient mutant at ratios of 1:1 and 10:1; an effect which disappeared at the highest ratio  of 

100:1 bacteria per cell (Figure 4.8-B).    

In addition, no statistical differences were found among the same ratios for both of wild type 

strains MC58 or H44/76 and the LOS-deficient mutant, neither for proliferation nor for activation. 

Therefore, we can conclude that LOS does not play a critical role in the suppression mechanism 

induced by N. meningitidis. 
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Figure 4.7: Insertion of the kanamycin cassette into the lpxA gene was confirmed by PCR. 

From left to right: HyperLadder (Bioline), lpxA knockout mutant (LOS deficient strain), parental 
wild type strain H44/76, wild type strain MC58, HyperLadder (Bioline).  

For the 3 strains, genomic DNA was isolated using the E.Z.N.A. Bacterial DNA protocol and 
following manufacturer’s instructions (Bacterial DNA kit, OMEGA bio-tek). A highly specific PCR 
reaction was achieved using 2 µl of DNA template and a PCR cocktail (MyTaq™Mix, Bioline). Thirty 
PCR cycles were run under the next conditions: initial denaturation 95oC for 1 minute, 
denaturation 95oC for 15 seconds, annealing 55oC for 15 seconds and extension 72oC for 10 
seconds. Primers for the lpxA gene segment included the insertion site for the kanamycin cassette:  

lpxA_F - TGACCCTCATCCACCCGACCG ;  lpxA_R- GCGGTAAAACCGTTGCGGCG.  

A 1% agarose gel was loaded with the PCR products and ran for 90 minutes at 70 volts. Finally, 
DNA bands were stained with ethidium bromide and revealed. 
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Figure 4.8: LOS is not the mechanism of suppression. LOS-deficient meningococci inhibit CD4+ T-

cell proliferation and activation just as wild type strains do. 

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM; n=6 for 
MC58 and LOS mutant, n=4 for H44/76. Paired ANOVA, Dunnett’s Multiple Comparison Test (vs. 
αCD3). *p= 0.01-0.05, **p= 0.001-0.01, ***p= <0.001, ns= not significant.   
For 96 hours PBMCs were stimulated with plate-bound αCD3 (0.2 µg/ml) and exposed to PF fixed 
bacteria: N. meningitidis wild type MC58 strain (blue bars), LOS-deficient strain -lpxA knockout 
mutant (green bars) or parental wild type strain H44/76 (purple bars). For all groups, ratios of 1:1, 
10:1 and 100:1 bacteria per cell. Red bar containing αCD3 and no bacteria is the positive control.   
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4.6    OMVS CONTAIN THE SUPPRESSIVE FACTOR  
 

To discover if the suppressor element was contained within the outer membrane of the 

meningococcus, we conducted a more specific approach by using purified outer membrane 

vesicles (OMVs). OMVs are ‘blebs’ of the bacterial outer membrane and are primarily composed 

of phospholipids, LOS and outer membrane proteins (section 1.2.4.6). 

Assuming that the suppressive bacterial factor could be contained inside the vesicles, different 

concentrations of purified OMVs from N. meningitidis wild type strain MC58 (section 2.8.4) were 

added directly to PBMCs and incubated over 4 days in the presence of T-cell stimulation (αCD3 

plate-bound).  

Because it is expected that secreted OMVs will contain part of the bacterial capsule and since 

capsular polysaccharides are the major example of TI type 2 antigens, we decided to include non-

capsulated Neisseria OMVs within this experiment. The related non-pathogenic N. lactamica 

differs structurally from N. meningitidis in the absence of capsule (Kim et al. 1989); indeed, OMVs 

from this organism were ideal to be assessed under the same conditions. A wide range of 

concentrations were tested along this assay, going from 0.001 up to 50 µg/ml in the case of 

meningococcal OMVs and from 0.001 to 25 µg/ml for lactamica OMVs.  

It is apparent from Figure 4.9-A that proliferation of CD4+ T-cells was dramatically impaired by 

both N.lactamica and N.meningitidis OMVs irrespective of the concentration. Even the smallest 

concentration of OMVs (0.001 µg/ml) was sufficient to achieve significance. 

Similarly, expression of the T-cell activation marker was clearly reduced by N.meningitidis and 

N.lactamica OMVs in a dose-dependent fashion. All concentrations, apart from the lowest 

reported significant differences compared to the αCD3 control group which did not contain OMVs 

(Figure 4.9-B) 

These results indicate that purified OMVs from both N. meningitidis and N. lactamica, contain an 

outer membrane component capable of inhibiting T-cell proliferation and activation in a similar 

manner to whole fixed bacteria. In addition, N. lactamica OMVs allowed indirect exclusion of 

capsule involvement within this assay as no significant differences were found between the 

concentrations of OMVs from meningococcus and lactamica.   

Taking an educated guess about the bacterial component responsible for inducing the suppressive 

mechanism, we thought on the outer membrane proteins as first candidates (sections 1.2.4.4 and 
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1.2.4.5). Therefore, we opted for heating the OMVs as a simple approach of protein 

denaturalisation and exclusion of thermolabile elements. 

Data in Figure 4.10 reveals that heating of purified OMVs does not reverse the inhibitory effect on 

CD4+ T-cell responses, neither for N. meningitidis nor for N. lactamica. In comparison with our 

usual αCD3 control, all groups containing heated OMVs had a significantly lower cell division index 

irrespective of the concentration used (Figure 4.10-A). The same phenomenon was observed for 

T-cell activation, as all the groups incubated with heated vesicles reported very low expression of 

CD25 against the positive control which was OMVs free (Figure 4.10-B).    

Overall, it appears that the suppressive factor is heat stable and that high temperatures are not 

enough to ablate its inhibitory properties.  
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Figure 4.9: OMVs from both N. meningitidis and N. lactamica contain the suppressive factor. 

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=>4. 
One way ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3). *p= 0.01-0.05, **p= 0.001-0.01, 
***p= <0.001, ns= not significant.   

For 96 hours PBMCs were stimulated with plate-bound αCD3 (0.2 µg/ml) and exposed to different 
concentrations of purified OMVs, from N. meningitidis (blue bars) or from N. lactamica (green 
bars). Red bar containing αCD3 and no OMVs represents the positive control.   
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Figure 4.10: The inhibitory effect on CD4+ T-cells is not reversed when OMVs are heated. 

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of the CD25 
marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=>4. One way ANOVA, 
Dunnett’s Multiple Comparison Test (vs. αCD3) and Bonferroni’s Multiple comparison test. *p= 0.01-0.05, 
**p= 0.001-0.01, ***p= <0.001, ns= not significant.   
For 96 hours, PBMCs were stimulated with plate-bound αCD3 (0.2 µg/ml) and exposed to different 
concentrations of fresh (solid bars) or heated (square bars) purified OMVs, from N. meningitidis (blue bars) 
or from N. lactamica (green bars). On the day of the experiment, OMVs were heated at 100oC for 15 minutes 
using a dry block heater. Red bar containing αCD3 and no OMVs represents the positive control.   
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4.7    OPACITY PROTEIN IS NOT RESPONSIBLE FOR THE SUPPRESSION   

 

Given the fact that purified OMVs seem to contain the bacterial component responsible for 

restraining T-cell proliferation and activation (section 4.6), we sought to determine whether a 

common surface determinant - opacity protein (Opa) is involved in the suppression. A strong Opa-

CEACAM interaction is important to facilitate adherence of capsulated Neisseria spp to epithelial 

cells and invasion into the blood stream (Bradley et al. 2005). Moreover, binding of Opa with 

CEACAM1 has been previously reported to have inhibitory consequences in activation and 

proliferation on T-lymphocytes (Sadarangani et al. 2011) (section4.1) 

To discover if Opa is a key element within the inhibitory mechanism, we carried out an assay to 

evaluate the effect of an Opa-deficient capsulated MC58/h18.18 variant (section 2.8.1.1) versus 

the wild type MC58 strain. Using αCD3-stimulated PBMCs and going from a very small inoculum 

of 0.1 bacteria per cell up to 100, the results from this experiment are shown in Figure 4.11.  

Proliferation of CD4+ T lymphocytes had a dramatic fall of between 50 to 75% for all the groups 

exposed to Opa-deficient bacteria in relation to the positive control (Figure 4.11-A). However 

there were no significant differences among the bacterial ratios of the Opa-deficient and the wild 

type.  

A very similar trend was observed with activation (Figure 4.11-B). Again, both strains were not 

different when similar pairs of inocula were compared.   

To further exclude a role for Opa in the inhibition another Opa-deficient strain from the same 

MC58 background was examined. Unlike the strain used above, this ¢2 Opa-deficient bacteria 

lacks of capsule (section 2.8.1.1), so we could examine a possible TI type 2 effect driven by capsular 

polysaccharides. 

Figure 4.12-A demonstrates that cell division of T lymphocytes can be stopped by bacterial ratios 

from 0.1 to 10 of the non-capsulated Opa-deficient strain. Although the inoculums 1:1 and 1:10 

were not significant for T-cell activation, the smallest count 0.1 significantly restrained CD25 

expression Figure 4.12-B.  

In conclusion, these data support that Opa is not involved in leading suppression of CD4+ T 

lymphocytes. 
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Figure 4.11: Opa is not the bacterial factor involved in the suppression mechanism of CD4+ T 

lymphocytes (1).  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM; n=5. 
Paired ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3). *p= 0.01-0.05, **p= 0.001-0.01, 
***p= <0.001, ns= not significant.   

For 96 hours PBMCs were stimulated with plate-bound αCD3 (0.3 µg/ml) and exposed to PF fixed 
bacteria, N. meningitidis wild type MC58 strain (blue bars) or MC58/h18.18 Opa-deficient strain 
(green bars). For all groups, ratios of 0.1:1, 1:1, 10:1 and 100:1 bacteria per cell. Red bar containing 
αCD3 and no bacteria represents the positive control.   
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Figure 4.12: Opa is not the bacterial factor involved in the suppression mechanism of CD4+ T 

lymphocytes (2). 

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM; n=8. 
Paired ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3). *p= 0.01-0.05, **p= 0.001-0.01, 
***p= <0.001, ns= not significant.   

For 96 hours PBMCs were stimulated with plate-bound αCD3 (0.3 µg/ml) and exposed to PF fixed 
non-capsulated MC58 /¢2 Opa-deficient bacteria (green bars), at different ratios: 0.1:1, 1:1, 10:1 
and 100:1 bacteria per cell. Red bar containing αCD3 and no bacteria represents the positive 
control.   
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4.8    MENINGOCOCCUS DOES NOT HAVE A D IRECT SUPPRESSIVE EFFECT ON 

PURIFIED CD4+  T-CELLS  

 

To address the question whether bacteria acts directly on T lymphocytes, purified CD4+ T-cells 

were incubated for 4 days with meningococci (wild type MC58 strain) at ratio of 1:1 bacteria per 

cell.  

Primary human CD4+ T-cells were enriched from fresh PBMCs using a negative selection kit (table 

2.1), obtaining a final purity greater than 95% in all cases (Figure 4.13-C). Section 2.3.1.4 explains 

why αCD3/αCD28 dynabeads were preferred over plate-bound αCD3 to induce proliferation and 

activation on purified T-cells.  

Figure 4.13-A shows that addition of the bacteria did not reduce the division index of purified CD4+ 

T-cells. Similarly, expression of the activation marker was not altered by exposure to the 

meningococcus (Figure 4.13-B).  

Indeed, we have provided evidence to confirm that N. meningitidis is not suppressing T-cell 

responses by a direct interaction.  
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Figure 4.13: N. meningitidis does not have a direct suppressive effect on purified CD4+ T-cells.                 

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ 
T-cells, expression of the CD25 marker as median fluorescence intensity (MFI). Lines represent 
means, n=5. Paired student t-test. *p= 0.01-0.05, **p= 0.001-0.01, ***p= <0.001,    ns= not 
significant. C. Dot plot examples of primary human enriched CD4+ T-cells illustrating purity 
greater than 95%. CD4+ cells (x- axis= CD4-APC) vs.CD19+ cells (y- axis = CD19 PE Cy-7). Plots are 
representative examples from 2 donors.  
Primary CD4+ T-cells were enriched by negative selection from PBMCs and stimulated with 
αCD3/αCD28 dynabeads (1:1 ratio), in the absence or presence of PF fixed N. meningitidis wild 
type MC58 strain (1:1 bacteria per cell).  
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4.9   N.  MENINGITIDIS  DOES NOT INDUCE A SUPPRESSIVE PHENOTYPE ON B  

LYMPHOCYTES  

 

We next explored the role of B lymphocytes within the suppression mechanism induced by 

meningococci. Although section 4.3 demonstrates that the presence of small bacterial counts are 

unable to trigger a substantial stimulation of CD19+ B-cells, we carried out an experiment with 

purified populations to further exclude any involvement of B lymphocytes. 

 Figure 4.14 illustrates the methodology followed for this assay. Briefly, CD4+ T-cells were 

negatively selected from fresh PBMCs and stimulated with αCD3/αCD28 Dynabeads on day 0. 

Simultaneously, PBMCs were exposed to either N. meningitidis (strain MC58 at ratio of 1:1) or 

RPMI media (as negative control) for a period of 24 hours. From those PBMCs groups, CD19+ 

and/or CD20+ B lymphocytes were enriched by negative selection (table 2.1) and then co-cultured 

with the purified CD4+ T-cells on day 1. In co-culture, a physiological proportion of one B 

lymphocyte per six T lymphocytes was chosen for this assay (explained in section 3.7). 

We have previously reported in section 3.8 that enriched non pre-activated B lymphocytes can 

stop the division index of CD4+ T lymphocytes in co-culture, maybe due to spontaneous activity in 

vitro of natural B-regulatory cells. Using different volunteers and in a posterior assay, Figure 4.16-

A reinforces such phenomenon as addition of non stimulated purified B-cells to a pure culture of 

T-cells resulted in a significant drop in proliferation. But what is relevant for this experiment is that 

enriched B-cells which were primed with a small inoculum of meningococci did not achieve a 

further inhibition (Figures 4.15 and 4.16-A).   

Activation of purified CD4+ T lymphocytes was not significantly affected by any of the two co-

culture conditions. Neither non-stimulated nor meningococcus-stimulated B-cells reduced 

expression of CD25 (figures 4.15 and 4.16-B). This may be due to an early ongoing activation 

signalling from day 0 (prior co-culture), which led to an irreversible expression of the T-cell surface 

marker despite contact with B lymphocytes. 

In summary, we can infer that N. meningitidis does not act by inducing a suppressive phenotype 

on B lymphocytes, as seems the case for TI type 2 mimics. 
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Figure 4.14: Schematic representation of the experimental protocol involving purified T and B 

lymphocytes in the presence of N. meningitidis.  

Enriched CD4+ T lymphocytes were obtained from PBMCs on day 0, following stimulation with 
αCD3/αCD28 dynabeads. On the same day, PBMCs were incubated in the presence or absence of 
PF N. meningitidis strain MC58, ratio of 1:1 bacteria per cell. After a 24 hours period, non pre-
activated B-cells and pre-activated B-cells were enriched and co-cultured with the purified CD4+ 
T-cells. Finally, 3 more days were allowed in co-culture before analysis. Although is not illustrated 
within this schema, a well containing only enriched T-cells plus αCD3/αCD28 dynabeads was used 
a positive control.  

T= CD4+ T-cell, B= B-cell, pB= MC58 pre-activated B-cell, X= accessory cell. 
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Figure 4.15: Examples of overlaid histograms illustrating T-cell responses following incubation 
with αCD3/αCD28 dynabeads plus non pre-activated and meningococcus pre-activated B-cells. 
 
A. Proliferation assessed by the CFSE dilution method, the x axis represents intensity of CFSE 
fluorescence and the y axis % of maximum. B. Activation as MFI of CD25 expression, the x axis 
represents intensity of CD25-PE, while the y axis % of maximum. C. Dot plot illustrating purity of 
enriched CD4+ T and CD19+ B lymphocytes. 
 
T= CD4+ T-cell, B= B-cell, pB= MC58 pre-activated B-cell. 
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Figure 4.16: N. meningitidis does not induce a suppressive phenotype on B-lymphocytes. 

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ 
T-cells, expression of the CD25 marker as median fluorescence intensity (MFI). Bars represent 
means and SEM, n=8. Paired ANOVA, Bonferroni's Multiple Comparison Test; *p= 0.01-0.05, **p= 
0.001-0.01, ***p= <0.001, ns= not significant. 

All conditions were stimulated with αCD3/αCD28 dynabeads (1:1 ratio). Primary CD4+ T and B 
lymphocytes were enriched by negative selection from PBMCs. In red, control group containing T-
cells alone. In blue, co-culture of T and non pre-activated B-cells. In green, co-culture of T and pre-
activated B-cells, after 24 hours exposure to N. meningitidis (ratio 1:1).  

T= CD4+ T-cell, B= B-cell, pB= MC58 pre-activated B-cell. 
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4.10  B  LYMPHOCYTES ARE NOT IMPLICATED IN MENINGOCOCCUS- INDUCED 

SUPPRESSION  

 

Throughout this Chapter, it has been  shown that low bacterial counts of meningococci (ratios 1:1 

and 10:1) do not induce proliferation or activation of B lymphocytes (section 4.3) and do not seem 

to generate a suppressive phenotype on those cells either (section 4.9).  

To definitely exclude any role of B lymphocytes, CD19+ and CD20+ cells were depleted from fresh 

PBMCs (section 2.2.2) and incubated for 4 days with plate-bound αCD3 plus the usual bacterial 

ratios. Simultaneously, whole PBMCs were treated under the same conditions as comparison 

groups. Efficiency of this B-cell depletion was widely described in section 3.10. 

As expected, removal of B lymphocytes did not reverse the negative effect of N. meningitidis on 

CD4+ T-cell proliferation (Figure 4.17-A). All bacterial inocula, including the largest 100:1, 

diminished the division index of T lymphocytes.  

From Figure 4.17-B which compares activation of T lymphocytes from B-cell depleted groups 

against whole PBMC, is clear that CD25 expression also declined by at least 50% in the absence of 

B lymphocytes irrespective of the bacterial count. 

Moreover, there were no significant differences among any of the meningococcal inocula from 

whole PBMC or B-cell depleted PBMC, neither for proliferation nor for activation. Therefore, it is 

concluded that B lymphocytes are not necessary to initiate the N. meningitidis suppressive effect 

on CD4+ T-cells.  
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Figure 4.17: N. meningitidis suppressive properties still occur with B-cell depleted PBMC.                          

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n= 5. 
Paired ANOVA, Bonferroni’s Multiple Comparison Test. *p= 0.01-0.05, **p= 0.001-0.01, ***p= 
<0.001, ns= not significant.   
During 4 days, whole PBMC (in green) and B-cell depleted PBMC (in pink) were stimulated with 
αCD3 (plate-bound 0.3 µg/ml) and meningococcus (strain MC58) at ratios of 1, 10 and 100 bacteria 
per cell. Under each condition, samples containing no bacteria represent the αCD3 positive control 
(filled bars).  
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4.11  MONOCYTES PRIMED WITH N.  MENINGITIDIS  DO NOT SUPPRESS 

PURIFIED CD4+  T-CELLS  

 

Since B lymphocytes did not appear to be the main cell type responding to meningococcus 

stimulation, at this stage it was logical to explore the role of specialised cells in bacterial 

recognition. Monocytes are highly capable of phagocytosis and recognition of bacterial 

components (sections 1.2.4 and 4.1). They also present antigenic peptides to T lymphocytes and 

are major producers of cytokines, thus eliciting the cooperation between the innate and acquired 

immune systems.       

A very similar protocol to the one used in section 4.9 was followed to investigate the role of 

monocytes in our system. Purified CD4+ T-cells were enriched from PBMCs by negative selection 

on day 0 and stimulated with αCD3/αCD28 dynabeads. On the same day, PBMCs were exposed to 

either N. meningitidis (strain MC58 at ratio of 1:1) or RPMI media (as negative control) for a period 

of 24 hours. Then, CD14+ monocytes were negatively selected from those PBMCs as described in 

section 2.1.1. Finally, purified monocytes and purified T lymphocytes were co-cultured on day 1, 

leaving 3 more days in incubation before analysis. The T:monocyte ratio of 6:1 was chosen based 

on normal ranges within peripheral blood of healthy adults (explained in section 3.13). Figure 4.18 

gives a schematic representation of the methodology applied. 

Data in Figure 4.19-A demonstrates the division index of αCD3/αCD28 stimulated purified CD4+ T 

lymphocytes alone and in co-culture with CD14+ monocytes (the later with and without exposure 

to N. meningitidis). In agreement with data described in section 3.13, co-culture with non-

stimulated monocytes reduced T-cell proliferation by around 50% compared to the sample 

containing T-cells alone. However, such inhibition does not seem to be associated with exposure 

to meningococci, as the monocytes exposed to the bacteria failed to induce a deeper inhibition of 

cell division. 

Unlike previous experiments, there was a small but significant increase in activation in the sample 

containing meningococcus-stimulated monocytes as compared to the control group (Figure 4.19-

B). No significant difference was observed between the non-stimulated and stimulated monocyte 

groups. 

In summary, purified CD14+ monocytes primed with N. meningitidis were incapable of restraining 

T-cell proliferation or activation in pure co-culture.   
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Figure 4.18: Schematic representation of the experimental protocol involving purified T 

lymphocytes and monocytes in the presence of N. meningitidis. 

Enriched CD4+ T lymphocytes were obtained from PBMCs on day 0, following stimulation with 
αCD3/αCD28 dynabeads. On the same day, PBMCs were incubated in the presence or absence of 
meningococcus strain MC58 ratio of 1:1 bacteria per cell, over a 24 hours period. Then, non pre-
activated monocytes and pre-activated monocytes were enriched and co-cultured with the 
purified CD4+ T-cells. Although is not illustrated within this schema, a positive control group 
including T-cells alone and αCD3/αCD28 dynabeads was included.  

T= CD4+ T-cell, M= monocyte, pM= MC58 pre-activated monocyte. 
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Figure 4.19: Purified CD14+ monocytes primed with N. meningitidis were incapable of restraining 

T-cell proliferation or activation in pure co-culture.   

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ 
T-cells, expression of the CD25 marker as median fluorescence intensity (MFI). Bars represent 
means and SEM, n=6. Paired ANOVA, Bonferroni’s Multiple Comparison Test; *p= 0.01-0.05, **p= 
0.001-0.01, ***p= <0.001, ns= not significant.   

Primary CD4+ T lymphocytes and monocytes were enriched by negative selection from PBMCs and 
all conditions were stimulated with αCD3/αCD28 dynabeads. In red, control group containing T-
cells only. In blue, co-culture of T and non-stimulated monocytes. In green, co-culture of T and N. 
meningitidis pre-activated monocytes.   

T= CD4+ T-cell, M= monocyte, pM= MC58 pre-activated monocyte. 
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4.12  MONOCYTES ARE REQUIRED TO INDUCE T-CELL RESPONSES TO A  LARGE 

MENINGOCOCCUS INOCULUM OF 100:1  BACTERIA PER CELL    

 

Sections 1.2.4 and 4.1 explain that many of the N. meningitidis spp components are detected and 

trigger cell signalling via pattern recognition receptors, such as the membrane receptor CD14 and 

TLRs (TLR-1, 2 and 4) expressed on monocytes. 

To further confirm that monocytes were not responsible for the inhibition after exposure to 

meningococcus, CD14+ monocytes were depleted from the PBMC fraction using a positive 

selection protocol (section 2.2.2). In this manner, almost absolute monocyte removal (<1% CD14+ 

cells left) was achieved (Figure 4.20-C) Whole PBMC as well as the monocyte depletion fraction 

were stimulated with plate-bound αCD3 and the usual PF wild type meningococci inocula 1:1, 10:1 

and 100:1 bacteria per cell.  

As compared with whole PBMC, the positive control (αCD3 -no bacteria) of the monocyte-

depleted fraction shows a small drop in the proliferation and activation of CD4+ T-cells. Therefore 

it is more difficult to determine the degree of suppression occurring with the smallest 

meningococcus ratio (Figure 4.20). If individual donors and their patterns are considered, then we 

can suggest that even in the absence of monocytes the suppression of T-cell responses still occurs. 

However, more repeats are necessary to clarify whether monocyte removal reverse the N. 

meningitidis suppressive effect at the ratio of 1:1 bacteria per cell. In contrast, the fact that 

monocyte depletion blocks T-cell proliferation and activation against the largest bacterial 

inoculum (100:1) was an evident finding (Figure 4.20). 
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Figure 4.20: Monocytes are required to induce T-cell responses to a large meningococcus 
inoculum of 100:1 bacteria per cell.                          

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). C. Representative dot plot example of 
the efficiency of the depletion protocol at day 4 non-stimulated cells; x-axis FSC-A and y-axis 
CD14 (Pacific blue). Lines represent means, n=3. 
During 4 days, whole PBMC (in green) and monocyte depleted PBMC (in pink) were stimulated 
with αCD3 (plate-bound 0.3 µg/ml) and meningococcus (strain MC58) at ratios of 1, 10 and 100 
bacteria per cell. Under each condition, samples containing no bacteria represent the αCD3 
positive control.  
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4.13    N.  MENINGITIDIS  DOES NOT REQUIRE NK  CELLS TO SUPPRESS CD4+  T  

LYMPHOCYTES  
 

NK cells were also studied because it has been reported that a distinct small fraction of NK cells 

can exert downregulatory actions on CD4+ T lymphocytes, in a similar manner as Treg (Deniz et al. 

2008). 

Similarly to the experiments performed in sections 4.10 and 4.12, CD56+ NK cells were depleted 

from the PBMC fraction applying a positive selection procedure (section 2.2.2), allowing almost 

absolute NK removal (<1% CD56+ cells left) (Figure 4.21-C). Whole PBMC as well as the NK 

depletion fraction were stimulated with plate-bound αCD3 in the presence of the three different 

PF meningococci ratios (1:1, 10:1 and 100:1) and incubated for a period of 4 days.  

Figure 4.21-A shows that in the absence of NK cells low bacterial counts of 1 and 10 restrain 

division of CD4+ T lymphocytes, in a similar manner to whole PBMC. In contrast, the NK depletion 

effect is not so clear for the expression of the activation marker CD25 (Figure 4.21-B). Although 

more repeats are needed, if we consider individual donors and their patterns NK cells do not 

appear essential in suppressing T-cell activation either. A clear observation was the fact that in 

comparison with whole PBMC, NK depletion appears to enhance slightly T-cell proliferation and 

activation to αCD3 stimulation. 
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Figure 4.21: N. meningitidis suppressive properties still occur in NK depleted PBMC.                          

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). C. Representative dot plot example of 
the efficiency of the depletion protocol at day 4 non-stimulated cells; x-axis FSC-A and y-axis 
CD56 (Brilliant Violet 510). Lines represent means, n=3.  
During 4 days, whole PBMC (in green) and NK depleted PBMC (in pink) were stimulated with αCD3 
(plate-bound 0.3 µg/ml) and meningococcus (strain MC58) at ratios of 1, 10 and 100 bacteria per 
cell. Under each condition, samples containing no bacteria represent the αCD3 positive control.  
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4.14  THE MECHANISM BY WHICH N.  MENINGITIDIS  SUPPRESS T  LYMPHOCYTES 

APPEARS TO BE CELL-CONTACT DEPENDENT  

 

To investigate whether soluble factors were intervening and whether cell contact was essential 

within the suppression mechanism, a supernatant transfer experiment was designed.  

As usual, CD4+ T lymphocytes were enriched on day 0 from fresh PBMC and stimulated with 

αCD3/αCD28 dynabeads. As in sections 4.9 and 4.11, PBMCs were either exposed or not to N. 

meningitidis (MC58 strain, ratio of 1:1). After 24 hours incubation, supernatants from non-

stimulated PMBC or from meningococcus primed PBMC were transferred to wells containing the 

purified T lymphocytes. Only 200 μl of supernatant were transferred, the additional 300 μl of the 

usual RPMI preparation to complete a final volume of 500 μl per well, were already present from 

day 0 when purified CD4+ T-cells were seeded. In total, from the point at which T-cells were 

enriched and stimulated (day 0), 4 days of incubation passed before flow cytometric analysis.  

From Figure 4.22-A which represents the proliferation of that supernatant from PBMC exposed to 

meningococcus purified CD4+ T lymphocytes, it is confirmed that the supernatant does not contain 

a soluble factor capable of restraining cell division. In contrast, addition of 200 μl of supernatant 

resulted in a significant increase of T-cell proliferation as compared with the control group. Since 

the supernatant from non-stimulated PBMC also showed the same trend, this is probably an 

incidental feature unrelated to N. meningitidis priming. 

Neither significant reduction nor increase was observed for the expression of the activation 

marker CD25 in any of the groups (Figure 4.22-B). No differences were detected in samples 

containing supernatants versus the control containing purified CD4+ T lymphocytes alone.   

Overall we have not found evidence to suspect of a soluble suppressive factor being released by 

PBMCs, at least not at the initial 24 hours after exposure to N. meningitidis.  
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Figure 4.22: Supernatant from PBMC primed for 24 hours with N. meningitidis does not suppress 
CD4+ T-cell responses. 

A. Proliferation of enriched CD4+ T-cells, reported as division index. B. Activation of enriched CD4+ 
T-cells, expression of the CD25 marker as median fluorescence intensity (MFI). Bars represent 
means and SEM, n=5. Paired ANOVA, Bonferroni’s Multiple Comparison Test; *p= 0.01-0.05, **p= 
0.001-0.01, ***p= <0.001, ns= not significant.   

Primary CD4+ T lymphocytes were enriched by negative selection from PBMCs and all conditions 
were stimulated with αCD3/αCD28 dynabeads. In red (solid bar), control group containing T-cells 
alone. In blue, T-cells plus supernatant from non-stimulated PBMC. In green, T-cells plus 
supernatant from PBMC primed with N. meningitidis (ratio 1:1). 
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4.15    N.  MENINGITIDIS  ENHANCES TH1  CYTOKINES AND IL-10  PRODUCTION 

BUT SUPPRESSES TH2  CYTOKINES  

 

To address whether the different ratios of N. meningitidis induce a change in cytokine profiles, 

samples from 6 randomly chosen volunteers were analysed to determine cytokines 

concentrations within cell culture supernatants. 

PBMCs were stimulated with plate-bound αCD3 plus the usual ratios of wild type N. meningitidis 

(strain MC58): 0.1, 1, 10 and 100 bacteria per cell. Non-stimulated PBMCs were used as negative 

control and αCD3-stimulated PBMCs as positive control. Supernatants were collected at the time 

of cell harvest (after 4 days incubation) and were stored frozen at -20oC until the day of analysis.  

Concentrations of 10 cytokines were determined simultaneously by a multiplex cytometric bead 

array (section 2.7). According to the manufacturer’s instructions, concentrations of IL-1β, IL-5,  IL-

6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IFN-γ and TNF-α were measured and reported in pg/ml. After 

the beginning of this study it was decided that supernatants should be tested for TGF-β, a very 

unstable molecule, but the supernatants had been stored in such a way that it was impossible to 

do this assay. 

Several differences were found among the different inocula and in comparison with the positive 

control containing no meningococcus (Figure 4.23). 

IL-1β, IL-6 and IL-8 were over-produced in the presence of N. meningitidis and were found to have 

a similar pattern. In comparison with the positive αCD3-stimulated control, samples containing 

0.1:1, 1:1 and 10:1 bacteria per cell had increased levels of IL-6 and IL-8 up to 35 and 4 times more, 

respectively. Only the sample with the largest bacterial count of 100:1 did not show a significant 

rise in IL-6 or IL-8 levels. Similarly, IL-1β production was greatly augmented (~150-folds) when 

PBMCs were exposed to N. meningitidis counts equal or larger than 1:1. In contrast, both IL-5 and 

IL-13 concentrations decreased dramatically in all samples containing meningococci, irrespective 

of the size of the inoculum.  

As compared with the positive control, IFN-γ and TNF-α concentrations had an upward trend 

proportional to the number of meningococci. TNF-α production was significantly enhanced in 

samples containing 10:1 and 100:1 bacteria per cell, whilst IFN-γ was only significant for the 

sample with the largest ratio.  
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Interestingly, about 3 times higher IL-10 concentrations were detected in the presence of bacterial 

counts of 1:1 and 10:1. The largest inoculum of 100:1 reverse this effect, as no significant 

difference existed between this sample and the positive control. 

IL-12p70 remained unaffected, minimal concentrations were detected across all conditions 

(including the non-stimulated condition) and no significant differences were found. Although    IL-

17 appears to be reduced by small meningococci inocula, none of the groups demonstrated 

significant differences against the positive control. 

In summary, these results suggest that bacterial counts <10:1 meningococcus induce polarisation 

towards TH1 cytokines, abolishment of TH2 responses and a simultaneous overproduction of IL-10. 
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Figure 4.23: N. meningitidis induces TH1 cytokines and IL-10 production, but blocks TH2 cytokines. 
PBMCs were stimulated with plate-bound αCD3 plus different ratios of wild type N. meningitidis (strain 
MC58): 0.1, 1, 10 and 100 bacteria per cell. Supernatants were collected on day 4 and stored at -20oC. 
Cytokines assayed by Cytometric Bead Array. Bars represent means and SEM, n=6. Paired ANOVA, Dunnett’s 
Multiple Comparison Test (vs. αCD3). *p= 0.01-0.05, **p= 0.001-0.01, ***p= <0.001, ns= not significant. –
VE= non-stimulated PBMCs (black); αCD3= T-cell stimulation (red). N. meningitidis= PF fixed at ratios of 1:1, 
10:1 and 100:1 bacteria per cell (blue).    
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4.16  T-CELL SUPPRESSION INDUCED BY N.  MENINGITIDIS  IS PARTIALLY 

REVERTED BY IL-10  BLOCKING  

 

Since section 4.15 demonstrated an elevated IL-10 production in those samples containing small 

inocula of meningococcus, it was necessary to address whether the suppression was IL-10-

dependent.   

For this set of experiments IL-10 blocking was achieved using a functional grade anti-IL-10 

monoclonal antibody (αIL-10, eBioscence clone JES3-9D7), added directly to the wells containing 

αCD3 plus N. meningitidis at 1:1 bacteria per cell. Three different concentrations of αIL-10 were 

tested (5, 10, 20 µg/ml) and compared against the group without αIL-10 or the positive control 

(αCD3-stimulated and no bacteria).  

Figure 4.24-A shows that addition of αIL-10 partially restored the inhibition of CD4+ T lymphocytes. 

Even the smallest αIL-10 concentration of 5µg/ml was sufficient to significantly increase the 

division index of T-cells as compared with the group containing meningococcus but not αIL-10. 

However, IL-10 blocking was not sufficient to completely reverse the inhibition induced by N. 

meningitidis and a significant difference persisted against the positive control that did not contain 

bacteria. 

On the other hand, expression of the T-cell activation marker CD25 was not significantly increased 

by any of the αIL-10 concentrations in comparison with the sample exposed to N. meningitidis but 

without IL-10 blocking (Figure 4.24-B). 

The additional control stimulated with αCD3 and IL-10 did not significantly enhanced proliferation 

or activation of CD4+ T-cells.    

 

 

 

 

 

 

 

 



           CHAPTER 4: N. MENINGITIDIS SUPPRESS T-CELLS 
 

183 
 

Proliferation CD4+ T-cells

0.0

0.1

0.2

0.3

0.4

0.5 ***

**

**

**

ns

CD3

 IL-10 N. mening

 IL-10

(5) (10) (20) g/ml

(10)  IL-10  IL-10

D
iv

is
io

n
 i
n

d
e
x

 

                            

Activation CD4+ T-cells

0

5000

10000

15000

20000

CD3

 IL-10 N. mening

 IL-10

(5) (10) (20) g/ml

(10)  IL-10  IL-10

ns

ns

ns

ns

C
D

2
5
 e

x
p

re
s
s
io

n
 (

M
F

I)

ns

 
 

Figure 4.24: T-cell suppression induced by N. meningitidis was partially reverted by anti- IL-10 
antibody.  

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of the 
CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=6. Paired 
ANOVA, Bonferroni's Multiple Comparison Test. *p<0.05, **p<0.01, ***p<0.001, ns= not significant.   
PBMCs were stimulated with αCD3 (plate-bound 0.2 µg/ml), in the presence of PF N. meningitidis (ratio 
1:1) and one of the following: αIL-10 at 5, 10 or 20 µg/ml (blue bars). The group containing αCD3 only 
represents the positive control (red filled bar), while the group containing αCD3+N. meningitidis (ratio 
1:1) (green filled bar) provides the baseline of suppression to compare against. The additional control 
sample containing αCD3+N .meningitidis + IL-10 at 10 µg/ml is also shown (red empty bar). 
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4.17    THE SUPPRESSIVE EFFECT IS NOT EXCLUSIVE TO N.  MENINGITIDIS  

 

We were particularly interested to determine whether the suppression phenomenon was 

exclusive to N. meningitidis. Therefore, we examined a different Gram negative organism and also 

a Gram positive organism in relation to the response observed with meningococcus (MC58 strain).  

Over a period of 4 days, PBMCs were stimulated with plate-bound αCD3 in the presence of 

different bacterial counts of the Gram positive  organism Streptococcus pneumoniae, wild type 

strain D39 (section 2.8.2) and the non-pathogenic Gram negative Escherichia coli, wild type strain 

ATCC 25922 (section 2.8.3).   

As can be seen in Figure 4.25-A, E. coli had a very similar inhibitory trend in comparison to N. 

meningitidis. The smallest bacterial inoculums of 0.1 and 1 bacteria per cell were the most 

effective in reducing proliferation of CD4+ T lymphocytes, whilst large inocula of 10 and 100 failed 

to stop cell division. Interestingly, the Gram positive organism S. penumoniae generated an inverse 

pattern, in which only large bacterial counts of 10 and 100 were capable of restraining T-cell 

proliferation.  

A very similar pattern is reflected in Figure 4.25-B, again small bacterial inocula from N. 

meningitidis and E. coli induced a dramatic fall in T-cell activation. But again a different pattern 

was observed with S. pneumoniae, with the largest ratio of 100 bacteria per cell being the most 

effective in decreasing CD4+ T-cell activation.   

In summary, we have provided evidence to show that the suppressive effect is exhibited by 

bacteria other than N. meningitidis (E.coli and S. pneumoniae), although the resultant inhibition is 

dose sensitive and might vary among Gram positive and Gram negative organisms.  
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Figure 4.25: The suppressive effect is exhibited by bacteria other than N. meningitidis (E.coli and 
S. pneumoniae), although the resultant inhibition is dose sensitive and varies among organisms.  
A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM; n=9. 
Paired ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3). *p= 0.01-0.05, **p= 0.001-0.01, 
***p= <0.001, ns= not significant.   
For 96 hours PBMCs were stimulated with plate-bound αCD3 (0.2 µg/ml) and exposed to PF fixed 
bacteria: N. meningitidis (blue bars), E. coli (green bars) or S. pneumoniae (purple bars). For all 
groups, ratios: 0.1:1, 1:1, 10:1 and 100:1 bacteria per cell. Red bar containing αCD3 and no bacteria 
is the positive control.  
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4.18    D ISCUSSION  

 

4.18.1   Main findings    

Based on the findings from chapter 3 in which B-cell activation by TI type 2 mimics resulted in 

suppression of CD4+ T-cell responses, the work described in this fourth Chapter intended to 

discover whether bacterial components or whole organisms that induce B-cell activity in a T-

independent fashion could also restrain proliferation and activation of T lymphocytes.    

We were able to demonstrate that paraformaldehyde fixed N. meningitidis is capable of inhibiting 

TCR-induced proliferation and activation of CD4+ T-cells. A deep suppression of T-cell responses, 

comparable to the one observed with α-δ-DEX, occurred when αCD3-stimulated PBMCs where 

incubated with low bacterial counts (0.1:1, 1:1 and 10:1 bacteria per cell). However, in contrast 

with α-δ-DEX those bacterial inocula failed to trigger proliferation or activation of B lymphocytes 

(section 4.3.1). Interestingly, we found that incubation with a large bacterial count (100:1 bacteria 

per cell) results in a strong B-cell proliferation and activation but does not reduce proliferation or 

activation of CD4+ T lymphocytes (section 4.3.1). It can be surmised that a large bacterial load 

enhances bystander pro-inflammatory activity among accessory cells and overcomes the 

inhibitory phenomenon. Overall, these findings suggest that the T-cell suppression observed in 

the presence of low numbers of N. meningitidis was not related to enhanced B-cell activity as 

seems the case for the TI-type II mimics, and so revealed the existence of another underlying 

mechanism of action. In support, no synergy was observed when α-δ-DEX and low counts of 

meningococcus were added together (section 4.3.2).  

Since a range of 4.00-10.00 x106 leukocytes per ml is considered normal in human peripheral blood 

and from those around 40% are PBMCs, all our experiments performed with 1 x106 PBMCs per 

condition could offer a clinical insight regarding the different bacterial inocula used in these 

experiments. Hence, our ratio of 1:1 bacteria per cell (1 x106 bacteria) could be closely related to 

an MOI of 1 in relation to the number of PBMCs in 1 ml of blood. Moreover, our largest ratio of 

100:1 bacteria per PBMC reflects the previously reported count of about 1 x108 N. meningitidis 

DNA copies per ml of plasma among patients with fulminant meningococcal septicaemia (Øvstebø 

et al. 2004). Of clinical relevance is the fact that the number of Neisseria DNA copies determined 

by quantitative PCR positively correlates with the severity and prognosis of systemic 

meningococcal disease (Darton et al. 2011; Øvstebø et al. 2004; Hackett et al. 2002). 
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Purified capsular polysaccharides were initially considered as the optimal model for B-cell TI type 

2 activation and proliferation (Brunswick et al. 1988). However, it was later discovered that co-

stimulatory pathways via TLR signalling, TCR cross-linking or certain cytokines were necessary to 

achieve Ig switching and full B-cell maturation (Peçanha et al. 1993; Peçanha et al. 1991). Recently, 

the Snapper group (Arjunaraja et al. 2012) discovered that polysaccharides present on whole heat 

inactivated meningococcus serotype C can elicit an in vivo primary T-independent response with 

mainly IgM secretion, but also a T-dependent like response with IgG secretion after secondary 

immunisation. They demonstrated TLR-4 involvement within the primary response, whilst CD40, 

CD28 and ICOS interactions were critical for the boosted secondary response. Together with other 

microorganisms’ examples, such as S. pnemoniae, the expert group concludes that purified 

polysaccharides behave differently from those found on the surface of intact bacteria, which could 

trigger a late TD response due to covalent attachment to immunogenic outer membrane proteins 

(Snapper 2012).  

In this chapter, we studied the role of polysaccharides by the use of two non-capsulated Neisseria 

spp: the non-pathogenic non-capsulated N. lactamica, and the capsule and Opa deficient mutant 

N. meningitidis strain ¢2. As shown in sections 4.6 and 4.7, in comparison with wild type N. 

meningitidis, capsule-lacking bacteria do not seem to reverse the detrimental effect on T-cells. 

Therefore it is unlikely that TI type 2 B-cell activation driven by capsular polysaccharides alone is 

responsible for the inhibition onCD4+ T lymphocytes.  

The next question addressed for this work was related to Neisseria LOS and its immunogenic 

properties as endotoxin. Through binding with the complex CD14 TLR-4/MD-2 on antigen 

presenting cells and leading downstream NFkβ activation (Zughaier et al. 2004; Pridmore et al. 

2003; Calvano et al. 2003; Pridmore et al. 2001), it is widely known that LOS is the main bacterial 

constituent to induce secretion of pro-inflammatory cytokines such as IL-1β, IL-6, IL-8 and TNF-α 

from monocytes and dendritic cells (Hellerud et al. 2008; Unkmeir, Kämmerer, et al. 2002; Kolb-

Mäurer et al. 2001). In support of such specific and fast inflammatory response, a clinical 

association has been pointed out regarding the cocentration of LPS/LOS detected in plasma or 

cerebrospinal fluid and the severity of meningococcal disease in humans (Øvstebø et al. 2004; 

Brandtzaeg et al. 1989). Sprong et al. (2001) determined that 10 x105 meningococci (serogroup B  

wild type strain H44/76) will contain approximately 1ng of LPS and reports that bacterial counts 

of more than 107 will be the most potent stimuli for IL-1β and TNF-α production as compared with 

purified LPS and a LOS-deficient mutant. 
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In section 4.5 of this chapter, experiments performed with a LOS-deficient mutant (lpxA knockout) 

proved that even in absolute lack of LOS, small inocula of 1 and 10 bacteria per cell are still capable 

of restraining proliferation and activation of CD4+ T-cells in the same fashion as the parental wild 

type strain. From this experiment it was also of relevance, the fact that the largest count of 100 

LOS-deficient bacteria was still able to overcome the suppressive effect, refuting that LOS is 

responsible for a restoration in cell division and expression of the activation marker. Having said 

this, a large inoculum of this lpxA mutant (107 – 108 bacteria) should still induce some secretion of 

pro-inflammatory cytokines via TLR-2 rather than TLR-4/MD-2 (Zughaier 2011; Hellerud et al. 

2008; Pridmore et al. 2001; Ingalls et al. 2001), presumably because of the presence of other outer 

membrane proteins (Pridmore et al. 2003). 

Polysaccharides and LOS interact in conjunction and in strict regulation to escape from the 

immune system, and it can be postulated that the bacterium is adapted to suppress LOS-mediated 

immune activation to avoid recognition and killing. For example, meningococcal serogroup C 

capsular polysaccharide inhibits LOS-induced IL-6 and TNF-α secretion from monocytes, limiting 

CD14 availability and blocking NFκβ signalling (Kocabas et al. 2007). As compared with non-

capsulated strains, encapsulated strains induce a weaker IL-6, IL-8 and TNF-α secretion by 

dendritic cells and monocytes (Kocabas et al. 2007; Unkmeir, Kämmerer, et al. 2002; Giardina et 

al. 2001). Therefore, although neither the capsule nor LOS appeared to be individually responsible 

for the T-cell inhibition observed in our system, these data should be interpreted with caution as 

we did not perform an experiment in which both capsule and LOS were absent.                 

Having excluded a direct involvement of meningococcal capsule and LOS within the inhibitory 

phenomenon, it was essential to investigate other bacterial components. Work published by 

Hellerud et al. (2008) and Sprong et al. (2001) is clear about non-LPS membrane structures that 

also contribute to cytokine production and TLR signalling with NFκβ activity. As discussed in 

sections 1.2.4 and 4.1, many Neisseria spp. outer membrane proteins have been recognised as 

immunogenic molecules and TLR agonists, so they have been suggested as possible vaccine 

candidates (Holst et al. 2009; Giuliani et al. 2006). PorB is the classical example of a strong specific 

TLR-2/TLR-1 ligand, providing intracellular signal transduction via NFκβ, Erk, Jnk, p38 

phosphorylation and IL-8 secretion (Massari et al. 2006; Massari et al. 2002). In addition, the 

complex PorA/PorB has a synergistic immunogenic effect generating passive immunity (Marzoa et 

al. 2012). Other surface proteins that have proven induction of bactericidal antibodies include 

factor H binding protein (fHbp), Neisseria adhesin A (NadA) and Neisserial heparin binding antigen 

(NHBA), all discovered by the novel approach of reverse vaccinology (Giuliani et al. 2006) and now 

integrated into the 4CMenB vaccine (Serruto et al. 2012). Indeed, intact Neisseria outer 
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membrane vesicles (OMVs) which contain all those proteins across the outer membrane layer 

represent an excellent tool for studying immune responses.    

This chapter explored whether purified N. meningitidis OMVs could have a similar inhibitory 

activity as the one observed with intact bacteria. Section 4.6 establishes that Neisseria vesicles 

contain the suppressive element and thus suggest an outer membrane location. Even in the 

presence of very low OMVs concentrations (from 0.001 μg/ml), a substantial detrimental effect 

was detected in proliferation and activation of CD4+ T-cells. Moreover, heating of OMVs did not 

reverse the negative effect and implying that a heat stable factor is responsible. In parallel, the 

same experiment performed with N. lactamica OMVs resulted in a very similar pattern, restraining 

cell division of T lymphocytes and reducing expression of their activation marker from 

concentrations between 0.001 and 0.01 μg/ml. Since N. lactamica is a non-capsulated and non-

pathogenic microorganism, we could propose that the immunosuppression observed is not 

related to the bacterial pathogenicity and certainly not to capsule or PorA expression, as they are 

both absent in N. lactamica (Troncoso et al. 2002; Kim et al. 1989). 

After a literature search, only one publication was found to report suppression of T-cell responses 

by Neisseria OMVs. Our results are consistent with those of Lee et al. (2007), who observed a 

dose-dependent reduction of cell numbers and activation of TCR-stimulated CD4+ T-cells in the 

presence of meningococcal and gonorrhoeal OMVs, over a period of 120 hours. However, their 

study was unable to detect the same phenomenon in those groups exposed to N. lactamica OMVs. 

It seems possible that this discrepancy is due to phenotypic differences among the outer 

membrane proteins present in the lactamica strain Y92 1009 that we both used. Vaughan et al. 

(2006) explains that some genes that encode outer membrane proteins such as Opa, are highly 

phase variable and so it can be expected that protein expression will vary from one batch of 

Neisseria OMVs to another. Perhaps, in our batch of N. lactamica OMVs the Opa frame-shift could 

have been `on` while for them it was `off`.          

Gray-Owen’s research group attributes such suppression of CD4+ T-cells to binding of 

meningococcal Opa proteins to the cellular receptor CEACAM1 (carcinoembryonic antigen-related 

cell adhesion molecule 1) expressed on T-cells. Opa is a major adhesin located at the outer 

membrane of Neisseria spp and is involved in the contact with host cells and bacterial adherence 

(Sadarangani et al. 2011; Carbonnelle et al. 2009) (section 1.2.4.4). Opa has showed to elicit 

specific antibody production so is considered a good candidate antigen in vaccines against invasive 

meningococcal disease (Callaghan et al. 2011; Callaghan et al. 2006; Wiertz et al. 1996). In 

bacterial colonisation, Opa binds to CEACAMs expressed on epithelial cells and allows bacterial 
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trancytosis into the mucosal layer (section 1.2.2). CEACAM1 is a member of the Ig CEACAM super 

family and is the only one present in human lymphocytes. It contains two antagonist tyrosine 

residues at the cytoplasmic tail; the activation motif (ITAM) will induce positive signalling via 

tyrosine kinases, whilst the inhibitory motif (ITIM) binds to tyrosine phosphatases and blocks cell-

activation cascades (Sadarangani et al. 2011). Thus, a dualistic role is attributed to this receptor 

and might be dependent on the CEACAM1 isoform expressed by the cell (Nagaishi et al. 2006; 

Chen & Shively 2004). Expression of CEACAM1 on CD4+ T-cells is rapidly upregulated to the cell 

surface after TCR cross-linking and correlates with the degree of activation (Boulton & Gray-Owen 

2002; Nakajima et al. 2002; Kammerer et al. 1998).     

To our knowledge, Opa is the only protein within the Neisseria outer membrane layer that has 

been linked to a downregulation of TCR-induced CD4+ T lymphocyte responses. Experiments 

carried out with whole gonococci and N. gonorrhoeae or N. meningitidis OMVs, have suggested 

that T-cell division and expression of the activation marker CD69 are restricted by an Opa-

CEACAM1 interaction (Lee et al. 2007; Boulton & Gray-Owen 2002). A proposed explanatory 

theory is that cross-linking of CEACAM1 by Opa reclutes tyrosine phosphatases SHP-1 and SHP-2, 

leading to subsequent phosphorylation of ITIM and opposing T-cell activatiion (Lee et al. 2008; 

Chen & Shively 2004). However some published works have questioned such findings, as 

antibodies against Opa can enhance TCR-induced activation of T lymphocytes (Kammerer et al. 

1998) and vaccines containing Opa elicit an immune response (Sadarangani et al. 2012; Callaghan 

et al. 2011). Recently, Youssef et al. (2009) has shown that a transitory suppression may occur, 

but at the end heat-killed gonococci and its OMVs will induce sustained CD4+ T-cell proliferation 

and cytokine production irrespective of the presence or absence of Opa. 

Based on such evidence and since Opa proteins are present in both N. meningitidis and lactamica 

(Toleman et al. 2001), we decided to investigate whether Opa-deficient meningococcus are still 

capable of limiting proliferation and activation of CD4+ T-cells. Analysis of two N. meningitidis Opa-

deficient strains (capsulated and non-capsulated) revealed a similar pattern to the wild type strain; 

proliferation and activation of T lymphocytes had a dramatic fall of between 50 to 75% among all 

groups exposed to small inoculums of Opa-deficient bacteria (section 4.7). Therefore, we have 

provided evidence to believe that Opa is not the key repressive element under our experimental 

conditions. 

In order to clarify whether meningococcus acts directly on T lymphocytes, CD4+ T-cells were 

enriched from PBMCs and exposed to what we had considered an inhibitory N. meningitidis load 

(ratio 1:1 bacteria per cell). In contrast to the experiments performed with whole PBMC, this assay 
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failed to restrain T-cell division or CD25 expression (section 4.8). Therefore, we conclude that N. 

meningitidis does not directly suppress CD4+ T-cells. 

Such finding differs from the ones published by Boulton & Gray-Owen (2002) who corroborated a 

reduction of cell division and expression of CD69 in TCR-stimulated purified CD4+ T-cells after 

incubation with N. gonorrhoeae expressing a CEACAM1 specific-Opa. However, important 

differences can be pointed out between our assay and theirs; for example the use of live gonococci 

allowing infection for just 3 hours and the fact that they only observed T-cell inhibition with an 

inoculum larger than 50 bacteria/cell, reaching a maximal suppressive effect at 200 bacteria/ cell. 

Other investigators have found that APCs can downregulate T-cells if primed with bacterial 

components. For example, Bryn et al. (2008), found that LPS treated monocytes restrain T-cells by 

induction of regulatory Foxp3+ lymphocytes through a prostaglandin E2-dependent mechanism. 

Similarly, exposure of dendritic cells to different MOIs of N. gonorrhoeae from 1 to 100 bacteria 

per cell and over a 24 hours period, results in a dose-dependent reduction of proliferation of 

purified T-cells when put in co-culture (Zhu et al. 2012). Increased IL-10 levels within supernatants 

and elevated PD-1 ligand expression on dendritic cells, suggested anergy and/or apoptosis 

induction as possible mechanisms of action (Zhu et al. 2012). In relation to the well known poor 

immunogenic properties of group B meningococcal polysaccharide, a recent publication found 

that murine B-cells treated with meningococcal polysaccharide suffered a blockade of NF-kβ, with 

downregulation of cyclophilin ligand interactor (TACI), B-cell activator factor (BAFFR) and the 

proliferation ligand (APRIL); all of which are key molecules involved in T-independent activation, 

Ig switching, maturation and survival of B lymphocytes (Kanswal et al. 2011). Thus, we aimed to 

investigate whether N. meningitidis could be affecting T-cells by first acting on APCs in our 

experimental model.  

Co-culture experiments between enriched T lymphocytes and enriched B lymphocytes or 

monocytes were performed. Since priming of whole PBMC appeared to be essential to induce an 

α-δ-DEX-inhibitory phenotype on B lymphocytes (section 3.7), the same approach was taken in 

these assays. Thus, PBMCs were incubated with meningococci (1:1 bacteria cell) over a period of 

24 hours before enrichment of CD19+ and/or CD20+ B-cells and CD14+ monocytes. Sections 4.9 

and 4.11 describe that co-culture of pure CD4+ T lymphocytes with either primed B lymphocytes 

or primed monocytes do not reproduce the same negative phenomenon observed as with whole 

PBMCs. An overall reduction of cell division was clear, but this was independent of bacterial 

priming.   
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Since the responsible cell type could be difficult to discover by a co-culture approach, we then 

aimed for exclusion experiments in which B lymphocytes, monocytes and NK cells were depleted 

from PBMCs before incubation with meningococci. 

Chapter 3 has already discussed in detail how B lymphocytes might acquire a repressive 

phenotype and downregulate TCR-induce T-cell activation. In this chapter, it was demonstrated 

that meningococci were still able to stop proliferation and activation even after removal of B 

lymphocytes (section 4.10). Indeed, it was concluded that B-cells are not implicated in the 

mechanism by which N. meningitidis suppresses CD4+ T-cells. 

Monocytes are essential in bridging innate and adaptive immune responses, by presenting 

antigens to T-cells and by secreting cytokines which stimulate T and B lymphocytes. From the total 

CD14+ monocyte population, 10% of them will also express CD16 on their surface. This CD16+ 

monocyte subset is known as inflammatory because secretes more TNF-α and less IL-10 as 

compared with the CD16- classical subset (Ziegler-Heitbrock et al. 2010; Geissmann et al. 2003). 

Indeed, CD14+ CD16+ monocytes have been associated with autoimmune diseases and severe 

bacterial infections (Ziegler-Heitbrock 2007). For example, expansion of CD16+ monocytes has 

been reported in sepsis (Shalova et al. 2012; Fingerle et al. 1993). In addition, depletion of 

inflammatory monocytes in mice, resulted in ineffective T-independent B-cell activity towards 

pneumococcal polysaccharides and also CD4+ T-dependent IgG response to pneumococcal 

proteins (Chen & Snapper 2013). The depletion protocol performed in this chapter selected and 

removed all CD14+ monocytes and so CD14+ CD16+ cells were also excluded from the PBMC 

fraction. Under our experimental settings, N. meningitidis does not seem to depend on monocytes 

to exert its inhibitory effect, but a larger sample with a higher concentration of αCD3/αCD28 might 

be necessary to overcome the reduction on the baseline levels of T-cell proliferation and activation 

(section 4.12). From this experiment we were able to confirm that monocytes are required to 

induce T-cell responses to a large meningococcus inoculum. In comparison with whole PBMC, the 

monocyte depleted fraction did not show enhanced proliferation and CD25 expression after 

exposure to 100:1 bacteria per cell (section 4.12). Because monocytes will pick up several of the 

bacterial components via pattern recognition receptors, it was hypothesized that in the presence 

of large number of meningococci monocytes will become activated and will induce a pro-

inflammatory state, activating bystander cells by cell contact and/or secretion of cytokines.      

Similar to the TH1 and TH2 polarisation that derives from naive T helper cells (section 1.1.2.1), NK 

cells undergo differentiation in the presence of IL-2 or IL-4 into NK1 or NK2 subsets respectively 

(Peritt et al. 1998). NK1 are producers of IFN-γ, GM-CSF, TNF-α and LT; whilst NK2 produce less 
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IFN-γ but more IL-5 and IL-13 (Deniz et al. 2002; Peritt et al. 1998). Deniz et al. (2008) described a 

small fraction of NK cells more likely from the NK2 lineage which inhibit antigen specific CD4+ T-

cell proliferation. These regulatory NK cells were characterised by expression of inhibitory NK 

receptors (KIR, CD158a) and IL-10 production. Invariant NK T cells (iNKT) are a special subset of T-

cells that express an invariant TCR α chain. iNKT are  capable of recognising microbial glycolipid 

antigens, but they do not generate memory and lead to an innate-like response with secretion of 

IL-4 and IFN-γ (Kronenberg & Kinjo 2009). Moreover, iNKT express variable amounts of markers 

found classically on NK cells, such as CD56, CD16 and in particular CD161 (Montoya et al. 2007). 

iNKT cells become activated either by direct glycolipid recognition or by APCs which secrete 

cytokines after TLR engagement with bacterial components (Kinjo et al. 2011; Kronenberg & Kinjo 

2009). iNKT cells may act as a bridge between the innate and adaptive systems because they can 

inhibit the response of CD8+ T-cells (Goubier et al. 2013; Bjordahl et al. 2012) and neutrophils 

(Wintermeyer et al. 2009). The NK depletion experiment performed in this chapter, showed that 

removal of CD56+ NK cells do not affect the suppression mechanism of action of N. meningitidis. 

Small bacterial counts (1:1 and 10:1) repressed proliferation of CD4+ T-cells just as whole PBMC 

did (section 4.13)  

From the above experiments we conclude that PBMCs act in a complex network to encounter and 

respond to microorganisms, so is not always easy to separate the individual cell contributions from 

the overall effect. For example, in an autoimmune murine model it was found that activation of 

B-cells via TLR-4 and TLR-9 using LPS from E. coli, CpG oligonucleotides or even heat-inactivated 

Mycobacterium tuberculosis suppress T-cell proliferation, but only when dendritic cells are also 

present (Lampropoulou et al. 2008). Indeed, the depletion experiments presented here may 

underestimate compensation scenarios driven by the remaining cell populations.  

Since B lymphocytes, monocytes and NK cells were excluded as leading cells within the 

suppression mechanism, we investigated whether a soluble factor was being produced by whole 

PBMC in the presence of small inoculums of N. meningitidis and was responsible for the 

suppression phenomenon. However, transfer of supernatant rejected this possibility and advised 

a cell-contact dependent mechanism. Supernatant from PBMCs incubated with meningococci 

(ratio 1:1) for 24 hours, did not contain a soluble factor capable of restraining proliferation and 

activation of enriched CD4+ T lymphocytes (section 4.14).This finding is consistent with most of 

the scientific evidence discussed herein, which mainly suggests cell-contact interactions among 

immune cells in response to bacterial antigens. However, because the supernatant used in this 

experiment was obtained only after 24 hours incubation with the bacterium, exists the possibility 
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that the suppressive factor is released at a later time point and that was not present in the 24 

hour mixture. 

A broad cytokine analysis from supernatants of PBMC cultures exposed to the different 

meningococci ratios, provided information about cytokines that could be mediating the 

suppression. Upon analysis of supernatants, many differences were found in the samples 

containing N. meningitidis counts <10:1 versus the highest ratio of 100:1 or the positive control 

containing αCD3 stimulation alone (section 4.15). Supernatants from PBMC cultures exposed to 

0.1:1, 1:1 and 10:1 meningococcus per cell reported an overproduction of the pro-inflammatory 

cytokines IL-1β, IL-6 and the chemokine IL-8. Interestingly, levels of these 3 interleukins decreased 

with the largest meningococcus inoculum of 100:1. Concentrations of the classical TH2 cytokines, 

IL-5 and IL-13, decreased dramatically in all samples containing meningococci irrespective of the 

size of the inoculum. On the other hand, IFN-γ and TNF-α production was strongly enhanced in 

the sample containing the largest bacterial inoculum (100:1). Using a whole blood model and a 

wild type N. meningitidis serogroup B strain, Hellerud et al. (2008) reported very similar patterns 

for TNF-α, IL-1β, IL-6 and IL-8 concentration in relation to a scale of 104 up to 108 bacteria per ml. 

Indeed, N. meningitidis ratios equal to 1:1 but minor than 100:1 bacteria per cell induce a 

dominant TH1 profile and block the TH2 response (section 1.1.2.1). This TH1 response might be 

required for macrophage stimulation and phagocytosis of the meningococci. Meningococcus 

induces dendritic cell maturation with expression of CD40 and CD86 and IL-12 production, which 

stimulates Th1 development  (Dixon et al. 2001). 

The most striking result is the large production of IL-10 in those samples containing bacterial 

counts of 1 and 10 bacteria per cell and so this finding remarks the possibility of an IL-10-mediated 

mechanism of suppression. During infectious diseases, the role of IL-10 is to keep an inflammatory 

balance and protect against uncontrolled responses against the pathogen. In septicaemia, in 

particular during the initial phase of fulminant meningococcal septic shock IL-10 levels are 

correlated with the severity of the inflammatory response (Bjerre et al. 2004; Derkx et al. 1995).   

It has been widely discussed along this work the role of IL-10 as a pleiotropic anti-inflammatory 

cytokine, secreted mainly by monocytes, macrophages, Treg, Breg and TH2 populations. IL-10 is a 

potent inhibitor of the most inducible pro-inflammatory interleukins and chemokines produced 

by T lymphocytes, monocytes, macrophages and neutrophils during inflammation. For example, 

IL-1β, IL-4, IL-6, IL-8, IL-12, IFN-γ and TNF-α are all down-regulated by IL-10 (Asadullah et al. 2003; 

Moore et al. 2001). Since IL-10 restrains the expression of co-stimulatory molecules on the surface 

of APCs, T-cell proliferation and secretion of T-cell cytokines are greatly affected (Asadullah et al. 
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2003). Moreover, IL-10 has been implicated in induction of endotoxin tolerance (Wolk et al. 2000) 

and T-cell un-responsiveness or anergy (Joss et al. 2000; Akdis & Blaser 1999). IL-10 also de-

activates monocytes and enhances the presence of anti-inflammatory factors, such as IL-1 

receptor antagonist (Moore et al. 2001; Cassatella et al. 1994). By blocking COX-2 gene expression, 

IL-10 blocks PGE2 production and the subsequent extracellular matrix turnover by monocytes and 

macrophages (Niiro et al. 1995). In contrast, IL-10 acts as a stimulatory co-factor for B lymphocytes 

for proliferation, Ig production and survival (Kobayashi et al. 2002; Rousset et al. 1992). This 

chapter demonstrated that blocking of IL-10 using αIL-10 partially reverses the meningococcus-

mediated inhibition of CD4+ T-cell proliferation but not T-cell activation (section 4.16). A possible 

explanation is related to the fact that IL-10 only inhibits T-cell proliferation and cytokine secretion 

from those T lymphocytes stimulated via CD28, but not from the ones stimulated with CD3 alone 

(Joss et al. 2000; Akdis et al. 2000). IL-10 avoids tyrosine phosphorylation of CD28 (section 1.1.4.3) 

and therefore downstream activation (Joss et al. 2000; Akdis et al. 2000). In agreement, it is known 

that IL-10 blocks release of TH1 and TH2 cytokines after CD28 co-stimulation (Joss et al. 2000; 

Schandené et al. 1994). In conclusion, it might be the case that in our in vitro experiment IL-10 

blocking resulted beneficial only for those T lymphocytes that established interactions with APCs 

via B7/CD28 molecules, and for those T lymphocytes that did not enter into an irreversible anergy 

state induced by IL-10.    

Perhaps one of the major contributions of this chapter is the fact that the inhibitory effect is 

exhibited by bacteria other than N. meningitidis (section 4.17). Incubation with E. coli at counts of 

0:1 and 1 bacteria per PBMC also caused a deep blockade on cell division and expression of the T-

cell activation marker. Interestingly, a different pattern was observed with the Gram positive S. 

pneumoniae. The maximal inhibitory effect was obtained with an inoculum of between 10 and 

100 S. pneumoniae per cell, indicating that T-cell down-regulation is dose-sensitive and possibly 

dependent on the bacterial Gram structure. In support, infection with the Gram negative 

Salmonella enteric serovar Typhi is a well documented case in which an inhibition of CD4+ T 

lymphocytes occurs in vitro (Eisenstein 2001). Moreover, an in vivo model in mice has suggested 

that Salmonella only primes the immune system and generates an environment towards 

suppression, but that the real inhibitory signal and blockade of IL-2, IFN-γ and TNF-α production 

is evident only after exposure to a secondary combined stimulus of a flagellin peptide plus LPS 

(Srinivasan & McSorley 2007).  

In summary, paraformaldehyde fixed N. meningitidis at ratios of between 0.1 and 10 bacteria per 

PBMC suppress TCR-mediated CD4+ T cell proliferation and activation; induce a TH1 response, 

suppress TH2 cytokines and increase secretion of IL-10. Neither B lymphocytes nor monocytes nor 
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NK cells appear to be isolated cell types responsible for the inhibitory effect, and so the 

suppression may be the result of collective PBMCs interactions. Inhibition of CD4+ T-cell responses 

via IL-10 seems to be only a partial mechanism of action. Therefore, other unknown down-

regulatory processes might be taking place simultaneously. From the meningococci components, 

the capsule and LOS are not the inhibitory elements. The suppressive factor is contained inside N. 

meningitidis and N. lactamica outer membrane vesicles, and is not affected by temperature 

denaturalisation. To our knowledge, Opa is the only N. meningitidis component that has been 

reported to exert immunosupressor properties. However, meningococcus strains that lacked Opa 

expression were still capable of restraining T-cell responses in the in vitro model applied along this 

project. Finally, the suppression phenomenon is likely to be common to pathogens other than N. 

meningitidis, suggesting a critical component of bacterial pathogenesis involved in the `silent` 

colonisation of some mucosal surfaces.  
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5.1    INTRODUCTION  

 

Apart from the well known properties as vasodilator and bactericidal agent, nitric oxide (NO) is a 

pleiotropic intracellular messenger capable of S-nitrosylation of proteins (section 1.3.2). In 

particular, NO leads intracellular signals by activating the soluble guanylate cyclase, which 

converts GTP into cyclic GMP, a potent second messenger (Friebe & Koesling 2003). Thus, NO has 

been considered an important regulator of cell function and viability (Stamler et al. 2001). 

Published work has shown that nitrosylation/denitrosylation as a redox switch is dynamically 

regulated and can lead to activation of some proteins but inhibition of others (M. W. Foster et al. 

2009; Hess et al. 2005). Thus, NO plays a role in several processes within cells, such as 

mitochondrial biogenesis (Nisoli et al. 2004), mitochondrial respiration and membrane potential 

(Brown 2001; Beltrán et al. 2000) and apoptosis via caspases (Mannick et al. 2001; Kim et al. 2001). 

NO is generated by the conversion of L-arginine to L-citrulline by a family of enzymes called nitric 

oxide synthases (NOS) (section 1.3.1). From these enzymes, the inducible NOS (iNOS) has been 

widely characterised for being responsible for NO production in macrophages, dendritic and 

natural killers cells; whilst the role of the endothelial NOS (eNOS) present in activated T 

lymphocytes has not been fully understood. The work of Nagy et al. (2003) and Ibiza et al. (2006) 

demonstrated NO production and eNOS expression in T-cells after TCR engagement with 

αCD3/αCD28 or superantigens, which leads to phosphorylation of the CD3ζ chain and ZAP-70 with 

subsequent downstream phosphorylation of the ERK pathway (section 1.1.4.4). The NO produced 

during the interaction between T lymphocytes and antigen presenting cells, acts on the redox-

active Cys residue 118 of the Golgi-localised N-Ras protein, which becomes activated. N-Ras in 

turn causes activation of the ERK pathway, pushing the cell toward the cell death pathway (Lander 

et al., 1997, Ibiza et al., 2008).  

Some publications focus on NO as an inhibitory molecule of T-cell responses. Reports have 

described that NO induces a reversible type of T-cell anergy, reducing phosphorylation of tyrosine 

residues in Jak3/STAT5, so T lymphocytes exposed to NO-producing cells, such as macrophages 

and myeloid suppressor cells, are unable to proliferate (Mazzoni et al. 2002; Bingisser et al. 1998; 

Strickland et al. 1996). Even in the presence of mesenchymal stem cells which generally suppress 

T-cell proliferation, addition of a NOS inhibitor restored not only the T-cell proliferation but also 

Stat5 phosphorylation (Sato et al. 2007). Macrophage-derived NO supports T-cell proliferation, 

but is also capable of repressing it as a regulatory feedback in the presence of Staphylococcal 

enterotoxins (Isobe & Nakashima 1992). In addition, balance of TH1/TH2 cytokines and the 



 CHAPTER 5: NITRIC OXIDE AND T-CELL RESPONSES 

200 
 

resultant T-cell differentiation can be altered via cGMP depending on NO levels and its exposure 

time (Niedbala et al. 2006; Macphail et al. 2003). Studies have suggested that NO may regulate T-

cell function but is not TH1/TH2 selective, neither for proliferation nor for cytokine production 

(Macphail et al. 2003; Bauer et al. 1997).  

Infection by N. meningitidis and in particular some bacterial components such as 

lipooligosaccharide (LOS), trigger NO production in innate immune cells (section 1.2.6). However, 

the meningococcus can counteract the bactericidal effect of reactive nitrogen intermediates by a 

partial denitrification pathway (section 1.2.6.1), whereby the soluble nitrogen oxide nitrite (NO2
-) 

is reduced into NO and finally expelled as N2O (Berks et al. 1995). This mechanism allows Neisseria 

to not only avoid killing by NO-related compounds, but to supplement the microaerobic growth 

of the organism by utilisation of NO2
- as a terminal electron acceptor (Anjum et al. 2002). In the 

NO-rich environment of the human nasopharynx, this pathway facilitates meningococcal survival 

and perpetuates the carrier state (Stevanin et al. 2005). 

The regulation that NO exerts on T-cells in the presence of bacterial infections is a critical area 

which is under-investigated. Since N. meningitidis components stimulate NO production and NO 

is also produced as a result of T-cell activation, this chapter intended to study if NO donation or 

inhibition could have a suppressive effect on T lymphocytes and indeed explain part of the 

inhibitory phenomenon observed in Chapter 4. To our knowledge, there are few reports studying 

whether NO production after bacterial infection or in vitro exposure could lead to T-cell 

suppression. Immunosuppression has been observed in mouse models of Salmonella infection 

and NO has been attributed as a responsible compound. Immunisation with attenuated 

Salmonella typhirnurium, activates murine mature macrophages and induces a large production 

of NO, which results in profound suppression of T and B-cell responses to mitogens (al-Ramadi et 

al. 1992). During bacterial infections, IFN-γ secreted by TH1 and NK cells is the major stimulus for 

NO production from macrophages (Ding et al. 1988). Consistently the NO-mediated inhibitory 

effect can be reversed by simultaneous addition of IL-4, anti-IFN-γ and a competitive inhibitor of 

NO production (al-Ramadi et al. 1992); or by depletion of NK cells producers of IFN-γ plus anti-

IFN-γ  (Schwacha et al. 1998).  Similarly, macrophage-derived NO from mice chronically infected 

with M. tuberculosis ablated the proliferative response of CD4+ T lymphocytes whilst blocking of 

NO synthesis restored T-cell responses in this animal model (Nabeshima et al. 1999). 
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5.2    METHODOLOGY  

 

The same general methodology described in chapters 3 and 4 was applied. First, a buffy coat layer 

was obtained from fresh heparinised blood by density centrifugation (section 2.1). PBMCs were 

then washed, resuspended in RPMI media supplemented with 20% autologous plasma and stained 

with the proliferation dye CFSE (section 2.4). Ultimately, PBMCs were counted and added to 48-

well plates at a density of 1x106 cells per well in a final volume of  500 µl RPMI media supplemented 

with 20% autologous plasma.  

T-cells were stimulated with 0.1-0.3 µg/ml plate-bound anti-CD3 (αCD3) (section 2.3.1.1), 

Concanavalin A (ConA) (section 2.3.1.2) or Staphylococcus aureus enterotoxin B (SEB) (section 

2.3.1.3). Simultaneously, PBMCs were incubated in the presence or the absence of NO, using       

NOC-18 as NO donor (section 2.9.1) and the arginine analogs L-NMMA or L-NAME as inhibitors of 

NO production (section 2.9.2). The negative control for all experiments consisted of non-

stimulated PBMCs, whereas the positive control was represented by the sample containing T-cell 

activators. 

Cell cultures were incubated at 37oC and 5% CO2 in a humidified atmosphere for 96 hours before 

harvesting. Extracellular immunofluorescence staining for flow cytometric analysis was performed 

by incubating 1x106 PBMCs with the relevant antibodies (section 2.5.2). 

A sequential gating strategy selected for the relevant T or B lymphocyte populations and excluded 

dead cells and monocytes (section 2.5.5). As in chapters 3 and 4, cell proliferation was assessed 

by the division index obtained from the CFSE dilution method; whilst T and B-cell activation were 

reported as median fluorescence index (MFI) of the surface markers CD25 and CD86, respectively. 

Figure 5.1 illustrates a general overview of the experimental steps. 
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Figure 5.1: Overview of the experimental methodology applied in this chapter 

Human PBMCs were isolated from fresh peripheral blood using LymphoprepTM density gradient 
centrifugation. T-cell stimulation was achieved with anti-CD3 (αCD3), Concanavalin A (ConA) or S. 
aureus enterotoxin B (SEB). Simultaneously, PBMCs were incubated in the presence or the 
absence of NO, using NOC-18 as NO donor and L-NMMA or L-NAME as inhibitors of NO production. 
Cells were plated and incubated for 96 hours at 37oC and 5% CO2. Finally, samples were stained 
with the desired fluorescently-labeled antibodies and analysed by flow cytometry.   
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5.3  NON-STIMULATED CD4+  T-CELLS ARE UNRESPONSIVE TO NO  DONATION 

OR INHIBITION 

 

We first explored whether donation of NO or inhibition of its production could induce proliferation 

or activation in resting T-cells. Different concentrations of the NO donor NOC-18 (from 1.25 to 156 

µM) or the NO synthase inhibitor L-NMMA (from 0.5 to 10 mM) were added to non-stimulated 

PBMCs and incubated for 96 hours before analysis. 

Figure 5.2 illustrates that in the absence of stimulation, CD4+ T lymphocytes are unresponsive to 

either NO donation or NO inhibition. Regardless of the concentration used, no change in the 

division index was observed after incubation with NOC-18 or L-NMMA. Similarly, expression of the 

T-cell activation marker CD25 remained unaffected in comparison with the negative control (data 

not shown). 

The lack of response to NO donation and inhibition in resting T lymphocytes was anticipated, as 

the scientific evidence describes a major NO effect only after TCR cross-linking (section 5.1), 

Therefore, we next focus on assessing the role of NO in activated CD4+ T-cells. 
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Figure 5.2: Representative proliferation histograms illustrating how non-stimulated CD4+ T-cells 

are unresponsive to NO donation or NO inhibition.  

Non-stimulated PBMCs were exposed to graded concentrations of the NO donor NOC-18 (A) and 
the NO synthase inhibitor L-NMMA (B). Proliferation was assessed by the CFSE dilution method; 
the x-axis represents intensity of CFSE fluorescence and the y-axis % of maximum. Data is 
representative of two experiments.   

-VE= negative control, non-stimulated PBMCs. 

 

 

A 

B 



           CHAPTER 5: NITRIC OXIDE AND T-CELL RESPONSES 
 

205 
 

5.4    EFFECT OF NO  DONATION IN ACTIVATED T  LYMPHOCYTES  

 

5.4.1   Selection of  maximum possible concentration of NOC -18 as NO 

donor.  

NOC-18 is a stable NO-amine complex which spontaneously releases 2 molecules of NO under cell 

culture conditions and has a half-life of 21 hours. Based on similar experiments with human 

lymphocytes using NOC-18 as NO donor (Fujiwara et al. 2006), we aimed to determine the 

maximum possible concentration of NOC-18 to use without inducing cell death in our assay.   

PBMCs were stimulated with plate-bound αCD3 and incubated for 96 hours in the presence of 

graded concentrations of NOC-18. A dose curve from 5 to 1000 µM demonstrated that 

concentrations >500 µM reduce viability of αCD3-stimulated PBMCs, reflected by a marked loss 

of total cell numbers and a reduction in the percentage of live cells as measured by UV dead/live 

staining (Figure 5.3). 

 

5.4.2   Effect of NO donation in T -cell  proliferation.  

Knowing that 300 µM was our maximum permitted concentration, cells were incubated with 

plate-bound αCD3 and graded amounts of NOC-18, from 1.25 to 312 µM. Although this 

exploratory assay did not find significant differences among the groups containing NOC-18 versus 

the αCD3 control, a dose-dependent pattern was observed towards an increment in division index 

of CD4+ T-cells (Figure 5.4- A and B). 

To assure a real influence of the NO donor in activated CD4+ T lymphocytes, additional and larger 

experiments were carried out using αCD3, ConA and SEB as mitogenic stimuli. Due to the above 

results, 300 µM was chosen as the maximal optimal NOC-18 concentration capable of achieving 

an effect but without inducing cell death.  

Although we observed a small increase in proliferation among individual samples containing the 

NO donor, there was no statistical evidence that NOC-18 enhanced proliferation of CD4+ T-cells 

(Figure 5.4- C).  
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Figure 5.3: Concentrations of NOC-18 >500 µM induce cell death in αCD3-stimulated PBMCs.  

Dot plot examples showing the dead/live gate applied for all conditions, on the y-axis 
fluorescence of the UV dead/live dye and on the x-axis FSC-A. Plots are representative of 1 single 
donor (out of 2 experiments) and show % of live cells within the gate.  

αCD3-stimulated PBMCs were incubated with graded concentrations of NOC-18 (5, 50, 150, 300, 
500, 750 and 1000 µM) over 96 hours. 
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Figure 5.4: Effect of NO donation in proliferation of CD4+ T-cells. 

A. Example of overlaid histograms illustrating T cell proliferation following incubation with αCD3 
plus different NOC-18 concentrations. Proliferation assessed by the CFSE dilution method, x-axis 
represents intensity of CFSE fluorescence and y-axis % of maximum. B. Proliferation CD4+ T-cells, 
reported as division index. PBMCs were stimulated with αCD3 (0.1 µg/ml) plus graded concentrations 
of NOC-18. Means and SEM, n=4. C. Proliferation CD4+ T-cells, reported as division index. PBMCs were 
stimulated with either αCD3 (0.1 µg/ml), ConA (Concanavalin A, 5 µg/ml) or SEB (S. aureus enterotoxin 
B, 400 ng/ml); plus NOC-18 (300 µM) where indicated. Bars represent means and SEM, n=7. Paired 
ANOVA, Bonferroni’s Multiple Comparison Test; ns= not significant.   
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5.4.3  CD4 +  T-cell  activation is not significantly m odified by NO donation.  

Using the same experiment as the one performed in Figure 5.4-C, expression of the CD25 

activation marker was also studied in the presence of NOC-18. 

Supporting our previous observation on the effect of NO on T-cell proliferation, Figure 5.5-A shows 

that no significant differences were detected for the levels of T-cell activation among the groups 

containing the NO donor in comparison with the positive controls.  

Even though CD25 is accepted as a good surface activation marker, Foxp3 was included as a 

secondary intracellular activation marker (section 2.5.3). Foxp3 is commonly used as a marker of 

T-regulatory cells, but it is also transiently expressed in human activated non-regulatory CD4+ T 

lymphocytes just after TCR crosslinking (Wang et al. 2007). Foxp3 acts as an internal break in those 

activated cells, resulting in cellular hyporesponsiveness and reduction in the production of 

cytokines (Wang et al. 2007). In comparison with the sample containing αCD3 alone, Figure 5.5-B 

show data demonstrating that addition of NOC-18 does not modify Foxp3 expression within CD4+ 

T-cells.  
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Figure 5.5: T-cell activation is not significantly modified by NO donation. 

A. Activation CD4+ T-cells by expression of the CD25 marker, reported as median fluorescence 
intensity (MFI). PBMCs were stimulated with either αCD3 (0.1 µg/ml), ConA (Concanavalin A, 5 
µg/ml) or SEB (S. aureus enterotoxin B, 400 ng/ml); plus NOC-18 (300 µM). Bars represent means 
and SEM, n=7. Paired ANOVA, Bonferroni’s Multiple Comparison Test; ns= not significant. B. Foxp3 
expression in CD4+ T-cells, reported as median fluorescence intensity (MFI). PBMCs were 
stimulated with αCD3 (0.1 µg/ml) plus NOC-18 (300 µM) where indicated. Bars represent means 
and SEM, n=7. Paired t-test (two tailed); ns= not significant. 
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5.5     INHIBITION OF NO  PRODUCTION IN TCR-STIMULATED T  LYMPHOCYTES  

 

5.5.1   Selection of L -NAME as NOS inhibitor.  

We next examined whether inhibition of NO production could affect TCR-induced T-cell responses. 

For this purpose, two L-arginine analogues (L-NMMA and L-NAME) were selected as inhibitors of 

NO synthases (NOS). L-arginine analogues inhibit NOS activity by competing for uptake with L-

arginine in the binding site on the NOS enzyme (section 2.9.2). 

Preliminary assays were performed on PBMCs stimulated with αCD3 and exposed to graded 

concentrations of L-NMMA (1.5, 3 and 10 mM) for 96 hours. As can be seen from Figure 5.6-B, the 

largest amount of L-NMMA resulted in a significant reduction in the division index of CD4+ T 

lymphocytes in comparison with the αCD3 control. 

Based on the assumption that eNOS is the predominant NOS expressed within T-cells after TCR 

crosslinking (Ibiza et al. 2006; Nagy et al. 2003), L-NMMA was replaced by L-NAME, which has a 

10-fold higher affinity for the constitutive isoforms eNOS and nNOS than for iNOS (Danilov et al. 

2005). Similar to the effect seen with L-NMMA, a small experiment on αCD3-stimulated PBMCs 

demonstrated that L-NAME was also capable of restraining proliferation of CD4+ T-cells in a dose 

dependent manner (Figure 5.6-C). 

 

5.5.2   CD4 +  T-cell  proliferation is suppressed by blockade of  NOS activity.  

In order to confirm these initial findings, a subsequent and larger experiment was carried out. 

PBMCs were stimulated with either αCD3, the T-cell mitogen ConA or the superantigen SEB and 

incubated for 4 days in the presence of L-NAME at a concentration of 10mM. Figure 5.7 

corroborates that the groups containing L-NAME suffered a drop in the division index of CD4+ T 

lymphocytes of at least 50%.   

Next, we wanted to know whether the suppression induced by L-NAME was evident from the 

beginning of the proliferative stage. Thus, four time points were investigated along the incubation 

period: 24, 48, 72 and 96 hours. Surprisingly, a significant difference was detected as early as 48 

hours for the groups containing L-NAME (10mM) in comparison with our positive controls 

stimulated with αCD3 or SEB (Figure 5.8).   
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Figure 5.6: Inhibitors of NO synthases have a negative effect on T-cell division.  

A. Example of overlaid histograms illustrating T-cell proliferation following incubation with αCD3 
plus different L-NMMA concentrations. Proliferation assessed by the CFSE dilution method, x-axis 
represents intensity of CFSE fluorescence and y-axis % of maximum. B. L-NMMA reduces proliferation 
of CD4+ T-cells in a dose dependent manner, reported as division index. PBMCs were stimulated with 
αCD3 (0.1 µg/ml). Means and SEM, n=4. Paired ANOVA, Dunnet’s Multiple Comparison Test (vs αCD3); 
*p <0.05. C. L-NAME reduces proliferation of CD4+ T-cells in a dose dependent manner, reported as 
division index. PBMCs were stimulated with αCD3 (0.1 µg/ml). Means and SEM, n=2.   -VE= negative 
control, non-stimulated PBMCs. 
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Figure 5.7: CD4+ T-cell proliferation is suppressed by L-NAME. 

A. Proliferation CD4+ T-cells, reported as division index. PBMCs were stimulated with either αCD3 (0.1 
µg/ml), ConA (5 µg/ml) or SEB (400 ng/ml); plus/minus L-NAME (10 mM). Bars represent means and 
SEM, n=7. Paired ANOVA, Bonferroni’s Multiple Comparison Test; *p<0.05, **p<0.01, ***p<0.001. -
VE= negative control, non-stimulated PBMCs. B. Representative examples of overlaid histograms 
illustrating T cell proliferation following stimulation with αCD3, ConA or SEB, plus/minus L-NAME 
(10 mM). Proliferation assessed by the CFSE dilution method, x-axis represents intensity of CFSE 
fluorescence and y-axis % of maximum.   
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Figure 5.8: T-cell proliferation is suppressed from an early stage in the presence of L-NAME. 

Proliferation of CD4+ T-cells, reported as division index and at four time points (24, 48, 72 and 96 
hours post-stimulation). PBMCs were stimulated with either αCD3 (0.1 µg/ml) or SEB (400 ng/ml); 
plus/minus L-NAME (10 mM). Bars represent means and SEM, n=6. Paired ANOVA, Bonferroni’s 
Multiple Comparison Test; *p<0.05, **p<0.01, ***p<0.001, ns= not significant. 

 -VE= negative control, non-stimulated PBMCs. 
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5.5.3   The inhibition in T-cell  proliferation induced by L -NAME is partially 

reversed by simultaneous exposure to NOC -18. 

In order to establish whether the suppression observed in activated CD4+ T-cells was indeed the 

result of NO deprivation in the system, a complementation assay was designed. PBMCs were 

incubated with αCD3 plus L-NAME and in the presence of different NOC-18 concentrations (from 

50 to 300 µM) for 4 days. 

From data in Figure 5.9 it can be seen that the significant reduction between the αCD3 positive 

control and the group containing L-NAME disappears when NOC-18 is added to the culture at 

concentrations of 150 and 300 µM. However, such samples were not statistically different in 

comparison with the sample αCD3 + L-NAME. 

Although different possibilities could be inferred for this phenomenon (discussed in section 5.8), 

this experiment cannot provide conclusive evidence that NO donation with NOC-18 can fully 

overcome the suppression induced by L-NAME. 

 

5.5.4   L-NAME significantly restrains activation of SEB -stimulated CD4+  

T-cells.   

Expression of the surface activation marker CD25 was not decreased among all of the stimulated 

groups. Whilst L-NAME exposure did not cause a significant reduction in CD25 expression on PBMC 

samples activated with αCD3 and ConA, cells incubated with SEB and L-NAME showed a significant 

fall in CD25 expression (Figure 5.10-A).   

Regarding Foxp3 expression in αCD3-stimulated CD4+ T lymphocytes; this intracellular marker 

remained unaffected when L-NAME was added to the culture (Figure 5.10-B). 

Overall, these findings suggest that T-cell activation might not be heavily influenced by NO levels. 
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Figure 5.9: The inhibition of T-cell proliferation induced by L-NAME is partially reversed by 

simultaneous exposure to NOC-18. 

Proliferation CD4+ T-cells, reported as division index. PBMCs were stimulated with αCD3 (0.1 
µg/ml) and incubated for 4 days in the presence of L-NAME (10 mM) plus NOC-18 at different 
concentrations (50, 150 and 300 µM). Bars represent means and SEM, n=4. Paired ANOVA, 
Bonferroni’s Multiple Comparison Test; *p<0.05, ns= not significant.  
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Figure 5.10: L-NAME significantly restrains CD25 expression in SEB-stimulated CD4+ T-cells. 

A. Activation CD4+ T-cells by expression of the CD25 marker, reported as median fluorescence 
intensity (MFI). PBMCs were stimulated with either αCD3 (0.1 µg/ml), ConA (Concanavalin A, 5 
µg/ml) or SEB (S. aureus enterotoxin B, 400 ng/ml); plus L-NAME (10 mM). Bars represent means 
and SEM, n=7. Paired ANOVA, Bonferroni’s Multiple Comparison Test; *p<0.05, ns= not significant. 
B. Foxp3 expression in CD4+ T-cells, reported as median fluorescence intensity (MFI). PBMCs were 
stimulated with αCD3 (0.1 µg/ml) plus L-NAME (10 mM) where indicated. Bars represent means 
and SEM, n=7. Paired t-test (two tailed); ns= not significant. 
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5.6    V IABILITY ASSAYS  

 

To exclude that the reduction in T-cell proliferation observed among the samples containing the 

NO inhibitor was due to induction of cell death, a UV dead/live dye was included in each 

experiment. At 96 hours post-incubation, Figure 5.11 shows that none of the groups containing L-

NAME had a higher percentage of cell death as compared with the respective positive controls 

(αCD3, ConA and SEB). Moreover, addition of L-NAME resulted in a positive effect for SEB 

stimulated cells, decreasing the % of cell death.    

The UV dead/live dye used in these experiments is a general measurement of cell death, incapable 

of discriminating among cell populations or detecting cells that have recently entered into 

apoptosis. Thus, a more thorough approach was taken by performing a viability assay with TO-

PRO-3 and Annexin-V, which are used to discriminate between apoptotic and necrotic cells 

(section 2.6.1). Cells staining positive for both Annexin-V and TO-PRO-3 are considered necrotic 

or late apoptotic, whilst Annexin-V positive but TO-PRO-3 negative are classified as early apoptotic 

populations. To further evaluate cell death that could be undetectable at  96 hours but happening 

at earlier stages, 3 more time points were investigated along the 4 days of incubation (24, 48 and 

72 hours) (Figure 5.12). αCD3 and SEB were selected as T-cell stimuli for this set of experiments.  

Although a statistical analysis was not possible with a small sample size (n=2), all groups containing 

L-NAME had a higher percentage of CD4+ T-cell death after incubation for 24 hours, characterised 

by a double positive population for Annexin-V and TO-PRO-3 (data not shown). At 48, 72 and 96 

hours post-stimulation, the difference between activated αCD3 and SEB samples and those also 

treated with L-NAME were small. In contrast, the level of cell death in L-NAME treated but non-

stimulated PBMCs was much higher compared to the non-stimulated control group (Figure 5.12). 

The results are expressed as total % of CD4+ T-cell death (Annexin V+, TO-PRO-3+ and double 

positives) for every time point. 

Since these data suggested that inhibition of NO production using L-NAME may have an early 

cytotoxic effect on non-stimulated and activated CD4+ lymphocytes, we wondered whether the 

increase in cell death was due to the lack of NO within the system, or if the observed phenomenon 

was due to cytotoxicity of L-NAME at the concentrations used in these experiments. To investigate 

the possibility that the observed cell death was due to a change in NO concentrations in this 

system, samples containing both L-NAME (10 mM) and the NO donor NOC-18 (150 µM and 300 

µM) were analysed with the Annexin-V / TO-PRO-3 assay. As shown in Figure 5.13, addition of 

NOC-18 has no effect on the percentage of cell death observed in the presence of L-NAME, not at 
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24 or 96 hours post-incubation; and irrespective of whether the PBMCs were non-stimulated or 

αCD3-activated. However, only 2 samples per group were analysed and in comparison with the 

previous Annexin-V / TO-PRO-3 experiment (Figure 5.12) we did not find the marked cell death on 

the groups containing L-NAME after 24 hour incubation. Therefore, we concluded that larger 

sample sizes are necessary to determine whether the resultant increase in cell death induced by 

L-NAME is NO-mediated. 
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Figure 5.11:  L-NAME treatment does not induce cell death and has only limited effects on 
stimulated CD4+ T-cell viability at 96 hours. 

Percentage of dead cells (not within the live cells gate) applying the basis of the UV dead/live dye. 
PBMCs were stimulated with either αCD3 (0.1 µg/ml), ConA (5 µg/ml) or SEB (400 ng/ml); 
plus/minus L-NAME (10 mM) over 4 days. Bars represent means and SEM, n=7. Paired ANOVA, 
Bonferroni’s Multiple Comparison Test; *p<0.05, **p<0.01, ns= not significant. 

 -VE= negative control; non-stimulated PBMCs. 
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Figure 5.12: Percentage of CD4+ T-cell death induced by L-NAME after 24, 48, 72 and 96 hour 
incubation, detected by an Annexin-V / TO-PRO-3 assay.  

Non-stimulated and αCD3 (0.1 µg/ml) or SEB (400 ng/ml) activated PBMCs were exposed to L-
NAME (10 mM). CD4+ T-cell death was quantified as Annexin-V+, TO-PRO-3+ or double positives, 
at 24, 48, 72 and 96 hours. Results are expressed in % and means; n= 2. 
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Figure 5.13: NO donation does not ameliorate CD4+ T-cell death induced by L-NAME exposure. 

Non-stimulated and αCD3 (0.1 µg/ml) activated PBMcs were exposed to L-NAME (10 mM) alone 
or in combination with NOC-18 (300 µM). CD4+ T-cell death was quantified as Annexin-V+, TO-PRO-
3+ or double positives, at 24 and 96 hours post-incubation. Results are expressed in % and means; 
n= 2. 
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5.7    CAVTRATIN,  A NOVEL PEPTIDE INHIBITOR OF ENOS 
 

Because of the issue surrounding the potential cytotoxicity of L-NAME for our PBMC culture, we 

sought to block NO production by other means. Given that the constitutive Ca2+-dependent 

endothelial NOS (eNOS) is the primary form of NOS expressed in T-cells after TCR engagement 

(Ibiza et al. 2006; Nagy et al. 2003), our next step was to achieve a selective inhibition of eNOS 

within T lymphocytes. Recently, a novel peptide based on the caveolin-1 protein sequence, has 

been successfully used for selective eNOS inhibition in endothelial cells (Gratton et al. 2003; Bucci 

et al. 2000). 

 

5.7.1   Cavtratin has an effect in TCR-induced T-cell  responses  

The caveolin-1-derived peptide named Cavtratin is a fusion protein and consists of the scaffolding 

domain of caveolin-1 (amino acids 82-101), attached to the homeodomain of antennapedia 

protein. The scaffolding domain of caveolin-1 interacts directly with eNOS and blocks its catalytic 

activity via inhibition of calmodulin binding (Kwok et al. 2009; Bucci et al. 2000; Ju et al. 1997). 

The homeodomain of antennapedia, a Drosophila transcription factor facilitates uptake of 

peptides or oligonucleotides into mammalian cells through a non-endocytic, nondegradative 

pathway (section 2.9.3).  

PBMCs were stimulated with αCD3 and incubated for 4 days in the presence of different 

concentrations of Cavtratin or a control version of the peptide, which contains the caveolin-1 

domain but lacks the internalisation sequence (section 2.9.3). 

Figure 5.14-A shows that CD4+ T-cell division is significantly enhanced by Cavtratin at 5 µM. 

Although the Cavtratin and the control groups were not different from each other, the 

proliferative effect was not seen in the group exposed to the control peptide at the same 5 µM 

concentration. A biphasic trend can be observed, in which low concentrations of Cavtratin are 

insufficient to modify T-cell proliferation, whereas concentrations higher that 5 µM may have an 

inhibitory effect.  

In contrast, neither Cavtratin nor the control peptide were able to significantly modify expression 

of the activation marker CD25 in CD4+ T lymphocytes (Figure 5.14-B). Also, no differences were 

found between the samples exposed to Cavtratin and the ones exposed to the control peptide. 
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Figure 5.14: Cavtratin significantly enhances T-cell proliferation at 5 µM. 

A. Proliferation of CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression 
of the CD25 marker, reported as median fluorescence intensity (MFI). Bars represent means and 
SEM, n=6. Paired ANOVA, Bonferroni’s Multiple Comparison Test (all groups vs. αCD3 and 5µM 
Cavtratin vs. 5µM Control). *p<0.05, **p<0.01, ns= not significant.   

PBMCs were stimulated with αCD3 (plate-bound 0.3 µg/ml) and incubated in the presence of 
different concentrations of Cavtratin (green bars) or the control peptide -without internalisation 
sequence (blue bars). 
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5.7.2   T-cell  proliferation and activation in response to Cavtratin are 

confounded by the presence of DMSO  

According to manufacturer’s instructions both Cavtratin and the control peptide were solubilised 

in dimethyl sulfoxide (DMSO). Since DMSO can be cytotoxic above certain concentrations, we 

addressed whether the loss of a proliferative effect at Cavtratin concentrations >7 μM was 

induced by DMSO.   

Thus, we performed an experiment incubating αCD3-stimulated PBMCs with graded 

concentrations of Cavtratin (2 to 10 μM) but also including a group that was exposed to DMSO 

alone, equal to the volume as of the largest Cavtratin concentration.   

Surprisingly, DMSO significantly increases cell division index of CD4+ T lymphocytes in comparison 

with the αCD3 control (Figure 5.15-A). Of major relevance is the fact that there is a statistical 

difference between the group containing Cavtratin 10 μM and the group containing the same 

volume of DMSO; indicating that the absence of a proliferative effect at 10 μM concentration is 

related to the Cavtratin action and not to the solvent DMSO.  

In the case of T-cell activation, no significant differences were found for any of the groups 

containing Cavtratin when compared to the αCD3 control. We were also unable to detect a 

significant difference between the sample containing Cavtratin 10 μM and the one with DMSO 

alone (Figure 5.15-B). 

To further assess if Cavtratin was able to restrict T-cell responses at concentrations higher than 

those tested, another experiment was designed by exposing αCD3-stimulated PBMCs to Cavtratin 

(10, 15 or 20 μM), the control peptide (10, 15 or 20 μM) or DMSO alone (equivalent volumes as 

Cavtratin concentrations). 

Figure 5.16 shows how Cavtratin concentrations of 15 and 20 μM resulted in a deep suppression 

of T-cell proliferation and activation; however, the same drop occurred for the other groups 

containing the control peptide or DMSO alone. Therefore, this data suggests that the inhibition 

observed at high Cavtratin concentrations is due to the presence of DMSO.     
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Figure 5.15: DMSO appears to mask the effect of Cavtratin. 

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n=12 
(DMSO, n=8). Paired ANOVA, Bonferroni’s Multiple Comparison Test (all groups vs. αCD3 and 
10µM Cavtratin vs. DMSO Control). *p<0.05, ns= not significant. 

PBMCs were stimulated with αCD3 (plate-bound 0.3 µg/ml) and incubated in the presence of 
different concentrations of Cavtratin (green bars). As a further control DMSO was added to the 
PBMC culture at the same volume as the 10 µM concentration (gray bar). 
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Figure 5.16:  Measurements of CD4+ T cell proliferation and activation in response to Cavtratin 
are confounded by the presence of DMSO. 

A. Proliferation of CD4+ T-cells, reported as division index. B. Activation of CD4+ T-cells, expression 
of the CD25 marker reported as median fluorescence intensity (MFI). Bars represent means and 
SEM, n= 4-6. ANOVA, Bonferroni’s Multiple Comparison Test. Cavtratin groups were compared 
against the αCD3 control and then within their groups against the control peptide and DMSO. 
*p<0.05, **p<0.01, ***p<0.001, ns= not significant. 

PBMCs were stimulated with αCD3 (plate-bound 0.3 µg/ml) and incubated in the presence of 
different concentrations of Cavtratin (green bars), the control peptide -without internalisation 
sequence (blue bars) or the corresponding volume of DMSO (gray bars). 
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5.7.3   Cavtratin enhances proliferation of CD4 +  T lymphocytes.  

To finally determine whether the effect was Cavtratin dependent and not just only a DMSO 

artefact, a new Cavtratin stock solution was prepared in cell culture media (RPMI 1640 + 

glutamine) and compared against the Cavtratin preparation in DMSO. Although it was also desired 

to test the control peptide, it was not possible to dissolve it in cell culture media.  

Covering a larger range of doses, PBMCs were stimulated with αCD3 and exposed to 5, 10, 15 or 

20 μM of the two Cavtratin preparations (in media or DMSO) over the course of 4 days.  

From the data in Figure 5.17-A we can conclude that Cavtratin concentrations of 10 and 15 μM 

enhance proliferation of CD4+ T-cells, if dissolved in cell culture media. In contrast, the Cavtratin 

preparation in DMSO decreased T-cell proliferation in a dose-dependent manner. 

Although a similar pattern was observed for the CD25 activation marker, no significant differences 

were detected due to a large inter-experimental variability (Figure 5.17-B). 

Overall, these experiments show that Cavtratin has a proliferative influence on CD4+ T 

lymphocytes.  

 

5.7.4   Cavtratin reduces cell  death of PBMCs in culture.  

In order to corroborate that cell death was not occurring in the conditions above tested, the % of 

dead cells obtained from the UV dead/live dye included in each experiment were plotted and 

analysed. Although the results presented in Figure 5.18 are representative of total cell death 

among PBMCs at 96 hours after incubation, this general viability overview allows us to detect for 

medium to severe cell loss.  

Surprisingly, Cavtratin had a beneficial outcome reducing cell death by about one third in 

comparison with the αCD3 control (Figure 5.18). As expected the DMSO preparation showed a 

higher percentage of dead cells as the concentrations increased. 
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Figure 5.17: Cavtratin enhances CD4+ T-cell proliferation. 

A. Proliferation CD4+ T-cells, reported as division index. B. Activation CD4+ T-cells, expression of 
the CD25 marker as median fluorescence intensity (MFI). Bars represent means and SEM, n= 4-5. 
ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3). *p<0.05, **p<0.01, ns= not significant. 

PBMCs were stimulated with αCD3 (plate-bound 0.3 µg/ml) and incubated in the presence of 
different concentrations of Cavtratin dissolved in cell culture media (green bars) or Cavtratin 
dissolved in DMSO (gray bars). 
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Figure 5.18: Cavtratin reduces percentage of dead PBMCs at 96 hours. 

Percentage of dead cells (not within the live cells gate) applying the basis of the UV dead/live dye. 
Bars represent means and SEM, n= 4-5. ANOVA, Dunnett’s Multiple Comparison Test (vs. αCD3); 
*p<0.05, **p<0.01, ns= not significant. 

PBMCs were stimulated with αCD3 (plate-bound 0.3 µg/ml) and incubated for 4 days in the 
presence of different concentrations of Cavtratin prepared in cell culture media (green bars) or 
Cavtratin prepared in DMSO (gray bars). -VE= negative control, non-stimulated PBMCs. 
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5.8    D ISCUSSION  

 

5.8.1   Main findings  

Since components of N. meningitidis stimulate NO production and NO is also produced at the 

moment of T-cell activation, the work described here is the initial approach to characterise NO-

mediated T-cell activation and proliferation. The primary aim of this chapter was to determine 

whether NO plays a direct role in proliferation and/or activation of human primary T-cells, and to 

determine the effect that NO donation or inhibition has on stimulated CD4+ T lymphocytes using 

our in vitro model.  

Although NO production by the immune system mainly occurs in response to bacterial 

components and during the cell activation process, the presence of NO is also essential for 

maintaining a normal physiological function in resting cells (section 1.3.). In this Chapter, we 

demonstrated that neither the NO donor (NOC-18) nor the NOS inhibitor (L-NMMA) were able to 

induce any effect on non-stimulated PBMCs. Division index and expression of the activation 

marker CD25 in resting CD4+ T lymphocytes were unaffected in the presence of different 

concentrations of NOC-18 and L-NMMA (section 5.3). This suggests that NO per se is unable to 

induce proliferation or activation in non-stimulated T-cells and that resting T lymphocytes are not 

susceptible to fluctuations in NO concentration. In support of this, several authors have proved 

that TCR engagement, followed by subsequent mitochondrial hyperpolarisation and Ca2
+ release, 

are required events before NO production is triggered within the cell (Ibiza et al. 2006; Perl et al. 

2004; Nagy et al. 2003). The fact that higher levels of eNOS mRNA have been detected in activated 

T-cells in comparison with non-stimulated controls (Nagy et al. 2003; Reiling et al. 1996), 

corroborates the idea that baseline levels of NO are minimal in non-stimulated cells.  

Moving next into investigating NO donation in activated CD4+ T lymphocytes, section 5.4.1 

demonstrated that concentrations >500 μM of NOC-18 reduce viability of PBMCs. We determine 

that 300 μM of NOC-18 was the largest concentration we could use for future experiments without 

impacting on the viability of the PBMC populations. Although an initial experiment using graded 

concentrations of NOC-18 (from 1 up to 300 µM) suggested a dose-dependent enhancement of T-

cell proliferation and activation, repeat experiments subsequently showed that NOC-18 (300 μM) 

was unable to modulate the proliferation and activation of these cells, irrespective of the T-cell 

stimuli used (αCD3, ConA or SEB) (sections 5.4.2 and 5.4.3).   
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Given the pleitropic nature of NO, it is unlikely that its administration to PBMCs is completely 

without effect. Since TCR engagement will induce local NO production which is sufficient to trigger 

TCR-activation pathways (section 1.3.7), the excessive NO released by NOC-18 might had an effect 

in intracellular processes different from T-cell proliferation and activation. It is also possible that 

NOC-18 degradation was accelerated by non T-cells contained in the PBMC culture. Because the 

half life of NOC-18 is about 21 hours, another possibility is that the influence of NO donation might 

had been transitory and disappeared by day 4 when the analysis was performed. In the presence 

of a NO-releasing derivative of aspirin (NCX-4016) and DETA-NO, a previous report observed a 

transitory reduction (of less than 48 hours) of cellular respiration in T lymphocytes, which resulted 

in a subsequent inhibition of αCD3/αCD28-induced proliferation and decreased IL-2, IL-4, IL-5 and 

IFN-γ secretion (Fiorucci et al. 2004). Similar to our findings, Macphail et al. (2003) found no 

difference in CD25 expression between cells exposed to a NO donor (SNAP or GSNO) and the ones 

that were not. Published work has proposed that low concentrations of NO donors (SNAP <10 µM; 

NOC-18 <10 µM) may increase proliferation/activation of T-cells and induce more NO production; 

whilst high concentrations (SNAP 100 and 500 µM; NOC >100 µM) may suppress 

proliferation/activation or even induce apoptosis (Niedbala et al. 1999). NOC-18 did not exhibit 

suppressive properties on stimulated cells, but was also insufficient to induce further proliferation 

after TCR engagement in our in vitro system.  

From published work, it can be concluded that the response to NO in primary human CD4+ T-cells 

does not always follow a consistent pattern and may vary among individual donors. In support, 

authors have determined that the dualistic effect of NO depends on the concentration, its source, 

time of exposure and the cellular environment of activity (Fiorucci et al. 2004; Macphail et al. 

2003; Bogdan 2001). For example, Fujiwara et al. (2006) found that NOC-18 concentrations 

between 100 and 200 µM inhibit T-cell division and IL-2 production only if NOC-18 is given as pre-

treatment for 24 hours before co-culture with stimulator cells. IL-2, IL-4 and IL-10 production from 

activated, human PBMCs can be inhibited by 3 different NO releasing compounds when they are 

administrated for a period of 24 hours, but the suppression achieved by each compound varies in 

strength and in the concentration required (Korhonen et al. 2008). Moreover,  Nukaya et al. (1995) 

determined that the sensitivity to NO varies among T-cell subtypes, as the same concentration of 

a NO donor (0.1 µM SNP) induced a deeper inhibition of DNA synthesis in TH2 than in TH1 T-cells. 

In similar conditions to the assay performed in this chapter, Niedbala et al. (2007) found that NOC-

18 (100-200 µM) enhances IL-2 production and proliferation of CD4+ CD25-, but not CD4+ CD25+, 

murine T lymphocytes. NO induced a TH2-like suppressive phenotype on those CD4+ cells, 
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increasing CD25 expression and secretion of IL-10, but lacking expression of the classic T-regs 

factor Foxp3.    

In contrast, a dose-dependent reduction in T-cell proliferation was observed when PBMCs were 

exposed to the NOS inhibitors L-NAME and L-NMMA (section 5.5.1). All the stimulated groups 

(αCD3, ConA or SEB) containing L-NAME (10 mM) showed a significant drop in division index of 

CD4+ T lymphocytes. This inhibitory phenomenon was evident as early as 48 hours after 

stimulation with αCD3 or SEB (section 5.5.2), but was only partially reversed by simultaneous NO 

donation with NOC-18 (150 and 300 μM) (section 5.5.3). One publication performing very similar 

experiments on human PBMCs and using L-NMMA at similar concentrations (1 to 8 mM), has 

proposed that NO is indeed an essential molecule to achieve T-cell proliferation in response to 

superantigens, so  blockade of NO production results in abrogation of proliferation (Sriskandan et 

al. 1996). After several repetitions and under different stimuli (αCD3, ConA or SEB), only the SEB 

stimulated group containing L- NAME (10 mM) had a significant decrease in CD25 expression 

(section 5.5.3). Thus suggesting that NO is unlikely to be required for the expression of the 

activation markers CD25 and Foxp3 in non-superantigen stimulation, or that the effect might 

occur at early hours along the incubation period but disappears by day 4.   

Many other investigators disagree and have reported that T-cell proliferation and their response 

to antigens is inhibited by NO donation, while L-arginine analogues increase T-cell responses  (van 

der Veen, Dietlin, Pen, et al. 2000; van der Veen, Dietlin, Dixon Gray, et al. 2000; Brás et al. 1997; 

Lejeune et al. 1994; Gregory et al. 1993). Bingisser et al. (1998) and Mazzoni et al. (2002) describe 

that NO induces a reversible type of T-cell anergy by reducing phosphorylation of tyrosine residues 

in Jak3/STAT5, an essential molecule for proliferation and cycle progression in activated T-cells 

(Moriggl et al. 1999). In a rat model of major physical trauma, it was found that in the presence of 

T-cell stimulation high concentrations of endogenous NO abrogate T-cell division by arresting CD4+ 

splenocytes in a late G1 phase, and committing those cells to subsequent apoptosis and necrosis 

(Valenti et al. 2005). Apart from leading apoptosis, caspases can be active in non-apoptotic T 

lymphocytes and modulate their proliferative capacity and IL-2 secretion upon TCR engagement 

with mitogens or αCD3 (Koenig et al. 2012; Kennedy et al. 1999; Wilhelm et al. 1998). Mahidhara 

et al. (2003) has shown that Caspase-3 activity increases with T-cell divisions and attribute a NO-

dependent anti-proliferative effect to blockade of caspase activity by S- nitrosylation (section 

1.3.6). Small concentrations of the NO donor SNAP (pulsed doses over 48 hours incubation) 

resulted in lower caspase-3 like activity and profound inhibition in proliferation of murine αCD3-

stimulated T lymphocytes, without inducing cell death (Mahidhara et al. 2003).  
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For those experiments where T-cell proliferation and activation were evaluated after 96 hours 

incubation, a UV dead/live dye was used to quantify the percentages of viable cells among the 

groups containing NOC-18 and L-NAME in comparison with the controls. Despite that the UV 

dead/live dye did not demonstrate a significant reduction in the proportions of live cells, we 

performed an assay to detect cells that enter apoptosis at early stages to be undetectable by 96 

hours. Data from the Annexin V / TO-PRO-3 assay suggested that stimulated and non-stimulated 

groups containing L-NAME (10 mM) have a small increase in the percentages of cell death after 

24 hour incubation (section 5.6). Although the difference in cell death appears to be normalised 

after 48 hours among the activated groups containing L-NAME, the non-stimulated group had 

more cell death along the 96 hour incubation. These findings are inconsistent with other 

publications, which found they can reverse TCR-triggered cell death using NOS inhibitors (Valenti 

et al. 2005; Williams et al. 1998). Thus, it was suspected that either L-NAME had a direct toxic 

effect or that absolute lack of NO production was harmful for the PBMC culture.      

To investigate the possibility that cell death was occurring due to NO deprivation, a 

supplementation experiment was carried out; however, simultaneous addition of NOC-18 did not 

impact upon the relatively higher percentage of cell death induced by L-NAME (section 5.6). In 

this experiment, there is the possibility that the amount of NO donated by NOC-18 might had not 

been sufficient to replenish the NO needs. Other possibility is that blockade of NO synthases by L-

NAME might result in fast, irreversible cellular events that cannot be overcome by external NO 

donation.  

Because in T lymphocytes NO has been found to be produced by eNOS and in response to TCR 

engagement (Ibiza et al. 2006; Nagy et al. 2003), we aimed to investigate the effect of a specific 

eNOS inhibitor in our in vitro system. Caveolin-1 is a cholesterol binding protein and the main 

constituent of the organelle caveolae; contributes to transcytosis of macromolecules, promotes 

the assembly and stability of plasma membrane raft microdomains and also participates in signal 

transduction cascades (Frank et al. 2003). Within endothelial cells and under resting conditions, 

eNOS is located at the caveolae where its catalytic activity remains suppressed by clamping with 

the major scaffolding domain of caveolin-1 (Ju et al. 1997), specifically by two threonine residues 

(numbers 90 and 91 in the domain sequence) and most importantly the phenylalanine residue in 

position 92 of the domain sequence (Bernatchez et al. 2011). Bucci et al. (2000) manufactured a 

peptide derived from the scaffolding domain of caveolin-1, which interferes with the 

Ca2
+/calmodulin-binding region (Ju et al. 1997) (section 1.3.1) and dose-dependently inhibits eNOS 

activity. This peptide termed Cavtratin consists of 19 amino acids corresponding to that primary 

binding domain of caveolin 1 (amino acids 82-101), plus an internalisation sequence obtained 
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from the Drosophila transcription factor that facilitates peptide uptake by mammalian cells 

(section 2.9.3). Cavtratin has been successfully used to specifically block eNOS and subsequent NO 

production within blood vessels; avoiding vascular relaxation, leakage, intersticial edema and 

atherosclerosis in mouse models (Chidlow et al. 2009; Rodriguez-Feo et al. 2008; Lin et al. 2007; 

Gratton et al. 2003; Bucci et al. 2000). Although expression of caveolin-1 has been reported to be 

absent in human peripheral T lymphocytes (Vallejo & Hardin 2005; Alonso & Millán 2001; Fra et 

al. 1994), it is expected that the peptide’s Ca2
+/calmodulin suppression exerted on the lymphoid 

eNOS still occurs.  

With the experiments carried out in section 5.7, it has been demonstrated that Cavtratin at 

concentrations of 10 and 15 μM increases proliferation of CD4+ T lymphocytes. However, 

expression of CD25 was not significantly enhanced by any of the Cavtratin concentrations. 

Unexpectedly, Cavtratin reduced overall cell death within the PBMC culture in comparison with 

the αCD3 control at 96 hours post-incubation (section 5.7.4). Even though we did not directly 

evaluate blockade of eNOS activity, a concentration of 10 μM of the caveolin-1 derived peptide 

has been proved to be effective in achieving complete inhibition of eNOS activity in vitro (Bucci et 

al. 2000; Ju et al. 1997). Assessment of the Cavtratin control peptide was not conclusive so it was 

not possible to determine whether an internalisation sequence was required to achieve an effect 

in T-cells. To our knowledge, the work performed in this chapter is the first one studying a possible 

effect of eNOS blockade in CD4+ T lymphocytes using a caveolin-1 derived peptide.   

Overall, we can conclude that the role of NO in T-cells remains controversial and obscure due to 

the number of implicated variables. Special attention must be paid to studies done in mice that 

report NO-derived toxicity, since murine cells produce higher amounts of NO in comparison with 

human cells, further NO addition by a NO donor may result in cytotoxicity. Moreover, because 

human cells have small basal amounts of NO, NOS inhibition in these cells could lead to a severe 

NO deprivation and subsequent lack of proliferation and/or cytokine responses after exposure to 

antigens (Sriskandan et al. 1996).  
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Since a full discussion of the main findings has already been provided in each of the chapters of 

this thesis, Chapter 6 aims to summarise and understand the clinical relevance of some of the key 

findings from this PhD work. This chapter also discusses the limitations of the methodology 

employed to address and to interpreter the research questions along this project. Finally, some 

plans for future work are mentioned. 

This thesis aimed to determine the mechanism of action of a previous finding recorded in our 

research group, by which T-independent (TI) type 2 mimics induce B-cell responses but 

simultaneously suppress T-cell proliferation and activation (Chapter 3). N. meningitidis is a 

bacterium which rarely causes invasive disease and sepsis, but perpetuates colonisation by 

avoiding immune recognition and killing. Because several N. meningitidis constituents are TI type 

2 antigens and/or provide second signals to B-cells via TLRs, we hypothesized that exposure of 

PBMCs to paraformaldehyde fixed meningococcus could have a suppressive effect on T-cells 

(Chapter 4). Several bacterial components stimulate NO production; however N. meningitidis can 

counteract the bactericidal effect of reactive nitrogen intermediates by a partial denitrification 

pathway. Since NO is also produced as a result of TCR engagement, it was investigated whether a 

change of NO concentrations could affect T-cell proliferation and activation (Chapter 5).  

 

 

6.1    MAIN F INDINGS    

 

6.1.1   Chapter 3- Human B-cell  activation with a TI type 2 antigen mimic 

inhibits TCR-induced T-cell  proliferation and activation.  

 

Chapter 3 reports a novel downregulatory role for T-independent (TI) type 2 activated B 

lymphocytes. The present study has demonstrated that B-cell activation using TI type 2 antigen 

mimics inhibits proliferation and activation of human CD4+ T lymphocytes in vitro. Anti-IgD-

conjugated dextran (α-δ-DEX) and the truncated Moraxella IgD-binding protein (MID) are TI type 

2 mimics that induce activation and proliferation of B lymphocytes by cross-linking of numerous 

B-cell receptor molecules (specifically membrane-bound IgD).  

αCD3-induced T-cell proliferation and expression of the activation marker CD25 become deeply 

suppressed when α-δ-dex or MID are present in the PBMC culture. While T-cell inhibition was 
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significant it was not total and T-cells were still able to deliver T-cell help as demonstrated by the 

synergistic activity of αCD3 and α-δ-DEX on B-cell activation and activation. 

Experiments performed with purified cell populations excluded the possibility of α-δ-DEX acting 

directly on CD4+ T lymphocytes. Furthermore, these experiments confirm that B lymphocytes 

exposed to α-δ-DEX for a period of 24 hours (in the presence of PBMCs) become activated and 

acquire a suppressive phenotype, capable of restraining proliferation of CD4+ T-cells in co-culture. 

Interestingly, these suppressor B-cells appear to be effective even when they are present at 

numbers below the physiological T:B ratio.  

Depletion of monocytes and NK cells confirmed that B lymphocytes are the single cell type 

responsible for the inhibition. Among the molecules investigated in this work, blocking of IL-10, 

IL-1, CD80 and CD86 did not reverse the α-δ-DEX-induced inhibitory effect.   

Although the exact mechanism of action was not identified, no soluble factors appear to be playing 

a role in the inhibition and cell contact interactions between T and B lymphocytes are essential. 

While the field of B-regulatory biology is rapidly developing, the role of B-cells as co-stimulators is 

better described than their inhibitory effects on T-cells. In order to control B-cell mediated 

autoimmunity B-cell depletion therapy has been used with some success. However, it is clear that 

this may also remove regulatory B-cells, with potentially unforeseen consequences. We would 

suggest that one key to controlling T-cell immunopathology resulting from bacterial infection or 

autoimmune disease may lie with the understanding and potentially the induction of B-cell 

suppression phenomena similar to those observed here.  

 

6.1.2 Chapter 4- N. meningitidis  suppress TCR-induced T-cel l  proliferation 

and activation, but enhances Th1 cytokines and IL -10 production.   

 

Chapter 4 demonstrated that paraformaldehyde fixed N. meningitidis is capable of inhibiting TCR-

induced proliferation and activation of CD4+ T lymphocytes. A deep suppression of T-cell 

responses, comparable to the one observed with α-δ-DEX, occurred when αCD3-stimulated 

PBMCs where incubated with low bacterial counts (0.1:1, 1:1 and 10:1 bacteria per cell). 

Importantly and in contrast to α-δ-DEX, these meningococci inocula did not enhance B-cell 

responses, suggesting that the mechanism of suppression is not directed by B lymphocytes. In 

support, we found that incubation with a large bacterial count (100:1 bacteria per cell) results in 

a strong B-cell proliferation and activation but does not reduce proliferation or activation of CD4+ 
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T lymphocytes. It can be surmised that a large bacterial load enhances bystander pro-

inflammatory activity among accessory cells and overcomes the inhibitory phenomenon. 

Importantly, enriched CD4+ T lymphocytes were not affected directly by N. meningitidis (1:1 

bacteria per cell).  Incubation for 24 hours with a small inoculum of N. meningitidis (1:1 bacteria 

per cell) was unsuccessful to generate a suppressive phenotype on B lymphocytes or monocytes. 

Co-culture between enriched CD4+ T lymphocytes and meningococcus pre-activated enriched B 

lymphocytes or monocytes did not reduce CD4+ T-cell responses. Further confirmation was 

obtained when depletion of B-cells, monocytes or NK cells did not reverse the meningococcus-

mediated inhibition in PBMC cultures. Supernantant from PBMCs exposed to N. meningitidis did 

not ablate T-cell division index or expression of the activation marker CD25, suggesting a cell 

contact mechanism. It was therefore concluded that in our in vitro model, PBMCs act in a complex 

network to encounter microorganisms and to establish cell interactions, so is not always easy to 

separate the individual cell contributions from the overall effect. 

Strains of N. meningitidis deficient in capsule and lipooligosaccharides (LOS) excluded these 

bacterial constituents as responsible for the inhibitory phenomenon. Fresh and heated outer 

membrane vesicles (OMVs) from N. meningitidis and N. lactamica replicated the suppression 

phenomenon induced by the whole organism. From the components of the outer membrane, two 

Opa-deficient strains demonstrated that Opa-CEACAM interactions are not the mechanism by 

which Neisseria spp restrain T-cell responses. Although the exact meningococcus constituent was 

not identified, we concluded that the suppressor factor must be contained within OMVs. 

A clear TH1 cytokine profile was observed in supernatants of PBMC cultures incubated with ratios 

of 1:1 and 10:1 meningococci per PBMC. Increased production of IL-1β, IL-6, IL-8 and a dose 

dependent rise in TNF-α and IFN-y was detected in these samples. In contrast, the classical TH2 

cytokines IL-5 and IL-13 were greatly reduced. Unexpectedly, the PBMC groups containing 

bacterial inocula of 1:1 and 10:1 had significant higher levels of IL-10, in comparison with controls 

and the inocula at the extremes of the range. However, blocking of IL-10 resulted in only partial 

restoration of T-cell proliferation and reveals the existence of another underlying mechanism of 

action.   

In conclusion, this chapter confirms that bacteria are capable of immunomodulation. This 

regulatory activity may be relevant to the pathogenesis of a number of bacterial infections and 

could potentially be an immune evasion mechanism used by pathogens. Or perhaps a mechanism 

evolved by the host to limit T-cell mediated immune pathology induced by bacteria.  
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6.1.3   Chapter 5- Role of nitric oxide in TCR-induced T-cell  responses  

 

Chapter 5 provides preliminary data about the role of NO in CD4+ T-cell responses. The primary 

aim was to determine whether NO plays a direct role in proliferation and/or activation of human 

primary T-cells, and to determine the effect that NO donation or inhibition has on CD4+ T 

lymphocytes using our in vitro model.  

The first finding was that neither the NO donor (NOC-18) nor the NOS inhibitor (L-NMMA) were 

able to induce any effect on non-stimulated PBMCs. Division index and expression of the 

activation marker CD25 in resting CD4+ T lymphocytes are unaffected in the presence of different 

concentrations of NOC-18 and L-NMMA. Therefore, NO donation and inhibition was studied in 

polyclonal activated T-cells, using αCD3, concanavalin A or the superantigen SEB. 

NO donation with the NO slow-releasing compound NOC-18, at concentrations from 1 up to 300 

µM, suggested a dose-dependent enhancement of T-cell proliferation and activation. However, 

repeat experiments using the maximum concentration of NOC-18 (300 μM) which does not 

compromise cell viability, show no significant differences irrespective of the T-cell stimuli used. 

Since the half life of NOC-18 is about 21 hours, the influence of NO donation might had been 

transitory and disappeared by day 4 when the analysis was performed.   

NO inhibition with the arginine analogue L-NAME (10 mM) resulted in a significant reduction of T-

cell proliferation across all stimuli. However, an annexin-V/topro-3 assay found that L-NAME 

induces cell death at early time points, perhaps by a cytotoxic mechanism.        

Work published by Nagy et al. (2003) and Ibiza et al. (2006) have demonstrated NO production 

and eNOS expression in T-cells after TCR engagement with αCD3/αCD28 or superantigens. In order 

to be more specific and to achieve blockade of NO from T lymphocytes, the novel specific eNOS 

inhibitor derived from the caveolin-1 structure (named Cavtratin) was tested. Cavtratin 

concentrations of 10 and 15 μM increase significantly the division index of CD4+ T lymphocytes, 

but do not enhance expression of the activation marker CD25. Moreover, addition of Cavtratin 

significantly reduced the percentage of cell death as compared with the αCD3 control.  

The regulation that NO exerts on T-cells in the presence of bacterial infections is a critical area 

which is under-investigated, therefore the findings herein presented could potentially open a new 

research field. For example, the work performed in this chapter is the first one studying a possible 

effect of a caveolin-1 derived peptide in CD4+ T lymphocytes.   
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6.2    METHODOLOGICAL CRITICISMS  

 

6.2.1   Chapter 3- Human B-cell  activation with a TI type 2 antigen mimic 

inhibits TCR-induced T-cell  proliferation and activation.  

 

There is the possibility that the B-cell depletion protocol leave a small number of B lymphocytes 

behind. Since the depletion kit works by positively selecting CD19+ and CD20+ cells, these antigens 

should had not been used to assess purity of the depleted fraction. Although a simultaneous 

staining with CD19 and IgD demonstrated that <0.05% IgD+ events remain in the culture after the 

depletion protocol, further and final confirmation of the efficiency of the B-cell depletion protocol 

should be addressed using other B-cell phenotypic markers (for example, CD22 or CD45). A similar 

situation occurred for the monocyte and NK cell depletion procedures, where the classical markers 

CD14 and CD56 were used to remove these populations. Therefore, alternative antigens should 

be targeted to assess purity of these depleted fractions. 

The degree by which α-δ-DEX pre-activated B-cells suppress T-cells varies among donors and 

depend on the T:B ratio. This situation rises a new research question regarding the susceptibility 

of B lymphocytes to acquire inhibitory properties. Naturally occurring regulatory B-cells (CD19high 

CD24high CD38high) might also mask our findings and we should try to exclude them from our initial 

sample. Perhaps removal of already activated B lymphocytes could provide a non-stimulated 

population that respond better to α-δ-DEX stimulation. 

 

6.2.2 Chapter 4- N. meningitidis  suppress TCR-induced T-cel l  proliferation 

and activation, but enhances Th1 cytokines and IL -10 production.  

 

All the experiments performed in this chapter included paraformaldehyde fixed bacteria. 

Therefore, we cannot assure that our observations can be extrapolated into an infection model 

with live bacteria. However, since fresh OMVs also ablated T-cell responses we could suggest that 

the suppressor factor is indeed a constituent located at the bacterial outer membrane layer, and 

not the result of bacterial metabolism.  
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6.2.3   Chapter 5- Role of nitric oxide in TCR-induced T-cell  responses 

 

One of the main disadvantages in this chapter is that NO released was not evaluated. Therefore, 

it is difficult to confirm that NOC-18 was actually donating NO and that L-NAME was actually 

blocking NO production. More importantly, the effect of the NO donor or inhibitor might have 

more emphasis on one particular cell population in the PBMC culture. Monocytes/macrophages 

are major producers of NO and fluctuations in NO concentrations might deeply influence their 

behavior and their interaction with T lymphocytes.  

Recently, (Tomassian et al. 2011) reported expression of caveolin-1 in murine T lymphocytes and 

demonstrated that caveolin-1 is required for the TCR-induced responses of CD8+, but not CD4+ T-

cells. In comparison with wild type mice, CD8+ T lymphocytes from caveolin-1 knockout mice 

showed less TNF-α and IFN-γ production, together with a defective proliferation and poor viral 

clearance. In human peripheral blood cells, caveolin-1 expression has only been detected in T cell 

leukemia cell lines (Hatanaka et al. 1998). Thus, it is necessary to prove that the proliferative effect 

observed in the presence of Cavtratin is the pure result of eNOS inhibition and not a secondary 

intervention with caveolin-1 signalling pathways in T-cells or in other cells. A study performed by 

Ohnuma et al. (2007) reported that caveolin-1 expressed in APCs binds to its ligand (CD26) on T-

cells and provides co-stimulatory signalling similar to the one of CD28. Using recombinant 

immunoglobulin-caveolin-1 fusion proteins it was identified that the N-terminal domain (amino 

acids 1-82) of caveolin-1 is the one that binds to CD26 and triggers T-cell proliferation and NF-κβ 

activation in a TCR/CD3-dependent manner (Ohnuma et al. 2007). 

 

6.2.4   Overall  considerations  

 

Within the methods of the immunological assay that was developed within this PhD project there 

is room for human error and variability at some points.  

Donor variability turned out to be the major factor to take into consideration along this project. 

The numerical outcomes vary among individuals and they can even vary from day to day. Many 

external factors can influence immune responses. Perhaps, the subjects from whom blood was 

taken might have been experiencing a sub­clinical response to infection of some kind at the time, 

which might have influenced the subsequent behavior of their lymphocytes in vitro. 
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Across the experiments of this work, inter-donor variability was found regardless of the stimuli 

used, in particular for T and B-cell activation markers. Although exact numerical outcomes for fold 

change in proliferation and expression of activation markers vary among individuals, it is 

important to focus on how the response patterns with different stimuli are consistent across all 

the experiments. 

Another factor of variability correlates with the antibodies used over the time period in which this 

project took place. Even when manufacturers remain the same, antibodies exhibit significant 

variation in bioactivity among clones and lot numbers (Li et al. 2010). A clear example of this 

variability was the T-cell proliferation and activation baselines induced by different clones and lots 

of αCD3 mAb.  

Isolated PBMCs may behave differently in vitro than in vivo. Since all experiments from this 

research project were done in vitro, suitable animal models might provide a more natural 

environment allowing integral immune system cooperation. In addition, this project focused on 

CD4+ lymphocytes only so it would be interesting to study whether CD8+ T-cells respond in the 

same way.   

 

 

6.3    FUTURE WORK AND CLINICAL CONSIDERATIONS  

 

6.3.1   Chapter 3- Human B-cell  activation with a TI type 2 antigen mimic 

inhibits TCR-induced T-cell  proliferation and activation.  

 

Expression of B-cell co-stimulatory molecules can vary along the incubation time after stimulation 

is started. Therefore, measurement of these molecules at different time points may provide 

information about the mechanism of action. B7-H4 is an inducible molecule member of the B7 

family, expressed on activated monocytes, dendritic cells, T and B lymphocytes (Sica et al. 2003); 

whereas the putative receptor for B7-H4 is expressed only on activated T lymphocytes (Sica et al. 

2003; Zang et al. 2003). B7-H4 is a negative regulator for CD4 and CD8 T lymphocytes, blocking 

phosphorylation of the MAP kinases, ERK, p38 and JNK (Wang et al. 2012). Signaling through this 

molecule inhibits proliferation, cell cycle progression and production of cytokines; as well as 
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impairs cytotoxicity functions (Sica et al. 2003; Zang et al. 2003). Recent publications have 

suggested that B7-H4 is involved in the suppression observed in tumours (Kryczek et al. 2006; 

Leung & Suh 2013). In this context, it could be that α-δ-DEX-activated B lymphocytes express B7-

H4 and by this mechanism restrain activation and proliferation of CD4+ T-cells. In our in vitro 

model, blockade of B7-H4 using a specific monoclonal antibody should determine if this molecule 

is playing a role in the suppression.      

 

6.3.2 Chapter 4- N. meningitidis  suppress TCR-induced T-cel l  proliferation 

and activation, but enhances Th1 cytokines and IL -10 production.  

 

The fact that paraformaldehyde fixed N. meningitidis was capable of suppressing CD4+ T-cell 

proliferation and activation, indicates that in vivo the presence of dead/attenuated 

microorganisms (perhaps after treatment with bacteriostatic antibiotics) could still exert an 

immunomodulatory effect on T lymphocytes. Øvstebø et al. (2004) has reported that a big 

difference exists between the total numbers of live and dead meningococci detected by 

quantitative blood cultures versus quantitative PCR. Moreover, several patients could have 

negative blood cultures and yet detectable amounts of LPS and neisserial DNA by PCR (Øvstebø et 

al. 2004). This work proposes that dead microorganisms and circulating LPS contribute importantly 

to the clinical outcome and prognosis in fulminant meningococcemia.  

Results showing that OMVs suppress proliferation and activation of CD4+ T lymphocytes represent 

a pinpoint to look at in relation to the new OMVs vaccines. Therefore, dissecting the OMV 

constituents to find the bacterial molecule responsible for the suppression phenomenon is an 

imperative future step for us. 

Because IL-10 production was increased by inocula of 1:1 and 10:1 meningococci per PBMC, 

results obvious to exclude any role of Treg and Breg in the suppression mechanism. Perhaps small 

bacterial counts induce activation of these regulatory lymphocytes.   

Finally to determine whether this suppressive phenomenon is common to several 

microorganisms, it would be interesting to perform our assays with different pathogenic and 

commensal bacteria.  
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6.2.3   Chapter 5- Role of nitric oxide in TCR-induced T-cell  responses  

 

The first attempt will be to evaluate NO concentrations from supernatants. A NO-sensitive 

electrode and the chemiluminescense method allow measurement of NO and oxidative NO 

products (NO2-, NO3- and S-nitrosothiols). In addition, the use of the fluorescent NO-sensitive 

probe DAF-FM by flow cytometry could help to investigate whether T lymphocytes are directly 

influenced by NO donation/inhibition. 

A functional assay to evaluate the secretion of cytokines could reveal whether NO has a 

preference over one particular T-cell type (TH1 or TH2 subsets). Complementary evaluation of pro 

and anti-inflammatory cytokines, such as TNF-α, IL-1, IL-6 and IL-10 will provide extra information 

about the mechanism of action by which Cavtratin may enhance T-cell proliferation.    

Apart from N. meningitidis, other microorganisms such as Salmonella and Escherichia coli can 

metabolise NO by a denitrification system (Laver et al. 2010). Therefore, it is important to 

investigate whether NO fluctuations affect the performance of T lymphocytes against bacterial 

infection. For example, Moraxella catarrhalis produces NO via its nitrite reductase (AniA) during 

infection of airway epithelial cells. This bacterial NO pushes the cell towards the cell death 

pathway by increasing IL-1α and TNF-α production, activating caspase-3 activity and reducing 

levels of anti-apoptotic proteins (Mocca & Wang 2012). 
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