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Abstract
Submarine channel-levee architecture is a result of interaction between

turbiditic flows and the bathymetry that they encounter on the slope and that

they themselves construct. However, the spatio-temporal evolution of channel-

levee systems, i.e., their manner of spatial accretion is not fully understood. In

addition, the controls on the patterns of channel distribution and stacking remain

relatively poorly understood.

The results presented in this thesis are based on the interpretation of a

3D seismic survey located in water depths of about 1000 to 2000 m on the

upper slope of the Amazon Fan. The analysis of the data includes two different

approaches: on a larger scale, the interpretation of the tectono-stratigraphic

analysis of the data; and on a smaller scale, the characterization of the

evolution of the channel-levee systems and associated deposits. The methods

of analysis used included the mapping of significant horizons and the extraction

of sequences horizon slices across the channel-levee systems. The horizon

slices allowed visualisation of the vertical distribution of the channel-levee

elements and interpretation of their evolution.

The seismic data can be divided in two main packages, separated by an

unconformity. The pre-unconformity package is characterized by a predominant

sub-parallel seismic facies (characterized by continuous, homogeneous and

sub-parallel reflections), and is strongly folded and faulted due to gravity

tectonics. In this interval, no channel-levee systems were identified, but canyon-

like channels with dimensions as large as 2600 m wide and 220 m deep were

observed. Conversely, the post-unconformity package comprises a

heterogeneous arrangement of seismic facies, and is less strongly deformed.

Three upslope-stacked channel-levee systems of Middle Pleistocene age can

be distinguished in this interval. Each channel disperses obliquely down the

slope, resulting in levee size asymmetry, with the downslope levee being of

greatest size. The upslope stacking of channel-levee systems results from a

sequence of avulsions on the upslope levees. Bathymetric influence of the older

channel levee system is interpreted to dictate the slope-oblique orientation of

the new channel.

ii



Two main architectural styles were identified, each one associated with

different models of spatia-temporal development of channel-levees. A pattern of

upstream accretion of the aggradational (channel-levee) component of the

channel is associated with the channel narrowing and becoming more sinuous

upward. This style is characterized by an onlapping pattern of channel and

levee reflections. Downstream accretion of channel-levee is associated with a

trend of channel widening and becoming less sinuous upwards. This style is

characterized by a downlap pattern of the channel and levee reflections. Each

style is related to different evolutionary histories of the turbidite flows and

thalweg configuration in relation to the equilibrium profile.

Three styles of channel distribution on slope can be distinguished:

structurally controlled erosive channels, aggradational channels obliquely

oriented to the slope and agradationally confined channels that are vertically

stacked. The pre-unconformity erosive channels are diverted and possibly owe

their erosive character to active anticlines that kept the paleo-slope above the

equilibrium profile. The oblique direction of each channel in the post-

unconformity interval was inherited from the previous one in a sequence of

upslope stacking after systematic avulsion through the left-hand levee. The

vertical stacking of channel-levee elements is due to the confinement of the

channel between the outsize downslope levee and an upslope anticline which

inhibited avulsion in the area. It is probable that each stacked channel-levee

element corresponds to a downstream channel avulsion.

This study provided important information about the architecture and

distribution of channels on the upper-slope of submarine fans subject to

gravitational tectonics. Therefore, it can be used as an analogue and help the

prediction of sand prone areas in other submarine fans which are not so well

imaged.
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discussed in this thesis because channel-mouth lobes do not occur in the study area, and
therefore, are not focus of this research 92

Figure 3-14 Interpretation of acoustic imagery of the Amazon channel-mouth lobe complex
showing the successive channel-mouth lobe systems of Brown, 1F, 1E, 1D, 1C, 1B, 1A and
Amazon channels (from Jegou et al., 2008) 93

Figure 3-15 - Structural map of the gravity tectonics structures on the Amazon Fan (adapted
from Reis et al., 2010). Notice the location of the 3D data used in the current thesis (yellow
area) and the location of the 2D line (3A) presented in Figure 3-17 96

Figure 3-16 - Simplified geological section of the Foz do Amazonas Basin, adapted from
(adapted from Silva et al., 1999). Most of the published data about deep water systems of the
Quaternary of the Amazon Fan (e.g. O.D.P. Proceedings, Leg 155) are downslope the area
affected by the thrusts which is on the upper fan 97

Figure 3-17 - Dip seismic line showing the linked extensional-compressional system gliding
over basal detachment surfaces (obtained from Reis et al. 2010). There are rollovers associated
with listric faults. The location of this line (3A) is shown in Figure 3.15 98

Figure 4-1 - Bathymetric map of the Amazon Fan with the location of the data set (2D seismic
reflection line and 3D survey). Map adapted from Marine Geoscience Data System 99

Figure 4-2 - Location of the 3D seismic data in the Upper Amazon Fan. The map also shows
the boreholes (ODP Leg 155), and the main surficial fan components, e.g., channel systems,
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Amazon Canyon and mass transport deposits. The Amazon Channel is the most recently active
channel on the Amazon Fan (modified from Normark et al., 1997) 100

Figure 4-3 - The two colour scales were used to visualize the amplitude reflections: Landmark
CLB (A) and black and white (B). Notice that the green wiggle trace is overlaying the seismic
reflections 101

Figure 4-4 - Diagram showing the workflow used in the analysis of the studied seismic data.103

Figure 4-5 - Two-way-time maps and respective grids with different mesh size: 1) fine-mesh
grid with picked horizon every each 10 to 5 lines and or less (unconformity); 2) coarse-mesh
grid with picked horizon every each 50 lines or reduced to 25 (base of the growth strata); 3)
composite grid with areas showing coarse mesh (SE of the area) and areas with fine mesh
which in some cases was reduced to every line in the central portion of the area). The maps
correspond to the three horizons presented in the section. The elongated discontinuities in the
map 1 represent incisions made by later channels. Notice that the greenish grid in three maps is
the displayed survey lines by the software output. 104

Figure 4-6 - Schematic diagrams showing the tectono-stratigraphy of the area, outlining the
portion of the 2D seismic reflection line covered by the 3D survey. In total 10 horizons were
picked in either the 2D or 3D surveys, the picking parameters are summarized in Table 4.1.The
seismic data are divided in 2 main intervals, pre-unconformity (in grey) and post-unconformity
(in yellow). In the 3D section, the seismic is divided in 3 packages: lower, middle and post-
unconformity. In this section is also emphasized the mapped horizons in the current work, which
are: the boundaries of the 3 packages (horizons 1,2,3 and 5), the base and top of the UCLS and
the internal boundaries of the stacked channel-levees, components of the UCLS 106

Figure 4-7 - Seismic section across the MCLS showing a horizon slice (RMS of coherence
extraction) highlighted with the dashed white line parallel to base of the levee of UCLS
(continuous white line), used as a datum 108

Figure 4-8 - Two-way-time maps of the seafloor, the unconformity and the base of the right
levee in the Upper Channel-Levee System. The seafloor and the unconformity dip towards
different directions than the channels whereas the base of the right levee of the UCLS dips
towards the same direction as the channels 108

Figure 4-9 - Detail of the mapped horizons exhibiting the nature of the picked reflection (peak or
trough). Notice that most of the horizons (1a, 3, 4, 4a, 4b, 4c, 4d and 5) correspond to a peak
reflection whereas horizons 1 and 2 are trough reflections. The base of the UCLS (horizon 4) is
a merge of the maps of the erosive basal channel and the maps of the left and right-hand
levees. The location of the section AB is presented in the TWT map of the sea floor 109

Figure 4-10 - Curves showing relation between one-way and two-way travel times and
sediment thickness in kilometres for offshore northern Brazil. Curves apply to areas beyond
shelf edge only; the green curve is applicable for the area west of 43°W (which includes the
studied area) and the red curve is applicable for area east of 43°W. Diagram adapted from
Kumar (1978) 111

Figure 5-1 - Simplified geological section of the Foz do Amazonas Basin, adapted from Silva et
al. (1999). Notice in the location map that the section is sub-parallel to the study 2D line (Fig.
5.2) and also located Northwest of the Amazon Canyon Mouth. The dashed blue line delimitates
the approximate section covered by the study 2D line shown in Figure 5.2 (calculated by using
interval velocity of 2000 m/s in the sediments and 1450 m/s in the water). Therefore, most of the
analysed sediments in the current work were deposited since the Late Miocene and correspond
to the sediments of the Amazon Fan 113

Figure 5-2 - Non-interpreted and interpreted 2D seismic line (AE) located NW of the study 3D
data cutting across the outer shelf and upper slope seen in the bathymetric map of the Amazon
Fan. a) On the shelf edge (on the segments, AB and BC) the prevailing structures are listric
normal faults 114

Figure 5-3 - Seismic section covering detail of the shelf border in the 2D seismic reflection line,
approximately the same segment BC showed in Figure 5.2a, but here it is presented with
vertical exaggeration of 2 times. At least 5 intervals of sediments (numbers) were recognized
based on stratal geometry and reflection coherence and terminations. Notice that the lower 3

xi



intervals present truncation on their boundaries which implies erosion. In interval 4 a platform
shaped feature occurs with aggradational internal reflections and borders with slope. Observe
the growth strata related to the listric normal fault and associated rollover anticline. The orange
picks (boundaries of sediment packages) correspond to the orange picks in the Figure 5.2.
Notice that the blue arrows are onlaps, orange arrows are down laps and the red arrows are
truncation 118

Figure 5-4 - Non-interpreted and interpreted detail of the 2D seismic line corresponding
approximately to the segment DE of the figure 5.2.b with vertical exaggeration (10x). This
section shows 5 stacked channel-levee systems immediately downslope from the fold and fault
belt. The 3 channel-levee systems identified also in the 3D seismic data are identified (UCLS,
MCLS and LCLS) 121

Figure 5-5 - a) Two-way-time(s) map of the unconformity. The discontinuities on the map are
due to erosion by later channels; b) Non-interpreted and interpreted cross section AB, the
unconformity is the red horizon, truncating underlying reflections on the crest of the fold. The
white arrows indicate the onlap character of the horizons above. The unconformity also
separates the upper sediment package with dominantly aggradational channel-levee systems
(C-L) from the lower sediment package with essentially erosive canyon-like channels (E) ..... 124

Figure 5-6 - Cross section AB showing a canyon-like channel C (the red arrow indicates the
base of the channel). The section is located in the two-way time map of the base of the channel.
The green and blue horizons are the base and the top of the lower package 125

Figure 5-7 - Non-interpreted and interpreted seismic sections across study area. The cross
section shows 4 thrusts and related folds and the mapped horizons: unconformity (red), base
(green) and top (blue) of the Basal Interval. Crescent-shape yellow structures are sections of
the mapped canyon-like channel. The white arrows are onlaps onto the anticlines limbs. The
two-way time maps of the base of the growth strata package and the basal horizon show the
structures and the location of the seismic section 126

Figure 5-8 - Non-interpreted and interpreted two-way-time map of the base lower package.
Notice the anticlines axes A, B, C and D are represented by black dashed lines. The anticline E
is outside the SW border of the area because the horizon could not be mapped across the
structure. A discontinuity interpreted as a tear fault is indicated by the red line 127

Figure 5-9 - Non-interpreted and interpreted seismic section across the anticlines Band D.
Notice that anticline B in this segment is asymmetric, with its back limb steeper than the
forelimb. The cross section is located on the two-way-time map of the base of the lower
package 129

Figure 5-10 - Non-interpreted and interpreted seismic section showing crestal forelimb-dipping
normal faults 130

Figure 5-11- Isochron maps with the approximate location of the anticlines (A, B, C and D) and
the high (H) at the fault bend indicated. The hot colours imply thicker intervals and the cold
colours thinner. b) lsochron map of the lower package. a) lsochron map of the middle package.
Notice that the sediment cover on the fold crests is thinner in each case. The larger thicknesses
occur upslope of the anticlines 132

Figure 5-12 - Detail of the two-way-time map of the base of the lower package showing the fault
with directional offset. The offset of the contour curve of 4.1 s is highlighted in yellow 133

Figure 5-13 - Seismic sections across the tear fault and in different positions along the fault
axis, as seen on the map of the base of the middle package. In a and c sections the hanging
walls moved downward relative to the footwall, indicating extensional behaviour. In a, a small
graben was formed. The b section is across the fault bend and cuts arched sediments showing
growth strata (highlighted in orange) and the faults bifurcate upward showing a small
minigraben characterizing extensional character in its upper half. The GH section cuts across
the anticline. In map view the fault shows strike offset, better seen on the fault bend 134

Figure 5-14 - Diagram with the trace of the tear fault (red) and the anticline B (dashed line). The
releasing segments and the restraining bend are indicative of transtension and transpression,
respectively. Notice the approximate direction of the interpreted major compressive stress axis
(c l) for the fault (red) and for the anticline (black) deformations 136
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Figure 5-15 - Non-interpreted and interpreted isochron map of the lower interval calculated
between the green and blue horizon (Fig. 5.7). This map shows the wider time interval with
major thicknesses (warm colours) coincident with the channel axes (dashed blue lines) and the
minor thicknesses (cold colours), the crests of the folds (dashed black lines, A, B, C and D) and
the top of the bathymetric high (H) at the fault bend (the same one as seen in the blue horizon
structural map). The green arrows indicate channels cutting through the anticlines. Channel 2 is
the same as that seen in figures 5.6,5.7,5.16 and 5.17 137

Figure 5-16 - Cross sections along channel 2 in the lower package. The channel exhibits an
incisional lenticular shape often with a flat top layer but sometimes with a convex upward top
layer (section AB). The thickest channel segments show an oblique stacking of cut and fill
(sections AB and EF). The channel fill exhibits trough (AB-lower cut), tabular (CD and EF) or
lateral accretion (AB-upper cut) reflections. Following the scheme of Sprague (2002), sections
EF and AB are channel complex composed of elements (i.e., each orange coloured channel
unit) 138

Figure 5-17 - a) Two-way-time map of the erosive channel 2 showing also the anticlines and
the tear fault (red); b) 3D view of the channel2 (view upstream) 139

Figure 5-18 - Non-interpreted and interpreted cross section showing the three upslope-stacked
channel-levee systems identified above the unconformity of the study area. Slope deposits and
channel-levee architectural elements were identified based on the seismic facies which were
characterized using the amplitude intensity and the terminations of reflections. The white arrows
highlight the levee reflection downlaps and the HARPs onlaps. The location of the seismic
section is shown on the structural map of the green horizon 141

Figure 5-19 - The base map of the Amazon Fan shows the study 3D data close to the Amazon
Canyon Mouth and the location of the cross section and boreholes highlighted in red. The
segment of the section covered by the Middle Levee Complex (MLC) is highlighted in green
beside the cross section trace. Notice that a downstream extrapolation of the Pleistocene
channel (blue) shown in the 3D data indicates it would be included in the MLC domain. The
MLC is highlighted in green in the cross section (Figures modified from Lopez 2001) 142

Figure 5-20 - Diagram showing four "Levee Complexes" in the Quaternary of the Amazon Fan
(Flood et aI., 1995) with respective isotopic stages. The isotopic curve of Martinson et al. (1987)
is used as a proxy for eustatic sea level (adapted from Piper et al. (1997». Notice that the
Middle Levee Complex which includes the studied channel-levee systems was deposited
approximately between 125 and 170 Ka 143

Figure 5-21 - a) Two-way time map of the unconformity (discontinuities are due to erosion by
later channels 1, 2 and 3). The unconformity is shown in the cross section AB; b) extrapolated
two-way-time map of the unconformity used for the construction of the map of the RMS of
coherence (c). The extraction of coherence attribute was in the interval from 10 ms below to 10
ms above the unconformity. Channel 1 corresponds to the basal incision of the UCLS, 2 to the
basal incision of the MCLS and 3 to LCLS. The red arrows indicate crescent-shaped borders of
the erosive base in the MCLS 146

Figure 5-22 - Basal erosive channels (highlighted in orange in the UCLS, yellow in the MCLS
and in white in the LCLS) occur in the three channel-levee systems identified in the study data.
They exhibit diverse fills with a tendency of more chaotic reflections (C) close to the bottom and
more organized reflections (0) on the top of the channel. In the erosive channel of the MCLS
(M), bank collapse toward the channel axis formed a sequence of rotated blocks delimited by
appropriately spaced normal faults. In plan-view, these rotated blocks appear with crescent
shape as seen in Fig. 5.22. Lateral accretion packets occur close to the erosive channel base of
the MCLS 147

Figure 5-23 - Seismic section AB perpendicular to the channel axis in the Lower Channel-
Levee System. The channel (C) is composed of the high amplitude reflections partially in
continuity with enclosing low amplitude reflections of the levee (L). The two horizon slices of
RMS coherence extractions, indicated in the cross section by the dashed green lines, show the
channel narrower and more sinuous upwards. The orange horizon is the basal erosive channel.
The blue arrows show the lateral continuity of a reflection from the channel fill to the levee ... 149
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Figure 5-24 - Non-interpreted and interpreted seismic section along the channel axis in the
Lower Channel-Levee System. The overlay figure exhibits sets of prograding reflections,
down laps toward downstream (green arrows), retreating (red arrows - onlaps on the channel
thalweg) and pinching out upstream 150

Figure 5-25 - Seismic section (AB) transverse to the channel axis in the Middle Channel-Levee
System (non-interpreted and interpreted). Three horizon slices produced by extracting RMS of
coherence (maps on the right) are represented by dashed lines in cross section. They show the
channel widening and reducing sinuosity upwards. The arrows in the channel (C) point out the
fill reflections onlapping the levee limbs 152

Figure 5-26 - Seismic line along the channel axis of the MCLS, outlined in yellow in the horizon
slice (150 ms below the datum - i.e., the base of the UCLS green horizon). The channel fill is
the set of the high amplitude reflections between the yellow horizon in the base and the dark
blue horizon on the top. The channel fill reflections are sub-parallel and relatively continuous
and if not sub-parallel they slightly downlap the channel base. The upstream and downstream
segments are outlined by the dashed blue line. The cross section AB shows the eroded levees
of the downstream segment. The cross section CD shows the upstream segment better
preserved but with the internal walls of the channel partially eroded, characterized by the
truncation of the levee reflections (blue arrow), seen in the cross section CD 154

Figure 5-27 - Horizon slices showing the RMS of cohence extractions in a range of 20 ms, using
the base of the UCLS right levee as datum. The sequential images show the depositional
history from the initial erosive channel base up to HARPs deposition. The number of ms shown
on the top of each image represents two-way-travel time from the slice to the datum. The
horizon slices are organized from the base to the top showing: from image 1 to 2 - avulsion of
erosive channel due to LCLS emplacement; from image 3 to 10 - downstream migration of the
transition point between erosive/graded to channel-levee. This is characterised by the transition
from multiple thread to single thread channel; from image 11 to 12 - erosion of the downstream
portion of the channel and HARPs deposition. Notice that from images 4 to 8 the MTD between
the slope and the levee backlimb is pointed out. 155

Figure 5-28 - Map of the base of the UCLS (yellow horizon in the seismic section) whose
development was confined between an upslope anticline and the downslope relief formed by
the MCLS 156

Figure 5-29 - Interpreted and non-interpreted seismic reflection sections downstream (AB) and
upstream (CD) across the Upper Channel-Levee System (UCLS). Notice the upstream channel
fill exhibits sigmoidal reflections with higher amplitude whereas the downstream channel fill
presents chaotic reflections with lower amplitude. The black and white maps are isoproportional
horizon slices between the base and the UCLS and the internal discontinuity (yellow),extracting
coherence and amplitude within a time window of 20 ms. The amplitude map show the
upstream segment of the channel with higher amplitude (dark gray) than the lower one (light
gray), which is very similar to the amplitude of the surrounding levee 159

Figure 5-30 - Right levee (looking downstream) of the Upper Channel-Levee System showing a
large slump at its' base. The slump exhibits an extensional portion characterized by a set of
normal faults and a compressional portion characterized by thrust faults. The slump initiated on
relief formed by the underlying MCLS toward the thalweg of the channel of the UCLS. The
horizon at the top of the slumped levee represents a time gap in the deposition of the system as
there is a sequence of onlap reflections above it (red arrows). The erosive surface on the top of
the slump represents a gap in the sedimentation as it is a down lap surface (blue arrow) 160

Figure 5-31 - Left-hand levee of the Upper Channel-Levee System underneath the internal
unconformity (yellow horizon). Instead of a sequence of semi-parallel downlapping reflections,
there are chaotic reflections that may indicate syn-depositional or immediately post-depositional
uplift of the levee 161

Figure 5-32 - Horizon slices exhibiting RMS amplitude extractions of the three stacked channel-
levees above the inner unconformity (yellow horizon) in the Upper Channel-Levee System. The
horizon slices were taken using a 20ms window in the mean surface between the base and the
top maps of each channel-levee (1. 2 and 3). highlighted in the seismic section. The channels
are more sinuous and clay rich upward, as there is less amplitude contrast between the channel
and the levee in the upper channel-levee (3) 162
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Figure 6-1 - Horizon slices of the LCLS where the channel parameters were measured as
shown in table 6.1. The numbers attached to each slice represent the time (ms) below the
datum (base of the UCLS) where the slices were taken. The slices are organized in sequence
from the bottom to the top of the LCLS 165

Figure 6-2 - Schematic diagram exhibiting geometrical meaning of the measures of channel
width, meander-arc height, meander length (adapted from Wood and Mize-Spanky (2009) .. 165

Figure 6-3 - Diagram showing a weak inverse correlation between sinuosity and channel width
in the LCLS 166

Figure 6-4 - Diagrams showing the average values of sinuosity and channel width obtained for
each horizon slice across the LCLS. The x-axis represents the depth in time from the datum to
the channel. 166

Figure 6-5 - Seismic section AB perpendicular to the channel axis in the Lower Channel-Levee
System (non-interpreted and interpreted). The channel (C) is composed of high amplitude
reflections partially in continuity with enclosing low amplitude reflections of the levee (L). The
two horizon slices of RMS coherence extractions, indicated in the cross section by the dashed
green lines, show the channel highlighted in yellow and bordered by the dark (blackish)
bordering levees. The channel becomes narrower and more sinuous upwards. The orange
horizon is the basal erosive channel (E). The red horizon below the LCLS is the pervasive
unconformity that occurs in the area 167

Figure 6-6 - Detail of the LCLS showing high amplitude reflections of the channel fill (C) in
lateral continuity (yellow arrows) with the low amplitude reflections of the levee (L). The seismic
section is transverse to the channel axis of the LCLS, highlighted in yellow in the horizon slice .
.................................................................................................................................................. 168

Figure 6-7 - Seismic sections cutting across the Lower Channel-Levee System. The section
along the channel axis (AB) shows the reflections of the channel fill onlapping the base of the
channel and becoming thinner upward. The other cross sections are transverse to the channel
axis and cut the channels in positions 1, 2 and 3. The yellow horizons are the boundaries
between the recognized channel-levee systems and also between the CLS and the HARPs.
The green horizon corresponds to the channel base of the LCLS. Every section is duplicated
showing the interpreted and its non-interpreted counterpart. Vertical exaggeration 8 x 169

Figure 6-8 - Non-interpreted and interpreted seismic section (AB), detail of figure 6.7. The
channel fill or the LCLS is formed by retreating sets of prograding reflections (highlighted in the
thinner green lines). Vertical exaggeration 8 x 170

Figure 6-9 - Non-interpreted and interpreted seismic section (AB) across the right levee of the
Lower Channel-Levee System approximately parallel to the channel axis. The levees of the
MCLS and the LCLS are amalgamated with the levee reflections of the MCLS downlapping on
the top of the LCLS. The levee reflections of the LCLS are onlapping upstream. The white
horizons correspond to the system and HARP boundaries. Vertical exaggeration 8 x 171

Figure 6-10 - Non-interpreted and interpreted seismic sections: A) A channel-levee system in
Indus fan (Deptuck et al., 2003). Notice the stacking of individual bodies of HARs, each one
widening upward. The top set of HARs (C-P) however are narrower than the underlying HARs.
B) LCLS with the aggradational channel composed of narrowing upward HARs 173

Figure 6-11 - The horizon slices showing the avulsion and LCLS abandonment. 1) Deeper
horizon slice, at 350 ms (TWT) below the datum. The slice shows the bifurcation but with the
left-hand branch disconnected from the parent channel. 2) Shallower horizon slice, at 280 ms
(TW) below the datum. The slice shows the avulsion of the multi-thread channel. The
abandoned LSLS is characterized by the single thread channel and levee, both of which are
identified in the figure 175

Figure 6-12 - Schematic block diagrams representing the model of upstream development of a
channel-levee and subsequent avulsion. The evolution phases of the LCLS and subsequent
avulsion are: 1) initial channel incision; 2) aggradation of the channel-levee and accretion from
downstream to upstream; 3) channel-levee onlapping the paleo slope and upward tendency of
the channel to become narrower, more sinuous and of lower gradient; 4) abandonment of the
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LCLS and avulsion. Notice that multi-thread channel (at grade) is represented at the transition
from erosional to aggradational. The view of the diagrams is upstream 177

Figure 6-13 - Three horizon slices extracted at 180, 170 and 130 ms below the datum. On the
maps, the channel is highlighted and the two segments: up and downstream. These slices
were extracted very close to each other (10 and 40 ms) and show a dramatic change in the
channel sinuosity in the portion immediately downstream from the vertical separations of the
transition between the two segments in the area, highlighted with the dashed red box 181

Figure 6-14 - Scatter chart showing the measured values of sinuosity and width in all horizon
slices upstream (preserved) and downstream (eroded) channel segment. There is no clear
correlation between these two parameters 182

Figure 6-15 - Diagrams showing the average values of sinuosity and channel width obtained for
each horizon slice across the MCLS. The x-axis represents the time underneath the datum at
which the RMS of coherence horizon slice was extracted. Therefore, the greater the time value,
the closer to the base of the channel-levee system. The upstream values (+) represent the
measurements on the non-eroded channel-levee portion (upstream segment) whereas the
downstream values (x) represent the measurements on the eroded channel-levee portion
(downstream segment). There are no measurements of the channel in the deepest horizon
slices (TWT greater than 150) because at this point there were no single-thread (aggradational)
channels formed yet, only multi-thread or erosive channels in this segment, in the deeper slices.
The transition from erosive to aggradational occurred from upstream to downstream 182

Figure 6-16 - Seismic section (AB) transverse to the channel axis in the Middle Channel-Levee
System (non-interpreted and interpreted). Three horizon slices extracting RMS of coherence
(maps on the right) are represented by dashed black lines on the interpreted cross section.
They show the channel widening and reducing sinuosity upwards. The arrows in the channel
(C) point out the fill reflections onlapping the levee limbs 183

Figure 6-17 - Seismic line along the channel axis of the MCLS, outlined in yellow in the horizon
slice (150 ms below the datum - base of the UCLS green horizon). The channel fill is the set of
the high amplitude reflections between the yellow horizon in the base and the white horizon on
the top. The reflections are sub-parallel and relatively continuous and if not sub-parallel they
slightly downlap the channel base. The area in the intermediate portion of the channel with low
amplitude reflection and delimitated by the dashed blue line corresponds to the area where the
channel gradient is thought to reduce significantly and the sinuosity of the channel increases
significantly downstream. From this area, the MCLS was strongly eroded as shown by a dashed
white horizon in the cross section AB whereas the MCLS is better upstream preserved.
Although the upstream segment of the MCLS is relatively well preserved, the internal walls of
the channel were eroded, characterized by the truncation of the levee reflections, seen in the
cross section CD 185

Figure 6-18 - Non-interpreted and interpreted section across MCLS, showing the relationship
between the channel fill and levee reflections. In upper zones of the channel the channel fill
reflections on lap the internal levee limb (yellow arrow). In the lowest zones, the same high
amplitude reflection changes laterally from high to low amplitude, from the channel fill to the
levee (white arrows). Red horizon = erosive surface truncating the levee reflections; yellow
horizon = base of aggradational channel; orange horizon = erosive channel base; and green
horizon = base of UCLS 186

Figure 6-19 - Non-interpreted and interpreted seismic section (AB) cutting across the crest of
the right levee of the Middle Channel-Levee System. The levee reflections are downlapping
upon the slope as indicated by the yellow arrows. Vertical exaggeration 8 x 187

Figure 6-20 - Two sections perpendicular to the channel axis across the downstream (AB) and
the upstream (CD) segments of the MCLS. Notice that in the downstream segment only the
lower portion of the system was preserved. The upper portion of the system was eroded (blue
arrow and white surface). In the upstream segment (CD), the levees are preserved but with
some erosion in the internal limbs (red arrow). The continuity of channel fill and levee reflections
are pointed out in the downstream segment and the lower part of the system in the upstream
segment. 188
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Figure 6-21 - Seismic section (AB) along the left-hand levee (view downstream) of the MCLS
with exaggeration of the vertical scale (-16 x). On the transition from the upstream to the
downstream segment (red dashed line) the levee thickness reduces significantly and shows an
eroded top. The horizon slice (RMS coherence) is outlined in the section with a black dashed
line. HARPs occur preferentially above the eroded levee of the downstream segment. The black
arrows in the interpreted section show the downlapping character of the MCLS and onlapping
character of the HARPs 189

Figure 6-22 - Horizon slice (200 ms below the datum) showing in planview the transition
between single-thread (yellow) and multi-thread channel. Notice the crescent shaped borders of
the erosional channel base (red). A zoomed view of the yellow area highlights the features but
without interpretation 191

Figure 6-23 - Block diagrams summarizing the evolution of the Middle Channel-Levee System.
1 - After aggradation of the LCLS and further avulsion of the parent channel, incision of the
downstream segment of the LCLS. 2 to 4 - The erosive channel started to evolve to a channel-
levee system with the transition point between single and multi-thread form migrating
downstream 193

Figure 6-24 - Two pairs of interpreted and non-interpreted sections across the channel in the
upstream and downstream segments of the MCLS. Section AB, located in the upstream
segment, shows the HARPs onlapping the base of the external levee limb and also the spill out
of the channel fill. Section CD shows top of the MCLS strongly eroded, the MTD flanking the
MCLS and the HARPs onlapping the top of the MTD and the MCLS. Notice the HARPs gently
dipping toward NINE. The base map of the section CD shows the MTD alongated from South
(upstream) to North (downstream) 194

Figure 6-25 - Block diagrams summarizing part of the evolution of the Middle Channel-Levee
System. 1 - Levee collapse and pervasive erosion of the downstream segment of the MCLS. 2
- Upstream levee collapse and slumping of MTD. 3 and 4 - Sand inundation and HARPs
formation 195

Figure 6-26 - Interpreted and non-interpreted cross section AB perpendicular to the channel
axis in the MCLS. The section shows the height difference between the channel base and the
adjacent low of approximately 50 m in 4000 m distance (very small gradient) 197

Figure 6-27 - Relationship between of submarine slope profile and equilibrium profile (adapted
from Kneller 2003) 199

Figure 6-28 - Plan view of the upstream development of the channel-levee. Notice that in the
area between the erosive and the aggradational, close to equilibrium, the channel is multi-
thread 200

Figure 6-29 - Schematic diagram of equilibrium profile adapted from Kneller (2003) for the
study case. Changes in equilibrium profile due to upstream uplift. There are two stages of slope
evolution before and after upstream uplift: the initial slope profile 1 and equilibrium profile
(E.P.1) with potential erosion E1 (orange) and accommodation A1 (orange); and the post-uplift
slope profile 2 and equilibrium profile (E.P.2) with potential erosion E2 (green) and
accommodation A2 (green). Notice that, after the uplift, the transition point migrates upstream,
from T1 to T2 200

Figure 6-30 - Schematic diagram of equilibrium profile adapted from Kneller (2003) for the study
case. Changes in equilibrium profile are due to changes in base level. If the base level moves
downward, the equilibrium profile (E.P.) also moves downward (E.P.1) forcing the transition
point between aggradational and erosive channel to migrate upstream (from T to T1). If the
base level moves upward, the equilibrium profile (E.P.) moves upward (E.P.2) forcing the
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1 INTRODUCTION

1.1 Thesis Rationale

Large submarine fans are constructed by the vertical and lateral stacking of

channel-levee systems, and associated deposits combined with variable degree

mass wasting deposits (Kolla and Coumes, 1987; Leeder, 1999; Schwenk et al.,

2005; Weimer, 1990). Submarine channels have been recognized as important

depositional elements of large submarine fan systems, allowing the conduction

of gravity flows, which carry sediments to deep basins and build up the

submarine fans (Damuth et al., 1988). Pelagic and hemipelagic sediments

deposit with relatively low deposition rates when the fan becomes inactive

during highstand (Leeder, 1999), hence they are not volumetrically important

constituents of the majority of submarine fans. The architecture of the channels

records both erosion and deposition related to gravity flows whose

characteristics (e.g. magnitude, composition, density) may vary, combined with

changes in the slope morphology induced by tectonics, channel avulsions, and

aggradation (Kneller, 2003; Pirmez et al., 2000). Channel evolution, therefore,

can provide evidence of gross submarine fan evolution through their temporal

and spatial alterations in geometry. These changes may be controlled by sea

level changes, sediment flux variations, tectonics and climate change (Flood

and Piper, 1997; Pirmez et al., 2000).

Submarine channels have economic importance in that they are a target

of hydrocarbon exploration and production (Deptuck et al., 2003; Kolla et al.,

2001; Mayall et al., 2006; Mayall and Stewart, 2000; Posamentier and Kolla,

2003; Prather, 2003). Although there have been numerous studies focused on

channel-levee architecture, the spatio-temporal evolution of slope channels and

the controls on patterns of channel distribution on slope are still not fully

understood (Clark and Cartwright, 2009).

Some studies describe an upward transition from an erosional channel

style to an aggradational channel-levee style on the slope (e.g. Deptuck et al.,

2003). Kneller (2003) suggests that theoretically channels may evolve from

being erosional to aggradational and vice versa, under the influence of changes

in flow parameters on the equilibrium profile (with channels being either
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erosional, at grade or aggradational, depending on whether the inherited profile

is above, at, or below the equilibrium profile, respectively). These authors,

however, do not show how the transitions spatially occur, i.e., the way the

channel evolves passing from erosional to aggradational along its length in a

determined time interval, and what the architectural record of this transition may

be. Moreover, channel-levee systems are normally interpreted to accrete

downstream, taking into account the upstream source of flow and their

downstream tendency of becoming thinner. However, the internal architecture

of the channel-levee systems that illustrate downstream accretion and the

upstream limit of the channel-levee (the transition to the feeder erosive

channel/canyon) are not satisfactorily described. Some questions emerge from

these observations: could an upstream accretion of the channel-levee occur? If

so, which channel-levee geometries and associated controls (flow

characteristics and changes in equilibrium profile) would account for

downstream versus upstream accretion?

Controls on patterns of channel distribution on the slope have been

commonly been associated with sea-floor relief, which in most of the cases has

a tectonic origin (Babonneau et aI., 2004; Damuth, 1994; Gee and Gawthorpe,

2006; Hodgson and Haughton, 2004; Morgan, 2004; Smith, 2004a). However,

the timing of slope deformation and the implications on channel orientation

and/or style, however, have not been described in detail (though see Clarke and

Cartwright, 2010). For instance, the channel orientation on slope can be oblique

to the main slope dip. Channel obliquity on the slope has been attributed to

structural controls (e.g. Kane, 2007) but other controls such as marine currents

and paleo-bathymetry inheritance from previous deep marine deposits should

also be considered and discussed.

The Amazon Fan has been extensively mapped using seismic-reflection

profiles, long-range side-scan sonar (GLORIA) and Sea Beam multibeam

bathymetry. This mapping has shown that it was built by a complex pattern of

submarine channel-levees and large debris flows (Damuth and Flood, 1983,

1985; Damuth et aI., 1988; Damuth et aI., 1983b; Flood and Damuth, 1987;

Flood et aI., 1991; Manley and Flood, 1988). Most of the sedimentological

studies on the Amazon Fan, however, are located downslope from the study

area which samples part of the regime of compressional structures mainly
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developed in the upper and mid slope. Therefore, the study 3D seismic data

offers an exceptional opportunity to understand the interrelationships of slope

deformation and channel evolution. The turbidite systems are additionally

extremely well imaged in seismic reflection profiles, allowing a detailed analysis

of channel-levee architecture together with their relationships to other slope
deposits.

1.2 Thesis objectives

The aim of this thesis is to characterize styles of channel-levee architectures

and the controls on their evolution. There are three specific objectives:

i) Establish an evolutionary history of slope deposition during the Quaternary,

using the upper slope of the Amazon Fan as a case history. This study includes

the investigation of the following aspects:

a) The tectono-stratigraphy of the area;

c) Characterization of channel styles;

d) The interplay between structures and channels;

e) The relationship between the channel-levees, the associated mass transport

deposit (MTD) and high amplitude reflection packets (HARPs).

ii) Identify variability in the spatia-temporal development of channel-levee

systems on slope and relate them to interpreted forcing mechanisms. This

includes the following:

a) To demonstrate how changes in the equilibrium profile might favour or not

the development of each model;

b) To interpret how the evolution of flow parameters with time (magnitude,

grain-size composition, flow efficiency) might influence the development of each

model.

iii) Identify controls on patterns of channel distribution (orientation and stacking)

on the slope, including:

a) To explain how the growing structures can affect channel styles and

orientation;

b) Elucidate why the Middle-Pleistocene channels are orientated oblique to the

main slope dip;
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c) Establish possible controls on the observed patterns of channel-levee
stacking.

In order to accomplish these objectives, a detailed analysis of a 3D

seismic data set from the upper slope of the Amazon Fan was performed.

Moreover, analysis of the seismic volume was put into the structural-

stratigraphic context of the Fan by tying the 3D data into a 2D seismic line

across the slope and by correlation with the literature.

Although the Amazon Fan is one of the best studied submarine fans in

the world, previous studies focused on areas downslope of the current study

area, where the slope gradients are small and there are only minor gravity

tectonic effects (Fig. 1.1). The study area, however, is appropriate for study

because it is located in the upper slope and not only presents very well

developed channel-levee systems but also shows gravity induced deformation.

Therefore, the analysis of this 3D seismic data allows the interpretation of the

channel-levee system evolution and a better comprehension of the interaction

between tectonics and channel-levee development, which are objectives of this
research.

The unavailability of boreholes piercing the seismic volume or that could

be reliably tied to the 2D line did not allow the direct calibration of the seismic

facies with the lithology. Therefore, the calibration of the seismic facies with the

correspondent lithofacies was indirect and based on the description of the

Quaternary package of the Amazon Fan in the Ocean Drilling Program leg 155

(Normark et al., 1997). Although there is some imprecision on the

characterisation of the lithology of each seismic facies, the geometry of the

seismic reflections and relative amplitude identified (e.g. HARs, levee

reflections, HARPs, etc) have been recognized not only in Amazon Fan but also

in many other submarine fans such as the Niger Delta, Indus, Bengal and Zaire

(Babonneau et al., 2002; Deptuck et al., 2003; Heinie and Davies, 2007;

Schwenk et al., 2005). Hence, the lack of a precise rock calibration of the

seismic reflections is interpreted to not strongly hinder the current work because

the lithological and process significance of each depositional element could be

interpreted by analogy with the literature. Ideally, an accurate calibration of the

rock characteristics would allow a better interpretation of the flow variability
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during the build up of each of the channel-levee architectures and their patterns

of accretion and this represents a limitation to the current analysis. Details of

the description of the seismic facies and lithotologic meaning are presented in
Chapter 4.
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Figure 1-1 - Location of the 3D seismic data in the Upper Amazon Fan. The map also shows
the location of the boreholes (used in ODP Leg 155), and the main surficial fan components,
e.g., channel systems, Amazon Canyon and mass transport deposits. The Amazon Channel is
the most recently active channel on the Amazon Fan (modified from Normark et aI., 1997).
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The seismic reflections located upslope or underneath the Quaternary

channel-levee systems could not be correlated to any lithologic data because

no typical geometry was identified and related to calibration examples

elsewhere. These areas, however, were not the principal focus of study, thus

they also did not significantly hinder the overall analysis in the thesis.

1.3 Thesis structure

• The thesis can be subdivided into three major sections:

I - In Chapters 2 to 4, the background related to the themes of research,

geological setting of the study area, and methods of study are presented;

II - Chapter 5 is a data chapter in which the seismic analysis and interpretations

are combined to build up an evolutionary history for the slope;

III - Chapters 7 and 8 are focused on analysis of key generic themes that

emerged from Chapter 5, and propose models and processes of channel-levee
evolution.

• Content of each chapter:

Chapter 2 "Literature review" provides a background which includes

themes of sedimentology and structural geology. The first section introduces a

review of gravity flows and deepwater depositional systems, emphasizing

submarine channel-levee systems. The second section describes the processes

of gravity tectonics, the concept of growth strata, the main folding mechanisms

and most common fold styles related to gravity-driven fold and thrust belt. A

brief review of how these tectonics may affect slope bathymetry and channel
positioning is also included.

Chapter 3 "Amazon Fan setting" presents a review of the

sedimentological and structural context of the Amazon Fan necessary for
following chapters.

Chapter 4 "Study data and methods" describes the studied data set, and

the methods used (e.g. seismic interpretation). This chapter also gives an

overview of the tectono-stratigraphic framework, outlining the mapped horizons,

and the geological implications of the main seismic facies identified.

Chapter 5 "Slope evolution in the study area" describes the local

tectono-stratigraphy, the structural framework and the different styles of
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submarine channels, emphasizing the channel-levee architectures. This chapter

provides an evolutionary model for the stacked channel-levee system of the

Middle Pleistocene in the study area.

Chapter 6 "Spatio-temporal evolution of channel-levee/architecture"

details the architectural styles of the identified channel-levee systems and

proposes two models of channel accretion on slope. Distinct controls to the

upstream and downstream models of channel-levee accretion are proposed by

relating the models to different configurations of the equilibrium profile and

changing flow parameters.

Chapter 7 "Controls on patterns of channel distribution" describes how

the channels may be oriented, distributed and stacked on slope, taking into

account controls such as the presence of tectonic structures, marine currents

and of autocyclic depositional processes (e.g. avulsion).

Chapter 8 - "Discussion" brings together the themes presented in

previous chapters, providing a broad overlook of the thesis and debates the

aspects of theories developed as a result of the detailed analysis and

interpretation. This also includes a discussion of the complete evolution of the

slope and suggestions for further work.

Chapter 9 'Conclusions' provides a summary of the conclusions of this
study.
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2 LITERATURE REVIEW

The literature review for the current research must necessarily include both

tectonic and sedimentary components of the deep-marine slope environment.

Bearing this in mind, the review is divided in four sections which include

submarine channel development, gravity-driven deformation on submarine

slopes, interaction between the channels and the deformation and final

remarks, focussing upon areas that are not yet fully understood.

2.1 Submarine channels: processes and architectures

2.1.1 Introduction

Submarine channels are the most important pathway for sediment transported

by turbidity currents from the shelf to the basin. Their dimensions and internal

architecture supply information about the gravity flow processes involved in

channel body build-up and about related submarine fan development. Their

architectures may record both erosion and deposition, with the erosional or

depositional tendency arising both from the transmission of different types of

submarine gravity flows (which may vary in volume, sediment composition and

rheology) and from changes in slope induced by regional or local structural

deformation and by channel avulsions. Moreover, submarine channel-levees

are economically important because they have been recognized as important

hydrocarbon reservoirs, and their study has applications in both exploration and

development scenarios (e.g., Beaubouef, 2004; Deptuck et al., 2003; Hickson

and Lowe, 2002; Mayall et al., 2006; Mayall and Stewart, 2000).

Research on modern submarine channel-levee systems has revealed

important insights regarding depositional processes, geometries and lateral

facies relationships, but relatively little insight regarding the vertical stacking

patterns and internal facies architecture of these deposits (Hickson and Lowe,

2002). On the other hand, outcrop studies of ancient deposits can be used to

better evaluate the facies and architecture of submarine channel-levee fill

(Cronin et al., 2000a; Hickson and Lowe, 2002; Walker, 1985). Therefore,

during recent years, the understanding of channel-levee depositional systems

has been driven by intense research on both ancient and recent/modern
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channels, using high quality 3D seismic (e.g., Abreu et al., 2003; Deptuck et al.,

2003; Deptuck et al., 2007; Gee and Gawthorpe, 2006; Klaucke et al., 1997;

Kolla et al., 2001; Mayall et al., 2006; Mayall and Stewart, 2000; Pirmez et al.,

2000) and outcrop analysis (e.g., Clark and Pickering, 1996b; Eschard et al.,

2003; Gardner et al., 2000; Kane et al., 2007; Kneller and McCaffrey, 2003;

McCaffrey et al., 2002) together with other data sources such as acoustic

imaging of sea floor side scan sonar (Hickson and Lowe, 2002; Klaucke et al.,

1997) and laboratory experiments (e.g., Kane, 2007; Kneller and Buckee, 2000;

Kneller and McCaffrey, 1999; Peakall et al., 2000).

In this section the main characteristics of submarine channels, including

geometry, sinuosity, stacking pattern and internal architecture will be discussed,

taking into account possible controls such as gravity flow processes, structural

features and slope bathymetry, with reference to both modern and subsurface
channel-levee systems.

2.1.2 Gravity flows

Types and classification

Gravity and friction are the main controlling factors on channelized flow (Clark

and Pickering, 1996b). The outcome of the interaction of these factors (further

influenced by the volume and density of suspended sediment) can lead to either

the erosion and/or additional incorporation of sediment in the flow, deposition

(such as overbank or channel fill sedimentation) or bypass without erosion.

Based on their rheology, sediment-fluid mixtures display either fluid or

plastic behaviour. In the influential classification scheme of Lowe (1979), the

associated flows are denominated fluidal and debris flow; a further subdivision

of gravity flows can be made, into turbidity currents in which the sediment is

supported by flow turbulence; fluidized flows in which the sediment is fully

supported by upward moving pore fluid; liquefied flows in which the sediment is

not fully supported but settles through the pore fluid that is displaced upward;

grain flows in which the sediment is supported by dispersive pressure arising

from particle collisions; and cohesive flows in which the sediment is supported

by cohesion (Table 2-1 and Table 2-2).

9



Table 2-1- Nomenclature of laminar sediment gravity flows based on flow rheology and particle
support mechanisms (Lowe 1979).

FLOW FLOW TYPE SEDIMENT SUPPORT
BEHAVIOUR MECHANISM

TURBIDITY FLUIO TURBULENCECURRENT

FLUID FLUIDAl
FLOW fLUIOIZED ESCAPING PORE FlU()

flOW (FUlL SUPPORT)-------
lIOUEFIED ESCAPING PORE FLU()
FLOW (PARTIAl SUPPORT)-------

PLASTIC DEBRIS GRAIN FLOW DISPERSIVE PRESSURE
(BINGHAM) fLOW

MUDFlOWOR MATRIX STRENGTH
COHESIVE DEBRIS MATRIX DENSITY
fLOW

Table 2-2 - Nomenclature f b th I0 0 armnar an ur u ent se Iment_9ravit

FLOW CHARACTER

LAMINAR I TURBULENT

LOW·DENSITY TURBIDITV CURRENT

~ (RESEDIMENTATION) •

FLUIDIZED FLOW
w

~
LIQUEFIED FLOW HIGH -DENSITY~ (RESEDIMENTATION)0

oJ TURBIDITY CURRENT...
GRAIN FLOW

FLUIDIZED FLOW

d t b I Yflows (Lowe 1979).

In fact there has been much debate around the classification of gravity

flows and related deposits (Kneller, 1995; Middleton, 1993; Mulder and

Alexander, 2001; Shanmugam, 1996). Another influential scheme (Mulder and

Alexander, 2001) is a classification of density flows based on cohesivity of

particles and particle support mechanisms, related to likely deposit

characteristics (Fig 2.1). In this scheme subaqueous density flows are divided

into cohesive flows and frictional or non-cohesive flows. Cohesive flows are

divided into debris flow and mud flows on the basis of the sediment size

distribution, whereas mud flows are subdivided into clay-rich and silty mud flow.

Non-cohesive flows are subdivided into hyperconcentrated density flows,

concentrated density flows and turbidity flows, and these are further subdivided

on the basis of duration into surges, surge-like flows and quasi-steady currents.

It is worth mentioning that flow transformations can occur with distance (down

and across flows) and with time (Fig. 2.2).
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Figure 2-2 - Changes during transformation of marine sediment flows from hyperconcentrated
density flow to concentrated density flow and then to surge-like turbidite flow (Mulder and
Alexander, 2001).

Turbidity currents

Turbidity currents are gravity flows characterized by relatively dilute mixtures of

water and sediment in which most of the particles are suspended in the flow by

upward directed turbulent eddies (Mohrig et al., 2003). They can be
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distinguished from other types, e.g. debris flows, in which sediment is dispersed

by other mechanisms (e.g. matrix strength, grain collisions, buoyancy, etc.). A

variety of lines of study have led to improvements in the understanding of the

dynamics of turbidity currents, including outcrop studies, acoustic imaging

studies of the sea floor, subsurface seismic studies, studies on the sedimentary

structures and textures preserved in turbidites, direct measurement of turbidity

flows in the laboratory, and theoretical modelling of flow and sediment-transport

mechanics for turbidity currents.

A large variety of initiation processes can trigger turbidity currents (Clark

and Pickering, 1996a; Piper and Normark, 2009), and depending on these

mechanisms, turbidity currents can be relatively short lived surges or longer-

lived sustained flows. Three principal mechanisms for turbidity current initiation

are considered: (1) sediment erosion from or partial transformation of

impulsively triggered submarine slides, slumps or debris flows; (2) direct river

underflows or hyperpycnal flows (Mulder and Syvitski, 1995b); and (3) grain-by-

grain retrogressive failure of very steep walls cut into pre-existing sand-rich

deposits. In this case, the dilative behaviour of a sand-rich deposit precludes

development of a disintegrative failure, allowing sediment to directly pass into

turbidity current without residing temporarily in a slide, slump or debris-flow

phase (Hampton, 1972; Mohrig et al., 2003).

Flow transformation from a parent debris flow into a turbidity current can

evolve in three different styles: 1} grain-by-grain erosion of sediment from the

surface of a flow and its subsequent ejection into the overlying water column

(Marr et al., 2001; Mohrig et al., 2003); 2) shearing of thin layers of parent

material from the head of a flow and its ejection into the overlying water column

(Marr et al., 2001; Mohrig et al., 2003); and 3) the turbulent mixing of ambient

water into the head of a parent flow causing dilution and local transformation to

a turbidity current (Hallworth et aI., 1993; Marr et aI., 2001; Mohrig et aI., 2003).

Turbidity flow characteristics

Many turbidity currents are unsteady surges, while others are long-lived, more

or less steady flows; both are capable of erosion or deposition (Middleton,

1993). Flows range from hundreds of meters thick, carrying many cubic kms of

sediment, to thin dilute currents. They experience drag on the upper and lower
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bounding surfaces, in contrast to open-channel flows which experience

insignificant drag on the upper surface. This dictates the position of the

maximum velocity and hence the sediment distribution within the flow (Fig. 2.3).

Based on gravity surge experiments, a typical gravity current can be divided into

three parts, head, body and tail (Middleton, 1966a, b, 1967).

wake~1- //-'-'outer __f
y ~~----"YIIJ ----Tegion------

inner re. 'on
O.5U""",,,U,,_ ._------------~~~----------------+U

body head

Figure 2-3 - Schematic diagram of the head and body of a turbidity current, showing the typical
downstream velocity profile (Kneller and Buckee. 2000)

The dynamics of the head are important, in that they may set a condition

for the current as a whole (Simpson & Britter, 1979, cited in Kneller and Buckee

2000); the head may commonly be erosive, when the rest of the current is not.

The downstream velocity within the body of the current is dependent on the

slope, and has been shown to be up to 30-40% faster than the head velocity

(Kneller and Buckee, 2000; Kneller and McCaffrey, 1999; Kneller et aI., 1997).

This is because, for the head to advance it has to displace the ambient fluid.

The ambient fluid is generally at rest and has a resistance to the flow which is

larger than the friction on the bed of the current or the upper interface with the

surrounding fluid (Middleton, 1993)_As a consequence, the head of the current

is generally thicker than the current behind the head and its height increases

with slope, as the body velocity increases and material moves more quickly into

the head (Middleton, 1993, Hopfinger and Tochon-Danguy, 1977; Britter and

Linden, 1980; Simpson, 1997 in: Kneller and Buckee, 2000).

Several studies have evaluated the development and significance of

density stratification of flows (produced by vertical gradients in suspended-

sediment concentration (Kneller and Buckee, 2000; Kneller and McCaffrey,

1999; Middleton, 1993; Peakall et al., 1998), because it is important for

understanding submarine channel process, and consequently, channel
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evolution. Turbidity currents are density stratified, e.g., there is a vertical

gradient in concentration, entailing a denser basal layer of fluid and sediment

with a less dense, portion above, although a range of patterns of concentration

are recognised (Kneller and Buckee, 2000; Peakall et al., 2000). Turbulence

intensities are highest at the top of the turbidity current, and related to large

scale shearing and mixing at the upper boundary. Low turbulence intensities

and low kinetic energy are observed around the level of the highest velocity or

the high density gradient near the base of the current (Kneller and Buckee,
2000).

2.1.3 Deep marine depositional systems

Deep marine sedimentary environments may be defined as those sedimentary

systems, which extend from the shelf break towards the basin. The largest

deep marine depositional systems occur on passive margins, which normally

have very low slope-gradients, e.g., the Mississipi and Niger systems (O'Grady

et al., 2000). The Louisiana Slope has a regional gradient of 0.50 (Pratson and

Haxby, 1996) and the Amazon Fan slope averages 0.80 in the upper fan, 0.30

in the middle fan and 0.10 in the lower fan (Damuth et al., 1988).

The primary controls on the development of deepwater depOSitional

systems are sediment supply, regional basin tectonics and sea level fluctuations

(Fig. 2.4). This implies that submarine fans reflect a wide variety of allocyclic

and autocyclic controls (Reading and Richards, 1994; Richards and Bowman,

1998; Richards et al., 1998; Stow et al., 1996). These result in a large number

of fan types, such that no Single model can be used to describe their variability

in facies, sandbody geometry, reservoir architecture and seismic Signal.

A basic assumption of depositional models in the context of sequence

stratigraphy is that sedimentation increases within deep water systems during

relative sea-level lowstands (Posamentier and Vail, 1988; Wagoner et al.,

1990). It is assumed that during periods of relative sea-level fall, there is erosion

of the exposed shelf and also the transport of sediment by fluvial systems with

deposition in deep-marine environment beyond the shelf-break, instead of

deposition on the shelf. During sea-level fall, therefore, there are enhanced

rates of deep-marine deposition, mainly increasing the sand content. Although

this assumption is widely applied (Mitchum et al., 1994), there is some evidence
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of turbidite deposition during the Holocene transgression in the Mississppi Fan

and Navy Fan (Piper and Normark, 1983a). Turbidite deposition also occurs

throughout the Holocene transgression and highstand on the Bengal Fan (Kuehl

et al., 1989; Weber et al., 1997). On the Zaire Fan, the Zaire Canyon cuts

across the shelf into the Zaire River estuary hence the canyon is connected to

the river mouth, even at the present time of high sea level. In this case, recent

turbidity currents or gravity flows within the modern Zaire Canyon-Channel have

been documented (Khripounoff et al., 2003). Thus in these cases, local

conditions such as high fluvial discharge or headward erosion of submarine

canyons promote sediment transport from the shelf into deep water even at
sea-level highstand.

Figure 2-4 - Controls on the development of deep-marine clastic systems, from Richards et al.
(1998). The deep-marine clastic systems are the product of a complex interaction between
allocyclic and autocyclic controls. They are rarely mutually exclusive but normally independent
of each other.
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In the case of the Amazon Fan, during the Holocene the sediment

brought from the Amazon River and delivered by buoyant plumes was and still

is redistributed along the South American Atlantic Shelf by marine current. Thus

the shelf transport dynamics substantially reduce shore-normal delta

progradation and further delivery to the Amazon Canyon (Nittrouer et aI., 1986).

The reconstruction of the bottom water circulation in the Southern Hemisphere

(Sykes et al., 1998) shows that since the Early Miocene there was a

Northwestward marine current along the Brazilian coast. Therefore, the build up

of the Amazon Fan (late Miocene age) may have occurred mainly during
lowstand sea level.

2.1.4 Common seismic facies within submarine slope systems

The seismic facies that commonly occur in most of slope systems are mainly

related to channel-levee systems and associated deposits such as inter-channel

lobes ("high amplitude reflection packages": HARPs) and mass transport

deposits (MTDs). The geometric configuration of the reflections in seismic

facies of channel-levee systems is presented in Weimer (1991) (Fig.2.S).

t--c;HANNEL VALLEY-I

IIEFLECTION WOUNDED
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Figure 2-5 - Line drawing of a seismic profile illustrating seismic facies of channel-levee
systems, and condensed sections, from Weimer (1991).

It is worth mentioning that the association of seismic facies with the

depositional facies is not only based on the amplitude attribute but also on the

geometry of the deposit. Channel-levee systems are large, acoustically

semitransparent, lens-shaped overbank deposits with a channel close to the

centre (Fig. 2.6). The levees are seismically characterized by low to moderate
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amplitude, continuous to discontinuous reflections, and in some cases are

completely transparent. The term high amplitude reflections (HARs) is

commonly used to describe high amplitude seismic reflections located within the

channel-belt (Oeptuck et al., 2003) (Fig. 2.6). Stacked sets of high amplitude

reflections (HARs) can mark channel axes. The HAR pattern commonly

appears to extend deep within the channel-levee system and its presence and

distribution within the levee has been used to map the evolution of the channel-

levee system (Kastens and Shor, 1986; Stelting, 1985). This facies has been

associated with sands and gravels in the channel axis which can be massive to

graded sand sequences, e.g. Mississipi and Amazon fans (Lopez, 2001;

Stelting et al., 1985).
HARs

Canyon

Canyon mouth

Channel

HARPs

Slump

Slide blocks

__he'adwall scarp

debris flow deposits

Older avulsed
system

Courtesy of Re,s et al. 2010

Figure 2-6 - Schematic diagram illustrating the main sedimentary systems and features of the
continental slope to basin floor transition. Modified after Kane (2007). The seismic sections
across the channel-levee (AB) and the MTD (CD) show some of the main seismic facies
described in the Amazon Fan: HARs, HARPs, lower amplitude, continuous to discontinuous
reflections of the levee and almost transparent facies of the MTD.
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High amplitude reflection packets (HARPs) consist of seismically high-

amplitude units composed of relatively continuous to somewhat discontinuous

reflections (Droz et aI., 2003; Flood et aI., 1991; Kenyon et aI., 1995; Pirmez et

aI., 1997; Schwenk et aI., 2003) (Fig. 2.6). The top of a HARP unit constitutes a

down lap surface for a overlying channel-levee system and its base may

conform to the underlying unit or truncate it (Droz et aI., 2003; Flood et aI.,

1991). HARPs infill relative lows located in positions inter-channel-Ievee

systems. These deposits can have thicknesses ranging from less than 20 m to

a few hundred meters; they can extend for several hundreds of kilometres

toward downslope and their width depends on the widths of the pre-existing

inter channel-levee lows (Kolla, 2007). These units are interpreted to be

deposited by unchannelized sediment-gravity flows within inter-channel-Ievee

lows during initial stages of channel avulsion and considered to be highly sand-
prone (Droz et aI., 2003; Pirmez et aI., 1997).

Debris flow units are characterized by chaotic to transparent seismic

facies. Spatially, these units take the form of widespread sheets, narrower

tongues and also part of channel fills. Table 2-3 summarizes the seismic

characteristics of the main slope depositional elements.

Table 2-3 - Main slope depositional elements of most submarine fans

Element Amplitude Reflection Element Frequent
aecmetrles comeosltlon

Channel HARs (high Sub-parallel to Vor U- Sands/g ravels
amplitude chaotic shaped
reflections)

Levee Moderate to Sub-parallellwavy Large-scale Mud/silt rich deposits
low and convergent lens-shaped
amplitude (downlapping) and channel
reflexions bordering

features
Sheet-like HARPs (high Sub-parallel Lobe or Relatively sandier, rich
deposits amplitude relatively sheet-like in mud intraclasts
between reflection continuous The top
chan nel-Ievee packets) boundary is a
systems downlap

surface
MTD (mass Moderate to Chaotic to Widespread Slump and Debris flow
transport low transparent sheets to deposits
deposits) amplitude narrower

tongues
Pelagites and High Sub-parallel and Pervasive Carbonate rich muds -
hemipelagites amplitude continuous thin condensed section

reflection reflections
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2.1.5 Canyon

Submarine canyon systems are common features of continental slopes. They

are large-scale incisions (hundreds of meters deep, up to several kilometers

wide and hundreds of kilometers long), affecting the morphology and

connecting the upper slope directly to the shelf edge (Lewis & Barnes1999;

Canals 2004; Baztan et al. 2005). They are generally narrow and V-shaped

incised in lithified rock or sediment (e.g. Zaire Canyon, described in Babonneau

et al. 2002) (Fig. 2.7) and display greater cross-sectional areas and higher axial

gradients than channels (Wynn et al., 2007).
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Figure 2-7 - Bathymetric contour map showing the morphology changes of the canyon/channel
from the Zaire River mouth to the distal lobe, from Babonneau et al. 2002.

The erosive processes involved in creating canyons have been studied

with increasing detail for several decades using marine geological and

geophysical techiniques (Mitchell, 2005; Pratson et al., 1994a; Twichell and

Roberts, 1982). Fluvial incision during sea-level lowstands may initiate canyon

growth, e.g. Trinity Canyon and others on the northern California continental

slope which have been initially incised during the lowstand associated with the

last glacial maxima (Spinelli and Field, 2001). Canyon incision due to erosional

passage of turbidity currents (Daly, 1936) has been proposed in modern
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canyons of the New Jersey continental slope (Pratson and Coakley, 1996;

Pratson et aI., 1994b). Twichell and Roberts (1982) proposed that canyons are

eroded by turbidity currents but also by retrogressive mass wasting of the slope.

Wilmington Canyon in eastern USA is an example of retrogressive slope failure

of relatively unconsolidated sediments (Pickering et al., 1989). Other possible

occurrences are canyons cut by tsunamis (Bucher, 1940), submerged glacial

valleys (Shepard, 1933) and structurally controlled canyons (Berryhill, 1981;

Kenyon et al., 1978).
Axial incision within canyons is interpreted as the erosive path related to

the passage of hyperpycnal turbidity currents, generated upslope by river

connection during sea level lowstand associated with the last glacial maximum

(Baztan et al., 2005). The widening and deepening of the canyon's major valley

is considered a consequence of the recurrent erosive activity of the axial

incision during each glacial maximum (Fig. 2.8). Some axial incisions were

described in most submarine canyons in the western part of the Gulf of Lion

(Baztan et al., 2005). These incisions have heights ranging from 40 to 150 m

and are within erosive canyon major valleys, bounded by flanks of more than

700 m in height.
Submarine canyons can be classified into two morphogenic categories:

slope confined (headless) and shelf-indenting (Twichell and Roberts, 1982).

Shelf indenting canyons are closely associated with fluvial systems. The large

distance that can occur between the river delta and the canyon at highstand

emphasizes the importance of sea level lowstands on the development of shelf-

indenting submarine canyons. Thus, fluvial down-cutting in association with

turbidity currents is often considered to be the main cause of canyon generation

(Fig. 2.8). On the other hand, slope-confined canyons require alternative

mechanisms of formation because many are located hundreds of meters below

the shelf break, and therefore, beyond the influence of lowstand shelf incision.

Causes such as retrogressive landsliding e.g. Wilmington Canyon, eastern USA

(Pickering et aI., 1989), fluid venting and tide bottom currents have been

considered (Ridente et al., 2007; Shanmugam, 2003).
Canyons are conduits of sediments captured in the shelf or slope through

a variety of mechanisms, which are not mutually exclusive. They can be fed by

sediment eroded due to submarine slides, slumps or debris flow, which may
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transform into turbidity current toward downslope (Heezen, 1952; Weaver et al.,

1992). Canyons can also be fed by direct river underflows (hyperpycnal flows)

(Mulder and Syvitski, 1995a). Rivers with extremely high sediment load can

develop continuous hyperpycnal turbidity currents when entering a body of

standing water. The Zaire Canyon is an example which transports turbidity

currents mainly generated by the hyperpycnal flow fed from the estuary of Zaire

River (Fig. 2.7). Finally, longshore currents and coastal advection of mud to

canyon heads are source of sediments captured by the canyon. There are

many examples in the Californian borderland including Hueneme, Mugu, Dume,

La Jolla, Santa Monica, Redondo and San Pedro canyons (Moore, 1965;

Normark et al., 1998; Paull et al., 2005; Piper et al., 1999).
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Figure 2-8 - Detail of seismic line showing the role of the axial incision (reproduced from Baztan
et aI., 2005). The axial incision induces instabilities in canyons through erosion. In the vicinity of
the axial incision, there are perturbed stretched sediments related to the axial incision activity.
This perturbation triggers major slumps. Those slumps have eroded a large amount of
sediments that have been subsequently transported downslope by the axial incision. Notice that
LGM is "Last glacial maximum".
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At the canyon mouth flows may spill out onto splays or terminal lobes,

with or without distributary channels (Babonneau et aI., 2002) or they may feed

into channel systems that may travel significant distances across the continental

rise and abyssal plain (Chough and Hesse, 1976; Horn et al., 1971).

2.1.6 Channels

Channels are considered by Abreu et al. (2003) to be long-term conduits for

sediment downslope, as defined also by Mutti (1977), regardless of the degree

of erosion or confinement. They were also previously defined by Mutti and

Normark (1991) as elongate depressions on the sea floor that are long-term

pathways for sediment transport. Channels and their flanking levees, are

commonly referred to as channel-levee systems (Flood and Damuth, 1987).

Deep-water channels occur on the continental slope and rise beyond the shelf

edge (typically in water depths > 100-200 m and commonly between 1 and 4

km) (Wynn et al., 2007). Channels often gradually merge upslope into canyons

and are morphologically variable (Mayall et al., 2006).

Based on the principles of the cyclicity of sequence stratigraphy (Vail,

1987), a correspondence between the dimensions of the channels and orders of

sequence boundaries was established by Mayall et al. (2006). Cycles of 3rd

order correspond to a basinwide tectonic origin, and last from 0.4 to 3 million

years; cycles of 4th order correspond to parasequence cycles that represent

high frequency glacio-eustatic or autocyclic processes lasting from 0.02 to 0.4

million years. Mayall et al. (2006) considered that the large-scale erosionally

based channels, 1-3 km wide and 50-200 m thick are 3rd order sequence

boundaries. Channels of this form correspond to the erosional fairway element

described by Deptuck (2003). These large features are filled by 4thand 5thorder

minor channels with recurring characteristics that can be used to predict the

distribution of facies inside these 3rd order channels (Fig. 2.9).

Based on studies of submarine channel architecture, Clark & Pickering

(1996) described the two end-members of a range of depositional models that

have been described and fit between erosional architecture and aggradational

(or depositional) channel models. These two end-members (erosional and

aggradational channels) are discussed and illustrated in the section 2.1.10.
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Figure 2-9 - Summary model showing the potential reservoir distribution and heterogeneity
patterns in a large 3

rd
-order erosional channel. Each channel is unique but can be interpreted by

considering: the sinuosity, the 4 main facies (basal lags, slumps, high N/G channels, channel
levee), repeated cutting and filling, stacking patterns (Mayall et al., 2006).

2.1.7 Equilibrium profile

It has been noted that in common with subaerial systems, turbidite systems

generally develop a graded profile in which the axial gradient of the system

progressively decreases, asymptotically approaching zero (e.g., Pirmez, 2000

and references therein). The concept of the equilibrium gradient embodies the

idea that the boundary conditions of the system dictate an idealised profile, and

that the system evolution from an inherited profile can be interpreted as an

attempt to develop such a profile. An important aspect of this study is the

recognition that changes in flow properties can cause changes in the

equilibrium profile of the whole system, that in turn that can affect the

architectural evolution of turbidite channel systems (Kneller, 2003). Properties

such as flow size, grain size of the transported particles and flow density are

fundamental controls on channel evolution. In the absence of external factors

such as base level and tectonics, or whether channels are erosional or

depositional depends on variations in flow properties alone (Kneller, 2003).

However, as the flow magnitude is dependent on the sediment availability, the

sediment volume delivered to deep water and the ratio of sand and mud are

strongly influenced by the base level and climate changes, flow character is

strongly related to sea level and climate (Kneller, 2003). Flow character is
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related to sea level because the distance of the shoreline to the shelf edge

impacts the sediment supply in deep water and is related to the climate

because of its influence on continental sediment supply, and the likelihood of

floods that may deliver sediment to the shelf edge, or (in the case of

hyperpycnal flows) down the slope, and hence directly to deeper levels or by

secondary remobilisation (Kneller, 2003; Mulder and Syvitski, 1995b).

In order to understand the slope physiography and how it influences

prevailing processes of erosion or deposition, it is necessary to describe what

the equilibrium profile implies for the occurrence of erosional or depositional

processes. For instance, Kneller (2003) considers that the architecture of

turbidite channels on the slope is controlled by the creation or removal of

accommodation, which is the gap between the equilibrium profile and the
inherited sediment surface (Fig. 2.10).

Flow density, flow thickness and maximum settling velocity have been

considered to be the main factors that determine flow efficiency, and hence the

ideal equilibrium profile. Discrepancies between the inherited and ideal slope

profile cause process responses that tend to bring the actual profile closer to

the equilibrium profile (Kneller, 2003).

Aggrading sedlrn.nt
surface es1abfiShes
dyna mfc base-level

Figure 2-10 - Equilibrium profile in relation to actual slope profile (modified from Samuel et al.,
2000, cited in: Kneller, 2003).

Channels aggrade if there is accommodation, which is generated by

decreasing the flow density or thickness, or increasing the grain size which

steepens the gradient. On the other hand, increasing the flow density or

thickness, or decreasing the grain size reduce the slope gradient and remove

accommodation, allowing the development of subsequent erosional channels
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(Kneller, 2003). Therefore, "at grade" channels are those at or close to the

equilibrium profile and represent a system that approximates to a steady state

condition; both aggradational and erosional channels evolve in response to

changes in flow size, density and/or grain-size. In other words, depositional

gradients vary with transported grain-size distribution, flow density

(concentration), thickness, rates of lateral flow expansion, and degree of

containment by bounding slopes (Smith, 2004b).

2.1.8 Planform evolution

Channel sinuosity is measured as the ratio between the channel axis (centre

line) length, and the overall down-channel distance for a given segment of a

channel (Wynn et al., 2007). It has been recognized that the planform patterns

of many leveed channels range from moderate to high sinuosity (Clark et al.,

1992; Damuth et al., 1988; Flood and Damuth, 1987; Posamentier and Kolla,

2003). On the basis of the seismic data of the Mississippi channel (Kastens and

Shor, 1986; Peakall et al., 2000; Stelting et al., 1985) it was suggested that the

presence of both lateral (swing) and down-system (sweep) channel drift (Fig.

2.11), coupled with aggradation, accompanies increased channel sinuosity with
time.
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Figure 2-11 - Comparison between fluvial and submarine channel evolution (from Peakall,
2000). River channels initially have approximately straight thalwegs but start increasing
amplitude by lateral translation (swing) and downstream bend translation (sweep).
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Peakall et al. (2000) proposed a three stage model of submarine channel

architecture) (Fig. 2.12). The first stage, when there is bend growth, lateral

deposition of channel thalweg deposits occurs at bend apices, i.e. development

of point bars with lateral accretion surfaces well defined.

Stage 2

Figure 2-12 - Three stages of development of submarine channel. 1) Lateral migration at bend
apices, characterized by clinoforms; 2) equilibrium phase, aggradational when the channel is
working as a bypass zone; 3) channel abandonment, fining up sequence with a cape of
hemipelagic, from Peakall et al.,(2000).

The second stage starts when the channel reaches the equilibrium

planform, with almost vertical aggradation and the channel acts only as a

bypass zone. During this stage, it is thought that lag deposits are deposited

(i.e., mud clast-rich deposits, following channel wall erosion and levee collapse)

and graded sandstone due to turbidity current deposition (Peakall et al., 2000).

The third and last stage is related to channel abandonment. The channel can be

filled by fining upward sands in response to reduction of flow strength, it can be

plugged by debris flow deposits or can be kept opened and filled with

hemipelagic material (Peakall et al., 2000). A summary of the channel evolution

model of Peakall et al. (2000) is shown in Figure 2.13. This model strictly

applies to aggradational systems as in Kneller (2003).
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Figure 2-13 - Three dimensional block showing bend evolution in a typical aggradational highly
sinuous submarine channel. After deposition of high amplitude reflection packages and levees
development the channel axis aggrades forming a continuous ribbon-like body with high vertical
and lateral connectivity, from Peakali et al. (2000).
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Based on 3D seismic data analysis, Mayall et al. (2006) show a planform

evolution of a channel that was strongly levee confined and highly

aggradational, with the sinuosity increasing along a series of lateral step-wise

shifts during its evolution (Fig. 2.14). The superimposed time maps demonstrate

a tendency of increasing the sinuosity and degree of confinement from the base

to the top. This example is in agreement with the model of planform evolution

for aggradational channels suggested by Peakall et al. (2000).

Figure 2-14 - Sinuosity due to lateral stacking of channels. Channel migrates in a series of
discrete steps, increasing the sinuosity and the confinement towards the top (from Mayall et al.,
2006).

2.1.9 Intra-channel seismic facies

A commonly described facies related to deep-water channels is that of high-

amplitude reflectors (HARs) which is thought to correspond to coarse-grained

channel-fill deposits (Damuth and Flood, 1985; Damuth et al., 1983b; Deptuck

et al., 2003; Kastens and Shor, 1985). In horizon slices, seismic facies of the

basal portions of channel-levee complexes show high-amplitude, multiple

sinuous threads (or thread-like features) or sinuous bands (Kolla et al., 2007)

(Fig. 2.15A). These features are interpreted to be due to relatively continuous
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lateral channel shifts or migrations that occurred during evolution of sinuous

loops (Kalla et al., 2007) (Fig. 2.15C). In the seismic sections, facies

corresponding to multiple-threaded channel features may be seen in the form of

off-setting, onlapping or shingled relatively discontinuous reflections (Kalla et

aI., 2007) (Fig. 2.15, cross section Y'Y). Here, channel forms are thought to

reflect channel deposition at conditions which are close to equilibrium (e.g.,
Kneller, 2003): see below.

SLICE

BLUE (
SLICE

Figure 2-15 - Two amplitude horizon slices, A and 8 of the same channel-levee system. The
blue and yellow dashed lines on the profile locate the positions of slices A and 8, respectively,
from Kalla et al. (2007). Slice A from the lower part of the system with multiple thread-like
features. Seismic section Y'Y exhibits off-setting shingled reflections, shows lateral migrations
(shifts) and some aggradation. Slice 8 from the upper part of the channel-levee system displays
a single band-like or thread-like feature. The seismic profile C exhibits significant channel fill
aggradation with some lateral migration for the upper interval. Red arrows indicate paleo-flow
directions.

In contrast to the multiple threaded and laterally shifted channels in basal

portions, fills in the upper sections channel-levee systems are mainly

aggradational with some lateral shifting (Kalla et al., 2007). Horizon slices

29



across these upper sections may normally exhibit a single sinuous channel
thread or band (Fig. 2.15B).

2.1.10 Channel types

Graded (neutral) channel

The channel is at grade where the gradient of the channel is in equilibrium with

the flows passing down it (Kneller, 2003). Strictly, this mean~ that there is no

possibility for the channel to aggrade or tendency to erode, because the

equilibrium profile remains the same with no creation of accommodation (Fig.

2.16). These channels are constrained to migrate within a plane parallel to the

equilibrium profile, analogous to the meander belt in a sinuous fluvial system

(Kneller, 2003). These channels show little or no aggradation at outcrop and in

the subsurface and the resultant sediment body is a composite sheet of coarse-

grained sediment consisting of laterally amalgamated or migrating channel

bodies (Kalla et al., 2001; Mayall and Stewart, 2000; Samuel et al., 2003).

Graded channels normally present sinuous multiple-thread or multiple-

band plan form shown in the conceptual diagram of Kneller (2003) (Fig. 2.16) or

in the seismic amplitude slice (Fig. 2.15A).

Equilibrium profile
remains the same
(channel atgracle)

2
S= _W__:s:..___

g h
Szero

(no change flow type
no change in slope)

Proflle pinned
at base-level

Cross-section

Figure 2-16 - lIustration of graded channel with generalized planform and sectional view
(Kneller, 2003).
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Erosional channels

Erosional channels are created when the flow parameters change in order to

reduce the local gradient (Fig. 2.17) because the channel floor is above the

equilibrium profile and must therefore erode down to reach it (Kneller, 2003).

2
S=_W_s __

g h

2. New equilibrium profile
(higher efficiency,
larger/muddier/more dense
flows)

1.Original equilibrium
profile (lower efficiency,
smaller/sandier/less dense
flows)

S negative
(change to more energetic flows
gentler slope)

Profile pinned
at base-level

_~ie-~~L _

Cross-section

Figure 2-17 - Ilustration of erosional channel with generalized planform and sectional view
(reproduced from Kneller, 2003),

Erosional channels occur commonly with low sinuosity and in steep

slopes (Clark et al., 1992). These channels often present erosional architectural

elements such as scours, cut-downs and deposition of residual facies. Such

channels commonly show low sinuosity and internally have a braiding pattern

resulting from the development of channel bars (Fig. 2.18). Levees commonly

are not well developed, on the contrary, they hardly form and are frequently not

preserved, because of the coarse grained nature of the transported sediment.

The lack of levees is thought to be related to frequent lateral channel migration

and thus to high connectivity of channel facies deposits (Clark and Pickering,
1996a).
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intra channel
mounds small levees

Channel talweg
channel terraces

second-order
channel elements

Low sinuosity

Figure 2-18 -Architectural model for erosional submarine channel complex (from Clark and
Pickering, 1996a).

Aggradational or depositional channel model

Channels aggrade when the equilibrium profile steepens, generating

accommodation due to change in flow parameters, resulting from the channel

floor being below the equilibrium profile (Fig. 2.19).

Channel-levee systems are common depositional elements in slope and

basin-floor environments. Contrasting with erosional channels, aggradational

channels are associated with highly sinuous channels and gentler slopes (Clark

et al., 1992). These channels mainly transport finer grained sediment, which

aids sediment suspension in turbidity currents and are related to fans

associated with larger drainage basins, such as the Amazon, Mississippi and

Indus channels (Clark and Pickering, 1996a). The Amazon River, for instance,

is an important source of fine grain sediment to the fan. The river has an annual

sediment discharge of about 1.2 x 109 tons (Milliman and Meade, 1983) with

85% to 95% of the suspended sediment composed of mud (silt and Clay)

(Meade et al., 1985) under present highstand conditions. Aggradational

channels normally present sinuous single-thread or single-band plan forms
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(e.g., Peakall et al., 2000) as shown in the conceptual diagram of Kneller (2003)

(Fig. 2.19) or in the seismic amplitude slice of Figure 2-158.

Clark & Pickering (1996a) believe that deposition in the channel axis (i.e.,

channel lag deposits) occurs contemporaneously with deposition of levees,

leading to the vertical aggradation of the channel-levee complex (Fig. 2.20). The

generally stable nature of the levee causes the channel to grow vertically. In

these systems, the aggradation of large channel-levee complexes is related to

avulsion of earlier channels forming discontinuous channel-body deposits.

1.0riglnal equilibrium
profile (higher effICiency,
larger/muddier/more dense
flows)

Planform

2
S=_W_s __

g h
2.New equilibrium
profile (lower effidency.
smaller/sandier/ie.!ls
dense flows)

Spositiva
(change to less energetic flows
steeper slope)

Profile pinned
at base-level

_~!.e:!.~L _

Cross--section

Figure 2-19 -Architectural model for aggradational with generalized planform and sectional
views (from Kneller, 2003).

Leveed channels can range in width from 3 km to less than 250 m and in

sinuosity between 1.2 and 2.2 (Posamentier and Kolla, 2003). Many leveed

channels show evidence of having grown by lateral and down system migration,

whereas other channels seem to have remained fixed in one location through

large periods and are characterized by vertical stacking.
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moundelements intrachannel
at channelbends slump

High sinuosity
Figure 2-20 - Architectural model for aggradational (depositional) submarine channels (Clark
and Pickering, 1996a).

2.1.11 Channel stacking

The stacking pattern of submarine channels is formed from the interaction

between lateral and vertical amalgamation that occurs during the growth of the

channel system. This pattern has a strong influence on the interconnectivity of
the channel body fills.

Autocyclic channel stacking is strongly related to channel type (Fig.

2.21). For instance, the development of levees in mud rich systems will strongly

favour the occurrence of vertical aggradation, whereas in sand rich systems

there is a high probability that lateral migration patterns will develop due to

effective absence of mud-rich levees (Clark and Pickering, 1996a).

This association between the net to gross and the amalgamationllateral

migration of the channels has been described by some authors, i.e. the greater

the net to gross, the higher the degree of amalgamation of the channel

complex, (e.g., Mayall et al., 2006). Moreover, the channel stacking pattern is

also dependent of the rate of sediment deposition.
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Figure 2-21 - Stacking pattern models of submarine channels related to confinement degree,
channel dimensions (width/depth ratio), rate of deposition, aggradation and sinuosity (from
Clark and Pickering, 1996a).
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Analyzing erosionaly confined systems, Mayall et al. (2006) interpreted

vertical stacking to be the result of focusing cutting and filling with strong

differential compaction of the enclosing mud-rich rocks, and that lateral stacking

occurs commonly with systematic stacking in one direction or alternating on

both sides of the preexisting channel (Fig. 2.22). Additionally, the stacking

pattern can change along the channel length over short distances. According to

Mayall et al. (2006), although this is a common occurrence along the channel

length, the cause of variations in stacking pattern is difficult to determine and

can be related to local subtle changes in sea-floor relief and/or subsidence.

Figure 2-22 - Rapid change in stacking pattern style over short distances within a large
erosional confining channel (yellow pick). Map is an RMS amplitude extraction over 30 ms
window in the middle of the channel fill (from Mayall et aI., 2006). Line 1 shows mostly lateral
stacking in different directions, line 2 shows strong vertical stacking, line 3 shows lateral
stacking in one direction, line 4 shows return to lateral stacking in different directions.

2.1.12 Channel hierarchy

Sprague et al. (2002) proposed a hierarchical scheme that could be applied to

seismic-reflection profiles and on some large outcrops (Fig. 2.23). This

classification is applied to confined channels, from a single channel element, to

a complex of elements, to a complex set of elements, and finally to a complex

system. Another classification was proposed by Abreu et al. (2003) (Fig. 2.23).

They defined channel fills as the result of a single cycle of channel cutting,

filling, avulsion or abandonment, channel complexes as the product of two or
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more channel-fills with similar architectural style; channel complex sets as two

or more channel complexes each bounded at the base by a basinward shift in

facies and at the top by a surface of abandonment, and a channel complex

system as comprising genetically related, stacked channel complex sets.

Sprague et al. 2002 Abreu et al. 2003

Confined channel system Confined channel system

Channel complex set

Channel complex

High-conunlraUon turbiditea

Figure 2-23 - Hierarchy of confined channels as proposed by and Sprague et al. (2002) and
Abreu et aJ.(2003) (from Abreu et al., 2003).

In order to establish the hierarchy of occurrences of channels,

distinguishing individual channels from channel complexes, Deptuck et al.

(2003) suggest that a channel-levee system is a single channel belt bordered by

outer levees and a channel-levee complex is a sequence of stacked channel-

levee systems connected to the same canyon. Incision of a new canyon,

therefore, results in the deposition of a new channel-levee complex. Similar

nomenclature is used in the Amazon Fan in the ODP Leg 155 Proceedings, but

instead of being called a channel-levee complex, a group of channel-levee

systems connected to the same canyon is called a levee complex (Flood and
Piper, 1997).

In this thesis, channels and their bordering levees are named 'channel-

levee systems' (Flood and Damuth, 1987; Wynn et al., 2007). The system can

be composed of one channel-levee element or of many stacked elements. In
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order to be in agreement with the terminology used in previous works on the

Amazon Fan and to fit the studied channel-levee systems with the stratigraphy

proposed for the area, the present study uses the same nomenclature

described in Damuth et al. (1988) and Manley and Flood (1988). This

nomenclature grouped the channel-levee systems into "Levee-Complexes"

which occupy distinct areas in the fan and are thought to have evolved during

sea-level fall and relative lowstand of a single glacial period. The levee

complexes are separated from each other by hemipelagites which represent

interglacial highstand of sea level (Flood and Piper, 1997). The channels and

associated levees studied in this thesis are part of only one such ""Levee

Complex" described in the literature. More details about the studied channel-

levee systems with regard to the Quaternary stratigraphy of Amazon Fan are

described in Chapter 3 (Amazon Fan Setting).

2.1.13 Submarine channels and fluvial systems

The differences or similarities between submarine channel and fluvial channel

evolutions are controversial subjects. Previous workers have drawn some

comparisons between submarine channels and fluvial systems because

sinuous channels in both fluvial and deep-water systems are similar in planform.

Moreover, turbidite slope channels have been also considered analogous to

fluvial channels in that they tend towards equilibrium profiles (Kneller, 2003).

Several workers have shown that the morphological characteristics of deep-

water sinuous channel such as sinuosity, radius of curvature, meander

wavelength, amplitude, avulsions and cutoffs, are similar to those of fluvial

channels (Clark et al., 1992; Flood and Damuth, 1987; Pirmez, 1994).

Fluvial-style inner-bend deposits within submarine channels had been

identified not only in subsurface examples but also in modern examples

(Klaucke and Hesse, 1996; Schwenk et al., 2003) and in outcrop analogues

(Arnott, 2007; Martinsen et al., 2003). Posamentier identified features of

meander loops migrating downstream (Fig. 2.24) and isolated examples of

meander loop cutoffs and oxbows (Fig. 2.25) very similar to those described in

fluvial systems based on analysis of seismic data from Gulf of Mexico.
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Figure 2-24 - Meander loop expansion (swing) and meander loop down-system migration
(sweep). Yellow represents the oldest position and the purple the youngest position in the
channel evolution.

Figure 2-25 - Detail of meander loop cutoffs and oxbows of the Joshua channel, Gulf of Mexico
(from Posamentier, 2003).
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Abreu et al. (2003) stated that the Miocene turbidite channels of offshore

Angola showed lateral accretion revealing a channel-fill style very similar to that

of meandering rivers (Fig. 2.26). Additionally, reflectors dipping into the channel

from the inside of meander bends resembling fluvial lateral accretion surfaces

were identified in seismic data showing a highly sinuous channel (Mayall and

Stewart, 2000). This suggests that there was deposition in the inner side of the

bend and erosion on the outer side of the bend during lateral and downdip

migration of the channel, as in fluvial point bars. Although lateral accretion was

described as a relatively rare occurrence in submarine channels, Mayall et al.

(2006) also documented it in seismic data (Fig. 2.27). Additionally, the studied

channels showed strong lateral and downdip migration and frequent cut-off of
meanders (Abreu et al., 2003).

PO n BAR
Rt:X;f sw.u..c

c

Ditectlon of latera], rrugration

Figure 2-26 - Illustration extracted from Abreu et al. (2003), showing the similarity between
fluvial point bar and lateral accretion packages (LAP) developed on the inner bank of submarine
channel bends. (a) Fluvial point-bar model. (b) Cross section view of a LAP in a sinuous
erosionally confined channel. (c) Depositional model proposed for LAPs. It was proposed, like
the classic point-bar model that the accretion surfaces are formed by lateral sweep of the
channel bends by erosion of the outer banks and deposition on the inner banks.
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Both fluvial and depwater channel systems show channel shifting and

sinuosity increase interpreted to result from interaction of flows, sediments and

alluvial plain or seafloor gradients in attempts to build equilibrium profiles over a

period of time (Kolla et aI., 2007).

Figure 2-27 - RMS amplitude extraction map and the section indicated. Channels accrete
laterally with dipping reflectors and erosional termination of older reflectors on the outer bend of
the channel is indicated (from Mayall et al., 2006).

The fact that the channel can be wider at the bends than along straight

sections suggests in the case of the Zaire Submarine Channel that highest

rates of erosion on the outer edge of the meander due to centrifugal force

(Babonneau et al., 2002). This outer bank erosion together with deceleration on

the inner bank could explain the formation of depositional structures like lateral

accretion. However, the higher resolution side-scan sonar images (compared to

seismic) showed that inner-bend deposits of the Zaire Channel, which resemble

point bars, are actually terraced rather than lateral accretion deposits (Fig.

2.28). The erosion at the channel edge of the terraces may create inclined

surfaces dipping into the channel which could also resemble the "shingled

reflection packages" of Abreu et al. (2003).

Clark & Pickering (1996a) considered the four main differences between

fluvial and submarine channel flows: 1) Flows in rivers only exceed the levees in

flood conditions whereas in turbidity currents they commonly exceed the height

of the channel levees. 2) In rivers there is no incorporation of the overlying fluid

(air) into the flow, whereas this process is inherent to submarine turbidity

currents. 3) Most fluvial channels have continuous flow conditions, but
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submarine flows are ephemeral. 4) In submarine channels, flow-stripping is a

usual occurrence at channel bends whereas in rivers it is not so common.

N Terraces
(8abonneau et al. 2002) s

A)
4200 ms

4400

4600

8)

Figure 2-28 - A) Terraces in the Zaire Channel 8abonneau et al. (2002) and 8) Lateral
accretion sets in the inner bend (from Abreu et al. 2003).

Among the comparisons between fluvial and submarine channels that

have been done taking into account the sinuosity of the channels and their

evolution, Peakall et al. (2000) stated that submarine channels undergo much

slower bend growth than alluvial rivers and may reach planform equilibrium, in

contrast to meandering rivers, where bends progressively migrate downstream.

Apparently, submarine channels are less susceptible to sweep and have a

greater tendency to aggrade after reaching equilibrium than fluvial channels

(Peakall et al., 2000). There are also some morphological differences (Pirmez,

1994; Pirmez et al., 1997), in deepwater systems channel width and depth

decrease downstream in contrast with fluvial systems where the opposite

occurs (Flood and Damuth, 1987; Posamentier and Kolla, 2003). In addition, the

degree of agradation is much higher in submarine channels than in fluvial

systems (Kastens and Shor, 1986; Kolla et al., 2001; Posamentier and Kolla,

2003; Stelting et al., 1985). Moreover, seismic analysis of Tertiary sinuous

channels on offshore Angola (Kolla et al., 2001) suggests that high sinuosity in
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deepwater channels generally developed through repeated channel aggradation
and subsequent lateral migration.

A new intra-channel architectural element was identified in the same 3D

seismic data of the Amazon Fan used in this thesis, and considered unique to

submarine sinuous channels: outer-bank bars (Nakajima et aI., 2009) (Fig.

2.29). In contrast to fluvial point bars, this architectural element is characterized

by 1-20° inward-dipping accumulations due to outer-bank accretion at channel

bends. These outer-bank bars may in some cases be continuous with point bars

along channel profile. They are interpreted as having been formed as a result of

a combination of enhanced deposition on the outsides of bends by flow

superelevation (i.e., >5x confinement depth: Kane et al. (2008)) and strongly

the aggradationaldepositional flows caused by flow volume reduction during

periods of channel development (Nakajima et aI., 2009).

.»:a)

b)
X

Outer bank Bars
- - - - Turbidily CurrentTop- - - - .........-- ---- - - __ .!_nnerle'!jte_ Low.c -- __ - - - - _ y- _- ...... _--

Inner Bank Outer Bank

Figure 2-29 - Conceptual model of the geometry of the outer bank bars extracted from
Nakajima et al. (2009): A) in 3D perspective; 8) in cross section. Flow direction within the
channel is perpendicular to the section away from the observer.

In summary, the main difference between fluvial and deep-water

channels in terms of their internal architectures and spatial patterns of evolution

(lateral migration vs. aggradation) can be interpreted to be caused by

differences in density contrasts of the channelized flows relative to the ambient
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fluid, together with flow frequency, volume and duration, and mode of sediment

transport (Kolla et al., 2007). Sea level changes can affect the equilibrium

profile in the case of fluvial systems because it constitues the base level for the

system. Within deep water systems, sea level changes can affect flow

parameters and grain size, indirectly controlling the equilibrium gradient (and

hence system responses to non equilibrium conditions) via the flow efficiency.

2.1.14 Levees

The occurrence and properties of levees related to deepwater channels are

relatively well documented in modern submarine fans e.g. Mississippi (Garrison

et al., 1982; Kastens and Shor, 1986; Prior et al., 1983) and the Amazon

(Damuth et al., 1988; Piper and Deptuck, 1997). Levees are the deposits

laterally bounding submarine channels built by deposition from turbidity currents

that spill out of the channel (Skene et al., 2002). Levee-overbank construction

is mainly associated with aggradational deepwater channels. Such levees are

an order of magnitude or more wider than their associated channels

(Posamentier and Kolla, 2003).

Based on previous work, Peakall et al. (2000) described three types of

overbank flows:

1) Inertial overspill is described as the overbank flow across the outer

levee of a channel bend due to greater curvature of the outer bank than the

channel axis (Hay, 1987) (Fig. 2.30). Flow stripping was defined as the splitting

of the turbidite flow at tight bends in a channel where the upper part of the flow,

above the levee crest, does not follow the lower channelized portion of the flow

through the bend but goes on in the pre-bend direction (Peakall et al., 2000;

Piper and Normark, 1983b) (Fig. 2.31). Hence, the difference between the two

processes is that in the case of the flow stripping only the upper part of the flow

spills out whereas in the inertial overspill, the entire flow may leave the channel.

Lab studies have shown that overbank flow can not only build thicker but also

coarser and steeper levees on the outer banks relative to the inner banks of the

bends (Straub et al., 2008).

2) Continuous overspill is the process described in the literature that can

account for the levee growth along the entire channel extension, including the

inner bends, bend inflection points and straight channel segment (Hiscott et al.,
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1997; Peakall et aI., 2000) (Fig. 2.32). Continuous overspill occurs when there

is equilibrium between sediment losses, entrainment of ambient fluid and

variation in channel depth or channel cross-sectional area (Hesse, 1995) (Fig.

2.32). The process of continuous overspill, however, does not explain the

occurrence of levee asymmetry over extended channel reaches in which one

levee is larger than the other (see "levee asymmetry" below).

levee crest Channel axis

I

Figure 2-30 - Schematic diagram showing the process of inertial overspill. If curvature degree
of the outer bend is higher than the inner one, the entire flow leaves the channel and becomes
unconfined. Diagram adapted from Kane (2007).

Figure 2-31 - Schematic diagram showing the process of flow stripping. The flow splits into two
parts with the spilling out part forming overbank deposits mainly on the outerbank side. Due to a
loss of momentum with the overbank spill, there is deposition of channel fill downstream just
after the bend. Diagram adapted from Kane (2007).
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Figure 2-32 - Schematic diagram showing the process of continuous overspill. Diagram
adapted from Kane (2007).

Morphology

Levee height above the channel floor can be highly variable along the course of

the channel, and may vary in height by as much as a factor of two from the

inner to outer bends of a given channel (Posamentier and Kolla, 2003). Levees

commonly diminish in height from their landward to seaward reaches (Fig.

2.33), because as flow travels farther down-system, the flow becomes

impoverished of its original mud content by flowstripping and general overbank

spillover (Hiscott et al., 1997). Levee thickness in highly aggradational systems

can be as high as 120-160 m (Posamentier and Kolla, 2003), whereas in highly

erosional systems, they can be absent and then channelized flow can be

completely confined by erosional walls of the channel (or canyon). Some levees

are characterized by extensive sediment-wave development (Fig. 2.34). Typical

dimensions of overbank-related sediment waves as illustrated are up to 20 m

high with wavelengths of 0.5 to 0.8 km (Posamentier and Kolla, 2003). These

waves are deposited by turbidity flows escaping the confinement of the leveeed

channel by the process of flowstripping toward outer bends of channels due to

superelevation of turbidity flow resulting from centrifugal forces (Piper and

Normark, 1983a). Figure 2.34 shows the wave crests and troughs in a sediment

wave field. The trends of the sediment-wave crests and troughs are subparallel

to the adjacent channel bends (Posamentier and Kolla, 2003). These features

form in response to spillover and flowstripping from channels of the

predominantly dilute to fine-grained upper part of turbidity flows (Migeon et al.,

2000; Normark et al., 1980; Piper and Normark, 1983a).
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Seismically, levees are characterized by low to moderate amplitude,

continuous to discontinuous reflections, and in some instances are completely
transparent (Figs. 2.33 and 2.34).

DO~
Seaward

-five km U Outsrde Bend t Imide Bend

Figure 2-33 - Seismic section along the levee crest. The levee seismic facies is characterized
by low amplitude discontinuous seismic reflections. Overall, the seismic thickness decreases
down system (from Posamentier and Kolla, 2003)

x
X'

Overbank Sediment
Waves

one km

Figure 2-34 - Seismic section oriented normal to a sediment wave field, offshore eastern
Borneo, Indonesia. Sediment waves are observed within as well as at the top of the levee
wedge (from Posamentier and Kolla, 2003).
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In the absence of contemporaneous deposition within the channel, levee

deposition increases the local channel depth making the subsequent overbank

flow less likely (Skene et al., 2002). There is some evidence showing that levee

and channel-fill/overbank deposits are not products of the same turbidity current

event, so that levee development is not temporally related to the channel-fill

episode (Cronin et al., 2000b). Part of this evidence is based on continuous

outcrop analysis showing the temporal/spatial relation between the facies.

Although the Ieeves are spatially related to the channel, they are temporally not

related. The channel incision is later. This implies that the presence of a

channel should not lead necessarily to the occurrence of a levee. In the case of

sand rich turbidite systems, the levees may represent periods of low sediment

input in such a way that they can be important stratigraphic markers, possibly

associated with relative sea level changes (Cronin et al., 2000b). In these

outcrops, the overbank deposits are constituted by fine-medium sandstone that

onlap the levee border and are time related to the channel fill (Fig. 2.35).

Figure 2-35 - Crass-section through the Tinker Channel (from Cranin et al., 2000b): a)
Photomosaic of the Tinker Channel; b) line-drawing of the Tinker Channel including time lines:
reconstruction of the temporal and spatial associations in the Tinker Channel.
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Some authors subdivide the levees in outer and inner, based on seismic

data features (Fig. 2.36). Outer or master levees are deposited by flows

overspilling the main channel, while the less common inner or secondary levees

are related to local flow overspill from flows confined within a larger channel

complex (Deptuck et al., 2003; Kolla et al., 2007; Posamentier and Kolla, 2003).

This distinction between inner and outer levee is important because the inner

levees may be sinuous as they track a sinuous channel thalweg but

outer/master levees may be not so sinuous (Kane et al., 2007). The channel

thalweg may meander within a wider channel belt bounded by the master

bounding levees (Posamentier, 2003). Therefore, master bounding levees may

be much less sinuous than the levees of an individual channel-levee system as

they do not follow a particular channel but are the product of overspill from

channels or channel-levee systems meandering within the wider channel belt
(Deptuck et al., 2003; Posamentier, 2003).

TWT(s)
2.

s

D-C HAAs Erosional
Channel-forms Terrace

Figure 2-36 - Uninterpreted and interpreted cross section in a channel-levee system in the
Indus Fan (from Oeptuck et al., 2003). Notice the inner and outer levee and the high amplitude
reflections (HARs) of the channel fill.
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Levee asymmetry

Levees of the subsurface Joshua channel in the Gulf of Mexico, imaged from

seismic data, show meaningful height differences between the outer and inner

banks, reaching approximately 8 and 2 m in height respectively (Posamentier,

2003) (Fig. 2.37). This observation supports the hypothesis that flow stripping
prevails at outer-bends (Piper and Normark, 1983b).

Figure 2-37 - Three-dimensional image of the sinuous Joshua Channel (Gulf of Mexico) derived
from seismic data. The outer-levees are systematically higher than the inner levees
(approximately 8 m and 2 m respectively). The convex-up channel fill is approximately 625 m
wide. Figure modified after Posamentier (2003)

Levee asymmetry has been identified in other submarine channels, e.g.,

the Northwest Atlantic Mid-Ocean Channel (NAMOC) (Klaucke et al., 1997), the

Danube Deep-Sea Fan (Popescu et al., 2001) (Fig. 2.38), the Bengal Fan

(Emmel and Curray, 1981) and. the Indus Fan (Kalla and Coumes, 1987). In all

these deep-sea systems, the right-hand levees (looking downstream) are much

higher than the left ones along the entire channel. These authors attributed this

levee asymmetry as an effect of the Coriolis force acting on the flow overspill

along the channel systematically causing overbank deposition preferentially on

the right side, if the channel is located in North Hemisphere. Thus, in contrast
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with fluvial systems (in which Corio lis force effects are negligible compared with

centrifugal forcings), in submarine systems both forces may be important

affecting overbank flow and deposition (Imran et al., 1999; Kolla et al., 2001). In

the northern hemisphere Coriolis and centrifugal forces reinforce each other in

left turning meander bends and oppose each other in right turning meander

bends (this is reversed in the southern hemisphere) (Klaucke et al., 1997).

Some of the submarine fans which present asymmetrical levees are located in

relatively high latitudes such as NAMOC (50 - 60° N) and Danube Deep-Sea

Fan (43 - 44° N), and others in relatively lower latitude such as Indus Fan (24 _

15° N) and Bengal Fan (20 - 5° N). An example in the Southern Hemisphere, in

the middle fan channels of Wilkes Land, Antartica, the left-side channel levee is

higher than the right-side levee indicating higher rates of overbank deposition in

that direction (Escutia et al., 2000), consistent with Southern Hemisphere

Coriolis forcing of sediment gravity flows to the left.

sw lOkm

Figure 2-38 - Seismic reflection line across a channel in Danube Deep-Sea Fan showing strong
levee asymmetry attributed to the influence of Corio lis Force. The larger left-hand levee is
viewed looking up-channel in this section. Image obtained from Popescu et al. (2001).

On the contrary, in the Zaire Fan, the channel-levees are relatively small

and very symmetrical (Migeon, 2004). This symmetry can be attributed to the

small influence of the Coriolis force on the overbank flow close to Equador (5 _

7° S) (Wynn et al., 2007).
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2.2 Gravity tectonics

2.2.1 Introduction

The majority of studies and models concerning turbidity current behaviour,

channel evolution and submarine fan build-up have essentially considered

unconfined deposition, resulting in fan-shaped deposits (e.g.,Bouma et al.,

1985; Damuth and Normark, 1991; Flood et al., 1991; Kalla, 2007; Normark et

al., 1997; Pirmez et aI., 1997). Nevertheless, numerous studies have shown

that, in many basins, sediment dispersal patterns and depositional geometries

have been affected by the sea floor topography (e.g., Morgan, 2004; Smith,

2004a; Smith, 2004b). Tectonic activity has an important role in the creation of

basin-floor relief, as it can affect the shelf width, slope gradients, position of

canyon incisions, and can trigger mass failure in the shelf margin and slope. It

can also be responsible for dictating the distribution pathways of turbidity
currents and related flows.

In passive margins, gravity tectonics commonly causes the formation of a

zone of extension near the shelf edge and another of compression near the

base/toe of the slope (Cobbold et aI., 2004; Damuth, 1994; Morgan, 2004; Silva

et aI., 1999). The listric faults of the extensional domain and the folds and

thrusts of the compressional domain are rooted on the same detachment

surface, which could be induced by a layer of weak salt or overpressured and/or

undercompacted shales due to fast burial (Cobbold et al., 2004; Rowan et al.,
2004).

Deepwater fold and thrust belts are formed by a variety of shortening

mechanisms, including thrusting, folding and - where mobile salt or mud are

present - in diapir development and salt/mud nappe extrusion. In passive

margins, examples of deepwater fold belts with detachment on salt layers

include the Missisippi Fan and Perdido fold belts of the northern Gulf of Mexico;

the fold belts of the Campos, Santos, and Espirito Santo Basins in Brazil; fold

belts of Benguela, Kwanza, Congo, Gabon, and Rio Muni Basins in West Africa

and many others (Rowan et al., 2004). Examples of fold belts connected to a

detachment surface on overpressured shales include the Mexican Ridges and

Port Isabel fold belts of the western Gulf of Mexico; fold belts in Sergipe-

Alagoas, Para-Maranhao and Foz do Amazonas Basins of Brazil; and fold belts
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in the Niger Delta (Damuth, 1994; Reis et al., 2010; Rowan et al., 2004; Sultan

et al., 2007; Zalan, 2004).

Development of gravitational fold-thrust belts at the front of deltas of

large rivers is common, due to the instability generated by the large amount of

sediments piled up at the edge of continental margins combined with seaward

tilting due to thermal flexural bending (Zalan, 2004). Significant amounts of

sediment can slide down-slope over a ductile lithology, detaching the upper

rocks from the autochtonous rocks underneath. When the gradient of the

detachment surface decreases, or a physical barrier is encountered, the

resulting contraction/compression generates the fold-thrust belt. The failure

occurs when the vertical stresses due to overburden are weakened relative to

horizontal stresses due to overpressured shales or ductile flow in salt. Thus the

gravity tectonic process generates three domains of deformation linked by the

detachment surface: extensional, translational and compressional (Fig. 2.39).

The dimensions of the three domains can vary significantly. In practice it can

be difficult to balance the compressional deformation downdip with the amount

of extension updip, because of the amount of deformation that is not resolvable

by seismic data (lalan, 2004).

Shale-detached, gravitational fold and thrust belts in areas of high

sedimentation and deformation rates (e.g., the Amazon Cone) may develop

intense folding, mainly expressed as detachment and fault-propagation folding

(Zalan, 2004). These structures commonly have very high structural relief and

can reach the sea floor. Gravitational fold-thrust belts in passive margins where

low rates of sedimentation/deformation prevail show fault-bend folding in the

more external parts passing landwards through zones of fault-propagation

folding and to detachment folding landwards. Important oil discoveries have

been achieved in these compressional provinces in the deep waters of the Gulf

of Mexico, Nigeria, Angola and Brazil (Corredor et al., 2005; Morgan, 2004;

Zalan,2004).

The objective of this review is to better understand the capability of

tectonic activity to affect slope geomorphology in passive margins, which in turn

may control channel-levee development. To achieve this aim this literature

review focuses mainly on the mechanisms and causes of fold belt formation

where the detachment is guided on overpressured shales, as this is inferred to
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be the principal deformation mechanism in the Foz do Amazonas Basin, the

area of study.
EXTENSIONAL COMPRESSIONAL

Figure 2-39 - Seismic section from Para-Maranhao Basin, Brazilian continental margin,
adapted from Zalan (2004): A - The major components extensional-compressional system,
extensional, translational and compressional linked by a detachment surface. B - Detail of the
fold and thrust belt formed in the compressional area highlighting pre and syntectonic bedding.

2.2.2 Driving mechanisms of gravity tectonics

The importance of gravity tectonics on the origin of growing faults in deltaic

areas has been described in, amongst others, the US Gulf Coast Province and

the Niger and Mississippi deltas (e.g., Cobbold et al., 2004; Crans et al., 1980;

Damuth, 1994; Galloway, 1986; Morgan, 2004; Rowan et al., 2004; Silva et al.,

1999). Many passive margins have deepwater, contractional fold belts formed

above a basal layer of ductile material, such as salt or over-pressured shale. In

this case, fluid overpressure may carry part of the weight, reducing the frictional
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resistance at the base. The formation of fold belts down-slope in passive

margins is the result of a mixture between gravity gliding and gravity spreading

(Damuth, 1994; Galloway, 1986). Gravity gliding is the displacement of a

package of rocks downslope parallel to the plane of detachment (Fig. 2.40)

while gravity spreading is the vertical contraction and lateral extension of a

package of rock due to gravity action on its own weight (Rowan et al., 2004;

Silva et al., 1999). The increase of sedimentary weight on the slope due to

sediments that bypass the shelf creates favorable conditions for the onset of

gravity tectonics. Continued deformation is driven primarily by shelf and upper

slope deposition (which maintains the bathymetric slope and the resulting

gravity potential) and by increased basinward tilting. The importance of these

tectonics on generating growth faulting in deltaic areas, such as the US Gulf

Coast, Niger and Mississippi deltas and Amazon Fan has been extensively

described in the literature (e.g., Cobbold et al., 2004; Crans et al., 1980;

Damuth, 1994; Galloway, 1986; Morgan, 2004; Silva et al., 1999; Winker,
1981).

Figure 2-40 Gravity
driven deformation:
a) Gravity gliding - a
package of rock slide on
a detachment;
b) Gravity spreading - a
package of rock deform
due to its own weight
and by vertical collapse
and lateral spreading;
c) mixed-mode
deformation (from
Rowan et al., 2004)
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Gravity driven tectonics, with detachment on an overpressured shale

layer, will have a basinward limit of deformation where there is a decrease in

overpressure, increasing the frictional resistance to sliding, thus preventing

lateral movement (Rowan et al., 2004). Moreover, the boundary between

overpressured and normally pressured shales can migrate basinward as the

point of rapid burial moves seaward. The limit of deformation can also be

delimited as the front of a progradational wedge (Rowan et al., 2004).

In passive margins, the term gravity gliding has been applied to describe

the detachments that are basinward-dipping (Demercian et aI., 1993; Mauduit et

al., 1997), whereas gravity spreading has been applied in prograding deltas,

where the detachments can be landward-dipping (Worrall and Snelson, 1989).

Gravity spreading and gliding are both characterized by proximal thin-skinned

extension on the shelf and upper continental slope and by distal contraction on

and in front of the lower slope (Vendeville, 2005). As many margins are mixed-

mode (gliding and spreading), it is useful to apply gravity gliding as the

component of the deformation controlled by any basinward slope of the

detachment, whereas the gravity spreading component is controlled by the

surficial slope of the seabed (Raillard et al., 1997).

A useful parameter for evaluation of gravity gliding is the dip of the

detachment (Fig. 2.41) because a steep dip can indicate that the weight of the

overlying rock body could be enough to overcome friction along the detachment

surface (Rowan et al., 2004). Furthermore, the detachment dip can change as

time goes by as a response to crustal-scale processes (Rowan et al., 2004):

different thermal subsidence between continental and oceanic crust may

increase the tilt; differential flexural subsidence due to progading delta or

carbonate build-ups may reduce the tilt; uplift of the "craton" due to tectonic

events may also cause the tilt to increase (e.g., the Tertiary uplift of West of

Africa (Cramez and Jackson, 2000; Duval et al., 1992; Spathopoulos, 1996».

The key parameters controlling gravity spreading are the dip of the

surface slope, the dip of basal detachment, the friction along the detachment

surface and the internal strength of the wedge (Davies et aI., 1983; Dahlen et al.

1984, in Rowan, 2004). However, deformation onset and cessation are strongly

dependent on sediment deposition (Fig. 2.42): progradation on the outer shelf

and upper slope increases the surficial slope and therefore promotes spreading
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(Fig. 2.42a); upper-slope bypass and distal deposition on lower slope and basin

reduces the surficial slope (2.42b), slowing or stopping spreading (Fig. 2.42c).

Experimental models have also shown that the deposition of a sediment wedge

basinward initiates a slope that promotes seaward gravity spreading of the

overburden (Vendeville, 2005). Spreading is accommodated by grabens,

normal growth faults, slip along diapir margins, and the development of fault-

bounded troughs and folds. The fundamental mechanical characteristics and

kinematic history of spreading in prograding systems are also described by

Vendeville (2005): spreading occurrence demands only a surface slope, e.g.,

sea floor spreading causes proximal extension and distal contraction; the

displacement vectors are parallel to the direction of the local slope; timing of

spreading is controlled by regional depositional events.

differential loading n
subsidence v-o

differential thermal
subsidence
C

Figure 2-41 - Passive margin showing basinward tilting being enhanced by differential thermal
subsidence and continental uplifting being reduced by proximal loading subsidence, from
Rowan et al. (2004).

Although gravity gliding and spreading are characterized by the same

three structural domains (extension/translation/contraction), they have different

triggering mechanisms and generate different structural styles. The structures

are multidirectional where gravity spreading prevails, e.g. faults bounding

minibasins, whereas the structures are perpendicular to the slope dip where

gravity gliding prevails, as described in the eastern and western portions of the

Nile deep sea fan (Loncke et aI., 2006) . Down-slope gliding takes place when

the base of the detachment layer and the top of the overburden dip seaward.

Gliding is accommodated by normal faults in the proximal region and by

contractional folds or faults in the distal region (Vendeville and Cobbold, 1987,
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in Loncke et al., 2006). The traces of normal faults forming during gravity gliding
tend to be subparallel.

Figure 2-42 Passive margin
with failure dominated by
gravity spreading (a);
progradation on the outer
shelf and upper slope
increases surficial slope and
further spreading (b); upper
slope bypass and distal
deposition reducing the
surficial slope and so slowing
or stopping spreading (c),
from Rowan et al. (2004).

Gravity spreading prevails where the base of the detachment layer is

nearly horizontal or even slightly tilted landward (e.g. above a flexure formed in

response to sediment loading, although the forces driving gravity spreading

result from the slope of the top of the overburden (i.e. the bathymetric slope).

Some parts of the Gulf of Mexico show examples of halokinesis driven by

gravity spreading where the crustal flexure in response to sediment loading has

tilted the base of the evaporate landward, making seaward gliding impossible

(Vendeville, 2005). Where the surface slope is simple, traces of proximal normal

faults are all parallel and sublinear (generally parallel to the coastline). Where

local slope directions diverge or converge, several sets of normal faults having

multidirectional traces form (Gaullier and Vendeville, 2005).

Overall, gravity driven foldbelts present structural styles mainly controlled

by the nature of the decollement layer, not on the driving forces in passive

margins. Foldbelts detached on overpressured shale characteristically include

basinward-vergent thrusts and related folds because of the relatively high

strength and frictional behaviour of plastic shale (Rowan et al., 2004);

deformation does not occur until a large thickness of overburden is deposited

rapidly enough to create fluid overpressure in the detachment shale. On the

other hand, salt can promote early deformation, just after deposition because it

is a viscous material almost without strength (Rowan et al., 2004).
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2.2.3 Shale detachament

As shale is a plastic material, it deforms when the deviatoric stress overcomes

its strength. The shear stress of shale is the product of the coefficient of friction

and the effective vertical stress, which is the lithostatic pressure minus the

effect of overpressure. Therefore, as the pore-fluid pressure approaches the

overburden load, the effective stress tends to zero, and the resistance to

deformation approaches a minimum (Rowan et al., 2004).

The main causes of overpressure are: extremely high rates of

sedimentation, hydrocarbon generation (Cobbold et al., 2004; Morley and

Guerin, 1996; Swarbrick et al., 2002), and tectonic compaction during

shortening. In the Amazon Fan, the level of detachment is around 10 km deep,

in rocks more than 70 Ma old which were already lithified before the deposition

of the Amazon Fan. There is evidence that gas generation is the main cause of

overpressure. Thus Cobbold et al. (2004) lists the presence of gas in some

wells, noting that Cenomanian-Turanian source rocks are widespread on the

shelf, and that modeling suggests that the rocks had reached the gas window

by the time that the detachment was more active.

2.2.4 Growth strata

Growth strata are stratigraphic intervals deposited during deformation so that

the ages of the strata constrain the timing of deformations. Around folds related

to contractional faults, growth strata typically thin on fold limbs. The patterns of

deformation of growth strata above the fold limbs may correspond to the type of

folding mechanisms (Shaw et al., 2005). Hence, the geometries of growth

structures in seismic images can be used to recognize the folding mechanisms

and relative rates of sedimentation and uplift.

In fact, the specific geometry of the fold within the growth strata strongly

depends on the history of sedimentation relative to the history of deformation

(Suppe et aI., 1992). Where the deposition rates exceed the uplift rates, the

growth strata are the interval of reflectors that thin on the limbs of the structures

(Fig. 2.43). Where the uplift rate exceeds the sedimentation rate, the growth

strata onlap the limbs of the structure (Fig. 2.44).
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Growth strata in seismic section:
Sedimentation exceeds uplift

Figure 2-43 - Seismic example of growth strata where the rate of sedimentation exceeds the
uplift rate, showing the bedding thinning toward the limb of the structure.

Growth strata in seismic section:
Uplift exceeds sedimentation 1 km~------------------------------------------------------~2

onlapping
growth strata

Figure 2-44 - Seismic example of growth strata where the uplift rate exceeds the sedimentation
rate, showing the growth strata onlapping the limb of the structure.

2.2.5 Folding mechanisms

Three main classes of folds have been described in gravity driven fold-thrust

belts: fault-bend folds, fault-propagation folds and detachment folds (Shaw et
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al., 2005). In the Amazon fan, which is an area of high rate of sedimentation,

detachment and fault-propagation folds are the most common fold classes

identified (Zalan, 2004).

Fault propagation folds form at the tips of faults and consume slip.

Although they present a wide range of geometries, they show some common

characteristics (Fig. 2.45): 1) they are generally asymmetric with forelimbs

steeper and narrower than back limbs; 2) synclines are pinned to the fault tips;

3) folds tighten with depth; and 4) slip on the fault decreases upward,

terminating within the fold.
o
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Figure 2-45 - Generic and schematic fault-
propagation fold model showing the
common characteristics present in most of
the structures for the wide range of
geometries that can occur in the different
models (from Shaw et aI., 2005): 1) folds
are asymmetric; 2) synclines are pinned to
the fault tips; 3) folds tighten with depth;
and 4) slip on the fault decreases upward,
terminating within the fold.

The schematic model of fault-propagation folds (Fig. 2.45) shows an

asymmetric fold develop in the hanging wall as the fault ramp propagates

upward, with vergence in the transport direction. The fold consumes slip on the

ramp, with slip being greatest at the ramp base and zero at the ramp tip. As the

slip increases, the fault advances and the fold enlarges keeping the same

geometry.

Detachment folds are formed when the displacement along a bedding-

parallel fault is transferred into a folding of the hanging wall layers. They differ

from fault-bend and fault-propagation folds because they are not directly related

to thrust ramps but to deformation distribution above the detachments. They
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form across a large range of scales and can occur as isolated structures or in

long fold trains (Shaw et al., 2005). Commonly, they form above a relatively

thick ductile layer with a basal detachment (Shaw et al., 2005).

The common characteristics presented by detachment folds are

presented in Shaw et al. (2005) (Fig. 2.46): 1) the presence of one incompetent,

ductile basal unit thickened in the core of the fold, with no visible thrust ramp; 2)

a detachment surface at the base of the ductile unit which defines the

downwards terminations of the fold; 3) when there are competent pre-growth

layer units, they have a constant layer thickness; and 4) when growth units are

present, they thin onto the fold crest and exhibit the fanning of limb dips.

--
Figure 2-46 - Common characteristics presented by the detachment folds in most styles (from
Shaw et al. 2005). The numbers from 1 to 4 refer to the characteristics mentioned in the text.

2.2.6 Slope morphology and degradation

The foregoing analysis of the different types of fold geometry that can be

generated by gravity-driven slope deformation in deepwater fold thrust belts

illustrates that the folding processes can significantly affect slope morphology.

Therefore, the shape, magnitude, symmetry and uplift rates of the anticlines

may impact the slope relief. Moreover, not only are the bathymetric highs

created significant: additionally their manner of degradation can be an important

factor on the development of syn-kinematic depositional systems, influencing

the development of both canyons and channel-levees.

In deepwater, unless the folds are in an environment where

sedimentation rates are high enough to cover anticlines as they grow, the

anticline crests are uplifted above the surface (sea floor). Anticlines grow and

accumulate thin, fine grained and poorly lithified sediment on their crests during

their early stages of development, in the interlimb angles of 1800 to -1400

(Morley, 2007). With the decrease of the interlimb angles during continued

anticline growth, syn-kinematic sediments tend to be removed by sliding,
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slumping, debris flow, turbidity currents and all the range of gravity processes

(Heinio and Davies, 2006; Nigro and Renda, 2004). Thus, for instance, thrust-

propagation folds in an area of Niger Delta have generated an asymmetric

slope bed relief of up to 200 m, with a long and shallow backlimb with 6° dip and

a steeper forelimb with 15° dip (Heinio and Davies, 2006). During the

degradation of this fold both erosional and depositional features have affected

the slope morphology (Fig. 2.47): backlimb and forelimb failures cause debris

flows and thin related deposits; large slumps with evidence for internal

deformation; failures associated with ovoid depressions; degradation by

channel erosion and channel margin slumping. The most common mechanism

of degradation is limb failure although the most erosive, at least volumetrically,

is channelisation (Heinio and Davies, 2006). In conclusion, syn-tectonic

mechanisms of degradation associated with growth fold are important, as they

are capable of creating lows and high that drive the submarine channel

localisation and hence affect deposit architecture.

Figure 2-47 - Seismic section showing a degradation complex, multiple unconformities and mud
pipe, and a strong thinning of section from the back limb to the forelimb. Notice the erosion,
mass movement and mass wasting of material from the crest and forelimb of the fold. The
material is re-deposited at the base of the forelimb, creating chaotic deposits or wedge-shaped
units (from Morley 2007).

2.2.7 Crestal normal faults associated with fold growth

Minor fault systems that run along the crests of anticlines are commonly

associated with fold growth (Grando and McClay, 2004; Morley, 2007). These
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fault systems can be characterized by small offsets normally up to 30 m and

though can reach as large as 50 m; many such faults are on the limit of seismic

resolution (Morley, 2007). These faults propagate over vertical distances from

200 m to 800 m, with backlimb-dipping faults occurring less frequently than

forelimb-dipping faults (Fig. 2.48). Fault traces in map view vary from straight, to

anastomosing to curved, with complex cross-cutting pattern and these seem to

reflect change in slope dip direction and steepness.
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Figure 2-48 - Seismic section showing crestal normal faults with backlimb-dipping faults and
forelimb-dipping faults diverging (from Morley 2007).

The origin of normal faults on the crest of growing anticlines has been

attributed to several causes: extension in the outer arc of a fold due to bending

stresses (Strayer et al. 2004, in Morley, 2007); collapse features due to the

withdrawal of a mobile unit or intrusions of salt or overpressured clays; a

component of strike-slip or oblique slip motion action along the anticline and to

gravity sliding associated with the topography and limb dips of growing, uplifting

folds. Of these, gravity is recognised as the principal driving mechanism

whereas bending has a secondary role. Among the evidence that support this

interpretation, it is worth mentioning that most of the faults are planar (rarely

listric) and die out downwards at different depths and horizons, dip in the

direction of the steeper limb and the number of faults increases as fold

amplitude increases. Such normal faults are considered by Morley (2007) as a

"deep seated, non-basal slide, mass movement phenomenon". The occurrence

of the faults is constrained to a range of gravity-driven phenomena that affect

the folds as they tighten and increase amplitude (Morley, 2007). Therefore, the

normal faults in the crest of growth faults mark a period of syn-kinematic fold

64



evolution when folding initially impacts sea topography. They occur during times

that sediments accumulate on the top of growing anticlines and before the

crests of anticlines become eroded by gravitational processes.

Normal fault crests contribute to the complex shallow geometry of

anticline crests and they record the direction of shallow local stress during

folding. As the fold evolves, normal faults change orientation and may cross-cut

earlier faults and therefore record such effects as fold amplitude increase,

oblique thrust fault development, and, ultimately, the creation of deep erosional

channels (Morley, 2007).

In summary, crest growth faults play an important role during syn-tectonic

deposition. They induce the sculpturing of the slope topography, favouring

processes of fold limb failure and erosion. Additionally, they conduct many

gravity driven deposits and can affect the localisation of channel thalwegs.

2.3 Structural controls on channel-levee systems

On many of the major slope systems, gravity tectonics and related fold and

faults create subtle to significant sea-floor topography. Slope systems can

present complex topography generated by faulting, folding and, salt or mud

tectonics and are characterised by coeval sedimentation and deformation. As

channels cross the slope there is inevitably a control on their geometry exerted

by contemporaneous sea floor topography. Therefore, considerable attention

has been given to the stratigraphic architectures and patterns of channel

dispersion on topographically complex submarine slopes (Booth et al., 2003;

Demyttenaere et al., 2000; Grecula et al., 2003; Mayall and Stewart, 2000;

Prather, 1998; Smith, 2004b; Winker and Booth, 2000). The most substantial

topographic effects control the downslope route and can cause major diversions

of the channel orientation (Mayall and Stewart, 2000). Examples of submarine

channel systems described from such settings include the Niger Delta

(Adeogba et al., 2005; Deptuck et al., 2003; Heinie and Davies, 2007), the Gulf

of Mexico (Pickering et at., 1986; Posamentier and Mutti, 2003), the Nile Delta

(Samuel et al., 2003), Brunei (Demyttenaere et al., 2000), Offshore West Africa

(Abreu et al., 2003; Gee and Gawthorpe, 2006) and Eastern Mediterranean Sea

(Clark and Cartwright, 2009).
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Analysis of 3D seismic data has contributed to the understanding of

submarine channels mainly related to their architecture and temporal evolution

(Deptuck et al., 2003; Deptuck et al., 2007; Posamentier and Mutti, 2003).

There are relatively few studies, however, that address the interactions between

submarine channel evolution and deformation and they normally focus only on a

specific aspect of channel development, such as channel axis (Clark and

Cartwright, 2009). Such studies have noted that increases in slope gradient

caused by structural highs result in increased submarine channel incision, with

channel down-cutting being localised where the gradient increase is highest

(Ferry et al., 2005; Gee and Gawthorpe, 2006; Huyghe et al., 2004). The

influence of basin floor bathymetry on channel axis location can explain

vertically - stacked channel architectures as described by Clark and Pickering

(1996). Features such as submarine canyons, salt, mud or igneous diapir

activity, or syn-sedimentary faulting can cause the vertical stacking of channels

(Fig. 2.49).

Controls on vertically stacked channels
and other sediment conduits

Inherited
Basinfloor Topography Intra-Ganyon

Oiapir (salt, mud, igneous)
Growth Fault

Figure 2-49 - Controls on vertically stacked channels and other sediment conduits. From
Pickering et al. (1995b), in Clark & Pickering (1996).

Previous studies have also shown that development of submarine

channel sinuosity is a key factor in the development of potentially sand-rich
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lateral accretion packages (Abreu et al., 2003). In structurally complex slope

settings, submarine channel sinuosity can vary according to changes in

gradient: higher sinuosity channel reaches tend to be localised where the

underlying slope gradient increases (Ferry et al., 2005; Gee and Gawthorpe,

2006).

Bathymetric features on slope can distribute the sediment through two

main systems: cascades of silled sub-basins (Fig. 2.50) and connected tortuous

corridors (Fig. 2.51), which are scenarios for deposition and erosion on the

slope (Smith, 2004b). Silled sub-basins were described as closed topographic

depressions, whereas connected tortuous corridors occur as elongate, variably

tortuous, laterally confined depressions on a topographically complex slope

(Smith, 2004a). Good examples of these models are present in the Gulf of

Mexico for silled sub-basins and on the South Atlantic continental margins of

Brazil and in West Africa for connected tortuous corridors. In addition, complex

slope topography was divided in three classes: silled sub-basins, partially silled

basins with lateral escape paths and tectonically induced bounding slopes that

guide flow paths (Smith, 2004b). In the third class, flow paths range from highly

tortuous to almost linear and frequently show portions with lower and higher

gradients. These flow paths are characterized by complex slope topography

and consist of corridors delimitated by topographic highs on the slope, in many

cases generated by salt movement. They commonly show seismic facies with

convergent thinning and convergent base lap geometries adjacent to syn-

depositional salt-related highs. Modifications to topography can occur by the

interaction of sediment gravity flows with slope relief, ranging from downcutting

to upbuilding through deposition. The longevity of topographic control on

patterns of deposition and erosion is strongly dependent on the rates of

structure growth relative to the rate of deposition and erosion (Smith, 2004b).
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Figure 2-50 - Seafloor image of the Gulf of Mexico salt-based slope, examples of silled sub-
basins. Notice the circular an elliptical salt-withdrawal intraslope basins with diameters ranging
between approximately 5 and 20 km (from Smith, 2004).

Figure 2-51 - Tortuous corridor paths, between shale-cored ridges on the northwest Borneo
slope (Image courtesy Petroleum Geo-Services, in Smith, 2004).
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Channels evolving in highly tectonic areas are constantly subjected to

dynamic adjustments in their long profile and cross channel geometry (Gee and

Gawthorpe, 2006). For example, avulsions in submarine channels of offshore

Angola are interpreted to result from structural changes in the maximum slope

dip direction, close to faults, where fault slip may cause a channel to seek out a

newly generated bathymetric low (Gee and Gawthorpe, 2006). These authors

also observed that the disruption of the channel equilibrium profile is

pronounced close to salt structures where channels deposit sediment in slope

depressions. Abrupt transitions between erosional and depositional channel

behaviour occur where confined channels exit into the lower gradients of slope

depressions. Channel aggradation and levee buildup can occur directly

downslope of constrictions in salt walls and might be related to hydraulic jumps

(Gee and Gawthorpe, 2006). The geometry of channels within slope

depressions is complex and records the uplift pulses of the adjacent salt diapirs.

Clark and Cartwright (2009) define some key submarine channel-structure

interactions:

Unconfined channel development - Channel development is

unaffected by underlying deformation. It is associated with channel levees that

thin exponentially away from the channel axis (Skene et al., 2002) (Fig. 2.52).

The channel axis is confined between the contstructional relief of the levees and

not physically constrained by the underlying slope.

Confinement - Confinement of a submarine channel is described as the

restriction of the course of a channel and its overbank deposits as a result of

pre-existing structures (Fig. 2.53A). Confinement limits the ability of the channel

to laterally migrate and develop sinuous planform geometry because of

structures constraining the channel course (Clark and Cartwright, 2009).

Diversion - Diversion is defined as a change in channel course resulting

from a pre-existing structure or structures obstructing the flow pathway of the

channel by modifying the slope gradient (Fig. 2.538). Diversion is normally

induced by a pre-existing structure that is orientated at a high angle to the

channel flow pathway which causes the channel to flow around the obstacle.

Once the channel is diverted around the structure, it can resume its original

downslope course.
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Figure 2-52 - Block diagram showing elements of an "unconfined" channel-levee system (from
Clark and Cartwright, 2009).

Deflection - Deflection is defined as a progressive shift in channel

position away from the axis of uplift of an adjacent growing structure, causing a

shift in channel position to occupy the newly forming topographic low point.

Deflection causes successive changes in channel course over time (Fig.

2.S3C). This is different from diversion, which involves a single lateral shift in

channel position around a passive obstacle to flow. The two types of interaction

are therefore similar, with the relative timing of channel development and

deformation being the key factor which sets diversion and deflection apart.

Lateral accretion surfaces on the side of the channel adjacent to the structure,

and erosion on the opposite side are indications that the channel path way is

being shifted away from the adjacent structure. Deflection by an uplifting

structure such as a growing fold may result in channel abandonment or

accretion surface being perched above the present channel thalweg.
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Figure 2-53 - Block diagrams illustrating the four end-member interactions between submarine
channel development and underlying deformation (from Clark and Cartwright, 2009).

Not only structures genetically related to gravity tectonics but also extra

structures such as transfer faults (Fig. 2.54 and 2.55), related to ocean floor

drifting, can affect the channel position on slope. In the Niger delta, for instance,

submarine canyons feed aggradational channel-levee systems on the lower

slope which are distributaries for large deep sea fans (Morgan, 2004). Here,

stacked and sinuous channels developed in larger, low sinuosity, channel

complex corridors flanked by huge levees. Both recent and sub-surface channel

complexes have been deflected by obstacles on the slope formed by thrusts

and folds and have followed the transfer faults down-slope using offsets in the

thrust zone relief to reach deeper areas (Fig. 2.56). The apparent facility with

which channels cut across the sea-floor relief is due to simultaneous formation

of channel-levee and fold growth.
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Figure 2-54 - RMS amplitude extraction map is of a 30 ms window in the middle of a channel.
The thin line is the location of the seismic line. Notice the channel sinuosity generated by the
sea-floor expression of faults with the channel showing a strong bend as it runs along a down-
thrown side of a NW-SE fault (arrow) (from Mayall et al., 2006).

Figure 2-55 - The seismic section shows steep to vertical transfer/tear faults trending NE-SW, a
fault rooting at the semi-regional detachment level at the base of Agbada formation and another
going on to deeper levels offsetting the detachment level, suggesting that there is an influence
of the basement on faulting The channels are around the transfer fault (from Morgan, 2004).
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Figure 2-56 - Three-dimensional view of the seabed in the lower slope region where the ridges
formed by the underlying thrusts as well as the offset generated by the transfer faults are
visible. The recent channel captured by the transfer fault used the offset in the seafloor ridge to
reach the outer slope area (from Morgan 2004).

2.4 Final Remarks

There are a large range of studies in both modern and ancient systems that

focus on deep marine processes and their resulting deposit architecture

(Deptuck et al., 2003; Kneller and Buckee, 2000; Mayall et al., 2006; Mulder

and Alexander, 2001; Peakall et al., 2000; Posamentier, 2003; Posamentier and

Kalla, 2003). A subset of studies, based in seismic data, outcrop analysis and

experiments, have given more attention to the influence of slope topography on

the sediment dispersal patterns and the geometries of depositional bodies

(Booth et al., 2003; Clark and Cartwright, 2009; Demyttenaere et al., 2000;

Grecula et al., 2003; Mayall and Stewart, 2000; Pickering and Hiscott, 1985;

Prather, 1998; Smith, 2004b; Winker and Booth, 2000). Some important

concepts, such as that of the equilibrium profile (e.g. Pirmez et al., 2000 and

Kneller, 2003), and how it can be affected by changes in flow parameters (e.g.

Kneller, 2003) have also been used to analyse variations in the channel

arch itecture.

The sea floor topography in areas of halokinesis can be different from that

generated by deformation triggered on overpressure shales. In the first case,
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salt withdrawal may form a complex physiography with intraslope minibasins

(Fig. 2-50) whereas tortuous corridors, sensu Smith (2004) commonly prevail in

areas of shale - induced tectonics (Fig. 2.51). Moreover, the halokinesis tends

to start earlier than a shale-cored deformation because overpressure shales

need deeper burial to develop the ductile behaviour which promotes

deformation. Therefore, the turbidite flows can be differently affected by these

two contrasting styles of sea floor topography. For example, the western African

submarine fans may be better analogues for the Amazon Fan than the Gulf of

Mexico fans because they have the same style of deformation, driven by

overpressured shale and hence more similar slope topography.

The analysis of the literature showed that the integration of modern seismic

data (which shows channel planform morphology and spatial distribution) with

outcrop data (which shows internal deposit character and vertical organization)

is an effective method of study to clarify structural controls on slope topography

and, consequently the dispersion of the submarine channels on the slope.

However, although there is a Significant amount of literature on submarine

channel styles and evolution there are still some gaps that need to be

investigated and that form the focus of this thesis:

• Previous studies show the transition from an erosional base to

aggradational channel-levee vertically (e.g. Deptuck et al., 2003) but do not

show how the transition evolves spatially in time. In this regard a key question is

whether there is any upstream or downstream migration of the transition point

between erosional and aggradational channels, and how such migration might

be recorded in the architectural elements which build channel-levee systems.

• Most of channel avulsions documented in the literature of deep marine

systems are related to levee breach of a perched aggradational channel. The

avulsion of an erosive or at grade channel is still a theme for discussion.

• Channel-levee systems are inferred to accrete downstream, as the

levees size reduces in this direction. Can a system also accrete upstream?

How is it recorded in the channel-levee style? How is the transition between the

leveed channel and the upstream erosive channel configured?
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• The Amazon Fan literature does not mention any effect of slope tectonics

on channel-levee evolution. Did the tectonics affect the channel development

and dispersion in this fan?

• The upward transition from a basal HARP to a channel-levee system is

described to result mainly as a result of a reduction of the flow grain size

(Pirmez, 2000). However, this model does not account for the development of

an erosive channel at the base of the channel-levee systems (originally

described in Amazon fan in the current thesis) cutting through the HARPs in the

study area.

• Levee asymmetry has been explained as a result of Corio Iis Force in the

majority of the cases, when it is not related to flow stripping or inertial overspill.

In the case of a channel located close to the Equator, where Coriolis forcing is

negligible, how can levee asymmetry develop along the whole length of

channel?

• Most of the studies on the effects of tectonics on slope sedimentation

focus on the role of tectonics on the bathymetry. The relative timing of the slope

structures in relation to the channel formation (pre, syn or post-depositional),

however, is discussed in only few articles (e.g., Clark and Cartwright, 2009).

Therefore, the relative timing of structuring and channel development, which

may determine channel architectural styles and location, requires further

analysis.

• Few studies have addressed the role of equilibrium profile on slope

channel evolution (Ferry et al., 2005; Kneller, 2003; Pirmez et al., 2000). There

remain some open questions about the applicability of this concept to

submarine systems, in terms of where to define effective base levels, at what

scale (local or basinal) the equilibrium surface should be analsysed, and the

what role syn-deposition tectonics play in perturbing equilibrium profiles of slope

channels.
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3 AMAZON FAN SETTING

The Amazon Fan is one of the largest deep-sea fans in the World, and is

located in the Foz do Amazonas Basin in the extreme northwestern part of the

Brazilian Equatorial Margin between the parallels 3° Nand 9° N (Fig. 3.1). The

basin covers an area of about 268,000 km2 (Figueiredo et al., 2007), and

evolved in a context of both wrench tectonics (kinematically linked to ancient

Atlantic spreading - related transform faulting), and compressional tectonics

(related to the history of Andean uplift, which reorganized the catchment basin

of the Amazon River (Hoorn et aI., 1995)).

Figure 3-1 - Bathymetric map of the area of Amazon Fan obtained from the Marine Geoscience
Data System.

3. 1 Stratigraphy of the Foz do Amazonas Basin

A stratigraphic chart for the basin fill is presented in Figure 3.2. The syn-rift

sequence is composed of Neocomian to Albian fluvio-deltaic, lacustrine and

marine strata (Cacipore Formation), infilling a pull-apart half-graben (Figueiredo

et al., 2007). Open-marine clastic deposition started in the Late Albian (102 Ma)

with deepwater mudstones and siltstones (Limoeiro Formation) and persisited
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until the Late Palaeocene. These sediments are followed by a Selandian to

Tortonian mixed carbonate-siliciclastic platform succession (Maraj6 and Amapa

Formations), deposited between 62 and 11.3 Ma, with equivalent deep-water

calcilutites and mudstones (Travosas Formation). Increasing rates of Andean

uplift and an associated strong increase in sediment supply by the river drove

the deposition of a thick siliciclastic sequence up to 10 km thick from the

Middle-Late Miocene (11.8-11.3 Ma) (Figueiredo et al., 2007). This sequence

comprises shoreline facies (Tucunare Formation) and the Amazon Fan which is

composed of continental slope fine sand, clay facies (Pirarucu Formation) and

deep-water mud facies (Orange Formation) (Figueiredo et al., 2007).

The final sequence, which includes the Amazon Fan, corresponds to more

than 50% of the volume of the post-rift sediments although it represents only

10% of the time of deposition (Figueiredo et al., 2007). The slope sediments of

the Quaternary, which are included in Pirarucu Formation, are the focus of

study in this thesis.

3.2 Sediment supply to the Amazon Fan

The Amazon Fan is composed primarily of Andean-derived sediments

(Damuth et al., 1988) introduced by the Amazon River which has a current

annual sediment discharge of approximately 400 million tonnes (Holeman 1968,

cited in: Damuth and Kumar, 1975). The Amazon river is 6770 km long and,

along with its distributaries, drains the world's largest river basin, with an area

of 7,050,000 km2 (Franzinelli and Potter, 1983).

Hoorn et al. (1995) attributed the present eastward river drainage to

geomorphologic changes related to Andean Uplift during Middle-Late Miocene,

dated between 11.8 and 11.3 Ma (Figueiredo et al., 2009). Before, the

headwaters of the river flowed northward to the Caribbean margin (Fig. 3.3).

The onset of the transcontinental Amazon River supplied high volumes of

siliciclastic sediments to Atlantic the shelf, causing the shut down of the

Neogene carbonate platforms (Brandao and Feijo, 1994), forming the deep

marine Amazon Fan.

77



Figure 3-2 - Stratigraphic Chart of Fo~ do Amazonas Basin (Figueiredo et al., 200~). The
studied interval IS In the Pirarucu Fm which IS part of the thickest (9000 m) and latest 2 order
depositional sequence (N40-N60) which includes the Amazon Fan sediments.
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Figure 3·3 - Paleogeographic maps of the paleo Amazon hydrographic basin during Middle and
Late Miocene (from Figueiredo et al., 2009). A - During the Middle Miocene the Solimoes River
(S) flowed northward to the Caribean Sea. B - During the Late Miocene, due to stronger Andes
uplift and sea level fali, the Solimoes connected to the Amazon River (A) forming a
transcontinental river.
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3.3 Marine currents

By the mid-Holocene sediment deposition in the Amazon fan was

interrupted because the rising sea level prevented the transport of sediment

across the shelf feeding the Amazon canyon. This sediment has been deviated

northward along the South American Coast by the North Brazil Coastal Current

(NBCC) (Flood and Piper, 1997) (Fig. 3.4). During lowstand, however, the

NBCC would have circulated close to the slope as shown by the reconstruction

of surface water composition based on oxygen isotope data from foraminifera

(Maslin, 1998) (Fig. 3.5). This raises the question of whether the NBCC could

have affected slope sedimentation, dictating the N/NW direction of channelized

slope deposits. If so, as soon as the turbidite currents came out of the canyon

mouth, they would have been driven toward NW/N and formed the channel-

levee systems with that orientation. At present, the NBCC or NBC (North Brazil

Current, Johns et al., 1998) is weak (less than 20 cm/s) in water depths greater

than 200 m (Fig. 3.6), whereas currents of 50 cm/s towards the SE (i.e., the

opposite direction) were measured in depths of 1400 m and deeper (Johns et

al., 1998). Although the configuration of the Pleistocence current is not known,

these data suggest that marine currents were probably unlikely to have dictated

submarine channel orientations during this period.
B~w

~
NECC
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Figure 3-4 - Schematic map showing the present ocean circulation over the Amazon Fan.
NBCC = North Brazil Coastal Current, NEC = North Equatorial Current, NECC = North
Equatorial Counter Current, retro = retroflection of NBCC, small dots are the locations of Leg
155 sites. A) Surface circulation from February to June. B) Surface circulation from July to
January. From Flood and Piper (1997).
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Figure 3-5 - Schematic map showing the possible glacial winter ocean circulation with peak
Amazon River discharge, during the last glaciations, from Maslin (1998). NBCC = North Brazil
Coastal Current, NEC = North Equatorial Current. Notice the glacial coastline of Brazil moved to
the contour curve of 100 m due to lower sea level.
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Figure 3-6 - Cross sections of mean alongshore (positive northwest) velocity for (a) common
period (Feb-Apr 1990) and (b) common period (Sep1989-Jan 1991). Notice that in both cases
that at 800 m water depth the current is smaller than 10 cm/so Diagrams from Johns et al.
(1998).
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3.4 Morphology of the Amazon Fan

The Amazon Fan is considered a typical large passive-margin muddy-fan

(Flood et aI., 1991; Flood et aI., 1995). It extends over 700 km seaward of the

continental shelf at water depths of 4800 m (Fig. 3.7). It is about 380 km wide

along the continental shelf and about 600 km wide near its base, covering an

area of 330000 km2 (Damuth and Flood, 1983; Damuth and Kumar, 1975;

Pirmez et al., 2003). The longitudinal gradient is 1:150 to 1:200 (Damuth and

Kumar, 1975) and it can reach 10 km thick, achieved by an average rate of

sedimentation of 1 mm/yr (Cobbold et al., 2004). The Amazon Fan can be

divided into three general morphologic divisions (upper, middle, and lower)

based on broad morphologic and acoustic characteristics (Damuth and Flood,

1985; Damuth et al., 1988) (Fig. 3.7). These divisions do not reflect different fan

subenvironments or facies association, they are only descriptive. The upper fan

extends from the shelf break to depths of about 3000 m where there is a

noticeable break in slope. The average gradient is approximately 0.8°. The

upper fan includes the Amazon Canyon, which is up to 600 m deep and

backcuts the outer shelf to a depth of 75 m, and extends down the upper fan to

around 1400 m where it abruptly widens, decreases in relief and disappears

(Damuth and Embley, 1981). The middle fan extends from about 3000 m to

depths of approximately 4000 to 4200 m, where there is a subtle change in

gradient. The average gradient in the middle fan is about 0.3° (Damuth et al.,

1988). The limit between middle and lower fan is not very well defined but in

general coincides with the downfan disappearance of the thick leveed channels.

The lower fan is smooth and gently sloping, with an average gradient of 0.1°

and extends as deep as 4800 m, where it merges with the abyssal plain
(Damuth et aI., 1988).

Most of the literature on the sedimentary evolution of the Amazon Fan is

focused on the Quaternary interval, covered by ODP Leg 155 which raised

4,053 m of cores from 17 sites (Fig. 3.7) allowing calibration with wireline log

data and selected seismic data (Flood et al., 1995). In spite of the fact that the

fan is mud-rich, the Ocean Drilling Program (ODP) shallow seismic profiling and

high-resolution sonar images of the sea floor have demonstrated that sand is

still an important constituent of the fan, as a component of channel-fill, the
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ponded sheet-like deposits (high amplitude reflection packets) and the lower-fan

deposits (Damuth and Kowsmann, 1998; Flood and Piper, 1997).
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Figure 3-7 - Amazon Fan showing the 17 sites drilled during Ocean Drilling Program Leg 155.
The meandering channels on the fan surface were imaged by long-range side-scan sonar
(GLORIA) and multibeam bathymetry. The location of the Surficial Mass-Transported Deposits
(SMTD) is from Flood et al. (1995) and the Buried Mass-Transported Deposits (BMTD) from
Piper et al. (1997). The Red line shows the position of the cross-section shown in Fig. 3.9
(Adapted from Lopez, 2001). The 3D survey area and the boreholes included in the cross
section (Fig. 3.9) are also indicated in red.
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The most detailed sediment descriptions in the Amazon Fan are

presented in the OOP Leg 155 Proceedings, focused on sediments recovered

mainly in the middle fan region (Normark et al., 1997). They summarized 15

major sediment facies based on core descriptions of recovered sediments and

integrated with seismic profiles (Fig. 3.8). In this section, the sedimentary

characteristics of the main depositional elements identified in seismic are

presented: levee, channel, HARPs (intra-slope lobes) and MTOs. Although the

study area of this thesis is located on the upper fan, i.e., upslope of the OOP

area, the OOP Proceedings present the best sediment descriptions available

that can be correlated with the seismic facies identified in the study area.
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Figure 3-8 - Schematic diagram showing the distribution of sedimentary facies within acoustic
units (e.g., HAR units, HARP units), mass-transport deposits and channel-levee architectural
elements in the Amazon Fan. The diagram shows a typical channel-levee system, which is the
elemental stratigraphic unit of the fan, and the underlying regional scale MTD. This stratigraphic
relationship is typical of the upper and middle fan (Damuth et al., 1988; Flood et al., 1995;
Manley and Flood, 1988). From Normark et al. (1997).
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3.4.1 Channel-levee systems: dispersion, lithofacies, architecture

The middle and the upper fan were constructed mainly by the deposition of a

distributary network of overlapping channel-levee systems, with thickness range

between 100 and 200 m that were formed by periodic channel avulsions

(Damuth et al., 1983a; Jegou et al., 2008; Manley and Flood, 1988). This

complex network of meandering channel-levee systems has been mapped with

swath bathymetry, side-scan sonar and high resolution seismic data to about

4300 m of water depth (Damuth et al., 1988; Damuth et al., 1983a; Flood et al.,

1991; Manley and Flood, 1988).

The channel-levee systems have been grouped into four larger units,

called levee complexes (Fig. 3.9), the upper, middle, lower and bottom levee

complexes, in the upper 500 - 800 m of the Amazon Fan (Damuth et aI., 1988;

Manley and Flood, 1988). The levee complexes occupy distinct areas in the fan,

normally separated by a flat-lying high amplitude reflector couplet of carbonate-

rich mud and/or thick mass-transport deposits (Flood and Piper, 1997; Hiscott et

al., 1997). The carbonate-rich muds correspond to interglacial highstand of sea-

level identified by isotopic analysis (Fig. 3.10) and are interpreted as

hemipelagites that covered the levee complexes, when the turbidite system was

not active (Flood and Piper, 1997). The multiple channel-levee systems of a

levee complex are thought to have evolved during sea-level fall and relative

lowstand of a single glacial period (Lopez, 2001).
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Figure 3-9 - Schematic cross-section with location as visualised in Fig. 3.7 Levee Complexes,
Surficial and Buried Mass-Transported Deposits and highstand carbonate units with respective
isotopic stage assignments are shown (from Lopez, 2001).
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The placement of the channel-levee systems is determined by the

inherited relief generated by precursor channel-levee systems and mass-

transport deposits derived from the continental slope (Flood et aI., 1995) and is

also affected by structural features such as anticlinal folds related to

gravitationally induced deformation of the fan (Nakajima et al., 2009). In the

middle fan area, channel avulsion occurred frequently causing channels to

switch position downstream of this area (Manley and Flood, 1988).
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Figure 3-10 - Time distribution of the quaternary sediments of the Amazon Fan. On the left, the
isotopic curve of Imbrie et al., (1984) related isotopic stages and relationships to the Upper
Quaternary Levee Complexes of the Amazon Fan, obtained from Flood and Piper, 1997. On the
right, the sea-level curve (from Flood et al., 1995) and channel-levee systems succession with
related avulsions (triangles) through the Upper Levee Complex are shown. Channels and
avulsions are located in Figure 3.7 (adapted of Lopez, 2001).
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The overbank deposits which constitute the volumetrically major part of the fan

are formed of seven interbedded facies (Normark et al., 1997) (Fig. 3.8).

Colour-banded mud and clay is the most common facies. Interbeds of coaser

sediments vary from rare to very abundant and are mainly composed of silt-size

particles in laminae and thin beds (Normark et al., 1997) (Fig. 3.11). The most

abundant coaser facies is organized silt laminae and thin beds which is usually

present as parallel and cross laminated laminae and thin beds, rarely with

normal grading or with climbing ripples (Normark et al., 1997).

250

300

Levees
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Channel-fill

The modern Amazon Channel and the underlying HARs units contain much

more abundant thicker bedded, coarse facies than do the levee deposits

(Normark et al., 1997) (Fig. 3.8). The predominant facies is thick-bedded,

disorganized structureless to chaotic sand. These beds commonly contain

abundant large mud clasts and consist of poorly sorted fine to coarse sand.

Medium to thick intervals of sands of grain size fine to medium are also

common to abundant. These sands are normally graded, fining upward through

silt to clay on the top (Fig. 3.11). They can also present cross stratified sand

beds. The bed thicknesses, grain size range and bedding structures of these

sedimentary facies are consistent with transport and deposition in submarine

channels by turbidity currents and related gravity-driven flows moving down the

channels (Normark et aI., 1997). Intervals of deformed to chaotic mud or sand

with contorted beds, folds and large clasts also occur in HARs and are

interpreted to result from collapse and mass-transport laterally and downfan of

overbank (levee) deposits (Normark et al., 1997). Sand content measured in the

ODP cores yields sand percent values of - 50-70 % for channel axis deposits,

and 20-25 % in the proximal overbank (mostly at the base), decreasing to zero

on the distal overbank over a distance of - 10 km (values measured from core

descriptions and well logs in Flood et al. (1995) and Pirmez et al. (1997)}.

Although the channel axis deposits have relatively high sand content, their

contribution to the total volume of channel-levee sediments is small. The

average sand content of the entire channel-levee system is estimated by

measuring the cross-sectional areas of axial and levee deposits weighted by the

average and content for the axial, proximal overbank and distal overbank areas.

This yields - 10 % sand and 90 % mud for typical cross-sections in the middle

part of the fan.

Intra-slope lobes (HARPs)

The coarsest grained facies in the Amazon Fan are found in the HARP layers

(base of levee sands) which include disorganized gravel and sandy gravel,

disorganized sand beds (structureless and chaotic) and organized sand beds

(graded and cross stratified) (Fig. 3.8). The HARPs contain 70-90 % sand in

medium to thick beds (Pirmez et al., 1997). Thick beds (>1 m) are massive and
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often contain mud clasts. The typical succession has a sharp base and top, with

the upper contact with thin-bedded overbank deposits characterized as a

pronounced downlap surface on seismic (Pirmez et al., 1997; Pirmez and

Flood, 1995) (Fig. 3.11). The sand beds do not appear to have any particular

vertical trend but are clustered in bed packets 5-20 m thick separated by thin-
bedded turbidites.

GAPI
50 100
I I

GAPI
50 100
I I

Figure 3-11 - Summary of the geometry, stratigraphy, lithofacies and gamma-ray signature of
components of Amazon Fan channel-levee systems based on seismic, profiles, cores and
wireline logs (from Pirmez et al., 1997).

These intra-slope lobes represent deposits related to levee breaching

corresponding to the first step of avulsion (Lopez, 2001; Pirmez et al., 1997). A

lobe first forms when a levee is breached. After the levee is broken, the flow

path is deviated from the existing channel and goes through the breach into the

inter-channel-levee space. Once there, the flow spreads and reconcentrates.

The reconcentration generates a loss of turbulent energy and a quick deposition

of the sand material that forms the initial base of the next channel-levee system

(Fig. 3.12). The high acoustic impedance of these sandy deposits generates

high-amplitude reflector packets (HARPs) (Pirmez et al., 1997).
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Figure 3-12 - Schematic block diagrams illustrating avulsion lobe formation and the following
channel-levee development in the Quaternary of the Amazon Fan (from Lopez, 2001).
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3.4.2 Mass-transport deposits

Regional mass-transport deposits are intercalated between the levee

complexes and are important elements of the fan because they are easily

identified on seismic sections by acoustically incoherent to transparent facies.

They are subdivided into surficial mass transported deposits (SMTD), located

just below the Holocene interglacial deposits on the eastern and western side of

the modern fan above the upper levee complex and buried mass-transported

deposits (BMTD), centred in the fan between the upper and the middle levee

complexes (Fig. 3.9). Each mass-transport complex has an area of

approximately 15,000 km2 and can reach 200 m in thickness (Flood and Piper,

1997; Manley and Flood, 1988). The mass-transport deposits comprise of up to

14 % of the total sediment on the Amazon Fan, which represents a total volume

of approximately 2500 km3 (Damuth and Flood, 1983).

MTDs are constituted of over-consolidated, contorted and sheared clay

and silty clays of variegated colour and with intervals of calcareous mud-chips

(Flood et al., 1995). These deposits can occur on a regional scale, e.g., the

Western and Eastern surficial MTDs, and more locally on the backsides of

levees (Fig. 3.8). They consist predominantly of thick intervals (tens of meters)

of deformed or chaotic mud with mud clasts and blocks, or discordant,

contorted, folded, faulted, or truncated beds. Thick intervals of disorganized

pebbly or gravelly mud and sandy mud are commonly interbedded with the

predominant facies described earlier. Some intervals of homogeneous,

structureless mud can also occur and are interpreted as large undeformed

displaced blocks. The sedimentary structures and the low content of water

suggest that the formation of these MTDs represents a progressive sliding,

folding and creeping of slope deposits stacked downslope instead of an

instantaneous catastrophic process (Lopez, 2001).

There are two mechanisms considered responsible for the emplacement

of the MTDs during sea-level change (Maslin et al., 1998): first, during the

interglacial-glacial transition, slope deposits could have been destabilised by the

release of gas hydrates associated with a rapid drop in sea-level; second,

during the glacial-interglacial transition, the deglaciation of the Andes and the

following flooding of the Amazon river could have caused sediment over-loading
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on the slope, and hence the sliding of slope deposits. According to Reis et al.

(2010), the MTO sliding can also be tectonically-triggered due to disruptions on

the sea-floor topography created by the fold-thrust belt in the Amazon Fan.

3.4.3 Channel mouth lobe

Channel-mouth lobes are the final place where gravity currents deposit, after

travelling for several hundreds of kilometres through a channel. They

correspond to areas where there is a transition between confined and less

confined environments. Therefore, these deposits are different from the

intraslope, inter-channel, or avulsion lobes intensively described in the literature

of the Amazon Fan (e.g., Pirmez et al., 1997). Channel-mouth lobes are convex

upward, lens-shaped (cross section), and lobate (plan view) deposits (Oeptuck

et al., 2008; Shanmugam and Moiola, 1991) (Fig. 3.13). Relatively small sand

dominated or mixed systems have been described, with the channel-mouth

lobes equivalent to one third to the half of the whole fan area (Oeptuck et aI.,

2008; Fildani and Normark, 2004; Gervais et al., 2006; Kenyon and Millington,

1995; Klaucke et al., 2004; Piper et al., 1999; Zaragosi et al., 2000). These

lobes are located from between a few tens of kilometres to up to 100-300 km off

the coast (Jegou et al., 2008).

Contrasting with the small and middle size submarine fans, channel-

mouth lobes in giant deep-sea fans have been poorly studied due to their distal

location in very deep sea water (around 4800-5000 m) and their relatively small

thicknesses, which are at the limit of the resolution of conventional geophysical

tools (Jegou et al., 2008; Twichell et al., 1992). Giant fan systems such as the

Mississipi or Zaire fans present channel-mouth lobe complexes as a minor

proportion of the entire fan area, which are located farther from the coast and in

deeper sea water. Erosional features such as scours and distributary channels

commonly occur in channel-lobe transition zones (Fildani and Normark, 2004;

Klaucke et al., 2004; Mutti and Normark, 1987; Mutti and Normark, 1991; Wynn

et al., 2002). In large mud-rich systems with long meandering channels, the

initial low proportion of the sand fraction of the flow is efficiently separated from

the silt and clay fraction, which are deposited by the overflow on the levees,

whereas the coarser sand particles are transported in the channel to distal

areas of the system (Pirmez et al., 2003). Therefore, the sand rich channel
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flows end up depositing into channel-mouth lobes as observed in the Zaire

channel-mouth lobe (Babonneau et al., 2002).
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Figure 3-13 - Schematic diagram showing the hierarchy of channel-mouth lobes in the
Pleistocene of northern margin of East Corsica (from Deptuck et al., 2008). It shows the lobate
form in plan view and the lens shape in cross section. The lobe hierarchy is not further
discussed in this thesis because channel-mouth lobes do not occur in the study area, and
therefore, are not focus of this research.

Jegou et al. (2008) were the first to investigate the youngest Amazon

channel-mouth lobe complex. Previous studies were focused on the upper and

middle part of the fan. In the Amazon Fan, the youngest channel-mouth lobe

systems were identified at the termination of the channel-levee systems of the

Upper Levee Complex, 680 km from the Brazilian Coast (Jegou et al., 2008)

(Fig. 3.14). Two types of lobes with distinct shapes were identified: (1)

elongated and narrow lobes with branching patterns like the veins of a leaf and

a width to length ratio (W/L) of less than 0.33 and (2) radial lobes with crescent-

shaped features opening in the downstream direction, that do not have an

organization within the lobe and a W/L ratio of over 0.35. The eight channel-

levee systems and associated lobes were built during a time of -10 ka and the
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average time between successive avulsions was 1250 years. High rates of

channel-levee progradation have been estimated at around 50 km per 100

years and the life span of lobes in Amazon system is around 600 years which is

relatively short compared to the life span of the fan as a whole (Jegou et aI.,
2008).
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Figure 3-14 Interpretation of acoustic imagery of the Amazon channel-mouth lobe complex
showing the successive channel-mouth lobe systems of Brown, 1F, 1E, 1D, 1C, 1B, 1A and
Amazon channels (from Jegou et al., 2008).
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3.5 Amazon Fan evolution

The development of the Amazon Fan during the Quaternary was controlled by

an alternation of sediment supply between glacial and interglacial periods.

During the interglacial high sea-level periods, most of the sediments brought by

the river were deposited near the river mouth and on the inner shelf (Gibbs,

1967; Milliman et al., 1975). Consequently, the Amazon Fan was inactive and

only hemipelagites were deposited on the fan (Damuth, 1977; Damuth et al.,

1988; Flood and Piper, 1997; Flood et al., 1995) with sedimentation rates of

approximately 0.05-0.1 m/ka (Mikkelsen et al., 1997). On the other hand, during

glacial low sea-level periods, the sediments were channelled directly to the

head of Amazon Canyon, bypassing the shelf and feeding the deep-sea fan,

with sedimentation rates ranging from 1 m/ka to more than 50 m/ka (Mikkelsen

et al., 1997). Nowadays, the Amazon fan is essentially inactive because the

sediments are trapped on the shelf, forming a subaqueous delta. The North

Brazil Coastal Current (NBCC) transports fine-grained sediments northward to

the French Guiana shelf and upper slope (Jegou et al., 2008).

Recent study divides the evolutionary history Amazon Fan into three

phases, correlated to different stages of development of the river, which is

tightly related to the evolution of Andes uplift, based on the average

sedimentation rates (Figueiredo et al., 2009). These rates were calculated using

biostratigraphic, isotopic and well log data from wells on the outer shelf and

upper fan. The onset phase (11.8 - 6.8 Ma, with mean deposition rates of 0.05

m/ka) started with the connection between the western and the eastern river

segments due to the adjustment of the equilibrium profile of the paleo-Amazon

River, caused by the combination of the accelerated Andes uplift and global sea

level fall. During this phase the river was not yet entrenched and there was

some deposition in the continental basins leading to relatively lower deposition

rates on the submarine fan. The middle phase (6.8 - 2.4 Ma, with mean

deposition rates of 0.3 m/ka) was marked by an increase in the sediment

accumulation rates on the fan due to strong Andean erosion and the end of

deposition on continental basins despite the coincidental rise in global sea level.

During this phase the river was already entrenched, and had its main sediment

input from Andes. The late phase (2.4 to present, with mean deposition rates of
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1.22 m/ka) is characterised by the overprint of additional sediment sources to

the Andes supply caused by a possible peripheral uplift due to basin

subsidence in response to the sedimentary load on the fan. During this phase

the river reached its present shape after a period of alternation of incision and

aggradation during glacial and interglacial periods, respectively.

3.6 Structural Setting

There are few published works on Amazon Fan tectonics. The structural

framework of the Amazon Fan is characterized by a variety of thin-skinned

structures, including faults and folds (e.g., Reis et al., 2010; Silva et al., 1999)

(Fig. 3.15). These contractional structures were formerly interpreted as diapirs

by Castro et al. (1978), during the first studies of the structural framework of the

Amazon Fan. It was only after the acquisition of new seismic data with new

processing procedures, that the former diapirs could be reinterpreted as folds

and thrust faults and new tectonic models based on gravity gliding and

spreading (Galloway, 1986) were defined. This framework is characterized by

extensional faults near the shelf margin linked by a relatively non-disturbed

zone to downslope fold-thrust belts (Fig. 3.16) (Cobbold et al., 2004; Reis et al.,

2010; Silva et al., 1999; Zalan, 2004). In terms of water depth, the structures

occurring in less than 500 m water depth are extensional whereas those

between 1000 and 1500 m water depth are contractional (Cobbold et al., 2004).

The gravitationally-deformed area is about 190 km wide and 300 km along

strike, totalling an approximate area of 40,000 km2 (Reis et al., 2010). The

Amazon Fan can be subdivided into two structural compartments which include

a larger and structurally more complex Northwestern compartment and a

shorter and less complex Southeastern compartment (Cobbold et al., 2004).

In the extensional domain there are listric normal faults dipping seaward

with associated rollover anticlines and stratigraphic wedges (Fig. 3.17). The

growing rollovers generated by hanging wall block rotation along fault planes

created accommodation for deposition of stratigraphic wedges. There are large

rollovers between conjugate pairs of faults dipping seaward and landward (Fig.

3.17). The compressional domain characterized by a thrust-fold belt formed by

a sequence of thrusts which can vary in geometry and structural style along

strike. In the NW compartment these thrust-cored folds can affect the whole
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overlying sediments inducing the creation of ponded basins (piggy-back basins)

(Reis et al., 2010).
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Figure 3-15 - Structural map of the gravity tectonics structures on the Amazon Fan (adapted
from Reis et al., 2010). Notice the location of the 3D data used in the current thesis (yellow
area) and the location of the 2D line (3A) presented in Figure 3-17.

The thin-skinned structures present in the Amazon Fan are attributed to

slope instability due to gravity-driven stresses (Cobbold et al., 2004; Silva et al.,

1999). The extensional and compressional domains are linked by at least two

distinctive basal detachment surfaces (Fig. 3.17). Although few listric faults

located on the mid continental shelf area are rooted at the base of the Late

Cretaceous marine sequence, most of the listric faults located at the shelf
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border and upper slope root in a detachment surface close to the top of the

Cretaceous (Figs. 3.17) (Cobbold et al., 2004).

sw NE

DO-loMa Ll0-25Ma 25 - 40Ma C40 - 65 Ma

-100 Ma 100- 120Ma0Basement

Location of the stratigraphic
section in the Amazon Fan

Figure 3-16 - Simplified geological section of the Foz do Amazonas Basin, adapted from
(adapted from Silva et al., 1999). Most of the published data about deep water systems of the
Quaternary of the Amazon Fan (e.g. O.D.P. Proceedings, Leg 155) are downslope the area
affected by the thrusts which is on the upper fan.

The linked extensional-compressional domains were formed by the gliding

of sedimentary sections on weak overpressured shales induced mainly by

gravity spreading due to high depositional rate on the Amazon Fan since Late

Miocene (Cobbold et al., 2004; Silva et al., 1999). The overpressured shales

were formed due to intense gas generation in the regionally widespread

Cenomanian-Turonian interval (Cobbold et al., 2004). According to Silva et al.

(1999), the seaward verging folds and formation of thrust faults were favoured

by the topography created in the transition between continental and oceanic

crust which resisted downslope translation.
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4 STUDY DATA AND METHODS

4.1 Data set

The data used in this study include a 20 reflection seismic line and a 3D

seismic survey that are located on the upper slope of the Amazon Fan System.

Both 20 and 3D seismic data extend only to 5 sec two-way-time. The 20 line is

used to provide a regional view of the fan and has a NE-SW orientation. The

line covers a distance of 190 km from the mid shelf to the upper slope of the

fan. Although the 20 line does not intercept the 3D survey, the most North-

easterly extent of the line lies close to the NW border of the survey (Fig. 4.1)

and as documented below, it is possible to correlate key reflections between

surveys.

Figure 4-1 - Bathymetric map of the Amazon Fan with the location of the data set (20 seismic
reflection line and 3D survey). Map adapted from Marine Geoscience Data System.

The 3D reflection seismic volume is located in the upper fan, at the

southern extent of the Western Mass-Transport Deposit (Fig. 4.2). This region

lies in water depths ranging around 1000 to 2000 meters and is close to the

current Amazon Canyon mouth (Fig. 4.2). The 3D data set covers an area of

23000 km2
, and has a maximum recording time of 5s TWT with a bin spacing of

12.5 x 12.5 m2
. The frequency cut-off is at 125 Hz with a dominant frequency of
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32 Hz at 2800 ms TWT giving a vertical resolution of approximately 22 m. Since

the data has been migrated, then the Fresnel zone for the horizontal resolution

is approximately % wavelength which is also - 22 m. This study focuses on the

channel-levee systems which are described in detail.
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Figure 4-2 - Location of the 3D seismic data in the Upper Amazon Fan. The map also shows
the boreholes (ODP Leg 155), and the main surficial fan components, e.g., channel systems,
Amazon Canyon and mass transport deposits. The Amazon Channel is the most recently active
channel on the Amazon Fan (modified from Normark et al., 1997).
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The seismic data used in this study could not be directly tied to

lithological and chronological data from boreholes. This is because all the well

sites from ODP Leg 155 are located downslope of the study area (Fig. 4.2) and

there are no boreholes in the area covered by the 3D survey. The closest wells

in the area are too far for correlation. The 3D seismic data was generously

supplied by British Petroleum, while the 20 seismic reflection line was obtained

from "Agencia Nacional do Petr6Ieo".

4.2 Seismic interpretation

4.2.1 Horizon mapping

Interpretation and visualisation were undertaken within the Kingdom Software

8.1 (32-bit). Reflections were visualised using 2 different colour bars: black and

white, or Landmark CLB (Fig. 4.3). In the black and white scale, the black colour

represents a decrease in acoustic impedance (a trough or negative reflection

coefficient), whereas the white colour represents an increase in acoustic

impedance (a peak or positive reflection coefficient). In the other instance, using

the Landmark CLB colour scale: red represents a decrease in acoustic

impedance (a trough or negative reflection coefficient); and black represents an

increase in acoustic impedance (a peak or positive reflection coefficient) (Fig.

4.3).

Figure 4-3 - The two colour scales were used to visualize the amplitude reflections: Landmark
CLB (A) and black and white (B). Notice that the green wiggle trace is overlaying the seismic
reflections.

The two-way-time maps were constructed following the work flow

described below in Figure 4.4 using the tectonic-stratigraphic framework

outlined in section 4.2.2. A target reflection was chosen depending upon the

nature of the reflection; either a peak or a trough of the wavelet was used. The
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reflection was manually picked (point to point), with a subsequent time window

length of typically 0.03 s for a picking snap. A seed grid was created by picking

a number of widely spaced and perpendicular in-lines and cross-lines, always

tying around loops (Fig. 4.5), in such a way that at the intersection between a

cross-line and an in-line, the reflection should be at the same two-way travel

time, otherwise, it resulted in a mis-tie. The seed grids were constructed using

at least three different line sample sizes: coarse, fine and composite grids (Fig.

4.5). The coarse grid was constructed in the examples where the picked

reflection had high coherency between wavelet. In these grids, initial picks were

carried out every 50 inlines/crosslines, although they were frequently reduced to

25 (Fig. 4.5). The base of growth strata is an example of a relatively coherent

reflection, which was mapped using a coarse grid (Fig. 4.5).

Alternatively, the fine grid was constructed in areas of lower coherence of

wavelet, e.g., in the base of incisional channels, or in areas of a higher degree

of geological complexity and poorer seismic resolution. For instance, the

unconformity that occurs throughout the area was mapped using a fine mesh

grid because of the occurrence of discontinuities made by incisions of later

channels and the occasional truncation of the underlying horizons that

substantially increased the difficulty of tracking (Fig. 4.5). In this grid, the initial

picks were carried out every 10 inlines/crosslines, and were reduced in the most

complex case to a minimum of every 1, by applying progressively smaller

sampling intervals.

Composite grids were constructed where the reflection normally presents

variable coherence of the wavelet or the horizon was affected by a varying

degree of deformation. For instance, the basal horizon (Fig. 4.5) required a

composite grid of coarse and fine mesh, because it was more affected by the

tectonic structures (anticlines and faults) than the base of the growth strata.

Therefore, although this reflection regularly presents a coherent wavelet, the

reflection tracking demanded application of a finer grid across the structures.

In all of the three seed grid sizes, the occurrence of misties commonly

required the local reduction of the mesh size. After checking that the seed grid

(generated by point to point picking) was completely tied, the TWT map was

completed by using the polygon hunt tool. Using this tool, the interest area of

the grid is delimited, within which Kingdom Suite auto picks the geometry of the
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horizon, interpolating at all points in the grid. After the production of each TWT

map, a quality control was manually performed, checking each gap in the map,

and editing any anomalies. The maps were generated using Transverse

Mercator/Gauss-Kruger Projection System, South America 1969 - Brazil as

Geodetic Datum and latitude/longitude format in decimal degrees.

Construction of seismic-stratigraphic framework
from published literature and reflection

characteristics•Definition of picking parameters for each
reflection pick (peal or trough)•Coarse mesh (built by point to point picking tying around loops)• Mis-tie,

'" ~ Quality control data
Reduce the size of ~ I
the mesh ..

Quality control data•No mis-tie

1
co.rse-me~

No mis-tie

/.
Composite grid
(local fine mesh)

~

Fine-mesh grid

~

Generate surface from interpolation of seed grids

~
Plot TWT maps of surface

+
Isochron maps

between surfaces

+
Amplitude
extraction
of surfaces
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horizon surfaces by
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Figure 4-4 - Diagram showing the workflow used in the analysis of the studied seismic data.
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4.2.2 Tectono-stratigraphic framework

The interpretation of the seismic facies was based on reflection character,

geometry, termination and amplitude, in accordance with Hubbard et al. (1985).

The choice of the horizons to map was based on the tectono-stratigraphic

interpretation of the seismic data outlined in the Chapter 5. Although the 2D and

3D data are not directly coincident, the seismic reflection character of the mega-

sequences (separated by a basin-wide unconformity) is distinct enough that it is

possible to correlate the horizons between the two surveys (Fig. 4.6).

Clearly there is a significant role of faults in controlling the margin

deformation (Fig. 4.6). However, as the 3D volume had a maximum recording of

5 s TWT the geometry of the faults were poorly constrained within the data

volume (Fig. 4.6). The faults themselves were therefore not mapped out

although mapping of the pre-unconformity sequences revealed the geometry of

the resultant folds.

In the 2D seismic line, the unconformity was tracked from the upper

slope to the shelf by picking the reflection corresponding to the unconformity

between a more deformed lower interval and a less deformed upper interval of

sediments (Fig. 4.6). Five channel-levee systems were identified above the

unconformity and downslope of the outer anticline in the 2D line. By contrast

only three systems were identified in the 3D data. The 2D line covers a larger

proportion of the slope, and therefore shows that at least two further channel-

levee systems exist in the area and are not covered by the 3D data (Fig. 4.6).

In the 3D seismic survey, although the post-unconformity interval

immediately downslope of the most eastern anticline is the main focus of the

current research, two other intervals were analysed underneath the

unconformity. This was done in order to understand the structural framework

and the characteristics of the erosional canyon-like channels prior to the main

unconformity (Fig.4.6, surface 1a). Hence, the seismic volume was divided into

three packages: the lower package, which is characterized by the occurrence of

canyon-like channels; the middle package, which is characterized by the

presence of growth strata; and the post unconformity package which include the

studied channel-levee systems (Fig. 4.6).
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sw

PRE-UNCONFORMITY

NE

Legend:
1 - Base of the lower package
1a - Canyon-like channel

2 - Base of the middle package

3- Unconformity

4 - Base of the UCLS

4a, 4b, 4c - Bases of stacked
channel-levees (UCLS components)

4d - Top of the UCLS

5 - Seafloor

UCLS - Upper Channel-Levee System

MCLS - Middle Channel-Levee System

LCLS - Lower Channel-Levee System

HARP - High Amplitude Reflection Packe

MTD - Mass Transport Deposit

Figure 4-6 - Schematic diagrams showing the tectono-stratigraphy of the area, outlining the portion of the 20 seismic reflection line covered by the 3D survey. In total 10 horizons were picked in either the 2D or 3D surveys, the
picking parameters are summarized in Table 4.1.The seismic data are divided in 2 main intervals, pre-uncollformity (in grey) and post-unconformity (in yellow). In the 3D section, the seismic is divided in 3 packages: lower, middle
and post-unconformity. In this section is also emphasized the mapped horizons in the current work, which are: the boundaries of the 3 packages (horizons 1,2,3 and 5), the base and top of the UCLS and the internal boundaries of
the stacked channel-levees, components of the UCLS.
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The sediment sequence from the base of the lower package down to 5 s

(TWT) was not considered in this study. The geological interpretation of the 3D

survey, therefore, required the mapping of four main horizons that are the

boundaries of the studied packages: the base of the lower package; the base of

the middle package; the unconformity and the sea floor (Fig. 4.6). The post

unconformity package divides into three systems: the UCLS, MCLS and LCLS.

The analysis of the Upper Channel-Levee System (UCLS), which

comprises a sequence of stacked channel-levee elements, required the

mapping of reflections corresponding to its base and top, and a further three

intermediate horizons (surfaces 4, 4a, 4b, 4c, 4d in Figure 4.6). In the intervals

between these horizons, extraction of the RMS (root mean square) amplitude

and coherence in horizon slices in the middle of each channel-levee element

was undertaken using a time window of 20 ms.

Isochron maps of the three packages were constructed for each package

in order to determine variations in sediment accumulation, which was used to

infer the timing of the growing structures in relation to the deposition of each

package.

The evolution of Lower Channel-Levee System (LCLS) and the Middle

Channel-Levee System (MCLS) was based on the analyses of several horizon

slices taken across these systems using the base of the right levee of the upper

system as a reference (Fig. 4.7). This surface was chosen as reference (datum)

because it dips approximately in the same direction as the channel systems,

which are dipping towards the N-NW. The other surfaces, such as those

underneath the unconformity and the seafloor are dipping towards the NE and,

hence, were not appropriate (Fig. 4.8). RMS extraction of the reflection

coherence (in a time window of 20 ms) was chosen because the same horizon

slices cut across the ponded high amplitude reflection packets (HARPs) and the

high amplitude reflection HARs of the channel fill, either erosional or

aggradational. Therefore, the amplitude alone could not be used to fully

distinguish between these two deposits because they have similar amplitude

reflections.
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Figure 4-7 - Seismic section across the MCLS showing a horizon slice (RMS of coherence
extraction) highlighted with the dashed white line parallel to base of the levee of UCLS
(continuous white line). used as a datum.

LEVEE BASE OF
UPPER SYSTEM

5 10km

SEA FLOOR

Figure 4-8 - Two-way-time maps of the seafloor. the unconformity and the base of the right
levee in the Upper Channel-Levee System. The seafloor and the unconformity dip towards
different directions than the channels whereas the base of the right levee of the UCLS dips
towards the same direction as the channels.

Most of the horizons, including the erosional incisions, the unconformity

and the seafloor were mapped by picking the peak (black in Landmark CLB

colour scale) (Fig. 4.9), because there was more continuity. On the other hand,

the bases of the lower and middle packages were mapped by picking the

trough. The seismic character and the consistency of each picked reflection are

shown in Table 4.1.
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Table 4-1 - Seismic characteristics of the mapped reflections.

Reflection Seismic Consistency Grid type
character

1 - Base of the lower Trough, high

package
amplitude, Continuous, high coherence Composite
conformable

1a - Canyon-like Peak, truncation Discontinuous, low coherence Fine
channel base

2 - Base of the middle
Trough, high Coarse

package
amplitude, Continuous, high coherence
conformable

3 - Unconformity
Peak, conformable, Discontinuous, variable Fine
onlap, down lap coherence

Base of the levees, Continuous, variable Coarse
downlap, truncation coherence

4 - Base of UCLS Erosive channel Fine
base, Discontinuous, low coherence
truncation

Channel: Fine

Peak, high Moderate coherence,
amplitude, truncation
truncation

4a, 4b, 4c, 4d internal Discontinuous and with low Fine

subdivisions and top coherence in the levee
boundary of the UCLS Levee: reflections close to the

channel, truncation.
Peak, low
amplitude, Continuous an high Coarse
downlap, coherence in levee reflections

farther from the channel,
downlap

5 - Seafloor
Peak, high Continuous, high coherence Autopick
amplitude

For all analyses that required depth values, an interval velocity of 1500

m/s for the water column and 2000 m/s for the shallow subsurface seismic data

were assumed. For sediment burials greater than 500 m the published curve

showing the relation between travel times and sediment thickness in offshore

northern Brazil was used (Fig. 4.10).
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Exact determination of stratigraphic unit, lithology, and age was not

possible due to the absence of relevant borehole data in the area. The lithology

of the seismic facies identified in the post unconformity package of the 3D data,

therefore, is inferred by analogy with the sedimentary facies, e.g., MTD, HARPs

and the architectural elements of the channel-levee systems described in the

literature of the Amazon Fan, particularly the results of the Ocean Drilling

Program leg 155 (Damuth et al., 1988; Flood et al., 1995; Manley and Flood,

1988; Normark et al., 1997; Pirmez et al., 1997) (Fig. 3.8, Chapter 3).
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Figure 4-10 - Curves showing relation between one-way and two-way travel times and
sediment thickness in kilometres for offshore northern Brazil. Curves apply to areas beyond
shelf edge only; the green curve is applicable for the area west of 43°W (which includes the
studied area) and the red curve is applicable for area east of 43°W. Diagram adapted from
Kumar (1978).

111



5 TECTONO-STRATIGRAPHY

5.1 Introduction

The objective of this chapter is to describe the tectonic-stratigraphy of the

studied area, focusing mainly on the channel-levee systems which occur in the

uppermost interval of the northeastern portion. These constitute some of the

most important depositional elements of the Quaternary interval, which

corresponds to the upper 500-800 m of the Amazon Fan. The channel-levee

systems are considered important because they are the largest proportion of

the whole fan area in giant fan systems, such as Mississipi, Zaire or Amazon

fans. As described previously in Chapter 3, the Quaternary of the Amazon Fan

comprises four superimposed lens-shaped "Levee Complexes" (each one of

which is composed of a set of channel-levee systems) covering most of the fan

area (Flood et al., 1991; Flood and Piper, 1997; Manley and Flood, 1988) (Fig.

3.9).

A cross-section from Silva et al. (1999) shows the complete stratigraphy

of the Foz do Amazonas Basin, from the basement to the current sea floor (Fig.

5.1). Although this section is simplified, it is located parallel and close to the

study 20 line, i.e., both are dip sections and oriented across the Amazon Fan.

The stratigraphy shown in this section (Fig. 5.1) was interpreted using

geological data from 26 wells (Silva et al., 1999). As described in Chapter 3, the

stratigraphic column in the Amazon Fan reaches a thickness of 9000 m in the

interval from the Tortonian (Late Miocene) to the Recent (Fig. 3.2).

In this chapter a description of the inter-related deposition and tectonics of

the upper slope of the Amazon Fan is given, based on the interpretation of 3D

seismic data, in the context of regional tectonic-stratigraphy as given by a dip-

oriented 20 line. Two generic academic themes arise from observation of the

submarine channel-levee systems in the Amazon Fan and are pursued in later

chapters. Thus, the spatio-temporal evolution of channel-levees is discussed in

detail in Chapter 6, including discussion of flow property controls on their

development. Patterns of channel distribution are discussed in Chapter 7 with a

detailed analysis of the controls on channel spatial distribution and stacking.
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sw NE

5

10

15 km

----- Approximate section covered
by the study 20 seismic data
(seismic section presented in Fig. 5.2)

~~tN

~L
DO-10Ma ~10-25Ma D25-40Ma D40-65Ma

065 - 100Ma0100 - 120Ma0Basement

Location of the stratigraphic
section in the Amazon Fan

Figure 5-1 - Simplified geological section of the Foz do Amazonas Basin, adapted from Silva et
al. (1999). Notice in the location map that the section is sub-parallel to the study 2D line (Fig.
5.2) and also located Northwest of the Amazon Canyon Mouth. The dashed blue line delimitates
the approximate section covered by the study 2D line shown in Figure 5.2 (calculated by using
interval velocity of 2000 rn/s in the sediments and 1450 rn/s in the water). Therefore, most of the
analysed sediments in the current work were deposited since the Late Miocene and correspond
to the sediments of the Amazon Fan.

5.2 Regional setting (based on 2D data)

Analysis of the 20 seismic reflection line is necessary to provide the regional

tectono-stratigraphy for the 3D seismic survey. The 20 seismic reflection line is

oriented downslope and shows a section from the shelf border to the upper

slope in the Amazon Fan (Fig. 5.2). The lack of well data prevented an exact tie

of the seismic data to the stratigraphy of the area. Therefore, the study data

were fitted to the local stratigraphy by comparing the identified horizons and

structures with the available data from the literature (Reis et aI., 2010; Silva et

al., 1999). Thus, the stratigraphic framework of the study data was established

by comparing the 20 seismic reflection line with the stratigraphic section

presented in Silva et al. (1999) (Fig. 5.1).
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a) 20 seismic line - segment from outer shelf to upper slope

Legend:
AE - 20 seismic line
AC - Outer shelf and upper slope with a set of
normal faults

- Early Paleocene detachment surface
- 3D seismic survey

Bathymetric map of the Amazon Fan exihibiting
the location of the 20 (AF) and 3D data

Figure 5-2 - Non-interpreted and interpreted 20 seismic line (AE) located NW of the study 3D data cutting across the outer shelf and upper slope seen in the bathymetric map of the Amazon Fan. a) On the shelf edge (on the
segments, AB and BC) the prevailing structures are listric normal faults.
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sw NE

b) 20 seismic line - upper slope

Legend:
AE - 20 seismic line
CD - Upper slope exhibiting a fold-thrust belt
DE - Upslope stacked channel-levee systems
UClS - Upper Channel-levee System
MClS - Middle Channel-levee System
lClS - lower Channel-levee System
BMP - Base of Middle Package
BlP - Base of lower Package

- 3D seismic survey

Bathymetric map of the Amazon Fan exihibiting
the location of the 20 (AE) and 3D data

Figure 5.2 - 2D seismic line (AE) located Northwest of the study 3D data cutting across the outer shelf and upper slope seen in the bathymetric map of the Amazon Fan. b) Segment CD shows a fold and thrust belt and segment DE
shows the unconformity and the overlying three channel-levee systems, the focus of this study, (LCLS, MCLS, UCLS). Notice that the approximate section covered by the 3D seismic data is highlighted with the dashed blue line.
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5.2.1 Regional Structural Framework

Description

The 2D seismic line shows two areas with distinct structural styles separated by

a relatively non-deformed section 27 km long (Fig. 5.2). On these time data, the

shallowest deformed section is characterised by sets of normal faults that

appear to be listric, and that dip both seaward and landward (syn/antithetic) and

link at their bases (Fig. 5.2a, segment AB). The deformed area covers a

distance of 75 km and extends seaward to an approximate water depth of 560

m. The normal faults are not regularly spaced, with the distance between sea

floor fault traces (or near sea floor fault tips) ranging from 1 to 10 km in their

uppermost extremities. They generally converge downward with their dips

decreasing with depth, defining a listric shape. The surface into which the listric

normal faults sole out corresponds to the detachment surface in the Early

Paleocene sequence described in the structural analysis of the Amazon Fan

realized by Reis et al. (2010) (Fig. 3.17).

The fold and thrust belt is characterised by a series of thrusts and

associated anticlines that occur on the upper slope, extending for 25 km in the

2D line, between approximately 1000 and 1700 m of water depth. These

anticlines are asymmetric, have NE vergence and are irregularly spaced. The

wave-length of the successive anticlines can be as long as 7 km between the

two upslope anticlines and very short in the most downslope anticlines, where

they are coalescent (Fig. 5.2b, segment CD). Only the top extremities of the

thrusts were sampled in the seismic data because the study 2D line is relatively

shallow and the thrusts are rooted deeper than the lower seismic limit (Fig.

5.2b). These sampled thrust segments dip at around 45° toward the SW. The

fault-related folds above these thrusts are characterised by long back limbs that

have a lower dip than the underlying fault ramps. The forelimbs are shorter than

the backlimbs and generally dip more steeply. Deeper in the same 2D line, Reis

at al. (2010) show the thrusts root in the detachment surface that was identified

on the shelf linking the bases of most of the listric faults in the Lower Paleocene

(Fig. 3.17). Therefore, this detachment surface links the set of extensional listric

faults in the shelf/shelf border to the upper slope fold and thrust belt.
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Interpretation

The set of listric normal faults (syn and antithetic) linked by the detachment

surface to the downdip fold-thrust belt corresponds to an extensional-

compressive system typical of gravity driven sliding described not only in the

Amazon Fan (Cobbold et al., 2004; Reis et al., 2010; Silva et al., 1999) but also

in other passive margin systems such as the Niger Delta (Damuth, 1994;

Rowan et al., 2004), the Gulf of Mexico (Peel et al., 1995; Rowan et al., 2004)

and the Para-Maranhao Basin (Zalan, 2004). The analysis of the 2D seismic

line showed three structural domains, from the shelf to upper slope,

approximately to 1700 m of water depth: extensional, translational and

compressive. This type of structural compartmentalization is also described in

the Niger Delta (Damuth, 1994) as typical of gravity driven deformation on

submarine slopes.

In the extensional domain, the three uppermost slope listric faults are

rooted beyond the lower limit of the seismic data (Fig. 5.2a, segment AB). In the

deeper section adapted from Reis (2010), they sole out into a lower detachment

surface, i.e., at the base of Late Cretaceous (-100 Ma). These faults are

interpreted to have been active earlier than the listric faults occurring toward the

shelf break, which are rooted on the shallower Early Paleocene (-65 Ma)

detachment surface. This is because such detachment surfaces are associated

with the kinetics of mobile overpressured shales (Cobbold et al., 2004; Silva et

al., 1999) and are strongly dependent on depth (Morley and Guerin, 1996), i.e.,

the deeper surfaces were active earlier than the shallower ones. The faults

rooted in the Early Paleocene surface show a tendency to remain active for

longer toward the upper slope since the growth strata involved in the

extensional deformation are thicker and shallower seaward (Fig. 5.2).

Rollover anticlines occur associated with the listric growth fault. These

structures are interpreted to be generated by hanging wall sediments sliding,

rotating and warping along the curved plane of the listric normal faults (Fig. 5.3).
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Figure 5-3 - Seismic section covering detail of the shelf border in the 2D seismic reflection line, approximatsjv the same segment BC showed in Figure 5.2a, but here it is presented with vertical exaggeration of 2 times. At least 5
intervals of sediments (numbers) were recognized based on stratal geometry and reflection coherence and terminations. Notice that the lower 3 intervals present truncation on their boundaries which implies erosion. In interval 4 a
platform shaped feature occurs with aggradational internal reflections and borders with slope. Observe the growth strata related to the listric normal fault and associated rollover anticline. The orange picks (boundaries of sediment
packages) correspond to the orange picks in the Figure 5.2. Notice that the blue arrows are onlaps, orange arrows are downlaps and the red arrows are truncation.
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The topographic depression of the unconformity at the shelf break seems

to have been formed by the collapse of overlying sediments due to underlying

listric fault activity (Fig. 5.1). The growth strata in the upper sediment layers of

the pre-unconformity interval close to the shelf break and a set of small faults

offsetting the unconformity are also evidence of this phenomenon (Fig. 5.3).

Therefore, the listric faults close to the shelf break (Fig. 5.2, segment BC) were

active until the formation of the unconformity. The faulting described here

created the accommodation space necessary for the accumulation of post

unconformity shelf sediments (Fig. 5.3).

In the compressional domain, the fold thrust belt is interpreted as

detaching from the Early Paleocene surface (-65 Ma) by Reis (2010) (Fig.

3.17). These structures were still active after the unconformity formation

because the unconformity is folded on the top of the anticlines (Fig. 5.2,

segment CD). This deformation seems to have been related to the same

tectonic activity that deformed the unconformity at the shelf break, taking into

account that the thrust-cored anticlines and the listric faults are genetically

related.

Comparatively, the extensional domain is much larger than the

compressional one. The variability of the dimensions of the apparent

extensional, translational and compressional domains is mentioned in the

literature as being possibly caused by the amount of the deformation that is not

resolvable by seismic data (Zalan, 2004).

5.2.2 Stratigraphic setting

Description

The studied 2D seismic data is relatively shallow, extending downw only to 5 s

(two-way-time) (Fig. 5.2). Therefore, the study 2D line did not cover most of the

deeper stratigraphic units of the Foz do Amazonas Basin (considering that the

sedimentary section of the Amazon Fan is up to 9 km thick). In Figure 5.1, the

blue dashed line is the approximate area of the stratigraphic section which is

covered by the study 2D line. It is possible to infer that most of the section in

the study 2D seismic line is part of the sedimentary package deposited during

the last 10.7 Ma and equivalent to an interval from the Late-Miocene to the
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present day. The southwestern-most portion of the section extends deeper (Fig.

5.1); this portion of the 20 line also covers part of the older sediments of mixed

carbonatic-siliciclastic deposition, the Amapa Formation (Figueiredo et al.,

2007), which lasted from Late-Paleocene to Late-Miocene (Fig. 3.2, Chapter 3).

Two horizons with significant stratigraphic relevance were identified in

the study 2D line. The earlier one is a boundary evidently separating higher

amplitude reflections underneath from lower amplitude reflections above. This

horizon ( dark green colour) is an onlap surface and occurs on the southwestern

segment of the 2D line (Fig. 5.2a, segment AB). This horizon seems to be the

same Early Paleocene detachment surface as that identified by Reis et al.

(2010) (Fig. 3.17).

The later horizon is interpreted as an unconformity, identified and

illustrated across the whole 2D line by the red horizon in Figure 5.2. The

unconformity is conformable with the underlying reflections in some places but

also appears locally truncating underlying reflections on the crest of the

anticlines (yellow arrows in the CD segment, Fig. 2b) and on the shelf border

(Fig. 5.3). This unconformity is a significant horizon in the structural-

stratigraphic framework because it separates strongly deformed sediments

underneath from slightly deformed sediments above.

Above the unconformity and close to the shelf border (Fig. 5.2, segment

CD), at least 5 seismic-stratigraphic units were identified filling the relative

paleo-low (Fig. 5.3). These units were defined using reflection terminations and

strata geometries (e.g., Hubbard, 1985). The lowest units 1, 2 and 3 show

coastal onlap and downlap reflections and truncation along their upper

boundaries. Unit 4 shows a platform-shaped seismic feature on the shelf

border, approximately 10 km long and 500 m high, and has internal sub-

horizontal reflections and lateral slopes (Fig. 5.3). Moreover, Unit 4 also

presents reflections onlapping the paleo-slope and the platform structure. Unit 5

is predominantly formed by sub-parallel reflections and locally, by Sigmoidal

downlaps.

On the upper slope and below the fold and thrust belt at least five

channel-levee systems appear to be stacked in an upslope sequence, above

the unconformity (Fig. 5.4). The three upper and stacked channel-levee
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systems correspond to the Upper, Middle and Lower systems, identified in the

northeastern portion of the 3D seismic survey and described late in this chapter.

TWT(s)

2.5

3.0

3.5

4.0

NE

Figure 5-4 - Non-interpreted and interpreted detail of the 20 seismic line corresponding
approximately to the segment DE of the figure 5.2.b with vertical exaggeration (10x). This
section shows 5 stacked channel-levee systems immediately downslope from the fold and fault
belt. The 3 channel-levee systems identified also in the 3D seismic data are identified (UCLS,
MCLS and LCLS).

Interpretation

The age of the earlier (green) horizon which separates higher amplitude

reflections from overlying lower amplitude reflections in the southwestern border

of the 20 is controversial (Fig. 5.2a, segment AB). The approximate area

covered by the study 20 line in the simplified stratigraphic section of Silva

(1999) (Fig. 5.1) implies that the horizon that is the base of the yellow interval,

which corresponds to the base of the Amazon Fan, dates from around 10 Ma.

On the other hand, the green horizon (in the studied line) corresponds to the
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green horizon present on the seismic line of Reis et al. (2010) (Fig. 3.17) which

dates from around 65 Ma and is equivalent to the Early Paleocene. In either

case (i.e., a Late Miocene interpreted age (Silva et al., 1999) or an Early

Paleocene age (Reis et al., 2010)), the strong difference in amplitude reflection

between the sedimentary packages above and below the picked green horizon,

in the study 20 line require explanation.

In the first case, the horizon separates the essentially siliciclastic

sediments of the Amazon Fan from extensive underlying carbonate sediments

with higher acoustic impedance (see the stratigraphic chart proposed for the

Foz do Amazonas Basin; Fig. 3.2). In the second case, the green horizon

coincides approximately with the transition from the Cretaceous to the Tertiary.

Therefore, it separates older and more consolidated Cretaceous sediments with

possibly higher acoustic impedance from younger less consolidated Tertiary

sediments. In the current thesis, the green horizon is considered to be of Early

Paleocene age in agreement with Reis et al. (2010) because the correlation

with the study seismic line is more precise. This is because the green horizon

picked on the studied 2D line best corresponds to the green horizon presented

by Reis et al. (2010), which is the same seismic line as the studied line, but

reaching much deeper depths, down to 10 s TWT.

The unconformity that pervasively extends along the 2D seismic line

could not be precisely dated. Although the unconformity was slightly deformed

on the top of the anticlines (Fig. 5.2b, segment CD), it was formed after most of

the slope deformation. This is evidenced by the relatively few normal faults that

cut across the unconformity in the shelf with no or subtle offsets (Fig. 5.3). It

marks roughly the end of strong gravitationally driven tectonic activity in the fan.

Therefore, the whole sediment package can be vertically divided into units

strongly and slightly affected by the structures, i.e., underneath and above the

well marked unconformity (Fig. 5.2).

The five sedimentary units characterised above the unconformity were

deposited in a topographic low close to the shelf border which created

accommodation space for the sedimentary stacking (Fig. 5.3). This

accommodation was possibly generated by the extensional tectonics (normal

faults) that affected the pre-unconformity sediments. Unit 4 presents a structure

characterized by internal aggradational reflectors bordered laterally by slopes,
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and are here interpreted to resemble carbonate platforms (reefs/shoals).

However, in the absence of well data no further discussion of the genesis or any

stratigraphical significance of these units will be raised here. This is because

the understanding of their stratigraphical meaning does not impact the study of

the submarine channels which are the focus of the current research.

5.3 Unconformity

5.3.1 Description

The unconformity divides the seismic data into two main packages, with

distinctive seismic facies and degree of deformation. It occurs widely, with

changing characteristics across the study area. The unconformity is commonly

found to be locally conformable with the underlying sediments (i.e., forming a

disconformity), although it is often erosive, generating a local truncation of the

underlying layers on the crest of the anticlines and on the shelf (Fig. 5.5). In

these areas, the erosion could have removed sediment thicknesses greater

than 430 m. The unconformity is an onlap surface for the turbidite systems

deposited immediately above, but also may have thin layers of hemipelagites

lying parallel and immediately above it.

In the study 3D survey, the average dip of the unconformity is around 1.4°

NE and with steeper dips near the limbs of the anticlines. The elongate

discontinuities exhibited on the unconformity map with N-NW directions

represent incisions made by the later channel systems (Fig. 5.5).

5.3.2 Interpretation

This unconformity may represent an important gap in deposition during the

Pleistocene as it is angular and erosive at the fold crests, and was therefore

generated after most of the slope deformation and also marks a significant

change in the style of the turbidite systems, from essentially erosive, canyon-

like channels underneath to predominantly channel-levee systems above. The

geological significance of this unconformity is further discussed in Chapter 9

(Discussion) .
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a)

b)

Figure 5-5 - a) Two-way-time(s) map of the unconformity. The discontinuities on the map are
due to erosion by later channels; b) Non-interpreted and interpreted cross section AB, the
unconformity is the red horizon, truncating underlying reflections on the crest of the fold. The
white arrows indicate the onlap character of the horizons above. The unconformity also
separates the upper sediment package with dominantly aggradational channel-levee systems
(C-L) from the lower sediment package with essentially erosive canyon-like channels (E).

5.4 Pre-unconformity interval

5.4.1 Introduction

The prevailing seismic facies in the pre-unconformity interval are formed by

tectonically deformed sub-parallel reflectors (Fig. 5.5). Thrust-cored folds form
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anticlines in the Southwestern half of the seismic volume and are responsible

for most of the deformation. In this interval, canyon-like channels were identified

as the most common turbidite pathways (Fig. 5.5 and Fig.5.6).

In order to understand the structural framework, two key horizons were

mapped: the bases of the lower and middle packages, as previously defined in

chapter 4. The lower package includes the studied canyon-like channels (Fig.

5.7). Its base is a relatively continuous and high amplitude reflector at a depth to

delineate the majority of the structures. The middle package corresponds to the

most conspicuous growth strata interval, which is thicker along the synclines

and pinches out laterally towards the anticline limbs (Fig. 5.7). The pinching-out

toward the anticlines may indicate lower sedimentation rates than the uplift

rates.

Figure 5-6 - Cross section AB showing a canyon-like channel C (the red arrow indicates the
base of the channel). The section is located in the two-way time map of the base of the channel.
The green and blue horizons are the base and the top of the lower package.

5.4.2 Structural framework of the pre-unconformity interval

This structural analysis is based on the 3D seismic data which cover the upper

slope segment of the 20 seismic line (Fig. 5.2b). The tectonic structures can be

visualized in plan view in the maps of the bases of the lower and middle

packages (Figs. 5.7 and 5.8). These maps show the position of the fault-related

folds and a fault with directional offset (i.e., a kink in its' intersection with the

mapped key horizon).
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base of the
middle
package N

base of the
lower package

Legend:

1- base of lower package

2- base of middle package

TWT (s)

.0

TWT (s)

7

3- unconformity

A, S, C, 0 and E - anticlines

110 kml 110 kml
.5

Figure 5-7 - Non-interpreted and interpreted seismic sections across study area. The cross section shows 4 thrusts and related folds and the mapped horizons: unconformity (red), base (green) and top (blue) of the Basal Interval.
Crescent-shape yellow structures are sections of the mapped canyon-like channel. The white arrows are onlaps onto the anticlines limbs. The Wvo-way time maps of the base of the growth strata package and the basal horizon show
the structures and the location of the seismic section.
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Fold and thrust belt

Description

In the study area, there are 5 thrust-cored anticlines with NW-SE oriented

hinges and northeasterly vergence (Fig. 5.7). These thrust-faults correlate to

those seen in the 2D seismic line located NW of the 3D data, as previously

described (Figs. 5.2b). Figure 3.17 shows that the thrust-faults are rooted in a

detachment surface at approximately 8950 m depth, assuming an approximate

seismic velocity of 1450 mls in the water and using a sediment thickness of

7500 m (obtained from the curves relating two-way-travel times and sediment

thickness of areas beyond shelf edge in off northern Brazil (Kumar, 1978) (Fig.

4.10». In general, the folds are asymmetric with the forelimb slightly steeper

and shorter than the backlimb, and tighten with depth. The Southern half of

anticline B is also asymmetric, however, the back limb is steeper than the front

(Fig.5.9).

The unconformity (red horizon in Fig. 5.7) is the only mapped horizon

which shows significant lap geometries. It is an onlap surface downslope from

the anticline D and a downlap surface upslope from the same anticline. In all

packages (lower, middle and post-unconformity) the sediment downslope from

the anticline B shows approximately constant thickness (Fig. 5.7). In general,

the sediment packages of the pre-unconformity interval present major

thicknesses in the synclines (Fig. 5.7). In these positions, sediment layers can

be thinner towards the anticline crest, can pinch out or onlap it (Fig. 5.7). In the

interval underneath the base of the lower package, there are more layers

pinching out towards the anticlines than in the packages above it (e.g., see the

segment of the seismic section between anticlines D and C, Fig. 5.7). The lower

package does not show reflection on laps or pinch outs towards the anticline

limbs, although it is slightly thinner on the anticline crests. The middle package

presents reflection onlaps and pinch outs against the anticlines.

The anticlines commonly exhibit sets of normal faults in their crests.

These can be seen in the anticline as planar features, dipping from the crest of

the anticline toward the forelimb and dying out at depths of around 600 m (Fig.

5.10).
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Figure 5-10 - Non-interpreted and interpreted seismic section showing crestal forelimb-dipping
normal faults.

Interpretation

The occurrence of thicker strata in the synclines and layer pinch outs against

the anticlines are typical of growth strata. It follows that the anticlines may have

been active during the deposition of most of the sediment packages but less

active during the deposition of post-unconformity sediments. The structures

were more active mainly during deposition of the sediment interval underneath

the lower package and the middle package, where growth strata are more

conspicuous.
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The isochron map of the lower package shows minor thicknesses in dark

blue and the major thicknesses in dark green (Fig. 5.11a). The thinner portions

coincide with the crests of the anticlines (compare with the locations of the

anticlines in Fig. 5.8) and the thicker portions are distributed along ribbon-like

features with NINE orientation (Fig. 5.11a). These ribbon-like features

correspond to the canyon-like channels described in the next section 5.4.3.

Therefore, although growth strata are not very clear in the lower package, their

relatively minor thickness on the top of the anticlines may indicate that these

structures were active during the deposition of the package. In contrast to the

middle package and the package below where the inferred uplift rates appear to

be greater than the sedimentation rates, in the lower package, the

sedimentation rates were probably greater than the uplift because stratal pinch-

outs are not seen.

The isochron map for the middle package also shows minor thicknesses

(dark blue) on the crests of the anticlines but the major thicknesses (orange) in

the SW section of the area, upslope of the anticlines (Fig. 5.11b). The thicker

strata between the anticlines indicate not only syntectonic deposition (growth

strata development) but also sediment trapping behind the grown anticlines

such that the synclines are almost healed.

According to Morley (2007) the development of normal faults at anticline

crests is interpreted as a response to the interaction of gravitational forcing and

fold growth within the syn-kinematic section. Their importance lies in the fact

that they mark the moment when the folding effectively affected the sea floor

topography. They occur when sediments accumulate on the tops of the growing

structures (Morley, 2007). Their occurrence may favour the erosion of the

anticlines by channel or mass wasting processes. In the current work, however,

they are not focus of study because in the study area these faults do not appear

to affect the channel-levee systems.
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Tear fault

A fault exists with approximate NINE strike, with a sinuous trace in plan view

and characterised by a dextral offset along strike. It is best visualised on the

two-way-time map of the base of the lower horizon (Fig. 5.12). The fault

geometry varies along length in the studied area, depending on the fault trace

orientation. In segment 1-2 (Fig. 5.13, map) the fault has N-NE direction and a

dip slip component toward the SE (Fig. 5.13, section a). In this case, the East

block is the hanging wall. In segment 2-3, the fault is sub-vertical in its lower

portion and cuts across a bathymetric high. In this high, the deeper sediment

layers are more tightly arched, and growth strata can be found in the lower

package (Fig. 5.13, section b), indicating that there was uplift during deposition.

In segment 3-4, the fault has a NE direction and a dip slip component toward

the NW (Fig. 5.13, section c). In this case, the western fault block is the hanging

wall side. In segment 4-5, the fault trace has NW direction and cuts across the

anticline at a very low angle (Fig. 5.13). The fault trace is almost coincident with

the front limb of the thrust-cored fold.

4.9

TWT (5)
2.7

3.6

10 km

Figure 5-12 - Detail of the two-way-time map of the base of the lower package showing the fault
with directional offset. The offset of the contour curve of 4.1 s is highlighted in yellow.
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d)

1-2,2-3, 3-4 and 4-5 -fault segments

E

c)

SE Legend:

L - Lower Package

M - Middle Package TWT (s)
2.7

P - Post-unconformity package

a, b, c and d - sections

A, S, C, D and E - anticlines

F - fault
10 km I

Figure 5-13 - Seismic sections across the tear fault and in different positions along the fault axis, as seen an the map of the base of the middle package. In a and c sections the hanging walls moved downward relative to the
footwall, indicating extensional behaviour. In a, a small graben was formed. The b section is across the fault bend and cuts arched sediments showing growth strata (highlighted in orange) and the faults bifurcate upward
showing a small minigraben characterizing extensional character in its upper half. The GH section cuts acroSls the anticline. In map view the fault shows strike offset, better seen on the fault bend.
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In cross section the fault plane may be sub-vertical at the position where

it cuts the anticline (Fig. 5.13, section d). Section d outlines the juxtaposition of

two fold apices ("twin peaks") that suggest that the fault is displacing fold B,

creating an offset along the fault trace. In segment 4-5 the superimposition of

the deformation due to folding and faulting causes added complexities in fault

characterisation. The fault segments with NE direction have extensional

characteristics with dip-slip offsets (Fig. 5.13, sections a and c). Conversely, in

the NW fault segments the sediment layers are arched upward, indicating

compressional characteristics (Fig. 5.13, sections b and d).

Fault kinematics

Growth strata are associated with the arched structure (Fig. 5.13, section b)

forming a bathymetric high. Here the reflections pinch out toward the high at the

fault bend, indicating that the sediment layers arched upward syndepositionally.

In the lower package, growth strata can be seen in section b (Fig. 5.13). This

suggests that the paleo-bathymetric high at the fault bend may have been

formed by compression at a restraining bend (transpression) (Fig. 5. 14).

Complex variation of deformation style along the fault trace may indicate

that the relative movement between the two plates separating the fault is

oblique to the fault trace, as opposed to a typical strike-slip fault which is

parallel to the fault trace (Fig. 5.14). This deformation may be related to the

gravity driven gliding of the upper fan sediments downslope, with major

displacement of the West portion. The difference in displacement along the fault

may have promoted the tearing apart of the two blocks.

Although the faulting seems to be related to the process of gravity

tectonics in the slope, the fault cuts anticline B and thus suggests an alternative

direction for the main compressive stress (ol)to that inferred from the anticline.

This may indicate that the fault postdates development of the anticline B (Fig

5.14). Above the unconformity, however, the fault remained almost inactive,

with post-unconformity sediments slightly affected. Apparent offset above the

unconformity is not clearly visible at the scale of seismic resolution.
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Figure 5-14 - Diagram with the trace of the tear fault (red) and the anticline B (dashed line). The
releasing segments and the restraining bend are indicative of transtension and transpression,
respectively. Notice the approximate direction of the interpreted major compressive stress axis
(0"1) for the fault (red) and for the anticline (black) deformations.

5.4.3 Structurally confined canyon-like channels

Description

Incised channels occur commonly in the pre-unconformity interval whereas

there is no clear evidence of levee-confined channels. In the lower package,

incised channels are inferred to be the main pathways of turbidity currents (Fig.

5.6 and 5.7). At least three channels were identified dipping toward the

Northeast, incised in a background of continuous tabular sub-parallel reflections

with amplitude similar to the channel fill (Fig. 5.15, 5.16 and 5.17). An isochron

map was the best way to show the erosive channels in plan view, to focus on

their geometry, distribution, and their relationship with the structures (Fig. 5.15);

the thicker portions of the interval are mainly along the channel axes and the

thinner are coincident with the anticline crests. In cross section, the channel

bases are frequently sharp, deeply erosive and present lenticular geometry with

flat or convex top layers (Fig. 5.16). The channels are sinuous because they

divert and/or deflect (see Clark and Cartwright, 2009) (Fig. 2.53) from the pre-
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existing and/or growing structure (further details regarding the interaction

between tectonics and erosive-channel development are presented in Chapter

7). Channel width can range from 2 to 5 km (Fig. 5.16) and thickness from 200

to 280 m.
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The channels are named "canyon-like channels" because they can be as

large as 2600 m wide and 150 m deep. The studied canyon-like channels, for

example as shown in Figure 5.17, have equivalent dimensions to the confining

erosive features described by Abreu et al. (2003) in offshore Angola which are

up to 200 m thick and 1-5 km wide. In that area, however, the features frame

the sinuous channels and related overbank deposits. This was not observed in

the studied canyon-like channels.

The channel fill is commonly formed by reflections with variable levels of

organisation, which in cross section can appear as trough, tabular or sigmoidal

(lateral accretions) (Fig. 5.16).

Interpretation

The sinuosity of this channel seems to have been determined by the growing

surrounding structures (described earlier) during channel development because

the channel is deflected at the anticline limbs (Fig. 5.15). The variation of axis

gradient also appears partially due to subsequent deformation.

Figure 5-17 - a) Two-way-time map of the erosive channel 2 showing also the anticlines and
the tear fault (red); b) 3D view of the channel2 (view upstream).

Internally, the thickest channel segments are usually composed of sub-

vertically stacked, cut and fill geometries. The stacking architecture of channel-

fill bodies suggests that the channel growth patterns formed by a combined

process of lateral and vertical amalgamation (Fig. 5.16). Thus, section EF in
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Figure 5.16 shows an amalgamation of stacked channel cuts and fills composed

of multiple channel elements, which can be classified as "channel complex,

after Sprague et al. (2002) (Fig. 2.23). Each cut and fill element is considered a

channel element in the proposed hierarchy. This hierarchical scheme is

recognisable on seismic reflection profiles and some large outcrops (Sprague et

al.,2002).

5.5 Post-unconformity interval

5.5.1 - Introduction

The post-unconformity interval can reach a thickness of 900 m in the studied

area, corresponding to part of the interval analyzed by the Ocean Drilling

Project (ODP Leg 155) which included the uppermost 500-800 m of the Amazon

Fan (Flood and Piper, 1997; Hiscott et al., 1997). In this interval, the sediments

are less tectonically disturbed than the sediments below the unconformity.

Three channel-levee systems were identified in distinctive stratigraphic

positions below the surficial Western Mass-transport Deposits (Fig. 5.18). They

are stacked from the oldest to the youngest and from East to West toward

upslope: the Lower Channel-Levee System (LCLS) that only clips the survey,

the Middle Channel-Levee System (MCLS) and the Upper Channel-Levee

System (UCLS). In this section, the stacking and the genetic relationships

between the three distinct channel-levee systems, the high amplitude reflection

packets (HARPs), and the mass transport complexes are discussed. The

analysis was focused on the description of the principal controls on the

development of the three channel-levee systems.

Stratigraphic context

The ODP project identified 4 large "Levee Complexes" in the Quaternary of the

Amazon Fan (Flood et al., 1995; Hiscott et al., 1997; Piper et al., 1997) (Fig.

5.19). Although well data were unavailable to tie the 3D seismic survey with the

local stratigraphy proposed by ODP Leg155, the location of the 3D data in the

Amazon Fan suggests that the post-unconformity channel-levee systems are

components of the Middle Levee Complex.
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UCLS - upper channel-levee system
MCLS - middle channel-levee system
LCLS - lower channel-levee system

IIMTD - mass transport deposit

C - channel (HARs)

D L -levee

IIE - erosive basal channel

Figure 5-18 - Non-interpreted and interpreted cross section showing the three upslope-stacked channel-levs., systems identified above the unconformity of the study area Slope deposits and channel-levee architectural elements
were identified based on the seismic facies which were characterized using the amplitude intensity and the t~rminations of reflections. The white arrows highlight the levee reflection downlaps and the HARPs onlaps. The location of
the seismic section is shown on the structural map of the green horizon.
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The 3D seismic data is located on the West side of the Amazon Channel,

underneath the West Surficial Mass Transport Deposit (WSMTD) and upslope

from the section between the boreholes 941 and 942 (Fig. 5.19). Although close

to the position of Well 941 (Fig. 5.19), most of shallow channel-levee systems

underneath the WSMTD occurring between wells 941 and 942 may be included

in the Middle Levee Complex.

The studied channels are oriented N/NW, hence, the downstream

extrapolation of the study channel, highlighted in blue in the 3D data (Fig. 5.19),

would likely fit in the West portion of the cross section where the Middle Levee

Complex is. Therefore, the study channel-levee systems are likely to be

components of the Middle Levee Complex, which is the westernmost complex

and is located immediately underneath the WSMTD.

The integration of biostratigraphic, isotopic and paleomagnetic data

suggests that the Middle Levee Complex dates from glacial Stage 6 (Piper et

aI., 1997). Therefore, the study channel-levee systems might have been

deposited during this glaciation, approximately between 125 and 170 ka BP

(Fig. 5.20).

Isotopic
stage Stacked b18 0 (%o:J

2 0 -1 -2

o

50

100

& 150
-c

200
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300

Upper
Levee
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Midddle
Levee
Complex

I Lower L.C.

Bottom
Levee
Complex

Figure 5-20 - Diagram showing four "Levee Complexes" in the Quaternary of the Amazon Fan
(Flood et aI., 1995) with respective isotopic stages. The isotopic CUNe of Martinson et al. (1987)
is used as a proxy for eustatic sea level (adapted from Piper et al. (1997)). Notice that the
Middle Levee Complex which includes the studied channel-levee systems was deposited
approximately between 125 and 170 Ka.

143



Seismic facies and sedimentologic interpretation

Description

Four main seismic facies were identified in the post-unconformity interval: high

amplitude reflection packets (HARPs), chaotic/convolute folded/faulted

reflectors, high amplitude reflections (HARs) and downlapping, low amplitude

reflections. These were correlated to the four main acoustic units previously

described in the Amazon Fan by ODP Leg 155 (Manley et al., 1997) (Fig. 3.8) in

order to indicate the probable lithology. The seismic facies were determined

based on not only the amplitude intensity, but also on the geometry of the

deposits and the geometry and termination style of the seismic reflections (Fig.

5.18).

Interpretation

All the following interpretation of the seismic facies in the study area was made

by analogy with the ODP Leg 155 description on Figure 3.8:

The sub-parallel high amplitude reflection packets (HARPs) onlap the

unconformity. This facies was described in the downslope areas of the Amazon

Fan as sand rich ponded sheet-like deposits formed by unconfined high density

turbidity currents (Flood and Piper, 1997). It has been interpreted as indicating a

crevasse-splay deposit associated with channel avulsion (Normark et al., 1997)

(Fig. 3.8). The associated lithofacies are likely to range from disorganized sand

beds (structureless to chaotic) to organized sand beds (graded and cross

stratified) through to disorganized gravel and sandy gravel.

The sediments with chaotic/convolute folded/faulted reflectors are

considered mass transport deposits (MTDs). They are interpreted as being

formed by slumps, slides and debris flows (Normark et al., 1997) (Fig. 3.8). The

associated lithofacies are likely to include disorganized pebbly or gravelly mud

and sandy mud, chaotic mud with clasts (deformed/folded/faulted strata),

homogeneous structureless mud and disorganized chaotic sand with clasts.

The MTDs were identified at two stratigraphic levels. Firstly, there is an MTD

flanking the middle channel-levee system. It is thought to be formed by large

scale gravity-driven slumping and/or sliding of sediments on the paleoslope.

Secondly, another MTD exists at the base of the right-hand levee (looking

downstream) and is interpreted as a slumped levee.
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The channel axis facies consists of high amplitude reflections (HARs)

roughly sub-parallel and enclosed by the levee reflections. According to

Normark et al. (1997) they can be associated with disorganized sand beds

(structureless to chaotic), organized sand beds (graded and cross stratified)

and/or chaotic mud (clasts from localized mass transport) (Fig. 3.8). A HAR unit

was sampled in the modern Amazon Channel and is composed of the coarsest

and best-sorted sand rich sediments sampled within the Amazon Fan (Manley

et al., 1997).

The levee facies comprises low amplitude reflections downlaping onto

the base of the system. The levee deposits are volumetrically the most

important seismic facies in the post-unconformity interval. They are considered

to be overbank deposits formed by turbidity current overflows. Sampled levees

consisted of mud with thin beds and laminae of silt and sand (Manley et al.,

1997). They may exhibit the lithofacies of colour-banded clay and mud, colour-

banded silt and mud, irregular or discontinuous silt laminae, very thin regular silt

and mud laminae, organized silt beds and laminae (graded, cross-beds),

disorganized silt beds and laminae and organized sand beds and laminae

(Normark et al., 1997).

5.5.2 - Basal Erosive Channel

Description

An erosive channel occurs at the base of each of the three channel-levee

systems identified above the unconformity. These channels form elongate

features dipping towards the N-NW (Figs. 5.21 and 5.22) with variable

dimensions; channel widths range from 1.6 to 4.2 km and approximate depths

from 40 to 300 m. Their incision cuts through the high amplitude packages

(HARPs) and the underlying unconformity (Figs. 5.21 and 5.22). The channel

boundaries are often crescent-shaped forms in the horizon slices and are

interpreted to be formed by rotated blocks sliding toward the channel axis along

small normal faults (Fig. 5.22, section M). The basal erosive channel of the

Upper Channel-Levee System is shallower than the others, ranging

approximately from 50 to 150 m of depth and tends to be shallower upstream

than downstream (Fig. 5.22).
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Figure 5-21 - a) Two-way time map of the unconformity (discontinuities are due to erosion by
later channels 1, 2 and 3). The unconformity is shown in the cross section AB; b) extrapolated
two-way-time map of the unconformity used for the construction of the map of the RMS of
coherence (c). The extraction of coherence attribute was in the interval from 10 ms below to 10
ms above the unconformity. Channel 1 corresponds to the basal incision of the UCLS, 2 to the
basal incision of the MCLS and 3 to LCLS. The red arrows indicate crescent-shaped borders of
the erosive base in the MCLS.

The basal erosive channel of the middle system has two segments. The

lower segment abruptly pinches out and becomes very shallow upstream close

to the connection with the upper segment (Fig. 5.21a and c). The upper

segment coincides with the upstream segment of the erosive channel of the

LCLS. In the same erosive channel, the fill facies can vary from chaotic to

ordered and from high to low amplitude reflections, with the chaotic reflections

prevailing close to the channel base (Fig. 5.22).
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Basal erosive channel in:

L - Lower channel-levee system

M - Middle channel-levee system

U - Upper channel-levee system

Figure 5-22 - Basal erosive channels (highlighted in orange in the UCLS, yellow in the MCLS
and in white in the LCLS) occur in the three channel-levee systems identified in the study data.
They exhibit diverse fills with a tendency of more chaotic reflections (C) close to the bottom and
more organized reflections (0) on the top of the channel. In the erosive channel of the MCLS
(M), bank collapse toward the channel axis formed a sequence of rotated blocks delimited by
appropriately spaced normal faults. In plan-view, these rotated blocks appear with crescent
shape as seen in Fig. 5.22. Lateral accretion packets occur close to the erosive channel base of
the MCLS.
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Interpretation

The chaotic low amplitude reflections of the basal erosive channel fill are here

interpreted to be associated with slump deposits, which prevailed close to the

channel base, whereas the chaotic high amplitude reflections are interpreted to

represent the remobilization products of the enclosing HARPs, probably via

bank collapse (Fig. 5.22). The chaotic and high amplitude reflection seismic

facies may also be associated with coarse-grained thalweg deposits from

laterally migrating channels as interpreted in Indus Fan erosive channels

(Deptuck et al., 2003).

The ordered high amplitude reflectors may be channel axis deposits, and

the laterally dipping reflections (Fig. 5.22) are possibly lateral accretion

packages (Abreu et al., 2003) that developed when the channel was in

equilibrium (i.e., without aggrading or eroding, and instead, meandering laterally

(Kneller, 2003)). The filling of this kind of initial erosive channel has been

described by previous workers as involving complex alternations of channel

architectures and facies, but often ending up with the development of an

aggradational channel levee (Kneller, 2003; Mayall and Stewart, 2000; Samuel

et al., 2003).

5.5.3 - Lower Channel-Levee System

In this section a general overview of the Lower Channel-Levee System (LCLS)

is shown. The detailed characteristics of the planform, channel fill, levee style,

final abandonment and the complete evolution will be discussed in Chapter 6.

Description

The LCLS is located in the Northeastern most border of the seismic survey with

N/NW orientation. The channel becomes narrower and more sinuous upward

(Fig. 5.23) with width ranging from 1200 to 500 m, from the base to the top, and

levee thickness reaching up to 280 m. In sections perpendicular to the channel,

the channel fill reflectors appear to be continuous with the levee layers (Fig.

5.23). In the section along the thalweg, the channel fill is characterised by the

stacking of retreating sets of reflections that pinch out upstream (Fig.5.24).

Each set, however, is formed by a group of discontinuous prograding

reflections.
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Interpretation

Although this system is barely included within the area, important

considerations are raised regarding its architecture elements and formation

processes. The overall onlap character of the channel fill reflections suggests
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that the channel-levee system is evolving by a process of upstream accretion of

the system. The downstream prograding reflections may represent deposition

in a higher frequency than the overall retreating. The lateral continuity of the

reflections passing from the channel fill to the levee (changing in amplitude

character) may indicate that the channel was filled simultaneously with the

levee build-up. The upstream pinching out of reflection sets along the channel

axis characterizes a back fill style which may indicate a gradual upward

retreating of the sand deposition.

Many other channel-levee systems of different fans, e.g., Niger Delta and

Indus Fan (Deptuck et al., 2003) and the Upper Channel-Levee System

(described further in this Chapter) show a style in which the channel is wider

near the base and narrower near the top, ending with clay filling. These systems

are composed of widening upward channel elements which are stacked within a

narrowing upward succession. Contrastingly, the Lower Channel-Levee System

of this study is composed of a single narrowing upward channel.

5.5.4 - Middle Channel-Levee System

Description

The Middle Channel Levee System (MCLS) is also located in the Northeastern

part of the seismic survey, and has deposited upslope and directly flanking on

the left margin of the LCLS. There is no HARPs deposition in between the two

channel-levee systems (Fig. 5.18). The channel bends in the area change from

a NE orientation in its upstream segment to a NW direction in its downstream

segment. Contrasting with the LCLS, the channel in the MCLS becomes wider

and less sinuous upward. The fill of the aggradational channel is characterized

by sub-horizontal continuous high amplitude reflections bordered by the low

amplitude reflections of the levee (Fig 5.25).The reflections of the channel fill,

however, do not have lateral continuity with the low amplitude reflections of the

levee; on the contrary, they onlap the internal levee wall (Fig 5.25 and 5.26).

The Middle Channel-Levee System can be divided into two distinct

segments. In the upstream segment, the levee height may reach 380 m and the

channel width range from 160 to 2600 m, with the channel fill composed of

longitudinally continuous sub-parallel reflections (Fig. 5.26). In the downstream
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segment only the basal half of the levees is preserved whereas the upper half

has collapsed and/or been eroded (Fig. 5.26, cross section AB). Cross section

AB (Fig. 5.26) shows an erosive surface (in blue) cutting across the levees and

the channel fill of the MCLS. HARPs onlap this surface. In general, the channels

are more sinuous and thinner downstream than upstream (Fig. 5.26).

The sequential analysis of horizon slices of RMS coherence extraction,

taken from the base to the top across this system (from horizon slice 350 ms to
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50 ms below the datum, which is the base of the UCLS levee), shows the

upward and longitudinal transition from a chaotic to multi thread channel and

subsequently to a single-thread channel (Fig. 5.27).

The horizon slice at 350 ms (Fig. 5.27) shows the basal erosive channel

(in which the coherence character of the channel fill is chaotic) dispersing

almost northwardly (yellow arrow), and disconnected from the left branch. This

implies that the left branch formed later than the right one. The slice at 300 ms

shows the basal erosive channel, with chaotic fill, now deviated to the left

branch (yellow arrow). In the same slice, instead of a wide erosive channel with

chaotic fill there is a single thread channel in the downstream segment (blue

channel). According to Kneller (2003), single-thread channels are typical of

aggradational submarine channels. The slice at 220 ms shows a single thread

channel (yellow) passing into a multiple thread channel (in which the channel

maybe close to equilibrium gradient, according to Kneller (2003) and into a

chaotic channel towards downstream. From the slice at 200 ms up to the one at

130 ms, the transition point between single thread to multiple thread channel

migrates downstream. Finally, from the slice at 120 ms up to 50 ms the light

colours represent the organized sub-parallel reflections of the HARPs.

Interpretation

The sequence of horizon slices shows a combined upward (temporal) and

spatial change in the architecture of the channels from the Lower to the Middle

System starting from the basal erosive channel. From the slice at 350 ms to the

one at 300 ms there is a vertical transition from the basal erosive channel to the

agradational Lower Channel-Levee system and the avulsion of the left levee

(view downstream). From the slice at 220 ms up to the one at 130 ms there is a

longitudinal downstream migration of the transition from agradational to erosive

channel form. This may imply a progradation of the agradational Middle

Channel-Levee System toward downstream. From slice 120 ms up to 50 ms

the deposition of the sheet-like sand rich deposits occurs, i.e., an interchannel

lobe resulting from channel avulsion as described in the literature of the ODP

Leg 155 (Flood and Piper, 1997; Pirmez et al., 1997). The complete description

of the evolution of the MCLS is presented in Chapter 6.
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Figure 5-26 - Seismic line along
the channel axis of the MCLS,
outlined in yellow in the horizon
slice (150 ms below the datum -
i.e., the base of the UCLS green
horizon). The channel fill is the
set of the high amplitude
reflections between the yellow
horizon in the base and the dark
blue horizon on the top. The
channel fill reflections are sub-
parallel and relatively continuous
and if not sub-parallel they
slightly downlap the channel
base. The upstream and
downstream segments are
outlined by the dashed blue line.
The cross section AB shows the
eroded levees of the downstream
segment. The cross section CD
shows the upstream segment
better preserved but with the
internal walls of the channel
partially eroded, characterized by
the truncation of the levee
reflections (blue arrow), seen in
the cross section CD.

Legend:

UCLC - Upper channel-levee
complex

MCLS - Middle channel-levee
system

HARPs High amplitude
reflexion packet

Green horizon - base of UCLC

White horizon - Top of channel
fill

Yellow horizon - Base of the
channel

Orange horizon
channel base

Dashed blue horizon - outline of
downstream and upstream
segments of MCLS
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Dashed white horizon - erosive
surface on the top of the
downstream portion of the MCLS.
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5.5.5 Upper Channel-Levee System

Description

The Upper Channel-Levee System (UCLS), also located in the Northeastern

part of the seismic survey, and was deposited upslope of the MCLS, and after

the HARPs deposition (Fig. 5.18). In the study area, the UCLS is confined

between an upslope bathymetric high generated by an anticline and a

downslope high due to MCLS emplacement (Fig. 5.28). Similarly to the other

two systems, the UCLS evolved upward from a basal erosive channel to an

aggradational channel-levee.

10km

2

3.48 (TWT)

Figure 5-28 - Map of the base of the UCLS (yellow horizon in the seismic section) whose
development was confined between an upslope anticline and the downslope relief formed by
the MCLS.
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The UCLS is composed of a sub-vertical stacking of 4 channel-levee

elements. The system can be divided vertically into two intervals by an internal

discontinuity (Fig. 5.29). This discontinuity is a pervasive surface across the

system, and may represent a small break in sedimentation. In the larger levee,

on the right-hand side (looking downstream), the discontinuity consists of a high

amplitude downlap reflector.

At the base of the interval, under the discontinuity, there is a leveed

erosive channel. This basal erosive channel is partially filled by ordered high

amplitude reflections and partially by chaotic reflections (Fig. 5.29). The right-

hand levee can be subdivided into two intervals. The lower interval is

characterized by a thick faulted interval with thrust faults verging towards the

channel axis (Fig. 5.30). The upper interval is characterized by a set of regular

downlaping reflections on the top of the faulted basal levee. The left-hand levee

is much smaller and is characterized by more irregular/chaotic internal

reflections (Fig. 5.31).

Above the discontinuity there are three stacked channel-levee elements

(Fig. 5.32).The basal channel-levee element is the least sinuous channel

(sinuosity 1.2) and probably developed in a more confined environment than the

other two. It is around 1200 m wide. The intermediate channel-levee is more

sinuous (sinuosity 1.4) and wider than the basal one, around 1750 m wide. The

upper channel-levee is the most sinuous (sinuosity 1.7) and thinner, around 450

mwide.

Interpretation

The faulted levee interval at the base of the right-hand levee is interpreted to be

a slumped levee that failed due to gravitational instability on the limb of the relief

formed by the previous Middle Channel System (Fig. 5.30). Moreover, the

formation water in the underlying sand rich sediments (HARPs) could have

migrated upward due to compaction and remained trapped immediately under

the clay rich levee. Therefore, a fluid layer on the contact between the HARPs

and the sealing levee may possibly have become overpressured and worked as

lubricant by reducing the effective strength at the contact, favouring the

overlying levee package to slump towards the channel. This process is

analogous to the gravity tectonics that occur within thick packages of sediments
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in the slope, described in Chapter 2 (section 2.2) and earlier in this chapter

(section 5.4), but at smaller scale. The contact between the sands of the

underlying HARPs and the clays of the levee above worked as a detachment

surface. On the left levee, underneath the internal discontinuity of the UCLS, the

adjacent growing anticline could have promoted instability and slumping of the

levee generating the chaotic facies.

Figure 5.32 also shows that the three stacked channel-levee elements of

the Upper Channel-Levee System exhibit a distinct amplitude contrast between

the channel fill and the enclosing levee. Considering that in the lower channel-

levee element, the channel has higher amplitude reflection and smaller

sinuosity, it is thought to be sandier than the two higher channels. By way of

contrast, the uppermost channel is thinner, more sinuous and with the smallest

amplitude contrast in relation to the levee, hence the channel fill is thought to be

more clay rich. Channel narrowing upward in aggradational leveed channels

has been documented in other systems (Deptuck et al., 2003; Stelting, 1985)

and is considered to be related to the tendency of the flow becoming smaller

and muddier with time (Kneller, 2003).

In Chapter 7, further discussion and analysis regarding the

characteristics and development of the Upper Channel-Levee System are

provided.
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A B

10km~

c D

horizon slice
(amplitude)

Legend:

yellow hozizon - discontinuity across the UCLS

green horizon - base of the UCLS

red horizon - unconformity underneath

L L dashed blue line - isoproportional horizon slice
between the discontinuity and the base of the UCLS

'h L - levee, .-

C - chaotic channel fill reflections

S - channel fill with sigmoid reflections

AB - downstream section across the UCLS

CD - upstream section across the UCLS

red arrow - indicates the channel

Figure 5-29 - Interpreted and non-interpreted seismic reflection sections downstream (AB) and upstream (CD) across the Upper Channel-Levee System (UCLS). Notice the upstream channel fill exhibits sigmoidal reflections with
higher amplitude whereas the downstream channel fill presents chaotic reflections with lower amplitude. The black and white maps are isoproportional horizon slices between the base and the UCLS and the internal discontinuity
(yellow),extracting coherence and amplitude within a time window of 20 ms. The amplitude map show the upstream segment of the channel with higher amplitude (dark gray) than the lower one (light gray), which is very similar to
the amplitude of the surrounding levee.
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3

f

, '
Hlkm

Sinuosity 1.7
Mean width 450 m

Sinuosity 1.2
Mean width 1200 m

'pkT ~

Map of the base of
the UCLS Sinuosity

Mean width

Figure 5-32 - Horizon slices exhibiting RMS amplitude extractions of the three stacked channel-levees above the inner unconformity (yellow horizon) in the Upper Channel-Levee System. The horizon slices were taken using a
20ms window in the mean surface between the base and the top maps of each channel-levee (1, 2 and 3), highlighted in the seismic section. The channels are more sinuous and clay rich upward, as there is less amplitude contrast
between the channel and the levee in the upper channel-levee (3).
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6 SPATIO-TEMPORAL EVOLUTION OF CHANNEL-

LEVEE ARCHITECTURE

6. 1 Introduction

Submarine channel-levee architecture can yield important evidence on the

behaviour of turbidity currents at the time when the channel was active.

Previous studies on deep-sea fans have discussed submarine channel-levee

architecture and its evolution considering issues such as flow character

parameter control on channel levee-architecture (e.g., Kneller, 2003; Peakall et

al., 2007; Peakall et al., 2000) and avulsions and their causes (e.g., Flood and

Piper, 1997; Pirmez and Flood, 1995). Furthermore, a large number of channel

architecture descriptions and inferred evolutionary histories based on studies of

3D seismic data can be found in the literature (Abreu et al., 2003; Deptuck et

al., 2003; Deptuck et al., 2007; Gee and Gawthorpe, 2006; Heinie and Davies,

2007; Kolla et al., 2001; Pirmez et al., 2000; Posamentier and Kolla, 2003).

Although the characteristics of channel-levee systems and the controls upon

their evolution have commonly been discussed, many studies nevertheless do

not discuss in detail how a channel-levee evolves spatially over time. With this

in mind, the objective of this chapter is to characterise styles of evolution of

channel-levee architectures in deep marine clastic systems and relate them to

interpreted forcing mechanisms. The analysis of the spatio-temporal evolution

of channel-levee presented here is based on the contrasting architectures of the

Pleistocene Lower and Middle Channel-Levee Systems on the upper slope of

Amazon Fan within the 3D study coverage area. These systems represent two

different architectural morphotypes in cross section which can be related to

distinct patterns of spatio-temporal evolution of the channel-levee, namely

upstream vs. downstream accretion.

6.2 Upstream-accreting channel-levee system

This style of channel-levee development is characterized by an upstream

accretion of the system. The characteristics of the channel planform, channel fill

and levee style and the final abandonment of the channel are described here.
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Particular focus is given to the way in which channel architectural parameters

evolve through time and space.

6.2.1 Planform evolution

In order to evaluate the vertical changes in channel morphology, a quantitative

analysis was performed by measuring the channel width, sinuosity, meander

arc height, channel length and meander length of channel meanders observed

in five horizon slices taken across the LCLS (Fig. 6.1). The values of the

measured parameters (Fig. 6.1) for each meander along the channel of the

LCLS are presented in Table 6.1. The range of measured channel widths varies

between approximately 0.3 and 1.5 km and of measured sinuosities between

1.1 and 1.4; these values are similar to the values previously measured in the

late Pleistocene channels in the middle and lower Amazon Fan of 0.3 - 1.4 km

and 1.1 - 2.9, for width and sinuosity respectively (Flood and Damuth, 1987;

Flood et al., 1991; Pirmez and Flood, 1995).

The concept of sinuosity used here is the same of Kane (2007) i.e., the

ratio between the channel length along its axis and the meander length.

Meander length is the distance between two consecutive inflection points (Fig.

6.2), whereas meander-arc height (MAH) is the measure of the distance

between the line that connects successive inflection points and the channel

bend (Wood and Mize-Spansky, 2009). Meander-arc height is typically used as

a measure of bend symmetry (Brice, 1984 in: Wood and Mize-Spansky, 2009).

There is a weak inverse correlation between the sinuosity and the width

of the channel (Fig. 6.3), such that the narrower channels are more sinuous.

The correlation is possibly not very good because the width may vary with the

position on the channel bend. Hence, the same sinuosity can be associated

with different width values depending where it was measured on the bend. The

measured averages of each parameter by horizon slice show how the channel

properties vary vertically (Fig. 6.4). The measurements show an upward

reduction of the channel width and an upward increase in channel sinuosity.

Therefore, this morphotype is characterized by the upward tendency of

the channel planform to become narrower and more sinuous (Fig. 6.5). Most of

the aggradational channel-levee was built up above the level of and after the

filling of the erosional channel base, as highlighted in Figure 6.5.
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~km

Figure 6-1 - Horizon slices of the LCLS where the channel parameters were measured as
shown in table 6.1. The numbers attached to each slice represent the time (ms) below the
datum (base of the UCLS) where the slices were taken. The slices are organized in sequence
from the bottom to the top of the LCLS.

meander-arc height

inflection
point <,

inflection
point

channel width

Figure 6-2 - Schematic diagram exhibiting geometrical meaning of the measures of channel
width, meander-arc height, meander length (adapted from Wood and Mize-Spanky (2009).
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Table 6-1 - Measured parameters for the channel meanders in each horizon slice of the LCLS
horizon slice Meander width MAH channel meander sinuosity

(ms) No" (m) (m) length (m) length (m)

280
straight 1493 1.00
channel

250 1 424 921 3217 2534 1.27
2 912 681 2925 2603 1.12

220 1 512 722 2447 1964 1.25
2 590 811 3023 2544 1.19
3 337 669 2241 1652 1.36
4 482 600 1902 1371 1.39

200 1 472 677 2867 2448 1.17

2 540 704 2315 1732 1.34

3 518 571 2558 2122 1.21

180 1 406 866 2809 2187 1.28

2 422 588 1901 1330 1.43

3 522 682 2847 2255 1.26

300 500

1,50

1,10

•
• • ••• ••• ••

1,40

~ 1,30
·iii
o
:::I

"~ 1,20

1,00 +------r--------,.-------,
400 600

Width (m)

Figure 6-3 - Diagram showing a weak inverse correlation between sinuosity and channel width
in the LCLS.

600 1,4

SSO •
I • >- •...
..c 500 "iii... g 1,3
"C • •"i c::

"iii

450 ... • •
400 1,2

300 250 200 150 250 200 150
two-way-time (ms) two-way-time (ms)

Figure 6-4 - Diagrams showing the average values of sinuosity and channel width obtained for
each horizon slice across the LCLS. The x-axis represents the depth in time from the datum to
the channel.
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6.2.2 Channel fill and levee style

In cross section, the channel fill is characterized by high amplitude reflections

(HARs) enclosed by the lower amplitude reflections (levee) (Fig. 6.5). It is

important to note that the HARs of the channel fill are apparently laterally

continuous with the levee reflections. Figure 6.6 shows the lateral transition of

an individual reflection from high to low amplitude, moving from the channel to

the levee position. This levee continuity may indicate that the channel fill and

the corresponding levee were deposited simultaneously.

Figure 6-6 - Detail of the LCLS showing high amplitude reflections of the channel fill (C) in
lateral continuity (yellow arrows) with the low amplitude reflections of the levee (L). The seismic
section is transverse to the channel axis of the LCLS, highlighted in yellow in the horizon slice.

In the section along the channel thalweg, the channel fill is characterized

by the stacking of retreating sets of reflections that onlap and pinch out

upstream (Fig. 6.7). Each set, however, is formed by a group of discontinuous,

apparently prograding reflections (Fig. 6.8). The channel fill is thicker in the

downstream channel segment than in the upstream segment. The channel

thalweg also appears steeper in the downstream segment than in the upstream

one (Fig. 6.7, position 3). The associated levee exhibits internal reflections

onlaping the paleo-slope in sections parallel to the mean channel axis. Figure

6.9 shows a cross section along the right-hand levee of the LCLS which is

roughly parallel to the channel axis. This section sampled both levees of the

LCLS and the MCLS. The lower portion (LCLS levee) exhibits internal

reflections onlapping the paleo-slope in a manner similar to the channel fill. The

upstream thinning of both channel fill (Fig. 6.8) and levee (Fig. 6.9) characterize

an upslope pinching out of the system.
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Figure 6-7 - Seismic sections cutting across the Lower Channel-Levee System. The section along the channel axis (AB) shows the reflections of the channel fill onlapping the base of the channel and becoming thinner upward. The
other cross sections are transverse to the channel axis and cut the channels in positions 1, 2 and 3. The yellow horizons are the boundaries between the recognized channel-levee systems and also between the CLS and the
HARPs. The green horizon corresponds to the channel base of the LCLS. Every section is duplicated showing the interpreted and its non-interpreted counterpart. Vertical exaggeration 8 x.
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Figure 6-9 - Non-interpreted and interpreted seismic section (AB) across the right levee of the
Lower Channel-Levee System approximately parallel to the channel axis. The levees of the
MCLS and the LCLS are amalgamated with the levee reflections of the MCLS down lapping on
the top of the LCLS. The levee reflections of the LCLS are onlapping upstream. The white
horizons correspond to the system and HARP boundaries. Vertical exaggeration 8 x.
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By way of contrast, the upper portion of the low amplitude reflections

interpreted as part of the right-hand levee of the following Middle Channel-

Levee System seen in the section (Fig. 6.9) exhibits reflections that appear to

downlap downslope. The sense of pinchout downlap is opposite that of the

reflections in the underlying package (LCLS). The down lapping pattern of the

levee reflections in the MCLS is discussed in section 6.3. The MCLS was

deposited directly on the LCLS with levee amalgamation, without intervening

deposition of HARPs (Fig. 6.9). The levee amalgamation is more difficult to

identify in cross sections that are transverse to the channel axis because the

characteristic reflection orientations of the two systems are sub-parallel, making

determination of the boundary between the two levees difficult. The onlap

terminations of the channel fill and the levee against the paleo-slope indicate

that the Lower Channel-Levee System is back stepping the paleo-slope, i.e.,

that the system is accreting up slope.

6.2.3 Discussion: narrowing upward pattern and style of channel fill

A channel-levee architecture characterized by a narrowing upward channel

pattern in aggradational leveed channels is commonly described in the literature

of large muddy systems (Deptuck et al., 2003; Kneller, 2003; Peakall et al.,

2000; Stelting, 1985). For instance, in the Indus Fan and in the Benin-Major

Channel-Levee System (Niger Delta), the channel fill passes up-section from a

wider zone into narrower zone of HARs (Deptuck et al., 2003) (Fig. 6.10). Most

of these literature examples, however, describe a vertical stacking of individual

channel-levee phases narrowing and becoming more sinuous upward. Within

each phase, however, the channels widen upward in a manner similar to that of

the Upper Channel-Levee Complex, as described in Chapters 5 and 7 here.

The LCLS apparently is composed of one phase of development and not a

stacking of channel-levees (Deptuck et al., 2003) (Fig. 6.10). Similar

progressive narrowing upward was also identified in the youngest Mississipi

Fan channel and was attributed to a reduction in discharge with time during

fourth-order cycles (approximately 100 ka) (Kneller, 2003). The onlap character

of the channel fill and the levee reflections on channel thalweg and slope

indicates that the channel-levee accreted upstream.
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A

B

erosional
base

Figure 6-10 - Non-interpreted and interpreted seismic sections: A) A channel-levee system in
Indus fan (Deptuck et aI., 2003). Notice the stacking of individual bodies of HARs, each one
widening upward. The top set of HARs (C-P) however are narrower than the underlying HARs.
8) LCLS with the aggradational channel composed of narrowing upward HARs.
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The back stepping of sets of prograding reflections forming the channel

fill of the LCLS (Fig. 6.8) is interpreted to record two different frequencies of

controls on deposition. The prograding reflections represent deposition dictated

by a higher frequency control within a framework of a lower frequency control

which determines the pattern of retreat. This may indicate that although the

system as a whole is retreating, in a minor scale it is prograding. Therefore, the

turbidite flows were occurring in smaller and smaller pulses.

6.2.4 Avulsion and abandonment of the LCLS

A horizon slice through the LCLS at 350 ms (TWT) (Fig. 6.11) shows a

bifurcation in the erosive channel, with the left-hand branch disconnected from

the bifurcation point. The right-hand branch is the erosional channel base of the

LCLS, whereas the left-hand branch and the segment upstream of the

bifurcation point represent the erosional channel base of the MCLS. Hence, this

bifurcation was apparently formed due to the avulsion of the LCLS and

subsequent development of the MCLS. The horizon slice at 280 ms (TWT)

shows that the avulsed channel is multi-thread immediately downstream and

upstream of the bifurcation point, whereas the abandoned channel is single

thread (Fig. 6.11). The single thread channel represents the aggradational

channel of the LCLS whereas the multi-thread channel is interpreted to be a

composite channel, comprising a new, multithread section, downstream of the

avulsion point, and an old, multithread section that was formerly a multithread

component of the LCLS upstream of its transition to a single-thread

(aggradational) style. The multithread style is thought to be indicative of a

channel close to an idealized equilibrium profile (Kneller, 2003).

In the Quaternary of the Amazon Fan, channel avulsion is generally

described as an abrupt process associated with levee breaches or wall failures

of perched channels, on the outer-bend, induced by sand rich flows, resulting in

sand inundation (HARPs) and deposition of sheet like deposits in the inter-

channel lows (Damuth et aI., 1983a; Flood et aI., 1991; Pirmez et aI., 1997;

Wynn et aI., 2007). It is not only in the case of the Amazon Fan, but most

examples of channel avulsion of submarine channels described in the literature

refer to perched, levee bordered channels. In the study case, however, the

avulsion of the parent channel and abandonment of the LCLS occurred without
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subsequent HARP formation (Fig. 6.7 and 6.9) but rather with the immediate

development of a graded/erosional channel instead, and later development of

the MCLS (Fig. 6.11).
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1;0#

1;# multi-thread
~ channel (MClS)
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'~~ingle-thread
cha nnel (LClS)
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<!
~levee (lClS)
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channel

350 ms tTWTl 280 ms (TWT)

Figure 6-11 - The horizon slices showing the avulsion and LCLS abandonment. 1) Deeper
horizon slice, at 350 ms (TWT) below the datum. The slice shows the bifurcation but with the
left-hand branch disconnected from the parent channel. 2) Shallower horizon slice, at 280 ms
(TW) below the datum. The slice shows the avulsion of the multi-thread channel. The
abandoned LSLS is characterized by the single thread channel and levee, both of which are
identified in the figure.

Avulsion of a multi-thread submarine channel has not been described in

the literature of turbidite systems and there are apparently no models to

describe this process in the literature. If the multi-thread style is indicative of low

accommodation space (Kneller, 2003), then a multi-thread channel may be

relatively shallow, without well developed levees which would favour avulsion.

In addition, because multi-thread channels may show little or no aggradation

(Kneller, 2003), they may be unlikely to become perched and, consequently,

there may be no significant paleo-bathymetric difference between the channel

base and the adjacent area. This small height difference may imply that there

would be only minor accommodation space in which to aggrade a HARP. The

avulsed flow would, therefore, be more likely to bypass or erode.

The channel avulsion may be related to the development of the LCLS

downstream from the eventual avulsion point together with an abrupt increase
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in flow size. Thus the aggradation and upward increase of sinuosity and

decrease in channel width of the LCLS may represent the channel form

progressively moving towards an equilibrium with the gradual change in

turbidite flows with time. Moreover, the channel aggradation would have

significantly reduced the channel axial gradient, an effect augmented by the

increased distance to the basin due to the higher sinuosity of the final channels.

This inference is that this channel planform was in equilibrium with the current

flows. Therefore, larger turbidite flows which were not in equilibrium with the

developed channel form may have had the capacity to have caused channel

avulsion. These flows would have caused channel avulsion by seeking a more

efficient route to dissipate energy and reach the basin compared to a low

gradient, very sinuous and narrow channel (Fig. 6.12). The bathymetric low

formed between the LCLS and the paleo-slope was a likely straighter, wider and

steeper gradient pathway for turbidity current flows to the basin. This hypothesis

is analogous to what happens in fluvial systems, where a river channel on a

flood plain avulses, with the channel seeking a shorter route to the sea

(Schumm, 1993). In other words, the channel-levee configuration may have

become meta-stable. The transition from erosional to aggradational channel is a

likely place for avulsion because at this point the channel would have been less

well confined. Unfortunately, the relationship between the abandoned LCLS and

the upstream avulsed channel could not be visualised because the avulsion

point is just outside the seismic data.

In summary, three main points must be considered to explain the

avulsion of the LCLS: an interpreted strong increase in flow magnitude, no

longer in equilibrium with the relatively low gradient, sinuous and narrow

channel form; the metastable equilibrium of the multithread channel at the

transition from upstream erosional to downstream aggradational channel; and

the steeper gradient on the back levee slope/continental slope. This type of

avulsion can occur for example in the following context. An increase in relative

sea level would favour the dispersion of sediments on the shelf and consequent

reduction of the amount of sediment captured by the Amazon Canyon and

delivered to the slope, resulting in the observed narrowing-upward channel

architecture. A subsequent sea level fall would reactivate the turbidite system

on slope eventually forcing the avulsion of the channel.
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erosive base of further
MCLS development

Figure 6-12 - Schematic block diagrams representing the model of upstream development of a
channel-levee and subsequent avulsion. The evolution phases of the LCLS and subsequent
avulsion are: 1) initial channel incision; 2) aggradation of the channel-levee and accretion from
downstream to upstream; 3) channel-levee onlapping the paleo slope and upward tendency of
the channel to become narrower, more sinuous and of lower gradient; 4) abandonment of the
LCLS and avulsion. Notice that multi-thread channel (at grade) is represented at the transition
from erosional to aggradational. The view of the diagrams is upstream.

6.3 Downstream-stepping channel-levee system

The evolution of this channel-levee is characterized by a downstream accretion

of the system. The characteristics of the channel planform, channel fill and

levee style and the final abandonment of the channel are described here. The

ways controlling parameters may have evolved through time and space are

discussed in order to establish an evolutionary model.

6.3.1 Planform evolution

In order to evaluate the vertical changes in channel morphology, a quantitative

analysis was performed by measuring the channel width, sinuosity, meander

arch height, channel length and meander length of channel meanders observed

in eight horizon slices taken across the MCLS. The values of the measured

parameters for each meander along the channel of the MCLS are presented in

Table 6.2.
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Table 6-2 - Measured parameters for the channel meanders in each horizon slice of the MCLS

horizon Channel width channel meander
slice (ms) segment meander (m) MAH lenoth lenoth sinuosity

220 upstream 1 268 642 1731 884 1.96
220 upstream 2 313 603 2075 1400 1.48
220 upstream 3 218 458 1945 1430 1.36
220 upstream 4 230 170 790 722 1.09
220 upstream 5 209 453 1866 1560 1.20

220 upstream 6 211 246 847 623 1.36

200 upstream 1 344 819 2069 841 2.46
200 upstream 2 360 617 2067 1460 1.42
200 upstream 3 432 613 1978 1481 1.34
200 upstream 4 233 279 1173 964 1.22

200 upstream 5 332 341 1474 1246 1.18

200 upstream 6 333 202 923 759 1.22
200 upstream 7 267 148 1026 935 1.10
200 upstream 8 133 78 870 818 1.06
200 upstream 9 324 355 3209 3144 1.02
200 upstream 10 168 246 1086 834 1.30
200 upstream 11 194 430 1715 1293 1.33

180 upstream 1 271 437 1565 1128 1.39
180 upstream 2 286 460 1381 1061 1.30
180 upstream 3 329 560 1822 1331 1.37
180 upstream 4 380 290 1882 1773 1.06
180 upstream 5 322 232 1021 885 1.15

180 upstream 6 233 247 1236 1072 1.15
180 upstream 7 279 707 4222 3930 1.07

180 upstream 8 381 398 1786 1536 1.16

180 upstream 9 400 413 1552 1233 1.26

180 upstream 10 221 389 1295 1011 1.28

170 upstream 1 470 590 2160 1695 1.27
170 upstream 2 424 387 1263 1029 1.23
170 upstream 3 285 502 1588 1089 1.46
170 upstream 4 468 631 2001 1480 1.35
170 upstream 5 548 252 1721 1609 1.07
170 upstream 6 426 387 1472 1194 1.23
170 upstream 7 406 196 996 927 1.07
170 upstream 8 417 451 3395 3192 1.06
170 upstream 9 437 368 2149 2013 1.07
170 upstream 10 528 435 1694 1307 1.30
170 upstream 11 334 408 1614 1276 1.26

170 upstream 12 617 1152 3814 1099 3.47

150 upstream 1 476 453 1421 1143 1.24
150 upstream 2 311 551 1671 1195 1.40
150 upstream 3 312 477 1342 946 1.42
150 upstream 4 478 285 1874 1700 1.10
150 upstream 5 395 385 1567 1294 1.21
150 upstream 6 189 166 1076 978 1.10
150 upstream 7 218 195 1260 1187 1.06
150 upstream 8 518 169 5134 4961 1.03
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150 downstream 9 567 2049 5997 1091 5.50
150 downstream 10 570 1299 3055 1066 2.87
150 downstream 11 391 475 1832 1552 1.18
150 downstream 12 315 334 1296 949 1.37
150 downstream 13 323 579 2595 2047 1.27
150 downstream 14 359 580 1660 705 2.35
150 downstream 15 347 453 1737 1257 1.38
150 downstream 16 330 371 1930 1578 1.22
130 upstream 1 1020 3113 10876 8680 1.25
130 upstream 2 1006 871 3465 2902 1.19
130 downstream 3 814 1459 4999 2938 1.70
130 downstream 4 585 855 2649 1750 1.51
130 downstream 5 751 914 5350 4473 1.20
130 downstream 6 552 890 2049 696 2.94
130 downstream 7 409 793 2220 1418 1.57
130 downstream 8 636 637 2248 1509 1.49
130 downstream 9 516 429 1546 1293 1.20
130 downstream 10 540 447 2221 2006 1.11
130 downstream 11 397 373 1645 1375 1.20
130 downstream 12 450 460 2061 1826 1.13
120 upstream 1 1334 3056 12185 9624 1.27
120 upstream 2 1019 873 3461 2984 1.16
120 downstream 3 801 1523 4879 3273 1.49
120 downstream 4 837 1849 6741 5279 1.28
120 downstream 5 517 1000 2253 900 2.50
120 downstream 6 486 596 2062 1365 1.51
120 downstream 7 573 624 2120 1666 1.27
120 downstream 8 447 503 1661 1259 1.32
120 downstream 9 573 476 2234 1965 1.14
120 downstream 10 472 363 1375 1241 1.11
120 downstream 11 362 550 2256 2004 1.13
100 upstream 1 2055 4128 14292 11043 1.29
100 upstream 2 1350 986 3877 3221 1.20
100 downstream 3 715 1309 4726 3386 1.40
100 downstream 4 481 502 2209 2042 1.08
100 downstream 5 389 292 1483 1200 1.24
100 downstream 6 259 373 1212 804 1.51
100 downstream 7 212 373 1463 1171 1.25

The range of measured channel widths is from 0.2 to 2.0 km and of

measured sinuosities between 1.0 and 5.5. Only one width measurement was

2.0 km; the others were in the range previously measured in the middle and

lower fan of the Amazon Fan, that is from 0.3 to 1.4 km (Flood and Damuth,

1987; Flood et al., 1991; Pirmez and Flood, 1995). Most of the measured values

of sinuosity were in the interval 1.1 - 2.9 as described previously in the

literature of the Amazon Fan (Flood and Damuth, 1987; Flood et al., 1991;

Pirmez and Flood, 1995), with only 3 values greater than 2.9.
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The MCLS exhibits two distinct segments in the study area. In the

upstream segment the channel can develop larger dimensions than in the

downstream segment (Table 6-2). The channel parameters, therefore, were

measured taking into account whether they occurred in downstream or in

upstream segments. The transition between these two segments is marked by a

strong reduction in channel width and by a sinuosity increase. The channel

planform also changes vertically very often in the transition from the upstream

to the downstream segments, with strongly variable sinuosity (see Fig. 6.13).

A scatter chart (Fig. 6.14) does not show a clear relationship between the

sinuosity and the channel width measured in each meander (Fig. 5.27). Very

high values of sinuosity in the downstream segment are located close to the

transition to the upstream segment, where the thalweg gradients are interpreted

to have been smaller. The scatter plots in Figure 6.15 show that sinuosity

reduces upward whereas width increases. The scatter plots clearly show

different trends between the two channel segments. Generally, in the same

horizon slice, the channels are more sinuous and thinner downstream than

upstream (Fig. 6.15). It is worth mentioning that there are no measured values

for the downstream channel segment in the deepest slices because the

measurements were performed only in single-thread channels and in these

slices the downstream channel segment was still a multi-tread channel.

Therefore, the Middle Channel Levee System is characterized by the upward

tendency of the channel planform to become wider and less sinuous (Fig. 6.16).

Most of the aggradational channel-levee was built up above and after the filling

of the erosional channel base, as is highlighted in Figure 6.16.

The occurrence of two distinct segments of developments (downstream

and upstream) is thought to reflect differing evolutionary histories. Most of the

upstream segment is above the point of avulsion of the LCLS (which is close to

and outside the border of the seismic data). The point of avulsion does not

coincide exactly with the transition from the upper to the downstream segment

which is slightly downstream. Therefore, the whole downstream segment

comprises a new channel pathway that resulted from avulsion. This channel, in

the downstream segment, is thought probably to have had an initial gradient

different from the upstream parent channel and, therefore, a different

evolutionary history until some equilibrium may have been reached. There is a
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net reduction in the apparent channel gradient in the passage from the

upstream to downstream segment (Fig. 6.17) that could correspond to the

abrupt increase in channel sinuosity in the transition from upstream to

downstream segment shown in Figure 6.13.
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Figure 6-14 - Scatter chart showing the measured values of sinuosity and width in all horizon
slices upstream (preserved) and downstream (eroded) channel segment. There is no clear
correlation between these two parameters
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Figure 6-15 - Diagrams showing the average values of sinuosity and channel width obtained for
each horizon slice across the MCLS. The x-axis represents the time underneath the datum at
which the RMS of coherence horizon slice was extracted. Therefore, the greater the time value,
the closer to the base of the channel-levee system. The upstream values (+) represent the
measurements on the non-eroded channel-levee portion (upstream segment) whereas the
downstream values (x) represent the measurements on the eroded channel-levee portion
(downstream segment). There are no measurements of the channel in the deepest horizon
slices (TWT greater than 150) because at this point there were no single-thread (aggradational)
channels formed yet, only multi-thread or erosive channels in this segment, in the deeper slices.
The transition from erosive to aggradational occurred from upstream to downstream.

182



6.3.2 Channel fill and levee style

The fill of the aggradational channel is characterized by high amplitude

reflections (HARs) bordered by the low amplitude reflections of the levee (Fig.

6.18). In cross section, the channel fill in the upstream segment can be divided

into two parts. Close to the base of the channel, in its narrowest portion, the
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reflections appear to be in lateral continuity with the levee reflections (Fig.6.18).

The reflections of the channel fill in the upper and widest part, however, do not

have lateral continuity with the low amplitude reflections of the levee. On the

contrary, the contact between them is sharp, with truncation of the levee

reflections (erosion) and channel fill onlapping in the internal levee limb (Fig.

6.18).

In a section along the channel axis, the channel fill reflections are

horizontal, or slightly down lapping onto the channel base (Fig. 6.17). The

transition between the upstream and the downstream segments of the channel

is highlighted in blue in the section along the channel axis (Fig.6.17). In this

portion, the vertical section along the axis could not be taken so as to show only

channel fill (HARs) due to the evolving channel sinuosity through time; similarly

the levee reflections (low amplitude reflections) bordering the channel will

appear in the section, as the channel position changes frequently, moving

upwards in a vertical section (Fig. 6.13). Although in transverse sections the

channel-levee presents an aggradational character, in longitudinal sections the

channel levee reflections are downlapping upon the slope. Two longitudinal

sections, one along the levee crest (Fig. 6.19) and other sub-parallel to the

channel axis (Fig. 6.17) show the system development downstream.

6.3.3 Erosion of the MCLS

The lower and narrower portion of the channel fill and the levee were apparently

deposited simultaneously because they present lateral continuity of reflections.

On the other hand, in the upper and wider channel portion, the truncation of the

levee reflections and the channel fill reflections onlapping the levee limb

suggest that after the levee built up, there was erosion and later deposition of

the channel fill (Fig. 6.20). Therefore, the channel-levee system apparently

evolved from simultaneous levee build up and channel fill, in the lower portion,

to levee build up, erosion and bypass of coarser sediments in the upper portion

and, finally, to channel fill in the enlarged channel. In the downstream segment

of the channel-levee only the basal portion of the system appears to be

preserved.
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Figure 6-17 - Seismic line along
the channel axis of the MCLS,
outlined in yellow in the horizon
slice (150 ms below the datum -
base of the UCLS green
horizon). The channel fill is the
set of the high amplitude
reflections between the yellow
horizon in the base and the
white horizon on the top. The
reflections are sub-parallel and
relatively continuous and if not
sub-parallel they slightly
downlap the channel base. The
area in the intermediate portion
of the channel with low
amplitude reflection and
delimitated by the dashed blue
line corresponds to the area
where the channel gradient is
thought to reduce significantly
and the sinuosity of the channel
increases significantly
downstream. From this area, the
MCLS was strongly eroded as
shown by a dashed white
horizon in the cross section AB
whereas the MCLS is better
upstream preserved. Although
the upstream segment of the
MCLS is relatively well
preserved, the internal walls of
the channel were eroded,
characterized by the truncation
of the levee reflections, seen in
the cross section CD.

Legend:
UCLS - Upper channel-levee
system
MCLS - Middle channel-levee
system
HARPs High amplitude
reflexion packet
Green horizon - base of UCLC
White horizon - Top of channel
fill
Yellow horizon - Base of the
channel
Orange horizon Erosive
channel base
Dashed blue horizon
intermediate area with lower
gradient and channel planform
with frequent vertical variatiion.
Dashed white horizon - erosive
surface on the top of the
downstream portion of the
MCLS.
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Figure 6-18 - Non-interpreted and interpreted section across MCLS, showing the
relationship between the channel fill and levee reflections. In upper zones of the channel the
channel fill reflections on lap the internal levee limb (yellow arrow). In the lowest zones, the
same high amplitude reflection changes laterally from high to low amplitude, from the
channel fill to the levee (white arrows). Red horizon = erosive surface truncating the levee
reflections; yellow horizon = base of aggradational channel; orange horizon = erosive
channel base; and green horizon = base of UCLS.
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c

Legend:

C - channel
L -levee

horizons:
orange - erosive channel base
yellow - gradational channel base
white - erosive surface

D
arrows:
green - channel fill and levee reflections
continuity
blue - channel fill truncation
red - levee reflections truncation

Figure 6-20 - Two sections perpendicular to the channel axis across the downstream (AB)
and the upstream (CD) segments of the MCLS. Notice that in the downstream segment only
the lower portion of the system was preserved. The upper portion of the system was eroded
(blue arrow and white surface). In the upstream segment (CD), the levees are preserved but
with some erosion in the internal limbs (red arrow). The continuity of channel fill and levee
reflections are pointed out in the downstream segment and the lower part of the system in
the upstream segment.
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It seems likely that the internal levee erosion shown in the upstream

segment is an equivalent event to the pervasive erosion of the upper portion

of the downstream segment. It is possible that the same flows that eroded

the internal levee limbs in the upstream segment of the MCLS were

responsible for the pervasive erosion of the downstream segment of the

MCLS. The levee collapse (Fig. 6.21) observed at the transition from the

upstream to the downstream segment may have happened due to a mis-fit of

the channel form at the time of a strong increase in the flow size. Thus, the

higher sinuosity and narrower channel of the downstream segment (Fig.

6.21) in association with a reduction of the channel gradient (Fig. 6.17) is

interpreted to indicate that the channel was unable to accommodate a larger

flow coming from the wider and less sinuous channel of the upstream

segment. So in this case channel breaching occurred at the transition to the

downstream segment (where the levees also should not be as well

developed as the upstream one since the sinuosity often reduced in younger

horizon slices).

A B

~km

Figure 6-21 - Seismic section (AB) along the left-hand levee (view downstream) of the
MCLS with exaggeration of the vertical scale (-16 x). On the transition from the upstream to
the downstream segment (red dashed line) the levee thickness reduces significantly and
shows an eroded top. The horizon slice (RMS coherence) is outlined in the section with a
black dashed line. HARPs occur preferentially above the eroded levee of the downstream
segment. The black arrows in the interpreted section show the downlapping character of the
MCLS and onlapping character of the HARPs.
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6.3.4 Initiation and progradational pattern of the MCLS

The evolution of the MCLS has been interpreted based on the analysis of

channel planform, channel fill pattern and levee reflection terminations. In

map view, the horizon slices of RMS coherence (Fig. 5.27) show also distinct

channel features: blurry chaotic facies bounded by large scale erosive

incision, and both multiple-thread and single-thread channels (Fig. 6.22). The

sequential analysis of the horizon slices, from the base to top across the

MCLS system, shows the upward and downstream transition from a multi-

thread channel to single-thread channel form (Fig. 5.27). Single-thread

channels are associated with agradational channel-levees. There, the

channel axis commonly remains more or less fixed in position as the system

aggrades, whereas the multiple-thread channels appear to migrate laterally

on what is interpreted to be an equilibrium surface and are therefore

interpreted to be "at grade" or "in equilibrium" channels. These associations

between the planform and the channel types were previously described by

Peakall et al. (2000) and Kneller (2003).

There is an apparent reduction in the gradient of the channel thalweg

(area delimited by blue dashed area in Fig. 6.17) associated with an abrupt

and strong increase in the channel sinuosity (area delimited by the red

dashed line in Fig. 6.13). There is also a reduction in the channel width

moving from upstream to downstream segments (horizon slice at 130 ms in

Fig. 6.13). At the point of channel width reduction, the levees are interpreted

to be not very well developed. As mentioned previously, the channel

meanders did not remain fixed in position as the channel aggraded, on the

contrary, the planform (sinuosity) changed frequently and abruptly,

suggesting a certain degree of susceptibility of the levees to erosion.

Therefore, avulsion was very likely to occur at this point where the channel

style (gradient, sinuosity, levee height, width) significantly changed.

The reduction of the channel width and increase of sinuosity are

interpreted to have restricted the flow through the downstream channel

segment. Such restrictions added to the relative levee weakness and to a

possible strong increase in the flow size may have promoted levee collapse

at the outer bends of the channel (Fig. 6.13, slice 130 ms) and erosion of the
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upper part of the channel-levee system in the downstream segment of the

MCLS.

Figure 6-22 - Horizon slice (200 ms below the datum) showing in planview the transition
between single-thread (yellow) and multi-thread channel. Notice the crescent shaped
borders of the erosional channel base (red) A zoomed view of the yellow area highlights the
features but without interpretation.

The basal erosive channel of the MCLS cuts through sheet-like

deposits (HARPs) which were deposited before the LCLS. These sheet-like

deposits onlap the unconformity and were deposited prior to the three studied

channel levee systems as shown in Figure 6.16. Thus, there is no evidence

of HARP deposition between the LCLS and MCLS (Figs. 6.7 and 6.9).

Therefore, the initiation of the MCLS apparently took place with the incision

of a basal erosive channel. Conversely, earlier studies using ODP Leg 155 in
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Amazon Fan data described the initiation of the channel-levee system as

always occurring via avulsion of a parent channel, followed by sand

inundation and deposition sheet-like deposits in adjacent unconfined areas

(Flood et al., 1995; Lopez, 2001; Normark et al., 1997; Pirmez et al., 1997).

The direct establishment of channelized turbidity currents is a possible

alternative to the deposition of sheet-like deposits (HARPs) for the initiation

of the turbidite system on the submarine slope. Here, it is interpreted that the

incision of the channel that initiated the MCLS, in its downstream segment,

was due to avulsion forced by the development of the LCLS.

The orientation of the erosive base is thought to have dictated the

direction of the channel-levee system. In cross section, the transition from

erosive to aggradational is roughly marked by the passage from a basal

large-scale channel cut to an upward constructive channel-levee (Figs. 6.16).

The aggradational channel-levee, however, can start to develop inside the

limits of the erosive incision. From the basal to the top horizon slice across

the MCLS, the transition point between the single and multi-thread channel

planforms migrates downstream. This implies that there is a downstream

migration of the agradational channel-levee over the basal erosive channel

with time (Fig. 6.23). The slight downstream downlap of the channel fill (Fig.

6.17) and the downstream downlap of the levee reflections (Fig. 6.19) also

indicate a downstream development of the channel-levee. Thus a suite of

related features can be recognized which are indicative of this style of

channel-levee development. An interesting idea to pursue is that recognition

of any of these features might allow prediction of the others.

6.3.5 Avulsion of MCLS

Contrasting with the transition from LCLS to MCLS deposits which

amalgamated without intervals of other types of deposition in the transition

from the MCLS to the younger UCLC sheet-like HARPs occur similar to

those already described in the literature of the Amazon Fan (Lopez, 2001;

Pirmez et al., 1997) and others submarine fans, e.g., Zaire Fan (Droz et al.,

2003). These HARPs have been described as product of avulsion of the

channel where the flow becomes unconfined and loses its competence,

depositing sheet-like sand deposits (Flood et al., 1995; Lopez, 2001;

192



Normark et al., 1997; Pirmez et al., 1997). In the study case, the HARPs

occur onlapping outer limb of the levee in the upstream segment and

onlapping/covering the erosive surface in the downstream segment (Fig.

6.24). The possible point of channel avulsion and possible source of the

sand inundation that formed the HARPs is upstream toward S/SW, but

outside the seismic survey limits, as suggested by the HARPs reflections that

are dipping toward NE (Fig.6.24). Further possible evidence of upstream

avulsion is the occurrence of a mass transport deposit (MTD) immeditately

underneath the HARPs (Fig 6.24). This MTD is tongue-shaped in plan-view

and flanks the MCLS. It shows internal structures with NE vergence, which

suggests that the MTD slumping may have been from S/SW toward NINE.

Therefore, it is inferred that the MTD may be the result of an upstream levee

collapse which led to the channel avulsion and sand inundation forming the

HARPs (Fig.6.25). This levee collapse is suggested to have been to the

South, upstream and outside the seismic survey area.

View upstream

Figure 6-23 - Block diagrams summarizing the evolution of the Middle Channel-Levee
System 1 - After aggradation of the LCLS and further avulsion of the parent channel,
incision of the downstream segment of the LCLS. 2 to 4 - The erosive channel started to
evolve to a channel-levee system with the transition point between single and multi-thread
form migrating downstream.
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The avulsion of the MCLS and associated deposition of what are

interpreted to be sand rich HARPs as well as the event of levee collapse and

extensive erosion of the downstream segment of the MCLS (described in

section 6.3.3) indicate probable peaks in high magnitude (catastrophic) flows

that triggered the avulsion (Pirmez and Flood, 1995; Pirmez et aI., 1997). At

least when associated with the HARPs, these peak flows are thought likely to

have been sand-rich and, therefore, to have deposited in a sand sheet.

Figure 6-25 - Block diagrams summarizing part of the evolution of the Middle Channel-Levee
System 1 - Levee collapse and pervasive erosion of the downstream segment of the
MCLS 2 - Upstream levee collapse and slumping of MTD. 3 and 4 - Sand inundation and
HARPs formation.

6.3.6 Stable bifurcation: channel fill and HARPs formation

The channel fill in the upstream segment of the MCLS appears also to spill

out of the channel and contributes to the formation of adjacent HARPS (Fig.

6.24). This relationship implies that at least some of the HARPs intervals,

from the base up to the continuous reflection that covers the top of the

channel over the levees, and into the HARPs, formed simultaneously to the

channel fill. It follows that HARP deposition did not occur due to complete

channel avulsion. The simultaneous deposition of channel fill and HARPs is

thought to have occurred via a partial avulsion of the channel, leading to a

flow bifurcation (Fig. 6.25). This would reduce the flow efficiency of each

branch of flow and promote the deposition both of the channel fill and the
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sand inundation, forming HARPs in the adjacent low between the MCLS and

the paleoslope.

The avulsion and complete abandonment of the channel would

happen if, after the levee break-through, the subsequent flows gradually

escape from a perched channel through the levee aperture such that a

nickpoint gradually migrates upstream, capturing the flow entirely.

Synchronous deposition of the channel fill and the HARPs implies the

development of a stable flow bifurcation. Two possible causes are suggested

that could explain why the avulsed pathway did not progressively take all the

flow from the channel. Firstly, a small bathymetric difference between the

perched channel and the adjacent low may have inhibited upstream

knickpoint migration in the upstream channel. In other words, the super-

elevation of the channel may have been modest. The cross section (Fig.

6.26) shows that there is a relatively small difference between the channel

base and the adjacent low, of approximately 50 m (using 2000 m/s as the

seismic velocity for depth conversion) in a 4000 m of distance which implies

in a small gradient of 12.5 m/km (O.?"). The average gradient calculated for

the upstream channel segment (where the avulsion occurred) is

approximately 9.5 m/km (0.5°), on the same basis. Taking into account that

the gradient from the channel to the adjacent low measured here is not

exactly the gradient of the point of avulsion because it is upstream and

outside the area of seismic coverage, the calculation can, nevertheless, give

a rough estimative. Therefore, the gradient difference between the channel

thalweg and the potential avulsed pathway is at least 3 m/km (0.2°), which is

quite low in comparison with the gradients measured in the Late Pleistocene

of the Amazon Fan by Pirmez and Flood (1995) (Tab. 6.3). These authors

estimated the gradient of the parent channel and calculated the gradients

from the tops of the parent channel thalwegs to the bases of avulsed

channels. The gradient of the potential avulsion course in the study area is

only 1.3 times bigger than the channel gradient whereas the in the channels

of the Late Pleistocene of the Amazon Fan it can range approximately from

3.5 to 8 times the gradient of the parent channel.

Secondly, an inner bend avulsion may not have experienced the same

loss of flux as an equivalent outer-bend avulsion due to centripetal effects.
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However, the sinuous form of the channel at the point of avulsion is difficult to

constrain in this case because the possible levee collapse occurred outside

the area of seismic data coverage. Therefore, such a possible contributory

mechanism is speculative, in this case.

A

r

Figure 6-26 - Interpreted and non-interpreted cross section AB perpendicular to the channel
axis in the MCLS. The section shows the height difference between the channel base and
the adjacent low of approximately 50 m in 4000 m distance (very small gradient).

Table 6-3 - Upper and middle avulsions in the Late Pleistocene of Amazon Fan (adapted
from Kalla)

Avulsion Prc-av ulsion Pre-avulsion Estimated gradient of the avulsed channel at the time of

Channel Gradient sinuosity avulsion

Aqua 6.S m km (Purple) 1.3 (Purple) 24-36 m/km (Purple top to Aqua base)

Brown 4 m km (Aqua) 2.3 (Aqua) IS-18m/km (Aqua top to Brown base)

IF 1.5 mkrn (Brown) 3.0 (Brown) 8.5-12 m/km (Brown base to IF base)

6.4 Upstream vs. Downstream channel-levee development

Although the seismic data coverage over the LCLS system is relatively poor,

important considerations can be raised about its architectural elements and
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their processes of formation. Thus, the whole LCLS pinches out upstream as

the system thickness reduces significantly from downstream to upstream

(Fig. 6.7). The sets of prograding reflections of channel fill that are onlapping

the thalweg characterize back fill of the channel. In addition, the reflections of

the channel fill are in continuity with the levee reflections indicating

simultaneous deposition. Not only the channel fill but also the levee

reflections are onlapping the paleoslope, suggesting a backstepping

development. Finally, an upward pattern of channel narrowing and increased

sinuosity as well as a significant reduction in the thalweg gradient suggest

that the system became muddier and smaller upward. This suggests that the

flows gradually reduced their ability to transport sediment basinward, causing

the simultaneous deposition and backstep of the channel fill and levee

buildup.

On the other hand, the MCLS presents architectural elements and

possibly formation processes that are distinct from those exhibited by the

LCLS. The MCLS is thicker in its upstream than in downstream segment. The

differences not only relate to the pattern of channel-levee development but

also to the high degree of erosion to which the downstream segment was

submitted. Additionally, the downlap pattern of the levee reflections suggests

that the system pinches out downstream (Fig. 6.19). Contrasting with the

LCLS, the MCLS presents a downstream pattern of accretion with the

channel widening and becoming less sinuous upward. This suggests that the

system became more efficient and possibly sandier. Therefore, the MCLS

has a more complex evolution than the lower system as it presents two

different processes of channel fill: simultaneously with the levee buildup in its

lower portion and after some erosion in its upper portion.

It is inferred that the way the study channels attempted to evolve

towards an equilibrium profile during their evolution may have determined

their architectural style and thus their distinct upstream and downstream

patterns of development. The evaluation of the controls on the development

of these two distinct channel-levee architectures should take into account

differences and changes in flow parameters and also in the paleo-topography

of the slope. Therefore, models for flow efficiency and equilibrium profile

controls on each of the two architecture models are described below. Finally,
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the auto-cyclic vs. allo-cyclic nature of the controls on channel-levee

development can be discussed.

6.5 Equilibrium profile controls

6.5.1 Upstream development of channel-levee systems

Two models could account for the upstream development style of channel-

levee aggradation on the slope. The system may have aggraded filling a

bathymetric low inherited from previous slope deposits or may have been

induced to aggrade due to changes in the equilibrium profile along the

channel thalweg.

In the first case, the system aggrades and fills the topographic low,

filling the accommodation space. The channel profile tends to reach the

equilibrium gradient by eroding upstream and by bi-directional aggradation in

its downstream segment (Figs. 6.27 and 6.28). During aggradation, the

system could onlap upstream and down lap downstream filling the

accommodation space. The putative downstream downlaps, however, were

not sampled by the study seismic data because the seismic data only clips

the LCLS.
Initial slope profile

Figure 6-27 - Relationship between of submarine slope profile and equilibrium profile
(adapted from Kneller 2003).

In the second case, although most of the slope deformation of the area

took place before the establishment of the study channel-levee systems as

described in Chapter 5, some later small scale uplifts could have disrupted

the equilibrium profile during system development. As the channel-levee

systems are located downslope from the thrust-fold belt that affected the
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slope of Amazon Fan, an uplift of the upstream anticline would move the

equilibrium profile upward, increasing the downstream accommodation

space. The accommodation increment could induce the channel-levee to

aggrade, onlapping the paleoslope (Fig. 6.29).
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erosional to aggradational channel
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Figure 6-28 - Plan view of the upstream development of the channel-levee. Notice that in the
area between the erosive and the aggradational, close to equilibrium, the channel is multi-
thread.
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Figure 6-29 - Schematic diagram of equilibrium profile adapted from Kneller (2003) for the
study case. Changes in equilibrium profile due to upstream uplift. There are two stages of
slope evolution before and after upstream uplift: the initial slope profile 1 and equilibrium
profile (EP.1) with potential erosion E1 (orange) and accommodation A1 (orange); and the
post-uplift slope profile 2 and equilibrium profile (E.P.2) with potential erosion E2 (green) and
accommodation A2 (green). Notice that, after the uplift, the transition point migrates
upstream, from T1 to T2.
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Thus in summary, two models can account for the upstream

development of the LCLS characterized by the onlap pattern of the seismic

reflections. In the first model, the equilibrium profile is not affected by the

external factors and the channel-levee simply aggrades to infill the

accommodation space. In the second model, the equilibrium surface is raised

by an upstream tectonic uplift through time, causing the channel to aggrade,

thus onlapping the paleo slope.

6.5.2 Downstream development of the channel-levee

Existing models to account for changes in architectural style envisage

changes from an inherited slope condition to one set by the flow conditions

demonstrating how juxtapositions of channel style can arise. However, the

way the changes are expressed spatially during system evolution is still an

open question. In the MCLS, the transition point between the single

(agradational) and multi-thread channel (at grade) planforms moves

downstream with time which implies the downstream migration of the

agradational channel-levee over the basal erosive channel (6.23). This

migration, however, can not be satisfactorily explained using the model of

equilibrium profile proposed by Kneller (2003) because his model is based in

the occurrence of an upslope area of potential erosion passing into a

downslope area with accommodation space and, in the study system, the

downstream migration is not from incisional to aggradational.

In order to explain this downstream migration of aggradational over

incisional channels (for the study case, which is different from the model

proposed by Kneller (2003» using the equilibrium profile concept another

slope profile can be proposed, adapted to the study case (Fig. 6.30). The

model considers the effect of changes in the system base level. If the base

level is not fixed two possibilities arise. In the first, the base level becomes

higher, e.g., due to deposition on the downdip fan, forcing the equilibrium

profile to move upwards and, consequently, the transition point to move

downstream (Fig. 6.30). In the second, the base level can become lower,

e.g., due to downstream avulsion or erosion of the downdip fan with bypass,

forcing the equilibrium profile to move downwards and, consequently, the

transition point to move upstream (Fig. 6.30). In the case where the base
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level did not migrate, an upstream uplift of the anticlines, forcing the

equilibrium profile to move upwards, would also create accommodation and

cause the downward migration of the transition point (Fig. 6.31).
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Figure 6-30 - Schematic diagram of equilibrium profile adapted from Kneller (2003) for the
study case Changes in equilibrium profile are due to changes in base level If the base level
moves downward, the equilibrium profile (E.P.) also moves downward (E.P.1) forcing the
transition point between aggradational and erosive channel to migrate upstream (from T to
T1). If the base level moves upward, the equilibrium profile (E.P.) moves upward (E.P.2)
forcing the transition point between aggradational and erosive channel to migrate
downstream (from T to T2). In this diagram, the areas between the actual slope profile and
the equilibrium profile (highlighted in orange) represents accommodation (A) and potential
erosion (E).
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Figure 6-31 - Schematic diagram of equilibrium profile adapted from Kneller (2003) for the
study case. There is change in the equilibrium (E.P.1) profile due to upstream uplift. The
equilibrium profile curve also moves upward causing a downstream migration of the
transition point from T1 to T2. In the diagram, A is accommodation and E is potential
erosion.

Of the three models described above, only two would explain the

downstream migration of the transition point between aggradational and

erosional styles: i.e. base level rise and upstream uplift. However, it is worth
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mentioning that larger and clay rich fans like the Amazon, Mississipi or Zaire

tend to develop channel-mouth lobe complexes that are very small compared

to the whole fan (Jegou et al., 2008). They are very far from the coast, in very

deep water, occurring on relatively low gradients compared to small and sand

dominated fans. Hence, significant deposition and consequent aggradation of

the channel-mouth lobe complex to a degree that would meaningfully raise

the base level would not commonly occur. Therefore, if the change in the

equilibrium profile contributed to the longitudinal migration of the transition

point toward downstream, it is most likely that an uplift of the upstream

anticlines present on the upper slope was the main cause.

6.6 Flow properties and channel-levee development

The contrasting architectures styles in the two study cases, i.e., narrowing

and becoming more sinuous upward in the LCLS and widening and

becoming less sinuous upward in the MCLS, could represent opposite

tendencies in changes in turbidite current character through time. Indeed, the

widening-upward system is interpreted to be associated with an increase in

flow sand/mud ratio upward whereas the narrowing upward system is thought

to be associated with a decrease. Thus, the MCLS channel fill consists of

high amplitude reflections (HARs) which are inferred to be sandier than the

enclosing low amplitude reflections of the levees, whereas the LCLS channel

fill shows progressively lower amplitude fill similar to the character of the

associated levees. Data from the recent Amazon Channel show that the

depositional lobes (HARPs) are sandier than the channel-levee systems

(Pirmez et al., 2000; Pirmez et al., 1997). On the assumption that in the study

area the HARs (channel fill) and HARPs are as sand rich as in the recent

Amazon Channel, the fact that the widening upward architectural style

presents volumetrically more channel fill toward the top and also ended up

with the spill out of the channel forming part of the HARPs indicates that the

flows that built this channel-levee system (MCLS) evolved to become sandier

with time. In contrast, it follows that the flows which built up the narrowing

upward LCLS most likely became gradually muddier with time. The sinuosity

evolution with time in both systems also suggests changes in sand/mud ratio

of the turbidity flow. Thus, the upward reduction of sinuosity indicates an
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increase in sand/mud ratio in the flow whereas the upward increase of

sinuosity indicates a decrease. The literature of submarine channels is rich in

examples of high sinuousity mud rich channels like the Amazon, Indus and

Zaire fans and the Niger Delta (8abonneau et al., 2002; Deptuck et al., 2003;

Droz et al., 1996; Hiscott et al., 1997; Kolla and Coumes, 1987), also with

some examples of low sinuous sand rich channels like Northwest Atlantic

Mid-Ocean Channel (NAMOC) (Klaucke et al., 1997).

In conclusion, successive turbidite currents are thought to have

evolved differently during the development of these two channel-levee

architectures. It remains challenging, however, to make a comprehensive link

between flow character and architectural style. Changes in flow properties

such as flow size, density and/or grain size of suspended sediment may have

caused erosion, bypassing or deposition, depending on the position of the

actual channel profile in relation to the equilibrium profile (Kneller, 2003).

These processes may determine the erosive or aggradational nature of the

submarine channel character.

Erosion, bypass and deposition are associated with the ability of the

flow to transport sand basinward, which is a property of flow efficiency (AI

Jaaidi et al., 2004; Mutti, 1992). The controls on the efficiency of turbidity

flows have been described in the literature (AI Jaaidi et al., 2004; Bouma,

2000; Gladstone et al., 1998; Mutti, 1992; Mutti and Normark, 1987;

Normark, 1978; Normark and Piper, 1991) the main controls considered to be

the grain-size composition of the suspended sediment load and the flow

volume (AI Jaaidi et al., 2004; Mutti, 1992).

In order to analyze the possible flow characteristics during the

evolution of each of the study channel-levee, a conceptual model is built

incorporating the relative grain size variation of the suspended sediment, the

flow magnitude and the resultant flow efficiency (Fig. 6.32). This analysis is

qualitative and based on relative changes of these parameters deduced from

the architecture styles identified in the interpretation of seismic data. The

green arrow illustrates a possible evolution of the turbidite flows with time in

the channel of the LCLS. From the initial position 1 to final position 2, the

flows passing along the channel of the LCLS may have become muddier but
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smaller with time, such that the flow efficiency was reducing. The increasing

mud content of the flow should, by itself, result in increased flow efficiency.
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Figure 6-32 - Conceptual model illustrating possible evolution of the of the turbidite currents
along the evolution of the LCLS (green arrow) and MCLS (blue arrow), taking in account the
flow magnitude, the grain size of the suspended sediment and the corresponding flow
efficiency.

The associated reduction in magnitude must be invoked to explain the

inferred reduction in flow efficiency. On the other hand, the MCLS presents a

much more complex flow development during system evolution (dark blue

arrow). From an inferred initial position 1 to position 2, the flows passing

along the channel of the MCLS become sandier and larger with time. As the

flows become larger and sandier, it is thought that the channel-levee evolved

underwent four stages of development. It started from the simultaneous

deposition of channel fill and levee buildup (green area) which corresponds

to the lower portion of the MCLS and evolved to a possible long duration

stage of levee buildup and sand bypass (blue area). Later, larger and sandier

flows eroded the internal levee walls in the upstream segment and the upper
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part the downstream segment of the MCLS up to position 2 after which an

upstream avulsion of the channel occured with the development of a stable

flow bifurcation, which reduced drastically the flow size and, consequently,

the flow efficiency, promoting deposition of the channel fill and the HARPs

(position 3).
In summary, the continuous and gradual increase of flow size and of

the grain size of suspended sediment during the MCLS evolution is thought

to have caused the channel to widen upward. A strong and abrupt increase in

the flow magnitude probably due to changes in the river discharge, e.g.

continental flooding, may have led the levee to collapse and the channel to

avulse. Hence, the turbidity flow split via a stable bifurcation between the

channel and the low between the channel-levee and the paleo-slope. The

consequent flow deceleration and reduction of flow efficiency promoted the

deposition of high amplitude reflections filling the channel and adjacent lows.

6.7 Conclusions

Two main architectural styles were identified in the development of the LCLS

and the MCLS, each one associated with different models of spatio-temporal

development of channel-levees. A pattern of upstream accretion is

associated with the channel narrowing and becoming more sinuous upward,

with a continuous evolutionary history until channel avulsion. The apparent

back stepping of the system due to the onlap of the channel and levee

reflections can be related either to passive infill of an inherited topographic

low or to a creation of accommodation due to upstream uplift resulting from

slope tectonics.
The downstream accretion style of channel-levee development is

associated with the channel widening and becoming less sinuous upward. In

the case studied here, a more complex evolutionary history can be inferred

than for the upstream-accretion case. This evolution involves more stages,

e.g., internal erosion of the internal levee limbs, later channel filling and

deposition of HARPs in the paleo-bathymetric low adjacent to the channel-

levee system. The apparent fore-stepping of the system was evidenced by

the downstream migration of the transition point between multi-thread and

single-thread channel planforms and the down lap of channel and levee
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reflections. This migration could have occurred due to accommodation

generated by upstream uplift.

There are a suite of features that can be recognized in seismic and

can be used to predict each of the two styles of channel-levee development

(upstream and downstream accretion). The slope onlap of reflections

associated with possible narrowing and more sinuous upward architecture

may correspond to the style of upstream channel-levee accretion. The slope

downlap of reflections of both levee and channel fill associated with widening

and becoming less sinuous upward may correspond to the style of

downstream channel-levee accretion.

The analysis of the probable flow magnitude and the grain-size of the

suspended sediment suggests that the sequences of turbidity currents

responsible for building up the two different architectures had contrasting

styles of evolution during the channel-levee growth. These different styles of

flow evolution may explain the patterns of vertical deposit development (Le.

sandier vs. muddier development of each system) and also the occurrence of

erosive events and the formation of HARPs. In the upstream accretion style

of channel-levee development, the tubidite flows were interpreted as

becoming gradually muddier and smaller, whereas in the downstream

accretion style of channel-levee development, the flows were interpreted as

becoming sandier and larger with time.

The two models have important consequence for prediction of sand

prone areas (here interpreted to be represented by HARPs). Not all avulsions

resulted in HARP formation or in the direct build-up of the next system

(without the HARPs deposition at the base of the system). HARPs are

thought to comprise sand-rich sheet deposits and thus require a parental

sand rich flow. The levee breach interpreted to have caused the partial

avulsion is thought to have been caused by a large flow. Therefore, the

avulsion event and the deposition of a large volume of sand rich deposits

(HARPs and the channel-fill) suggest a tendency of the turbidite flows to

become larger and sandier with time in the evolutionary history of the MCLS.

In the avulsion of the lower system where there was no HARP formation, the

flow responsible for the channel avulsion was probably not sand rich, as

suggested by the architecture of the avulsed channel immediately prior to
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avulsion (which is narrowing and interpreted to be becoming muddier

upward). The cause of avulsion in this case is thought to be an outsize

muddy flow/s or spontaneous levee collapse. Instead of HARPs formation,

the next system initiated with incisional channel development.

The changes in flow type during the evolution of the two distinct

architectures can be attributed to both allocyclic and auto cyclic processes. In

the case of the flows becoming muddier and smaller continuously with time

(LCLS) at least three causes can be postulated. Firstly, an autocyclic gradual

(progressive) upstream avulsion of the system could promote a gradual

reduction of sediment flow in the channel. Secondly, an allocyclic increase in

relative sea level could gradually trap and/or disperse the sediments brought

by the river on the shelf until the complete abandonment of the turbidite slope

system. Thirdly there could be allocyclic decrease of sediment discharge

brought by the river due to changes in climate. In the second and third cases

a later increase in the flow magnitude to produce misfit flow in late stage

sinuous, narrow LCLS would be necessary to promote the avulsion of the

system. Here relative sea level fall and/or the increase of sediment discharge

by the Amazon River would be able to increase significantly the flow

magnitude and consequently force the avulsion of the LCLS. The longitudinal

transition point from erosional to aggradational channel style would be a

likely place for avulsion because in this position the flow is inferred to be in a

meta-stable equilibrium with the channel (which is close to the equilibrium

profile).
In the case of the flows becoming sandier with time (MCLS) at least 2

causes can be postulated. Relative sea level fall with gradual increase in

sediment flow in the channel or gradual increase in sediment discharge by

the river could theoretically drive this evolution of flows on the slope channels

until the channel avulsion. The mechanisms of flow evolution due to relative

changes in sea level are not likely to have occurred in the study area. This is

because each of the "levee-complexes" grouping the channel-levee systems

in sets separated by maximum flooding surfaces (carbonate rich muds) are

related to a single glacial period (Flood and Piper, 1997). Therefore, the flow

evolution and avulsions of individual channel-levee systems might be related

to auto-cyclic processes or to changes in the river discharges.
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Finally, the mechanisms that may have driven development of these

contrasting channel-levee architectures might have resulted due to the

interaction between the style of accommodation space and the different

styles of evolution of the flows on the slope. The channel can aggrade

(downstream or upstream) simply to infill an inherited topographic low or an

accommodation space created due to upstream uplift. A narrowing and more

sinuous upward or a widening and less sinuous upward channel style would

then develop depending on whether the flows became sandier or muddier

with time.
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7 CONTROLS ON PATTERNS OF CHANNEL

DISTRIBUTION

Different patterns of channel distribution were identified on slope in the study

area. The essentially erosive canyon-like channels that occur in the pre-

unconformity interval (described previously in Chapter 5) appear to have

different direction and controls on their distribution than the channel-levee

systems on the post-unconformity interval above. Underneath the unconformity,

the channels are oriented towards the NE and were apparently strongly affected

during their evolution by growing anticlines. Above the unconformity, the

channels are oriented towards the N/NW and appear to be relatively unaffected

by slope tectonics. In detail, the post-unconformity channel-levee systems

exhibit two styles of stacking pattern: a slope-oblique pattern, which results from

a sequential upslope stacking after channel avulsion, and a sub-vertical

stacking pattern.
These observations raise the question: what are the controls on channel

dispersion and channel stacking pattern on slope? As turbidite channels cross

the slope they are naturally susceptible to some control on their geometry and

orientation due to the effect of contemporaneous bathymetry. Thus on many

slope systems, salt or shale diapirism and fold and thrust belts associated with

slope gravity tectonics create seafloor relief which may affect the channel

geometries (Clark and Cartwright, 2009; Mayall et aI., 2006; Mayall and

Stewart, 2000; Morgan, 2004). The way these structures dictate the channel

directions and stacking on slope is still, however an issue that requires deeper

study.
The purpose of this chapter is to review the apparent controls on the

different styles of submarine channels present in the 3D seismic data of the

Amazon Fan. The reasons why the channels underneath the unconformity

(basal interval) are dipping roughly in the same direction as the mean slope dip

(NE) in the area and the channels above the unconformity are oblique to the

mean slope dip will be discussed.

The post-unconformity channels are below the current sea floor and above

the unconformity (Fig. 5.21); the unconformity can be considered a former
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palaeoslope before which the development of the aggradational channel-levee

systems took place. Both sea floor and unconformity dip towards the NE. The

post-unconformity channels dispersing in a NW direction are, therefore oblique

to these surfaces.
A post-depositional tilting of the surfaces could be considered to be a

cause of this difference of dip directions between the channels and the slope

and/or palaeoslope, as there is a thrust and fold belt upslope from the studied

channels. Some considerations, however, militate against considering any post-

depositional changes of the slope to be due to tectonic tilting. Firstly, as

described in Chapter 5, the rate of deformation after the unconformity was

eroded, was low. Secondly, all the three channel-levee systems are downslope

from the anticlines in the study area and Figure 5.2b shows that at least the

LCLS is relatively distant from the effect of uplift on these structures. The 20

seismic line also shows cross sections (SW-NE) through two extra channel

levee-systems downslope from the LCLS, further from the influence of the

upslope anticlines (Figs. 5.2b and 5.4). Thirdly, the fact that the two surfaces

(sea floor and unconformity) which enclose the studied channels, dip in the

same direction (NE) with similar dips (1.5° and 1.4°, respectively) reduces the

chances that a post depositional tilting could have changed the main slope dip

from towards NW to the current direction. Given these considerations it was not

deemed necessary to pursue a backstripping analysis because the probability

that a tilt on slope due to tectonic activity changed the main slope dip from the

time of the deposition of the channels to the current slope dip is considered

small.

7.1 Structural controls on development of erosional channels

The objective of this section is to evaluate the structural controls on the

development of the erosive channels present in the basal interval (defined in

Chapter 4 and described in Chapter 5) (Fig. 5.7).

Unlike the post-unconformity channel-levee systems, that were only

slightly deformed by the slope tectonics, the pre-unconformity erosive channels

divert and/or deflect, as defined by Clark and Cartwright (2009) (Fig. 2.53), from

the palaeo-seafloor relief formed by the growth of the thrust-cored hangingwall

anticlines. Some channels also cut through the anticlines (Fig. 5.15, channel 2).
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Incised channels are the only channel type in the pre-unconformity interval

whereas in the post-unconformity interval erosive channels evolved upwards to

become aggradational channel-levee systems.

The two-way-time maps of the base and the top of the basal interval (Fig.

5.7) show the anticlines A, B, C and D. Anticline C only slightly affects these two

horizons. The upslope-most anticline (E) shown in the cross section is not

shown on the maps because mapping of these horizons across the anticline

could not be achieved. The yellow crescent shaped features are two sections of

the same erosive channel (Chapter 2). In cross section this channel seems to

be affected by growing anticlines (see below).

There is no apparent difference between the amplitude of the channel fill

and the enclosing sediments present in the basal interval (Fig. 5.7). However,

the channel fill reflections can be more irregular than the monotonous

subparallel reflections of the background. Bearing this in mind, two horizon

slices showing RMS coherence in a time interval of 20 ms were extracted

parallel to the base of the basal interval in order to cut across the channels and

show their planform distribution (Fig. 7.1). Channel 2 exhibits a different

planform position in slice (1), which is centred 100 ms above the base of the

basal interval, and in slice (2), 200 ms above the base of the basal interval.

Channel 1 appears to have been disrupted by the tear fault and shows an

approximate dextral offset of 2 km (Fig. 7.1). The cross section (Fig. 7.2) shows

the channels 2a, 2b and channel 3. Channel 2a occurs cutting across only the

basal layers of the interval whereas channels 2b and 3 cut essentially the whole

interval. This indicates that channels 2b and 3 are younger than 2a.

The isochron map of the basal interval shows that there is thinner

sediment cover on the folds crests, mainly on the top of anticlines A and C (Fig.

5.15). The cold colours (green-blue) in the map indicate shorter two-way-travel

time, indicating smaller sediment thickness than the hot colours (red-orange).

The thicker elongate features correspond to the channels identified in the RMS

coherence horizon slices (Fig. 7.1). The green/blue colours represent the

thinner sediment packages coincident to the bathymetric highs generated by the

growing anticlines and transpression on the bend of the tear fault (Fig. 5.15).

This thin sediment packages on the anticline crests suggests that the anticlines
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were growing structures with uplift rates lower than the sedimentation rates

during the deposition of the basal interval.

20 km

Figure 7-1- Two horizon slices (1 and 2) extracting RMS coherence in an interval of 10 ms
parallel to the base of the basal interval (non-interpreted and interpreted). There are at least 3
erosive channels, 1, 2 and 3 roughly dipping toward NINE. The anticlines A, Band D identified
in Figure 5.15 are highlighted and also the tear fault (F).
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Three dimensional images of the two-way-time maps of the base of

channel 2 and the base of the basal interval, which is approximately coincident

with the channel base, were plotted together (Fig. 7.3) with orientation looking

upstream. The analysis of the isochron map integrated with the 3D view of the

tectonic structures and the erosive channels allows an interpretation of the

tectono-sedimentary sequence of events that occurred during the deposition of

the basal interval. Channel 1 and channel 2 appear to be deflected from the

bathymetric high (H) on the tear fault bend, indicating that the fault was already

active during the development of these channels as this high is considered to

have been formed by compression (transpression) at the fault bend. Channel 1

was formed prior to the growth of the anticline B because the anticline lies

between the downstream and upstream channel segments (Fig. 7.1). Channel

2a seems to be deflected by anticline B towards the north and also uplifted by

anticline C. Channel 2b occurs downslope from 2a and is not uplifted by C (Fig.

7.3.2). This indicates that growth of anticline C may have forced channel 2a to

change its course to channel 2b in the segment between anticlines D and A

(Fig. 7.3.2). Moreover, it implies that the growth of anticlines D and A occurred

after C because channel 2, which cuts across D and A, was active during the

growth of anticline C. The eventual growth of anticline D appears to have

pushed later turbidite currents laterally towards the NW, forming channel 3. It

seems that the development of the anticline A occurred only after the incision of

channel 3, otherwise it would have blocked or deflected it, whereas channel 3

cuts across it.
In summary, the sequence of fold growth in the study area during the

deposition of the basal interval seems to have occurred in the sequence: B, C,

D and A. The channels show a tendency of lateral migration towards NW with

time, apparently controlled by the sequence of anticline growth (Fig. 7.4). The

Figure 7.2 shows the lateral channel migration from 2a to 3 toward the NW due

to uplift of anticline C in the SE. The channel flow directions are approximately

towards the NINE but show deflection along their course due to the growing

topographic barriers formed by the anticline structures. Where the channels are

adjacent to the NW oriented anticlines, they are deflected towards NINW to the

point that they cut through the anticlines and then are redirected towards the NE

(Fig. 7.1).
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Figure 7-3 - 3D view of the mapped base of the basal interval and the base of channel 2 (a and
b). The view is upstream - towards the SE. The images exhibit the 4 bathymetric highs formed
by the growing tectonic structures: anticlines A, B, C and D and the high (H) formed at the tear
fault (F) bend. Images 1 and 2 show the mapped channel 2 with different planforms (a and b)
Channels 1 and 3 are indicated by the dashed yellow arrows.
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Figure 7-4 - Schematic diagrams showing the sequence of growing structures and erosive
channel development a) channel 1 diverted from the topographic high (H) formed at the fault
(F) bend; b) anticline B growth blocking the channel 1; c) channel 2a diverted from anticline B
and H; d) anticline C growth deflecting channel 2b; e) anticline D growth deflecting channel 3, f)
anticline A growth possibly blocking channel 3.
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The fact that the channels occur cutting through some anticlines, for

instance channel 2 on anticline D (Fig. 5.15), implies that the folds were growing

at rates low enough for channel incision to keep pace for a while. Therefore, the

sinuosity observed along the erosive channels in the study area (Fig. 7.1) is

apparently the response of the sediment distribution system to the bathymetric

barriers formed by growing anticlines. Moreover, the sequential migration of the

channels from SE to NW is in response to the growth of fold related anticlines

from the SE to NW.

Finally, it is possible that the growing structures exerted a significant

control on the channel architecture. It might have been expected that channels

would change from incisional (across anticlines) to aggradational (between

anticlines) on the local scale. The fact that this is not seen suggests that the

entire slope segment incorporating the anticlines has elevated above the

effective equilibrium level. Thus it is suggested here that there are two scales of

analysis to be considered to best understand the way that these growing

structures may affect the channel geometry (Fig. 7.5). The local scale, which

takes into account the immediate bathymetric relief created by the tectonic

structures, and the regional scale which can be described as the surface which

envelopes local scale relief. Although anticline uplift can locally reduce or

increase the slope gradient, and also deflect the channel direction, it may also

super-elevate the enveloping surface, as illustrated in Figure 7.5. Therefore, the

elevation of this broader section of slope, due to the fold and thrust belt uplift,

may cause the erosive character of the channels all over the study area, no

matter what the position of the channel was in relation to the local anticlines. It

is possible that downstream from the study area these channels became

aggradational where the slope was less steep, however, such areas are not

sampled in the seismic survey. This reasoning may explain why channel-levee

systems occur only above the unconformity in the Late Pleistocene of the study

area, where the tectonics were less active.
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Figure 7-5 - Schematic diagram illustrating the two different possible scales of analysis of the
slope paleobathymetry: variable slope gradient created by each anticline uplifts (2), and the
overall gradient increase (steepening of the enveloping surface), due to the overall uplift the fold
and thrust belt (1).

7.2 Oblique channel orientation with respect to the slope dip

Channels in the interval above the unconformity disperse towards the N/NW, a

direction oblique to the steepest dip of the present-day slope (-1.5°), which dips

towards the NE (Fig. 7.6), as does the unconformity (-1.4°) which is the other

palaeo-slope candidate (Fig. 7.6). Between these two surfaces the deposition of

the turbidite systems occurred as erosive channels, channel-levee systems or

intra-slope lobes (HARPs). Each one of the deposits created relief on the slope

which in turn affected the deposition of later deposits. Therefore, the

palaeoslope bathymetry for each channel-levee system in the study area (which

is small if compared with the whole area of the Amazon Fan) is dynamic in time,

changing after the deposition of each one of these deposits and it is therefore

difficult to choose a unique paleoslope datum. Hence, for analytical purposes

the unconformity already described in Chapter 5 and exhibited in Figures: 5.2,

5.4, 5.5 and 5.18 is considered the palaeoslope for the deposition of the whole

package of channel-levee systems and associated deposits (MTDs and

HARPs). The objective of this section is to evaluate why these channels are

oblique to the palaeoslope in the study area, and in particular to ascertain if

there is a structural control on channel orientation.
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It is worth mentioning that not only the study channels but most of the

Quaternary channels of the Amazon Fan have the tendency to deviate

northward (Fig. 7.7). Although the feeder canyon is oriented towards the NE on

the shelf border/upper slope and the recent Amazon Channel disperses from

the canyon mouth in a NE direction, the channel bends toward the north on the

upper slope. The other avulsed channels also disperse broadly northwards

although there is a spread. Nevertheless even these channel that disperse to

the NE are still oblique (in an anticlockwise sense) to the regional slope dip.
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Figure 7-7 - Amazon Fan map exhibiting the surficial channel systems, MTDs, the location of
the Leg155 sites and of the study seismic survey. Notice the northward growing direction of the
fan. Adapted from Normark et al. (1997).

221



Possible controls on the channels evolution include the influence of

marine currents, tectonics (through changing the paleoslope topography) and

directional inheritance from the previous channel-levee. These controls could

have contributed individually or jointly to causing the oblique flow direction on

slope.

7.2.1 Marine currents

The studied channels occur at depths around 2000 m which are much

deeper than the active depth of the North Brazil Coastal Current (NBCC) (Fig.

3.6). Even during lowstand, with the sea level -100 m lower, the NBCC would

probably not be able to affect the turbidite currents in the study area. The recent

Amazon Channel also exhibits a marked deflection toward the N/NW at around

2000 m depth (Fig. 7.7), much further below the active depth of the NBCC.

Therefore, the NBCC is not considered to be dictating the N/NW direction of the

Pleistocene channels of the Amazon Fan.

7.2.2 Tectonics

The hypothesis that the channel direction in the study area is structurally

controlled was originally considered because the compressional slope

structures (anticlines) have axes with NW-SE orientation. The study channel-

levee systems, however, are located downslope of these (fold-thrust belt)

structures (Fig. 7.8). Therefore, the idea of a direct control of these structures

on channel direction was discarded, at least in the study area. The study 20 line

(which extends further downslope) shows no evidence of downslope

compressional structures. It is thought, as a result, that other structures directly

controlling the channel directions, by blocking or capturing the turbidite flows,

and located downstream from the study channel-levee systems beyond the

downslope border of study seismic survey, are not likely to have been present.
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7.2.3 Inheritance of direction from older channel-levee deposits

In this section, the contribution of bathymetric inheritance resulting from the

deposition of the previous systems in determining channel direction is analysed.

The three systems identified, i.e., the LCLS, MCLS and base of UCLS, are

formed sequentially upslope and are thus laterally stacked due to recurrent

phases of channel-levee development following systemic avulsions through the

left-hand side of the channel (viewed in a downstream direction). The recurrent

channel avulsion through the same side may have been favoured by the strong

levee asymmetry of the channel-levees. This asymmetry is characterized by the

right-hand levee being much larger than the left one in all of the three study

systems (e.g. Fig. 7.9). Therefore, any abrupt increase in the flow size, to

exceed the channel capacity would probably force a break through the weaker

left-hand levee to cause channel avulsion. Consequently, the next channel

would initially align along the bathymetric low between the slope and backside

levee of the previous channel, inheriting its direction. In this case, therefore, the

succeeding channel-levee system would have inherited the approximate

direction of the abandoned one.

Levee asymmetry is considered an important characteristic determining

channel avulsion in the study cases. However, levee asymmetry is a feature

known more commonly to occur locally at the bend of a submarine channel

rather than along its entire extensions as is observed in the study systems. The

preferential occurrence of levee asymmetry at a channel bend is due to

overbanking of channelized flow related to processes of flow stripping or inertial

overspill described in Chapter 2 (Figs. 2.30 and 2.31). These processes,

however, do not explain how a levee can be systematically higher than its

counterpart along the entire channel length. In the case of the study area, the

asymmetry occurs along the channels of three stacked channel-levee systems,

regardless of the levee location at the inner or outer bend of the submarine

channel (Fig. 7.9).

As described in the literature (see Chapter 2 review), many submarine

channels exhibit levee asymmetry which is attributed to the effect of the Coriolis

Force, e.g., North Atlantic Mid-Ocean Channel (NAMOC), Danube Deep-Sea

Fan, Bengal and Indus Fan (Curray et al., 2003; Klaucke et al., 1997; Kolla and
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Coumes, 1987; Popescu et al., 2001) (Fig. 2.38). Thus, these channels are

located in higher latitudes where the Coriolis force can be more effective. These

authors attributed this levee asymmetry to be an effect of the Coriolis force

acting on the flow overspill along the channel systematically causing overbank

deposition on the right side, if the channel is located in North Hemisphere.

However, the Amazon Fan is located in very low latitudes (3 - 8° N), very close

to the Equator, where the Coriolis force should be negligible, but nevertheless

presents levee asymmetry.

Although the Amazon channel-levees present strong levee asymmetry in

the study area, previous studies in Amazon Fan (e.g., OOP Leg 155

Proceedings) did not mention this characteristic. The levees of the Amazon

Channel, however, can be asymmetric, with asymmetry decreasing basinward

(Fig. 7.10). Most of the data analysed by the OOP Leg 155 are in the Middle

and Lower Fan. Therefore, the fact that the systems analysed by OOP do not

have strong asymmetry can be related to their Middle and Lower Fan location

where the slope dip tends to be lower. Thus, in the Upper Fan, the levee

asymmetry of the Amazon Channel is more conspicuous. In the Bengal Fan, for

instance, the levee-asymmetry was stronger in the upper and middle fan but

less evident in the lower fan (Wynn et aI., 2007). These authors, however,

suggest that the proximity to the Equator causes the asymmetry reduction in the

lower fan, because the Bengal Fan grows southward, to lower latitudes (Fig.

7.11). If the proximity to the Equator was determining the levee asymmetry in

the Amazon Channel, however, the asymmetry would be expected to increase

downstream (N), as this is further from the Equator. On the contrary, the

channel-levees tend to become relatively more symmetric downstream.

The bathymetric high already created by the deposition of each previous

downslope system may be another possible cause of the levee asymmetry. In

this case, although the depositional rate from the overbank flows on both sides

of the channel may be the same, the right levee would be always higher

because it was already a high when the levees started to grow (growing on the

left-hand levee of the predecessor channel). However, Figure 7.9 shows that

the right levee of the UCLS is volumetrically much larger than the left one, and

in any case is offset from the relatively small relief previously created by

deposition of the left-hand levee of the MCLS. Moreover, the limb of the left-
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hand levee is steeper than the right-hand one (Fig. 7.9) further indicating some

difference in depositional flow process.
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Figure 7-10 - Interpreted seismic reflection profiles (AB) and (CD) across the Amazon channel
adapted from Pirmez and Flood (1995). The levees (highlighted in green) of the channel in its
upstream section are more asymmetric than in the downstream section. The approximate
locations of the sections were plotted on the bathymetric map of the fan.
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Here it is proposed that channel obliquity in relation to the slope dip may

be a cause of levee asymmetry. It can readily be seen that gravity would

preferentially pull the overspilling flow downslope in the case where the channel

is oblique to slope dip, resulting in a higher volume of overbank sediments on

the downslope side (i.e., right-hand side in the study case) than the up-slope

side of the channel. The fact that the asymmetry increases proximally (the

levees of the middle/lower fan channels are relatively more symmetrical)

suggests that slope gradient, which is higher upslope, is a principal control. The

overbank flow thickness on the upslope side may be smaller because the flow

became ponded between the slope and the levee backside, thus reducing

relative rates of overbank loss and hence resulting in deposition of smaller

sediment thickness. On the other hand, the overbank flow on the downslope

side was not ponded, favouring greater rates of overbank loss and ultimately

relatively more deposition on that side (Fig. 7.12). The concept of an intra flow

pressure gradient (Simpson, 1997) can be invoked to explain the lateral flow

direction, under a hydrostatic pressure assumption. Thus the cross stream

pressure field approximates to the axial (longitudinal) pressure field in a classic

lock-exchange-type gravity current, in which the overall upper surface slope of

the current results in a longitudinal pressure gradient that drives the flow.

Because significant overspill in the downslope direction can occur in the

oblique, channelized flow scenario (but not upslope), a similar cross-stream

slope will develop resulting in a pressure gradient laterally (higher up slope,

lower down slope) that will drive the lateral flow of overspilling fluid.

Intra-flow lateral pressure gradient

~
Lowrates ~

Figure 7-12 - Schematic model explains levee asymmetry in the case of oblique dispersal down
the slope. Internal lateral pressure gradient favour greater rates of overbank loss downslope,
hence greater levee volumes.
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Therefore, the model of levee asymmetry development due to channel

obliquity in relation to slope dip can be applied to explain levee asymmetry both

in the Amazon Channel and also in the Bengal Fan (Wynn et al., 2007) which

shows the levees becoming more symmetrical downstream. The "active

channel" in the Bengal Fan (Fig. 7.11) is slightly oblique to the main slope dip,

bending to the left on the Middle Fan, which would explain the higher right-hand

levee on this channel segment. The upstream segment of the channel-levee

systems in the Indus Fan immediately after the feeder canyon mouth (Fig. 7.13)

is also oblique to the main slope dip. In both cases the channel obliquity to the

main slope dip could be responsible for the levee asymmetry identified in these

fan positions (Figs. 7.11 and 7.13).

On the other hand, the "active channel" of Zaire Fan has approximately

the same dip direction of the main slope dip (Fig. 7.14) and has been described

as having very symmetrical small levees (Migeon et al., 2004). Therefore,

channel obliquity in relation to the mean slope dip can to be crucial to the

development of asymmetrical levees on slope channels.

In summary several processes were proposed to explain levee

asymmetry in the study channel-levee systems. Coriolis force was discarded as

a main force due to its negligible effect close to the Equator. Flow stripping and

inertial overspill can explain the levee asymmetry only locally when it occurs at

the channel bends. Although the origin of levee asymmetry along the whole

extension of the channel is still not fully understood, the obliquity of the channel

on the slope is the most probable cause, at least in the study area and possibly

elsewhere.

7.2.4 Summary

Three possible causes of channel obliquity in relation to the main slope dip were

examined: marine currents, tectonics and inheritance of direction from previous

channel-levee. The fold and thrust belt occurs upslope of the study channel-

levee systems, hence it cannot directly control the channel direction. No other

tectonic structures were identified downslope of the study channel-levee

systems in the 3D surveyor in the 2D line across the slope. Therefore, there is

no apparent structural control dictating the channel directions.

230



B)

III"E

A).

Figure 7-13- Maps adapted from Prins and Postma (2000). Geomorphic setting of Makran and
Indus Fan turbidite systems. A) Tectonic setting of Makran and Sindh continental margins
showing the location of Figure 8. 8) Localities of the Indus canyon and part of the complex of
associated large channel-levee systems (A younger than 8), and small channel-levee systems
(e.g. A1 is younger than A2. Topography contour interval is 500 m and bathymetry contour
interval is 1000 m (dashed contour line is 125 m). Notice in the upper fan, immediately following
the canyon mouth, the channel is oblique to the main slope dip.
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Figure 7-14 - Bathymetric contour map of the Zaire Fan showing the active Canyon/Channel,
adapted from Babonneau et al. (2002). Bathymetric cross sections (A-F) show changing
morphology from river mouth down to the distal lobe on the lower fan. Contour interval is 100 m.

Although the North Brazil Current has N/NW dispersal direction, it does

not extend deep enough to affect the submarine channels in the Amazon Fan,

as at 800 m depth, the current velocity is almost nil (Fig. 3.6). During periods of

lowstand sea level, the current would not affect the channels evolution either,

because a sea level drop of 100 m is still not enough to allow the marine current

to reach the channels. Thus, the NBC (NBCC) did not dictate the channel

direction on the slope of the Amazon Fan.

Finally, it was observed that the previous system may dictate the direction

of the next one, in a sequence of upslope stacked channel-levee systems. The

levee asymmetry is thought to be responsible for the systematic pattern of

avulsions breaching the left-hand (upslope) levee which causes the upslope

stacking. The levee asymmetry itself can be seen to result from the channel

obliquity to the main slope dip. The lateral pressure gradient from upslope to

downslope would account for the building up of a larger downslope levee due to

greater rates of overbank loss on that side.

This raises the question of what causes the first oblique orientation. There

are two possibilities: there is an unknown mechanism setting the obliquity of the
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LCLS (i.e. the structurally deepest channel-levee observed in the data) or

something else sets the obliquity of an older down-dip channel-levee system

(outside the study area) which in turn sets the obliquity of the LCLS. However,

the data limitations do not allow discrimination between these possibilities:

either there is a direct cause of the obliquity of LCLS, but it is below seismic

resolution or the data do not extend to where an earlier channel might be.

Therefore, the cause of the initial oblique orientation can be identified as a topic

for further research.

7.3 Controls on channel-levee stacking

Two different stacking patterns of channel-levees were identified in the study

area: a sequential upslope stacking of channel-levee systems and a sub-vertical

stacking of channel-levee elements forming the Upper Channel-Levee System

(UCLS). The first case is characterized by the systematic upslope avulsion of an

earlier channel-levee followed by the lateral upslope development of the next

system, as discussed previously. The evaluation of the causes of the sub-

vertical stacking of the UCLS is discussed as follows.

7.3.1 UCLS stacking

The UCLS is composed of a stack of at least four channel-levee elements. The

lowest channel-levee element evolved from the top of the underlying HARPs up

to an erosive surface (described in Chapter 5) (Fig. 7.15). This erosive surface

is identified in both left and right-hand levees of the UCLS and may represent

an important depositional gap in the evolution of the channel-levee system.
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Figure 7-15 - Interpreted and non-interpreted seismic reflection sections downstream (AB) and upstream (CD) across the Upper Channel-Levee System (UCLS). Notice the upstream channel fill presents sigmoidal reflections with
higher amplitude whereas the downstream channel fill presents chaotic reflections with lower amplitude. Ihe black and white maps are isoproportional horizon slices across the lower channel-levee extracting coherence and
amplitude in a time window of 20 ms. The amplitude map shows the upstream segment of the channel with higher amplitude (dark gray) the lower one (light gray), which is very similar to the levee amplitude.
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The channel fill of this lowest interval varies from chaotic low amplitude

reflections to ordered high amplitude reflections. The high amplitude reflections

are sub-horizontal and/or have sigmoid shape (Fig. 7.15). On the base of the

right-hand levee, there is an interval of deformed sediments showing sets of

thrust duplets and as their updip counterpart, normal faults verging toward the

channel axis (Fig. 5.30). The vergence of the structures indicates a sliding

direction from the SE toward the NW, i.e., into the axis of the new channel. The

seismic reflections in this direction do not have the same organized

downlapping pattern of the enclosinq levee, but they have similar amplitude.

The amplitude similarity of the reflections of the remobilized sediments to the

levee reflections suggests that the slide is result of remobilization of levee

sediments (Fig. 5.30). This slide is interpreted to have occurred as a result of

the instability of the basal levee layers due to the relief caused by the underlying

MCLS. In the lower channel-levee element of the UCLS, the levee buildup is

characterized by levee reflections downlapping at the upper surface of the MTD.

This depositional interval extends vertically from the top of the MTD up to the

erosive surface mentioned above. It exhibits the down lapping pattern typical of

levee build up.

Above the erosive surface, three channel-levee systems are sub-

vertically stacked. Within this sequence, the channels become more sinuous

and narrower from the basal to top system although within each individual

system the channels widen upward (Fig. 7.16). In a section across the channel

(Fig. 7.16), the channel fill of the two lowest systems is roughly sub-horizontal.

The uppermost channel-levee element is described in detail by Nakajima et al.

(2009). This channel includes channel fill elements in the form of offlapping

point bars, described as "outer-bank bars" for the first time, which onlap the

channel border. The channels of the three systems above the erosive surface

exhibit different sinuosity, which increases toward the top system (Fig. 7.16). In

parallel, the amplitude of the seismic wavelets showing the channel fill reduces

toward the top of the system. The channel fill of the uppermost system exhibits

similar reflection amplitude to that of its related levee. This similarity indicates

that the lithology of the channel fill is similar to that of the enclosing levee, and

is therefore probably silt dominated.
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Figure 7-16 - Horizon slices exhibiting RMS amplitude extractions of the three stacked channel-levees above the inner unconformity (yellow horizon) in the Upper Channel-Levee System. The horizon slices were taken using a 20
ms window in the mean surface between the base and the top maps of each channel-levee (1, 2 and 3), highlighted in the seismic section. The channels are more sinuous and clay rich upward, as there is less amplitude contrast
between the channel and the levee in the upper channel-levee (3).
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It follows that the channel fill is inferred to be siltier/muddier in the

uppermost channel than in the underlying channels of the lower systems that

comprises the UCLS. These changes in channel characteristics can be related

to changes in flow properties (Kneller 2003) and have been described in the

literature (Oeptuck et al., 2003). Kneller (2003) notes that the flows within

aggradational channel-levee systems may become both smaller and muddier

with time which may respond to three main controls (Le. grain-size, flow size

and flow density). As discussed in Section 7.2, the cause of the lateral and

upslope stacking of channel levees from the LCLS to the base of the UCLS was

inferred to be the systematic upslope avulsion of each system. By way of

contrast, in the sub-vertical stacking of the UCLS, there no avulsion was

identified in the study area. The absence of avulsion is discussed below.

The strong levee asymmetry of UCLS arose due to the channel obliquity

in relation to the slope, as discussed Section 7.2 (Fig. 7.9). The outsized right-

hand levee developed along the whole system in the study area, and prevented

the channel from avulsing downslope. In contrast to the MCLS and LCLS, no

bathymetric low was created between the perched aggradational channel and

the slope that could favour channel avulsion (Fig. 7.17). On the contrary, the

updip growing anticline actually uplifted part of the up-slope levee, resulting in

an absence of space into which channels could avulse. In other words, the

surface expression of the anticline effectively ponded the channel margin of the

UCLS, effectively acting as a levee, (Fig. 7.17).

Therefore, the sub-vertical stacking of four channel-levee systems in the

study area may be attributed to its confinement between the outsize right-hand

levee developed downslope, building over the previous MCLS and the upslope

anticline. The widening-upward characteristic of each channel of the stacked

systems suggests that the flows in each channel became larger and sandier

upward with time, as discussed in the evolution of the MCLS in Chapter 6,

which culminated in the channel avulsion. These two bathymetric highs,

upslope folding and downslope levee, however, did not allow the channel to

avulse in the study area, as in the previous MCLS and LCLS. Avulsion might

have occurred somewhere during the evolution of the stacked channel-levee

elements of the UCLS, but downstream and outside of the study area.
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Another instance of vertical stacking occurs in the "Upper Levee

Complex" (Late Pleistocene) of the Amazon Fan (Flood et al., 1995), as shown

in seismic sections presented by Pirmez and Flood (1995) (Fig. 7.18). The

sections are located upstream from the bifurcation points of the channels, i.e.,

upstream of the points of channel avulsion. Figure 7.18 shows the stacking of

three channel-levee systems, from the base to the top: the "Aqua", "Brown" and

the "Amazon". They represent the youngest channel-levee systems of the Late

Pleistocene deposition in the Amazon Fan. This section is located upstream of

the point of avulsion of the Aqua Channel and the subsequent development of

the Brown System, leading the three channel-levee systems to stack vertically.

In this case of the Late Pleistocene channels of the Amazon Fan, the channel

stacking is not related to the confinement between upslope structure and

downslope large levee. It is possible that the symmetrical levees provided

enough confinement to permit sub-vertical channel stacking, such that the

avulsion occurred in a downstream position, e.g. an outer bend. Therefore, it is

possible to infer vertically stacked channel-levee systems are more likely to

occur in relatively upstream positions in the absence of inferred tectonic and/or

obliquity controls, for instance, in the MCLS.

bathymetric low

t

a)

growing anticline

Figure 7-17 - Schematic diagrams the two patterns of channel-levee stacking in the studied
area a) the outsized right-hand levee forced avulsion trough the left-hand one and the upslope
stacking of the channel-levee systems; b) the confinement of the channel between the outsized
right-hand levee and the upslope anticline favour the sub-vertical stacking of channel-levee
elements (UCLS).

The Indus Fan and the Niger Delta show similar vertical stacking of

channel-levees in the upper slope, close to the feeder canyon mouth, similar to

the location of the study channel-levee system (Oeptuck et al., 2003) (Fig.

7.19). These channel-levee systems, however, are not confined between the

upslope structure and the downslope large levee. In a similar manner to the

238



study area, these stacked channel-levee elements are probably imaged

upstream from the points of avulsion. Hence, these units possibly represent the

upstream segment of each avulsed channel, being the uppermost one relative

to the earliest active channel-levee.

Figure 7-18 - Interpreted seismic reflection section cutting across the Amazon Channel and
other channel-levees are included in the Upper Levee Complex deposited during the Late
Pleistocene (Flood et al., 1995), adapted from Pirmez and Flood (1995). Notice the vertical
stacking of channel-levee systems, Aqua, Brown and Amazon Channel. This seismic is located
upstream of the bifurcations (i.e. avulsion points) that separate these channels

A)

Channel-forms

8)

Mass Transport
~ Deposit

Figure 7-19 - Interpreted seismic profiles across channel-levees in Indus Fan (A) and Niger
Delta/Benin-major (B), from Deptuck et al. (2003). Similarly to the study data, these channel-
levees are located in the upper slope close to the canyon mouth.
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7.3.2 Discussion about channel-levee stacking

The sub-vertical stacking of four channel levees forming the Upper Channel-

Levee System (UCLS) is interpreted to have been due to the confinement of the

channel between the outsize downslope levee and the upslope high formed by

anticline uplift. Each stacked channel-levee system may represent distinct

avulsed channel-levees located upstream of any avulsion point. This raises the

question why no vertical stacking of channel-levee systems was recorded in the

segment of MCLS upstream from the point of avulsion of the LCLS, discussed

in Chapter 6. A possible explanation is that because the avulsion of the LCLS

occurred upstream of the transition point from erosional to aggradational

channel style (Fig. 7.20), the LCLS was expressed as an erosive channel above

the avulsion node. Therefore, the following MCLS developed directly on the

erosive channel with no aggradational channel-levee to stack on. Moreover, it

may imply that if other downstream avulsions in both MCLS and LCLS

happened they may have been during the graded ("equilibrium") or erosive

phase of the channel development, which resulted in the absence of upstream

channel-levee stacking.

initial erosive
channel base

consecutive channet-ievee
development (LCLS)

erosive base of further
MCLS development

Figure 7-20 -Schematic block diagrams represent the model of upstream development of a
channel-levee and subsequent avulsion. The evolution phases of the LCLS and subsequent
avulsion are proposed: 1) initial incisional channel; 2)aggradation of the channel-levee and its
upstream accretion; 3) channel-levee onlapping the paleo slope and upward tendency of the
channel to become narrower, more sinuous and with lower gradient; 4) avulsion and
abandonment of the LCLS. Notice that a multi-thread channel (at grade) is represented in the
transition from erosional to agradational. The view of the diagrams is upstream.
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7.4 Conclusions

Three aspects of channel distribution on slope were discussed: structurally

controlled erosive channels; channels obliquely oriented on slope with lateral

and upslope stacking; and confined channels vertically stacked. In each of

these patterns of channel distribution the external controls on channel

architecture and direction were analysed.

The pre-unconformiy erosional channels are dipping approximately

toward the NE, in contrast to the post-unconformity aggradational channels

which are dipping toward the N/NW. The difference of channel directions

between these two intervals is thought to be due to different controls on channel

development. Thus the pre-unconformity channels are strongly affected by the

growing anticlines during their evolution. These anticlines (with N/NW-S/SE

oriented axes) dictated the channels' orientation on slope, creating some

sinuosity but without affecting the overall north-easterly channel dispersal

direction. The sequence of anticline growth promoted a successive

northwestward channel migration in time. The erosive character of the channels

seems to be controlled by the super-elevation due to the uplift of the whole fold

and thrust belt. This uplift is interpreted to have kept the slope above the

equilibrium profile in the area, forcinq the channels to erode.

On the other hand, the post-unconformity channels are obliquely oriented

on the slope but not due to a direct control by tectonic structures although they

have N/NW direction similar to the anticline axes. It is worth mentioning that the

underlying unconformity is considered to be a reasonable proxy for the local

slope because it is an onlap surface above which the whole package of

channel-levee systems and associated deposits (HARPs and MTD) developed.

The channel-levee systems occur downslope from the growing anticlines and

there was no other structure identified downslope from these systems. In the

study area, the direction of each channel was inherited from the previous one in

a sequence of upslope stacking after systematic avulsion through the left-hand

levee (viewed toward downstream). The question of what caused the first

oblique channel orientation is intriguing and remains open.

The vertical stacking of channel-levee systems seems to be related to

the confinement of the channel between the outsize downslope levee and the

241



upslope anticline which did not readily allow channel avulsion (as seen in the

earlier LCLS and MCLS). Similar vertical stacking patterns have also been

identified in other fans, e.g., the Late Pleistocene systems of the Amazon Fan

(Pirmez and Flood, 1995), the Indus Fan and the Niger Delta (Deptuck et al.,

2003). In these cases, however, the channels are not confined by external

features such as tectonic structures. The channels have levees that are

relatively more symmetrical, i.e., well-developed levees on both sides, which

can represent a simple self confinement. The points of avulsion in these cases

occurred downstream. Indeed, in the Late Pleistocene of the Amazon Fan,

each stacked element of channel-levee represents a downstream channel

avulsion (Pirmez and Flood, 1995). Therefore, based on this example, it is

possible to infer that the studied UCLS, the Indus Fan and Niger Delta are

examples of channel-levee segments upstream from avulsion points, with each

stacked channel-levee element possibly representing a downstream avulsed

channel. However, not all parent channel of downstream avulsions must have

stacked systems because, if the avulsion occurred while the channel was still

erosive or at grade, only the following aggradational phase will be present, as is

shown in the evolution of the MCLS.

242



8 DISCUSSION

8.1 Tectonics

The studied submarine channels are located on the upper slope immediately

downslope of anticlines formed by gravity driven tectonics. Therefore,

understanding the structural framework of the area was important because one

of the objectives of the thesis is to determine if these structures affected the

slope bathymetry where the submarine channels evolved and if so, how they

controlled the channel dispersion and architecture on the slope.

Some previous studies describe the gravity tectonics of the Amazon Fan

(Silva, et aI., 1999; Cobbold et al. 2004; and Reis et aI., 2010) and many others

describe the architecture and evolution of the channel-levee systems of the

Quaternary of the Amazon Fan (Damuth et aI., 1983a; Damuth and Kowsmann,

1998; Damuth and Kumar, 1975; Flood et al., 1991; Flood and Piper, 1997;

Flood et aI., 1995; Lopez, 2001; Manley and Flood, 1988; Pirmez et aI., 2003).

However, this is apparently the first work to establish a genetic relationship

between the tectonics and channel development on the Amazon Fan.

Two tectonic styles were identified in the study area (represented by the

set of thrust-cored anticlines and the tear fault). Their formation and genetic

relationship are the focus of the following discussion. The set of thrust cored

anticlines were interpreted to be formed by gravity tectonics because: although

the seismic data are relatively shallow (down to 5 s, two-way-time travel) and do

not show where the thrusts are rooted, the studied 2D line could be correlated

with the section presented by Reis et al. (2010) which extends down to 10 s

(Fig. 3.17). Therefore, it can be seen that compressional tectonics,

characterised by a set of thrust-cored folds, occurred in response to the

seaward gliding of a thick package of sediments along large listric normal faults,

formed due to extension on the shelf border (Fig. 5.2), as described by previous

studies on the Amazon Fan (Cobbold et aI., 2004; Reis et aI., 2010; Silva et al.,

1999).

A style of syn-depositional growth of the anticlines was proposed after

analysing the inter-relationship between the anticlines and the erosive channels

present in the lower interval. The isochron map of the lower package shows that
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there are thinner sediment covers on the fold crests (Fig. 5.15). These thin

sediments on the anticline crests suggest that the anticlines did not grow only

after the deposition of the lower package, since, if they had done the package

thickness would remain approximately the same on the anticlines and synclines.

Moreover, some channels cut through the anticlines (Fig. 5.15) further implying

that the folds were growing during the channel development rather than pre-

existing as a bathymetric barrier. Therefore, the anticlines were growing

structures with sedimentation rates greater than the rates of uplift during the

deposition of the lower package. If the sedimentation rates were lower than the

uplift, the deposition would have occurred preferentially on the synclines with

the strata pinching out towards the limb of the anticlines.

A detailed description of the relationship between erosive canyon-like

channels and the growing structures with the implications for slope evolution

can be found in Chapter 7. Analysis shows that the growth of the anticlines

began with the outer anticline (8) then the inner anticline (D) and a later the

growth of anticline (A). This indicates that the sediment glided toward

downslope with heterogeneous displacement rates which varied laterally,

leading to a distinct timing of anticlinal fold growth. The heterogeneity of the

sediment displacement towards the NE may have favoured the development of

a tear fault.

The tear fault direction changes along its trace in the study area (Figs.

5.13 and 5.14). It exhibits two fault segments with NE orientation and clearly

associated extensional features whereas the fault segments with NW directions

may represent compressive features with some degree of extension retained

(Fig. 5.13). These observations suggest that the major compressive stress axis

(0"1) is NE whereas the extensional stress axis (0"3) is NW (Fig. 5.14). This

implies that the two blocks separated by the fault are tearing apart in a NW-SE

direction (Fig. 5.13). The bathymetric high in the fault bend suggests an initial

compression causing the sediment layers to fold until they ruptured and the

sediments began tear apart. The fact that the same faulted block can behave as

both a hanging wall and a foot wall indicate that block rotation occurred.

Moreover, the tear fault has both strike and dip offsets which indicate oblique

movements between the east and west fault blocks (Fig. 5.13). The dip-slip
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orientation of the normal faults in segments 1-2 and 3-4 are opposite to each

other (Fig. 5.13 a and c) and may indicate that the faulted blocks rotated with a

rotational axis located approximately within the area of segment 2-3 (Fig. 5.14).

Analysis of the growth strata shows that the structures were active before

the deposition of the lower package and were mainly active during the

deposition of middle package (Fig. 5.7). Rather than being driven by thrust and

fold development which mainly uplifted during the middle package deposition,

most of the transpressional uplift at the fault bend occurred during the

deposition of the lower package as evidenced by the development of growth

strata (Fig. 5.13b). The fault tearing occurred after the transpressional uplift as

it is seen to split the sediments of the lower package (Fig. 5.13b). Therefore,

there is a correlation between the timing of the maximum fold activity and the

tear fault formation which occurred during the deposition of the middle package.

This may imply that the tear fault is related to the same process of thrusting and

folding due to gravitational sediment gliding on slope.

8.2 Stratigraphy

The key horizon in the tectono-stratigraphic analysis of the seismic data is the

unconformity that extends from the shelf to the upper slope (Fig. 5.2). It

represents an interruption (time gap) in the deposition of the sub-parallel

reflections of the pre-unconformity package before the recurrence of

sedimentation with the onlapping strata of the post-unconformity package. It

also marks the deactivation of most of syn-depositional tectonics and it is

erosive on the anticline crests.

Subsequently a series channel levee systems (in the studied area)

which are part of a "levee complex" (Le., a group of channel-levee systems

separated by maximum flood surface or mass transport deposit) are deposited

as described by Flood and Piper (1997). Previous studies (Damuth, 1977;

Damuth et al., 1988; Flood and Piper, 1997; Flood et al., 1995) concluded that

the most of the deposition during the Quaternary on slope in the Amazon Fan

occurred during sea level lowstand because during highstand the sediments

were trapped on the shelf. Hence, the "levee complexes" represent lowstand

system tracts deposited above the unconformity, due to the direct connection of

the river to the upper slope during lowstand. Therefore, in the studied case, the
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unconformity is interpreted to represent a fragment of the former palaeo-slope

on which the Quaternary levee complexes developed.

The unconformity also separates the seismic data into two separate

packages of sediments each with different levels of deformation and distinct

styles of channel architecture. In the pre-unconformity interval erosive channels

are strongly affected by tectonics, whereas in the post-unconformity interval

channel-levee systems evolved only slightly affected by tectonics. These

observations raise the question of whether a relationship between the channel

architecture, erosive and/or aggradational exists, and if so, how the tectonic

activity influenced it.

B.3 Erosional vs. agradational channel

The erosive channels of the pre-unconformity interval show similar amplitude to

those of the enclosing rocks. For this reason, it was not possible to infer

different compositions based on the amplitude character. This is unlike the post-

unconformity channel-levees, where it is interpreted that the mud rich levees

present low amplitude reflections and the sand-rich channel fill and HARPs

present high amplitude reflections. However, the erosive channels may develop

a lenticular shape (Fig. 5.16) and may have convex upper boundaries which

might suggest differential compaction between the channel fill and the

surrounding sediments. This characteristic implies that the channel fill may

possibly have been formed by coarser-grained sediments than the surrounding

host sediments because sand-rich sediments are more resistant to compaction

effects than mud-rich sediments (although their reflections present similar

amplitude intensity) (Kosa, 2007). Erosional channels, furthermore are

frequently associated with coarse grained turbidite currents (Clark and

Pickering, 1996b).

As was discussed in Chapter 7, it is very likely that the growing folds,

which were more active during deposition of the pre-unconformity package of

sediments, induced the development of a steep local slope topography that was

always above the equilibrium profile (Fig. 7.5). This may have inhibited the

development of large aggradational channel-levee systems in the pre-

unconformity package, since, in order to aggrade, accommodation space is

required (e.g. Kneller 2003).
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In the post-unconformity package, characterised by less active tectonics

and lower slope gradients, channel-levee systems developed downslope from

the fold and thrust belt (e.g., Figs. 5.2 and 5.7). In the studied area these

channel-levee systems however, evolved from a basal erosive channel which

was not described in previous studies on the Amazon Fan (Damuth, 1977;

Damuth et al., 1988; Flood and Piper, 1997; Flood et al., 1995; Lopez, 2001;

Pirmez et al., 1997).
The chaotic low amplitude reflections of the basal erosive channel fill can

be associated with slump deposits, which maintain close proximity to the

channel base, whereas the chaotic high amplitude reflections resemble

products of remobilization of the enclosing HARPs (Fig. 5.22). The chaotic and

high amplitude reflection seismic facies can also be associated with coarse-

grained thalweg deposits from laterally migrating channels, as interpreted in

Indus Fan erosive channels (Deptuck et al., 2003). The ordered high amplitude

reflectors may represent channel axis deposits, and the laterally dipping

reflections (Fig. 5.22) are possibly lateral accretion packages (Abreu et al.,

2003) that developed when the channel was in equilibrium, i.e., without

aggrading or eroding, and instead, meandered laterally (Kneller, 2003). The

filling of this kind of initial erosive channel has been described by previous

workers as involving complex alternations of channel architectures and facies,

but often ending up with an aggradational channel levee (Kneller, 2003; Mayall

and Stewart, 2000; Samuel et al., 2003).

Previous studies (Damuth, 1977; Damuth et al., 1988; Flood and Piper,

1997; Flood et al., 1995; Lopez, 2001; Pirmez et al., 1997) suggested that the

initiation of a channel levee system in the Amazon Fan occurred with channel

avulsion and the deposition of sheet-like sand bodies (HARPs) in the adjacent

inter-channel lows. Afterwards, the upward transition from the HARPs to

channel-levee would be due to the waning of HARPs deposition and return of

the channel axis to a graded longitudinal profile with levees growing down-fan to

confine the sand-rich basal parts of turbidite currents to a narrow channel axis

leading to subsequent channel-levee development (Lopez, 2001).

Deptuck et al. (2003) attribute the origin of the basal erosive channel

(erosional fairway) to the interval when sea level was falling, when the sediment

supply to the slope was at a maximum; the development of under-fit narrower
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channels, flanked by inner levees (Fig. 8.1) thus corresponds to periods of

reduced sediment supply during rising sea level. If this interpretative scheme is

correct it operated only in the upper fan of the Amazon fan where the studied

area is located, because the basal erosive channels were not identified in the

base of the previously studied channel-levee systems that occur on the middle

fan (Damuth, 1977; Damuth et al., 1988; Flood and Piper, 1997; Flood et al.,

1995; Lopez, 2001; Pirmez et al., 1997). Therefore, it is probable that the

occurrence of the basal erosive channel in the studied systems is related to its'

position on the upper slope. At this position steeper gradients and more efficient

turbidity currents are more likely to occur than in the Middle Fan (where most of

previous works are locatedj.This is because the flow tends to become less

efficient moving down the slope, farther from the source. The studied channel-

levee systems are located in the transition between the canyon and the strictly

aggradational channel-levee systems. They are also a transition between the

strictly erosive channels of the pre-unconformity interval and the strictly

aggradational channel-levees of the Middle Fan. Therefore, the reason why

there was no erosive channel base in the channel-levee systems analyzed by

ODP Leg 155 is because they occur downstream of the current study area and

further away from the Amazon Canyon mouth.

This style of slope incision (i.e., basal erosive channel style in the studied

area) corresponds to the erosional fairway of Deptuck et al. (2003) and the

"slope valley" of Samuel et al. (2003). The "slope valley" incision was thought to

create accommodation for the channel-levee to aggrade in the case of the Nile

Delta (Samuel et al., 2003). The studied systems of the Amazon Fan, however,

are more similar to channel-levee systems of the Indus Fan and Niger Delta

than to the Nile Delta. As noted above, in the Nile Delta the necessary

accommodation for channel-levee aggradation was created by the erosion of

the slope valley (Fig. 8.2). On the other hand, in the Amazon Fan, Indus Fan

(Fig. 7.19) and Niger Delta, most of the channel-levee systems rise above the

erosive base which suggests that the accommodation space for channel

aggradation might not have been created merely by the erosion. The analysed

channel-levee systems in the Indus Fan, which also exhibit a basal erosive

channel (erosional fairway) (Deptuck et al., 2003) are also located on the upper

slope and close to structural highs (Fig. 8.1). This suggests that the location
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and/or the presence of growing structures played an important role in the

development of these channel levee systems as they did in the Amazon Fan.

Figure 8-1 - Channel-levee system of the Indus Fan showing a basal erosive channel (erosional
fairway) located in an analogous position of the studied channel-levee systems of the Amazon
Fan, i.e., close to uplifted structures (Murray Ridge). From Deptuck et al. (2003).

Understanding the cause of the vertical transition from erosive channel to

aggradational channel-levee is hindered because of the lack of rock data and

age control in the study area. However, it is known from the literature that the

vertical evolution from erosive to aggradational may reflect an interaction of

different parameters. The combination of changing sea level and evolving

sediment source characteristics (sediment supply and grain size, etc.) are

believed to have caused changes in gravity flow character though time

(including flow composition, size, erosiveness, frequency and maybe triggering

mechanisms - Piper and Normark, 2001). For instance, this architectural

transition in the Niger Delta is apparently due to the decrease in the gravity flow

size with time and erosion level (Deptuck et al., 2003). In the studied case on

the upper Amazon Fan, aside from the relative sea level change and the flow
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parameter variation, the increase of accommodation space (due to local

tectonics) and the proximity to the canyon mouth (i.e., the location of the study

data on the upper fan) may simply have favoured the occurrence of an erosive

base and the vertical transition from an erosive to an aggradational channel

style. This was described in Chapters 6 and 7. However, the precise nature of

changes in the gravity flow or accommodation space and resultant impact on

channel-levee architecture still needs further investigation.

::§:: 2.50

NE

Figure 8-2 - Seismic section, map and block diagram showing the infill of the "slope valley" in
the Nile Delta. Notice the aggradation the channel levee confined in the erosive valley and due
to the accommodation created by the erosion. From Samuel et al. (2003)

8.4 Transition from the pre- to the post-unconformity interval

The isochron maps of the lower-middle packages in the pre-unconformity

interval, and the isochron map of the post-unconformity interval show that

sediment dispersion within the study area varied with time (Fig. 8.3). In the pre-
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unconformity interval, during the deposition of the lower package, the structures

were already active and locally deflecting the channel direction on the slope,

while still allowing the gravity currents to flow downslope, approximately toward

the NE (Fig. 8.3a). Consequently, deposition was distributed across the slope,

with major thicknesses along the channels and minor thicknesses on the top of

the growing structures. During the deposition of the middle package, the uplift

rate was higher and caused the trapping of sediments upslope of the anticlines,

in synclines (mini-basins) between the anticlines (Fig. 8.3b).

During the post-unconformity interval, the uplift rates of the anticline

reduced significantly and the subsequent development of the channel-levee

systems allowed the accumulation of major sediment thicknesses (Fig. 8.3c). In

this case, the local depocentre moved seawards after the filling of the upslope

mini-basins. This location was favoured by accommodation space generated

downslope on the palaeo-seafloor due to the thrust-folding (which occurred

upslope) allowing the aggradation of following channel-levee systems.

To summarise, there was a change in the local depocentre of the area

which was controlled by the growth of the anticlines, from the lower package of

the pre-unconformity interval to the post-unconformity interval. The formation of

these anticlines created accommodation space. Most of the thinnest layers

(blue areas) in the post unconformity interval, however, are not related to the

sediment dispersion at the time of deposition, but are due to later erosion of a

canyon on the seafloor (Fig. 8.4). Figure 8.4 shows a recent canyon on the sea

floor which coincides with the lowest thicknesses seen in Figure 8.3c.
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Figure 8-4 - Two-way-travel time map of the sea floor with the location of the canyon.

8.5 Evolutionary history of the deposition of the channel-levee

systems in the studied area

The evolutionary history of the lower and middle channel-levee systems was

established based on the analysis of the sequence of horizon slices across the

systems interpreted through time (Fig. 5. 27). In the horizon slices of Figure

5.27, the light grey colours represent more coherent reflections, which in this

case, are the pre-unconformity seismic facies (sub-parallel continuous

reflections), the HARPs or the HARs. The dark colours, however, represent the

erosive base fill, the levees and the MTD.
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The manner in which initiation of the turbidite flows on slope is expressed

in the rock record is a theme that yet remains to be properly understood. The

deposition of sheet-like deposits or the establishment of channelized turbidity

currents are possible alternatives for the initiation of the turbidite system on the

local submarine palaeo-slope. The Niger Delta and Indus Fan systems

(Deptuck et aI., 2003) and the systems of the middle portion of the Amazon Fan

(Pirmez et aI., 1997) respectively are examples of initiation with channel incision

and deposition of unconfined sands first, then incision by a channel. The basal

erosive channel of both the LCLS and MCLS cuts through sheet-like deposits

(HARPs) which were deposited before the LCLS, and there is no evidence of

HARPs deposition between these two channel-levee systems (Figs. 5.18, 6.7

and 6.9). Therefore, the initiation of the MCLS apparently took place with the

incision of the basal erosive channel rather than sand inundation and formation

of HARPs, as has been described in the literature of the Quaternary channels of

the Amazon Fan, mainly based in the proceedings of ODP Leg 155 (Flood and

Piper, 1997; Lopez, 2001; Pirmez et aI., 1997). The MCLS initiated with the

avulsion and abandonment of the LCLS. The channel avulsed leftwards and

upslope. The horizon slices 1 and 2 show evidence of this avulsion (Fig. 5.27).

Horizon slice 1 shows the former erosive channel disconnected from its left

branch downslope of the bifurcation. Horizon slice 2 shows an erosive or

graded channel now connected with the left branch. The LCLS is shown as a

single thread channel on the left branch. These observations suggest that the

avulsion occurred above or at the point of longitudinal transition from

aggradational to erosional in the precursor LCLS. The block diagrams 1 to 3 in

Figure 8.5 illustrate the initial incision of the basal erosive channel, aggradation

of LCLS and the avulsion above the transition point between aggradational and

erosional channel sections.

The MCLS had a complex evolution which includes a transition from a

basal erosive channel to an aggradational channel-levee system, then to levee

collapse, avulsion and sand inundation in adjacent lows (Fig. 5.27). In cross

section, the transition from erosive to aggradational is roughly marked by the

passage from a basal large-scale channel cut upward to a constructive channel-

levee (Figs. 6.16, 6.17 and 6.18). In map view, the horizon slices of the RMS

coherence (Fig. 5.27) show also distinct channel features: blurry chaotic facies
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inside the large scale erosive incision, with both multiple-thread and single-

thread channels. The single-thread channel is associated with the agradational

channel-levee where the channel axis commonly remains more or less fixed in

position as the system aggrades, whereas the multiple-thread channel is

associated with what are interpreted to be graded i.e., equilibrium channels,

with meanders migrating laterally on what is thought to be an equilibrium

surface. These associations between the planform and the channel types have

previously been described by Kneller (2003) and Peakall et al. (2000). In the

study area, the transition point between this single and multi-thread channel

planforms migrates downstream, and implies the downstream migration of the

agradational channel-levee over the basal erosive channel.

In the case of the MCLS, most of the levee buildup occurred prior to the

channel fill because the high amplitude reflections of the channel fill onlap the

internal limbs of the levees (Fig. 6.18). Only the narrowest and basal portion of

the channel seems to have deposited simultaneously with the levee formation,

because at this level the channel fill high amplitude reflections have some

lateral continuity with the low amplitude reflections of the levee (Fig. 6.18).

In the downstream part of the system, however, only the basal portion of

the aggradational channel-levee is preserved (Fig. 6.17, section AB, Fig. 6.20,

section AB and Fig. 6.21). This suggests that there was levee collapse and a

high degree of associated erosion. The flow that eroded the downstream portion

of the channel-levee also partially eroded the inner levee walls of the upstream

segment of the MCLS (Figs. 618 and 6.20, section CD). The reduction in the

thalweg gradient, the higher sinuosity and abrupt reduction of channel width

immediately downstream of the boundary between the upstream and

downstream segments of the MCLS may have favoured an outer-levee collapse

(see channel plan view in Fig. 5.26). These restrictions to the flow through the

downstream channel segment combined with the relative levee weakness and a

strong increase in sediment flux possibly promoted the levee collapse and

erosion of the downstream upper part of the MCLS.

Another levee collapse is suggested southward, upstream and outside

the seismic survey area, closer to the feeder canyon mouth. This possible

collapse may have promoted the partial avulsion of the channel, leading to a

flow bifurcation which would reduce the flow efficiency and promote the
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deposition of the channel fill and the sand inundation forming HARPs in the

adjacent low between the MCLS and the palaeo-slope. An upstream levee

collapse is suggested because of the occurrence of a mass transport deposit

(MTD) underneath the HARPs (Fig. 5.27, slices 4 to 8). The MTD is assumed to

be a product of an upstream levee collapse because it slumped along the low

between the levee and the palaeo-slope extending from upstream channel-

levee portion (outside the seismic data) (Fig. 5.27, slices from 4 to 8).

After the levee collapse, the flow bifurcation allowed the simultaneous

deposition of the channel fill (MCLS) and the HARPs (discussed in Chapter 6).

This interpretation is based on the evidence that the reflections of the upper

portion of the channel fill (MCLS) onlap the eroded inner channel walls, HARPs

onlap the erosive surface on top of the downstream segment, and the internal

erosion of the channel is the same erosive surface on the top of the

downstream segment. Flow bifurcation was proposed assuming that there was

no significant bathymetric difference between the abandoned channel floor and

the adjacent area between the channel-levee system and the palaeoslope (such

a difference might have favoured the migration of the knickpoint upstream in the

channel capturing the flow completely).

The depositional evolution on the slope, from the initiation of the LCLS to

the HARPs deposition is illustrated in Figure 8.5, in block diagrams 1 to 10. The

sequence of block diagrams illustrates the initial incision, the upstream

accretion of the LCLS, avulsion and incision of a channel followed by the

downstream development of the MCLS, partial erosion of the downstream

segment of the MCLS, upstream levee breach with associated MTD slumping

and final channel fill and HARPs deposition. The details of the avulsions, MCLS

erosion, HARPs deposition, channel fill, channel plan form and the possible

causes the distinct style of development of the two systems are discussed in

Chapter 6.
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The UCLS started with the incision of an erosive channel in the HARPs

deposited after the avulsion the MCLS. The transition from unconfined

deposition of HARPs to confined erosive channel is not yet fully understood.

Some authors interpret HARPs as being deposited during equilibrium

readjustment following disruption due to avulsion, with HARP construction

decreasing when the channel thalweg returned to a graded longitudinal profile

(Lopez, 2001; Pirmez et al., 1997). However, in the study area of these authors,

which is in the middle Amazon Fan, there is no erosive channel base cutting

through the HARPs but a vertical transition from HARPs to an aggradational

channel-levee system. In the study area, on the top of the HARPs, there are

some scours (in addition to the erosive channel base that evolved to the UCLS

(Fig. 8.5)). This may indicate that before the tubidite flow focused into the main

erosive channel axis, erosional turbidite flows scoured the HARPs top.

This system presents a complex evolution, with an internal gap in

deposition (discontinuity) marked by a downlap surface (yellow horizon in figs.

7.15 and 7.16) which clearly divides the system into two main packages with

distinctive evolution. The uplifted left-hand underlying levee (Figs. 5.32) can

sometimes be seen with disruption of the internal reflections (Fig. 5.31) which

suggests that the anticline was active after and possibly during the deposition of

the lower interval of the UCLS.

The complexity of the channel fill below the internal discontinuity (yellow

horizon, Figs. 7.15 and 7.16) which shows portions with either regular fill or with

chaotic and clay rich material, may also be related to the adjacent uplift and

consequent slumping of material from the levee into the channel. The slump in

the base of the right-hand levee with apparent movement direction toward the

channel axis also suggests that the channel was uplifted after the levee slump

because it is now topographically higher than the right-hand levee base.

The three stacked channel-levees in the upper package of the UCLS

have varied depositional characteristics. For instance, the sinuosity is quite

different for each of the three channels and increases from the base to the top.

The channels become narrower and more sinuous upward (Fig. 7.16), similar to

the stacked channel-levee elements in Niger Delta and Indus Fan (Deptuck et

al., 2003). These changes in channel characteristics can be related to changes

in flow properties (Kneller. 2003). An increase in the clay content of the channel
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fill from the base to the top could also have developed - an interpretation based

on the reduction in the contrast of amplitude between the channel fill and the

levee, possibly associated with the increase in channel sinuosity (Fig. 7.16).

The vertical stacking of channel-levee systems may be attributed to their

confinement between the large right-hand levee which developed downslope,

covering the previous MCLS, and the upslope folding related to the slope

tectonics. These two highs did not allow the channel to avulse as it did in the

previous MCLS and LCLS. Therefore, channel avulsion was inhibited in the

study area but, downstream, where there was less influence of the thrust and

fold belt and the slope gradient was less steep, channel avulsion could have

occurred. If so, each stacked channel-levee element composing the UCLS may

represent the upstream segment of a downstream avulsed channel-levee. The

relationship between the UCLS evolution and the slope deformation, channel

asymmetry and avulsion are more fully described in Chapter 7.

8.6 Initiation of turbidite system on slope

The study of the evolution of the three channel-levee systems raised the

discussion of how turbidite systems can initiate on slope. In the literature two

possibilities are considered: initiation with an incision (basal erosive channel) or

with a slope lobe (HARPs). For instance, Pirmez et al. (1997) considered that

the initiation of the channel-levee systems of the Amazon Fan is related to

channel avulsion and deposition of an intra-slope lobe which evolves vertically

to a channel-levee system. On the other hand, Deptuck et al. (2003) considered

the initiation of the channel-levee systems in Niger Delta and Indus Fan to occur

with the development of an erosional fairway which is equivalent to the basal

erosive channels described in this thesis.

In the studied area, all three studied channel-levee systems evolved from

a basal erosive channel. The UCLS, however, cuts HARPs deposited after

partial avulsion of MCLS whereas the MCLS evolved from an incision created

after avulsion of the LCLS (there are no HARPs deposited between LCLS and

MCLS). The occurrence of an erosive channel may be related to the position on

the fan. In the studied area, close to the feeding canyon, the turbidite flows

reaching the slope are more erosive and efficient, favouring the occurrence of a

basal incision. This does not happen in the downslope channel-levee systems

259



in the Middle Amazon Fan where the flows may lose their efficiency and erosive

character, thus the systems do not develop a basal erosive channel.

The occurrence of the HARPs seems to be associated with the inferred

evolution of the turbidite flows which built the previous system together with the

way in which the channel avulsed (see detailed discussion in Chapter 6). The

different evolutions of the flows led to distinctly different channel-levee

architectures (e.g., LCLS and MCLS). If so, the identification of the two

architectures can be predictive in respect of the likelihood of later HARP

development. The evolution of the LCLS suggests a general tendency of

gradual reduction in the magnitude and the sand content of the flows. The

evolution of the MCLS indicates a general tendency of gradual increase the

magnitude and the sand content of the flows. Therefore these two occurrences

may be associated with the occurrence of the HARPs at the end of the MCLS

deposition and the absence of HARPs at the end of the LCLS deposition.

The initiation of the UCLS occurs with the incision of the basal erosive

channel in the HARPs deposited at the end of the MCLS deposition. Therefore,

there was a marked change in the character of the turbidite flows from

essentially depositional (HARPs deposition) to essentially erosional.

8.7 Relevance of the results for depositional facies prediction

and industrial application

Although no significant hydrocarbon accumulation has yet been found in the

Amazon Fan, the studied data were nevertheless fruitful because the analyses

of the seismic volume allowed the relationship between the interpreted

depositional facies and their probable evolutionary history to be established.

Thus the understanding of the evolutionary history of the fan components can

help to predict the depositional facies distribution in the fan. Although the

studied depositional history is exclusive to the Amazon Fan some general

tendencies can be used to understand the depositional architectures of

channel-levee systems of other similar slope areas. Therefore, these studies

can help the prediction of petroleum system components such as reservoir

rocks and caprocks in less studied areas.
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The two important channel-levee architectural morphotypes identified

(widening upward (MCLS) and narrowing upward (LCLS)) are associated with

two distinct spatia-temporal evolutions or channel-levee style: downstream and

upstream accretion, respectively. The models of upslope and downslope

accretion may indicate sand prone areas; as was discussed in the last section,

the relation of the two different evolutionary histories may relate to the

occurrence or not of the HARPs. This is important because the intraslope or

avulsion lobes (HARPs) are recognized as sand-rich sheet deposits (Pirmez et

al., 1997 and Lopez, 2001). Furthermore if the HARPs are also located

underneath a mud-rich channel-levee system, e.g. as in this study, where the

HARPs are underneath the UCLS, the HARPs present a potential oil reservoir

because the mud-rich sediments may form a caprock, providing a trap.

The identification of stacked channel-levee elements, e.g. UCLS, may

indicate downslope avulsion. These avulsions may be associated with possible

intra-slope lobe development. If the channel-levee element, component of the

UCLS has a widening upward morphotype it might be related to the occurrence

of a downslope avulsion lobe (HARPs). On the other hand, if the channel-levee

element has a narrowing upward morphotype it might not be related to the

occurrence of a downslope avulsion lobe. Therefore, the occurrence of the

three different channel-levee architectures described in this thesis can give

suggestions on the likelihood of occurrence of downslope sand prone areas.

B.B Channel obliquity to the main slope

One of the initial motivations of this research was to understand the reason why

the Quaternary submarine channels in the study area are oblique to the current

main slope dip. As was discussed in Chapter 7, this obliquity is now thought to

result from the recurrent avulsion through the left-hand levee as a result of

levee asymmetry. This asymmetry is characterized by the outsized right-hand

(downslope) levee. The outsized levee, however, seems to result from the

channel obliquity to the main slope dip. A pressure gradient within flows acting

across the channel axis and down the slope could account for the building up of

downslope larger levee. Such a difference of pressure gradient is more likely to

occur on the upper slope where the slope gradients are steeper. On the

middle/lower slope the slope gradient is very low, reducing the effect of the
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pressure gradient. This explains why the levee asymmetry is more commonly

observed in the upper fan (the study area) than in the middle/lower fan (the area

studied by OOP Leg 155).

Although any interpretation of what causes the first oblique orientation of

the former channel on slope that dictated the N/NW direction of the following

channels is speculative, some ideas can be suggested. Firstly, the levee

asymmetry is more likely to occur on the upper slope, so the recurrent channel

avulsions causing upslope stacking would therefore only occur in this area.

Secondly, even if the former channel had a NE direction, which is approximately

the same direction as the main slope dip, if the first avulsion occurred on the

upper slope such that the new channel course becomes oblique to the slope, an

outsized downslope levee would develop (Fig. 8.6). Therefore, any following

sequence of avulsions may be progressively more likely to occur through the

left-hand and upslope levee due to this levee asymmetry. This may be more

likely to take place on the upper slope where the gradients are higher (Fig. 8.6).

On the other hand, in the middlellower slope there is not likely to be a

preferential direction of avulsion because the levees tend to be symmetrical.

8.9 Further work

The Lower Package and the Post-Unconformity interval were reasonably well

studied in this project but the Middle Package (see Fig. 4.6) was not

investigated. The characterization of the architectures and the understanding of

the distribution of the erosive channels present in the Middle Package in relation

to the growth strata and the structures could be compared with the channels in

the Lower Package and with channel-levee systems in the Post Unconformity

Interval. A possible focus for study could be the analysis of the effects of

tectonics in the channel development, for instance, to determine if they were

able to erode through the growing anticlines or if the anticlines were able to

pond the turbidite flows. These combined results would give a more integrated

idea of the evolution of the tectono-sedimentation on slope from the point of

deposition of the Lower Package up to the Recent. In order to study this

interval, a similar method of analysis could be taken, extracting a sequence of

horizon slices of coherence only because there is no significant contrast of

amplitude between the reflections in the Middle Package.
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Figure 8-6 - The schematic diagrams show a sequence of channel avulsions (from channel 1 to
4) in plan and cross section view. Channel 1 has approximately the same direction (NE) of the
main slope dip. The sequence of avulsed channels oblique to the slope dip on the upper slope
(green area) favours the development of levee asymmetry and the consequent sequence of left-
hand levee breakthroughs.

The filling of the erosive channels of the Lower Package and of the

erosive base of the systems in the Post-Unconformity Interval were not well

visualized. Therefore, the evolution of these channels and the transition to the

later channel-levee systems could not be described with a high level of

confidence in this thesis. In order to understand the way the erosive channels in

the lower package and on the base of the channel-levee systems of the post-

unconformity interval were filled, extraction of horizon slices of spectral

decomposition could be done. This attribute measures the frequency of

amplitude and could possibly improve the visualization of the internal

arrangement of the channel fill reflections.

Another line of enquiry would be to check if there is correlation between

the erosive surfaces identified in the shelf border (Fig. 5.3) and the "Levee

Complexes" described in the ODP Leg 155 Procedures (Fig. 3.9). These
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surfaces may represent sequence boundaries associated with sea level fall,

consequent erosion on the shelf and deposition of the turbidite complexes on

the slope. However, borehole data would be required to better characterize

these features.

Generic themes such as those discussed in Chapters 6 and 7 should be

re-tested in future studies. The importance of this lies in the fact that it may be

possible to validate the theories described here and erect more robust models,

applicable to a greater range of data sets. Such an investigation is likely to give

rise to a much more useful research result because the final application could

be appropriate to a wider range of general cases, instead of being specific to

one case study. The association between the styles of channel-levee system

accretion (upstream or downstream) and with channel-levee architectures (the

narrowing and more sinuous upward architectural style showing slope onlap;

and the widening and less sinuous architectural style showing slope down lap)

for instance, should be tested on other seismic databases. New 3D seismic

data, which, for example, could be located on the upper slope of the Amazon

Fan or on the upper slope of another mud rich fan (e.g., the Indus or Bengala)

should also be analyzed, and the association between styles of system

accretion (development) and channel-levee architecture ought to also be

investigated. Furthermore, outcrop analogs may be investigated in order to

demonstrate evidence of the relationships discovered (e.g., channel-levees of

Rosario Formation, Baja California, Mexico, described in Kane et al., 2007).

The occurrence of channel orientations oblique to the main slope was not

completely understood. The idea proposed here that the occurrence of avulsion

on the upper slope, where there are steeper gradients, would favour a

downslope oversized levee which would lead to the avulsion to the same side

(Le. upslope) repeating in a sequence of avulsions, could be checked in future

studies. The investigation of other 3D data sets imaging the upper fan and lower

fan of this or other deep water systems with the purpose of examining the

occurrence of levee asymmetry/symmetry and its' relation with recurrent

avulsions toward the same side and consequent channels obliquity on slope

would support the model proposed in this thesis, and therefore would also be a

valuable subject for further work.
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9 CONCLUSIONS

9. 1 Introduction
This thesis primarily describes and analyzes the evolution of a range of channel

architectures of Pleistocene age developed on the upper slope of the Amazon

Fan, as described in Chapter 5. The interpretation of the slope channels'

evolution includes different scales and types of analysis: placing the study 3D

survey into its regional tectono-stratigraphic context by matching the data to a

large scale regional 20 seismic dip line; structural analysis; the examination of

the interaction between the two main channel styles (erosive/canyon-like

channels and aggradational/channel-levees) and slope deformation; and the

assessment of the contrasting styles of development of the channel-levee

systems. Two conceptual themes emerged from the analysis of the slope

channel evolution in the area: the spatio-temporal evolution of channel-levees

(Chapter 6) and the controls on patterns of channel distribution on slope

(Chapter 7). The objective of this chapter is to present a summary of the original

work detailed in Chapters 5, 6 and 7, and the conclusions obtained from the

study.

9.2 Slope evolution

9.2.1 Tectono-stratigraphy

The study area (i.e., the area covered by the 3D seismic data) was significantly

affected by fold and thrust belt activity. This activity is characterized by the

development of thrust-cored anticlines, which can be genetically related to listric

normal faults on the shelf margin. These structures were formed by the gravity

gliding of thick packages of sediments from the shelf margin towards the ocean.

Locally, the sliding of these sediments towards the basin (NE) caused

heterogeneous displacements that led to the division of the package into two

blocks by a strike-slip fault of approximate N-S strike orientation. The majority of

the tectonic activity is interpreted to have been syn-depositional, and

characterized by the occurrence of growth strata on both the upper slope and

the shelf edge.
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The study data are subdivided into two main intervals by a pervasive

unconformity which can be traced up to the shelf. The unconformity may

represent an important gap in the deposition on the slope because it separates

the underlying strongly deformed sediments from overlying slightly deformed

sediments. It thus marks the timing of accentuated reduction of deformation.

The post-unconformity channel-levee systems were interpreted to be part

of the "Middle Levee Complex", defined by Flood et al. (1995) as a group of

laterally shingled channel-levee systems deposited during the Middle

Pleistocene on the Amazon Fan, due to its position on the fan, depth of

occurrence and the orientation of the channels.

9.2.2 Channel architecture and development

Two different styles of channel architecture were developed in the post and the

pre-unconformity intervals: canyon-like erosive channels in the pre-unconformity

interval and channel-levee systems in the post-unconformity interval. The

development of the canyon-like channels was mostly syn-tectonic whereas the

development of the channel-levee systems was mostly post-tectonic, although

they were still slightly affected by relatively minor tectonic activity.

The post-unconformity deposition evolved as a succession of upslope

stacked channel-levee systems, intercalated with HARPs and MTDs. Three

main channel-levee systems were identified in the area: LCLS, MCLS and

UCLS. These systems were deposited with a tendency of the younger channel-

levees to initiate upslope and on the left-hand side (looking downstream) of the

earlier one.

Both HARPs and the MTD (flanking the MCLS levee) were interpreted as

being related to the channel avulsion. The MTD is considered to have occurred

due to upstream levee collapse. HARPs are considered sand rich sheet-like

deposits and occur in the space between the upslope levee and the regional

paleo-slope after channel avulsion, in agreement with the published literature on

the Amazon Fan (Pirmez et al., 1997).

The three channel-levee systems described in the post-unconformity

interval present three different architectures which reflect three distinctive

evolutional histories. In the LCLS, the channel narrows and becomes more

sinuous upward whereas in the MCLS, the channel widens and becomes less
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sinuous upward. The UCLS is composed of four stacked channel-levee

elements, each with widening upward channel characteristics.

9.2.3 Evolutionary history of the Post-Unconformity Interval

The evolutionary history of the interval above the unconformity, during the

Middle Pleistocene in the study area, started with the incision of an erosive

channel, infill, and then the development of the LCLS. The aggradational

component of the LCLS developed through a process of upstream accretion.

Channel avulsion through the left-hand side (looking downstream) and

abandonment initiated another incision between the backlimb of the levee and

the paleoslope. This erosive channel evolved upward through a process of

downstream accretion to become the MCLS. Upstream avulsion caused

channel infill and HARP formation onlapping the up-dip levee slope. Later,

turbidite flows became focused and incised a channel in the HARPs which

evolved upward to become the UCLS. This system grew by stacking of at least

four channel elements due to the confinement between the upslope anticline

and the outsize down-slope levee.

9.3 Spatio-temporal evolution of channel-levee/architecture

9.3.1 Architectural styles

Two models of spatio-temporal development of channel systems were

identified: upstream and downstream accretion of the aggradational channel-

levee. These two models of development resulted in two different architectural

styles of channel-levee systems. The differences between the two architectural

styles can be noticed in the plan form evolution with time, in the channel shape

in cross section and in the terminations and amplitudes of the reflections of the

channel fill and levee.

The upstream accretion of the channel-levee is associated with an

upward narrowing and more sinuous channel style. In cross section, the high

amplitude reflections of channel fill change laterally to the low amplitude

reflections in the levee. In a section along the channel axis, the channel fill

reflections onlap the paleo-thalweg. The levee reflections also onlap the

paleoslope.
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The downstream-accretion channel-levee development style is

associated with an upward widening and less sinuous channel style. In cross

section, the high amplitude reflections of the channel fill onlap the internal levee

at least in the wider channel. In a section along the channel axis, the channel fill

reflections occur sub-parallel to or slightly downlapping onto the paleo-thalweg.

The levee reflections downlap onto the paleoslope.

9.3.2 Controls on channel-levee development

The interaction between the slope bathymetry and flow properties, expressed

by the changes in the equilibrium profile and in the flow magnitude and grain

size of suspended sediment may have accounted for the upstream and

downstream development styles of the channel-levees. The changes in the

equilibrium profile may have worked differently during the evolution of the two

channel-levee models, bearing in mind the caveats of this conceptual scheme

described in Chapter 6. In the upstream development of a channel-levee, there

are two possibilities of changes in equilibrium profile that could contribute to the

upstream migration of the system. In the first, the equilibrium profile does not

change with time, and the channel-levee develops filling an inherited

bathymetric low on the slope. In the second, due to upstream uplift of the

anticlines, the equilibrium profile moves upward causing an increase in the

accommodation downstream, favouring upstream channel-levee accretion. In

the case of downstream development of a channel-levee, the upward

displacement of the equilibrium profile may also cause downstream migration,

probably due to the upstream uplift. In this case the accommodation space

would also increase downstream (Fig. 6.31).

The changes in the equilibrium profile, however, can only favour or inhibit

one and/or another style of channel-levee development. The nature of the

turbidite flows themselves causes the distinctive styles of channel-levee growth.

Thus the flows that built up the two channel-levee styles may have experienced

different evolutionary pathways. Two flow parameters were considered in the

analysis of the impact of flow efficiency on the two channel-levee styles: flow

magnitude and grain-size composition. In the case of upstream development of

a channel-levee, the flows may have gradually become muddier and smaller

with time, reducing the flow efficiency. This may account for the simultaneous
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deposition of the channel fill and levee during the channel evolution up to the

time of channel abandonment. In the downstream development of a channel

levee, the flows may have had a more complex evolution (Fig. 6.32). In general

they are thought to have become sandier and larger with time, increasing

consequently flow efficiency (Le. with the flow magnitude contribution to flow

efficiency out-weighing the reduction to flow efficiency caused by increased

grain size), until the moment of levee breach. With the levee breach the flow

split, with reduced flow efficiency in each branch of flow, promoting channel fill

and HARPs deposition.

9.4 Controls on patterns of channel distribution on slope

Slope channels were analyzed taking in account possible controls on their

distribution by tectonic structures and by the depositional environment.

The difference in channel direction between the pre unconformity

channels and the post-unconformity channels is due to distinct controls on

channel development. The pre-unconformity channels are strongly affected by

the growing anticlines during their evolution. These anticlines (with N/NW-

oriented axes) diverted the channel directions on slope, creating some sinuosity

but without affecting the overall channel direction toward the NE. Anticline

growth promoted a successive northwestward channel migration in time. The

erosive character of the channels seems to be controlled by the steepening of

the overall slope dip due to the uplift of the entire fold and thrust belt. This uplift

would keep the slope above the equilibrium profile in the area, forcing the

channels to erode.

The post-unconformity channels are obliquely oriented with N/NW-

oriented direction, similar to the anticlines axes. The channel orientation,

however, is not directly related to the anticlines. The channel-levee systems

occur downslope from the growing anticlines and there were no other structures

identified downslope from the systems that could have caused their slope-

oblique orientation. Although the marine currents (NBCC) occurring on the shelf

have a northwestward direction, they also probably did not affect the slope

channel direction because they were not deep enough to affect the slope

sedimentation, even during sea level lowstand. Thus the initial cause of mis-

orientation is not directly constrained.
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The direction of each channel was inherited from the previous one in a

sequence of upslope stacking after systematic avulsion through the left-hand

levee (viewed toward downstream). Although the cause of the oblique

orientation of the first of these channels is not satisfactorily established, a

hypothesis can be proposed. Even if the former channel had a NE direction,

which is approximately the same direction as the main slope dip, if the first

avulsion occurs on the upper slope such that the new channel course becomes

oblique to the slope, an outsized downslope levee would develop. Therefore,

any following sequence of avulsions may be progressively more likely to occur

through the left-hand and upslope levee due to this levee asymmetry. This

would keep the channels oblique to the main slope dip.

The vertical stacking of channel-levee systems is related to the

confinement of the channel between the outsize downslope levee and the

upslope anticline which inhibited channel avulsion. The vertical stacking pattern

has also been identified in many other fans, e.g., the Late Pleistocene systems

of the Amazon Fan (Pirmez and Flood, 1995), Indus Fan and Niger Delta

(Deptuck et al., 2003), but contrasting with the study case, these channels are

not confined by external features such as a tectonic structure. In the Late

Pleistocene of the Amazon Fan, each stacked element of the channel-levee

system represents a downstream channel avulsion (Pirmez and Flood, 1995).

Therefore, based on this example, it is possible to infer that the UCLS study

section, the Indus Fan and the Niger Delta are examples of channel-levee

segments upstream from avulsion points, with each stacked channel-levee

element representing a downstream avulsed channel. However, not all parent

channels of downstream avulsions build stacked systems because, if the

avulsion occurred while the channel was still erosive or at grade, only the

following aggradational phase will be present, as is thought to have occurred in

the evolution of the MCLS.
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