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Abstract

One-dimensional (I-D) and two-dimensional (2-D) frequency-space seismic migration

FIR digital filter coefficients are of complex values when such filters require special space

domain as well as wavenumber domain characteristics. In this thesis, such FIR digital fil-

ters are designed using Vector Space Projection Methods (VSPMs), which can satisfy the

desired predefined filters' properties, for 2-D and three-dimensional (3-D) seismic data

sets, respectively. More precisely, the pure and the relaxed projection algorithms, which

are part of the VSPM theory, are derived. Simulation results show that the relaxed version

of the pure algorithm can introduce significant savings in terms of the number of itera-

tions required. Also, due to some undesirable background artifacts on migrated sections, a

modified version of the pure algorithm was used to eliminate such effects. This modifica-

tion has also led to a significant reduction in the number of computations when compared

to both the pure and relaxed algorithms. We further propose a generalization of the l-D

(real/complex-valued) pure algorithm to multi-dimensional (m-D) complex-valued FIR

digital filters, where the resulting frequency responses possess an approximate equirip-

ple nature. Superior designs are obtained when compared with other previously reported

methods. In addition, we also propose a new scheme for implementing the predesigned

2-D migration FIR filters. This realization is based on Singular Value Decomposition

(SVD). Unlike the existing realization methods which are used for this geophysical appli-

cation, this cheap realization via SVD, compared with the true 2-D convolution, results in

satisfactory wavenumber responses. Finally, an application to seismic migration of 2-D

and 3-D synthetic sections is shown to confirm our theoretical conclusions. The proposed

resulting migration FIR filters are applied also to the challenging SEGIEAGE Salt model

data. The migrated section (image) outperformed images obtained using other FIR filters

and with other standard migration techniques where difficult structures contained in such

a challenging model are imaged clearly.
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Chapter 1

Introduction

1.1 Introduction

Oil, gas, coal, and minerals are extremely important natural resources for human beings.

Such resources are buried in deep land or marine sub-earth structures. The oil exploration

process, in particular, finds possible drilling locations where the actual drilling of an oil

well is used to test the geological hypothesis of oil and gas. But in order to produce oil,

we need first to determine the sub-earth structure, i.e., get a clear and an accurate image of

the subsurface [1, 2, 3,4]. This can be done by the method known as reflection seismol-

ogy. This geophysical technique relies on the generation of artificial seismic waves and

the recording of their reflections from different geological layers. However, such acquired

seismic data does not reveal an accurate image of the sub-earth unless we use appropriate

Digital Signal Processing (DSP) techniques [1, 5, 4].

DSP has played an important role in many applications of both science and engineer-

ing disciplines. Some examples are seismology, sonar, radar, medical, communications,

etc [6, 7]. The actual application of DSP theory in seismology began with the work of

the Geophysical Analysis Group at the Massachusetts Institute of Technology (MIT) be-

tween 1960 and 1965 where it was one of the great historical milestones in seismic data

processing [8].
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Among the various important and necessary seismic DSP steps is the so called Seis-

mic Migration or simply Migration. It seeks to determine the structure of the interior

of the earth from the data obtained at the surface. Due to wave propagation within the

sub-earth layers, the data is geometrically affected. For example, wave diffractions will

appear whenever a discontinuity faces the propagating waves. Also, layer dips are mispo-

sitioned and need to be shortened. Improper correction of such undesirable geometrical

effects leads to false interpretation and, therefore, oil/gas wells may be damaged or even

lost.

A propagating acoustic seismic wave is governed by a hyperbolic wave equation

which can be represented as a partial differential equation (PDE). Seismic Migration fil-

ters may simply be considered as a clever way of solving this PDE [6]. These filters, also

known as phase filters or wavefield extrapolators, are able to correct for undesirable geo-

metrical effects and improve the resolution of such data. From the signal processing point

of view, these filters are basically non-causal complex-valued Finite Impulse Response

(FIR) filters with phases possessing even symmetry- i.e., non-linear phases [9, 7, 6, 10].

There exist many migration (extrapolation) methods. One migration method known as

the Frequency-Wavenumber (or w - kx) technique [1, 11, 12]. This migration technique

requires the data to be Fourier transformed from the time-space (t - x) domain to the

w - kx domain. Then, at each frequency sample, the seismic migration complex-valued

FIR filters are applied in the wavenumber response domain. The main advantage of this

migration method is that the process could be preformed in the w - kx domain by simply

transforming the data from the t - x domain into the w - kx domain and then multiplying

by the w - kx response of the filters. However, this is limited to earth layer structures

that have materials which change as the wave propagates in deeper layers (homogeneous

medium per layer)- in other words, where the velocities of the propagating seismic waves

are vertically varying. Also, when performing migration in the w - kx domain, one needs

to take into account the sampling artifacts (aliasing) which might be introduced in the
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migrated sections with respect to spatial axes.

On the other hand, there exist an other attractive migration technique called the Frequency-

Space (or w - x). For this technique, the data is only Fourier transformed with respect

to time to the frequency domain. Then, at each frequency sample, the migration is ap-

plied using the seismic migration complex-valued FIR filters in the space domain via

convolution [13, 12, 1, 14]. By using convolution, each designed filter output sample

can be computed independently, or in parallel with other output samples. Also, it is con-

sidered to be a simple method since it is likely to be implemented more effectively 0'1

various computer architectures such as parallel processors [1, 15, 16, 17]. In addition, it

can be extended for use in 3-D depth migration either via splitting or filter transformation

[11, 10]. Finally, and most importantly, it can be accurately used for migration of one-way

wavefields through strongly laterally varying media, i.e., for material that is also changing

horizontally (heterogeneous media).

However, as we shall see later in this thesis, the frequency-space migration requires

special FIR filter design characteristics in order to ultimately achieve stable and accurate

seismic migrated sections (images). Stable migration of seismic data (one-way wave-

fields) through strongly laterally inhomogeneous media is considered to be a challenge.

The problem arises since we need short FIR filter lengths to handle strong lateral varia-

tions in velocities accurately but long FIR filter lengths to correct for steep dips. Short

length FIR filters are also desirable because computation times are proportional to chosen

operator lengths. In addition, the accuracy of the w - x migration over large distances

may quickly deteriorate due to operator instability [12, 14].

Many attempts were carried out in order to properly design the seismic migration

w - x FIR filters [13, 12, 18, 19,20, 14]. However, there is still a need for improving the

design of such FIR digital filters used for this important geophysical DSP step. In conse-

quence, better sub-earth images can be obtained and, therefore, reduce the oil exploration
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risks. One of the mathematical techniques where we can fulfil such design characteristics

is known as Vector Space Projection Methods (VSPM)s. Due to its attractive properties,

this method has been used for designing other FIR filters [21, 22, 23]. However, they were

restricted to real-valued FIR filter coefficients.

Therefore, this thesis mainly deals with the design of complex-valued FIR digital fil-

ters for seismic data frequency-space migration using the method of VSPMs or more

precisely its subset, projections onto convex sets (POeS). The idea discussed in this the-

sis is to extend the work done on designing real-valued FIR digital filters using VSPMs

to the more general class which is the class of complex-valued FIR filters. The design

of complex-valued seismic migration FIR digital filters based on the one-dimensional

(I-D) migration filter desired specifications by using VSPMs is important for such an ap-

plication. Therefore, in this thesis, complex-valued FIR digital filter design for seismic

migration application using the method of VSPMs or more precisely using the pure pro-

jection algorithm is derived. Moreover, the relaxed version of the complex-valued seismic

migration FIR digital filter's pure projection design algorithm is also derived where the

speed of convergence is significantly increased [24,25,26]. In addition, for practical rea-

sons, a simple modification of the derived pure projector is introduced to further enhance

the migrated sections and reduce the number of iterations required to achieve conver-

gence [27, 26]. The use of such seismic migration FIR digital filters designed using the

pure, the relaxed, and the modified projections are suitable for laterally varying geological

structure media. They result in stable migration images as well as accommodating high

propagation angles with short length filters and with less numerical background artifacts

on migrated sections when compared with other previously reported migration FIR filters.

In order to subjectively quantify our proposed migration FIR filters designed using

VSPM, we applied these filters to the challenging two-dimensional (2-D) Society of Ex-

ploration GeophysicistslEuropean Association of Geoscientist and Engineers (SEGIEAGE)

Salt model data. This model works as a standard data set to evaluate any new migration
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technique. The migrated result is then compared with images obtained via migration FIR

filters based on the modified Taylor series [12], and with other standard migration tech-

niques such as the Phase Shift Plus Interpolation (PSPI) [28] and the Split-Step Fourier

[29] methods. The VSPM algorithm provides very stable depth filters. The resulting mi-

grated section using VSPM is of comparable quality to the expensive PSPI result, and

visibly outperforms the other two techniques. Both strong dips and sub-salt structures are

imaged clearly [30, 31], and so, a better interpretation can be performed with the use of

our proposed FIR digital filters. Hence, the oil/gas exploration risks are much reduced.

Although seismic data prospecting started around 1910, it remained almost exclu-

sivelya 2-D problem until the middle of 1980's [32]. Three-dimensional (3-D) acquisi-

tion techniques were experimented with as early as 1940, however, they did not progress

far until digital signal processing became common in the 1970's. The percentage of the

current worldwide seismic effort is growing rapidly [32, 8]. Acquiring 3-D seismic data

volumes has many advantages over acquiring 2-D data sets and all ultimately result in

a better interpretation of such data. As a consequence, the oil/gas exploration risks are

reduced [32]. An example of a new digital seismic acquisition system is the Schlum-

berger Q-Land acquisition system, which can digitally acquire massive 3-D seismic data

volumes [33,34, 35, 23].

2-D migration FIR filters (extrapolators), that are used for 3-D (frequency-space w -

x - y) migration, are quadrantally symmetric FIR digital filters where their magnitude

and phase wavenumber spectra are of circular symmetry [11, 10, 1,36]. There were two

important factors which prevented the use of such true 2-D migration FIR digital filters.

The first factor was the computing/storage facilities which nowadays have become less

important due to recent technological advances. Secondly, most of the present 1-D mi-

gration FIR digital filter (and filters in general) design algorithms cannot be extended to

the 2-D case- e.g., the Remez algorithm [19, 21]. Hence, for both reasons, researchers

were using approximations of 2-D migration FIR filters based on pre-designed 1-D fil-
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ters. For example, if we assume that the true 2-D migration FIR digital filter is separable,

then such migration FIR filters can be designed, as is the case in [6]. Another way is by

using the McClellan transformation, which takes into account the circular symmetry of

the filter's wavenumber response, as in [37,38, 10, 11, 39,40,6]. Although such filters

designed via approximations are cheap to design and to implement, these approximations

come with a price, i.e., they give errors in migrated sections [11], as will be highlighted

later on in this thesis.

As a result, there is a need to accurately design 2-D w - x - y migration FIR digital

filters. Hence, the 1-D migration FIR filter algorithms that we derived for 2-D seismic

data sets are then extended to the design of 2-D migration FIR filters that are used for 3-D

seismic data sets. In this case, such filters eliminate errors introduced by approximating

such 1-D FIR filters for the migration application [24, 36, 31]. In other words, migration

can be performed based on true 2-D migration FIR digital filters and, therefore, more ac-

curate sub-earth volumes are obtained.

The w - x - y migration (filtering) process is carried out over all frequencies and so

it is considered to be an expensive process [9, 10]. Different approaches have been pro-

posed to mitigate such a computationally expensive 3-D migration process that relies so

heavily on direct convolution with a 2-D complex-valued FIR filter impulse response [9].

However, these approaches suffer from noticeable wavenumber response errors. Singu-

lar Value Decomposition (SVD) for 2-D FIR filter realization has drawn the attention of

DSP researchers in many image processing applications [6,40]. However, such an SVD

realization was based on realizing real-valued FIR filters.

So in this thesis, the mathematical development of realizing (implementing) 2-D complex-

valued quadrantal symmetrical migration FIR filters (for the 3-D w -x-y migration) using

SVD, is presented. In order to simplify the SVD computations for such impulse response

structure (i.e., quadrantal symmetry), we apply a special matrix transformation similar to
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the one reported in [41] on the migration filter impulse response, which guarantees that no

distortion of the wavenumber phase response occurs and the magnitude responses result

in stable migration. Also, this results in less numerical SVD computational errors. We

exploit the existence of insignificant singular values and discard them so that we reduce

the computational complexity of the expensive 3-D w - x - y migration problem at the

expense of almost negligible errors. As a result, our proposed realization method for such

geophysical application overcomes the problems of other previously reported and heavily

used realization schemes in terms of computational complexity, stable migrated images,

and circularly symmetrical wavenumber responses [42,43,44]. Therefore, a better 3-D

geophysical interpretation of such migrated volumes is obtained.

In addition to the migration FIR digital filters mentioned earlier, there exist other ex-

amples of FIR filters with complex coefficients such as low delay single passband filters

which are used in communications [45, 20]. A number of algorithms have been proposed

for the design of complex-valued FIR filters [46, 19, 20, 47]. However, many design

algorithms are either expensive in terms of the design complexity [46, 47] or cannot be

extended to higher dimensions greater than 1 unless using filter transformations if possi-

ble [21, 22]. Such transformations result in suboptimal designs [48,49].

Therefore, by adjusting the pure design algorithm that we proposed for the design of

the migration FIR filters, it can be used for designing any complex-valued FIR digital

filter with a predefined fixed phase [50, 51]. Hence, the design of m-D complex-valued

FIR digital filters using the method of pure projections is shown. That is, the work carried

out for designing I-D real-valued FIR digital filters using pure projections (as reported

in [22]) is extended to the more general class of m-D complex-valued FIR filters which

are important in the many applications stated earlier. This extension to the m-D case is

possible due to the existence of m-D type FFT algorithms [50, 51, 52, 53].
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1.2 Thesis Organization

To start with, necessary and sufficient background is given about seismic data and seis-

mic data acquisition and processing. Migration principles, types, filtering, etc., are also

given. More specifically, the explicit depth frequency-space method for post-stacked data

is explained. All are included in chapter 2.

Chapter 3 of this thesis starts by introducing the VSPM and stating the fundamental

theory of projections. The mathematical development necessary for designing migration

filters is then shown. Based on this, the design algorithms of I-D complex-valued seismic

migration FIR digital filters using the pure, the relaxed, and the modified projections al-

gorithms will be given. Simulation results of designed filters and synthetic seismic data is

also shown based on the VSPM design algorithms and compared with other well known

filters used in the geophysics community.

Then, chapter4 extends the derived I-D design algorithms (which are shown in chap-

ter 3) using the pure, the relaxed, and the modified projections to the 2-D case. For the

sake of clarity and comparisons, the standard McClellan filter transformation and its im-

proved version for filter design is also briefly described. 2-D filters are designed using the

pure, the relaxed, and the modified projection design algorithms and compared with those

designed using the McClellan and its improved version design methods. 3-D synthetic

seismic data are used to validate and compare the modified projection filters applied to it

and compared with those migrated using both McClellan transformations.

In chapter 5, with a proper adjustment to one of the constraint sets, the I-D pure de-

sign algorithm is then extended to the design of general m-D complex-valued FIR filters.

Simulation results on complex-valued FIR digital filters including the seismic migration

filters are shown and compared with the complex Remez exchange technique reported in

[19,20].
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Chapter 6 is organized as follows. An introduction to the concept of SVD realization

for 2-D FIR digital filters is given. Also, the mathematical development for realizing 2-

D quadrantally symmetrical complex-valued FIR seismic migration digital filters using

SVD is presented. Error analysis, relating to the SVD realization of migration filters is

then shown. Simulation results are performed for 2-D seismic migration FIR filters real-

ized by using the proposed SVD scheme. An application of the proposed implementation

method to 3-D synthetic seismic data is shown and compared with other standard imple-

mentation methods.

In chapter 7, the explicit depth extrapolation migration FIR filters designed using the

modified projection method are applied to the challenging SEGIEAGE salt model. This is

performed to test the derived migration: FIR filters and to show that such proposed design

algorithms result in robust designs which compete with other migration FIR filters and

other standard migration methods. We compare our results with other w - x migration

design techniques as well as other standard migration methods.

Finally, chapter 8 concludes with a summary that highlights the major contributions of

this thesis. This will include suggestions for possible ideas that would be used in further

research work.
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Chapter 2

Background

2.1 Introduction

Among many geophysical surveying techniques, seismic reflection is the most widely

used and well-known geophysical technique (Figure 2.1). Seismic reflection acquired

data can be produced to reveal details of geological structures on scales from the top tens

of meters of drift to the whole lithosphere [5, 1]. Part of its success lies in the fact that the

raw seismic data is processed to produce seismic sections which are images of the sub-

surface structure. A geologist can then make an informed interpretation by understanding

Geophysical Survey
Methods,

I I

Seismic Gravity Magnetic Electrical

I \L

Travel Times of
Reflected/Refracted

Seismic Waves
I

I
Fossil Fuel
Exploration

(Oil, Gas, & Coal)

Figure 2.1: Geophysical survey methods where seismic reflection is considered to be the
mostly used and well-known surveying method.
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how the reflection method is used and seismic sections are created. The analysis of seis-

mic data is performed for many applications such as petroleum exploration, determination

of the earth's core structure, monitoring earthquakes, etc. [54, 1].

Seismic signals are generated at a source (transmitter), such as an explosion which

propagates through earth layers. Some of these signals will be reflected, some will be

refracted and some might neither be reflected nor refracted (simply lost due to attenu-

ation). At the surface, the reflected signals are then recorded at a receiver (acquisition

step) at acoustic impedance contrasts. The strength of this impedance contrast is defined

as reflectivity. In summary, a seismic analysis scenario involves collection of data by an

array of receivers (seismometers), transmission over a narrow band channel, and storage

of data for analysis, processing, and interpretation [5, 1,8].

A seismic trace (Figure 2.2) represents a combined response of a layered ground and

a recording system to a seismic pulse. Any display of a collection of one or more seismic

traces is termed a seismogram. Assuming that the pulse shape remains unchanged as it

propagates through such a layered ground, the resultant seismic trace may be regarded as

the convolution of the input impulse with a time series known as a Reflectivity junction,

0.1

-0.1

-O.1S

-0.2L-:'0':-1-::':0 2;---;0-;;;3--;;0.~4-it;o.sicote.e -~0.'77 -~0.el(0~.9-~
o . .' TlmeC""c)

Figure 2.2: A single seismic trace.
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which is composed of spikes (delta functions). Each spike has an amplitude related to the

reflection coefficient of a boundary and a travel time equivalent to the two-way reflection

time for that boundary. Furthermore, the time series represents the impulse response of

the layered ground, which is basically the output for a spike input. Since the pulse has

a finite length, individual reflections from closely-spaced boundaries are seen to overlap

in time on the resultant seismogram. Figure 2.3 represents a typical seismic convolution

model [5].

Due to storm, traffic, heavy industry, unwanted waves such as surface waves, etc, seis-

mic records are highly corrupted with noise (unwanted energy). This unwanted energy

could be sort of incoherent noise such as instrument signals and/or coherent noise like the

shown in Figure 2.4.

ground-roll noise during the acquisition. A typical example for a noisy seismic section is

As a consequence of the above effects, seismic traces generally have a complex ap-

pearance and reflection events are often not recognized without the application of suitable

Geological
sec ion

Acoustic Reflection
impedance log coefficient log

Reflection
coefficient log

Input Pulse Seismic Trace

*

Figure 2.3: Convolution seismic data model. A seismic pulse is convolved with the reflec-
tion coefficient log (reflectivity function) to get a seismic trace. The reflection coefficient
log is related to the geological section of the sub-eart? throu~h the reflection coefficient
of each geological boundary and the two-way travel ume which takes the seismic signal
to forward and backward propagate through the sub-earth.
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-2000
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-1000 0 1000 2000

1

3

Figure 2.4: A typical example for a noisy seismic section (courtesy of [1]). The horizon-
tal axis represents the position of each seismic receiver (recorder) where each records a
trace with respect to the two-way travel time (vertical axis). Clearly, this section contains
various noise types.

processing techniques. The purpose of processing such data can be viewed as an attempt

to reconstruct the various columns of Figure 2.3, moving from right to left. This will

involve:

• removing noise,

• determining the input pulse and removing that to give the reflectivity function,

• determining the velocity function to allow conversion from time to depth axis, and
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Figure 2.5: Analogue receiver array acquisition technique. To get a single trace, we
require an array of traces. Here, we have a 3 by 4 array. The analogue sum (arithmetic
mean) is used to get one single trace at the output of the system array.

• determination of the acoustic impedances (or related properties) of the formations.

2.2 Seismic Acquisition

Careful selection of source and receiver arrays at the acquisition step will help elimi-

nating a big portion of noise. Previously, the acquisition process was done based on a

technique known as Analogue Receiver Arrays (see Figure 2.5), where each of these ar-

rays is composed of n receivers called geophones if we speak about land data acquisition

(or hydrophones if we speak about marine data acquisition). In this technique, the seismic

cruise people place a set of these arrays. Each geophone records a single trace resulting

in n recorded traces per an analogue array. Finally, the arithmetic mean of each analogue
,

array (average of all traces recorded in such array) is given as an output of that array and

considered as a single trace [1]. This helps in reducing noise during acquisition [1, 5].

Schlumberger has recently developed a new recording system known as the Q-Iand,

with a view to replacing the analogue receiver array with one single geophone (Figure

2.6). Q-Land Single-sensor recording (www.slb.com) is basically an integrated acqui-

sition and processing system which provides superior data quality through the efficient

recording and processing of up to 30,000 live single-sensor channels. The system yields

denser digital spatial sampling of the wavefield. Composition of the single geophone

records by digital array forming, provides almost a noise-free system and a high resolution

per seismic trace (see Figure 2.7) [33, 34]. It also yields better noise attenuation and sig-
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Figure 2.6: An example of a single sensor recorder (courtesy of www.slb.com).

nal preservation. Single receiver recordings have the advantage that better noise-rejection

filters can be designed. The filters can be either time-invariant or adaptive [55, 56].

2.3 Seismic Record and Seismic Data Processing

A collection of traces with the response of several geophones to the energy from one shot

is termed a Common Shot Gather (CSG) - see Figure 2.8 and Figure 2.9. A collection of

traces where all shot-receiver combinations are centered around one surface mid-point is

termed a Common Mid-point Gather (CMP) [1, 5] as in Figure 2.10. In CSGs and CMPs,

seismic traces are plotted side-by-side in their correct relative positions and records are

commonly displayed with their time axis arranged vertically down. An example of a CSG

record and a CMP record are both shown in Fig~re 2.11 (a) and (b), respectively.

Digital
Group

Forming
Field Tape

Digital Signals Digital Group Forming

Figure 2.7: Point-receiver array acquisition technique. Unlike to the analogue receiver
array technique, each receiver records only one trace. Here, 4 receivers record 4 seismic
traces.
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Figure 2.8: One-sided shot gather (CSG) configuration. In this example, 6 receivers
respond to one shot from one side of the receiver array.

Detectors
Central
shot Detectors

Figure 2.9: Two-sided shot gather (CSG) configuration where 6 receivers from both sides
of the shot respond.
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Figure 2.10: Common mid-point gather (CMP) configuration. We see that each of the
shot-receiver combinations is centered around the same mid-point.

2.3.1 Seismic Data Processing

Seismic data processing can be considered as a sequence of cascaded operations that at-

tenuate/remove noise accompanying seismic data as well as making geometrical correc-

tions such that the final image will truly show a map (seismic image) of the subsurface.
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Figure 2.11: Examples of (a) a CSG record with responses due to 3 shots and (b) a CMP
gather with responses due to 3 shots. Both are courtesy of [2].

Processing of seismic data includes, but is not limited to: filtering, common mid-point

(CMP) sorting, velocity analysis, normal move-out (NMO) correction, and stacking. Each

seismic trace has three primary geometrical factors which determine its nature:

1. Shot position;

2. Receiver position;

3. Position of the subsurface reflection point.

The last factor is the most critical [5]. Before processing, this position is unknown but

a good approximation can be made by assuming that this reflection point lies vertically

under the position on the surface mid-way between the shot and the receiver for that par-

ticular trace. This point is referred to as mid-point or depth-point (CDP) (Figure 2.10).

The CMP gather is important for seismic processing because the subsurface velocity can

be easily derived. In general, the reflection seismic energy is very weak and it is essential

to increase the signal-to-noise ratio (SNR) of most data. Once the velocity is known, the
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Figure 2.12: A eMP stacked section example (courtesy of [2]).

traces in eMP gathers can be corrected for NMO, which is basically a way of correcting

for time differences which occur due to offset in a eMP gather, i.e., to get the equivalent

of a zero-offset trace. This implies that all traces will have the same reflected pulses at

the same time, but with different random and coherent noise. So combining all the traces

in a eMP gather will average out noise and the SNR increases. This process is known as

stacking. An example of a stacked eMP gather section is shown in Figure 2.12.
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2.3.2 Seismic Data and Noise

Seismic data are highly corrupted with noise and/or unwanted energy arising from dif-

ferent kinds of sources. This unwanted energy can be classified into two main categories

[1]:

• Random noise (incoherent noise): This type of added energy is not generated by

the source .

• Coherent noise: This type is usually generated by the source itself and is coherent

across traces and gathers.

2.3.2.1 What is noise?

Noise in seismic records is variable in both time and space [57]. One can define the sig-

nal of interest as the energy which is coherent from trace to trace. Noise, on the other

hand, is the energy that is incoherent from trace to trace [58]. Furthermore, data from

seismic events is correlated and its energy is generally concentrated at the lower frequen-

cies, while noise is more uncorrelated and broadband [54]. However, this is only true

for random noise. Spatially coherent noise is the most troublesome noise and can be

highly correlated and sometimes aliased with the signal [58] and [55]. In general, noise

can be considered as anything other than the desired signal. A more proper definition

of noise contaminating seismic signals can be stated by defining the type of signals we

are interested in. The authors in [58] defined the signal of interest as the energy that is

most coherent and desirable for geophysical interpretation of primarily reflected arrivals.

Anything other than that is considered to be unwanted energy, i.e., noise.

2.3.2.2 Random noise

Disturbances in seismic data which lack phase coherency between adjacent traces are

considered to be random noise. Unlike coherent noise energy, such energy is usually not

related to the source that generates the seismic signals. In land seismic records, wind,

rain, and instrument noise are examples of random noise. Based on the assumption that
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random noise is an additive white Gaussian noise (AWGN) [1, 59], it can be removed

easily in several different ways such as frequency filtering, deconvolution, stacking [1, 5],

wavelet denoising [60, 61, 62], filtering using Gabor representation [63] and many other

methods. However, due to the advances in acquisition technology systems as described

previously, the issue of random noise removal is becoming less important when compared

to the issue of removing coherent noise.

2.3.2.3 Coherent noise

Spatially coherent noise is the energy which is generated by the source. It is an unde-

sirable energy that is added to the primary signals. Such energy shows consistent phase

from trace to trace. Examples of such a type in land seismic records are [1]: multiple

reflections (called multiples), surface waves like ground roll and air waves, coherent scat-

tered waves, vibroseis truck noise, dynamite ghosts, etc. Improper removal of coherent

noise can affect nearly all the processing techniques and complicates interpretation of

geological structures (see [1], [5], and [64]). There exist loads of techniques which deal

with the problem of suppressing/attenuating coherent noise that contaminates seismic data

[1,65,64,66,67,39,68,69,70]. A schematic diagram can be seen in Figure 2.13, which

shows various methods for seismic data filtering depending upon the type of noise cor-

rupting the recorded data. The filtering process is an important step in order to proceed

further with the other seismic DSP steps such as migration that will help geophysicists to

better analyze and interpret the acquired data. The reader can examine into references [1]

and [8] for more information about seismic data filtering and noise suppression.
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(Deconvolution) Velocity Filtering
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Figure 2.13: General classification of techniques for filtering seismic data. This classi-
fication is based on the type of noise that contaminates the data, namely, random and
coherent noise.

2.4 Migration

After performing the necessary different filtering processes on the data, it can be very

misleading to think of such data as a cross-section of the earth. This is because the actual

reflection points are unknown. We need to take wave propagation effects into account

to correctly determine the reflection points of the subsurface structure [71]. This is done

using a process known as Seismic Migration. Migration can be defined as the process

of reconstructing a seismic section so that the reflection events are repositioned under

their correct surface location at their correct vertical reflection time or depth location [5,

1]. Basically, migration removes the distorting effects of dipping reflectors from seismic

sections. It also removes the diffracted arrivals resulting from sharp lateral discontinuities

[9, 7, 6, 10].
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Figure 2.14: The beach example for illustrating Huygens' principle. The ocean causes a
plane wave to hit the storm barrier where a different wavefront moving towards the beach
is noticed after the storm barrier due to the barrier gap.
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2.4.1 Huygens' Principle and Basic Migration Principles

For this subsection, the physical principles of migration are described and we will follow

[1, 72, 73]. Huygens' principle is the basis of migration. Consider the harbour example

shown in Figure 2.14. Let us assume that a storm barrier exists at some distance Z3 from

the beach and that there is a gap in the barrier. Now, also imagine that a calm afternoon

breeze that comes from the ocean causes a plane incident water wave to hit the barrier.

Its wavefront is parallel to the storm barrier. As we walk along the beach line, we notice

a different wavefront from the incoming plane, wave. The gap on the storm barrier has

acted as a secondary source and generated the semicircular wavefront that is propagating

towards the beach. Now, assume that we did not know about the storm barrier and the gap.

We may want to layout a receiver cable along the beach to record in time the approaching

waves. Figure 2.15 illustrates this idea of recording in time the approaching waves with

semicircular wavefronts. So the gap in the storm barrier acts as a Huygens' secondary

source.

We can apply this principle to reflection seismology by imagining that each point on

a reflector (geological interface) generates a secondary source in response to the incident

wavefield. This is known as the exploding reflector model [72]. Consider a single point
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Figure 2.15: This figure shows how the approaching waves with semi-circular wave-
fronts generated by Huygens' secondary source from the beach example (Figure 2.14) are
recorded as hyperbolas in time.

scatterer in a medium as shown in Figure 2.16 (a). The minimum travel time is given by:

2z
to =-

c (2.1)

where z is the depth of the scatter and c is the velocity of the propagating wave (which

we assume to be constant). Also, assume that the source and the receiver are co-located

(zero-offset) as in Figure 2.16 (a). The travel time as a function of distance, x, is given by
[73]:

2VX2 + z2
t(x)=---

C (2.2)

By squaring, rearranging, and using Eq. (2.1) then Eq. (2.2) can be expressed as:

(2.3)

This shows us that the travel time curve for the scattered arrival has the form of a hyper-

bola with the apex directly above the scattering point (our secondary source) as seen in

Figure 2.16 (b).
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Figure 2.16: (a) A point scatterer (acting as Huygens' secondary source), and (b) a curved
reflector which is produced based on the point scatterer.

Now, consider a horizontal reflector (Figure 2.17 (a)) that is composed of a series of

point scatterers (gaps), each one of which generates a diffraction hyperbola in a zero-
,

offset section as in Figure 2.17 (b). Following Huygens' principle, these hyperbolas sum

coherently only at the time of the reflection while the later contributions cancel out (F"igure

2.17 (b)). However, if the reflector vanishes at some point, then there will be a diffracted

arrival from the endpoint that will show up in zero-offset data. This creates an artifact in

the section that might be falsely interpreted as structure. We need to migrate such sections

in order to remove such artifacts.

Another principle goal of migration is to map the apparent dip that is seen on the zero-

offset sections into true dip [1,72,74,71]. True dip angle is always greater than apparent

dip angle. Consider a reflector dipping at an angle of e in the true earth as in Figure
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Figure 2.17: (a) An array of point scatterers positioned at different locations, and (b) its
resultant curved reflectors interfering with each other.

2.18. The zero-offset travel time for a wavefield propagating from distance x down to the

reflector and back up again is given by t = 2,/ c where, is the wavefield path length and

is equal to r = x sin e. Now, to compare the apparent and true dip angles, the travel time

must be converted to depth via Eq. (2.1) and, therefore, in the unmigrated depth section

z = x sin e. By definition, the slope of this event is the tangent of the apparent dip angle,

say (3. Therefore, we have:

tan (3 = sin e. (2.4)

,
Equation (2.4) shows clearly that the apparent dip angle is always less than true dip angle.

-
Again in Figure 2.18 the events associated with the two zero-offset wavefields drawn from

the dipping reflector to the two receivers will appear on the unmigrated section at the

position locations associated with the two receivers [1]. Therefore, migration moves the

energy horizontal, i.e., up dip the energy. In addition, from the same figure, the length of

the reflector in the geological section is shorter than in the time section. Thus, migration

also shorten reflectors. In summary, migration focuses energy by collapsing diffractions

as well as it correctly steepens, shortens, and moves reflectors up-dip.



2.4. Migration
26

Zero-offset geometry
.... ------- x ._-- ----- .----._

o S S'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Z' I,

r

Migrated
reflector
location

Z

I
I
I<.

tanfJ = sine' Apparent reflector
location

depth
time

Figure 2.18: Migration principles. The apparent reflector with a dip angle f3 in the time
section when migrated is moved up-dip, steepened (to an angle ()), shortened, and mapped
on its true subsurface location.

2.4.2 Migration Kinds

Migration can be implemented based on different techniques. It is an important and ex-

pensive process that is applied to reflection seismic data before it is interpreted. Since it

is the last major process applied to the data, it is likely to be blamed for all sorts of things

like inconsistent amplitudes and lack of structural'details even though these problems may

arise from acquisition or earlier processing steps [32]. Therefore, it is important to know

what type of migration to use.

Migration can be classified as Pre-stack migration or Post-stack migration. For the

former, migration is performed on pre-stacked data either on CSGs or on CMPs. For

large surveys, it will require massive computer storage and days, maybe even weeks, of

CPU time on a super computer [32]. For the later case, the migration is applied on the

stacked CMP data. It is much less expensive than pre-stack migration but it is also less

accurate in complicated areas of the sub-earth. Finally, it can be accomplished on work-
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Figure 2.19: This is another migration classification which depends on how much physics
one puts into the migration algorithm.

station class machines.

Moreover, migration can be classified in terms of how much physics we put into the

algorithm, specifically for handling velocity variations. This type of classification is based

on time migration versus depth migration (see Fig 2.19). Note that any migration (pre-
,

stack or post-stack) can be output in time or depth. In areas of strong velocity variations,
-

depth migration is used and the output is given as a depth section. Geological examples of

strong lateral velocity variations include salt overhangs, sub-salt areas, or combinations

of such features [32]. The main difference between time and depth migration is mostly

for ease of interpretation afterwards where one can make more simplifications in time

migration than for depth migration. Figure 2.20 illustrates schematically were pre/post

stack time/depth migration is employed.
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Figure 2.20: Migration types as a function of computational complexity and lateral ve-
locity variations. The most accurate and most expensive migration kind is the pre-stack
depth migration.

2.4.3 Migration as a Filtering Process

This subsection describes the migration as a filtering process and shows the complex-

valued seismic migration filter's origins. Here, the migration is based on the concept that a

wavefield (acquired seismic data) which is measured at the earth's surface, u(x, t, Z = 0),

represents the boundary values of the wavefield u( x, t, z) reflected in the sub-earth. The

main objective of this migration is -to determine the true position of the reflectors by

downward continuation of the wavefield that is measured at the surface. This can math-

deal with the 2-D case.

ematically be explained through the wave equation and its solution where over here we

Let us assume that an acoustic seismic wave propagates upwards through the earth

(Figure 2.21). For simplicity we assume that the wave propagates in a homogeneous

medium with constant velocity c. This wave can be described by the following 2-D hy-
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Figure 2.21: Earth model of an upward propagating seismic wavefield.

perbolic wave equation [1, 75]:

(2.5)

where u( x, t, z) is the propagating wavefield (displacement), t stands for the time variable,

x represents the lateral spatial axis, and z denotes the depth axis. Now, define j =H
and let U(Kx, o't, z) be the 2-D Fourier transform, of u(x, t, z) with respect to the variables

x and t as given by:

(2.6)

Note that K; and o't are the analogue wavenumber and analogue angular frequency. Tak-

ing the Fourier transform of both sides of Eq. (2.5) and carrying out the necessary rear-

rangement gives:

(2.7)
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Equation (2.7) is a second-order ordinary differential equation with respect to the variable

z, Its well-known solution is given by:

~ ~U(K x, nt, z) = A exp(j z V ~ - 1\;) + B exp (- j z V -j- Kn (2.8)

where A and B are constants that can be found using the initial conditions related to the

differential equation. Following the sign convention of [6], the positive exponent refers to

an up-going propagation while the negative solution refers to a down-going propagation.

Since it is assumed that the wave is propagating upwards, one can set B = O. To find A,

consider the 2-D inverse Fourier transform of u(x, t, z) given as:

(2.9)

Substituting Eq. (2.8) (with B = 0) into Eq. (2.9) yields:

(2.10)

Now, by putting z = 0, it can be clearly seen from Eq. (2.9) and Eq. (2.10) that the

boundary condition A = U(Kx, nt, 0) and, therefore Eq. (2.8) becomes:

if Inti> clKxl

if Inti:::; clKxl
(2.11)

where U(Kx, nt, 0) = F{ u(x, t, On represents the boundary condition for the differential

equation given in Eq. (2.7). Then the record u(x, t, z) will be u(x, t, z) = F-l{U(Kx, nt, zn.
Note that F and F-1 are the forward and inverse Fourier transform operators, respec-

tively. In general, at z = Zo + ~z and given the initial condition at z = Zo. the general

solution in terms of boundaries at a width equal to ~z is given by:

if Inti> clKxl

if Inti:::; clKxl.
(2.12)
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Clearly, Eq. (2.12) can be rewritten as:

(2.13)

where

(2.14)

Equation (2.14) can be seen as the wavenumber-angular frequency response of a space-

time linear-shift invariant (LSI) analogue filter [75, 6, 10] and it is known as a Seismic

Migration Filter [7]. In the geophysics community, this filter is known as the extrapo-

lation operator since one extrapolates the previous depth seismic section to the next one

[1, 14,9].

To explain more, let us reconsider the harbour example in Figure 2.15. Moving the

receiver cable from the beach into the water closer to the barrier is like moving the record-

ing receiver cable from the surface down into the earth close to the reflectors. Recall that

the gap of the barrier can be thought of as a point scatterer on the reflection geological

interface causing the diffraction hyperbola. Now, start with the wavefield recorded at the

surface (at z = 0) and move the receivers down to depth levels at finite intervals. The
,

wavefield extrapolation as in Eq. (2.13) of up-going wavefields at the surface can be con-

sidered in this case as equivalent to lowering the receivers into the earth. The recording

cable is the storm barrier. Also, the arrival from the gap occurs at t = O. As the cable

moves into the ocean and records closer to the barrier, the recorded diffraction hyperbola

arrives earlier, and become shorter and more compressed. Furthermore, it collapses to a

point when the receivers coincide with the storm barrier over which the source point forms

a gap. This is how we link Huygens' principle with migration or wavefield extrapolation

[1].

To carry on, the wavefield in practice is presented in sampled form so let us define

tlt to be the temporal sampling interval, tlx to be the horizontal spatial (trace) sampling
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interval, and tu as the depth sampling interval. Then, the discrete version of the acoustic

wavefield u(x, t, z) is U(Xi' tl, Zk) where Xi = i!lx, tl = l!lt, and Zk = k!lz for all i, l, k

E Z with Z the set of integers. Also, define kx as the digital wavenumber counterpart

of Kx and W as the digital angular frequency counterpart of Ot. The migration operation

is performed using a digital filter (derived from its analogue counterpart in Eq. (2.14)

[1, 75, 12]) whose frequency-wavenumber (w - kx) response is given by:

(2.15)

This is the ideal frequency-wavenumber response of an all-pass filter with non-linear

phase. For a single angular frequency Wo, Eq. (2.15) becomes a I-D digital filter given

by:

(2.16)

From the signal processing point of view, Eq. (2.16) shows that Hd(ejkx) is a complex-

valued even function with Hd(ejkx) = Hd(e-jkx). Also, it was shown in [75] that the

migration (extrapolation) process cannot be obtained by a causal filter since its response

is defined for negative values of the variable t. Therefore, Eq. (2.16) can be approximated

by a non-causal even symmetric FIR digital filter of length N (N is odd) [1, 12, 10]. That

is, ,
Ntl_l

Hd(ejkx) = 'h[O] + 2 L h[n] cos(nkx).
n=l

(2.17)

where h[n] E C (C is the set of complex numbers), i.e., the FIR filter coefficients are

complex-valued. Now, the filter response cut-off is given by the wavenumber ke where:

(2.18)

where the approximation needs only to be accurate for Ikxl < Ikel since this corresponds

to the wavenumbers kx for which the waves are propagating [1, 12]. Finally, let b =
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~Z/ ~x, and then the 1-D migration filter simply becomes:

(2.19)

Then, for each frequency sample we can extrapolate a spatially sampled seismic wavefield

U(Xi' ejwo, Zk) from say depth Zk to Zk+1 = Zk + ~z using:

(2.20)

where U(ejkx, ejwo, Zo + ~z) is equal to the discrete-space Fourier transform (DSFT) of

U(Xi' ejwo, Zk) with respect to Xi.

2.4.4 Frequency-Wavenumber Migration Techniques

Equation (2.20) informs us that the propagating wavefield on the zkth layer to the next

layer at Zk+l is easily accomplished in the w - kx domain. This type of extrapolation is

called the phase shift method and was first introduced by Gazdag [76] for performing post-

stack migration. His migration algorithm starts with Fourier transforming the input traces

from their t - X domain to the w - kx domain and then using the extrapolation form given in

Eq. (2.20). This method is accurate up to dip angles of 900 [1]. In addition, this method

is accurate when a constant velocity is used for each extrapolation step ~z. However,

the velocity may vary for each depth step size. In this case, an accurate migration is

allowed when the velocities vary only with depth as illustrated in Figure 2.22, i.e., when

the velocities are vertically varying. This is justified when using small depth sampling

intervals ~z [76, 1]. More details, as well as other variations of the w - kx technique like

the Stolt method, can be found in [77, 78, 79, 1].

To overcome the limitation of the w - kx extrapolation method, Gazdag and Sguazzero

[28] developed a method called the Phase Shift plus interpolation (PSPI) migration tech-

nique which can handle horizontal velocity variations. Itmigrates a Fourier transformed

wavefield just as the phase shift migration does. However, in the PSPI technique, the
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Figure 2.22: A hypothetical earth model showing vertically varying velocities due to
homogeneous media within each earth layer. These types of subsurface structures can be
easily migrated in the frequency-wavenumber w - kx domain, i.e., using the phase-shift
technique.

migration from depth z to z + 6z is done multiple times, for a range of reference veloc-

ities. Now, each of these wavefields is inverse Fourier transformed to the w - x domain.

A single wavefield at the depth z + 6z is then constructed by interpolating between the

available constant-velocity extrapolations, using the velocity at each spatial location x

to guide the interpolation. This single combined wavefield is then transformed back to

wavenumber, and the migration continues. The more velocities used in the phase shift

migration, the greater the accuracy of the PSPI method will be. Although, the PSPI tech-

nique is a very accurate depth migration method, but it is also very expensive. At a single

angular frequency in a depth slice, the PSPI method costs [28]:

(2.21)

complex multiplications and additions. Here, nrej' stands for the number of used refer-

ence velocities and NpPT is the numberofFFT points used in the algorithm to transform

the trace spatial samples to wavenumber domain and vice versa. In addition, patching

together constant velocity solutions is still an approximation. If the lateral velocity varia-
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tion is strong enough, the PSPI can become noticeably unstable [80, 81].

Furthermore, Split-Step (SS) [29] migration is a more efficient, less accurate, alterna-

tive solution to PSPI migration. It migrates the Fourier transformed wavefield from depth

level Z to the next level Z + ~z using one laterally invariant velocity. Unlike phase shift

migration, it will perturb this result to account for lateral velocity variations by inverse

Fourier transforming the wavefield to space. After that, it will then apply a residual phase

shift at each W - X value. The magnitude of the phase shift depends upon the difference .:

between the actual velocity at X and the constant reference velocity used to perform the

migration. It completes the split-step extrapolation from Z to z + ~z by Fourier trans-

forming the perturbed wavefield back to the wavenumber domain again. According to

[3], the computational cost of the SS method for single angular frequency at a depth slice

is approximately one-half of that for the PSPI given in Eq. (2.21). For more details see

[29,81,3].

2.4.5 The Explicit Frequency-Space Migration Technique

Another way of accurately migrating laterally varying materials, is by using the N -length

FIR digital filter coefficients that appeared in Eq. (2.17). This is known to be the

frequency-space (w - x) wavefield extrapolatien where the extrapolation of a spatially

sampled seismic wavefield U(Xi' ejwo, Zk) from depth Zk to Zk+1 = Zk + ~z may be per-

formed independently for each frequency Wo, by a spatial convolution with a predesigned

I-D migration digital filter h[n] (see Eq. (2.17» using [12]:

(N-l)/2

U(Xi' ejwo, Zk+l) = L h[n]u(Xi-n, ejwo, Zk).

n=(-N+1)/2

(2.22)

In this case, the variation of velocities can be handled by letting the coefficients of the

migration filter h[n] vary as the velocity changes with the spatial coordinates Xi and Zk

[12, 1, 13]. This is also known as the explicit finite-difference method [13, 1] since we

start from the actual acoustic wave equation and then approximately solve it. The ap-
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proximation is necessary to avoid unstable migrated sections. Such a technique is much

less expensive when compared with the PSPI or SS methods and can also handle lateral

velocity variations. The total computational cost of the explicit depth w - x migration for

a given angular frequency at one depth slice is:

3N-1
COSTw-x = nx 2 (2.23)

complex multiplications and additions, where N is the FIR filter length and nx is the total

number of spatial samples (number of traces).

2.4.5.1 Problem Definition

In order to properly migrate (extrapolate) seismic wavefields, there are special filter re-

quirements that are needed for using this attractive method. Firstly, the spatial convolution

filter coefficients, h[n], must perform migration of wavefields for high propagation angles

in heterogeneous media. This, however, implies that the spatial length of the filters must

be large enough to contain those angles. On the other hand, migration in heterogeneous

media requires a short spatial filter length to handle the lateral variations accurately. Fur-

thermore, the amplitude of the magnitude wavenumber response of the filter given by Eq.

(2.19) should neither be much greater than one nor be much smaller than one within the

passband. That is, if the amplitude is much greater than one, say by 10-2, and one is

using 500 migration steps, then this leads to unstable migration results, since this small

amplitude amplifies due to the migration recursive operation by 1.01500 ~ 144.77 [1, 14].

Similarly, if the amplitude is much less than one, then this will attenuate the wavefield

during migration. Also, within the stopband region, the magnitude spectrum must ex-

ponentially decay towards zero. Lastly, but not least, the phase wavenumber response

of the designed filter must be accurate for the whole range of angles for which the filter

is designed, i.e., it must be accurate within the filter's prescribed passband. Figure 2.23

summarizes the 1-D w - x seismic migration FIR digital filter requirements. It is worth

mentioning that unlike the w - kx technique there is a limit to the maximum possible angle

of wavefield propagation for the w - x wavefield extrapolation method. The maximum



2.4. Migration
37

91h[n]! :lh[n]

Filter length

',I

•••••
(a)

I H(e"')1

(c) (d)

Figure 2.23: I-D Seismic migration FIR filter requirements. (a) A non-causal spatial
operator with even symmetry, and (b) a short length w - x migration filter for accuracy.
In other words, due to heterogeneous media within a layer, the velocity will also vary
horizontally. At every lateral position, a new filter is used to perform migration on the
data from one depth level to another one. Within the filter length, the medium is assumed
to be homogeneous. Finally, (c) is an accurate magnitude wavenumber response, and (d)
an accurate passband phase response.

possible angle of propagation for the w - x migration method depends on the success in

properly designing such digital filters that fulfil the requirements illustrated in Figure 2.23

[82,1, 14,81].

2.4.5.2 Previous Work

Designing FIR seismic migration filters is still an important and a challenging area of

research. Researchers have proposed and used several techniques to design complex-

valued FIR seismic migration digital filters [14, 12, 11, 9, 10, 1]. In general, most of the

techniques were proposed to satisfy either the time (space)-domain constraints or the fre-

quency (wavenumber)-domain constraints [7, 83,21]. For example, an impulse response

windowing technique is a simple technique for designing general FIR filters [84, 7]. How-

ever, since all frequency(wavenumber)-selective filters are ideally discontinuous at their

band edges, simple truncation of the impulse response often yields an unacceptable FIR

LEEDS I itllllft:DQ1TV IIRRARY
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design [84]. In the case of seismic migration, this leads to unstable migration since the

energy at the edges is amplified due to the recursive nature of the seismic process itself

[12,9, 1].

Seismic migration FIR filters can be designed by using the conventional Taylor series

method where the N -length filter coefficients are chosen such that they match the first N

terms in a Taylor series expansion of the desired seismic migration filter w - kx response

[82, 12, 1]. In order to find the filter coefficients, one needs first, however, to symbolically

compute the first N even derivatives for the Taylor series approximation, and then, solve

a system of (N + 1) /2 equations since the filter coefficients possess even symmetry. This

filter, however, may not be stable for some wavenumbers within the stopband region. A

modified version of this method was proposed by Hale [12] in 1991. Stability is guaran-

teed to exist where this modification forces the spectrum of such filters to be zero within

the stopband region. However, designed seismic migration FIR filters using this modified

method require long filter lengths to include high dip angles [12].

Moreover, it may be preferable to employ a design technique that is based on con-

straining the frequency(wavenumber)-domain to match certain specifications, like the

case for these migration filters. While there ex~st many optimization techniques to meet

such design specifications, the most widely used approach is the Parks-McClellan equirip-

ple (Remez) filter design method [84, 7]. These filters are optimal in the min-max sense,

meaning that, for a set of specifications, the largest error is always minimized. Such a

technique was adopted by Soubaras [18] for designing I-D migration FIR filters where

both the real and imaginary parts of the filter are optimized in the min-max sense. Due to

the ripply nature of its magnitude response, the filters can result in numerical background

artifacts on migrated sections [14]. Moreover, since this method is based on polynomial

factorization [21, 40, 22], it cannot be easily extended to the multi-dimensional (m-D)

filter design case. This would limit the use of methods like the Parks-McClellan filter

design for m-D filters. In addition, the Parks-McClellan design algorithm cannot incor-
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porate additional constraints placed on the filter design [22].

In another development, Karam and McClellan [19] have extended the Parks-McClellan

algorithm to FIR filters with complex coefficients. Under certain conditions [19], the de-

signed filter will be optimal in the min-max sense for the set of extremal points. If not, it

will be optimal with respect to a subset of the whole defined set of extremal points. The

optimal design algorithm was shown by the same authors in [20]. Simulation results in

both papers proved that this algorithm is efficient in terms of memory and speed of con-

vergence. Unless we use a filter transformation like the one reported in [12, 10], it is not

easy to extend this algorithm to the two-dimensional (2-D) FIR filter design, and the m-D

will be even more complicated and difficult to achieve [21]. In addition, more constraints

cannot be added to the design. Finally, the designed seismic migration FIR filter results

using this method are practically undesirable since they lead to the introduction of numer-

ical artifacts in migrated sections [14] as well as possessing unacceptable phase errors as

we will see later on in simulation results.

Thorbecke et al. [85, 14], have used the L2-norm and called it the weighted least-

square (WLSQ) method as an alternative to the optimization criterion used for designing

the migration FIR filters with the Remez exchange technique. Such a design technique is, .

suitable for designing 2-D FIR filters that are used for the three-dimensional (3-D) seismic

migration and the filters are comparable with those reported in [18]. However, such an

optimization method lacks simplicity as well as requires matrix inversion [14].

2.4.6 The Frequency-Space Depth Post-Stack Migration and its Imag-

ing Principle

Let us consider the shape of the wavefield at observation time t = 0 generated by a

geological interface. Since no time has elapsed and, thus, no propagation has occurred,

the wavefront shape must be the same as the reflector shape that generated the wavefront

[72, 74, 1]. The fact that the wavefront shape at t = 0 corresponds to the reflector shape is
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called the imaging principle which is performed after carrying out migration from depth

Zk to depth Zk+1 as given in Eq. (2.22) [1, 82, 72, 74]. We now need to extract our image

from the extrapolated wavefield. In the case of the post-stack W - x (or even the post-

stack W - kx) migration, the imaging principle is met by summing over all the angular

frequencies WI'S (l is the frequency index) [1, 82], i.e.,

U(Xi' t = 0, Zk) =LU(Xi' ejwl, Zk).
I

(2.24)

Now, we are ready to describe the explicit depth w - x post-stack migration algorithm

that is going to be used in this thesis. Firstly, after designing the I-D seismic migration

FIR digital filters, we store them in a look-up table. For each designed filter, we only store

half of the filter coefficients (half of h[n)) due to the even symmetry of our explicit depth

migration FIR digital filters as shown in Eq. (2.17). The explicit depth w - x migration

algorithm starts by transforming the stacked seismic section (which approximates the

zero-offset section of the originally acquired data) from the t - x domain to the w - x

domain. The migration of post-stacked seismic data based on the explicit depth migration

is then given as follows:

1. We start at the first depth slice which works as the outer loop for the algorithm.

2. At the current depth slice, we start from the first frequency wavefield sample (inner

loop).

3. Depending up on the current frequency-velocity values, calculate the wavenumber

cut-off k; using Eq. (2.18) and select the proper I-D filter.

4. Perform the migration convolution given by Eq. (2.22).

5. Once we finish all the angular frequencies of the current depth slice, we proceed to

the next depth slice.

If we reach the maximum number of depth slices, we stop the iterations, apply the imaging

principle in Eq. (2.24), and write to a disc our final sub-earth Z - x image. Otherwise, go

to the next depth slice and repeat steps 2 - 5. Figure 2.24 shows a simple flow chart for
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(Pre-designed Set of 1-D FIR

Filters)

Migration
(Extrapolation)

Figure 2.24: Diagram illustrating the explicit depth w - x post-stack migration process.
We start first by transforming the seismic section from the t - x domain to the w - x
domain and then begin the iterations. Within each depth loop, we perform the extrap-
olation depending on the inner frequency loop and the current velocity value. Once all
frequencies within the inner loop are finished we proceed to the next depth. Finally, we
stop the outer depth loop once we reach the maximum number of depth slices, apply the
imaging principle, and then store the migrated image on a disc.

a typical post-stack w _ x migration process. It is worth mentioning that since within a

depth loop the angular frequencies are independent, we can parallelize this algorithm by

preforming the extrapolation for each angular frequency on different processors [15, 16,

17].
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2.5 Conclusion

In this chapter, a brief overview of seismic data acquisition and processing was shown.

Great emphasis was put on the main scope of the thesis, namely, seismic migration. This

material represents a necessary and sufficient background for the subsequent chapters for

those who are unfamiliar with seismic data and seismic data processing. However, any-

one who is interested in more details about seismology and its applications, processing

methods, etc., is strongly recommended to look into Yilmaz's book on the subject [1].

More importantly, in order to have an accurate geological interpretation, it is necessary

to perform seismic migration. Among the various types of migration, the explicit depth

w _ x wavefield extrapolation serves as a promising migration technique. That is, if the

FIR filters are properly designed according to the specifications in Figure 2.23, they result

in accurate images of complicated subsurface structures. This comes with less computa-

tions when compared with other expensive and accurate methods such as the PSPI or the

SS method. Also, keeping in mind that we can reduce the migration time using parallel

processing, then this is another reason that makes the explicit depth w _ x migration tech-

nique advantageous among others. We talked in this chapter about I-D w _ x migration

FIR digital filters that are used for 2-D migration, but the same concepts and algorithm

apply to the 2-D frequency-inline-crossline (w _' x _ y) migration FIR digital filters which

are used for migrating 3-D seismic data volumes. We will explicitly describe this case in

chapter 4.

Finally, as mentioned earlier, the focus of this thesis will be on explicit depth w _ x mi-

gration of CMP stacked sections, i.e., post-stack depth migration based on the frequency-

space strategy. However, this does not limit the w _ x filters (that will be presented in

the coming chapters) from being used for other types of migration such as the pre-stack

time/depth migration or post-stack time migration. In other words, the post-stack explicit

depth w _ x migration that will be presented in this thesis acts as a kernel for pre-stack

time/depth migration or the post-stack time migration.
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Chapter 3

One-Dimensional Migration

Complex-Valued FIR Digital Filter

Design Using Vector Space Projection

Methods

3.1 Introduction

FIR Digital filters are important in various applications, including seismology, radar,,

sonar, medical, etc [83,6, 7]. There exist many FIR digital filter design algorithms such as

those reported in [83, 84,40]. Vector Space Projection Methods (VSPMs), developed by

Bregman [86] and Gubin [87], were introduced as a better choice for designing zero/linear

phase (real-valued) m-D FIR filters [21,22,23]. The idea of employing VSPMs for FIR

filter design (where part of the theory is known as Projection onto convex sets (POCS)

or Pure Projectors), was first introduced by A. Cetin et al. in 1997 [21]. They presented

an iterative design based on two Fast Fourier Transforms (FFT) (one forward and one

inverse) to design zero-phase FIR filters where the algorithm alternately satisfies both the

frequency (wavenumber) domain constraints on the magnitude response bounds as well

as the time (space) domain constraints on the impulse response support [21]. Also, Ozbek



3.1. Introduction 44

et al., [23] have applied the theory of pure projections for designing 3-D finite length

filters with zero-phase frequency-wavenumber response for hexagonal grids. In addition,

Hermanowicz et al. [88] have extended the work of Cetin et al., [21] to the design of

complex FIR digital filters. In all cases, the design algorithms came with no proof to

guarantee that such heuristic iterative algorithms always lead to the required solution (fil-

ter). In addition, the heuristic nature of such approaches does not obviously lend itself to

the design of filters with other possible constraints [22, 89].

Recently in 2000, K. Haddad et al. [22] presented a more rigorous mathematical use

of VSPMs for designing real-valued FIR digital filters. The designed filters are feasi-

ble in the sense that they satisfy all the filters' known properties which are formulated

as constraint sets. For the pure projections theory, to guarantee convergence and unique

projection points, these constraint sets must be closed and convex in a suitable Hilbert

space [22, 89]. By using the M-dimensional Euclidean space, i.e., ]RM, which is a Hilbert

space, real-valued FIR filters can be designed as shown in [22]. In general, VSPMs are

attractive for FIR digital filter design since the design method can be easily extended to

the design of m-D filters, which is difficult to achieve for other methods such as Karam-

McClellan [22, 23, 21,19]. In addition, the VSPMs can handle any number of constraints

including linear, convex, and non-convex types. ,For example, if the constraint sets which

describe the requirements of the designed quantity are not convex, then there exist solu-

tions for such problems which still make VSPM an attractive approach [89, 22]. Also, the

convergence of such algorithms can be speeded up by using what is known as Relaxed

Projectors [89]. Moreover, they are able to find solutions satisfying all constraints, i.e.,

feasible solutions rather than optimal ones. In general, feasible solutions are simpler and

less computationally expensive, as well as being perfectly acceptable for designing many

filters [22]. Finally, for the case of designing FIR digital filters, the VSPMs requires the

computation of two FFfs per iteration only [21].
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As was shown in chapter 2, seismic migration FIR digital filter coefficients are of

complex values and require special space domain as well as wavenumber domain char-

acteristics where many methods were proposed to properly design such FIR filters. This

chapter deals with the design of explicit depth w - x one-dimensional (I-D) seismic

migration FIR filters using the theory of Vector Space Projection Methods (VSPM) (or

simply the Projections onto Convex Sets (POCS» for two-dimensional (2-D) seismic data

sets. The idea of designing complex-valued FIR filters using VSPMs stems from the fact

that the VSPM theory can satisfy the desired pre-defined filters' properties. More pre-

cisely, the pure and the relaxed projection algorithms, which are part of the VSPM theory,

are derived. Simulation results show that by using the relaxed version of the basic derived

VSPM designed seismic migration filter, we can save up to 86.46% of the iterations. Also,

due to some undesirable background artifacts on migrated sections, a modified version of

the basic VSPM was used to eliminate such effects. This modification has also led to a

significant reduction in the number of computations, i.e., requiring only 5.18% as many

when compared to the basic derived VSPM design algorithm and only 38.36% when com-

pared to the relaxed VSPM design algorithm.

Here, we evaluate and compare our proposed design algorithms with the well known

techniques for designing such FIR filters. The !lse of our seismic migration FIR digital

filters designed using the pure, the relaxed, and the modified projections, where they are

suitable for laterally varying geological structure media, result in stable migration images.

Also, they accommodate high propagation angles with short length filters and with less

numerical background artifacts on migrated sections [24, 25, 27, 26]. This, in effect, helps

in reducing the geophysical interpretation errors of sub-earth maps.

The chapter is organized as follows. Section 3.2 introduces some background on

VSPMs, or more precisely the Pure and Relaxed Projectors, stating the fundamental the-

orem of POCS for both the relaxed and the pure projectors. Section 3.3 deals with the

design of such filters using VSPMs by setting up the required constraint sets and deriving
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their associated projection operators. The design algorithm for the I-D pure projection

method is presented in section 3.4. The relaxed version of this design algorithm is given

in section 3.5 while the modification of the pure projector is shown in section 3.6. Sec-

tion 3.7 presents some FIR filter design results which can be used for the 2-D seismic

migration processes. Also, these designed seismic migration FIR filters were applied on

synthetic seismic data sources. A discussion of some practical aspects of the proposed

design algorithms is given in section 3.8. Finally, the main contributions and conclusions

of this chapter are summarized in section 3.9.

3.2 Vector Space Projection Methods Background

The approach of Vector Space Projection Methods (VSPM)s has recently been used in a

number of applications [90,91,92,93,94,95]. However, for the sake of clarity, this sec-

tion introduces the mathematical background needed to design complex-valued FIR seis-

mic migration digital filters using pure and relaxed projection algorithms and we broadly

follow [89]. To start with, let all the filters of interest be elements of a Hilbert space H

and consider a closed convex set C c H. Then, for any vector h E H, the projection of h

onto C is the nearest neighbor element in C to h, where this nearest neighbor is unique,

and is determined by:

Ilh - Pchll = minllh - yll
. yEC

(3.1)

where Pc is the pure projector operator and II·11 is the Euclidean norm for a given Hilbert

space H [96]. One can refer to more properties of the projector Pc in [89]. Note that Eq.

(3.1) gives the implicit form of the projection of an arbitrary point onto a closed convex

set. Practically, it is desired to explicitly derive the projection of an arbitrary point for a

given closed convex set.

Sometimes depending upon the application the convergence speed of the pure projec-

tion algorithm needs to be increased. For this reason, the Relaxed Projector Tn,which is

an extension to the pure projector Pn, will be introduced. For each constant A, one can
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define an operator Tc as follows:

Tc = I + ,\(Pc - 1) (3.2)

where I is the identity operator on Hand 0 < ,\ < 2. For each h E H, the operator Tc

acts in the following fashion:

Tch - h + ,\(Pch - h)

(1 - '\)h + '\Pch. (3.3)

Clearly, when ,\ = 1, Tc is simply the projector Pc. Note that if h rt C, then Eq. (3.3)

has the following instructive geometric interpretation as shown in Figure 3.1:

1. When ,\ varies form 0 to 2, Tch traces out the line segment from h to the point

h + 2(Pch - h);

2. For each ,\ E (0,2), the vector Tch - h always points in the same direction as that

of the projection;

3. Tch is always closer to the set C than to the point h itself.

Furthermore, from Eq. (3.3) we can see that when ,\ E (0,1), the point Tch lies in

between the point h and its projection Pch. This implies that Tch lies outside the set C.

For such a case Tc seems to under-project h toward C. On the other hand, when ,\ > 1,

the point Tch lies farther away from the point h than the projection Pch. In this case,

the operator Tc seems to over-project the point h towards the set C. Due to this behavior,

the operator Tc is called the Relaxed Projector for the set C. Note this ,\ is known as

the Relaxation Parameter. Despite its name, however, the relaxed projector Tc is not a

projector unless ,\ = 1. But one can utilize such a projector to speed up the convergence

of projection-type algorithms [89].

The basic idea of VSPMs, or more specifically, the basic idea of pure projections is as

follows. Every known property of the unknown h E H will restrict h to lie in a closed
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when A=O
h

A Hilbert space H

when A. = 2

1<1<2

A given set C

Figure 3.1: Geometric interpretation of the relaxed projection operator T; in Eq. (3.3).
Note that when A = 1, the relaxed projector Tc simply becomes the pure projector Pc.
Also, when 0 < A < 1, Tc under-projects h toward C and when 1 < A < 2, Tc over-
projects h towards C.

convex set, say C, E H. Thus, for m known properties, there are m closed convex sets

Cl, C2, ..• ,Cm and h E Co where Co denotes their intersection set given by:

m

(3.4)

The set Co, which is considered as the solution set, will contain elements that satisfy all

constraint sets and, therefore, represents feasible solutions. For each i = 1,2, ... ,m, let

Pc; denote the projection operator onto the set Ci and let I be an identity operator, then

the corresponding relaxed projector Tc, is given by:

(3.5)

for Ai E (0,2). Also, let T refer to the concatenation of all these relaxed projectors, that

is,

T=T.cT.c .. ·T.c·m m-I 1 (3.6)

Then, the Fundamental Theorem of poes is given as follows:



3.3. The Design of I-D Complex-Valued FIR Migration Filters Using Vector Space
Projection Methods 49

Theorem 1 Assume that Co is non-empty. Then for every h E Hand for every Ai E

(0,2), i = 1,2,··· .m, the iterates {hk} generated (with an arbitrary starting point hoY

by

(3.7)

will converge weakly to a point of Co [89].

Since our Hilbert space is of finite dimension, the algorithm will strongly converge to a

point of Co [96]. This algorithm is generally referred to as the Relaxed Projection. In

particular, when the projector PCi is used instead of TCi for each set in Eq. (3.7), then the

algorithm reduces to:

(3.8)

This is usually referred to as the Pure Projection algorithm or simply POCS [89].

Two important issues related to the practical use of VSPM methods are: the choice

of the initial starting point of the iteration (initial filter coefficients) and the choice of

the relaxed parameters in the relaxed projectors, if they are used. For the case of FIR

filter design, it is preferable to start with the ideal (desired) filter coefficients as shown in

[21, 22]. For the relaxation parameters, section 3.5 will discuss the case for FIR seismic

migration filter design. For more details and some illustration examples, the reader can

refer to [91, 89].

3.3 The Design of I-D Complex-Valued FIR Migration

Filters Using Vector Space Projection Methods

Since our seismic migration N -length FIR digital filter coefficients are complex-valued,

this implies that our Hilbert space must be the set of complex-valued M-dimensional

vectors, i.e., H = eM where M » N. To properly design such filters using VSPMs,

the required characteristics of seismic migration FIR digital filters must be formulated 'as

closed convex sets that belong to eM. The remaining material in this section will be to
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derive the unique projections onto these formulated constraint sets.

In other words, the designed seismic migration filters must satisfy both the space

and also the wavenumber domains' requirements (refer to Figure 2.23) in which these

requirements are put in proper sets that are both closed and convex. These properties are

summarized as [6,9, 7, 10]:

1. An acceptable N -length FIR filter which must be short enough to validate the as-

sumption of having homogeneous material within the filter length and long enough

to accommodate high propagation angles. These coefficients must be complex-

valued and have even symmetry, which implies that N must be odd.

2. In addition, its magnitude response must be almost equal to one in the passband.

In other words, the magnitude spectrum within the passband of its discrete space

Fourier transform (DSFT) must be upper and lower bounded by 1+ op and 1- op,

respectively, for small op's. Moreover, the stopband magnitude spectrum of its

DSFT must be bounded by Os.

3. Finally, its phase response should be accurate for the whole range of wavenumbers,

i.e., it must be even symmetrical with respect to the kx = 0 axis which is equal to

the defined phase in Eq. (2.19).

The proposed constraint sets which describe the above required characteristics of our 1~D

migration FIR digital filters are defined as:

1. Cl = {h E CM : h[n] = h[-n] for n E Sand h[n] = 0 for n ESC} where S =

{N-I N-I 1 0 N-I 1 N-I} N' dd dSc' th I- -2-' - -2- + ,"', ,"', -2- - '-2-' IS0 ,an IS e comp ement

of S. In words, Cl is the set of all complex-valued sequences (vectors) of length M

with at most N odd non-zero members (filter coefficients) that are non-causal and

even symmetric.

2. C2= {h E eM with h[n] +--+ H(ejkx) : ¢(kx) = LH(ejkx) = bJk~p - kn where

kc is the cut-off wavenumber. That is, C2 is simply the set of all sequences which
p
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are complex-valued and whose DSFT argument (phase response) is constrained to

be equal to bVk~p - k~.

3. C3 = {h E eM with h[n] f--t H(eikx) : IH(eikx)1 2: 1 - bp for kx E kxp} where

kxp is the passband interval which is equal to [- kcp' kcp] and bp is the maximum

passband allowable tolerance. C3 is the set of complex-valued sequences whose

DSFT magnitude spectrum is lower bounded by 1 - bp in the passband.

4. C4 = {h E CM with h[n] f--t H(eikx) : IH(eikx)1 ::; 1 + bp for kx E kxp}. That

is, C4 is the set of complex-valued sequences whose DSFT magnitude should not

exceed the limit 1 + bp in the passband.

5. C5 = {h E eM with h[n] f--t H(eikx) : IH(eikx)1 ::; b8 for kx E kx.} where

kx. = [-7r, -kcJ n (kc., 7r]. kc• is the stopband cut-off wavenumber frequency and

b8 is the maximum allowable stopband tolerance. Essentially, C5 is the set of all

sequences which are complex-valued and whose DSFT magnitude is limited to a

maximum of b8 in the stopband kx •.

The remaining part of this section is devoted to show that such defined constraint sets are

indeed closed and convex, and also to derive their associated projection operators.

3.3.1 The constraint set Cl

The constraint set Cl represents all the seismic migration FIR filters that are of the spec-

ified fixed length N. We need to show that this set is a closed convex set. Also, we will

show that based on this set, we will indeed limit the migration FIR filter to the specified

length.

Convexity of Cl: Let h., h2 E Cb then by the definition of convexity, h3 = JLhl + (1 -

JL)h2where 0 ::; JL ::; 1. Then for n E S, h3[n] = JLhdn] + (1 - JL)h2[n] which in turns

makes h3[n] equal to JLhd-n] + (1 - JL)h2[-n]. Hence, h3[n] = h3[-n] and, therefore,

Cl is convex.
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Closure of Cl: To show that Cl is a closed set, let {hn} be a convergent sequence in Cl

where it converges to 11. We want to show that 11E Cl also. Let the support se be the

complement of the support S defined earlier. Then

> L Ihn[i] - h[iW· (3.9)
iES

Nowbytakingthelimitasn --+ oo,onecanobtain L:lhn[i]-h[iJ12 = Owhichislogically
iES

equivalent to saying that:

hn[i] = h[i] for i E S. (3.10)

Hence,11 E Cl and Cl is closed.

Projection onto Cl: Since Cl is closed and convex, then we can derive the projection of

an arbitrary vector, which belongs to the Hilbert space, onto Cl. According to Eq. (3.1),

.the projection will be unique. Let x E eM, which is an arbitrary vector in the Hilbert

space eM and x ~ Cl. Let the support se be the complement of the support S. Then for

IIx - hl12 - L Ix[i] - h[i]12 +L Ix[i] - h[i]12
iES

- L Ix[i] - h[i]12 +L Ix[i]12
iES iESC

- L Ix[i] - h[-iW +L Ix[iW· (3.11)
iES

However, IIx - h] is minimized with respect to h if

h[n] x[n] for n = 0, 1"" ,(N - 1)/2

- x[-n] for n = -(N - 1)/2, -(N - 1)/2 + 1", . ,-1. (3.12)
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Therefore, the projection onto Cb i.e., PCl can be given by the following equation:

{
x[nJ, for 1nl ~ (N - 1)/2

PClx =
0, otherwise.

(3.13)

3.3.2 The constraint set C2

C2 represents the set of all seismic migration FIR filters with the pre-defined phase re-

sponse. In the following, we show that this proposed set is indeed closed·and convex as

well as we will derive its unique projection operator.

Convexity of C2: Let hI, h2 E C2 where HI(ejkx) and H2(ejkx) are the DSFT of h,

and h2' respectively. Note that from the definition of C2, HI(ejkx) and H2(ejkx) will

have the same phase, say ¢(kx) = b.Jk~p - k;. Using the definition of convexity, let

h3 = JLhl + (1 - JL)h2 where 0 ~ JL ~ 1. In the DSFT domain, this is equivalent to

H3(ejkx) = JLHI(ejkx) + (1- JL)H2(ejkx). But one can write H3(ejkx) as:

H3(ejkx) _ JLIHI(ejkx)1 exp(j¢(kx)) + (1 - JL)IH2(ejkx)I exp(j¢(kx))

[JLIHI(ejkx)1 + (1 - JL)IH2(ejkx)IJ exp(j¢(kx))

- IH3(ejkx)1 exp(j¢(kx)). ' (3.14)

Hence, h3 E C2• Therefore, C2 is convex.

Closure of C2: Let {h.}be a convergent sequence in C2 where it converges to h. Denote
Hn(ejkx) and H(ejkx) as the DSFT of h., and h, respectively. We want to show that also

hE C2. Denote the phase of Hn(ejkx) by ¢(kx) = b.Jk~p - k; and also denote the phase
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(3.15)

Now, using the fact that [89]

IIHn(ejkx)1 exp(j</>(kx)) -IH(ejkx)1 exp(j'lj!(kx))l2

~ IH(ejkx)12 sin2(</>(kx) - 'Ij!(kx)) (3.16)

then

When n ~ 00, we obtain

(3.18)

,
Hence, either H(ejkx) = 0, which contradicts the fact that it is a member of O2, or

sin2(</>(kx) - 'Ij!(kx)) = O. In this case, </>(kx) - 'Ij!(kx) = mtt or </>(kx) = 'Ij!(kx) + mat

where m E Z. However, m must be even since h., ~ h. Therefore, h E O2 and O2 is

closed.

Projection onto O2: Since O2 is a closed and convex set, we are left with deriving the

projection of an arbitrary vector x E eM (x rf. O2) onto O2• Based on the definition of

the constraint set O2, we need to minimize the following equation:

(3.19)
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with respect to H(ejkx) and subject to ¢(kx) = LH(ejkx) = bJk~p - k;, where X(ejkx)

is the DSFT of x. Note that II . II is now the L2 norm with respect to continuous functions.

Construct the following Lagrangian [97] equation in the DSFT domain:

where R{.} and ~{.} denote the real and imaginary parts for a given complex num-

ber. Now, let X; = R{X(ejkx)}, Xi = ~{X(ejkx)}, Hr = R{H(ejkx)}, and Hi =

~{H(ejkx)}. Then, Eq. (3.20) can be rewritten as

J(Hr' Hi) = (X, - Hr)2 + (Xi - Hi? - A[arctan Zi - ¢(kx)]. (3.21)
r

The first order conditions are:

(3.22)

and

(3.23)

and the constraint is

(3.24)

From Eq. (3.22), solve for A to obtain:

(3.25)

Similarly, using Eq. (3.23), solve for A to get:

A = -2(Xi - Hi)(H; + H'f).
Hr

(3.26)
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Now, equating Eq. (3.25) and Eq. (3.26), gives:

(3.27)

Substituting Eq. (3.24) into Eq. (3.27) gives:

(Xr - Hr)
-(Xi - Hi) (3.28)

which is equivalent to:

(3.29)

Since X; = IX(ejkx)1 cos Ox and Xi = IX(ejkx)1 sin Ox where Ox = arctan~, and

Hr = IH(ejkx)1 cos 4>(kx), Hi = IH(ejkx)1 sin 4>(kx) and IH(ejkx)12 = H; + Hl, then Eq.

(3.29) can be rewritten as:

IH( ejkx) I - IX (ejkx) I(cos Ox cos 4>(kx) + sin Ox sin ¢(kx))

- IX(dkx)1 cos (Ox - ¢(kx)). (3.30)

However, Eq. (3.30) will only be true if Ox - 4>(kx) E [-7r /2 + tm,7r/2 + n7r] where n is

an even integer. Hence, in this case we have tw~ possibilities:

• IfOx-4>(kx) E [-7r /2+n7r, 7r/2+n7r] where n is an even integer, then cos (Ox - ¢(kx)) ~

0, and hence, H(ejkx) = IX(ejkx)1 cos (Ox - 4>(kx)) exp(j4>(kx)).

• IfOx-4>(kx) E [-7r/2+17r,7r/2+17r] where I is an odd integer, then cos (Ox - 4>(kx)) <

0, and hence, H(ejkx) = -IX(ejkx)1 cos (Ox - 4>(kx)) exp(j4>(kx)) since IH(ejkx)1 ~

0.

Therefore, the projection onto C2, i.e., PC2 can be given by the following equation:

(3.31)

where f--+ stands for the Fourier transform pair notation.
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3.3.3 The constraint sets C3, C4, and C5

Following the same methodology for the constraint set Cl and C2, we can easily show that

C3, C4, C5 are closed convex sets in CM. Recall that C3 and C4 represents the constraint

sets whose wavenumber magnitude responses are respectively upper and lower limited to

bp within the passband region. Also, recall that C5 contains all the seismic migration FIR

filters whose stopband wavenumber magnitude responses are limited to bs- The projection

operators are derived as follows:

Projection onto C3: Our aim is find the minimum projection with respect to h subject to

the constraint given in C3 for an arbitrary x E CM, where x ~ C3• That is:

(3.32)

subject to IH(eikx)1 2: (1 - bp) where X(eikx) is the DSFT of x. For simplicity, denote

the 1 - bp as {3. The following Lagrangian equation in the DSFT domain is:

Again, let X; = ~{X(eikx)}, Xi = ~{X(eikx)}, Hr - ~{H(eikx)}, and Hi -

~{H(eikx)}. Then, Eq. (3.33) can be rewritten as

The Kuhn- Tuker conditions are [97]:

- 0 (3.35)
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- 0 (3.36)

and the constraint is

(3.37)

(3.38)

The derivation is now performed case by case:

• Case 1: H2 + H~ = {32r t

From Eq. (3.35), we will solve for Hr to get

(3.39)

Similarly, we can use Eq. (3.36) to obtain Hi:

(3.40)

By substituting Eq. (3.39) and Eq. (3.40) into H; + Hr = {32 and solving for A,

where A ~ 0, we obtain:

l+A= (3.41)

Therefore, substituting Eq. (3.41) into Eq. (3.39) and Eq. (3.40), respectively:

(3.42)

and

(3.43)
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Hence, for IX(ejkx)1 :::;/3:

(3.44)

or

H(ejkx) = /3exp(jLX(ejkx)). (3.45)

• Case 2: H; +Hl > /32

In this case, A = 0 and from Eq. (3.35), Hr = X; while from Eq. (3.36), Hi = Xi'

Therefore, for IX(ejkx)1 > /3,

(3.46)

Therefore, the projection onto C3, i.e, PC3 can be given by the following equation:

X(ejkx), if IX(ejkx)1 > (1 - bp) for kx E kxp

PC3x +-+ (1 - bp) exp(jLX(ejkx)), if IX(ejkx)1 :::; (1 - bp) for kx E kxp (3.47)

X (ej kx ), otherwise.

Projection onto C4: Our objective is to find the minimum projection with respect to h

subject to the constraint given in C4 for an arbitrary x E c=, where x et C4• That is:

(3.48)

subj ect to IH (ej kx ) I :::; (1+ bp) where X (ejkx) is the DSFT of x. For simplicity, denote

the 1 + bp as 0:. The following Lagrangian equation in the DSFT domain is:
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Again, let X; = 3?{X(eikx)}, Xi = 8'{X(eikx)}, Hr

8'{H(eikx)}. Then, Eq. (3.49) can be rewritten as

The Kuhn-Tuker conditions are [97]:

- 0 (3.51)

- 0 (3.52)

and the constraint is

(3.53)

(3.54)

Once again we have two cases:

• Case 1: H2 + H~ = a2r ~

From Eq. (3.51), we will solve for Hr to get

Xr
Hr=--' I-A (3.55)

Similarly, we can use Eq. (3.52) to obtain Hi:

(3.56)
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By substituting Eq. (3.55) and Eq. (3.56) into H; + H; = a2 and solving for A,

where A 2: 0, we get:

1- A= _ X;+X;
a2

(3.57)

Therefore, by substituting Eq. (3.57) into Eq. (3.55) and Eq. (3.56), respectively:

H = _a Xr
r JX2+X~r t

(3.58)

and
X·H. = _a t

t JX2 +X~r t

(3.59)

Hence, for JX(ejkx)J 2: a:

(3.60)

or

(3.61)

In this case, A = 0 and from Eq. (3.51), Hr = X; while from Eq. (3.52), Hi = Xi.

Therefore, for JX(ejkx)J < a,

(3.62)

Therefore, the projection onto C4, i.e, PC4 can be given by the following equation:

X(ejkx), if JX(ejkx)J < (1 + bp) for kx E kxp

PC4x +-4 -(1 + bp) exp(jLX(ejkx)), if JX(ejkx)J 2: (1+ bp) for kx E kxp (3.63)

X (ej kx ), otherwise.
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By the same argument given for the constraint set C4, it can be shown that the projection

of an arbitrary vector x E c«, where x ~ C5 is given by

X(eikx), if IX(eikx)1 < 88 for kx E kxs

PC5x +-t -88 exp(jLX(eikx)), if IX(eikx)1 2: 88 for kx E k«, (3.64)

X (eikx ), otherwise.

By considering each of the above projection operators, namely, PCi where i = 1" .. ,5,

we can see that they are consistent with our desired feasible solution (required migra-

tion FIR digital filter characteristics). For example, PCI will truncate over the impulse

response to be of a length of N. Also, during the iterations, PC4 for example will limit

the upper bound of the migration FIR filter with a magnitude response greater than 1+8p•

The same will apply for the remaining operators.

3.4 The Pure Projection Design Algorithm for I-D Mi-

gration Complex-Valued FIR Filters

Based on Eq. (3.8) given in theorem 1, the pure projection design algorithm for designing

1-0 seismic migration complex-valued FIR digital filters is given by

(3.65)

where PCl' PC2, PC3, PC4 and PCs are given in Eqs. (3.13), (3.31), (3.47), (3.63) and

(3.64) respectively. More explicitly, the design algorithm can be described as follows.

Start with an arbitrary complex-valued vector ho of dimension M . Then for the kth

iteration perform the following steps:
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1. Using Eq. (3.64), project h, onto C5, that is

Hk(ejkx), if IHk(ejkx)1 < s, for kx E kx.

gl,k = PC5hk f-+ -s, exp(jL.Hk(ejkx)), if IHk(ejkx)1 2: s, for kx E kx.

Hk(ejkx), otherwise.
(3.66)

2. Project gl,k onto C4 using Eq. (3.63)

G1,k(ejkx), if IG1,k(ejkx)1 < (1 + bp) for kx E kxp

-(1+ bp) exp(jL.G1,k(ejkx)),

if IG1,k(ejkx)1 2: (1 + op) for kx E kxp

G1,k(ejkx). otherwise.

(3.67)

3. Project g2,k onto C3 using Eq. (3.47)

G2,k(ejkx), if IG2,k(ejkx)1 > (1 - op) for »; E kxp

(1 - op) exp(j L.G2,k (ejkx)),

if IG2,k(ejkx)1 ~ (1 - op) for i; E kxp

G2,k(ejkx), otherwise.

(3.68)

4. Project g3,k onto C2 using Eq,. (3.31)

IG3,k(ejkx)1 cos ((}C3,k - ¢(kx)) exp(j¢(kx)),

if cos ((}C3k - ¢(kx)) 2: 0

-IG3,k(ejkx)1 cos ((}C3,k - ¢(kx)) exp(j¢(kx)),

if cos ((}C3,k - ¢(kx)) < O.

(3.69)

5. Finally, project g4,k onto Cl using Eq. (3.13)

{

g4,k[nj, for 1nl ~ (N - 1)/2
hk+1 = PC1g4,k =

0, otherwise.
(3.70)
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If the mean-square error between hk+ 1 and hk is less than or equal to a pre-defined thresh-

old E, then stop the algorithm. Otherwise, repeat steps 1 - 5.

3.5 The Relaxed Projection Design Algorithm for I-D Mi-

gration Complex-Valued FIR Filters

We can speed up the convergence of the pure projector algorithm by using the relaxed

projector operator given in Eq. (3.5) and the algorithm given in Eq. (3.7) in theorem 1.

In addition, recall that when the relaxation parameter Ai for the constraint set C, is equal

to 1, the relaxed projector simply becomes the pure projector. Note also that Ai must be

in the set interval (0, 2). It is reported that the relaxation parameters for more than two

constraint sets cannot be determined except heuristically [91, 90, 98, 89]. Based on the

derived pure projectors, however, for each projection operator we can examine how the

choice of relaxation parameters can affect the convergence of iterations within the interval

(0,2) [89].

For all previously derived projectors, these intervals were determined and after several

experiments, it turns out that the most important projectors which significantly reduce the,

number of iterations for designing our I-D seismic migration FIR digital filters are the

constraint sets C2 and C3. By fixing Al = A4 = A5 = 1, and varying A2 and A3 with

respect to their determined intervals, we can expect to achieve faster convergence with

the relaxed projection algorithm than with the pure projection algorithm that was given in

Eq. (3.65). Therefore, the following is the relaxed algorithm of Eq. (3.65):

(3.71)

where TC2 and TC3 are the relaxed projectors associated with C2 and C3, respectively. 'DIe

following subsections will mathematically find the intervals for both A3 and A2 for which
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the algorithm in Eq. (3.71) is expected to converge faster than the algorithm given in Eq.

(3.65):

3.5.1 Relaxed Projection for C3

We can relax Eq. (3.47) to get

X(ejkx), if IX(ejkx)1 > (1 - bp) and kx E kxp

(1 - A3)X(ejkx) + A3(1- bp) exp(jLX(ejkx)),

if IX (ej»; ) I :::; (1 - bp) and »; E kxp

X (ejkx ), otherwise.

(3.72)

Now, we are left to show what bounds should be placed on the relaxation parameter A3'

We can rewrite the real part of the relaxed projection in Eq. (3.72) as:

(3.73)

and the imaginary part as:

(3.74)

where X; = ~X(ejkx), Xi = ~X{ejkx), and Ox = LX(ejkx). Recall that 0 < bp < 1,

which implies that 0 < 1 - bp < 1.

Case 1:

0< A3 < 1 (3.75)

. which implies

0< 1 - A3 < 1. (3.76)

For Xr, if X; > 0 =} cos(Ox) > 0, then multiplying Eq. (3.76) by X; gives

(3.77)
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and multiplying Eq. (3.75) by (1 - c5p) cosUJx):

(3.78)

Now, using Eq. (3.77) and Eq. (3.78), we get:

On the other hand, if X; < 0 ~ cos(t9x) < 0, thenmultiplyingEq. (3.76)by -Xr

gives:

(3.80)

and multiplying Eq. (3.75) by -(1 - bp) cos(t9x) gives:

Using Eq. (3.80) and Eq. (3.81), we will have:

Similarly, for Xi, we can show that if Xi'> 0 ~ sin( 19x) > 0, giving

If Xi < 0 ~ sin(t9x) < 0, then

Hence, Eq. (3.79), Eq. (3.82), Eq. (3.83), Eq. (3.84) indicate that the pure projector

PC3 will converge faster than the relaxed projector TC3 if 0 < A3 < 1.
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Case 2:

1 < A3 < 2. (3.85)

This implies

-1 < 1- A3 < O. (3.86)

For Xr, if X; > 0 ::::}cos(Ox) > 0, then multiplying Eq. (3.86) by X; gives

(3.87)

and multiplying Eq. (3.85) by (1 - 6p) cos(Ox) yields:

(1 - 6p) cos(Ox) < A3(1 - 6p) COS (Ox ) < 2(1 - 6p) cos(Ox). (3.88)

Now, using Eq. (3.87) and Eq. (3.88) gives:

On the other hand, if X; < 0 ::::}cos(Ox) < 0, then multiplying Eq. (3.86) by - X;

yields

o < -(1 - '\3)Xr < X; (3.90)

and multiplying Eq. (3.85) by -(1 - 6p) cos(Ox) gives

-2(1- 6p) cos(Ox) < -A3(1- 6p) cos(Ox) < -(1- 6p) cos(Ox). (3.91)

Using Eq. (3.90) and Eq. (3.91) gives:

-(1 - A3)Xr - A3(1- 6p) cos(Ox) < -(1 - 6p) cos(Ox). (3.92)

Similarly, for Xi, we can show that if Xi > 0 ::::}sin (Ox ) > 0, then



3.6. The Modified Projection Design Algorithm for 1-D Migration Complex-Valued FIR
Filters 68

and if Xi < ° => sin(ex) < 0, then

According to Eq. (3.90), Eq. (3.92), Eq. (3.93), and Eq. (3.94) then if >'3 E (1,2), the

relaxed algorithm converges faster than the pure one.

3.5.2 Relaxed Projection for C2

Similarly, the relaxed version of the projection in Eq. (3.31) can be written as:

(1 - >'2)X(ejkx) + >'2IX(ejkx)1 cos (ex - ¢(kx)) exp(j¢(kx)),

if cos (ex - ¢(kx)) ~ 0

(1 - >'2)X(ejkx) - >'2IX(ejkx)1 cos (ex - ¢(kx)) exp(j¢(kx)),

if cos (ex - ¢(kx)) < o.

(3.95)

Following similar steps to obtain the relaxation parameter >'3 for the relaxed projector Tea,

it can be shown that for cos (ex - ¢(kx)) ~ 0, >'2 will lie within (0, 1) if cos(¢(kx)) ~. 0

or sin(¢(kx)) ~ O. Otherwise, >'2 = 1. On the other hand, for cos (ex - ¢(kx)) < 0, it

can be shown that if cos(¢(kx)) ~ 0 or sin(¢(kx)) ~ 0, then >'3 E (0,1). Otherwise,

>'2 = 1.

3.6 The Modified Projection Design Algorithm for I-D

Migration Complex-Valued FIR Filters

It was empirically shown [21, 23, 22] that the pure projection algorithm for real-valued

FIR filter design results in an approximate equiripple frequency (wavenumber) response.

Furthermore, the results of migrating synthetic seismic sections using the Remez ex-

change filters like the one shown in [14], yields migrated images containing background

artifacts. It is claimed that these little background artifacts are due to the passband magni-

tude spectrum ripple of the designed filters [14]. Therefore, it is expected that migration
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results using the pure or the relaxed projection algorithms given in Eq. (3.65), and Eq.

(3.71), respectively, will also contain such undesirable artifacts. Moreover, we can see

that PCl is simply a truncation process on the output of the previous projections, where

we have implicitly applied a rectangular window. We can solve such problems by mod-

ifying the projection onto Cl where we employ one of the standard space/time-domain

windows like Hamming, Hanning, or Kaiser windows that ultimately eliminate this ef-

fect. It can be shown that by employing a window for the projection onto the constraint

set Cl, Cl will remain closed and convex. That is because after applying the window (the

new projection), the projection still results in a finite extent vector of dimension M with

at most N non-zero values that are of even symmetry with respect to the n = 0 axis.

In our case, the Kaiser window will be used since it is considered to be optimal in the

sense that it has the largest energy in the main lobe for a given peak side lobe level, and

we can easily control the passband and evanescent ripples [84, 83, 99, 100]. Also, the

Kaiser window can be considered as a more general window that includes other windows

(as special) such as rectangular, Hamming, and others, depending on its shape parame-

ter defined below [84]. The simulation results on synthetic seismic sections will show the

non-existence of such artifacts and will also show that the number of iterations for design-

ing such filters will be reduced with a number even smaller than the relaxed projector case.

This reduction in the number of design iterations can be explained since the window

applied in the space domain has significantly reduced the energy in its side lobes in the

wavenumber domain. This means that we will achieve the desired minimum ripple within

the operator wavenumber passband in a reduced number of iterations, i.e., it will be closer

to the desired seismic migration filter and, therefore, will speed up the algorithm. Mathe-

matically, Eq. (3.13) can be rewritten as:

(3.96)
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where the rectangular (or boxcar) window is defined as:

{

1, for 1nl ~ (N - 1)/2
WR=

0, otherwise.
(3.97)

But rather than using Eq, (3.97) for the projection onto Cl, we will use:

{

10[l3y/1-(~)21 for 1nl < (N - 1)/2
WK = 10[13]' -

0, otherwise
(3.98)

where 10['] is the modified zero-order Bessel function of the first kind, /3 is the shape

parameter which determines the trade-off between the main-lobe and peak side-lobe level

[83, 84]. The value of /3 can be found using [83, 84]:

0.1102(A - 8.7), for A > 50

/3 = 0.5842(A - 21)°.4 + 0.07886(A - 21), for 21 ~ A ~ 50

0, for A < 21

(3.99)

where A = -20 IOglOos. Hence, the new projection onto Cl will be:

(3.100)

3.7 Simulation Results

This section is divided into two main subsections. The first subsection deals with design-

ing I-D seismic migration FIR digital filters. The second section shows an application

of the proposed VSPM I-D seismic migration FIR filter design algorithms to 2-D syn-

thetic seismic sections. Perhaps it is worth mentioning that the results obtained in all our

simulations are not restricted to the filters' chosen parameters, but can apply to all cases.

Finally, note that all the simulations are preformed in MATLAB which is installed on a

Pentium 4 machine with a speed of 2.6 GHz and with a RAM of 1GB.
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3.7.1 I-D Migration FIR Filter Design Using Vector Space Projection

Methods Simulations

For the 1-D seismic migration filters, we will show several investigated simulations for

filters designed using the pure projections given in Eq. (3.65), the relaxed projections

given in Eq. (3.71), and the modified projection algorithm given in section 3.6. This will

include some comparisons with other reported 1-D complex-valued seismic migration

FIR filters. For the wavenumber response figures, only half the spectrum will need to be

shown since the filters are even symmetrical with respect to the kx = 0 axis. Also, note

that all designed filters which are shown in the following subsections are designed based

on normalized wavenumbers.

3.7.1.1 Simulation 1:I-D Migration Filter Design Using Pure, Relaxed, and Modi-

fied Projections Comparisons

The objective of this experiment is to compare the 1-D complex-valued seismic migration

FIR digital filter designed using the pure, the relaxed, and the modified projection algo-

rithms previously derived and discussed in sections 3.4, 3.5, and 3.6, respectively. Also,

we want to show that all designs satisfy our migration FIR filter requirements (see Figure

2.23).

The filter parameters were chosen based on [10, 14] as follows: kcp = 0.25, kc• =

0.3347 for both the pure and relaxed projectors, kc• = 0.3429 for the modified projector,

op = Os = 10-3, an odd length of N = 39 and a Hilbert space dimension of (number of

FFT points) M = 256. Figure 3.2 (a) shows the magnitude response for designed filters

where all the designs satisfy constraint sets C3, C4, and C5• We can also observe that,

when compared to the designed filters using the pure and relaxed projectors, the modified

projection designed filter possesses a larger transition bandwidth as would be expected

due to usage of the Kaiser window given in Eq. (3.98). Figure 3.2 (b) shows the phase

spectrum within the passband for the three designed filters where they satisfy the con-

straint set C2• The phase difference error between the desired and designed filters in the
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Figure 3.2: I-D Seismic migration FIR filters (see section 3.7.1.1) designed using the
proposed pure, relaxed, and modified projection algorithms with N = 39, kc

p
= 0.25,

6p = 68 = 10-3, and t = 10-12 (a) Magnitude response, (b) Phase response, and (c)
Phase response error between the ideal and designed filters. Clearly, all designs satisfy
the I-D seismic migration FIR filter requirements in C2, C3, C4, and C5.

passband is shown in Figure 3.2 (c) where the pure as well as the relaxed passband phase

results possess an oscillatory nature, unlike the modified design approach.

The real and imaginary parts of the impulse response given in Figure 3.3 (a) and Fig-

ure 3.3 (b) (for all three filters) show that they satisfy the space domain constraint Cl.

However, the filter coefficients (solutions) are not identical but satisfy the wavenumber

response constraint sets as well as being of finite length equal to 39, i.e., all the designs
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yield different solutions from the same solution set Co.

Finally, Figure 3.4 plots the mean-square error between consecutive iterations versus

the number of iterations required to meet the pre-defined stopping threshold e = 10-12

for all three designed filters. The algorithms required 1078, 146,56 iterations to converge

with this value of € for the pure, relaxed, and modified projection algorithms, respectively.

While the relaxed projection algorithm required 86.46% less number of iterations as com-

pared to the pure projections design algorithm, the modified projection algorithm saved

94.81% of the number of iterations when compared to the pure projection algorithm and

61.64% when compared to the relaxed projection algorithm. One last point to notice is

that since the relaxed projector is not a true projector [22], its convergence curve shown

in Figure 3.4 is not smooth (uniformly converging) when compared to the pure/modified

projection algorithm convergence curve.

3.7.1.2 Simulation 2: Passband Phase Absolute Error Tests

A set of filters were designed using the modified projection algorithm given in section

3.6 for N = 39 and M = 256, bp = S, = 10-3, and € = 10-12 but with different

wavenumber cut-off's ranging from 0.2 till 0.35 with a step size of 0.05. The objective

of this experiment is to show the effect of varying the filter bandwidth on the filter's

phase spectrum and the mean absolute passband phase errors between the desired and

designed filters. For each phase, this error is calculated in two regions as illustrated in

Figure 3.5. The left hand side (LHS) of the vertical solid line is the error up to 88% of

the passband width while the right hand side (RHS) of the vertical solid line is the error

for the remaining passband width. This is to show how much phase error exists near the

cut-off wavenumber. These errors are displayed on the phase response figures as shown

in Figure 3.5. The LHS error will be always smaller than the RHS. Also, one can notice

that the error will approach zero as the cut-off approaches 0.5, i.e., as the filter becomes

an all pass filter.
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Figure 3.3: The impulse response for the designed filters (see section 3.7.1.1) using the
proposed pure, relaxed, and modified projection algorithms with N = 39, kc

p
= 0.25,

Op = Os = 10-3, and E = 10-12. (a) The real part, and (b) the imaginary part. The designs
satisfy the I-D seismic migration FIR filter requirement in Cl.

3.7.1.3 Simulation 3: Comparisons with Previously Reported I-D Migration FIR

Filters

In order to evaluate the proposed algorithms, I-D seismic migration FIR digital filters

have been designed using the modified Taylor series method (with 8 derivatives)' reported

IWe have reproduced the modified Taylor series design algorithm.
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Figure 3.4: The mean-square error between hk+l and hk versus the number of iterations
for the designed (see section 3.7.1.1) 1-D seismic migration filter using the proposed pure,
relaxed, and modified projection algorithms with N = 39, kcp = 0.25, op = Os = 10-3,
and E = 10-12. The pure and modified projection curves are uniformly converging. How-
ever, the relaxed curve is not. This is because relaxed projectors are not true projectors.
Finally, the 1-D modified projection algorithm convergence curve shows a significant re-
duction in the computations required to design our I-D migration FIR digital filters when
compared with the two other design algorithms.

in [12], the complex Remez design algorithm (with a passband weight of 60)2 reported in

[19,20], and our proposed modified projection ,algorithm. All filters were designed with

the same filter parameters: N = 29,1and kcp = 0.25. Figure 3.6 (a) shows the magnitude

response for these filters. Clearly, the magnitude response for both the modified Tay-

lor series method and the modified projection algorithm have a flatter magnitude response

within the passband and are smoothly decaying to zero within the stopband as compared to

the complex Remez exchange algorithm. This can be seen clearly in Figure 3.6 (b) where

the passband magnitude response error for the modified projection and modified Taylor

series methods are very close to zero whereas the error is oscillating between -0.005

and 0.01 for the complex Remez exchange algorithm designed filter. Unlike the complex

Remez exchange algorithm, this results in more stable migration images using both the

modified projection algorithm as well as the modified Taylor series method. However,

2For this method, we used the built-in MATLAB function called CFIRPM.
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Figure 3.5: The ideal and designed filter's phase responses (see section 3.7.1.2) using
the proposed modified projection algorithm in section 3.6 with bp = bs = 10-3, and
E = 10-12 for N = 39. LHS and RHS denote the mean absolute passband phase error in
the region to the left and to the right of the vertical solid line that is positioned at 0.88kcp'
respectively. These filters are designed with cut-off's at (a) kcp = 0.2, (b) kcp = 0.25, (c)
kcp = 0.3, and (d) kcp = 0.35. The error decreases as the filter becomes an all-pass.

from Figure 3.6 (b) the modified projection filter accommodates higher propagating an-

gles. This is because it starts to attenuate signals at wavenumber values higher than those



3.7. Simulation Results 77

Table 3.1: Running time comparisons (see section 3.7.1.3) for the modified Projection,
modified Taylor Series, and the Complex Remez exchange algorithms using MATLAB
on a Pentium 4 of speed 2.6 GHz PC with RAM=1GB.

Method I Time (sec.)

Modified Taylor (L = 8) 3.705

Modified ProjectionAlgorithm 0.327

Complex Remez (Passbandweight= 60) 0.321

for the modified Taylor series filter.

Figure 3.6 (c) shows the phase response for all three designed filters compared to

the desired phase response. The modified projection phase is closer to the desired phase

response as compared to the other two methods' phase responses. This is seen more

clearly in Figure 3.6 (d) where the shown passband phase response errors indicate that the

modified projection phase response error is the smallest. This implies that by using the

modified projection filters the seismic events will be positioned more correctly than those

migrated via the other two algorithms.

Finally, Table 3.1 compares the time required to design such filters in MATLAB on

a Pentium 4 of speed 2.6 GHz PC with RAM=1GB. It can be seen that, for the afore-

mentioned filter specifications, the complex Remez algorithm is the fastest (0.321 sec-

onds) as compared to the other two methods while the modified Taylor series method is

the slowest (3.705 seconds). This is because the modified Taylor series method required

(L = 8) ~ ((N + 1)/2 = 15) symbolic derivatives for having such a desired response

[12]. The modified projection required 0.327 seconds, which is acceptable due to its

overall out-performing response when compared to the other two methods.
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Figure 3.6: I-D seismic migration FIR filters designed (see section 3.7.1.3) using the pro-
posed modified projection, the modified Taylor series, and the complex Remez exchange
algorithms with N = 29, and kcp = 0,25. (a) Magnitude response, (b) Magnitude re-
sponse error within the passband, (c) Phase response, and (d) Phase response error within
the passband.

3.7.2 2-D Seismic Migration Synthetic Experiments

Here we present two basic experiments on synthetic seismic data in order to test our

proposed modified projection FIR filters where we also compare them with the stable

modified Taylor series method [12].
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Table 3.2: FIR filter coefficients (see section 3.7.2.1) lengths for the proposed modified
projectors showing the accuracy of migration up to certain dip angles.

N Dip-angle (degrees)

19 60°

3.7.2.1 2-D Seismic Impulse Responses

The objective of this simulation is to test the accuracy of our modified projection seismic

migration FIR filters via seismic impulse responses. Also, we want to compare such re-

sults with those migrated via the modified Taylor series method. The synthetic seismic

image input is a zero-offset section with only three zero-phase Ricker wavelets centred

at 0.3, 0.6, and 0.9 seconds located on the middle offset trace (zero-offset trace). In this

experiment, boz = 2 meters, and box = 10meters for a range of 2000 meters. The time

sampling interval was bot = 4 msec, C = 10QOmeters/sec, and a maximum frequency

of 80 Hz. Figure 3.7 shows the 2-D migrated synthetic sections using the modified pro-

jection algorithm with op = Os = 10-3, t = 10-12 and M = 512 for (a) N = 19 with

an approximate resulting dip angle of 60°, (b) N = 29 with an approximate resulting

dip angle of 69°, (c) N = 39 with an approximate resulting dip angle of 73°. Table 3.2

summarises the relationship between the dip angles and the filter length.

For the same zero-offset experiment mentioned above, the relaxed projection design

algorithm (see section 3.5) and the Taylor series method where used to migrate such a

synthetic seismic section for N = 29. Figure 3.8 (a) shows the 2-D migrated synthetic

section using the relaxed projection algorithm for N = 29. Figure 3.8 (b) shows again the

2-D migrated synthetic section using the modified projection algorithm for N = 29 and



3.7. Simulation Results 80

Lateral position [m]

(a)
Lateral position [m]

o Lateral position [m]

(b) (c)

Figure 3.7: 2-D Migrated synthetic sections (see section 3.7.2.1) using the proposed modi-
fied projectors with 6z = 2 meters, 6x = 10 meters, 6t = 4 msee, C = 1000 meters/sec,
and up to a maximum frequency of 80 Hz. The filters parameters are op = Os = 10-3, and
E = 10-12 for (a) N = 19 with an approximate resulting dip angle of 60°, (b) N =29
with an approximate resulting dip angle of 69°, and (c) N = 39 with an approximate
resulting dip angle of 73°.

Figure 3.8 (c) shows the 2-D migrated synthetic section using the modified Taylor series

algorithm [12]. Note that a nonlinear gray scale mapping is used to highlight the back-

ground artifacts for all migration impulse response images. Clearly, the modified Taylor

series method attenuates propagating waves having angles more than approximately 560,

unlike the case for the proposed relaxed and the proposed modified projection methods

where they accommodate propagation angles up to approximately 69° for the same filter

length. However, the migration impulse response using the relaxed (or the pure) pro-
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Figure 3.8: 2-D Migrated synthetic sections (see section 3.7.2.1) with 6z = 2 meters,
6x = 10 meters, 6t = 4 msec, C = 1000 meters/sec, and up to a maximum frequency
of 80 Hz where the filters' parameters are 6p = 68 = 10-3, E = 10-12 and M = 512 for
N = 29 with an approximate resulting dip angle of 69° using (a) the proposed relaxed
projection algorithm, (b) the proposed modified projection algorithm and for Cc)the mod-
ified Taylor series algorithm where N = 29 with an approximate resulting dip angle of
56°.

jections contains undesirable artifacts as described in section 3.6 as well as requiring a

greater number of FFT computations to design the same migration filters when compared

with the modified projection algorithm. Thus, using the modified projection design algo-

rithm for designing the explicit depth wavefield extrapolators resulted in the best image

when compared to the other two methods, and also with less computational effort.
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Figure 3.9: (a) A 2-D synthetic time-space section containing dipping events with angles
00,300,500,600,700 and 800. This section is constructed based on a Ricker wavelet in-
put with a dominant frequency of 15 Hz and with a time duration of 0.2 seconds. 2-D
Migrated synthetic sections (see section 3.7.2.2) containing dipping events with angles
00,300,500,600,700 and 800 for (15) the modified projection algorithm with N = 29, and
(c) the modified Taylor series method with N = 29.

3.7.2.2 2-D Seismic Extrapolation on Synthetic Data Containing Dip Events

The same set of filters designed using the modified projection algorithm and the modified

Taylor series method for the impulse response experiments in the previous subsection are

used to migrated a synthetic time-space seismic section shown in Figure 3.9 (a). This

section contains dips with angles: 00, 300, 500, 600, 700 and 800 and is constructed based

on a Ricker wavelet input with a dominant frequency of 40 Hz and with a time duration

of 0.2 seconds. Figure 3.9 (b) shows the migrated section using the modified projection

algorithm which clearly has accommodated dips up to 700 and a little of the 800 dip. On
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the other hand, the modified Taylor method in Figure 3.9 (c) attenuates dips above 60°

and introduces background artifacts. These results can be explained since the modified

Taylor passband magnitude response propagates wavefields with much smaller angles

when compared to the modified projection operator as in Figure 3.6 (b) and Figure 3.8

(b) and (c). Note that again we have used a nonlinear gray scale mapping to highlight the

background artifacts for both migrated images.

3.8 Discussion

There are many practical issues that need to be clarified for the design of the I-D seismic

migration FIR digital filters using the VSPMs. One of these is the initialization of the

algorithm. As reported in [89, 91, 21], a good choice is to start with an approximation

of the ideal filter response to initialize the algorithm. This is obtained by inverse Fourier

transforming the ideal filter wavenumber response into the space domain. By doing so, a

saving in the number of iterations will be obtained [89,91].

Furthermore, the design of our migration filters requires implementation in the wavenum-

ber domain of the constraint sets Ci, where i = 2, ... ,5. Ideally, they should be imple-

mented (realized) on a discrete wavenumber grid via the Discrete Space Fourier Trans-

form (DSFT). An M -length DSFT is implemented using the FFT algorithm for which M

is much greater than the FIR filter spatial length N. The choice of M 2: 10 x N (M is a

power of 2 for the FFT algorithm) results in satisfactory designs so that a we have an M

discrete wavenumber values over the normalized wavenumber interval.

In addition, for the pure and relaxed design algorithms in sections 3.4 and 3.5, respec-

tively, the stopband cut-off wavenumbers are chosen based on the transition bandwidth

calculation of a low pass filter given in [21, 7] which can be computed essentially using:

-2010g10 ~ -13
!:l.kc = (N - 1)14.6 (3.101)
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where kc• = kcp + D.kc. This is because we need to have, for a given filter length N, a

limit for our maximum allowable passband and stopband tolerances, i.e., ~p and ~8' re-

spectively, to achieve stable migrated images of the sub-earth. Similarly, for the modified

projection algorithm in section 3.6, the stopband cut-off wavenumbers are chosen based

on the transition bandwidth calculation of a low pass filter for the Kaiser window given in

[84] which equals:
D.k = -20 10glO ~s - 7.95

c 14.36N (3.102)

Finally, for the relaxation parameters in section 3.5, we have used an ad hoc way of

adaptively changing the relaxation parameters A2 and A3' To be more specific, for A2 and

depending upon the conditions shown in subsection 3.5.2, we used:

(3.103)

where the iteration value k = 2,3, .. '. So this will let A2 starts at a value less than one

and continue to decrease till zero. Similarly, for A3 defined in subsection 3.5.1, we used:

(3.104)

where k = 2,3, ... and, in this case, the relaxation parameter A3 will start with at a value

greater than 1 and continue to increase with the number of iterations. In both cases, several

experiments were implemented based on the relaxed projection algorithm in section 3.5

with many relaxation parameters. The values of filter lengths and their corresponding

used relaxation parameters were recorded. Finally, in each case, we used curve fitting to

obtain Eqs. (3.103) and (3.104).

3.9 Conclusion

The pure and relaxed projectors have been derived and used to design I-D complex-valued

seismic migration FIR filters where two FFT computations per iteration are required tor

the design. The proposed relaxed projection algorithm has significantly reduced the num-
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ber of iterations by 86.46% as compared to the proposed pure projection algorithm for the

same filter parameters and for the same stopping threshold. Also, the modified version of

the pure projection has been proposed and used to eliminate the undesirable background

artifacts on migrated sections. This modification also has led to a significant reduction in

the number of FFT computations by 94.81% when compared to the basic derived VSPM

design algorithm and by 61.64% when compared to the relaxed VSPM design algorithm.

The designed filters satisfy all the frequency-space seismic migration FIR filter re-

quirements. In other words, using such robust filter designs, we achieved stable migration

sections for the w - x migration method, which is used for laterally varying media. Also,

such designed filters accommodate high propagation angles when compared to other re-

ported methods, such as the modified Taylor series method, and with less numerical back-

ground artifacts. As an example, 2-D seismic migration experiments show that one can

use a I-D seismic migration FIR filter designed using the modified projection algorithm

of 29 taps to accommodate dip angles up to 69°. Finally, as will be shown in chapter 4,

these algorithms can be extended to 2-D seismic migration FIR filters which can be used

for the migration of 3-D seismic volumes.
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Chapter 4

Two-Dimensional Migration

Complex-Valued FIR Digital Filter

Design Using Vector Space Projection

Methods

4.1 Introduction

There exist plenty of 1-D seismic migration FIR filter design techniques [14]. Unless

using a filter transformation, however, it is difficult to extend most of those design al-

gorithms to the design of 2-D seismic migration FIR filters (see [24, 36, 26] and sec-

tion 2.4.5.2). The VSPM theory was proposed for designing 2-D zero-phasellinear-phase

(real-valued) finite length FIR filters responses on rectangular grids [21],[22] as well as

on hexagonal grids [23].

In the previous chapter, we proposed new 1-D seismic migration FIR filter design

algorithms based on the VSPMs theory. Such FIR filters met all the required migration

(extrapolation) characteristics and are suitable for the migration of 2-D seismic sections.

But since earth is 3-D and due to the advances in computing technology, we are in need to
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design true 2-D seismic migration FIR filters for the migration of 3-D seismic volumes.

Seismic volumes which are migrated based on true 2-D migration FIR filters are expected

to result in superior sub-earth volumes and the exploration risks are therefore reduced.

In this chapter, we extend the design algorithm of frequency-space explicit depth mi-

gration FIR digital filters using the method of VSPM which was reported in chapter 3 for

the migration of 3-D seismic volumes. In addition to the explicit depth migration required

characteristics defined previously (Figure 2.23), these 2-D FIR filters must possess circu-

lar symmetry with respect to their wavenumber responses. Simulation results show that

by using the 2-D relaxed version of the basic derived 2-D pure algorithm for designing

such 2-D FIR filters, we can save up to 56.45% of the design iterations- i.e., number of

FFf computations. The 2-D modified version of the 2-D pure design algorithm saves

95.72% of the number of 2-D FFf computations used to design the same 2-D migration

FIR filters using the 2-D pure design algorithm and 90.18% with the one designed us-

ing the 2-D relaxed projection design algorithm. The use of such seismic migration FIR

digital filters designed using the pure, the relaxed, and the modified projections, where

they are suitable for laterally varying velocities, result in stable migration images. Also,

they accommodate high propagation angles with short length filters and with less numer-

ical background artifacts on migrated sections. The filters, in addition, possess circular

symmetry with respect to their wavenumber responses when compared with the standard

techniques used in the geophysics community for designing/implementing such FIR fil-

ters, namely, the McClellan transformations [12, 1]. 3-D migration impulse responses

show that 2-D filters of 25 x 25 taps designed using the proposed 2-D modified projection

design algorithm accommodate dip angles up to 65°. Such responses result in less numer-

ical artifacts and possess perfect circular symmetry when compared with those migrated

via the McClellan transformations [36,26].

In this chapter, the 2-D migration FIR filter for 3-D Seismic data is introduced in

section 4.2. In section 4.3, the most widely used approach for designing 2-D seismic mi-
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gration FIR digital filters, i.e., the McClellan transformation and its improved version are

briefly presented. After that, sections 4.4,4.5, and 4.6 state the pure, relaxed, and modi-

fied projection design algorithms for designing the 2-D complex-valued seismic migration

FIR digital filters. Simulation results are given in section 4.7. After that, a discussion is

given in 4.8 and, finally, section 4.9 summarizes the main contributions of this chapter.

4.2 2-D Migration FIR Filters for 3-D Seismic Data

Similarly to the 2-D migration (extrapolation) process presented in section 2.4.5, 3-D

depth extrapolation is performed, one angular frequency Wo at a time, using 2-D migration

filters. The wavenumber response Hd( ejkx, ejky) can easily be obtained from the I-D

migration wavenumber response Hd( ejkx) based on [12, 1]:

(4.1)

where kx is the in-line wavenumber and ky is the cross-line wavenumber, Dox and Doy

are the in-line and cross-line spatial sampling intervals, respectively, Doz is the migration

depth step size, Dot is the time sampling interval, and, finally, Co is the velocity of the

geological material. Assuming that Dox = 4y, the 2-D migration filter Hd(ejkx, ejky)

presented by Eq. (4.1) can be rewritten as:

(4.2)

where b = Doz/ Dox and kcp = ~~~ is the cut-off wavenumber. Clearly, the desired 2-D

wavenumber response is of circularly symmetry in the magnitude as well as for the phase

response and is non-linear.

To handle lateral variations, the frequency-space or the W - x - y migration of a

spatially sampled seismic wavefield U(Xi' Yj, ejw1, Zk) from depth Zk to Zk+1 = Zk + Doz is

performed independently for each frequency WI, by a direct 2-D spatial convolution with
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a designed 2-D non-causal quadrantally symmetrical N x N (N is odd) complex-valued

migration filter impulse response h[nl, n2] using [1, 13, 12, 14,75]:

(N-l)/2 (N-l)/2

U(xi,Yj,ejwl,zk+l) = L L h[nl,n2]u(Xi-nl'Yj_n2,ejwl,zk). (4.3)
nl=(-N+l)/2 n2=(-N+1)/2

4.3 The Design of 2-D Migration Complex-Valued FIR

Filters via McClellan Transformations

McClellan and Chen [38,40] have shown that a I-D FIR filter which is of odd length and

possessing even symmetry (which is the same for the seismic migration FIR filter impulse

response Eq. (2.17» can be represented by:

Ntl_l

Hd(dk) = h[O] + 2 L h[n]Cn(cos(nk))
n=l

(4.4)

where C; (x) is the nth order Chebyshev polynomial in X and k is a wavenumber (or

frequency) axis. Define the McClellan transformation as [38, 37, 101,40]:

cos(nk) - A cos(nkx) + B cos(nky) + C cos(nkx) cos(nky) + D

_ F(dkx, ejky). (4.5)

A, B, C and D are the filter transformation parameters. Now, by applying the McClellan

transformation in Eq. (4.5) to equation Eq. (4.4), we obtain:

Nf-l

Hd(ejkx, ejky) = h[O]+ 2 L h[n]Cn(F(ejkx, ejky))
n=l

(4.6)

where

(4.7)
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-1 -1 -1

Figure 4.1: Chebyshev structure for designing/realizing 2-D FIR digital filters based on
I-D odd length impulse responses having even symmetry.

and Cl = F and Co = 1. That is, I-D FIR filters are needed to be pre-designed and then

used in Eq. (4.6) to obtain the corresponding 2-D FIR filters.

As was shown in Eq. (4.2), ideally the 2-D migration filters are of circular symmetry.

Such filters may be designed and implemented by replacing cos( nk) with F( eikx , eiky) =

cos(nJk; + k~) [38,37,101,40, 10]. In general, an exact representation of F(eikx, eiky)

in the Chebyshev filter structure as shown in Figure 4.1 would result in a very high com-

putational cost [38]. Therefore, McClellan and Chen in [38] have suggested the approxi-

mation in Eq. (4.5) where A = B = C = -D = ~ are used for circularly symmetrical

wavenumber (frequency) response filters, i.e.,

(4.8)

This approximation is exact for kx = 0 or ky = 0 and is the DSFT of the compact 2-D

FIR filter:
1/8 1/4 1/8

1/4 -1/2 1/4

1/8 1/4 1/8

(4.9)

Now, using such a 2-D FIR filter in Figure 4.1, any I-D FIR filter can be transformed to

a 2-D filter with approximate circular symmetry. Figure 4.2 (a) represents a contour plot
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Figure 4.2: Contour plots for comparing exact (solid contour lines) and approximation
(dash dotted contour lines) of circularly symmetrical filters using (a) the original McClel-
Ian transformation, and (b) the improved McClellan transformation. Clearly, the error
increases along the line kx i:::::: kyo

of the response for an exact 2-D circular symmetry wavenumber response and the 2-D

approximation filter in Ego (4.8). It indicates that such a transformation for both magni-

tude and phase responses are exact for kx = 0 or ky = O. However, the approximation

exhibits increasing error with increasing k for kx ~ kyo Hale [12], who first introduced

the McClellan transformation to the geophysics, community, has suggested an increase in

the size of the 2-D transformation jilter given in Ego (4.9) by adding extra terms to the

approximation in Eq. (4.8). That is,

F( ejkx, e7ky) = -1 + ~(1 + cos( nkx)) (1+ cos(nky)) - ~(1 - cos(2nkx)) (1 - cos(2nky))

(4.10)
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which is the DSFf of:

-c/8 0 -c/4 0 -c/8

0 1/8 1/4 1/8 0

c/4 1/4 -(1 + c)/2 1/4 c/4 (4.11)

0 1/8 1/4 1/8 0

-c/8 0 -c/4 0 -c/8

and c ~ 0.0255 [12]. Figure 4.2 (b) represents a contour plot of the response for an

exact 2-D circular symmetry wavenumber response and a 2-D approximation filter in Eq.

(4.10). Again, such a transformation for both magnitude and phase responses are exact

for kx = 0 or ky = 0 but they still exhibit increasing error with increasing k for kx ~ kyo

This error, however, has been reduced when compared to the original transformation via

Eq. (4.9). Neither design, however, results in the perfectly circular symmetrical response

required by Eq. (4.2).

4.4 The Pure Projection Design Algorithm for 2-D Mi-

gration Complex-Valued FIR Filters

The I-D design algorithm for designing migration FIR digital filters (see section 3.4)

is extended here to the 2-D case which is given as follows. Note that for more details

about the constraint sets C, that describe the required migration FIR filter characteristics

and their associated projection operators Pc;, where i = 1"" ,5, refer to the previous

chapter in section 3.3. Now, assuming that we are interested in designing such filters for

rectangular grids, let k8 and kp respectively be the stopband (evanescent) and passband

regions and denote the exact phase response as c/J(kx, ky) = bV k~p - (k; + k~) where

kcp is the passband cutoff. Also, denote kc• as the stopband cutoff. Finally, let 6p and 68

respectively be the maximum allowable passband and stopband regions' tolerances. Now,

start with an arbitrary complex-valued vector ha of dimension M x M (M is the number
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of FFT samples), which is much greater than the spatial operator length N x N. Then for

the kth iteration

1. Project hk onto C5, that is

H k (ejk",, ej ky ), if AC5

gl,k = PC5hk ~ -68 exp(jLHk(ejk"" ejky)), if BC5 (4.12)

H k (ejk",, ejky ), otherwise

2. Project gl,k onto C4 using

G1,k(ejk"" ejky), if AC4

g2,k = PC4g1,k ~ -(1+ 6p) exp(jLG1,k(ejk"" ejky)), if BC4 (4.13)

G1,k( ejk"" ejky), otherwise

3. Project g2,k onto C3 using

G2,k(ejk"" ejky), if AC3

g3,k = PC3g2,k ~ (1 - 6p) exp(jLG2,k(ejkx, ejky)), if BC3 (4.14)

G2,k(ejk"" ejky), otherwise
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4. Project g3,k onto C2 using

IG3,k( ejkx, ejky) I

cos (OG3,k - ¢(kx, ky)) exp(j¢(kx, ky, )), if AC2

-IG3,k( ejkx, ejky) I

cos (OG3,k - ¢(kx, ky)) exp(j¢(kx, ky)), if BC2

(4.15)

where OG3,k = LG3,k(ejkx,jky), AC2 is cos (OG3,k - ¢(kx, ky)) > 0, and BC2 is

cos (OG3,k - ¢(kx, ky)) < O.

5. Finally, project g4,k onto Cl by

(4.16)

Now, if the mean-square error between h, and hk+1 is less than or equal to a pre-

defined threshold E, then stop the algorithm. Otherwise, repeat steps 1-5.

4.5 The Relaxed Projection Design Algorithm for 2-D Mi-

gration Complex-Valued 'FIR Filters

Similar to the I-D case (see chapter 3, section 3.5), we can expect to achieve faster con-

vergence with the 2-D relaxed projection algorithm than with the 2-D pure projection

algorithm by fixing the relaxation parameters Al = A4 = A5 = 1, and varying A2 and

A3 with respect to their pre-determined intervals. That is, we relax PC2 as TC2 and PC3

as Tc3. Therefore, the above 2-D pure projection design algorithm for 2-D migration

complex-valued FIR filters is used except for replacing step number 3 with:



4.6. The Modified Projection Design Algorithm for 2-D Migration Complex-Valued FIR
Filters 95

G2,k (ejkx , ejky) if AC3

g3,k = TC3g2,k +--+ (1 - A3)G2,k(ejkx, ejky) + A3(1 - bp) exp(jLG2,k(ejkx, ejky)) if BC3

G2,k(ejkx, ejky), otherwise
(4.17)

for A3 E (1,2) where AC3 is IG2,k(ejkx,ejky)1 > (1- bp), BC3 is IG2,k(ejkx,ejky)1 ~

(1 - bp) and kx, ky E kp. Also, step number 4 is replaced with:

(1- A2)G3,k(ejkx,ejky)

+A2IG3,k(ejkx, ejky)1 cos (()C3,k - ¢(kx, ky)) exp(j¢(kx, ky, )), if AC2

(1- A2)G3,k(ejkx,ejky)

-A2IG3,k(ejkx, ejky) I cos (()C3,k - ¢(kx, ky)) exp(j¢(kx, ky)), if BC2

(4.18)

where AC2 is cos (()C3,k - ¢( kx, ky)) ;::::0, and BC2 is cos (()C3,k - ¢( kx, ky)) < 0. For

cos (()C3,k - ¢(kx,ky));:::: 0,A2willbewithin(0,1)ifcos(¢(kx,ky));:::: Oorsin(¢(kx,ky));::::

0. Otherwise, A2 = 1. On the other hand, for cos (()C3,k - ¢(kx, ky)) < 0, and if

cos(¢(kx, ky)) ~ °or sin(¢(kx, ky)) ~ 0, then A3 E (0,1). Otherwise, A2 = 1.

4.6 The Modified Projection Design Algorithm for 2-D

Migration Complex-Valued FIR Filters

For the modified design algorithm, the 2-D pure design algorithm prestated in section 4.4

is used except that the projection of g4,k onto Cl is replaced by:

{

10[(3)1-( ~n_\)2]10[(3)1-( ~n_21)2]
94,k[n1, n2] 1

0
[(3] ,for 1nl, n21 ~ (N - 1)/2

hk+1 = PC1g4,k =
0, otherwise

(4.19)
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where 10[·] is the modified zero-order Bessel function ofthe first kind, and {J is the shape

parameter which determines the trade-off between the main-lobe and peak side-lobe level

(see [40] for more details).

4.7 Simulation Results

This section is divided into two main parts. The first subsection deals with designing 2-

D migration filters using the pure, relaxed and modified algorithms in sections 4.4, 4.5,

and 4.6, respectively. These designed filters are compared with those designed via the

McClellan and the improved McClellan (McClellan-Hale) transformations. The second

section shows an application of the proposed VSPM seismic migration FIR filter design

algorithms to 2-D synthetic seismic sections. Note that the results obtained in all our

simulations can apply to all cases and are not restricted to the filters' parameters chosen.

In addition, all the designed filters which are shown in the following subsections are

displayed with respect to their normalized wavenumbers. Finally, all the simulations are

preformed in MATLAB which is installed on a Pentium 4 machine with a speed of 2.6

GHz and with a RAM of 1GB.

4.7.1 2-D Migration FIR Filter Design Using Vector Space Projection

Methods

In this subsection, we want to compare the accuracy of the 2-D migration FIR digital

filters designed with the three extended projection algorithms given earlier. Also, we

want to compare those with the one designed by using the McClellan and the improved

McClellan transformations.

4.7.1.1 Simulation 1: 2-D Migration FIR Digital Filter Design Using the Pure, Re-

laxed, and Modified Projections Comparisons

A 25 x 25 2-D migration FIR filter is designed using the pure projection algorithm. The

filter parameters are as follows: kcp = 0.25, k., = 0.3841, and 8p = 88 = 10-3. Figure
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4.3 (a) shows the magnitude spectrum of such a filter which meets the filter magnitude

spectrum constrains, i.e, C3, C4, and C5• Moreover, Figure 4.3 (b) shows the phase spec-

trum in the passband for this designed filter where the phase in the passband is meeting

the constraint C2 requirements, i.e, being of circular symmetry. The design took 1286

iterations to converge with respect to € = 10-14•

Similarly to the designed 2-D migration FIR filter using pure projectors, a 25 x 25 2-D

seismic migration FIR filter is designed using the relaxed projection algorithm with the

same design parameters. The designed filter was obtained with 560 iterations and Figure

4.4 shows a similar result to Figure 4.3. This is an expected result since both filters (solu-

tions) are coming from the same solution set, which contains all possible filters satisfying

the same filter parameters.

Also, a 25 x 25 2-D migration FIR filter is designed using the modified projection

algorithm with the same parameters except for the stopband cut-off wavenumber which is

in this case kc• = 0.401. The 2-D modified projection algorithm took only 55 iterations

to converge with respect to € = 10-14• The obtained filter possesses a flatter magnitude

response as is clearly seen in Figure 4.5 (a) when compared with Figure 4.3 (a) and Figure

4.4 (a), respectively. The ripply effect has been removed even with respect to the phase

response as can be seen in Figure 4.5 (b) and when compared with Figure 4.3 (b) and

Figure 4.4 (b), respectively, resulting in a reduced phase error response. It should also be

noticed that the 2-D magnitude response of the modified projection algorithm possesses a

better circularly symmetrical shape when compared to those designed with the pure and

the relaxed projection algorithms.

Finally, Figure 4.6 plots the mean-square error versus the number of iterations required

to meet the pre-defined € = 10-14• Note that all curves shows a uniform convergence of

the three proposed design algorithms. When compared to the 2-D filter designed using

the pure projection algorithm, the relaxed projection algorithms has saved (in this case)
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56.45% of the FFT computations. Also, the modified projection algorithm has saved (in

this case) 95.72% of the FFT computations when compared with the pure design algo-

rithm, while it has saved 90.18% FFT computations when compared to the relaxed pro-

jection algorithm 2-D designed seismic migration filter. Thus, as in the case for the I-D

modified projection algorithm, the 2-D modified projection algorithm serves as a good

choice for migrating 3-D seismic volumes. This is due to the reduced computations of

the design, the circular symmetrical wavenumber response, and its magnitude response,

which is expected to result in stable migration volumes.

4.7.1.2 Simulation 2: Comparisons With the McClellan Transformations

In Figures 4.7 and 4.8 the same 2-D filters were obtained but this time with the McClellan

transformation and its improved version (refer to section 4.3). The I-D filters used to de-

sign these filters via the transformation were designed using the I-D modified projection

algorithm in section 3.6 with N = 25, k-; = 0.25, and 8p = 88 = 10-3. Clearly, the

magnitude response of the improved McClellan transformation in Figure 4.8 (a) shows

an improvement in the design when compared to the original McClellan transformation

magnitude response in Figure 4.7 (a). Also, since the pre-designed I-D migration filters

satisfied the migration FIR filter characteristics, it is expected that these designs result
,

in stable migration volumes. However, both designs are approximations to the true 2-D

design and, hence, will not result in perfect circular symmetry of migrated sections when

compared to the 2-D filters designed via the modified projection algorithm, as will be

shown in the next subsection. Nevertheless, such transformations are much cheaper to

design even when compared with the 2-D modified projection algorithm. Note that such

cheap design (implementation) techniques were proposed for migrating 3-D volumes to

speed up the migration process. That was at the time where the capabilities of computing

facilities were limited compared with today's.
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Figure 4.3: (a) Magnitude response of the pure projector designed 2-D seismic migration
filter, (b) Phase response of the pure projector designed 2-D seismic migration filter with
N = 25, kcp = 0.25, kcs = 0.3841, op = Os = 10-3, and E = 10-14 (see section 4.7.l.1).
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Figure 4.4: (a) Magnitude response of the relaxed projector designed 2-D seismic mi-
gration filter, (b) Phase response of the relaxed projector designed 2-D seismic migration
filter with N = 25, k-; = 0.25, kcs = 0.3841, 5p = 58 = 10-3, and E = 10-14 (see section
4.7.1.1).
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Figure 4.5: (a) Magnitude response of the modified projector designed 2-D seismic mi-
gration filter, (b) Phase response of the modified projector designed 2-D seismic migration
filter with N = 25, kcp = 0.25, k.; = 0.401, 6p = 68 = 10-3, and t = 10-14 (see section
4.7.1.1). Note that the 2-D modified projection algorithm resulted in better magnitude as
well as phase wavenumber responses when compared with the 2-D pure design algorithm
result in Figure 4.3 and the 2-D relaxed design algorithm result in Figure 4.4.
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Figure 4.6: The mean-square error between hk+1 and h, versus the number of iterations
for the designed 2-D seismic migration filter using the proposed pure, relaxed, and modi-
fied projection algorithms with N = 25, kcp = 0.25, r5p = r5s = 10-3, and E = 10-14 (see
section 4.7 .l.l). All the three algorithms are uniformly converging where the modified
projection algorithm convergence curve shows a significant reduction in the computations
required to design our 2-D migration FIR digital filters when compared with the other two
design algorithms curves.

4.7.2 3-D Seismic Migration Synthetic Experiments

A set of 25 x 25 2-D extrapolators was designed with the method of 2-D modified pro-
,

jection given in section 4.6 with M = 256, and for a depth step ~z = 2 m, in-line and

cross-line ~x = ~y = 10 m, time sampling interval ~t = 0.004 seconds, w = 50n

radians/sec, and a velocity c = 1000 m/so We migrated a 3-D zero-offset section a range

of 1100 meters for both the in-line and cross-line sections, up to a maximum frequency of

45 Hz. This time-space section contained one zero-phase Ricker wavelet centred at 0.512

seconds at x = y = O.

A 2-D slice at depth z = 220 m of the migrated 3-D volume is shown in Figure 4.9

(a) using the proposed 2-D modified projection FIR filter design algorithm. In Figure 4.9

(b) and (c), respectively, we see 2-D depth slices at z = 220 m of the same 3-D seismic

volume using the McClellan transformation [38] and the improved McClellan transforma-
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tion (McClellan-Hale) techniques [11]. Both sets of migration FIR filters designed with

the McClellan transformations were obtained by the I-D modified projection algorithm in

section 3.6. Clearly, all the three responses can accommodate dip angles of up to 65° but

Figure 4.9 (a) results in a perfectly circular symmetrical impulse response with less mi-

gration noise (dispersion). These match our simulations for designing the 2-D migration

FIR filters in the previous subsection. As a consequence, we expect that migrated sections

will significantly improve by using such true 2-D migration FIR filters designed using the

2-D modified projection algorithm when compared with the standard McClellan and the

standard McClellan-Hale technique at the expense of a higher migration cost. Later on

in chapter 6, we are going to introduce a new method to reduce the cost of implementing

true 2-D migration FIR filters such as those proposed in this chapter.



4.7. Simulation Results
104

McClellan transformation magnitude spectrum

........
""'; 0.6

~
IO.4

0.2

0.5

Normalized k
y -0.5 -0.5 Normalized k

x

(a)

McClellan transformation passband phase spectrum

....

0.3
........ , ..

,""

..

0.25

---;::- 0.2
~:i0.15
I
'..J 0.1

0.05

o
0.5

Normalized k
y

-0.5 -0.5 Normalized k
x

(b)

0.7

0.6

0.5

0.5

0.3

0.25

0.2

0.15

0.5

Figure 4.7: (a) Magnitude response of the McClellan designed 2-D seismic migration
filter, (b) Phase response of the McClellan designed 2-D seismic migration filter with
N = 25, k-; = 0.25, kcs = 0.401, 5p = 58 = 10-3, and £ = 10-14 (see section 4.7.1.2).
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Figure 4.8: (a) Magnitude response of the improved McClellan designed 2-D seismic
migration filter, (b) Phase response of the improved McClellan designed 2-D seismic
migration filter with N = 25, kcp = 0.25, kcs = 0.401, bp = bs = 10-3, and E = 10-14
(see section 4.7.1.2). This shows a better approximation of the 2-D seismic migration FIR
filter when compared to the one shown in Figure 4.7 (a). However, we still see an error
along the line kx ~ kyo
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Figure 4.9: N = 25, 3-D Seismic migration impulse response 2-D slice (see section 4.7.2)
at depth z = 220 meters with .6z = 2 meters, and .6x = .6y = 10 meters for a range
of 1100 meters for both the in-line and cross-line sections. The time sampling interval
was .6t = 4 msee, C = 1000 meters/sec and a maximum frequency of 45 Hz using (a)
true 2-D filters designed using the modified projections with an approximate resulting dip
angle of 65°, (b) the McClellan transformation method, and (c) the improved McClellan
transformation method. We see that our result in (a) comes with less migration noise and
possesses better circular symmetry when we compare with those obtained in (b) and (c).
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4.8 Discussion

For the 2-D Kaiser window, we have chosen to use the one given in Eq. (4.19). This win-

dow is mainly composed of the product of two I-D Kaiser windows where they resulted

in satisfactory filter wavenumber responses [40]. Another way that can be used to obtain

a satisfactory Kaiser window is by transforming the I-D Kaiser window in Eq. (3.98) into

a 2-D window by replacing the spatial index n with v(nl)2 + (n2)2. This was shown by

Huang in [102].

Also, the same stopband intervals used for the I-D pure, relaxed, and modified projec-

tion algorithms (Le., Eq. (3.101) for the pure (relaxed) and Eq. (3.102) for the modified)

were used for the 2-D case. Furthermore, the relaxation values used here are the same

as those used previously in Eq. (3.103) and Eq. (3.104) for the I-D relaxed projection

design algorithm.

In addition, although our 2-D migration FIR filters suits equally spaced sampled data,

i.e., L).x = L).y, however, this will not prevent us from adapting the 2-D pure, relaxed, and

modified projection design algorithms for the application to data with different in-line and

cross-line sampling intervals (L).X f L).y). This can be easily achieved by employing an

FFT with L).x f L).y. Alternatively, one can follow the work proposed by Levin in [103]

where he extended the McClellan-Hale transformation method for the design of 2-D mi-

gration FIR filters with L).x f L).y.

Finally, it is worth mentioning that in this chapter, the focus was to compare both

McClellan transformation designs for designing 2-D seismic migration filters with the

proposed 2-D design algorithms based on the pure, relaxed, and modified projections

stated respectively in sections 4.4, 4.5, and 4.6. In practice, the I-D migration FIR digital

filters are designed and the structure shown in Figure 4.1 is used along with these pre-

designed I-D filters to realize (implement) the 2-D migration FIR filters [101, 40, 1].
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Chapter 6 will show additional experiments with respect to both McClellan transformation

techniques from the 2-D FIR filter realization (implementation) point of view [101,40].

4.9 Conclusion

This chapter has extended the I-D migration FIR digital filter design algorithms using the

pure and relaxed projections onto convex sets to design 2-D migration FIR digital filters.

As with the case for the I-D filters, the 2-D designed filter satisfies all seismic migra-

tion filter requirements in addition to possessing perfect circular symmetrical wavenum-

ber responses. In other words, we came up with a robust design algorithm for the 3-D

frequency-space explicit depth migration filtering problem.

Based on the simulation results, the 2-D relaxed projection algorithm has significantly

reduced the number of iterations by 56.45% when compared to the 2-D pure projection

algorithm for the same filter parameters and for the same stopping threshold. Also, the

2-D modified version of the 2-D pure projection was used to eliminate undesirable back-

ground artifacts (increase the robustness of migrated sections) on migrated sections where

this modification also led to a significant reduction in the number of FFf computations by

95.72% when compared to the 2-D pure design algorithm and by 90.18% when compared

to the relaxed design algorithm.

Finally, 3-D seismic migration experiments show that we can use true 2-D seismic

migration FIR digital filters designed using the 2-D modified projection algorithm, and

this results in less migration (dispersion) noise as well as possessing perfect circular sym-

metry when compared to standard 2-D migration FIR digital filter design schemes, i.e.,

the McClellan and the McClellan-Hale transformations.
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Chapter 5

The Design of Multi-Dimensional

Complex-Valued FIR Digital Filters by

the Method of Pure Projections

5.1 Introduction

The design of FIR filters has been a subject of research since the late 1960's, and many

design algorithms have been developed since then, [7,6, 83, 84]. Each technique has its

own advantages and disadvantages depending' on the application or the required filter de-

sign specifications, which could be either time-domain or frequency-domain constraints

[7, 83,21]. In particular, the development of efficient techniques for the design of multi-

dimensional (m-D) FIR filters has been drawing the attention of many researchers for

quite a time [6].

The algorithms such as the one reported in [48] or in [49] can only address the

frequency-domain specifications and results in suboptimal designs. Other methods such

as linear programming can satisfy requirements in the frequency-domain as well as the

time-space domains [47]. However, this method results in tremendous computational time

efforts for the 1-D case and, hence, for the m-D case [47]. Some researchers approach
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the problem of designing filters with complex coefficients by expressing the desired phase

and magnitude responses as complex Cartesian components and operate on the real and

imaginary components independently. Then, the final filter coefficients are formed from

the resultant real and imaginary coefficients [7]. Moreover, Chen-Parks [46] approxi-

mates the complex-valued response by a real-valued function and the resulting errors in

magnitude and group delay are made approximately equiripple. Their method, however,

requires large computer memory and the design time increases exponentially with increas-

ing time and frequency grid-density [46, 22]. The generalization of the Remez exchange

algorithm to complex-valued FIR filters done by Karam and McClellan [19, 20] is also a

kind of development for designing general complex-valued FIR digital filters. All of such

methods require filter transformation to design 2-D FIR filters. For the m-D case, it will

even be more difficult to directly extend their techniques to the design of m-D complex-

valued FIR filters [50,51].

The theory of VSPMs results in feasible FIR filter designs. More importantly, the de-

signs satisfy the frequency-domain and the time-space domain (refer to chapters 3 and 4).

As seen in previous chapters, I-D and 2-D complex-valued migration FIR digital filters

were designed using the theory of VSPM. Such design algorithms can be extended to the

multi-dimensional (m-D) case due to the availability of efficient m-D FFT routines (see

for example [7, 6]).

In this chapter, a method for the design of multi-dimensional (m-D) complex-valued

FIR digital filters using the Pure Projections method, where the resulting frequency re-

sponses possess an approximate equiripple nature, will be investigated. This proposed

algorithm is a generalization of the one-dimensional (I-D) real-valued FIR filter design

case (reported in [21, 22]) as well as to the I-D and 2-D complex-valued migration FIR

digital filters (chapters 3 and 4) to general m-D complex-valued FIR filters. The simu-

lation results illustrate superior designs using pure projections when compared with the

complex Remez filter design method previously reported in [20]. More specifically, the
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I-D pure design algorithm in section 3.4 is extended to m-D. Furthermore, the constraint

set Cl is changed to include general complex-valued FIR digital filters where seismic mi-

gration FIR filters are special case of such filters. Also, C2 is redefined in a more general

approach to suit any pre-defined phase response.

The organization of this chapter is as follows. The problem of designing a complex-

valued FIR filter using the pure projection method is shown in section 5.2 with the modi-

fications on Cl and C2 to generalize the I-D pure algorithm given in section 3.4. Section

5.3 presents explicitly the design algorithm of m-D complex-valued FIR filters using the

pure projection method. After that, in section 5.4 simulation results are given and sec-

tion 5.5 discusses some practical aspects of this proposed m-D complex-valued FIR filter

design algorithm. Finally, we draw some conclusions in section 5.6.

5.2 Complex-valued FIR Filter Design using the Pure Pro-

jection Method

To properly design N -length complex-valued FIR digital filters using pure projection, we

need to first define the required filter properties in constraint sets that are closed convex
,

sets. These constraint sets must belong to the set of M -dimensional complex vectors

where the dimension M is much greater than the filter length N. More specifically, we

want to place some time domain and also frequency domain properties in proper sets

which are closed and convex. So we want to design an N-Iength FIR filter h[n] which is

complex-valued. The magnitude spectrum of the discrete time Fourier transform (DTFT)

of h[n] must be upper and lower bounded by l+bp and l-bp, respectively in the passband.

In addition, the stopband magnitude spectrum must be bounded by bs• Finally, the phase

spectrum must be equal to a pre-defined phase, say ¢(w ). If these constraint sets are

closed convex sets, and happen to intersect, then one can guarantee strong convergence

of the algorithm since our space is of finite dimensions. So the following represent the

constraint sets.
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5.2.1 The constraint set Cl

Let Cl = {h E eM : h[n] = 0 for n t/. S} where S is the set of points on which the

filter coefficients of length N are not equal to zero. In words, Cl is the set of all complex-

valued vectors of length M with at most N non-zero filter coefficients.

Convexlty of Cu Let h.j h, E Cl, then by the definition of convexity: h3 = J.thl + (1-

J.t)h2 where 0 ~ J.t ~ 1. So for n t/. S: h3[n] = J.thrln] + (1 - J.t)h2[n] which in tum

makes h3[n] equal to O.Hence, h, E Cl and, therefore, Cl is convex.

Closure ofCI: To show that Cl is a closed set, let {hn} be a convergent sequence in Cl

where it converges to 11. We want to show that 11 E Cl also. Then

- L Ihn[i] - h[iW + L Ih[iW
iES i'tS

> Llh[iW·
i'tS

(5.1)

Now by taking the limit as n ---+ 00, one can obtain L:i¢S Ih~[iJ12= 0 which is logically

equivalent to saying that:

(5.2)

Hence.Jr E Cl and Cl is therefore closed.

Projection onto Cl: Since Cl is closed and convex, then we can derive the projection

of an arbitrary vector which belongs to the Hilbert space onto Cl. According to the pure

projection theorem, the projection will be unique. Let x E eM be an arbitrary vector in
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the Hilbert space eM and let x (j. Cl. Then for x (j. Cl and h s Cl:

L Jx[i] - h[i]J2 +L Jx[i] - h[i]J2
iES i¢S

L Jx[i] - h[i]J2 +L JX[i]J2. (5.3)
iES i¢S

However, JJx - hJJ2 is minimized with respect to h if

h[n] = x[n] for n E S. (5.4)

Therefore, the projection onto Cl, i.e., PCI, can be given by the following relationship:

{
x[n], ifn E S

PClx=

0, ifn (j. S.
(5.5)

5.2.2 The constraint set C2

C2= {h E eM with h[n] ~ H(ejW) : LH(ejW) = </>(w)}. That is, C2is basically the set

of all sequences which are complex-valued and whose phase response is constrained to

be equal to a pre-defined phase response </>(w ). By following the same methodology for

deriving the projection onto C2 in subsection.3.3.2, the projection onto C2, i.e., PC2 can

be given by the following equation:

{
JX(ejW)J cos (ex - </>(w)) exp(j</>(w)), if cos (ex - </>(w)) 2:: 0

PC2X~

-JX(ejW)J cos (ex - </>(w)) exp(j</>(w)), if cos (ex - </>(w)) < O.
(5.6)

5.2.3 The constraint sets C3, C4 and C5

Define C3 as the set of complex-valued sequences whose DTFT magnitude spectrum is

lower bounded by 1 - bp in the passband, i.e., C3 = {h E eM with h[n] ~ H(ejW) :

JH(ejW)J 2:: 1 - bp for w E np} where np is the passband interval which is equal to

[-wp, wp], wp is the cut-off frequency, and bp is the maximum passband allowable toler-

ance. Also, let C4 = {h E eM with h[n] ~ H(ejW) : JH(ejW)J ~ 1 + bp for w E np}.
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So we can say that C4 is the set of complex-valued sequences whose DTFT magnitude

should not exceed the limit 1+ bp in the passband.

Finally, let C5 be the set of all sequences which are complex-valued and whose DTFT

magnitude is bounded by bs in the stopband Os where Os = [-71", -ws) n (ws, 71"j, Ws is

the stopband cut-off frequency and b8 is the maximum allowable stopband tolerance. So,

mathematically, C5= {h E eM with h[n] f-+ H(ejW) : IH(ejW)1 ~ bs forw E Os}.

By following the same methodology developed for the constraint set C2, one can

easily show that C3, C4, and C5 are closed convex sets in c«. The projection PC3 onto

C3 of an arbitrary vector x E CM, where x ~ C3, can be written as

X(ejW), if IX(ejW)1 > (1- bp) forw EOp

(1 - bp) I~~:~:ll'if IX (ejW) I ~ (1 - bp) for w E n,
X(ejW), otherwise.

(5.7)

Also, it can be shown that the projection of an arbitrary vector x E eM, where x ~ c4, is

given by

X(ejW), if IX(ejW)1 < '(1 + bp) for w E Op

- (1 + bp) I~~:~:ll'if IX(ejW) I ~ (1 + bp) for w E n,
X(ejW), otherwise.

(5.8)

Finally, the projection of an arbitrary vector x E c«, where x ~ c5, can be shown to be

X(ejW), if IX(ejW)1 < b8 for W E Os

-b81~~:~:~1' if IX (ejW) I ~ s, for W E n,
X(ejW), otherwise.

(5.9)
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5.3 The Pure Projection Design Algorithm for m-D Complex-

Valued FIR Filters

Based on Eq. (3.8), the pure projection algorithm for designing 1-D complex-valued FIR

digital filters is given by

(5.10)

where PCI, PC2, PC3, PC4, and PCs are given in Eqs. (5.5), (5.6), (5.7), (5.8), and (5.9),

respectively, and ho is an arbitrary complex-valued vector of dimension M. Now, as men-

tioned earlier, one of the main advantages of using pure projection to design FIR digital

filters is the simplicity of extending the 1-D design algorithm to multi-dimensions. Hence,

we are interested in extending the 1-D complex-valued FIR filters design algorithm to m-

D, as demonstrated below:

, 1. Project h, onto Cs, that is

Hk(ejf!), if IHk(ejf!)I < s, for 0 E n,

gl,k = PCs hk +--+ -os IZ:~:~~ll' if IH k(ejf!) I ~ s, for 0 E o,
Hk( ejf!), otherwise.

(5.11)

2. Project gl,k onto C4 using

G1,k(ejf!), if IG1,k(ejf!)I < (1+ Op) for 0 E n,
g2,k = PC4g1,k +--+ -(1 + Op) I~~::~:;~ll'if IG1,k(ejf!)I ~ (1+ Op) for 0 E Op,

G1,k(ejf!), otherwise.
(5.12)

3. Project g2,k onto C3 using

G2,k(ejf!), if IG2,k(ejf!)I > (1 - Op) for 0 E Op

g3,k = PC3g2,k +--+ (1 - Op) I~~::~:~~~I'if IG2,k(ejf!)1 ~ (1 - Op) for 0 E Op

G2,k(ejf!), otherwise.
(5.13)
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4. Project g3,k onto C2 using

IG3,k(ejO)1 cos (()G3,k - ¢>(f!)) exp(j¢>(f!))

if cos (()Ga,k - ¢>(f!)) ~ 0

-IG3,k(ejO)1 cos (()Ga,k - ¢>(f!)) exp(j¢>(f!))

if cos (()G3,k - ¢>(f!)) < O.

(5.14)

5. Finally, project g4,k onto Cl by

(5.15)

where f! = (WI, W2,' .. ,wm) and n = (nI, n2,'" ,nm), S is the m-D finite extent sup-

port, f!p is m-D passband region, and f!8 is m-D stopband region. We are going to use the

same stopping criterion reported in [22]. That is, if the error distance is less than or equal

to a pre-defined threshold E, i.e., if IIhk+1 - hkll ~ E, then stop the algorithm. Otherwise,

repeat steps 1-5.

5.4 Simulation Results

Using the pure projection algorithm given in section 5.3, several examples of 1-D and

2-D complex-valued FIR digital filter design will be illustrated. Recall that M is the

dimension of the proper Hilbert space, N is the filter length, 8p and 88 are respectively

the maximum allowable passband and stopband tolerances (see Figure 5.1), and E is the

algorithm stopping threshold. Note that all the simulations are preformed in MATLAB

which is installed on a Pentium 4 machine with a processor speed of 2.6 GHz and a RAM

of 1GB. Finally, the designed filters are displayed with respect to their normalized angular

frequencies.
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Figure 5.1: Low-pass filter design specifications.

5.4.1 Low Delay Single Passband Filters

Low delay single passband FIR filters are used in many areas of application such as com-

munications [45]. Here, we illustrate the design of two low delay single passband FIR

filters: 1-D and 2-D filters designed using pure projection.

5.4.1.1 I-D Low Delay Single Passband Filters

An example of a desired low delay filter can be given by:

(5.16)

where 6p = 0.00025, 68 = 0.025, N = 31, M = 310, and with a stopping threshold equal

to ( = 10-5. In Figure 5.2 (a), the designed magnitude response of the filter shows an

approximate equiripple response with a maximum stopband magnitude of -29 dB. The

group delay is shown in Figure 5.2 (b) where it corresponds to almost linear-phase char-

acteristics in the passband with a mean absolute deviation from the desired group delay of

4.3993 x 10-2. The design required 129 iterations to converge (see Figure 5.2 (cj) within
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0.54 secs.

The same filter was designed using the complex Remez exchange algorithm reported

in [19, 20] with a passband weight of 10. The algorithm, which is written as a MATLAB

built-in function, took 8.08 secs on the same machine. The magnitude spectrum of this

filter is also shown in Figure 5.2 (a) where its stopband magnitude is approximately equal

to - 23 dB while its group delay mean absolute deviation from the desired group delay

is equal to 5.28 (see Figure 5.2 (b)). The pure projection designed filter in this case

resulted in a better magnitude response as well as a better group delay response when

compared with those obtained using the complex Remez method. Also, in this case, the

pure projection design algorithm required less design running time (saved 93.81% of the

design running time) when compared to the complex Remez low delay single passband

designed filter.

5.4.1.2 2-D Low Delay Shifted Circularly Symmetric Filters

An example of a 2-D complex-valued FIR low delay filter is designed based on a passband

and a stopband circular region. The circular region is centred on (-O.11r, O.11r) with

a passband radius of 0.37r and a stopband radius of 0.57r. The filter parameters are as

follows: bp = bs = 25 X 10-3, for a 19 x 19'filter, M = 190 x 190, and with a delay of

9 samples. The design took 372 iterations to converge with respect to the distance error

threshold E = 5 X 10-5. Figure 5.3 shows a circularly symmetrical magnitude response

of the designed filter (with a maximum stopband magnitude of approximately -32 dB),

where it satisfies its required design specifications.

5.4.2 Seismic Migration Filters

Although chapters 3 and 4 presented the design algorithms for designing respectively 1-D

and 2-D seismic migration FIR filters using the pure, relaxed and the modified projection

algorithms, we show here that the algorithm in section 5.3 is more general where it will

include such type of complex-valued FIR filters. We illustrate here two migration filters,
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Figure 5.2: A I-D complex-valued low delay FIR low-pass filter (see section 5.4.1.1) with
N = 31, M = 310, wP1 = -O.ln, wP2 = 0.3n, WS1 = -0.2n, WS2 = O.4n 6

p
= 0.00025,

6s = 0.025, and E = 10-5: (a) magnitude response in dB (pure projection: solid line
and Complex Remez: dash-dot line), (b) passband group delay (pure projection (POCS):
solid line, Complex Remez: dash-dot line and the Desired Group Delay: dash line), and
(c) convergence of the I-D complex-valued low delay FIR low-pass filter design using
pure projection distance error curve.
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Figure 5.3: The magnitude response in dB of a 2-D complex-valued low delay (a delay
of 9 samples) shifted circularly symmetric FIR filter designed using pure projection (see
section 5.4.1.2) with N = 19 x 19, M = 190 x 190, centred at (-O.17r,O.17r) with
passband radius of 0.37f, stopband radius of 0.57f, 6p = 68 = 25 X 10-3, and E = 5 X 10-5.

given in section 5.3.

I-D and 2-D complex-valued FIR filters designed with the general m-D pure projection

5.4.2.1 1-DMigration Filters .

designed response:

A I-D complex-valued FIR seismic migration digital filter is designed with the following

(5.17)

The filter parameters are as follows: 6p = 10-3, 68 = 0.0025, N = 35, and M = 350.

Figure 5.4 (a) shows the magnitude response of the designed filter where it has an equir-

riple response and with a maximum stopband magnitude of -38 dB. Also, Figure 5.4 (b)

shows the phase spectrum in the passband for the designed filter where the mean absolute
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deviation from the desired phase is equal to 1.7838 x 10-3. The design took 599 iterations

to converge (1.64 sees) with respect to the distance error threshold e = 5 X 10-5 as seen

in Figure 5.4 (c).

Again, the same desired migration filter was designed using the complex Remez de-

sign algorithm [19] with a passband weight of 60. The design required 0.62 sees and

resulted in a maximum stopband magnitude level of -8 dB, as clearly shown in Figure

5.4 (a), while the passband phase response shown in Figure 5.4 (b) indicates that the mean

absolute deviation from the desired phase is equal to 2.9313 x 10-3. In this case, although

the complex Remez algorithm design running time was smaller than the filter designed

with pure projection (it saved 62.2% of the design running time), however, the pure pro-

jection filter magnitude as well as passband phase response show superior results when

compared to those obtained with the complex Remez algorithm.

5.4.2.2 2-D Migration Filters

An example of a 2-D complex-valued FIR seismic migration digital filter is designed

based on:

if y'wi +w~ ~ 0.571"

ifO.771" ~ y'wi +w~ ~ 71".
(5.18)

The filter parameters are as follows: bp = b8 = 10-3, for a 25 x 25 filter, and M =

250 x 250. The design took 547 iterations to converge with respect to the distance error

threshold € = 5 X 10-5• Figure 5.5 (a) shows a circularly symmetric magnitude response

of the designed filter where the maximum stopband magnitude is approximately equal to

-50 dB. On the other hand, Figure 5.5 (b) shows the phase spectrum in the passband for

the designed filter, which again has circular symmetry.
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Figure 5.4: A I-D complex-valued seismic migration FIR filter (see section 5.4.2.1) with
N = 35, M = 350, wp = 0.5n, Ws ~ 0.6n, 6p = 10-3, 6s = 0.0025, and E = 5 x 10-5:
(a) its magnitude response in dB (pure projection: solid line and Complex Remez: dash-
dot line), (b) its passband phase response (pure projection (POCS): solid line, Complex
Remez: dash-dot line and the Desired Passband Phase Response: dash line), and (c)
convergence of the I-D complex-valued seismic migration FIR filter design using pure
projection distance error curve.
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Figure 5.5: The (a) magnitude response in dB and (b) the passband phase response of
a 2-D complex-valued seismic migration FIR filter designed using pure projection with
N = 25 x 25, M = 250 x 250, with passband radius of 0.5n, stopband radius of 0.7n,
r5p = r5s = 10-3, and E = 5 X 10-5 (see section 5.4.2.2).



5.5. Discussion 124

5.5 Discussion

The pure projection algorithm is an iterative algorithm as shown previously in chapters

3 and 4, and in section 5.3. One can also notice that we changed the stopping criterion :

from the mean-square error to the distance error where we followed [22]. However, the

weak convergence nature of Eq. (3.8) seems to prevent the use of this criterion because it

is not necessarily true that the distance between two successive elements converge to zero

for a weakly convergent sequence. Fortunately, this is not the case here since the VSPM

for the said m-D complex-valued FIR digital filters are carried out in the complex-valued

finite-dimensional space. In such cases, the weak convergence is equivalent to strong con-

vergence and the seemingly obstacle no longer exists [96, 89].

Also, the only disadvantage of the pure projection algorithm for FIR filter design (in

the opinion of some filter designers), and depending upon the filter parameters and stop-

ping threshold value, is the large number of iterations required to achieve convergence.

We can overcome this problem by speeding up the convergence of the pure projection

design algorithm for FIR filter design using the relaxed version of pure projection, which

is known as the Relaxed Projections onto Convex Sets, as illustrated in chapter 3 and [89].

Finally, using the appropriate m-D FFf alg0r!thms and appropriate impulse response FIR

filter coordinate indexes, the proposed m-D pure projection algorithm in section 5.3 can

be used for any type sampled of data.

5.6 Conclusion

This chapter has extended the design of 1-0 real-valued FIR digital filters using the the-

ory of pure projection (Projections onto Convex Sets) to include m-D complex-valued

FIR digital filters. So this newly derived pure projection algorithm for m-D complex-

valued FIR filters is more general and can also accommodate m-D real-valued filters. It

is also more general in the sense that it includes the migration FIR filters that were previ-

ously presented in chapters 3 and 4, respectively. Empirically, the resultant filters possess
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an approximate equiripple behavior. For various examples, the simulation results have

displayed superior filter designs when using pure projection, when compared with the

complex Remez filter design method reported previously in [19, 20].
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Chapter 6

Realization of 2-D Migration FIR

Digital Filters for 3-D Seismic Volumes

Via Singular Value Decomposition

6.1 Introduction

Athough it is considered to be the most expensive seismic data processing step [1], migra-

tion is one of the most important processing steps in seismic data processing. Migration

filters are used to reposition the seismic energy at the true reflection points and, hence,

true geological structures appearing in seismic data are accurately revealed [1, 5, 75].

The frequency-space (or frequency-inline-crossline) (w - x - y) migration method is

considered to be one of the most attractive techniques for performing 3-D seismic migra-

tion [1, 13, 12, 14, 10]. The most important feature of such a migration technique is that

it can be used for migration of one-way wavefields accurately through heterogeneous me-

dia. They also result in stable migration images due to new improvements in the design

of these filters as we saw in previous chapters.



6.1. Introduction 127

To show how much does the W - X - Y migration method costs, let us consider the

following. Recall from chapter 4 that the W - X - Y migration of a spatially-sampled

seismic wavefield U(Xi' Yj, ejwl, Zk) from depth say Zk to Zk+1 = Zk + ~z is performed

independently for each frequency WI, by a direct 2-D spatial convolution with a designed

2-D migration filter impulse response h[nl, n2] using [1, 13, 12, 14]:

(N-l}/2 (N-l}/2

U(xi,Yj,ejwl,Zk+l) = L L h[nl,n2]U(Xi-nl' Yj_n2,ejwl, Zk) (6.1)
nl =(-N +1}/2 n2=( -N+l}/2

where h[nl' n2] is a non-causal quadrantally symmetrical N x N (N odd) complex-valued

2-D impulse response, i.e.,

(6.2)

In this case, the migration (filtering) process is carried over all frequencies WI, where

l = 0, . . . ,M - 1 and M, in this case, is the number of frequency samples. A typical

W - X - Y migration process for seismic signals requires a set of 2-D frequency-velocity

dependent FIR filters that are designed and stored to migrate the seismic section from

one depth level U(Xi' Yj, ejwl, Zk) to the next U(Xi' Yj, ejwl, Zk+l)' Let us assume that the

number of samples in both spatial directions (say nx and ny) are equal to each other

(nx = ny = ns)' Then for each.frequency sample we require n~ convolutions since the

convolution migration is performed at each spatial sample location. Ifwe have, for exam-

ple, 1000 frequency samples, then this results in performing 1000 x n~2-D convolution

processes to get only one depth slice of the final 3-D migrated volume (wavefield). So

if one needs 500 depth slices, 500,000 x n~2-D convolutions are required. Using direct

convolution of these 2-D complex-valued N x N impulse responses, the computational

complexity will be 500,000 x n; x N2, where N x N is the FIR filter size in the spatial

direction nl and n2. In this application, even by taking advantage of the quadrantally

symmet,ric property of such 2-D impulse responses, the computational complexity will

still be high [104, 1,42,44].
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As shown in chapter 4, different approaches have been proposed to mitigate such ex-

pensive 3-D migration processes which rely heavily on direct convolution of 2-D complex-

valued FIR filter impulse responses [9]. Most of the present one-dimensional (I-D) mi-

gration FIR filter (and filter operators in general) design algorithms cannot be extended to

the 2-D case such as the Remez algorithm [19, 21]. Hence, for both reasons, researchers

were using approximations of 2-D migration FIR filters based on pre-designed I-D migra-

tion FIR filters which of course comes with a price, i.e., errors in both magnitude response

as well as phase response [11].

The first approach (known in the geophysics literature as splitting) is where the mi-

gration is performed by splitting the process to alternatively migrate along the in-line and

cross-line directions, independently [1, 11], i.e., assuming that the 2-D migration FIR fil-

ters are separable. This method is cheap in the sense that its computational complexity

is proportional to the used FIR filter length N and is based on the 2-D Fourier transform

approximation of the desired migration wavenumber response. It also results in stable

migration images. However, this method results in large errors for wavenumber cut-off's

in which kx ~ ky » O. This corresponds to steep dipping at 45° azimuth between the

in-line and cross-line directions [11].

The second approach is based on the popular McClellan transformations [37, 38, 10,

11, 39, 40, 6]. This method is based on Chebyshev structures and is very suitable for

2-D FIR filters with a quadrantal symmetry property, like our migration filters. Their

cost is proportional to the filter length N, and I-D filters are needed to obtain the 2-D

impulse response, based on a transformation filter as reported in [11]. The transforma-

tion results in stable migration images and is best for small wavenumbers - it is exact for

kx = ky = 0 - but exhibits increasing error with increasing wavenumbers where kx ~ kyo

An improved McClellan transformation filter was proposed by Hale in [11] to overcome

such wavenumber response errors where the transformation filter (matrix) is larger than

the original one (see for example [38, 6]), such that it results in a better approximation
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of the circular symmetry property of the 2-D migration wavenumber response. The com-

putational complexity of this improved McClellan transformation filter is higher than the

previous McClellan transformation, but it is still proportional to N [11]. None of these

transformations yield, however, exactly circularly symmetric migration wavenumber re-

sponses.

Thus, there is a need for migrating 3-D seismic data sets with true 2-D migration FIR

filters that are cheap to implement, result in stable migrated images, and better approxi-

mate circular symmetry with respect to their wavenumber responses. In other words, we

want to reduce the cost of the 3-D w - x - y migration but, at the same time, we want to

obtain accurate migrated volumes in order to allow correct interpretation for such geolog-

ical maps.

Digital FIR filter realization techniques based on Singular Value Decomposition (SVD)

have been proposed for the realization (implementation) of 2-D zero-phase FIR digital fil-

ters [105, 106] and, more recently, for 2-D linear-phase FIR digital filters [41]. In both

papers, 2-D FIR filters were pre-designed and then realized using the SVD technique for

general FIR filters, including symmetrical and anti-symmetrical ones. The SVD realiza-

tion structure has the following advantages: '

• It is suitable for parallel processing such as the case for w - x - y migration.

• It is flexible in the sense that we can select the number of realization parallel sec-

tions that correspond to the most significant singular values. Hence, this results in

a saving in computational complexity at the expense of introducing small errors in

the wavenumber response.

• Depending on the number of parallel sections used in the realization, its computa-

tional complexity is proportional to the filter's impulse response length N.

Here, in this chapter, we propose implementing pre-designed true 2-D migration FIR

digital filters using the method of Singular Value Decomposition (SVD). Such a technique
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is very suitable for the w - x - y migration method. It is cheap to implement, results in

stable migrated volumes, and better approximates circular symmetry with respect to their

wavenumber responses when compared to other standard implementations [42, 43, 441

This chapter is organized as follows. Section 6.2 introduces the concept of SVD re-

alization for 2-D FIR digital filters. Also, the mathematical development for realizing

2-D quadrantally symmetrical complex-valued FIR seismic migration digital filters using

SVD is presented. An error analysis, relating to the SVD realization of migration filters,

is given in section 6.3. In section 6.4, simulation results are performed to evaluate the ac-

curacy of the 2-D seismic migration FIR filters realized using the proposed SVD scheme.

We also show an application of our proposed method to synthetic seismic data. A brief

discussion is given in section 6.5. Finally, we conclude this chapter in section 6.6.

6.2 Singular Value Decomposition Realization for the 2-

D Migration FIR Impulse Response

Let h[nl' nIl be an already designed N x N quadrantally symmetrical 2-D seismic migra-

tion FIR impulse response where h[nl' nIl E,rcNXN for nl, n2 = -(N -1)/2, ... ,(N:_

1)/2 and N is an odd number. Define A to be an N x N matrix whose elements represent

the quadrantally symmetrical 2-D seismic migration FIR impulse response given by:

(6.3)

6.2.1 Singular Value Decomposition & FIR Filters Realization

In general, the SVD of A can be written as

A =U~V* (6.4)
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Figure 6.1: SVD based realization structure for a pre-designed 2-D complex-valued mi-
gration FIR digital filter. Each branch represents a 2-D sub-filter of which is composed of
two cascaded 1-0 FIR digital filters.

where U and V are unitary matrices, * denotes the complex conjugate transpose, and ~

is a diagonal matrix whose diagonal elements represent the singular values of A, i.e.,

(6.5)

and £71 ~ £72 ~ ..• ~ £7N ~ 0 [107]. Let the rank of A be r ~N. Hence, £7r+1 = £7r+2 =

... = £7N = 0 and Eq. (6.4) can be rewritten as:

r r

A = L£7kUkVZ = LfkgZ
k=l k=l

(6.6)

where Uk and v» represent the kth column vectors of U and V, respectively, and fk =

/'iik Uk and gk = /'iik v». Equation (6.6) suggests that a 2-D complex-valued FIR digital

filter can be realized using r parallel 2-D sub-filters where each 2-D sub-filter is composed

of a cascade of two N-length 1-0 complex-valued FIR digital filters. These 1-0 filters

have impulse responses given by !k(n1) and 9k(n2). Figure 6.1 demonstrates the SVD

based realization structure for the (migration) filtering process where the implementation

complexity depends on the value of rank r, The rank r is always equal to (N + 1)/2 in

the case of quadrantally symmetrical impulse responses.
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6.2.2 Singular Value Decomposition Realization of Migration FIR

Filters

For the analysis given below, we will follow [41]. Define J to be an (N - 1)/2 x (N .;•

1)/2 contra-identity matrix where the contra-diagonal elements are equal to 1 and the

remaining elements are zeros (N is an odd positive integer). That is:

J=

o 1

(6.7)

1 o

Since A E CNxN possesses quadrantal symmetry, then A can be written as:

A= (6.8)a*2 c a*J2

where A, is an (N - 1)/2 x (N - 1)/2 matrix, al and a2 are (N - 1)/2-dimensional

column vectors, and c is a complex scalar. the matrix Q E CNxN given by:

1+ jI

o
1+ jI

o

V2+jV2

o

J +jJ

o
-J +jJ

(6.9)

is a unitary matrix where j = v=r, I is the identity matrix with the same dimension as

J, and 0 is a row/column vector of dimension (N - 1)/2. A unitary matrix B E CNxN
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exists, which is mathematically similar to A and is given by:

B - QAQ*

Al + JA1J ~a +~Ja 02 1 2 1

- V2a2 2c 0

0 0 0

- [:' :]

(6.10)

(6.11)

(6.12)

where B1 is an (N + 1)/2 x (N + 1)/2 matrix. Note that A *A is also unitary and

similar to B*B with respect to Q. This implies that A*A and B*B both have the same

eigenvalues and, consequently, the same singular values, i.e., the matrices A and B are

unitarily equivalent [107]. Now, let the SVD of B be given by:

(6.13)

where VB and V B are unitary and ~B is a diagonal matrix with singular values in de-

creasing order. From Eq. (6.12), we can rewrite Eq. (6.13) as:

B = [VI 0] [~10] [VI 0] *
'0 0 0 0 0 0

(6.14)

and this implies that we can determine the SVD of B,by only computing the SVD of

(6.15)

(6.16)
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Thus, A can be expressed as:

A - Q*BQ

- Q*UB:EB Vi3Q

U:EBY*

(6.17)

(6.18)

(6.19)

where

U - Q*UB (6.20)

(I - jl)Un (I - jl)b1 0
1

(v'2 - jv'2)b2 (v'2 - jv'2)Uo- - 0 (6.21)2
(J - jJ)Un (J - jJ)b1 0

and

Y - Q*VB

(I - jl)Vn (I - jl)Cl 0
1

(v'2 - j y'2)c2 (v'2 - jv'2)Vo- - 02
(J - jJ)Vn (J - jJ)Cl 0

(6.22)

(6.23)

As expected, only the first (N.+ 1)/2 columns of both Eq. (6.21) and Eq. (6.23) are

nonzero and they are symmetric. Since both U and Yare unitary and both A and B have

identical singular values, Eq. (6.19) gives a SVD of A. In other words, the SVD of A

can be represented based on Eq. (6.19), where the Uk'S and Vk'S in Eq. (6.6) are replaced

respectively with the first (N + 1)/2 columns ofU (Uk'S) and Y (Vk'S), respectively. By

doing so, the SVD computations are much simplified and result in less SVD numerical

errors.

We now want to discard insignificant singular values and, therefore, reduce the num-

ber of parallel sections required to realize our seismic migration 2-D FIR filters. That is,
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we want to approximate A by:

(6.24)

where K < (N + 1)/2 (K is the number of used parallel sections). In this case, the num-

ber of parallel sections in Figure 6.1 are reduced and this results in significant savings in

terms of the computational complexity for obtaining a final seismic image while accord-

ing to Eq. (6.21) and Eq. (6.23) we guarantee the even symmetry of the I-D constituent

filters to result in an overall desired wavenumber response. Clearly, since the I-D sub-

filters are of even symmetry, the number of multiplications per output sample required to

realize the 2-D complex-valued migration FIR filter using the SVD realization scheme is

K(N + 1), where K < (N + 1)/2.

The number of multiplications per output sample in this case is much less than that

needed for direct convolution. Also, we will save in the number of multiplications per

output sample even when compared to migration performed via direct convolution, taking

into consideration that such FIR filters are of quadrantal symmetry as far as

K(N + 1),< (N: 1)2 (6.25)

Similarly, the number of additions per output sample based on the proposed SVD scheme

is 2K (N - 1) since we have K parallel sections and each section is composed of two

I-D even symmetrical FIR filters. As we shall see later on, the savings in this case are

significant compared with the number of additions per output sample when using true 2-

D convolution (no advantage for the quadrantal symmetry with respect to the number of

additions per output sample).
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6.3 Error Analysis

In seismic migration, the magnitude and phase responses must satisfy certain conditions

as described in [27]. So, it is important to quantify the error due to the reduction in the

number of parallel sections used to realize our seismic migration FIR digital filters via

the SVD method given in Eq. (6.24), i.e., via discarded singular values. The following

analysis states an upper bound for the SVD realization of such a filtering application

with respect to the matrix l2-norm and the Frobenius norms of matrices. The error in the

wavenumber response of the realized filter, which is caused by neglecting ((N+1)/2 - K)

smallest singular values can be written as:

H(ejkx, ejky) - HK(ejkx, ejky)

(N-l)/2 (N-l)/2L L ern!, n2]e-j(kxn1 +kyn2)

n2=-(N-l)/2 nl=-(N -1)/2

_ w*(ejkx)Ew(ejky) (6.26)

where H (ejkx , ejky) is the wavenumber response of the pre-designed migration filter,

HK(ejk:r;, ejky) is the wavenumber response of AK = {hK[n!, n2]} for 1nl, n21 ~ (N -

1)/2 (see Eq. (6.24», e[nl' n2] is the error in the impulse response for all values of nl and

(6.27)

and E = {e( nI, n2)} is its impulse response error matrix, and:

(6.28)

and finally,

,T'(ejky) - [e-jky(N-l)/2 ... e-jky 1 ejky ... ejky(N-l)/2]
~ - """ . (6.29)
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We can now rewrite E as:

E - A-AK

(N+1)/2 K

- L O"kUkVk - LO"kUkVk
k=l k=l

(N+l)/2

L A A*- O"kUkVk

k=K+1

- DE~EVE (6.30)

where ~E = diag(O"K+b'" ,0"(N+l)/2, 0",' ,0), DE and VE are complex-valued uni-

tary matrices of dimension N x N. By substituting Eq. (6.30) into Eq. (6.26) and taking

the absolute value of the result, we obtain:

(6.31)

Now, using the Cauchy-Schwartz inequality and since DE and V E are unitary, we can

show that the upper bound of the absolute wavenumber response error with respect to the

matrix Frobenius norm is:

(6.32)

A much tighter bound can be found based on the matrix l2-norm and is given by:

(6.33)

For this geophysical application, Eqs. (6.32) and (6.33) quantify the magnitude wavenum-

ber response error introduced using the proposed SVD realization method with K '<

(N + 1)/2.

It is difficult, however, to analytically find an upper bound for the error incurred by

the phase response of the SVD realized migration filter. However, based on empirical re-

sults, the circular symmetry of the wavenumber phase response is always achieved when
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discarding insignificant singular values. As we are going to show in simulations, one pos-

sible way to relate the phase error with the singular values is by plotting the relationship

between the number of parallel sections used, the total energy used per number of used

parallel sections, and the corresponding phase response error.

6.4 Simulation Results

The following simulations are divided into two subsections. The first subsection deals

with the accuracy of implementing 2-D complex-valued migration FIR filters using the

SVD realization method presented in section 6.2.2 and given by Eq. (6.24). Also, this

realization is compared with the original and the improved McClellan transformation re-

alization schemes reported in [11] in terms of the realized filters' wavenumber responses,

the passband and stopband maximum and mean absolute wavenumber errors and, finally,

the computational complexity. The second subsection is concerned with applying the

realized 2-D complex-valued migration FIR filters using our proposed SVD realization

scheme on synthetic seismic data volumes and again comparing with those migrated sec-

tions using the original and the improved McClellan transformations given in [11].

6.4.1 Accuracy of the 2-D Migration FIR Digital Filters Realized Via

SVD

The main objective of this section is to subjectively and objectively evaluate our pro-

posed realization scheme for the migration filters and to compare it with the bench mark

realizations heavily used in practice in terms of the wavenumber responses and the com-

putational complexity. For this, a 25 x 25 complex-valued seismic migration FIR filter

was designed (as the case in [14]) using the 2-D modified projections method described in

section 4.6 for 6.z = 2 m, 6.x = 6.y = 10 m, 6.t = 0.004 seconds, Wo = 50n radians/sec,

and a velocity Co = 1000 mis, to give a normalized cut-off wavenumber of kcp = 0.25.
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6.4.1.1 Realization of 2-D Seismic Migration FIR Digital Filters Via SVD

Figures 6.2 (a) and (b) show respectively the magnitude response and the phase response

of the pre-designed 2-D migration FIR filter with the above-mentioned parameters. The

2-D FIR filter impulse response matrix is then transformed to be of the form of Eq. (6.12)

and then decomposed to give the resultant B, matrix based on Eq. (6.14). The rank

of the impulse response matrix of this filter is of full rank, i.e., rank(B1) = 13. That

is, the number of parallel sections that can be used to correctly implement such filters

is equal to 13 sections. However, Figure 6.3 suggests that we can implement such a

filter matrix with a reduced number of parallel sections (see Figure 6.1) by discarding

the insignificant singular values according to Eq. (6.24) (where we can see that 4 or 5

parallel sections are sufficient to realize our migration filter). This is because most of the

energy is concentrated in the first few singular values. The selection can be quantitatively

dependent upon a threshold, say 'Y, in accordance with either Eq. (6.33) or Eq. (6.32).

In Figure 6.4, the passband and stopband maximum absolute wavenumber errors are

plotted against the number of parallel sections used (or the number of used singular val-

ues). As expected, both curves are always less than the matrix l2-norm bound curve as

given by Eq. (6.33) as well as less than the matrix Frobenius norm bound curve as given
,

by Eq. (6.32). Also, we can clearly see that as we use more parallel sections (incorporate

more singular values into the approximation), then the approximation error will decrease.

However, this will be at the expense of increasing both the number of multiplications and

additions per output sample. The passband and stopband errors when using 5 parallel

sections are less by 15 dB on average when compared to the errors introduced by using 4

parallel sections. Now, in order to quantify the passband phase error incurred due to the

use of Eq. (6.24), we calculated the maximum as well as the root-mean-squared (RMS)

passband phase errors (for different numbers of used parallel sections and total used en-

ergy per realization) for our SVD realized filter as shown in Figure 6.5. It is evident from

the figure that both errors will approach zero as we use more parallel sections. For K = 5,

both the maximum and RMS passband phase errors are almost identical and very close to
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Figure 6.2: A 25 x 25 2-D seismic migration FIR digital filter (see section 6.4.1.1) with
a cut-off kcp = 0.25. (a) Pre-designed magnitude spectrum, and (b) Pre-designed phase
spectrum.
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Figure 6.3: Singular values of the matrix B, (see equation Eq. (6.16» for the pre-designed
25 x 25 2-D seismic migration FIR digital filter (see section 6.4.1.1). We see that most of
the filter energy is concentrated in the first four or five singular values.

zero. This is also agrees with Figure 6.3 where it is shown that most of the energy (more

than 99.9%) is concentrated within the first 5 singular values.

Furthermore, both the magnitude and the phase spectrum responses are of circular

symmetry. This can be seen more clearly with contour plots that are given for the mag-

nitude and phase spectra using the SVD realization schemes in Figure 6.6 (a) for the

pre-designed filter, (b) for K = 4 and (c) for K = 5 and also Figure 6.7 (a) for the pre-

designed filter, (b) for J( = 4 and (c) for J( = 5, respectively. For both SVD realizations

with J( = 4 and J( = 5, the phase response contour plots indicates no deviation in the cir-

cularity of the phase responses. On the other hand, the magnitude response in Figure 6.6

(c) for J( = 5 is subjectively better (circularly symmetry) when compared to Figure 6.6

(b) for K = 4. Also, Figure 6.8 and Figure 6.9 show the magnitude and phase wavenum-

ber responses for our 2-D FIR filter realized using the proposed SVD with J( = 3 and

K = 4, respectively. It is clear from both figures that both wavenumber phase responses
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Figure 6.4: Maximum absolute wavenumber error bounds and within the passband and
the stopband for the SVD realized pre-designed 25 x 25 2-D seismic migration FIR digital
filter (see section 6.4.1.1) with respect to the number of parallel sections used ( i.e., the
number of singular values).

possess circular symmetry. Unlike the magnitude wavenumber response in Figure 6.9 (a),

the migration using the filter with the magnitude wavenumber response in Figure 6.8 (a),
,

however, will affect the stability of the migration process since it has magnitude response

values» 1. Hence, in overall, using five parallel sections in this case is the best choice.

Therefore, we realized our 2-D seismic migration FIR filters with only 5 parallel sections

out of 13. Finally, Figures 6.10 (a) and (b) show the magnitude and the phase spectra of

the SVD realized version of the pre-designed 2-D FIR filter with 5 parallel sections.

6.4.1.2 Comparisons with the McClellan Transformations

To compare the SVD realization with the standard realizations used for this geophysical

application, a J-D complex-valued FIR seismic migration filter was pre-designed using

the method of modified projections given in section 3.6 with the same filter parameters
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Figure 6.5: Maximum and root-mean-squared phase errors within the passband for the
SVD realized pre-designed 25 x 25 2-D seismic migration FIR digital filter (see section
6.4.1.1) with respect to the number of parallel sections used ( i.e., the number of singular
values) as well as the total used energy.

described earlier. This I-D filter is then transformed into a 2-D filter by the McClellan

transformation and its improved version reported in [11] (refer to section 4.2 and Figure

4.1). Figure 6.6 (d) and Figure 6.7 (d) show contour plots of the McClellan transformed

filter magnitude and phase response while Figure 6.6 (e) and Figure 6.7 (e) show the mag-

nitude and phase response contour plots for the improved McClellan transformed filter. In

both cases, the circularity of the contours in both the magnitude and the phase responses

for both McClellan transformation results deteriorate rapidly as kx and ky increase, al-

though the improved results possess less errors when compared to the original McClellan

transformation. This is unlike our proposed SVD realization method were we do obtain

an almost perfect circular symmetry in both the magnitude and the phase responses as can

be seen in Figures 6.6 (b) and (c) and Figures 6.7 (b) and (c).
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Table 6.1: Comparison of the mean and maximum absolute errors within the passband
and stopband wavenumber responses (see section 6.4.1.2) between the pre-designed 2-D
Seismic Migration FIR filter and: its realized version using the original McClellan trans-
formation, the improved McClellan transformation, and our proposed SVD realization
with N = 25.

Method IE(kx, ky)1 Passband error Stopband error

Original Mean 374.62E - 3 100.62E - 3

McClellan Max 2004.46E - 3 502.15E - 3

Improved Mean 374.38E - 3 94.236E - 3

McClellan Max 2004.6E - 3 463.23E - 3

SVD realization Mean 3.8121E - 5 1.1194E - 5

with K = 5 Max O.51789E - 3 O.35336E - 3

Table 6.1 compares the three realizations, namely, the McClellan method, the im-

proved McClellan method and our SVD method with K = 5 in terms of the passband and

stopband maximum and mean absolute wavenumber errors. As we can see from Table

6.1, the SVD realization with 5 parallel sections presents the realization with the lowest

significant passband as well as stopband maximum and mean absolute wavenumber errors

and, therefore, out-performs both McClellan realizations.

Finally, Tables 6.2 and 6.3 respectively compare the number of multiplications and

additions both per output sample between various realization schemes, including our pro-

posed SVD method. It is clear from both tables that the original McClellan transformation

is the cheapest among all of these schemes including our proposed SVD (K = 5) tech-

nique. In terms of the number of multiplications per output sample, the proposed SVD
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Table 6.2: Comparison between the number of multiplications per output sample required
to realize a 2-D complex-valued FIR seismic migration filter (see section 6.4.1.2) using the
direct 2-D convolution with quadrantal symmetry, the original McClellan transformation,
the improved McClellan transformation, and our proposed SVD realization with N = 25.

Method Multiplications Savings compared with

per output sample true convolution

2-D convolution with symmetry (Nil)2 = 169

McClellan 5(N;-l)+1=61 63.91%

Improved McClellan 8(N;-l) + 1 = 97 42.6%

SVD (K = 5) K(N + 1) = 130 23.08%

(K = 5) technique, however, is more economical than the true 2-D convolution with

quadrantal symmetry (saved 23.08%). Also, in terms of the number of additions per out-

put sample, our proposed SVD (K = 5) method saved 61.54% when compared with 2-D

direct convolution. It is worth mentionin~ that although our proposed SVD realization

method (depending on K) mig,ht be more expensive than the McClellan transformations,

it results in much better circularly symmetrical magnitude and phase responses and comes

with insignificant wavenumber errors. This consequently results in superior 3-D migra-

tion results when compared to 3-D migration based on both McClellan transformations as

we shall see in 6.4.2.

6.4.2 3-D Seismic Migration Impulse Response Tests

To test our SVD realized migration filters for the so called 3-D Seismic Migration Im-

pulse Responses [1], a synthetic seismic volume was created. It is basically composed of

zero amplitude traces containing one zero-phase Ricker wavelet centred at 0.512 second

located at the x = y = 0 seismic trace. In this experiment, a set of 25 x 25 2-D seis-
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Table 6.3: Comparison between the number of additions per output sample required to
realize a 2-D complex-valued FIR seismic migration filter (see section 6.4.1.2) using the
direct 2-D convolution with quadrantal symmetry, the original McClellan transformation,
the improved McClellan transformation, and our proposed SVD realization with N = 25.

Method Additions Savings compared with

per output sample true convolution

2-D convolution with symmetry N2 -1 = 624

McClellan 9(Nil)-2=106 83.01%

Improved McClellan 12( Nil) - 2 = 142 77.24%

SVD (K = 5) 2K(N - 1) = 240 61.54%

mic migration FIR digital filters were designed using the method of modified projections

(section 4.6) and stored with the same filter parameters as mentioned earlier. The range of

in-line and cross-line sections was 1100 meters. Also, for this experiment, the maximum

angular frequency used was 901T radians/s~c. These 2-D designed filters were then used

to perform 3-D migration (using the scheme in Figure 6.11) based on true 2-D convolu-

tion (taking into account the quadrantal symmetry of such filters) and based on our SVD

derived realization scheme given by Eq. (6.24) with K = 3, 4 and 5 (all based on the

migration scheme in Figure 6.11). A 2-D slice of the migrated volume at z = 220 meters

is shown in Figure 6.12 (a) using true direct convolution, and using our SVD realization

scheme with (b) K = 3, (c) K = 4 and (d) K = 5. Subjectively, the slice of the migrated

volume via SVD realization with K = 5 in Figure 6.12 (d) is the best among the other

two migrated volumes with the SVD realization with K = 3 (see Figure 6.12 (b)) and

with K = 4 (see Figure 6.12 (c)). Finally, the signal to noise ratio (SNR) is computed

with respect to the original migrated slice in Figure 6.12 (a) for those in Figures 6.12 (b),

(c), and (d). Again, the migration via SVD realization with K = 5 gave the highest SNR
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which is equal to 11.1296 dB when compared with K = 3 (SNR=-0.8722 dB) and with

K = 4 (SNR=4.9115 dB). This is an expected result, due to the simulations performed

previously in subsection 6.4.1.1.

The same input seismic section described above was migrated using both the McClel-

lan and the improved McClellan transformation schemes. A set of 25-tap 1-D migration

FIR digital filters were pre-designed (using the modified projections in section 3.6) and

stored in order to perform such an experiment again with the same filter parameters as in

6.4.1. Figures 6.13 (c) and (d) show the same 2-D slice of the 3-D migrated section at

z = 220 meters with SNR's equal to -2.8654 dB and -3.4829 dB, respectively.

Although the improved McClellan slice given in Figure 6.13 (d) has a better response

when compared to the migrated section slice in Figure 6.13 (c) using the original Me-

Clellan method, both methods result in poor migrated images when compared to the SVD

realized migrated section with K = 5 (Figure 6.13 (b)). The differences can be seen

clearly where the McClellan transformation migration impulse responses are not perfect

circles and they also possess poor SNR values. This is justified by reconsidering the

simulation results shown in subsection 6.4.1.2.
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Figure 6.8: A 25 x 252-0 seismic migration FIR digital filter (see section 6.4.1.1) with a
cut-off kc = 0.25. (a) SVD realized magnitude spectrum (K = 3), and (b) SVD realizedp

phase spectrum (K = 3). In this case, it is clear that the magnitude wavenumber response
will affect the migration process stability since it has values» 1.
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Figure 6.9: A 25 x 25 2-D seismic migration FIR digital filter (see section 6.4.1.1) with a
cut-off k; = 0.25. (a) SVD realized magnitude spectrum (1( = 4), and (b) SVD realizedp

phase spectrum (K = 4).
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Figure 6.10: A 25 x 25 2-D seismic migration FIR digital filter (see section 6.4.1.1) with
a cut-off k; = 0.25. (a) SVD realized magnitude spectrum (I( = 5), and (b) SVDP .
realized phase spectrum (I( = 5). Based on previous figures, this wavenumber response
results in a better realization choice, where all the 2-D migration FIR filter requirements
are satisfied.
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Figure 6.12: 3-D Seismic migration impulse response 2-D slice (see section 6.4.2) at
depth z = 220 meters with ~z = 2 meters, and ~x = ~y = 10 meters for a range
of 1100 meters for both the in-line and cross-line sections. The time sampling interval
was flt = 4 msec, C = 1000 meters/sec and a maximum frequency of 45 Hz using
(a) direct convolution, and our proposed SVD realization scheme with (b) K = 3 and
SNR= -0.8722 dB, (c) K = 4 and SNR= 4.9115 dB, and (d) K = 5 and SNR= 11.1296
dB.
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Figure 6.13: 3-D Seismic migration impulse response 2-D slice (see section 6.4.2) at
depth z = 220 meters with 6z = 2 meters, and 6x = 6y = 10 meters for a range of
1100 meters for both the in-line and cross-line sections. The time sampling interval was
6t = 4 msec, C = 1000 meters/sec and a maximum frequency of 45 Hz using (a) direct
convolution, (b) our proposed SVD realization scheme with K = 5 and SNR= 11.1296
dB, (c) the original McClellan transformation method with SNR= -2.8654 dB, and (d)
the improved McClellan transformation method with and SNR= -3.4829 dB.



6.5. Discussion 156

6.5 Discussion

All the pre-designed 2-D seismic migration FIR digital filters were designed using the

method reported earlier in chapter 4. However, this does not prevent the use of 2-D seis-

mic migration FIR digital filters designed using any filter design method. Furthermore, the

selection of the appropriate number of parallel sections, namely K, will be the choice of

the designer. For example, the designer can automate the selection by considering either

Eq. (6.33) or Eq. (6.32) which deal with absolute wavenumber error bounds, the ratio be-

tween the maximum and RMS passband phase error, and, finally, Eq. (6.25) which gives

the bound for the maximum number of multiplications per output sample compared with

direct convolution. Another possibility is to use the maximum number of multiplications

per output sample allowed based on Eq. (6.25). The migration of probable synthetics will

also help in the selection of the appropriate K value.

Moreover, the SNR was computed to give a quantitative figure of the realized mi-

gration results when compared with those obtained via direct 2-D convolutions. This is

justified since the SVD can be used for signal compression [108] where most of the sig-

nal energy is concentrated in the first few singular values. Thus, discarding the remaining

singular values results in an approximatio~ of the signal (in our case is the 2-D FIR filter)

that is decomposed via SVD ..

Finally, although the migration synthetic example given in this chapter was basically

post-stack, such a proposed realization scheme can be used for pre-stack migration of

rectangularly sampled data sets. If the pre-stacked data are irregularly sampled (as is

usually the case), it will then be required to rectangularly resample such data prior to

applying our proposed SVD realization.
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6.6 Conclusion

We have presented a novel application of singular value decomposition (SVD) for real-

izing 2-D quadrantally symmetrical complex-valued seismic migration FIR digital filters

which are used for the expensive application of 3-D explicit depth w - x - y migration.

In order to simplify the SVD computations for such an impulse response structure, we

applied a special matrix transformation on the migration filter impulse responses where

the wavenumber phase response is guaranteed to be retained.

This SVD realization saved 23.08% of the number of multiplications per output sam-

ple when compared to direct implementation with symmetry via true 2-D convolution.

Also, the SVD realization saved 61.54% of the number of additions per output sample

when compared to direct implementation with symmetry via true 2-D convolution. This

came with almost negligible wavenumber errors. In addition, both wavenumber magni-

tude and phase responses possess circular symmetry unlike migration FIR filters realized

with the previously reported McClellan and the improved McClellan transformations for

such geophysical applications.

Finally, we demonstrated our work by applying such SVD realized 2-D seismic migra-,

tion FIR filters to synthetic sei~mic sources. We showed subjectively and objectively that

seismic migration via our proposed SVD realization scheme is out-performing migration

results via other standard methods used for such an application like the McClellan and

the improved McClellan realizations. This was clearly seen in terms of the wavenumber

responses, the maximum and mean passband and stopband absolute wavenumber errors,

and the computational complexity (see sections 6.4.1.2 and 6.4.2).
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Chapter 7

Migration Experiments on the

Two-Dimensional SEG/EAGE Salt

Model

7.1 Introduction

One of the challenges that faces the seismic industry is to migrate (image) beneath salt

bodies or domes [109, 1]. Structurally contoured with high velocities salt domes act

as sonic lenses that disperse seismic energy in haphazard ways. As was described in

chapter 2, various migration techniques exist which try to overcome these salt related

problems of velocity and structure. The Gulf of Mexico is one of the areas which con-

tains such structures. It has become a standard procedure to test any newly developed

migration algorithms that are expected to deal with such challenging structures on the so

called SEGIEAGE Salt Model [110, 111, 112, 109, 113]. The SEGIEAGE Salt Model

shown in Figure 7.1, is a 3-D model, and was defined in October 1993 by representatives

from major oil companies operating in the Gulf of Mexico in addition to many indepen-

dents and oil service contractors [110, 111, 112, 109, 113]. Maps describing the model

were generated in November 1993 and the model was constructed in December 1993 at

the Nancy School of Geology, Nancy, France. A preliminary velocity grid was avail-
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able in March 1994. In August 1994, the SEGIEAGE modelling committee decided to

convert the model metric coordinates to be compatible with the Overthrust model. A fi-

nal velocity grid was made available in September 1994 (see [110, 111, 112, 113] and

http://research.seg.org/3dmodelfsalthome/intro.html).This model was built to address

data quality issues which are encountered around the types of salt features found in the

coast of the US Gulf.

The resulting modified projections (modified POCS) I-D migration FIR filters de-

rived and described in section 3.6 are applied to a 2-D slice from the challenging 3-D

SEGIEAGE Salt model. This 2-D section was used to generate a zero-offset section using

the method of finite differences [3]. By migrating this 2-D zero-offset section, we can

easily assess our FIR filters designed using the modified projection algorithm and com-

pare the result with other well known post-stack migration methods. Hence, the migrated

result is compared with images obtained via migration FIR filters based on the modified

Taylor series [12], and with other standard techniques such as the Phase Shift Plus Inter-

polation (PSPI) [28], and the Split-Step (SS) Fourier methods [29, 3] (both were briefly

described in chapter 2). The modified projection algorithm provides very stable depth

filters (extrapolators). As we shall see later in this chapter, the resulting migrated section

is of comparable quality to the expensive PSPI result, and visibly out-performs the other

two techniques [30, 31].

We start this chapter by performing some preliminarily experiments (section 7.2)

based on the given zero-offset and velocity model of the 2-D SEGIEAGE model. These

experiments evaluate the accuracy of the designed filters and provide prior information

that assists the interpretation of the obtained migrated images of the 2-D SEGIEAGE data

set. Finally, the chapter ends with a brief discussion and conclusion in section 7.3.
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Figure 7.1: This is a 3-D perspective of the SEG/EAGE Salt Model. The model contains
various challenging geological structures such as sand bodies, salt sill, different faults,
etc. The model was designed to test migration (pre/post-stack) algorithms in different
geological settings. Finally, the velocities which are surrounding the salt body are typical
of Gulf of Mexico sediments (courtesy of http://www.ees4.lanl.gov/image_seg).

7.2 Post-Stack Migration of the 2-D SEGIEAGE Salt Model

This section presents various simulation experiments. The first three subsections provide

prior information of how the migration of the 2-D SEG/EAGE Salt Model would look

like based on its required seismic migration FIR filters parameters. Note that all of such
,

experiments are performed using MATLAB on a Pentium IV machine with 1GB of RAM

on a Linux based OS.

7.2.1 Accuracy of the I-D Seismic Migration FIR Filters

First we compare the accuracy of the I-D seismic migration FIR filters (extrapolators)

designed using the proposed modified projection algorithms (with E = 10-15) reported

in chapter 3 with the modified Taylor series method (with 8 derivative terms) reported

in [12], the complex Remez exchange algorithm (with a passband weight=80) reported

in [19, 20]. All filters were designed with an FIR filter length N = 25, and a passband

wavenumber cut-off kcp = 0.25. The magnitude response for both the modified Taylor

series method and the modified projections method have a flatter amplitude within the
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passband. That is, the designs result in much less ripple when compared to the complex

Remez result. This can be clearly seen in Figure 7.2 (a) where the passband magnitude

response error for the modified projections and the modified Taylor series methods are

very close to zero. In other words, the modified projections and modified Taylor series

filters results in a more stable migration compared with the complex Remez method.

Furthermore, the modified projections designed migration FIR filter accommodates

higher propagation angles when compared to the modified Taylor series and the complex

Remez filters. This is seen in Figure 7.2 (a) where the modified projections magnitude

response error starts to attenuate at wavenumber values higher than those of the other two

filters. Figure 7.2 (b) shows the passband phase response error for all designed filters.

The passband phase response error indicates that both the modified projections and

the modified Taylor series phase response errors are smaller than the phase response error

of the complex Remez method. In fact, the passband phase error related to the complex

Remez technique is very high and this would result (as we are going to see later) in

positioning seismic events incorrectly. Finally, Table. 7.1 compares the CPU time for

designing all the above mentioned techniques where the modified projections technique

required the minimum design timing. This also shows that we can save in design time

compared with the other two techniques.

7.2.2 2-D Impulse Responses

For 2-D extrapolation impulse response, the synthetic seismic section used here is a zero

section with the zero-offset trace containing only 25 Hz three zero-phase Ricker wavelets

centred at 0.3, 0.6, and 0.9 seconds. The depth interval f:1z = 4 meters, and lateral sam-

pling interval f:1x = 20 meters for a range of 1600 meters. The time sampling interval is

f:1t = 2 msec, a velocity c = 750 meters/sec and we have a maximum frequency of 45 Hz.

Based on that, we designed a set of 25-tap 1-D filters using the modified projections, the

modified Taylor series, and the complex Remez methods. Figure 7.3 (a) shows the 2-D
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Figure 7.2: The designed I-D migration FIR filters (see section 7.2.1) using the modified
projections (solid-line), the modified Taylor series (dash-dotted line), and the complex
Remez exchange (dashed line) algorithms with N = 25, and kc

p
= 0.25, (a) Magnitude

response error within the passband, and (b) Phase response error within the passband.
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Table 7.1: Comparison of CPU design time (see section 7.2.1) for designing a 25-tap I-
D seismic migration FIR filters (wavefield extrapolators) with a normalized wavenumber
cut-off of kcp = 0.25 using the modified projections (with e = 10-15), the complex Re-
mez (with a passband weight of 80) and the modified Taylor series methods (8 derivative
terms).

Method CPU design time

using MATLAB (see.)

Modified projections (679 iterations) 2.67

Complex Remez (passband weight of 80) 10.8

Modified Taylor Series (8 derivatives) 2.95

migrated synthetic section using the modified projections algorithm with op = 08 = 10-3,

and € = 10-15. For the same zero-offset experiment mentioned above, Figure 7.3 (b)

shows the 2-D migrated synthetic section using the modified Taylor series method.

Clearly, the modified Taylor series method attenuates propagating waves having an-
,

gles more than (approximately) 45° unlike the case for the modified projection method

where it accommodates propagation angles up to approximately 70° for the same filter

length. Also, unlike the impulse response of the modified Taylor series method, the im-

pulse response of the modified projection algorithm results in less numerical artifacts.

Finally, Figure 7.3 (c) shows the impulse response using the complex Remez method.

The result clearly shows a serious miss-positioning error where this is due to the large

phase error seen in Figure 7.2 (b). Hence, large dips can be handled by the modified

projection filters. Also, compared with both the modified Taylor and the complex Remez

seismic impulse responses, the impulse response of the modified projection filters results

in less dispersion noise and a correct positioning of the impulse responses.
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Figure 7.3: 2-D Impulse response sections (see section 7.2.2) with 6.z = 4 meters, 6.x =
20 meters, 6.t = 2 msec, C = 750 meters/sec, and we have used a maximum frequency
of 80 Hz using (a) the modified projections algorithm where the filter's parameters are
6
p
= 6s = 10-3, and c: = 10-15 for N = 25 with an approximate resulting dip angle of

700, (b) the modified Taylor series method where N = 25 with an approximate resulting
dip angle of 45°, and (c) the complex Remez method where N = 25 with an approximate
resulting dip angle of 70°.

7.2.3 2-D Dip Accuracy and Stability

The same set of filters designed using the modified projection algorithm and the modified

Taylor series method for the impulse response experiments in the previous subsection are

used to migrated a synthetic time-space seismic section shown in Figure 7.4 (a). This

section contains dips with angles: 0°,30°,50°,60°,70° and 80°. It is constructed based

on a Ricker wavelet input with a dominant frequency of 15 Hz and with a time duration

of 0.2 seconds. Figure 7.4 (b) shows the migrated section using the migration FIR filters



7.2. Post-Stack Migration of the 2-D SEGIEAGE Salt Model 165

designed using the modified projection algorithm. Clearly the filters have accommodated

dips up to 70° and a little of the 80° dip. Also, the same figure shows that the modified

projection filters have shortened and moved the synthetic dip reflectors correctly up dip.

On the other hand, as seen in Figure 7.4 (c), the modified Taylor method attenuates

dips above 50° and introduces background artifacts. These results can be explained since

the modified Taylor phase response error is much higher than the phase response error of

the modified projection algorithm as shown previously in Figure 7.2 (b) while its passband

magnitude response propagates wavefields with much less angles when compared to the

modified projection filter as in Figure 7.2 (c) and Figure 7.3 (a) and (b). Therefore, the

modified projection filters are again able to handle large dips and are more stable over

larger propagation distances compared with the modified Taylor filters. Note that we

have used a nonlinear gray scale mapping to highlight the background artifacts for both

migrated images.

7.2.4 Application to the SEGIEAGE Salt Model

The main objective here is to subjectively evaluate our modified projection seismic migra-

tion FIR filters designed in the previous subsections for post-stack migration. Figure 7.5

represents the SEGIEAGE salt velocity model reported by [110, 111, 112, 109, 113]. The

salt body is embedded in sediments with smoothly varying velocities. The velocity model

is composed of 1024 traces where each trace contains 1048 depth samples. A zero-offset

section of the SEGIEAGE salt velocity model was generated based on finite differences

[3]. It is composed of 1024 traces and the time record was up to 6 seconds (3001 time

samples per trace).

7000 frequency-velocity dependent filters were designed with the same filter parame-

ters given in the previous subsections with a total filter length of 25 coefficients but only

13 coefficients were stored and used due to their symmetry property. Here, we display

only offsets ranging from 3, 000 m up to 17,000 m and a time interval from 0 up to 5 sec
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Figure 7.4: (a) A 2-D synthetic time-space section containing dipping events with angles
00 300 500 600,700 and 800 (see section 7.2.3). This section is constructed based on a, , ,
Ricker wavelet input with a dominant frequency of 15 Hz and with a time duration of
0.2 seconds. Migration of the 2-D synthetic time-space section containing dipping events
with angles 00,300,500,600,700 and 800 using (b) the modified projections algorithm
with N = 25, and (c) the modified Taylor series method with N = 25.

(depth interval from 0 up to 4000 m). A MATLAB MEXI file was written to implement

the post-stack explicit depth extrapolation process as reported in [13, 12, 1] where t~e

filters are implemented in a spatially varying convolution in order to accommodate lateral

velocity variations [13]. This was earlier described in chapter 2 (see Figure 2.24 which

illustrates the w - x post-stack migration algorithm and Figure 2.23 (b) for the concept of

IMEX-files (MEX stands for MATLAB Executable) are dynamically linked subroutines produced from
C or Fortran source code that, when compiled, can be run from within MATLAB in the same way as
MATLAB M-files or built-in functions. For more details see http://www.mathworks.com.

http://www.mathworks.com.
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Figure 7.5: SEG/EAGE Salt velocity Model (see section 7.2.4). The velocities range from
1500 m/s which is the acoustics speed in water (black color) to about 4500 m/s which is
the acoustics speed in salt (white color).

spatially varying migration filtering process).

Figure 7.7 shows migration results obtained by explicit depth extrapolation using op-

erators designed with (a) the modified projection algorithm (MPOCS), and (b) the mod-

ified Taylor series method (MTaylor). For both results, we applied a 0.006 (lIm) cut-off

high pass wavenumber depth filter per seismic trace in order to enhance the overall dis-

play of the results. The modified projection result (Figure 7.7 (a)) has presented a better

overall image of the SEG/EAGE salt model compared with the one obtained using the

modified Taylor filters (Figure 7.7 (b)). This is seen clearly in areas that are difficult to

migrate, i.e., beneath the salt dome and at reflectors with steep dips. This matches with

the synthetics results shown in Figure 7.3 (a) and (b), and Figure 7.4. For comparison,

Figure 7.8 shows migration sections produced by other standard techniques, namely, (a) .

the split-step Fourier method with 2048 FFT points [29, 3] and (b) the Phase Shift Plus
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Figure 7.6: The time-space zero-offset section of the SEGIEAGE Salt Model which is
generated based on finite differences (see section 7.2.4). This data set serves to assess
the structural migration capabilities of different post-stack migration algorithms (see for
example [3]).

Interpolation (PSPI) technique with 4 reference velocities and 2048 FFT points2[28]. Al-

though the PSPI is a very expensive method, it produces the best quality image. This is

clearly seen at areas beneath the salt dome and at steep dip reflectors. It thus serves as an

overall quality control. Table. 7.2 shows the cost of all the compared migration schemes

for a single angular frequency at a given depth slice. Clearly, the most expensive is the

PSPI (refer to Eqs. (2.21) and (2.23)). All migrated results at the sediments above the salt

dome as well as within the salt dome are clearly imaged.

To highlight differences, however, Figures 7.9,7.10,7.11 contain zoom-ins on struc-

turally difficult areas (respectively, different dips, steep dips and sub-salt structures). As

anticipated, the PSPI technique produces the best migration result, although the explicit

2Both the SS and PSPI results were generated using the Colorado School of Mines Seismic Un*x pack-
age at http://www.cwp.mines.edu/cwpcodes/.

http://www.cwp.mines.edu/cwpcodes/.
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Table 7.2: Comparison of computational cost (number of complex multiplications and
additions) (see section 7.2.4) for each angular frequency at a depth slice for migrating
the 2-D zero-offset SEGIEAGE salt model using 25-tap I-D seismic migration FIR filters
(wavefield extrapolators), the Split-Step Fourier method and the PSPI method (with 4
reference velocities and 2048 FFT points).

Method Computational cost Savings w.r.to PSPI

w-x 37888 81.31%

(25-taps)

Split-Step Fourier 101376 50%

(2048 FFT points)

PSPI (4 reference velocities 202752

I and 2048 FFT points)

wavefield extrapolation using the modified projection design algorithm yields a migrated

section of comparable quality, Both strong dips and sub-salt structures are imaged clearly

for those obtained using the modified projection and the PSPI methods. In other words,

the modified projection and ,PSPI approaches visibly out-perform the other two tec~-

niques. Therefore, besides obtaining a much better quality image than the split-step

Fourier method and the modified Taylor filters, by using 25-tap explicit depth migration

FIR filters designed using the modified projections, a comparable image overall image

with the expensive PSPI method was obtained.
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Figure 7.7: Migrated SEGIEAGE Salt model (see section 7.2.4) via (a) the modified pro-
jections method, and (b) the modified Taylor series method.



7.2. Post -Stack Migration of the 2-D SEGIEAGE Salt Model 171

Migrated section using Split-step Fourier
0

500

1000

UJ 1500
'-
(])

ID.s 2000
.ca.
(])
o 2500

3000

3500

4000
0.4 0.6 0.8 1 1.2 1.4 1.6

Offset [meters] x 104

(a)

Migra1ed section using PSPI
0

500

1000

'"iii'1S00...
Q).....
Q)

.§. 2000
s:
E.
Q)
o 2500

3000

3500

4000
0.4 O.B 0.8 1 1.2 1.4 1.B

Offse1 [me1ers] x 104

(b)

Figure 7.8: Migrated SEG/EAGE Salt model (see section 7.2.4) via (a) the Split-Step
method, and (b) the PSPI method.
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Figure 7.9: Zoom-in on an area with different dips (see section 7.2.4): (lateral position
7500 : 9750 m, and depth 1200 : 1800 m) via (a) the modified projections technique, (b)
the modified Taylor series method, Cc) the Split-Step Fourier method, and (d) the PSPI
method.
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Figure 7.10: Zoom-in on an area with steep dips (see section 7.2.4): left flank of the salt
model (lateral position 6000 : 8000 m, and depth 1800 : 2800 m)via the (a) modified
projections technique, (b) the modified Taylor series method, (c) the split-step Fourier
method, and (d) the PSPI method. The modified projections technique provides stable
results even in the presence of steep dips using only 25 filter coefficients.
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Figure 7.11: Zoom-in on a structurally challenging sub-salt area (see section 7.2.4) (lateral
position 6500 : 8500 m, and depth 3400 : 4000 m) via the (a) modified projections
technique, (b) the modified Taylor series method, (c) the split-step Fourier method, and
(d) the PSPI method. The modified projections technique provides again stable results.
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7.3 Discussion & Conclusion

A 2-D post-stack depth migration of the challenging SEGIEAGE Salt model using mi-

gration FIR filters designed with the modified projections scheme compared favourably

with the computationally expensive Phase Shift Plus Interpolation (PSPI) method where

our method has saved 81.31% of the total computational cost when compared to the PSPI

technique. Also, it out-performed several other standard techniques such as the modi-

fied Taylor method at the same computational cost as well as the Split-Step Fourier (SS)

method with savings of 40.65% of the compuational cost. Hence, stable and short length

explicit depth extrapolation can even be achieved in structurally challenging areas involv-

ing steep dips or underneath salt using the modified projection FIR migration filters.

Here, the modified projection seismic migration FIR filters can be used to design

filters for 2-D pre-stacklpost-stack time/depth migration. Also, based on the 2-D seismic

migration FIR digital filter results in chapter 4, it is expected to achieve similar migration

results on the 3-D SEGIEAGE Salt model using the 2-D modified projection algorithm

(section 4.6) where it can be also used for pre-stacklpost-stack time/depth migration. The

lack of 3-D zero-offset SEGIEAGE Salt model data as well as the relevant advanced

computational facilities have prevented u,s from applying our 2-D filters as reported in

chapter 4.
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Chapter 8

Conclusion and Further Work

In this thesis, we have derived new I-D and 2-D complex-valued seismic migration FIR

digital filter design algorithms (chapters 3 and 4) using the method of Vector Space Pr-

jections (VSPM)s. In general, these I-D and 2-D design algorithms satisfy the explicit

depth frequency-space migration problem. They are used for the post-stack migration of

2-D and 3-D seismic data sets, respectively.

To be more precise, we derived such FIR filter design algorithms based on the pure

and the relaxed projections theorems where we demonstrated that, for the same filter de-

sign parameters and algorithm stopping thresholds, the relaxed version of the pure design

algorithm results in significant savings in filter design time. To obtain a more robust

design, we modified the pure design algorithm and called it the modified projection al-

gorithm. This modified algorithm also provided a significant saving in terms of the filter

design time even when compared with the relaxed projection method. We achieved better

filter design characteristics with the I-D and 2-D pure, relaxed and modified projection

algorithms than other previously reported methods for the frequency-space explicit depth

migration FIR filters.

These sets of I-D and 2-D migration FIR digital filters, which are derived based on

the VSPMs, serve as kernels for pre-stack time/depth migration. Therefore, they can

be applied for pre-stack depth migration. The simplicity of the VSPM algorithms and
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robustness of their designed migration FIR filters encourage us to further use them for

pre-stacked data sets. This is because the pre-stack depth migration is nowadays becom-

ing a more important seismic data processing step in the seismic industry [114, 115, 116],

although it is an expensive migration scheme as mentioned earlier in the thesis.

The VSPM used to design our filters has the freedom to incorporate other constraints

into the design algorithm (see chapter 1 and [89]). Therefore now-including constraints,

while performing migration, the effect of data acquired in non-flat surfaces is of important

further investigation [117]. Alternatively, we can add a constraint to limit the total average

noise power passing through the stopband (evanescent) region of the designed filters [89].

By doing so, we expect to enhance the overall SNR of the migrated sections, especially,

during pre-stack migration.

Moreover, there exist nowadays 3-D seismic data which is acquired based on hexag-

onal grids in the in-line and cross-line (x - y) plane [23]. The frequency-wavenumber

response of a 3-D seismic data set can be approximated by a domain bounded by two

cones [118]. So in the spatial wavenumber domain- i.e., for each frequency slice, the 2-D

wavenumber spectra are circularly band limited. Mersereau [119,6] has proved that the

optimal sampling scheme for such band lifnited signals are hexagonal grids. So the use of

hexagonal grid sampling in 3':D processing data is thus an important issue to consider.

As the case for the acquisition of 3-D data on hexagonal sampling grids [23], process-

ing of such hexagonally sampled data sets is an advantageous economic alternative be-

cause it needs 13.4% fewer sample points as compared to rectangular grids [119,6, 118].

Hence, the design of 2-D migration FIR digital filters whose coefficients are matching

such hexagonal configurations is a further important research issue to consider. This, in

tum, also gives savings in terms of the expensive migration computational effort since

less data samples need to be processed. When using the VSPM method in this case, in

addition to fixing a proper indexing scheme, a 2-D FFT for hexagonally sampled data
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sets is required to successfully design such 2-D complex-valued FIR filters. Hence, this

attracts us for future investigations.

We also applied our migration filters designed using the VSPMs on the most chal-

lenging data set used to assess any post-stack migration method (chapter 7). That is, we

applied them to the 2-D zero-offset SEGIEAGE model. We showed that our proposed

migration FIR digital filters achieved superior migrated images when compared to the

SEGIEAGE data set migrated using other previously proposed frequency-space migra-

tion FIR filters as well as other standard migration methods. Also, when compared to

the most satisfactory, expensive, and accurate method (i.e., the Phase-Shift Plus Inter-

polation (PSPI) method), we obtained a comparable migrated image via our filters with

about 18.69% of the total computational cost required for the same image obtained using

the PSPI method. Similar work can be done to the 3-D zero-offset SEGIEAGE model.

However, a cluster or a supercomputer must be used to migrate such a 3-D data set. In

the future, we can benefit from the work done previously in [16, 15, 17] to apply our 2-D

migration FIR filters to such a massive 3-D volume.

Not only that, but due to the extensive cost of the 3-D migration process, in chapter 6,

we have also proposed a novel application of Singular Value Decomposition (SVD) theory

to cheaply implement the 2-D complex-valued migration FIR digital filters. This came in

trade-off negligible wavenumber errors. We applied a matrix transformation on the 2-D

complex-valued migration FIR filter impulse responses to simplify the SVD computations

and reduce the SVD numerical computation errors. Such a cheap implementation showed

satisfactory filter wavenumber responses which follow with the 2-D migration FIR filter

requirements. Consequently, we obtained better 3-D migrated volumes when compared

to those obtained via the up-to-date used implementation schemes for such a geophysical

application, namely, the McClellan transformations.
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Although we assumed that our migration FIR filter size is of N x N, i.e., the impulse

response matrix is square, we can still realize the 2-D migration FIR filters whose im-

pulse responses are of rectangular matrices based on SVD. We also might be interested

in hardware implementation of the SVD realization method using parallel DSP chips for

migrating 3-D seismic data sets. Similarly to the 3-D migration of the SEGIEAGE salt

model, it is important to test the proposed SVD realization method on such an important

model. Such migration results can help the geophysicists to select the optimal number

of parallel SVD sections to accurately migrate that challenging 3-D model. All of these

ideas stimulate our enthusiasm for further research developments on this important sub-

ject.

Finally, encouraged by the availability of multi-dimensional (m-D) Fast Fourier Tram-

form (FFT) algorithms, we extended the 1-D and 2-D complex-valued migration FIR dig-

ital filter design algorithms to a more general class of m-D complex-valued FIR digital

filters in chapter 5. This was done by modifying one of the proposed constraint sets for the

1-D and 2-D complex-valued migration FIR digital filter design problem using VSPMs.

Empirical results demonstrated that our m-D FIR filter design algorithm results in equir-

riple FIR filter responses. In addition, we showed that our designs outperformed the work

reported in [19, 20] in terms of the magnitude and phase responses using the same FIR

filter parameters. Depending 'on the appropriate FFT algorithm and coordinate indexes,

such a newly derived m-D complex-valued FIR digital filter design algorithm can be used

for any data (real/complex) sampled with any regular form. Thus, by considering other

DSP applications, we will further elaborate on such proposed pure projection algorithm

for designing m-D complex-valued FIR digital filters with other sampling schemes.



180

List of Publications

Published

1. W. Mousa, D. C. McLemon, & S. Boussakta, "The Design ofM-D Complex-Valued

FIR Digital Filters Using POCS", Accepted to appear in the 14th EURASIP Euro-

pean Signal Processing Conference (EUSIPCa '06), 2006.

2. W. Mousa, M. Van Der Baan, D. C. McLemon, & S. Boussakta, "Explicit Wave-

field Extrapolation Using Projections Onto Convex Sets with Application to the

SEGIEAGE Salt Model", Accepted to appear in the 68th EAGE Conference & Ex-

hibition, 2006.

3. W. Mousa, S. Boussakta, D. C. McLemon, "Realization of 2-D Seismic Migration

FIR Digital Filters for 3-D Seismic Volumes via Singular Value Decomposition",

Accepted to appear in the IEEE Intr. Conf. on Acoustics, Speech, and Signal Pro-

cessing (ICASSP '06), 2006.

4. W. A. Mousa, D. McLemon, S. Boussakta, & M. Van der Baan, "The Design of

Wavefield Extrapolators Using Projections Onto Convex Sets", Proceedings of the

75th Society of Exploration Geophysicists (SEG) 2005 Annual Meeting.

5. W. A. Mousa, S. Boussakta, & D. McLemon, "Design of Complex-valued Seismic

Migration FIR Digital Filters Using Pure & Relaxed Projections", Proceedings of

the 13th EURASIP European Signal Processing Conference (EUSIPCa '05), 2005.

6. W. A. Mousa, S. Boussakta, & D. McLemon, "Design of Complex-valued Seismic

Migration FIR Digital Filters Using Vector Space Projection Methods", IEEE Intr.

Confon Image Processing. (ICIP'05), vol. 2, pp.:189 - 192, 2005.



181

7. W. Mousa, S. Boussakta, D. C. McLemon, & M. Van Der Baan, "Implementation

of 3-D Wavefield Extrapolation Using Singular Value Decomposition", Accepted

to Appear in Proceedings of the 76th Society of Exploration Geophysicists (SEG)

2006 Annual Meeting.

8. W. Mousa, S. Boussakta, M. Van Der Baan, & D. C. McLemon, "Designing Stable

Operators for Explicit Depth Extrapolation of 3-D Wavefields Using Projections

Onto Convex Sets", Accepted to Appear in Proceedings of the 76th Society 0/ Ex-
ploration Geophysicists (SEG) 2006 Annual Meeting.

Submitted

1. W. Mousa, D. C. McLemon, & S. Boussakta, "The Design ofM-D Complex-Valued

FIR Digital Filters Using POCS", Submitted to the IEEE trans. on Circuits &

Systems-I (TCAS I).

2. W. Mousa, S. Boussakta, D. C. McLemon, & M. Van Der Baan, "Implementation of

2-D Seismic Migration FIR Digital Filters for 3-D Seismic Volumes Using Singular

Value Decomposition", Submitted to IEEE trans. on Signal Processing (SP).

3. W. Mousa, M. Van Der Baan, S. Boussakta, & D. C. McLemon, "Designing Stable

Operators For Explicit Depth Extrapolation of 2-D Wavefields Using Projections

Onto Convex Sets", Submitted to the SEG Journal of Geophysics.

4. W. Mousa, S. Boussakta, & D. C. McLemon, "Seismic Migration Complex-Valued

FIR Digital Filter Design using Vector Space Projection Methods", Submitted to the

IEEE trans. on Geosciences & Remote Sensing (TGRS).



182

References

[1] Oz. Yilmaz, editor. Seismic Data Analysis: Processing, Inversion, and Interpreta-

tion of Seismic Data. Society of Exploration Geophysicists, 2nd edition, 2001.

[2] D. Forel, T. Benz, and W. D. Pennington. Seismic Data Processing with Seismic

Un*x: A 2-D Seismic Data Processing Primer. Society of Exploration Geophysi-

cists (SEG), 2005.

[3] R. J. Ferguson and G. F. Margrave. Planned seismic imaging using explicit, one-

way operators. Geophysics, 70(5):101-109, 2005.

[4] R. P. Bording and L. R. Lines. Seismic Modeling and Imaging with Complete Wave

Equation. SEG, 2004.

[5] P. Kearey, M. Brooks, and I. Hill. An Introduction to Geophysical Exploration.

Blackwell Science, 3rd edition, 2002.

[6] D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing.

Prentice-Hall, 1984.

[7] V. K. Madisetti and D. B. Williams, editors. The Digital Signal Processing Hand-

book. CRC Press and IEEE Press, 1998.

[8] B. Buttkus. Spectral Analysis and Filter Theory in Applied Geophysics. Springer,

2000.

[9] J. W. Thorbeck and A. J. Berkhout. 3-D recursive extrapolation operators: an

overview. Geophysics Extended Abstracts, 1994.



REFERENCES 183

[10] L. J. Karam and J. H. McClellan. Efficient design of digital filters for 2-D and

3-D depth migration. Signal Processing, IEEE Transactions on, 45(4):1036-1044,

April 1997.

[11] D. Hale. 3-D migration via McClellan transformation. Geophysics, 56:1778 -

1785,1991.

[12] D. Hale. Stable explicit depth extrapolation of seismic wavefields. Geophysics,

56:1770-1777,1991.

[13] O. Holberg. Towards optimum one-way wave propagation. Geophysical Prospect-

ing, 36:99-114, 1988.

[14] J. Thorbecke. Common Focus Point Technology. PhD thesis, Delft University of

Technology, 1997.

[15] D. Bhardwaj, S. Yemeni, and S. Phadke. Parallel computing in seismic data

processing. pages 279-285. 3rd International Petroleum Conf. and Exhibition

(PETROTECH-99), 1999.

[16] D. Bhardwaj, S. Yemeni, and S. Phadke. Efficient parallel 110 for seismic imag-

ing in a distributed computing environment. pages 105-108. 3rd conference and

exposition on Petroleum and Geophysics (SPG 2000), 2000.

[17] S. Phadke, R. Rastogi, S. Yemeni, and S. Chakraborty. Parallel distributed seis-

mic imaging algorithms on PARAM 10000. 4th conference and exposition on

Petroleum and Geophysics (SPG 2002), 2002.

[18] R. Soubaras. Explicit 3-D migration using equiripple polynomial expansion and

Laplace synthesis. Geophysics, 61(5):1386-1393,1996.

[19] L. J. Karam and 1. H. McClellan. Complex Chebyshev approximation for FIR filter

design. IEEE Trans. on Circuits and Systems, 42(3):207 - 216, March 1995.

[20] L. J. Karam and J. H. McClellan. Chebyshev digital FIR filter design. Signal

Processing, 76:17 - 36,1999.



REFERENCES 184

[21] A. E. Cetin, O. N. Gerek, and Y. Yardimci. Equiripple FIR filter design by the FFf

algorithm. Signal Processing Magazine, IEEE, Vol. 14:60-64, Mar 1997.

[22] K. C. Haddad, H. Stark, and N. P. Galatsanos. Constrained FIR filter design by

the method of vector space projections. IEEE Trans. on Circuits and Systems,

47(8):714 -725, August 2000.

[23] A. Ozbek, L.Hoteit, and G. Dumitru. 3-D filter design on a hexagonal grid with ap-

plication to point-receiver land acquisition. SEG 2004 Expanded Abstracts, 2004.

[24] W. A. Mousa, S. Boussakta, and D. C. McLemon. Design of complex-valued seis-

mic migration fir digital filters using vector space projection methods. Proceedings

a/the IEEE Intr. Conf on Image Processing. (ICIP '05),2: 189-192,2005.

[25] W. A. Mousa, S. Boussakta, and D. C. McLemon. Design of complex-valued

seismic migration fir digital filters using pure & relaxed projections. Proceedings of

the 13th EURASIP European Signal Processing Conference (EUSIPCa '05),2005.

[26] W. A. Mousa, S. Boussakta, and D.C. McLemon. Seismic migration complex-

valued FIR digital filter design using vector space projection methods. Submitted

to IEEE Trans. on Geosciences and Remote Sensing, 2006.

[27] W. A. Mousa, D. C. Mcl.ernon, S. Boussakta, and M. Van Der Baan. The Design of

Wavefield Extrapolators Using Projections Onto Convex Sets. SEG 2005 Expanded

Abstracts,2005.

[28] J. Gazdag and P. Sguazzero. Migration of seismic data by phase shift plus interpo-

lation. Geophysics, 49:124-131,1984.

[29] P. L. Stoffa, J. T. Fokkema, R. M. de Luna Freire, and W. P. Kessinger. Split-step

Fourier migration. Geophysics, 55:410-421, 1990.

[30] W. A. Mousa, M. Van Der Baan, D. C. McLemon, and S. Boussakta. Explicit

wavefield extrapolation using projections onto convex sets with application to the



REFERENCES 185

SEGIEAGE salt model. Accepted to appear in the 68th EAGE Conference & Ex-

hibition, 2006.

[31] W. A. Mousa, M. Van Der Baan, S. Boussakta, and D.C. McLemon. Designing

stable operators for explicit depth extrapolation of 2-d wavefields using projections

onto convex sets. Submitted to the SEG Journal of Geophysics, 2006.

[32] C. L. Liner. Elements of 3-D Seismology. PennWell, 1999.

[33] G. 1. Baeten, V. Belougne, L. Combee, E. Kragh, J. Orban, A. Ozbek, and P. Ver-

meer. Acquisition and processing of point receiver measurements in land seismic.

SEG 2000 Expanded Abstracts, 2000.

[34] G. Blacquiere and L. Ongkiehong. Single sensor recording: Antialias filtering,

perturbations and dynamic range. SEG 2000 Expanded Abstracts, 2000.

[35] P. Christie, D. Nichols, A. Ozbek, T. Curtis, L. Larson, A. Strudley, R. Davis, and

M. Svendsen. Raising the standards of seismic data quality. Oilfield Review, pages

16-31,2001.

[36] W. A. Mousa, S. Boussakta, M. Van der Baan, and D. C. McLemon. Designing

stable operators for explicit depth extrapolation of 3-D wavefields using projections,

onto convex sets. Accepted to Appear in the SEG 2006 International Exposition &

Seventy-Sixth Annual Meeting Proceedings, 2006.

[37] W. F. Mecklenbrauker and R. M. Mersereau. McClellan transformations for two-

dimensional digital filtering: I-design. IEEE Trans. on Circuits and Systems,

23(7):405-414, July 1976.

[38] J. McClellan and D. S. K. Chan. A 2-D FIR filter structure derived from the Cheby-

shev recursion. IEEE Trans. on Circuits and Systems, 24(7):372-378, July 1977.

[39] A. H. Kayran and R. A. King. Design of recursive and nonrecursive fan filters with

complex transformation. IEEE Trans. on Circuits and Systems, 30(12):849 - 857,

Dec. 1983.



REFERENCES 186

[40] W. Lu and A. Antoniou. Two-Dimensional Digital Filters. Marcel Dekker Pub-

lisher, 1st edition, 1992.

[41] Wei-Ping Zhu, M. Omair Ahmad, and M. N. S. Swamy. Realization of 2-D linear-

phase FIR filters by using the singular valued decomposition. IEEE Trans. on

Signal Processing, 47(5):1349-1358, May 1999.

[42] W. A. Mousa, S. Boussakta, and D. C. McLernon. Realization of 2-D seismic

migration fir digital filters for 3-D seismic volumes via singular value decomposi-

tion. Accepted to appear in the IEEE Intr. Conf on Acoustics, Speech, and Signal

Processing (ICASSP'06), 2006.

[43] W. A. Mousa, S. Boussakta, D. C. McLernon, and M. Van der Baan. Implementa-

tion of 3-D wavefield extrapolation using singular value decomposition. Accepted

to Appear in the SEG 2006 International Exposition & Seventy-Sixth Annual Meet-

ing Proceedings, 2006.

[44] W. A. Mousa, S. Boussakta, D.C. McLernon, and M. Van Der Baan. Implemen-

tation of 2-D seismic migration fir digital filters for 3-D seismic volumes using

singular value decomposition. Submitted to IEEE Trans. On Signal Processing,

2006.

[45] S. C. Chan and K. M. Tsui. On the design of real and complex FIR filters

with flatness and peak error constraints using semidefinite programming. vol-

ume 3, pages III: 125-128. International Symposium on Circuits and Systems (IS-

CAS'04),2004.

[46] X. Chen and T. Parks. Design of FIR filters in the complex domain. IEEE Trans.

on Acoustics, Speech, and Signal Processing, 35(2):144 - 153, Feb. 1987.

[47] A. Biasiolo, G. Cortelazzo, and G. A. Mian. Computer aided design of multidi-

mensional FIR filters for video applications. IEEE trans. on Consumer Electronics,

35(3):290-296, August 1989.



REFERENCES 187

[48] T. Sekiguchi and S Takahasi. Mcclellan transformations for multidimensional FIR

digital filters with complex coefficients. Electronics and Communications in Japan,

72(4):79-93, 1989.

[49] L. J. Karam. On the design of multidimensional FIR filters by transformation.

In Proceedings of IEEE Int. Con! on Acoustics, Speech, and Signal Processing

(ICASSP), volume 3, pages 2157-2160, 1997.

[50] W. A. Mousa, D. C. McLemon, and S. Boussakta. The design of M-D complex-

valued fir digital filters using POCS. Accepted to appear in the 14th EURASIP

European Signal Processing Conference (EUSIPCa '06), 2006.

[51] W. A. Mousa, D.C. McLemon, and S. Boussakta. The design of M-D complex-

valued fir digital filters using POCS. Submitted to IEEE Trans. on Circuits &

Systems (TCAS-I), 2006.

[52] S. Boussakta, O. AI-Shibami, M. Aziz, and A. G Holt. 3-D vector radix algorithm

for the 3-D new Mersenne number transform. lEE Proc.-Vis: Image & Signal

Processing, 148(2): 115-125, April 2001.

[53] S. Boussakta, O. AI-Shibami, and M. Aziz. Radix 2 x 2 x 2 algorithm for the 3-D

discrete Hartley transform. IEEE Trans. on Signal Processing, 49(12):3145-3156,

Dec.2001.

[54] A. S. Spanias, S. B. Jonsson, and S. D. Stearns. Transform methods for seismic

data compression. IEEE Tran. on Geosciences and Remote Sensing, 29(3):407-

416, May 1991.

[55] A. Ozbek. Adaptive beamforming with generalized linear constrains. Geophysics

Extended Abstracts, 2000.

[56] A. Ozbek. Multichannel adaptive interface canceling. Geophysics Extended Ab-

stracts,2000.



REFERENCES 188

[57] X. Miao and S. Cheadle. Noise attenuation with wavelet transform. SEG 1998

Expanded Abstracts, 1998.

[58] T. J. Ulrych, M. D. Sacchi, and J. M Graul. Signal and noise separation: Art and

science. Geophysics, 64:1648-1656, Sept.- Oct. 1999.

[59] L.Duval and T. Rosten. Filter bank decomposition of seismic data with application

to compression and denoising. SEG 2000 Expanded Abstracts, 2000.

[60] Qiansheng Cheng, Rong Chen, and Ta-Hsin Li. Simultaneous wavelet estimation

and deconvolution of reflection seismic signals. IEEE Transactions on Geoscience

and Remote Sensing, 34(2):377 - 384, March 2001.

[61] K. Berkner and Jr. Wells, RO. Wavelet transforms and denoising algorithms. Con-

ference Record of the Thirty-Second Asilomar Conference on Signals, Systems and

Computers, 2:1639 - 1643, Nov. 1998.

[62] Rongfeng Zhang and Tadeusz J. Ulrych. Physical wavelet frame denoising. Geo-

physics, 68(1):225-231, Jan 2003.

[63] J. E. Womack and J. R Cruz. Seismic data filtering using a gabor representation.

IEEE Tran. on Geosciences and Remote Sensing, 32(2):467-472, March 1994.
,

[64] A. F. Linville and R A. Meek. A procedure for optimally removing localized

coherent noise. Geophysics, 60(1):191- 203, Jan.-Feb. 1995.

[65] B. Duquet and K. J. Marfurt. Filtering coherent noise during prestack depth migra-

tion. Geophysics, 64(4):1054 - 1066, July-Aug. 1999.

[66] S. Treitel, J. L. Shanks, and C. W. Fraster. Some aspects of fan filtering. Geo-

physics, XXXII:789 - 800,1967.

[67] M. Z. Mulk, K. Obata, and K. Hirano. Design of fan filters. IEEE Trans. on

Acoustics, Speech, and Signal Processing, 31(6):1427 - 1434, Dec. 1983.



REFERENCES 189

[68] D. W. McCowan, P. L. Stoffa, and J. B. Diebold. Fan filters for data with vari-

able spatial sampling. IEEE Trans. on Acoustics, Speech, and Signal Processing,

32(6):1154-1159, Dec. 1984.

[69] R. Ansari. Efficient HR and FIR fan filters. IEEE Trans. on Circuits and Systems,

34:941 - 945, August 1987.

[70] R. H. Bamberger and M. 1.T Smith. A filter bank for the directional decomposition

of images: Theory and design. IEEE Tran. on Signal Processing, 40(4):882-893,

December 1992.

[71] E. A. Robinson. Migration of geophysical data. Intr. Human Resources Develop-

ment Corporation, 1983.

[72] J. F. Claerbout. Imaging the Earth's Interior. Blackwell, 1984.

[73] P. M. Shearer. Introduction to Seismology. Cambridge Uni. Press, 1999.

[74] J. A. Scales. Theory of Seismic Imaging. Samizdat Press, 1997.

[75] G. Garibotto. 2D recursive phase filters for the solution of two-dimensional wave

equations. IEEE Trans. on Acoustics, Speech, and Signal Processing, 27(4):367 -

373, Aug. 1979.

[76] 1. Gazdag. Wave equation migration with the phase-shift method. Geophysics,

43:1342-1351,1978.

[77] R. H. Stolt. Migration by Fourier transform. Geophysics, 43(1):23-48, 1978.

[78] A. A. Dubrulle and J. Gazdag. Migration by phase shift-an algorithmic description

for array processors. Geophysics, 44(10):1661-1666, 1979.

[79] A. J. Berkhout. Wavefield extrapolation techniques in seismic migration, a tutorial.

Geophysics, 46(12):1638-1656,1981.

[80] J. T. Etgen. Stability of explicit depth extrapolation through laterally-varying me-

dia. SEG 1994 Expanded Abstracts, 1994.



REFERENCES 190

[81] Samuel H. Gray, John Etgen, Joe Dellinger, and Dan Whitmore. Seismic migration

problems and solutions. Geophysics, 66(5):1622-1640, 2001.

[82] A. J. Berkhout. Seismic Migration: Imaging of Acoustic Energy by Wave Field

Extrapolation, volume A. Theoretical Aspects. Elsvier Scientific Publishing Com-

pany, 2nd edition, 1982.

[83] A.V. Oppenheim and R.W. Schafer. Discrete-time signal processing. Prentice Hall,

Englewood Cliffs, NJ, 1989.

[84] L. B. Jackson. Digital Filters and Signal Processing. Kluwer Academic Publisher,

3rd edition, 1996.

[85] J. W. Thorbeck, K. Wapenaar, and G. Swinnen. Design of one-way wavefield ex-

trapolation operators, using smooth functions in WLSQ optimization. Geophysics,

69(4):1037-1045,2004.

[86] L. M. Bregman. Finding the common point of convex sets by the method of suc-

cessive projections. Dokl. Akad. Nauk. USSR, 162(3):487-490, 1965.

[87] L. G. Gubin, B. T. Polyak, and E. V. Raik. The method of projections for finding

the common point in convex sets. USSR Compu. Math. Phy., 7(6):1-24,1967.

[88] E. Hermanowicz and M. Blok. Iterative technique for approximate minimax design

of complex digital fir filters. 7th IEEE International conference on Electronics,

Circuits and Systems, 1:83-86,2000.

[89] H. Stark and Y. Yang. Vector Space Projections: a numerical approach to Signal

and Image processing, Neural nets, and Optics. John Wiley and Sons Publisher,

1st edition, 1998.

[90] A. Levi and H. Stark. Signal restoration from phase by projections onto convex

sets. In Proceedings of IEEE Int. Conf. on Acoustics, Speech, and Signal Process-

ing (ICASSP), 1983.



REFERENCES 191

[91] M. Sezan. An overview of convex projections theory and its application to image

recovery problems. Ultramicroscopy, 40:55-67, 1992.

[92] K. C. Haddad, H. Stark, and N. P. Galatsanos. Design of digital linear-phase FIR

crossover systems for loudspeakers by the Method of Vector Space Projections.

IEEE Trans. on Signal Processing, 47(11):3058-3066, November 1999.

[93] P. Oskoui-Fard and H. Stark. Tomographic image reconstruction using the theory

of convex projections. IEEE Trans. on Medical Imaging, 7(1):45-58, March 1988.

[94] S. Oh, R. J. Marks, and L. E. Atlas. Kernel synthesis for generalized time-

frequency distributions using the method of alternating projections onto convex

sets. IEEE Trans. on Signal Processing, 42(7):1653-1661, July 1994.

[95] I.Th. Bjarnason and W. Menke. Application of the pocs inversion method to cross-

borehole imaging. Geophysics, 58(7):941-948, July 1993.

[96] E. Kreyszig. Introductory Functional Analysis with Applications. John Wiley and

Sons, 1978.

[97] K. Sydsaeter and P. Hammond. Essential Mathematics for Economic Analysis.

Prentice Hall, 2001.

[98] A. Levi and H. Stark. Image restoration by the method of generalized projections

with application to restoration from magnitude. JOSA A, 1(9), September 1984.

[99] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-Hill,

1993.

[100] D. Williamson. Discrete-time Signal Processing. Springer, 1999.

[101] W. F. Mecklenbrauker and R. M. Mersereau. McClellan transformations for two-

dimensional digital filtering: II-implementation. IEEE Trans. on Circuits and Sys-

tems, 23(7):414-422, July 1976.



REFERENCES 192

[102] T. S. Huang. Two-dimensional windows. IEEE trans. on Audio Electroacoust.,

20:88-89, March 1972.

[103] S. Levin. ~x =I ~y in 3D depth migration via McClellan transformations. Geo-

physical Prospecting, 52:241-246, 2004.

[104] M. Reshef and D. Kessler. Practical implementation of three-dimensional poststack

depth migration. Geophysics, 54(3):309-318, March 1989.

[105] Wu-Sheng Lu, Hui-Ping Wang, and A. Antoniou. Design of two-dimensional FIR

digital filters by using the singular-value decomposition. IEEE Trans. on Signal

Processing, 37(1):35-46, January 1990.

[106] Wu-Sheng Lu, Hui-Ping Wang, and A. Antoniou. Design of two-dimensional digi-

tal filters using singular-value decomposition and balanced approximation method.

IEEE Trans. on Signal Processing, 39(10):2253-2262, October 1991.

[107] L. N. Trefethen and D. Bau. Numerical Linear Algebra. Siam, 1997.

[108] M. Kirby. Geometric Data Analysis. John Wiley & Sons, INC., 2001.

[109] M. J. O'Brien and S. H. Gray. Can we image beneath salt? The Leading Edge,

15(1):17-22, Jan. 1996.

[110] Progress report from the SEGIEAGE 3-D modeling committee. The Leading Edge,

13(2):110-112, 1994.

[111] F. Aminzadeh, N. Burkhard, L.Nicoletis, F. Rocca, and K. Wyatt. SEGIEAGE 3-D

modeling project: 2nd update. The Leading Edge, 13(9):949-952, 1994.

[112] F. Aminzadeh, N. Burkhard, T. Kunz, L. Nicoletis, and F. Rocca. 3-D modeling

project: 3rd report. The Leading Edge, 14(2):125-128, 1995.

[113] F. Aminzadeh, N. Burkhard, J. Long, T. Kunz, and P. Duclos. Three dimensional

SEGIEAGE models-an update. The Leading Edge, 15(2):131-134, Feb. 1996.



REFERENCES 193

[114] Lawrence M. Gochioco and Matthew Brzostowski. An introduction to this special

section-migration. The Leading Edge, 24(6):601-601, 2005.

[115] D. Bevc and B. Biondi. Which depth imaging method should you use? A road map

through the maze of possibilities. The Leading Edge, 24(6):602-606, 2005.

[116] S. Pharez, N. Jones, V. Dirks, S. Zimine, H. Prigent, K. Ibbotson, and J-P.

Gruffeille. Pres tack wave-equation migration as a routine production tool. The

Leading Edge, 24(6):608-613, 2005.

[117] M. Reshef. Depth migration from irregular surfaces with depth extrapolation meth-

ods. Geophysics, 56(1):119-122, Jan. 1991.

[118] V. Bardan. A hexagonal sampling grid for 3D recording and processing of 3D

seismic data. Geophysical Prospecting, 45:819 - 830, 1997.

[119] R. M. Mersereau. The processing of hexagonally sampled two-dimensional signals.

Proceedings of the IEEE, 67(6):930-949, June 1979.


