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ABSTRACT 

 
This thesis is focused on the sensorless control of permanent magnet 

synchronous machine (PMSM) based on high frequency carrier voltage injection for 

zero and low speed and third harmonic back-EMF for higher speed, respectively.  

Differing from the conventional high-frequency carrier signal injection based 

sensorless controls, a new sensorless control strategy is proposed which injects a 

pulsating high-frequency carrier voltage into α- (or β-) axis of the stationary reference 

frame as stable as rotating carrier signal injection method and estimates rotor position 

information from the amplitude-modulated carrier current response as simple as 

pulsating carrier signal injection method. By injecting a high frequency square 

waveform carrier voltage, the bandwidth of the rotor position estimation can be 

significantly improved due to the higher injected frequency and removal of all filters.  

When the rotor speed is sufficiently high, the back-EMF based sensorless control 

should be applied. Third harmonic back-EMF is usually applied as reference for 

sensorless control since it is not sensitive to the machine and controller parameters. To 

improve the dynamic performance due to insufficient resolution, a speed error 

compensation strategy based on the continuous signal of third harmonic flux-linkage is 

proposed. This method also can be extended to improve the robustness and rotor 

position estimation in flux observer based sensorless control. Furthermore, based on 

Extended Kalman Filter (EKF), rotor position can be derived without considering 

speed even with poor quality signals for single and dual three-phase PMSM 

Third harmonic back-EMF based sensorless control also has some restrictions. In 

salient pole machines, the winding inductance varies with the rotor position which will 

introduce estimation error. With imbalanced machine parameters, the measured triplen 

harmonic back-EMF will contain certain fundamental components which will 

deteriorate the rotor position estimation. By compensating the contained fundamental 

distortion in advance, the steady-state and dynamic performance of single and dual 

three-phase PMSM can be remarkably improved with high robustness.   
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Introduction 

In the last several decades, the development of permanent magnet (PM) materials, 

power electronic devices and DSP/microprocessors has made a great contribution to 

the permanent magnet synchronous machines (PMSM), which have the advantages of 

high efficiency, high power density, easy maintenance and excellent control 

performance. Multi-phase motor drives have also remarkably increased, especially for 

high-power applications such as electric vehicles, wind power generators, etc, where 

the power can be divided into more inverter legs in order to reduce the current stress 

of single static switch and the current density instead of adopting parallel and 

multi-level converter. Furthermore, the torque ripple, the rotor harmonic currents and 

the harmonic content can be reduced. Also, it has higher reliability, since a 

multi-phase motor can operate with an asymmetric winding structure in the case of 

breakdown of one or more inverter legs or machine phases for fault-tolerant usage. 

Due to the control flexibility, higher dynamic performance and lower cost, 

PMSM drives continue to be the subject of research in both academia and industry. 

The essential requirement in PMSM current control is to get the rotor position 

information, because the air gap flux-linkage is generated from the PM which is 

attached to the rotor. Consequently, position sensors such as an absolute/incremental 

encoder or a resolver located on the shaft of the rotor are needed. However, in certain 

applications, these sensors cannot be used because of several disadvantages, such as 

increased complexity of the drive system leading to lower reliability, susceptibility to 

noise and vibration, additional cost and weight, etc. Hence, sensorless control 

techniques have been widely researched and applied in industries, and will be the 

subject of research in this thesis.  
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1.2 Permanent Magnet Synchronous Machines 

1.2.1 Single Three-Phase PMSM 

1.2.1.1 Topologies of single three-phase PMSM 

There are numerous topologies for PMSM as briefly summarized in Fig. 1.1 

[CHE99, pp. 3-9].  

 
Fig. 1.1.    Summary of PMSM topologies [CHE99] 

In general, the windings for a typical slotted stator can be classified into 

non-overlapping winding and overlapping winding, as illustrated in Fig. 1.2. For 

non-overlapping winding, it is easy for automatic manufacture, and the end winding is 

short whereas the winding factor is usually smaller than 1. The thermal isolation 
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between phases can be good depending on the design and the cogging torque is 

usually low due to the fractional-slot stator. Also the space distribution of stator 

magnetomotive force (MMF) is usually a square-waveform which makes the 

back-EMF usually trapezoidal. For overlapping winding, it is difficult for automatic 

manufacture and thermal isolation. The end winding is long, whereas the winding 

factor could be up to 1. Due to the integral-slot, the cogging torque may be larger. 

However, the MMF distribution can be sinusoidal [HEN94].  

 
(a) Non‐overlapping winding                  (b) Overlapping wading 

Fig. 1.2.    Stator windings [SHE02a]. 

PMSM can also be characterized by PM on the rotor which produces the air gap 

flux-linkage. Fig. 1.3 illustrates the typical rotor structures for conventional inner 

rotor radial field PMSMs [LI09a]. Unlike the lamination with high magnetic 

permeability, the rare earth PM materials have lower permeability, which is close to 

the value of air gap. As a consequence, there is negligible geometric saliency for the 

surface-mounted rotor configuration, whereas, the other three rotor configurations 

exhibit significant saliency effect resulting from geometric anisotropy. Moreover, 

motors with interior permanent magnets (IPM) can exhibit good flux-weakening 

capability which will significantly extend the maximum operation speed due to its 

larger d-axis inductances, whilst the flux-weakening capability of surface-mounted 

permanent magnet (SPM) motors is usually limited. 
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(a) Surface‐mounted PM                            (b) Inset PM 

 
(c) Interior radial PM                  (d) Interior circumferential PM 

Permanent magnet;  Iron lamination;  Air or non‐magnetic materials. 

Fig. 1.3.    Typical rotor structures of PMSM [CHE99]. 

According to the type of back-EMF, PMSM can be categorized as brushless DC 

(BLDC) machines with trapezoidal phase back-EMF and brushless AC (BLAC) 

machines with sinusoidal back-EMF. Meanwhile, according to the type fundamental 

excitation, PMSM operation can be categorized as BLDC machines operation mode 

driven by square wave current excitation, and BLAC operation mode driven by 

sinusoidal current excitation. Usually, BLDC machine is driven in BLDC operation 

mode and BLAC machine is driven in BLAC operation mode as shown in Fig. 1.4.  
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(a) BLDC machine driven by BLDC operation mode 

 
(b) BLAC machine driven by BLAC operation mode 

Fig. 1.4.    Excitation of BLDC and BLAC machines. 

Ideally, a square wave back-EMF motor should be operated in the BLDC mode. 

If both the phase current and back-EMF are ideal waveforms, as shown in Fig. 1.4(a), 

i.e. the back-EMF is trapezoidal with a flat top of 120°, while the current waveform is 

square wave, the electromagnetic torque of a BLDC motor will be free of ripple, and 

can be expressed as 

_
2 2m m m m

m BLDC
r

E I p E IT
ω

⋅ ⋅ ⋅
= =

Ω
 (1.1)

where p is the number of pole-pairs, and Ω and ωr are the mechanical and electrical 

rotor speed, respectively. However, both the phase current and back-EMF are rich in 

harmonics which may increase the stator and rotor losses. 

Back-EMF

Phase Current

mE

mI

Back-EMF

Phase Current

mE

mI
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A sinusoidal wave back-EMF motor should ideally operate in the BLAC mode, 

where both the phase current and back-EMF are ideal sinusoidal waveforms, as 

shown in Fig. 1.4(b), and the ripple free electromagnetic torque can be expressed as 

_
3 3

2 2
m m m m

m BLAC
r

E I p E IT
ω

⋅ ⋅ ⋅
= =

Ω
 (1.2) 

1.2.1.2 Control of single three-phase PMSM 

A PMSM drive consists of a controller, an inverter and a motor, as shown in Fig. 

1.5. BLDC machines are usually used in relatively low cost applications, where only 

discrete rotor position information with low resolution is required. Whereas, BLAC 

machines are excited by sinusoidal phase current, synchronizing with the PM excited 

flux-linkage, thus continuous rotor position information with high resolution is 

required. In this thesis, only the operation of PMSM as a BLAC machine is 

considered since it is widely applied due to its excellent control performance. 

 

Fig. 1.5.    Single three‐phase PMSM drive 

It is well known that the vector control (VC) by applying the d-q-0 reference 

frame transformation has been used in the analysis and control of three-phase 

electrical machine successfully for long time. In this system, with the aid of 

coordinate transformations and specific modulations, the original three-dimensional 

vector space is decomposed into a d-q subspace and an orthogonal zero sequence 

subspace. By this decomposition, the parameters which produce rotating MMF and 
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the parameters of zero sequence which is usually triplen harmonic components are 

totally decoupled. When the windings of PMSM are Y-connected, the zero sequence 

components usually neglected. Thus the analysis and control of the motor are 

simplified. The VC scheme of PMSM is shown Fig. 1.6 where the torque related 

q-axis current and airgap flux-linkage related d-axis current can be directly controlled 

individually [VAS03, pp. 87-177]. 

*
qi

+
−

qi

*
qu+

−

di
*
di *

du

dq

αβ

*
αu

*
βu

DCV

dq

abc

rθ

bai ,

rθ

rθ

+
−

*
rω

e
rω

e
rω

 

Fig. 1.6.    Vector control scheme of PMSM 

Direct torque control (DTC) has been developed for PMSM due to simple 

structure, excellent transient response and good robustness against rotor parameters, 

DTC was first proposed in [TAK86] and [DEP88] for induction machines, and has 

now been extended to other machines, such as PMSM [ZHO97] [PAC05] [FOO09a] 

[ZHA11], BLDC operation [ZHU12], and doubly fed induction machine [ABA08]. 

Hysteresis regulators are usually implemented in the conventional switching-table 

based DTC strategy for the regulation of both electromagnetic torque and stator flux 

as shown in Fig. 1.7. The same as VC, phase voltage which is necessary for torque 

and flux calculation can be obtained from the regulators. Hence, the voltage sensors 

are not needed either. Compared to the VC, coordinate transformations and specific 

modulations are not required. Hence, the transient torque control performance can be 

significantly improved. However, in a digital controller, the responses of both torque 
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and stator flux controllers can exceed the predefined hysteresis bands due to the time 

delay and the fixed sampling frequency, potentially leading to large torque and stator 

flux ripples.  

*
sψ +

−

sψ

ψε

+
−

eT

*
eT Tε DCV

bai ,

e
rθ

+
−

*
rω

e
rω

e
rθ

 

Fig. 1.7.    Direct torque control scheme of PMSM 

1.2.2 Dual Three-Phase PMSM 

During the past decade, interest in multiphase systems with more than three 

phases has increased. For power system applications, the high phase order 

transmission system has been investigated as a means of increasing the capacity of 

overhead electric power transmission rights of way. For motor drive applications, 

multiphase system could potentially meet the demand for high-power electric drive 

systems which are both rugged and energy-efficient.  

1.2.2.1 Topologies of dual three-phase PMSM 

The basic structure of dual three-phase PMSM is similar as single three-phase 

PMSM as introduced in Section 1.2.1.1 where the windings can be classified into 

non-overlapping windings and overlapping windings, and the rotor can be categorized 

as SPM and IPM. Due to multiphase winding structure, the displacement of 

three-phase winding sets can have different phase shift. Nelson in [NEL74] analyzes 

multi-phase motor in that it permits an arbitrary displacement between any numbers of 
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three-phase winding sets. The amplitude of the torque ripple with BLDC operation has 

been reduced from 25% of the average torque for 0° and 60° displacement to only 5% 

with 30° displacement. The predominant frequency has also been shifted from six to 

twelve times supply frequency because it can be seen as a symmetrical twelve-phase 

motor. Furthermore, the q- and d-axis rotor currents for the 30° case are seen to be more 

sinusoidal than for the other two cases, which minimises the temperature and the 

associated sixth harmonic pulsating torque. Hence, two three-phase winding sets 

displaced by 30° as shown in Fig. 1.8 is the most popular topology. 
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Fig. 1.8.    Winding vector of dual three‐phase PMSM 

Having additional phases to control means additional degrees of freedom available 

for further improvements in the drive system. For dual three-phase motor, it is usually 

excited by a full-bridge voltage source inverter as shown in Fig. 1.9. Then the required 

inverter phase current permits are reduced due to the multiphase inverter instead of a 

group of devices connected in parallel, and hence, the total system reliability is also 

improved, whereas the efficiency performance is nearly not affected [BOG06]. 

However, the increasing of control complexity is significant. 
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Fig. 1.9.    Dual three‐phase PMSM drive 

1.2.2.2 Control of dual three-phase PMSM 

For dual three-phase PMSM control, it can also be categorized into two different 

techniques as the ones for single three-phase PMSM, i.e. VC and DTC. 

VC, i.e. vector control, follows two different approaches, viz. dual d-q reference 

frame control and six-dimensional control. In both approaches the two zero-sequence 

components can be omitted from consideration, since the neutral points n1 and n2 of 

the two three-phase windings are isolated as illustrated in Fig. 1.9. 

According to the first approach, the machine can be represented with two pairs of 

d-q windings that represent the two three-phase windings, and be considered as two 

single three-phase motor with coupling voltage [NEL74] [LIP80]. Then, each original 

set of three-dimensional vector spaces are decomposed into one d-q subspace and one 

orthogonal zero sequence subspace. By this decomposition, the parameters which 

produce rotating MMF and the parameters of zero sequence are totally decoupled 

within one set. Thus, the analysis and control of the motor are simplified, and the dual 

three-phase PMSM can be excited by applying the conventional space vector pulse 
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width modulation (SVPWM) generator. However, the cross-coupling effect between 

of the two sets of windings which will increase the stator leakage inductance and 

consequently increase the inverter commutation voltage [KAR12] is nearly not 

considered. Meanwhile, the generated fifth and seventh harmonic current which will 

affect the output torque performance are also not easy to eliminate.  

According to the second approach, dual three-phase PMSM is seen as a 

six-dimensional system. Hence, the modelling and control of this system are 

addressed in a six-dimensional space. Geometrically, the proper control of the dual 

three-phase machine is equivalent to positioning the vector on a certain surface in the 

six-dimensional vector space and rotating this vector at a desired speed [WAR69] 

[ABB84]. Based on vector space decomposition, the machine can be represented with 

three orthogonal subspaces, viz. a d-q subspace which is related to the 

electromechanical energy conversion, a z1-z2 subspace does not, and a o1-o2 which is 

neglected since the neutral points of the two three-phase windings are isolated and 

will not affect the operation [ZHA95].  

The surface spanned by the fundamental component vector with key importance 

to the electromechanical energy conversion function of the machine is addressed as 

d-q subspace and the variables can be controlled by applying VC as single three-phase 

PMSM. z1-z2 subspace is orthogonal to the d-q subspace, and is expected that the 

variables on this plane will not generate any rotating MMF in the airgap. However, if 

there is any asymmetry between the two three-phase stator windings or inside each set 

of winding, stator currents of fundamental frequency will appear in the z1-z2 subspace, 

and should be eliminated to avoid the inherent asymmetry effect of the dual 

three-phase systems [LYR02] [BOJ03] [HE10] [GRE10]. 

The transformation has the property to separate harmonics into different groups 

and to project them into each subspace. Hence, the low-order harmonics such as the 

fifth and seventh will be projected to z1-z2 subspace which results in large stator 

circulating fifth and seventh harmonic currents [ABB84] [GOP93], especially when 

dual six-step VSI is used [NEL74] [XU95], because of the small impedance for these 

harmonics. Therefore, the above-mentioned impedance should be as high as possible. 
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Furthermore, in [ZHA95] [HAD06], SVPWM for dual three-phase motor to minimize 

these low-order harmonic is described, where four adjacent voltage vectors are always 

selected from the vectors which span the outermost polygon on the d-q plane 

according to the position of the reference voltage vector, and the fifth vector is chosen 

from the zero vectors located at the d-q plane origin.  

DTC, i.e. direct torque control, is normally used in conventional single 

three-phase PMSM drives when fast electrical dynamic performance is required, and 

can be extended to multiphase machines. DTC with properly designed switching-table 

could obtain sinusoidal machine phase currents, by minimizing the current 

components x-y subspace which is related to the stator flux-linkage [HAT05] 

[HOA12]. For the asymmetric dual three-phase machine, phase current distortion will 

appear, which can be solved by keeping the switching frequency constant, imposing 

the direct mean torque control approach, and applying PWM-DTC strategy [BOJ05] 

[FAR06]. By using the voltage vectors corresponding to the external layer of the 

dodecagon in the α-β subspace which is related rotor flux-linkage [BOJ06], the direct 

self-control (DSC) imposing a 12-sided polygonal trajectory of the stator flux is 

applied to minimize the fifth and seventh voltage harmonics which will in turn 

produce large current harmonics in x-y subspace. Also, the utility of a predictive 

torque control (PTC) scheme in [BAR09] [BAR11a] for asymmetric dual three-phase 

AC drives could reduce the harmonic content of the stator current to improve the 

control performance.  

A dual three-phase motor has a higher reliability at the system level, since it can 

operate with an asymmetric winding structure in the case of broken down of one or 

more inverter legs or machine phases for fault-tolerant usage [JAH80] [APS06] 

[BAR11b] [ALB12]. [BAR09] applies PTC in a fractional-slot PMSM with dual 

windings which is supplied by two parallel converters to increase the drive fault 

tolerance. [BAR10a] investigates the PMSM with dual three-phase windings and its 

capabilities during faulty operating condition. A fractional-slot interior PMSM with 

12 slots and 10 poles is discussed in [BAR10b] according to different winding 

configurations, where the torque behaviour, overload capability, and thermal limits 
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are evaluated under open-circuit and short-circuit fault.  

1.3. Sensorless Control of PMSM 

As mentioned in Sector 1.2, the rotor position information is a critical concern 

for both BLDC and BLAC machines. Generally, this rotor position information can be 

obtained from high-resolution sensors mounted on a motor shaft. However, these 

sensors not only increase system cost and size but also tend to reduce the system 

reliability. To overcome these drawbacks, on-line rotor position estimation rather than 

direct measurement from physical position sensor, which is referred as sensorless, has 

been of considerable interest. Recently, various sensorless techniques have been 

developed which can be categorized into the methods for BLDC and for BLAC. 

BLDC machines are usually used in relatively low cost applications, where only 

discrete rotor position information with low resolution is required. Whereas, 

continuous rotor position information with high resolution is required for BLAC with 

sinusoidal phase current excitation. In this thesis, only sensorless control for BLAC 

operation is considered.  

Various sensorless techniques for BLAC operation have been widely developed 

which can be categorized into the methods based on machine saliency and 

fundamental model as shown in Fig. 1.10. However, it is well known that none of the 

sensorless methods can guarantee the performance for all applications. Since the 

machine saliency which is the anisotropic property of PMSM is independent on the 

speed, the saliency based sensorless methods are expected to be reliable in zero and 

low speed range, but suffer at higher speed due to the weaker signal to noise ratio 

(SNR) of position dependent signal caused by the lower ratio between the injected 

and fundamental current. However, the algorithms based on fundamental model, 

which tend to fail at zero and low speed operations due to unobserved machine model, 

will show good performances over middle and high speed ranges since the machine 

model can be more accurately established over that speed ranges.  
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Fig. 1.10.    Categories of sensorless control strategies for PMSM 

To evaluate the sensorless control methods, rotor position error needs to be 

analyzed in detail. Usually, the estimation error can be categorized into AC, DC, and 

transient errors.  

 An AC estimation error is a fluctuation and noise component which will 

introduce a ripple into the coordinate transformation. In position or speed control 

applications, the consequent current and torque ripples will increase, and the 

controlled position and speed will also contain certain fluctuation and noise, which 

will deteriorate the performance. Hence, AC estimation error should be minimized.  

 A DC estimation error is the constant component which will lead the 

estimated rotor position a constant shift. Hence, the fundamental current will increase 

due to the consequent flux-enhancing or flux-weakening operation, which may result 
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in problems depending on the application. However, in some applications, such as 

cooling fan and water pump, where the energy conservation is the critical concern, the 

optimal efficiency of the machine and drive system is selected to be the objective for 

sensorless operation, and thus accurate rotor position without DC error is not required.  

 A transient estimation error occurs during the dynamic operation such as 

speed or load step change. Differing from the AC and DC estimation errors, it is a 

short time duration error caused by improper closed-loop bandwidth of the rotor 

position estimator. This transient estimation error will increase the current and torque 

disturbance, as well as the risk of the divergence of the rotor position estimator and 

sensorless control system under dynamic operation. Hence, it must be minimized 

carefully. 

1.3.1 Saliency Based Sensorless Control 

The anisotropic property of PMSM, resulting from either geometric rotor or 

magnetic saliency, can be exploited in rotor position estimation for sensorless control 

and expected to be reliable in zero and low speed range, since the machine saliency 

behaviour is independent on the speed.  

Fig. 1.11 illustrates the measured Inductance variation according to electrical rotor 

position for a salient PMSM [KAN10]. It confirms that the machine inductance is 

modulated by the position dependent spatial saliency. Hence, the rotor position can be 

deduced from this inductance variation.  
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Fig. 1.11.    Inductance variation according to electrical rotor position [KAN10]. 

In order to estimate the rotor position from the machine saliency, high frequency 

carrier signal injection is necessary to derive the position dependent response. 

According to the types of injected signal, the saliency based sensorless techniques can 

be classified into persistent carrier signal injection, transient voltage vector injection 

and PWM excitation without injection. 

1.3.1.1 Persistent carrier signal injection 

The persistent carrier signal injection continuously injects some extra voltage or 

current signals into the motor winding superimposed on the fundamental excitation. 

Then, the injected carrier signal interacts with machine saliency and the 

corresponding signal could be applied to deduce the rotor position. However, in 

carrier current injection [LIU11b], the current regulator with sufficiently high 

bandwidth is used to guarantee that the injected high frequency carrier current follows 

the reference command. For carrier voltage injection, although the injected carrier 

voltage signal may be disturbed by the current regulator and inverter nonlinearity 

effect, it is still acceptable to use the carrier voltage reference signal in the control 

algorithm with appropriate compensation techniques. Furthermore, the current sensors 

which are already present for current vector control can be used for the carrier current 

measurement, which would simplify the hardware design and decrease the system 
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cost. Consequently, carrier voltage signal injection is preferred. According to the type 

of injected carrier voltage signal, it consists of rotating sinusoidal signal injection 

[JAN95] [DEG98] [GAR07] [RAC08a] [RAC10], pulsating sinusoidal signal 

injection [COR98] [HA00] [LIN02] [JAN03] [LI09B], square wave signal injection 

[YOO09] [HAM10], and arbitrary injection [PAU11]. 

Rotating signal injection schemes inject a balanced three phase voltage into the 

stationary reference frame to form a rotating excitation superimposed on the 

fundamental excitation. The interaction between the carrier voltage vector and the 

machine saliency in the interior PMSM produces a carrier current signal response that 

contains rotor position information [JAN95] [JOE05]. It is clearly shown that the 

carrier current response consists of two components. The first term is a positive 

sequence component, which has the same rotating speed as the injected carrier voltage 

vector, and the second term is the negative sequence component, which contains the 

rotor position information in its phase angle. In order to extract the position dependent 

negative sequence carrier current, a synchronous reference frame filter (SRFF) is the 

typical solution [DEG98] [GAR07] [RAC10]. SRFF uses the frame transformation to 

centre the spectral component of interest at DC. With the aid of a low pass filter (LPF), 

this DC component can be easily obtained without phase lag. Conversely, a HPF can 

be used to eliminate this DC component. In general, the high-pass cut-off frequency is 

chosen to be sufficiently low so that negligible distortion occurs in the desired content, 

and the rotor position can be obtained by using a demodulator [JAN95]. Furthermore, 

the multiple saliencies [RAC08b], inverter dead-time effects [GUE05] [CHO07] 

[GON11a], and cross-coupling magnetic saturation [GUG06] [ZHU07] [BIA07] 

[LI09B] [GON11b] are considered since they will all affect the rotor position 

estimation.  

For pulsating signal injection methods, a high frequency pulsating carrier voltage 

is injected into the d- [COR98] [JAN03] [LI09b] or q-axis [LIN03] [YAN11] in the 

estimated synchronous reference frame, which can be seen as the superposition of two 

rotating carrier vectors with opposite rotating direction. Then, the carrier current 

response will be amplitude modulated by the rotor position information, and the rotor 
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position could be estimated through minimization of the amplitude signal along the axis 

orthogonal to the injection axis which is derived by using the synchronous detection 

technique [MAD95] [RAC10]. [HA00] explores physical understanding of the 

phenomenon of high frequency signal injection method to differentiate between the d- 

and the q-axis under no or heavy load condition. D-axis injection is sensitive to the 

inverter nonlinearity effect, whereas more current ripple by using the q-axis injection 

can be generated, which would generate substantial torque ripple even the position 

estimation error is zero. Consequently, injection of pulsating carrier voltage along the 

d-axis is preferred in terms of torque ripple.  

Rotating and pulsating sinusoidal carrier signal injection based sensorless 

methods have the advantage of simple physical principles and low implementation 

cost. However, the common problem of the conventional sensorless control is that it is 

not easy to be applied to the sensorless drive of a SPM motor with small machine 

saliency under heavy-load condition [LIN02] [JAN03]. Since rotating and pulsating 

carrier signal injection methods utilize the sinusoidal high frequency signal, the 

dynamic characteristics and dynamic bandwidth of system are restricted in relation to 

the frequency of the injected signal. In this case, square waveform signal injection is a 

better solution. In [YOO11], square waveform signal is applied to inject into the 

estimated d-axis, which eliminates the requirement of LPFs for demodulation, and 

hence sensorless dynamic performance is remarkably enhanced. In [HAM10], an 

effective solution with integration of pulsating square wave injection and current 

control loop is proposed for sensorless control of low salient surface-mounted PMSM.  

The information of the injected carrier signal is of great importance for the 

aforementioned methods, i.e., the injected carrier signal should be predefined. Instead, 

an arbitrary injection with half PWM frequency square wave is presented in [PAU11], 

which relies on the presence of current derivative rather than the certain shape of 

injected signal. The current progression can be predicted using an isotropic machine 

model, whilst, it can also be calculated from two consecutive current measurement. 

From the difference between them, the saliency position information can be directly 

extracted. The major advantages of this scheme are higher dynamic bandwidth and the 
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independence from machine parameters, whereas the SNR of the signal demodulation 

is usually low which could lead to large estimation noise. 

1.3.1.2 Transient voltage vector injection 

Differing from persistent injection based sensorless control methods, the rotor 

position information can also be derived from current transient response against an 

impulse voltage vector, which is decided by rotor position modulated inductance. 

The Indirect Flux Detection by On-line Reactance Measurement (INFORM) 

method [SCH96] [OVR03] [ROB04] is a typical technique. Additional impulse 

voltage vectors are superimposed during zero vectors dwelling for standard PWM 

within three successive PWM cycles. Since the methods detect the inductance of the 

motor using voltage signals in a short time, they might be insignificant to the 

parameter variation and measurement noise. However, due to the injected signal being 

a periodic signal, a compensation scheme, such as a Kalman filter, is required.  

The major problem for the standard INFORM method is the introduced current 

disturbance due to additional transient voltage vectors. Furthermore, the rotor position 

is assumed to be constant during the successive three PWM cycles, which is 

reasonable for standstill and low speed operation rather than at higher speed. Hence, 

compensation using double transient injection is proposed in [ROB04] to improve the 

sensorless performance at higher speed. On the other hand, with additional transient 

voltage vectors, the resultant zero sequence voltage for star-connection [HOL98] and 

zero sequence current derivatives for delta-connection [STA06] which would contain 

saliency position information can also be applied for rotor position estimation. 

1.3.1.3 PWM excitation without injection 

The voltage vectors used in transient voltage vector injection methods also exist 

in standard PWM for normal operation. Therefore, it should be possible to measure 

the current transient response introduced by the inherent PWM, so as to extract the 

rotor position information. The major advantage of PWM excitation is eliminating the 

requirement of additional transient voltage vector injection which may cause some 



Chapter 1 

20 

problems, including additional current ripple, higher switching loss, and limited 

dwelling time of zero voltage vectors. 

Different combinations of measured current derivative in response to specific 

voltage vectors can be used to construct the position vector, from which, the rotor 

position information can be obtained [HOL05] [GAO07] [BOL11] [HUA11]. In 

[HOL05], an extended modulation (EM) scheme is presented to obtain the saliency 

information using the current transient response introduced by modifying the PWM 

excitation. Compared to EM techniques, the standard PWM can also be exploited for 

saliency based position estimation [GAO07] [BOL11] [HUA11]. In each PWM 

period, the active voltage vectors occur twice, centred from the middle of the PWM 

cycle, therefore, second PWM harmonic which has the largest amplitude will appear 

in α- and β-axis. Hence, this second harmonic can be considered as a pulsating vector 

to estimate the rotor position information [RAU10]. The zero sequence excitation 

introduced by standard PWM is also proven to be effective for saliency based position 

estimation [LEI11]. 

1.3.1.4 Magnetic polarity detection 

As illustrated in Fig. 1.11, the variation of inductance with rotor position 

undergoes two cycles per single electrical cycle, leading to an ambiguity of π in the 

estimated rotor position. Hence, all the saliency tracking based sensorless technique 

suffers the magnetic polarity identification.  

The basic principle for magnetic polarity identification is utilizing the saturation 

effect of machine. Considering the magnetic saturation, some methods utilize the 

inductance measurement by monitoring the di/dt of winding current to obtain the 

initial rotor position information including magnetic polarity information [NAK00] 

[BOU05]. However, these kinds of methods require dedicated voltage generation and 

current measurement, which are quite different from the conventional one. 

Alternatively, the magnetic polarity information can be obtained based on 

transient short pulses injection [NOG98] [AIH99] [HAQ03] [HOL08] [WAN12a] or 

secondary harmonics due to magnetic saturation effect [HA03] [KIM04] [JEO05] 
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[HAR05] [RAC08a]. Although the short pulses injection method has robust and 

reliable identification performance due to good SNR, the magnetic polarity 

identification should be performed as an independent process, which stops the 

position estimation during the polarity identification process [HOL08]. The secondary 

harmonics based methods have the advantage of quick convergence [HAR05], 

whereas the procedure is very slow, which limits the robustness of the magnetic 

polarity identification. To solve this problem, increasing the magnitude of injected 

signal or decreasing the carrier frequency [JEO05] and employing hysteresis 

controller for noise attenuation [RAC08a] are implemented. Considering the 

limitations of existing methods, [GON13] develops a initial rotor position estimation 

scheme from the variation of d-axis carrier current, which is not useful in 

conventional pulsating d-axis injection sensorless control, against d-axis fundamental 

current. This method can be seamlessly integrated with a conventional carrier signal 

injection based sensorless algorithm, which implies that this initial rotor position 

estimation method is valid for the both standstill and free-running.  

1.3.2 Fundamental Model Based Sensorless Control 

At higher speed, due to the lower ratio between the injected and fundamental 

current, the SNR of position dependent signals of saliency based sensorless control 

methods would become lower, which will deteriorate the rotor position estimation. 

However, the fundamental model based sensorless methods are expected to show 

good performance at that speed range since the machine model which tends to fail to 

be observed at zero and low speed can be accurately described.  

The basic idea of fundamental model based sensorless methods is to estimate the 

fundamental or harmonic back-EMF, or flux-linkage according to the machine model, 

which contain the rotor position information. Position estimation can be performed 

through open-loop calculation or close-loop observer. Additionally, observers 

including the sliding mode observer (SMO), extended Kalman filter (EKF) and model 

reference adaptive system (MRAS) provide other options to estimate the rotor 

position directly from machine fundamental model without considering the back-EMF 
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or flux-linkage.  

1.3.2.1 Fundamental back-EMF model based methods 

The back-EMF is a voltage that occurs in electrical machine where there is 

relative motion between the armature of the machine and the airgap magnetic field 

generated by PM, and hence, is directly related to the rotor position. The fundamental 

mathematical model of PMSM in synchronous reference frame can be expressed as 
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where p is the differential operator, Rs is the phase resistance, ωr denotes the electrical 

angular speed, and ψd and ψq indicate the d- and q-axis flux-linkages. Assuming the 

flux-linkage is sinusoidal without distortion of saturation and cross-saturation effects, 

(1.3) can be re-written as 
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where Ld and Lq are the d- and q-axis inductances, and ψm is the PM excited 

flux-linkage. For non-salient PMSM, Ld = Lq = L, which indicates that the impedance 

matrix in (1.4) is symmetrical. Then, with the aid of transformation matrix T(Δθ) 

which is 
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where Δθ is the estimation error of rotor position, i.e. e
r rθ θ θΔ = − , the fundamental 

voltage model of PMSM in estimated synchronous reference frame can be derived as  
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where ωrψm indicates the back-EMF. It can be seen that, for a non-salient PMSM, 

only the back-EMF contains rotor position information.  

However, for a salient PMSM such as an interior PMSM, the rotor position 

information is not only contained in the back-EMF but also the in the armature effect 

due to the asymmetric impedance matrix. Defining the extended back-EMF which 
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consists of conventional back-EMF generated by the PM and the voltage terms related 

with machine saliency [CHE00b] [MOR02] [CHE03] as 

( ) ( )ex r m r d q d q d qE L L i p L L iω ψ ω= + − + −  (1.7)

the voltage model for a salient PMSM could be re-written as 
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Hence, the rotor position information is expected to be fully contained in the 

extended back-EMF regardless of salient or non-salient machines, since for 

non-salient machines, the extended back-EMF would be reduced to conventional 

back-EMF. Furthermore, the extended back-EMF has been improved in [LI07] by 

accounting for cross-saturation effect between d- and q-axes. Whilst to solve the 

starting and low speed issue, [WAN12b] develops a new starting method which can 

work under different load conditions and allow smooth transition from the start up 

procedure to the back-EMF based sensorless control mode.  

To estimate the back-EMF more precisely than the open-loop model, several 

close-loop observer based strategies considering the parameter variation have been 

developed. The main idea of the observer is feeding back the error between the 

estimated outputs and measured inputs of the actual system into the system model to 

correct the estimated values. The advantage is that all of the states in the system 

model can be estimated including states that are hard to obtain by measurements.  

In [HOS89], a simple reduced order observer named Luenberger observer is 

developed which has been applied in [KIM95] for sensorless control on the basis of 

the back-EMF estimation for PMSM, and even in the flux weakening region [KWO05] 

without any mechanical information of system inertia or load torque. However, in 

order to stabilize the system, the gains of the observer should be optimized [SOL96], 

whereas it has difficulties under all operating conditions since the electrical equations 

are nonlinear. Hence, linear control strategies for determining the nonlinear term in 

the electrical equations to realize the linearization of the motor model have been 

considered in [TAT98].  
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In [SEN95a] [SEN95b], a disturbance voltage observer is used to estimate the 

back-EMF in PMSM sensorless control. It can also be applied to estimate the 

extended back-EMF of interior PMSM in [CHE03] and for sensorless control of 

induction motor in [HOS09]. To improve the robustness against the load torque 

variation, the disturbance observer based sensorless scheme is adopted to estimate the 

load torque, generate a compensating signal and cancel the estimation error [LEE11]. 

The stability of the disturbance observer can be easily guaranteed since it is based on 

a linear model of the machine. 

1.3.2.2 Third harmonic back-EMF based methods 

Third harmonic back-EMF is usually contained in windings and synchronously 

rotates with the fundamental components. When the machine windings are 

Y-connected, the third harmonic back-EMF presents in the phase back-EMF rather 

than line back-EMF [MOR92] [PRO94] [TES94] [MOR96]. Hence, the neutral point 

of the Y-connected windings is essential for detecting the third harmonic back-EMF 

since the measurement of phase back-EMF is necessary.  

With the aid of a Y-connected resistor network as shown in Fig. 1.12, the voltage 

usn between the central point “s” of this Y-connected resistor network and the machine 

winding neutral point “n” could just represent the third harmonic back-EMF 

irrespective of the operational mode of the PMSM [SHE04]. 
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Fig. 1.12.    Measurement of third harmonic back‐EMF. 

The waveforms of usn and its integration ψsn which is the third harmonic 

flux-linkage are demonstrated in Fig. 1.13 compared with the electrical rotor position. 

Then the six particular commutation points essential for BLDC operation which are 

π/6, π/2, 5π/6, 7π/6, 3π/2, 11π/6 can be detected as shown in Fig. 1.13 as well. 

 

Fig. 1.13.    Relationship of usn, its integration ψsn and rotor position 

However, continuous rotor position information with high resolution is required 

for BLAC drives or if phase-advancing control is applied in BLDC drives, where 
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rotor position can be simply estimated by integration of the motor speed by [SHE04] 

0 00 0

/ 3t te e
r r

d

dt dt
t

πθ θ ω θ= + = +∫ ∫  (1.9) 

Once the rotor position has been estimated, the instantaneous current in the 

windings can be controlled to facilitate either BLAC or BLDC operation [KRE94, 

DWA08]. Shen in [SHE06a] presents some practical issues in the utility of 

third-harmonic back-EMF in sensorless control including detection and restrictions of 

the sensorless control. In [SHE06b], application specific integrated circuit ML4425 

which integrates the third harmonic back-EMF instead of the terminal voltage is 

implemented to reduce the commutation retarding and improve the machine 

performance. In [FAE09], a new software scheme of phase-locked loop (PLL) of third 

harmonic back-EMF detection in order to accomplish a precise switching strategy is 

presented and claimed to improve the torque produced during high speed operation. 

Also, by applying the third harmonic back-EMF, a completely sensorless drive is 

implemented which can successfully synchronously start the reluctance machine from 

zero speed in [KRE93]. However, all the sensorless control methods are based on the 

zero-crossings of ψsn with insufficient resolution. Hence, the steady-state performance 

would be good but will be degraded under dynamic situation.  

1.3.2.3 Flux-linkage based methods 

Flux-linkage based sensorless control technique is widely applied and the rotor 

position is derived from the observed vector of PM excitation flux-linkage which 

calculated from the integration of back-EMF under stationary reference frame. Then 

the relative phase angle and speed between the observed vector and the reference frame 

are the rotor position and speed, respectively, as demonstrated in Fig. 1.14 [WU91] 

[XU98] [SHE02b]. 
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Fig. 1.14.    Phasor diagram of PMSM 

In order to observe the PM excitation flux-linkage vector, stator flux-linkage 

which is very important for DTC should be calculated first. In stationary reference 

frame, the stator flux-linkage can be calculated from the current vector I&  and the 

voltage vector U&  as 
1

0

( )
t

s st
U R I dtΨ = − ⋅∫& & &  (1.10)

where I&  can be easily obtained from the phase currents which are measured with 

two or three current transducers, and U& can be also obtained from the phase voltages 

measured with voltage transducers. However, in most electrical machines, it is not 

practicable to measure the phase terminal voltages directly because of isolation issues. 

Instead, the applied phase voltage is usually estimated from the DC supply voltage 

and demands of SVPWM, which includes certain error caused by the dead-time 

between switching off one device in an inverter phase leg and switching on the other 

device in the same leg. This error would be greatest at output voltages near zero, and 

has been researched and compensated in [HAR00] [TER01].  

The stator flux-linkage calculation in (1.10) is a straightforward open-loop 

method without considering the stator resistance variation and integration drift. To 

solve the problems, close-loop methods become more attractive for stator flux-linkage 
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estimation [HU98] [AND08] [YOO09] [BOL09] [FOO10]. Combining the voltage 

model and current model estimator, a hybrid flux observer as shown in Fig. 1.15 could 

be applied over a wider speed range, where the voltage model is dominant at high 

speed while the current model dominant at low speed. Meanwhile, the integration drift 

could also be fully compensated since this flux observer behaves as a high pass filter 

(HPF). 
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Fig. 1.15.    Combined flux‐linkage observer [YOO09]. 

Similar to the extended back-EMF, active flux is applied in [BOL09] [LIU11a] 

[COR11] to overcome the armature reaction of salient PMSM. With the concept of 

active flux, which is 

_ ( )d act m d q d q sL L i L iψ ψ= + − = −  (1.11)

the voltage equation of salient PMSM can be rewritten as 

_

_

d
d s d q r q q

d act

d act
q

q s q q r d d r

ddiu R i L L i
dt dt

di
u R i L L i

dt

ψ
ω

ω ω ψ

⎧
= + − +⎪⎪

⎨
⎪ = + + +⎪⎩

 (1.12)

which can transform the salient PMSM to a non-salient machine. Consequently, the 

PM excitation flux vector fΨ&  can be derived from the stator flux-linkage as  

f s qL IΨ = Ψ − ⋅& & &  (1.13)

And the rotor position can be estimated from the α- and β- parts of fΨ& , i.e. 

arctan f
f

f

β

α

ψ
θ

ψ
=  (1.14)
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1.3.2.4 Other observer based sensorless control 

Other observers, such as sliding mode observer (SMO), extended Kalman filter 

(EKF) and model reference adaptive system (MRAS), become more and more 

attractive for rotor position estimation due to their robustness, quick convergence, 

immunity to machine parameter variation, and elimination of estimating back-EMF or 

flux-linkage.  

SMO, i.e. sliding mode observer as shown in Fig. 1.16, is an observer with 

inputs as discontinuous functions of the error between the estimated and measured 

variables, and the dynamic behaviour of the control system is only decided by the 

surfaces chosen in the state space but not affected by the matched uncertainty. Hence, 

it has the advantages of order reduction, disturbance rejection, and strong robustness.  
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Fig. 1.16.    Sliding mode observer [CHI09] 

SMO is firstly applied for sensorless control in [FUR92], and afterward, the 

saturation sign function [ZHA06], d- and q-axis stator currents [PEI95, CHE00a] are 

also utilized. [CHI09] presents a sensorless control based on SMO over wide speed 

range, including the deep flux-weakening region. [FOO09b] [FOO10] [WAN10] also 

propose nonlinear speed controllers for IPMSMs based on SMO theory and high 

frequency signal injection technique to enhance the dynamic state performance and 

robustness to load disturbances.  

EKF is an extension application in a nonlinear system of a Kalman filter which is 

an optimal state observation based on least-square variance estimation for a linear 

system [VAS03]. It is less influenced by measured noise, and parameter inaccuracy is 

not as critical as in conventional fundamental estimation methods [BOL99] [TER01] 
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[RIV13]. However, heavy computation burden is obvious and the reduced order EKF 

is presented with the assumption that some system states are free of noise to enhance 

the speed control [FUE11].  

The MRAS scheme provides another option for sensorless position estimation 

[PII08] [HE09] [GAD10]. The diagram of MRAS is shown in Fig. 1.17, in which the 

reference model represents the real machine, while the adjustable model is a fictitious 

machine based on the fundamental mathematical model. With the same excitation, the 

difference between the responses from two models yields an estimation error ε, which 

should be sufficiently small. Then, the behaviour of the adaptive model could be 

considered the same as that of the actual machine, and hence the machine states 

including position information can be accessed from the adaptive mathematical model. 

With regard to the correction controller, it can be realized by the conventional PI 

[MAT96] [BAE03] or nonlinear controller involving fuzzy logic controller [GAD10].  

f g +

−
eg

ε

 

Fig. 1.17.    Block diagram of MRAS [PII08]. 

1.3.3 Sensorless Predictive Torque Control 

DTC is an inherent sensorless technique due to its elimination of coordinate 

transformations and specific modulations. Flux estimation is a critical concern in DTC 

which is normally obtained by the combined flux observer, in which, the voltage 

model, dominant at middle and high speed, and the current model requires the 

position information to estimate the flux at low speed and standstill. Hence, position 

information is also required in DTC for standstill and very low speed operation.  

The integration of saliency based sensorless technique and DTC provides a 

significant enhancement of torque response for PMSM wide speed operation [SIL06] 
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[AND08]. As an alternative to VC and DTC, a sensorless PTC scheme is presented in 

[LAN10]. For a salient machine, the predicted current would deviate from the real one 

due to additional position dependent part. Hence, the difference between predicted 

and measured, which contains the position information, can be used to extract the 

rotor position without any additional voltage injection. However, accurate machine 

parameters are required for current prediction. 

1.3.4 Sensorless Control for Dual Three-Phase PMSM 

Theoretically, most of the sensorless techniques for single three-phase PMSM 

could be easily extended to the dual three-phase applications. Recently, several 

sensorless techniques particularly for dual three-phase machines are proposed. In 

[HE09], a sensorless vector control based on MRAS is developed for a dual 

three-phase PMSM and the system stability is verified by Popov`s super stability 

theory, as well as a new and very simple initial rotor position estimation method by 

means of DC excitation without any sensors. [BAR12a] [BAR12b] investigate the 

torque components and the sensorless position detection capability of a dual 

three-phase IPM machine equipped with two fractional–slot windings by using both 

finite element simulations and experimental tests. [GRE12] deals with the speed 

sensorless control of asymmetric dual three-phase induction machines by using an 

inner loop of Model Based Predictive Control (MBPC), which is obtained from the 

mathematical model of the machine, using a state-space representation where the two 

state variables are the stator and rotor currents, respectively. 

1.4 Outline and Contributions of the Thesis 

The major objective of this thesis is the sensorless control of PMSM based on 

high frequency carrier voltage injection for zero and low speed region and third 

harmonic back-EMF for higher speed region. Fig. 1.18 illustrates the research 

structure and summary of key features of each investigated method.  
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Fig. 1.18.    Research structure 

This thesis is organized as followed:  

Chapter 1 generally reviews both single and dual three-phase PMSM, and the 

related sensorless control methods including the saliency based and fundamental 

model based strategies. 

Chapter 2 gives a detailed description about the experimental setup based on a 

dSPACE control system including the hardware platform and software interface, as 

well as the three test rigs which will be implemented in the following chapters. 

Chapter 3 discusses details about commonly used conventional pulsating and 

rotating carrier signal injection based sensorless control techniques, and proposes a 

new rotor position estimation strategy by injecting a pulsating high frequency carrier 

voltage into α- (or β-) axis of stator stationary reference frame.  
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Chapter 4 applies a higher frequency square waveform pulsating carrier voltage 

into stator stationary reference frame to retrieve rotor position without any filtering, 

and hence, the dynamic performance and observe bandwidth can be improved 

Chapter 5 applies the continuous signal of third harmonic flux-linkage which is 

the integration of third harmonic back-EMF to minimize the rotor position error in the 

conventional method and improve the dynamic performance. Furthermore, a 

multi-technology fusion technique based on third harmonic flux-linkage is proposed 

to improve the performance of flux observer and system robustness. 

Chapter 6 improves the sensorless control based on third harmonic back-EMF 

and flux-linkage for single-three-phase PMSM by applying the simplified EKF based 

rotor position estimator. For dual three-phase PMSM, with the aid of simplified EKF 

based estimator, the rotor position could be estimated without any filter, which can 

significantly improve the frequency response and dynamic performance.  

Chapter 7 investigates the potential issues with the third harmonic back-EMF 

based sensorless control, such as absence of third harmonic back-EMF, influence of the 

stator current and machine saliency to rotor position estimation based on third 

harmonic, as well as the estimation error compensation due to the machine saliency and 

imbalanced machine parameters.  

Chapter 8 summarizes this research work and gives some discussions about 

future work. 

 

The major contributions of this thesis are: 

 A new strategy by injecting a pulsating high frequency carrier voltage into α- (or 

β-) axis of stator stationary reference frame, and retrieving rotor position 

information from the rotor position dependent response current is presented.  

 By applying higher frequency square waveform pulsating carrier voltage into 

stator stationary reference frame, the rotor position information is retrieved 

without any filtering to improve the dynamic performance and observe bandwidth.  

 To improve the dynamic performance in the conventional method based on third 
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harmonic back-EMF, a speed compensation strategy based on the continuous 

signal of third harmonic flux-linkage is proposed. 

 To improve the performance and system robustness of rotor position estimation in 

flux observer sensorless control which is sensitive to the machine and controller 

parameters, a multi-technology fusion technique is proposed. 

 Simplified EKF based rotor position estimator is applied with third harmonic 

back-EMF and flux-linkage for single three-phase PMSM operation for rotor 

position estimation is proposed to improve the sensorless performance even with 

poor quality of measured third harmonic back-EMF. 

 For dual three-phase PMSM, the two sets of third harmonic back-EMF will be 

orthogonal under third harmonic reference frame. Consequently, with the aid of 

simplified EKF estimator, the rotor position could be estimated without any filter 

to improve the frequency response and dynamic performance. 

 The influence of the stator current and machine saliency to rotor position 

estimation based on third harmonic back-EMF is investigated, as well as 

estimation error compensation. 

 Due to the imbalanced machine parameters, the measured third harmonic 

back-EMF will contain certain fundamental component distortion which will 

severely deteriorate the performance of rotor position estimation. An improved 

rotor position estimation strategy for single- and dual three-phase PMSM under 

imbalanced situation is proposed. 

 

The publications originating from this PhD research work are listed in Appendix III. 
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CHAPTER 2 

EXPERIMENTAL PERMANENT MAGNET 

SYNCHRONOUS MACHINES AND DRIVE 

SYSTEMS 

 

2.1 Introduction 

The experimental platform is constructed based on a dSPACE control system. 

The set up of whole experimental test system is shown in Fig. 2.1. Detailed 

information of the dSPACE control system and three applied test rigs will be 

introduced in this chapter. 

 

Fig. 2.1.    Setup of experimental system 

2.2 dSPACE Based Control System 

2.2.1 CPU Board-DS1006 

The heart of the dSPACE control system applied in this thesis is the DS1006 

processor board which is based on a 2.4GHz multi-core AMD Opteron CPU. The 

main processing unit can access modular I/O boards via its PHS-bus, and 

multiprocessing capable via the DS911 Giga-link Module. Hence, the real time 
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application can be running on two or more processor cores of a multi-core DS1006 

board, on two or more multi-core DS1006 boards, or a combination of all these.  

Each multi-core CPU contains 512KB L2 on-chip cache per core, 6MB L3 cache, 

128MB DDR2-267 global memory per core for host data exchange, and 1GB 

DDR2-800 local memory for the application and dynamic application data as 

illustrated in Fig. 2.2. The operating frequency of the CPU is 2.4GHz per core. Hence, 

the control strategy which may be extremely complex for normal DSP control system 

can be applied on the dSPACE control system. Usually, dSPACE is not only applied 

for the development of motor control, but also for automotive engineering, aerospace, 

and industrial control.  

 

Fig. 2.2.    Overview of the functional units of the DS1006 [DSP10] 

2.2.2 ADC board-DS2004 

A/D conversion is an element of most applications in rapid control prototyping, 

because sensors, for example, for phase current and DC linkage voltage, provide 

analogue signals by current and voltage transducers which have to be processed as 
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digital signals. For the control system in this thesis, the DS2004 High-Speed A/D 

Board is used in dSPACE modular systems based on processor boards DS1006 for 

digitizing analogue input signals. The A/D converters of the DS2004 are equipped 

with differential inputs and particularly meet the requirements for digitizing analogue 

input signals at high sampling rates.  

The DS2004 High-Speed A/D board contains 16 A/D conversion channels, each 

of which provides a differential input with a sample/hold unit and an A/D converter, 

and advanced circular swinging buffers for decoupling the conversion process from 

the read process. The A/D channel applies the successive approximation conversion 

technique to achieve 16-bit resolution and a maximum conversion time of 800ns. The 

input voltage range is selectable which is ±5V or ±10V. Meanwhile, the sources for 

triggering A/D conversions are also selectable, for example, external trigger inputs, 

channel timer, and software trigger. For the external trigger inputs, four independent 

hardware interrupts are associated to the each A/D conversion state. 

DS2004 A/D board can realize two different modes, i.e. burst mode for digitizing 

a data set of up to 16384 analogue values per burst including triggered sampling with 

selectable trigger source for starting the bursts and continuous sampling with 

automatically started successive bursts, and single A/D conversion mode to use the 

channel as a standard A/D converter without utilizing its burst capability. If the 

conversion settings are set to burst conversion mode, the output comprises the A/D 

conversion results of the last burst of A/D conversions on the selected channel. This is 

a vector of 1 ... 16384 results depending on the buffer settings. If the conversion 

settings are set to single conversion mode, the output is the result of the last A/D 

conversion on the current channel. Then based on the selected input signal range, the 

output signal in Simulink will be Double Range from -1 to +1.  

2.2.3 Encoder board-DS3001 

To verify the accuracy of rotor position estimation for sensorless control, an 

optical incremental encoder with the resolution of 2048PPR is applied on each test rig 

to supply the actual rotor position. Before the sensorless algorithm development, it is 
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desirable to implement the sensored current vector control, in which the position 

information from the encoder is used for forward and inverse park transformation. 

Afterward, the encoder is also important to be used as reference to evaluate the rotor 

position estimation in developed sensorless control algorithm. The DS3001 

incremental encoder board is specifically designed for the implementation of high 

speed multivariable digital controllers whose key features are 

• 5 fully parallel 24-bit encoder interface channels. 

• Fourfold pulse multiplication. 

• Differential (RS422) or single ended (TTL) encoder inputs. 

• Digital noise pulse filters for the phase lines. 

• Regulated 5V encoder power supply with sense line. 

• Compatible with the dSPACE PHS-bus 

When the input encoder lines are from -221 to +221, the output to Simulink should 

be from -1 to +1. Hence, to receive the radian angle from the scaled output value of 

the DS3001 Simulink block, the following calculation must be applied. 

21 22 _
_r scaled output

encoder lines
πθ = ⋅ ⋅  (2.1) 

For the incremental encoders with the resolution of 2048PPR which are applied 

in thesis, the derived rotor position should be calculated by 

21 22 _
2048r scaled outputπθ = ⋅ ⋅  (2.2) 

2.2.4 PWM Board-DS5101 

The DS5101 Digital Waveform Output Board is designed to generate complex, 

high speed digital signals at high resolution. The board can generate a multitude of 

signals at various frequencies, including incremental encoder signals and PWM 

waveforms. It is able to vary signal pulse widths on the fly, and through the use of 

various trigger and interrupt mechanisms, provides a high degree of flexibility. Its 

main area of deployment is hardware-in-the-loop simulation in automotive 

applications, for example, simulating sensors or controlling actuators.  
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DS5101 can generate up to 16 channels of PWM output which can be applied for 

multi-phase motor control. Generally, the output can be categorized as 1-Phase PWM 

Signal Generation (PWM1), 3-Phase PWM Signal Generation (PWM3), and 3-Phase 

PWM Signal Generation with Inverted and Non-Inverted Outputs (PWM6). 

For PWM1, the timing I/O unit of the DS5101 provides generation of 1-phase 

PWM signals with run-time adjustable PWM period and duty cycle on up to 16 

channels. For PWM3, the timing I/O unit provides 3-phase PWM signals with 

run-time adjustable PWM period, duty cycles, and interrupt shift. Up to 4 control 

units can be used for controlling 4 three-phase inverters, e.g. the back-to-back 

inverters control of wind power generation. For PWM6, The timing I/O unit of the 

DS5101 provides 3-phase/6-channel PWM signals with 3 inverted outputs and 3 

non-inverted outputs. The two sets of PWM output could be applied to control two 

three-phase motors or a dual three-phase motor. 

2.2.5 Software Environment 

The dSPACE based control system is working with diagram block built by 

Simulink/MATLAB. Hence, the simulation blocks in Simulink can be easily applied 

into dSPACE platform with minor modification, which can significantly reduce the 

burden of coding and improve the efficiency of control strategy development. 

Due to the connection between dSPACE and host PC is optical fibre cable, the 

communication speed is up to 100MB/s which can transmit the real-time data from 

real-time control platform to PC interface software. Then all the data generated in the 

dSPACE controller can be captured and monitored during the operation which makes 

the optimization of strategy and data capture much easier than DSP based platform. 

Hence, digital to analogue converter is not needed in this thesis. 

2.3 Test Rigs for Control Strategy Development 

To develop the control strategy, three test rigs are employed in this thesis, i.e. 

Test rig I based on Motor I which is an interior PMSM working as a torque motor, 

Test rig II based on Motor II which is outer rotor surface mounted PMSM working as 
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a generator, and Test rig III based on Motor III which is a surface-mounted dual 

three-phase PMSM. The details will be introduced in this section. 

2.3.1 Test Rig I 

Test Rig I is based on Motor I which is a 600W 3-phase PMSM with interior 

circumferential rotor configuration. The machine is made by Control Techniques Ltd., 

while the rotor is re-designed by Chen in [CHE99]. The major parameters of the 

prototype machine are shown in Table 2.1, and the cross-section is shown in Fig. 2.3. 

Due to interior structure, the machine saliency is significant. Hence, Motor I will be 

applied in Chapter 3 to develop the high frequency carrier voltage injection based 

sensorless control. 
TABLE 2.1 

SPECIFICATION AND PARAMETERS OF TESTING MACHINE 
Rated voltage (peak) 158 V 
Rated current (peak) 4.0 A 

Rated power 600 W 
Rated sped 1000 rpm 

Rated torque 4.0 Nm 
Pole number 6  

Stator phase resistance 6.0 Ω 
D-axis inductance (@ 0A) 29.1 mH 
Q-axis inductance (@ 0A) 41.3 mH 

 
Fig. 2.3.    Cross‐section of Motor I [CHE99] 
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The power converter as shown in Fig. 2.4 is constructed based on a PS21255, an 

intelligent power module from Mitsubishi, which is located underneath the PCB board. 

It integrates a 600V, 20A, 3-phase IGBT Inverter Bridge with gate drive and related 

protection functions. The operating frequency is 10kHz, and the dead-time is 2μs. 

This integration structure significantly simplifies the external circuits, and increases 

overall reliability of the drive system. For galvanic isolation between control system 

and power stage, the opto-coupler, HCPL-4506, is used to pass the gate drive signals 

from the DS5101 Digital Waveform Output Board to the power converter. Meanwhile, 

two transformers with four channels of isolated DC voltage output (+15V) provide 

power supply for the gate drive circuits.  

 
Fig. 2.4.    Power converter working with Motor I 

A Bushed DC generator is directly coupled to Motor I as a mechanical load. A 

power resistor is used to dissipate the generated power from the generator. The 

magnetic field of the DC generator is externally excited by a DC power supply. 

Therefore, the load condition can be adjusted by changing the field excitation current 

or the power resistance.  

2.3.2 Test Rig II 

Test Rig II is based on Motor II which is a 3kW laboratory surface-mounted 
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PMSM working as a generator. Its major specification and parameters are listed in 

Table 2.2. The motor is the laboratory prototype of a 3MW wind power generator for 

control strategy development. It is a 14 pole-pairs outer rotor PMSM, and the segment 

cross-section of Motor II is shown in Fig. 2.5. Due to the shape of PM, third harmonic 

is contained in the air-gap flux linkage as well as phase back-EMF. Hence, Motor II 

will be applied for the development of sensorless control based on third harmonic 

back-EMF as introduced in Chapter 5 and Chapter 6. 
TABLE 2.2 

SPECIFICATION AND PARAMETERS OF TESTING MACHINE 
Phase EMF (RMS) @ 170rpm 199.44  V 
Machine mechanical rated speed 170 rpm 
Pole number 
Electrical frequency 

28 
39.667  

 
Hz 

Rated phase current (RMS) 5.83 A 
Rated torque 195.84  Nm 
Rated input power  3486.41  W 
Phase resistance 1754.9  mΩ 
Rated output power 3194.48 W 
Ls (exclude the end winding) 13.04 mH 
PM flux per pole 1.1315 Wb 

 
Fig. 2.5.    Segment cross‐section of Motor II 
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The inverter is a commercial power unit produced by Semikron as shown in Fig. 

2.6(a). The power converter is constructed based on SEMiX71GD12E4s, an 

intelligent power module from Semikron. The rated voltage is 650VDC and the 

current can be up to 35Arms, and the voltage drop is 0.8V@25°C. The PWM 

frequency is set to 2.5 kHz to minimize the switching loss, and the dead-time is fixed 

as 4μs. An interface board is used to pass the gate drive signals from the DS5101 

Digital Waveform Output Board to the power converter and to feedback the measured 

DC voltage and phase current signals to DS2004 High-Speed A/D Board. The overall 

control cabinet is shown in Fig. 2.6(b). The electric load of the system is a power 

resistor. The torque machine of driving system is a commercial drive unit with 

individual Starter series controller produced by Siemens.  

 
(a) Semikron inverter 
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(b) Control cabinet 

Fig. 2.6.    Power converter working with Motor II 

2.3.3 Test Rig III 

Test Rig III is based on Motor III which is a 230W dual three-phase laboratory 

surface-mounted PMSM. Its specification and parameters are listed in Table 2.3. The 

cross-section and winding configuration of this 12/10 PMSM is shown in the Fig. 2.7. 

The original design of Motor III is a single three-phase PMSM, and apply alternative 

winding structure to form a dual three-phase PMSM. Differing from the classic 
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three-phase PMSM, each phase is formed by two coils which are connected in series. 

Phases A1, B1 and C1 are connected in Y forming the star1 while phases A2, B2 and 

C2 are connected in Y forming the star2. Moreover, there is a phase angle between 

phase A1 and A2, the value of which is 30 electrical degrees. This the same case for 

the phases B1 and B2, phases C1 and C2. However, the higher harmonic components 

such as fifth and seventh and so on, which could be minimized by single three-phase 

winding configuration, will exit is dual three-phase configuration windings.  

 
(a) Cross‐section 

 
(b) Phase vector 

Fig. 2.7. Cross‐section and winding configuration as well as phase vector of Motor III 
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TABLE 2.3 
SPECIFICATION AND PARAMETERS OF TESTING MACHINE 

Rated power 230  W 
Rated torque 5.5  Nm 
Rated phase current (RMS) 5.11 A 
Machine mechanical rated speed 400 rpm 
Phase back-EMF (Amp) @ 400rpm 15.5  V 
Slot number 12  
Pole number 10  
Phase resistance 300  mΩ 
Self inductance Ls  3.03 mH 
Number of series turns per phase 132  

 

Furthermore, even though the rotor structure is surface mounted, the machine 

saliency is large enough due to saturation effect caused by the dual three-phase 

winding configuration on a single three-phase PMSM. Meanwhile, in terms of 

winding turns error, the impedances and three phase back-EMFs of the two sets are 

imbalanced. Hence, Motor III is applied to develop the sensorless control based on 

third harmonic back-EMF of dual three-phase PMSM as introduced in Chapter 5 and 

investigate the influence of machine saliency and imbalanced parameters as 

introduced in Chapter 6.  

The dual three-phase motor drive as shown in Fig. 2.8 is based on 

STEVAL-IHM027V1 which is a 1kW, three-phase motor control demonstration board 

produced by STMicroelectronics. The power module of the power board is 

STGIPS10K60A featuring the 600V, 10A IGBT intelligent power module which is 

also from STMicroelectronics. The voltage drop is 2.1V@25°C. The operating 

frequency is 10kHz and the dead-time is set as 2μs. It is designed to be compatible 

with single-phase AC supply from 90 to 220 V, or DC supply from 125 to 350 V. An 

interface board is used to pass the gate drive signals from the DS5101 Digital 

Waveform Output Board to the power converter and to measure DC voltage and phase 

current and feedback the measured signals to DS2004 High-Speed A/D Board.  
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Fig. 2.8.    Dual three‐phase power converter working with Motor III 

A 500W PM brushed DC machine with rated 3000rpm is directly coupled to this 

dual three-phase PMSM as a mechanical load. A power resistor is used to dissipate the 

generated power from the generator. The magnet field of the DC generator is excited 

by PM. Therefore, the load condition should be adjusted by changing the value of 

power resistance.  

2.3.4 Rotor Position Alignment for Encoder 

Each test rig contains an incremental encoder to provide actual rotor position to 

the control system. DS3001 incremental encoder board is applied to detect the rotor 

position. However, it is necessary to align the zero position of position sensor to the 

magnet axis (d-axis), as shown in Fig. 2.9. Typically, the three-phase back-EMF is a 

good reference for initial position alignment.  

Spun by load machine, the three-phase back-EMF of PMSM can be measured 

from the machine winding terminals. For the case where a machine neutral point 

could not be accessed, the phase back-EMF can be calculated from the measured line 

back-EMF. Without consideration of harmonic components, the back-EMF in 
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stationary reference frame can be expressed as 

sin
sin( 2 / 3)
sin( 2 / 3)

a r

b r r m

c r

e
e
e

θ
θ π ω ψ
θ π

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

 (2.3) 

From (2.3), it can be found that with positive rotation, the fundamental phase-A 

back-EMF should cross zero in the negative direction when the electrical rotor 

position is zero. By way of example, the position information can be well aligned for 

Motor I as an example, as shown in Fig. 2.10. 

A

qB

C

d

 

Fig. 2.9.    Rotor position alignment. 

 

Fig. 2.10.    Aligned rotor position against Phase‐A back‐EMF 
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2.4 Conclusion 

This chapter gives a detailed description about the experimental setup based on a 

dSPACE control system, including the hardware platform and software interface. 

Three test rigs which will be implemented in this thesis are also introduced in this 

chapter. Since the function, character, structures and specifications of the three test 

rigs are all different, the applied control strategies are also different from each other 

which will be detailed introduced in each related chapter. 
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CHAPTER 3 

NEW SENSORLESS CONTROL BASED ON 

SINUSOIDAL HIGH-FREQUENCY PULSATING 

CARRIER SIGNAL INJECTION INTO 

STATIONARY REFERENCE FRAME 

 

3.1 Introduction 

Sensorless control methods based on carrier signal injection are well developed 

due to their effectiveness at zero and low speed region. A high frequency carrier 

voltage signal (pulsating or rotating conventionally) is persistently superimposed on 

the fundamental excitation, and then the position-dependant carrier current response, 

which results from the interaction between the injected carrier voltage signal and the 

machine saliency, can be used to extract rotor position information. Alternatively, it is 

possible to inject a high frequency carrier current signal, and extract rotor position 

from the carrier voltage response. However, due to the simpler injection algorithm 

and hardware design, high frequency carrier voltage signal injection is preferred.  

This chapter firstly provides a detailed discussion about most commonly used 

conventional pulsating and rotating carrier signal injection based sensorless control 

techniques, i.e. pulsating signal into d- or q-axis of the estimated synchronous 

reference frame and rotating signal which generated by two orthogonal pulsating 

signals into α- and β-axis stationary reference frame. Differing from these two high 

frequency injection methods, a new strategy with injection of a pulsating high 

frequency carrier voltage into α- (or β-) axis of stator stationary reference frame, and 

retrieving rotor position information from the carrier current response which is 

amplitude-modulated by rotor position is presented. The algorithm of the proposed 
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strategy, compensation of cross-saturation effect and magnetic polarity detection will 

be fully discussed and analyzed in this chapter.  

3.2 High Frequency Model of PMSM Accounting for 

Cross-Saturation Effect 

In the high frequency carrier voltage signal injection based sensorless control 

methods, the position-dependent carrier current response is subject to the impedance 

of the machine. Hence the high frequency model of a PMSM machine needs to be 

analyzed first. 

3.2.1 Model in Synchronous Reference Frame 

The voltage equation of PMSM in the synchronous reference frame is given by 

0
0

d d ds r q

q q qs r d

u iR
p

u iR
ψ ω ψ
ψ ω ψ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⋅ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.1)

where p is the differential operator, and ψd, ψq represent the d- and q-axis flux linkage 

respectively. Assuming that the machine reluctances have pure sinusoidal spatial 

distribution along the rotor circumference, they are only determined by load condition 

rather than rotor position.  

If the injected carrier frequency is sufficiently higher than the fundamental 

excitation frequency normally at zero and low speed region, the back-EMF and 

resistive voltage drop can be negligible and the PMSM can be seen as a pure inductive 

load [RAC08a]. Since the injected voltage and response current are high frequency, 

and the amplitude are small, the incremental inductance which is defined as Δψ/Δi and 

used to describe the AC inductance should be employed. If the cross-saturation effect 

is considered [LI09a], the high frequency voltage equation of a PMSM in the 

synchronous reference frame is given by  

dh dh dqh dh

qh qdh qh qh

u L L i
p

u L L i
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.2)

where Ldh and Lqh are the high frequency incremental d- and q-axis self-inductances 
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which are different from each other due to the machine saliency. Ldqh and Lqdh are the 

high frequency incremental mutual-inductances which are related with cross-saturation 

effect. Normally, Ldqh is not the same as Lqdh, however, the difference between is only 

about 1% which is difficult to differentiate [LI07]. Hence, for simplicity, Ldqh=Lqdh  is 

usually considered [LIN02] [REI08], and so does in this thesis. 

From (3.2), it can be seen that only incremental inductances are contained in the 

high frequency voltage model. These incremental inductances can be measured by 

injecting the high frequency voltage signal into the d- and q-axes, respectively, when 

the machine is equipped with an encoder [LI09a]. The high frequency voltage signal, 

uc=Uccos(ωct), is injected into the d-axis to obtain the relevant d-axis high frequency 

current responses, i.e. idh1 and iqh1, and then applied to the q-axis to record idh2 and iqh2. 

These voltages and currents are applied to (3.2), then 

1 2

1 2

0
0

dh dqh dh dhc

qdh qh qh qhc

L L i iu
p

L L i iu
⎡ ⎤ ⎡ ⎤⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.3)

Both sides of (3.3) are multiplied by 2cos(ωct) and applied to a LPF to give 

1 2

1 2

0
0

dh dqh dh dhc
c

qdh qh qh qhc

L L I IU
L L I IU

ω
⎡ ⎤ ⎡ ⎤⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.4)

where Idh1, Iqh1, Idh2 and Iqh2 are the amplitude of corresponding high frequency currents. 

Then, the incremental self- and mutual-inductances of d- and q-axis are obtained by 

solving (3.4) as 
1

1 2

1 2

01
0

dh dqh dh dhc

qdh qh qh qhcc

L L I IU
L L I IUω

−
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (3.5)

For the prototype machine Motor I which is used in this chapter, when the injected 

high frequency voltage signal is uc=10×cos(2π×400t)V, the self- and mutual- 

inductances are shown in Fig. 3.1 [LI09a], from which it could be found due to 

magnetic saturation, Ldh, Lqh and Ldqh vary with fundamental excitation. 
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(a) d‐axis self‐inductance, Ldh 

 
(b) q‐axis self‐inductance, Lqh 

 
(c) dq‐axis mutual‐inductance, Ldqh 

Fig. 3.1.    Measured incremental inductances for the prototype machine 
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3.2.2 Current Model in Estimated Synchronous Reference Frame  

Since in the sensorless operation, the accurate rotor position is unknown, the 

estimated rotor position is usually used in the control algorithm. Hence, with the aid of 

transformation matrix T(Δθ) which is 

cos( ) sin( )
( )

sin( ) cos( )
T

θ θ
θ

θ θ
Δ − Δ⎡ ⎤

Δ = ⎢ ⎥Δ Δ⎣ ⎦
 (3.6)

where Δθ is the estimation error of rotor position, i.e. e
r rθ θ θΔ = − , the high frequency 

voltage model of PMSM in estimated synchronous reference frame can be derived as  

1( ) ( )

cos( ) sin( ) cos( ) sin( )
sin( ) cos( ) sin( ) cos( )

cos 2 sin

e e
dh dqhdh dh

e e
dqh qhqh qh

e
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e
dqh qh qh
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L Lu i
T T p

L Lu i

L L i
p

L L i

L L L

θ θ

θ θ θ θ
θ θ θ θ

θ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
= Δ Δ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤Δ − Δ Δ Δ⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⋅ ⋅ ⋅ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ − Δ Δ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
− Δ −

=
2 sin 2 cos 2

sin 2 cos 2 cos 2 sin 2

e
sd dqh dh

e
sd dqh sa sd dqh qh
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p
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θ θ θ

θ θ θ θ
Δ − Δ + Δ ⎡ ⎤⎡ ⎤

⋅ ⎢ ⎥⎢ ⎥− Δ − Δ + Δ + Δ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 
(3.7)

where Lsa and Lsd are the average and difference of d- and q-axis incremental 

inductances, i.e. 

( ) / 2
( ) / 2

sa qh dh

sd qh dh

L L L
L L L

= +⎧
⎨ = −⎩

 (3.8)

Solving (3.7), the differential of the high frequency carrier current response in 

estimated synchronous reference frame will be  

2 2 2 2

2 2

2 2 2 2
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(3.9)

where  
2 2
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θm is the cross-saturation angle which is caused by cross coupling saturation effect 

and will cause a constant estimation error in the estimated rotor position, which will 

be introduced in detail in Section 3.4.3. 

3.2.3 Current Model in Stationary Reference Frame  

With the aid of transformation matrix T(θr) which is 

cos( ) sin( )
( )

sin( ) cos( )
r r

r
r r

T
θ θ

θ
θ θ

−⎡ ⎤
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⎣ ⎦
 (3.11)

the high frequency model of PMSM in stationary reference frame can be derived as  

1( ) ( )
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sin 2 cos 2 cos 2 sin 2
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 (3.12)

Similar as in estimated synchronous reference frame, solving (3.12), the 

differential of the high frequency carrier current response in stationary reference frame 

can be derived as  

1 1 1cos(2 ) sin(2 )

1 1 1sin(2 ) cos(2 )

r m r m
p n nh h

h h
r m r m

n p n

L L Li u
p

i u
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α α
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θ θ θ θ

θ θ θ θ

⎡ ⎤+ + +⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦+ − +⎢ ⎥
⎣ ⎦

 (3.13)

3.3 Conventional High Frequency Carrier Signal Injection 

Methods 

According to the type of injected carrier signal, the two most popular methods are 

rotating sinusoidal signal injection [JAN95] [DEG98] [GAR07] [RAC08a] [RAC10] 

and pulsating sinusoidal signal injection [COR98] [HA00] [LIN02] [JAN03] [LI09B]. 

3.3.1 Pulsating Carrier Signal Injection 

For pulsating signal injection methods, a high frequency pulsating carrier signal 

which is also normally a voltage is injected into the d- (or q-axis) in the estimated 

synchronous reference frame, which can be seen as the superposition of two rotating 
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carrier vectors with opposite rotating direction as illustrated in Fig. 3.2. That the 

reason why it is called pulsating carrier signal. Position could be estimated through 

minimization of the amplitude modulated carrier frequency response signal measured 

along the axis orthogonal to the injection axis. 

de

q

idh

d

qe

 

Fig. 3.2.    Conventional pulsating signal injection 

For d-axis pulsating carrier signal injection, the high frequency pulsating carrier 

voltage vector (3.14) which is illustrated in Fig. 3.3 is injected on the estimated d-axis 

[COR98][JAN03]LI09b]. 
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e
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α ω ϕ
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⎢ ⎥ ⎣ ⎦⎣ ⎦

 (3.14)

where Uc, ωc and ϕ are the amplitude, angular speed and the initial phase angle of the 

injected pulsating high frequency voltage, respectively.  

 

Fig. 3.3.    Injected pulsating carrier voltage (Uc=12V, f=330Hz) 
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Then the Phase-A current response is shown in Fig. 3.4 where the rotor position 

is contained in the carrier current response. 

 

Fig. 3.4.    Phase‐A current response 

Then, the differential of the carrier current in the estimated synchronous 

reference frame as shown in (3.9) can be expressed as  
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 (3.15)

Therefore, the resultant carrier current response in the estimated synchronous 

reference frame can be expressed as: 
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 (3.16)

where 
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It is clearly shown that the carrier current response is amplitude modulated by the 

rotor position information (for given load condition, cross-saturation angle θm is 

constant). When the estimated position error Δθ is sufficiently small, e
qhi  becomes very 

small, therefore, the q-axis carrier current response is usually used to extract the rotor 
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position information. Since the introduced current ripple on the q-axis is limited, less 

torque ripple would be generated.  

For q-axis pulsating carrier signal injection, the high frequency pulsating carrier 

voltage vector (3.18) is injected on the estimated q-axis [LIN03] [YAN11]. 
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α
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 (3.18)

Then the resultant carrier current in the estimated synchronous reference frame 

as shown in (3.9) can be expressed as  
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 (3.19)

Similar to the d-axis injection, the carrier current response is amplitude modulated 

by the rotor position information, and the d-axis carrier current response is usually used 

to extract the rotor position information. q-axis injection is a good choice for zero 

d-axis current vector control, since it is less sensitive to the inverter nonlinearity effect. 

Compared to d-axis injection, however, more current ripple on the q-axis can be 

generated. It would generate substantial torque ripple even the position estimation error 

is zero. Consequently, injection of pulsating carrier voltage along the d-axis is preferred 

in terms of torque ripple [HA00]. 

In order to demodulate the position dependent amplitude from the carrier current 

response, the synchronous detection technique is applied [MAD95] [RAC10]. Both 

sides of (3.16) are multiplied by 2sinα, and then applying the signal to a LPF, the 

amplitude of the carrier current, e.g. with d-axis pulsating injection based sensorless 

method, can be obtained with noise suppression as shown in (3.20) and Fig. 3.5. 
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Fig. 3.5.    Amplitude demodulation from carrier current response 

Then the amplitude of q-axis carrier current response is regarded to be the signal 

input to the position observer, 

( ) sin(2 )e
qh n mf i Iθ θ θΔ = = Δ +  (3.21)

In steady-state, f(Δθ) is forced to be zero due to the position observer, and hence, 

rotor position can be derived with the load-dependent position estimation error (-θm/2) 

due to cross-saturation effect.  

In order to compensate the estimated position error resulting from cross-saturation 

effect, either proper machine design or compensation control can be employed. Many 

efforts have been made on the control aspect. When the rotor position estimation error 

Δθ is sufficiently small, (3.22) can be further derived as, 
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Defining a coupling factor λ=Ldqh/Lqh, then f(Δθ) can be re-defined as 

( ) 2 cose e
qh dh n mf i i Iθ λ θ θΔ = + ≈ ⋅Δ  (3.23)

Then, the new f(Δθ) is forced to be zero by the position observer. Obviously, in 

this way no position estimation error would be generated by the cross-saturation effect. 

The overall control strategy is shown in Fig. 3.6 
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Fig. 3.6. Block diagram of d‐axis pulsating injection based sensorless control [GON12] 

3.3.2 Rotating Carrier Signal Injection 

Rotating signal injection schemes inject a balanced three phase voltage (or current) 

carrier signal which normally is a voltage into the stationary reference frame 

superimposed on the fundamental excitation as demonstrated in Fig. 3.7. The injected 

voltage can form a rotating excitation, and that is the reason why this method is called 

rotating carrier signal injection. The rotor position information can be obtained from 

the rotor position modulated response current [JAN95] [JOE05].  

 

Fig. 3.7.    Conventional rotating signal injection 

For rotating carrier signal injection, a balanced rotating carrier voltage vector 

(3.24) which is shown in Fig. 3.8 is injected into stationary reference frame,  
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 (3.24)

where Uc, ωc and ϕ are the amplitude, angular speed and the initial phase angle of the 

injected pulsating high frequency voltage, respectively. Then the Phase-A current 

response is shown in Fig. 3.9 where the rotor position is contained in the carrier 

current response. 

 

Fig. 3.8.    Injected rotating carrier voltage (Uc=12V, f=330Hz) 

 

Fig. 3.9.    Phase‐A current response 

The differential of the carrier current in the stationary reference frame as shown in 

(3.13) can be expressed as  
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Then, the resultant carrier current response in the stationary reference frame can 

be shown in (3.26) and Fig. 3.10. 
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 (3.26)

and by using complex vector as 

( 2 /2)( /2) r mjj
h p ni I e I e α θ θ πα π − + + +−= ⋅ + ⋅  (3.27)

 

Fig. 3.10.    Carrier current response of rotating signal injection 

Clearly, the carrier current response consists of two components. The first term is 

a positive sequence component, which has the same angular speed as the injected 

carrier voltage vector, and the second term is referred to as the negative sequence 

component, which contains the rotor position information in phase angle [RAC08a]. 

Consequently, the negative sequence component is used to track the rotor position.  
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In order to extract the position dependent negative sequence carrier current from 

the total current response, SRFF, i.e. synchronous reference frame filter, is the typical 

solution [DEG98] [RAC10] [GAR07]. Firstly, SRFF uses the frame transformation 

based on feedback estimated rotor position to transform the fundamental current to 

DC. With the aid of a LPF which is a second order with 50Hz cut-off frequency, this 

DC component is obtained without phase lag. Then with the reverse frame 

transformation, this fundamental current can be easily obtained. By employing the 

same procedure with the phase angle of the injected carrier voltage, the positive 

sequence current can be derived. Then subtracting them from the total current 

response, the negative sequence current can be obtained. By applying the signal 

demodulation with SRFF as shown in Fig. 3.11, we can obtain the negative sequence 

signal as 

( 2 /2)r mj
n ni I e α θ θ π− + + += ⋅  (3.28)

 

Fig. 3.11. Signal demodulation for rotating injection [GON12] 

Then in in the reference frame synchronous with estimated negative sequence 

carrier frequency, can be expressed as shown in (3.29) and Fig. 3.12.  

( 2 /2) ( 2 /2) (2 ) negr m re m jj j j
neg n n ni I e e I e I e θα θ θ π α θ π θ θ− + + + − − Δ += ⋅ ⋅ = ⋅ = ⋅  (3.29)

where θneg is the angular offset of negative sequence carrier current. (3.29) can be 

rewritten as 

_

_

cos(2 )
sin(2 )

neg d n m

neg q n m

i I
i I

θ θ
θ θ

Δ +⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥Δ +⎣ ⎦⎣ ⎦

 (3.30)
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Fig. 3.12. Demodulated negative sequence carrier current response in estimated 

negative sequence reference frame 

Normally, the q-axis component is regarded as the error signal f(Δθ) input to the 

position observer [JAN95] [DEG98], i.e.  

_( ) sin(2 )neg q n mf i Iθ θ θΔ = = Δ +  (3.31)

It is identical to (3.21) for conventional d-axis pulsating injection. Therefore, it is 

expected that the same position estimation error (-θm/2) due to cross-saturation effect 

would be introduced for rotating injection. To compensate the cross-saturation angle, 

the phase angle of injected carrier voltage is modified as 

mα α θ′ = +  (3.32)

Then the carrier current response can be derived as 

( /2) ( 2 /2)m rj j
f p ni i I e I eα θ π α θ π+ − − + += + ⋅ + ⋅  (3.33)

It can be seen that the cross-saturation angle θm has been transferred from the 

negative sequence carrier current to the positive sequence carrier current. Therefore, 

the rotor position is expected to be accurately estimated from the negative sequence 

carrier current. Then, (3.30) can be re-written as 

_

_
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i I
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Δ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥Δ⎣ ⎦⎣ ⎦

 (3.34)

Therefore, f(Δθ) can be updated as  
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_( ) sin(2 )neg q nf i Iθ θΔ = = Δ  (3.35)

With cross-saturation effect compensation, the block diagram of rotating carrier 

voltage signal injection based sensorless control is shown in Fig. 3.13. 

 

Fig. 3.13. Block diagram of rotating injection based sensorless control [GON12]   

3.3.3 Rotor Position Observer 

Position tracking observer is much more popular than arc-tangent function (tan-1) 

calculation [TES03] in sensorless position estimation due to the good immunity to 

disturbance harmonics while keeping the dynamic performance of position tracking. 

Although some nonlinear controllers such as bang-bang controllers can be used in 

position observer to enhance the dynamic characteristics [JAN04], they have the 

disadvantage of resulting in an unclear steady-state response. Therefore, linear PI 

controllers prevail in sensorless position observer [HAR00] [CUP10].  

Considering the signal f(Δθ) input to the position observer for conventional 

pulsating and rotating injection, the block diagram of position observer including PI 

regulator is shown in Fig. 3.14.  
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Fig. 3.14. Block diagram of rotor position observer   

According to the diagram, the closed loop transfer function between the actual 

rotor position information and the estimated one can be expressed as, 

2

2 2
2 2

e
n p n ir

r n p n i

I k s I k
s I k s I k

θ
θ

⋅ +
=

+ ⋅ +
 (3.36)

Based on (3.10) and (3.17), it could be seen that In is load-dependent. Hence, kp 

and ki of PI controller should be on-line varied with In to maintain the constant 

bandwidth. For simplicity in practical implementation, kp and ki could be selected based 

on the typical value of In at no load condition. 

3.3.4 Steady-state and Dynamic Performance 

The steady-state tests for pulsating and rotating carrier signal injection methods 

are carried out at the condition of 70V DC bus voltage, 50rpm rotor speed with about 

1A q-axis current, and the estimated rotor positions considering the cross-saturation 

effect are shown in Fig. 3.15 compared with the actual value from encoder. The 

experimental results of pulsating signal injection are shown in Fig. 3.15 (a) and the 

ones of rotating signal injection are shown in Fig. 3.15 (b). It can be seen that the 

estimation errors of both methods are sufficiently small and the estimated rotor 

position are with high accuracy. 
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(a) Pulsating signal injection 

 
(b) Rotating signal injection 

Fig. 3.15.    Steady‐state errors from pulsating and rotating injection methods 

(Theta_est: Estimated rotor position,    Theta_act: Actual rotor position, 

Error: Rotor position estimation error) 

The dynamic performance tests are carried out when the rotor mechanical initial 

speed is zero and step change to 25rpm and then 50rpm as demonstrated in Fig. 3.16, 

and the estimated and actual rotor positions, as well as the estimation error of pulsating 

signal injection are shown in Fig. 3.17(a) and the ones of rotating signal injection are 

shown in Fig. 3.17(b). The experimental results prove that the two conventional high 

frequency injection methods have outstanding dynamic performances. 
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Fig. 3.16.    Dynamic test situation   

(Speed_ref: Speed reference,    Speed: Actual rotor speed) 

 
(a) Pulsating signal injection 

 
(b) Rotating signal injection 

Fig. 3.17. Dynamic performance from pulsating and rotating injection methods 

(Theta_est: Estimated rotor position,    Theta_act: Actual rotor position, 

Error: Rotor position estimation error) 

-20

-10

0

10

20

30

40

50

60

0 2000 4000 6000 8000

Sp
ee

d 
(r

pm
)

Time (ms)

Speed_ref Speed

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-8

-6

-4

-2

0

2

4

6

8

0 2000 4000 6000 8000

Po
sit

io
n 

Er
ro

r (
ra

d)

Ro
to

r P
os

iti
on

 (r
ad

)

Time (ms)

Theta_est Theta_act

Error

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-8

-6

-4

-2

0

2

4

6

8

0 2000 4000 6000 8000

Po
sit

io
n 

Er
ro

r (
ra

d)

R
ot

or
 P

os
iti

on
 (r

ad
)

Time (ms)

Theta_est Theta_act Error



Chapter 3 

69 

3.4 New Proposed Control Strategy with Injection of High 

Frequency Pulsating Signal into Stationary Reference Frame 

For the conventional pulsating signal injection methods, a high frequency 

fluctuating carrier voltage signal is injected into the estimated synchronous reference 

frame as shown in Fig. 3.2. This method has simple physical principle. However, since 

the carrier voltage is injected into the estimated synchronous reference frame, the risk 

of divergence at the starting stage of sensorless control is the drawback. The 

conventional rotating signal injection schemes inject a balanced three phase voltage in 

the stationary reference frame to form a rotating excitation as shown in Fig. 3.7. It has 

stable performance of carrier signal injection since the carrier voltage is injected into 

the stationary reference frame. However, the signal demodulation procedure with SRFF 

is relatively complicated to implement, and the two more LPFs will deteriorate the 

dynamic performance. Differing from the conventional high-frequency carrier signal 

injection methods, a new strategy injects a pulsating high frequency carrier voltage into 

α- (or β-) axis of stator stationary reference frame, Fig. 3.18. Since the high-frequency 

carrier current response is amplitude-modulated as same as pulsating carrier signal 

injection method, the synchronous detection technique with one step of filtering is 

employed for signal demodulation.  

 

Fig. 3.18.    New proposed high frequency injection 
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3.4.1 New Proposed High Frequency Carrier Signal Injection Method 

The new strategy is based on the stationary reference frame with the pulsating high 

frequency carrier voltage injection, which can be regarded as the superposition of two 

rotating carrier vectors with opposite rotating direction.  

For the new proposed strategy, an α-axis pulsating carrier voltage signal (3.37) 

which is shown in Fig. 3.19 is injected into stationary reference frame, 

cos
,
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h

c c
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u
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α ω ϕ

⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (3.37)

Then the Phase-A response current is shown in Fig. 3.20. 

 

Fig. 3.19.    Injected pulsating carrier voltage (Uc=12V, f=330Hz) 

 

Fig. 3.20.    Phase‐A current response 
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The differential of the carrier current in the stationary reference frame can be 

expressed as 

1 1 1cos(2 ) sin(2 )
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 (3.38)

Then, the resultant carrier current response can be derived as: 
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 (3.39)

where 

,c c
p n

c p c n

U UI I
L Lω ω

= =  (3.40)

It is clearly shown that the carrier current response is amplitude modulated by the 

rotor position θr and the cross-saturation angle θm which is constant at the given load 

condition. From the response current, the rotor position could be retrieved precisely 

considering the cross-saturation effect.  

In order to demodulate the position dependent amplitude from the carrier current 

response, the synchronous detection technique [MAD95] [RAC10] which is the same 

as in pulsating carrier signal injection method, is applied. Both sides of (3.39) are 

multiplied by 2sinα, and then applying the signal to a LPF, the amplitude of the carrier 

current can be obtained with noise suppression as expressed in (3.41), and the measured 

carrier current responses and their amplitude in stationary reference frame are shown in 

Fig. 3.21. 
**
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 (3.41)
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Fig. 3.21. Measured carrier current responses and their amplitudes 

With the aid of encoder to provide the actual rotor position, the cross-saturation 

angle and the amplitude of response current with rotor position of the Motor I are 

shown in Fig. 3.22(a). The amplitude loci of carrier current response without and with 

full load are shown in Fig. 3.22(b), where the radius of the locus, In, has a significant 

change due to the variation of inductances versus fundamental excitation, whilst the 

change of the DC offset, Ip, is much less since it is more robust to the inductance 

variation.  

If Ip and θm could be pre-detected and compensated, then 
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From (3.42), the rotor position could be derived easily by proper position 

estimator. 

If a β-axis pulsating carrier voltage signal (3.43) is injected into in the stationary 

reference frame, 

0
,

cos
h

c c
h

u
U t

u
α

β

α ω ϕ
α

⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (3.43)

then, the differential of the carrier current in the stationary reference frame can be 

expressed as 
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Then, the resultant carrier current response can be derived as: 
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 (3.45)

Similar to the α-axis injection, the carrier current response is also amplitude- 

modulated by the rotor position and the demodulation process will be the same. 

However, Ip locates at β-axis current, whilst the phase sequence of **
hiα  and **

hiβ  is 

different. Hence, the Ip compensation and position estimation will be slightly different. 

 
(a) Amplitude of response carrier current compared with actual rotor position. 

 

(b) Current loci with no load and full load. 
Fig. 3.22. Amplitude of response carrier current 
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3.4.2 Ip Pre-Detection and Compensation 

As described above, e.g. with α-axis pulsating injection, Ip should be subtracted 

from |iαh| to get **
hiα  in (3.41) for tracking the rotor position.  

Based on (3.10) and (3.17), Ip could be expressed as 

2( )
c c sa

p
c p c dh qh dqh

U U LI
L L L Lω ω

⋅
= =

⋅ ⋅ −
 (3.46)

As shown in (3.46) and Fig. 3.1, Ip is machine parameter dependent and 

proportional to the ratio of Uc/ωc. Since the parameter value of Lp is almost not affected 

by iq, on the condition of fixed Uc and ωc, the value of Ip can be eliminated by a look-up 

table designed based on the pre-measured inductances theoretically. The measured Ip 

against different fundamental current in sensored mode is shown in Fig. 3.23, from 

which Ip could be treated as constant at different q-axis current for simplicity.  

 

Fig. 3.23.    Measured Ip versus different fundamental current. 

For general applications at zero and very low speed, id is usually set as negative 

and kept the same. Hence, it is possible to derive Ip from the look-up table under that 

condition, and apply it for starting.  

However, when the rotor speed is higher than a certain value, e.g. 10rpm in this 

thesis, various id may applied. Due to the variation of the self- and mutual-inductances 
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However, **
hiα  in (3.41) will appear as sinusoidal signal where Ip is the constant DC 

offset. Therefore, if |iαh| signal goes through a LPF, the output should be Ip. To 

effectively filter the contained AC components which are 1Hz minimally without phase 

lag, the cut-off frequency should be online adjusted with the feedback rotor speed, 

where the maximum cut-off frequency is 20% of the AC component frequency. 

Since the derived Ip by LPF will maintain the same value with fixed id, the value 

derived at the starting condition could be used, stored into controller memory and 

applied as Ip during starting from zero to very low speed. The obtaining procedure is 

machine parameter free, which makes it superior to calculation from pre-tested data.  

After deriving Ip, we can have 
**

**

cos(2 )
sin(2 )

n r mh

n r mh

Ii
Ii

α

β

θ θ
θ θ

⎡ ⎤ +⎡ ⎤
=⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎣ ⎦⎣ ⎦

 (3.47)

As shown in (3.47), the phase angle of **
hiαβ  is modulated by rotor position θr and 

cross-saturation angle θm. Hence, rotor position can be derived with the load-dependent 

position estimation error (-θm/2) due to cross-saturation effect. 

3.4.3 Cross-saturation Effect Compensation 

Due to the nonlinear behavior of cross-saturation effect, the compensation 

methods depend considerably on the machine parameters, which can be acquired from 

finite element calculation, off-line self-commissioning, or on-line parameter 

identification. A relatively straightforward method is used in [ZHU07] [DEK09]. A 

self-commissioning procedure was presented in [TES00] to obtain the information of 

harmonics due to cross-saturation, which can be used for on-line compensation. A more 

adaptive compensation method based on parameter identification is developed in 

[REI08], although it is more computationally intensive. Alternatively, neural network 

structure is used for cross-saturation compensation [GAR07]. In this thesis, the 

compensation of cross-saturation effect follows the method in [ZHU07] [DEK09], 

where the angular error is obtained from the experimental measurement in sensored 
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operation, and directly used to compensate the estimated position error on-line.  

The error in the estimated rotor position can be compensated by employing (3.10) 

with pre-tested data as shown in Fig. 3.1 using the experimental results. However, from 

both the cross-saturation angles which are calculated from machine parameters and 

measured in sensored operation as shown in Fig. 3.24, it can be seen that the 

cross-saturation angle is approximately proportional to the q-axis current, i.e. θm≈Kriq. 

Thus, by applying this compensation factor Kr, θm can be predicted with measured 

q-axis current, which significantly simplifies the implementation of error compensation 

scheme. The predicted θm by the feedback iq is also shown in Fig. 3.24. Then, after 

compensation of the cross-saturation effect, equation (3.42) could be derived, and the 

rotor position could be retrieved by applying rotor position estimator. 

 
Fig. 3.24.    Comparison of cross‐saturation angles measured in sensored operation, 

calculated from parameters, and predicted based on iq 

3.4.4 Rotor Position Estimator 

To obtain the rotor position from (3.42), the Two-Phase-Type Phase-Locked Loop 

(TP-PLL) is applied. TP-PLL was first proposed by Takashi Emura in [EMU00] and 

has been widely applied in the accurate position interpolation for servo controllers and 

modern resolver to digital (RD) conversion. The theoretical principle can be simply 

described in Fig. 3.25(a) and has the similar structure of simplified extended 

Kalman-filter (EKF) as will be introduced in Section 6.2. According to the diagram, the 
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closed loop transfer function between the actual and estimated rotor positions can be 

expressed as  

2

2 2
2 2

e
n p n ir

r n p n i

I k s I k
s I k s I k

θ
θ

⋅ +
=

+ ⋅ +
 (3.48)

Based on (3.10) and (3.17), In is load-dependent. Hence, kp and ki of PI controller 

should be on-line varied with In to maintain the constant bandwidth. For simplicity in 

practical implementation, kp and ki could be selected based on the typical value of In at 

no load condition. 

For the prototype system, the typical value of In is 130mA, and the parameters of 

TP-PLL are kp=500 and ki=1000. The Bode plot of the position estimator are shown in 

Fig. 3.25(b), it can be seen that the loop bandwidth is around 20.8Hz. 

sin(2 )e
rθ

cos(2 )e
rθ

/p ik k s+

**
hiα

**
hiβ

sin 2( )e
n r rI θ θ−

1
s

reθ

 
(a) Block diagram of TP‐PLL 

 
(b) Bode chart of the TP‐PLL 

Fig. 3.25.    Block diagram and bode chart of position estimator. 
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3.4.5 Magnetic Polarity Detection 

Since the machine saliency varies periodically as a second spatial harmonic 

without magnetic polarity information, the estimated rotor position has an angle 

ambiguity of π. If the estimated rotor direction which should align at the north magnetic 

pole position, is aligned at the south magnetic pole position and regarded as the rotor 

position, the sign of output torque will be changed and the system will be unstable. 

Therefore, it is important to identify the magnetic polarity before the drive is put into 

operation. The initial rotor direction can be estimated from carrier current response and 

can be used to calculate the initial rotor position. Once the polarity information before 

start-up is obtained, it can be latched. Generally, the polarity could be detected from 

saturation effect of the air gap flux. Short pulses injection, secondary harmonics based, 

and response high frequency current against different fundamental current methods 

have been proposed. 

3.4.5.1 Conventional magnetic polarity detection methods 

Method A. Short pulses injection method 

Magnetic polarity detection can be performed by injecting the specified transient 

pulse signal along the estimated d-axis, which gives rise to stator iron saturation. 

Different transient signals can be utilized, such as AC current [NOG98], dual short 

voltage pulses [AIH99] [HOL08] [WAN12a] and so on. Among them, dual voltage 

pulses injection proposed in [AIH99] is the simplest. One of the pulses aligns with the 

positive direction of the magnet flux, thus increasing the magnetization of the stator 

iron and driving the d-axis incremental inductance into lower value. The other pulse, 

aligning with the negative direction of the magnet flux, tends to de-saturate the stator 

iron and leads to increasing d-axis incremental inductance. The injected short voltage 

pulses have identical volt-second values (identical Δψ), hence the current pulse having 

higher magnitude indicates the positive direction of d-axis, as shown in Fig. 3.26.  
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Fig. 3.26. Magnetic polarity detection using dual voltage pulses injection [GON13]. 

Fig. 3.27 shows the magnetic polarity detection for the Machine I with dual voltage 

pulses method. If initially estimated rotor direction from machine saliency property is 

equal to the real rotor position (Δθ=0rad), the applied positive d-axis voltage pulse 

would result in higher d-axis current pulse, as shown in Fig. 3.27(a). On the other hand, 

lower amplitude current response to the positive d-axis voltage pulse suggests that the 

estimated rotor direction has an angle shift of π with respect to the real rotor position 

information, as shown in Fig. 3.27(b). 

Although short pulses injection method has robust and reliable identification 

performance due to good SNR, the magnetic polarity identification should be 

performed as an independent process, which means that the rotor position estimation 

is stopped when the magnetic polarity identification is active [HOL08]. If the rotor is 

free running due to coupled mechanical load, it would fail to do so. For the 

free-running rotor application, the rotor position is always changing, thus applying 

short voltage pulses along the direction of the magnet flux could not be guaranteed. 
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(a) Magnetic polarity detection (Δθ=0 rad). 

 
(b) Magnetic polarity detection (Δθ=π rad). 

Fig. 3.27. Magnetic polarity detection with dual voltage pulses. 

Method B. Secondary harmonics based method 

Without consideration of magnetic saturation effect, magnetic polarity 

information cannot be extracted from the carrier current response; however, the actual 

machine is subject to saturation effect, and the carrier current response should contain 

the related information. When the machine saturation property is considered in the 

machine model, the resultant carrier current response to the d-axis pulsating carrier 

signal injection can be simplified as [JEO05], 

2
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 (3.49)
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2 2

2 2 0
2

c d
sat m

c d

U d iI
d

ψ
ω ψ

= >  (3.50)

where id is the d-axis current, ψd is the d-axis flux linkage, ψm is the permanent 

magnet flux linkage without stator current. The additional term with sin2α in (3.50), 

resulting from the interaction between the injected carrier voltage and the saturation 

saliency, is referred to as the secondary carrier current component. It can be used to 

identify the magnetic polarity information [HA03] [KIM04] [JEO05] [HAR05] 

[RAC08a]. From (3.50), the signals corresponding to magnetic polarity detection can 

be calculated as follows, 

⎪⎩

⎪
⎨
⎧

ΔΔ
−=⋅=

=⋅=

4
coscos)2cos(

0)2sin(
2

2cos

2sin

θθα

α

α

α

sate
dhd

e
dhd

IiLPFI

iLPFI
 (3.51)

Obviously, the magnetic polarity information can be detected from the sign of 

Idcos2α. In this way, carrier current component due to primary spatial saliency (sinα) is 

used to estimate the rotor direction information, while the additional carrier current 

component due to magnetic saturation (sin2α) is used to detect the magnetic polarity 

information. Although this kind of method has the advantage of quick convergence 

[HAR05], the major problem is that the magnitude of secondary carrier current 

component for magnetic polarity detection is very low, leading to lower SNR for the 

magnetic polarity identification. The magnetic polarity detection fails to be 

implemented on Machine I due the too low SNR. 

Method C. Integrated with pulsating injection considering magnetic saturation 

For a conventional d-axis pulsating carrier signal injection based sensorless 

method, the amplitude of d-axis carrier current has not been used in the control 

algorithm. However, it will be proven to be very useful in magnetic polarity detection 

[GON13]. Providing the estimated rotor direction is sufficiently correct, the amplitude 

of d-axis carrier current in the estimated synchronous reference frame can be derived 

as  
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1cos(2 )e c
dh p n p n

c dh

Ui I I I I
L

θ
ω

= + Δ ≈ + = ⋅  (3.52)

For given injected carrier voltage signal (Uc/ωc), the above equation indicates 

that the amplitude of d-axis carrier current is only determined by Ldh. Due to magnetic 

saturation, Ldh is significantly depended on the d-axis fundamental current, as shown 

in Fig. 3.28 for the prototype machine.  

 
Fig. 3.28.    Incremental self‐inductance at different fundamental excitations. 

Consequently, it is possible to identify the magnetic polarity from the variation 

of e
d hi  against d-axis fundamental current. The initial e

d hi without fundamental 

d-axis current is stored as Idh(k). A given d-axis fundamental current is applied and 

e
d hi  under this load condition is stored as Idh(k+1). And then the machine is returned 

back to initial operating state. Finally, e
d hi  at different load condition is compared. 

The increase of amplitude (Idh(k+1) > Idh(k)) indicates the estimated rotor direction is 

equal to the correct rotor position, Fig. 3.29(a), otherwise, the phase shift of π should 

be added, Fig. 3.29(b).  
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(a) Magnetic polarity detection (Δθ=0 rad). 

 
(b) Magnetic polarity detection (Δθ=πrad). 

Fig. 3.29. Magnetic polarity dectection with fundamental current 

If the rotor is free running or working as a generator, the estimated rotor position 

is updated real time, thus the fundamental current is guaranteed to be applied along 

d-axis. Hence, unlike the short pulses injection method, the proposed scheme never 

stops the sensorless position estimation due to the integration with conventional 

pulsating carrier signal injection based sensorless algorithm. This method is also 

applicable to rotating carrier signal injection based sensorless technique. The 

difference is that the comparable parameter turns out to be the amplitude of the 

positive sequence carrier current, instead of the amplitude of the d-axis carrier current 

for pulsating injection. 
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3.4.5.2 Polarity detection for stationary frame pulsating injection 

Detailed experimental comparison among these three conventional polarity 

detection methods has been made in [GONG13]. Method A for polarity detection 

cannot be employed when the motor is free-running or working as a generator, whilst 

Method B has too low SNR which makes the robustness the lowest among these 

methods. Although Method C has the best performance, it only can be adopted with 

conventional high frequency injection strategies. Hence, in this new proposed strategy 

with injection of pulsating carrier signal into stationary reference frame, alternative 

method for polarity detection with high robustness should be developed.  

The phase angle of **
hiαβ  in (3.41) is used to extract the rotor direction information, 

while Ip has not been used in control algorithm and should be eliminated. However, in 

this section it will be very useful in magnetic polarity detection. Based on (3.10) and 

(3.17), and considering the mutual inductance is sufficiently small, i.e. L2
dqh<<Ldh Lqh, 

equation (3.41) could be simplified as,  
** cos(2 )

( )cos(2 )
2 2 2 2

h p h p n m

c c c c
m

c dh c qh c qh c dh

i I i I I

U U U U
L L L L

α α θ θ

θ θ
ω ω ω ω

= + = + +

= + + − +
 (3.53)

For a given injected carrier voltage signal (Uc/ωc), equation (3.53) indicates that 

the α-axis amplitude of response current is determined by Ldh and Lqh. Due to magnetic 

saturation, Ldh is significantly dependant on d-axis fundamental current, at the same 

time, Lqh has the same trend but less significant as shown in Fig. 3.28 for Motor I. 

Consequently, it is possible to identify the magnetic polarity from the variation of |iαh| 

against d-axis fundamental current which is similarly as [GON13] for pulsating carrier 

voltage signal injection based method. 

With the aid of accurate rotor position information from the encoder, |iαh| current 

can be measured at different fundamental excitations, as shown in Fig. 3.30. From the 

experimental results, it can be concluded that the magnetic polarity can be reliably 

detected based on the comparison of |iαh| at different d-axis fundamental current levels.  
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Fig. 3.30.    |iαh| at different fundamental excitations. 

The procedure is described as follows: 

Step 1: Before the motor is initially started, the rotor direction information can be 

obtained from the proposed sensorless strategy without fundamental excitation 

( 0e e
d qi i A= = ), meanwhile, the value of |iαh| at this condition is recorded. The estimated 

rotor direction either indicates the correct one, or shifted by π.  

Step 2: Referring to the estimated rotor direction, a given d-axis fundamental 

current reference is applied to the machine. The fundamental current reference of 

( 0.5e
di A= , 0e

qi A= ) is selected for the prototype machine. At the same time, the value 

of |iαh| at this load condition is also stored into processor memory.  

Step 3: After that, the fundamental current reference is set back to ( 0e e
d qi i A= = ).  

Finally, the values of |iαh| at different load conditions (with and without 

fundamental current) are compared. The amplitude increase indicates the estimated 

rotor direction is at the correct, otherwise, the phase shift of π should be added. 

The experimental results shown in Fig. 3.31 validate the effectiveness of the 

magnetic polarity detection method at zero speed. By the magnetic saturation effect of 

d-axis fundamental current, the magnitude of |iαh| in (3.53) will change as shown in Fig. 

3.31(a) and (b). Compared the magnitude before and after applying the fundamental 

current, the increase of |iαh| suggests that the estimated rotor position is correct, Fig. 

3.31(a), otherwise, a phase shift of π is added, Fig. 3.31(b).  
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(a) Rotor direction without ambiguity 

 
(b) Rotor direction with ambiguity of π 

Fig. 3.31.    Detection of magnetic polarity at zero speed.   

(Theta_est: Estimated rotor position,    Theta_act: Actual rotor position) 

However, if the motor is free-running or working as a generator, before the whole 

control system enables, the rotor speed is already higher than certain value. Then, **
hiα  

in (3.53) will appear as sinusoidal signal, which leads the method described above fail 

to work. If |iαh| signal goes through a LPF, the output should be Ip. Considering 

L2
dqh<<Ldh Lqh, we can get 

2 2
c c

p
c dh c qh

U UI
L Lω ω

= +  (3.54)

Similarly, for a given injected carrier voltage signal (Uc/ωc), Ip is determined by 
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Ldh and Lqh. Consequently, it is possible to identify the magnetic polarity from Ip instead 

of |iαh| by applying the same comparison and detection method. However, applying the 

LPF may slow the detection procedure but the reliability is not affected. The 

experimental results shown in Fig. 3.32 validate the effectiveness of the magnetic 

polarity detection method when the rotor speed is already higher than certain value. By 

the magnetic saturation effect of d-axis fundamental current, the value of Ip in (3.54) 

will change as shown in Fig. 3.32(a) and (b). Compared the magnitude before and after 

applying the fundamental current, the increase of Ip suggests that the estimated rotor 

position is correct, Fig. 3.32(a), otherwise, a phase shift of π is added, Fig. 3.32(b). 

 
(a) Rotor direction without ambiguity 

 
(b) Rotor direction with ambiguity of π 

Fig. 3.32.    Detection of magnetic polarity at certain speed.   

(Theta_est: Estimated rotor position,    Theta_act: Actual rotor position) 
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Based on the d-axis magnetic saturation effect which is similar to Method C, the 

proposed magnetic polarity identification scheme can be easily integrated with the new 

proposed strategy with injection of pulsating carrier voltage into stationary reference 

frame. Hence unlike the short pulses injection Method A, the proposed scheme never 

stops the sensorless position estimation even while free-running. Furthermore, the 

proposed method has the advantage of robust detection due to higher SNR and less 

computational intensity compared with secondary harmonics based Method B. 

Different kinds of magnetic polarity detection methods are compared in Table 3.1.  

TABLE 3.1 

COMPARISON OF MAGNETIC POLARITY DETECTION 

 Method A Method B Method C Proposed 

Convergence speed High Low Medium Medium 

Conceptual simplicity High Low High High 

Computational burden Low High Low Low 

Reliability High Low High High 

SNR High Low High High 

Integration availability Low Medium High High 

3.4.6 Steady-state and Dynamic Performance 

Several experiments have been performed to validate the new proposed high 

frequency sinusoidal pulsating signal injection method based on the stationary 

reference frame. The overall control scheme including the new proposed strategy is 

shown in Fig. 3.33 which has been implemented on a dSPACE platform. The Test Rig I 

with Motor I is applied for test. The DC bus voltage is 70V, and the magnitude of 

injected carrier voltage is set as 12V. In general, the frequency of carrier signal is 

typically between 250-850Hz since the operating speed is only within the low and zero 

speed range [JAN95] [DEG98] [JAN03]. Here the maximum speed for sensorless 

control based on high-frequency carrier signal injection is limited within 50rpm which 

is equivalent as 2.5Hz of the fundamental current. Hence, the carrier frequency is 

selected as 330Hz which is sufficiently larger than 2.5Hz. 
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Fig. 3.33.    Block diagram of overall control system. 

With the proposed strategy, the amplitude of the carrier current response before 

and after Ip elimination, the estimated rotor position before cross-saturation effect 

compensation compared with the actual value from encoder are shown in Fig. 3.34. It 

could be seen that, without cross-saturation effect compensation, there is a significant 

error between estimated and actual rotor position. Based on the predicted 

cross-saturation angle in Fig. 3.24, the estimated rotor positions before and after 

compensation under steady-state at 50rpm with about 1A q-axis current are shown in 

Fig. 3.35(a), and Fig. 3.35(b) shows the dynamic performance when rotor speed 

changes from -50rpm to 50rpm and then back to -50rpm. It can be found that there are 

significant errors before compensation, whilst after compensation, the estimated rotor 

positions can match the actual rotor position well and the errors are close to zero. 

 

Fig. 3.34.    Related signals of the proposed HF sensorless injection method. 
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(a) Steady‐state 

 
(b) Dynamic 

Fig. 3.35.    Cross‐saturation effect compensation. 

(Theta_aft_com: Estimated rotor position after cross saturation compensation,   

Theta_bef_com: Estimated rotor position before cross saturation compensation, 

Error_aft_com: Estimation error after cross saturation compensation,   

Theta_bef_com: Estimation error before cross saturation compensation, 

Theta_act: Actual rotor position) 

The dynamic performance test is carried out when the rotor mechanical initial 

speed is zero and step change to 25rpm and then 50rpm which is the same as in Fig. 

3.16, and the estimated and actual rotor positions and the estimation error are shown in 

Fig. 3.36(a). Compared with the dynamic performances of pulsating signal injection, 

Fig. 3.17(a), and rotating signal injection, Fig. 3.17(b), it can be conclude that, the 
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new proposed stationary pulsating signal injection strategy has the similar dynamic 

performance as pulsating signal injection one, and better performance than rotating 

signal injection strategy. The dynamic performance under the step load condition 

where the q-axis current step change from 0.5A to full load which is 4A and then back 

to 0.5A at 50rpm is shown in Fig. 3.36 (b). From the experimental results, it can be 

conclude that the new proposed stationary pulsating signal injection strategy has the 

outstanding dynamic performance against different speed and load condition.  

 

(a) Dynamic performance of step speed 

 

(b) Dynamic performance of step load 

Fig. 3.36.    Dynamic performance of the new proposed strategy.   

(Theta_est: Estimated rotor position,    Theta_act: Actual rotor position,   

Error: Rotor Position estimation error) 

-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2

-8
-6
-4
-2
0
2
4
6
8

0 2000 4000 6000 8000

Po
sit

io
n 

Er
ro

r (
ra

d)

R
ot

or
 P

os
iti

on
 (

ra
d)

Time (ms)

Theta_est Theta_act Error

-20
0

20
40
60

0 2000 4000 6000 8000

Sp
ee

d 
(r

pm
)

Time (ms)

Speed Speed_ref

-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2

-8
-6
-4
-2
0
2
4
6
8

0 1000 2000 3000 4000 5000

Po
sit

io
n 

Er
ro

r (
ra

d)

R
ot

or
 P

os
iti

on
 (

ra
d)

Time (ms)

Theta_est Theta_act Error

0
20
40
60
80
100

-2
0
2
4
6
8

0 1000 2000 3000 4000 5000

Sp
ee

d 
(r

pm
)

C
ur

re
nt

 (A
)

Time (ms)

q-axis current Speed



Chapter 3 

92 

3.4.7 Comparison of Carrier Signal Injection based Sensorless 

Controls 

Although a similar principle is exploited to estimate the rotor position information 

for conventional pulsating and rotating carrier signal injection, and the new proposed 

strategy, they have different characteristics due to different carrier signal injection and 

demodulation processes. The comparative results are shown in Table 3.2. 

TABLE 3.2 

COMPARISON OF CARRIER SIGNAL INJECTION BASED SENSORLESS CONTROLS 

 Pulsating Rotating Proposed 

Signal injection 

Reference frame 
Estimated 

synchronous 
Stationary Stationary 

Carrier voltage 

injection 

Pulsating carrier 

voltage 

Rotating carrier 

voltage  

Pulsating carrier 

voltage 

Carrier current 

response 
Amplitude-modulated Phase-modulated Amplitude-modulated

Torque ripple Small Large Medium 

Cross-saturation 

angle 
-θm/2 -θm/2 -θm/2 

Stability of signal 

injection 
Medium Good Good 

Signal 

demodulation  
Simple Complex Simple 

Dynamic 

performance 
Good Medium Good 
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3.5 Conclusion 

After detailed discussion of commonly used conventional high frequency carrier 

signal injection based sensorless control techniques, i.e. pulsating voltage into 

estimated synchronous rotating reference frame and rotating voltage into stationary 

reference frame, a new strategy with injection of a pulsating sinusoidal waveform high 

frequency carrier voltage into α- (or β-) axis of stator stationary reference frame is 

proposed. Then the rotor position information can be retrieved from carrier current 

response which is amplitude-modulated by rotor position. Considering the 

cross-saturation effect compensation, employing the TP-PLL based rotor position 

estimator, the rotor position can be estimated however with ambiguity of π. Then, by 

the magnetic saturation effect of d-axis fundamental current, the change of the response 

current magnitude can be used to detect the magnetic polarity.  

The new strategy has stable performance of signal injection as rotating carrier 

signal injection method, and the rotor position information estimation from the 

amplitude-modulated carrier current response is as simple as pulsating carrier signal 

injection method. However, to eliminate Ip and cross-saturation effect which are 

parameter-dependant, look-up table and LPF are employed, which may increase the 

complexity of the control strategy optimization. By applying proper detection and 

compensation procedure, the strategy can achieve robust magnetic polarity detection, 

and accurate rotor position estimation with outstanding steady-state and dynamic 

performances which have been validated by experiments.  
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CHAPTER 4 

NEW SENSORLESS CONTROL BASED ON 

SQUARE WAFEFORM HIGH FREQUENCY 

PULSATING CARRIER SIGNAL INJECTION 

INTO STATIONARY REFERENCE FRAME 

 

4.1 Introduction 

The sensorless control algorithms introduced in Chapter 3 can be adopted in 

general-purpose inverters to drive interior PMSM. However, the performances of 

these sinusoidal waveform injection based sensorless controls are usually insufficient 

for some applications, since the bandwidths of rotor position estimation are limited by 

the LPFs which are applied in the carrier current response demodulation. Meanwhile, 

only when the carrier frequency is sufficiently higher than the fundamental excitation, 

PMSM can be seen as a pure inductive load, and the resistance can be ignored. 

However, in order to form a proper sinusoidal high frequency injected voltage, the 

frequency of injected voltage cannot be too high due to the limitation of PWM 

frequency. Hence, with larger machine resistance and smaller inductance, the 

influence of the resistance may deteriorate the rotor position estimation. Therefore, in 

some areas, a position sensor has to be used in normal operations due to the limitation 

of the performance of the sensorless control, and sensorless algorithms are just 

utilized as the backup system for emergency when the position sensor fails. 

To improve the bandwidth of rotor position estimation, in [YOO11], and 

[HAM10], square waveform signal is applied in d-axis based pulsating carrier voltage 

signal injection method, which eliminates the requirement of LPFs for demodulation, 

and hence sensorless dynamic performance is remarkably enhanced even with a low 

salient surface-mounted PMSM. Based on the analysis of conventional d-axis square 

waveform signal injection method and the new proposed sensorless control strategy 
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based on sinusoidal waveform high frequency pulsating signal injection into the 

stationary reference frame as introduced in Section 3.4, high frequency square 

waveform pulsating carrier voltage will be employed to improve the dynamic 

performance and extend the observe bandwidth. The algorithm of the proposed strategy 

will be fully discussed and analyzed in this chapter.  

4.2 Conventional Square Waveform High Frequency Carrier 

Signal Injection Methods 

Rotating carrier signal injection schemes inject a balanced three phase voltage 

carrier signal into the stationary reference frame to form a rotating excitation 

superimposed on the fundamental excitation, which makes it difficult to employ 

square waveform injection. However, for pulsating carrier signal injection methods, 

high frequency sinusoidal pulsating carrier signal could be replaced by square 

waveform carrier signal [YOO11]. 

4.2.1 Square Waveform High Frequency Injection 

For d-axis pulsating carrier signal injection, the high frequency pulsating carrier 

voltage (4.1) which is demonstrated as in Fig. 4.1 is injected on the estimated d-axis. 

0
( 0)

0

c
e
dh

ce
qh c

U
halfduty

u
U

u U
other halfduty

⎧ ⎡ ⎤
⎪ ⎢ ⎥⎡ ⎤ ⎪ ⎣ ⎦= >⎢ ⎥ ⎨

−⎡ ⎤⎢ ⎥ ⎪⎣ ⎦
⎢ ⎥⎪⎣ ⎦⎩

 (4.1)

For the square waveform injection, within the half duty of injection, the applied 

voltage is constant. Hence, for the simplicity in carrier current response demodulation, 

the differential of resultant carrier current response in the estimated synchronous 

reference frame as show in (3.9) should be re-expressed as 

1 1 1cos(2 ) sin(2 )

1 1 1sin(2 ) cos(2 )

m me e
p n ndh dh

e e
qh qh

m m
n p n

L L Li u
i u

L L L

θ θ θ θ

θ θ θ θ

⎡ ⎤+ Δ + Δ +⎢ ⎥⎡ ⎤ ⎡ ⎤Δ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦Δ + − Δ +⎢ ⎥
⎣ ⎦

 (4.2)
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where e
dqhiΔ  is current difference between the present and previous values at the edge 

of udh.  

 
Fig. 4.1. Injected pulsating carrier voltage (Uc=12V, f=1kHz) 

Then, the resultant difference of d- and q-axis current response e
dqhiΔ  in the 

estimated synchronous reference frame between the present and previous value at the 

edge of e
dhu  as shown in (4.3) can be derived and demonstrated in Fig. 4.2. It could 

be concluded that, the higher injected voltage and lower frequency, the larger 

difference between the two edges of injected voltage. 
1 1 cos(2 )

, 0
1 sin(2 )

1 1 cos(2 )
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⎢ ⎥⎪ Δ +⎢ ⎥⎪
⎣ ⎦⎩

 (4.3)

where ΔT is the duration time of Uc or –Uc (half period). 

Considering the polarity of the injection voltage, i.e. 

* , 0
, 0

e
dqh dh

dqh e
dqh dh

i u
i

i u
⎧ Δ >⎪Δ = ⎨−Δ <⎪⎩

 (4.4)
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-20

-15

-10

-5

0

5

10

15

20

0 2 4 6 8 10

In
je

ct
ed

 V
ol

ta
ge

 (V
)

Time (ms)

vq vdedhue
qhu



Chapter 4 

97 

*

*

cos(2 )

sin(2 )

c c
m

p ndh

qh c
m

n

U T U T
L Li

i U T
L

θ θ

θ θ

Δ Δ⎡ ⎤+ Δ +⎢ ⎥⎡ ⎤Δ ⎢ ⎥=⎢ ⎥ ⎢ ⎥Δ Δ⎢ ⎥⎣ ⎦ Δ +⎢ ⎥
⎣ ⎦

 (4.5)

where mθ  is the cross-saturation effect to be compensated. e
dqhiΔ , and *

dqhiΔ  are 

compared in Fig. 4.3 where *
dqhiΔ  is actually the envelopes of e

dqhiΔ . 

 

Fig. 4.2. d‐ and q‐axis current compared to the injected voltage 

 

Fig. 4.3.    Carrier current differences between the present and previous values at the 

edge of  e
dhu , and their envelopes 
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Then the envelope of q-axis carrier current response difference is regarded to be 

the signal input to the position observer, 

*( ) sin(2 )c
qh m

n

U Tf i
L

θ θ θΔ
Δ = Δ = Δ +  (4.6)

 

For q-axis square waveform pulsating carrier signal injection, the high frequency 

pulsating carrier voltage vector (4.7) is injected on the estimated q-axis. 

0

( 0)
0

e
cdh

ce
qh

c

halfduty
Uu

U
u

otherwise
U

⎧⎡ ⎤
⎪⎢ ⎥⎡ ⎤ ⎪⎣ ⎦= >⎢ ⎥ ⎨

⎡ ⎤⎢ ⎥ ⎪⎣ ⎦
⎢ ⎥⎪ −⎣ ⎦⎩

 (4.7)

Then the resultant envelope of carrier current difference in the estimated 

synchronous reference frame can be expressed as  

*

*

sin(2 )

cos(2 )

c
m

ndh

c cqh
m

p n

U T
Li

U T U Ti
L L

θ θ

θ θ

Δ⎡ ⎤Δ +⎢ ⎥⎡ ⎤Δ ⎢ ⎥=⎢ ⎥ ⎢ ⎥Δ ΔΔ⎢ ⎥⎣ ⎦ − Δ +⎢ ⎥
⎣ ⎦

 (4.8)

Similar to the d-axis pulsating carrier signal injection method, the carrier current 

response is amplitude modulated by the rotor position information, and the d-axis 

carrier current response is usually used to extract the rotor position information. Then 

the envelope of d-axis carrier current response difference which is exactly the same as 

(4.6) is regarded to be the signal input to the position observer. As introduced in 

Section 3.3.1, torque ripple can be generated by the current ripple on the q-axis even 

the position estimation error is zero. Consequently, d-axis injection is preferred in 

terms of torque ripple. 

4.2.2 Steady-state and Dynamic Performance 

The steady-state tests for pulsating and rotating carrier signal injection methods 

are carried out at the condition of 70V DC bus voltage, 50rpm rotor speed with about 

1A q-axis current, and the estimated rotor positions considering the cross-saturation 
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effect are shown in Fig. 3.15 compared with the actual value from encoder. In 

steady-state, f(Δθ) is forced to be zero due to the position observer which is the same as 

Fig. 3.14, and hence, rotor position can be derived with the load-dependent position 

estimation error (-θm/2) due to cross-saturation effect. Then by employing the 

cross-saturation effect as introduced in Section 3.3.1, the accurate rotor position could 

be derived. Based on the predicted cross-saturation angle as shown in Fig. 4.4, the 

estimated rotor positions under steady-state at 50rpm can be estimated. It can be seen 

that, the estimation error can be kept within 0.03 rad. 

 

Fig. 4.4.    Steady‐state performance (Theta_est: Estimated rotor position,   

Theta_act: Actual rotor position,    Error: Rotor position estimation error) 

The dynamic performance test is carried out when the rotor mechanical initial 

speed is zero and step change to 25rpm and further to 50rpm as illustrated in Fig. 4.5(a). 

Then the estimated and actual rotor positions and the estimation error are shown in Fig. 

4.5(b). Compared with experimental results by applying the sinusoidal waveform 

injection in Fig. 3.17(a), the proposed square waveform high frequency injection 

method can achieve better dynamic performance due to higher bandwidth as a result of 

higher injected frequency and elimination of all filters. 
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(a) Dynamic test situation 

 
(b) Dynamic performance 

Fig. 4.5.    Dynamic test of square waveform d‐axis injection 

(Speed_ref: Speed reference, Speed: Actual rotor speed, Theta_est: Estimated rotor 

position, Theta_act: Actual rotor position, Error: Rotor position estimation error) 

   

-20

-10

0

10

20

30

40

50

60

0 2000 4000 6000 8000

Sp
ee

d 
(r

pm
)

Time (ms)

Speed_ref Speed

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-8

-6

-4

-2

0

2

4

6

8

0 2000 4000 6000 8000

Po
sit

io
n 

Er
ro

r (
ra

d)

R
ot

or
 P

os
iti

on
 (

ra
d)

Time (ms)

Theta_est Theta_act Error



Chapter 4 

101 

4.3 New Proposed Control Strategy with Square Waveform 

High-Frequency Pulsating Signal Injection into Stationary 

Reference Frame 

4.3.1 Square Waveform Carrier Signal Injection 

To extend the application bandwidth, the concept of square waveform injection 

which is applied in conventional pulsating carrier signal injection sensorless control 

can be extended to the strategy with injection of high frequency carrier pulsating 

signal into stationary reference frame, where the square waveform high frequency 

pulsating carrier voltage vector (4.9) as shown in Fig. 4.6 is injected on the α-axis. 

0
( 0)

0

c

h
c

h c

U
halfduty

u
U

u U
other halfduty

α

β

⎧ ⎡ ⎤
⎪ ⎢ ⎥⎡ ⎤ ⎪ ⎣ ⎦= >⎨⎢ ⎥

−⎡ ⎤⎣ ⎦ ⎪
⎢ ⎥⎪⎣ ⎦⎩

 (4.9)

where Uc is the amplitude which is 12V, and the injected frequency is 1kHz.  
Since the injected frequency is sufficiently higher than fundamental excited 

frequency, the PMSM can be seen as a pure inductive load without influence of 

machine resistance, and then the response of the α-axis carrier current iαh will be 

derived as in Fig. 4.7.  

 
Fig. 4.6. Injected square waveform pulsating voltage (Uc=12V, f=1kHz) 
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Fig. 4.7. Current response, amplitude difference and its envelope 

For the square waveform injection, within the half duty of injection, the applied 

voltage is constant. Hence, for the simplicity in current response demodulation, the 

differential of resultant carrier current response in the stationary reference frame as 

show in (3.13) should be re-expressed as 

1 1 1cos(2 ) sin(2 )

1 1 1sin(2 ) cos(2 )
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 (4.10)

where hiαβΔ  is current difference between the present and previous values at the edge 

of uαh. By measuring the response carrier current at each edge of uαh, hiαβΔ  as shown 

in (4.11) can be derived and demonstrated in Fig. 4.7. 
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 (4.11)

From both Fig. 4.7 and (4.11), it can be found that the sign of hiαβΔ  is decided 

by the polarity of injected carrier voltage. Then, the envelopes of hiαβΔ  could be 
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calculated considering the polarity of the injected voltage only, i.e. 
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 (4.12)

Then, the envelope of the amplitude difference of carrier current can be derived 

from (4.13), which is also illustrated in Fig. 4.7. 
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 (4.13)

where 

,SQ SQc c
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U T U TI I
L L
Δ Δ

= =  (4.14)

Then, based on aforementioned analysis and considering the polarity of injected 

voltage, the α- and β-axis current differences between the present and the previous 

values at the edge of uαh, and their envelopes could be derived as shown in Fig. 4.8.  

 

Fig. 4.8. Carrier current differences between the present and previous values at the 

edge of uαh, and their envelopes 
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response is modulated by the rotor position θr and the cross-saturation angle θm which 

is constant at the given load condition. Similar to sinusoidal waveform injection 

method, if SQ
pI  can be compensated and the cross-saturation effect is considered, the 

rotor position could be retrieved from the response current precisely. 

 

If a β-axis square waveform pulsating carrier voltage signal (4.15) is injected into 

the stationary reference frame, 
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Then the amplitude difference in the stationary reference frame between the 

present and the previous values at the edge of uαh can be derived as 
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Then, envelopes of the amplitude difference of current can be derived 

considering the polarity of the injected voltage, i.e. 
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 (4.17)

Similar to the α-axis injection, the carrier current response is also amplitude 

modulated by the rotor position information and the demodulation process will be the 
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same. However, SQ
pI  locates at β-axis current, whilst the phase sequence of **

hiαΔ  and 

**
hiβΔ  is different. Hence, SQ

pI  compensation and position estimation will be slightly 

different. 

If the frequency of injected voltage is not high enough, the high-frequency 

induced current will not be properly filtered out by the digital filter which is used for 

the feedback of the current controller. Then, the output voltage of the current regulator 

would interfere with the injected voltage, which would degrade the overall 

performance. Meanwhile, applying higher frequency can also minimize the noise in 

the induced current due to the sampling delay and/or the non-ideal components in the 

signal processing [YOO11]. As mentioned above, the sinusoidal waveform injection 

method needs much more cycles of PWM to form a proper injection voltage, whereas 

a square waveform injected voltage needs much less. Hence, the maximum injected 

frequency of square waveform injection can be up to half of the PWM switching 

frequency and better performance could be deduced theoretically. 

However, with higher injected frequency, the carrier current response difference 

would be smaller due to the shorter duration time ΔT of the injected voltage, and the 

SNR of the envelopes would also be lower. Then the demodulation process would be 

induced with higher signal noise which also will deteriorate the rotor position 

estimation accuracy. Thus, the frequency of the injected voltage should be optimized 

to compromise the requirement of bandwidth and SNR. The sensorless safety 

operation area (SSOA) is introduced with due account for the quantization error in the 

analog to digital conversion [GON11]. The SSOA defines a working area in the d–q 

plane in which the motor can operate in sensorless mode with a guaranteed 

performance in steady-state, and then a proper injected carrier signal can be selected 

for the specific prototype machine and current-measurement resolution. With the aid 

of SSOA, the injected frequency is set as 1kHz which is much higher than the 

frequency in sinusoidal waveform injection which is 330Hz to derive higher 

bandwidth, and the SNR is also not too low to interfere the rotor position estimation.  

Hence, even with a surface-mounted PMSM with small machine saliency, a 
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square waveform high frequency injection sensorless method can also be 

implemented due to its higher sensitivity to machine saliency with higher injected 

frequency [HAM10]. Furthermore, the demodulation is proceeded by only 

considering the polarity of injected voltage without any filtering, which can also 

extend the bandwidth of the position estimation. 

4.3.2 SQ
pI  Pre-Detection and Compensation 

The same as the sinusoidal waveform injection method, SQ
pI  also should be 

subtracted from *
hiαΔ to get **

hiαΔ  for tracking the rotor position. Based on (3.10) and 

(3.17), SQ
pI  could be expressed as 

2
SQ c c sa
p

p dh qh dqh

U T U L TI
L L L L
Δ ⋅ ⋅ Δ

= =
−

 (4.18)

where SQ
pI  is parameter-dependent and proportional to the ratio of UcΔT which is 

nearly the same as Ip in (3.17) of sinusoidal waveform injection. As mentioned above, 

Lp is almost not affected by iq, and for general applications at zero and very low speed, 

id is usually set as negative and maintains the same value. Furthermore, it is possible to 

obtain Ip by LPF with id is applied for starting in sensored operation at higher speed. 

Then, the derived Ip can be stored into a controller memory, and applied for starting 

from zero to very low speed. Then subtracting the calculated or measured SQ
pI  from 

*
hiαΔ , **

hiαΔ  which is modulated by rotor position θr and cross-saturation angle θm could 

be derived as (4.19), which is illustrated in Fig. 4.9. 
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Fig. 4.9. Envelopes of response current difference after subtracting  SQ
pI  

Once the rotor is rotating at higher speed, different id may be applied and Lp will 

vary. Then, deriving SQ
pI  from the pre-tested data at all different operating condition is 

not practical any more. Meanwhile, applying LPF to detect SQ
pI  will degrade 

sensorless control performances due to the inherent time delay. Hence, alternative 

solution should be applied instead, where derivation calculation is considered at each 
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Since SQ
pI  could be seen as constant between two sampling instants, the 

difference of SQ
pI  between the two sampling instants could be treated as zero. Hence,  
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(4.21)

where Δθs is the rotor position difference between two sampling instants and is 

constant at constant speed.  

From (4.21), it can be found that hiαβ′Δ  is also modulated by rotor position θr and 

cross-saturation angle θm with one sampling time delay which is nearly the same as 

(4.19). Then, apply a proper estimator rotor position can be derived from both (4.19) 

and (4.21) with the load-dependent position estimation error (-θm/2) due to 

cross-saturation effect at different operation situation. Since the cross-saturation effect 

is the same as sinusoidal waveform injection method, the compensation method can 

exactly follow the one in Sector 3.4.3. However, compared the experimental results of 

hiαβ′Δ  as shown in Fig. 4.10 and **
hiαβΔ  in Fig. 4.9, it can be found that the amplitudes 

are different. Hence, the parameters of rotor position estimator should be different from 

each other.  

 

Fig. 4.10. Difference of the present and previous sampling instants of  *
hiαβΔ  
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4.3.3 Rotor Position Estimator 

To obtain the rotor position from (4.19) and (4.21), the rotor position estimator in 

Sector 3.4.4 as shown in Fig. 3.25(a) can also be applied. According to the diagram, the 

closed-loop transfer function between the actual and estimated rotor positions can be 

expressed as  

2

2 2
2 2

p ire

r p i

Ik s Ik
s Ik s Ik

θ
θ

⋅ +
=

+ ⋅ +
 (4.22)

where I indicates SQ
nI  in (4.14), or sin(2 )SQ

n s sI t θΔ ⋅ Δ  in (4.21). Based on (3.10), it 

could be seen that I in the different methods are all different and load-dependent. Hence, 

kp and ki of PI controller should be on-line varied with I in (4.22) to maintain the 

constant bandwidth. For simplicity in practical implementation, kp and ki could be 

selected based on the typical value of I at no load condition. 

Since for square waveform voltage injection, SQ
nI in (4.18), or sin(2 )SQ

n s sI t θΔ ⋅ Δ  

in (4.21) are different from each other. Hence, the parameters of PI controller also 

would be different. Furthermore, due to higher injected frequency and elimination of 

filter, the bandwidth of signal demodulation process would be much higher than 

sinusoidal waveform injection. Therefore, the loop bandwidth of rotor position 

estimator can also be enhanced up to 50Hz. Hence, the PI controller could be selected 

based on the typical value at no load condition and set up at around 44Hz for both 

estimating from (4.14) and (4.21), and the Bode plot of the position estimator are shown 

in Fig. 4.11.  
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Fig. 4.11.    Bode chart of position estimator for square waveform injection 

Meanwhile, the machine saliency varies periodically as a second spatial harmonic, 

hence, the estimated position information based on machine saliency is rotor direction 

without magnetic polarity information, which has an angle ambiguity of π. Since the 

injection voltage of the square and sinusoidal waveforms are both pulsating carrier 

voltage signal into the stationary reference frame, the magnetic polarity detection 

method for square waveform injection can follow the one as introduced in Sector 3.4.5 

exactly. 

4.3.4 Steady-state and Dynamic Performance  

Several experiments have been performed to validate the new proposed high 

frequency sinusoidal pulsating signal injection method based on the stationary 

reference frame. The overall control scheme including the new proposed strategy is 

shown in Fig. 4.12 which has been implemented on a dSPACE platform. The Test Rig I 

with Motor I is applied for test, and the DC bus voltage is 70V. Inject a square 

waveform with 12V magnitude and 1kHz frequency, Fig. 4.6, into α-axis of stationary 

reference frame. 
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Fig. 4.12.    Block diagram of overall control system. 

Based on the predicted cross-saturation angle as shown in Fig. 3.24, the estimated 

rotor positions before and after compensation under steady-state at 50rpm can be 

estimated by the rotor position estimator are shown in Fig. 4.13. It can be seen that, 

before compensation, there exists an approximate 0.1rad estimation error, and after 

compensation, the error can be kept within 0.01 rad. Even though the estimated position 

has a little high frequency noise, the accuracy is much higher. 

The dynamic performance test is carried out when the rotor mechanical initial 

speed is zero and step change to 25rpm and further to 50rpm as illustrated in Fig. 4.5(a). 

Then the estimated and actual rotor positions and the estimation error are shown in Fig. 

4.14. Compared with experimental results by applying the sinusoidal waveform 

injection in Fig. 3.36(a), the proposed square waveform high frequency injection 

method can achieve better dynamic performance due to higher bandwidth caused by the 

higher injected frequency and elimination of all filters. 
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Fig. 4.13. Steady‐state performance of the square waveform injection (Theta_est: 

Estimated rotor position after cross saturation compensation,    Theta_act: Actual 

rotor position, Theta_Crs_Sat: Estimated rotor position before cross saturation 

compensation, Error: Position estimation error after cross saturation compensation, 

Error_Crs_Sat: Position estimation error before cross saturation compensation) 

 

Fig. 4.14. Dynamic performance of the square waveform injection   

(Theta_est: Estimated rotor position,      Theta_act: Actual rotor position, 

  Error: Rotor position estimation error) 

4.3.5 Square waveform Carrier Signal Injection based Sensorless 

Controls  

Similar principle is exploited to estimate the rotor position information for square 
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waveform carrier signal injection based strategy, where they have different 

characteristics due to different carrier signal injection and demodulation processes. The 

new strategy has stable performance of signal injection as rotating carrier signal 

injection method, and the rotor position information estimation from the 

amplitude-modulated carrier current response is as simple as pulsating carrier signal 

injection method. Since the pulsating carrier signal injection based sensorless control 

cannot be employed with square waveform injection, the comparative results between 

the pulsating carrier signal injection method and the new proposed one are shown in 

Table 4.1. 

TABLE 4.1 

COMPARISON OF SQUARE WAVEFORM CARRIER SIGNAL INJECTION BASED SENSORLESS 

CONTROLS 

 Pulsating Proposed 

Signal Injection 

 

Reference frame Estimated synchronous Stationary 

Carrier voltage injection Pulsating carrier voltage Pulsating carrier voltage 

Carrier current response Amplitude-modulated Amplitude-modulated 

Torque ripple Small Medium 

Cross-saturation angle -θM/2 -θm/2 

Stability of signal injection Medium Good 

Signal demodulation  Simple Medium 

Dynamic performance Good Good 
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4.4 Application of High Frequency Injection Strategy in 

Wind Power System 

For most wind power applications, zero and low speed region is not operated. 

Hence, the main sensorless control method is usually applying flux-observer based 

technique which is widely applied for PMSM drives. Rotor position is derived from 

the observed vector of PM excitation flux-linkage which is calculated from the 

integration of back-EMF under stationary reference frame. Then, the relative phase 

angle and speed between the observed vector and the reference frame are the rotor 

position and speed, respectively. 

In order to observe the PM excitation flux-linkage vector, the current vector I&  and 

the voltage vector U&  in the PMSM is necessary. Then, the PM excitation flux vector 

fΨ&  can be derived as  

1

0
(0)( )

t

f s f st
U R I dt L IΨ = − ⋅ + Ψ − ⋅∫& & & & &  (4.23)

Then, the rotor position can be estimated from the α- and β- parts of fΨ& , i.e. 

arctan f
f

f

β

α

ψ
θ

ψ
=  (4.24)

However, in this method, I&  is usually obtained directly from current Hall 

sensors, and U&  from the command of the SVPWM generator which is *uα β  instead 

of from the voltage Hall sensors, as shown in Fig. 4.15. However, to obtain *uα β , 

current closed-loop control is needed, which makes the rotor position necessary and 

creates a difficulty for starting the whole control system due to lack of the initial rotor 

position. 
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Fig. 4.15. Control diagram of wind power system 

To solve the problem of starting the generator control system, the voltage sensors 

are usually added in the system to obtain the phase voltage. However, the phase 

voltage is not needed in normal VC operation, as this will increase the complexity of 

the control system. Hence, the rotor position should be obtained from a separate 

sensorless method.  

In wind power applications, operation of zero and low speed region is not 

required. Hence, the high frequency carrier signal injection based sensorless control is 

usually not applied in wind power. However, it can be used for initial rotor position 

detection of flux observer without the voltage sensors. The PWM frequency is usually 

set as 2kHz or 2.25kHz which is lower than the common industrial application. As 

mentioned above, the sinusoidal waveform injection method needs much more cycles 

of PWM to form a proper injection voltage, whereas a square waveform injected 

voltage needs much less. Hence, square waveform carrier voltage injection strategy is 

a better solution for initial rotor position detection.  

Step 1: When the generator rotates at steady-state with the generator current 

control system disabled, firstly make *uαβ =0 and inject the high frequency voltage 

signal *
huαβ  to the command of the SVPWM. Then enable estimate the rotor position 
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θhf based on high frequency injection method as shown in Fig. 4.16.  
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Fig. 4.16.    Diagram with HF injection 

Step 2: Enable the current control system with use of estimated rotor position θhf , 

whilst the current commands are maintained at zero. Thus, *
huαβ  will be obtained 

together with iαβ. These two signals can be used to derive the rotor position θf by 

using a flux observer, Fig. 4.17. 
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Fig. 4.17.    Diagram with HF injection and flux observer 
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Step 3: Close the control loop with both θf which is obtained from a flux 

observer and the estimated position θhf from high frequency injection. Then, smoothly 

transfer the feedback rotor position information from θf to θhf, and disable the high 

frequency injection voltage. Up to this point enabling of the control system has been 

completed and the control system works under normal sensorless control with 

flux-observer as shown in Fig. 4.15.  

As the described method is only applied for a very short period of time prior to 

start of the control system, there is no implication of effects to generator normal 

operation in terms of torque, speed and efficiency, etc. The high frequency injection 

sensorless could be applied to estimate the initial rotor position and solve the problem 

of generator control start in the wind turbine applications. With this technique the 

phase voltage sensors, which have to be used in the normal sensorless control, will not 

be required. Thus, the hardware system can be simplified. 

4.5 Conclusion 

Based on detailed discussion of conventional square waveform high frequency 

carrier signal injection based sensorless control technique, and the new high frequency 

injection method introduced in Chapter 3, a new strategy with injection of a pulsating 

square waveform high frequency carrier voltage into α- (or β-) axis of stator stationary 

reference frame is proposed, and then the rotor position information is retrieved from 

the carrier current response which is amplitude-modulated by rotor position. Then the 

bandwidth of the position estimation can be significantly improved due to the higher 

injected frequency and removal of all filters in the demodulation process. Meanwhile, 

since the injected frequency is much higher even than the fundamental frequency at 

rated speed, the square waveform injection method is possible to be applied at wider 

range of speed and deduce the higher performance. Considering the cross-saturation 

effect compensation, applying the TP-PLL based rotor position estimator, the rotor 

position can be estimated. Similar to the strategy with injection of sinusoidal pulsating 

carrier signal injection into stationary reference frame, the new strategy has stable 

performance of signal injection as rotating carrier signal injection method, and the 
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rotor position information estimation from the amplitude-modulated carrier current 

response is as simple as pulsating carrier signal injection method.  

For most wind power applications, since operation of zero and low speed region is 

not required, the main sensorless control method is usually applying flux observer 

based technique which has the difficulty of starting without voltage sensor and lacking 

of initial rotor position. Whereas the square waveform high frequency injection based 

sensorless control strategy could be applied to estimate the initial rotor position and 

solve the problem of generator control start in the wind turbine applications without 

additional sensors, and can achieve more effect than the sinusoidal waveform 

injection due to the lower PWM frequency. Meanwhile, it is only applied for a very 

short period of time prior to start of the control system, thus there is no implication of 

effects to generator normal operation in terms of torque, speed and efficiency, etc. 
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CHAPTER 5 

IMPROVEMENT OF SENSORLESS CONTROL 

PERFORMANCE BASED ON THIRD HARMONIC 

BACK-EMF BY SPEED ERROR COMPENSATION  
 

5.1 Introduction 

The back-EMF is a voltage that occurs in a permanent magnet machine when there 

is relative motion between the armature of the machine and the air gap magnetic field 

generated by permanent magnet, and hence, is directly related to the rotor position. 

Since the back-EMF voltage is proportional to rotor speed, all back-EMF based 

sensorless controls show good performance above certain speed but suffer at low and 

zero speed. When rotor speed is higher than certain speed, the back-EMF based 

sensorless control strategies would be superior to high frequency carrier signal 

injection based strategies which is introduced in Chapter 3 and Chapter 4. Hence, when 

PMSM has started from zero speed as a torque motor or has identified the initial rotor 

position as a generator by high frequency carrier signal injection based strategies, the 

control technique based back-EMF should be applied instead. 

Moreira in [MOR92] introduced the third harmonic zero sequence back-EMF in 

the stator phase voltages which is usually significant due to the heavy saturation and/or 

character of designed PM excited flux-linkage which contains third harmonic on 

purpose. Hence, the zero-crossings of third harmonic flux-linkage which results from 

integration of third harmonic back-EMF are usually detected and the related discrete 

positions are utilized for sensorless control of brushless DC machine [PRO92] [KER93] 

[KER94] [MOR96] [SHE04] [SHE06a] [SHE06b]. Although it also suffers at very low 

and zero speed region as all the other EMF based strategy and the access to neutral 

point of the Y-connected stator winding is required, it still has several advantages 

superior to the widely applied fundamental back-EMF based strategies, such as 
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theoretically free of PWM noise, not distorted by the free-wheel diode conduction and 

not affected by the inaccurate measurements of winding resistance, inductance and the 

other parameters [WU91] [XU98] [SHE02b].  

In this chapter, the detection of third harmonic back-EMF and conventional 

sensorless control strategy based on zero-crossings of third harmonic flux-linkage, 

which is the integration of third harmonic back-EMF which suffers at dynamic 

situation due to the insufficient precise rotor position reference points, are to be 

introduced. To minimize the rotor position error in the conventional method and 

improve the dynamic performance, a speed error compensation strategy based on the 

continuous signal of third harmonic flux-linkage is proposed. Furthermore, to improve 

the performance of rotor position estimation in flux observer sensorless control which 

is sensitive to the machine and controller parameters, a multi-technology fusion 

technique based on the error compensation of rotor position or speed to improve the 

performance and the robustness is also proposed in this chapter.  

5.2 Detection of Third Harmonic Back-EMF and 

Conventional Sensorless Control 

5.2.1 Detection of Third Harmonic Back-EMF 

Third harmonic back-EMF is usually contained in windings irrespective of the 

operational mode and synchronously rotates with the fundamental components. When 

the machine windings are Y-connected, the third harmonic back-EMF presents in the 

phase back-EMF rather than line back-EMF. Hence, the neutral point of the 

Y-connected windings is essential for detecting the third harmonic back-EMF since 

the measurement of phase back-EMF is necessary. However, the neutral point leading 

wire can be thin as a signal cable without the need of power current in it [SHE04]. 

Assuming the inductances of the PMSM are constant with rotor position, the 

motor phase voltages and currents can be expressed as 
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u R i L M pi e
u R i L M pi e
u R i L M pi e

= + − +⎧
⎪ = + − +⎨
⎪ = + − +⎩

 (5.1) 

0a b ci i i+ + =  (5.2) 

On the condition of balanced phase impedance, irrespective of the operation 

mode of either BLDC or BLAC, with or without PWM, we can have 

{[ ( )] [ ( )]
[ ( )] } ( )

an bn cn sa a a sb b b

sc c c a b c

a b c

u u u R p L M i R p L M i
R p L M i e e e

e e e

+ + = + − ⋅ + + − ⋅
+ + − ⋅ + + +

= + +
 (5.3) 

Usually, based on Fourier analysis, the phase back-EMF waveform contains the 

fundamental and odd harmonics, i.e. 

1 3 5 7 9

1 3 5

7 9

1 3 5 7 9

1 3 5

7 9

1 3 5 7 9

1

sin sin 3 sin 5
sin 7 sin 9

sin( 2 / 3) sin 3 sin 5( 2 / 3)
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sin( 2

a a a a

r r r

r r

b b b b

r r r

r r

c c c c

r

e e e e e e
E E E
E E

e e e e e e
E E E
E E

e e e e e e
E

θ θ θ
θ θ

θ π θ θ π
θ π θ π

θ

= + + + + +
= − − −

− − −
= + + + + +
= − − − − −

− − − − −
= + + + + +
= − +

L

L

L

L

L

3 5

7 9

/ 3) sin 3 sin 5( 2 / 3)
sin 7( 2 / 3) sin 9( 2 / 3)

r r

r r

E E
E E

π θ θ π
θ π θ π

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ − − +⎪
⎪ − + − + −⎩ L

 (5.4) 

where θr is the rotor position. Then, assuming the fundamental back-EMF is also 

balanced, the following equation is derived from (5.3) and (5.4) 

1 1 1 3 9 15

3 9 15

( ) 3( )
3( )

an bn cn a b c

a b c

u u u e e e
e e e e e e

e e e

+ + = + +
= + + + + + +
= + + +

L

L

 (5.5) 

Then, with the aid of the Y-connected resistor network as shown in Fig. 5.1, (5.6) 

could be derived as 

1 2 3as bs cs as bs cs

as an sn

bs bn sn

cs cn sn

u u u i R i R i R
u u u
u u u
u u u

+ + = + +⎧
⎪ = −⎪
⎨ = −⎪
⎪ = −⎩

 (5.6) 
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3snu e≈

 
Fig. 5.1.    Measurement of third harmonic back‐EMF 

When the resistor network is balanced, the voltage between the central point “s” of 

the resistor network and the machine winding neutral point “n” could be expressed as  

1 2 3

( ) ( )
3 3

( ) ( )
3 3

( )
3

an bn cn as bs cs
sn

an bn cn as bs cs

an bn cn

u u u u u uu

u u u i R i R i R

u u u

+ + + +
= −

+ + + +
= −

+ +
=

 (5.7) 

From (5.5) and (5.7), usn is derived as  

3 9 15sn triplenu e e e e= + + + =L  (5.8) 

Usually, 3 9 15( )e e e>> + +L , hence 

3sn triplenu e e= ≈  (5.9) 

Clearly, on the condition of third harmonic much bigger than other higher order 

triplen harmonics, the voltage usn could just represent third harmonic back-EMF 

irrespective of the operational mode of the PMSM. It is theoretically free of noise and 

has the advantage of insensitivity to machine and controller parameters than many 

other sensorless control strategies. 

usn of Motor II which is a 3kW laboratory surface-mounted PMSM can be 

measured with the aid of 10kΩ sensing resistor network at 10rpm when the windings 
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are open-circuit, are shown in Fig. 5.2(a) compared with the corresponding phase-A 

back-EMF. FFT analysis of the measured phase-A back-EMF in Fig. 5.2(b) shows that 

the third harmonic back-EMF e3 is predominant compared with other harmonics. 

Hence, it can be seen that usn contains third harmonic back-EMF only. 

 

(a) Phase Back‐EMF and measured usn 

 
(b) Spectrum of phase back‐EMF 

Fig. 5.2.    Phase A and third harmonic back‐EMF and harmonic analysis. 

5.2.2 Conventional Sensorless Control 

The waveforms of usn, and its integration ψsn which is the third harmonic 

flux-linkage are demonstrated in Fig. 5.3 compared with the electrical rotor position. 

However, one electrical period contains three identical cycles of third harmonic 

back-EMF. Hence, with the aid of the zero-crossing of ua, the first related rotor position 
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θ0 of zero-crossings of ψsn which is π/6 can be located. Once the first θ0 is obtained, it 

can be latched, and the followed discrete positions which are π/2, 5π/6, 7π/6, 11π/6, 

3π/2 could also be located as shown in Fig. 5.4. These discrete rotor positions can be 

directly employed for BLDC PM Machine control. However, continuous rotor position 

information with high resolution is required for PMSM drives or if phase-advancing 

control is applied in BLDC drives. 

 

Fig. 5.3.    Relationship of usn, its integration ψsn and rotor position 

 

Fig. 5.4.    Related rotor positions θ0 and phase voltage 

(Theta_0: Initial rotor position of each zero‐crossing of ψsn,    Theta_act: Actual rotor 

position,    Ua: Measured phase terminal voltage) 

Then, the high resolution estimated rotor position e
rθ  can be calculated by simple 

integration as 
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0 0

te e
r radtθ θ ω= + ∫  (5.10)

where e
rω  is the estimated rotor speed which can be calculated by 

/ 3e
ra

dt
πω =  (5.11)

where td  is the time interval of the previous half cycle between two zero-crossings of 

ψsn [SHE04].  

e
raω   in (5.10) is actually the estimated average speed between the last two 

zero-crossings of ψsn rather than the instantaneous speed during the rotor position 

estimation. The rotor position will be accurate during the steady-state (10rpm with 1A 

load current), Fig. 5.5, since the rotor speed would not change ideally. Furthermore, 

on each zero-crossing point, the estimated rotor position which contains some error 

due to the inaccurate speed estimation will be forcedly set as the related θ0. Hence, the 

rotor position estimation error will not be accumulated.  

 

Fig. 5.5.    Rotor position at steady‐state   

(Theta_int: Estimated rotor position by integration,    Theta_act: Actual rotor 

position,    Err_int: Position estimation error by integration) 

However, during variable speed operation, the estimated average speed e
raω  is 

not fast enough to reflect the speed change, e.g. with the calculated rotor speed which 
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have an interruption as shown in Fig. 5.6(a) when the rotor initial speed is 10rpm with 

the load current changing from 1A to 3A. Hence, the estimated rotor position will 

appear with sharp changes at each zero-crossing, Fig. 5.6(b). 

 

(a) Rotor speed calculated by zero‐crossings 

 

(b) Dynamic rotor position 

Fig. 5.6.    Dynamic performance (Speed_avg: Average speed  e
raω , Acutal_Speed: 

Actual rotor speed,    Error_before_compensation: Rotor speed estimation error, 

Theta_int: Estimated rotor position by integration,    Theta_act: Actual rotor position, 

Err_int: Position estimation error by integration) 

If the rotor speed is high enough, and the speed variation is not too much, the 

error accumulation will not be great, and will be reset to zero when zero-crossing is 

detected. However, with the low speed, the sharp change of the estimated rotor 
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position will be significant and degrade the operating performance such as current 

distortion and torque pulsation. Employing the Phase-locked loop (PLL) based rotor 

speed observer can improve the speed estimation performance, whereas the 

insufficient discrete rotor positions from zero- crossings of ψsn will limit the 

performance. Hence, to improve the dynamic performance, these rotor errors should 

be compensated. 

5.3 Improved Rotor Position Estimator 

5.3.1 Rotor Position Estimator based on Zero-Crossing Correction 

As mentioned in Section 5.2, the estimated rotor position will appear with sharp 

changes at each zero-crossing under dynamic situation which will degrade the 

operating performance. To avoid this sharp change, the rotor position estimator based 

on zero-crossing correction shown in Fig. 5.7 is implemented. Similarly, with the aid of 

the zero-crossing of the phase-A terminal voltage ua, the related rotor position θ0 of 

each zero-crossing could be located and applied as reference. And then, on each 

zero-crossing, rotor position difference between the estimated rotor position and the 

related reference θ0 can be calculated and equivalent as the estimation error between 

the estimated and actual rotor positions. Then, a speed correction ωcor can be obtained 

by the following PI controller as 

1( ) [ ( )]
1

ei s
cor p r

k tk sign
z

ω θ ω−

⋅ Δ
= − + ⋅ Δ ⋅

+
 (5.12)

where the sign function ( )e
rsign ω  is to reflect the rotor rotation direction, Δts is the 

sampling interval, and kp and ki represent the proportional and integral gains, 

respectively. 
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Fig. 5.7.    Zero‐crossing based position estimator. 

In (5.12) speed correction ωcor is corresponding to the position estimation error, i.e. 

the rotor position difference between the estimated and related reference θ0 on each 

zero-crossing. Then, the average rotor speed e
raω  calculated from the zero-crossings of 

ψsn will be appropriately corrected, and the estimated rotor speed e
rω  is converged to 

the actual value. Therefore, the high resolution rotor position can be estimated by 

simple integration.  

The overall control scheme with the proposed rotor position estimator based on 

third harmonic back-EMF is shown in Fig. 5.8 which has been implemented on the 

dSPACE platform with Test Rig II. Then, the estimated and actual rotor positions and 

the errors between them shown in Fig. 5.9 shows steady-state performance is nearly as 

good as conventional sensorless method.  
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Fig. 5.8.    Overall control scheme 

 

Fig. 5.9. Steady‐state performance of the estimator based on zero‐crossings 

(Theta_zr: Estimated rotor position, Theta_act: Actual rotor position, Err_zr: Position 

estimation error) 

Similar to the rotor position estimator based on integration, as long as the rotor 

speed is not too low, and varies not too significantly, the error accumulation will not be 

great, and will be reset to zero when zero-crossing is detected. However, for low speed 

application with dynamic performance requirement, the speed calculation error cannot 

be neglected. Powered by the estimator, speed error during expected speed change 

could be compensated. However, ωcor will only refresh on each zero-crossing. 
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Consequently, the proportional gain kp and integral gain ki in PI controller cannot be big 

enough in order to avoid divergence. Hence, under the situation of random speed 

change with low speed, the PI controller cannot follow the speed variation due to the 

insufficient resolution of only six accurate rotor position references. Thus the dynamic 

performance will still not be good enough. Applying with the same dynamic situation 

as in Fig. 5.6(a), experimental results from the estimator based on zero-crossings as 

shown in Fig. 5.10 illustrates that the method could avoid these sharp changes. 

However, the estimation error is still too big to be satisfied for dynamic control. 

 

Fig. 5.10.    Dynamic performance of the estimator based on zero‐crossings   

(Theta_zr: Estimated rotor position, Theta_act: Actual rotor position, Err_zr: Position 

estimation error) 

5.3.2 Improved Rotor Position Estimator Based on Speed 

Compensation 

5.3.2.1 Improved rotor position estimator 

As mentioned above, e
raω  is the estimated average speed between the last two 

zero-crossings of ψsn. The estimated rotor position based on that average speed will be 

accurate during the steady-state operation and inaccurate during variable-speed 

operation. Therefore, to improve the dynamic performance, the speed compensation is 

of great importance. 
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Considering that the third harmonic back-EMF is much bigger than any other 

triplen harmonics, and then the measured usn will contain third harmonic back-EMF 

only. Therefore, its integration ψsn will be a continuous sinusoidal signal with constant 

amplitude. Consequently, the continuous sinusoidal signal of ψsn can be used as 

reference to compensate the estimation error of the calculated average speed and 

furthermore to extract the high resolution rotor position at each sampling time for 

sensorless control. 

The block diagram of improved rotor position estimator based on continuous 

signal of ψsn is shown in Fig. 5.11 where e
snψ  is the virtual third harmonic flux-linkage 

calculated from the estimated rotor position. If the estimated rotor position and speed 

are the same as the actual values, ψsn and e
snψ  should be in-phase with each other. In 

contrast, they will be out of phase when there is estimation error between the estimated 

and actual values. And the phase difference between the two signals could be used to 

estimate the rotor position.  

snu
snψ

θΔ
corω

e
snψ

e
raω e

rω

e
rθ

 

Fig. 5.11.    Improved rotor position estimator based on speed compensation 

ψsn can be defined as  

cos(3 )sn mp rAψ θ= − ×  (5.13)

where Amp is the amplitude of ψsn which could be obtained from the absolute value of 

ψsn when its differential is close to zero. Although Amp is normally constant, it also 
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should be detected in every few cycles to avoid the amplitude variation caused by the 

temperature effect of PM. 

To estimate the rotor position, the related orthogonal signal of ψsn also should be 

calculated as supplementary signal based on usn. However, since the amplitude of usn 

varies with rotor speed, it should be unified as Amp considering the feedback estimated 

rotor speed e
rω  as  

_ 3 sin(3 ) sin(3 )p
sn unified r mp re

r

K
u E Aθ θ

ω
= × = ×  (5.14)

where Kp is the unify-ratio of the amplitudes of the third harmonic flux-linkage and 

back-EMF. The measured ψsn and usn_unified are shown in Fig. 5.12.  

 

Fig. 5.12.    ψsn and usn_unified by experiment 

Consequently, Δθ between the actual and estimated third harmonic flux-linkages 

can be derived as 

_arcsin[ sin(3 ) cos(3 )]e e
mp sn r sn unified rA uθ ψ θ θΔ = − × × + × ×  (5.15)

The phase difference Δθ is also equivalent to three times of the rotor position 

estimation error between the estimated and actual rotor positions. Then, the speed 

correction ωcor which corresponds to the speed estimation error can be derived by the 

following PI controller as a loop filter as same as the one in (5.12) from the phase 

difference Δθ. Then, the rotor speed derived from zero-crossings or by PLL both 
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including the intrinsic speed errors, is appropriately corrected, and the estimated rotor 

speed e
raω  including the intrinsic speed error can be appropriately corrected, and the 

estimated rotor speed e
rω  will converge to the actual value. Consequently, the high 

resolution rotor position can be estimated by simple integration with high accuracy 

from the compensated speed. Even though the source signals may contain certain noise 

and high order harmonic components such as ninth, fifteenth and so far, it can be 

eliminated by the proposed estimator and will almost not affect the accuracy of rotor 

speed estimation. 

However, one cycle of back-EMF contains three identical cycles of third harmonic 

back-EMF and the estimated rotor position may align to the other two cycles of third 

harmonics rather than the correct one. Therefore, the phase-A back-EMF should be 

considered to avoid the mis-alignment. On the zero-crossing point of Phase-A 

back-EMF calculated by a rough flux observer, the estimated rotor position should be 

located between -π/3 and π/3. If the rotor position is out of range, then based on the 

rotor position estimation error, a rotor position bias which is -2π/3 or 2π/3 needs to be 

added to the estimated rotor position. Hence, the accurate rotor position can be derived. 

5.3.2.2 Performance evaluation of improved estimator 

The improved rotor position estimator based on continuous signal of ψsn can be 

equivalently transformed to a linear model as shown in Fig. 5.13 from which the 

open-loop transfer function of the estimator is derived as  

1 2 3 1*

1( ) 3 ( ) 3( )
e

ir
p p

r

kG s A G G G G k
s s

θ
θ

= = × + = + +  (5.16)

where G1 is the rotor speed calculation block which normally is the differential 

operator s. However, since the rotor speed ωr can be calculated from the 

zero-crossings of ψsn or by PLL based speed observer rather than differential 

operation, G1 will be different. Hence, the estimator cannot be treated as a typical 

second order linear model nor evaluated by conventional analysis method. 
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Fig. 5.13.    Equivalent linear model. 

For the speed calculation from zero-crossings of ψsn, the time interval td of the 

previous cycle between the zero-crossings of ψsn is equivalently seen as the speed 

calculation sampling time and can be calculated as  
2 1

6dt
π

ω
= ⋅  (5.17)

Compared with the system sampling time ts which is 4e-4s in the testing system, 

G1 can be equivalently shown as  

4
4

1
4 10 (12 10 )2 1( )

6

s

d

tG s s s
t

ω
π π

ω

−
−×

= = = × ×
⋅

 (5.18)

Then, the open-loop transfer function of the estimator will be 

4
*

1( ) 3 ((12 10 ) )
e

ir
p p

r

kG s A s k
s s

θ ω
θ π

−= = × × + +  (5.19)

Since s=jω, (5.19) can be rewritten as 

4
* 2

3 3
( ) 3 (12 10 )

e
p p p ir

p
r

A k A k
G j Aθ ωω

θ ω π ω
−⎡ ⎤

= = − + × −⎢ ⎥
⎣ ⎦

 (5.20)

To make sure the estimator can achieve accurate estimation performance, the 

magnitude of the frequency response must be larger than -3dB over the entire speed 

range with about 200% margin. Based on the unified amplitude Ap, the parameters of PI 

controller are selected as kp =500 and ki =200. Then, the open loop frequency response 

of the improved rotor position estimator can be derived as shown in Fig. 5.14, where the 

frequency with -3dB magnitude attenuation is about 107Hz. 
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Fig. 5.14.    Frequency response of the estimator with zero‐crossings based speed 

estimation. 

For the speed calculation by PLL based speed observer which can be equivalent as 

a second order linear model as 

2

2 2

(2 )( )
2

n n
PLL

n n

s sG s
s s

ξω ω
ξω ω

+ ⋅
=

+ +
 (5.21)

The overall open loop transfer function can be written as 

2

* 2 2

(2 ) 1( ) 3
2

e
n n ir

p p
r n n

s s kG s A k
s s s s

ξω ωθ
θ ξω ω

⎡ ⎤+ ⋅
= = × ⋅ + + ⋅⎢ ⎥+ +⎣ ⎦

 (5.22)

Referring to the standard second order system, the parameters of PLL based 

observer are configured with a damping factor ξ of 0.707 and ωn of 300rad/s (about 

200rpm). Then, by using the same PI controller parameters which are selected as kp 

=500 and ki =200, the open-loop frequency response can be derived as shown in Fig. 

5.15. From the frequency response analysis, it can be found that with the same PI 

parameters, the estimator based on the PLL can achieve the same magnitude 

attenuation as the one based on zero-crossings. For the phase response, the high 

frequency performance of estimator with the speed estimation based on the PLL is 

expected to be better than the one with zero-crossing based speed estimation, whereas 

the low frequency performance is worse.  
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Fig. 5.15.    Frequency response of the estimator with PLL based speed estimation. 

From these frequency response analyses, it can be found that the estimator has 

good frequency response over a wide frequency range from 0.2 to 100Hz which are 

equivalent from 0.85 to 428 rpm of mechanical speed. In the real testing system, the 

rated speed is 170rpm. Hence, over the whole operation range of speed, the improved 

rotor position estimator can achieve good frequency response with low magnitude 

attenuation and phase delay. 

It can be found that, several PI or PID regulators are contained in the rotor position 

estimation algorithm, and each regulator should be tuned to achieve the specified 

close-loop bandwidth in order to reach optimum control performance. Each 

closed-loop control algorithm can be equivalently seen as a linear model. With 

different types of regulator, the equivalent linear model has different order and 

frequency response. Usually, an equivalent second order linear model with a damping 

factor ξ of 0.707 is preferred since it has very good dynamic performance without 

overshooting. However, at different operating condition, the optimum parameters are 

also different, which makes the optimization process with significant difficulty. 

Meanwhile, the risk of unstable situation of the whole control system with unsuitable 

parameters of any regulator is also obvious. Hence, the parameter tuning is of great 

importance, and should be treated very carefully. 
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5.3.2.3 Steady-state and dynamic performance 

Several experiments have been carried out to validate the proposed rotor position 

estimator and the overall control scheme is the same as in Fig. 5.8. The estimated and 

actual rotor positions and the errors between them from the improved rotor position 

estimator based on continuous signal of ψsn at 10rpm rotor speed with 1A load current 

are shown in Fig. 5.16. Compared result with the ones shown in Fig. 5.5 and Fig. 5.9, 

the improved estimator has better steady-state performance with lower phase error than 

the other two methods. 

 

Fig. 5.16.    Rotor positions and the error based on the improved estimator 

(Theta_cont: Estimated rotor position, Theta_act: Actual rotor position, Err_cont: 

Position estimation error) 

Applying with the same dynamic situation as in Fig. 5.6(a), Fig. 5.17 (a) and (b) 

show the rotor positions from the estimators based on integration and zero-crossing 

correction, respectively, and the estimation errors compared with the actual rotor 

position from the encoder. The sharp changes of the estimated rotor position in Fig. 

5.17(a) which will degrade the operating performance with current and torque pulsation 

is compensated by the estimator based on zero-crossing correction, Fig. 5.17(b). 

However, the estimation error is still too large to be satisfied for machine dynamic 

control. Fig. 5.17(c) shows the rotor positions and the error from the improved rotor 

position estimator based on continuous signal of ψsn, where the rotor position error is 
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significantly reduced by the improved estimator. Hence, better dynamic performance 

compared with the other estimators is expected to be achieved.  

Fig. 5.18 shows the rotor positions and the error from the improved rotor position 

estimator based on continuous signal of ψsn for speed compensation. It can be seen that 

the rotor position error is significantly reduced by the improved estimator and can 

achieve much better dynamic performance than the performance of the other estimators 

as shown in Fig. 5.6(b) and Fig. 5.10.  

 

(a) Rotor speed calculated by zero‐crossings (Speed_avg: Average speed  e
raω , 

Acutal_Speed: Actual rotor speed, Error_before_compensation: Rotor speed 

estimation error before compensation) 

 

(b) Rotor speed derived by PLL observer ( Speed_pll: speed estimated by PLL 

observer, Acutal_Speed: Actual rotor speed, Error_pll: Compensated rotor speed 

error by PLL observer) 
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(c) Compensated rotor speed by improved estimator (Compensated Speed: 

Compensated rotor speed, Acutal_Speed: Actual rotor speed, 

Error_After_Compensation: compensated rotor speed error)   

Fig. 5.17. Rotor speed responses.   

 

Fig. 5.18.    Rotor positions and error based on improved estimator. 

(Theta_cont: Estimated rotor position, Theta_act: Actual rotor position, Err_cont: 

Position estimation error) 

To investigate the influence of speed and load to the proposed improved 

estimator, several experiments at different speeds with step load change are executed. 

When the rotor speed is lower than 1rpm (0.25Hz), the proposed improved estimator 

fails to estimate the rotor position due to the too low signal to noise ratio of the 

measured third harmonic back-EMF. If the rotor speed is higher than 2rpm (0.5Hz), 
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the estimator can exhibit good performance with accepted estimation error. The 

experimental results when the rotor speed is about 2rpm and the load current step 

change from 0.5A to 4A and then back to 0.5A are shown in Fig. 5.19(a). When the 

rotor speed is 170rpm which is the rated speed with the same step load change, the 

experimental results are shown in Fig. 5.19(b). From the experimental results, it can 

be concluded that the improved estimator can achieve good performance at different 

speed condition against step load change. 

 

(a) Step load test at 2rpm 

 

(b) Step load test at rated 170rpm 

Fig. 5.19.    Step load tests at different speed. 

(iq: q‐axis current, Theta_est: Estimated rotor position, Theta_act: Actual rotor 

position, Error: Position estimation error) 

When the rotor speed starts from -20rpm with about 110rad/s2 acceleration to the 
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rated speed 170rpm, the estimated rotor position and estimation error are shown in Fig. 

5.20. It can be found that the improved estimator can achieve good performance over 

nearly whole range of operating speed except when the speed is closed to zero. 

 

Fig. 5.20.    Test with speed acceleration.   

(Theta_est: Estimated rotor position, Theta_act: Actual rotor position, Error: Position 

estimation error, Speed_ref: reference speed, Speed: Actual rotor speed) 

5.4 Comparison and Improvement of Flux Observer based 

on Third Harmonic Back-EMF by Error Compensation 

Flux observer based sensorless control technique is widely applied for PMSM 

drives. However, this technique is highly sensitive to the accuracy of machine and 

controller parameters. However, the third harmonic back-EMF is not affected by the 

accuracy of machine and controller parameters. Hence, to improve the performance and 

the robustness, a multi-technology fusion technique is proposed based on concept of 

error compensation of rotor position or speed which has been introduced in Section 5.3. 

5.4.1 Position Estimation from Flux Observer 

For the flux observer, the rotor position is derived from the observed vector of PM 

excitation flux-linkage which is calculated from the integration of back-EMF under 

stationary reference frame. Then the relative phase angle and speed between the 

observed vector and the reference frame are the rotor position and speed, respectively, 
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as shown in Fig. 5.21. 

U& I&

q

d

β

α

fΨ&

sΨ&
sL I⋅ &

rθ

rω

 

Fig. 5.21.    Phasor diagram of PMSM 

In order to observe the PM excitation flux-linkage vector, the current vector I&  

and the voltage vector U&  in the PMSM is necessary. I&  can be easily obtained from 

the phase currents which are measured with two or three current transducers. Similarly, 

U& can be also obtained from the phase voltages measured with three voltage 

transducers. However, U&  are usually obtained from the command of the SVPWM 

generator instead, and to obtain U& , current closed-loop control is needed, which makes 

the rotor position information necessary and creates a difficulty for starting the whole 

control system due to lack of the initial rotor position. And this situation can be solved 

by the method as introduced in Sector 4.4. The α- and β-axis voltages which are 

obtained from the command of the SVPWM and the measured α- and β-axis currents 

are shown in Fig. 5.22.  



Chapter 5 

143 

 

Fig. 5.22.    α‐ and β‐axis voltages and currents   

Then, the PM excitation flux vector fΨ&  can be derived as  

1

0
(0)( )

t

f s f st
U R I dt L IΨ = − ⋅ + Ψ − ⋅∫& & & & &  (5.23)

where Rs is the winding resistance, and Ls is the winding inductance. Then, the rotor 

position can be estimated from the α- and β-parts of fΨ&  which is shown in Fig. 5.23, 

i.e. 

arctan f
f

f

β

α

ψ
θ

ψ
=  (5.24)

 

Fig. 5.23.    α‐ and β‐axis flux‐linkages   

If the rotor is aligned to a certain position before the flux observer begins to work, 
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(0)fΨ&  is pre-known. Otherwise, a HPF should be used for minimizing the effect of 

(0)fΨ&  [SHE02], or combining the voltage model and current model estimator since 

this flux observer behaves as a HPF [YOO09]. 

However, this technique is highly sensitive to the accuracy of machine and 

controller parameters especially the winding resistance Rs and inductance Ls. 

Meanwhile, Rs and Ls usually vary when the winding temperature and operating 

conditions change, and the actual values are very difficult to obtain real-time during 

operation. In addition, the measured terminal voltage contains PWM components 

which should be filtered by LPF. Hence, the cut-off frequency of LPF should be low 

enough, where it will cause unexpected phase delay, whilst the cut-off frequency of 

HPF also needs to be optimized at different speed. If U&  is obtained from the command 

of the SVPWM generator it also may differ from actual value due to the inverter 

dead-time [HAR00] [TER01]. All these issues may deteriorate the position and speed 

estimation performance.  

Fig. 5.24 shows the estimated rotor position obtained from flux observer and the 

estimation error compared with the actual value at the steady-state of 10rpm speed with 

3A load. It can be seen that there is a significant error due to the inaccurate parameters 

of machine and controller. The dynamic performance test is carried out when the rotor 

mechanical initial speed is 10rpm and the load current changes from 1A to 3A, Fig. 

5.25. The experimental results from flux observer are shown in Fig. 5.26 where the 

position error shows two obvious step changes. The first change is at approximate 

200ms induced by the sudden change of load current, and the inaccurate machine and 

controller parameters. There is also a second significant step increase around 80ms 

after the load current increase due to the improper cut-off frequencies of the applied 

LPF and HPF for rotor position estimation. 
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Fig. 5.24.    Steady‐state performance of flux observer before compensation 

(Theta_Flux_observer: Estimated rotor position from flux observer, Theta_act: Actual 

rotor position, Error: Position estimation error in flux observer) 

 

Fig. 5.25.    Dynamic test situation   

(Speed: Actual rotor speed, Iq_ref: q‐axis current reference, Iq: q‐axis current) 
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Fig. 5.26.    Dynamic performance of flux observer   

(Theta_Before_Compen: Estimated rotor position from flux observer before error 

compensation,    Theta_act: Actual rotor position,    Error_Before_Compen: Position 

estimation error in flux observer before error compensation) 

5.4.2 Position-Error-Based Compensator 

The continuous signal of third-harmonic flux-linkage ψsn not only can be used for 

rotor position estimation as discussed in detail in Section 5.2, but also can be 

employed as reference for rotor position error compensation.  

The block diagram of position-error-based compensator is shown in Fig. 5.27 

where e
snψ  is the virtual third harmonic flux-linkage calculated from the estimated 

rotor position, which is the same as in Fig. 5.11. 

fθ
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Fig. 5.27.    Block diagram of position‐error‐based compensator 
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Then, if the estimated rotor position and speed are the same as the actual values, 

ψsn and e
snψ  should be in-phase with each other. In contrast, they will be out of phase 

as shown in Fig. 5.28 and the phase difference between the two signals can be used for 

error compensation.  

 

Fig. 5.28.    Measured ψsn and 
e
snψ  

To calculate the phase difference, the related orthogonal signal of ψsn also should 

be calculated as supplementary signal based on usn. However, since the amplitude of usn 

varies with rotor speed, it should be unified as Amp considering the feedback estimated 

rotor speed e
rω  as the same as (5.14). Consequently, 

1 3arcsin[cos(3 ) sin(3 ) sin(3 ) cos(3 )]e e
r r r rθ θ θ θ θΔ = × × × − × × ×  (5.25)

Thus, the phase difference Δθ between the estimated and actual third harmonic 

flux-linkages is derived and can be seen as the rotor position estimation error between 

the estimated and actual rotor positions. Then, the position correction θcor which is 

corresponding to this estimation error can be obtained by the following PI controller as 

a loop filter of the proposed compensator as  

1( ) [ ( )]
1

ei s
cor p r

k tk sign
z

θ θ ω−

⋅ Δ
= − + ⋅ Δ ⋅

+
 (5.26)

Then, after the system reaches steady-state, the resultant value of (5.26) which is 

θcor will converge to zero. Then, the estimated rotor position from flux observer 

including intrinsic position error is appropriately compensated and converged to the 
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actual value. Hence, rotor position is derived with high resolution and accuracy. 

However, one cycle of fundamental back-EMF contains three identical cycles of third 

harmonic back-EMF. Therefore, the phase-A back-EMF should be considered to avoid 

the mis-alignment as used by the method in Section 5.3.2.1.  

The overall control scheme in Fig. 5.29 has been implemented on a dSPACE 

platform when Motor II is operating at the steady-state of 10 rpm speed with 3A load.  

*
qi +

−
qi

*
qu

+
−

di

*
di *

du
dq

αβ

*
αu

*
βu

DCV

dq
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rθ̂

rθ̂
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snu

fθ

ae
rθ̂

rω̂

bai ,

 

Fig. 5.29.    Overall control scheme of PMSM 

Then, the estimated rotor positions and the estimation errors before and after 

compensation from the position-error-based compensator compared with the actual 

rotor position are shown in Fig. 5.30(a). When the compensator is implemented at the 

same dynamic as shown in Fig. 5.25, experimental results are shown in Fig. 5.30(b). It 

is clearly shown that the steady-state estimation error can be significantly minimized; 

however, the dynamic performance is not so satisfactory. 
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(a) Steady‐state performance 

 
(b) Dynamic performance 

Fig. 5.30.    Performance of position‐error‐based compensator   

(Theta_act: Actual rotor position, Theta_Before_Compen: Estimated rotor position 

from flux observer before error compensation, Error_Before_Compen: Position 

estimation error in flux observer before error compensation, Theta_After_Compen: 

Estimated rotor position after error compensation, Error_After_Compen: Position 

estimation error after error compensation, ) 

5.4.3 Improved Speed-Error-Based Compensator 

The position-error-based compensator proposed in Section 5.4.2 focuses on the 

compensation of the rotor position error in flux observer, and the speed is calculated 

from the compensated rotor position. Therefore, the steady-state rotor position 
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estimation is usually with high accuracy, whilst, it is not fast enough to yield good 

dynamic response for speed control. In contrast, rotor speed error based compensation 

could result in a fast dynamic response with slightly lower accuracy. Hence, the 

development of improved speed-error-based compensator is of considerable interest 

and proposed in Fig. 5.31 to improve the dynamic performance.  

fθ
fω

snu
snψ

snψ̂
θΔ

corω

rω̂

rθ̂

 

Fig. 5.31.    Block diagram of improved speed‐error‐based compensator 

The rotor speed of flux observer can be calculated from rotor position as 

[ ( ) ( 1)] /f f f sk k tω θ θ= − − Δ  (5.27)

where k is the sampling instant and Δts is the duration-time between the previous two 

sampling points. Usually, Δts equals to the PWM period which is 5e-6s in this system. 

Hence, the calculated rotor speed has high resolution and can reflect the change of 

calculated rotor position by the flux observer. 

The speed correction ωcor corresponding to the speed estimation error is obtained 

from the phase difference Δθ calculated in (5.26) by the following PI controller, 

which is the same as (5.12). Therefore, the estimated speed error rather than position 

error in flux observer can be directly compensated. Then, after the compensator 

becoming steady-state, the average rotor speed ωf from flux observer including the 

intrinsic speed error is appropriately compensated, and the estimated rotor speed e
rω  

will converge to the actual value. Thus, high resolution rotor position can be 

estimated with high accuracy by simple integration. The same as the 

position-error-based compensator, the phase-A back-EMF should be considered to 

avoid mis-alignment.  

The overall control scheme is the same as in Fig. 5.29. When Motor II is working 
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at the same steady-state and dynamic as in Section 5.4.1, the estimated rotor positions 

and the estimation errors before and after compensation from the speed-error-based 

compensator compared with the actual rotor position are shown in Fig. 5.32. It is 

clearly shown that the steady-state estimation error can be significantly minimized 

however with larger fluctuation than the position-error-based compensator.  

 

(a) Steady‐state performance 

 

(b) Dynamic performance 

Fig. 5.32.    Performance of speed‐error‐based compensator   

(Theta_act: Actual rotor position, Theta_Before_Compen: Estimated rotor position 

from flux observer before error compensation, Error_Before_Compen: Position 

estimation error in flux observer before error compensation, Theta_After_Compen: 

Estimated rotor position after error compensation, Error_After_Compen: Position 

estimation error after error compensation) 
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The experimental results prove that the position-error-based compensator is not 

sensitive enough to the dynamic change of the estimation error since the step error at 

200ms and 280ms are still there and the maximum estimation error is around 0.3rad 

which is also too large to accept for dynamic operation. However, since any estimated 

speed error in dynamic speed control can be directly compensated, even though the 

accuracy of the rotor position estimation may be slightly lower, the dynamic speed 

response is much better than the position-error-based compensator and the estimation 

error can be limited within 0.1rad.  

Back-EMF is proportional to the rotor speed, and theoretically the larger 

amplitude of the source signal of third harmonic back-EMF would lead to the better 

sensorless performance. Hence, if the sensorless performance at low speed which is 

10rpm can achieve good performance, the higher speed performance would be as good 

as low speed application or even better. 

5.4.4 Robust Operation Performance  

PMSM control system highly depends on the rotor position information. If 

sensorless control fails, the whole system will break down and a serious problem may 

occur. Hence, application of fault tolerant technique in sensorless control is of great 

importance due to the improvement of robustness for saving cost and planning 

maintenance procedures in advance.  

In the proposed sensorless control method as shown in Fig. 5.29, flux observer and 

the proposed compensator based on third harmonic back-EMF can be seen as mutually 

complementary. If one of the two sources, viz., flux observer signals or third harmonic 

back-EMF fails, the other would be able to provide position to the control system. 

In first case, if the measurement of third harmonic back-EMF has problem and can 

no longer be used as reference, then the compensator proposed above will be bypassed, 

and the rotor position information will be directly obtained from flux observer. 

Although the estimated rotor position may contain certain error, it can maintain the 

stability of the control system. In second case, when the flux observer has problem, 

large estimation error could be compensated by the proposed compensators. The 
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extreme situation is that all outputs of flux observer are set as zero, and cannot provide 

any the rotor position information to the compensators, and then the block diagrams of 

compensators shown in Fig. 5.27 and Fig. 5.31 will be modified to Fig. 5.33.  

0
snu snψ

e
snψ

θΔ

corθ

e
rω

e
rθ

 
(a) Position‐error‐based compensator 

0
snu

snψ

e
snψ

θΔ

corω

e
rω

e
rθ

 
(b) Speed‐error‐based compensator 

Fig. 5.33.    Block diagram of compensators when flux observer fails 

For the position-error-based compensator, Fig. 5.33(a), θcor calculated in (5.26) 

which represents the rotor position correction corresponding to the position estimation 

error should be equal to the estimated rotor position e
rθ . However, e

rθ  is a ramp 

function with sharp change at the point of 2π elec-rad rotor position, and a regular PI 

controller cannot track this kind of signal. Hence, θcor cannot be converged to the actual 

rotor position. Thus, this compensator cannot provide rotor position information to the 

control system when the flux observer fails. 

For speed-error-based compensator, Fig. 5.33(b), since ωf is already set as zero, 

ωcor calculated by (5.12) not only represents the rotor speed correction corresponding to 
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the position estimation error but also will be converged to the actual rotor speed ωr 

when the system reaches to the steady-state. Thus, after being corrected by phase-A 

back-EMF or by phase-A voltage instead, rotor position can be estimated from ωcor by 

integration with high accuracy to avoid the failure of the control system.  

Fig. 5.34 shows the relevant dynamic performance when flux observer has an 

extreme failure in which all the outputs are suddenly set as zero. The rotor positions 

from the flux observer before and after compensation compared with the actual value 

from the encoder, and the compensated estimation error are shown in Fig. 5.34(a). Fig. 

5.34(b) shows the rotor speeds calculated from flux observer before and after 

compensation compared with the actual value calculated from encoder. Although the 

estimated rotor position and speed derived by the compensator have interruption due to 

the failure of flux observer, they can reflect the actual values well and maintain the 

stability of the control system.  
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(a) Positions before and after compensation and estimated error   

(Theta_act: Actual rotor position, Theta_Before_Compen: Estimated rotor 

position from flux observer before error compensation, Error_Before_Compen: 

Position estimation error in flux observer before error compensation, 

Theta_After_Compen: Estimated rotor position after error compensation, 

Error_After_Compen: Position estimation error after error compensation) 

 

(b) Rotor speeds before and after compensation   

(Speed_Actual: Actual rotor speed, Speed_Before_Compen: Estimated rotor 

speed before error compensation,    Speed_After_Compen: Estimated rotor 

speed before error compensation ) 

Fig. 5.34.    Robust performance of speed‐error‐based compensator 

-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5

1.8

-8

-6

-4

-2

0

2

4

6

8

0 500 1000 1500 2000 2500 3000

Po
sit

io
n 

Er
ro

r (
ra

d)
 

R
ot

or
 P

os
iti

on
 (

ra
d)

Time (ms)

Theta_Before_Compen Theta_After_Compen
Theta_Actual Error_After_Compen

-4

0

4

8

12

16

0 500 1000 1500 2000 2500 3000

R
ot

or
 S

pe
ed

 (r
pm

)

Time (ms)

Speed_Before_Compen
Speed_After_Compen
Speed_Actual



Chapter 5 

156 

5.4.5 Comparison of Third Harmonic Back-EMF and Fundamental 

Back-EMF Based Sensorless Controls 

Fundamental and third harmonic back-EMF based sensorless both depend on the 

machine back-EMF which is proportional to rotor speed. However, there are several 

differences between the two kinds of methods and the comparison results of them are 

shown in Table 5.1.  

TABLE 5.1 

COMPARISON OF BACK-EMF BASED SENSORLESS CONTROLS 

 
Fundamental back-EMF based 

flux observer 
Third harmonic back-EMF 

Applicability 
SPM and IPM(with extend 

back-EMF or active flux) 

SPM and IPM(To be introduced 

in Section 7.2) 

Zero and very low speed Not applicable Not applicable 

Cost Medium Medium 

Implementation complexity Medium Medium 

Sensitivity to parameters High Low 

Sensitivity to imbalance Low 
Medium (To be improved in 

Section 7.3) 

Sensitivity to PWM Medium Low 

Sensitivity to high order 

harmonic back-EMF 
Low 

Medium (To be improved in 

Chapter 6) 

Flux weakening No limit 

No limit for SPM/Available for 

IPM (To be introduced in 

Section 7.2) 

SNR High Medium 

Dynamic performance Medium High 
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5.5 Conclusion 

In this chapter, the detection of third harmonic back-EMF and conventional 

sensorless control strategy based on zero-crossings third harmonic flux-linkage, which 

is the integration of third harmonic back-EMF, are introduced. However, the 

conventional strategy suffers dynamically due to inaccurate average rotor speed 

calculated from the insufficient precise rotor position reference.  

Hence, to minimize the rotor position error and improve the dynamic performance, 

a speed compensation strategy based on the continuous signal of third harmonic 

flux-linkage, is proposed. Taking the continuous sinusoidal signal, rather than 

zero-crossings of third harmonic flux-linkage, as reference, the estimation error in the 

speed calculated from zero-crossings could be compensated at each sampling time. 

Then, the high resolution estimated rotor position will be derived from the compensated 

rotor speed with high accuracy.  

Furthermore, to improve the performance of rotor position estimation in flux 

observer sensorless control which is sensitive to the machine and controller parameters, 

position-error-based and speed-error-based compensators based on the continuous 

sinusoidal signal of third harmonic back-EMF are also proposed in this chapter. 

Meanwhile, the robust performance can also be enhanced due to the mutually 

complementary between the compensators and flux observer.  

The experimental results carried on a PMSM validate that the improved rotor 

position estimator based on the continuous signal of third harmonic flux-linkage could 

achieve accurate rotor position estimation and outstanding dynamic performances, 

whilst the rotor position-error-based compensator has more accurate rotor position 

estimation under steady-state, and the speed-error-based compensator is outstanding 

under dynamic situation and has much better robust performance. 
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CHAPTER 6 

SENSORLESS CONTROL BASED ON THIRD 

HARMONIC BACK-EMF AND SIMPLIFIED EKF 

FOR SINGLE AND DUAL THREE-PHASE PMSM 
 

6.1 Introduction 

The improvement of dynamic performance of conventional sensorless control 

and the performance and robustness of flux observer by speed error compensation 

based on third harmonic back-EMF are introduced in Chapter 5. However, in these 

proposed methods, the source signal quality which is third harmonic back-EMF is of 

great importance. If the higher order harmonic components contained in the source 

signal are not too large, they could be eliminated by the proposed estimator. 

Otherwise, the speed calculation and the rotor position estimation may also be 

deteriorated. In extreme case, the speed calculation based on zero-crossings of third 

harmonic flux-linkage may fail due to the absence of zero-crossings or large phase shift. 

Hence, sensorless control without speed calculation should be considered to solve the 

signal quality issue. 

Extended Kalman filter (EKF) is a recursive optimum-state estimator which can 

be used in a non-linear dynamic system using random noise distributed signals. Hence, 

in the rotor position estimation, even though the measured third harmonic back-EMF 

contains too much high frequency PWM noise or higher order triplen harmonic 

back-EMF such as ninth, fifteenth, etc, the EKF based estimator could be applied to 

achieve accurate estimation with noise suppression.  

In this chapter, EKF and the application of simplified EKF for rotor position 

estimation will be introduced. Then, the sensorless control based on third harmonic 

back-EMF and flux-linkage for single three-phase PMSM operation by employing 

simplified EKF will be presented. For dual three-phase PMSM, there are two sets of 
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windings, and they usually have a spatial π/6 elec-rad shift. Hence, the two sets of third 

harmonic back-EMF will be orthogonal under third harmonic reference frame. 

Consequently, with the aid of simplified EKF based estimator, the rotor position could 

be estimated without any filtering. All these strategies will be introduced in detail.  

6.2 EKF and Its Application to Rotor Position Estimation 

EKF is a recursive optimum-state estimator used for the joint state and parameter 

estimation of a non-linear dynamic system in real-time by using noisy monitored 

signals that are distributed by random noise. The noise source takes account of 

measurement and modelling inaccuracies. In the first stage of the calculations, the 

states are predicted by using a mathematical model which contains previous estimates, 

and in the second stage, the predicted states are continuously corrected by using a 

feedback correction scheme. This scheme makes use of actual measured states, by 

adding a term to the predicted state which is obtained in the first stage. The additional 

term contains the weighted difference of the measured and estimated output signals. 

Based on the deviation from the estimated value, the EKF provides an optimum 

output value at the next input instant. In a PMSM drive, the EKF can be used for the 

real-time estimation of the rotor position and speed. This is possible since a 

mathematical dynamical model of the machine is sufficiently well known. For this 

purpose the stator voltages and currents are measured and for example, the speed and 

position of the machine can be obtained by the EKF quickly and accurately [VAS03, 

pp. 480-490]. 

To be more specific, the goal of EKF is to obtain immeasurable states, e.g. speed 

and rotor position by using measured states, and also statistics of the noise and 

measurement. In general, by means of the noise inputs, it is possible to take account 

of computational inaccuracies, modelling errors, and the errors in the measurements. 

A discrete-time, non-linear dynamic system can be expressed in state-space form as 

( 1) ( ( ), ) ( ( ), ) ( )
( ) ( ( ), ) ( )

x k f x k k g u k k w k
y k h x k k v k

+ = + +
= +

 (6.1) 

where u(k) and y(k) are the input and output signals, respectively, and w(k) and v(k) 
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are the process noise and measurement noise, respectively. x(k) is the state vector, 

which can be estimated by the EKF and is given by 

ˆ ˆ ˆ( 1) ( ( ), ) ( ( ), ) [ ( ) ( ( ), )]kx k f x k k g u k k K y k h x k k+ = + + −  (6.2) 

The Kalman gain Kk is determined through the Riccati difference equation. 

However, it requires relatively complex matrix calculations, and therefore, takes a 

significant computing time [LIU04]. In a PMSM with third harmonic back-EMF, the 

output variables of the EKF may be chosen as the third harmonic flux-linkage 

integrated from third harmonic back-EMF, i.e. 

3 _ cos1

3 _sin2

( )
( )

rd

rd

y k
y k

ψ
ψ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (6.3) 

while the state variables are chosen as the rotor speed ωr and position θr, and the 

double integration of the noise, w`. The speed identification model based on the EKF 

can then be established. In order to simplify the model, in particular the computation 

of the Kalman gain, the output variables, equation are expressed as 

1 1

2 2

( ) cos(3 ( )) ( )
( ) sin(3 ( )) ( )

r

r

y k k v k
y k k v k

θ
θ

×⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥×⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (6.4) 

Therefore, with a state vector [ , , `]T
rx wθ ω=  and input u(k)=0, the state-space 

model can be written as 

( 1) ( ) ( )
( ) ( ( )) ( )

x k Fx k w k
y k h x k v k

+ = +
= +

 (6.5) 

where 

1 0
0 1 1
0 0 1

st
F

Δ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
(6.6) 

and 

cos(3 ( ))
( ( ))

sin(3 ( ))
r

r

k
h x k

k
θ
θ

×⎡ ⎤
= ⎢ ⎥×⎣ ⎦

 (6.7) 

where Δts is the sampling time. 

The Kalman filter gain can now be significantly simplified, and is given by 
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1

2

3

0
cos(3 ) sin(3 )

0
sin(3 ) cos(3 )

0

e e
r r

e e
r r

k
K k

k

θ θ
θ θ

⎡ ⎤
⎡ ⎤× ×⎢ ⎥= ⎢ ⎥⎢ ⎥ − × ×⎣ ⎦⎢ ⎥⎣ ⎦

 (6.8) 

where k1, k2, and k3 are tuning parameters. From the foregoing analysis, it can be 

shown that the rotor speed and position can be estimated from the following equations, 

i.e. 

2 1

1

2

3

( ) ( )cos ( ) ( )sin ( )

( 1) [ ( ) ( ) ( )]

( 1) ( ) `( ) ( )
`( 1) `( ) ( )

e e
r r

e e e
r r s r

e e
r r

k y k k y k k

k k T k k k

k k w k k k
w k w k k k

π
π

ε θ θ

θ θ ω ε

ω ω ε
ε

−

= −

+ = + +

+ = + +
+ = +

 (6.9) 

where e
rθ  and e

rω  are the estimated position and speed, respectively. 

Then the rotor position could be estimated from (6.9) and the block diagram of 

simplified EKF with third harmonic back-EMF is shown in Fig. 6.1. From the 

analysis, it shows that the two orthogonal source signals are essential for rotor 

position estimation. 

snu
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Fig. 6.1.    Block diagram of simplified EKF 

6.3 Rotor Position Estimation Based on Third Harmonic 

Back-EMF and Simplified EKF for Single Three-Phase 

PMSM Operation 

Since the resultant third harmonic back-EMF is a voltage signal which is 

proportional to the rotor speed and may contain certain PWM component noise, the 
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third harmonic flux-linkage ψsn which results from the integration of third harmonic 

back-EMF is usually applied for the rotor position estimation. ψsn is a smooth 

continuous signal with constant amplitude and has higher signal quality than usn, which 

makes the rotor position estimation much easier and with higher quality than that 

directly from third harmonic back-EMF. In practice, ψsn is usually derived by a low 

cut-off frequency band pass filter (BPF), which may cause unexpected phase delay or 

poor frequency response. ψsn can be defined as  

cos(3 )sn mp rAψ θ= − ×  (6.10)

where Amp is the amplitude of ψsn which could be obtained from the absolute value of 

ψsn when its differential is close to zero. To estimate the rotor position by simplified 

EKF, the required orthogonal signal of ψsn also should be calculated based on usn. Since 

the amplitude of usn varies with rotor speed, it should be unified as Amp considering the 

feedback estimated rotor speed e
rω  as  

_ 3 sin(3 ) sin(3 )p
sn unified r mp re

r

K
u E Aθ θ

ω
= × = ×  (6.11)

where Kp is the unify-ratio of the amplitudes of the third harmonic flux-linkage and 

back-EMF. Hence, the signals y(k) in (6.3) can be selected as 

1

_2

( )
( )

sn

sn unified

y k
uy k

ψ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (6.12)

For the Motor II, the measured ψsn and usn_unified which have been shown in Fig. 

5.12 of Section 5.3.2, are depicted in Fig. 6.2 for the comparison purpose. It can be 

found that the measured ψsn and usn_unified are sinusoidal of high signal quality. 

Then based on the simplified EKF as shown in Fig. 6.1, the simplified EKF based 

rotor position estimator can be derived as shown in Fig. 6.3. It has the advantage which 

could eliminate the untracked higher order harmonic components. Hence, these 

contained high order harmonic components will nearly not affect the accuracy of 

position estimation.  
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Fig. 6.2.    ψsn and usn_unified by experiment. 
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Fig. 6.3.    Simplified EKF based rotor position estimator 

According to the diagram, the close loop transfer function between the estimated 

and actual rotor positions can be express as 
2

3 2 1
3 2

3 2 1

3 3 3
3 3 3

e
mp mp mpr

r mp mp mp

A k s A k s A k
s A k s A k s A k

θ
θ

⋅ + ⋅ +
=

+ ⋅ + ⋅ +
 (6.13)

It could be seen that since Amp is a constant, k1, k2 and k3 which are covariance 

matrix gains in the estimator also should be constant to maintain constant bandwidth. 

The Bode plot of the position estimator are shown in Fig. 6.4, it can be seen that the 

loop bandwidth is around 24Hz and maintained as constant at different rotor speed.  

Fig. 6.5 shows the rotor positions and position errors derived from EKF based 

rotor position estimator and the rotor position estimation based on compensation of 
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speed from zero-crossing as introduced in Section 5.3.2, compared with the actual 

rotor position at the steady-state of 10rpm mechanical rotor speed. It can be found that 

there is nearly no difference between the two methods since the derived ψsn and 

usn_unified are sinusoidal without disturbance of higher order harmonic components. 

 

Fig. 6.4.    Frequency response of EKF based rotor position estimator 

 

Fig. 6.5.    Rotor positions and the error based on the improved estimator and EKF 

based rotor position estimator (Theta_EKF: Rotor position estimated by simplified 

EKF based rotor position estimator,    Theta_3rd_flux: Rotor position estimated 

based on compensation of speed from zero‐crossing,    Theta_Act: Actual rotor 

position,    Error_EKF: Position error by simplified EKF based rotor position estimator, 

Error_3rd_flux: Position error based on compensation of speed from zero‐crossing) 
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The measured Phase-A1 and Phase-A2 back-EMFs of Motor III which is a 230W 

laboratory dual three-phase PMSM are shown in Fig. 6.6(a) when the windings are 

open-circuit with 400rpm rotor speed and the FFT analysis of the measured Phase-A1 

back-EMF is shown in Fig. 6.6(b). It could be concluded that there are plenty of 

harmonic components, and the higher order triplen harmonic back-EMF such as ninth 

and fifteenth are not much smaller than the third harmonic back-EMF.  

 
(a) Back‐EMFs 

 
(b) Harmonic spectrum of back‐EMF 

Fig. 6.6.    Back‐EMF and harmonic analysis at rated speed 

The steady-state tests are carried out with single three-phase operation when the 

rotor speed is 200rpm with 1A q-axis current, while other set is open circuit. It can be 

seen that usn_unified calculated by (6.11) from feedback rotor speed and the measured usn 

of one set winding at 200rpm with the aid of 1kΩ sensing resistor network shown in 

Fig. 6.7 contains too much high order triplen harmonic noise. However, ψsn derived by 
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BPF (second order filter with f1 =1Hz and f2 =50Hz) are smoother and have better 

signal quality but still contain certain high frequency components. Hence, the rotor 

position estimation based on compensation of speed from zero-crossing will be very 

difficult to be employed especially under dynamic situation, due to the large phase 

shift of zero-crossings caused by contained higher harmonic components.  

 
Fig. 6.7.    Third harmonic Back‐EMF and flux‐linkage   

(EMF_3rd: Third harmonic back‐EMF, Flux_3rd: Third harmonic flux‐linkage) 

Fig. 6.8 shows the rotor positions and errors derived from both the estimator 

based on speed error compensation and EKF based rotor position estimator compared 

with the actual rotor position at the steady-state of 200rpm mechanical rotor speed. 

Due to the high order triplen harmonic noise in third harmonic Back-EMF and 

flux-linkage, the estimated rotor position based on EKF can achieve better 

performance, since it is less sensitive to these high frequency noises and phase shift of 

zero-crossings than the speed error compensation based estimator. 
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Fig. 6.8.    Rotor positions and the error based on EKF based rotor position estimator 

(Theta_EKF: Rotor position estimated by simplified EKF based rotor position 

estimator,    Theta_3rd_flux: Rotor position estimated based on compensation of 

speed from zero‐crossing,    Theta_Act: Actual rotor position,    Error_EKF: Position 

error by simplified EKF based rotor position estimator,    Error_3rd_flux: Position 

error based on compensation of speed from zero‐crossing) 

The dynamic performance test for the EKF based rotor position estimator is 

carried out when the rotor initial speed is 200rpm with 1A q-axis current, and the speed 

reference changes from 200rpm to 320rpm and then the rotor speed response is shown 

in Fig. 6.9. Then applying the EKF based rotor position estimator as shown in Fig. 6.3, 

the rotor position can be estimated. From the estimated and actual rotor positions and 

the error between them shown in Fig. 6.10, it could be found that the peak estimation 

error can be kept within 0.1rad even under dynamic situation. 
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Fig. 6.9.    Dynamic test situation   

(Speed_ref: Speed reference, Speed: Actual rotor speed) 

 

Fig. 6.10.    Rotor positions and the error based on EKF based rotor position 

estimator at dynamic situation. (Theta_est: Estimated rotor position, Theta_act: 

Actual rotor position, Error: Rotor position estimation error) 
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conventional single three-phase systems. Firstly, the predominant frequency has been 

shifted from six to twelve times than the supply frequency, and the associated sixth 

harmonic pulsating torque and rotor harmonic losses in conventional three-phase 

voltage-fed drives are eliminated. Secondly, the required inverter phase current ratings 

are reduced due to the multiphase inverter instead of a group of devices connected in 

parallel, and hence, the total system reliability is also improved.  

For dual three-phase PMSM, the neutral points of two sets windings are usually 

isolated as shown in Fig. 6.11. Hence, there is no electrical connection between the two 

sets of windings. 

1 1 3s nu e≈

2 2 3s nu e≈

1R 2R 3R

 

Fig. 6.11.    Measurement of third harmonic back‐EMF in dual three‐phase PMSM 

Based on the aforementioned analysis, for the dual three-phase PMSM, the 

measured voltages between “s1” and “n1”, and between “s2” and “n2”, could represent 

the two sets of the third harmonic back-EMFs of the two sets of windings as  

1 1 3_ 1 9_ 1 15_ 1 3_ 1

2 2 3_ 2 9_ 2 15_ 2 3_ 2

s n set set set set

s n set set set set

u e e e e
u e e e e

= + + + ≈⎧
⎨ = + + + ≈⎩

L

L
 (6.14)

For most of dual three-phase PMSMs, the two sets winding have a spatial π/6 

elec-rad shift, Fig. 6.12. Hence e3_set1 and e3_set2 have the same phase shift under 
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fundamental reference frame as illustrated in Fig. 6.13, i.e. 

3_ 1 3

3_ 2 3

sin(3 )
sin(3 ( / 6))

set r

set r

e E
e E

θ
θ π

= ⋅⎧
⎨ = ⋅ × −⎩

 (6.15)

/ 6π

1A
2A

1B

2B

1C

2C

 

Fig. 6.12.    Winding vectors of dual‐three‐phase PMSM 

 

Fig. 6.13.    Relationship of fundamental and third harmonic back‐EMFs in 

dual‐three‐phase PMSM 

For single three-phase PMSM, the third harmonic flux-linkage ψsn which results 

from the integration of third harmonic back-EMF is usually applied for the rotor 

position estimation due to its better SNR, and the same for dual three-phase PMSM. 

Hence, two sets of ψsn derived by low cut-off frequency BPF orthogonal to each other 

under third harmonic reference frame, i.e. 
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3_ 1 3

3_ 2 3 3 3

cos(3 )
cos(3 ( / 6)) cos(3 / 2) sin(3 )

set r

set r r r

ψ θ
ψ θ π θ π θ

= −Ψ ⋅⎧
⎨ = −Ψ ⋅ × − =− Ψ ⋅ − = −Ψ ⋅⎩

 (6.16)

The steady-state tests are carried out when the rotor speed is 200rpm with 1A 

q-axis current. It can be seen that the measured usn of two sets of windings at 200rpm 

shown in Fig. 6.14 contain too much high order triplen harmonic noise. However, ψsn 

of the two sets of windings derived by BPF shown in Fig. 6.15 are smoother and have 

better signal quality, whilst contain too large error at each zero-crossings which leads 

the conventional rotor position estimation based on zero-crossing or speed 

compensation based on zero-crossing very difficult to be employed. However, by 

applying the simplified EKF based rotor position estimator, the contained triplen, ninth, 

fifteenth and so forth orders harmonics, could be eliminated. 

 
Fig. 6.14.    Measured usn of two sets of windings at 200rpm 

 
Fig. 6.15.    ψsn of two sets of windings at 200rpm 
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The overall control scheme of the dual three-phase PMSM is shown in Fig. 6.16, 

and applying the EKF based rotor position estimator as shown in Fig. 6.3, the rotor 

position could be estimated from ψsn. Then, the estimated and actual rotor positions and 

the error between them estimated from third harmonic flux-linkage at 200rpm rotor 

speed with 1A q-axis current are shown in Fig. 6.17. 

*
_ 2dq seti

+
−
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*
_ 2dq setu

+
−

_ 1dq seti
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_ 1dq setu

dq
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Fig. 6.16.    Overall control scheme of dual three‐phase PMSM 

 

Fig. 6.17.    Estimated position and error from third harmonic flux‐linkage 

(Theta_est: Estimated rotor position, Theta_act: Actual rotor position, Error: Rotor 

position estimation error) 
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Since signal quality of the measured usn is usually not good enough for the rotor 

position estimation in the aforementioned strategies, third harmonic flux-linkage ψsn is 

usually essential to derive the high accurate rotor position. Due to the constant 

amplitude of ψsn, the design of rotor position estimator could be simplified and the 

bandwidth of estimator could be constant. However, the implementation of BPF for 

getting the third harmonic flux-linkage may lead unexpected phase delay and poor 

frequency response, which will deteriorate the performance of the conventional rotor 

position estimation under dynamic situation. 

The dynamic performance tests are carried out when the rotor initial speed is 

200rpm with 1A q-axis current, and the speed reference changes from 200rpm to 

320rpm and then the rotor speed response which is the same as shown in Fig. 6.9. Then 

the derived two sets of third harmonic flux-linkage are shown in Fig. 6.18. It is shown 

that with the change of speed, the amplitude of flux-linkage could be maintained as 

constant. Then applying the EKF based rotor position estimator as shown in Fig. 6.3, 

the rotor position can be estimated. From the estimated and actual rotor positions and 

the error between them shown in Fig. 6.19, it could be found that the estimation error is 

much larger during speed transit due to the implementation of improper BPF for 

obtaining the flux-linkage.  

 

Fig. 6.18.    ψsn of two sets of windings under dynamic situation 
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Fig. 6.19.    Estimated position and error from third harmonic flux‐linkage 

(Theta_est: Estimated rotor position, Theta_act: Actual rotor position,   

Error: Rotor position estimation error) 

From (6.15), it could be found that e3_set1 and e3_set2 have a π/6rad shift under 

fundamental reference frame which is equivalent as a π/2rad shift under third harmonic 

reference frame, i.e. 
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 (6.17)

Hence, for dual three-phase PMSM, the two derived third harmonic back-EMFs in 

(6.17) are orthogonal from each other as illustrated in Fig. 6.13. Hence, the two sets of 

measured usn can be directly applied for rotor position estimation by applying the 

simplified EKF based rotor position estimator as shown in Fig. 6.3 and no filter is 

needed. Hence, the robustness and accuracy of rotor position estimation could be 

significantly improved, whilst the phase delay also can be minimized and frequency 

response in the rotor position estimation can also be enhanced. 

However, the amplitude of third harmonic back-EMF E3 is speed-dependent. Hence, 

with fixed parameters in PID controller, the bandwidth of the rotor position estimator 

and frequency response will vary with speed. In practical implementation for simplicity, 

the PID parameters are set as kp=35 and ki=70, kd =40, based on the value of E3 as 0.37V 

at 200rpm which is half rated speed under no-load condition. Although the bandwidth 

of the estimator changes with speed, the requirement of accuracy can be met. To 
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improve the frequency response and maintain the constant bandwidth of the estimator, 

on-line tuning of PID controller with the feedback speed should be considered. Then, 

the parameters can be derived as 35 / 200e
p rk ω= , 70 / 200e

i rk ω= , and 

40 / 200e
d rk ω= . Hence, the loop bandwidth can be maintained around 24Hz at 

different rotor speed. 

Hence, applying this on-line tuning simplified EKF based rotor position estimator, 

the rotor position could be estimated from the two sets of third harmonic back-EMF 

directly even when the amplitude varies with speed. Meanwhile, even though the 

quality of the signals is not good enough, these contaminated high order harmonic 

back-EMFs such as ninth, fifteenth and so on, will be eliminated and will not affect the 

rotor position estimation accuracy as shown in Fig. 6.20.  

 

Fig. 6.20.    Estimated position and error from third harmonic back‐EMF 

(Theta_EKF_COM: Estimated rotor position from third harmonic back‐EMF, 

Theta_act: Actual rotor position, Error_EKF_COM: Rotor position estimation error 

from third harmonic back‐EMF) 
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accuracy of the two methods are nearly the same, however, the estimation error based 

on third harmonic back-EMF contains a little more high frequency fluctuation than the 

one based on flux-linkage due to the higher level of high order triplen harmonic noise.  
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of third harmonic back-EMF are shown in Fig. 6.21 and the amplitudes of them vary 

with speed. Considering the feedback rotor speed and on-line tuning the parameter of 

simplified EKF based estimator, the rotor positions and the error can be estimated from 

third harmonic back-EMF as shown in Fig. 6.22.  

 
Fig. 6.21.    Measured usn of two sets of windings under dynamic situation 

 

Fig. 6.22.    Estimated position and error from third harmonic back‐EMF 

(Theta_EKF_COM: Estimated rotor position from third harmonic back‐EMF, 

Theta_act: Actual rotor position, Error_EKF_COM: Rotor position estimation error 

from third harmonic back‐EMF) 

The experimental results demonstrate that the proposed rotor position estimation 

strategy based on third harmonic back-EMF for dual three-phase PMSM has nearly the 
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flux-linkage. Meanwhile, it can significantly improve the dynamic performance of the 

rotor estimation due to the removal of all filters and the improvement of frequency 

response. 

6.5 Conclusion 

In this chapter, simplified EKF which is a recursive optimum-state estimator is 

applied based on third harmonic back-EMF for sensorless control. For single 

three-phase PMSM operation, the two essentially orthogonal signals which are third 

harmonic back-EMF and flux-linkage are applied as references of simplified EKF 

based rotor position estimator, and then the rotor position can be estimated with high 

accuracy at steady-state and dynamic situation from triplen harmonic back-EMFs and 

flux-linkages even though there may contain too much high order harmonic 

components.  

For dual three-phase PMSM, there are two sets of windings, and they usually 

have a spatial π/6 elec-rad shift. Hence, the two sets of triplen harmonic back-EMFs 

are orthogonal under third harmonic reference frame, as well as the triplen harmonic 

flux-linkages derived from the measured triplen harmonic back-EMFs. By applying 

the same simplified EKF based rotor position estimator, the rotor position can be 

estimated from triplen harmonic back-EMFs or flux-linkages. The experimental 

results prove that both of the proposed strategies have accurate rotor position 

estimation under steady-state, whilst the strategy based on third harmonic back-EMF 

with on-line tuning EKF based estimator can achieve much better dynamic 

performance of rotor estimation due to the elimination of all filters. 
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CHAPTER 7 

INFLUENCE OF MACHINE SALIENCY AND 

WINDING IMBALANCE ON SENSORLESS 

CONTROL BASED ON THIRD HARMONIC 

BACK-EMF 

 

7.1 Introduction 

The improvement of dynamic performance of conventional sensorless control 

and the performance and robustness of flux observer by speed error compensation in 

Chapter 5, and sensorless control based on simplified EKF based rotor position 

estimator in Chapter 6, are both highly dependent on the phase angle of the source 

signal which is third harmonic back-EMF. If the third harmonic back-EMF can 

precisely reflect the rotor position, then by employing proper estimators, the rotor 

position definitely can be estimated accurately. As mentioned in Chapter 6, the 

contained higher order triplen harmonic components can be eliminated by the 

simplified EKF based rotor position estimator, whereas there are still several cases in 

which the sensorless control using the usn derived third harmonic back-EMF will not be 

applicable, i.e. absence of third harmonic back-EMF, rotor saliency, and imbalanced 

parameters of three phases.  

Hence, in this chapter, the absence of third harmonic back-EMF will be introduced 

as well as the related alternative sensorless control solution. The influence of the stator 

current and machine saliency to rotor position estimation based on third harmonic will 

be investigated. Furthermore, due to the imbalanced machine parameters and sensing 

resistor network, the measured triplen harmonic back-EMF will contain certain 

fundamental component distortion which will severely deteriorate the performance of 

rotor position estimation. Then, an improved rotor position estimation strategy for 

single and dual three-phase PMSM under imbalanced situation will also be introduced. 
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7.2 Absence of Third Harmonic Back-EMF 

The amplitude of the third harmonic back-EMF E3 is 

3 3 3r wE B kω∝ ⋅ ⋅  (7.1)�

where ωr is the rotor speed and B3 is the amplitude of the third harmonic component of 

PM excitation flux density which will change due to the magnetic saturation, whilst kw3 

is the winding factor for the third harmonic which is calculated as 

3 3 3 3w p d sk k k k= ⋅ ⋅  (7.2) 

where kp3, kd3 and ks3 are the coil pitch factor, distribution factor and skew factor, 

respectively. If either B3, kp3, kd3 or ks3 are zero or very small, the third harmonic 

back-EMF will be zero or too small to sense. Furthermore, (7.1) also shows that third 

harmonic back-EMF based sensorless control is also unsuitable for zero or very low 

speed operation since E3 is proportional to rotor speed. For simplicity, third harmonic 

back-EMF can be expressed as 

3 3 3 3 3 3cos(3 ) cos(3 )p d s r r r re B k k k Kω θ ω θ= ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅  (7.3) 

where K3 represents the third harmonic back-EMF constant [SHE02a]. 

Motor II has significant third harmonic component in the air gap field, whilst its 

third harmonic back-EMF constant is approximately 0.1363, which makes the third 

harmonic back-EMF significant, with amplitude 13% of fundamental back-EMF. The 

measured waveforms and FFT analysis of the back-EMF are given in Fig. 7.1.  

In many PMSMs, the third harmonic excitation field is weak. For example, in 

Motor III which is dual three-phase PMSM with overlapping windings, the third 

harmonic EMF constant is approximately 0.0036 and the amplitude of third harmonic 

EMF is only about 4.9% which is smaller than the ratio of Motor II. The measured 

waveforms and frequency spectrum of the back-EMF are given in Fig. 7.2. If the ratio 

of third harmonic back-EMF is smaller than 2%, the sensorless control strategies based 

on third harmonic back-EMF may not be able to be implemented due to its small SNR. 

Meanwhile, with serious magnetic saturation, the third harmonic back-EMF may be 

absent due to the change of third harmonic EMF constant K3.  



Chapter 7 

180 

 

(a) Phase Back‐EMF and measured usn 

 
(b) Spectrum of phase back‐EMF 

Fig. 7.1.    Back‐EMF and spectrum at 10rpm of Motor II 

Since the third harmonic back-EMF is proportional to rotor speed, all sensorless 

controls show the good performance above certain speed but suffering at low speed due 

to the too small amplitude of third harmonic back-EMF, and cannot be applied with 

zero speed. Hence, at zero and low speed, sensorless control methods based on high 

frequency carrier signal injection as introduced in Chapter 3 and Chapter 4 are widely 

implemented due to the effectiveness in that region. However, when rotor speed is 

higher than certain speed, which is usually 5% of the rated speed, the back-EMF based 

sensorless control strategies could be employed, and would be superior to high 

frequency carrier signal injection based strategy at higher speed range.  
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(a) Phase Back‐EMF and measured usn 

 
(b) Spectrum of phase back‐EMF 

Fig. 7.2.    Back‐EMF and spectrum at 400rpm of Motor III 
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When the machine windings are Y-connected, the third harmonic back-EMF 
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derived by the measured voltage with the aid of a Y-connected resistor network 

between the central point “s” of this Y-connected resistor network and the machine 

winding neutral point “n” as 

3 9 15 3( ) / 3sn an bn cnu u u u e e e e= + + = + + + ≈L  (7.4) 

However, this is correct only when the winding inductance is constant. In salient 

machines, such as those with interior/inserted PMs, the winding inductance varies with 

the rotor position [SHE06a]. Thus, the expression of usn will be affected by stator 

current. The self and mutual winding inductances can be expressed in (7.5), i.e. 

cos

cos ( 2 / 3)

cos ( 2 / 3)
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(7.5) 

Whilst the motor voltage equations are 

an a a aa ab ac a

bn b b ba bb bc b

cn c c ca cb cc c

u i e L M M i
u R i e p M L M i
u i e M M L i

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + ⋅⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 (7.6) 

Based on (7.5) and (7.6), the measured usn should be presented as 

= + {( - ) [ cos + cos ( -2 /3)+ cos ( +2 /3)]}
3

( )
= {( cos sin )( sin )

3
[ cos ( -2 /3) sin ( -2 /3)][ sin ( -2 /3)]
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j L M
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θ π
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−
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L

 (7.7)

The sign of ±  in [ sin( 1) cos( 1) ]d r q ri j i jθ θ− ± − ±  is decided by j, where ( j+1) or 
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( j-1) should be a multiple of 3. Clearly, if there is no machine saliency, both Lj and Mj 

are 0, and usn will only represents the triplen harmonic back-EMF. However, when the 

rotor saliency exists, neither Lj nor Mj is 0, nor usually (Lj - Mj) is 0 either. Therefore, 

if currents flow in the machine, the second part on the right side of (7.7) will cause 

distortion in the measured usn.  

Ignoring the high frequency components which can be eliminated by EKF based 

rotor position estimator, only 2nd and 4th harmonic inductances would affect the 

measurement of usn, and (7.7) could be rewritten as 

_3

2 2 4 4

2 2 4 4

3

2 4 2 4

2 4 2 4

3

cos3

[ ( ) 2 ( )] cos3

[ ( ) 2 ( )] sin 3
[ cos3
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( 2 2 ) sin 3 ]
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sn p rd r

r r q r

r r d r

r r

q r

d r

r r iq q r id d r
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L M L M i

L M L M i
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L L M M i

L L M M i
K K i K i

θ

ω ω θ

ω ω θ
ω θ

θ

θ
ω θ θ θ

≈ −

+ − − + − ⋅

+ − − − − ⋅

= −
+ − − +

+ + − −
= − + +

 (7.8) 

It could be seen that the measured usn will mainly contain three parts, viz. third 

harmonic back-EMF, influence of the q-axis current, and influence of d-axis current, 

whilst the rotor speed ωr will not affect the phase angle of the measured usn. Since the 

influence of q-axis current is in-phase with third harmonic back-EMF, it will only 

change the amplitude but not the phase angle of measured usn. However, the influence 

of d-axis current is orthogonal to third harmonic back-EMF. Furthermore, the d-axis 

current also will affect the air gap saturation which will change the third harmonic 

back-EMF constant and machine inductances. Hence, with larger d-axis current and 

influence factor Kid, and small third harmonic back-EMF constant K3, the influence 

may be too large and has to be compensated.  

7.3.2 Experimental Analysis and Estimation Error Compensation 

Several experiments have been carried out to analyze the influence of machine 

saliency and stator current on third harmonic back-EMF and rotor position estimation. 

The overall control scheme which is same as Fig. 5.8, is shown in Fig. 7.3 for 

convenience, and has been implemented on the dSPACE platform with Test Rig III. 
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Fig. 7.3.    Overall control scheme 

The FFT analysis of the measured back-EMF of the implemented Motor III at 

rated rotor speed has been shown in Fig. 7.2. It could be concluded that the third 

harmonic back-EMF is identical but not too large, and the higher order triplen harmonic 

back-EMF such as ninth and fifteenth are not smaller significantly than the third 

harmonic back-EMF.  

In order to identify the saliency level, the self-inductance against rotor position 

should be measured. With a controllable voltage source, a fixed sine wave voltage is 

imposed on the terminals of phase-A1. The frequency of this voltage is chosen to 400 

Hz to eliminate the voltage drop due to phase resistance and the influence of iron loss, 

and the amplitude of voltage is equal to 0.7 V to avoid the magnetic saturation. For 

each step of stator rotation, the amplitudes of current and the voltage in phase-A1 are 

read for calculating the self-inductances. Hence, the self-inductance of Phase-A1 

could be finally calculated by 

1 2
h

aa
h

UL
fIπ

=  (7.9) 

where Ih is the amplitude of phase current measured by current sensor and Uh is the 

amplitude of injected high frequency voltage.  

The simulated and measured self-inductance of Phase-A and their FFT analysis 
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are shown in Fig. 7.4. It could be seen that, L2 and L4 are both large which illustrate the 

machine saliency is very large. Based on the analysis of (7.8), the influence of d-axis 

current would be obvious, and the rotor position error would be too large and has to be 

compensated. 

 
(a) Simulated and measured self inductance   

 
(b) Spectrum of self inductance 

Fig. 7.4.    Simulated and measured Phase‐A self inductance 

7.3.2.1 Analysis of q-axis current influence 

When the machine windings are open circuit, the measured usn and ψsn at 200rpm 

are shown in Fig. 7.5(a) and the FFT analysis of usn is shown in Fig. 7.5(b), where the 

amplitude of usn is about 0.2891V. If id=0, then (7.8) could be rewritten as 

3[ cos3 cos3 ]sn r r iq q ru K K iω θ θ= − +  (7.10)
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(a) Measured usn and ψsn 

 
(b) Spectrum of usn 

Fig. 7.5.    Third harmonic back‐EMF and FFT analysis (iq=0A, id=0A, 200rpm) 

The spectrum of measured usn at different q-axis currents are shown in Fig. 7.6, 

from which, it could be seen that the amplitude of the measured usn has a small and 

linear change to the applied q-axis current since the influence is in-phase with third 

harmonic back-EMF. Furthermore, the phase angle is kept constant and the rotor 

position estimation error is also constant to q-axis current. Hence, its influence could 

be ignored. 
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Fig. 7.6.    Spectrum of measured usn at different q‐axis currents 

7.3.2.2 Analysis of negative d-axis current influence 

If iq is constant, then (7.8) could be rewritten as 

3[( )cos3 sin 3 ]sn r iq q r id d ru K K i K iω θ θ= − + +  (7.11) 

Then, based on the tested machine inductances in Fig. 7.4 and iq influence factor 

from Fig. 7.6, the rotor position estimation error should be able to predicted by (7.12) 

theoretically, i.e.  

3

1 arcsin
3

e
e r id
err e

r iq q

K
E K i

ωθ
ω

⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
 (7.12)

However, when the machine is working with -5A d-axis current, the amplitude of 

usn has a significant increase to 0.8183V as shown in Fig. 7.7 which is obviously not 

caused by iq. It can be determined by analysis that the magnetic saturation effect will 

change by the applied negative id. Hence, the back-EMF constant K3 will increase and 

be constant after -3A d-axis current as illustrated in Fig. 7.8 which is the spectrum of 

usn at different negative d-axis current.  
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Fig. 7.7.    Measured usn and ψsn (iq=1A, id=‐5A, 200rpm) 

  

Fig. 7.8.    Spectrum of usn at different negative d‐axis current 

Then, with measured K3 and Kiq, the phase angle shift caused by d-axis current 

which is also the rotor position estimation error can be predicted as shown in Fig. 7.9. 

However, compared with the measured estimation error which is also shown in Fig. 

7.9, they do not match well which could be caused by the change of machine 

inductances due to the air gap saturation effect caused by id. Meanwhile, Kid seems to 

be smaller from the experimental results in this case, and phase shift caused by id is 

also limited. 

Since the change of machine harmonic inductances and back-EMF constant E3 is 

nearly unpredictable, the amplitude and phase shift are both difficult to be predicted. 

However, the rotor position estimation error which is phase shift of usn will be 
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constant with id. Hence, the pre-measured estimation error at different id in Fig. 7.9 

could be compensated easily.  

 
Fig. 7.9.    Predicted and measured estimation error (Err_act: Measured rotor 

position estimation error, Err_est: Predicted rotor position estimation error) 

When the d-axis current changes from 0A to -5A, the amplitude of usn will 

change as in Fig. 7.10. Meanwhile, the phase angle also changes, which will lead 

rotor position estimation error.  

 
Fig. 7.10.    usn at different d‐axis current 

(Theta_3rd_set1: Third harmonic back‐EMF of winding set1, Theta_3rd_set2: Third 

harmonic back‐EMF of winding set2, Id_ref: d‐axis current reference, Id_set1: d‐axis 

current of winding set1, Id_set2: d‐axis current of winding set2,) 

The estimated rotor position and estimation error before and after compensation 

of the id influence are shown in Fig. 7.11. It can be seen that, the estimation error can 
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be remarkably reduced. However, in this thesis, the third harmonic back-EMF is very 

small and the machine saliency is very large. Therefore, the influence of machine 

saliency is significant. In the application with large third harmonic back-EMF 

constant and small saliency, the estimation error would be limited, and can be ignored.  

 

Fig. 7.11.    Estimation error before and after compensation   

(Theta_est_bef_com: Estimated rotor position before compensation, Theta_est: 

Estimated rotor position after compensation Theta_act: Actual rotor position, 

Error_bef_com: Position estimation error before compensation, Error: Position 

estimation error after compensation) 

7.3.2.3 Analysis of positive d-axis current influence 

Large positive d-axis current is usually used for flux enhancing and torque boost 

at low speed. When large positive id is applied, the flux density in air gap will be 

seriously saturated and the measured usn will be seriously distorted as shown in Fig. 

7.12 and have a large phase shift which is measured with 4A d-axis current at 200rpm. 

Hence, the estimated rotor position will contain large estimation error as illustrated in 

Fig. 7.13. Therefore, it is important to avoid sensorless control based on third 

harmonic back-EMF with large positive d-axis current no matter whether there is 

machine saliency or not. Fortunately, positive d-axis current is usually not used in 

most cases. 
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Fig. 7.12.    Measured usn with 4A d‐axis currents 

 

Fig. 7.13.    Estimated rotor position and estimation error (Theta_Est: Estimated 

rotor position, Theta_Act: Actual rotor position, Error: Position estimation error) 

7.3.3 Summary 

1. The machine speed and q-axis current will not affect the phase angle of the 

triplen harmonics.  

2. Negative d-axis current will change the amplitude and phase angle of the 

triplen harmonics due to the machine saliency and variety of magnetic saturation. The 

estimation error caused by negative d-axis current can be compensated based on 

pre-measured rotor position error, whilst for the machine with large third harmonic 

back-EMF constant and small machine saliency, the estimation error would be limited 

and could just be ignored.  
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3. Large positive d-axis current which is used for flux enhancing and torque 

boost at low speed, will cause serious magnetic saturation of flux-linkage leading to 

large estimation error and failure of sensorless control. Hence, it is better to avoid 

sensorless control based on third harmonic back-EMF with large positive d-axis 

current. Fortunately, positive d-axis current is usually not used in most cases. 

7.4 Rotor Position Estimation Based on Third Harmonic 

back-EMF under Imbalanced Situation for Single and Dual 

Three-Phase PMSM 

7.4.1 Detection of Third Harmonic back-EMF under Imbalanced 

Situation 

Without affected by machine saliency, (7.4) will be correct on the condition of 

balanced phase impedance and fundamental back-EMF. Then, the sum of armature 

effect of current and fundamental back-EMF should be zero, and the following 

equation can be derived based on Fourier analysis, i.e. 

1 1 1 3 9 15

3 9 15

[( ) ( ) ( ) )] ( )
( ) ( ) ( ) 3( )
3( )

an bn cn sa sb a sb sb b sc sc c a b c

s s a b c a b c

u u u R pL i R pL i R pL i e e e
R pL i i i e e e e e e
e e e

+ + = + ⋅ + + ⋅ + + ⋅ + + +
= + ⋅ + + + + + + + + +

= + + +

L

L

 (7.13)

The voltage between the central point “s” of a Y-connected resistor network and 

the machine winding neutral point “n” could be expressed as  

1 2 3

( ) / 3 ( ) / 3
( ) / 3 ( ) / 3

sn an bn cn as bs cs

an bn cn as bs cs

u u u u u u u
u u u i R i R i R

= + + − + +

= + + − + +
 (7.14)

If the resistor network is also balanced, the second part of (7.14) should be zero as 

well. Then a triplen harmonic back-EMF which equals the sum of the three phase 

back-EMF can be derived from the measured voltage between “s” and “n”, i.e. 

3 9 15( ) / 3sn an bn cn triplenu u u u e e e e= + + = + + + =L  (7.15)

Based on (7.13) and (7.14), (7.15) could be rewritten as 
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1 2 3

1 1 1

1 2 3

( ) / 3 ( ) / 3
[( ) ( ) ( ) )]/ 3

( ) / 3
( ) / 3

sn an bn cn as bs cs

sa sb a sb sb b sc sc c

a b c

as bs cs triplen

u u u u i R i R i R
R pL i R pL i R pL i
e e e
i R i R i R e

= + + − + +

= + ⋅ + + ⋅ + + ⋅
+ + +
− + + +

 (7.16)

It could be found from (7.16) that the machine impedance, fundamental 

back-EMF and sensing resistor network will affect the measurement of triplen 

harmonic back-EMF. Clearly, on the condition of balanced situation, the first three 

parts in (7.16) will be zero, and usn will just represent the triplen back-EMF of the 

machine. However, with imbalanced machine windings, three phase impedances and 

back-EMFs are usually different. Then the sum of each phase armature effect and 

back-EMF will result in a fundamental order signal with unknown amplitude and phase 

angle. With imbalanced resister network, usn will also contain certain value 

fundamental order components. Then the sum of them would be a fundamental order 

signal whose amplitude and phase angle are very difficult to predict. Hence, (7.16) 

could be rewritten as (7.17) under imbalanced situation. 

_ sin( )sn p u r u triplen f triplenu A t e u eω ϕ= + + = +  (7.17)

where Ap_u, ωr and ϕu are the amplitude, angular speed and initial phase angle of 

fundamental components uf, respectively. The angular speed ωr of uf is already known 

as it is equal to fundamental rotor speed. However, Ap_u and ϕu are both unknown in 

terms of the different imbalanced situations of phase back-EMF and resistor network.  

For Motor III which is a dual three-phase PMSM, the measured usn will contain 

fundamental components under imbalanced situation as same as single three-phase 

PMSM. The measured back-EMF of set1 is shown in Fig. 7.14 when the windings are 

open circuit with 400rpm rotor speed. A serious imbalance situation was found where 

the amplitude difference of three phase back-EMF is up to 6.7% due to the winding turn 

error. Similar situation occurs in set2, whilst two sets of resistor networks are also 

imbalanced from each other. Hence, the measured usn of two sets of windings as shown 

in Fig. 7.15(a) will contain certain fundamental components as validated by the FFT 

analysis of set1 shown in Fig. 7.15(b) where the fundamental amplitude is about 0.34V, 

nearly as large as the amplitude of third harmonic back-EMF. 
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Fig. 7.14.    Phase Back‐EMFs of set1 

 
(a) Measured usn of two sets of windings   

(u_s1n1: Measured usn of winding set1, u_s2n2: Measured usn of winding set2) 

 
(b) Spectrum of measured usn of set1 

Fig. 7.15.    Third harmonic back‐EMF and harmonic analysis 
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7.4.2 Rotor Position Estimation under Imbalanced Situation for 

Single Three-Phase PMSM operation 

7.4.2.1 Rotor position estimation under imbalanced situation 

For single three-phase PMSM operation, ψsn derived by a BPF will be constant 

amplitude and could be applied as reference to retrieve the rotor position which has 

been introduced in Section 5.3 and Section 6.3. However, with imbalanced machine 

impedance, fundamental back-EMF and sensing resistor network, ψsn should be 

re-expressed as  

9 15cos(3 )sn f triplen mp r fAψ ψ ψ θ ψ ψ ψ= + =− × + + + +L  (7.18)

where Amp is the amplitude of ψsn. Since BPF is designed for third harmonic frequency, 

the frequency response for fundamental components uf may be different. Hence, the 

amplitudes and phase angles of usn and ψsn would be both different from each other. 

To estimate the rotor position, the related orthogonal signal of ψsn also should be 

calculated based on usn. However, since the amplitude of usn varies with rotor speed, it 

should be unified as Amp considering the feedback estimated rotor speed e
rω  as  

_ 3 9 15sin(3 ) sin(3 )p
sn unified f r mp r fe

r

K
u u E A e e uθ θ

ω
= + × = × + + + +L  (7.19)

where Kp is the unify-ratio between the amplitudes of the third harmonic flux-linkage 

and back-EMF.  

When the machine is operating with one set of winding as a single three-phase 

PMSM, the measured usn_unified and ψsn derived by BPF at 200rpm are shown in Fig. 

7.16. It can be seen that the measured usn_unified and ψsn contain too much high order 

triplen harmonic noise and therefore exhibits serious fundamental order distortion due 

to the severe imbalanced situation, and the conventional rotor position estimation 

cannot be applied with such low quality signals. 
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Fig. 7.16.    Measured usn and ψsn 

To obtain the rotor position from (7.18) and (7.19), the rotor position estimator 

based on simplified EKF which has been demonstrated in Fig. 6.3 is employed. For 

single three-phase PMSM, the value of Ψ3 in this work is approximately 0.2Wb, and 

hence, the amplitude Amp in (7.18) and (7.19) are both 0.2 and the parameters of 

estimator could be set as kp=70, ki=140, and kd =80. Then, the Bode plot of the position 

estimator is shown in Fig. 7.17, and it can be seen that the loop bandwidth is around 

24Hz.  

 
Fig. 7.17.    EKF based rotor position estimator 

Due to characteristic of applied EKF based rotor position estimator, the high order 
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-2

-1

0

1

2

0 50 100 150 200

B
ac

k-
EM

F 
&

 F
lu

x-
lin

ka
ge

 S
ig

na
ls

Time (ms)

EMF_3rd Flux_3rd



Chapter 7 

197 

eliminated. However, the sub-order harmonic fundamental components cannot be 

eliminated. The overall control scheme with the proposed rotor position estimation 

strategy is the same as shown in Fig. 7.3 which has been implemented on the dSPACE 

platform with Test Rig III, and applying the EKF based rotor position estimator. Then, 

the rotor position at 200rpm rotor speed with 1A q-axis current is estimated as shown 

in Fig. 7.18, whereas the estimated error is too large to accept due to the serious 

fundamental distortion.  

 

Fig. 7.18.    Rotor position estimation under imbalanced situation   

(Theta_est: Estimated rotor position, Theta_act: Actual rotor position, Error: Position 

estimation error) 

7.4.2.2 Rotor Position Estimation with Imbalanced Situation Compensation 

Since the third harmonic back-EMF in (7.19) and the third harmonic flux-linkage 

in (7.18) are orthogonal from each other and can form a third order circular trace, they 

could be equivalent as positive sequence signals under third harmonic reference frame, 

whilst all the other components in (7.18) and (7.19) are negative and zero sequence 

components and all the contained noise signal, i.e.  

(3 )rpsn nz nzj t
mp

psn nz nz

uu u u
A e ω

ψψ ψ ψ
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤= + = +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  

(7.20)

In order to separate these components from the original measured signals, SRFF, 

i.e. synchronous reference frame filter, Fig. 7.19(a), which is applied in signal 
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demodulation of rotating high frequency carrier voltage injection strategy as 

introduced in Section 3.2.2 [GAR07] [RAC10] is the typical solution. SRFF uses the 

frame transformation to centre spectral component of interest at DC. With the aid of a 

LPF, this DC component can be easily obtained without phase lag. Conversely, 

applying the frame transformation, the positive sequence voltage is obtained. Then, 

subtracting from the original signal, the negative and zero sequence components could 

be derived. With the aid of SRFF and feedback estimated rotor position, the positive 

sequence components of the measured triplen harmonic signals, and all the other 

components which contain the relevant fundamental and higher order triplen harmonic 

components could be derived as shown in Fig. 7.19(b). 

( 3 )e
rje ω− ( 3 )e

rje ω
+

−

e
rθ

sn

sn

u
ψ

⎡ ⎤
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u
ψ

⎡ ⎤
⎢ ⎥
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p

p

u
ψ
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⎢ ⎥
⎣ ⎦

 
(a) Synchronous reference frame filter (SRFF) 

 
(b) Positive, the other contained components 

Fig. 7.19.    SRFF to separate the fundamental components from the original signals 

(Flux_3rd/EMF_3rd: Original third harmonic back‐EMF and flux‐linkage, 

Flux_P/EMF_P: Positive sequence components, Flux_NZ/EMF_NZ: All the other 

contained components) 

Each derived signal without positive sequence components contains the relevant 
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fundamental. By the effect of the EKF based rotor position estimator, the high order 

triplen harmonic components can be eliminated. However, the most sensitive 

fundamental component should be compensated in advance. 

Hence, the fundamental component compensator as shown in Fig. 7.20(a) will be 

applied to derive the pure triplen harmonic signals. Treating the higher order 

components as noise and applying the fundamental component constructor, the initial 

phase angle ϕ which is usually constant under the same imbalanced situation could be 

obtained with the aid of PLL. Meanwhile, the amplitudes Ap_u and Ap_ψ also can be 

retrieved by the amplitude estimators. Thus, the fundamental components could be 

reconstructed through the estimated amplitude _
e
p uA  and _

e
pA ψ , initial phase angle  

and e
ψϕ , and e

rω  which is the feedback estimated rotor position. 

Hence, by applying the fundamental component compensator, e.g. with 

flux-linkage, the phase angle can be derived by PLL and the feedback estimated rotor 

angular speed, and the amplitude can also be estimated, Fig. 7.20(b). Hence, the 

fundamental distortion can be reconstructed. Applying the same compensator to 

back-EMF, the reconstructed fundamental distortion of back-EMF and flux-linkage are 

shown in Fig. 7.20(c) compared with the derived negative and zero sequence 

components, and they can match well. 
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(a) Fundamental component compensator 
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(b) Derived amplitude and phase angle, and the reconstructed fundamental 
components (Flux_NZ: All the other contained components in ψsn, Amp_Recon: 

Estimated amplitude, Angle_Recon: estimated phase angle, Flux_Recon: 
Reconstructed fundamental flux‐linkage) 

 
(c) Reconstructed fundamental components compared with negative and zero 
sequence components (Flux_NZ/EMF_NZ: All the other contained components, 
Flux_Recon/EMF_Recon: Reconstructed fundamental back‐EMF and flux‐linkage) 

Fig. 7.20.    Reconstruction of fundamental components 
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Then after subtracting the reconstructed fundamental distortions from usn and ψsn, 

the pure triplen harmonic back-EMF and flux-linkage without the fundamental 

distortion could be derived as shown in Fig. 7.21, compared with the signals before 

compensation. Then, employing the EKF based rotor position estimator at the same 

200rpm rotor speed with 1A q-axis current, the rotor position could be estimated from 

the pure triplen harmonic back-EMF with high accuracy. Hence, applying the proposed 

rotor position estimator under imbalanced situation, Fig. 7.22(a), the rotor position can 

be estimated with much higher accuracy and lower fluctuation as shown in Fig. 7.22(b).  

 

Fig. 7.21.    Triplen harmonic back‐EMF before and after fundamental components 

compensation (Flux_3rd/EMF_3rd: Original signals of third harmonic back‐EMF and 

flux‐linkage, Flux_com/EMF_com: Compensated third harmonic back‐EMF and 

flux‐linkage) 
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(a) Rotor position estimator under imbalanced situation 

 
(b) Rotor positions and estimation errors 

(Theta_est: Estimated rotor position,    Theta_act: Actual rotor position,    Error: 
Rotor position estimation error,    Theta_est_com: Compensated estimated rotor 

position,    Error_com: Compensated rotor position estimation error) 

Fig. 7.22.    Rotor position estimation before and after fundamental component 

compensation 

The dynamic test is carried out when the rotor speed reference changes from 

200rpm to 320rpm as shown in Fig. 7.23. Then applying the proposed rotor position 

estimation strategy under imbalanced situation, the estimated and actual rotor positions, 

and the estimation error is shown in Fig. 7.24 compared with the values derived directly 

from the original signals. It shows that the rotor position estimated after fundamental 

component compensation can achieve much higher accuracy and lower fluctuation as 

before compensation. The experimental results demonstrate that the proposed rotor 

position estimation strategy based on third harmonic back-EMF can significantly 

improve steady-state and dynamic performance of the rotor estimation under 

imbalanced situation for single three-phase PMSM operation.  
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Fig. 7.23.    Dynamic test situation   

(Speed_ref: Speed reference, Speed: Actual rotor speed) 

 

Fig. 7.24.    Rotor position estimation before and after fundamental component 

compensation (Theta_est: Estimated rotor position,    Theta_act: Actual rotor 

position,    Error: Rotor position estimation error,    Theta_est_com: Compensated 

estimated rotor position,    Error_com: Compensated rotor position estimation error) 

7.4.3 Rotor Position Estimation under Imbalanced Situation for Dual 

Three-Phase PMSM operation 
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For dual three-phase PMSM, the measured voltages between “s1” and “n1”, and 
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of the two sets of windings as  

1 1 3_ 1 9_ 1 15_ 1 _ 1 3_ 1

2 2 3_ 2 9_ 2 15_ 2 _ 2 3_ 2

s n set set set triplen set set

s n set set set triplen set set

u e e e e e
u e e e e e

= + + + = ≈⎧
⎨ = + + + ≈⎩

L

L
 (7.21)

Usually, the two sets of winding have a spatial π/6 elec-rad shift. Hence, e3_set1 and 

e3_set2 orthogonal under third harmonic reference frame i.e. 

3_ 1

3_ 2

sin(3 )
sin(3 ( / 6)) cos(3 )

set mp r

set mp r mp r

e A
e A A

θ
θ π θ

= ×⎧
⎨ = × − = −⎩

 (7.22)

However, with imbalanced machine impedance, fundamental back-EMF and 

sensing resistor network, usn of the two sets of windings should be re-expressed as 

1 1 _ 1 9 15 1

2 2 _ 2 9 15 2

sin(3 )
cos(3 )

s n triplen set f mp r f

s n triplen set f mp r f

u e u A e e u
u e u A e e u

θ
θ

= + = × + + + +⎧
⎨ = + = − × + + + +⎩

L

L
 (7.23)

When the Motor III is operating as a dual three-phase PMSM, the measured usn of 

the two sets of windings at 200rpm are shown in Fig. 7.25, where the measured usn both 

contain too much high order triplen harmonic noise and fundamental order distortion.  

 

Fig. 7.25.    Measured usn of two sets of windings   

(u_s1n1: Measured usn of winding set1,    u_s2n2: Measured usn of winding set2) 

Applying the simplified EKF based rotor position estimator, these high order 

harmonic components such as ninth, fifteenth, etc, will be eliminated, and will almost 

not affect the accuracy of position estimation. However, for dual three-phase PMSM, 

since Amp is speed-dependent, kp, ki and kd of PI controller should be on-line tuned with 

speed to maintain the constant bandwidth which has been introduced in details in 
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Section 6.4. Then, employing the overall control scheme which is same as Fig. 6.16 

and shown in Fig. 7.26 for convenience, but with on-line tuned EKF based estimator, 

the rotor position can be derived at 200rpm rotor speed with 1A q-axis current as 

shown in Fig. 7.27 but with too large error.  

*
_ 2dq seti

+
−

_ 2dq seti

*
_ 2dq setu

+
−

_ 1dq seti

*
_ 1dq seti

*
_ 1dq setu

dq
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_ 1setuαβ
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_ 2setuαβ

DCV

dq
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1set

_1&2snu
e
rω
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+
−

estθ
e
rθ

*ω

e
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Fig. 7.26.    Overall control scheme 

 

Fig. 7.27.    Rotor position estimation under imbalanced situation (u_s1n1: Measured 

usn of winding set1, u_s2n2: Measured usn of winding set2, Theta_EKF: Estimated 

rotor position, Theta_ACT: Actual rotor position, Err_EKF: Position estimation error) 

7.4.3.2 Rotor position estimation with imbalanced situation compensation 
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other and can form a third order circular trace, they could be equivalent as positive 

sequence voltages under third harmonic reference frame, whilst all the other 

components are negative and zero sequence components and all the contained noise 

signal, i.e. 

(3 )
_1&2 _1&2 _1&2 _1&2

rj t
sn p nz mp nzu e e A e eω= + = +  (7.24)

In order to separate the positive sequence components from the original measured 

signals, with the aid of feedback estimated rotor position, applying SRFF as shown in 

Fig. 7.28(a), the positive sequence component, and the other components which 

contain the relevant fundament could be derived as shown in Fig. 7.28(b). 

( 3 )e
rje ω− ( 3 )e

rje ω
+

−

e
rθ

_1&2snu _1&2pe
_1&2nze

 
(a) SRFF 

 
(b) Positive, negative and zero sequence components   

(u_s1n1/u_s2n2: Measured usn of winding set1 and set2, e_p_set1/e_p_set2: 
Positive sequence components of winding set1 and set2, e_nz_set1/e_nz_set2: 

All the other contained components of winding set1 and set2) 

Fig. 7.28.    SRFF to separate the fundamental components from the original signals 

Then, the fundamental component compensator as shown in Fig. 7.29(a) is applied 
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amplitude Ap also can be retrieved by the amplitude estimators. Thus, the fundamental 

components could be reconstructed through the estimated amplitude e
pA  and initial 

phase angle eϕ , and e
rω  which is the feedback estimated rotor position. Hence, the 

reconstructed fundamental distortions of back-EMFs are shown in Fig. 7.29(b) 

compared with the derived negative and zero sequence components, and they can 

match well. Then subtracting the reconstructed fundamental distortions from usn_1&2, 

the pure triplen harmonic back-EMFs could be derived as shown in Fig. 7.30, compared 

with the ones before compensation. 
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(a) Fundamental components compensator 

 
(b) Reconstructed fundamental components compared with negative and zero 

sequence components (e_nz_set1/e_nz_set2: All the other contained 
components of winding set1 and set2, FUD_Recon_set1/FUN_Recon_set2: 

Reconstructed fundamental components of winding set1 and set2) 

Fig. 7.29.    Reconstruction of fundamental components 
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Then, applying the EKF based rotor position estimator, the rotor position could be 

estimated from the pure triplen harmonic back-EMF with high accuracy. The overall 

rotor position estimator is shown in Fig. 7.31(a), and the rotor position can be estimated 

with much higher accuracy and lower fluctuation as shown in Fig. 7.31(b).  

 

Fig. 7.30.    Triplen harmonic back‐EMF before and after fundamental compensation 

(u_s1n1/u_s2n2: Measured usn of winding set1 and set2, e_triplen_set1/ 

e_triplen_set2: compensated triplen harmonic back‐EMF of winding set1 and set2) 

The dynamic test is carried out when the rotor speed reference change from 

200rpm to 320rpm, Fig. 7.23. Then applying the rotor position estimation strategy 

under imbalanced situation, the experimental results for dual three-phase PMSM are 

shown in Fig. 7.32 compared with the values derived directly from the original signals. 

The experimental results demonstrate that proposed rotor position estimation strategy 

based on third harmonic back-EMF can significantly improve steady-state and dynamic 

performance of the rotor estimation under imbalanced situation with high robustness 

for dual three-phase PMSM under imbalanced situation.  
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e
rθ_1&2snu _1&2nze _1&2triplene

 
(a) Rotor Position Estimator under Imbalanced Situation 

 
(b) Rotor position before and after fundamental component compensation 
(Theta_EKF: Estimated rotor position, Theta_ACT: Actual rotor position, Err_EKF: 
Rotor position estimation error, Theta_EKF_com: Compensated estimated rotor 

position, Err_EKF_com: Compensated rotor position estimation error) 
Fig. 7.31.    Rotor position estimation under fundamental component compensation 

 

Fig. 7.32.    Dynamic performance before and after fundamental components 

compensation (Theta_EKF: Estimated rotor position, Theta_ACT: Actual rotor 

position, Err_EKF: Position estimation error, Theta_EKF_com: Compensated 

estimated rotor position, Err_EKF_com: Compensated Position estimation error) 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-8

-6

-4

-2

0

2

4

6

8

0 50 100 150 200

Po
sit

io
n 

Er
ro

r (
ra

d)

R
ot

or
 P

os
iti

on
 (

ra
d)

Time (ms)

Theta_EKF Theta_EKF_COM Theta_ACT
Err_EKF Err_EKF_COM

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-8

-6

-4

-2

0

2

4

6

8

0 50 100 150 200

Po
sit

io
n 

Er
ro

r (
ra

d)

R
ot

or
 P

os
iti

on
 (

ra
d)

Time (ms)

Theta_EKF Theta_EKF_COM The_ACT
Err_EKF Err_EKF_COM



Chapter 7 

210 

7.5 Conclusion 

In this chapter, the potential absence of third harmonic back-EMF has been 

discussed. If the ratio of third harmonic back-EMF to the fundamental is smaller than 

2%, the sensorless control strategies based on third harmonic back-EMF may not be 

able to be implemented due to its smaller amplitude and SNR. Meanwhile, since the 

third harmonic back-EMF is also proportional to rotor speed, all sensorless controls are 

usually employed above 5% of the rated speed but suffering at zero and low speed. 

Hence, sensorless control methods based on high frequency carrier signal injection as 

introduced in Chapter 3 and Chapter 4 are widely implemented due to the effectiveness 

in that region. 

In salient machines, the winding inductance varies with the rotor position. Thus, 

usn will be affected by stator current. After experimental investigation and validation, 

it can be concluded that: the rotor speed and q-axis current will not affect the phase 

angle of the third harmonics; negative d-axis current will change the amplitude and 

phase angle of the triplen harmonics due to the machine saliency and variety of 

magnetic saturation, and the estimation error can be compensated based on 

pre-measured data; large positive d-axis current which will cause serious saturation of 

flux-linkage should be avoided when third harmonic back-EMF based sensorless 

control is employed no matter there is machine saliency or not. 

With imbalanced machine parameters, the fundamental back-EMF based 

sensorless control strategies may not be affected due to the small ratio between 

imbalanced effects to the fundamental back-EMF. However, for the sensorless control 

based on third harmonic back-EMF, the measured triplen harmonic back-EMF will 

contain certain fundamental components which will deteriorate the rotor position 

estimation. With the aid of fundamental component compensator, the fundamental 

component distortion in measured usn due to the imbalanced machine parameters and 

sensing resistor network can be compensated in advance to improve the performance. 

The experiments on dual three-phase PMSM with serious imbalanced situation under 

single and dual three-phase operation prove that the improved rotor position estimation 
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strategy can significantly compensate the contained fundamental components caused 

by imbalance situation. Therefore, the steady-state and dynamic performance of single 

and dual three-phase PMSM can be remarkably improved with high robustness.  
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CHAPTER 8 

GENERAL CONCLUSION AND DISCUSSION 

 
This thesis is focused on the sensorless control of PMSM based on high 

frequency carrier voltage injection for zero and low speed region and third harmonic 

back-EMF for higher speed region as illustrated in Fig. 8.1. A brief summary of the 

each sensorless control methods are shown at the bottom of Fig. 8.1 where the merits 

of them are highlighted as yellow. 

Sensorless control

Zero/Low Speed
Saliency based

High Speed
Fundamental model based

Persistent Transient Back-EMF

Rotating PulsatingStationary 
Pulsating

Third Back-EMF Flux ObserverPWM

Chapter 3 Chapter 5

Speed 
Compensation EKF&3rd EMF Restrictions

Chapter 6 Chapter 7

Sinusoidal 
waveform

Square 
waveform Sensorless Error 

compensation
Single 

three-phase
Dual  

three-phase Absence Saliency

Unbalanced parameters

Single 
three-phase

Dual  
three-phase

Saliency 
requirement

Bandwidth

Dynamic 

Estimation 
Noise

Robustness

Y Y N N N N N N N

M H M M M H M H

M H M M M H M H

M M M H M H M H

L M L L L M L L

Summary

Chapter 4

Sinusoidal Square

 

Y=Yes;    N=No;    H=High;    M=Medium;    L=Low 

Fig. 8.1.    Research structure and key features of each investigated method 
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8.1 Sensorless Control  

8.1.1 Sensorless Control Based on Machine Saliency 

Machine saliency, resulting from machine geometric anisotropy and magnetic 

saturation, is essential for saliency based sensorless control techniques, which are well 

developed due to the effectiveness at zero and low speed region. A high frequency 

carrier voltage signal (pulsating or rotating conventionally) is persistently 

superimposed on the fundamental excitation, and then the position-dependant carrier 

current response, which results from the interaction between the injected carrier 

voltage signal and the machine saliency, can be used to extract rotor position 

information. 

Based on the detailed discussion on commonly used conventional high frequency 

carrier signal injection based sensorless control techniques, a new strategy with 

injection of a pulsating sinusoidal waveform high frequency carrier voltage into α- (or 

β-) axis of stator stationary reference frame is presented, and then the rotor position 

information is retrieved from the carrier current response which is 

amplitude-modulated by rotor position. The new strategy has the advantages of 

(a) Stable performance of signal injection as conventional rotating carrier signal 

injection method. 

(b) Simple signal demodulation from amplitude-modulated carrier current 

response as conventional pulsating carrier signal injection method.  

Considering the bandwidth of position observer and carrier signal demodulation, 

the higher the injected carrier voltage frequency, the better. However, it is upper limited 

by the PWM frequency. Normally, the carrier frequency of the injected sinusoidal 

voltage is chosen as 1/50 ~ 1/10 PWM frequency. Regarding to amplitude of injected 

carrier voltage, it is a compromise between the utilization of DC bus voltage and SNR 

of the carrier current response. Hence, by employing high frequency square waveform 

pulsating carrier voltage into stator stationary reference frame, the bandwidth of the 

position estimation can be significantly improved due to the higher injected frequency 
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and removal of all filters in the demodulation process. Meanwhile, since the injected 

frequency is much higher even than the fundamental frequency at rated speed, the 

square waveform injection method is possible to be applied at wider range of speed and 

deduce the higher performance.  

Since the machine primary saliency undergoes two cycles in single electrical 

period, the estimated position information from machine saliency behavior suffers from 

an angle ambiguity of π. Hence, magnetic polarity identification is required for initial 

rotor position estimation. Then, by the magnetic saturation effect of d-axis fundamental 

current, the change of the response current magnitude can be used to detect the 

magnetic polarity. The comparison of the three difference high frequency carrier 

signal injection strategies is shown in Table 8.1.  

TABLE 8.1 

COMPARISON OF CARRIER SIGNAL INJECTION STRATEGIES 

 Pulsating Rotating Proposed 

Signal injection 

Reference frame 
Estimated 

synchronous 
Stationary Stationary 

Carrier voltage 

injection 

Pulsating carrier 

voltage 
Rotating carrier voltage 

Pulsating carrier 

voltage 

Carrier current 

response 
Amplitude-modulated Phase-modulated Amplitude-modulated

Stability of signal 

injection 
Medium Good Good 

Signal 

demodulation  
Simple Complex Simple 

Square waveform 

applicability  
Applicable Not applicable Applicable 

Magnetic polarity 

detection 
Required Required Required 
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8.1.2 Sensorless Control Based on Third Harmonic Back-EMF 

Since the back-EMF voltage is proportional to rotor speed, when the rotor speed is 

sufficiently high, the back-EMF component in the high frequency voltage equation 

cannot be ignored, and will affect the high frequency carrier voltage injection based 

sensorless control. Then, the back-EMF based sensorless control should be applied due 

to its good performance at higher speed region. Fundamental back-EMF based 

sensorless control methods are widely employed. Third harmonic back-EMF in the 

stator phase back-EMF due to the saturation effect and/or character of designed PM 

excited flux-linkage which contains third harmonic on purpose is also widely 

employed for sensorless control, due to its insensitivity to the machine and controller 

parameters. The comparison of them is shown in Table 8.2. 

TABLE 8.2 

COMPARISON OF BACK-EMF BASED SENSORLESS CONTROLS 

 Fundamental back-EMF Third harmonic back-EMF 

Applicability 
SPM/IPM(with extend 

back-EMF or active flux) 
SPM/IPM 

Neutral point access  Not required Required 

Sensitivity to parameters High Low 

Sensitivity to imbalance Low Medium  

Sensitivity to PWM Medium Low 

Sensitivity to high order 

harmonic back-EMF 
Low Medium  

Flux weakening No limit 
No limit for SPM/Available for 

IPM  

SNR High Medium 
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The conventional strategy based on third harmonic back-EMF suffers at dynamic 

situation due to inaccurate average rotor speed calculated from the insufficient precise 

rotor position reference. To minimize the rotor position error and improve the dynamic 

performance, a speed error compensation strategy based on the continuous signal of 

third harmonic flux-linkage is proposed. With the same speed error compensation 

concept, the performance of flux observer based sensorless control which is sensitive to 

the machine and controller parameters can be significantly improved. Meanwhile, the 

robustness can also be enhanced due to the mutually complementary.  

For the speed error compensation based sensorless control, the source signal 

quality is of great importance. With poor quality signals, the speed calculation may 

fail. Hence, based on EKF, the two essential orthogonal signals which are third 

harmonic back-EMF and flux-linkage can be directly applied with the simplified EKF 

based rotor position estimator to derive the rotor position even though there may 

contain too much high order harmonic components. For dual three-phase PMSM, the 

two sets of third harmonic back-EMFs are orthogonal under third harmonic reference 

frame, and can be applied with the same simplified EKF based rotor position 

estimator to derive the rotor position without any filtering, which can significantly 

enhance the observe bandwidth and dynamic performance. 

Third harmonic back-EMF based sensorless control also have some restrictions as 

summarized below: 

(a) An adequate third harmonic component must exist in the airgap field, whilst 

the third harmonic winding factor should not be too low. 

(b) The winding neutral point should be accessible. 

(c) The winding inductance should be constant.  

(d) The three-phase parameters and sensing resistor network should be well 

balanced. 

Without sufficient third harmonic back-EMF nor access of winding neutral, third 

harmonic back-EMF based sensorless control cannot be employed, and hence, 

alternative sensorless control should be employed. 

In salient machines, the winding inductances vary with the rotor position. Thus, 
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the measured third harmonic back-EMF will be affected by stator current, and the 

shifted phase angle is not easy to be predicted due to the nonlinearity of the d-axis 

current introduced saturation effect. Hence, the estimation error should be compensated 

based on pre-measured data.  

With imbalanced machine impedance, fundamental back-EMF or sensing resistor 

network, the measured triplen harmonic back-EMF will contain certain fundamental 

components which will deteriorate the rotor position estimation. With the aid of 

fundamental components compensator, the fundamental components distortion in 

measured triplen harmonic back-EMF due to the imbalanced machine parameters and 

sensing resistor network can be compensated in advance. Then, the steady-state and 

dynamic performance of single and dual three-phase PMSM can be remarkably 

improved with high robustness.  

Each rotor position estimation algorithm can be equivalently seen as a linear 

model. With different types of regulator, the equivalent linear model has different 

order and frequency response. Usually, an equivalent second order linear model with 

a damping factor ξ of 0.707 is preferred since it has very good dynamic performance 

without overshooting. However, at different operating condition, the optimum 

parameters are also different, which makes the optimization process with significant 

difficulty. Meanwhile, the risk of unstable situation of the whole control system with 

unsuitable parameters of any regulator is also obvious. Hence, the parameter tuning is 

of great importance, and should be treated very carefully.  

8.2 Future Work: Hybrid Sensorless Control with Proper 

Designed Motor 

Due to extra losses, additional current harmonics, torque ripples and acoustic 

noise resulting from carrier voltage injection, carrier signal injection based sensorless 

methods are only accepted for standstill and low speed operation, where fundamental 

model based sensorless methods fail to effectively estimate the rotor position 

information.  
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Back-EMF based sensorless control shows good performance at high speed region 

but suffers at zero and low speed. However, fundamental back-EMF based strategies 

including back-EMF based, flux-linkage based and the other entire observer based, 

nearly all sensitive to the machine parameters. For salient PMSM, further machine 

model has to be developed. Even the third harmonic back-EMF is also suffering with 

machine saliency and imbalanced machine and measurement parameters. 

As a result, it is desirable to combine different types of sensorless control together 

to compensate their drawbacks. However, from the analysis in this thesis, it can be 

found that some essential requirement for certain sensorless may be harmful to the 

others. Considering the requirement of sensorless control and compromising each 

conflict in the machine design, it is expected that high performance sensorless position 

estimation based on the fusion of different strategies could be achieved without 

complex compensation. 
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APPENDICES 
 

Appendix I Specification of Prototype Machines 

Motor I 

Rated voltage (peak) 158 V 

Rated current (peak) 4.0 A 

Rated power 0.6 kW 

Rated speed 1000 rpm 

Rated torque 4.0 Nm 

Pole number 6 

Slot number 18 

Number of series connected 
conductors/pole/phase 152 turns 

Wire diameter (2 wires stranded) 0.36 mm + 0.51 mm 

Winding coil pitch 3 slots 

Winding resistance per phase 6.0 Ω (20°C) 

Skew 1 slot-pitch 

Stator outer radius 53.30 mm 

Stator inner radius 31.00 mm 

Rotor outer radius 30.25 mm 

Core length (stator) 32.00 mm 

Core length (rotor) 30.00 mm 

Shaft diameter 25.00 mm 

Air gap length 0.75 mm 

Magnet UGIMAX 35HC1 (Br=1.17T, μr=1.07) 

Stator Steel Transil 310-50 

Rotor Steel Transil 310-50 (Surface-mounted PM motor) 
Transil 300-35 (Inset and interior PM motors) 
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Motor II 

Rated DC voltage  600 V 

Rated phase current (RMS) 5.83A 

Rated output power 3194.48W 

Total number of coils 42 
Open circuit Phase EMF (RMS) @ 

170rpm 60oc  
1st 199.44V 

3rd 26.78V 

5th 0.62V 

7th 0.46V 

Cogging torque p-p 60C 1.24Nm 

Cogging torque 60C 0.31% 

Pole number 28 

Mechanical rated speed 170rpm 

Current density 4.06A mm-2 

Rated torque (current source) 195.84Nm 

Rated input power 3486.41W 

Phase resistance DC 20oC 1754.9mΩ 

Phase resistance DC 95oC 2272.1mΩ 

Copper losses (fundamental) 231.97W 

iron losses full load based on SPEED 59.96W 

Rated efficiency 91.63% 

Rated power factor 99.48 

Ld (exclude the end winding) 13.04mH 

Lq (exclude the end winding) 13.04mH 

PM flux per pole 1.1315Wb 
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Motor III 

Supply DC voltage  36V 

Rated torque  5.5 Nm 

Rated speed  400 rpm 

Rated power 260W 

Slot number 12 

Pole number 10 

Stator outer radius  50 mm 

Stator inner radius  28.5 mm 

Yoke height  3.7 mm 

Tooth body width  7.1 mm 

Slot opening  2 mm 

Stack length  50 mm 

Airgap length  1 mm 

Rotor outer radius  27.5 mm 

Magnet thickness 3 mm 

Magnet remanence 1.2 T 

Number of series turns per phase 132 

Phase resistances (RA1, RB1, RC1, RA2, RB2, RC2) 1.11, 1.10, 1.11, 1.10, 1.10, 1.14 Ω
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Appendix II Transformation of Phase Vector with 

Harmonics 

Assuming a phase vector f(δ) with harmonics can be expressed in station 

reference frame, as 

1 3 5 7

1 3 5 7
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It can be re-written as 
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With coordinate transformation, the phase vector f(δ) can be transformed to 

synchronous reference frame 
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Then, 
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If the fundamental component of f(δ) is synchronous to the d-axis, i.e., δ=θr+ϕ 

where ϕ is a constant phase shift. Then the above equation can be simplified to be, 

5 7 5 71

5 7 5 71

( ) cos 6 ( ) cos 6cos( )
cos sin

( ) sin 6 ( ) sin 6sin( )
d r

q r

f k k k kk
f k k k kk

δ δθ δ
ϕ ϕ

δ δθ δ
+ −−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ − + +−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
L (A2.5) 

It shows that only 6th , 12th … harmonics exist in the synchronous reference 

frame.
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Appendix III Rotating Carrier Signal Injection into the 

Estimated Synchronous Reference Frame 
Considering the types of carrier injection signal, pulsating and rotating, and the 

injected reference frames, estimated synchronous reference frame and stationary 

reference frame, there should be1 four different high frequency carrier signal injection 

based sensorless controls, as shown in Table A1. 

TABLE A1 

HIGH FREQUENCY CARRIER SIGNAL INJECTIONS  

 Pulsating carrier voltage Rotating carrier voltage 

Estimated 
synchronous reference 

frame 

Conventional pulsating carrier 
signal injection 

Rotating carrier signal injection 
into estimated synchronous 

reference frame  
(To be introduced) 

Stationary reference 
frame 

Pulsating carrier signal injection 
into stationary reference frame 

(Proposed in Chapter 3) 

Conventional rotating carrier 
signal injection 

 

Two conventional pulsating carrier signal injection based sensorless control have 

been widely researched and employed. The pulsating carrier signal injection into 

stationary reference frame is also proposed in Chapter 3. However, the fourth type, 

i.e., rotating carrier signal injection into estimated synchronous reference frame has 

not been researched. In this appendix, it will be introduced.  

Rotating carrier signal injection into estimated synchronous reference frame 

method injects a balanced three phase voltage carrier signal into the estimated 

reference frame to form a rotating excitation superimposed on the fundamental 

excitation as demonstrated in Fig. A1. The rotor position information can be obtained 

from the carrier current response which is phase-modulated by rotor position.  
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Fig. A1.    Conventional rotating signal injection 

A balanced rotating carrier voltage vector (A2.6) which is shown in Fig. A2 is 

injected into estimated synchronous reference frame,  
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e
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where Uc, ωc and ϕ are the amplitude, angular speed and the initial phase angle of the 

injected pulsating high frequency voltage, respectively. Then the Phase-A current 

response is shown in Fig. A3, whilst the rotor position is contained in the carrier 

current response. 

 

Fig. A2.    Injected rotating carrier voltage (Uc=12V, f=330Hz) 
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Fig. A3.    Phase‐A current response 

The differential of the carrier current in the estimated synchronous reference 

frame as shown in (3.9) can be re-expressed as  
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 (A2.7)

Then, the resultant carrier current response in the estimated synchronous 

reference frame will be shown in (A2.8) and Fig. A4. 
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and by using complex vector as 

( 2 /2)( /2) mjj
h p ni I e I e α θ θ πα π − + Δ + +−= ⋅ + ⋅  (A2.9)
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Fig. A4.    Carrier current response of rotating signal injection 

Clearly, the carrier current response consists of two components. The first term is 

a positive sequence component, which has the same angular speed as the injected 

carrier voltage vector, and the second term is referred to as the negative sequence 

component, which contains the rotor position information in phase angle. 

In order to extract the position dependent negative sequence carrier current from 

the total current response, SRFF which is exactly the same as the one in conventional 

rotating carrier signal injection method is employed. Firstly, SRFF uses the frame 

transformation based on feedback estimated rotor position to transform the 

fundamental current to DC. With the aid of a LPF, this DC component is obtained 

without phase lag. Then with the reverse frame transformation, this fundamental 

current can be easily obtained. By employing the same procedure with the phase angle 

of the injected carrier voltage, the positive sequence current can be derived. The 

employed demodulation procedure is shown in Fig. A5. Then subtracting them from 

the total current response, the negative sequence current can be obtained as 

( 2 /2)mj
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Fig. A5.    Signal demodulation for rotating injection [GON12] 

Then in in the reference frame synchronous with estimated negative sequence 

carrier frequency, can be expressed as shown in (A2.11) and Fig. A6. 

( 2 /2) (2 )( /2) negm m jj jj
neg n n ni I e e I e I e θα θ θ π θ θα π− + Δ + + Δ +−= ⋅ ⋅ = ⋅ = ⋅  (A2.11)

which is identical to (3.30) in conventional rotating carrier signal injection method. 

Normally, the q-axis component is regarded as the error signal f(Δθ) input to the 

position observer as shown in Fig. 3.14, i.e.  

_( ) sin(2 )neg q n mf i Iθ θ θΔ = = Δ +  (A2.12)

 

Fig. A6.    Demodulated negative sequence carrier current response in estimated 

negative sequence reference frame 

Therefore, the rotor position with the cross-saturation error (-θm/2) can be 

estimated. With cross-saturation effect compensation which is the same as the one in 

conventional rotating carrier signal injection method, the accurate rotor position can be 

derived. The block diagram of rotating carrier voltage signal injection into the 
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estimated synchronous reference frame based sensorless control is shown in Fig. A7. 

 

Fig. A7.    Block diagram of rotating injection into the estimated synchronous 

reference frame based sensorless control   

Compared with this strategy with conventional rotating carrier signal injection, it 

can be found that, except the injected reference frame, the whole signal demodulation 

process is nearly the same as conventional rotating method. It is also expected that 

this method could achieve the same steady-state and dynamic performances. 

The steady-state tests for the rotating carrier signal injection into estimated 

synchronous reference frame method is carried out at the condition of 50rpm rotor 

speed with about 1A q-axis current, and the estimated rotor positions considering the 

cross-saturation effect are shown in Fig. A8 compared with the actual value from 

encoder. It can be seen that the estimation error is sufficiently small and the estimated 

rotor position is with high accuracy. The dynamic performance tests are carried out 

when the rotor mechanical initial speed is zero and step change to 25rpm and then 

50rpm as demonstrated in Fig. 3.16, and the estimated and actual rotor positions, as 

well as the estimation error are shown in Fig. A9. The experimental results prove that 

the two conventional high frequency injection methods have outstanding dynamic 

performances. Compared with the steady-state, Fig. 3.15 (b), and dynamic 

performances, Fig. 3.17(b), this method can achieve the similar experimental results 
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as expected. 

 

Fig. A8.    Steady‐state performance (Theta_est: Estimated rotor position, Theta_act: 

Actual rotor position, Error: Position estimation error) 

 

Fig. A9.    Dynamic performance (Theta_est: Estimated rotor position, Theta_act: 

Actual rotor position, Error: Position estimation error) 
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Appendix IV Patents and Papers during This PhD Study 

Patents 

1. J.M. Liu, Z.Q. Zhu, “System for correcting an estimated position of a rotor of an 

electrical machine” Siemens plc. SWP Ref. 2012E13219 GB PTT/REI, European 

Patent application no/Patent no: 12183314.9 – 1242, application date: 6 Sept. 

2012 

2. J.M. Liu, Z.Q. Zhu, and Zhan-Yuan Wu “Estimation method of generator initial 

rotor position for wind power application,” Siemens plc. SWP Ref. 2012E16745 

GB PTT/BKT, application date: 12 Jul. 2012 

3. J.M. Liu, Z.Q. Zhu, and Zhan-Yuan Wu “Rotor position estimation for 

dual-three-phase PM machine under imbalanced situation,” Siemens plc. SWP Ref. 

2012E28198 GB PTT/BKT, application date: 21 Dec. 2012 

Papers 

Journal Papers: 

1. J.M. Liu, Z.Q. Zhu, “Improved sensorless control of permanent magnet 

synchronous machine based on third-harmonic back-EMF,” IEEE Trans. Ind. Appl. 

in press.  

2. J.M. Liu, Z.Q. Zhu, “Novel sensorless control strategy with injection of 

high-frequency pulsating carrier signal into stationary reference frame,” IEEE 

Trans. Ind. Appl. Under revision. 

3. J.M. Liu, and Z.Q. Zhu, “Rotor position error compensation based on third 

harmonic back-EMF in flux observer based sensorless control,” IET-Electric 

Power Appl. Submitted. 

4. J.M. Liu, and Z.Q. Zhu, “High-bandwidth sensorless control strategy by square 

waveform high frequency pulsating signal injection into stationary reference 

frame,” Special Issue on Advanced Control of Electric Motor Drives in Journal of 

Emerging and Selected Topics in Power Electronics, Under revision 

5. J.M. Liu, and Z.Q. Zhu, “Sensorless control based on third harmonic back-EMF 
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and PLL for permanent magnet synchronous machine,” Journal of International 

Conference on Electrical Machines and Systems, JICEMS, Submitted. 

6. J.M. Liu, and Z.Q. Zhu, “Rotor position estimation for dual-three-phase 

permanent magnet synchronous machine based on third harmonic back-EMF,” 

Drafted, waiting for patent processing, to be submitted to IEEE Trans. Ind. 

Electron. 

7. J.M. Liu, and Z.Q. Zhu, “Rotor position estimation for dual-three-phase 

permanent magnet synchronous machine under imbalanced situation,” Drafted, 

waiting for patent processing, to be submitted to IEEE Trans. Ind. Electron. 

8. T.C. Lin, L.M. Gong, J.M. Liu, and Z.Q. Zhu “Investigation of saliency in 

switched-flux permanent magnet machine using high-frequency signal injection,” 

IEEE Trans. Ind. Electron. In press. 

9. Y. Ren, Z.Q. Zhu, and J.M. Liu, “torque regulator to reduce steady-state error of 

torque response for direct torque control of permanent magnet synchronous 

machine drives,” IET-Electric Power Applications, Accepted. 

10. Y. Ren, Z.Q. Zhu, and J.M. Liu, “Direct torque control of permanent magnet 

synchronous machine drives with simple duty ratio regulator,” IEEE Trans. Ind. 

Electron., Submitted. 

Conference Papers: 

1. J.M. Liu, Z.Q. Zhu, “Improved sensorless control of permanent magnet 

synchronous machine based on third-harmonic back-EMF,” IEEE International 

Electric Machines and Drives Conference, IEMDC2013, 2013, pp. 1180-1187.  

2. J.M. Liu, Z.Q. Zhu, “A new sensorless control strategy by high-frequency 

pulsating signal injection into stationary reference frame,” IEEE International 

Electric Machines and Drives Conference, IEMDC2013, 2013, pp. 505-512.  

3. J.M. Liu, and Z.Q. Zhu, “Sensorless control based on third harmonic back-EMF 

and PLL for permanent magnet synchronous machine,” International Conference 

on Electrical Machines and Systems 2013, ICEMS2013, Accepted.  

4. J.M. Liu, and Z.Q. Zhu, “Investigation of stator current and machine saliency 

influence on sensorless control based on third-harmonic back-EMF,” IET int. conf. 

on Power Electronics, Machines and Drives, PEMD, 2014, Submitted 
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5. J.H. Leong, Z.Q. Zhu, and J.M. Liu, “Space-vector PWM based direct torque 

control of PM brushless machine drives having non-ideal characteristics,” 8th 

International Conference and Exhibition on Ecological Vehicles and Renewable 

Energies, EVER`13, 2013, pp. 1-6. 

6. J.H. Leong, Z.Q. Zhu, and J.M. Liu, “Minimization of steady-state torque 

tracking error in direct-torque controlled pm brushless AC drives,” 8th 

International Conference and Exhibition on Ecological Vehicles and Renewable 

Energies, EVER`13, 2013, pp. 1-4. 


