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Abstract 

Modern agriculture relies on chemical herbicides to control weedy species that 

compete with crops. In the UK, an estimated 80 % of cropland is infested with the 

weed species black-grass (Alopecurus myosuroides) that has evolved resistance to 

multiple herbicides with different modes-of-action. Studies in resistant black-grass 

identified a phi (F) class glutathione transferase, AmGSTF1, which was 

constitutively expressed. Heterologous expression of AmGSTF1 in a transgenic host 

plant granted a multiple herbicide resistant (MHR) phenotype and it was found that 

the enzyme induced the activities of endogenous detoxification enzymes as well as 

catalytically detoxifying damaging hydroperoxides in vitro, which can form as a 

downstream consequence of herbicide treatment. 

In the current work, AmGSTF1 mutants have been derived and exploited to better 

understand the function of AmGSTF1 in eliciting MHR. Using a catalytically-

retarded mutant, it is shown that the enzyme elicited MHR without requiring 

catalysis. Instead, the mutant induced the activities of endogenous detoxification 

enzymes. Another mutant, lacking a cysteinyl residue (Cys120), has demonstrated 

that Cys120 plays a key role in the interaction of AmGSTF1 with xenobiotics. In 

particular, Cys120 can be alkylated and inhibited by 4-chloro-7-nitro-benzoxadiazole 

(NBD-Cl), a compound that can reverse MHR when sprayed on black-grass plants. 

Enzyme inhibition and alkylation studies found that AmGSTF1 could be alkylated by 

other chemicals but that this did not induce notable inhibition of the protein. The 

cysteinyl mutant also induced MHR in a transgenic host plant by inducing the 

activities of endogenous detoxification enzymes. The properties of AmGSTF1 

orthologues from annual rye-grass (Lolium rigidum) and maize (Zea mays) were also 

explored and found to display very similar functional properties as AmGSTF1. 

Transcriptome profiling demonstrated that AmGSTF1 did not induce changes in host 

plant biochemistry by perturbing gene expression. 

These studies have therefore demonstrated a central regulatory role for GSTF1 

enzymes in co-ordinating MHR associated with manipulating host detoxification 

pathways and challenges the scientific dogma that glutathione transferases require 

catalytic activity to elicit herbicide resistance. 
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Chapter 1 – Introduction 

1.1 Overview of herbicide resistance 

Modern industrial arable farming relies on the use of herbicides that target and kill 

weedy plant species, which would otherwise directly compete with crops and 

damage crop yields. Herbicides act in planta by binding to a target site protein and 

disrupting metabolism to an extent that the plant can no longer survive (Powles and 

Yu, 2010). These compounds can be classified according to common chemical and 

structural motifs and also the site-of-action they specifically target in the plant. There 

are 301 herbicides in common use today which fall into one of 22 possible chemical 

classes and target one of 19 known sites-of-action (Heap, 2013) (Figure 1).  

The intensive application of herbicides in modern farming has imposed a strong 

evolutionary pressure on weed species to select for individuals bearing mutations 

that promote weed survival upon herbicide exposure. Due to the strong lethality of 

herbicides on individuals bearing no adaptive mutations, herbicide resistant 

individuals rapidly dominate the seed bank leading to resistant weed populations 

(Jasieniuk et al., 1996). Evolved resistance to herbicides in weed species has been 

observed now for over 40 years, since one of the first reports in 1970 of resistance to 

the triazine herbicide atrazine (Figure 1) in the weed species common groundsel 

(Senecio vulgaris) (Ryan, 1970). The continued use of herbicides in arable farming 

has now lead to a total of 397 independent documented cases of herbicide resistance 

globally with 217 weed species reported to contain at least one herbicide resistant 

population (Heap, 2013). Subsequently herbicide resistance is fast becoming one of 

the biggest threats to global agriculture, with an estimated cost in 1994 to the USA 

economy alone of US$20 billion (Bridges, 1994), a figure which has increased with 

the continued rise in occurrences of herbicide resistant weed populations in the 

intervening 19 years. The threat is further compounded by a lack of novel modes-of-

action and chemistries emerging from agrichemical research and development 

pipelines (Duke, 2012). Therefore it is of critical importance to understand the exact 

biochemical mechanisms that enable herbicide resistance in weed species so that 

rational strategies to overcome this phenomenon can be designed. 
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Figure 1: The 22 Herbicide 

Resistance Action Committee 
(HRAC) defined herbicide 

groups each with their 

respective target-site and an 

example herbicide of the group. 
Target-site abbreviations: 

ACCase, acetyl-coA 

carboxylase; ALS, acetolactate 

synthase; PS, photosystem; 
PPO, protoporphyr-inogen 

oxidase; PDS, phytoene 

desaturase; 4-HPPD, 4-

hydroxy-phenylpyruvate 
dioxygenase; LC, lycopene 

cyclase; EPSPS, 5-

enolpyruvylshikimate-3-

phosphate synthase; GS, 
glutamine synthetase; DHPS, 

dihydropteroate synthase; MA, 

microtubule assembly; MP, 

microtubule polymerisation; 
VLCFAS, very-long-chain 

fatty-acid synthesis; MD, 

membrane disruption; LS, lipid 

synthesis; AT, auxin transport. 

 

 

 

 

 

 

 

 

 

 

 

 

It is already well established that there are multiple mechanisms that can elicit 

herbicide resistance in weeds and that each of these mechanisms fall into one of two 

broad classes; (i) target-site resistance, and (ii) non-target-site resistance (Powles and 
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Yu, 2010). Of these two classes, target-site resistance is far better understood 

especially for the most economically important weed species and chemical classes 

including, in some cases, a mechanistic understanding at the molecular level. On the 

other hand, very little is known about the mechanisms that enable non-target-site 

resistance in weeds. These two classes of herbicide resistance and the mechanisms 

contained in each class will now be explored in more detail in the following sections. 

1.2 Target-site resistance 

1.2.1 Adaptive mutations at the site-of-action 

The most widely observed mechanism within the target-site resistance class is the 

evolution of adaptive mutations at a site-of-action. These mutations decrease the 

binding affinity between the site-of-action and the respective herbicides designed to 

target that site. Evolved resistance due to adaptive mutations has been extensively 

reviewed in the literature (Tranel and Wright, 2002; Delye, 2005; Duggleby et al., 

2008; Gressel, 2009; Powles and Yu, 2010) and so this section shall use select 

examples to highlight the mechanistic diversity across the spectrum of mutations 

observed in weed target-sites. 

1.2.1.1 Substitution mutations 

Acetyl-CoA carboxylase (ACCase) and acetolactate synthase (ALS; also known as 

acetohydroxy acid synthase, AHAS) are two widely exploited target-sites in weed 

species. The two enzymes are involved in de novo fatty acid synthesis and branched-

chain amino acid synthesis respectively (Schloss, 1990; Incledon and Hall, 1997) 

and are targeted by 17 and 52 different herbicides respectively, extending across a 

total of 8 chemical classes (Heap, 2013). Numerous independent populations of 

multiple weed species have evolved resistance to ACCase and ALS-targeted 

herbicides due to amino acid substitutions in the primary sequence of the two 

enzymes including the damaging grass weed species black-grass (Alopecurus 

myosuroides) and annual rye-grass (Lolium rigidum) (Delye, 2005; Delye et al., 

2005; Zhang and Powles, 2006a; Zhang and Powles, 2006b; Delye and Boucansaud, 

2008; Yu et al., 2008; Tranel et al., 2013). Both enzymes possess significant 

plasticity with regards to sites-of-mutation, with multiple positions in their primary 
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amino acid sequence able to evolve mutations that grant specific herbicide resistance 

profiles in the host weed plant (Delye, 2005; Tranel et al., 2013) (Figure 2). For 

instance, according to the global database of ALS mutations, which records the first 

observation of novel ALS mutations across weed species, 21 discrete mutations of 

the ALS enzyme have been detected to date that confer some degree of resistance to 

ALS herbicides (Tranel et al., 2013) (Figure 2 B). 

Figure 2: Target-site 

mutation plasticity of ALS 
and ACCase enzymes. (A) 

The total number of amino 

acid residues susceptible to 

mutation for ALS and ACCase 
enzymes that confer resistance 

to herbicides. (B) The 

frequency of mutation at each 

of the eight positions of ALS 
which confer ALS herbicide 

resistance. Coloured segments 

and the accompanying legend 

details the specific residue 
change whilst the size of each 

coloured segment reflects the 

occurrence of that mutation in 

independent weed species. 
ACCase data extracted from 

Jang et al. (2013) and 

Kaundun et al. (2013). ALS 

data extracted from Tranel et 
al. (2013).     
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Successful crystallographic studies of ALS derived from Arabidopsis thaliana (At), 

where it has been co-crystallised with various bound ALS-targeted herbicides, have 

provided strong evidence for the molecular mechanism of ALS inhibition in planta. 

ALS-binding herbicides occupy a site found on the surface of the catalytic subunit of 

ALS. The binding site covers access to a deep channel, at the bottom of which lies 

the catalytic centre of the enzyme meaning substrates are blocked from accessing the 

active site. Furthermore, co-crystallisation of AtALS with herbicides from the 

sulfonylurea and imidazolinone classes demonstrated that whilst herbicides of both 

classes bound ALS at the same general site, the modes of binding were different 

between classes. Sulfonylurea herbicides were found intruding further into the 

substrate channel and formed a much greater number of van der Waal’s contacts and 

ionic interactions with residues of ALS. There was also found to be six ALS residues 

that bound to the sulfonylurea herbicides, but not the imidazolinone class, whilst two 

ALS residues were found to bind imidazolinones but not sulfonylureas (McCourt et 

al., 2006).  

The different modes of binding between herbicide classes and ALS provide a 

rational explanation for the specific resistance profiles that are seen for each 

recorded ALS mutation. For example, mutation of Trp574 can confer resistance to 

multiple ALS herbicide classes, including sulfonylureas and imidazolinones 

(Bernasconi et al., 1995), because Trp574 plays a key role in securing ALS 

herbicides across the face of the substrate channel (McCourt et al., 2006). 

Alternatively, other ALS residues only interact with one class of ALS herbicides and 

therefore mutation of these residues grants resistance to that class alone. For 

example, Ala122 interacts with imidazolinone herbicides via hydrophobic contacts 

and mutation of this residue to a Thr confers resistance to herbicides of the 

imidazolinone class but not to sulfonylureas (Bernasconi et al., 1995). There are 

however exceptions to this generality with the mutation Ala122Tyr, recently 

observed in wild radish (Raphanus raphanistrum), granting resistance to all ALS 

herbicide classes tested including imidazolinone and sulfonylurea herbicides (Han et 

al., 2012), presumably because the large indole substituent of Trp excludes a larger 

portion of the herbicide binding site than the Ala122Thr mutation. 
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Similar findings regarding target-site resistance have also been observed for 

ACCase, although the incidence of resistance to ACCase herbicides across weed 

species is much lower than that of ALS herbicides primarily because ACCase 

herbicides are selectively lethal to grass weed species. ACCase herbicides target the 

plastidic homomeric ACCase isoform found only in grass species (Konishi and 

Sasaki, 1994). A total of 12 discrete mutations of the ACCase enzyme at one of 7 

possible amino acid residues have been detected to date that confer some degree of 

resistance to ACCase herbicides (Jang et al., 2013; Kaundun et al., 2013). As 

observed with ALS herbicide resistance, specific substitution mutations of the 

ACCase enzyme grant specific resistance profiles to the different ACCase herbicide 

classes (Powles and Yu, 2010). For instance, the point mutation Cys2088Arg, 

observed in annual rye-grass and Italian rye-grass (Lolium multiflorum), grants 

resistance to all ACCase herbicide classes tested (Yu et al., 2007a; Kaundun et al., 

2012). In contrast, the point mutation Gly2096Ala, observed to date only in black-

grass, grants resistance to ACCase herbicides of the aryloxyphenoxypropionate 

(AOPP) class and no others (Petit et al., 2010). Current attempts to crystallise native 

plant ACCase enzymes bound to herbicides have been unsuccessful. However, the 

carboxyltransferase (CT) domain of ACCase from yeast has been crystallised bound 

to compounds of each of the three classes of commercial ACCase herbicides and 

provides some insight into ACCase-herbicide binding interactions in planta (Zhang 

et al., 2004; Xiang et al., 2009; Yu et al., 2010). These structural studies found that 

AOPPs, cyclohexanediones and phenylpyrazolines (Figure 3), were bound close to 

the active site of the CT domain and therefore able to compete with the acetyl-CoA 

substrate for access to the active site.  
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Figure 3: ACCase herbicides co-crystallised with yeast ACCase. The name of each herbicide is given along 

with the chemical class to which that herbicide belongs. 

Pinoxaden and tepraloxydim (Figure 3) bound the CT domain in similar positions of 

the active site, whilst haloxyfop-p-methyl (Figure 3) bound the CT domain at a 

distinct site which induced large conformational changes in the protein. However, 

the crystallisation of sensitive and resistant grass ACCase enzymes in complex with 

herbicides is required to fully understand these interactions, particularly as the yeast 

ACCase has a primary amino acid sequence which more closely resembles resistant 

grass ACCase than it does sensitive ACCase. This can be evidenced by the 

observation that residue Leu1705 of the yeast ACCase CT domain, which is 

responsible for one of only two interactions shared across all three herbicide binding 

modes, is equivalent to the Ile1781 residue of plastidic grass ACCase (Yu et al., 

2010). For grass biotypes in which Ile1781 has been observed to be mutated to a Leu 

residue, this has rendered that biotype as resistant to ACCase herbicides (Petit et al., 

2010). This unexpected result exemplifies the need for a crystal structure of a 

sensitive grass ACCase bound to herbicides to be solved in complex.   

1.2.1.2 Deletion mutations 

Another, much rarer, mechanism of adaptive mutation at a target-site has been 

observed in waterhemp (Amaranthus tuberculatus) biotypes displaying resistance to 

protoporphyrinogen oxidase (PPO) inhibitors. PPO is involved in the biosynthesis of 

chlorophyll and heme in plants and disruption of its activity leads to the 
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accumulation of its substrate protoporphyrinogen IX, in the cytoplasm, where the 

substrate engages in light-dependent free radical chemistry and membrane disruption 

leading to cell death (Duke et al., 1991). In resistant waterhemp biotypes, two genes 

encode PPO isoforms, of which one, PPX2L, was found to contain a 3-bp in-frame 

codon deletion causing the loss of Gly210 in the PPX2L polypeptide. 

Complementation studies using E. coli PPO mutant strains transformed with PPX2L 

and ΔG210 PPX2L confirmed that the Gly210 deletion granted resistance to PPO 

inhibitors (Patzoldt et al., 2006). This resistance mechanism has since been observed 

in independent, geographically isolated PPO-resistant waterhemp biotypes 

(Thinglum et al., 2011). Kinetic characterisation of recombinantly expressed PPX2L 

and ΔG210 PPX2L proteins revealed little change in the Michaelis constant of both 

enzymes for protoporphyrinogen IX, but did show a 10-fold reduction in catalytic 

turnover of the substrate in the resistant protein. Molecular dynamic simulations of 

both proteins (using PPO enzyme from tobacco as a model) revealed that deletion of 

Gly210 caused a significant enlargement of the active site of the enzyme. This 

served to increase the distance between key catalytic residues and hence the 

reduction in catalytic turnover meaning that both substrate and PPO herbicide could 

occupy the active site simultaneously. Furthermore, simulations suggested that a 

substitution mutation at PPO amino acid position 210 would result in strong steric 

clashes with adjacent residues and hence the selection for this rare deletion event 

(Dayan et al., 2010). 

1.2.2 Target-site gene amplification 

A resistance mechanism quite distinct from target-site mutations is that of the 

expansion of the relative numbers of target-site gene copies per cell as first 

demonstrated in glyphosate-resistant Palmer amaranth (Amaranthus palmeri) 

(Gaines et al., 2010). Glyphosate, the most widely used herbicide globally, belongs 

to the glycine class of herbicides and targets 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSPS) in plants by behaving as a transition-state analogue of the EPSPS 

substrate phosphoenolpyruvate (Steinrucken and Amrhein, 1980; Duke and Powles, 

2008; Shaner et al., 2012) (Figure 4).  
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Figure 4: EPSPS-interacting compounds. Chemical structures are given of the EPSPS substrate molecule 
phosphoenolpyruvate along with the competitive inhibitor glyphosate, a transition-state analogue of 

phosphoenolpyruvate. 

Inhibition of EPSPS activity disrupts the production of aromatic amino acids leading 

to plant death. All higher plants (prior to selection of resistance-endowing mutations 

under glyphosate exposure) contain a glyphosate-sensitive EPSPS enzyme; meaning 

glyphosate is non-selective regarding species lethality. As a highly effective 

herbicide, undergoing rapid distribution in planta and showing benign toxicological 

and environmental profiles, several crop species have been genetically engineered 

for glyphosate tolerance to allow selective use of the herbicide (Duke and Powles, 

2008). The wide scale adoption of glyphosate-resistant crops and over-reliance on 

glyphosate as a sole method of weed control has imparted an enormous evolutionary 

pressure on weed species to select for mechanisms of glyphosate resistance (Shaner 

et al., 2012). One of the resistance mechanisms observed, as mentioned above, is 

amplification of the EPSPS gene as discovered in a glyphosate-resistant biotype of 

Palmer amaranth. Resistant individuals contained, on average, 77-fold more EPSPS 

gene copies scattered throughout their genome, leading to significant fold-increases 

in EPSPS mRNA and protein production. EPSPS from resistant individuals was 

found to be as sensitive to glyphosate inhibition as EPSPS from sensitive 

counterparts. This demonstrated that the resistance phenotype occurs because the 

glyphosate field-rate capable of killing sensitive Palmer amaranth is not sufficient to 

saturate the enhanced number of EPSPS binding sites in the resistant biotype (Gaines 

et al., 2010). This mechanism of resistance has also recently been reported in a 

glyphosate-resistant biotype of Italian rye-grass (Salas et al., 2012) and it is therefore 

of critical importance that the molecular mechanisms responsible for EPSPS 

amplification are elucidated. 
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1.2.3 Summary of target-site resistance mechanisms 

Intensive herbicide application has led to the evolution of multiple mechanisms of 

target-site resistance. The evidence presented suggests that an integration of multiple 

factors serves to define the observed mechanisms in different weed species including 

the binding mechanism to its target-site, the fitness cost of the respective mutation 

and the genetic plasticity of the host species. In the case of ALS and ACCase target-

sites the herbicide binding site is close to, but not buried within, the enzyme active 

site. This has led to the evolution of a plethora of substitution mutations (Figure 2) 

that disrupt herbicide binding but retain enzymatic activity, in some cases with no 

observable fitness cost (Tranel and Wright, 2002; Menchari et al., 2008). For ALS, 

the successful crystallisation of the enzyme complexed with herbicides provides 

mechanistic detail of the interaction (McCourt et al., 2006). However, crystal 

structures of other target-sites in complex with herbicides are sorely lacking. 

Alongside substitution mutations at the target-site, intensive herbicide selection has 

led to the evolution of rarer evolutionary events including an in-frame codon deletion 

in the case of PPO resistance in waterhemp (Patzoldt et al., 2006) and target-site 

gene amplification in the case of glyphosate resistance in Palmer amaranth and 

Italian rye-grass (Gaines et al., 2010; Salas et al., 2012). Codon deletion, as seen in 

PPO-resistant waterhemp biotypes, is a rare event and has not been observed for 

genes implicated in resistance to insecticides, anticancer drugs or antibiotics 

(Gressel, 2009). The ability of Nature to adapt to extreme conditions (herbicide 

application) should therefore not be underestimated. 
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1.3 Non-target-site resistance (NTSR) 

The second major class of herbicide resistance mechanisms are those that involve the 

enhancement of herbicide detoxification and/or sequestration systems that limit the 

bioavailability of herbicides in the plant, such that they cannot bind to their site-of-

action in sufficient dosage to disrupt metabolism (Yuan et al., 2007; Cummins and 

Edwards, 2010). Collectively, the detoxification systems for the removal of foreign 

compounds (xenobiotics) in plants have been termed the ‘xenome’ (Edwards et al., 

2005a). 

1.3.1 The xenome 

The plant xenome is considered to behave as a four-phase process (Edwards et al., 

2005a; Yuan et al., 2007) (Figure 5). 

 

Figure 5: The plant xenome. A generalised scheme highlighting the four phases of xenobiotic detoxification 

that constitute the plant xenome. Abbreviations: R, xenobiotic; CYPs, cytochrome P450 mixed-function 
oxidases; GSTs, glutathione transferases; GTs, glycosyltransferases; ABCs, adenosine triphosphate binding 

cassette transporters; H+ antiporters, adenosine triphosphate-dependent transporters energetically coupled to a 

transmembrane H+ gradient. 
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Phase I of the xenome involves the biotransformation of xenobiotics typically via 

oxidative or dealkylation reactions catalysed by cytochrome P450 mixed-function 

oxidases (CYPs) (Van Eerd et al., 2003). These activities serve to introduce, or 

reveal, a reactive functional group into the xenobiotic structure facilitating Phase II 

processing. As depicted (Figure 5), Phase I detoxification is a common route of 

metabolism for xenobiotic compounds but not wholly necessary to proceed to Phase 

II if the molecule already contains a suitably reactive centre. Phase II xenobiotic 

detoxification involves conjugation of the xenobiotic with the tri-peptide γ-Glu-Cys-

Gly (glutathione; GSH) or with sugar moieties catalysed by glutathione transferases 

(GSTs) and glycosyltransferases (GTs) respectively. Conjugation with these 

biomolecules serves to increase the solubility of the xenobiotic, eliminate reactive 

centres (rendering the conjugate non-phytotoxic in most cases) and facilitate the 

entry of the xenobiotic-conjugate into Phase III metabolism (Bowles et al., 2005; 

Cummins et al., 2011). Phase III xenobiotic detoxification involves the transport of 

the xenobiotic-conjugate from the cytosol into the vacuole (Rea, 2007). Two 

transporter systems have been identified for the delivery of xenobiotic-conjugates 

into the plant vacuole. Transport of glutathionylated xenobiotics across the 

membrane relies on ATP-binding cassette transporters (ABCs) whilst the transport 

of glucosylated xenobiotics across the vacuolar membrane has been shown to utilise 

both ATP-dependent movement against an H+ gradient (H+ antiporters) and ABCs 

(Rea, 1999; Bartholomew et al., 2002). Lastly, Phase IV detoxification in plants 

involves mineralisation or, more commonly, the incorporation of xenobiotic-derived 

metabolites into the plant cell wall. Whilst radioactive studies have confirmed these 

processes do occur, almost nothing is known about the biochemical mechanisms for 

these phenomena (Sandermann, 2004). 

The xenome in plants is very large. For example, the relatively small genome of the 

well-studied model species Arabidopsis (Arabidopsis thaliana) contains 273 CYPs, 

107 family 1 UDP-glucose GTs, 55 GSTs and 120 ABCs (Edwards et al., 2011). By 

far the best studied are the CYP and GST families, although the large gene family 

sizes have made it difficult for researchers to understand the exact roles of individual 

genes in xenobiotic detoxification. Some of the first implications for the involvement 

of the xenome in herbicide metabolism came in the 1960-1970’s. In 1966, 

Shimabukuro et al. reported that atrazine was metabolised in pea (Pisum sativum) 
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plants via oxidative dealkylation of the 4-ethylamino group to the respective free 

amine (Shimabukuro et al., 1966). Whilst no enzyme was identified which catalysed 

this reaction, the action of CYPs could be inferred. The same group then went on to 

show that maize (Zea mays) cultivars with a relative tolerance to atrazine could 

detoxify the herbicide more rapidly than susceptible cultivars via the formation of a 

GST-catalysed glutathione conjugate (Frear and Swanson, 1970; Shimabukuro et al., 

1971). Following these observations in crop plants, it was little surprise then that 

similar mechanisms of xenome enhancement began to be observed in herbicide-

resistant weed species (Anderson and Gronwald, 1991; Christopher et al., 1991). 

For example, a multiple herbicide resistant (MHR) biotype of black-grass, first 

identified in 1984 in Peldon, Essex, demonstrated resistance to herbicides from 4 

chemical classes across three sites-of-action that was not due to TSR mechanisms 

(Moss, 1990; Hall et al., 1997). Instead it was shown that herbicide metabolism, 

mediated by CYPs and GSTs, was enhanced in the resistant weeds and NTSR was, 

in the earlier literature, also referred to as enhanced metabolic resistance (Hyde et 

al., 1996; Hall et al., 1997). A very similar phenomenon of evolved herbicide 

resistance seemingly due to enhanced metabolism was demonstrated in MHR annual 

rye-grass biotypes (Christopher et al., 1991; Preston et al., 1996). These two 

examples demonstrate that enhancement of the xenome in herbicide-resistant weed 

biotypes can lead to resistance to multiple herbicide chemistries regardless of their 

site-of-action (multiple herbicide resistance, MHR), resulting in a loss of chemical 

control. Interestingly, evidence to date indicates that increased metabolism in 

resistant weed biotypes mimics the detoxification pathways of tolerant crop species 

(Christopher et al., 1991; Hyde et al., 1996; Ahmad-Hamdani et al., 2013). 

Evidence has now accumulated in the literature implicating all of the major xenome 

gene families (CYPs, GSTs, GTs, ABCs) in NTSR and these shall be discussed in 

turn in the following sections. 

1.3.2 Cytochrome P450 mixed-function oxidases and herbicide resistance 

Cytochrome P450 mixed-function oxidases (CYPs) are heme-containing proteins 

that utilise NADPH and molecular oxygen to catalyse the insertion of an oxygen 
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atom into a substrate molecule. Subsequent rearrangement of the oxygenated product 

can result in apparent oxidations, hydroxylations, dealkylations and reductions of the 

substrate (Werck-Reichhart et al., 2000). In crop tissues, CYP-mediated degradation 

of herbicides has now been demonstrated for at least 25 different compounds across 

8 different chemical classes (Siminszky, 2006). Furthermore, multiple routes of 

CYP-mediated degradation for a herbicide can exist within a plant. For instance, 

chlorotoluron, a member of the phenylurea class of herbicides and an inhibitor of 

photosystem II, can be metabolised via oxidation of a methyl substituent on the 

phenyl ring or, via successive N-dealkylation reactions (Figure 6). In both cases the 

ring-methyl oxidation product (2) and di-N-dealkylation product (4) are non-

phytotoxic, however the mono-N-dealkylation product (3) is not (Ryan et al., 1981). 

 

Figure 6: Alternative routes of chlorotoluron metabolism in plants. Chlorotoluron (1) can be primarily 
metabolised to the non-phytotoxic ring-methyl oxidation product (2) or it can undergo removal of the N-methyl 

groups to yield the phytotoxic mono- (3) and non-phytotoxic di-N-dealkylation (4) products (Ryan et al., 1981). 

Early studies using wheat (Triticum aestivum) and herbicide-sensitive black-grass 

exposed to chlorotoluron demonstrated that tolerance to chlorotoluron in the crop 

correlated well with the route and speed of chlorotoluron metabolism. Both species 

accumulated chlorotoluron metabolites (2)-(4), demonstrating two routes of 

herbicide metabolism were operational in both species. However, whilst wheat plants 
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preferentially and efficiently metabolised chlorotoluron to the non-phytotoxic ring-

methyl oxidation product, herbicide-sensitive black-grass retained greater levels of 

chlorotoluron in the leaves and accumulated the phytotoxic mono-N-dealkylation 

product (Ryan et al., 1981). Following the detection of MHR black-grass employing 

NTSR mechanisms (Moss, 1990), it was a logical step to explore the metabolism of 

chlorotoluron in the MHR biotype. Studies revealed that the MHR biotype had re-

programmed xenome components to behave more like that of wheat and the MHR 

biotype now preferentially accumulated the non-phytotoxic ring-methyl oxidation 

product (Hyde et al., 1996). 

A similar scenario has been observed in MHR annual rye-grass resistant to 

chlorsulfuron, a member of the sulfonylurea class of herbicides which inhibit ALS. 

In chlorsulfuron-tolerant wheat, the herbicide was detoxified following 

hydroxylation of the phenyl ring and rapid conjugation of the newly-introduced 

hydroxyl group with glucose (Sweetser et al., 1982) (Figure 7). Studies with annual 

rye-grass demonstrated that this pathway was minimally active in the sensitive 

biotype but enhanced in MHR weeds with the detoxified metabolite (iii) 

accumulating at significantly greater levels in the MHR biotype based on co-

chromatography with chlorsulfuron-treated wheat extracts (Christopher et al., 1991). 

Further studies with MHR annual rye-grass strengthened the conclusion of enhanced 

CYP-mediated chlorsulfuron metabolism by showing metabolism was greatly 

diminished  after treatment with the CYP inhibitor malathion (Christopher et al., 

1994) (Figure 8).   
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Figure 7: Chlorsulfuron metabolism in wheat. Chlorsulfuron (i) is metabolised in wheat to the hydroxylated 

derivative (ii) followed by rapid conversion to the glucosylated derivative (iii). 

Significantly, these studies of CYP-mediated herbicide metabolism in MHR weed 

species provide strong evidence that components of the xenome of resistant weeds 

have been enhanced (by an unknown mechanism) in MHR biotypes rather than 

resistance being due to the expression of novel xenome detoxification genes. 

Continued studies with MHR annual rye-grass have shown that activities of multiple 

herbicide-detoxifying CYPs can be enhanced in the same MHR biotype. For 

instance, in one MHR annual rye-grass biotype, plants were treated with various 

herbicide/CYP-inhibitor combinations and it was shown that; (i) piperonyl butoxide 

(Figure 8) significantly reduced resistance to chlorotoluron but not to chlorsulfuron, 

(ii) malathion (Figure 8) significantly reduced resistance to chlorsulfuron but not to 

chlorotoluron. In both cases, decreased resistance correlated with a significant 

increase in accumulation of the radiolabelled herbicide (Preston et al., 1996). These 

observations are striking as they suggest that the mechanism of MHR in some 

biotypes is not due to a single mutation in the regulation of a specific CYP enzyme 

but rather due to enhancing multiple xenome enzymes. 
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Figure 8: CYP inhibitors used in herbicide metabolism studies. The structures of four commonly used CYP 
inhibitors are given along with the common chemical name of each. 

To date, the strategies of quantifying the rates and products of herbicide metabolism 

and the use of CYP inhibitors (Figure 8) have identified 10 weed species with 

populations demonstrating herbicide resistance due in part to CYP-mediated 

herbicide degradation (Hyde et al., 1996; Preston et al., 1996; Cocker et al., 2001; 

Yun et al., 2005; Yuan et al., 2007; Ahmad-Hamdani et al., 2013). However, CYP 

genes/proteins responsible for herbicide detoxification have yet to be isolated from 

resistant weed species. Multiple factors are likely to contribute to a lack of 

identification of weed CYPs such as the many homologous CYP genes per weed 

genome and the difficulty in purifying membrane-associated proteins. Of greatest 

impact, is the lack of genomic information for weed species. That may now be set to 

change though with the recent development of Next Generation Sequencing (NGS) 

technologies capable of rapidly sequencing complete genomes. NGS technologies 

have been successfully employed to sequence multiple complex crop genomes 

including barley and wheat (Brenchley et al., 2012; Mayer et al., 2012) and the first 

efforts have been made to use this technology with regards to weed species, although 

the strategy remains in its infancy (Peng et al., 2010; Riggins et al., 2010). An 

alternative strategy for cloning CYPs from annual rye-grass has been employed 

involving rapid amplification from cDNA ends polymerase chain reaction (RACE-

PCR) of an annual rye-grass expressed sequence tag (EST) library resulting in the 
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successful cloning of 16 CYP genes. No functional characterisation of these CYPs 

was reported however and hence their roles in herbicide detoxification are unknown 

(Fischer et al., 2001). 

CYPs from non-weedy plant species have been isolated, cloned and expressed in 

transgenic host plants and have been shown to confer a herbicide-resistant 

phenotype. For instance CYP71A10 was isolated from soybean and shown in vitro to 

be able to metabolise chlorotoluron and related phenylurea herbicides by catalysing 

their N-demethylation and, in the case of chlorotoluron, to also catalyse the 

formation of the ring-methyl oxidation product (Figure 6). Expression of CYP71A10 

in tobacco (Nicotiana tabacum) granted the transgenic host plants resistance to both 

chlorotoluron and linuron (chlorotoluron analogue) (Siminszky et al., 1999). 

Similarly, CYP76B1 isolated from Jerusalem artichoke (Helianthus tuberosus) was 

shown to be able to catalyse the N-dealkylation of chlorotoluron to the non-

phytotoxic di-N-dealkylation product (Figure 6). Expression of CYP76B1 in both 

Arabidopsis and tobacco granted a 10-fold increase in resistance to the herbicide 

(Didierjean et al., 2002). Importantly these studies provide direct confirmation for 

the role of plant CYPs in conferring herbicide resistance in planta by enhancing 

herbicide metabolism. Perhaps the most powerful example of direct CYP-mediated 

herbicide resistance comes not from a plant source but from the expression of a 

human CYP (CYP2B6) in transgenic rice plants. CYP2B6 granted the transgenic 

host plant tolerance to 13 herbicides from 8 chemical classes with a combined total 

of 6 sites-of-action via CYP-mediated metabolism (Hirose et al., 2005). This striking 

result is perhaps even more impressive considering that CYP2B6 has such a broad 

activity spectrum having little/no regular exposure to these chemicals in vivo and 

reveals the potential power of CYP-mediated herbicide detoxification. This should 

be of great concern considering the tremendous selection pressure weeds experience 

when exposed to herbicides.  
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1.3.3 Glutathione transferases and herbicide resistance 

1.3.3.1 Introduction to the plant glutathione transferase enzyme family 

Glutathione transferases (GSTs) are ubiquitous enzymes found in mammals, fungi, 

insects and plants. Originally discovered and so named for their ability to catalyse 

the detoxification of xenobiotics by conjugation with the tri-peptide γ-Glu-Cys-Gly 

(glutathione; GSH), they are now known to catalyse a variety of GSH-dependent 

reactions (Marrs, 1996; Hayes et al., 2005). In plants, GSTs are a large family of 

enzymes with 55 and 79 gst genes identified in Arabidopsis and rice (Oryza sp.) 

respectively (Dixon and Edwards, 2010; Jain et al., 2010). The large plant GST 

family can be sub-grouped into 7 classes with members of each class related by 

similarities in amino acid sequence, enzyme activity and immunodetection (Edwards 

et al., 2000). Alongside catalytic conjugation of electrophilic substrates with GSH, 

studies with different members of the discrete GST classes have now shown that the 

plant GST family can catalyse a wide variety of GSH-dependent reactions including 

hydroperoxide reduction, thiol exchange, dehydroascorbate reduction and bond 

isomerisations. Some of these activities including GSH-conjugation and 

hydroperoxide reduction are catalysed by discrete GSTs across multiple classes 

whilst some activities are class-specific for example dehydroascorbate reduction 

(Dixon and Edwards, 2010). 

Alongside the catalytic activities of plant GSTs these enzymes are also known to 

display ligand-binding functions. The first evidence for this came from the 

observation that plant GSTs play a direct role in anthocyanin deposition in the 

vacuole in both maize and petunia (Petunia hybrida) plants (Marrs et al., 1995; 

Alfenito et al., 1998). Since then direct evidence has accumulated for plant GSTs 

binding multiple plant secondary metabolites including anthocyanins, flavonoids, 

fatty acids, porphyrinogens and phytoalexins (Mueller et al., 2000; Cummins et al., 

2003; Dixon et al., 2008; Dixon and Edwards, 2009; Dixon et al., 2011). Whilst still 

not fully understood, it appears that these interactions may help to stabilise and/or 

sequester these reactive molecules in planta. 



37 
 

Two plant GST classes, the phi (F; GSTF) and tau (U; GSTU), constitute a large 

proportion of gst genes (for example 42 of the 55 Arabidopsis GSTs) and are plant-

specific. Studies of plant GSTs have shown that these two classes are widely 

responsible for herbicide detoxification in planta (Cummins et al., 2011). The roles 

of plant GSTs in herbicide detoxification shall now be discussed. 

1.3.3.2 GST-mediated herbicide detoxification in crop species 

In plants, GST activity was first discovered in 1970 when studying maize plants able 

to detoxify the herbicide atrazine. A maize enzyme was purified and shown to 

detoxify the herbicide by nucleophilic displacement of the aryl chlorine atom with 

GSH, with further studies demonstrating that increases in this activity correlated well 

with atrazine tolerance in different maize cultivars (Frear and Swanson, 1970; 

Shimabukuro et al., 1971) (Figure 9). 

 

Figure 9: GST-catalysed detoxification of atrazine in plants. The photosystem II inhibitor atrazine can be 
detoxified in plants via conjugation with glutathione (top left) and displacement of the atrazine aryl chlorine. This 

was first demonstrated in atrazine-tolerant maize (Frear and Swanson, 1970). 

Following from the first discovery of GST-mediated herbicide metabolism in 1970, 

extensive studies in crop plants have demonstrated that GSTs from the GSTF and 

GSTU classes can detoxify compounds from multiple herbicide classes with 

different sites-of-action by conjugation with GSH. The combined plethora of GSTF 

and GSTU isoenzymes can conjugate a variety of distinct herbicide structures with 

GSH, such that GSH-conjugation may simply displace a halogen atom as is the case 

with atrazine and alachlor in maize (Frear and Swanson, 1970; Mozer et al., 1983; 

O'Connell et al., 1988) or may result in cleavage of the herbicide into two distinct 
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moieties as is the case with fomesafen and fenoxaprop acid in soybean (Glycine 

max) and wheat respectively (Tal et al., 1993; Andrews et al., 1997) (Figure 10).  

 

Figure 10: Detoxification of multiple herbicide classes by GST-catalysed glutathione conjugation in crop 

plants. (A) Alachlor detoxification (chloroacetanilide class) in maize, (B) fomesafen detoxification 

(diphenylether class) in soybean and (C) fenoxaprop detoxification (aryloxyphenoxypropionate class) in wheat 

(Mozer et al., 1983; O'Connell et al., 1988; Tal et al., 1993; Andrews et al., 1997). Alachlor, fomesafen and 
fenoxaprop inhibit fatty acid synthesis, protoporphyrinogen oxidase and acetyl-coA carboxylase respectively in 

planta. 

In all cases, these studies used plant species with different herbicidal tolerances to 

demonstrate that increased tolerance correlated with increased conjugation of the 

herbicide with GSH. A study by Hatton et al. demonstrated that in maize and the 

herbicide-sensitive weed species giant foxtail (Setaria faberi) this was consistent 

with maize expressing 20-fold greater levels of herbicide-detoxifying GSTs 

compared to the weed (Hatton et al., 1999). Some of these enzymes can also use the 

closely-related thiols hydroxymethylglutathione (γ-Glu-Cys-Ser; hmGSH) and 

homoglutathione (γ-Glu-Cys-Ala; homoGSH), present in wheat and predominant in 
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soybean respectively, in place of GSH in these detoxification reactions (Skipsey et 

al., 1997; Cummins et al., 2009). 

The study by Mozer et al. to isolate the GSTs responsible for alachlor detoxification 

in maize found two distinct active fractions during enzyme purification, with each 

enzyme composed of two GST subunits (Mozer et al., 1983). This demonstrated that 

GSTFs and GSTUs assemble as dimers as is known to be the case for the vast 

majority of mammalian GSTs (Armstrong, 1997). Furthermore, one fraction 

appeared to contain a homodimer composed of two 29 kDa subunits whilst the other 

fraction contained a heterodimer composed of 29 kDa and 27 kDa subunits (Mozer 

et al., 1983). Therefore GSTs responsible for herbicide detoxification could 

assemble and operate as both homo- and heterodimers. 

Continued studies in maize identified further herbicide-detoxifying GST homo- and 

heterodimers. It was found that only subunits within the same GST class can form 

dimers (Dixon et al., 1999) and that subunit composition plays a key role in 

determining catalytic activity of the dimer towards different xenobiotic substrates 

including herbicides (Irzyk and Fuerst, 1993; Dixon et al., 1997; Dixon et al., 1998; 

Sommer and Boger, 1999) (Figure 11).   
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Figure 11: GST subunit composition determines catalytic substrate specificities as demonstrated in maize. 

Purified ZmGSTF1-1 homodimer, ZmGSTF1-2 heterodimer and ZmGSTF1-3 heterodimer were tested for 
activity with a range of substrates: the xenobiotics 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid, 

cumene hydroperoxide and the herbicides alachlor (chloroactenilide class), atrazine (triazine class) and 

fluorodifen (diphenylether class). Specific activities are expressed as nkats mg-1 protein. ND – not detected. NA – 

not assayed. Data re-formatted from Dixon et al. (1997). 
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The activity of maize heterodimer ZmGSTF1-2 to use GSH to detoxify a non-natural 

hydroperoxide (cumene hydroperoxide) (glutathione peroxidase activity; GPOX) 

(Figure 11) was a particularly interesting discovery as at that time it was known that 

some herbicides primary mode of action was the generation of reactive oxygen 

species causing extensive damage to cellular membranes by peroxidation of 

membrane lipids (Kunert et al., 1985). Furthermore, detoxification of cumene 

hydroperoxide using GSH in vitro is mechanistically distinct from GSH-conjugation 

and does not conjugate the hydroperoxide with GSH but instead reduces the 

hydroperoxide to the alcohol species and generates an unstable glutathione-sulfenic 

acid derivative which rapidly forms oxidised glutathione (Flohe and Gunzler, 1984) 

(Figure 12).  

 

Figure 12: Scheme for in vitro glutathione peroxidase activity. Cumene hydroperoxide (i) is reduced to the 

alcohol-derivative (ii) by GST-catalysed abstraction of the terminal hydroperoxide hydroxyl group using GSH. 

This forms an unstable glutathione-sulfenic acid derivative (GS-OH) which reacts rapidly with another molecule 

of GSH to form oxidised glutathione (GSSG). This is coupled to a glutathione reductase (GR) system which uses 
nicotinamide adenine dinucleotide phosphate (NADPH) as a co-factor to reduce GSSG to two molecules of GSH 

(Flohe and Gunzler, 1984). 

In support of a possible role for ZmGSTF1-2 in detoxifying lipid hydroperoxides, 

studies with recombinant ZmGSTF1-2 found that the GPOX activity of the 

heterodimer toward long-chain fatty acid hydroperoxides in vitro was 2.5-fold 

greater than with the non-natural substrate (Sommer and Boger, 1999). Therefore 

there was now evidence that, as a family, plant GSTs could not only use GSH as a 

co-substrate to conjugate with herbicides but that they could also use GSH as a co-

factor to reduce toxic hydroperoxides formed as a consequence of herbicidal activity. 

Whilst maize has been used here as an example, very similar findings of GST-

mediated herbicide metabolism by multiple GST homo- and heterodimers each with 

distinct catalytic profiles with some also possessing GPOX activity have been 
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demonstrated in other major crops such as wheat and soybean (Andrews et al., 1997; 

Cummins et al., 1997a; Cummins et al., 2003; Andrews et al., 2005). 

To date, the structures of 10 plant GST homodimers have been reported 7 of which 

are of known herbicide-detoxifying GSTs from crops (Neuefeind et al., 1997a; 

Neuefeind et al., 1997b; Prade et al., 1998; Thom et al., 2002; Dixon et al., 2003; 

Axarli et al., 2009a; Axarli et al., 2009b). All of these structures are of GSTF or 

GSTU homodimers and show that whilst divergent in amino acid sequence, the 

tertiary structures and overall topology of the GSTs are well conserved. All contain a 

conserved GSH binding site with a variable hydrophobic binding domain for 

xenobiotics thereby providing some rationale for the divergent and somewhat broad 

substrate specificities of the different subunits. Successful crystallisation of GST 

subunits in complex with GSH shows that the GSH-thiol is positioned close to a 

conserved serine residue in the active site of both GSTFs and GSTUs.  This allows 

the hydroxyl group of the serine to co-ordinate to the sulfhydryl hydrogen of GSH 

and increase the nucleophilicity of the thiol (Neuefeind et al., 1997a). This was 

confirmed with mutagenesis studies of ZmGSTF1 that could demonstrate that the 

catalytic serine residue is responsible for lowering the apparent pKa of the GSH 

sulfhydryl group such that the thiolate anion is the predominant species at 

physiological pH (Labrou et al., 2001). 

Not all crop plant GST subunits are constitutively expressed. In fact most subunits 

are only expressed after induction by specific chemical and/or environmental triggers 

(McGonigle et al., 2000; Wagner et al., 2002). The trigger that is perhaps best 

studied for GST induction is that of chemical treatment of plants with compounds 

called herbicide safeners (also referred to as herbicide antidotes in the early 

literature). Safeners are a curious and agronomically important family of compounds 

which, when applied to crop plants, enhance the herbicide tolerance of the crop. 

Many studies have demonstrated that they do this by enhancing the activity of all the 

major phases (I-IV) of the crop xenome and hence accelerate herbicide 

detoxification but that the weed xenome remains unaffected (Hatzios and Burgos, 

2004), although this relatively simple concept has recently been challenged by 

demonstrating safening in weeds (Cummins et al., 2009). Whilst a detailed review of 

safener chemistry and mode-of-action extends beyond this work it is worth noting 
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that many of the plant GST subunits associated with herbicide detoxification are 

expressed following safener application for instance the maize ZmGSTF2 subunit 

(Mozer et al., 1983; Dixon et al., 1997; Cummins et al., 1997a; Andrews et al., 

2005). It is not known how safeners induce GSTs or other xenome enzymes. 

Importantly though, safeners help demonstrate that plants possess not only 

constitutively-expressed herbicide-metabolising GSTs but also inducible genes 

coding for further detoxifying GST subunits. 

The expression of crop GSTFs and GSTUs in transgenic host plants have provided 

further proof of the ability for these enzymes to elicit a herbicide-resistant 

phenotype.  ZmGSTF1 has been expressed in tobacco and granted the host plants 

resistance to alachlor via conjugation of the herbicide with GSH (Figure 10 A) 

(Karavangeli et al., 2005). The ZmGSTF2 subunit has been expressed in tobacco and 

wheat and granted the host plants resistance to alachlor via conjugation of the 

herbicide with GSH (Figure 10 A) with the wheat plants also demonstrating 

resistance to the unrelated thiocarbamate class of herbicides (Milligan et al., 2001). 

Of the GSTUs, two subunits from soybean (GmGSTU4 and GmGSTU21) have been 

independently expressed in tobacco and shown to confer increased herbicide 

resistance in the transgenic host plants. GmGSTU4 expression in tobacco increased 

the resistance of the host plant to both alachlor and fluorodifen (Benekos et al., 

2010) both of which are known to be detoxified via conjugation with GSH by the 

enzyme (Axarli et al., 2009b). The transgenic plants were also more resistant to 

oxyfluorfen, a peroxidising herbicide which is not detoxified by GSH-conjugation, 

with resistance suggested to be due to the known GPOX activity of GmGSTU4 

(Axarli et al., 2009b; Benekos et al., 2010). In a slightly different study GmGSTU21, 

known to preferentially detoxify herbicides using homoGSH rather than GSH, was 

co-expressed with a homoGSH synthetase enzyme in tobacco plants and shown to 

detoxify fomesafen via homoGSH-conjugation (using an analogous reaction 

mechanism as that presented in Figure 10 B using GSH) (Skipsey et al., 2005). 

1.3.3.3 GST-mediated herbicide detoxification in weed species 

In comparison to the relatively well-studied GSTs responsible for herbicide-

detoxification in crops, GSTs that perform similar roles in weed species are poorly 
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understood. One of the first observations of herbicide resistance in weeds due to 

enhanced GST-mediated herbicide detoxification was reported by Gronwald et al. in 

an atrazine-resistant biotype of the weed species velvetleaf (Abutilon theophrasti). 

The resistant biotype had no differences in herbicide uptake, nor in target-site 

sensitivity compared with a sensitive biotype, but rapidly accumulated the atrazine-

GSH conjugate previously described in maize (Gronwald et al., 1989) (Figure 9). It 

was quickly shown that the resistant biotype contained increased levels of GST 

activity toward atrazine (Anderson and Gronwald, 1991). Whilst it was suggested 

that this may be due to over-expression of atrazine-detoxifying GSTs, later studies 

suggested that it was more likely to be a mutant GST with enhanced catalytic activity 

toward atrazine (Plaisance and Gronwald, 1999). This has yet to be confirmed by 

GST isolation and sequencing. Soon after the reports of increased GST-mediated 

herbicide detoxification via GSH-conjugation in velvetleaf, this mechanism was also 

observed in foxtail (Setaria spp.)  biotypes resistant to atrazine (Gimenez-Espinosa 

et al., 1996) and in multiple MHR biotypes of black-grass resistant to fenoxaprop-p-

ethyl (Hall et al., 1997; Cummins et al., 1997b). This mechanism has also more 

recently been reported in biotypes of late watergrass (Echinocloa phyllopogon) and 

sow thistle (Sonchus oleraceus) which are resistant to fenoxaprop-p-ethyl and 

simazine (atrazine analogue) respectively (Fraga and Tasende, 2003; Bakkali et al., 

2007). 

Black-grass is perhaps the best-studied weed species with respect to GST-mediated 

herbicide detoxification and the only weed species for which the molecular basis of 

enhanced GST-mediated herbicide detoxification has been investigated. In black-

grass, two biotypes, ‘Peldon’ and ‘Lincs E1’, were already known to be resistant to 

herbicides from multiple chemical classes (Moss, 1990), due in part to the up-

regulation of herbicide-detoxifying CYP activities (Hyde et al., 1996). These 

populations also demonstrated increased rates of fenoxaprop-p-ethyl detoxification 

to unidentified polar metabolites compared with a herbicide-sensitive biotype. 

Enhanced detoxification appeared independent of CYP action, as CYP inhibitors had 

no effect on detoxification (Hall et al., 1997). In a concurrent study Cummins et al. 

used protein extracts to demonstrate that the same two MHR black-grass biotypes 

expressed GSTs capable of detoxifying fenoxaprop-p-ethyl via its conjugation with 

GSH (Figure 10 C) but this activity could not be detected in the herbicide-sensitive 
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biotype. Activity towards fenoxaprop-p-ethyl was similar in both MHR biotypes and 

correlated with the expression of two novel GSTs in the MHR biotypes recognised 

by an antibody raised to a herbicide-detoxifying GSTU enzyme from wheat. 

However, whilst the rates of fenoxaprop-p-ethyl detoxification were similar in both 

MHR biotypes, ‘Lincs E1’ plants were 10-fold more resistant to fenoxaprop-p-ethyl 

in whole-plant spray trials than ‘Peldon’ plants indicating additional mechanisms of 

herbicide tolerance were invoked in at least the Lincs E1 biotype (Cummins et al., 

1997b). Continued studies with these black-grass biotypes, using antibodies raised to 

the herbicide-detoxifying maize ZmGSTF1-2 enzyme, led Cummins et al. to 

discover further GSTs, this time belonging to the phi class, which were 

constitutively expressed in protein extracts of both the MHR biotypes but absent in 

both a herbicide-sensitive biotype and an ACCase target-site resistant biotype 

(Cummins et al., 1999). Rather than attempt to purify the GST isoforms from black-

grass protein extracts, RNA was extracted from MHR biotype ‘Peldon’, reverse-

transcribed to the complementary cDNA and a cDNA library constructed which 

when expressed in bacteria allowed the colonies to be screened for plant GSTU and 

GSTF enzyme isoforms using antibody detection. Using this strategy Cummins et al. 

identified three clones encoding polypeptides that were recognised by the anti-

GSTU-serum and four clones encoding polypeptides that were recognised by the 

anti-GSTF-serum (Figure 13). Within each class the polypeptides were highly 

similar in amino acid sequence but not identical. Recombinant expression and 

purification of the proteins demonstrated that they co-migrated with the 

immunodetected bands present in MHR protein extracts and hence what may at first 

be interpreted as the expression of one novel GST isoform in protein extracts may 

actually be a composition of highly similar polypeptides. Recombinant enzymes 

were assayed for activity towards a range of substrates including general xenobiotics, 

herbicides and hydroperoxides. GSTs within each class had very similar activity 

profiles. AmGSTU enzymes had appreciable activity towards the herbicides 

fluorodifen and fenoxaprop-p-ethyl and no activity towards hydroperoxides. 

Conversely AmGSTF enzymes had little activity towards the herbicide substrates, 

but were highly active towards hydroperoxide substrates, being 4-fold more active 

towards a long-chain fatty acid hydroperoxide substrate compared with cumene 

hydroperoxide (Cummins et al., 1999).  
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Figure 13: Black-grass GST polypeptide sequences derived from the recombinant expression of an MHR 

black-grass cDNA library. (A) Polypeptide sequences of three clones (a-c) recognised by antibodies raised to a 

herbicide-detoxifying GSTU homodimer from wheat. (B) Polypeptide sequences of four clones (a-d) recognised 
by antibodies raised to a herbicide-detoxifying GSTF heterodimer from maize. Am – Alopecurus myosuroides. 

Sequences derived from Cummins et al. (1999). Sequence names have been updated from Cummins et al. (1999) 

to reflect the revised GST nomenclature proposed by Edwards et al. (2000). 

In combination with these experiments, Cummins et al. demonstrated that herbicide-

sensitive black-grass treated with a range of herbicides accumulated hydroperoxides 

irrespective of the herbicide mode-of-action whilst MHR black-grass maintained 

hydroperoxide content at a basal level (Figure 14). These results lead Cummins et al. 

to conjecture that a downstream consequence of herbicide mode-of-action, 

irrespective of the target-site, may be damaging peroxidation of cellular membranes 

which MHR plants had evolved to tolerate by the constitutive expression of GPOX-

active AmGSTF1 enzymes (Cummins et al., 1999). 
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Figure 14: Hydroperoxide accumulation in herbicide-sensitive and MHR biotypes of black-grass after 

herbicide treatment. Cut shoots of all biotypes were treated for 24 hours with either: fenoxaprop-p-ethyl, FXP, 

ACCase inhibitor; clodinafop-propargyl, CDF, ACCase inhibitor; chlorotoluron, CHL, photosystem I inhibitor; 

fluorodifen, FLU, PPO inhibitor; paraquat, PARA, photosystem II inhibitor or formulation-only (control). Shoots 
were than analysed for hydroperoxide content and expressed as standardised µmol g-1 fresh weight (FW) tissue. 

Data re-formatted from Cummins et al. (1999). 

Exposure of herbicide-sensitive plants to biotic and abiotic stresses induced the 

expression of AmGSTF1 proteins, indicating that AmGSTF1 could be transiently 

expressed under stress conditions and hence that MHR plants appeared to be 

constitutively expressing the proteins by an unknown mechanism. Analysis of 

genomic DNA did not indicate that the gene had been amplified. However, analysis 

of total RNA extracted from un-treated herbicide-sensitive and MHR plants easily 

detected AmGSTF1 transcripts in MHR plants that were absent in the sensitive plants 

(Cummins et al., 1999).  

In summary, GST-mediated herbicide resistance in black-grass appears to be due to 

the evolution of mechanism/s that allows the constitutive expression of stress-

inducible GSTs from both GSTU and GSTF classes. Expression of these enzymes 

appears to grant multiple mechanisms of protection on the MHR plants with GSTU 

enzymes directly able to detoxify a subset of herbicide chemistries with GSH whilst 
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GSTF enzymes can detoxify toxic hydroperoxide compounds which may form as a 

downstream consequence of herbicide treatment (Cummins et al., 1997b; Cummins 

et al., 1999). 

To date similar studies to identify GSTs responsible for herbicide detoxification in 

other weed species have not been reported. A recent study in Italian rye-grass 

(Lolium multiflorum) reported GST activity towards herbicides in crude protein 

extracts but this was not investigated in relation to biotypes with different herbicide 

sensitivities (Del Buono and Ioli, 2011). 

1.3.4 Glycosyltransferases, transporter proteins and herbicide resistance 

In comparison to studies of the roles for CYPs and GSTs in mediating herbicide 

resistance, far less is known regarding the roles for glycosyltransferases or 

transporter proteins. 

1.3.4.1 Glycosyltransferases 

Glycosyltransferases (GTs) are a large family of enzymes in plants responsible for 

the conjugation of acceptor molecules, including flavonoids, hormones and 

xenobiotics, with an activated UDP-sugar moiety (Bowles et al., 2005). In crops, 

glycosylation plays a clear role in the metabolism of multiple herbicides including 

chlorsulfuron and diclofop-methyl (Shimabukuro et al., 1979; Sweetser et al., 1982). 

In both of these cases, the parent herbicide is first hydroxylated by CYP enzymes 

followed by glycosylation of the newly-introduced hydroxyl group. It is also 

possible for herbicides to be detoxified by glycosylation of free amine groups as 

reported for amiben and picloram (Swanson et al., 1966; Frear et al., 1989).  

In weeds, the extent to which enhanced glycosylation is required to elicit herbicide 

resistance is not clear. For instance, in the cases of chlorsulfuron and diclofop-

methyl, evidence has suggested that CYP-mediated hydroxylation of the parent 

herbicide, prior to glycosylation, is the key step contributing to herbicide resistance 

(Christopher et al., 1991; Ahmad-Hamdani et al., 2013). However, in black-grass 

GT activity is increased in MHR biotypes that are also known to have elevated CYP 



49 
 

and GST activities (Brazier et al., 2002). Induced GT activities in other herbicide 

resistant weed species is yet to be reported. 

1.3.4.2 Transporter proteins 

Two membrane-bound transporter protein systems have been reported for the 

transport of herbicide conjugates into the vacuole for further degradation. In barley, 

hydroxyprimisulfuron-glucoside has been shown to be transported into isolated 

vacuoles by ATP-binding cassette (ABC) transporter proteins (Klein et al., 1996). 

Whilst in red beet (Beta vulgaris), chlorsulfuron-glucoside is transported into the 

vacuole by ATP-dependent proton antiporter proteins (Bartholomew et al., 2002). It 

is not yet clear if the two systems for the clearance of herbicide-glucoside conjugates 

are species- or herbicide-dependent, nor if they co-exist and co-ordinate in the same 

plant. To date, glutathionylated herbicides have been shown to be transported into 

the vacuole by ABC transporter proteins (Martinoia et al., 1993; Bartholomew et al., 

2002; Rea, 2007). The isolation and in vitro characterisation of two Arabidopsis 

ABC transporter proteins, AtMRP1 and AtMRP2, capable of transporting 

glutathionylated herbicides has found that these proteins closely resemble multi-drug 

resistance transporter proteins in mammals (Lu et al., 1997; Lu et al., 1998). 

Furthermore, over-expression of the ABC transporter, AtPgp1, in Arabidopsis plants 

enhanced the plants resistance to multiple herbicides with different modes-of-action. 

This included herbicides that are not known to be detoxified by glycosylation or 

glutathionylation in plants and may instead be as a result of a more generalised 

efflux mechanism with the parent compound (Windsor et al., 2003).  

In weeds, the equivalent studies to isolate and characterise transporter proteins 

involved in herbicide metabolism have not been reported. However, an emerging 

mechanism of evolved resistance is that of altered translocation and/or sequestration 

in the plant. Significantly, reduced translocation of glyphosate, the world’s most 

commercially-exploited herbicide, has now been observed in multiple resistant 

Lolium and Conyza biotypes (Powles and Yu, 2010). 
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1.4 Herbicide resistant black-grass (Alopecurus myosuroides) 

Alongside annual rye-grass, black-grass is the most well-studied weed species to 

date with regards to herbicide resistance. Black-grass is an obligate out-crossing 

species and herbicide resistant populations are particularly prevalent in the UK and 

Northern Europe (Moss et al., 2007). For instance, in the UK an estimated 80 % of 

arable farmland suffers from herbicide-resistant black-grass infestation (Moss et al., 

2011). Black-grass has proven remarkably adaptable to exposure to herbicides and 

multiple geographically-discrete populations have evolved TSR and NTSR 

resistance mechanisms. For instance, as a species, black-grass is known to have 

evolved a total of 2 and 12 point mutations in ACCase and ALS enzymes 

respectively (Jang et al., 2013; Tranel et al., 2013), with newly-evolved point 

mutations still being identified (Kaundun et al., 2013). Furthermore, single black-

grass populations are known to have evolved point mutations in both ACCase and 

ALS enzymes concurrently (Bailly et al., 2012). Black-grass also readily evolves 

NTSR mechanisms that can render the plants resistant to multiple herbicides with 

different modes-of-action (Moss, 1990; Delye et al., 2011). These mechanisms 

include enhanced herbicide metabolism mediated by CYPs and GSTs as well as the 

expression of GSTs that function as GPOXs and up-regulated GT activities (Hyde et 

al., 1996; Hall et al., 1997; Cummins et al., 1997b; Cummins et al., 1999; Brazier et 

al., 2002). Alarmingly, NTSR in black-grass can lead to resistance to herbicides that 

the plants have never previously been exposed to, for instance resistance to the 

recently commercialised herbicide pinoxaden (Delye et al., 2011). Therefore, 

elucidating the molecular mechanisms that underpin NTSR in black-grass is essential 

to develop rational strategies to combat herbicide resistance in this species. 
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1.5 Background and aims to the project 

The project described in this thesis builds from the discovery by Cummins et al. of 

the novel expression of four highly homologous phi-class GST (GSTF) isoforms in 

multiple herbicide resistant biotypes of the weed species black-grass (Cummins et 

al., 1999) (see also Chapter 1 section 1.3.3.3). Whilst some plant GSTs are known to 

detoxify herbicides by conjugating these phytotoxic compounds with glutathione 

and/or glutathione homologues, characterisation of one of these isoforms 

(AmGSTF1c) found that AmGSTF1 has very limited ability to catalyse these 

reactions. Instead AmGSTF1 functions in vitro as a glutathione peroxidase (GPOX) 

enzyme and can detoxify organic and long-chain fatty acid hydroperoxides to the 

less toxic alcohol species. This correlates with the ability of MHR biotypes to 

maintain cellular hydroperoxide concentrations at a basal level following treatments 

with herbicides of different modes-of-action. This is unlike herbicide sensitive 

biotypes of black-grass which accumulate significant levels of damaging 

hydroperoxides following the same treatments. Therefore it was proposed that the 

constitutive expression of AmGSTF1 isoforms in MHR black-grass may be linked to 

enhanced herbicide tolerance by protecting the plant from oxidative injury caused by 

herbicide treatment (Cummins et al., 1999). 

To better understand the role of AmGSTF1 in MHR, AmGSTF1c has been 

constitutively expressed in a transgenic host plant (Arabidopsis thaliana) with the 

resulting transgenic plants tested for changes in herbicide tolerance. Multiple 

independent AmGSTF1-expressing lines displayed enhanced herbicide tolerance to 

herbicides with multiple modes-of-action including chlorotoluron, a herbicide which 

cannot be detoxified by GSTs (Figure 15) (Dr. I. Cummins and Prof. R. Edwards, 

unpublished work at the start of this project). Analysis of the biochemical phenotype 

of the AmGSTF1-expressors found increases in GST, GPOX, thiol transferase and 

glycosyltransferase activities as well as increases in endogenous GST-mediated 

detoxification of alachlor and atrazine as these are not substrates for AmGSTF1 

(Cummins et al., 1999). AmGSTF1-expressors also accumulated greater levels of 

flavonoids and anthocyanins, plant secondary metabolites associated with 

antioxidant defence systems (Dr. I. Cummins and Prof. R. Edwards, unpublished 

work at the start of this project). 
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Figure 15: Enhanced herbicide tolerance of transgenic Arabidopsis plants expressing AmGSTF1. (A) 

Plants were germinated on agar containing 2 µM herbicides (chlorotoluron, alachlor or atrazine) or an equivalent 

volume of acetone (no herbicide). (B) Plants were sprayed with chlorotoluron (30 g ai hectare-1), alachlor (1200 g 

ai hectare-1), atrazine (30 g ai hectare-1) or formulation-only. Plants were assessed 9 days after treatment. Vector 
– transgenic Arabidopsis plants expressing the transformation vector only. Line 8 – a mid-level AmGSTF1-

expressing line as judged by Western blotting. Line 12 - a high-level AmGSTF1-expressing line as judged by 

Western blotting. ai – active ingredient. Data shown with the permission of Dr. I. Cummins and Prof. R. 

Edwards. 

Hence this startling and unexpected set of results demonstrated that not only could 

AmGSTF1 enhance herbicide tolerance in a transgenic host plant to herbicides with 

different modes-of-action but that AmGSTF1 also co-ordinated the up-regulation of a 

subset of endogenous detoxification enzymes and the accumulation of protective 

secondary metabolites. 

Of strong significance, these results mirrored the biochemical changes that had 

already been observed in MHR black-grass plants relative to wild-type sensitive 

plants (Cummins et al., 2009). Therefore these results would strongly suggest that 

AmGSTF1 plays a key role in eliciting MHR in both a transgenic host plant and in 

black-grass. 

In parallel with these studies a chemical library was screened for compounds capable 

of inhibiting AmGSTF1c and of reversing the MHR black-grass phenotype. 

Compounds (100 µM) were each incubated with recombinant AmGSTF1c in vitro 

before assaying for enzyme activity alongside which each compound was sprayed 

onto MHR black-grass prior to an application of herbicide. The preliminary in vitro 

studies identified 4-chloro-7-nitro-benzoxadiazole (NBD-Cl; Figure 16) as an 
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AmGSTF1 inhibitor with concurrent spray trials demonstrating that the compound 

was capable of restoring herbicide efficacy in black-grass (Figure 17).  

 

Figure 16: Chemical structure of 4-chloro-7-nitro-benzoxadiazole (NBD-Cl). 

 

Figure 17: Effect of 4-chloro-7-nitro-benzoxadiazole on herbicide resistance in black-grass when treated 

with the herbicides chlorotoluron, fenoxaprop-p-ethyl or clodinafop-propargyl. (A and B) For studies with 

chlorotoluron, (A) wild-type sensitive (WTS) and (B) multiple herbicide resistant (MHR) Peldon black-grass 

plants were treated at 12 d with either formulation or 4-chloro-7-nitro-benzoxadiazole (NBD-Cl; 270 g ai hectare-

1), before an application of either formulation only (Form) or chlorotoluron (CHL; 500 g ai hectare-1). (C and D) 

For studies with fenoxaprop-p-ethyl formulated as Cheetah Super, (C) WTS or (D) MHR Peldon plants were pre-

treated with NBD-Cl (80 g ai hectare-1), before spraying with formulation control (Form) or fenoxaprop-p-ethyl 

(FXP; 85 g ai hectare-1). (E and F) For studies with the independent MHR Spain black-grass biotype, WTS and 
MHR Spain black-grass plants were pre-treated with NBD-Cl (270 g ai hectare-1) or formulation only followed 

by a treatment with (E) FXP (165 g ai hectare-1) or formulation only or (F) clodinafop-propargyl (CDF; 250 mL 

hectare-1), as the commercial formulation Topik, or formulation only. In all cases plants were evaluated for 

phytotoxic injury 21 d postherbicide application. ai – active ingredient. Data shown with the permission of Dr. I. 
Cummins and Prof. R. Edwards. 
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Analysis of NBD-Cl treated AmGSTF1 by mass spectrometry revealed that the 

enzyme had been alkylated by the compound on a specific cysteine residue (Cys120) 

via nucleophilic displacement of the NBD-Cl chloride ion (Dr. I. Cummins and Prof. 

R. Edwards, unpublished work at the start of this project). 

Aims of this project 

The prior and unpublished work on AmGSTF1 raised many interesting questions 

about the mechanism of action of the enzyme and its role in MHR. Ultimately this 

project aimed to elucidate the mechanism by which AmGSTF1 elicited an MHR 

phenotype in a transgenic host plant. To do this, the following articles were 

explored: 

i. The properties of the multiple AmGSTF1 isoforms first discovered by 

Cummins et al. (Cummins et al., 1999). 

ii. The mechanism by which AmGSTF1 up-regulated endogenous antioxidant 

enzyme activities and caused flavonoid accumulation in transgenic 

Arabidopsis plants. 

iii. The relative contributions of catalytic activity and Cys120 for an MHR 

phenotype. 

iv. The interaction between AmGSTF1 and NBD-Cl. 

v. The properties of AmGSTF1 orthologues in crops and weeds. 

This project used a combination of in vitro biochemical studies and transgenesis 

studies to answer the questions proposed. 

The properties of AmGSTF1 isoforms were explored in vitro and the inhibition of 

AmGSTF1 by NBD-Cl more fully characterised. The transcriptomes of transgenic 

Arabidopsis plants expressing AmGSTF1 (generated by Dr. I. Cummins) were 

analysed for perturbations related to the observed changes in endogenous antioxidant 

enzyme activities and flavonoid accumulation (Chapter 3). 

A catalytically-retarded AmGSTF1 mutant and a mutant lacking Cys120 were 

generated and used to explore the necessity of GPOX activity and Cys 120 for an 

MHR phenotype by expressing these enzymes in transgenic Arabidopsis plants and 
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challenging these plants with herbicides. Transgenic plants were also tested for the 

changes in endogenous antioxidant enzyme activities and flavonoid accumulation 

seen with AmGSTF1-expressors. Furthermore the Cys120 mutant was used in vitro 

to probe the mechanism of inhibition of AmGSTF1 by NBD-Cl (Chapter 4). 

An AmGSTF1 orthologue from maize has been characterised in vitro and expressed 

in transgenic Arabidopsis plants and tested in an analogous manner to the AmGSTF1 

mutants. An orthologue from the damaging weed species annual rye-grass has also 

been isolated and characterised in vitro alongside AmGSTF1 (Chapter 5). 

The conclusions from these studies and new understanding for the role of AmGSTF1 

and orthologues in MHR as a product of this work is then discussed (Chapter 6). 
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Chapter 2 Materials and Methods 

2.1 Materials 

Unless stated otherwise, all chemicals were of analytical grade and purchased from 

Sigma-Aldrich. All molecular biology reagents and enzymes were purchased from 

New England Biolabs, Promega or Thermo Scientific. Oligonucleotide primers were 

synthesized and purchased from Eurofins MWG Operon. All buffers were 

formulated in ultrapure water (18.2 MΩ cm-1) followed by filtration and de-gassing. 

All reagents were used as solids or formulated in ultrapure water. All growth media 

was autoclaved prior to use. 

2.2 Instrumentation 

Polymerase chain reactions were performed using a Mastercycler® gradient thermal 

cycler (Eppendorf, Germany). Protein purification and desalting was performed 

using an ÄKTA-FPLC system (GE Healthcare, UK). Spectrophometric assays were 

measured using a Shimadzu UV-1800 UV spectrophotometer (Shimadzu 

Corporation, Japan). High-performance liquid chromatography was performed using 

a Thermo SpectraSystem equipped with ChromQuest 4.2 software (Thermo Fisher 

Scientific, USA). Mass spectrometry was performed using a HCT Ultra EDT II mass 

spectrometer equipped with Compass DataAnalysis software (Bruker Daltonics, 

USA). 

2.3 Cloning techniques 

2.3.1 Polymerase chain reaction (PCR) 

For PCR, a reaction mix containing 1x Pfu DNA polymerase buffer (supplied by the 

manufacturer), 5 µL template DNA, 300 nM forward primer, 300 nM reverse primer, 

1.25 U Pfu DNA polymerase and 200 µM dNTPs was prepared, in a total volume of 

50 µL. Typically, samples were denatured at 95 °C for 2 min and then exposed to 30 

heating cycles composed of: 1 min 95 °C, 30 s 55 °C, 1 min 72 °C. This was 

followed by a final extension step at 72 °C for 2 min. 
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2.3.2 Separation of DNA molecules using agarose gel electrophoresis  

Agarose-TAE gels were prepared by first dissolving 0.8 % (w/v) agarose in TAE 

buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0). The solution was then cooled to 

room temperature, followed by the addition of 0.00004 % (v/v) ethidium bromide. 

The solution was poured into a pre-assembled cast and allowed to set. Once the gel 

was set, the comb was carefully removed to reveal the wells and the tank filled with 

TAE buffer. Each DNA sample was mixed thoroughly with an appropriate volume 

of 6 x loading buffer (10 mM Tris-HCl, 50 mM EDTA, 15 % (w/v) Ficoll 400, 0.03 

% (w/v) bromophenol blue, 0.03 % (w/v) xylene cyanol FF, 0.4 % (w/v) Orange G, 

pH 7.5). Samples were run alongside 5 µL DNA 1 kb ladder to allow estimation of 

the nucleotide length of unknown DNA fragments. Once all samples were loaded 

into the gel, 1 µL ethidium bromide was added to the running buffer at the cathode 

end of the tank. Samples were run at 125 V for 20 min. DNA molecules were 

visualised using UV light. 

2.3.3 Excision and purification of separated DNA molecules  

The excised gel piece, containing the desired DNA molecules, was first heated at 50 

°C in 0.5 mL binding buffer (6 M sodium perchlorate, 50 mM Tris, 10 mM EDTA, 

pH 8.0). To the resulting solution, 10 µL silica fines were added and slowly mixed 

for 10 min. The silica fines were then clarified by centrifugation (18000 g, 2 min) 

and the supernatant was discarded. The silica fines were re-suspended in 150 µL 

wash buffer (400 mM NaCl, 20 mM Tris-HCl, 2 mM EDTA, 50 % (v/v) ethanol 

(EtOH), pH 7.5) and clarified again by centrifugation (18000 g, 2 min). The wash 

step was repeated. The supernatant was then discarded and the silica fines re-

suspended in 20 µL H2O, followed by heating at 37 °C for 2 min. The silica fines 

were clarified by centrifugation (18000 g, 2 min) and the sample stored at -20 °C. 

2.3.4 DNA restriction digests 

Typically, a reaction mix was prepared containing 8 µL DNA sample, 5 U restriction 

enzyme, 1 x restriction buffer (recommended by the manufacturer), in a total volume 
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of 10 µL. Samples were incubated for 60 min at a temperature recommended by the 

manufacturer for the specific restriction enzyme being used. 

2.3.5 DNA ligation reactions 

A reaction mix containing 40 U T4 DNA ligase, 1 x T4 DNA ligase buffer (supplied 

by the manufacturer), 1 µL linearised vector DNA and 7 µL insert DNA was 

prepared and incubated at 20 °C for 30 min.  

2.3.6 Bacterial media 

Luria-Bertani (LB) broth was prepared as the following formulation; 1 % (w/v) 

peptone, 1 % (w/v) NaCl, 0.5 % (w/v) yeast extract, pH 7. LB-agar was prepared as 

above with the addition of 1.5 % (w/v) agar.  

2.3.7 E. coli host transformation 

Unless stated otherwise, 2 µL plasmid DNA was gently mixed with 50 µL of the 

desired bacterial host strain cells on ice. The sample was left to sit on ice for a 

further 30 min. Cells were then heated at 42 °C for 30 s followed by rapid cooling on 

ice for 2 min. Following heat treatment, 1 mL LB, warmed to 42 °C, was added and 

the sample shaken at 200 rpm for 60 min at 37 °C. After shaking, 200 µL of 

transformed cells were incubated at 37 °C overnight on LB-agar containing 100 µg 

mL-1 kanamycin  and 35 µg mL-1 chloramphenicol (prepared as a 35 mg mL-1 stock 

solution in EtOH). For downstream applications requiring plasmid purification, 

plasmid DNA was transformed into XL-10 Gold Ultracompetent cells (Agilent 

Technologies, USA). For recombinant protein expression, plasmid DNA was 

transformed into E. coli strain Tuner(DE3) cells that also contained the pRARE 

plasmid derived from E. coli strain Rosetta, subsequently termed Tunetta cells 

(Dixon et al., 2009). 

2.3.8 Plasmid purification 

A single, transformed bacterial colony was selected and cells were grown overnight 

in 10 mL LB, containing the appropriate antibiotics, with shaking at 200 rpm and 



59 
 

heating at 37 °C. The overnight culture was clarified by centrifugation (4000 g, 10 

min) and plasmid DNA purified using the Wizard® Plus SV Minipreps DNA 

Purification System (Promega, UK) following the manufacturer’s instructions. 

2.3.9 DNA Sanger sequencing 

Plasmid DNA was sequenced using a 3130 Genetic Analyser at the Technology 

Facility, University of York, UK. Sequencing primers are given (Table 1). 

Table 1: Sequencing primers used in these studies. The names and sequences of primers used for plasmid 

sequencing are given. for – forward primer using the antisense DNA strand as template. rev – reverse primer 
using the sense DNA strand as template. 

Plasmid Primer Primer sequence (5’→3’) 

pET-STRP3 
T7_for taatacgactcactataggg 

T7_rev tatgctagttattgctcagaggt 

pBIN-STRP3 
Tap_for aagcattctacttctattgcagc 

Tap_rev tggcgtttttgatgtcattttcg 

 

2.4 In vitro studies with recombinant GST proteins 

2.4.1 Generation of C120V and S12A point mutants 

Using AmGSTF1 sub-cloned in the pET-24a vector (Cummins et al., 1999) as a 

template, the plasmid was amplified using primer sets containing either the S12A or 

C120V codon mutation respectively (Table 2). 

Table 2: Primers used to generate AmGSTF1 point mutants. Forward - primer using the antisense DNA 

strand as template. Reverse - primer using the sense DNA strand as template. 

Point mutation Primer Primer sequence (5’→3’) 

S12A 
Forward ggcccggccatggcaaccaacgttgcacg 

Reverse cgtgcaacgttggttgccatggccgggcc 

C120V 
Forward ccgatcgtgtatcaggttctgtttaacccg 

Reverse cgggttaaacagaacctgatacacgatcgg 

 

Following PCR, samples were incubated with 5 U DpnI restriction enzyme for 60 

min at 37 °C to remove methylated template DNA. Plasmids were then transformed 

into XL-10 Gold Ultracompetent E. coli cells followed by plasmid purification and 
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sequencing. For protein expression, AmGSTF1 point mutant sequences were cut 

from the pET-24a plasmid using NdeI/SalI DNA restriction enzymes, purified and 

ligated into NdeI/SalI-digested pET-STRP3 plasmid. Ligated plasmids were first 

transformed into XL-10 Gold Ultracompetent cells before purification and 

sequencing of the construct. Following confirmation that the sequences of the 

constructs were correct, the constructs were transformed into Tunetta cells. 

2.4.2 Recombinant protein expression in E. coli 

For protein expression, GSTs sub-cloned into the pET-STRP3 vector (Dixon et. al., 

2008) were transformed into E. coli strain Tunetta cells (Dixon et al., 2009). For 

each construct, one colony was selected and grown overnight, in 10 mL LB media 

containing 100 µg mL-1 kanamycin  and 35 µg mL-1 chloramphenicol (prepared as a 

35 mg mL-1 stock solution in EtOH), with shaking at 200 rpm at 37 °C. The 

overnight culture was then added to 0.5 L LB media containing 100 µg mL-1 

kanamycin and 35 µg mL-1 chloramphenicol, with shaking at 200 rpm at 37 °C. The 

culture was maintained under these conditions until it reached an optical density of 

0.6 at an absorbance wavelength of 600 nm (determined against an LB blank). The 

culture was cooled to 20 °C and recombinant protein expression was induced by 

adding 0.1 mM isopropyl-D-thiogalactopyranoside (IPTG) to the growing culture. 

The culture was left for a further 16-20 hrs with shaking at 200 rpm at a temperature 

of 20 °C. Cells were then collected via centrifugation (7500 rpm, 15 min, 4 °C) of 

the overnight cell culture and the bacterial cell pellet stored at -20 °C until required.  

2.4.3 Recombinant protein purification using Strep-tactin affinity 

chromatography 

The frozen bacterial cell pellet was thawed to room temperature and re-suspended in 

30 mL HEPES buffer (20 mM HEPES free acid, 150 mM NaCl, 1 mM EDTA, pH 

7.6). Cells were lysed via sonication (70 % amplitude, 4 min total sonication time, 3 

s sonication, 7 s cooling) on ice.  Following sonication, 2 mM dithiothreitol (DTT), 2 

µg mL-1 avidin and DNase I were added to the lysate, which was then clarified by 

centrifugation (10000 g, 15 min). The supernatant was further clarified using a 0.45 

µm Millex-HA syringe filter unit (Merck Millipore, USA). Strep II tagged proteins 
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were purified using a 5 mL Strep-Tactin Superflow High Capacity column (Stratech 

Scientific Ltd, Suffolk, UK). The column was firstly pre-equilibrated with HEPES 

buffer and then loaded with cell lysate at a flow rate of 1 mL min-1. Once all 

unbound protein had been removed from the column (as judged by A280 

measurement), recombinant protein was eluted with 2.5 mM desthiobiotin (DTB; 

formulated in HEPES buffer). Eluted protein fractions were combined and mixed 

with 10 % (v/v) glycerol before being split into 0.5 mL aliquots, flash-frozen and 

stored at -80 °C. The column was regenerated by washing with 5 column volumes of 

1 mM 2-(4-hydroxyphenylazo)benzoic acid (HABA; formulated in HEPES buffer) 

followed by washing with regeneration buffer (100mM Tris, 150 mM NaCl, 1mM 

EDTA, pH 10.5). Finally, the column was re-equilibrated in HEPES buffer prior to 

storage at 4 °C. 

2.4.4 Quantification of purified recombinant protein concentrations 

The concentration of purified recombinant Strep II tagged proteins was determined 

by UV-vis spectrophotometry using a Nanodrop ND1000 spectrophotometer 

(Thermo Scientific, USA). The absorbance at 280 nm of 2 µL protein sample was 

determined and related to the protein concentration using the estimated extinction 

coefficient of the recombinant protein (ProtParam, ExPASy web program, Swiss 

Institute of Bioinformatics). 

2.4.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE experiments were performed using a discontinuous gel system 

(Laemmli, 1970), with Mini-Protean Tetra cell apparatus (Bio-Rad, USA). The 

resolving gel was composed of 2.5 ml resolving buffer (1.5 M Tris-HCl, 0.4 % (v/v) 

tetramethylethylenediamine (TEMED), 0.4 % (w/v) SDS, pH 9), 4.27 ml H2O and 

3.12 ml 40 % acrylamide/bis-acrylamide. The gel solution was de-gassed and 

acrylamide polymerisation was induced by the addition of 0.1 ml 10 % (w/v) 

ammonium persulfate. The solution was immediately transferred into a pre-

assembled gel apparatus and allowed to solidify. The stacking gel was composed of 

4.5 ml stacking buffer (0.14 M Tris-HCl, 0.11 % (v/v) TEMED, 0.11 % (w/v) SDS, 

pH 6.8) and 0.5 ml 40 % acrylamide/bis-acrylamide. The gel solution was de-gassed 
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and 0.1 ml 10 % (w/v) ammonium persulfate was added. The solution was 

immediately applied to the top of the resolving gel, the well-comb was added and the 

gel allowed to solidify. The tank apparatus was then assembled, and filled with 

running buffer (25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS, pH 8.3), according 

to the manufacturer’s instructions. Protein samples were mixed with an appropriate 

volume of 4 x SDS loading buffer (83.3 mM Tris-HCl, 16.7 % (v/v) glycerol, 2.67 % 

(w/v) SDS, 6.67 % (v/v) β-mercaptoethanol, 0.003 % (w/v) bromophenol blue, pH 

6.8), boiled at 95 °C for 5 min, and the supernatant clarified by centrifugation (13000 

g, 2 min). Samples were run alongside 10 µL pre-stained broad-range protein 

markers to allow the estimation of the molecular weights of unknown proteins. Once 

all samples were loaded, gels were run at 100 V as proteins moved through the 

stacking gel and 200 V thereafter, until the marker dye-front eluted from the gel. To 

visualise proteins, gels were washed twice with H2O and then stained using the 

commercially available InstantBlue dye reagent (Expedeon Inc., USA), according to 

the manufacturer’s instructions. 

2.4.6 Determination of recombinant protein molecular weights using mass 

spectrometry 

Protein samples were concentrated by size exclusion chromatography using 2 mL 

Vivaspin columns (GE Healthcare, UK), according to the manufacturer’s 

instructions. The recovered protein was then mixed with an equal volume of 2 % 

(v/v) formic acid in acetonitrile. Samples were injected into the ionisation chamber 

at a flow rate of 3 µL min-1 and mass ions generated, using electrospray ionisation, 

with a dry gas flow rate of 5 L min-1 at 300 °C, and nebuliser gas pressure of 10 psi. 

Mass spectra were acquired in positive ion mode, with a source voltage of 4000 V 

and skimmer voltage of 40 V, over the mass range 400 – 2500 m / z. Multiply-

charged mass ions were deconvoluted using Compass DataAnalysis software 

(Bruker Daltonics, USA). Before use, the mass spectrometer was calibrated using a 

myoglobin reference standard; theoretical mass = 16951 Da, observed mass = 16951 

Da. In some cases, stated in the main text, mass spectrometry was performed by the 

Technology Facility, University of York, UK. 
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2.4.7 Reduction and desalting of purified recombinant protein 

Prior to studies with recombinant enzymes, a 0.5 mL aliquot of each recombinant 

purified protein was removed from storage at -80 °C, thawed, and incubated with 5 

mM DTT on ice for 15 min. After which, each protein was desalted in HEPES buffer 

using a HiTrap Desalting 5 mL column (GE Healthcare, UK), according to the 

manufacturer’s instructions. 

2.4.8 In vitro GSH-dependent enzyme assays 

2.4.8.1 Assay using 1-chloro-2,4-dinitrobenzene (CDNB) as substrate 

CDNB assays were based on the method described by Habig et al. (1974). Assay 

buffer (0.1 M potassium phosphate, pH 6.5) was warmed to 30 °C and contained 5 

mM GSH, 375 nM recombinant enzyme and 1 mM CDNB (prepared as a 40 mM 

stock solution in EtOH), in a total assay volume of 1 mL. The solution was 

thoroughly mixed, and the increase in absorbance at 340 nm was measured for 30 s 

at 30 °C by UV-vis spectrophotometry. The chemical rate of reaction was measured 

by replacing recombinant enzyme with an appropriate volume of HEPES buffer. 

GST-catalysed reactions were duly corrected for non-enzymatic contributions. 

Corrected enzymatic rates were expressed as nmol of the glutathionylated product 

formed per second per mg of recombinant protein, using the molar extinction 

coefficient of the product (ε = 9.6 mM-1 cm-1). Assays were performed in technical 

triplicate. In the case of ZmGSTF1, 7.5 nM recombinant enzyme was used to obtain 

linear kinetics. 

2.4.8.2 Assay using cumene hydroperoxide (CuOOH) as substrate 

Assays using CuOOH were based on the method described by Flohe and Gunzler 

(1984). Assay buffer (0.25 M potassium phosphate, 2.5 mM EDTA, pH 7.0) was 

warmed to 37 °C and contained 0.6 U glutathione reductase, 250 µM reduced 

nicotinamide adenine dinucleotide phosphate (NADPH; prepared as a 2.5 mM stock 

in 0.1 % (w/v) NaHCO3) and 1 mM GSH. The solution was incubated at 37 °C for 3 

min. Following this incubation period, 375 nM recombinant enzyme and 1.2 mM 
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CuOOH were added to the assay, with thorough mixing, in a total assay volume of 1 

mL. The decline in absorbance at 340 nm was measured for 2 min at 37 °C by UV-

vis spectrophotometry. The chemical rate of reaction was measured by replacing 

recombinant enzyme with an appropriate volume of HEPES buffer. GST-catalysed 

reactions were duly corrected for non-enzymatic contributions. Corrected enzymatic 

rates were expressed as nmol of NADP+ formed per second per mg of recombinant 

protein, using the molar extinction coefficient of NADPH (ε = 6.22 mM-1 cm-1). 

Assays were performed in technical triplicate. 

2.4.8.3 Assay using linoleic acid hydroperoxide (LinOOH) as substrate 

LinOOH (13-hydroperoxy-(E)-9-(Z)-11-octadecadienoic acid) was synthesized 

based on a previously described protocol (Edwards and Dixon, 2005). 25 mL Tris 

buffer (50 mM Tris-HCl, pH 9) was warmed to 30 °C, with shaking at 200 rpm. 

After 15 min, 43.5 µmol linoleic acid was added to the solution. Soybean lipoxidase 

was re-suspended in 2 mL Tris buffer to a final concentration of 125536 U ml-1 and 

added to the linoleic acid solution in 0.25 mL aliquots over a period of 10 min, with 

shaking at 200 rpm. The reaction was shaken for a further 10 min at 200 rpm before 

adding 6.5 mL EtOH. The reaction was then cooled to 4 °C and acidified to pH 3 

using glacial acetic acid. The supernatant was clarified by centrifugation (17000 g, 

30 min, 4 °C) and maintained at 4 °C. LinOOH was purified using 3 mL Strata-X 

solid phase extraction DSC-18 cartridges (Sigma Aldrich). Cartridges were first 

washed with 12 mL EtOH, followed by 12 mL H2O. After cartridge preparation, 3 

mL clarified supernatant was applied to each cartridge and each cartridge washed 

with 12 mL 20 % (v/v) EtOH, followed by 24 mL H2O, and finally 6 mL hexane. 

LinOOH was recovered with 6 mL methanol (MeOH). Recovered methanolic 

fractions were combined, and concentrated to an oily, white residue under reduced 

pressure, before re-suspending with 0.5 mL MeOH. LinOOH was quantified by UV-

vis spectrophotometry, at a wavelength of 235 nm, using the molar extinction 

coefficient ε = 23000 M-1 cm-1. Assays with LinOOH as substrate were performed as 

described for CuOOH, with the following modifications; LinOOH was used at a 

final substrate concentration of 38 µM, with 34.6 nM recombinant enzyme. 
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2.4.8.4 Assay using 2-hydroxyethyl disulfide (HED) as substrate 

Assays using HED were based on the method described by Dixon et al. (2002). 

Assay buffer (0.1 M potassium phosphate, 2 mM EDTA, pH 7.8) was warmed to 30 

°C and contained 0.6 U glutathione reductase, 250 µM NADPH (prepared as a 2.5 

mM stock in 0.1 % (w/v) NaHCO3), 1 mM GSH and 0.7 mM HED. The solution 

was incubated at 30 °C for 3 min. Following this incubation period, 3.75 µM 

recombinant enzyme was added to the assay, with thorough mixing, in a total assay 

volume of 1 mL. The decline in absorbance at 340 nm was measured for 3 min at 30 

°C by UV-vis spectrophotometry. The chemical rate of reaction was measured by 

replacing recombinant enzyme with an appropriate volume of HEPES buffer. GST-

catalysed reactions were duly corrected for non-enzymatic contributions. Corrected 

enzymatic rates were expressed as nmol of NADP+ formed per second per mg of 

recombinant protein, using the molar extinction coefficient of NADPH (ε = 6.22 

mM-1 cm-1). Assays were performed in technical triplicate. 

2.4.8.5 Assay using crotonaldehyde as substrate 

Assays using crotonaldehyde were based on the method described by Berhane et al. 

(1994). In a quartz cuvette, assay buffer (0.1 M potassium phosphate, pH 6.5) was 

warmed to 37 °C and contained 1 mM GSH, 938 nM recombinant enzyme and 0.1 

mM crotonaldehyde (prepared as a 10 mM stock solution in EtOH), in a total assay 

volume of 1 mL. The solution was thoroughly mixed and incubated at 37 °C for 2 

min. The increase in absorbance at 230 nm was measured for 2 min at 37 °C by UV-

vis spectrophotometry. The chemical rate of reaction was measured by replacing 

recombinant enzyme with an appropriate volume of HEPES buffer. GST-catalysed 

reactions were duly corrected for non-enzymatic contributions. Corrected enzymatic 

rates were expressed as nmol of the glutathionylated product formed per second per 

mg of recombinant protein, using the molar extinction coefficient of crotonaldehyde 

(ε = 10.7 mM-1 cm-1). Assays were performed in technical triplicate. 
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2.4.8.6 Assay using ethacrynic acid as substrate 

Assays using ethacrynic acid were based on the method described by Habig et al. 

(1974). In a quartz cuvette, assay buffer (0.1 M potassium phosphate, pH 6.5) was 

warmed to 30 °C and contained 5 mM GSH, 938 nM recombinant enzyme and 0.2 

mM ethacrynic acid (prepared as an 8 mM stock solution in EtOH), in a total assay 

volume of 1 mL. The solution was thoroughly mixed and the increase in absorbance 

at 270 nm was measured for 30 s at 30 °C by UV-vis spectrophotometry. The 

chemical rate of reaction was measured by replacing recombinant enzyme with an 

appropriate volume of HEPES buffer. GST-catalysed reactions were duly corrected 

for non-enzymatic contributions. Corrected enzymatic rates were expressed as nmol 

of the glutathionylated product formed per second per mg of recombinant protein, 

using the molar extinction coefficient of the product (ε = 5 mM-1 cm-1). Assays were 

performed in technical triplicate. 

2.4.8.7 Assay using 4-nitrophenyl acetate (NPA) as substrate 

Assays using NPA were based on the method described by Keen and Jakoby (1978). 

Assay buffer (0.1 M potassium phosphate, pH 7) containing 0.2 mM NPA (prepared 

as a 100 mM stock solution in MeOH), was warmed to 30 °C. To this, was added 

938 nM recombinant enzyme and 1 mM GSH, in a total assay volume of 1 mL. The 

increase in absorbance at 400 nm was measured for 1 min at 30 °C by UV-vis 

spectrophotometry. The chemical rate of reaction was measured by replacing 

recombinant enzyme with an appropriate volume of HEPES buffer. GST-catalysed 

reactions were duly corrected for non-enzymatic contributions. Corrected enzymatic 

rates were expressed as nmol of the 4-nitrophenol product formed per second per mg 

of recombinant protein, using the molar extinction coefficient of the product (ε = 17 

mM-1 cm-1). Assays were performed in technical triplicate. 

2.4.8.8 Assay using benzyl isothiocyanate (BITC) as substrate  

Assays using BITC were based on the method described by Kolm et al. (1995). In a 

quartz cuvette, assay buffer (0.1 M potassium phosphate, pH 6.5) was warmed to 30 

°C and contained 1 mM GSH, 938 nM recombinant enzyme and 0.16 mM BITC 
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(prepared as a 16 mM stock solution in acetonitrile), in a total assay volume of 1 mL. 

The solution was thoroughly mixed and the increase in absorbance at 274 nm was 

measured for 30 s at 30 °C by UV-vis spectrophotometry. The chemical rate of 

reaction was measured by replacing recombinant enzyme with an appropriate 

volume of HEPES buffer. GST-catalysed reactions were duly corrected for non-

enzymatic contributions. Corrected enzymatic rates were expressed as nmol of the 

glutathionylated product formed per second per mg of recombinant protein, using the 

molar extinction coefficient of the product (ε = 9.25 mM-1 cm-1). Assays were 

performed in technical triplicate. 

2.5 Inhibition studies 

2.5.1 IC50 determinations 

IC50 measurements were determined with the following inhibitors; 4-chloro-7-nitro-

benzoxadiazole (NBD-Cl), ethacrynic acid, cyanuric chloride and bromoenol lactone 

(kindly donated by Dr. J. D. Sellars, Department of Chemistry, Durham University, 

UK). For studies with each inhibitor, recombinant GSTs were assayed for activity 

toward CDNB as substrate as described (see section 2.4.8.1), in the presence of 1 nM 

– 100 µM inhibitor (prepared as 100 x stock solutions in an appropriate organic 

solvent), with 344 nM recombinant enzyme. For each inhibitor concentration, the 

non-enzymatic rate of reaction was determined by replacing recombinant enzyme 

with an equivalent volume of HEPES buffer. Uninhibited enzyme reaction rates were 

determined by replacing inhibitor with an equivalent volume of organic solvent. For 

all assays, organic solvent concentration did not exceed 3.5 % (v/v). Assays were 

performed in technical triplicate. NBD-Cl was solubilised in dimethyl sulfoxide 

(DMSO), ethacrynic acid and bromoenol lactone were solubilised in EtOH and 

cyanuric chloride was solubilised in acetone. IC50 values were calculated using non-

linear regression with Prism 3.0 software (Graphpad Software Inc., USA). 

2.5.2 Single time-point inhibition studies 

For inhibition studies at a single time-point, unless stated otherwise in the main text, 

37.5 µM recombinant enzyme was first incubated with 100 µM inhibitor (prepared 
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as a 10 mM stock solution in DMSO), at 20 °C for 10 min. Following this incubation 

period, enzymes were assayed for activity toward CDNB as described (see section 

2.4.8.1), replacing 375 nM enzyme with 10 µL enzyme-inhibitor pre-incubated 

solution. Uninhibited enzyme reaction rates were determined by replacing inhibitor 

with an equivalent volume of DMSO. The non-enzymatic rate of reaction was 

determined by replacing recombinant enzyme with an equivalent volume of HEPES 

buffer. For all assays, organic solvent concentration did not exceed 3.5 % (v/v). 

Assays were performed in technical triplicate. For studies with iodoacetamide, all 

incubations were carried out in the dark. The NBD-glutathione conjugate was kindly 

donated by Dr. J. D. Sellars (Department of Chemistry, Durham University, UK). 

Purine derivatives were kindly donated by Dr. C. Coxon (Department of Chemistry, 

Durham University, UK). 

2.5.3 Time-course inhibition studies 

For time-course inhibition studies, 37.5 µM recombinant enzyme was first incubated 

with 100 µM inhibitor (prepared as a 10 mM stock solution in DMSO), at 20 °C for 

0 - 60 min. At discrete time-points, aliquots were assayed for activity as described 

(see section 2.5.2). Uninhibited enzyme reaction rates were determined by replacing 

inhibitor with an equivalent volume of DMSO. 

2.5.4 Studies of protein alkylation using mass spectrometry 

For protein alkylation studies, 37.5 µM recombinant enzyme was first incubated with 

100 µM inhibitor (prepared as a 10 mM stock solution in DMSO), at 20 °C for 60 

min. To serve as negative controls, 37.5 µM recombinant enzyme was incubated 

with an equivalent volume of DMSO, at 20 °C for 60 min. Following incubation, 

each sample was concentrated and desalted with 6 mL H2O, using 2 mL Vivaspin 

columns (GE Healthcare, UK), according to the manufacturer’s instructions. 

Concentrated protein was recovered, raised to a total volume of 50 µL with H2O and 

mixed with an equal volume of 2 % (v/v) formic acid in acetonitrile. Samples were 

then analysed by mass spectrometry as described (see section 2.4.6). For studies with 

iodoacetamide, all incubations were carried out in the dark. 
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2.6 GST expression in transgenic Arabidopsis thaliana plants 

2.6.1 Cloning of GSTs into the pBIN-STRP3 vector 

2.6.1.1 Cloning of ZmGSTF1 into the pBIN-STRP3 vector 

The ZmGSTF1-pET-STRP3 plasmid (kindly donated by Dr. D. P. Dixon, 

GlaxoSmithKline, Stevenage, UK), was purified and digested with NcoI and BstXI 

DNA restriction enzymes. Digestion products were separated by agarose gel 

electrophoresis, followed by purification of ZmGSTF1 DNA. ZmGSTF1 was ligated 

into NcoI/BstXI-digested pBIN-STRP3 plasmid (kindly donated by Dr. M. Brazier-

Hicks, Department of Biology, University of York, UK), and transformed into XL-

10 Gold Ultracompetent cells using LB growth media supplemented with 100 µg 

mL-1 spectinomycin. The ZmGSTF1-pBIN-STRP3 construct was purified and the 

sequence confirmed as correct. 

2.6.1.2 Cloning of AmGSTF1, C120V and S12A into the pBIN-STRP3 vector 

AmGSTF1-pET-STRP3, C120V-pET-STRP3 and S12A-pET-STRP3 plasmids were 

purified and digested with PacI and BstXI DNA restriction enzymes. Digestion 

products were separated by agarose gel electrophoresis, followed by purification of 

AmGSTF1, C120V and S12A DNA. AmGSTF1, C120V and S12A were each ligated 

into PacI/BstXI-digested pBIN-STRP3 plasmid, and transformed into XL-10 Gold 

Ultracompetent cells using LB growth media supplemented with 100 µg mL-1 

spectinomycin. The assembled pBIN-STRP3 constructs were purified and the 

sequences confirmed as correct. 

2.6.2 Assembly of the pBIN-STRP3 vector designed to express the Strep II tag 

only 

Using S12A-pBIN-STRP3 plasmid DNA as a template, two PCR reactions were 

carried out with primer sets (Table 3) that amplified upstream and downstream of the 

GST transgene sequence respectively. 
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Table 3: Primers used to generate a pBIN-STRP3 vector designed to express the Strep II tag only. Tap_for, 

pBIN_cusfor - primers using the antisense DNA strand as template. pBIN_cusrev3, Tap_rev - primers using the 
sense DNA strand as template. 

Position of 

amplification 

relative to the 

transgene 

Primer Primer sequence (5’→3’) 

Upstream 
Tap_for aagcattctacttctattgcagc 

pBIN_cusrev3 cgccttcactctagatcagcctttctcgaactgcgg 

Downstream 
pBIN_cusfor tgatctagagtgaaggcgccaccgatatggccagtgtgc 

Tap_rev tggcgtttttgatgtcattttcg 

 

PCR reactions were performed using temperature gradient cycling based on a 

previously described method (Szewczyk et al., 2006). Specifically, samples were 

denatured at 95 °C for 2 min and then exposed to 30 heating cycles composed of: 20 

s 95 °C, 1 s 70°C, cooling to 55 °C at a rate of 0.3 °C s-1,  30 s 55 °C, heating to 72 

°C at a rate of 0.3 °C s-1, 20 s 72 °C. This was followed by a final extension step at 

72 °C for 2 min. PCR products were separated using 2 % (w/v) agarose gel 

electrophoresis and purified. The purified Upstream and Downstream PCR products 

were then annealed and amplified using Tap_for and Tap_rev primers (Table 3). 

Reaction solutions contained  1x Pfu DNA polymerase buffer (supplied by the 

manufacturer), 1 uL Upstream PCR product, 1 uL Downstream PCR product, 

400nM Tap_for primer, 400 nM Tap_rev primer, 1.25 U Pfu DNA polymerase and 

200 µM dNTPs, in a total volume of 50 µL. PCR reactions were performed using 

temperature gradient cycling as just described. PCR products were separated using 2 

% (w/v) agarose gel electrophoresis and the Annealed PCR product was purified. 

The Annealed PCR product was digested with NcoI and BstXI DNA restriction 

enzymes, purified and ligated into NcoI/BstXI-digested pBIN-STRP3 plasmid. The 

ligated plasmid was transformed into XL-10 Gold Ultracompetent cells, using LB 

growth media supplemented with 100 µg mL-1 spectinomycin, purified and the 

sequence confirmed as correct. 
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2.6.3 GV3101:MP90 agrobacterium transformations with GST-pBIN-STRP3 

constructs 

For each pBIN-STRP3 construct, 50 µL electrocompetent Agrobacterium 

tumafaciens strain GV3101:MP90 cells (kindly donated by Dr. M. Brazier-Hicks, 

Department of Biology, University of York, UK) were gently mixed with 1 µL 

pBIN-STRP3 construct DNA, on ice. The sample was transferred to a chilled 

electroporation cuvette and pulsed (2.4 kV, 25 µF, 200 Ω, 5.2 ms) using a Gene 

Pulser® II electroporator (Bio-Rad Laboratories Inc., USA). Immediately after 

pulsing, 0.5 mL LB was added to the cuvette and cells were incubated at 28 °C for 4 

hr. Following this recovery period, 100 µL transformed cells were incubated on LB-

agar supplemented with 100 µg mL-1 spectinomycin, 26 µg mL-1 gentomycin and 50 

µg mL-1 rifampicin (prepared as a 50 mg mL-1 stock solution in DMSO), at 28 °C for 

48 hrs. 

2.6.4 Infiltration of Arabidopsis thaliana with transformed Agrobacterium 

tumafaciens 

Arabidopsis thaliana plants were transformed according to the protocol of Clough 

and Bent (1998). For each transformed agrobacterial culture, transformed colonies 

were grown in 100 mL LB, supplemented with 100 µg mL-1 spectinomycin, 26 µg 

mL-1 gentomycin and 50 µg mL-1 rifampicin (prepared as a 50 mg mL-1 stock 

solution in DMSO), for 16 hr at 28 °C with shaking at 180 rpm. The culture was then 

clarified by centrifugation (3900 g, 10 min), and the supernatant was discarded. Cells 

were re-suspended in 100 mL 5 % (w/v) sucrose supplemented with 50 µL SILWET 

L-77 (Momentive, USA). Five flowering Arabidopsis thaliana plants were then 

thoroughly dipped in the agrobacterial suspension, covered, and maintained in the 

dark for 24 hr. After this time, plants were uncovered and maintained under 

glasshouse conditions, and allowed to self-fertilize.  

2.6.5 Selection of homozygous lines 

For each set of plants transformed with a pBIN-STRP3 construct, the seeds of 

inoculated plants (T0 generation) were combined, sown and, at the 2-leaf stage, 
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treated with 150 g L-1 Kaspar (13.52 % (w / w) glufosinate-ammonium; Sanofi, 

France). Plants were treated a total of 3 times over a period of 14 days. 24 surviving 

individuals were separated, allowed to self-fertilise, and the seed (T1 generation) of 

each individual was collected. Approximately 50 seeds of each T1 line were sown, 

the numbers of seedlings of each T1 line were counted and then treated with Kaspar 

as described with T0 seedlings. Following Kaspar treatment, the numbers of 

seedlings of each T1 line were re-counted and statistically analysed for a 3:1 

alive:dead ratio using χ2 statistical testing methods. The null hypothesis was that the 

observed alive:dead ratio would not deviate from the expected 3:1 ratio, predicted 

using the number of seedlings alive before Kaspar treatment. For those lines that 

tested strongly positive for a 3:1 alive:dead ratio, 24 individuals were selected, 

separated, allowed to self-fertilise, and the seed (T2 generation) of each individual 

was collected. Seeds of 8 arbitrarily-selected T2 lines were sown and treated with 

Kaspar as described with T0 seedlings. Those T2 lines, for which all individuals 

survived Kaspar treatment, were used for further experimentation. 

2.6.6 Western blotting of transgenic plant material 

For each transgenic line, approximately 30 mg leaf tissue was ground to a fine 

powder in liquid nitrogen and combined with 2 volumes 1 x SDS loading buffer. The 

sample was then heated at 95 °C for 5 min, and the supernatant clarified by 

centrifugation (13000 g, 10 min). Proteins were separated by SDS-PAGE as 

described (see section 2.4.5), using 15 µL sample, alongside 1 µg recombinant 

AmGSTF1. Once electrophoresis was complete, the resolving gel was immersed in 

H2O and proteins were transferred to a polyvinylidene difluoride (PVDF) membrane 

using an iBlot® Gel Transfer Device (Life Technologies, USA) according to the 

manufacturer’s instructions. Once the transfer was complete, the membrane was 

immersed in TBS buffer (10 mM Tris, 150 mM NaCl, pH 7.4) before incubating in 

Blocking buffer, (10 mM Tris, 150 mM NaCl, 3 % (w/v) skimmed milk powder, pH 

7.4), for 60 min. The membrane was then incubated with Blocking buffer 

supplemented with 0.1 % (v/v) antiserum raised against the ZmGSTF1-2 heterodimer 

(Cummins et al., 1999), with gentle agitation at 4 °C. After 16 hr, the membrane was 

washed twice with TBST buffer (10 mM Tris, 150 mM NaCl, 0.1 % (v/v) Triton X-

100, pH 7.4) for 10 min, followed by washing with TBS buffer for 10 min. After 
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washing, the membrane was incubated with Blocking buffer supplemented with 

0.025 % (v/v) anti-rabbit IgG (whole molecule)-alkaline phosphatase antibody. After 

1 hr, the membrane was washed twice with TBST buffer for 10 min, followed by 

washing with TBS buffer for 10 min. The membrane was then rinsed in Staining 

buffer (100 mM Tris, pH 9.5) before incubating in Staining buffer supplemented 

with 0.5 mM 5-bromo-4-chloro-3-indolyl phosphate (prepared as a 153 mM stock 

solution in 70 % (v/v) dimethyl formamide) and 0.4 mM nitro blue tetrazolium 

chloride (prepared as a 122 mM stock solution in 70 % (v/v) dimethyl formamide). 

Once proteins could be visibly detected, the membrane was immersed in 500 mL 

H2O and dried in air. 

2.6.7 Spray trials 

Thirty seeds of each selected homozygous T2 line were sown on Levington F2 seed 

and modular compost in 6.5 cm x 6 cm x 6 cm pots. Once sown, all pots were chilled 

at 4 °C for 5 days before being maintained in environmental growth chambers (20 

°C, illumination rate 100 µE m-2 s-1, 16 hr photoperiod). After a further 14 days, 

plants were sprayed with herbicide formulations. Herbicides were first dissolved in 

acetone and then diluted 100-fold with 0.1 % (v/v) Biopower (Bayer CropScience, 

Germany). Chlorotoluron was formulated to deliver 60 g active ingredient (ai) ha-1. 

Alachlor was formulated to deliver 1200 g ai ha-1. Plants were contained within a 0.2 

m2 area and sprayed with a hand-sprayer calibrated to deliver 1500 L ha-1. As a 

negative control, plants were sprayed with 0.1 % (v/v) Biopower containing 1 % 

acetone. After spraying, plants were maintained in environmental growth chambers 

and visually assessed at 7 days. For quantification of biomass, the spray trial was 

performed in biological duplicate and aerial tissue in each pot was harvested after 

counting the number of individuals. For each pot, aerial tissue mass was divided by 

the total number of individuals (alive and dead). For each spray treatment, the mass 

per plant of each GST-expressing transgenic line was expressed as a percentage 

change relative to the mass per plant of the vector 22-24 transgenic line. 
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2.6.8 Biochemical characterisation of transgenic Arabidopsis plants 

2.6.8.1 Soluble protein extractions 

For each transgenic line, approximately 450 mg leaf tissue was ground to a fine 

powder in liquid nitrogen and extracted with 3 volumes of Extraction buffer (50 mM 

Tris-HCl, 2 mM EDTA, 1 mM DTT, 5 % (w/v) PVPP, 1 % (v/v) protease inhibitor 

cocktail, pH 7.4), on ice for 1 hr. The supernatant was then clarified by 

centrifugation (13000 g, 7.5 min, 4 °C), insoluble matter was discarded and 

ammonium sulfate was slowly added to 80 % saturation (0.561 g mL-1). The sample 

was spun on a rotating wheel at 4 °C for 45 min before clarifying by centrifugation 

(10000 g, 15 min, 4 °C). The supernatant was discarded and the protein pellet stored 

at -20 °C until required. 

2.6.8.2 Enzyme assays 

Protein pellets were removed from storage at -20 °C and re-solubilised in 1 mL 

protein buffer (20 mM Tris, pH 7.4). Samples were reduced with 5 mM DTT, on ice 

for 15 min, before desalting in protein buffer, using 5 mL Zeba Spin 7K MWCO 

desalting columns (Thermo Scientific, USA), according to the manufacturer’s 

instructions. The protein concentration of each sample was quantified using the BCA 

Protein Assay Kit (Thermo Scientific, USA), according to the manufacturer’s 

instructions. Samples were assayed for GSH-dependent activity toward CDNB, 

CuOOH, HED and crotonaldehyde as substrates as previously described (see section 

2.4.8), using 50 µL protein sample, or an equivalent volume of protein buffer as a 

negative control. 

2.6.8.3 Flavonoid analysis 

For each transgenic line, approximately 400 mg leaf tissue was ground to a fine 

powder in liquid nitrogen and extracted with 3 volumes of Flavonoid extraction 

solution (MeOH, 3 % (v/v) acetic acid, 400 µM kaempferol), on ice for 15 min. 

Samples were clarified by centrifugation (10000 g, 5 min), the supernatant was 

decanted and retained (Extract 1), and the pellet was re-extracted with 3 volumes of 
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Flavonoid extraction solution (Extract 2). The methanolic extracts were separated by 

high-performance liquid chromatography and visualised at 280 nm by UV-vis 

spectrophotometry, based on a previously published method (Cummins et al., 2006). 

50 µL extract was injected onto a Synergi Polar-RP column (250 mm x 4 mm 

internal diameter, 4 µm particle size, 80 Å pore size. Phenomenex, UK) equilibrated 

with a mobile phase comprised of 90 % (v/v) aqueous solution (A; H2O, 0.1 % (v/v) 

formic acid) and 10 % (v/v) organic solution (B; acetonitrile, 0.1 % (v/v) formic 

acid), at a flow rate of 1 mL min-1. Compounds were eluted using a 3-stage gradient 

(Table 4), with a total run time of 35 min.  

Table 4: High-performance liquid chromatography solvent gradient conditions. A - H2O + 0.1 % (v/v) 

formic acid. B – acetonitrile + 0.1 % (v/v) formic acid. 

Time (min) A (% volume) B (% volume) 

0 10 90 

2 10 90 

7 20 80 

27 60 40 

30 90 10 

32.5 10 90 

 

The absorbance peak area units of all extracts were then normalised and quantified 

using the peak area of the 20 nmol kaempferol internal standards. Quantified 

metabolite masses of Extract 1 and Extract 2, of each transgenic line, were combined 

to yield the total mass per metabolite. Extracts were separated and analysed in 

technical triplicate. 

2.6.8.4 Protein pull-down experiments 

The isolation of Strep II tagged proteins from transgenic plants was based on a 

previously described method (Witte et al., 2004). For each transgenic line, 

approximately 1 g leaf tissue was ground to a fine powder in liquid nitrogen and 

extracted with 3 volumes of Extraction buffer (50 mM Tris-HCl, 2 mM EDTA, 1 

mM DTT, 1 % (v/v) protease inhibitor cocktail, 150 mM NaCl, pH 7.4), on ice for 1 

hr. The supernatant was then clarified by centrifugation (4000 rpm, 10 min, 4 °C), 

insoluble matter was discarded and avidin was added to a final concentration of 100 
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µg / mL. A custom column, filled with 1 mL Strep-Tactin Superflow High Capacity 

resin, was assembled and washed with 5 mL Extraction buffer. Total soluble protein 

samples were applied to the column, centrifuged (1000 rpm, 2 min, 4 °C) and the 

flow-through discarded. The column was washed with 5 x 2 mL Extraction buffer, in 

each case the column was centrifuged (1000 rpm, 2 min, 4 °C) and the flow-through 

discarded. Strep II tagged proteins were eluted with 1 mL 2.5 mM desthiobiotin, by 

centrifugation (1000 rpm, 2 min, 4 °C). The eluted sample was concentrated using a 

2 mL Vivaspin column (GE Healthcare, UK), according to the manufacturer’s 

instructions, and made to a total volume of 45 µL with extraction buffer. 15 uL 4 x 

SDS loading buffer was added and the sample was analysed by Western blotting as 

described (see section 2.6.6). Alternatively, following SDS-PAGE, proteins were 

detected using silver staining based on a published method (Heukeshoven and 

Dernick, 1985). Gels were incubated twice with fixing solution (40 % (v/v) EtOH, 

10 % (v/v) acetic acid) for 10 min, followed by a 30 min incubation with 

sensitisation solution (30 % (v/v) EtOH, 10 % (v/v) acetic acid, 0.2 % (v/v) sodium 

thiosulfate (prepared as a 5 % (v/v) stock solution), 0.83 M sodium acetate). 

Following sensitisation, gels were washed three times with H2O for 5 min, before 

incubating with 15 mM silver nitrate solution for 10 min, followed by two further 

wash steps with H2O for 1 min. Gels were then incubated with development solution 

(236 mM sodium carbonate, 0.04 % (v/v) formaldehyde (37 % (v/v) stock solution)). 

Once proteins could be visibly detected, the staining reaction was stopped by 

immersing gels in 50 mM EDTA solution. 
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Chapter 3 - In vitro characterisation of AmGSTF1 isoforms 

and further characterisation of transgenic Arabidopsis 

plants expressing AmGSTF1  

3.1 Exploring the properties of AmGSTF1 isoforms 

3.1.1 Introduction 

In prior studies, screening of soluble protein extracts of wild-type sensitive (WTS) 

and multiple herbicide resistant (MHR) black-grass by Western blotting with an 

antiserum raised against the maize ZmGSTF1-2 heterodimer identified the presence 

of a novel immunoreactive GSTF protein band in MHR plants. Expression and 

screening of a cDNA library prepared from MHR black-grass subsequently 

identified four closely related GSTF isoforms (approximately 95 % amino acid 

sequence identity), which following expression of the respective recombinant 

proteins, yielded polypeptides that co-migrated during gel electrophoresis with the 

GSTF band in MHR plant extracts. These four isoforms (termed GSTF1a-d), could 

be further classified into two subsets based on amino acid sequence similarity. 

AmGSTF1a and AmGSTF1b showed 99 % similarity to each other and AmGSTF1c 

and AmGSTF1d showed 99 % similarity to each other. These two clades were in turn 

95 % similar to one another (Cummins et al., 1999).  

As the sequence similarity is very high across all four isoforms the presumption was 

made that the multiple AmGSTF1 isoforms would perform similar roles in vitro and 

in planta. Isoform AmGSTF1c was then selected for expression in transgenic 

Arabidopsis plants (Dr. I. Cummins and Prof. R. Edwards, unpublished work at the 

start of this project).  

3.1.2 Expression of AmGSTF1a and AmGSTF1c 

As the amino acid identity of isoforms within each paired subset is close to 100 %, 

one isoform of each subset, AmGSTF1a and AmGSTF1c, were expressed and 

characterised in vitro. 
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For ease of purification GSTs were cloned into the pET-STRP3 vector (Figure 18) 

which rendered the polypeptide fused with an N-terminal Strep II tag (Dixon et al., 

2009). This modification allows for swift and selective isolation of the translated 

protein from a heterogeneous mixture using Strep-tactin resin which selectively 

binds the Strep II tag with very high affinity. Furthermore, the tag has been shown to 

be biologically inert and not to interfere with protein folding (Schmidt and Skerra, 

2007). 

 

Figure 18: pET-STRP3 vector. The cloned DNA sequence (CDS) of choice is inserted such that it becomes 
fused to a Strep II tag of which the translated amino acid sequence is shown. Expression of the construct is driven 

by the inducible T7 promoter. The relative positions of DNA restriction sites required for manipulation of the 

vector are shown (NcoI, PacI , NdeI, SalI, SbfI, BstXI and XhoI). Copied with permission (Dixon et al., 2009). 

GSTs in the pET-STRP3 vector (kindly donated by Dr. I. Cummins, School of 

Biological and Biomedical Sciences, Durham University, UK) were transformed and 

expressed in E. coli Tuner(DE3) cells containing the pRARE plasmid which allowed 

enrichment of rare tRNAs to facilitate translation of plant proteins in a bacterial host. 

Protein production was induced using isopropyl β-D-1-thiogalactopyranoside (IPTG) 

and the Strep II-fusion protein purified, following cellular membrane disruption, 

using Strep-tactin resin as described in previous studies (Dixon et al., 2009). The 

purity of recombinant GSTs was confirmed using mass spectrometry, which 

determined the presence of a single protein in each purified sample. The protein 

concentration of each sample was estimated by measuring the absorbance of the 

sample at 280 nm and calculating according to the Beer-Lambert law (Equation 1) 

using the predicted extinction coefficient of each protein (ProtParam, ExPASy web 

program, Swiss Institute of Bioinformatics). 

A = ε.c.l 

Equation 1: Beer-Lambert law. This function describes the relationship between the light absorbance of a 
sample and the concentration of the sample. A – absorbance of the sample. ε – molar extinction coefficient of the 

sample. c – concentration of the sample. l – path length of light. 
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3.1.3 In vitro characterisation of AmGSTF1a and AmGSTF1c 

Purified recombinant GSTs were assayed for two different catalytic activities; (i) 

conjugation of the halogenated aromatic compound, 1-chloro-2,4-dinitrobenzene 

(CDNB) with reduced glutathione (GSH) as a co-substrate (Figure 19A) and (ii) 

reduction of an organic hydroperoxide, cumene hydroperoxide (CuOOH), to the 

alcohol species using GSH as a co-factor (Figure 19B). For assays with CDNB, the 

glutathionylated conjugate contains a strongly absorbing chromophore allowing 

direct detection of conjugate formation (Habig et al., 1974). In the case of CuOOH, 

the substrate and the reduced product contain no suitable chromophore. Instead, the 

GST-catalysed reaction is coupled to a glutathione reductase (GR) system that 

reverts oxidised glutathione (GSSG) formed as a consequence of the GST-catalysed 

reaction, back to GSH. In doing so, GR oxidises reduced nicotinamide adenine 

dinucleotide phosphate (NADPH) to NADP which contains a chromophore that can 

be suitably detected (Flohe and Gunzler, 1984). The reduction of one molecule of 

CuOOH causes the stoichiometric oxidation of one molecule of NADPH and so 

whilst the catalytic rate of NADP formation is measured experimentally it is directly 

proportional to the catalytic rate of CuOOH reduction. 

Calculating the specific activities of the two GST isoforms with each substrate, as 

the rate of product formation per unit time per milligram of protein, demonstrated 

that AmGSTF1a is more active towards both substrates relative to AmGSTF1c. With 

CDNB as a substrate, AmGSTF1a has 2.9-fold higher specific activity compared 

with AmGSTF1c. Whilst with CuOOH as a substrate, AmGSTF1a has 1.5-fold 

higher specific activity compared with AmGSTF1c (Figure 19C). 
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Figure 19: Catalytic activities of AmGSTF1a and AmGSTF1c. Enzymes were tested for the ability to (A) 

conjugate the electrophile 1-chloro-2,4-dinitrobenzene (CDNB) with reduced glutathione (GSH) and (B) reduce 

cumene hydroperoxide (CuOOH) to the alcohol species using GSH. Activity toward CuOOH was detected using 
a glutathione reductase (GR) system which reduces oxidised glutathione (GSSG) whilst oxidising nicotinamide 

adenine dinucleotide phosphate (NADPH). (C) Enzymes were assayed for activity with each substrate and mean 

specific activities were calculated. Measurements were performed in technical triplicate. Mean specific activities 

are shown ± SD, n = 3. 

Classical enzyme kinetics studies were then employed to better understand the 

functional basis for the differences in specific activities between the two AmGSTF1 

isoforms. Enzymes were assayed for activity towards CDNB and CuOOH using 

multiple substrate concentrations. The data was used to determine the maximum 

velocity (Vmax) and the Michealis constant (KM) of each enzyme with each substrate. 

Whilst activity toward CDNB as a substrate was readily detected with both enzymes, 

kinetic studies demonstrated it was a relatively poor substrate for both GSTs. 

AmGSTF1a was calculated to have a Vmax = 317 ± 40 nmol s-1 mg-1 protein with a 
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high KM value indicative of a weakly bound enzyme-substrate complex. CDNB 

proved to be an even poorer substrate for AmGSTF1c as rate velocity increased 

linearly with increasing substrate concentrations meaning Vmax and KM could not be 

determined (Table 5). 

Table 5: Kinetic parameters for AmGSTF1a and AmGSTF1c with the substrate 1-chloro-2,4-

dinitrobenzene (CDNB). Enzymes were assayed for activity toward CDNB over the concentration range 0-5 
mM. Measurements were performed in technical triplicate. Values are shown ± SD, n = 3. Vmax and KM values 

were calculated by hyperbolic regression (HYPER-32, The University of Liverpool). N/A – not applicable. a – 

specific activities calculated at a CDNB concentration of 1.25 mM. 

 Kinetic parameters 

Enzyme 
Vmax (CDNB) 

(nmol s-1 mg-1 protein) 

KM (CDNB) 

(mM) 

Specific activitya 

(nmol s-1 mg-1 protein) 

AmGSTF1a 317 ± 40 3.03 ± 0.7 88.0 ± 7 

AmGSTF1c N/A > 5 29.9 ± 1 

 

CuOOH also proved to be a relatively poor substrate for both GSTs, displaying low 

maximal velocities and high KM values (Table 6). 

Table 6: Kinetic parameters for AmGSTF1a and AmGSTF1c with the substrate cumene hydroperoxide 

(CuOOH). Enzymes were assayed for activity toward CuOOH over the concentration range 0-3 mM. 
Measurements were performed in technical triplicate. Values are shown ± SD, n = 3. Vmax and KM values were 

calculated by hyperbolic regression (HYPER-32, The University of Liverpool). a – specific activities calculated 

at a CuOOH concentration of 1.2 mM. 

 Kinetic parameters 

Enzyme 
Vmax (CuOOH) 

(nmol s-1 mg-1 protein) 

KM (CuOOH) 

(mM) 

Specific activitya 

(nmol s-1 mg-1 protein) 

AmGSTF1a 128 ± 11 0.745 ± 0.2 76.5 ± 1 

AmGSTF1c 135 ± 30 1.63 ± 0.8 51.1 ± 1 

 

With both CDNB and CuOOH as substrates, AmGSTF1a displayed lower KM values 

relative to AmGSTF1c indicative of a more tightly bound enzyme-substrate complex. 

Alignment of the amino acid sequences of the two GST isoforms revealed 11 point 

mutations between the two enzymes. Two of these mutations are predicted to be of 

residues that form direct contacts with hydrophobic substrates based on the 

ZmGSTF1 structure (63 % amino acid sequence identity with the AmGSTF1 

isoforms) (Figure 20). 
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Figure 20: Sequence alignment of AmGSTF1a and AmGSTF1c. Sequences were aligned using Clustal Omega 

(1.1.0) (EBI web servers). AmGSTF1a accession: Q9ZS18, AmGSTF1c accession: Q9ZS17. Bold residues 

indicate active-site residues based on the ZmGSTF1 crystal structure (accession: 1axd). Boxed residues indicate 
non-identical active-site residues. * denote identical amino acid residues whilst : and . denote amino acid residues 

with similar chemical properties. 

Fundamentally, while the two isoforms displayed small differences in catalytic 

kinetics, both were active in GSH-conjugation and as GPOXs and did not display 

major differences in activity. These results therefore validate the presumption that 

the AmGSTF1 isoforms would display similar properties in vitro and strengthen the 

presumption that AmGSTF1 isoforms likely perform very similar roles to each other 

in planta.  

In order to be consistent with prior studies of AmGSTF1, particularly the 

transgenesis studies expressing AmGSTF1c in Arabidopsis (Dr. I. Cummins and 

Prof. R. Edwards, unpublished work at the start of this project), AmGSTF1c was 

chosen as the isoform for which all further studies would be performed with. For 

ease of reference all further citations of AmGSTF1 in this thesis refer to the 

AmGSTF1c isoform. 

3.2 Studies with AmGSTF1 inhibitors 

3.2.1 Introduction 

With transgenesis studies demonstrating that AmGSTF1 elicits an MHR phenotype 

in a transgenic host plant, a chemical library was screened for compounds that could 

inhibit AmGSTF1 in vitro and hence be developed as potential herbicide synergists. 

These studies identified four compounds that, following incubation with the enzyme, 

significantly inhibited AmGSTF1 activity toward CDNB; namely 4-chloro-7-nitro-
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benzoxadiazole (NBD-Cl), ethacrynic acid, cyanuric chloride and bromoenol lactone 

(Figure 21A). Inhibition studies were performed by incubating AmGSTF1 with each 

compound (100 µM) for 10 min and then assaying for activity toward CDNB (Dr. I. 

Cummins and Prof. R. Edwards, unpublished work at the start of this project). 

Of the four compounds, NBD-Cl, ethacrynic acid and bromoenol lactone are known 

GST inhibitors. Ethacrynic acid and NBD-Cl are known GST substrates (Awasthi et 

al., 1993; Caccuri et al., 1996). Specifically, all three compounds are known to 

inhibit a mammalian-specific pi-class GST (GSTP1) that plays a key role in eliciting 

multi-drug resistance in human cancers (Ploemen et al., 1994; Zheng et al., 1996; 

Ricci et al., 2003). All three compounds inhibit GSTP1 by binding to a reactive 

cysteine residue (Cys47) near the enzyme’s active site. The glutathione conjugate of 

ethacrynic acid is also known to inhibit the enzyme (Awasthi et al., 1993). 

To better characterise the inhibitory properties of these compounds with respect to 

AmGSTF1, the enzyme was treated with increasing concentrations of each inhibitor, 

and the concentration of each compound that caused a 50 % decrease in enzyme 

specific activity (IC50) was determined. 

3.2.2 IC50 studies 

Recombinant Strep II tagged AmGSTF1 was purified as described (see section 3.1.2) 

and assayed for activity toward CDNB in the presence and absence of each inhibitor. 

Inhibitors were used over the concentration range of 0.001 – 100 µM, in the presence 

of saturating GSH (5 mM). Unlike the initial screen, there was no prior incubation of 

each inhibitor with AmGSTF1 before assaying for activity toward CDNB to avoid 

the possible alkylation of Cys120. This was done to more accurately reflect the 

consequences of each compound entering a plant cell following spray treatment, in 

which the major cellular thiol is GSH (1-2 mM cellular concentration) (Noctor et al., 

2011). Ethacrynic acid proved the most effective inhibitor of AmGSTF1 (IC50 = 

0.822 µM) closely followed by NBD-Cl (IC50 = 6.91 µM) under these conditions. 

Cyanuric chloride and bromoenol lactone proved poor inhibitors for AmGSTF1 

under these conditions (Figure 21B).  
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Figure 21: Inhibitors of AmGSTF1. (A) Compounds used in IC50 studies. (B) IC50 curves determined with 

AmGSTF1 and each of the four compounds tested. In each case, AmGSTF1 was tested for activity toward CDNB 
(1 mM). Measurements were performed in technical triplicate. Mean specific activities are shown ± SD, n = 3. 

IC50 curves were calculated using non-linear regression (Prism 3.0, Graphpad Software). 

Samples were not analysed for alkylation following activity assays, so it is not clear 

if the inhibition was caused by enzyme alkylation or by competitive inhibition at the 

active-site by either the inhibitor, or by the respective GSH conjugate, or as a 

combination of these mechanisms. Studies with bromoenol lactone have strongly 

suggested that its mode-of-action of GSTP1 inhibition is via alkylation of Cys47 

(Wu et al., 2004) and there are no reports it is a GST substrate. Since no prior 
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incubation of AmGSTF1 with bromoenol lactone was carried out in these IC50 

studies, this may explain its lack of inhibitory potency in these studies. 

Comparison with MHR black-grass plants treated with each compound, followed 

with an application of the herbicide chlorotoluron, found that only NBD-Cl could 

enhance herbicide sensitivity in MHR plants (Dr. I. Cummins, Dr. J. Sellars, Prof. P. 

G. Steel and Prof. R. Edwards, unpublished work at the start of this project). In 

addition, cyanuric chloride, bromoenol lactone and ethacrynic acid all caused overt 

phytotoxic damage to black-grass. These results suggested that NBD-Cl was a viable 

lead compound for the development of AmGSTF1 inhibitors that can reverse the 

MHR phenotype. 

3.2.3 Studies with the NBD-Cl derivative 6-(7-nitro-1,2,3-benzoxadiazol-4-

ylthio)hexanol (NBDHEX) 

Having determined that NBD-Cl was a good inhibitor of AmGSTF1 and a viable lead 

compound as a herbicide synergist, the scientific literature was explored for NBD-Cl 

derivatives with inhibitory properties toward GSTs. This analysis revealed that the 

NBD-Cl derivative 6-(7-nitro-1,2,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) 

(Figure 22A) had been developed as a strong competitive inhibitor of GSTP1. 

NBDHEX cannot alkylate cysteine residues. Instead, the mode-of-action of 

NBDHEX involves the formation of the respective glutathione conjugate in the 

GSTP1 active-site which remained tightly bound to the enzyme (Ricci et al., 2005).  

Furthermore, treatment of multi-drug resistant cancer cells, associated with the 

overexpression of GSTP1, with NBDHEX reverted cells to a drug-sensitive 

phenotype (Turella et al., 2005).  

NBDHEX was tested for inhibition of AmGSTF1 alongside NBD-Cl as a positive 

control. In both cases, AmGSTF1 was incubated with each compound (100 µM) 

before diluting 1:100 (v/v) and assaying for enzyme activity toward CDNB. With 

NBD-Cl, enzyme activity was reduced by 40 % whilst no inhibition was seen with 

NBDHEX (Figure 22B). Whilst alkylation of AmGSTF1 was not established here, 

under similar experimental conditions AmGSTF1 has been shown to be alkylated by 

NBD-Cl on the Cys120 residue (Dr. I. Cummins and Prof. R. Edwards, unpublished 
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work at the start of this project). Hence, alkylation of AmGSTF1 appears to be the 

principal mechanism of action for inhibition by NBD-Cl. Though these results 

suggest that alkylation of the protein does not completely inhibit the enzyme activity 

of the protein, it does suggest that alkylation of AmGSTF1 is a key mechanism in 

disrupting the enzyme’s function in MHR. 

 

Figure 22: AmGSTF1 inhibition studies with NBD-Cl and the NBD-Cl derivative 6-(7-nitro-1,2,3-

benzoxadiazol-4-ylthio)hexanol (NBDHEX). (A) Chemical structures of NBD-Cl and NBDHEX. (B) Enzymes 
were incubated with 100 µM NBD-Cl, 100 µM NBDHEX or solvent control (DMSO) for 10 min before diluting 

1:100 (v/v) and assaying for enzyme activity towards 1-chloro-2,4-dinitrobenzene. Measurements were 

performed in technical triplicate. Mean specific activities are shown ± SD, n = 3. 

GSTP1 has been successfully crystallised in complex with NBDHEX with eight 

amino acid residues required to stabilise inhibitor binding at the active-site (Federici 

et al., 2009). Alignment of the amino acid sequences of AmGSTF1 and GSTP1 

shows that of these eight GSTP1 residues, only one (Tyr109), responsible for pi-

stacking interactions with the benzoxadiazole ring (Federici et al., 2009), is 

conserved in the AmGSTF1 sequence (Figure 23). These differences in active-site 
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chemistry provide a rationale for the low binding affinity of NBDHEX for 

AmGSTF1. 

 

Figure 23: Amino acid sequence alignment of AmGSTF1 and GSTP1. Sequences were aligned using Clustal 

Omega (1.1.0) (EBI web servers). AmGSTF1 accession: Q9ZS17, GSTP1 accession: P09211. Bold residues 
indicate GSTP1 active-site residues that directly interact with NBDHEX based on the crystal structure (Federici 

et al., 2009). * denote identical amino acid residues whilst : and . denote amino acid residues with similar 

chemical properties. 

3.3 Analysis of the transcriptome of AmGSTF1-expressing 

Arabidopsis plants 

3.3.1 Introduction 

Expression of AmGSTF1 in transgenic Arabidopsis plants elicited an MHR 

phenotype (Figure 15) and unexpectedly caused an up-regulation in the activities of 

endogenous GSTs, thiol transferases and glycosyltransferases. AmGSTF1 expression 

also caused the hyper-accumulation of flavonoid and anthocyanin secondary 

metabolites (Dr. I. Cummins and Prof. R. Edwards, unpublished work at the start of 

this project). 

One possible mechanism for AmGSTF1 eliciting these changes would be 

perturbation of the expression of the respective genes. Multiple GSTs in mammals, 

including GSTP1, are known to perturb gene expression by regulating the function 

of cellular kinases via protein-protein interactions (Adler et al., 1999; Cho et al., 

2001). However, such a regulatory mechanism has not been described for GSTs in 

plants. 

To determine whether AmGSTF1 perturbed gene expression in transgenic 

Arabidopsis plants, total RNA was extracted and quantified from both AmGSTF1-
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expressors and non-transgenic Arabidopsis plants and the mRNA trasncriptomes 

compared. 

3.3.2 Transcriptome analysis of AmGSTF1-expressors 

RNA was extracted from leaves of AmGSTF1-expressing plants and non-transgenic 

Arabidopsis plants and used for quantification of gene expression with Arabidopsis 

GeneChip microarray technology. Screening of sample RNA quality confirmed that 

all samples were of good quality with no detectable RNA degradation (Figure 24).  

 

Figure 24: Analysis of sample RNA quality. RNA samples were analysed for quality and potential RNA 

degradation using gel electrophoresis (performed by the Technology Facility, University of York, York, UK). 

The discrete band pattern indicates no observable RNA degradation. Fa-c represent three biological replicate 
samples of AmGSTF1-expressor RNA. Ca-c represent three biological replicate samples of non-transgenic 

Arabidopsis RNA. nt – nucleotide base-pair length. 

Samples were processed to yield the complementary biotin-labelled RNA molecules 

before quantification of gene expression (performed by the Technology Facility, 

University of York, York, UK). Bioinformatic analysis of the resulting gene 

expression data revealed few significant changes between the AmGSTF1-expressors 

and non-transgenic control plants with no changes detected in endogenous 

detoxification or flavonoid metabolism genes (Dr. Z. He, University of York, York, 

UK). The few statistically significant changes in gene expression that were detected 

in the AmGSTF1-expressors transcriptome were not confirmed in multiple 

independent AmGSTF1-expressing lines using quantitative PCR (Dr. F. Sabbadin, 
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University of York, York, UK). These few small changes in gene expression were 

most likely a result of small variations of the experimental conditions. 

Significantly, these results demonstrate that AmGSTF1 must be exerting the 

observed changes in AmGSTF1-expressing plants via a post-transcriptional 

mechanism. One possibility is that AmGSTF1 directly interacts with flavonoids, 

anthocyanins and endogenous detoxification enzymes. Some plant GSTs are known 

to bind flavonoids and anthocyanins and shuttle these metabolites to cellular 

compartments (Marrs et al., 1995; Alfenito et al., 1998; Gomez et al., 2011; 

Kitamura et al., 2012). In support of this, preliminary studies with immobolised 

AmGSTF1 have indicated that the enzyme selectively retains flavonoid-like 

compounds following exposure to plant methanolic extracts (Dr. F. Sabbadin, 

University of York, York, UK). There is a precedent for GSTs directly regulating 

detoxification enzyme activity, as mammalian GSTP1 is known to directly interact 

and regulate the activity of a glutathione peroxidase enzyme (Zhou et al., 2013), but 

there are no reports of plant GSTs fulfilling a similar role. 

3.4 Discussion  

The results presented in this chapter sought to answer the questions raised regarding 

the properties of AmGSTF1 isoforms, inhibition of AmGSTF1 by potential herbicide 

synergists and the mechanism by which AmGSTF1 elicits changes in endogenous 

detoxification enzyme activities and flavonoid metabolism in a transgenic host plant. 

With regards to multiple AmGSTF1 isoforms, these results show that the multiple 

enzymes have very similar catalytic properties supporting the conjecture that they 

play very similar roles in planta. Due to their high sequence and catalytic similarities 

one isoform, AmGSTF1c, was chosen as a model for further studies. 

As prior studies have demonstrated that AmGSTF1 plays a key role in MHR (Dr. I. 

Cummins and Prof. R. Edwards, unpublished work at the start of this project), 

AmGSTF1 was chosen as a target for inhibition in attempts to reverse the resistance 

phenotype. In vitro studies with potential AmGSTF1 inhibitors identified NBD-Cl as 

a strong AmGSTF1 inhibitor (IC50 = 6.91 µM), for which the principal mode-of-

action for inhibition appears to be alkylation of the enzyme on the Cys120 residue.  
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Finally, gene expression studies of MHR AmGSTF1-expressing Arabidopsis plants 

have found no significant changes in expression. Hence, the biochemical changes 

reported in the AmGSTF1-expressors (Dr. I. Cummins and Prof. R. Edwards, 

unpublished work at the start of this project) must be induced post-transcriptionally. 

Importantly, by characterising an inhibitor of AmGSTF1 that is also known to 

reverse the MHR black-grass phenotype and identifying that AmGSTF1 post-

transcriptionally activates endogenous enzymes and flavonoid accumulation in an 

MHR transgenic host, these results suggest that AmGSTF1 may elicit an MHR 

phenotype in transgenic Arabidopsis plants by both catalytic and non-catalytic 

mechanisms. These results have also corroborated the identification of a key amino 

acid residue, Cys120, for the interaction of AmGSTF1 with the inhibitor NBD-Cl. It 

was now of interest to study the roles of catalysis and Cys120 in eliciting an MHR 

phenotype.  
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Chapter 4  – Probing AmGSTF1 function using mutant 

isoforms 

4.1 Introduction 

Studies have shown that AmGSTF1 elicited MHR in a transgenic host plant and that 

this correlated with increased activities of endogenous detoxification enzymes and 

hyperaccumulation of protective flavonoids and anthocyanins (Dr. I. Cummins and 

Prof. R. Edwards, unpublished work at the start of this project). These changes 

mirrored those induced in MHR black-grass plants relative to wild-type sensitive 

(WTS) plants (Cummins et al., 2009). AmGSTF1 is also known to function in vitro 

as a GPOX enzyme and can detoxify toxic organic and long-chain fatty acid 

hydroperoxides. This activity correlated with the ability of MHR black-grass plants, 

which constitutively express AmGSTF1, to maintain hydroperoxide concentrations at 

a basal level following herbicide treatment (Cummins et al., 1999). Therefore, 

AmGSTF1 may elicit MHR using both catalytic and non-catalytic mechanisms. 

Regarding catalysis, Cys120 has been shown to play a key role in the interaction 

between AmGSTF1 and the inhibitor NBD-Cl by forming a covalent bond with the 

nitrobenzoxadiazole moiety. NBD-Cl also reverted MHR black-grass to a WTS 

phenotype when sprayed onto MHR plants (Dr. I. Cummins and Prof. R. Edwards, 

unpublished work at the start of this project) indicating that AmGSTF1 catalytic 

activity appears to be important for the phenotype.  

The increases in endogenous detoxification enzyme activities and the interaction 

between Cys120 and NBD-Cl bear a surprising resemblance to that seen with the 

evolutionarily distinct mammalian-specific GSTP1, an enzyme that plays a key role 

in eliciting multi-drug resistance in human cancers. This GST can directly regulate 

the activity of a glutathione peroxidase enzyme via protein-protein interactions 

(Zhou et al., 2013) and is inhibited by NBD-Cl due to alkylation of a reactive 

cysteine residue (Cys47) (Ricci et al., 2003). Furthermore, Cys47 of GSTP1 is 

required for the reversible interaction of this enzyme with flavonoids (van Zanden et 

al., 2003). This suggested that Cys120 of AmGSTF1 could play a similar role in the 

interaction of AmGSTF1 with flavonoids. 
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In order to investigate the relative contributions of GPOX activity and Cys120 in 

promoting the MHR phenotype, a catalytically retarded mutant and a mutant lacking 

Cys120 were generated, characterised in vitro and expressed in transgenic 

Arabidopsis plants. The transgenic plants were then screened for changes in 

herbicide tolerance, endogenous detoxification enzyme activities and flavonoid 

accumulation. 

4.2 In vitro characterisation of AmGSTF1 mutant isoforms 

4.2.1 Generation and purification of AmGSTF1 mutant isoforms 

Phi-class GSTs are known to use a serine residue within the active-site as the 

principal residue for catalysis (Cummins et al., 2011). The hydroxyl side-chain of 

the serine residue promotes deprotonation of bound GSH to the thiolate anion by 

abstracting the sulfhydryl proton via hydrogen bonding (Labrou et al., 2001). 

Sequence alignment of AmGSTF1 with the well-studied maize orthologue ZmGSTF1 

(63 % amino acid identity) identified Ser12 as the catalytic serine residue in 

AmGSTF1.  Using site-directed mutagenesis, a mutant isoform where Ser12 had 

been mutated to alanine, was generated (termed S12A). The alkyl side-chain of 

alanine is non-nucleophilic and so cannot promote the deprotonation of GSH. It is 

also sterically small and so should not perturb the overall structural architecture of 

AmGSTF1. 

Using the same strategy, a further mutant was generated in which Cys120 was 

mutated to a valine residue (C120V). The non-nucleophilic side-chain of valine 

should abolish any alkylation of the protein at this position. 

To generate both point mutants, the coding sequence of AmGSTF1 in the pET-24a 

vector was used to design two sets of primers containing the appropriate codon 

changes to produce the C120V and S12A mutants respectively. Following PCR of 

the plasmid using these primer sets and digestion of template DNA, amplified 

products were purified using agarose gel electrophoresis and transformed into 

competent E. coli cells. Plasmid DNA was purified and the mutant coding sequences 

confirmed by DNA sequencing. To allow easy and rapid purification of both 
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mutants, C120V and S12A coding sequences were sub-cloned into the pET-STRP3 

vector to generate the respective N-terminal Strep II tag fusions and re-sequenced to 

confirm the correct constructs. Recombinant Strep II tagged mutants, alongside 

recombinant Strep II tagged AmGSTF1, were then expressed in E. coli and purified 

as described (see section 3.1.2). The purity of recombinant proteins was tested using 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). No 

contaminating bands were detected, even when loading with 5 µg purified 

recombinant protein (Figure 25).  

 

Figure 25: Purity analysis of recombinant AmGSTF1 and C120V. Purified (A) AmGSTF1 and (B) C120V 

enzymes were analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 1 µg (1) 
and 5 µg (5) enzyme were loaded per gel. M – protein markers. Molecular weights (kDa) of protein markers are 

shown. 

As a further check for purity, enzymes were analysed by mass spectrometry and 

found to contain only the desired protein (Table 7). Data for the C120V mutant is 

shown as an example with analogous results obtained with the S12A mutant. 

Table 7: Whole-protein mass measurements of purified recombinant AmGSTF1 and C120V. Purified 

recombinant Strep II tagged enzymes were analysed using electrospray ionisation mass spectrometry (ESI-MS) 

in positive ion mode (Technology Facility, University of York, UK). The theoretical masses assume complete 

loss of the N-terminal methionine residue as is known to occur for Arabidopsis Strep II tagged GSTs. The 
observed masses with an increase of 42 Da above the theoretical mass of each enzyme is due to N-acetylation of 

the revealed N-terminal alanine residue as is known to occur with Arabidopsis Strep II tagged GSTs (Dixon et 

al., 2009). 

Enzyme 
Theoretical mass 

(Da) 

Observed masses 

(Da) 

AmGSTF1 26665 26664, 26706 

C120V 26661 26661, 26703 
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4.2.2 Catalytic profiles of AmGSTF1 mutant isoforms 

Following purification, recombinant AmGSTF1, C120V and S12A were screened 

with a range of potential substrates (Figure 26). These substrates included; (A) 1-

chloro-2,4-dinitrobenzene (CDNB), (B) cumene hydroperoxide (CuOOH), (C) 2-

hydroxyethyl disulfide (HED), (D) 4-nitrophenyl acetate (NPA), (E) ethacrynic acid, 

(F) crotonaldehyde and (G) benzyl isothiocyanate (BITC).  The use of these 

substrates allowed AmGSTF1 and the mutant isoforms to be tested for four different 

catalytic activities. CDNB, ethacrynic acid, crotonaldehyde and BITC were used to 

test for activity as a GSH-conjugation enzyme using GSH as a co-substrate (Habig et 

al., 1974; Berhane et al., 1994; Kolm et al., 1995). CuOOH tested for activity as a 

GPOX enzyme using GSH as a co-factor (Flohe and Gunzler, 1984). HED was used 

as a substrate so far shown to be specific for lambda-class plant GSTs which tests for 

thiol transferase activity in which GSH is used as a co-factor to reduce the disulfide 

substrate to the respective free thiol components (Dixon et al., 2002). NPA was used 

to test for ester thiolysis activity using GSH as a co-substrate (Keen and Jakoby, 

1978). 

Previous studies with AmGSTF1 had screened the enzyme with CDNB, CuOOH, 

ethacrynic acid, crotonaldehyde and BITC and found it to be active towards 4 of 

these 5 substrates with no activity detected toward crotonaldehyde (Cummins et al., 

1999). Hence, these substrates were useful to determine catalytic differences 

between AmGSTF1 and the mutant isoforms. HED and NPA have not been 

previously tested as substrates for AmGSTF1.  

Equimolar concentrations of AmGSTF1, C120V or S12A were assayed for activity 

towards each substrate in the presence of excess GSH. In all cases, activity toward 

each substrate was detected using UV-vis spectrophotometry. In the case of CDNB, 

ethacrynic acid, crotonaldehyde, NPA and BITC, product formation could be 

directly measured due to the occurrence of an appropriate chromophore in the 

product molecule. For studies with CuOOH and HED, a lack of a convenient 

chromophore in either the substrate or product molecule meant that the GST-

catalysed reaction was indirectly monitored by coupling to a glutathione reductase 

redox system (as described in section 3.1.3). 
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Figure 26: In vitro reaction schemes of known GST substrates used in this study to determine the catalytic 

profiles of AmGSTF1 and associated mutant isoforms. GSTs in this study were tested with the following 

substrates; (A) 1-chloro-2,4-dinitrobenzene, (B) cumene hydroperoxide, (C) 2-hydroxyethyl disulfide, (D) 4-
nitrophenyl acetate, (E) ethacrynic acid, (F) crotonaldehyde and (G) benzyl isothiocyanate. Substrates are shown 

to the left of the respective reaction scheme arrow with reaction products shown to the right. For A, D-G, product 

formation is measured directly. For B and C, the coupled oxidation of reduced nicotinamide adenine dinucleotide 

phosphate (NADPH) is measured. In all cases, measurements are recorded using UV-vis spectrophotometry. 
Additional abbreviations: GSH – reduced glutathione, GSSG – oxidised glutathione, GR – glutathione reductase, 

NADP+ - oxidised nicotinamide adenine dinucleotide phosphate. 
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AmGSTF1, S12A and C120V were all active towards the same subset of substrates, 

with no activity detected towards the lambda GST-specific substrate HED, or toward 

crotonaldehyde (Table 8).  

Table 8: Substrate specificities of recombinant AmGSTF1, C120V and S12A enzymes. CDNB: 1-chloro-2,4-

dinitrobenzene. ND: not detected. Measurements were performed in technical triplicate. Mean specific activities 

are shown ± SD, n = 3. 

 Mean specific activity (nmol s-1 mg-1 protein) 

Substrate AmGSTF1 C120V S12A 

CDNB 25.4 ± 0.8 27.8 ± 1.6 5.5 ± 0.5 

Cumene hydroperoxide 19.6 ± 1.4 24.1 ± 0.8 5.1 ± 0.1 

2-hydroxyethyl disulfide ND ND ND 

4-nitrophenyl acetate 1.06 ± 0.07 1.10 ± 0.03 0.80 ± 0.02 

Ethacrynic acid 16.4 ± 0.8 15.7 ± 0.3 3.0 ± 0.5 

Crotonaldehyde ND ND ND 

Benzyl isothiocyanate 34.2 ± 0.7 34.8 ± 1.0 13.0 ± 0.8 

 

As expected, S12A had severely retarded activity toward all substrates, including a 

74 % reduction in GPOX activity relative to AmGSTF1.  Somewhat unexpectedly, 

C120V displayed a small but significant increase in specific activity relative to 

AmGSTF1 toward both CDNB and CuOOH as substrates. This observation was 

explored further by calculating the catalytic efficiency (kcat / KM) of both AmGSTF1 

and C120V with each substrate. Previous attempts to determine Vmax and KM kinetic 

constants for AmGSTF1 with CDNB and CuOOH as substrates had proven largely 

unsuccessful, due to a lack of active-site saturation within the range of substrate 

solubility (see section 3.1.3). However, catalytic efficiency (kcat / KM) can be 

calculated by assaying the enzyme at a substrate concentration well below the 

substrate KM as reported in studies with mammalian GSTs (Berhane et al., 1994) 

(Equation 2). 

(kcat / KM) = V / [E][S] 

Equation 2: Approximation of enzyme catalytic efficiency (kcat / KM) at substrate concentrations well below 
the substrate KM. V – rate of product formation. [E] – enzyme concentration. [S] – substrate concentration. 



 

97 
 

Previous studies with AmGSTF1 indicated that the KM for CDNB and CuOOH were 

> 5 mM and 1.6 ± 0.8 mM respectively (Table 5 and Table 6). Therefore AmGSTF1 

and C120V were assayed with substrates at a concentration of 0.1 mM in the 

presence of excess GSH. With both substrates, C120V displayed a significant 

increase in catalytic efficiency relative to AmGSTF1 with a 57 % increase in 

efficiency toward CDNB turnover and a 63 % increase in efficiency toward CuOOH 

turnover (Table 9). 

Table 9: Estimated kcat/KM values for AmGSTF1 and C120V with 1-chloro-2,4-dinitrobenzene (CDNB) or 

cumene hydroperoxide (CuOOH) as substrates. Kinetic parameters were estimated using substrate 

concentrations (100 µM) well below the respective substrate KM whilst maintaining the co-substrate (glutathione) 

at a saturating concentration (1-5 mM). Measurements were performed in technical triplicate. kcat/KM values are 
shown ± SEM, n = 3. 

 kcat/KM (M-1 s-1) 

Enzyme CDNB CuOOH 

AmGSTF1 466 ± 34 439 ± 36 

C120V 730 ± 43 715 ± 34 

 

With no available crystallographic data, it was not clear why the C120V mutant 

showed increased catalytic efficiency with these two substrates. Studies with GSTP1 

mutants have found that Cys47 plays a role in controlling catalytic activity by 

transmitting conformational changes across the GST dimer and decreasing structural 

flexibility (Ricci et al., 1995; Ricci et al., 2003) although equivalent studies with 

AmGSTF1 were not pursued. Importantly, with respect to understanding the role of 

GPOX activity for an MHR phenotype, the S12A and C120V mutants behave with 

significantly lower and higher GPOX activities respectively relative to AmGSTF1. 

All three purified enzymes were shown to be catalytically stable during storage at 4 

°C (Figure 27). 
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Figure 27: Catalytic stability of AmGSTF1, C120V and S12A enzymes. Recombinant enzymes were purified 

and assayed over a 28 day period for activity towards 1-chloro-2,4-dinitrobenzene (CDNB) and otherwise 

maintained at 4 °C. Measurements were performed in technical triplicate. Mean specific activities are shown ± 

SD, n = 3. 

 

4.2.3 Exploitation of the C120V mutant to study inhibition of AmGSTF1 by 

alkylation  

4.2.3.1 Inhibition studies with NBD-Cl 

The data suggested that inhibition of AmGSTF1 by NBD-Cl was largely a 

consequence of covalent binding of the nitrobenzoxadiazole moiety to Cys120. 

Therefore, the C120V mutant was explored for its interaction with NBD-Cl. It was 

hypothesized that if alkylation of Cys120 was the sole mode of AmGSTF1 inhibition, 

then no modification or inhibition of C120V would be observed. 

In a first experiment, equimolar concentrations of purified recombinant AmGSTF1 

and C120V were incubated with two different concentrations of NBD-Cl (100 µM or 

1 mM), with an equivalent volume of dimethyl sulfoxide (DMSO), the solvent used 

to solubilise NBD-Cl, serving as a negative control. Enzymes were incubated with 
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each respective treatment for 10 min before diluting 1:100 (v/v) and assaying for 

activity toward CDNB. 

The C120V mutant proved far more resistant to inhibition by NBD-Cl relative to 

AmGSTF1. Following exposure to 100 µM NBD-Cl, the C120V mutant experienced 

an 8 % loss in mean specific activity whilst AmGSTF1 mean specific activity fell by 

47 %. Exposure to a very high NBD-Cl concentration (1 mM) abolished AmGSTF1 

activity (>99 % loss). However, a significant proportion of C120V activity remained 

(28 % activity remaining) (Figure 28B). 

 

Figure 28: Inhibition of AmGSTF1 and C120V following treatment with 4-chloro-7-nitro-benzoxadiazole. 
(A) Chemical structure of 4-chloro-7-nitro-benzoxadiazole (NBD-Cl). (B) Enzymes were incubated with NBD-

Cl or solvent control (DMSO) for 10 min before diluting 1:100 (v/v) and assaying for enzyme activity towards 1-

chloro-2,4-dinitrobenzene. The NBD-Cl concentration, to which the enzymes were exposed prior to assaying for 

activity, is shown in brackets on the x-axis. Measurements were performed in technical triplicate. Mean specific 
activities are shown ± SD, n = 3. 
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This first experiment highlighted two important observations regarding the 

interaction between NBD-Cl and AmGSTF1. Firstly, prevention of alkylation of 

AmGSTF1 greatly reduced inhibition of the enzyme by NBD-Cl. Hence, alkylation 

appears to be the primary mode of inhibition of AmGSTF1 as suggested with studies 

using the non-alkylating NBD-Cl derivative NBDHEX. Secondly, the C120V mutant 

is still inhibited by NBD-Cl, albeit to a much lesser degree than AmGSTF1. Mass 

spectrometry would be required to absolutely determine that C120V is not alkylated 

by NBD-Cl but based on this assumption it would appear that the protein may also 

be weakly inhibited by competition at the active site with NBD-Cl or the NBD-

glutathione conjugate (NBD-SG). 

Prior to mass spectrometry studies, a time-course treatment was employed to further 

understand the alkylation event. It would be expected that non-competitive inhibition 

of AmGSTF1 would be time-dependent. Equimolar concentrations of AmGSTF1 and 

C120V were incubated for 0 - 60 min with either a fixed concentration of NBD-Cl 

(100 µM) or an equivalent volume of DMSO as a negative control and assayed for 

activity towards CDNB at fixed time-points. 

C120V displayed no significant time-dependent inhibition when exposed to NBD-

Cl. Instead, C120V was weakly inhibited by NBD-Cl in a time-independent manner 

possibly due to competitive inhibition at the active-site by NBD-Cl or the NBD-

glutathione (NBD-SG) conjugate formed non-enzymatically under the assay 

conditions (molar excess of GSH). AmGSTF1 however displayed apparent bi-phasic 

inhibition behaviour when treated with NBD-Cl with rapid inhibition over the period 

0-5 min followed by a slower rate of inhibition over the period 5-60 min (Figure 29). 
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Figure 29: Time-dependent inhibition of AmGSTF1 by 4-chloro-7-nitro-benzoxadiazole. Enzymes were 

incubated with 100 µM 4-chloro-7-nitro-benzoxadiazole (NBD-Cl) or an equivalent volume of DMSO (control) 

over a period of 0 - 60 min. Aliquots were diluted 1:100 (v/v) before assaying for activity towards 1-chloro-2,4-

dinitrobenzene at discrete time-points. Measurements were performed in technical triplicate. Mean specific 
activities are shown ± SD, n = 3. 

Interestingly, this bi-phasic behaviour is very similar to that seen with NBD-Cl-

treated HsGSTP1 which was proposed to be due to non-equivalent Cys47 residues 

on each monomer of the GSTP1 dimer (Ricci et al., 2003). Molecular dynamic 

simulations of the interaction between GSTP1 and NBD-Cl suggested that the bi-

phasic behaviour was due to intersubunit communication across the GST dimer, with 

alkylation of one monomer Cys47 transmitting a conformational signal to allow the 

second monomer Cys47 to become more recalcitrant to alkylation and so preserve 

activity (Ricci et al., 2003). Whilst molecular dynamic simulations fell outside the 

scope of our biochemical studies Figure 29 would suggest that a similar phenomenon 

of communication exists for AmGSTF1. 

These studies however still did not determine alkylation of the proteins. To resolve 

this, AmGSTF1 and C120V were first treated with NBD-Cl or DMSO in an identical 

manner to that described for the time-course. After 60 min exposure to each 

compound, treated enzymes were desalted using size-exclusion chromatography and 

whole protein molecular weights were determined using mass spectrometry. A single 

alkylation of AmGSTF1 would cause an increase in mass of 163 Da if the chloride 

ion of NBD-Cl was displaced. The observed mass ions of NBD-Cl treated AmGSTF1 

were 163 Da greater than the mass ions detected following DMSO treatment proving 
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that AmGSTF1 had been completely alkylated by NBD-Cl after a 60 min treatment. 

No alkylation of C120V was detected following NBD-Cl treatment confirming that 

Cys120 is the sole site of AmGSTF1 modification by NBD-Cl (Table 10). 

Table 10: Analysis of AmGSTF1 and C120V by mass spectrometry following treatment with 4-chloro-7-

nitro-benzoxadiazole. Enzymes were incubated with 100 µM 4-chloro-7-nitro-benzoxadiazole (NBD-Cl) or an 

equivalent volume of DMSO for 60 min before desalting and whole-protein molecular weight determination 

using electrospray ionisation mass spectrometry. Theoretical masses for AmGSTF1 are shown assuming 
alkylation of the protein by NBD-Cl. Theoretical masses assume complete loss of the N-terminal methionine 

residue as is known to occur for Arabidopsis Strep II tagged GSTs (Dixon et al., 2009). 

Enzyme 
Chemical 

treatment 

Theoretical mass  

(Da) 

Observed masses  

(Da) 

AmGSTF1 
DMSO 26665 26663 

NBD-Cl 26828 26826 

C120V 
DMSO 26661 26661 

NBD-Cl 26661 26658 

 

Hence, the weak inhibition of C120V was most likely due to competitive inhibition 

at the active-site of the enzyme by NBD-Cl or the NBD-Cl glutathione conjugate 

(NBD-SG). This hypothesis has been tested using a chemically synthesized NBD-

SG. 

4.2.3.2 Inhibition studies with the nitrobenzoxadiazole-glutathione conjugate 

(NBD-SG) 

To try and establish the cause of weak C120V inhibition by NBD-Cl, equimolar 

concentrations of AmGSTF1 and C120V enzymes were treated with NBD-SG 

(kindly donated by Dr. J. D. Sellars, Department of Chemistry, Durham University, 

UK; Figure 30A), alongside NBD-Cl and DMSO treatments as positive and negative 

controls respectively. Both NBD-Cl and NBD-SG were used at a fixed concentration 

(100 µM) and all treatments consisted of a 10 min incubation period. Following 

treatments, enzymes were diluted 1:100 (v/v) and assayed for activity toward CDNB 

in the presence of excess GSH. 

C120V experienced similar levels of inhibition with both NBD-Cl and NBD-SG 

(Figure 30B). Hence, the inhibition of C120V by NBD-Cl appears to be due to non-

enzymatic formation of the NBD-SG conjugate under the assay conditions. 
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AmGSTF1 was inhibited significantly by both NBD-Cl and NBD-SG with a 47 % 

and 35 % reduction of enzyme activity respectively (Figure 30B).  

 

Figure 30: Inhibition of AmGSTF1 and C120V following treatment with 4-chloro-7-nitro-benzoxadiazole 
(NBD-Cl) or a chemically-synthesized NBD-glutathione conjugate (NBD-SG). (A) Chemical structures of 

NBD-Cl and NBD-SG. (B) Enzymes were incubated with 100 µM NBD-Cl, 100 µM NBD-SG or solvent control 

(DMSO) for 10 min before diluting 1:100 (v/v) and assaying for enzyme activity towards 1-chloro-2,4-

dinitrobenzene. Measurements were performed in technical triplicate. Mean specific activities are shown ± SD, n 
= 3. 

It was possible that the greater level of inhibition seen following NBD-Cl treatment 

of AmGSTF1 relative to NBD-SG treatment was due to a more rapid alkylation of 

AmGSTF1 by the more potent electrophile. To determine relative rates of inhibition, 

equimolar concentrations of AmGSTF1 and C120V were incubated for 0 - 60 min 

with either a fixed concentration (100 µM) of NBD-Cl, NBD-SG or an equivalent 
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volume of DMSO as a negative control and assayed for activity towards CDNB at 

fixed time-points. 

 

Figure 31: Time-dependent inhibition of AmGSTF1 following treatment with 4-chloro-7-nitro-

benzoxadiazole (NBD-Cl) or a chemically-synthesized NBD-glutathione (NBD-SG) conjugate. (A) 

AmGSTF1 and (B) C120V were each incubated with 100 µM NBD-Cl, 100 µM NBD-SG or solvent control 

(DMSO) over a period of 60 min. At discrete time-points aliquots were diluted 1:100 (v/v) and assayed for 
activity towards 1-chloro-2,4-dinitrobenzene. Measurements were performed in technical triplicate. Mean 

specific activities are shown ± SD, n = 3. 

Whilst C120V was only weakly inhibited by both NBD-Cl and NBD-SG 

independent of incubation time (Figure 31B), AmGSTF1 displayed time-dependent 

inhibition of activity following treatment with both NBD-Cl and NBD-SG with a 
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faster rate of inhibition detected when exposed to NBD-Cl relative to NBD-SG 

(Figure 31A). 

To determine if the faster rate of inhibition correlated with an increased rate of 

alkylation, equimolar concentrations of each enzyme were once again treated with 

NBD-Cl, NBD-SG or DMSO under the same conditions as for the time-course 

study. After 60 min, treated enzymes were desalted using size-exclusion 

chromatography and whole protein molecular weights were determined using mass 

spectrometry. Mass analysis found that AmGSTF1 was fully labelled by NBD-Cl as 

only NBD-modified mass ions could be detected. However, analysis of AmGSTF1 

treated with NBD-SG detected both NBD-labelled and unlabelled protein mass ions 

indicating a slower rate of alkylation. No alkylation of C120V was detected with any 

treatment (Table 11). For all treatments with both AmGSTF1 and C120V, a 

proportion of mass ions were detected that were 346 Da lower than the theoretical 

mass (Table 11). Mathematically this loss could be accounted for by loss of the N-

terminal MASW sequence of the Strep II tag although this modification has not been 

previously reported. Importantly though, NBD-modified AmGSTF1 mass ions were 

all 163 Da larger than the respective DMSO-treated counterparts. 

Table 11: Analysis of AmGSTF1 and C120V by mass spectrometry following treatment with 4-chloro-7-

nitro-benzoxadiazole (NBD-Cl) or a chemically-synthesized NBD-glutathione (NBD-SG) conjugate. 

Enzymes were incubated with 100 µM NBD-Cl, 100 µM NBD-SG or an equivalent volume of DMSO for 60 min 

before desalting and whole-protein molecular weight determination using electrospray ionisation mass 

spectrometry. Theoretical masses for AmGSTF1 are shown assuming alkylation of the protein by both NBD-Cl 

and NBD-SG. Theoretical masses assume complete loss of the N-terminal methionine residue as is known to 

occur for Arabidopsis Strep II tagged GSTs (Dixon et al., 2009). The observed mass ions with a decrease of 346 

Da relative to the respective theoretical mass mathematically correlate with the loss of the N-terminal MASW 
sequence of the Strep II tag. 

Enzyme 
Chemical 

treatment 

Theoretical mass  

(Da) 

Observed masses  

(Da) 

AmGSTF1 

DMSO 26665 26320, 26665  

NBD-Cl 26828 26482, 26828 

NBD-SG 26828 26321, 26482, 26663, 26828 

C120V 

DMSO 26661 26316, 26658 

NBD-Cl 26661 26316, 26659 

NBD-SG 26661 26317, 26659 
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Therefore, these results demonstrate that NBD-Cl has two modes-of-action with 

respect to AmGSTF1. NBD-Cl can alkylate AmGSTF1 on Cys120 or can also weakly 

compete at the active site if it forms the NBD-SG conjugate. However, NBD-SG can 

also alkylate the protein albeit at a slower chemical rate than NBD-Cl. Studies with 

C120V show that alkylation is the principal and favoured mode of inhibition of 

AmGSTF1 as C120V is only weakly inhibited by both NBD-Cl and NBD-SG to 

similar degrees. Significantly, if AmGSTF1 alkylation by the NBD moiety is 

responsible for the observed reversal of the MHR black-grass phenotype (Dr. I. 

Cummins and Prof. R. Edwards, unpublished work at the start of this project) then 

the demonstrated alkylation of AmGSTF1 by NBD-SG in vitro suggests this may 

also happen in planta. So, even if NBD-Cl is quenched to the NBD-SG derivative in 

the plant cell due to the high cellular concentrations of GSH, AmGSTF1 may still be 

alkylated and its function inhibited. This is also dependent of course on the relative 

rates of glutathione-conjugate metabolism and vacuolar deposition and would 

require detailed metabolism studies but is an interesting hypothesis. 

4.2.3.3 Inhibition studies with other known thiol alkylating agents 

Having characterised the alkylation and inhibition of AmGSTF1 by NBD-Cl and 

NBD-SG, it was then of interest to determine if Cys120 could be modified by other 

known thiol alkylating agents and how this would affect catalytic activity of the 

enzyme. Therefore, analogous experiments to those conducted with NBD-Cl and 

NBD-SG were carried out with the well-studied thiol alkylating agents 

iodoacetamide and N-ethylmaleimide (NEM) (Figure 32A).  

Equimolar concentrations of AmGSTF1 and C120V enzymes were incubated with 

iodoacetamide or NEM, alongside treatments with NBD-Cl or DMSO as positive 

and negative controls respectively. Iodoacetamide, NEM and NBD-Cl were all used 

at a fixed concentration (100 µM) with all treatments consisting of a 10 min 

incubation period. Unlike the previously described inhibition studies these 

treatments were all performed in the dark to prevent the decomposition of 

iodoacetamide to molecular iodine and unwanted side-reactions. Following 

treatments, enzymes were diluted 1:100 (v/v) and assayed for activity toward CDNB 

in the presence of a molar excess of GSH. 
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Iodoacetamide and NEM proved weak inhibitors of both AmGSTF1 and C120V. In 

the case of AmGSTF1, iodoacetamide and NEM caused a 12 % and 10 % decrease in 

mean AmGSTF1 specific activity respectively as compared to a 53 % reduction 

following treatment with NBD-Cl (Figure 32B). 

 

Figure 32: Specific activities of AmGSTF1 and C120V following treatment with 4-chloro-7-nitro-

benzoxadiazole, iodoacetamide or N-ethylmaleimide. (A) Chemical structures of 4-chloro-7-nitro-

benzoxadiazole (NBD-Cl), iodoacetamide (I) or N-ethylmaleimide (NEM). (B) Enzymes were incubated with 

100 µM NBD-Cl, 100 µM I, 100 µM NEM or solvent control (DMSO) for 10 min in the dark before diluting 
1:100 (v/v) and assaying for enzyme activity towards 1-chloro-2,4-dinitrobenzene. Measurements were 

performed in technical triplicate. Mean specific activities are shown ± SD, n = 3. 

As these compounds are expected to behave as non-competitive alkylating agents, 

the weak inhibition of AmGSTF1 by iodoacteamide and NEM relative to NBD-Cl 

may be a consequence of relative chemical reactivity toward Cys120. To determine 

this, equimolar concentrations of AmGSTF1 and C120V were each incubated for 0 - 

60 min in the dark with either a fixed concentration (100 µM) of NBD-Cl, 
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iodoacetamide, NEM or an equivalent volume of DMSO as a negative control and 

assayed for activity towards CDNB at fixed time-points. 

Following these treatments, no significant levels of inhibition of AmGSTF1 or 

C120V were detected with either iodoacetamide (Figure 33) or NEM (Figure 34), 

even after 60 min incubation. On the contrary, AmGSTF1 displayed the bi-phasic 

inhibition behaviour when incubated with NBD-Cl that was observed previously (see 

section 4.2.3.1). 

 

Figure 33: Time-dependent activity profiles of AmGSTF1 and C120V following treatment with 4-chloro-7-

nitro-benzoxadiazole or iodoacetamide. (A) AmGSTF1 and (B) C120V were each incubated with 100 µM 4-

chloro-7-nitro-benzoxadiazole (NBD-Cl), 100 µM iodoacetamide or solvent control (DMSO) in the dark over a 

period of 60 min. At discrete time-points aliquots were diluted 1:100 (v/v) and assayed for activity towards 1-

chloro-2,4-dinitrobenzene. Measurements were performed in technical triplicate. Mean specific activities are 

shown ± SD, n = 3. 
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Figure 34: Time-dependent activity profiles of AmGSTF1 and C120V following treatment with 4-chloro-7-

nitro-benzoxadiazole or N-ethylmaleimide. (A) AmGSTF1 and (B) C120V were each incubated with 100 µM 
4-chloro-7-nitro-benzoxadiazole (NBD-Cl), 100 µM N-ethylmaleimide (NEM) or solvent control (DMSO) in the 

dark over a period of 60 min. At discrete time-points aliquots were diluted 1:100 (v/v) and assayed for activity 

towards 1-chloro-2,4-dinitrobenzene. Measurements were performed in technical triplicate. Mean specific 

activities are shown ± SD, n = 3. 

To determine if the lack of AmGSTF1 inhibition when treated with iodoacetamide or 

NEM correlated with a lack of alkylation, treated enzymes were analysed by mass 

spectrometry. Equimolar concentrations of each enzyme were once again treated 

with NBD-Cl, iodoacetamide, NEM or DMSO under the same conditions as for the 

time-course studies. After 60 min, treated enzymes were desalted using size-

exclusion chromatography and whole protein molecular weights were determined 

using mass spectrometry. If iodoacetamide had successfully labelled AmGSTF1 a 

mass increase of 57 Da would be expected due to nucleophilic displacement of the 
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iodide functional group. However, no such mass ions were detected for AmGSTF1 or 

C120V when treated with iodoacetamide demonstrating that iodoacetamide cannot 

react with Cys120 (Table 12) with this being the likely reason for the minimal levels 

of inhibition. 

Table 12: Analysis of AmGSTF1 and C120V by mass spectrometry following treatment with 4-chloro-7-

nitro-benzoxadiazole or iodoacetamide. Enzymes were incubated with 100 µM 4-chloro-7-nitro-
benzoxadiazole (NBD-Cl), 100 µM iodoacetamide, or an equivalent volume of DMSO in the dark for 60 min 

before desalting and whole-protein molecular weight determination using electrospray ionisation mass 

spectrometry. Theoretical masses for AmGSTF1 are shown assuming alkylation of the protein by both NBD-Cl 

and iodoacetamide. Theoretical masses assume complete loss of the N-terminal methionine residue as is known 
to occur for Arabidopsis Strep II tagged GSTs (Dixon et al., 2009). 

Enzyme 
Chemical 

treatment 

Theoretical mass  

(Da) 

Observed masses  

(Da) 

AmGSTF1 

DMSO 26665 26663 

NBD-Cl 26828 26826 

Iodoacetamide 26722 26663 

C120V 

DMSO 26661 26661 

NBD-Cl 26661 26658 

Iodoacetamide 26661 26659 

 

If NEM successfully labelled AmGSTF1 an increase in whole protein mass of 125 

Da would be expected following nucleophilic addition to one of the two equivalent 

α,β-unsaturated carbonyl centres in the NEM molecule. Surprisingly, unlike 

iodoacetamide treatment, the observed mass ions of NEM-treated AmGSTF1 were 

125 Da larger than the corresponding mass ions observed with DMSO-treated 

AmGSTF1 indicating that AmGSTF1 had been fully labelled by NEM. No labelled 

mass ions were detected with C120V with any treatment indicating that NEM-

modification of AmGSTF1 occurred on Cys120 (Table 13). For all treatments with 

both AmGSTF1 and C120V, a proportion of mass ions were detected that were 346 

Da lower than the theoretical mass as seen previously with NBD-SG experiments 

(Table 11) possibly due to loss of the N-terminal MASW sequence of the Strep II 

tag. Importantly though, NEM-treated AmGSTF1 mass ions were all 125 Da larger 

than the respective DMSO-treated counterparts. 
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Table 13: Analysis of AmGSTF1 and C120V by mass spectrometry following treatment with 4-chloro-7-

nitro-benzoxadiazole or N-ethylmaleimide. Enzymes were incubated with 100 µM 4-chloro-7-nitro-
benzoxadiazole (NBD-Cl), 100 µM N-ethylmaleimide (NEM), or an equivalent volume of DMSO in the dark for 

60 min before desalting and whole-protein molecular weight determination using electrospray ionisation mass 

spectrometry. Theoretical masses for AmGSTF1 are shown assuming alkylation of the protein by both NBD-Cl 

and NEM. Theoretical masses assume complete loss of the N-terminal methionine residue as is known to occur 
for Arabidopsis Strep II tagged GSTs (Dixon et al., 2009). The observed mass ions with a decrease of 346 Da 

relative to the respective theoretical mass mathematically correlate with the loss of the N-terminal MASW 

sequence of the Strep II tag. 

Enzyme 
Chemical 

treatment 

Theoretical mass  

(Da) 

Observed masses  

(Da) 

AmGSTF1 

DMSO 26665 26320, 26665  

NBD-Cl 26828 26482, 26828 

NEM 26790 26444, 26790 

C120V 

DMSO 26661 26316, 26658 

NBD-Cl 26661 26316, 26659 

NEM 26661 26316, 26659 

 

These results would therefore suggest that solely alkylating Cys120 is not sufficient 

for AmGSTF1 inhibition and instead implies a further level of interaction between 

AmGSTF1 and NBD-Cl that promotes enzyme inhibition. This is opposed to studies 

performed with GSTP1 which is consistently inhibited following alkylation by a host 

of compounds including NBD-Cl and NEM (Tamai et al., 1990; Ricci et al., 2003). 

Crystallographic studies are required to understand the interaction of AmGSTF1 with 

NBD-Cl and NEM respectively. 

4.2.3.4 Inhibition studies with purine derivatives 

Alongside the work discussed so far, collaborators on this project had also identified 

a set of purine-based compounds which appeared to show efficacy for reversing 

chlorotoluron resistance of MHR black-grass in spray trials (Dr. C. Coxon, H. E. 

Straker and Prof. P. G. Steel, unpublished work). Having established the importance 

of AmGSTF1 for an MHR phenotype and its intriguing interaction with NBD-Cl, 

AmGSTF1 was screened with the purine derivatives for inhibition of the enzyme. 

After obtaining the purine derivatives, they were screened in an analogous manner to 

that described for previous inhibition studies, alongside NBD-Cl as a positive 

control. The first experiment screened 6-chloropurine (6-CP), 6-mercaptopurine (6-



 

112 
 

MP) and 6-bromopurine (6-BP) (Figure 35A) for inhibition of AmGSTF1 activity. 

These compounds are relatively reactive electrophiles and may inhibit AmGSTF1 by 

alkylating Cys120. Therefore, compounds were also screened for inhibition of the 

C120V mutant. No significant levels of AmGSTF1 or C120V inhibition were 

detected with any of the purine derivatives (Figure 35B). The lack of inhibition 

correlated with a lack of protein modification determined using mass spectrometry 

(Dr. C. Coxon and Prof. P. G. Steel, unpublished work). 

 

Figure 35: Specific activities of AmGSTF1 and C120V following treatment with 4-chloro-7-nitro-

benzoxadiazole or purine derivatives. (A) Chemical structures of 4-chloro-7-nitro-benzoxadiazole (NBD-Cl), 
6-chloropurine (6-CP), 6-mercaptopurine (6-MP) and 6-bromopurine (6-BP). (B) Enzymes were incubated with 

100 µM NBD-Cl, 100 µM of each purine derivative or solvent control (DMSO) for 10 min in the dark before 

diluting 1:100 (v/v) and assaying for enzyme activity towards 1-chloro-2,4-dinitrobenzene. Measurements were 

performed in technical triplicate. Mean specific activities are shown ± SD, n = 3. 

It was possible that the lack of the nitro group para- to the leaving group of the 

purine derivatives meant that the compounds were not sufficiently electrophilic to 
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react with Cys120. Therefore, a 3,3-deazonitro-6-chloropurine (NDA-6-CP) 

derivative (Figure 36A) was synthesized and tested for inhibition of AmGSTF1 and 

C120V in an analogous manner to that described for previous inhibition studies. 

Again, no significant inhibition of AmGSTF1 or C120V was detected (Figure 36B). 

 

Figure 36: Specific activities of AmGSTF1 and C120V following treatment with 4-chloro-7-nitro-
benzoxadiazole, 6-chloropurine or 3,3-deazonitro-6-chloropurine. (A) Chemical structures of 4-chloro-7-

nitro-benzoxadiazole (NBD-Cl), 6-chloropurine (6-CP), and 3,3-deazonitro-6-chloropurine (NDA-6-CP). (B) 

Enzymes were incubated with 100 µM NBD-Cl, 100 µM of each purine derivative or solvent control (DMSO) 

for 10 min in the dark before diluting 1:100 (v/v) and assaying for enzyme activity towards 1-chloro-2,4-

dinitrobenzene. Measurements were performed in technical triplicate. Mean specific activities are shown ± SD, n 

= 3. 

It is not yet clear if the purine-based compounds can restore herbicide sensitivity to 

MHR black-grass treated with chlorotoluron alone or to herbicides with other 

modes-of-action also. With regards to chlorotoluron resistance in MHR black-grass, 

up-regulated CYP activity has been shown to be responsible for resistance (Hall et 

al., 1995) and hence the purine-based derivatives tested here may be targeting the 
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CYPs required for chlorotoluron degradation in planta. An extensive set of further 

studies are required to understand the function of the purine-based compounds for 

restoring a WTS phenotype in black-grass. These studies fell outside the scope of 

this project but the results presented here can confirm their mode-of-action is not via 

a direct interaction with AmGSTF1. 

4.3 Expression of AmGSTF1 and mutant isoforms in transgenic 

Arabidopsis thaliana plants 

4.3.1 Introduction 

In vitro studies demonstrated that the AmGSTF1 mutants had significantly perturbed 

catalytic activities. S12A was significantly retarded with all substrates tested 

including a large reduction in GPOX activity. Conversely, C120V had a significant 

increase in GPOX activity. Studies with C120V also suggested that Cys120 may 

play a role in transmitting conformational signals across the GST dimer and that the 

residue was the principal determinant for the interaction of AmGSTF1 with reactive 

electrophiles. In order to understand how the altered properties of the mutants may 

affect MHR, AmGSTF1, C120V and S12A were each independently and stably 

expressed in transgenic Arabidopsis thaliana host plants. Independent homozygous 

lines were then screened for changes in herbicide tolerance, endogenous 

detoxification enzyme activities and flavonoid accumulation. 

4.3.2 DNA construct generation 

In order to successfully transform Arabidopsis to allow stable expression of the 

GSTs, the DNA open reading frame of each GST needed to be sub-cloned into a 

suitable expression vector. Therefore, GSTs were sub-cloned from the pET-STRP3 

vector into the pBIN-STRP3 vector (Figure 37), a plant binary vector designed for 

stable plant transformation. This vector retains the Strep II tag fused to the N-

terminus of each GST sequence and allows constitutive expression of the Strep II 

tagged GST from the Cauliflower Mosaic Virus 35S promoter. The vector also 

contains the Bar gene, the product of which grants resistance to glufosinate-

ammonium and allows for selection of transformants (Dixon et al., 2008; Dixon et 

al., 2009).  
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Figure 37: pBIN-STRP3 vector. The cloned DNA sequence (CDS) of choice is inserted such that it becomes 

fused to a Strep II tag of which the translated amino acid sequence is shown. Expression of the construct is driven 
by the constitutive Cauliflower Mosaic Virus 35S promoter (CamV 35S). Expression of the Bar gene using the 

nopaline synthase promoter grants resistance to glufosinate-ammonium and allows selection for transformants 

carrying the vector. The relative positions of DNA restriction sites required for manipulation of the vector are 

shown (NcoI, PacI and BstXI). RB – right border, LB – left border. Copied with permission from (Dixon et al., 
2009). 

In order to transform Arabidopsis plants, the vector was first transformed into a 

modified strain of Agrobacterium tumefaciens. This is because this Agrobacterium 

species is capable of stably integrating a portion of its DNA into a susceptible plant 

host genome. The pBIN-STRP3 vector contains DNA recognition sequences 

upstream and downstream (RB and LB respectively, Figure 37) of the DNA region 

to be transferred (T-DNA). These sites are used by vir proteins, maintained on a 

helper plasmid within the Agrobacterium species, to excise the T-DNA region and 

integrate it into the plant host genome (Gelvin, 2003). Flowering Arabidopsis plants 

were then transformed with the Agrobacterium strain containing the assembled 

pBIN-STRP3 constructs. 

To sub-clone AmGSTF1, C120V and S12A into the pBIN-STRP3 vector, GSTs in 

the pET-STRP3 were digested with the restriction enzymes PacI and BstXI and 

ligated into PacI/BstXI-digested pBIN-STRP3. Constructs were transformed into E. 

coli XL-10 gold ultracompetent cells followed by plasmid purification. Constructs 

were confirmed as correct using DNA sequencing. 

To serve as a negative control for downstream experiments with successfully 

transformed Arabidopsis plants, independent lines of Arabidopsis plants needed to 

be generated that expressed the pBIN-STRP3 vector alone with no GST insert. It was 

decided that the most appropriate set of control plants would be those that 

constitutively expressed only the Strep II tag. This construct did not already exist 

and so was generated using an overhang PCR method (Figure 38). 
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Figure 38: Scheme for the generation of a modified pBIN-STRP3 vector allowing the expression of the 

Strep II tag only. The pBIN-STRP3 vector was amplified using two distinct primer sets. These primer sets 

allowed amplicons to be generated (A) downstream and (B) upstream of the cloned DNA sequence (CDS) with 

the upstream primers designed to amplify from the Strep II tag. Each primer set also used a primer with a novel 
overhang that did not anneal to the vector and included a translational stop codon and a unique diagnostic 

restriction site (XbaI). (C) Purification of the amplicons, annealing of the complementary overhangs and another 

round of PCR generated the desired vector sequence (D) which allowed expression of the Strep II tag only. The 

relative positions of DNA restriction sites required for manipulation of the vector are shown (NcoI and BstXI). 
The promoter sequences denoted in Figure 37 are still present but are not shown here to more easily define the 

sites of primer binding. 

Primers were designed to amplify upstream and downstream of the GST insert. The 

upstream primer set amplified from the respective codon of the C-terminus of the 

Strep II tag and contained a novel antisense primer 5’ stop codon (Figure 38B). The 

downstream primer set contained a novel sense primer 5’ overhang that was 

complementary in sequence to the overhang of the upstream antisense primer (Figure 

38A). Purification and annealing of the amplified sequences via the complementary 

overhangs followed by a further round of PCR generated the desired DNA sequence, 

to allow constitutive expression of the Strep II tag only (Figure 38C and D). This 

was then cloned into the full pBIN-STRP3 vector using complementary restriction 

sites. 
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An arbitrary GST-pBIN-STRP3 construct (S12A-pBIN-STRP3) was used as a 

template for amplification with the primer sets described in Figure 38A and B. 

Following PCR, the resulting amplicons were purified using agarose gel 

electrophoresis. The purified amplicons were annealed using the introduced 

complementary overhangs and the full-length DNA sequence generated by PCR with 

vector-specific sequencing primers. The amplified full-length DNA sequence was 

purified using gel electrophoresis and digested with NcoI and BstXI restriction 

enzymes. The digested fragment was then ligated into NcoI/BstXI digested pBIN-

STRP3 vector and transformed into ultra-competent E. coli XL-10 gold cells 

followed by plasmid purification. The construct was confirmed as correct using 

DNA sequencing and is hereby referred to as the vector. 

4.3.3 Transformation into Arabidopsis thaliana plants 

As described, in order to transform the assembled pBIN-STRP3 constructs into 

Arabidopsis plants they first needed to be transformed into Agrobacterium 

tumefaciens. Using electroporation, all constructs were transformed into 

Agrobacterium tumefaciens strain GV3101 containing the MP90 helper plasmid that 

harboured the vir genes required for T-DNA excision and integration (Koncz and 

Schell, 1986). Successful transformants were selected with the appropriate 

antibiotics. Arabidopsis plants were then transformed as described (Clough and 

Bent, 1998) by inoculating flowering plants with Agrobacterium cultures 

transformed with the respective GST-pBIN-STRP3 vectors. Homozygous stably-

integrated transgenic lines were generated as depicted in Figure 39.  
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Figure 39: Scheme for the generation of transgenic Arabidopsis thaliana plants containing a homozygous 

insert of the desired transgene. Flowering Arabidopsis plants are inoculated with Agrobacterium tumefaciens 
transformed with a pBIN-STRP3 construct containing the desired transgene. Inoculated plants are grown to seed 

(T0) and the seed collected. T0 seed is sown and seedlings are treated with the commercial herbicide BASTA 

(active ingredient – glufosinate-ammonium). Transformed plants containing a single vector insert (denoted XO) 

express the Bar gene, coding for a protein that degrades glufosinate-ammonium, and survive. Untransformed 
plants (denoted OO) cannot express the Bar gene and die. Surviving plants are allowed to self-fertilise (Self) and 

the seed (T1) of each is collected. Genetic recombination during self-fertilisation generates homozygous (XX), 

heterozygous (XO) and reverted wild-type (OO) progeny. T1 seed is sown and treated with BASTA with single 

insert lines displaying a 3:1 alive:dead ratio due to the three possible progeny genotypes generated during genetic 
recombination. Surviving individuals are now either heterozygous (XO) or homozygous (XX) for the transgene 

with a relative ratio of 2:1 heterozygous:homozygous. Individuals are separated and allowed to self-fertilise (T2 

seed) followed by another round of BASTA selection. Genetic recombination during self-fertilisation, in the 

process of generating T2 seed, means that only the progeny of homozygous T1 lines will all be resistant to 
BASTA selection. Heterozygous T1 lines will generate a proportion of revertant wild-type (OO) individuals as 

described. Therefore T2 lines for which all seedlings survive BASTA selection are homozygous single insertion 

lines and can be used for further study. 

Three T1 lines of each GST construct and two T1 lines expressing the vector 

construct were identified that were statistically strongly significant (p ≥ 0.5) 

representing a 3:1 alive:dead ratio (Table 14) after treatment with glufosinate-

ammonium, indicating an expressed single-insertion event. 

.  
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Table 14: T1 transformant lines that segregated in a 3:1 alive:dead ratio following selection with 

glufosinate-ammonium. Seed of each T1 line was sown on soil and maintained in glasshouses for 14 days 
before spraying with glufosinate-ammonium. The numbers of seedlings were counted before and after spraying. 

A χ2 statistical test was used to prove these lines granted the desired 3:1 ratio for a stably-integrated single insert. 

Construct T1 line 
Expected Observed χ2 p-

value Alive Dead Alive Dead 

AmGSTF1 

5 30.75 10.25 29 12 0.528 

8 30.75 10.25 30 11 0.787 

13 40.5 13.5 41 13 0.875 

C120V 

7 28.5 9.5 28 10 0.851 

11 24.75 8.25 25 8 0.920 

16 30 10 29 11 0.715 

S12A 

2 51 17 51 17 1.000 

4 30 10 31 9 0.715 

12 39.75 13.25 40 13 0.937 

Vector 
21 31.5 10.5 31 11 0.859 

22 36 12 36 12 1.000 

 

24 individuals of each of these 11 T1 lines were separated and allowed to self-

fertilise. The resulting seed (T2) of each individual was then collected. 8 T2 lines 

from each of the 11 selected T1 lines were sown and seedlings selected again with 

glufosinate-ammonium. This identified a homozygous T2 line from each T1 line and 

hence three independent homozygous lines for each pBIN-STRP3 construct (Table 

15). 

Table 15: AmGSTF1, C120V, S12A and vector-only homozygous single insertion lines selected for further 

study. 

Construct Homozygous T2 line 

AmGSTF1 

5-19 

8-8 

13-24 

C120V 

7-20 

11-3 

16-17 

S12A 

2-19 

4-2 

12-17 

Vector 
21-24 

22-24 
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4.3.4 Screening of transgenic plants for GST expression 

The selected homozygous T2 lines were screened for GST protein expression using 

an antiserum raised against the ZmGSTF1-2 heterodimer known to recognise 

AmGSTF1 and the mutant isoforms (see section 4.2.1). The antiserum recognised 

endogenous phi-class GSTs in all samples including the vector plants. It also 

recognised a novel GSTF band in 8 of the 9 black-grass GST-expressor lines that co-

migrated with recombinant AmGSTF1 corresponding to the respective black-grass 

GST proteins (Figure 40). 

Variable construct expression was detected between the independent lines, as is 

expected for transgenic lines generated using Agrobacterium tumefaciens. This is 

because the site of construct integration into the plant host genome by the 

agrobacterium is non-specific and hence the construct can be inserted into highly 

transcribed or lowly transcribed genomic regions (Gelvin, 2003). No AmGSTF1 

protein was detected in the AmGSTF1 8-8 line, although the selection trials had 

identified it as a homozygous insertion line. It is most likely that this was due to 

levels of AmGSTF1 expression below the detection limit of the antiserum. This was 

not pursued however and the line was not used for further study. 
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Figure 40: Phi class GST expression screens of homozygous insertion lines. Transgenic Arabidopsis lines 
designed to express AmGSTF1, C120V or S12A, for which all T2 progeny survived glufosinate-ammonium 

selection, were screened for construct expression by Western blotting using an antiserum raised against the 

ZmGSTF1-2 heterodimer. Two vector-only lines designed to express the Strep II tag, for which all T2 progeny 

survived glufosinate-ammonium selection, were also screened. Recombinant AmGSTF1 (rAmF1) was run 
alongside samples as a positive control. M – protein markers. The molecular weights (kDa) of protein markers 

are shown. Numbers below vector and enzyme names (e.g. AmF1 5-19) denote unique identification numbers of 

each independent line. 
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4.3.5 Testing AmGSTF1-, C120V- and S12A-expressors for enhanced 

herbicide tolerance 

As T-DNA insertion into the plant host genome mediated by Agrobacterium 

tumefaciens is non-specific for location, the observed changes in a single 

homozygous line cannot be confidently assumed to be as a result of transgene 

expression. Therefore, two homozygous lines of each AmGST construct were tested 

for changes in herbicide tolerance with chlorotoluron, a herbicide that cannot be 

detoxified directly by GSTs. The two selected lines were those with the highest 

relative expression of the transgene except for S12A constructs for which lines 2-19 

and 12-17 were used. This was due to very poor germination of the S12A 4-2 seed. 

Seeds of the selected lines (30 per pot) were sown on soil and grown for 14 days in 

environmental growth chambers (20 °C, 100 µE m-2 s-1, 16 hr photoperiod). 

Seedlings of the GST-expressors and the vector control plants were then sprayed 

with chlorotoluron (60 g active ingredient per hectare) formulated with 0.1 % (v/v) 

Biopower, 1 % (v/v) acetone or with formulation alone. Plants were then maintained 

in growth chambers for a further 7 days before imaging.  

AmGSTF1-, C120V- and S12A-expressors along with vector control plants all 

behaved in a similar manner following treatment with formulation alone. However, 

AmGSTF1-, C120V- and S12A-expressors all accumulated significantly more 

biomass following treatment with chlorotoluron relative to vector control plants by 

visual assessment (Figure 41).  
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Figure 41: Increased herbicide tolerance of transgenic Arabidopsis plants expressing AmGSTF1, C120V or 

S12A. Seeds of two independent lines expressing (A) AmGSTF1, (B) C120V or (C) S12A were sown on soil (30 

per pot) and maintained in environmental growth chambers for 14 days followed by an application of 
chlorotoluron (CHL; 60 g ai hectare-1, 0.1 % biopower, 1 % acetone) or an equivalent volume of formulation 

only (Form; 0.1 % biopower, 1 % acetone). Plants were maintained in environmental growth chambers for a 

further 7 days and then photographed. Numbers below vector and enzyme names (e.g. AmGSTF1 5-19) denote 

unique identification numbers of each independent line. 
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In order to quantify magnitudes of resistance, the spray trial was repeated using the 

highest expressing line of each GST construct and the vector 22-24 line which 

appeared the more tolerant of the two vector lines. Relative biomass of the respective 

lines was then calculated following chlorotoluron and formulation-only treatments. 

Plants were also challenged with the herbicide alachlor, a herbicide that can be 

detoxified by GSTs but is not a substrate for AmGSTF1 (Cummins et al., 1999), to 

determine if the GST-expressors were resistant to multiple herbicides with differing 

modes-of-action. To calculate the relative changes in biomass between GST-

expressors and vector control plants, treated pots were first counted for the number 

of individuals in each pot and then aerial tissue of each pot was harvested and 

weighed. For each pot, the mass per plant was calculated to normalise for small 

differences in germination and the differences in mass per plant were calculated 

between GST-expressors and vector control plants expressed as a percentage 

increase of the vector. 

AmGSTF1-, C120V- and S12A-expressors all accumulated more biomass relative to 

vector only plants when exposed to formulation alone. However, this increase in 

biomass was significantly greater when plants were exposed to herbicides (Figure 

42). 

 

Figure 42: Increased biomass of transgenic Arabidopsis plants expressing AmGSTF1, C120V or S12A 

relative to vector-only control plants following herbicide treatment. Plants of the following transgenic lines: 

AmGSTF1 5-19, C120V 16-17, S12A 2-19 and vector 22-24, (20 seeds per pot) were grown in environmental 

growth chambers in duplicate for 14 days followed by an application of chlorotoluron (60 g ai hectare-1, 0.1 % 
biopower, 1 % acetone), alachlor (1200 g ai hectare-1, 0.1 % biopower, 1 % acetone) or an equivalent volume of 

formulation only (Form; 0.1 % biopower, 1 % acetone) and then maintained in growth chambers for a further 10 

days. At this time aerial tissue of all lines was harvested and weighed. For each replicate, the percentage increase 

in fresh weight per plant of the AmGSTF1-, C120V- and S12A-expressors was calculated relative to the vector-

only control plants and the mean percentage increase in fresh weight per plant for the GST-expressors relative to 

vector-only control plants is shown for the three chemical treatments; formulation only (black), chlorotoluron 

(light grey) and alachlor (dark grey). 
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These results clearly show that AmGSTF1, S12A and C120V all elicit MHR in 

transgenic Arabidopsis plants. Hence, catalytic activity and Cys120 are not essential 

for AmGSTF1 to elicit an MHR phenotype.  

4.3.6 Biochemical characterisation of AmGSTF1-, C120V and S12A-

expressors 

It was then of interest to determine if the AmGSTF1-, C120V and S12A-expressors 

had similar increases in endogenous detoxifying enzyme activities and flavonoid 

accumulation as seen with previous AmGSTF1-expressors (Dr. I. Cummins and Prof. 

R. Edwards, unpublished work at the start of this project) and in MHR black-grass 

plants (Cummins et al., 2009). 

4.3.6.1 Enzyme activities of transgenic lines 

For enzyme activity measurements, soluble protein extracts of the highest expressing 

line of each construct (AmGSTF1 5-19, C120V 16-17, S12A 2-19) and vector only 

(vector 22-24) plants were prepared by homogenising frozen tissue in aqueous 

buffer, discarding the solid cellular debris and precipitating protein using ammonium 

sulfate. Protein pellets were re-solubilised in aqueous buffer and reduced with 

dithiothreitol (DTT). DTT and other small molecular weight contaminants were 

removed using size-exclusion chromatography. The protein concentration of each 

sample was then estimated using commercially available dye reagents. Samples were 

then assayed for specific activity towards four different substrates; namely CDNB, 

cumene hydroperoxide (CuOOH), 2-hydroxyethyl disulfide (HED) and 

crotonaldehyde. 

With CDNB as a substrate, a significant increase in activity was detected in 

AmGSTF1- and C120V-expressors but not in S12A-expressors relative to vector 

control plants. However, with crotonaldehyde, another substrate for GSH-

conjugation by GSTs, a significant increase in activity was detected in all GST-

expressors relative to vector control plants with no activity toward crotonaldehyde 

able to be detected in vector plants under these assay conditions (Table 16). These 

results indicate that activity towards CDNB is a direct result of catalysis by the 
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transgene proteins with no activity detected in S12A-expressors due to the S12A 

mutant being severely catalytically retarded. However conjugation of crotonaldehyde 

with GSH cannot be as a result of the expression of the black-grass GSTs as neither 

AmGSTF1, nor the mutant enzymes, can use this compound as a substrate (Table 8). 

Therefore increased activity toward crotonaldehyde in AmGSTF1-, C120V- and 

S12A-expressors must be as a result of changes in the expression and/or activities of 

endogenous GSTs which have little activity toward CDNB. 

With CuOOH, a substrate for glutathione peroxidases (GPOXs), specific activity 

toward the substrate was increased approximately 2-fold in the AmGSTF1-, C120V- 

and S12A-expressing lines relative to vector control plants (Table 16). As the S12A 

mutant is severely catalytically retarded toward CuOOH, the similar fold increases in 

GPOX activity in the AmGSTF1-, C120V- and S12A-expressors indicates that the 

increase in most likely due to changes in the expression and/or activities of 

endogenous GPOX enzymes. 

Similarly, with HED, a substrate for thiol transferases, a significant increase in 

activity was detected in the AmGSTF1-, C120V- and S12A-expressing lines relative 

to vector control plants (Table 16). HED cannot be used as a substrate by AmGSTF1 

or the mutant isoforms (Table 8) and hence the increases in activity must be due to 

changes in the expression and/or activities of endogenous thiol transferase enzymes. 

Table 16: Enzyme activities of transgenic Arabidopsis plants expressing AmGSTF1, C120V, S12A or 

vector only. Soluble protein extracts of the following transgenic lines: AmGSTF1 5-19, C120V 16-17, S12A 2-

19 and vector 22-24, were tested for activity towards 1-chloro-2,4-dinitrobenzene (CDNB; GST substrate), 

cumene hydroperoxide (GPOX substrate), 2-hydroxyethyl disulfide (thiol transferase substrate) and 
crotonaldehyde (GST substrate). All measurements were performed in technical triplicate and are shown ± SEM, 

n = 3. ND: not detected. 

 
Transgenic line 

Mean specific activity (pmol s-1 mg-1 protein) 

Substrate Vector AmGSTF1 C120V S12A 

CDNB 220 ± 50 320 ± 10 320 ± 10 240 ± 20 

Cumene 

hydroperoxide 
19.3 ± 5 46.8 ± 4 47.5 ± 7 38.2 ± 2 

2-hydroxyethyl 

disulfide 
175 ± 6 208 ± 5 202 ± 5 239 ± 6 

Crotonaldehyde ND 20 ± 5 23 ± 6 25 ± 2 
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4.3.6.2 Flavonoid profiles 

For flavonoid analysis, frozen tissue from the transgenic lines was homogenised in 

acidified methanol containing the flavonol kaempferol as an internal standard with 

the solid cellular debris being discarded. Samples were then separated into 

component compounds using high-performance liquid chromatography (HPLC) 

based on a published method (Cummins et al., 2006) using a chromatographic 

matrix designed to better retain and hence separate aromatic compounds. Eluting 

compounds were measured for absorbance at 287 nm. To allow for reliable 

quantification, samples were run in technical triplicate. Flavonoid profiles of all 

extracts were then normalised and quantified relative to that of vector 22-24 using 

the peak areas of the respective internal kaempferol standards. 

The samples from all transgenic lines displayed very similar profiles to one another 

with no novel peaks detected between lines. The only major difference observed was 

that AmGSTF1-, C120V- and S12A- expressors had a 26 – 40 % increase in the 

accumulation of the major flavonoid compound detected with a retention time of 

15.8 min (Figure 43 and Table 17). 

 

Figure 43: Flavonoid profiles of transgenic Arabidopsis plants expressing AmGSTF1, C120V, S12A or 

vector only. Acidified methanolic extracts of the following transgenic lines: AmGSTF1 5-19, C120V 16-17, 

S12A 2-19 and vector 22-24, were separated using high performance liquid chromatography and visualised at 
287 nm. Profiles were normalised to an internal kaempferol standard with the standard used to quantify flavonoid 

concentrations. Quantified peaks are shown as a function of chromatographic retention time (min). All 

measurements were performed in technical triplicate and are shown ± SEM, n = 3. FW – fresh weight. 
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Table 17: Quantification of the major flavonoid accumulating in transgenic Arabidopsis plants expressing 

AmGSTF1, C120V, S12A or vector only. Flavonoid accumulation was calculated relative to an internal 
kaempferol standard. The quantified metabolite is shown ± SEM, n = 3. RT – chromatographic retention time. 

FW- fresh weight. 

 
 Transgenic line 

Metabolite accumulation (µmol g-1 FW tissue) 

Metabolite 
RT 

(min) 
Vector AmGSTF1 C120V S12A 

Major flavonoid 15.8 
3.12  

± 0.04 

4.36  

± 0.11 

3.94  

± 0.004 

4.13  

± 0.08 

 

4.3.7 Isolation of black-grass GSTs from transgenic Arabidopsis plants 

DNA microarrays demonstrated that AmGSTF1 expression in Arabidopsis did not 

elicit increases in endogenous detoxification enzymes activities and flavonoid 

accumulation by perturbing expression of the respective genes (see section 3.3). 

Therefore, AmGSTF1 must elicit these changes post-transcriptionally. One possible 

mechanism is a physical interaction with regulatory proteins or small molecules. 

Using the Strep II tag, AmGSTF1, C120V and S12A were isolated from the 

respective transgenic host plants and probed for binding proteins using SDS-PAGE 

analysis and silver staining. 

Soluble protein extracts of the highest expressing line of each construct (AmGSTF1 

5-19, C120V 16-17, S12A 2-19) and vector only (vector 22-24) plants were prepared 

by homogenising approximately 1 g frozen tissue in aqueous buffer and discarding 

the solid cellular debris. Samples were then passed over Strep-tactin resin and the 

resin washed extensively with buffer. Retained proteins were eluted using 

desthiobiotin to competitively displace Strep-tagged components from the resin. 

Eluted samples were then concentrated using size-exclusion chromatography and 

protein components separated using SDS-PAGE. Detection of proteins by silver 

staining, identified small amounts of the black-grass GSTs from the respective 

transgenic lines. Two additional proteins were also detected. However, these were 

also present in the vector sample and appear to be non-specific contaminants (Figure 

44A). The Strep II tagged proteins were isolated in very low yields, as demonstrated 

using an antiserum raised to the maize ZmGSTF1-2 heterodimer, that barely detected 

extracted polypeptides (Figure 44B). 
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Figure 44: Isolation of Strep II tagged GSTs from transgenic Arabidopsis lines. Strep II tagged GSTs were 

isolated from soluble protein extracts of the following transgenic lines: AmGSTF1 5-19, C120V 16-17, S12A 2-

19 and vector 22-24, using Strep-tactin affinity chromatography. Proteins were detected by (A) staining with 

silver nitrate or (B) Western blotting with an antiserum raised against the maize ZmGSTF1-2 heterodimer. Black-
grass GSTs are indicated (black arrow). Recombinant AmGSTF1 (rAmF1) was stained as a positive control. M – 

protein markers. Molecular weights (kDa) of protein markers are shown. 
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4.4 Discussion and future work 

AmGSTF1 was known to elicit MHR in a transgenic host plant and to induce 

increases in detoxification enzyme activities and flavonoid accumulation (Dr. I. 

Cummins and Prof. R. Edwards, unpublished work at the start of this project). 

AmGSTF1 was also known to function as a GPOX enzyme in vitro and be able to 

detoxify organic and long-chain fatty acid hydroperoxides (Cummins et al., 1999). It 

was not clear whether GPOX function was required for an MHR phenotype in a 

transgenic host plant, or if the phenotype was due to the increases in endogenous 

detoxification enzymes and flavonoids. To determine this, an S12A mutant of 

AmGSTF1 was generated which was largely catalytically inactive, displaying a 

dramatic reduction (74 %) in activity as a GPOX enzyme (Table 8). Expression of 

the mutant enzyme in Arabidopsis plants, alongside transgenic plants expressing 

AmGSTF1 as a positive control or the transformation vector only as a negative 

control, demonstrated that S12A-expressors displayed an MHR phenotype toward 

herbicides with multiple modes-of-action (Figure 41 and Figure 42). Increased 

tolerance was similar to that of AmGSTF1-expressors and demonstrated that catalytic 

activity is not essential for AmGSTF1 to elicit MHR. Instead, both AmGSTF1-

expressors and S12A-expressors induced the activities of endogenous detoxification 

enzymes including endogenous GPOX enzymes (Table 16). S12A-expressors also 

caused the accumulation of the major flavonoid that could be detected similar to 

AmGSTF1-expressors (Figure 43 and Table 17), indicating that flavonoid 

accumulation was also independent of catalytic activity. 

A second C120V mutant was generated to probe the role of Cys120 which had been 

shown to be covalently labelled by the inhibitor NBD-Cl, a compound which 

reversed MHR in black-grass. Activity studies with AmGSTF1 and C120V found 

that the C120V mutant had a higher catalytic efficiency with both CDNB and 

CuOOH as substrates (Table 9) and hence Cys120 may play some role in regulating 

catalysis. Time-course experiments with NBD-Cl found that Cys120 was the 

principal residue for inhibition, as C120V was only weakly inhibited by the 

compound relative to AmGSTF1 (Figure 29) and could not be modified by NBD-Cl 

(Table 10). These same experiments found that AmGSTF1 displayed a bi-phasic 

inhibition behaviour with NBD-Cl (Figure 29) which is very similar to that seen 
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when NBD-Cl binds to the reactive cysteine of human GSTP1 associated with multi-

drug resistance in cancer cells. In the case of GSTP1, this behaviour is due to 

conformational signalling between the monomers of the GSTP1 dimer following the 

alkylation of the reactive cysteine of one monomer by NBD-Cl. Results with 

AmGSTF1 suggest a similar phenomenon may exist with Cys120 and provide a 

secondary level of evidence for its involvement in regulating catalysis. Studies with 

other alkylating agents found that Cys120 could be labelled by compounds other 

than NBD-Cl but this interaction did not lead to inhibition of AmGSTF1 (Figure 32 

and Table 13). Therefore, alkylation alone of Cys120 does not inhibit AmGSTF1 

directly but instead indicates a further level of interaction between AmGSTF1 and 

NBD-Cl that disrupts protein function. Crystallographic studies of AmGSTF1 in 

complex with NBD-Cl would be of great benefit to understand the molecular 

interaction but successfully diffracting crystals have remained elusive (Dr. E. Pohl, 

Department of Chemistry, Durham University, UK, unpublished data).  

The in vitro studies with the C120V mutant suggested that Cys120 may be critical 

for eliciting MHR, as alkylation of Cys120 is the predominating mechanism of 

interaction between AmGSTF1 and NBD-Cl, a compound that can reverse the MHR 

phenotype. However, transgenesis studies with C120V found that the mutant 

induced MHR in a transgenic host plant with similar levels of enhanced tolerance to 

that of AmGSTF1-expressors (Figure 41 and Figure 42).  C120V also induced the 

same increases in activities of endogenous detoxification enzymes and flavonoid 

accumulation (Table 16, Figure 43 and Table 17). It can therefore be concluded that 

while Cys120 is not essential for an MHR phenotype, it does regulate MHR reversal 

by NBD-Cl. NEM can also alkylate Cys120 but this does not cause inhibition of the 

enzyme (Table 13 and Figure 32). Whilst catalytic activity has now been shown to 

be non-essential for an MHR phenotype, this is suggestive of a further level of 

interaction between AmGSTF1 and NBD-Cl, most likely a conformational change of 

the protein following alkylation. As an enzyme’s structure is critical for its function, 

it is reasonable to suggest that a conformational change of AmGSTF1 may disrupt 

the ability of AmGSTF1 to elicit MHR. As a crystal structure of AmGSTF1 in 

complex with NBD-Cl is unavailable, the structure of NBD-modified AmGSTF1 

could be explored using techniques such as circular dichroism in an attempt to detect 

conformational changes. If further studies were to demonstrate that NBD-Cl 
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appeared to reverse MHR by altering the conformation of AmGSTF1 then the results 

with the C120V mutant are worrisome. Simply, the mutant shows that a single point 

mutation would eliminate interaction of the enzyme with NBD-Cl whilst preserving 

an MHR phenotype.  

The mutant studies show that catalytic activity and Cys120 are not required for the 

induction of endogenous detoxification enzymes or for flavonoid accumulation 

(Table 16, Table 17 and Figure 43). It is now known that AmGSTF1 is not eliciting 

these changes via perturbing gene expression (see section 3.3), suggesting that 

AmGSTF1 must elicit these changes via a post-transcriptional mechanism. It is still 

not clear how this occurs. One possible mechanism could be physical interactions 

with regulatory proteins or small molecules. The transformation of Arabidopsis 

plants with Strep II tagged GSTs was designed to facilitate the isolation of transgenic 

GSTs and to detect possible binding-partners. Isolation of the transgenic GST 

proteins from the heterologous host did not identify protein binding-partners. 

However, the possibility of isolating a protein binding partner should not yet be 

dismissed. The preliminary experiments reported here isolated very weak 

concentrations of the Strep II tagged proteins (Figure 44) making it unlikely that a 

partner would be present at a sufficient concentration to be detected. These 

experiments should be repeated using a much greater mass of tissue and a much 

greater volume of Strep-tactin resin. Alternatively, a yeast two-hybrid approach 

could be used to identify proteins that physically interact with AmGSTF1. By using 

AmGSTF1 as the ‘bait’ protein, a library of Arabidopsis ‘prey’ proteins could be 

generated from the respective cDNA library and screened for interactions with 

AmGSTF1. 

With regards to the increase of endogenous enzyme activities, it is unknown whether 

this is due to increased protein expression, possibly via stabilisation of the respective 

gene transcripts, by a structural modification of the expressed proteins, or by 

reducing protein turnover. To determine this, it would be useful to separate the 

components of total protein samples from each transgenic line using two-

dimensional gel electrophoresis and compare vector samples with GST-expressors. 

This approach may also potentially reveal alterations of proteins not detected using 

the selective detection methods of the current studies. For instance, is enhanced 
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chlorotoluron resistance, detected in the AmGSTF1-expressors, a result of an 

increase in expression of detoxifying CYPs that were not identified using the 

selective activity screens employed in the current studies? An alternative approach to 

answer this question would be to measure the relative rates of chlorotoluron 

metabolism in the transgenic lines. Prior work to the studies in this thesis did identify 

that GST-catalysed detoxification of alachlor and atrazine was enhanced in 

AmGSTF1-expressors (Dr. I. Cummins and Prof. R. Edwards, unpublished work at 

the start of this project). This must be due to endogenous GSTs as AmGSTF1 cannot 

use either alachlor or atrazine as substrates (Cummins et al., 1999). However, the 

effects on chlorotoluron metabolism were not determined (Dr. I. Cummins and Prof. 

R. Edwards, unpublished work at the start of this project). 

Finally, AmGSTF1-, C120V- and S12A-expressors accumulated a significantly 

greater proportion (25 – 40 %) of the major flavonoid present in all samples (Table 

17). Whilst AmGSTF1-expressors in previous studies also accumulated flavonoids, 

plants in these prior studies accumulated much greater levels of two flavonoid 

derivatives and two anthocyanin derivatives (Dr. I. Cummins and Prof. R. Edwards, 

unpublished work at the start of this project). No anthocyanins were detected in 

acidified methanol samples used in the present studies. With no detectable changes 

in the expression of flavonoid biosynthesis genes, it is most likely that AmGSTF1 

binds to and stabilises an intermediary metabolite. Intrinsically, this would depend 

on that intermediary metabolite being first synthesized by the plant. Flavonoid 

metabolism is a well-studied branch of plant secondary metabolism and known to be 

regulated by a variety of input signals, including a particular sensitivity to light 

intensity (Hernandez and Van Breusegem, 2010). Changes in growth conditions 

between different experiments will likely have an impact on the biosynthesis of 

secondary metabolites and may be why different flavonoids are accumulated 

between different experiments. It is therefore unclear as to the role of flavonoids in 

the MHR phenotype. Do they contribute to enhanced tolerance, or are they an 

artefact of AmGSTF1 expression? 
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Chapter 5 – AmGSTF1 orthologues 

5.1 Introduction 

AmGSTF1 was able to induce MHR in a transgenic host plant with it being shown 

that this was not due to its catalytic properties. Instead, the protein exerts a 

regulatory role leading to an increase in the activities of endogenous detoxification 

enzymes and the accumulation of flavonoids. More specifically, AmGSTF1 caused 

changes in host plant biochemistry that closely mirrored those seen in MHR-black-

grass plants (Cummins et al., 2009). Hence, AmGSTF1 appears to be a central 

component of the MHR phenotype. It was therefore of interest to explore the 

properties of AmGSTF1 orthologues from other plant species. 

5.2 Identification of AmGSTF1 orthologues 

Firstly, an orthologue from maize, ZmGSTF1 (63 % amino acid sequence identity; 

Figure 45), was chosen for study.  

 

Figure 45: Sequence alignment of AmGSTF1 and the maize orthologue ZmGSTF1. AmGSTF1 was aligned 

with ZmGSTF1 using Clustal Omega (1.1.0) (EBI web servers). AmGSTF1 accession: Q9ZS17, ZmGSTF1 

accession: NP_001105412. Boxed residues indicate active-site residues based on the ZmGSTF1 crystal structure 
(accession: 1axd). * denote identical amino acid residues whilst : and . denote amino acid residues with similar 

chemical properties. 

This enzyme has been relatively well-studied, having first been identified in maize 

30 years ago due to its ability to detoxify the herbicide alachlor, by catalysing the 

formation of the glutathione conjugate (Mozer et al., 1983). It has since been shown 

to catalyse the detoxification of the related herbicide metolachlor, as well as the 

unrelated herbicide atrazine, by GSH-conjugation (Dixon et al., 1997). ZmGSTF1 

possesses very little GPOX activity (Sommer and Boger, 1999) and has a valine 



 

135 
 

residue at the equivalent position to Cys120 in the AmGSTF1 primary amino acid 

sequence (Figure 45). AmGSTF1 cannot detoxify alachlor, metolachlor or atrazine 

using GSH (Cummins et al., 1999) and is a highly active GPOX enzyme. Hence, 

whilst being relatively similar in amino acid sequence identity to AmGSTF1, 

ZmGSTF1 appears to be functionally orthogonal. As such, ZmGSTF1 represents an 

interesting target for comparative study with AmGSTF1. Therefore, Strep II tagged 

ZmGSTF1 has been characterised in vitro and expressed in transgenic Arabidopsis 

plants. The transformed plants were screened for changes in herbicide tolerance, 

endogenous detoxification enzyme activities and flavonoid accumulation in an 

analogous manner to that described for Arabidopsis plants expressing AmGSTF1 and 

the mutant isoforms (see Chapter 4). 

During these studies, a further AmGSTF1 orthologue with high amino acid identity 

(91 %; Figure 46) was identified in annual rye-grass and termed LrGSTF1 (Dr. F. 

Sabbadin and Prof. R. Edwards, unpublished work at the start of this project). 

 

Figure 46: Sequence alignment of AmGSTF1 and the annual rye-grass orthologue LrGSTF1. AmGSTF1 

was aligned with LrGSTF1 using Clustal Omega (1.1.0) (EBI web servers). AmGSTF1 accession: Q9ZS17, 

LrGSTF1 accession: M5BPX4. Boxed residues indicate active-site residues based on the ZmGSTF1 crystal 

structure (accession: 1axd). * denote identical amino acid residues whilst : and . denote amino acid residues with 
similar chemical properties. 

In an analogous manner to AmGSTF1, LrGSTF1 was constitutively up-regulated in 

MHR annual rye-grass relative to WTS plants (Dr. F. Sabbadin and Prof. R. 

Edwards, unpublished work at the start of this project). Due to the discovery of 

LrGSTF1 mid-way through this project, there was not sufficient time to express this 

enzyme in transgenic Arabidopsis plants and assess the phenotype. The enzyme has 

however been expressed and characterised in vitro alongside AmGSTF1 for 

comparison. 
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5.3 Expression and in vitro characterisation of AmGSTF1 

orthologues 

5.3.1 Expression and purification of AmGSTF1 orthologues 

Both ZmGSTF1 and LrGSTF1 were available already sub-cloned into the pET-

STRP3 vector to render the open reading frames of each enzyme fused with an N-

terminal Strep II tag (ZmGSTF1 in pET-STRP3 vector kindly donated by Dr. D. P. 

Dixon, GlaxoSmithKline, Stevenage, UK; LrGSTF1 in pET-STRP3 vector kindly 

donated by Dr. F. Sabbadin, Department of Biology, University of York, UK). Both 

Strep II tagged enzymes, alongside AmGSTF1, were expressed in E. coli and 

purified using Strep-tactin affinity chromatography as described (see section 3.1.2). 

Recombinant ZmGSTF1 had been previously characterised and found to elute as a 

single pure protein by SDS-PAGE analysis and mass spectrometry (Dr. D. P. Dixon, 

GlaxoSmithKline, Stevenage, UK) however this remained to be determined with 

recombinant LrGSTF1. Following the purification of recombinant Strep II tagged 

LrGSTF1, eluted protein was analysed using SDS-PAGE with a single band 

detected, even when loading with 5 µg purified recombinant protein (Figure 47). 

 

Figure 47: Purity analysis of recombinant AmGSTF1 and LrGSTF1. Purified AmGSTF1 and LrGSTF1 
enzymes were analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 1 µg (1) 

and 5 µg (5) enzyme were loaded per gel. M – protein markers. Molecular weights (kDa) of protein markers are 

shown. 

LrGSTF1 behaved as if smaller in molecular weight than AmGSTF1 even though it 

was predicted to be larger by 824 Da. The reason for this large increase in predicted 
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molecular weight, even though the amino acid sequences of LrGSTF1 and 

AmGSTF1 are 91 % identical, was primarily due to the insertion of a 6 amino acid 

sequence, MKQWYK, between the Strep II tag and the N-terminal methionine of the 

protein as an artefact of the cloning method used to isolate LrGSTF1. The 

phenomenon of GSTs behaving anomalously during SDS-PAGE analysis has been 

reported previously (Hayes and Mantle, 1986; Mannervik and Danielson, 1988), but 

in order to confirm that LrGSTF1 had been correctly purified the sample was 

analysed by mass spectrometry. Mass spectrometry confirmed that the sample had an 

identical observed mass to that of the predicted protein (Table 18) demonstrating that 

LrGSTF1 had been correctly purified. 

Table 18: Whole-protein mass measurement of purified recombinant LrGSTF1. Purified recombinant Strep 

II tagged LrGSTF1 was analysed using electrospray ionisation mass spectrometry (ESI-MS) in positive ion mode 
(Technology Facility, University of York, UK). The theoretical mass assumes complete loss of the N-terminal 

methionine residue as is known to occur for Arabidopsis Strep II tagged GSTs. (Dixon et al., 2009). 

Enzyme 
Theoretical mass  

(Da) 

Observed mass  

(Da) 

LrGSTF1 27489 27489 

 

5.3.2 Catalytic profiles of AmGSTF1 orthologues 

Following purification, ZmGSTF1 and LrGSTF1, alongside recombinant AmGSTF1, 

were tested for activity towards the same set of substrates used with AmGSTF1 and 

the mutant isoforms (see section 4.2.2). These substrates were; 1-chloro-2,4-

dinitrobenzene (CDNB), cumene hydroperoxide (CuOOH), 2-hydroxyethyl disulfide 

(HED), 4-nitrophenyl acetate, ethacrynic acid, crotonaldehyde and benzyl 

isothiocyanate (BITC). CDNB, ethacrynic acid, crotonaldehyde and BITC undergo 

GSH-conjugation, while CuOOH is a substrate that tests for GPOX activity. HED is 

a substrate that tests for GSH-dependent thiol transferase activity and NPA is a 

substrate that tests for ester thiolysis activity. AmGSTF1 and LrGSTF1 were also 

tested against linoleic acid hydroperoxide, a long-chain (18-carbon) fatty acid 

hydroperoxide, as a substrate. 

Equimolar concentrations of ZmGSTF1, LrGSTF1 or AmGSTF1 were assayed for 

activity toward each substrate in the presence of excess GSH. The exception to this 
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was when ZmGSTF1 was assayed for activity toward CDNB for which ZmGSTF1 

required diluting 50-fold to obtain linear kinetics. In all cases, activity toward each 

substrate was determined using UV-vis spectrophotometry. Activity towards linoleic 

acid hydroperoxide was detected in an analogous manner to that of CuOOH using a 

glutathione reductase redox system. 

The catalytic profile of ZmGSTF1 in these studies was in accordance with that 

previously reported for recombinant His-tagged ZmGSTF1 (Sommer and Boger, 

1999), confirming that the enzyme is catalytically orthogonal to AmGSTF1. 

ZmGSTF1 was highly active toward CDNB (138-fold greater than AmGSTF1), 

showing lower activity toward ethacrynic acid and displaying little detectable GPOX 

activity (Table 19). Very low levels of activity toward crotonaldehyde have been 

reported previously for ZmGSTF1 (Sommer and Boger, 1999), but no activity could 

be detected in these studies. There are no previous reports of BITC, NPA and HED 

having been tested as substrates for ZmGSTF1. No activity could be detected with 

HED as a substrate, whilst low levels of thiolysis activity toward NPA could be 

detected with ZmGSTF1 that were identical to AmGSTF1 in magnitude. ZmGSTF1 

showed strong activity toward BITC as a substrate being 2.4-fold greater than 

AmGSTF1 (Table 19). 

The catalytic profile of LrGSTF1 appeared to be very similar to that of AmGSTF1. 

Both enzymes displayed very similar levels of activity towards CDNB, NPA, 

ethacrynic acid and BITC. No activity could be detected with either enzyme towards 

HED or crotonaldehyde. The one significant difference between LrGSTF1 and 

AmGSTF1 was found when enzymes were assayed for activity toward hydroperoxide 

substrates. LrGSTF1 was 2.4-fold and 2.8-fold more active toward the organic and 

fatty acid hydroperoxides respectively relative to AmGSTF1 (Table 19). 
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Table 19: Substrate specificities of recombinant AmGSTF1 and associated orthologues. CDNB: 1-chloro-

2,4-dinitrobenzene. ND: not detected. NA: not assayed. Measurements were performed in technical triplicate. 
Mean specific activities are shown ± SD, n = 3. 

 
Mean specific activity 

(nmol s-1 mg-1 protein) 

Substrate AmGSTF1 LrGSTF1 ZmGSTF1 

CDNB 25.4 ± 0.8 31.7 ± 1.3 3462.9 ± 145 
Cumene hydroperoxide 19.6 ± 1.4 47.0 ± 1.9 3.2 ± 0.3 

Linoleic acid 

hydroperoxide 
98.6 ± 15.9 272.6 ± 22.5 NA 

2-hydroxyethyl disulfide ND ND ND 
4-nitrophenyl acetate 1.06 ± 0.07 2.66 ± 0.09 1.07 ± 0.01 

Ethacrynic acid 16.4 ± 0.8 11.5 ± 0.1 17.1 ± 0.5 
Crotonaldehyde ND ND ND 

Benzyl isothiocyanate 34.2 ± 0.7 44.2 ± 3.1 81.8 ± 0.8 

 

Hence, LrGSTF1 appears to be highly similar to AmGSTF1 in both amino acid 

sequence and catalytic function. This suggested that LrGSTF1 may display similar 

inhibitory profiles when treated with inhibitors as seen with AmGSTF1. 

5.3.3 Inhibition of LrGSTF1 

 To study LrGSTF1 inhibition, IC50 concentrations were determined with four 

compounds tested previously for inhibition of AmGSTF1 (see section 3.2.2). These 

compounds were; NBD-Cl, ethacrynic acid, cyanuric chloride and bromoenol 

lactone (Figure 48A). Recombinant LrGSTF1 was assayed for activity toward 

CDNB in the presence and absence of each inhibitor. Inhibitors were used over the 

concentration range 0.001 – 100 µM in the presence of excess GSH. There was no 

prior incubation of each inhibitor with LrGSTF1 before assaying for activity toward 

CDNB. The molar concentration of LrGSTF1 used was equal to the concentration of 

AmGSTF1 used in analogous studies. 

LrGSTF1 displayed near-identical inhibitory profiles with each compound as was 

seen with AmGSTF1 (Figure 48B). Ethacrynic acid proved the most potent inhibitor 

of LrGSTF1 (IC50 = 1.03 µM), closely followed by NBD-Cl (IC50 = 6.58 µM). 

Cyanuric chloride and bromoenol lactone proved weak inhibitors of LrGSTF1 under 

these assay conditions (Figure 48B). 
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Figure 48: Inhibitory profiles of LrGSTF1 treated with compounds known to inhibit AmGSTF1. (A) 

Structures of compounds tested as potential inhibitors of LrGSTF1. (B) LrGSTF1 (344 nM) was assayed for 

activity towards 1-chloro-2,4-dinitrobenzene in the presence of discrete concentrations of each inhibitor (0-100 
µM). Measurements were performed in technical triplicate. Mean specific activities are shown ± SD, n = 3. 

Equivalent AmGSTF1 profiles are shown for aid of comparison. AmGSTF1 (344 nM) was treated in exactly the 

same manner as LrGSTF1. 

Hence, LrGSTF1 appears to be highly similar to AmGSTF1 in amino acid sequence, 

catalytic function and interactions with xenobiotics. Whilst definitive proof of 

LrGSTF1 being able to induce MHR is required, the in vitro data strongly suggests 

that the proteins would play similar roles in planta. If this proved to be the case then 

up-regulation of GSTF1s would have independently evolved in multiple weed 
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species to enable an MHR phenotype and would represent a tremendous 

breakthrough in understanding the molecular mechanism/s of MHR. 

5.4 Expression of ZmGSTF1 in transgenic Arabidopsis plants 

With regards to ZmGSTF1, this enzyme appears to be catalytically orthogonal to 

both AmGSTF1 and LrGSTF1. However, as studies with AmGSTF1 mutants have 

shown that catalysis is not essential for AmGSTF1 to elicit an MHR phenotype in 

transgenic Arabidopsis plants, it was of interest to determine the phenotype of 

Arabidopsis plants expressing ZmGSTF1. 

5.4.1 Generation of independent homozygous ZmGSTF1-expressing 

Arabidopsis lines 

Transgenic Arabidopsis plants expressing ZmGSTF1 were generated and analysed in 

an analogous manner to that described for AmGSTF1 and the mutant isoforms (see 

section 4.3). Firstly, ZmGSTF1 was sub-cloned from the pET-STRP3 vector into the 

pBIN-STRP3 vector. ZmGSTF1 in the pET-STRP3 vector was digested with 

NcoI/BstXI DNA restriction enzymes and ligated into NcoI/BstXI digested pBIN-

STRP3 vector. The ligated vector was transformed into competent E. coli cells 

followed by purification of the ZmGSTF1-pBIN-STRP3 plasmid. The construct 

sequence was confirmed as correct by DNA sequencing. The construct was then 

transformed into Agrobacterium tumefaciens strain GV3101 containing the MP90 

helper plasmid that harboured the vir genes required for T-DNA excision and 

integration (Koncz and Schell, 1986). Successful transformants were selected with 

the appropriate antibiotics. Arabidopsis plants were then transformed as described 

(Clough and Bent, 1998) by inoculating flowering plants with Agrobacterium 

cultures transformed with the ZmGSTF1-pBIN-STRP3 vector. Homozygous 

independent transgenic lines were generated using successive rounds of selection 

with glufosinate-ammonium as described in Figure 39. Three T1 lines expressing the 

ZmGSTF1 construct were identified showing a statistically strong correlation (p ≥ 

0.5) to the expected 3:1 alive:dead ratio (Table 20) following selection with 

glufosinate-ammonium, indicating an expressed single-insertion event.  
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Table 20: T1 transformant lines that segregated in a 3:1 alive:dead ratio following selection with 

glufosinate-ammonium. Seed of each T1 line was sown on soil and maintained in glasshouses for 14 days 
before spraying with glufosinate-ammonium. The number of seedlings was counted before and after spraying. A 

χ2 statistical test was used to prove these lines granted the desired 3:1 ratio for a stably-integrated single insert. 

Construct T1 line 
Expected Observed χ2 p-

value Alive Dead Alive Dead 

ZmGSTF1 

10 34.5 11.5 36 10 0.610 

13 29.25 9.75 28 11 0.644 

20 39.75 13.25 38 15 0.579 

 

Twenty four individuals of each of these 3 T1 lines were separated and allowed to 

self-fertilise with the resulting seed (T2) of each individual collected. Eight T2 lines 

from each of the 3 selected T1 lines were sown and seedlings selected again with 

glufosinate-ammonium. This identified a homozygous T2 line from each T1 line (all 

T2 progeny survived selection with glufosinate-ammonium) and hence three 

independent homozygous lines for the ZmGSTF1-pBIN-STRP3 construct (Table 21). 

Table 21: ZmGSTF1 homozygous single insertion lines selected for further study. 

Construct Homozygous T2 line 

ZmGSTF1 

10-17 

13-3 

20-22 

 

5.4.2 Screening of transgenic plants for GST expression 

The selected homozygous T2 lines (Table 21) were screened for GST protein 

expression using an antiserum raised against the maize ZmGSTF1-2 heterodimer. 

The antiserum recognised endogenous phi class GSTs in all samples, including the 

vector plants. It also recognised a novel GSTF band in the 3 homozygous T2 

ZmGSTF1-expressor lines corresponding to expression of the ZmGSTF1 

polypeptide. ZmGSTF1 appeared to be strongly expressed in lines 10-17 and 20-22 

and expressed at much weaker levels in line 13-3 (Figure 49).  
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Figure 49: Phi class GST expression screens of ZmGSTF1 homozygous insertion lines. Transgenic 

Arabidopsis lines designed to express ZmGSTF1, for which all T2 progeny survived glufosinate-ammonium 
selection, were screened for construct expression by Western blotting using an antiserum raised against the 

ZmGSTF1-2 heterodimer. The vector 22-24 line designed to express the Strep II tag, for which all T2 progeny 

survived glufosinate-ammonium selection, served as a negative control. Recombinant AmGSTF1 (rAmF1) was 

run alongside samples as a positive control for antiserum detection. M – protein markers. The molecular weights 
(kDa) of protein markers are shown. Numbers below vector and enzyme names (e.g. ZmF1 10-17) denote unique 

identification numbers of each independent T2 line. 

5.4.3 Testing ZmGSTF1-expressors for enhanced herbicide tolerance 

In order to determine a stable phenotype, two homozygous T2 ZmGSTF1-expressor 

lines (10-17 and 13-3) were tested for changes in herbicide tolerance with 

chlorotoluron, a herbicide that cannot be detoxified directly by GSTs. Line 20-22 

had very poor germination and was not studied further. Seeds of the two selected 

lines (30 per pot) were sown on soil and grown for 14 days in environmental growth 

chambers (20 °C, 100 µE m-2 s-1, 16 hr photoperiod). Seedlings of the ZmGSTF1-

expressors and the vector control plants were then sprayed with chlorotoluron (60 g 

active ingredient per hectare) formulated with 0.1 % (v/v) Biopower, 1 % (v/v) 

acetone or with formulation alone. Following spray treatments, plants were 

maintained in growth chambers for a further 7 days before imaging.  

ZmGSTF1-expressors appeared to behave differently to vector control plants 

following both formulation-only and chlorotoluron treatments. With both treatments, 
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ZmGSTF1-expressors accumulated more biomass with this accumulation appearing 

significantly greater after chlorotoluron treatment by visual assessment (Figure 50). 

 

Figure 50: Increased herbicide tolerance of transgenic Arabidopsis plants expressing ZmGSTF1. Seeds of 
two independent lines of each construct were sown on soil (30 per pot) and maintained in environmental growth 

chambers for 14 days followed by an application of chlorotoluron (CHL; 60 g ai hectare-1, 0.1 % biopower, 1 % 

acetone) or an equivalent volume of formulation only (Form; 0.1 % biopower, 1 % acetone). Plants were 

maintained in environmental growth chambers for a further 7 days and then photographed. Numbers below 
vector and enzyme names (e.g. ZmGSTF1 10-17) denote unique identification numbers of each independent line. 

As the biomass of ZmGSTF1-expressors increased following both chlorotoluron and 

formulation-only treatments, it was ambiguous as to whether the biomass 

accumulation following chlorotoluron treatment was as a direct result of increased 

tolerance or an artefact of perturbations in plant growth caused by ZmGSTF1 

expression. To clarify this, the spray trial was repeated using the highest ZmGSTF1 

expressing line (10-17) and the vector 22-24 line which appeared the more tolerant 

of the two vector lines. The increase in biomass of the ZmGSTF1-expressors was 

then calculated relative to vector control plants following chlorotoluron and 

formulation-only treatments. Plants were also challenged with the herbicide alachlor 

to assess resistance to multiple herbicides with differing modes-of-action. Alachlor is 

a known substrate of ZmGSTF1 and so it would be expected that ZmGSTF1-

expressors would be more tolerant to this herbicide relative to vector control plants. 

Alachlor (1200 g active ingredient per hectare) was applied in an analogous manner 

to chlorotoluron by formulating with 0.1 % (v/v) Biopower, 1 % (v/v) acetone. To 
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calculate the relative changes in biomass between ZmGSTF1-expressors and vector 

control plants, treated pots were first counted for the number of individuals in each 

pot and then aerial tissue of each pot was harvested and weighed. For each pot, the 

mass per plant was calculated to normalise for small differences in germination and 

the differences in mass per plant were calculated between ZmGSTF1-expressors and 

vector control plants expressed as a percentage increase of the vector. 

Whilst ZmGSTF1-expressors accumulated more biomass than vector control plants 

following all treatments, the increases in biomass were significantly greater 

following herbicide treatments compared with formulation alone (Figure 51).  

 

Figure 51: Increased biomass of transgenic Arabidopsis plants expressing ZmGSTF1 relative to vector-

only control plants following herbicide treatment. Plants of the following transgenic lines: ZmGSTF1 10-17 
and vector 22-24, (20 seeds per pot) were grown in environmental growth chambers in duplicate for 14 days 

followed by an application of chlorotoluron (CHL; 60 g ai hectare-1, 0.1 % biopower, 1 % acetone), alachlor 

(ALA; 1200 g ai hectare-1, 0.1 % biopower, 1 % acetone) or an equivalent volume of formulation only (Form; 0.1 

% biopower, 1 % acetone) and then maintained in growth chambers for a further 10 days. At this time aerial 
tissue of all lines was harvested and weighed. For each replicate the percentage increase in fresh weight per plant 

of the ZmGSTF1-expressors was calculated relative to the vector-only control plants and the mean percentage 

increase in fresh weight per plant for the ZmGSTF1-expressors relative to vector-only control plants is shown for 

the three chemical treatments; formulation only (black), chlorotoluron (light grey) and alachlor (dark grey). 

Hence, ZmGSTF1 induces MHR in Arabidopsis plants. ZmGSTF1 has been shown 

to grant resistance to alachlor in transgenic tobacco plants with this presumed to be 

due to its ability to detoxify alachlor using GSH (Karavangeli et al., 2005). 

However, by using chlorotoluron, this is the first demonstration that ZmGSTF1 can 

grant resistance to herbicides independently of catalysis. Having observed that 

AmGSTF1 expression in Arabidopsis induces increases in endogenous enzyme 
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activities and flavonoid accumulation that may contribute to the MHR phenotype 

(see section 4.3.6), ZmGSTF1 was also screened for similar perturbations. 

5.4.4 Biochemical characterisation of ZmGSTF1-expressors 

For enzyme activity measurements, soluble protein extracts of ZmGSTF1-expressor 

line 10-17 and vector only (vector 22-24) plants were prepared by homogenising 

frozen tissue in aqueous buffer, discarding the solid cellular debris and precipitating 

protein using ammonium sulfate. Protein pellets were re-solubilised in aqueous 

buffer and reduced with dithiothreitol (DTT). DTT and other small molecular weight 

contaminants were removed using size-exclusion chromatography and the 

concentration of each sample was estimated using commercially available dye 

reagents. Samples were then assayed for specific activity towards four different 

substrates; CDNB, cumene hydroperoxide (CuOOH), 2-hydroxyethyl disulfide 

(HED) and crotonaldehyde. 

With CDNB, a substrate that tests for GSH-conjugation and an excellent substrate 

for ZmGSTF1, an 18-fold increase in activity was detected in ZmGSTF1-expressors 

relative to vector control plants most likely due to expression of the transgene. Using 

crotonaldehyde, another substrate for GSH-conjugation by GSTs, a significant 

increase in the activity of endogenous GST activities was detected in ZmGSTF1-

expressors relative to vector control plants, with no activity toward crotonaldehyde 

able to be detected in vector plants under these assay conditions (Table 22). The 

increase in activity toward crotonaldehyde must be due to endogenous GSTs as 

ZmGSTF1 cannot use this compound as a substrate (Table 19). 

With CuOOH, a substrate for glutathione peroxidases (GPOXs), specific activity 

toward the substrate was increased 2.4-fold in the ZmGSTF1-expressing lines 

relative to vector control plants (Table 22). ZmGSTF1 has very little detectable 

activity toward CuOOH (Table 19) and hence the increase in GPOX activity in 

ZmGSTF1-expressors must be due to endogenous GPOX enzymes. 

Similarly, with HED, a substrate for thiol transferases, a significant increase in 

activity was detected in the ZmGSTF1-expressing lines relative to vector control 
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plants (Table 22). HED cannot be used as a substrate by ZmGSTF1 (Table 19) hence 

the increases in activity must be due to endogenous thiol transferase enzymes. 

Table 22: Enzyme activities of transgenic Arabidopsis plants expressing ZmGSTF1 or vector only. Soluble 

protein extracts of the following transgenic lines: ZmGSTF1 10-17and vector 22-24, were tested for activity 
towards 1-chloro-2,4-dinitrobenzene (CDNB; GST substrate), cumene hydroperoxide (GPOX substrate), 2-

hydroxyethyl disulfide (thiol transferase substrate) and crotonaldehyde (GST substrate). All measurements were 

performed in technical triplicate and are shown ± SEM, n = 3. ND: not detected. 

 

Transgenic line 

Mean specific activity 

(pmol s-1 mg-1 protein) 

Substrate Vector ZmGSTF1 

CDNB 220 ± 50 4020 ± 20 

Cumene hydroperoxide 19.3 ± 5 46 ± 8 

2-hydroxyethyl disulfide 175 ± 6 196 ± 2 

Crotonaldehyde ND 22 ± 3 

 

For flavonoid analysis, frozen tissue of the transgenic lines was homogenised in 

acidified methanol containing the flavonol kaempferol as an internal standard with 

the solid cellular debris being discarded. Samples were then separated into 

component compounds using high-performance liquid chromatography (HPLC) 

based on a published method (Cummins et al., 2006) using a chromatographic 

matrix designed to better retain and separate aromatic compounds. Eluting 

compounds were measured for absorbance at 287 nm. To allow for reliable 

quantification, samples were run in technical triplicate. Flavonoid profiles of all 

extracts were then normalised and quantified, relative to that of vector 22-24, using 

the peak areas of the respective internal kaempferol standards. 

Like with AmGSTF1-expressors, flavonoid profiles were very similar between 

ZmGSTF1-expressors and vector control plants with no novel flavonoid compounds 

identified between samples. However, unlike AmGSTF1-expressors, ZmGSTF1-

expressors did not accumulate more of the major flavonoid compound present in all 

samples. ZmGSTF1-expressors instead displayed a small decrease in the 

accumulation of the major flavonoid present (Figure 52 and Table 23). 
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Figure 52: Flavonoid profile of transgenic Arabidopsis plants expressing ZmGSTF1 or vector only. 
Acidified methanolic extracts of the following transgenic lines: ZmGSTF1 10-17 and vector 22-24, were 

separated using high performance liquid chromatography and visualised at 287 nm. Profiles were normalised to 

an internal kaempferol standard with the standard used to quantify flavonoid concentrations. Quantified peaks are 

shown as a function of chromatographic retention time (min). All measurements were performed in technical 
triplicate and are shown ± SEM, n = 3. FW – fresh weight. 

Table 23: Quantification of the major flavonoid that accumulated in transgenic Arabidopsis plants 

expressing ZmGSTF1 or vector only. Flavonoid accumulation was calculated relative to an internal kaempferol 

standard. RT – chromatographic retention time. The quantified metabolite is shown ± SEM, n = 3. FW – fresh 
weight. 

 

 Transgenic line 

Metabolite accumulation 

(µmol g-1 FW) 

Metabolite 
RT 

(min) 
Vector ZmGSTF1 

Major flavonoid 15.8 3.12 ± 0.04 2.88 ± 0.08 

 

5.4.5 Isolation of ZmGSTF1 from transgenic Arabidopsis plants 

ZmGSTF1 increased the activities of endogenous detoxification enzymes. It is not 

clear how ZmGSTF1 performs this function. The observed increases are very similar 

to those observed in AmGSTF1-expressors, which do not induce increases in 

endogenous enzyme activities by perturbing gene expression. It remains to be 

determined if ZmGSTF1 perturbs gene expression in transgenic Arabidopsis plants. 

However, at this preliminary stage, it is possible that these increases in endogenous 

enzyme activities could be due to a direct interaction with ZmGSTF1 or by an 
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effector protein that interacts with ZmGSTF1. In an analogous manner to that used 

with AmGSTF1-, C120V- and S12A-expressors, ZmGSTF1 was purified from 

transgenic Arabidopsis plants in an attempt to isolate potential protein binding-

partners. 

Soluble protein extracts of the highest ZmGSTF1-expressing line (ZmGSTF1 10-17) 

and vector only (vector 22-24) plants were prepared by homogenising approximately 

1 g frozen tissue in aqueous buffer and discarding the solid cellular debris. Samples 

were then passed over Strep-tactin resin and the resin washed extensively with 

buffer. Retained proteins were eluted using desthiobiotin to competitively displace 

Strep-tagged components from the resin. Eluted samples were concentrated using 

size-exclusion chromatography and protein components separated using SDS-PAGE. 

Using this methodology, ZmGSTF1 was barely detected using sensitive silver nitrate 

staining or Western blotting (Figure 53). Two additional proteins were also detected. 

However, these were also present in the vector sample and appear to be non-specific 

contaminants (Figure 53A).  
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Figure 53: Isolation of Strep II tagged GSTs from transgenic Arabidopsis lines. Strep II tagged GSTs were 

isolated from soluble protein extracts of the following transgenic lines: ZmGSTF1 10-17 and vector 22-24, using 

Strep-tactin affinity chromatography. Proteins were detected by (A) staining with silver nitrate or (B) Western 
blotting with an antiserum raised against the maize ZmGSTF1-2 heterodimer. ZmGSTF1 is indicated (black 

arrow). Recombinant AmGSTF1 (rAmF1) was stained as a positive control. M – protein markers. Molecular 

weights (kDa) of protein markers are shown. 
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5.5 Discussion and future work 

Studies with ZmGSTF1-expressing Arabidopsis plants demonstrate that ZmGSTF1 

can elicit MHR in a heterologous host plant (Figure 50 and Figure 51). By using a 

herbicide which cannot be detoxified directly by GSTs, it is now clear that 

ZmGSTF1 catalytic activity is not absolutely essential to elicit resistance. The 

resistant phenotype correlated with increased activities of endogenous detoxification 

enzymes (Table 22), as seen with AmGSTF1-expressors. However, unlike 

AmGSTF1, ZmGSTF1 can also directly detoxify a subset of herbicides, including 

alachlor, using GSH (Dixon et al., 1997). Therefore, it is reasonable to assume that 

ZmGSTF1 may elicit resistance to some herbicides, detoxified using GSH, using 

both catalytic and non-catalytic mechanisms. Herbicide metabolism studies were not 

performed during the present studies and are required to determine if the relative 

rates of chlorotoluron and alachlor detoxification are increased in ZmGSTF1-

expressors relative to vector control plants. AmGSTF1 is known to induce increases 

in the activities of endogenous GSTs capable of detoxifying alachlor using GSH (Dr. 

I. Cummins and Prof. R. Edwards, unpublished work at the start of this project). 

Subsequently, herbicide metabolism studies alone would not be unequivocal in 

establishing the requirement for ZmGSTF1 to elicit resistance to alachlor by direct 

detoxification with GSH. To fully understand the requirement for ZmGSTF1 

catalysis to promote resistance to alachlor, a catalytically-retarded ZmGSTF1 mutant 

should be transgenically expressed in Arabidopsis with the phenotype and relative 

rate of alachlor detoxification determined. 

With that being said, these studies do show that, whilst being only 63 % identical in 

amino acid sequence, AmGSTF1 and ZmGSTF1 both elicit MHR in a heterologous 

host plant (Figure 41, Figure 42, Figure 50 and Figure 51) and elicit similar changes 

in endogenous detoxification enzymes (Table 16 and Table 22). Fundamentally, this 

means that multiple grass species have independently evolved to constitutively 

express GSTF1 orthologues that can enhance components of the xenome and 

increase resistance to xenobiotic toxins. This would strongly suggest that other close 

orthologues, for example LrGSTF1, would also possess the same functional 

properties to induce MHR. This is supported using in vitro studies with LrGSTF1. 

The in vitro studies show that LrGSTF1 displays a very similar substrate profile 
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compared to AmGSTF1 (Table 19) and displays very similar sensitivities to 

inhibitory compounds (Figure 48).  

Unlike AmGSTF1, ZmGSTF1 did not induce the accumulation of flavonoids. This 

would suggest that this is not essential for an MHR phenotype. Instead, this may be a 

function specific to AmGSTF1.  

Also, ZmGSTF1-expressors had similar increases in endogenous detoxification 

enzyme activities as those detected with AmGSTF1-expressors but were clearly far 

more tolerant to herbicide treatment (Figure 50 and Figure 41). Whilst discussed 

separately, all transgenic Arabidopsis lines were grown, treated and maintained 

under identical conditions and so the results of spray trials with AmGSTF1-

expressors and ZmGSTF1-expressors can be directly compared. Therefore, 

ZmGSTF1 must induce additional changes in Arabidopsis that contribute to the 

MHR phenotype that were not detected in these studies. In relation to additional 

undetected changes, when ZmGSTF1-expressor lines were maintained in growth 

chambers for an extended period of time following treatment with formulation alone, 

these lines displayed an early bolting and flowering phenotype that was not seen 

with vector only plants or AmGSTF1-expressors (Figure 54). 
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Figure 54: Early bolting phenotype of ZmGSTF1-expressors relative to other GST constructs and vector-
only control plants. (A) ZmGSTF1-expressors displayed an early bolting phenotype that was not seen with other 

GST-expressing lines or vector-only control plants. (B) The phenotype was confirmed in two independent 

ZmGSTF1-expressing lines. Seeds of each independent line of each construct were sown on soil (30 per pot) and 

maintained in environmental growth chambers for 14 days followed by an application of formulation only (0.1 % 
biopower, 1 % acetone). Plants were maintained in environmental growth chambers for a further 14 days and 

then photographed. Numbers below vector and enzyme names (e.g. AmGSTF1 5-19) denote unique identification 

numbers of each independent T2 line.  
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Clearly, ZmGSTF1 expression elicits multiple biochemical changes in Arabidopsis 

plants, and based on the MHR phenotype induced, it would appear that not all were 

detected in these studies. Whilst specific GSTs are known to play a regulatory role 

regarding the accumulation and/or protection of reactive secondary metabolites in 

planta (Martinoia et al., 1993; Dixon et al., 2008; Dixon and Edwards, 2009; Dixon 

et al., 2011), the effects of ZmGSTF1 on bolting suggests this protein is directly 

affecting plant development. In maize plants, ZmGSTF1 expression contributes 

approximately 1 % of the total soluble leaf protein (Mozer et al., 1983) although it is 

unknown why the enzyme is so highly expressed. The studies presented here would 

now suggest that perhaps ZmGSTF1 expression grants plants a competitive 

advantage by inducing faster growth and reproduction as well as enhanced resistance 

to exogenous toxins. One possibility for stimulation of plant growth would be 

interactions between ZmGSTF1 and plant growth hormones. Studies with 

recombinant ZmGSTF1 have suggested a direct interaction between the enzyme and 

the plant growth hormone gibberellic acid (Axarli et al., 2004). Studies found that 

the rate of irreversible inhibition of the enzyme, due to covalent binding with an 

artificial dye, was significantly slower when in the presence of gibberellic acid and 

proposed this was due to competition for binding to the enzyme (Axarli et al., 2004).  

Fusion of the ZmGSTF1 protein with an N-terminal Strep II tag was purposefully 

designed to facilitate the isolation of ZmGSTF1 from transgenic plants in an attempt 

to identify any possible binding-partners. Preliminary studies to identify protein 

binding-partners were unsuccessful due to the low recovery of ZmGSTF1 (Figure 

53). These experiments are worth repeating with increased tissue mass and resin 

volumes. Additionally, two-dimensional gel electrophoresis of the total protein 

complements of ZmGSTF1-expressors, alongside AmGSTF1-expressors and vector 

control plants, would be a valuable tool to identify differential protein 

expression/modification. Analysis of the transcriptomes of ZmGSTF1-expressors 

should also be pursued. Whilst AmGSTF1 does not elicit changes in gene expression, 

ZmGSTF1 clearly perturbs additional pathways in planta that AmGSTF1 does not 

interact with, as demonstrated by the changes in ZmGSTF1-expressor plant growth 

and life-cycle (Figure 54). 
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Chapter 6 – Final Discussion  

Plant GSTs and herbicide resistance have intrinsically been associated, with GSTs 

first being discovered in plants over 40 years ago because of their ability to detoxify 

a subset of herbicides via conjugation with GSH (Frear and Swanson, 1970; 

Shimabukuro et al., 1971). Since that time, a plethora of GSTs of the phi (F) and tau 

(U) classes from a variety of crop plants including maize, soybean and wheat, have 

been identified, characterised and shown to be able to detoxify a subset of herbicide 

chemistries via conjugation with GSH (Andrews et al., 1997; Dixon et al., 1997; 

Cummins et al., 1997a; Sommer and Boger, 1999; Cummins et al., 2003; Andrews 

et al., 2005). Some of these GSTs can also function as GPOXs and use GSH as a co-

factor to reduce toxic hydroperoxide species, that can accumulate following 

herbicide treatment (Kunert et al., 1985), to the hydroxylated derivatives (Sommer 

and Boger, 1999; Cummins et al., 2003; Andrews et al., 2005). Hence, GSTs in 

crops can directly detoxify herbicides and also detoxify reactive oxygenated species 

formed as a downstream consequence of herbicide treatment.  

It is therefore not surprising that populations of weed species, which compete with 

the aforementioned crops, have evolved herbicide resistance by enhancing the 

expression and/or activities of herbicide-detoxifying GSTs. Enhanced herbicide 

metabolism via GST-catalysed GSH-conjugation was first discovered in atrazine-

resistant velvetleaf (Anderson and Gronwald, 1991) and has since been reported in 

another 4 weed species, including black-grass. (Hall et al., 1997; Cummins et al., 

1997b; Fraga and Tasende, 2003; Bakkali et al., 2007). Some GST isoforms, isolated 

from herbicide resistant black-grass, could also function as GPOX enzymes and 

detoxify toxic hydroperoxide species (Cummins et al., 1999). 

Unpublished work in the Edwards laboratory demonstrated that AmGSTF1, a GST 

constitutively-expressed in MHR black-grass, that cannot detoxify herbicides but is 

an active GPOX enzyme, elicited MHR in transgenic Arabidopsis plants. 

Unexpectedly, AmGSTF1 also induced increases in the activities of endogenous 

detoxification enzymes, including enzymes that could detoxify herbicides using 

GSH, and caused flavonoids to be accumulated (Dr. I. Cummins and Prof. R. 

Edwards, unpublished work at the start of this project). These biochemical changes 
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closely mirrored those induced in MHR black-grass (Cummins et al., 2009). 

Therefore, AmGSTF1 appears to be a key component of MHR. 

The studies presented in this thesis were driven by the question: ‘What is the 

molecular mechanism/s by which AmGSTF1 elicits these changes in a transgenic 

host plant?’ 

By first analysing the transcriptome of AmGSTF1-expressing Arabidopsis plants, it 

was determined that the enzyme did not elicit these changes by perturbing gene 

expression (see section 3.3). Hence, AmGSTF1 must elicit these changes post-

transcriptionally. Furthermore, it was not clear if MHR was a product of AmGSTF1 

GPOX activity, or of increases in endogenous detoxification enzyme activities, or a 

product of both mechanisms. 

To interrogate the requirement of AmGSTF1-catalysed GPOX activity for an MHR 

phenotype, a point mutant, S12A, was generated that was severely catalytically 

retarded (Table 8). Expression of this mutant in transgenic Arabidopsis plants still 

granted the host plants an MHR phenotype (Figure 41). S12A also induced increases 

in endogenous detoxification enzymes, including GPOX enzymes (Table 16). The 

enhancement of herbicide tolerance and increases in detoxification enzyme activities 

were highly similar to transgenic plants expressing AmGSTF1 (Figure 41 and Table 

16). Hence, catalytic activity of AmGSTF1 is not required to elicit MHR. This is the 

first demonstration that a GST from any plant species can elicit herbicide resistance 

independently of catalysis. By increasing the activities of multiple endogenous 

detoxification enzymes, it seems unlikely that AmGSTF1 would directly interact 

with each one independently. It is more plausible that AmGSTF1 most likely binds 

effector proteins or small molecules. Preliminary attempts to isolate a protein 

binding-partner were unsuccessful (Figure 44) but do require further study. An 

alternative approach may be to employ yeast two-hybrid screening with AmGSTF1 

as bait protein and a library of Arabidopsis and black-grass prey proteins. 

A second point mutant, C120V, for which the residue Cys120 was replaced with a 

valine residue, was used to interrogate the interaction of AmGSTF1 with inhibitory 

compounds. Before the work described in this thesis, it was known that Cys120 
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could be alkylated by NBD-Cl, correlating with inhibition of AmGSTF1. 

Furthermore, NBD-Cl restored sensitivity to herbicides in MHR black-grass (Dr. I. 

Cummins and Prof. R. Edwards, unpublished work at the start of this project). IC50 

determinations demonstrated that NBD-Cl was a relatively strong inhibitor of 

AmGSTF1 (Figure 28). Using C120V, alkylation of AmGSTF1 was shown to be the 

principal mechanism of inhibition (Figure 28). Furthermore, AmGSTF1 was 

selectively alkylated on Cys120 (Table 10). Alkylation of Cys120 with a different 

thiol alkylating agent did not inhibit the enzyme (Figure 32 and Table 13), indicating 

that NBD-Cl most likely induces a conformational change of AmGSTF1 structure 

following binding. With Cys120 playing a key role in the interaction of AmGSTF1 

with NBD-Cl, this suggested Cys120 may play a key role in eliciting an MHR 

phenotype. However, expression of C120V in transgenic Arabidopsis plants 

demonstrated that Cys120 is not required to elicit MHR (Figure 41 and Figure 42). 

Rather, C120V-expressors demonstrated similar increases in resistance to multiple 

herbicides and in endogenous detoxification enzyme activities as those found in 

AmGSTF1- and S12A-expressors (Table 16).  

Hence, AmGSTF1 elicits MHR independently of catalysis and of Cys120. Cys120 

does however play a key role in the interaction of the enzyme with reactive 

electrophiles. It may be possible that Cys120 is required to bind reactive 

electrophiles in planta and to transport these to compounds to subcellular 

compartments for further processing, although this remains to be determined. 

Importantly, from a commercial perspective, studies with C120V indicate that 

evolution of this single point mutation would abolish any significant interaction 

between AmGSTF1 and NBD-Cl whilst preserving an MHR phenotype. 

Subsequently, if NBD-Cl derivatives were developed as synergists in the field they 

would require careful management practices. 

Interestingly, these studies highlighted several functional parallels with GSTP1, an 

evolutionarily distinct GST that is overexpressed in multi-drug resistant (MDR) 

human cancers. GSTP1 can; (i) directly detoxify chemotherapeutic drugs, such as 

ethacrynic acid, using GSH (Ploemen et al., 1994), (ii) interact with and be inhibited 

by xenobiotics, including NBD-Cl, via binding to Cys47 (Ricci et al., 2003), (iii) 

regulate the activity of a glutathione peroxidase enzyme via direct physical 
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interactions (Zhou et al., 2013). With regards to Cys47, this residue plays a key role 

in regulating GSTP1 activity by transmitting conformational signals across the GST 

dimer when inhibited by NBD-Cl (Ricci et al., 2003). Results with AmGSTF1 

suggest that a similar mechanism may be in operation (Figure 29). Hence, where 

GSTs were once thought to be a downstream effector protein of an organised stress 

response, studies with AmGSTF1 and GSTP1 implicate that specific GSTs play a far 

more central role in co-ordinating the response. Significantly, the evolutionary 

divergence of these two GSTs demonstrates that stress regulation co-ordinated by 

GSTs extends across multiple organism kingdoms. Due to the large functional 

overlap between AmGSTF1 and GSTP1, it would be interesting to determine if 

GSTP1 could also induce herbicide resistance in a transgenic host plant and by what 

mechanism. 

Having established the central role of AmGSTF1 in co-ordinating MHR in a 

heterologous host plant, it was of interest to determine the role of orthologues in 

other grass species. Firstly, LrGSTF1 (91 % amino acid identity), isolated from 

MHR annual rye-grass, was characterised in vitro and found to be near-identical to 

AmGSTF1 in catalytic function and interactions with inhibitors (Table 19 and Figure 

48). Whilst the ability of LrGSTF1 to elicit MHR in a heterologous host plant was 

not determined in these studies, the in vitro results strongly suggest that LrGSTF1 

would play a very similar functional role to AmGSTF1 in eliciting MHR. Hence, 

GSTF1-induced MHR appears to have evolved in multiple weed species from 

geographically discrete locations. Furthermore, studies with an AmGSTF1 

orthologue from maize, ZmGSTF1 (63 % amino acid identity), demonstrated that a 

GSTF1 orthologue from a crop also induced MHR. To date, ZmGSTF1-mediated 

herbicide resistance has been believed to be due to its ability to detoxify a subset of 

herbicide chemistries using GSH. However, the current studies found that ZmGSTF1 

induced a highly resistant phenotype toward a herbicide that cannot be detoxified 

using GSH (Figure 50). Instead, ZmGSTF1 induced increases in endogenous 

antioxidant activities (Table 22), as seen with AmGSTF1-expressors. ZmGSTF1 had 

very little detectable GPOX activity and possessed a valine residue at position 120 

(Table 19 and Figure 45). Hence, studies with ZmGSTF1 support the findings with 

AmGSTF1 that GPOX activity of the transgene and Cys120 are not essential for an 

MHR phenotype. As ZmGSTF1 shares only 63 % amino acid identity with 
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AmGSTF1 and yet still induces an MHR phenotype, this lends further support to the 

hypothesis that LrGSTF1 would also induce MHR in a heterologous host plant. 

Unlike AmGSTF1, ZmGSTF1 induced additional changes in transgenic host plants 

including an early bolting and flowering phenotype. The mechanism by which 

ZmGSTF1 elicited these changes still remains to be determined and the 

transcriptome of ZmGSTF1-expressing Arabidopsis plants should be analysed. The 

phenotype was not an artefact of transgene insertion and has very recently been 

described for Arabidopsis plants genetically modified to express a lambda-class GST 

from rice, OsGSTL2 (Kumar et al., 2013). ZmGSTF1 is highly expressed in 

domesticated maize plants (1 % total soluble leaf protein) (Mozer et al., 1983) and it 

is interesting to consider that expression of ZmGSTF1 may have granted a selective 

advantage for individuals during domestication by enhancing tolerance to exogenous 

toxins and accelerating plant growth and reproduction. Other crop species, including 

barley, wheat and rice, also possess GSTF1 orthologues (Wu et al., 1999; Scalla and 

Roulet, 2002; Theodoulou et al., 2003) (Figure 55). 

 

 



 

160 
 

 

Figure 55: Multiple sequence alignment of AmGSTF1 and orthologues. AmGSTF1 orthologues were 

identified by BLAST searching (NCBI database) using AmGSTF1 protein sequence as a query. Orthologues were 

identified from annual rye-grass (LrGSTF1; accession M5BPX4), barley (HvGST6; accession AF430069), wheat 

(TaGST19E50; accession AY64481), rice (OsGSTF1; accession OsO1g0371200) and maize (ZmGSTF1; 
accession NP_001105412). Sequences were aligned using Clustal Omega (1.1.0) (EBI web servers). Amino acid 

identity with AmGSTF1 is shown for each orthologue. Active site residues based on the ZmGSTF1 crystal 

structure are boxed. * indicate identical amino acid residues whilst : and . indicate residues with similar chemical 

properties. 

The barley orthologue protein, HvGST6, has been functionally characterised in vitro 

and behaved as both a GST and a GPOX (Scalla and Roulet, 2002). The orthologous 

rice and wheat proteins have not been functionally characterised. All three 

orthologues are induced by herbicide safener treatment, chemicals that enhance 

herbicide resistance in cereal crops (Wu et al., 1999; Scalla and Roulet, 2002; 

Theodoulou et al., 2003). Hence, a link may exist between GSTF1 expression and 

crop domestication. Very recently, a further putative GSTF1 orthologue has been 

identified in the draft genome of the bread wheat progenitor species Triticum urartu 

(88 % amino acid sequence identity with AmGSTF1; accession EMS47979). It 

would be of interest to determine the relative expression levels of the respective 

GSTF1 enzymes in the progenitor species and the domesticated crop, along with 

relative levels of herbicide resistance.  

AmGSTF1 also induced hyper-accumulation of flavonoids and anthocyanins when 

first expressed in transgenic Arabidopsis plants (Dr. I. Cummins and Prof. R. 
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Edwards, unpublished work at the start of this project). Due to their known 

antioxidant properties, it was proposed that this accumulation may play a role in 

eliciting MHR. However, the current studies detected the accumulation of only one 

flavonoid compound in AmGSTF1-, C120V- and S12A-expressors, whilst 

ZmGSTF1-expressors did not accumulate flavonoids but still displayed an MHR 

phenotype. Therefore, the current results cast doubt on the necessity of flavonoid 

accumulation for an MHR phenotype. Flavonoids do however promote resistance to 

stresses such as UV irradiation (Winkel-Shirley, 2002). It would be interesting to 

expose the transgenic constructs to UV irradiation and determine if the accumulated 

flavonoids in AmGSTF1-expressors provide any extra measure of protection. 

To conclude, the exact mechanism/s by which AmGSTF1 and orthologous proteins 

elicit MHR remains unknown. However, the studies in this thesis have established 

that the mechanism operates independently of catalysis. Instead, the MHR phenotype 

appears closely related to a co-ordinated increase in endogenous detoxification 

enzyme activities. The identification of GSTF1 orthologues in other weed and crop 

species demonstrates that GSTF1-mediated MHR may be a powerful adaptation that 

has independently evolved in multiple species. Furthermore, GST-mediated MHR 

has close functional parallels with GST-mediated MDR and highlights a far more 

integral role for GSTs in co-ordinating stress responses than has previously been 

considered. These studies have raised many more interesting questions regarding the 

role of GSTF proteins in MHR and offer exciting new avenues of study for plant 

GST biochemistry. 
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List of abbreviations and symbols 

4-HPPD 4-hydroxyphenylpyruvate dioxygenase 

6-BP 6-bromopurine 

6-CP 6-chloropurine 

6-MP 6-mercaptopurine 

A Absorbance 

ABC Adenosine triphosphate-binding cassette 

ACCase Acetyl-coA carboxylase 

AHAS Acetohydroxy acid synthase 

ai Active ingredient 

ALS Acetolactate synthase 

Am Alopecurus myosuroides 

AOPP Aryloxyphenoxypropionate 

At Arabidopsis thaliana 

AT Auxin transport 

ATP Adenosine triphosphate 

BITC Benzyl isothiocyanate 
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c Concentration 

C120V AmGSTF1 point mutant with a valine residue at position 120 

CamV 35S Cauliflower mosaic virus 35S promoter 

CDF Clodinafop-propargyl 

cDNA Complementary deoxyribonucleic acid 

CDNB 1-chloro-2,4-dinitrobenzene 

CDS Cloned deoxyribonucleic acid sequence 

CHL Chlorotoluron 

cm Centimetre 

CT Carboxyltransferase 

CuOOH Cumene hydroperoxide 

CYP Cytochrome P450 mixed-function oxidase 

Da Dalton 

DHPS Dihydropteroate synthase 

DMSO Dimethyl sulfoxide 

dNTP Deoxyribonucleotide triphosphate 

DTB Desthiobiotin 

DTT Dithiothreitol 
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EDTA Ethylenediaminetetraacetic acid 

EPSPS 5-enolpruvylshikimate-3-phosphate synthase 

ESI-MS Electrospray ionisation mass spectrometry 

EST Expressed sequence tag 

EtOH Ethanol 

FLU Fluorodifen 

Form Formulation 

FW Fresh weight 

FXP Fenoxaprop-p-ethyl 

g Gram or relative centrifugal force (context specific) 

Gm Glycine max 

GPOX Glutathione peroxidase 

GR Glutathione reductase 

GS Glutamine synthetase 

GSH Reduced glutathione 

GSSG Oxidised glutathione 

GST Glutathione transferase 

GSTF Phi-class glutathione transferase 
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GSTP Pi-class glutathione transferase 

GSTU Tau-class glutathione transferase 

GT Glycosyl transferase 

HABA 2-(4-hydroxyphenylazo)benzoic acid 

HCl Hydrochloric acid 

HED 2-hydroxyethyl disulfide 

hmGSH Hydroxymethylglutathione 

homoGSH Homoglutathione 

HPLC High performance liquid chromatography 

hr Hour 

HRAC Herbicide resistance action committee 

H+ Proton 

I Iodoacetamide 

IC50 Half maximal inhibitory concentration of a compound 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

kb Kilobase 

kcat Enzymatic reaction turnover constant 

kcat / KM Enzyme catalytic efficiency constant 
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kDa Kilodalton 

KM Michaelis constant 

kV Kilovolt 

l Path length of light 

L Litre 

LB Luria-Bertani broth 

LC Lycopene cyclase 

LinOOH Linoleic acid hydroperoxide 

Lr Lolium rigidum 

LS Lipid synthesis 

m Metre 

M Molar 

MA Microtubule assembly 

MD Membrane disruption 

MeOH Methanol 

mg Milligram 

MHR Multiple herbicide resistance 

min Minute 
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mL Millilitre 

mm Millimetre 

mM Millimolar 

MP Microtubule polymerisation 

mRNA Messenger ribonucleic acid 

ms Millisecond 

m / z Mass to charge ratio 

MΩ Megohm 

n Number of replicates 

NA Not assayed 

NADP+ Oxidised nicotinamide adenine dinucleotide phosphate 

NADPH Reduced nicotinamide adenine dinucleotide phosphate 

NBD-Cl 4-chloro-7-nitro-benzoxadiazole 

NBDHEX 6-(7-nitro-1,2,3-benzoxadiazol-4-ylthio)hexanol 

NBD-SG Nitrobenzoxadiazole-glutathione conjugate 

ND Not detected 

NDA-6-CP 3,3-deazonitro-6-chloropurine 

NEM N-ethylmaleimide 
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NGS Next generation sequencing 

nm Nanometre 

nM Nanomolar 

nmol Nanomole 

NPA 4-nitrophenyl acetate 

nt Nucleotide base-pair length 

NTSR Non-target-site resistance 

PAGE Polyacrylamide gel electrophoresis 

PARA Paraquat 

PCR Polymerase chain reaction 

PDS Phytoene desaturase 

pKa Logarithmic acid dissociation constant 

pmol Picomole 

PPO Protoporphyrinogen oxidase 

PS Photosystem  

psi Pressure per square inch 

PVDF Polyvinylidene difluoride 

PVPP Polyvinylpolypyrollidone 
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RACE Rapid amplification from complementary deoxyribonucleic acid 

ends 

RNA Ribonucleic acid 

rpm Revolutions per minute 

s Second 

S12A AmGSTF1 point mutant with an alanine residue at position 12  

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

T-DNA Transferred deoxyribonucleic acid 

TEMED Tetramethylethylenediamine 

tRNA Transfer ribonucleic acid 

TSR Target-site resistance 

U Unit of enzyme activity 

UDP Uridine diphosphate 

UV-vis Ultraviolet-visible 

V Volt 

v / v Volume to volume 
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VLCFAS Very-long-chain fatty-acid synthesis 

Vmax Maximal velocity 

w / v Weight to volume 

WTS Wild-type sensitive 

Zm Zea mays 

χ2 Chi-squared 

°C Degrees celsius 

µE Microeinstein 

µF Microfarad 

µg Microgram 

µL Microlitre 

µmol Micromole 

µM Micromolar 

µm Micron 

ε Molar extinction coefficient 
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