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Abstract

The modelling, prediction and prevention of material failures is the

key issue during material design and processing. Finite Element Meth-

ods (FEM) combined with physically-based models are a popular ap-

proach to modelling fracture characteristics. However, in industrial

practice, the interlinked process with high dimensions and complex-

ities could be too complicated to be expressed purely on the prin-

ciples of physics. Mathematical models via data-driven modelling

approaches, were developed to remedy the aforementioned disadvan-

tages of physically-based models. Therefore, this project focuses on

developing a hybrid model to assess the toughness of metal alloys,

and to improve the current material design techniques through the

model-based optimal design.

Firstly, a data-driven model of the crack propagation of compact ten-

sion test is constructed; an error compensation strategy is also de-

veloped and tested. In order to improve the current material design

technique through the model-based optimal design, a multi-objective

particle swarm optimisation algorithm is proposed and tested using

different benchmark functions. A data-driven model based finite el-

ement model structure is then proposed. Finally, the optimisation

algorithm is applied together with the finite element analysis to the

optimal design of material.

The results show that the constructed model for compact tension test

and the error compensation strategy performed well. The proposed

multi-objective particle swarm optimisation algorithm outperforms

the compared two particle swarm optimisation algorithms; it is also

applied successfully to the optimal design of the small punch test.
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Chapter 1

Introduction

Metallic materials are one of the priorities of the engineering studies. Different

types of fractures occur from time to time in almost everywhere both in the in-

dustrial applications and in daily life, which result in substantial economic losses.

Fig. 1.1 shows a pipeline blowout near Appomattox, Virginia, USA in the year of

2008 [EnergyindustryPhotos, 2008], which is only one of the numerous accidents

that happen at all times all over the world, this particular accident having caused

five persons injured and many homes were affected. The modelling, prediction

and prevention of material failures hence becomes a key issue during the material

design and engineering. This project therefore will focus on developing a hybrid

model to assess the toughness of metal alloys, and improving the current material

design technique through model based optimal design.

Many toughening and analysing methods for engineering materials have been

developed, but due to the lack of physical knowledge and the uncertainties in

the processing conditions, the actual effects of such methods of engineering are

hard to quantify before processing. Therefore, modelling as a subject becomes

an irreplaceable part of material science. On the one hand, process models, both

physical and mathematical, are efficient tools to predict and analyse the damage

of materials in quantitative expressions; on the other hand, engineers wish to find

a way for a trade-off between improving material properties and minimizing the

costs [Bhadeshia, 2008].

1



1. INTRODUCTION

Figure 1.1: Appomattox, Virginia, USA, 2008, after a natural gas pipeline explo-
sion [EnergyindustryPhotos, 2008]

Different modelling approaches have been presented in order to identify the

link between process variables, microstructure features and material properties.

Some modellers try to build models based on physics principles, which are also

identified as white-box models.

Finite Element Methods (FEM) combined with physically based model are a

popular approach to modelling fracture characteristics. For instance, a report by

[Acharyya and Dhar, 2008] used the Gurson-Tvergaard-Needleman (GTN) model

to predict the ductile failure of 22NiMoCr37 and SA-333 Gr-6 Carbon steel, and

in [Karabin et al., 2009], the author developed a constitutive model for 7085-T7X

(over-aged) aluminum alloy plate samples with controlled micro-structures based

on Gurson-Tvergaard (GT) model and Leblond-Perrin-Devaux (LPD) [Leblond

et al., 1995] model.

However, in industrial practice, the interlinked process with high dimensions

and complexities could be too complicated to be expressed purely on principles of

physics, and hence the white-box model may require more extensive tests besides

the observed data from industrial process, such a model will be too expensive to

2



1. INTRODUCTION

be developed [Reed et al., 2009].

Mathematical models via data driven modelling approaches were developed

to remedy the aforementioned disadvantages of physically-based models. These

modelling methods include Artificial Neural Networks (ANNs), Fuzzy Inference

Systems (FISs), Genetic Algorithms (GAs), Support Vector Machines (SVMs),

Gaussian process, Bayesian inference, etc. Such data-driven modelling approaches

are widely used in the area of material science and engineering. For instance,

[Çöl et al., 2007] developed an ANN based model to predict the impact energy of

API X65 micro alloyed steel; in [Ozbulut et al., 2007], the hysteretic behaviour

of CuAlBe wire was predicted by creating Fuzzy Inference Systems (FISs) from

experimental data. The open literature shows many more models used in different

industrial processes of material engineering. These modelling methods, combined

with physically based models, provide researchers more confidences in modelling

newly developed materials.

The traditional modelling methods aim at building a deterministic model to

predict certain characteristics with an acceptable level of accuracy. The predic-

tions from this deterministic model can be very accurate when the training data

is clean and spreads over the problem space. However, the predictions will not be

reliable if the training data is not carefully selected and/or includes noise com-

ponents. Effects of uncertainties in processing and service conditions represent

tough challenges for the modellers. A sufficient way to correlate the prediction

results with stochastic models is needed, where a confidence factor will be given as

a reference. There is not much work in the literature about stochastic modelling

on fracture. [Knott, 2006] presented a probabilistic assessment for the brittle

fractures in ferritic steels, and despite the fact that the variability in the exper-

imental results obtained from different steels was analyzed, the author did not

present an application to compensate for the error between predicted and actual

results.

The optimal design problem for material is one of the key issues in metallurgy.

Once an intelligent model for a material model has been developed, it can be

a huge advantage if the developed model can be implemented to facilitate the

3



1. INTRODUCTION

optimal design of metal alloys. The optimisation problems exist everywhere in

reality. People always wish to solve problems with the best possible result while

trying not to compromise on the costs. Such problems also exist in the processes

surrounding metal alloys design and researchers have been devoting time and

effort to solve such issues: improving the fracture toughness of the material and

at the same time maintaining a certain level of material strength; or reducing the

economic costs of production without compromising the integrity of the material.

However, more often than not, ensuring the toughness of material and improving

material strength can prove to be a hard balancing operation.

The aforementioned problems can be identified as falling within the theme of a

Multi-Objective Optimisation (MOO) problem. Different from Single-Objective

Optimisation (SOO), a single global solution to the MOO problem cannot be

found at most times. It is often necessary to find a set of points that satisfy all

the predefined optima, also known as Pareto optimality [Pareto, 1971]. Many

efforts were put into solving the MOO problems in the past two decades.

Initially, the weighted-sum method, which converts the MOO problem to a

series of SOO problems, was widely used. However, the weighted-sum approach

often encounters the difficulty in selecting suitable weights, since the priori selec-

tion of weights cannot guarantee acceptable results in all situations, for example,

suitable weights are not possible to find if the relationship between different ob-

jectives is nonlinear. Moreover, the weighted-sum method cannot obtain solutions

which are on the non-convex portions of the Pareto optimal set in the criterion

space [Messac et al., 2000]. Another disadvantage is that varying the weights

consistently and continuously may not result in an even distribution of Pareto

optimal points and an accurate, complete representation of the Pareto optimal

set [Das and Dennis, 1997].

There exist several algorithms that can solve MOO problems by converting

them into SOO problems. However, the requirement of gradient information,

which must be calculated via objective functions and constraints, increases the

computational costs and limits the application of such approaches. It is therefore

necessary to develop new algorithms which can solve the MOO problems directly.

4



1. INTRODUCTION

Thus, bio-inspired algorithms, such as Genetic Algorithms (GA) [Holland, 1975]

and Particle Swarm Optimisation (PSO) [Kennedy and Eberhart, 1995] were

tailored to solve the MOO problems.

There exist a number of reported applications which use bio-inspired opti-

misation techniques for alloy design. For example, Zhang and Mahfouf applied

a modified PSO [Zhang and Mahfouf, 2009] and a new reduced space searching

algorithm [Zhang and Mahfouf, 2010] to the design of alloy steels. The work

aims at determining the optimal heat treatment regimes and the required weight

percentages for chemical composites to obtain the desired mechanical properties

of steel hence minimising production costs and achieving the overarching aim of

right-first-time production of metals.

Those bio-inspired algorithms are global optimisation techniques, whose ad-

vantage is the ability to locate the global optimum rather than the local solution;

it is also worth noting that these techniques have the capacity to combine any

single-objective global technique as an optimisation engine [Leu and Yang, 1999]

and the ability to converge to the Pareto optimal set as a whole.

1.1 Research Aims

The aim of this research is to develop a systematic optimal design approach of

metal alloys.

This project is composed of two parts: 1) Fracture Modelling - the develop-

ment of a model of material fracture and an error compensation method and 2)

Process Optimisation - analyses and optimisation of metal alloy design process.

The modelling part in this project consists of a) developing data-driven models

based on the existing data of steel crack propagation. An effective error compen-

sating method is also required to compensate for the error and give a confident

band of model predictions; b) eliciting a model of material, which combines the

classical FEM with data-driven modelling techniques. An multi-objective op-

timisation algorithm is to be designed. The developed optimisation algorithm,
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together with the FEM, will be used for the systematic optimal design of metal

alloys.

1.2 Contribution

A new multi-objective particle swarm optimisation algorithm is proposed. The

integration of dynamic hyper-cube archive, weight adaptation, mutation, pool se-

lection and modified global best selection techniques enhances the multi-objective

optimisation ability of traditional particle swarm optimisation algorithms. Com-

parisons with other multi-objective optimisation algorithms show that the algo-

rithm is effective in optimising various problems.

Models with Gaussian mixture model error compensation structure of the

crack propagation are established. The Gaussian mixture error compensation

structure shows the ability of providing the confidence band and a probable er-

ror for the predicted results from both fuzzy and neural network model. The

predicting error is reduced through embedding the error compensation structure

into the previously built model.

A synergistic model combining the data-driven model and FEM is developed.

The constitutive equation model in the FEM is replaced by a neural network

model. The simulation based on a simple element model using the synergistic

approach leads to a good agreement with the results from the model using the

constitutive equation model only. This synergistic modelling approach extends

the FEM to model the material when the physical expertise of the material is

missing.

The systematic optimal design approach of metal alloys based on FEM and

the proposed new multi-objective PSO is successfully applied in the simulation

of the small punch test. The optimal parameters for the material are estimated

for different desired damage propagation process. The proposed optimal design

approach introduces the idea of user-oriented design into the material design

procedure.
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1.3 Thesis Structure

The chapters will be structured as follows:

Chapter 2 introduces the background knowledge relating to the project. The

introduction to Genetic Algorithms [Holland, 1975], Evolutionary Strategies [Rechen-

berg, 1973; Schwefel, 1977] and Particle Swarm Optimisations [Kennedy and

Eberhart, 1995] are first presented, based on the single objective optimisation

methods. The algorithms for Multi-Objective Optimisation are also introduced.

Artificial Neural Networks, Fuzzy Logic and Fuzzy Systems are reviewed as they

are widely used intelligent modelling methods. The Finite Elements Method,

which is developed to model the materials through the “white-model” approach,

is introduced briefly as well.

In Chapter 3, a multi-objective particle swarm optimisation algorithm (mPSO-

DHA) is described. The algorithm extends the original particle swarm optimisa-

tion using dynamic hyper-cube archiving, weight adaptation, mutation operator,

pool selection and modified global best selection. In order to be of certain the

best parameter settings for the algorithm, various settings of parameters are ex-

plored, and an appropriate setting of parameters is selected. The application of

mPSO-DHA to the well-known multi-objective benchmark functions, including

ZDT [Zitzler et al., 2000] series and DTLZ [Deb et al., 2002] series, is analysed

and compared with other multi-objective PSO algorithms, in order to assess the

performance of the new algorithm. Comparisons with other evolutionary algo-

rithms, such as PAES [Knowles and Corne, 1999], SPEA [Zitzler and Thiele, 1998]

and NSGA2 [Deb et al., 2000], are concluded.

Chapter 4 reports on the modelling of steel crack propagation using fuzzy

and neural-network, using the data acquired from previous work of [Ayvar et al.,

2005]. Data analyses are carried out initially. The fuzzy modelling for crack

propagation is detailed, using the method which has been used in [Zhang and

Mahfouf, 2008, 2011] with hierarchical clustering initialization and gradient de-

cent learning. After the fuzzy modelling, the double-loop neural network [Yang

et al., 2003] is selected to modelling the same data. A comparison between the
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fuzzy model’s and neural network’s performances are also conducted. Moreover,

and in order to reduce the error of models, an error compensation approach is

proposed and examined, the approach uses Gaussian Mixture Model [McLachlan

and Peel, 2004] to predict and to compensate for the errors.

Chapter 5 shows a data-driven model embedded within a finite element mod-

elling approach (DMFEM). The idea of this approach is to replace the constitu-

tive equations in the finite element model by a data-driven model. The neural

network model for an isotropic hardening elastic-plastic simple element model is

firstly constructed using MATLAB to verify the feasibility of the approach. Both

the standard implicit user subroutine UMAT and the explicit user subroutine VU-

MAT are modelled. The constructed data-driven model is then transfered and

embedded into ABAQUS environment in Fortran. The feasibility of the proposed

DMFEM in modelling and analyzing material is validated.

In Chapter 6, an optimisation process of material design based on mPSO-DHA

and finite element analysis is proposed and evaluated. The mPSO-DHA is applied

to the finite element models which relate to the material failures in order to find

the optimal material properties which will lead to the desired damage propagation

process. The optimisations on different situations and design objectives for the

small punch test are carried out, where the optimal values of elastic and plastic

characteristics are estimated for minimization, maximization and specific value

of the maximum load and corresponding displacement.

Finally, Chapter 7 includes a detailed conclusion of the project, and the future

research directions will also be discussed.
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Chapter 2

A Background to Optimisation,

Intelligent Systems, and Finite

Element Method

2.1 Nature-inspired Optimisation

Nature-inspired optimisation algorithms are inspired by natural phenomena, such

as the biological mechanisms of evolution, the social behaviours of humans and

animals, and other experiences of human activities. These techniques are all

population-based iterative algorithms, the most successful and widely-used algo-

rithms in the recent researches are Evolutionary Algorithms (EA).

Evolutionary algorithms are generic population based meta-heuristic optimi-

sation algorithms. An EA uses the mechanisms inspired by biological evolution,

which includes reproduction, mutation, recombination, and selection. EA covers

many algorithms – the Genetic Algorithms (GA) [Holland, 1975], the Evolution

Strategy (ES) [Rechenberg, 1973; Schwefel, 1977], Particle Swarm Optimisation

(PSO) [Kennedy and Eberhart, 1995], etc. – these algorithms may differ in the

implementation or the nature of the particular applied problem, however they all

show the generality of searching the global optimum rather than local optimal
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points. Moreover, EA has the advantage of optimising complex or partial known

problems as a non-gradient algorithm.

2.1.1 Genetic Algorithms

One of the most well known types of evolutionary algorithm is genetic algorithm.

GA has been used as an efficient optimisation method ever since [Holland, 1975]

published his work. In a genetic algorithm, a population of chromosomes, aka

genotypes or genomes, evolves towards better solutions through a process of com-

petition or controlled variation.

Although there exist several variants of GAs, it is widely accepted that GAs

should include the following components:

• Genetic representation of the potential solutions;

• Fitness evaluation algorithm;

• The genetic operators, i.e. crossover operator and mutation operator, should

be used for the reproduction process;

• A selection mechanism, which introduces competition and pressure to indi-

viduals;

The prototype GA uses binary coded chromosomes to encode the candidate

solutions. The crossover for binary coded chromosomes is realized through picking

two chromosomes randomly and exchanging a portion of the chromosomes. The

single-point and two-point crossover [Goldberg, 1989] are mostly used in binary

coded GA. However, other encoding methods such as real value coding, which can

reduce the computational cost of binary coding based methods, are also possible

and necessary when addressing different problems. Simulated Binary Crossover

(SBX) was proposed by [Deb and Agrawal, 1995] for real valued GA. More details

about GA are available in [Back, 1996].
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2.1.2 Evolutionary Strategies

Evolution Strategies (ESs) are joint development of Bienert, Rechenberg and

Schwefel in the 1970s at the Technical University of Berlin (TUB) in Germany

[Rechenberg, 1973; Schwefel, 1977]. It was first implemented as an experimental

procedure to deal with hydrodynamical problems such as shape optimisation of

a bended pipe or a structure optimisation of a two-phase flashing nozzle [Back,

1996]. Schwefel first simulated a two membered ES on the first available com-

puter, which now commonly has the name of (1+1)-ES. (µ+λ)-ES and (µ, λ)-ES,

were then introduced by [Schwefel, 1981] to incorporate the principle of a popula-

tion. The selection scheme in this work is called multi-membered ES. Thereafter,

different variations of ES were developed, such as recombinative ES and self-

adaptive ES.

The two differences of ES from GA are: a) there is no crossover operator in

ESs while GAs have crossover operators; and b) the step size of mutation operator

in ES can adjust itself during the optimisation process, which provides ES with

the self-adaption capability that GAs do not normally have.

2.1.3 Particle Swarm Optimisation

The particle swarm optimisation algorithm was proposed originally by [Kennedy

and Eberhart, 1995]. It was then modified by [Shi and Eberhart, 1998a]. PSO is

a search and optimisation method which is inspired by the social behaviours of

animals such as bird flocking and fish schooling.

PSO shares many similarities with GA; it is initialized with a population of

potential solutions, which are called particles, and then search for the optima by

iterations. The particles will fly through the search space, where the velocity and

direction are adjusted by their own and their neighbours’ historical behaviours.

Various modifications of PSO have been developed in order to ensure conver-

gence to the optimum, . One of the most focused part of these variants is the

design of operator. There are mainly three ways of constructing the operator:
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• Exploration – the flight direction and velocity of particles are affected by

the global best solution of current swarm [Kennedy and Eberhart, 1995];

• Exploitation – the movement of particles is affected by the local best solu-

tion of all its neighbourhoods [Eberhart et al., 1996];

• Balanced – the trend of particles is affected by both the global and local

optimums of current stage [Kennedy, 1999].

In comparison to GA, PSO has the advantages that it is easy to implement and

the number of tuning parameters is less than that associated with GA. Particles

in PSO are updated by internal velocity rather than the mutation and crossover

which are used in GA. The simplicity and fast searching speed made PSO a more

popular algorithm in recent years.

More related work and details about PSO can be found in [Eberhart et al.,

2001].

2.2 Multi-Objective Optimisation Algorithms

Multi-objective optimisation is the process of optimising two or more conflicting

objectives simultaneously, subject (or not) to certain constraints. Mathemat-

ically, a multi-objective optimisation problem can be written in the following

form (minimization):

Find a vector x ∈ X, which minimizes:

f(x) = (f1(x), f2(x), · · · , fk(x))T ,

subject to: g1(x) ≤ 0, · · · , gm(x) ≤ 0,

and/or h1(x) = 0, · · · , hn(x) = 0.

where X is the feasible space of decision vectors, x is the vector of decision

variables, k ≥ 2 is the number of objectives, and m,n are the number of inequality

and equality constraints respectively.
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The solution to a multi-objective optimisation problem is not simply optimis-

ing each objective to its extreme simultaneously. There usually exist multiple

solutions which lead to such a situation: if any one of the objectives was opti-

mised closer to its extreme, other objective(s) would suffer as the result. In order

to identify the multiple solutions, the Pareto domination relationship was defined

[Deb, 2008; Sawaragi et al., 1985] (minimization):

One solution x1 ∈ X dominates another solution x2 ∈ X, if

fi(x1) ≤ fi(x2),∀i ∈ k, and fi(x1) < fi(x2) for at least one i ∈ k,

where k is the number of objectives and X is the feasible space of

decision vectors.

Pareto-optimal solutions, also known as non-dominated solutions, were then

defined as follows [Deb, 2008; Sawaragi et al., 1985] (minimization):

One solution x∗ ∈ X is Pareto optimal if for every x ∈ X, fi(x) ≥
fi(x

∗),∀i ∈ k, where k is the number of objectives and X is the

feasible space of decision vectors.

Multi-objective optimisation is widely used in most areas of economics and

engineering, which involve multiple objectives problems in control and decision

making. Several well-known Multi-Objective Evolutionary Algorithms (MOEAs),

which have been developed in recent years, will be reviewed in the following

sections.

2.2.1 Pareto Archived Evolution Strategy

The Pareto Archived Evolution Strategy (PAES) was introduced by [Knowles

and Corne, 1999] as a modification of ES. In the simplest form of PAES, the

algorithm consists of a (1+1) evolution strategy, where a single parent generates

a single offspring in each iteration. The elitist mechanism of PAES is a historical

archive which is used to maintain some of the previously found non-dominated
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solutions. The mutated individuals are compared with the solutions in the his-

torical archive. In order to maintain the diversity of solutions, PAES includes a

crowding procedure that recursively divides the searching space. Each individual

is located in a certain grid according to its fitness value. The number of individ-

uals that reside in each grid is recorded in an external memory set. The external

memory is then used as a reference in the selection and archiving process.

The advantages of PAES are: a) the computational cost is lower than some

multi-objective GAs; and b) it is adaptive and does not need the critical setting

of other extra parameters beside the number of divisions of the objective space.

2.2.2 Strength Pareto Evolutionary Algorithm

The Strength Pareto Evolutionary Algorithm (SPEA) was proposed by [Zit-

zler and Thiele, 1998]. SPEA introduces an elitism by storing the previously

found non-dominated solutions into an archive, which is called the ‘external non-

dominated set’. In each iteration, the newly found Pareto solutions are compared

with the solutions in the external set. Then the best solutions are copied into the

external population. Each individual in the external set will be assigned with a

strength value, which is computed based on the proportion to the number of so-

lutions that the individual dominates. The fitness of each solution in the current

population is calculated according to the strength of all the external individu-

als that dominate it. A clustering technique called ‘average linkage method’ is

introduced in order to maintain the diversity of the solutions.

Based on SPEA, a second version [Zitzler et al., 2002] was proposed as Strength

Pareto Evolutionary Algorithm 2 (SPEA2). The improvements in SPEA2 are:

• The fitness assignment procedure is not only based on how many individ-

uals that certain solution dominates, the number of how many individuals

dominate it, is also taken into account;

• A nearest neighbourhood density estimation scheme is added in order to

give more precise guidance for the search process;
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• The archiving truncation method is enhanced to guarantee the preservation

of boundary solutions.

2.2.3 Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by

[Deb et al., 2000]. NSGA-II is a more efficient revised version of the the Non-

dominated Sorting Genetic Algorithm (NSGA) [Srinivas and Deb, 1994]. NSGA-

II employs a crowded tournament selection operator which is designed to keep

the diversity of the solutions. Unlike the case of other algorithms, there is neither

an external memory nor any extra niching parameters in NAGA-II. The elitist

procedure is realized through combining the best parents with the best offsprings.

NSGA-II has then become the most popular multi-objective optimisation algo-

rithm because of its parameter-less niching approach.

2.3 Artificial Neural Networks

The artificial neural networks (ANNs) are inspired by the biological nervous sys-

tems. They are also referred to as just neural networks. ANN is defined as a

network implemented by a number of interconnected artificial neurons. A typical

neuron is shown in Fig. 2.1.

The artificial neuron shown in Fig. 2.1 has no learning process on its own.

The activation function, weights and threshold are predefined. x0 is a bias input

usually set to be 1, with ω0 = b in which b is a threshold introduced to adjust

the weighted sum of inputs. xi is the ith input. ωi is the weight for xi. y is

the output computed from ϕ(.) which is the activation function. The activation

function varies in different applications of ANN. The unit step function was used

in the work of [McCulloch and Pitts, 1943]. By using unit step function as

activation function, the neuron in Fig. 2.1 becomes a McCulloch-Pitts (MCP)

unit.
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Figure 2.1: A typical artificial neuron

An ANN constructed by MCP neurons can simulate any kind of logical func-

tion [McCulloch and Pitts, 1943]. MCP units are useful in binary classifications.

Other activation functions, such as a linear combination of all the inputs or the

sigmoid function, can also be selected to fit the requirements of specific problems.

If the activation function is linear combination and the inputs and outputs

are in a linear relationship, it is simple to set the weights by using Least Squares

approximations. An ANN based on linear neurons (which use linear combination

as activation functions) actually performs a linear transformation of the input

vector. Non-linear relationships in linear neurons can only be approximated by

polynomial expansion. Theoretically, any continuous function can be approx-

imated as accurately as desired by a polynomial function. Therefore, a wide

range of complex functions can be approximated by linear neurons.

However, the computational cost of approximating non-linear relationships

using linear neuron shows no benefit compared to other algorithms. A non-

linear activation function (sigmoid function [Cybenko, 1989]) was proposed as an

alternative solution. By using a sigmoid function, the accuracy of ANN no longer

depends on the degree of polynomial expansion, but depends on the training of

weights.

The Least Squares approximation can not be applied to the process of weights
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training in case of using sigmoid activation functions. In this situation, the gra-

dient descent algorithm is an efficient method to determine the weights, since

derivative of the sigmoid function, such as logistic function, is easy to calculate.

ω(t+ 1) = ω(t)− γt
∂J

∂ω(t)
(2.1)

The gradient descent method (shown in Eq. 2.1) computes the derivative of

the Mean Squared Error (MSE) with respect to the changes of weights, and then

changes the weights in every iteration so that the weights always lead the MSE

to its extreme, where ω represents the weight vector, t the iteration number, γt a

small enough positive number as the learning rate, and J the cost function, which

is MSE in this case.

Multi-Layer Perceptron (MLP) can then be constructed based on a network of

sigmoid units. MLP is a feed-forward network that consists of multiple layers of

neurons - one input layer, several hidden layers and one output layer. Each layer

is fully connected to the next one. Back-Propagation (BP) [Rumelhart et al.,

1986] is adopted as the weights training algorithm. The BP technique is in fact a

superposition of two gradient descent processes. It firstly computes the changes

of weights for output layer, then the changes of weights for hidden layer(s) can be

determined according to the new weights of output layer, so that the algorithm

is named “back propagation”.

It is proved in [Cybenko, 1989] that when using only one sigmoid hidden-

layer and one linear output, MLP becomes a universal approximator that can

approximate any well-behaved function to arbitrary accuracy as long as there

are appropriate number of hidden neurons. The hidden layer in such a situation

can be seen as a pre-processor while the pre-processing function is adapted by

learning technique rather than priori determined. Compared to the polynomial

expansion approach, MLP can fit a more compact model.

The performance of ANN varies since many types of ANN were developed

and applied in different research areas. The feed-forward network (e.g. MCP and

MLP) is commonly used because of its simple structure. Radial Basis Function
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(RBF) networks [Broomhead and Lowe, 1988], in which radial basis functions

such as Gaussian are usually selected as the activation function for hidden layer(s),

have the advantage of not suffering from local minima. RBF networks also proved

efficient in solving classification problems. Recurrent Neural Networks (RNNs)

[Elman, 1990] use a directed cycle as the connection between units, which gives the

network an internal memory space. RNN performs well in unsegmented connected

handwriting recognition [Graves et al., 2009]. The above networks only reflect a

small portion of ANNs. There are still lots of ongoing cutting-edge researches in

ANNs, such as those related to biophysical models and nano-devices, which could

lead to neural computing.

2.4 Fuzzy Logic and Fuzzy Systems

Fuzzy sets were first proposed by [Zadeh, 1965] of the University of California.

The basic ideas and foundations of fuzzy system were developed based on Zadehs

theory in the late 1960s. Fuzzy modelling is a systems approach which describes

the process under investigation using fuzzy quantities, such as fuzzy sets, fuzzy

rules, and linguistic labels. A fuzzy system is known to be good at universal ap-

proximation; it has the ability of modelling complex, nonlinear or partial known

systems. The main advantage of the fuzzy modelling technique is its ability to

represent nonlinear complex systems via simple modelling structures; the linguis-

tic “if-then” rules are easy to understand by non-experts, and this can improve

the model’s transparency [Wang, 1997].

2.4.1 Fuzzy Sets

Fuzzy set theory allows the elements have degrees of membership to a fuzzy

set, while in a classical set, the membership of elements is defined in binary –

an element either belongs or does not belong to the set. The membership of

elements is described with the aid of a membership function valued in the real

unit interval [0, 1]. The classical sets can therefore be seen as special conditions
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of the fuzzy sets – if the membership functions of a fuzzy set only take the values

0 or 1. According to [Zadeh, 1965], the definition of a fuzzy set is:

“Let X be a space of points (objects), with a generic element of X

denoted by x. Thus, X = {x}. Then a fuzzy set (class) A in X is

characterized by a membership (characteristic) function fA(x) which

associates with each point in X a real number in the interval [0, 1],

with the value of fA(x) at x representing the ‘grade of membership’

of x in A.”

For example, a fuzzy set using Gaussian function as the membership function

can be written as (A, µA), where A = {x1, · · · , xn} is a classical set, µA(xi) is

the degree of membership of xi. The fuzzy set (A, µA) can also be denoted as

{µA(x1)/x1, · · · , µA(xn)/xn}.

Some of the popular used membership functions are shown in Fig. 2.2, includ-

ing Gaussian functions, triangular-shape functions and trapezoidal-shape func-

tions.
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Figure 2.2: Several membership functions
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2.4.2 Fuzzy Systems

A fuzzy system as shown in Fig. 2.3 generally consists of four parts: a fuzzifier,

a fuzzy rule base, a fuzzy inference engine and a defuzzifier.

Fuzzifier

Fuzzy
Inference
Engine

Fuzzy
Rule Base

Defuzzifier
x µA(x) µB y

Figure 2.3: A Typical Structure of Fuzzy Systems

The fuzzifier is a component that maps the real valued input variable x to a

fuzzy set A; it is simply a set of membership functions. Three types of fuzzifiers

are frequently used as mentioned in Fig. 2.2. The defuzzifer, in contrast to

fuzzifier, is implemented to specify a point y that best represents a fuzzy set B

in the output space. The mostly used defuzzifier techniques are centre of gravity

(COG), centre of area (COA), centre average, and maximum defuzzifier.

The fuzzy rule-base is the core of a fuzzy system, which consists of the fuzzy

If-Then rules. The expression of a fuzzy rule can be different, there are, however,

two types of fuzzy rule bases are popular: Mamdani-type [Mamdani, 1974] and

Sugeno-type (TSK) [Sugeno and Yasukawa, 1993]. A Mamdani fuzzy If-Then

rule is a statement in the following form:

Rulem : IF x1 is Am1 AND · · · AND xn is Amn THEN ym is Bm

where m is the number of ruels, Amn and Bm are fuzzy sets in the input space

Un ⊂ R and V ⊂ R respectively, xn ∈ Un and ym ∈ V are the input and output

variables of the fuzzy system respectively.

A TSK If-Then rule is different from Mamdani rule in the way that outputs

are determined. It can be described as follow:

Rulem : IF x1 is Am1 AND · · · AND xn is Amn THEN ym = gm(x1, · · · , xn)
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where the premise part is the same as Mandani rule, however, the consequence

part is quantitative. gm can be a linear or quadratic function. The defuzzifier is

not used in this case.

The fuzzy inference engine is a component in which the fuzzy logic opera-

tions are processed, the fuzzy “If-Then” rules are combined in order to build a

map from the fuzzy inputs to the output fuzzy set. The fuzzy operators include

Containment, Union, Intersection, Complement and Cartesian product. These

operators and inference process are detailed in [Wang, 1997].

2.4.3 Combining Fuzzy Systems with Other Approaches

Classical fuzzy modelling methods (mostly Mamdani-types) define the fuzzy sys-

tems based on the expert knowledge and experience, which will lead to a lim-

itation of fuzzy modelling applications: when the expert knowledge is lacking

or not available, traditional expertise-based fuzzy model cannot be generated.

An efficient machine learning approach can prove to be a good solution to this

situation.

There are successful approaches to expanding the capability of classical fuzzy

systems by introducing learning mechanisms: neuro-fuzzy systems and genetic

fuzzy systems. Such hybrid systems combine the approximately reasoning ability

from fuzzy systems with the learning ability from neural networks and genetic

algorithms, the scope of fuzzy systems application can then be expanded.

The neuro-fuzzy system was first proposed by [Jang, 1993], where a frame-

work of Adaptive-Network-based Fuzzy Inference System (ANFIS) was intro-

duced. The structure of ANFIS is a combination of ANNs and fuzzy systems. It

is flexible and easy to modify. Many variations of ANFIS were then developed

in order to address different problems [Nauck et al., 1997]. Chen and Linkens

have used a hierarchical neural network to generate fuzzy model, identify the

fuzzy model structure, and optimise the parameters for fuzzy model [Chen and

Linkens, 2000]. The authors also proposed a succesful approach to rule-base

self-generation and simplification for fuzzy models [Chen and Linkens, 2004].
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The genetic fuzzy system is another technique for enhancing the learning

ability of classical fuzzy systems. The learning process in genetic fuzzy system

is regarded as an optimisation process of the Knowledge Base (KB). Genetic

algorithm can be applied to different levels in a fuzzy inference system. The

simplest case is genetic tuning, which uses a GA to obtain a set of associated

parameters of the scaling functions and the fuzzy membership functions (DB). In a

mediate level, the application of GAs is a genetic rule base learning, which applies

GA in searching for a suitable and complete rule-base (RB). Three approaches

are available for genetic rule-base learning: the Michigan approach [Holland and

Reitman, 1977], the Pittsburgh approach [Smith, 1980], and the iterative rule

learning approach [Venturini, 1993]. The first two aforementioned applications

of GA can be combined together in order to optimise the DB and RB at the

same time. However, this method leads to increase in computational costs as

the complexity of searching space increases. The three approaches for genetic

rule-base learning are also available for this combined method.

The fuzzy system can also be combined with the classical control techniques.

Babuska proposed a fuzzy self-tuning PI controller to control the pH value in

fermentation, the results of simulations proved the capacity of the proposed con-

troller [Babuska et al., 2002].

It is worth noting that maintaining interpretability is important in the design

of neuro-fuzzy systems and genetic fuzzy systems. Since it is contradictory that

improving the accuracy and in the meantime simplifying the rule base structure,

multi-objective optimisation algorithms are used to determine how many rules are

included in the rule base and how many inputs are involved in each rule [Babuska

and Verbruggen, 2003; Gonzlez et al., 2007; Wang et al., 2005].

2.5 Finite Element Method

Finite Element Method (FEM), also known as Finite Element Analysis (FEA), is

an engineering analysis tool to find approximate solution to complicated systems,

by solving partial differential equations (PDE), as well as integral equations. The
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idea of FEM as priorly explored until [Clough, 1960] coined the phrase ‘Finite

Element Method’. FEM divides a very complicated problem into small elements

that can be solved in relation to each other, while in each element, the problem

can be solved easily by reducing the partial differential equations into a set of

algebra equations or ordinary differential equations.

FEM is a continuously developing method in a wide variety of engineering

disciplines such as electromagnetism, fluid dynamics, civil and aeronautical engi-

neering, material and mechanical engineering. In mechanical engineering, FEM

is widely used in the simulation of the damage process of material. A series

of models were developed for different types and conditions of damages. These

include numerous texts in the literature ranging from the late 1960s until now.

There are several models which were developed to analyze ductile fractures,

some of the commonly known models are, Rice-Tracey model [Rice and Tracey,

1969], Gurson model [Gurson, 1975], Rousellier model [Rousselier, 1987], and

Argon-Im-Safoglu model [Argon et al., 1975].

2.6 Summary

In this chapter, some background knowledge relating to this project has been

introduced. The basic concepts of nature-inspired optimisation have been re-

viewed and some of the popular optimisation algorithms have been discussed,

which include Genetic Algorithms, Evolutionary Strategies, Particle Swarm Op-

timisation, Pareto Archived Evolution Strategy, Strength Pareto Evolutionary

Algorithm, and Nondominated Sorting Genetic Algorithm II. The basics of arti-

ficial neural networks, fuzzy sets, fuzzy systems have then been briefly described.

Finally, the finite element method has been introduced together with some of the

well-known models of ductile fractures.

The next chapter will report on a multi-objective particle swarm optimisation

algorithm with applications to multiple objective problems.
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Chapter 3

A Multi-Objective Particle

Swarm Optimisation Algorithm

with Applications to Multiple

Objective Problems

3.1 Basics of Particle Swarm Optimisation

The Particle Swarm Optimisation (PSO) algorithm received significant attention

since [Kennedy and Eberhart, 1995] first introduced it in 1995. This powerful

optimisation algorithm was inspired by the social behaviour of animals, such as

birds flocking and fish schooling.

The algorithm starts with a group of random solutions, which are called par-

ticles. These particles then fly through the objective space based on both the

historical behaviour of themselves and the behaviour of other particles. Simi-

lar to the birds flocking activities, the particles are expected to fly towards the

optimal solutions in the optimisation process.

The original velocity and position updating mechanism uses the following
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equations [Shi and Eberhart, 1998a]:

{
V n
i = w × V n−1

i + C1 ×R1 × (XPbi −Xi) + C2 ×R2 × (XGbi −Xi)

Xn
i = Xn−1

i + V n
i

(3.1)

where n is the index of the iteration, w is the inertia weight, C1, C2 > 0

are acceleration coefficients, R1, R2 ∈ [0, 1] are uniformly distributed random

variables. Xi and Vi are the position and velocity for the ith particle in the

population, XPbi is the best position found by Xi in the previous iterations, and

XGbi is the best position found so far by the whole population of particles.

It can be seen that the velocity of one particle is determined by the previous

velocity (first component of Eq. 3.1), the “personal view” of the particle (sec-

ond component of Eq. 3.1), and the “cooperation” from other particles (third

component of Eq. 3.1).

The first component represents the inertia that the particle tends to keep the

same direction as it traveled in the previous iterations. The inertia weight w

determines how much the previous velocity will effect the particle’s behaviour.

[Eberhart and Shi, 2001, 2000; Shi and Eberhart, 1999, 1998b] analysed the effects

of the inertia weight using fixed and dynamically changing weights. In their study,

it is concluded that: a larger inertia weight lets the particles move more freely,

so that the global optima will be found faster; and a smaller value of w enhances

the particle’s ability of exploring the neighboring space, which encourages the

particle to converge the local optima.

The second component of the equation is the personal thinking of particle,

which makes the particle to fly towards the best position in its own experience.

The third component, which attracts the particle to move towards the best po-

sition found so far by all particles, represents the cooperative effect from the

whole population and the historical search. Although [Eberhart and Shi, 2001]

suggested that C1, C2 = 2 are supposed to perform well in most problems, the

acceleration coefficients in these two components do not have to be necessarily

equal, the values of acceleration can vary depending on the problem to be solved

[del Valle et al., 2008].
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In order to maintain the particles flying within the search space, some limita-

tions are applied in Eq. 3.2:





V max = (Xuplim −X lowlim)/N,

IF Vi > V max,THEN Vi = V max,

ELSEIF Vi < −V max,THEN Vi = −V max,

IF Xn
i > Xuplim,THEN Xn

i = Xuplim,

ELSEIF Xn
i < X lowlim,THEN Xn

i = X lowlim,

(3.2)

where N is a positive number in [1, 10], Xuplim, X lowlim are the upper and

lower limits of the search space, Vmax is the maximum velocity of particles, Vi is

the velocity of ith particle, Xn
i is the position of ith particle in the nth iteration.

The selection of N must be carefully considered; a too large or small V max

will cause the particle to move either erratically or restrictedly. It is worth noting

that V max can be dynamically changing in the work of [Fan and Shi, 2001], which

may improve the performance of the algorithm. In addition, other methods were

proposed to handle the boundary problem in [Huang and Mohan, 2005; Robinson

and Rahmat-Samii, 2004].

In general, the PSO algorithm optimisation procedure can be summarised as

follows:

1. Initialisation, randomly generate a swarm of particles within the searching

space;

2. Evaluation, assign the fitness values to the particles according to the pre-

defined objective functions;

3. Memorization, for each particle, compare current fitness value with its per-

sonal best position, store the better one as the new personal best position;
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4. Navigation, compare the fitness values of all particles, locate the particle

that has the best fitness value, and store it as the global best position;

5. Acceleration, update the velocity of all particles using Eq. 3.1;

6. Swarming, limit the velocities and update the position of all particles using

Eq. 3.2;

7. Iterating, repeat from Step 2 until the maximum number of iterations is

reached or a satisfying result is achieved.

3.2 Extending Particle Swarm Optimisation into

Multi-Objectives Optimisation

It has been shown that PSO is an efficient algorithm for solving single objective

optimisation problems [Poli, 2008]. PSO has the advantages of a simpler struc-

ture and a lower computation cost, as well as a fast convergence speed. In order

to introduce these advantages into the optimisation of multi-objective problems,

many studies have been published. Coello proposed an algorithm [Coello Coello

and Lechuga, 2002] that extended PSO to handle multi-objective problems us-

ing a non-dominated and hypercube archiving technique, and Raquel presented

a multi-objective PSO [Raquel and Naval, 2005] using a crowding distance rank-

ing technique. There are many different variations of multi-objective PSO each

introducing different techniques for tackling specific problems [Coello Coello and

Lechuga, 2002; Hu et al., 2003; Raquel and Naval, 2005; Zhang and Mahfouf,

2006].

However, when modifying PSO to solve multi-objective problems, researchers

must face the trade-off between keeping the advantages of PSO, such as a lower

computation cost and a fast convergence speed, and ensuring the ability of finding

the true optimal front. Each algorithm may perform quite differently for differ-

ent dimensional problems. For example, MOPSO [Coello Coello and Lechuga,

2002] and MOPSO-CD [Raquel and Naval, 2005] are easily trapped in multi-
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modal problems. [Hu et al., 2003] showed interesting results in two-dimensional

problems (ZDT series), but they did not run the simulation for higher dimen-

sional problems, [Zhang and Mahfouf, 2006] proposed a modified PSO called

nMPSO which extends PSO using a ‘momentum term’ and a dynamic weighted

aggregation, and the simulation results are very competitive in Zhang’s work.

However, by using the weighted aggregation ranking, the algorithm ‘shifts’ the

multi-objective problem into a single objective one.

MOPSO [Coello Coello and Lechuga, 2002] was proposed based on the storing

of a grid-structure (hypercube) archive. However, in MOPSO, the hypercubes are

simply used to assign the particles with density information for ranking purposes.

The dividing bounds of objective space are not adjustable, and the approach

helps to maintain the diversity of solutions but has no benefit for the convergence

properties of the algorithm.

In this chapter, a dynamic hypercube archive (DHA) will be designed to

exploit the hypercubes more efficiently. DHA participates in the whole process

of the optimisation, and it is structured to save not only the density status, but

also the distance information. The density and distance information will be used

for global best selection and population competition (pool selection), via which

the DHA can improve the algorithm’s performance in terms of the convergence

rate and the diversity of solutions.

An extended multi-objective PSO algorithm mPSO-DHA is proposed using

dynamic hypercube archiving (DHA), mutation operator, weight adapting mech-

anism, enhanced global selection strategy and pool selection technique. This al-

gorithm is designed to improve the performance of PSO in solving multi-objective

problems. The dynamic hypercube archive is used via an enhanced global selec-

tion mechanism, which includes the ability of keeping the diversity of solutions,

and DHA is also structured to gather the distance information for population

competitions. A mutation operator is designed in order to increase the chances

of jumping out from local Pareto-fronts, and weight adaptation boosts the local

searching process of the algorithm. A pool selection procedure is integrated in

order to increase the selection pressure. The simulation results using 2-D and

28



3. A MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION
ALGORITHM WITH APPLICATIONS TO MULTIPLE

OBJECTIVE PROBLEMS

3-D benchmark problemsare presented in order to show the generality of the

algorithm. In addition, comparative studies with other PSOs and evolutionary

algorithms are carried out, which determines whether mPSO-DHA is competitive

with other popular multi-objective optimisation algorithms.

3.3 A Multi-objective Particle Swarm Optimi-

sation Algorithm with a Dynamic Hyper-

cube Archive, Mutation and Population Com-

petition

The proposed algorithm extends the single objective PSO algorithm to solve

multi-objective problems. The new approach introduces a dynamic hyper-cube

archive (DHA) to keep the diversity of the solutions, and includes a simple muta-

tion operator to enhance the algorithm’s global search ability. A weight adapting

and pool selection technique are integrated to enhance the performance of finding

local optimal solutions. The algorithm is described in the following section.

3.3.1 Algorithm Structure

The algorithm structure is similar to the original PSO. Before the process starts:

initialise the position of all particles Xi in the population POP randomly in the

search space; and initialise all velocities of particles Vi to zero. The following

procedure is implemented:

1. Locate the position of particles in the population POP according to the

hyper-cubes; the hyper-cube generation process will be proposed later in

Section 3.3.2. Save POP with density and distance information, and save

the current generation of POP to POPold.

2. Update the velocity of ith particle using the following equation:
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V n
i =





wi ×R1 × V n−1
i +

α× [C1 ×R2 × (XPbi −Xi)+

C2 ×R3 × (XGbi −Xi)], if n ≤ 100

wi ×R1 × V n−1
i + C1 ×R2 × (XPbi −Xi)

+C2 ×R3 × (XGbi −Xi), if n > 100

(3.3)

the equations are modified from the basic PSO [Shi and Eberhart, 1998a],

where wi is the inertia weight, which applies the effect to the particles from

its recent behaviour. R1, R2, R3 ∈ [0, 1] are random values, α is a control

factor, C1, C2 are learning factors, n is the number of current generation,

i is the number of current particle, and N is the maximum iterations. The

global best point XGbi is chosen from the archive. The global best point is

randomly chosen from those cubes that have shorter distance to the origin-

cube than the cube that Xi is currently in. The Pseudo-code for global best

selection will be shown in Section 3.3.6.

The velocity limitation V max is set to 0.2 · (Xuplim−X lowlim), where Xuplim,

X lowlim are the upper and lower bound of the objective values. When

n ≤ 100, the use of α = n/100 is to keep the “Personality” of particles,

which at the very beginning of the optimisation weakens the effects from

other particles, then the accelerate factor increases so that the particle

can be guided in the later stage of the optimisation. Also, it should be

noticed that the inertia weight wi is dynamically changing through the

whole process. The mechanism of weight changing will be discussed in

Section 3.3.3.

3. Update the position of all particles in POP using the following equation:





Xn
i = Xn−1

i + V n
i ,

IF Xn
i > Xuplim,THEN Xn

i = Xuplim, V n
i = −V n

i ,

ELSEIF Xn
i < X lowlim,THEN Xn

i = X lowlim, V n
i = −V n

i .

(3.4)
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4. Carry-out the mutation process with designed mechanism in Section 3.3.4

and a predefined mutation probability Pm;

5. Evaluate the objective values of all particles;

6. For each particle, update the particle best point if the old one is dominated

by the current result;

7. Store all non-dominated particles to a global result storage Gstore, delete

dominated ones, and replace points in the higher dense cubes when the size

of Gstore reaches the store limitation - the Pseudo-code for archive replacing

will be discussed later in Section 3.3.2.

8. Merge POP and POPold to a new set of particles pool. Decide whether the

pool selection should be started based on the mechanism in Section 3.3.5,

if yes, choose particles from pool until generate a new POP.

9. Go to step 1 for the next iteration if n < N .

3.3.2 The Dynamic Hyper-cube Archiving and Its Modi-

fications

In order to identify the density of solutions in the objective space, and to make

the ranking process simpler, the hyper-cube archiving technique is used in this

algorithm. The objective space will be divided into a series of hyper-cubes, the

procedure of hyper-cube generation is as follows:

1. Divide every dimension of the explored objective space equally intoM parts,

where M is a predefined value. The whole objective will then be divided

into Md hyper-cubes, d is the number of dimensions in objective space.

The upper and lower bounds of the explored objective space are updated

through the following mechanism: for every dimension of objective value,

set the upper limit to the maximum of both the population and archive,

then change the lower bound to the minimum of population only when the

minimum of population is less than the current lower bound.
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2. For each one of the particles, identify the hyper-cube that contains the

particle.

3. For those hyper-cubes which are not empty, define Density as the number of

particles it contains. Then, assign a coordinate that represents its position,

for example, in a 2-D problem where the space is divided into 62 hyper-

cubes, the coordinate for hyper-cube A in Fig. 3.1 is (3,1), and hyper-cube

B’s coordinate is (0,0). Calculate the euclidean distance Distance to the

origin-cube according to the current coordinate system.

0 0.1 0.2 0.3 0.4 0.5 0.6
2

3

4

5

6

7

8

Objective 1

O
bj

ec
tiv

e 
2

 

 

B

A

Figure 3.1: Hyper-cube Coordinating

4. Structure the archive storage as (Particles, Density, Distance), save the

particles with the corresponding density and distance information.

When the archive reaches the predefined size limit, the new non-dominated

particles will replace the particles in the archive through Algorithm 3.1, where

RAND(A) means selecting a particle randomly from particle set A.
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Algorithm 3.1 Pseudo-code of archive maintaining

Pnew = new non-dominated particle
Gdens = particles in Gstore with largest Density
Gfar = particles in Gstore with largest Distance
Densitymax = max(Density)
if Gdens ∩Gfar 6= ∅ then

RAND(Gdens ∩Gfar) = Pnew

else
if Densitymax = 1 then

RAND(Gfar) = Pnew

else
RAND(Gdens) = Pnew

end if
end if

3.3.3 The Weight Adaptation

The purpose of designing the weight adaptation mechanism is to enhance the

particle’s local searching ability. During the non-dominated sorting and hyper-

cube archiving process, every particle in the population will be given a flag F , the

flag is an indicator of whether the particle explored better solutions. Assuming

that F = 1 represents the better solution found, F = 0 means no particle is

dominated by the current particle and the current particle is not dominated by

any particle in the archive, and F = −1 shows current particle is dominated

by particles in the archive. The weight changing mechanism can be defined as

follows:

wni =





min(2, wn−1
i × 2), if F = 1

wn−1
i , if F = 0

max(0.125, wn−1
i /2), if F = −1

(3.5)

If the current particle dominated any of the particles in the archive, other

better solutions may be found in the future in the direction of the current parti-

cle’s velocity. To keep the direction of the current state, the inertia weight wi is

multiplied by 2. Vice-versa, when the current particle is dominated by any par-

ticle in the archive, it is undesirable for the particle to move towards the current
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direction, hence, wi will be decreased. As the initial wi is set to 0.5, the scaling

range of wi is limited to 4 times bigger or smaller of the initial value, which will

prevent the particles from moving erratically.

3.3.4 The Mutation Operator

A mutation operator is used to maintain the global search ability. The mutation

rate is independent from the iteration number so that the algorithm can jump

out of the local optima all the time in multi-modal problems. When the changes

of the whole archive tend to decrease, the mutation process will begin.

The degree of changes Qn in the archive is defined as Qn = Ŝn−1/Sn−1. Where

n is the index of iterations; Sn is the average shortest distance from current archive

to the previous one, this distance is computed after the shortest distance from

every point to the points in previous archive is determined; Ŝn is the standard

deviation of Sn in the last five generations. Ŝn and Sn can be calculated using the

following equations, where i and j mean the ith and jth particle in the archive,

and G is the particle in the archive.

Sn = meanj(min
i

∑
d

(Gd
j −Gd

i )
2)

Ŝn = STDn
n−5S

n
(3.6)

When Qn < 0.2, which means that the change of the archive tends to be small,

the mutation will start. For every particle in the population, if Rand(1) < Pm,

X being the objective value of current particle in the population, and d being

randomly chosen from all the variable dimensions, the mutation may be defined

as follows:

Xn
d = Xn−1

d + (Xuplim
d −X lowlim

d )× 0.25× (0.5− Rand(1)) (3.7)
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3.3.5 Pool Selection

A pool selection technique is introduced to increase the selection pressure of

the original PSO. It is a simple competition mechanism between the particles in

the current population and the old population. Similar to the shortest average

distance from archive to archive in the mutation operation, the shortest average

distance from population to population is used here to determine when to start

the pool selection process. Assume n being the index of the iterations, N being

the maximum number of iterations, and Qn
p being the variation of population,

when n < N − 200 and Qn
p > 0.1, which means the change of particle positions

tends to be large, the whole population may be misleading and may run randomly

in the search space. In this case, the current population POP will be merged

with the previous population POPold, and the particles with the shorter distance

to the origin-cube (the origin-cube is defined through hyper-cube generation, not

the regular zero point) will be selected as the new population. The condition

n < N − 200 keeps the diversity of solutions at the end stage of the optimisation.

The variation of population Qn
p is defined as Qn

p = Ŝn−1
p /Sn−1

p , where,

Snp = meanj(min
i

∑
d

(Xd
j −Xd

i )2)

Ŝnp = STDn
n−5S

n
p

(3.8)

3.3.6 Global Best Selection

Based on the cube density and distance information which can be acquired from

hyper-cube generation process, the global best guide selection algorithm for each

particle will be selected through the following pseudo-code in Algorithm-3.2.

It should be noted that in the last 200 generations of the optimisation, the

global best particle will be selected both from the nearest and farthest particles,

this is to keep the diversity of the solutions.
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Algorithm 3.2 Pseudo-code of Global Best Particle Selection

n is the index of the iterations, and N is the maximum number of iterations.
XGbi = global best point for Xi

Gs = particles in Gstore with smaller Distance than Xi

Gnear = particles in Gstore with smallest Distance
Gfar = particles in Gstore with largest Distance
Gsparse = particles in Gstore with smallest Density
if Gs = ∅ then
XGbi = RAND(Gsparse)

else
if n > N − 200 then
XGbi = RAND(Gnear ∪Gfar)

else
XGbi = RAND(Gnear)

end if
end if

3.4 Experimental Studies using mPSO-DHA

In this part, the modifications and improvements are tested using different pa-

rameter settings in order to determine the best parameters and performances.

The analyses are based on the experiments using different benchmark functions

under different settings of population sizes, cube numbers and mutation rates.

Two performance metrics GD and ∆ [Deb, 2008] are calculated to provide an

intuitive image of the effects of different parameters.

3.4.1 Benchmark Functions

The mPSO-DHA algorithm is developed to improve the multi-objective optimi-

sation performance of the original PSO. A series of multi-objective benchmark

functions are selected as they are designed to test the algorithm in different sit-

uations, such as multi-modality and separability. The well-known benchmark

functions ZDT series (2-dimensional, listed Eqs. 3.9 - 3.12) and DTLZ series

(3-dimensional, listed Eqs. 3.13 - 3.16) in [Deb et al., 2002; Zitzler et al., 2000]

are used in the experimental studies, and Figs. 3.2 and 3.3 plot the Pareto-fronts
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of the benchmark functions.

1. Benchmark function – ZDT1 (concave)

Minimize (f1, f2), where:

f1(x) = x1

f2(x) = g(x) · (1.0−
√
x1/g(x))

g(x) = 1.0 +
9

n− 1

n∑
i=2

xi

subject to 0 ≤ xi ≤ 1, for i = 1, · · · , n

(3.9)

2. Benchmark function – ZDT2 (convex)

Minimize (f1, f2), where:

f1(x) = x1

f2(x) = g(x) · (1.0− (x1/g(x))2)

g(x) = 1.0 +
9

n− 1

n∑
i=2

xi

subject to 0 ≤ xi ≤ 1, for i = 1, · · · , n

(3.10)

3. Benchmark function – ZDT3 (disconnected)

Minimize (f1, f2), where:

f1(x) = x1

f2(x) = g(x) · (1.0−
√
x1/g(x)− (x1/g(x)) sin(10πx1))

g(x) = 1.0 +
9

n− 1

n∑
i=2

xi

subject to 0 ≤ xi ≤ 1, for i = 1, · · · , n

(3.11)
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Figure 3.2: Pareto-front for ZDT series

4. Benchmark function – ZDT4 (multi-modal)

Minimize (f1, f2), where:

f1(x) = x1

f2(x) = g(x) · (1.0− (x1/g(x)2))

g(x) = 1.0 + 10(n− 1) +
n∑
i=2

(x2
i − 10 cos(4πxi))

subject to 0 ≤ x1 ≤ 1,−5 ≤ xi ≤ 5, for i = 1, · · · , n

(3.12)
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Figure 3.3: Pareto-front for DTLZ series

5. Benchmark function – DTLZ1 (multi-modal)

Minimize (f1, f2, f3), where:

f1(x) = 1
2
x1x2(1 + g(xM))

f2(x) = 1
2
x1(1− x2)(1 + g(xM))

f3(x) = 1
2
(1− x1)(1 + g(xM))

xM = (x3, · · · , xn)

g(xM) = 100(|xM |+
∑

xi∈xM

(xi − 0.5)− cos(20π(xi − 0.5)))

subject to 0 ≤ xi ≤ 1, for i = 1, · · · , n

(3.13)
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6. Benchmark function – DTLZ2 (spherical)

Minimize (f1, f2, f3), where:

f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2)

f2(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2)

f3(x) = (1 + g(xM)) sin(x1π/2)

xM = (x3, · · · , xn)

g(xM) =
∑

xi∈xM

(xi − 0.5)2

subject to 0 ≤ xi ≤ 1, for i = 1, · · · , n

(3.14)

7. Benchmark function – DTLZ3 (complex, multi-modal)

Minimize (f1, f2, f3), where:

f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2)

f2(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2)

f3(x) = (1 + g(xM)) sin(x1π/2)

xM = (x3, · · · , xn)

g(xM) = 100(|xM |+
∑

xi∈xM

(xi − 0.5)− cos(20π(xi − 0.5)))

subject to 0 ≤ xi ≤ 1, for i = 1, · · · , n

(3.15)

8. Benchmark function – DTLZ6 (disconnected)

Minimize (f1, f2, f3), where:

f1(x) = x1, f2(x) = x2

f3(x) = h(xM)(1 + h(f , g))

xM = (x3, · · · , xn)

g(xM) = 1 + 9
n−2

∑
xi∈xM

(xi)

h(f , g) = 3−
2∑
i=1

( fi
1+g

(1 + sin(3πfi)))

subject to 0 ≤ xi ≤ 1, for i = 1, · · · , n

(3.16)

40



3. A MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION
ALGORITHM WITH APPLICATIONS TO MULTIPLE

OBJECTIVE PROBLEMS

3.4.2 The Metrics of Algorithm Performance

Also, it is necessary to compare the performance of mPSO-DHA to other multi-

objective optimisation algorithms. Hence, GD and ∆ in [Deb, 2008] provide

the ideal approach to summarise the features of different algorithms both on

convergence and diversity.

The metric GD is a value that measures the distance from the solutions to

the true Pareto-front of the problem. With this metric, the characteristic of

converging speed can be easily obtained. GD is defined as follows [Deb, 2008]:

GD =

(
|Q|∑
i=1

dmi )1/m

|Q| (3.17)

where m is the number of objectives, Q is the obtained Pareto solution set by

the algorithm, di is the Euclidean distance from the solution i ∈ Q to the

nearest member of the true Pareto set P , a set of |P | = 500 uniformly

distributed Pareto-optimal solutions are selected.

∆ is a metric that describes how well is the distribution of solutions, so that

the diversity of solutions can be measured. ∆ is defined as follows [Deb, 2008]:

∆ =

M∑
m=1

dεm +
|Q|∑
i=1

∣∣di − d̄
∣∣

M∑
m=1

dεm + |Q| d̄
(3.18)

where di is the distance between the neighbouring solutions in the Pareto

solution set Q. d̄ is the mean value of all di. d
ε
m is the distance from the

extreme solutions of P and Q along the mth objective.
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3.4.3 The Effect of Swarm Sizes

An experiment is designed to test the mPSO-DHA algorithm under different set-

tings of swam sizes (5, 10, 25, 50, 100) using the ZDT series benchmark functions

in [Zitzler et al., 2000]. The other parameter are set as in Table 3.1.

The results in Table 3.2 are generated from an average of 10 independent runs

under every different population settings. It is shown that for ZDT1, ZDT2 and

ZDT3, the convergence measurement GD reaches the best (highlighted in red

color) when the swam size is set to 25. For ZDT4, all settings have failed to

converge. Swam sizes 5, 10 and 25 result in the same level of GD, but the value

10 performs slightly better than other values of swam sizes.

The diversity measure ∆ becomes the smallest when the swam size is set to

25 for the problem ZDT2, ZDT3 and ZDT4. The ∆’s for ZDT1 are very similar

that they are with little variance, and the best ∆ for ZDT1 is obtained using the

swam size of 10.

Table 3.1: Parameter settings - effect of swam sizes

Archive size M hypercubes wi C1 C2 α Pm Evaluation times

100 30 Adaptive 1 2 0.5 0.5 25000

3.4.4 The Effect of Cube Numbers

This part provided the results of the experiment using different values of cube

numbers, in order to analyse the effect of cube number settings in mPSO-DHA.

Cube numbers (10, 30, 50) are used in the experiments, and other parameters

are set as in Table 3.3. All the results are calculated based on the results of 10

independent runs for each cube number setting.

It can be concluded from the results in Table 3.4 that for simpler problems

ZDT1, ZDT2 and ZDT3, the cube number 30 leads to better results in the com-

parison of the convergence measures GD, and cube numbers 30 and 50 lead to

similar results in convergence measure.
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Table 3.2: Test results under different swam size settings

Swam size 5 10 25 50 100

ZDT1

GD
1.184E-3 8.103E-4 7.722E-4 1.126E-3 3.240E-3

(3.925E-4) (4.584E-5) (5.927E-5) (2.579E-4) (3.262E-4)

∆
4.970E-1 4.929E-1 5.271E-1 4.937E-1 5.244E-1

(2.495E-2) (1.973E-2) (3.760E-2) (2.521E-2) (3.254E-2)

ZDT2

GD
2.584E-2 7.124E-2 3.088E-4 3.960E-4 5.318E-4

(6.216E-4) (9.188E-2) (4.249E-5) (8.173E-5) (3.467E-4)

∆
6.111E-1 5.227E-1 5.091E-1 5.099E-1 7.585E-1

(3.797E-2) (3.195E-2) (1.850E-2) (4.190E-2) (2.234E-1)

ZDT3

GD
1.099E-2 6.267E-4 5.807E-4 8.231E-4 2.160E-3

(2.056E-2) (2.472E-4) (2.542E-5) (1.025E-4) (4.800E-4)

∆
9.107E-1 9.491E-1 7.078E-1 8.456E-1 8.207E-1

(1.770E-1) (1.189E-1) (4.574E-3) (8.476E-2) (2.328E-2)

ZDT4

GD
2.934E-1 1.030E-1 2.059E-1 1.026 2.462

(3.380E-1) (1.248E-1) (1.523E-1) (8.908E-1) (2.077)

∆
1.470 1.280 9.548E-1 1.629 1.194

(2.353E-1) (4.149E-1) (4.876E-1) (1.658E-1) (2.527E-1)

Table 3.3: Parameter settings - effect of cube numbers

Archive size Swam size wi C1 C2 α Pm Evaluation times

100 25 Adaptive 1 2 0.5 0.5 25000

The results for ZDT1 and ZDT2 plot a trend suggests that a bigger cube

number leads to a better ability to keep the diversity of the solutions. However,

in the tests for ZDT3 and ZDT4, this trend is not proved. It is shown that better

performances for ZDT3 and ZDT4 require a cube number that is neither too

big nor too large. The reasons for this are, that for ZDT3, the Pareto-front is

disconnected. A too big or small value of cube number may cause the algorithm

to exert more efforts on the disconnected part of the objective space; for ZDT4,

the objective space are large scale and the Pareto-front is multi-modal, hence a
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cube number value that is too big or small will lead to the outcome that the

solutions spread over different local optimal fronts.

Table 3.4: Test results using different cube numbers

Cube Number 10*10 30*30 50*50

ZDT1

GD
8.509E-4 7.722E-4 8.952E-4

(2.123E-4) (5.927E-5) (1.427E-4)

∆
6.304E-1 5.271E-1 4.429E-1

(1.515E-2) (3.760E-2) (1.528E-2)

ZDT2

GD
3.838E-4 3.088E-4 3.865E-4

(1.098E-4) (4.249E-5) (4.822E-5)

∆
6.703E-1 5.091E-1 4.653E-1

(4.755E-2) (1.850E-2) (4.884E-2)

ZDT3

GD
6.473E-4 5.807E-4 5.914E-4

(1.192E-4) (2.542E-5) (1.693E-4)

∆
9.949E-1 7.078E-1 8.707E-1

(1.718E-1) (4.574E-3) (2.846E-2)

ZDT4

GD
7.172E-1 2.059E-1 2.045E-1

(9.513E-1) (1.523E-1) (1.784E-1)

∆
1.374 9.548E-1 1.670

(3.054E-1) (4.876E-1) (2.231E-1)

3.4.5 The Effect of Mutation Rates

Another experiment is carried out in this part to determine the effect of different

mutation rates. Mutation rates (0.1, 0.3, 0.5, 0.7, 0.9) are used in the experiments,

and other parameters are set as in Table 3.5. All results are calculated based on

the results of 10 independent runs after changing to different mutation rates.

Table 3.6 shows the test results using different mutation rates. From the

results of ZDT1 and ZDT2, it can be seen that GD increases when the mutation

rate becomes large. The ∆ measure, in contrast, is decreasing at the same time.
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Table 3.5: Parameter settings - effect of mutation rates

Archive size Swam size wi C1 C2 α M Evaluation times

100 25 Adaptive 1 2 0.5 30 25000

Table 3.6: Test results using different mutation rates

Mutation rate 0.1 0.3 0.5 0.7 0.9

ZDT1

GD
4.503E-4 7.330E-4 7.722E-4 1.134E-3 1.580E-3

(1.136E-4) (1.027E-4) (5.927E-5) (2.009E-4) (2.040E-4)

∆
5.504E-1 5.291E-1 5.271E-1 4.853E-1 4.901E-1

(3.748E-2) (3.685E-2) (3.760E-2) (3.593E-2) (2.143E-2)

ZDT2

GD
1.783E-4 2.416E-4 3.088E-4 4.505E-4 6.990E-4

(3.331E-5) (3.974E-5) (4.249E-5) (4.029E-5) (1.395E-4)

∆
6.179E-1 5.744E-1 5.091E-1 5.142E-1 4.890E-1

(4.066E-2) (1.374E-2) (1.850E-2) (2.345E-2) (1.549E-2)

ZDT3

GD
5.102E-4 6.101E-4 5.807E-4 7.408E-4 7.627E-4

(3.396E-5) (9.101E-5) (2.542E-5) (1.599E-4) (2.652E-5)

∆
8.587E-1 8.733E-1 7.078E-1 8.609E-1 9.025E-1

(2.645E-2) (7.289E-2) (4.574E-3) (4.753E-2) (1.627E-1)

ZDT4

GD
2.083E-1 2.321E-1 2.059E-1 4.804E-1 2.172E-1

(1.108E-1) 3.458E-1 (1.523E-1) (1.934E-1) (2.809E-1)

∆
1.552 1.463 9.548E-1 1.779 1.513

(3.193E-1) (2.886E-1) (4.876E-1) (1.250E-2) (2.935E-1)

It can be concluded that for simpler problems, a bigger mutation rate will lead

to a slower convergence speed and a better distribution of the solutions.

However, the aforementioned conclusion does not apply to the problems ZDT3

and ZDT4, the results of which indicate that the solutions for ZDT3 are closest

to the Pareto-front when the mutation rate is set to 0.1, and have a better distri-

bution when the rate is set to 0.5. The best solutions for ZDT4 are found with

the mutation rate of 0.5.

45



3. A MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION
ALGORITHM WITH APPLICATIONS TO MULTIPLE

OBJECTIVE PROBLEMS

3.4.6 Analysis of Experimental Results

The final tuned parameters can be set at last after the experimental studies. Fig.

3.4 plots the curve of the GD and ∆ changing using different population settings.

The effect of cube numbers is shown in Fig. 3.5, and Fig. 3.6 draws the curve

when the mutation rate is changing.
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Figure 3.4: Generalized GD and ∆ changes using different population settings
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Figure 3.5: Generalized GD and ∆ changes using different cube nubmers

It can be clearly concluded that the swam size 25 performed better in most

of the experiments. In the tests of cube numbers, the value 30 outperformed
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Figure 3.6: Generalized GD and ∆ changes using different mutation rates

the others. Setting the mutation rate to 0.5 can keep the balance between the

convergence speed of the algorithm and the diversity of the solutions.

These values, i.e. swam size 25, cube number 30, and mutation rate 0.5, will

be used in the following comparative studies with other algorithms.

3.5 Comparisons with Other Multi-objective Par-

ticle Swarm Optimisation Algorithms

The initial design intent of mPSO-DHA is to ehance the multi-objective optimisa-

tion performence of PSO, hence, a comparitive study with other multi-objective

PSO algorithms is necessary. Therefore, two widely used multi-objective PSO

algorithms MOPSO [Coello Coello and Lechuga, 2002] and MOPSO-CD [Raquel

and Naval, 2005] are compared with mPSO-DHA in this section.
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3.5.1 Performance in Two-objective Benchmark Functions

The tests were first carried out on the well-known test functions presented by

[Zitzler et al., 2000] (ZDT Series).

3.5.1.1 Test function - ZDT1

ZDT1 is a simple concave test function. In this experiment, the number of vari-

ables n was set to 30, and the parameters are set as in Table 3.7. The parameters

for MOPSO and MOPSO-CD are the same as they were in [Coello Coello and

Lechuga, 2002] and [Raquel and Naval, 2005]. The maximum generation is ad-

justed so that the maximum evaluation times for the three algorithms are all set

to 25000. Also, it should be noted that the mutation operator in MOPSO-CD is

different from the one in mPSO-DHA.

Table 3.7: Parameter settings for ZDT1

MOPSO MOPSO-CD mPSO-DHA

Swam size 40 100 25

Archive size 200 500 100

M hypercubes 30 N/A 30

wi 0.4 0.4 Adaptive

C1 1 1 1

C2 1 1 2

α N/A N/A 0.5

Pm N/A 0.5 0.5

N 625 250 1000

The simulation results being shown in Fig. 3.7, it can be seen that the solu-

tions found by mPSO-DHA are better than both the other two PSOs. MOPSO,

and MOPSO-CD even failed to find the true Pareto-front after 25000 evaluation

times.
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Figure 3.7: Simulation Results For ZDT1

3.5.1.2 Test function - ZDT2

ZDT2 is a simple convex test function, and the number of variables is set to

n = 30. The parameters for this simulation are similar to those for ZDT1. The

maximum evaluation time is set to 25000 as well. The solutions found by the

three algorithms are shown in Fig. 3.8, where it was found that mPSO-DHA

outperformed the other two algorithms. MOPSO is not able to keep the diversity

of the solutions and only one point (0,3.2) is shown in Fig. 3.8.

3.5.1.3 Test function - ZDT3

The difficulty of ZDT3 is that it has disconnected Pareto-fronts, and here n = 30

was chosen. The parameters for this simulation are similar to those of ZDT1.

The maximum evaluation time is still no more than 25000. According to the

simulation results presented in Fig. 3.9. mPSO-DHA found the true five parts of

Pareto-front while the other two algorithms did not find the real optimal fronts.
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Figure 3.8: Simulation Results For ZDT2
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Figure 3.9: Simulation Results For ZDT3

3.5.1.4 Test function - ZDT4

ZDT4 has 219 local Pareto-fronts. These local optima represent a real challenge to

the algorithms’ ability of solving a multi-modal problem; n = 10 is chosen in this

problem. The parameters for this simulation are similar to those of ZDT1, except
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N is set to 1875 for MOPSO, 750 for MOPSO-CD and 3000 for mPSO-DHA, so

that the maximum evaluation time is 75000 for all the three algorithms. The

results are plotted in Fig. 3.10; it can be seen that mPSO-DHA found the true

Pareto-front, and the other two algorithms failed to find the optimal-solutions.

MOPSO has even converged to only one solution (0,7). This result shows that

mPSO-DHA has the ability to solve multi-modal problems and can avoid local

Pareto-fronts.
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Figure 3.10: Simulation Results For ZDT4

3.5.2 Performance Assessment using Three-objective Bench-

mark Functions

Because problems in the real world would almost certainly not always be of a low

dimensional nature, it is important to test the algorithm under more challenging

conditions which involve more objectives to be optimised. [Deb et al., 2002]

proposed a series of multi-dimensional problems called DTLZ Series in 2002.

Simulations under a 3-D situation will be conducted in the following parts:
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3.5.2.1 Test function - DTLZ1

DTLZ1 is a multi-modal test function that has (115− 1) local Pareto-fronts, and

the number of variables n = 7 is chosen in this problem as suggested in [Deb

et al., 2002]. The parameters for this simulation is set to be the same as those for

ZDT4, and the maximum evaluation time is 75000 for all three algorithms. As

shown in Fig. 3.11, mPSO-DHA found the true Pareto-front, while the other two

algorithms failed to find the optimal-solutions. This result shows that mPSO-

DHA has the ability of solving multi-dimensional optimising problems and the

performance is better among the three modified PSOs. The scaled results for

mPSO-DHA can be found in Fig. 3.12.
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Figure 3.11: Simulation Results For DTLZ1

3.5.2.2 Test function - DTLZ2

DTLZ2 has a spherical Pareto-optimal front, and n = 7 is chosen in this problem

similarly to what it was in [Deb et al., 2002]. The parameters for this simulation

are similar to those for ZDT1, and the maximum evaluation time is 25000 for all

three algorithms. The results in Fig. 3.13 show that all three algorithms found

the true Pareto-front, however, MOPSO-CD did not converge to all the Pareto-
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Figure 3.12: Scaled Results for DTLZ1

fronts. The solutions found by MOPSO and mPSO-DHA spread evenly across

the Pareto-front surface.

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

 

f1f2

 

f 3

MOPSO−DHA
MOPSO
MOPSO−CD
True Pareto−front

Figure 3.13: Simulation Results For DTLZ2

3.5.2.3 Test function - DTLZ3

Problem DTLZ3 is also a multi-modal test function and it is defined by replacing

the g(xM) function in DTLZ2 with the g(xM) that has been used in DTLZ1.
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Again, as suggested in [Deb et al., 2002], n = 12 is adopted. The parameters

for this simulation are similar to those for ZDT1, N is set as 2500 for MOPSO,

1000 for MOPSO-CD and 4000 for mPSO-DHA, i.e. the maximum number of

evaluation times is set to 100000 for all the three algorithms. Fig. 3.14 presents

the simulation results where it can be seen that mPSO-DHA converged to the

Pareto-front while MOPSO and MOPSO-CD have failed to locate the global

optima. The scaled results for mPSO-DHA can be found in Fig. 3.15.
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Figure 3.15: Scaled Results for DTLZ3
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3.5.2.4 Test function - DTLZ6

DTLZ6 has disconnected Pareto-fronts and a dimensional factor n is set to 22

as suggested in the original paper [Deb et al., 2002]. The parameters for this

simulation are similar to those of ZDT1; the maximum evaluation time is 25000

for all the algorithms. Fig. 3.16 shows the results of the simulations, where it

can be seen that mPSO-DHA performance was superior compared to the other

two algorithms. mPSO-DHA has found the Pareto-front and the diversity of the

solutions is good, MOPSO spreads well but has failed to locate the Pareto-front.

MOPSO-CD has neither found the real optima nor has it distributed the solutions

evenly in the objective space.
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Figure 3.16: Simulation Results For DTLZ6

3.5.3 Measures of the Solutions

In order to provide a brief idea of the performance of mPSO-DHA, the measure-

ment GD for convergence and ∆ for diversity are calculated for the ZDT test

functions in Table 3.8 using all three algorithms. The values are computed from

the average of 10 independent runs, where the maximum evaluation time is set

to 25000.
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Table 3.8: GD and ∆ for ZDT Series Test Functions

Function Algorithm
Mean value of GD Mean value of ∆

(variance σ) (variance σ)

ZDT1

MOPSO 7.616E-2 (4.368E-3) 7.823E-1 (5.689E-3)

MOPSO-CD 7.074E-2 (2.020E-2) 9.929E-1 (1.614E-1)

mPSO-DHA 7.222E-4 (5.927E-5) 5.271E-1 (3.760E-2)

ZDT2

MOPSO 9.372E-1 (1.507E-1) 1.000 (0.000)

MOPSO-CD 9.436E-2 (8.684E-2) 9.142E-1 (1.669E-1)

mPSO-DHA 3.088E-4 (4.249E-5) 5.091E-1 (1.850E-2)

ZDT3

MOPSO 5.872E-2 (1.279E-2) 9.001E-1 (3.110E-2)

MOPSO-CD 5.568E-2 (1.894E-2) 9.860E-1 (7.794E-2)

mPSO-DHA 5.807E-4 (2.542E-5) 7.078E-1 (4.574E-3)

ZDT4

MOPSO 7.885E-1 (3.756E-1) 1.211 (3.650E-1)

MOPSO-CD 4.671E-1 (1.624E-1) 1.901 (3.524E-1)

mPSO-DHA 2.059E-1 (1.523E-1) 9.548E-1 (4.876E-1)

As shown in Table 3.8, mPSO-DHA outperformed MOPSO and MOPSO-CD

in both convergence and diversity. GD and ∆ for the test with ZDT1 are ideal in

that small values represent a good convergence rate and a good diversity of the

solutions. In the simulation of ZDT2, GD is even smaller than it is for ZDT1,

which means that mPSO-DHA converged closer to the real Pareto-front. The

result of ZDT3 shows a larger value for ∆, and this is because of the disconnected

Pareto-front and the computation of ∆ is from the whole set of solutions. The

simulation of ZDT4 includes lager values of GD and ∆, this is to say that mPSO-

DHA failed to converge to the Pareto-front in only 25000 evaluation times, but

2.059E-1 with a standard deviation of 1.523E-1 show that the solutions are very

close to the true Pareto-front. As shown in Section 3.5.1.4, mPSO-DHA can find

the real optima in less than 75000 evaluation times.
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3.6 Comparison with Other Evolutionary Algo-

rithms

The algorithm mPSO-DHA is tested in comparison with other evolutionary al-

gorithms in this section. The compared multi-objective optimisation algorithms

are selected as the Pareto Archived Evolution Strategy (PAES) [Knowles and

Corne, 1999], the Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler and

Thiele, 1998] and the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

[Deb et al., 2000]. The maximum number of evaluation time is set to 25000 for

all algorithms in the following experiments.

The parameters of mPSO-DHA are set the same as in Table 3.7, the settings

for other algorithms are listed as follows:

PAES: Population size 100, maximum generation 250, crossover probability

0.9 and mutation probability 0.01.

SPEA: Population size 80, external population size 20, maximum generation

250, crossover probability 0.9 and mutation probability 1/80.

NSGA-II (binary-coded): Population size 100, maximum generation 250,

crossover probability 0.9 and mutation probability 1/(string-length). 30 bits were

used to code each variable.

Table 3.9 lists the results for all the compared algorithms, the compared results

for PAES, SPEA, and NSGA-II is obtained from [Deb, 2008].

It is shown that for all problems, the metric GD is the smallest for mPSO-

DHA, which means that mPSO-DHA provides the fastest convergence speed

among all four algorithms. The comparison of metric ∆ suggests that NSGA-

II leads to a better distribution of solutions. For the simpler problems ZDT1

and ZDT2, ∆ for mPSO-DHA and NSGA-II are at the same level. However,

the solutions for ZDT3 and ZDT4 found by NSGA-II are much farther from the

Pareto-front than the results of mPSO-DHA, which means there is no advantage

for NSGA-II in disconnected and multi-model problems.
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Table 3.9: Comparison between mPSO-DHA and other evolutionary algorithms

Algorithm mPSO-DHA PAES SPEA NSGA-II

ZDT1

GD
7.722E-4 8.210E-2 1.250E-3 8.940E-4

(5.927E-5) (8.680E-3) (0.000) (0.000)

∆
5.271E-1 1.230 7.300E-1 4.630E-1

(3.760E-2) (4.840E-3) (9.070E-3) (4.160E-2)

ZDT2

GD
3.088E-4 1.260E-1 3.040E-3 8.240E-4

(4.249E-5) (3.690E-2) (2.000E-5) (0.000)

∆
5.091E-1 1.170 6.780E-1 4.350E-1

(1.850E-2) (7.680E-3) (4.480E-3) (2.460E-2)

ZDT3

GD
5.807E-4 2.390E-2 4.420E-2 4.340E-2

(2.542E-5) (1.000E-5) (1.900E-5) (4.200E-5)

∆
7.078E-1 7.900E-1 6.660E-1 5.760E-1

(4.574E-3) (1.650E-3) (6.660E-4) (5.080E-3)

ZDT4

GD
2.059E-1 8.550E-1 9.510 3.230

(1.523E-1) (5.270E-1) (1.130E+1) (7.310)

∆
9.548E-1 8.700E-1 7.320E-1 4.795E-1

(4.876E-1) (1.010E-1) (1.130E-2) (9.840E-3)

From the above comparison, it can be concluded that mPSO-DHA is compet-

itive with other popular evolutionary algorithms, and mPSO-DHA has the ad-

vantage of solving complex multi-objective optimisation problems such as ZDT3

and ZDT4.

3.7 Summary

In this chapter, a multi-objective PSO called mPSO-DHA has been proposed,

which uses dynamic hypercube archiving, a mutation operator, a weight adapting

mechanism, an enhanced global selection strategy and a pool selection technique.

It has then been tested via a series of well-known benchmark functions.
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The effects of the variation of parameters have then been studied and the

final parameters have been determined based on the experiments using ZDT

series functions.

From the experiments in different test functions and comparisons to MOPSO

and MOPSO-CD, the modified mPSO-DHA has proved to be an efficient multi-

objective optimisation algorithm both in convergence and diversity. The proposed

algorithm has performed very well in all the tested problems.

The search speed and the diversity have been significantly improved in the

new mPSO-DHA as it is able to find the Pareto-fronts while the other two multi-

objective PSO algorithms MOPSO and MOPSO-CD did not in ZDT1-3 and

DTLZ6. According to the simulation results with ZDT4, DTLZ1 and DTLZ3,

mPSO-DHA has also outperformed the other two PSOs in solving multi-modal

problems. The new global selection strategy has helped to maintain the diversity

of solutions when keeping the ability of finding the true Pareto-front; this has

been proved in the tests with ZDT2 and DTLZ2.

Comparing with other evolutionary algorithms, mPSO-DHA has outperformed

PAES and SPEA. It has provided competitive results as compared to NSGA-II

in the simpler problems ZDT1 and ZDT2. The advantage of solving complex

problems has led to better results than NSGA-II in solving ZDT3 and ZDT4.

In the next chapter, modelling on steel crack propagation using fuzzy and

neural-network will be described, an error compensation structure using Gaussian

mixture models will also be introduced.
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Chapter 4

Modelling Steel Crack

Propagation using Fuzzy and

Neural-Network, and Error

Compensation via Gaussian

Mixture Models

4.1 Modelling of Material Behaviour

The modelling of material behaviour can generally be categorized into two types:

physically-based modelling (e.g. Rice-Tracey model [Rice and Tracey, 1969], Gur-

son model [Gurson, 1975], or Rousellier model [Rousselier, 1987] combined with

finite element analysis), and data-driven approaches, such as fuzzy modelling,

neural networks etc., also known as Computational Intelligence (CI)-based mod-

els. Through the investigation in material modelling, the physically-based mod-

els and finite element analyses are well-established techniques which proved their

success for a wide spectrum of material properties.

In most of the physically-based models, the material specific parameters need
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to be determined using extensive experimental work or via expert’s knowledge.

Therefore, the user needs to find a different set of parameters in order to apply

the model on a different material. The cost of establishing the right material

properties in the manufacturing of long distance gas pipelines will remain high

unless a deeper understanding of the material’s strength is achieved and this

knowledge is applied during the design phase of the project.

The variability of material properties under certain conditions, which may

also be called scatter, also becomes an issue with the physically-based models.

This may be due to the lack of knowledge between the processing conditions and

the material strength.

Data-driven approaches may have certain advantages in modelling multi-scale

process. These computationally powerful tools can be used to model the relation-

ships among the fracture characteristics, micro-structure data, and process con-

ditions. The data-driven approach may also be combined with physically-based

models as a part of a hybrid model. For example, the parameters in physically-

based model can be estimated using suitably trained Artificial Neural Networks

(ANN).

However, the training data in a data-driven modelling approach must be se-

lected carefully, which means that the data must spread over the problem space

in order to assist the complex function fitting process. The method of experimen-

tal design [Brownlee, 1984] can prove to be very helpful in providing a sufficient

quantity and quality of data, so that the model’s reliability can be improved.

A specific problem is chosen in this chapter to study the performance of data-

driven approaches in modelling material behaviours.

4.2 Modelling of Steel Crack Propagation

High strength steel has proved to be a popular material in recent years, especially

with gas companies when constructing long distance gas pipelines, as it provides

more benefits in resistant high service pressure while the pipe wall thickness re-
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mains unchanged. By using high strength steel in the production of gas pipelines,

the costs of fabrication and transportation can be lowered, this in turn increases

the financial benefits. However, the calibrated empirical method, which is used to

assess the fracture toughness of low toughness material, is no longer able to pro-

vide accurate assessment for the modern tough pipeline steels. Using the Charpy

upper shelf energy predicted by the old application will lead to a large error in

the characterisation of the pipeline fracture’s resistance [Buzzichelli and Scopesi,

2000].

In previous research work [Ayvar et al., 2005], it was suggested that the frac-

ture energy in the Charpy impact test, which relates to the fracture propagation,

can be divided into two parts. One part is related to the flat fracture at the

centre of the typical Charpy fracture surface, and the other part is associated

with the slant fracture at the edges. The latter part is the most important com-

ponent of fracture energy, due to the fact that the dominant failure mechanism in

gas pipeline usually fast propagates a ductile shear, which can be reasonably at-

tributed to the real failure mode. Therefore, for a comprehensive failure analysis,

test specimens with different flat and slant fracture characteristics are required.

The Compact Tension (CT) test is an effective way to measure material tough-

ness. It has been widely used in previous modelling efforts in order to identify

the flat fracture characteristic of the material. The previous report from The

Department of Mechanical Engineering, The University of Sheffield [Soberanis,

2007] analyses the CT test results using the 3D-Cellular Automata Finite Element

(CAFE) approach. This method showed a good performance in simulating the

fracture process, it has however a poor capacity of generalising from one material

to another.

Based on the experiments from [Soberanis, 2007], this chapter presents and

compares two data-driven approaches in order to model the same problem: a)

a neural-fuzzy approach using hierarchical clustering and b) a Back-Propagation

(BP) neural network with a double loop training procedure. The two approaches

are used to model the relationship between the parameters of the steel crack

propagation process and released flat fracture energy in the Compact Tension
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(CT) experiments of X100 gas line pipe steel. The performances of these two

data-driven models will be investigated and compared in order to find an efficient

and accurate method of material modelling.

All experimental data originate from the work carried out in The Department

of Mechanical Engineering, The University of Sheffield [Soberanis, 2007]. Six

compact tension specimens were tested at room temperature, and the specimens

were extracted with the initial crack along the longitudinal direction from the

pipeline. This is the direction of a fast running shear fracture in real structures

in the cases of burst pipelines. The test pieces were machined according to the

specification of ASTM E-1820 [ASTM E 1820–01, 2001].All test samples were

side grooved on each side up to 20% of the specimen original thickness to reduce

shear lip formation and ensure a straight crack front. The specimen thickness

was 15mm and the relation of initial crack length to specimen width was 0.5.

The tests were carried out under displacement control at a low displacement rate

of 0.01mm/s.

The composition of the X100 pipeline steel used in the experiments are shown

in Table 4.1.

Table 4.1: Composition of X100 pipeline steel used in CT experiments

Element C Si Mn P S Cu

Wt% 0.06 0.18 1.84 0.008 0.001 0.31

Element Ni Cr Mo Nb Ti Al

Wt% 0.5 0.03 0.25 0.05 0.018 0.036

The data sets from tests include load, CMOD, crack length and the measure-

ments of released flat fracture energy, a total of 432 data which come from six

test data sets were used to develop the prediction model. In this work, 70% of

the data are used for training the model, and 30% are used for model validation.

Data distributions are shown in Fig. 4.1, which describe the relationships of the

load versus the released energy, the CMOD versus the released energy, and finally

the crack length versus the released energy.
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Figure 4.1: Data Distributions

4.2.1 Correlation Coefficient Analysis

A statistical correlation coefficient analysis was carried out to identify the mag-

nitude of the effect of different inputs to the output. The correlation coefficients

among all variables are also summarised in Table 4.2.

From Table 4.2, it can be concluded that the correlation of CMOD against en-

ergy and crack length against energy is high, which means these two inputs affect

fracture characteristics more than the load does. The coefficient of load against

energy is negative, which may be caused by the decreasing of load in the middle

stage of fracture process, due to the crack speed controlling procedure; the cor-

relation coefficient between CMOD and the crack length is high, this agrees with
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Table 4.2: Correlation coefficients among inputs and output

Variables Load CMOD Crack Length Released Energy

Load 1 -4.865E-1 -5.721E-1 -4.015E-1

CMOD -4.865E-1 1 9.785E-1 9.725E-1

Crack Length -5.721E-1 9.785E-1 1 9.552E-1

Released Energy -4.015E-1 9.725E-1 9.552E-1 1

the fact that CMOD and crack length increase simultaneously during fracture

propagation.

4.3 Fuzzy Modelling on Compact Tension En-

ergy

Fuzzy modelling is a systematic approach which describes the process under in-

vestigation using fuzzy quantities, such as fuzzy sets, fuzzy rules, and linguistic

labels. This approach is frequently used in the modelling of material proper-

ties and process design [Chen et al., 2004]. The main advantage of the fuzzy

modelling technique is its ability of representing nonlinear complex systems us-

ing simple modelling structures, which in materials research can be related to

good prediction performance and good generalisation properties. The linguistics

“if-then” rules are easy to understand by non-experts, which improve the models

transparency.

However, expert knowledge is required to build a fuzzy model, an efficient

way of automatic rule generation or training can be achieved using various data-

driven algorithms. Several improved adaptive fuzzy modelling approaches have

so far been developed to generate the fuzzy rules automatically using fuzzy neural

network training, also known as neural-fuzzy modelling.

One effective method [Zhang and Mahfouf, 2008, 2011] will be described,

whereby hierarchical clustering is used to determine the number of fuzzy rules

65



4. MODELLING STEEL CRACK PROPAGATION USING FUZZY
AND NEURAL-NETWORK, AND ERROR COMPENSATION VIA

GAUSSIAN MIXTURE MODELS

and generate an initial fuzzy rule-base from the data. A gradient decent algorithm

is then applied to optimise the parameters of the fuzzy rule-base.

4.3.1 Fuzzy Modelling using Hierarchical Clustering and

Gradient Decent

Data clustering is considered to be an effective method of generating the initial

fuzzy rule-base. The clustering methods can traditionally be divided into two

categories: hierarchical clustering and partitional clustering. Partitional cluster-

ing methods are either trying to associate data in predefined clusters or finding

areas with higher data density. The advantage of this method is its fast clustering

speed. However, most partitional clustering algorithms come with a degree of in-

accuracy, e. g. they cannot lead to the same clustering result across various runs.

Hierarchical clustering tries to build a tree structure which divides all the data by

levels of similarity and builds parent-child relationships between different levels,

this method yet suffers from high computational costs due to the high structure

complexity [Jain et al., 1999].

Various clustering methods have been developed in the past. An improved hi-

erarchical clustering algorithm [Zhang and Mahfouf, 2008, 2011] was developed to

avoid the inaccuracy of partitional clustering and the high computational com-

plexity of traditional hierarchical clustering method. The methodology of this

approach can be summarised as follows:

1. A desired number of clusters Nc and threshold Nmax are chosen, the thresh-

old is a measurement of whether the data set is too large for computation,

it should be set as Nmax ≥ N
1
2 .

2. If N ≤ Nmax, begin the normal agglomerative complete-link clustering al-

gorithm [Jain et al., 1999] to classify the data into Nc clusters, then end

the clustering stage; if N > Nmax, go to next step.

3. Separate the data equally and randomly into i groups, where i = Ceil(N/Nmax),

Ceil(x) is a function that returns the smallest integral value that is not less
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than x.

4. Classify the data in every group into j sub-clusters using the normal agglom-

erative complete-link clustering algorithm, where j = Floor(N/i), Floor(x)

is a function that returns the smallest integral value that is not larger than

x.

5. Select the representative data from every sub-cluster, the representative

data is the data point which is closest to the centre of every sub-cluster.

6. Construct a representative data set which includes all the i×j < Nmax data

points.

7. Cluster the representative data set into Nc clusters using the normal ag-

glomerative complete-link clustering algorithm.

8. Replace every the representative data point with the original data set in its

corresponding sub-cluster.

From the clustering process, the information about clusters is provided, which

can then be used to construct an initial fuzzy model.

Assume a (D + 1)-dimensional modelling problem, where D is the number of

inputs, and the problem has one output.

Based on the information given by clustering, the rule base is composed and

constructed by Nc fuzzy rules, let Cn represent the nth cluster, DNn is the number

of data points in Cn, the fuzzy rule corresponding to Cn can be presented as the

following form:

Rn : IF x1 is An1 AND x2 is An2 AND xD is AnD THEN y is Zn. (4.1)

where n = 1, 2, · · · , Nc; x = [x1, x2, · · · , xD] are the input linguistic variables;

Ani , (i = 1, 2, · · · , D) is the antecedent fuzzy sets; y is the output linguistic

variables; and Zn is the consequent fuzzy set.
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The Gaussian function is selected as the membership function in this method,

for every fuzzy set Ani , the centre of membership function cni being the centre of

the corresponding dimension, and the width of membership function σni can be

calculated from solving Eq. 4.2,

min
j

(µAn
i
(xnji )) = min

j
(exp(−(xnji − cni )2

(σni )2
)) = Th (4.2)

where j = 1, 2, · · · , DNn. By setting a suitable threshold Th = 0.5, the

generality of the membership function can be guaranteed.

An initial fuzzy model can be constructed once the rule-base generation ter-

minates. A parameter learning or optimising process should then be applied in

order to fine-tune the prediction model. There are several methods which can

be used for training fuzzy models. In this procedure, a gradient-descent opti-

mization algorithm is adopted for tuning the membership function parameters,

which are cni and σni , where the Root Mean Square Error (RMSE) is calculated

as the performance index. The parameter learning progress in kth iteration can

be derived as in Eq. 4.3.

∆cni = λc · (yk − ydk) · (Zn − ydk) · x
nj
i −c

n
i

(σn
i )2
· µn∑

µn

∆σni = λσ · (yk − ydk) · (Zn − ydk) · x
nj
i −c

n
i

(σn
i )3
· µn∑

µn

µn = exp(− (xn−cn)2

(σn)2
)

(4.3)

where λc and λσ are the learning rate.

After the parameter training process is completed, the final fuzzy model is

obtained. The fuzzy modelling results will be discussed next.

4.3.2 Modelling Results

The prediction results of a model with 15 linguistic rules are shown in Fig. 4.2.

As a result of the hierarchical clustering method in the modelling process, the
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RMSE index of predictions remained the same in repeated runs, whose value is

3.0864. The green and red lines are the upper and lower bound of the 10% error

band. It can be seen that the model has predicted the released flat fracture energy

very well in the crack beginning stage while the released energy is low; prediction

is also accurate enough during the fracture propagation, i.e. the released energy

is at the intermediate level; however, at the end of failure, where the released

energy is high, the prediction becomes less accurate.
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Figure 4.2: The Predicted Results for the Fuzzy Model

Fig. 4.3(a) shows the predicted curve, where the released energy is a function

of CMOD. A good agreement between the predicted results and the measurement

is observed. The agreement can also be seen in Fig. 4.3(b), which describes the

released energy as a function of the crack length.

The prediction error in the fracture completing process may be caused by the

inaccurate measurement in the experimental data due to the fast shape change

at the end of the fracture propagation.

The curve in Fig. 4.3(c) shows the released energy as a function of the applied

load. The failure in this figure starts from the bottom left corner, continues to

the right side, and ends at the top left corner.
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Figure 4.3: Predicted Results of Fuzzy Model

Using the fuzzy model, the response surfaces of the process are plotted in

Figs. 4.4. The surfaces provide a crude idea about the interactions among inputs

and output. The energy released rate is slow when the crack length and CMOD

are both very small. The released energy increases as long as the crack length

and CMOD grow. The increase in the load does not come with a high energy

release rate because of the fixed crack propagation speed. Crack length increases

with a fixed CMOD will not lead to the peak energy as there cannot be too much

released energy without large shape changes of specimen. It can be concluded

that the energy released rate changes slightly in the middle stage of fracture, and

increases at the beginning and end of the crack propagation.
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Figure 4.4: Response Surfaces of Fuzzy Model

4.4 Neural Network Modelling on Compact Ten-

sion Energy

The fuzzy model constructed above shows a good performance in predictions

before the end stage of fracture, however, the scatter in the high energy region
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can not be predicted well enough. The ANN approach has proved to be an

efficient method in approximating continuous nonlinear functions. It is therefore

considered to model the same relationship in order to reduce the scatter.

4.4.1 Double-Loop Neural Network Training Procedure

The validated network is a typical three-layer back-propagation (BP) network.

Fig. 4.5 shows a three-layer BP network where there are an input layer, a hidden

layer and an output layer.

ωij ωjkx0 z0

y1

x1

x2

...

xi

Input Layer

z1

z2

...

zj

Hidden Layer

y2

...

yk

Output Layer

Figure 4.5: Three-Layer Neural Network

Typically, the training of a BP network consists of three steps:

1. Initialisation: x0 and z0 are fixed to 1, and all weights ωij and ωjk are

randomlized;

2. Forward process: calculate the network outputs according to the input

values, the forward process follows Eq. 4.4.





zj(n) = fj(
∑
i

ωijxi(n) + bj)

yk(n) = fk(
∑
j

ωjkzj(n) + bk)
(4.4)
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where ωij is the weighted connection from the ith input neuron to the jth

hidden neuron, ωjk is the weighted connection from the jth hidden neuron

to the kth output neuron, zj is the output of the jth hidden neuron, fj and

fk are the activation functions of the respective hidden and output neurons,

and yk is the output of the kth output neuron.

In this problem, sigmoid function is selected as the activation function for

hidden neurons, and linear activation is chosen for output neurons.

3. Backward process: adapt the network weights according to the error per-

formance, the training algorithm is based on Levenberg-Marquardt optimi-

sation, which proved to converge very fast and in most cases can deliver a

good prediction accuracy.

In this part, a BP trained NN network with 8 hidden neurons was adopted.

A BP neural network implemented via a double loop training procedure [Yang

et al., 2003] is described in Fig. 4.6. The inner loop epochs iMax = 10 and outer

loop iterations jMax = 50 were selected for this problem.

Training Data Set
{X(k), Yd(k)}, k = 1− kf

Initialization,
Outer Loop, j = 0

Inner Loop, i = 0

Foward Processing,
{X, W(i)} → Y

Backward Processing,
{Y, Yd, W(i)} →

W(i + 1)

i = i+ 1 > iMAX?

Outer Loop Processing

j = j + 1 > jMAX?

END

Yes

No

Yes

No

Figure 4.6: Double-Loop Training Procedure
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The double loop training procedure has the advantages of monitoring the

training progress and recording the optimal network against the predefined per-

formance criteria.

4.4.2 Modelling Results

During the modelling process, data is divided into three parts: training data

(60%), validation data (25%), and test data (15%). The training subset is used

for updating the network weights and biases and computing the gradient; the

validation subset is used for preventing the network from over-fitting. When the

error on the validation data set begins to rise, the training process should be

terminated.

Due to the variability of neural network training, several trials were performed

in order to find an optimal model. The RMSEs of 5 runs using neural network

model are summarised in Table 4.3. It can be seen that there is a variation of

RMSE values from 6.9796 to 5.0736 in only five trials. The 2nd run with the

error band shown in Fig. 4.7, yield a good performance, which is similar to the

result obtained via the fuzzy modelling approach. The green and red lines in Fig.

4.7 are the upper and lower bound of the 10% error band. The prediction results

of the validated neural network is shown in Fig. 4.8.

Table 4.3: RMSEs of neural network modelling

Trials 1 2 3 4 5 Average

RMSE 5.619 5.073 5.804 6.979 6.305 5.956

Fig. 4.9 plots the response surfaces of the neural network. It can be seen that

the surfaces are not as smooth as the response surfaces of fuzzy model. There are

hardly any information about the process that can be extracted from the response

surfaces. In Fig. 4.9(a), a trend can still be seen that the released energy increases

as long as the load and CMOD increase, although there is a wrinkled part in the

middle of the surface, which is caused by the decreasing of load during the later

stage of crack propagation. In Fig. 4.9(b), only the diagonal direction of the
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Figure 4.7: The Predicted Results for Neural Network
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Figure 4.8: Predicted Results of Neural Network
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Figure 4.9: Response Surfaces of Neural Network

surface shows a logical inference of the propagating of crack: the released energy

increases simultaneously with CMOD and the crack length, other part of Fig.

4.9(b) could not provide any useful information about the crack propagation, the

reason is that the training data is mainly located on the diagonal direction of the
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surface, so that the network was only fitted into that direction. The differences

from the response surfaces of fuzzy model are caused by the different modelling

ideas between neural network and fuzzy model, where neural network is purely

fitting a function according to the given training data, while fuzzy model can

provide limited inferences for the unseen part of data because of the fuzzification

process of data.

4.5 Comparison of the modelling results between

Fuzzy Model and Neural Network

In order to compare the performance of the two modelling methods, the RMSE of

fuzzy model was calculated using the same validation data set. However, no sig-

nificant improvement was observed from neural network, since the NN modelling

RMSE of 5.0736 is even larger than the RMSE of the fuzzy modelling results

which is 4.1747. For the performance comparison in the high energy region, the

RMSEs in that specific region were calculated. The RMSE is 7.5278 for the fuzzy

model and 10.3836 for the neural network model, which means that the NN shows

no improvements in the high energy region.

The two proposed modelling methods proved to be efficient and accurate in

assessing the flat fracture energy and it is possible to use this approach to model

new test data under different process conditions, such as different temperatures,

compositions or micro-structures. However, the large errors (scatter) in the high

energy region still exist in the predicted results of both models, therefore devel-

oping an efficient method in order to avoid this situation becomes a key issue.

An error compensation structure will be discussed next.
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4.6 Error Compensation using Gaussian Mix-

ture Model

There may be errors when embedding validated data-driven models in the real

applications, since the data which is used for model training is from historical

collections and statistics, the model may not be accuracy when new factors or

changes, which may lead to errors, are found in the application. Moreover, when

an established model is moved into a new environment, the slightly differences

of environment may lead to the lost of model accuracy. An error compensation

component – where the component is only based on data analysis and therefore

can save the efforts of developing a completely new model – is an ideal solution

to this situation.

The Gaussian Mixture Model (GMM) method [McLachlan and Peel, 2004] is

considered to be a mature clustering and density estimation method. By apply-

ing it to the modelling process, one can monitor the error distributions of the

predicted result. From the observed error distributions, a compensation proce-

dure can be combined into the model validation stage. A stochastic compensated

model structure, which is drawn in Fig. 4.10, is proposed to isolate the error dis-

tribution mode, and then to establish the correlations with the predictions from

deterministic models.

After building a deterministic model - such as a fuzzy inference system or

a neural network - a GMM will then be used as a stochastic based prediction

reference. The GMM will analyse the error distribution in the training data

space and provide a confidence band for the predictions emanating from the

deterministic model.

4.6.1 Construction of a GMM

The data used to develop the GMM can be the same data set that has been used

for training the deterministic model, it can also be new data set collected after the

model is established. The data set Xe = (xe1, x
e
2, · · · , xen) should consist of inputs
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Figure 4.10: GMM Compensated Model Structure

X = (x1, x2, · · · , xn) and errors E = (e1, e2, · · · , en). The Expectation Maximi-

sation (EM) method will then be carried out in order to tune the parametres of

GMM.

1. Initialize a GMM with randomly chosen parameters. The number of Gaus-

sian componenets will be decided according to the analyses of Bayesian

Information Criterion (BIC), which will be described in Step 6. k-means

clustering is used to generate the initial parameters (ωk, µk, σk), where i

represents the kth component, ωk is the mixing coefficient (weight) for the

corresponding component, µk is the mean (centre) of the component k, and

σk is the covariance matrix (radius) of the component, there GMM can be

therefore described in Eq. 4.5.

P (xen|ω,µ,σ) =
K∑

k=1

ωkg(xen|µk, σk) (4.5)

where P (xen|ω,µ,σ) is the probability of that data point xen exists, g(xen|µk, σk)
is the value of the kth Gaussian component for the data point xen, (ω,µ,σ)

are weight, mean, and radius vectors of all components, and K is the num-
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ber of components.

2. Introduce a variable Zk(x
e
n), which describes the probability of that the

kth Gaussian component generated the nth data point xen, the equation for

computing Zk(x
e
n) is shown in Eq. 4.6;

Zk(x
e
n) =

ωig(xen|µi, σi)
K∑
k=1

ωkg(xen|µk, σk)
(4.6)

3. According to the Gaussian parametres and Zk(xn) that are already calcu-

lated, the statistical weight, mean, and radius (ω̄k, µ̄k, σ̄k) can be computed

for all components using Eq. 4.7.





ω̄k = 1
N

N∑
n=1

Zk(x
e
n)

µ̄k =

N∑
n=1

Zk(xen)xen

N∑
n=1

Zk(xen)

σ̄k =

N∑
n=1

Zk(xen)(xen−µk)(xen−µk)T

N∑
n=1

Zk(xen)

(4.7)

where N is the total number of data points.

4. Compute the likelihood using Eq. 4.9.

P (Xe|ω,µ,σ) =
∏

n

∑

k

Zk(x
e
n) (4.8)

where P (Xe|ω,µ,σ) is the probability of that the whole data setXe belongs

to current GMM.

5. Set (ω̄, µ̄, σ̄) from step 3 as the parameters for next iteration, iterate step

3 and step 4 until the following condition in Eq. 4.9 is satisfied or the

predefined max iteration times are reached.

lnP (Xe|ω̄, µ̄, σ̄)− lnP (Xe|ω,µ,σ) < ε (4.9)
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where ε should be a small positive number, it is set to 1.0 × 10−4 in this

problem.

6. The final number of Gaussian components can be decided after analysing

the Bayesian Information Criterion (BIC) of GMMs fitted using different

number of components. The BIC is defined in Eq. 4.10.

BIC = −2 logP (Xe|ω,µ,σ) +K logN (4.10)

It is obvious that more Gaussian components will fit a better model, which

gives smaller BIC value. However, increasing of components will greatly

aggravate the computational burden. Therefore, a number of components

which leads to a relatively small BIC shall be chosen.

The priori probability P (e|xi), which gives the probability that new input xi

get an error e, can be computed after the GMM is tuned. According to Bayes’

Theorem [Pillai, 2002], P (e|xi) can be derived in Eq. 4.11.

P (e|xi) = P (xi,e)
P (xi)

= P (xi,e)∫
P (xi,ξ)dξ

= P (xi,e)∫ K∑
k=1

ωkg(xi,ξ|µk,σk)dξ

= P (xi,e)
K∑

k=1
ωk

∫
g(xi,ξ|µk,σk)dξ

(4.11)

Hence, the estimated error can be computed using Eq. 4.12:

ē(xi) =

∫
e · P (e|xi)de (4.12)

The estimated error can either be given as a compensating inference or be used

to compute a confidence band for the prediction results from the model, the

confidence band (the expecting error standard deviation) can be computed as in

Eq. 4.13.

Std(e(xi)) =

√∫
(e− ē)2 · P (e|xi)de (4.13)
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Therefore, the error compensated output can be computed using Eq. 4.14.

yci = yi − ē(xi) (4.14)

where yci is the compensated output for the input xi, yi is the output without

compensation for the input xi.

Finally, the error compensated outputs yc with variances Std(e(x)) can be

predicted through the proposed structure.

Experiments are carried out with both the fuzzy model and the neural network

in order to examine the performance of the proposed error compensation struc-

ture. The models which were developed in 4.3 and 4.4 are used in the following

parts.

4.6.2 A GMM-Compensated Fuzzy Model

Firstly, the same data set that was used for model training is imported into the

construction of GMM. The output error distribution, where the training data is

the input, is shown in Fig. 4.11. In order to measure the reliability of the fitted

GMMf1, Fig. 4.12 shows the curves for P (e|xs1) and P (e|xs2),which is the error

probability for given inputs xs1 and xs2.

The parameters of fitted GMMf1 are given in Table 4.4. The BIC analysis

of components number is shown in Fig. 4.13, where k = 5 is chosen. It should

be noted that only crack length and CMOD have been chosen to fit the GMM,

because the input load shows not so relative to the output in section 4.2.1. The

reduction of load proved efficiency in the experiment, in this case of fuzzy model

compensation, the compensated RMSE for data set x4 after reducing of load is

3.4944, yet the RMSE before the reducing of load is 4.3500, which is even larger

that it is before applying the GMM. This is because that the changing of load is

not linear.

The input xs1 is chosen for that it leads to an medium error 1.8622 through all

the inputs, the corresponding output ys1 = 162.4622. It can be seen in Fig. 4.12
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Figure 4.11: Output Error Distribution for Training Data
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Figure 4.12: Error Probability Distribution for Sample Inputs

that the error probability curve reaches its maximum around point (1.36, 0.1721),

the most probable error 1.36 is not far from the actual value 1.8622. Using the

error estimating approach shown in Eq. 4.12, an estimated error of the input

xs1 can be computed, the resulting value is ē(xs1) = 1.3159, which is 70% of the

actual error. The expecting error variance can be calculated as in Eq. 4.13, the
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Table 4.4: Fitted Parameters of GMMf1

k 5

ω 2.734E-1 2.297E-1 2.293E-1 1.072E-1 1.604E-1

µ

CMOD (mm) 4.020 1.445E-1 1.069 8.037 6.743

Crack Length (mm) 4.505 0.000 3.163 8.592 7.550

e (mm) 6.931E-1 1.800E-3 3.850E-2 3.212 -9.230E-2

σ

CMOD (mm) 1.546E-1 1.400E-2 2.474E-1 9.689E-1 9.001E-1

Crack Length (mm) 5.083 1.000E-3 1.000E-1 1.320E-1 7.009E-1

e (mm) 2.793 7.700E-3 2.577E-1 1.890 4.510
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Figure 4.13: BIC analysis for GMMf1

result is Std(e(xs1)) = 2.3180. These values (ē(xs1), Std(e(xs1))) are therefore

predicting an compensated output ycs1 = 161.1463 with a variance of 2.3180.

Another input xs2 is then selected since it is associated with a greater er-

ror 4.3064, where the output without error compensation is ys2 = 186.4264. It

is shown in Fig. 4.12 that the the highest error probability is around point

(2.64, 0.1723), the most probable error is 2.64 comparing to the actual value of

4.3064. Following the same procedure as it has been done for xs1, (ē(xs2) =

2.6233, Std(e(xs2)) = 2.3194) can be computed, the estimated error 2.6233 is
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60.9% of the actual error. The final compensated output is ycs2 = 183.8031 with

a variance of 2.3194.

From the calculation of data point xs1 and xs2, the fitted GMMf1 can generate

estimated error for given inputs, and the compensated outputs are closer to the

real results. It can be concluded that the GMM is well fitted to the training

data, therefore, the GMM are now integrated with the fuzzy model for error

compensation and the outputs’ confidence analysis.

Two new data sets are prepared for the experiment, the distribution of data

sets X2 and X4, together with the the outputs without error compensation Y2

and Y4, are shown in Fig. 4.14. The RMSE of Y2 and Y4 are 2.7823 and 4.1747

respectively.

Fig. 4.15 shows the compensated outputs for X2, and Fig. 4.16 is the com-

pensated result for X4. It can be seen that the compensated outputs reduced the

error, especially in the high energy region. These error reductions are verified

through the computation of RMSE. The RMSE for Y c
2 is 2.7348 (98.29% of the

RMSE before compensation), and 3.4944 for Y c
4 (83.70% of the RMSE before

compensation).

4.6.3 A GMM-Compensated Neural Network

The model used in this part is the same as the network which was trained in

4.4. In order to construct the GMM, the training data is used to generate an

error distribution. However, the fitted GMMn1 cannot predict acceptable error

compensation, the RMSE after compensation (0.9914) is even lager than it was

(0.9904) before the compensation. Fig. 4.17 shows the performance of the ap-

plying GMMn1. Obviously, GMMn1 is not fitted well using the training data.

The bad fitting of GMMn1 is because that the mean error is too small for the

training data set, where it can be seen that the errors spread evenly above and

below zero in all the data range, so that the GMM can not generate meaningful

error compensations.

85



4. MODELLING STEEL CRACK PROPAGATION USING FUZZY
AND NEURAL-NETWORK, AND ERROR COMPENSATION VIA

GAUSSIAN MIXTURE MODELS

−2 0 2 4 6 8 10
−50

0

50

100

150

200

CMOD (mm)

R
el

ea
se

d 
E

ne
rg

y 
(J

)

 

 

X2

X4

(a) CMOD v.s. Released Energy

0 2 4 6 8 10 12
−50

0

50

100

150

200

Crack Length (mm)

R
el

ea
se

d 
E

ne
rg

y 
(J

)

 

 

X2

X4

(b) Crack Length v.s. Released Energy

−10 0 10 20 30 40
−50

0

50

100

150

200

Load (kN)

R
el

ea
se

d 
E

ne
rg

y 
(J

)

 

 
X2

X4

(c) Load v.s. Released Energy

0 50 100 150 200

0

50

100

150

200

Measured Energy (J)

P
re

di
ct

ed
 E

ne
rg

y 
(J

)

 

 

Y2

Y4

(d) Measured v.s. Predicted Energy

Figure 4.14: Distribution of X2, X4, Y2 and Y4

Data set X2 as in 4.6.2, together with X1, which is part of the training data,

are introduced to construct an acceptable GMM, the reconstructed GMM is rep-

resented by GMMn2. Error distributions before and after the application of

GMMn2 for X1 and X2 is shown in Fig. 4.18, where the RMSE is 1.8473 with-

out compensation and 1.4003 with compensation. It can be seen that, in lower

energy region, GMMn2 provides better error compensations when the errors are

negative; in higher energy region, it predicts acceptable error compensation no

matter what the errors are.

Same test data set X4 as in 4.6.2 is used to evaluate the performance of

GMMn2. The results are shown in Fig. 4.19, where the RMSE before compensa-

tion is 5.0736, and 4.2013 (82.81%) after the compensation. It can be seen that
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Figure 4.15: Error Distributions for Y2 and Y c
2 (with GMMf1)
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Figure 4.16: Error Distributions for Y4 and Y c
4 (with GMMf1)

the errors are compensated in all range.

The fitted parameters for GMMn2 is listed in Fig. 4.5. The BIC analysis of

components number is shown in Fig. 4.20, where k = 4 is chosen.

4.6.4 Analysis of The Experimental Results

From the experiments using different models and different data sets, the proposed

error compensation structure proved to be an efficient method in reducing the
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Figure 4.18: X1 and X2 - Error Distribution Before and After Applying GMMn2

errors of predicted results.

The GMM used for fuzzy model is fitted using the training data of the model,

where the error distribution for the training data is biased. The GMM achieved a

good fitting and provided acceptable error compensations. The latter experiment
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Figure 4.19: Error Distributions for Y4 and Y c
4 (with GMMn2)

Table 4.5: Fitted Parameters of GMMn2

k 4

ω 2.123E-1 3.277E-1 1.587E-1 1.300E-2

µ

CMOD (mm) 2.252E-1 7.067 1.615 3.646

Crack Length (mm) 3.213E-9 7.768 7.939E-1 3.874

e (mm) 9.840E-2 1.712E-1 -3.725 -3.725E-1

σ

CMOD (mm) 4.060E-2 1.862 7.565E-1 3.329

Crack Length (mm) 1.000E-3 8.143E-1 7.738E-1 7.1025

e (mm) 1.214E-1 2.353 1.119 6.054E-1

in neural network, where a new biased data set are imported for GMM fitting,

lead to the similar results that the GMM provides good error compensations.

From the initial experiment in neural network, where the training data were

used to fit the GMM, it can be seen that the error distribution for the training

data set is more like to be unbiased, this leads to a GMM that cannot provide

good error compensation – the GMM cannot extract reliable information about

the error distribution patterns from the fitting data.

In the latter experiment in neural network, it can be seen from Figs. 4.15 and

4.16 that the compensation from GMM is lager in the high energy region, smaller
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Figure 4.20: BIC analysis for GMMn2

in lower energy region, where the range of error compensation is the same as the

error changing range of the training data, which can also be seen in Fig. 4.11.

The same pattern can be found in the experiment using neural network, where

the error compensations and confidence band of the outputs in Fig. 4.19 are lager

in the lower energy region, smaller in the higher energy region. It can be found

the same error changing trend in Fig. 4.18 that the data set used to fit the GMM

has lager errors in the lower energy region while the errors are smaller in the

higher energy region.

From the above analyses, it can be clearly concluded that the fitted GMM

will reflect the error distribution according to the data which is used to create the

GMM. Therefore, the more comprehensive data sets are collected after the model

application, the more accuracy GMM can be fitted. Once a GMM is fitted, it

will provide useful information about error compensations and confidence bands.
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4.7 Summary

In this chapter, two data-driven models were successfully trained to model the

crack propagation process of X100 gas line pipe steel. The two selected model

structures are a) a neural-fuzzy approach using hierarchical clustering and b) a

Back-Propagation (BP) neural network with a double loop training procedure.

The performances of these two data-driven models are investigated and compared.

The neural network is found to be inferior by comparison of the RMSE for this

specific modelling problem. Moreover, the response surfaces of neural network

gave no idea about the process, where in contrast the response surfaces from fuzzy

model drew clear maps among different variables.

A Gaussian Mixture Model (GMM) error compensation structure is then pro-

posed and validated, where GMM is used as a stochastic based prediction refer-

ence for the developed models. This structure is designed in order to avoid the

efforts on rebuilding a completely new model when the error is caused by slightly

changes of the environment or newly found error-relating factors. Experiments

showed that the errors of the predicted results from both models were decreased

after applying the proposed structure. It can be concluded that GMM can give

reliable error compensations and confidence bands.

In the next chapter, a data-driven model embedded finite element modelling

approach will be introduced.
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Chapter 5

A Synergistic Modelling

Approach Combining

Data-driven Model and Finite

Elements Model

5.1 Finite Element Method and Constitutive Equa-

tions in Material Area

The finite element method (FEM) (also known as finite element analysis) is a

well-known and comprehensive method which provide a numerical approach to

finding approximate solutions to partial differential/integral equations or systems.

It has been introduced in Section 2.5 and several damage models based on FEM

were listed as well.

In general, a finite element model in material area should include two key

factors:

1. A geometrical model of the specimen to be analysed in which the geometry
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is divide into a number of discrete sub regions (‘elements’, or often called

‘meshes’), which are usually formed by the connection of several nodes.

Nodes are assigned at a certain density throughout the material depending

on the anticipated stress levels of a particular area.

2. The constitutive equations which describe the relationship between applied

stresses or forces, and strains or deformations. The damage models men-

tioned in Section 2.5 are defined for different damage conditions.

The geometrical model varies according to different shapes of the specimen.

The density of meshes is predefined depending on the area that to be analysed.

There are different categories of elements, where the use of different kind of

elements depends on the damage type. Both of the element type and geometrical

model needs to be defined before the analysis, so that the geometrical model can

be considered as the objective conditions of the FEM.

The other part of the FEM is the selection and the adjusting of the con-

stitutive equations and the parameter settings for the equations under different

situations. The damage models introduced in Section 2.5 relate to the construc-

tion of constitutive equations under different damage situations. For example, the

Gurson-Tvergaard-Needleman (GTN) damage model [Tvergaard and Needleman,

1984] is defined in the form of the constitutive equations as follows [Tvergaard

and Needleman, 1984]:

Φ = (σeq
σY

)2 + 2q1f
∗ cosh(q2

3p
2σY

)− (1 + q3(f ∗)2) = 0

f ∗(f) =

{
f, f ≤ fc

fc − f∗u−fc
fF−fc

(f − fc), f > fc

(5.1)

where σeq is the von Mises equivalent stress, σY is the yield strength of the

material, p is the hydrostatic stress, q1, q2, and q3 are fitting parameters which

depend on the material, fc is the critical value of void volume fraction, fF is void

volume fraction at final fracture and f ∗u = 1/q1.

The procedure of constructing a finite element model is shown in Fig. 5.1. The

figure shows the procedure of constructing a finite element model for a simple bar
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as an example. The importance of idealization and discretization is to identify

the different connecting structures or stressing areas of the modelling target.

Depending on the structure that to be analysed, the type of elements can be

varied, different types of the elements will lead to very different results due to the

theories behind those elements. Fig. 5.1 only shows two types of elements while

there are dozens of different types of elements have been developed in the open

literature. The critical part of the geometrical plot is to determine that how the

elements should distribute. At last, the constitutive equations of the elements

is defined. The parameters in the constitutive equations may be determined

through experiments.
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Figure 5.1: Finite Element Model Construction Procedure, where σi is the stress
of the ith calculation point, εi is the strain of the ith calculation point, t is time.

The analyses of the modeled specimen can then be carried out based on the

finite element model. There are several softwares that can be used for finite ele-

ment analyses in the market, one of the most popular FEM softwares is ABAQUS,

which is used in this project.
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The basic analysing process of ABAQUS is described in Fig. 5.2. In the

analyses, ABAQUS will firstly allocate the element strain increment for each

element, which is calculated from the preset situation. The iterative computation

will be carried out during the analyse. The strain increment will then be passed to

the user sub-routine, in which the constitutional equations are defined. Together

with other user-defined variables, the stress increment at each Gauss point for

current element will be computed. Then the internal force in the element and the

element tangent matrix can be generated. Hence, the global equilibrium equations

can be calculated in order to reflect the whole state of the specimen. Knowing

the new state of the specimen and the preset force and boundary condition, the

strain increment for next iteration can be computed. The iterative analyse will

continue until the simulation time runs out.
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Figure 5.2: ABAQUS finite element analysing process

It is worth noting that there are two modes for one experiment to be analysed:

the explicit/dynamic method, and the implicit/standard method. The implicit

method is often used to analyse static equilibrium structures. The choice of ele-
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ment types for implicit method is wide, and the time increment for the simulation

can be large. However, the implicit method requires iterative and convergence

checking, since the unknown values in this mode are obtained from current in-

formation, which may not be the known value but the calculated result. The

explicit method are used to solve large, highly discontinuous or high-speed dy-

namic problems. No iterative or convergence checking are required in this mode,

so that the explicit method is more efficient in solving very large problems. But

the time increment for explicit mode must be kept small in order to maintain the

accuracy.

5.2 Limitations of Constitutive Equations

Being the core part of finite element analysis, damage models based on the con-

stitutive equations are well-developed. People can select different damage models

based on the type of failure and the characteristics to be analysed. For instance,

the Gurson model [Gurson, 1975] proposed a methodology for obtaining an ap-

proximate yield surface for material containing voids, while the Rice-Tracey model

[Rice and Tracey, 1969] analyzed a case of dilatational growth of a single spherical

void in a material under uniform stress state applied at infinity.

However, due to the lack of knowledge in the micro-structure level damage

development, current models can only reflect part of the material nature. There

are no constitutive model that can completely explain the whole process of ductile

damage. Moreover, the aforementioned damage models in Section 2.5 have to be

calibrated for a particular material before any of them can be used to predict the

fracture behaviour of a structural component. The parameters of the constitutive

equations can be very different for different materials, scales and specimens. The

trail-and-error method is usually used for the parameter calibrations, which highly

depends on the user expertise.

In [Corigliano et al., 2000], the extended Kalman filter was used in order

to identify the parameters for the isotropic GT yield criterion for progressively

cavitating ductile materials. The result showed that the identified parameters
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fitted the experimental result curve very well in the filtered space, however, the

method still needs the prior knowledge in order to choose the type of the damage

model that to be identified.

In conclusion, the constitutive models for material has the limitations of:

1. Expertise in material is required to determine the type of damage model to

be selected.

2. The parameters of the constitutive equations need to be calibrated before

application.

3. The calibrated parameters are limited only to certain scale, material and

specimen.

5.3 Introduction of Data-driven Models to FEM

With the limitations of the constitutive models which were described in the previ-

ous section, a data-driven approach that can enhance or replace the constitutive

damage models can be very useful in improving the generality and transferability

of the finite element model.

In this section, a data-driven combined finite element model (DMFEM) struc-

ture is proposed. The aim of this work is to include a data-driven model in the

user sub-routine instead of constitutional equations, where σ and ∆ε and other

user-defined variables are defined as the inputs, and the outputs are the stress,

the yield condition, and other variables for the next time step. Prospectively, this

approach may extend the generality and transferability of the traditional finite

element method.

A brief structure of the proposed model structure in comparison with the

traditional finite element model in ABAQUS will be shown in Fig. 5.3, where

the constitutive equations in the user-subroutine will be replaced by a fitted

data-driven model which can be trained from any experimental data without the

expertise of the damage types.
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Figure 5.3: Proposed DMFEM structure, where σi is the stress of the ith calcu-
lation point, εi is the strain of the ith calculation point, t is time.

5.4 Experiments and Analyses

Experiments are designed in this part in order to test the feasibility of the pro-

posed model structure. The experimental studies for the proposed DMFEM will

firstly be carried out by replacing the simple element model. Then the trained

model will be transfered from MATLAB into ABAQUS v6.10-2 environment.

5.4.1 A Simple Element Model

The experimental work starts from a simple element model. A simple element

is the basic component of the finite element model, where the properties of any

proposed model structure can be easily tested through it. The target simple ele-

ment model is implemented based on the theory of isotropic hardening plasticity.
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The constitutive equations for the isotropic hardening plasticity is shown in Eq.

5.2.

f = σe − r − σy = (3
2
σ′ : σ′)1/2 − r − σy

dλ =

{
n·Cdε
n·Cn+h

f > 0

0 f ≤ 0

dσ = Cdεe = C(dε− dλn)dr = hdp = hdλ

σt+∆t = σ + dσ

εpt+∆t = εp + dεp

rt+∆t = r + dr

J = ∂dσ
∂dε

= C − Cn⊗Cn
n·Cn+h

(5.2)

where f is the yield function, dλ is the plastic multiplier, σ is the stress of cur-

rent calculation point, ε is the strain of current calculation point, r is the isotropic

hardening variable, p is the effective plastic strain, h is the hardening coefficient,

J is the continuum Jacobian matrix for UMAT/Implicit implementation, εe and

εp are elastic strain and plastic strain respectively.

Figure 5.4: A Simple element model used in the experiment

The geometric model of the simple element used in this experiment is shown

in Fig. 5.4, the red crosses (which can not actually be seen in the ABAQUS

environment) in the figure represent the Gaussian integration points, where the

computations are carried out during the simulation. The left edge of the model
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is locked in y-axis and the bottom edge of the model is locked in x-axis. The

locking of the left and the bottom edges is to set the boundary conditions so that

the changes of the model can be easily measured from the directions of x and

y axes. The material properties are defined in Table 5.1. In order to train the

neural network model, different loads will be applied through different directions,

the stresses, the changes of strains, and the yield conditions for the integration

points will be exported from ABAQUS.

Table 5.1: Material properties used in the experiments

Young’s Modulus Poisson Ratio Yield Strength Hardening

E (GPa) ν σ0 (MPa) h (MPa)

210 0.3 240 1206

5.4.1.1 Modelling using UMAT - Implicit Subroutine

The modelling approach will be established firstly through ABAQUS/Standard,

where the subroutine UMAT will be used. The source code of the UMAT for

isotropic hardening material which is used for data exporting was extracted from

[Dunne and Petrinic, 2005]. The element type using in this part is CAX4, which

is a regular type of element for the modelling of linear axisymmetric stresses. As

the equilibrium and convergence checks are needed in the implicit analysis, the

exported data must be cleaned first, the iterations that are calculated for equi-

librium checks are deleted after being exported; this is because the equilibrium

checking data sets are almost the same as in normal iterations. The exported time

versus stress curves for integration point 1 with different top loads are shown in

Fig. 5.5, the strain increments versus time curves for the same element are shown

in Fig. 5.6. It should be noted that the curves under 100N can only be seen in the

diagram of σ22, they were covered by the curves under 200N in other diagrams,

that is because of that both loads does not exceed the yield strength which has

been set in Table 5.1, so that the changes are still in the elastic linear region. We

can see from the figures that with uniform loads and fixed boundaries in the left

and bottom, the nonlinear characteristics of plasticity can only be observed in
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the anisotropic stresses.
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Figure 5.5: The stress vs time curves for integration point 1 of a elastic-plastic
simple element model with different loads from the top
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Figure 5.6: The strain increments vs time curves for integration point 1 of an
elastic-plastic simple element model with different loads from the top
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In the first experiment, the inputs for the model are the stress σtij and the

strain increment ∆εij, the output is the stress for the next time increment σt+∆t
ij .

The final training data is collected through sampling of the results under different

loads. The data exported under 100N, 200N, 400N, 600N, 800N top load was used

for training and the data under 300N top load was selected as the validation data.

The 500N top load data is selected as the test data.

In the training stage, the number of inner cycles for the double loop training

is set to 10, while the number of out cycles is 50, the training goal of mean square

error is 1E-5, the sampling rate of data is set to 20Hz.

The modelling results are shown in Figs. 5.7 and 5.8. The red and green lines

in Fig. 5.7 are the 10% upper and lower error bands respectively. It can be seen

in Fig. 5.8 that the predicted results of the stresses fit very well comparing to the

test data. The nonlinear plastic characteristic in the late stage of the simulation is

predicted accurately. The RMSE of the stresses are listed as follows: RMSEσ11 =

0.0036, RMSEσ22 = 2.7079, RMSEσ33 = 0.0019, RMSEσ12 = 0.0045. The

results shows that the trained neural network can predict accurate results with

the information from ABAQUS.

Another information J = ∂dσ
∂dε

, which is also known as the Jacobian matrix,

is requested by ABAQUS when applying any user defined models in the form of

UMAT subroutine. By exporting the Jacobian matrix from the gathered com-

mercial codes, another experiment can be carried out with an addition output
∂dσ
∂dε

. The Jacobian matrix is a 4 × 4 matrix, it is symmetric in the simulated

problem. Fig. 5.9 and Fig. 5.10 shows the distribution of the value of Jacobian

matrix.

The modelling results using the same training, validation and test data set is

shown in Figs. 5.11 and 5.12. It can be seen that although the Jacobian matrix

is predicted with a decent accuracy, the stress curves do not fit the testing data.

This is because the additional outputs of the Jacobian matrix increased the model

complexity. The model accuracy can be improved by adjusting the structure and

training method of the neural network. However, the Jacobian matrix is only

a state variable which is required by static analysis of finite element model, the
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Figure 5.7: The predicted results vs actual results for integration point 3 of the
simple element model with 500N load from the top
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Figure 5.8: The predicted and actual results vs time for integration point 3 of
the simple element model with 500N load from the top

103



5. A SYNERGISTIC MODELLING APPROACH COMBINING
DATA-DRIVEN MODEL AND FINITE ELEMENTS MODEL

0 0.2 0.4 0.6 0.8 1
2.4

2.6

2.8

3
x 10

5

time (s)

J 11

 

 

0 0.2 0.4 0.6 0.8 1
1.2

1.4

1.6

1.8
x 10

5

time (s)

J 12

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4
x 10

5

time (s)

J 13

0 0.2 0.4 0.6 0.8 1
-10

0

10

20

time (s)

J 14

0 0.2 0.4 0.6 0.8 1
1.2

1.4

1.6

1.8
x 10

5

time (s)

J 21

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3
x 10

5

time (s)

J 22

0 0.2 0.4 0.6 0.8 1
1.2

1.4

1.6

1.8
x 10

5

time (s)

J 23

0 0.2 0.4 0.6 0.8 1
-40

-20

0

20

time (s)

J 24

100N
200N
300N
400N
500N
600N
800N

Figure 5.9: The value of Jacobian matrix for the simulated simple element model
(J11 to J24)
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Figure 5.10: The value of Jacobian matrix for the simulated simple element model
(J31 to J44)
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Figure 5.11: The actual and predicted stress vs time curves for integration point
1
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Figure 5.12: The actual and predicted values of the Jacobian matrix (J11 to J24)
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values of Jacobian matrix can not be directly determined from physical tests of

the material. Hence, the Jacobian matrix should not be included in the training of

a data-driven model. In order to remove the Jacobian matrix from the modelling

process, the modelling using dynamic explicit analysis, in which the Jacobian

matrix is not required, will then be experimented.

5.4.1.2 Modelling using VUMAT - Explicit Subroutine

The ABAQUS/Dynamic explicit analysis is widely used for the damage analysis

as it can easily adjust the density, bulking, mass scaling and other user defined

variables during the analysis. It has the ability of deleting and changing the

elements through the whole process of analysis. The explicit approach changes

the status of the model element by element, so that the global stiffness of the

model, which is calculated based on the Jacobian matrix of all elements, is not

required in the explicit analysis. However, the accuracy of ABAQUS/Dynamic

analysis highly depends on the size of time increment, the time increment must

be small enough in order to make sure the result can be converged. The same

simple element model as shown in Fig. 5.4, continues to be used in the exper-

iment. The element type used in this part is CAX4R, the CAX4 element with

reduced integration, this is because that the selection of element types is limited

in the dynamic mode. The material density, linear and quadratic bulk viscosity

parameters, and time increments are defined in Table 5.2, the values are selected

in order to keep the balance between accuracy and analyzing time. The code of

the sample VUMAT is recoded from the UMAT implementation in the previous

part.

Table 5.2: Parameters setting in ABAQUS/Dynamic

Density Linear bulk viscosity Quadratic bulk viscosity Time increment

(ton/mm3) (s)

0.01 0.06 1.2 0.0001

The exported data from ABAQUS/Explicit is shown in Fig. 5.13. The figure

only shows the curves under positive top loads, the actual collected data includes
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the data under negative top loads and positive/negative loads from the right side.

It can be seen that the stresses and strain increments are changing drastically

especially in the late stage of the simulation, where is the nonlinear plastic region.

The waving data is caused by the rarefaction waves that is determined by the

density and bulking parameters. The waving is considered to be acceptable as the

amplitudes of the waving increased after the yielding of material, which proves

the results are still trustworthy.
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Figure 5.13: The test data exported from ABAQUS/Explicit

The training procedure is carried out using the data under ±100N, ±200N,

±400N, ±600N, ±800N top load for training and the data under ±300N top load

was selected as the validation data. The +500N top load data is selected as the

test data. The modelling results are shown in Fig. 5.14. It can be seen that the

model performed very well in predicting all the stresses.

The trained model provided good results without the Jacobian matrix in the

explicit modelling experiment. In the next section, a neural network material
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Figure 5.14: The results of modelling using ABAQUS/Explicit

definition model will be embedded into the ABAQUS environment in order to

replace the constitutive equations.

5.4.2 Transfer data driven model into ABAQUS environ-

ment

The constitutive equations which define the material reactions under different sit-

uations are realized through the user subroutines, where the Fortran language are

used. Hence, the model obtained in last section must be exported from MATLAB

and then recoded into Fortran. The parameters of the neural network obtained

in the last section is shown in Table 5.3. In order to analyse the relationship

between stress and strain increments, the output in this experiment is selected

as the stress increments, different from the stresses in the previous section. The

predicting results of stress increments under +500N top load is shown in Fig.

5.15.
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Table 5.3: Parameters setting of the neural network

Inputs 8

Hidden layer neurons 8

Outputs 4

Pre-process method Min-Max

Hidden layer transfer function Logarithmic Sigmoid

Output layer transfer function Pure linear
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Figure 5.15: The predicting results of stress increments under +500N top load

It can be seen in Fig. 5.15 that the predicted results given by the neural

network are even better than the results exported from ABAQUS. The waving

amplitude of stress increments in the earlier stage of the simulation is smaller

than that of the exported data. From the predicted results in the elastic linear

region, the model performed very well.

By writing the input/output weights and biases and other model parameters

into a data file and then reading the data file from ABAQUS Fortran subrou-

tine, the neural network is successfully transfered into ABAQUS environment.

The simulations using both the neural network and the targeted elastic-plastic
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isotropic hardening material model can then be carried out.

The main issue in the recoding process is that the recoded Fortran subroutine

can hardly pass the data check step in the ABAQUS analysis if the training data

is not selected careful, due to estimating process of time and strain increments.

The increments estimating process is based on the Newton method, ABAQUS

estimates and scales the time and strain increments iteratively and tries to find

the increments that can converge to the given load/displacement. The model

must be able to provide rational results in different scales of strain increments,

a badly trained model may lead to the situation that ABAQUS fails initially in

the data check process and the analysis can not be continued.

The simulation results of the ABAQUS/Explicit using user-defined constitu-

tive equations and ABAQUS/Explicit using transfered neural network model are

shown in Figs. 5.16, 5.17. In the simulation, the simple element receives a linear

increasing top stretching load where the max load is 500N.

Figure 5.16: The change of 1 mm x 1 mm element shape during the simulations

It can be seen in Fig. 5.16 that the final deformation of the element is sim-

ilar, where the shadowed blocks are the initial shape of the element, and the

green rectangles are the deformed shape of the element. It is shown that based

on the neural network, ABAQUS can obtain the correct information about the

deformation directions and increments. The strain curves in Fig. 5.17 show that

the embedded neural network can provide information about the elastic-plastic

change, there are a turning point in ε11 and ε22 in the later propagation near 0.6s.

However, the turning point obtained from the neural network material model is
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Figure 5.17: The simulation results of ABAQUS/Explicit using user subroutines

not the same as that from the constitutive equation, the elastic region of the

neural network predicts much lager strain increments than that of the constitu-

tive equation. This is because that the subroutine using constitutive equations

has a yield function that can measure whether the material has reached the yield

condition.

In Fig. 5.17, the stress curves on the y-axis direction σ22 are similar from

both material models, the applied load has been simulated accurately. However,

in both material models, ABAQUS cannot provide the correct information on

the stresses across the other directions, the stresses in other directions are waving

around zero, while the actual stress should be zero before the yield of material,

and a small increasing value after the yield. The inaccuracy in the other stress

directions are not caused by the material models, it is because of the less num-

ber of elements and the increments estimating algorithm in ABAUS/Explicit.

The model based on constitutive equations is more stable in the elastic region

compared to the neural network model.

In conclusion, the neural network model in the previous simulations can pro-
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vide useful information on the deformation process. However, the performance in

the linear elastic region is affected by the nonlinear plastic region during training

process, which leads to a lower accuracy in the prediction of the elastic region.

In order to avoid the negative affects from the nonlinear plastic region during

the model establishment, a yield measurement logic input can be added into the

neural network if the yield strength of material is known. The additional input

can be calculated from the comparison between the effective stress σe,which can

be easily computed from the stresses, and the yield strength σ0:

fy =

{
0, σe ≤ σ0

1, otherwise.
(5.3)

The results of the simulation using the new model which was trained with

the additional input fy are shown in Figs. 5.18, 5.19. From Fig. 5.18, it can

be seen the neural network model provides the correct deformation shape. The

strain and stress curves in Fig. 5.19 shows that the plastic nonlinear region now

begins in the same time as the result from the constitutive equations. The new

model shows the ability of providing correct material response after embedded

into VUMAT.

Figure 5.18: The change of element shape during the simulations

5.5 Summary

In this chapter, a data-driven model embedded finite element modelling approach

(DMFEM) has been introduced. The neural network models of the isotropic
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Figure 5.19: The simulation results of ABAQUS/Explicit, neural network with
additional input

hardening elastic-plastic simple element model using both UMAT and VUMAT

were constructed using MATLAB, the neural network models in MATLAB have

performed well using the exported data.

The constructed neural network material model has then been successfully

embedded into ABAQUS using the VUMAT user-subroutine in Fortran code. By

adding a new input, the trained model has successfully predicted the deformation

process under different load and displacement situations under ABAQUS envi-

ronment. The neural network material model has proved to be able to provide

the material responses under different loads.

By embedding the neural network material model in ABAQUS, the proposed

DMFEM approach has been realized for the isotropic hardening elastic-plastic

material. The DMFEM approach can be extended by adjusting the training data

from different types of material and conditions in the future.

The next chapter will implement an optimisation process of material design

based on mPSO-DHA and Finite Element Analysis.
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Chapter 6

An Optimisation Process of

Material Design based on

mPSO-DHA and Finite Element

Analysis

In Chapter 5, a data-driven approach to replacing the constitutive equations in

the finite element model has been introduced. However, there are still mate-

rial and geometrical parameters which are required to be identified before any

simulations can be carried out. The material parameters are changing due to ser-

vice loading, aging, irradiations and other conditions. In order to determine the

material parameters for different materials, several techniques of finding and esti-

mating the material parameters in certain damage conditions has been proposed

in the open library.

In [Corigliano et al., 2000], an extended Kalman filter has been constructed

in order to identify the suitable parameters in limited number of simulation runs.

A neural network model has been introduced in [Abendroth and Kuna, 2006] to

model the relationship between the process conditions and the material parame-

ters in the simulation of a small punch test which used the GTN model for the
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analysis. However, these research studies were only focusing on the parameter

identification for one specific material and in a fixed damage situation, the ob-

jectives of the identifications are to fit the experiment results, not to locate the

optimal material parameters a priori under several given constraints.

In the following sections, the multi-objective optimisation problem in the finite

element analyses will be described.

6.1 Multi-objective Optimisation and Finite El-

ement Model

Fig. 6.1 describes the process of material design. Following the blue arrows, the

general material design process as follows:

Forging Process
-

Process 
Conditions

Cutting and Tests
-

Properties 
Measurement

FE Analysis
-

Energy and 
propagation

Process Model
Multi-Objective 

Optimisation

Fitted Parameters

Figure 6.1: The schematic process of applying multi-objective optimisation into
material design

1. Forging the material, the process conditions are defined and the hardening

treatments are selected according to the expertise and the physics which

are known a priori.

2. Cutting the materials into different specimens that will be used in different

tests, then the material properties will be measured and estimated through

series of tests.
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3. Find the parameters which fit the finite element model (constitutive model)

through various methods, then, the simulations on different types of dam-

ages can be carried out.

Some previous works have been published on building the models between

the process conditions and the material properties, and the red arrows in Fig.

6.1 can conclude these researches. However, the finite element model has been

seen as only as an analysis tool which analyzes the behaviour of an existing

material, describes the changes of a failure that has already occurred, or predicts

the properties according to the fitted material parameters [Balaraman et al.,

2006]. [Haslinger and Neittaanmäki, 1988] used the finite element model as a

reference in the designing the shapes of the material, however, the optimal design

(not identification) of material characteristics using finite element models has not

been found in the open libraries.

It is common that before the design of new materials, the model of the relation-

ship between process conditions and compositions has been built in advance (red

arrows in Fig. 6.1). The material parameters are then easily predicted before any

specimen of the material is produced in reality. However, damage experiments

are required in order to ascertain that how the failure would be propagated un-

der certain conditions. It would be a great advantage if one can find out the

material parameters which would lead to the appropriate damage process, hence,

the experiments are only required for a reduced number of specimens that has

the relative material parameters. Moreover, the number of experiments can be

reduced and the cost of design can be lowered.

For example, for a series of material which is developed based on the same

elements but different ratios, the Poisson’s ratio ν and the Young’s modulus E

(elastic parameters) can be determined or computed before the design of material.

If the finite element model is based on the Gurson model, the parameters for the

damage model can be identified through several simple tests such as tensile test

or small punch test (SPT). Thus, the remaining parameters to be determined are

the hardening parameters, i.e. plastic characteristics, in the Gurson model case,

these parameters are the initial yield stress σ0, and changing of yield strength
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above σ0.

In the above description, the elastic parameters and the damage model pa-

rameters can be transfered into different scenarios of damages and specimens

[Cuamatzi-Melendez and Yates, 2009]. However, the hardening parameters can be

different in different temperatures, or after certain strengthening process. Hence,

one can only identify the parameters for the material if different hardening pro-

cess was carried out, moreover, the damage propagation cannot be known until

new experiments are set up and processed.

Figure 6.2 shows the sketch map of two different load-displacement curves un-

der a small punch test using different hardening processes, where the red and blue

strain-stress curves in the left graph lead to the red and blue load-displacement

curves respectively. It can be seen different hardening properties will lead to

different damage propagations. Although the two specimens have the same ini-

tial yield stress (360MPa), the failure process, especially the maximum load, is

affected by different hardening behaviors.
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Figure 6.2: Different hardening properties will lead to different damage propaga-
tions

In the real world, people would want to know the characteristics of a material

a prior before using it. It is necessary to develop a method that can provide the

suitable hardening parameters that will lead to the expected damage behaviors

under certain situations. Therefore, one can treat the material on purpose using
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necessary strengthening methods which will generate certain hardening behavior

(stress-strain behavior). Since the models between strengthening process and the

hardening behavior can be constructed in many cases [Kim et al., 2012] and the

tests of determining the material hardening parameters are well developed, the

cost of setting new experiments especially for the target damage situation can be

reduced.

The procedure of finding suitable material parameters which can lead to the

appropriate failure can be deemed as an optimisation process (green arrows in

Fig. 6.1). There could be several objectives that the user will expect from the

damage process, for example, the target material may be expected to have a

certain yield strength and in the meantime it will crack only with certain amount

of deformation. Therefore, the process can be a multi-objective optimisation

problem.

Fig. 6.3 shows the process of finding the parameters that would lead to the ap-

propriate damage propagation, when the material will yield after a certain value

of strength and the crack will only occur after a minimum amount of deformation

and before a maximum amount of deformation. It can be seen that the procedure

has the same components as an optimisation problem: the estimation of param-

eters, the evaluation process, the measure of performance, and predefined goals

and constraints.

Evaluate
Finite Element Model

Material parameters
Element definition parameters
User-defined state variables

Guesses for the parameters

Damage propagation process

Compute the fitness 
values of the objectives

Yield strength
Max/min deformation

......

Multi-objective optimisation

Compare to 
goals and constraints

Figure 6.3: Multi-objective optimisation problem in finite element analysis
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To apply the multi-objective optimisation algorithm into the material design

procedure, a small punch test finite element model will be modeled and analyzed

together with the mPSO-DHA algorithm which is described in Chapter 3.

The procedure of the optimisation will combine ABAQUS and MATLAB to-

gether. For each evaluation of the objectives, the estimated solutions will firstly

be written into the input files of ABAQUS, ABAQUS will run in command mode

and record the results of the simulation into text files through the Python script.

The mPSO-DHA will load the results from the text file and continue the iterating

process.

6.2 Optimisation of Failure Behaviour using mPSO-

DHA

6.2.1 The small punch test

A small punch test is a test designed to measure and analyse the properties of

new and in-service components. The typical specimen for a small punch test is a

disk like specimen (diameter D=8 mm and thickness t=0.5 mm) being deformed

in a miniaturized deep drawing experiment. The specimen is clamped between a

die (bore diameter d=4 mm, die edge radius r=0.5 mm) and a down-holder, and

centrically deformed by the punch with a spherical head (radius R=1.25 mm),

as shown in Fig. 6.4. The measurements are commented in Fig. 6.4, it should

be noted that the dashed lines are a sketch map of the deformed shape, not the

actual deformation.

The finite element model for the small punch test includes only half of the

specimen since the test specimen and performance are axisymmetric. Fig. 6.5

shows the finite element model of the small punch test. The size of the 2D mesh

of the specimen is set as the same as the sketch map, where the elements have a

size of 0.1× 0.1 mm.
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D=8mm

d=4mm
r=0.5mm

t=0.5mm

R=1.25mm

Figure 6.4: A sketch plot of the small punch test

Figure 6.5: The finite element model for the small punch test

In Fig. 6.6, two states of the specimen during the simulation are shown,

where the left part is the state at maximum load, and the right is after the crack

initiation. The necking area of the specimen during damage propagation can be
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Figure 6.6: The finite element simulation of a small punch test

easily observed. During the simulation, the load displacement curve can be calcu-

lated, from which one can extract the information about the material properties

and how the damage will happen under certain situations. For example, [Eto

et al., 1993] found that the maximum force is correlated with the ultimate tensile

strength.

There are several parameters which will affect the results of the simulation,

the elastic parameters E (Young’s Modulus) and ν (Poisson’s Ratio), the plastic

parameters σ0 (initial yield stress) and σ∗ (max yield stress when plastic strain is

1), and the constitutive parameters q1, q2, q3, fc and fF for the GTN constitutive

model. By adjusting the material parameters, the final results of when and what

is the maximum load can be changed.

For example, using the parameters set in Table 6.1, the load-displacement

curve of the simulation is shown in Fig. 6.7, where the red cross is the maxi-

mum load point which in this run is (1.8158,1980.5). This means the material

can provide up to 1980.5 N resistant load and the crack will initiate after the

displacement reaches 1.8158 mm.

The maximum load and the corresponding displacement reflect the ductility

and the strength to some extent. A simulation that leads to a lower maximum

load and a larger displacement at the maximum load point means the material
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Table 6.1: Example of finite element model parameters setting

E (GPa) ν σ0 (MPa) σ∗ (MPa) q1 q2 q3 fc fF

199 0.3 380 1000 1.5 1.05 2.25 0.0017 0.005
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Figure 6.7: The load-displacement curve of the small punch test

has good ductility, and vice versa. In the design of new materials, maintaining

the ductility and improving the strength may be conflict with each other, in

which case, the maximum load and corresponding displacement can be set as the

objectives of the optimisation in order to find the material that fits the desired

purpose.

In this part, the final maximum load and the corresponding displacement will

be optimised based on different elastic/plastic parameters using mPSO-DHA. For

the convenience of description, Fm and uc will be used to represent the maximum

load and the corresponding displacement, respectively.
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6.2.2 Minimize Fm and uc by varying elastic parameters

The approximate elastic parameters for most of the mainstream materials are

open and known, so that one can easily identify which material to be used if

the elastic parameters are given. The first experiment is focused on finding the

optimal elastic parameters that will minimize both the maximum load Fm and

the corresponding displacement uc. This resulting parameters of this experiment

would lead to a very fragile material. In this case, the optimisation problem is

very simple, that is:





Minimize Fm

Minimize uc

subject to E ∈ [150, 400], ν ∈ [0.2, 0.4]

(6.1)

The mPSO-DHA is set to have 10 of populations and 40 generations, the grid

number in each dimension is set to 10. The other parameters for mPSO-DHA is

set the same as it is in Chapter 3. E ∈ [150, 400] and ν ∈ [0.2, 0.4] are set as

the varying range of the elastic parameters. The other parameters are set as the

same as in Table 6.1.

The refined non-dominated results of 3 independent optimisation runs are

shown in Fig. 6.8, the parameters are listed in Table 6.2. It can be seen that

in the simulation of small punch test, the changing of the elastic parameters has

no great affect on Fm, which is mostly determined by the plastic property of

the material. The displacement at the top load, uc, can be slightly lowered by

changing the elastic parameters.

From the results of Fig. 6.8, the optimal E and ν can be selected as (300.80,

0.3398) that will lead to the smallest uc = 1.6946 mm and decent top load Fm =

1981.87 N. The load-displacement curve of the chosen E and ν is shown in Fig.

6.9. The known material that has the closest elastic property is Molybdenum.

It is known that Molybdenum’s E is around 329 GPa and ν is approximately

0.31, thus, one can then looking for the suitable material in the variations of
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Figure 6.8: The optimal results of minimizing Fm and uc by changing E and ν

Table 6.2: The optimal values of elastic parameters that minimizes Fm and uc

Solutions E (GPa) ν uc (mm) Fm (N)

1 317.86 0.33 1.77 1978.73

2 300.80 0.33 1.69 1981.87

3 278.46 0.37 1.78 1977.97

4 278.69 0.36 1.70 1979.22

5 284.76 0.36 1.77 1978.93

Molybdenum alloys.

6.2.3 Maximize Fm and uc by varying plastic parameters

In some situations of the pipeline or metal components design, only a few types

of steel or other kinds of metal are available, hence, the elastic parameters can

not be changed by the engineers. In this case, the designer may use different

heat-treatment or other hardening techniques that will change the material’s

plastic characteristic, e.g. σ0 the initial yield stress and σ∗ the yield stress,so that
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Figure 6.9: The load-displacement curve for E = 300.80 and ν = 0.3398

the plastic properties can be changed to give different strain-stress curves. This

section aims to find the optimal plastic parameters that will maximize the top

load Fm and the corresponding displacement uc. The objectives are given as:





Maximize Fm

Maximize uc

subject to σ0 ∈ [200, 700], σ∗ ∈ [800, 1100]

(6.2)

The mPSO-DHA is set to have 5 of populations and 40 generations, the grid

number in each dimension is set to 10. The other parameters for mPSO-DHA is

set the same as it is in Chapter 3. E = 200 GPa and ν = 0.3 are set, which is

the standard values for steels. σ0 ∈ [200, 700] and σ∗ ∈ [800, 1100] are defined as

the variation range of the plastic parameters.

The refined non-dominated results of 3 independent optimisation runs are

shown in Fig. 6.10. Part of the optimal parameters is listed in Table 6.3. It can

be seen that in the simulation of small punch test, the changing of the plastic

parameters may lead to vastly different damage propagations. The value of Fm
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Figure 6.10: The optimal results of maximizing Fm and uc by changing σ0 and
σ∗

Table 6.3: The optimal values of plastic parameters that maximizes Fm and uc

Solutions σ0 (MPa) σ∗ (MPa) uc (mm) Fm (N)

1 656.69 1087.31 1.81 2043.70

2 609.90 1088.02 1.81 2018.41

3 627.36 1076.82 1.84 2015.22

4 561.15 1100.01 1.87 2011.03

5 544.98 1087.65 1.88 1983.34

6 491.71 1100.07 1.94 1978.65

7 473.76 1097.03 1.96 1965.98

8 430.89 1091.49 1.97 1939.42

9 424.04 1088.23 1.98 1931.90

10 364.47 1090.32 1.99 1914.03

11 340.02 1070.67 2.00 1872.17

12 322.02 1058.99 2.02 1847.89

13 263.49 964.06 2.02 1673.82
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ranges from 1673.8 to 2043.7 N which has a increase of 22.1%, the value of uc is

from 1.8133 to 2.0291 mm (11.9% larger than 1.8133). From the listed parameters,

it is observed that the lower initial yield stress will lead to the smaller Fm and

the larger uc, while the σ∗ rarely affects the result.

According to the optimal yield strengths σ0 and σ∗, the user can identify the

solutions that suits theirs need and choose the necessary hardening technique

that will be applied onto the material.

6.2.4 Maximize/minimize Fm and uc by varying elastic and

plastic parameters

When designing a component, one may want to know how different the compo-

nent will behave in certain circumstances by using different materials. In this

part, both the maximization and the minimization processes will be carried out

simultaneously in order to find the feasible space of the small punch test damage

behavior. The elastic and plastic parameters are changing at the same time in

the optimisation. The objectives of the problems are defined as:

Maximize / Minimize (Fm, uc),

subject to





E ∈ [150, 400]

ν ∈ [0.2, 0.4]

σ0 ∈ [200, 700]

σ∗ ∈ [800, 1100]

(6.3)

Once again, the mPSO-DHA is set to have 5 of populations and 40 generations,

the grid number in each dimension is set to 10. The other parameters for mPSO-

DHA is set the same as it is in Chapter 3. E ∈ [200, 400], ν ∈ [0.2, 0.4], σ0 ∈
[200, 700] and σ∗ ∈ [800, 1100] are defined as the variation range of the elastic

and plastic parameters.

The refined non-dominated results of 3 independent optimisation runs for both
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Figure 6.11: The optimal results of maximizing and minimizing Fm and uc simul-
taneously by changing elastic and plastic parameters

Table 6.4: Part of the optimal values of material parameters that minimizes/-
maximizes Fm and uc

Solutions E (GPa) ν σ0 (MPa) σ∗ (MPa) uc (mm) Fm (N)

1 (min) 267.93 0.34 618.61 895.04 1.65 1728.55

2 (min) 264.74 0.31 561.03 892.06 1.72 1690.83

3 (min) 281.17 0.30 532.02 893.27 1.78 1673.34

4 (min) 276.95 0.30 486.19 893.00 1.83 1646.96

5 (min) 274.87 0.28 413.66 910.06 1.91 1637.83

6 (max) 198.95 0.29 655.09 1083.92 1.82 2036.88

7 (max) 226.91 0.31 516.32 1086.91 1.91 1967.40

8 (max) 206.82 0.29 486.94 1086.62 1.96 1954.33

9 (max) 238.86 0.29 415.81 1075.93 1.97 1980.94

10 (max) 255.81 0.30 343.65 1085.85 2.02 1901.36

11 (max) 266.17 0.30 292.00 1065.25 2.08 1852.84

12 (max) 197.27 0.28 200.00 1031.43 2.09 1767.03
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maximization and minimization are shown in Fig. 6.11, the optimal solutions are

listed in Table. 6.4. It can be seen that a feasible region of the possible Fm and

uc could be estimated from the solutions which has been found: the maximum

load will be from 1600 N to 2050 N, the crack will initiate at the displacement

from 1.6mm to 2.1mm, approximately.

It should be noted that the feasible region in Fig. 6.11 could be extended and

completed by increasing the maximum generation number of mPSO-DHA, which

will lead to a longer optimisation time and a more specific feasible region.

6.2.5 Finding the optimal material parameters for desired

Fm and uc

Minimize

{
J1 = (Fm−F ∗

m

F ∗
m

)2

J2 = (uc−u
∗
c

u∗c
)2

subject to





E ∈ [150, 400]

ν ∈ [0.2, 0.4]

σ0 ∈ [200, 700]

σ∗ ∈ [800, 1100]

(6.4)

Based on the results that were found in the previous section, the feasible

region of the crack propagation is known for the small punch test simulation.

Now, people may select the Fm and uc that suit their needs, and use the same

optimisation process to find the correspond optimal material parameters. Hence,

the objectives of the new problem can be described as in Eq. 6.4, where F ∗m and

u∗c are the targeted values of Fm and uc, J1 and J2 are two objective functions

that represents the proximity of the solutions.

Fig. 6.12 shows the solutions that are found by the mPSO-DHA when the

target F ∗m is set to 1800N and the u∗c is 1.9mm. The results are the refined non-

dominated solutions of 3 independent optimisation runs, where the population of

particles is 5 and the generation number is 40, the hypercubes are 10x10. The
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corresponding material parameters are listed in Table 6.5. The results show that

the algorithm found the optimal material parameters with no great errors: the

solutions are all located by the x and y axises, and the solution near the origin

point (2.194E-07, 4.694E-08) leads to very small values for both J1 and J2.
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Figure 6.12: The optimal J1 and J2 for the desired F ∗m = 1800 N and u∗c = 1.9
mm

Table 6.5: The optimal values of material parameters for F ∗m = 1800 N and
u∗c = 1.9mm

Solutions E (GPa) ν σ0 (MPa) σ∗ (MPa) J1 J2

1 364.03 0.34 412.11 1009.91 1.862E-07 3.280E-06

2 364.11 0.33 412.11 1009.91 8.514E-04 1.975E-09

3 364.52 0.34 412.45 1009.91 5.846E-04 1.000E-08

4 368.86 0.33 414.73 1011.05 1.000E-03 2.777E-10

5 325.66 0.34 491.37 1003.39 3.202E-08 2.125E-04

6 323.21 0.35 472.63 994.66 2.207E-04 2.777E-08

7 326.52 0.34 477.02 989.58 5.121E-08 9.404E-06

8 300.07 0.36 487.40 987.24 2.194E-07 4.694E-08
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From the optimal parameters in Fig. 6.12, the users can choose which kind

of material is to be used and treated for the desired component. The final value

of the material parameters can be selected directly from the solutions, or a set of

computed parameters, for example, the average of all the solutions.

Fig. 6.13 shows the load-displacement curve for the finite element simulation

of the small punch test when the eighth solution listed in Table 6.5 is decided

as the final solution. It can be seen that the Fm = 1799.6 N and uc = 1.8991

mm have only 0.02% and 0.05% differences from the targeted value F ∗m = 1800

N and uc = 1.9 mm. Therefore, the user may look for the material which has the

elastic properties E = 300.07 GPa and ν = 0.36. These elastic parameters may

be found in some of the Aluminum alloys and Copper alloys, once the material

is forged, necessary treatments are needed in order to achieve the target plastic

properties: σ0 = 487.40 MPa and σ∗ = 987.24 MPa.
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Figure 6.13: The load-displacement curve using the eighth optimal parameter set
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6.3 Summary

In this Chapter, the mPSO-DHA has been successfully applied into the optimal

design of small punch test.

Several different optimisations were carried out for the small punch test in

order to find the optimal solutions for different situations of material design. The

optimisation process was applied for: a) minimization of Fm and uc by only vary-

ing the elastic parameters; b) maximization on Fm and uc by only varying plastic

parameters; c) minimizing and maximizing (Fm, uc) simultaneously by varying

elastic and plastic parameters; and d) finding the optimal material parameters

for a desired damage behavior. In Section 6.2.5, the proposed method of find-

ing optimal material parameters that would lead to the specific damage behavior

proved to be efficient.

The next chapter will conclude the thesis, and the future work of this project

will be discussed as well.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Thesis

In this project, a multi-objective particle swarm optimisation algorithm (mPSO-

DHA) has been proposed; the modelling of steel crack propagation has been

carried out using both fuzzy and neural-network; an error compensation scheme

based on Gaussian mixture model has been developed together with the model of

steel crack propagation; a data-driven model embedded finite element modelling

(DMFEM) approach has been introduced; a tool for designing new materials has

been assembled based on mPSO-DHA and DMFEM.

The first Chapter targeted the research aims of this project, it also listed the

structure of this thesis and main contents of each chapter.

Chapter 2 introduced the background knowledge relating to the project. The

introduction for Genetic Algorithms [Holland, 1975], Evolutionary Strategies [Rechen-

berg, 1973; Schwefel, 1977] and Particle Swarm Optimisations [Kennedy and

Eberhart, 1995] were presented, based on the single objective optimisation meth-

ods, the algorithms for Multi-Objective Optimisation were also introduced. Then,

Artificial Neural Networks, Fuzzy Logic and Fuzzy Systems were reviewed as they

are widely used intelligent modelling methods. The Finite Elements Method,
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which is developed to model the materials through the “white-model” approach,

was briefed as well.

In Chapter 3, a multi-objective particle swarm optimisation algorithm (mPSO-

DHA) has been described. The algorithm successfully extended the original par-

ticle swarm optimisation using dynamic hyper-cube archiving, weight adaptation,

mutation operator, pool selection and modified global best selection. The best

parameter settings for the algorithm were found through experiments. The ap-

plication of mPSO-DHA to the well-known multi-objective benchmark functions,

including ZDT [Zitzler et al., 2000] series and DTLZ [Deb et al., 2002] series,

were analysed and compared with other multi-objective PSO algorithms. The

performance of the proposed algorithm proved to be superior to the compared

multi-objective PSOs. The comparisons with other evolutionary algorithm, such

as PAES [Knowles and Corne, 1999], SPEA [Zitzler and Thiele, 1998] and NSGA2

[Deb et al., 2000], showed that mPSO-DHA has the advantage of solving complex

multi-objective optimisation problems.

Chapter 4 reported on the modelling of steel crack propagation using fuzzy

and neural-network, using the data acquired from previous work of [Ayvar et al.,

2005]. A data analysis was carried out firstly. The fuzzy modelling for crack

propagation was then detailed, using the method which has been used in [Zhang

and Mahfouf, 2008, 2011] with hierarchical clustering initialization and gradient

decent learning. After the fuzzy modelling, the double-loop neural network [Yang

et al., 2003] has been selected to modelling the same data. A comparison between

the fuzzy model’s and neural network’s performance led to the conclusion that

both models can predict the crack in decent accuracy, the fuzzy model performed

slightly better in the high energy region. In order to reduce the error of models, an

error compensation approach was then proposed and examined, the experiments

showed that the proposed GMM [McLachlan and Peel, 2004] error compensation

method provided useful information about error compensations and confidence

bands.

Chapter 5 has introduced a data-driven model embedded finite element mod-

elling approach (DMFEM). The idea of this approach was to replace the con-
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stitutive equations in the finite element model by a data-driven model. The

neural network models of the isotropic hardening elastic-plastic simple element

model using both UMAT and VUMAT were constructed using MATLAB, and

the experiments using the simple element model verified the feasibility of the ap-

proach. The constructed data-driven model was then successfully embedded into

ABAQUS using the user-subroutine in Fortran code. The proposed DMFEM has

proved to be able to provide material response under different loads.

In Chapter 6, an optimisation process of material design based on mPSO-DHA

and finite element analysis has been proposed and evaluated. The mPSO-DHA

was applied on finite element models on material failures in order to find optimal

material properties which will lead to the desired damage propagation process.

The optimisation based on different scenarios and design objectives for the small

punch test has been carried out, where the optimal values of elastic and plastic

characteristics has been estimated for minimization, maximization and specific

value of the maximum load and corresponding displacement. The feasible space

of how the damage will behave under small punch test was located. Moreover,

the optimal material parameters for a specific damage behavior were successfully

identified.

7.2 Conclusion

In this research, a new multi-objective particle swarm optimisation algorithm

mPSO-DHA has been proposed. The integration of dynamic hyper-cube archive,

weight adaptation, mutation, pool selection and modified global best selection

techniques has enhanced the multi-objective optimisation ability of traditional

particle swarm optimisation algorithms. The comparison with other multi-objective

optimisation algorithms has showed the algorithm is effective in optimising vari-

ous problems.

However, in order to assure the generality of mPSO-DHA, it is neccessary to

test mPSO-DHA using higher-dimension problems and newly developed bench-

mark functions. The application in optimising the structure of data-driven models
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has not been explored in this project.

Models with GMM error compensation structure of the crack propagation

have been established. The Gaussian mixture error compensation structure has

showed the ability of providing the confidence band and a probable error for the

predicted results from both fuzzy and neural network model. The prediction

error has been reduced through embedding the error compensation structure into

previously built model without rebuilding the whole model.

It should be commented that the GMM error compensator can only provide

reliable error information when the training data for GMM reflects the true error

distribution. The compensator would not provide good error prediction while the

error is unbiased.

A synergistic model combining the data-driven model and FEM has been

developed. The constitutive equation model in the FEM has successfully been

replaced by a neural network model. The simulation based on a simple element

model using the synergistic approach has led to a good agreement with the results

from the model using constitutive equation model. This synergistic modelling ap-

proach has extended the FEM to model the material when the physical expertise

of the material is missing.

Yet, the synergistic model has only been built based on the simulation data

of a single element. Further experiements are needed to collect real data which

could be used to build new models and measure the generation properties of the

proposed approach in the case of larger scale structures. The model of 3D element

has not been studied in the project.

The systematic optimal design approach of metal alloys based on FEM and

the proposed new multi-objective PSO has been successful applied to the sim-

ulations of a small punch test. The optimal parameters for the material have

been estimated for different desired damage propagation process. The proposed

optimal design approach has introduced the idea of user-oriented design into the

material design procedure.

The link between micro-structure and material parameters has not been con-
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sidered in this study. The reverse engineering aspect related to the approach

– fitting the FEM parameters to the known experiment results – has not been

studied.

7.3 Future Works

Base on the studies described in the thesis, some future works are suggested:

1. The proposed mPSO-DHA proves to be an efficient multi-objective optimi-

sation algorithm in solving the well-known ZDT and DTLZ series bench-

mark functions, comparing to other state-of-art multi-objective optimisa-

tion algorithms. Other newly developed benchmark functions and real

world problems is still needed in order to test the applicability of mPSO-

DHA in different types of situations and/or constraints.

2. With the applications into the crack propagations of the X100 pipeline

steel, the data-driven modelling approach has been successfully integrated

with the Gaussian Mixture Model error compensation scheme. The error

compensation method using Gaussian Mixture Model provides a stochastic

adaptive process in dealing with the error of existing models. Future works

should be focused on applying the method into other real world problems

and existing models.

3. The data-driven model embedded within the finite element modelling ap-

proach can be extended to other materials and element types using other

data-driven modelling methods and more industrial collected data. In ad-

dition, the modelling of the 3D situation should be considered in the future

in order to improve the performance of DMFEM.

4. The proposed optimisation procedure of material design should not only be

used in finding the optimal parameters for desired material behavior, but

to also be applied into fitting the constitutive parameters of finite element

model into the observed data. By setting the objectives of the optimisation
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to several sample points of the load-displacement curve, or the mean error

between the predicted curve and the actual experiment data, the user can

find all the required parameters without tuning the constitutive parameters

manually.

5. It is possible to correlate between the industrial process of forging material

and the material characteristics which need to be defined priorly in the finite

element model. Therefore, instead of optimising the material characteristics

that will lead to a desired failure behaviour, the process conditions of forging

the material can be directly optimised. The cost of design and experiments

can be further reduced.
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Appendix A

The Fortran code of the user-subroutine used in Chapter 5:

SUBROUTINE VUMAT(

C Read only -

1 nblock , ndir , nshr , nstatev , nfieldv , nprops , lanneal ,

2 stepTime , totalTime , dt, cmname , coordMp , charLength ,

3 props , density , strainInc , relSpinInc ,

4 tempOld , stretchOld , defgradOld , fieldOld ,

3 stressOld , stateOld , enerInternOld , enerInelasOld ,

6 tempNew , stretchNew , defgradNew , fieldNew ,

C Write only -

5 stressNew , stateNew , enerInternNew , enerInelasNew )

C

include ’vaba_param.inc ’

C

C All arrays dimensioned by (*) are not used in this algorithm

dimension props(nprops), density(nblock),

1 coordMp(nblock ,*),

2 charLength (*), strainInc(nblock ,ndir+nshr),

3 relSpinInc (*), tempOld (*),

4 stretchOld (*), defgradOld (*),

5 fieldOld (*), stressOld(nblock ,ndir+nshr),

6 stateOld(nblock ,nstatev), enerInternOld (*),

7 enerInelasOld (*), tempNew (*),

8 stretchNew (*), defgradNew (*), fieldNew (*),

9 stressNew(nblock ,ndir+nshr), stateNew(nblock ,nstatev),

1 enerInternNew (*), enerInelasNew (*)

C

character *80 cmname
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C

PARAMETER (M=3,N=3,ID=3,ZERO =0.D0,ONE=1.D0,TWO=2.D0,THREE

=3.D0 ,

+ SIX=6.D0, NINE =9.D0, TOLER =0.D-6,IN=9,IO=4,IHD=8)

C

DIMENSION XIDEN(M,N),XNV(4),DPSTRAN (4), XNVE (4),

+ DESTRAN (4), DSTRESS (4), DSTRAN (4),

+ STR(M,N),DSTR(M,N), XNDIR(M,N), DYPROD (4,4),

+ DV(4), DDS(4,4), DPROD (4), DLAM (4)

C

DIMENSION dinput(IN),output(IO),

+ dinputweight(IHD ,IN),dinputbias(IHD),dinputxmax(

IN),

+ dinputxmin(IN),dinputxrange(IN),dinputgain(IHD),

+ outputweight(IO,IHD),outputbias(IO),outputxmax(IO

),

+ outputxmin(IO),outputxrange(IO),outputgain(IO),

+ dinputgen(IN),hidden(IHD),outputgen(IO)

C

E = props (1)

XNUE = props (2)

SIGY0 = props (3)

h = props (4)

NTENS = ndir+nshr

C

EBULK3 = E/(ONE -TWO*XNUE)

EG2 = E/(ONE+XNUE)

EG = EG2/TWO

ELAM = (EBULK3 -EG2)/THREE

C

OPEN (122,

1 FILE=’C:\Users\uos\SkyDrive\PhD\MATLAB\DMFEM\NNPara.txt ’)

READ (122 ,*) (( dinputweight(i,j), j = 1,IN), i=1,IHD)

READ (122 ,*) (dinputbias(i), i=1,IHD)

READ (122 ,*) (dinputxmax(i), i=1,IN)

READ (122 ,*) (dinputxmin(i), i=1,IN)

READ (122 ,*) (dinputxrange(i), i=1,IN)

READ (122 ,*) dinputymax

READ (122 ,*) dinputymin

READ (122 ,*) dinputyrange
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READ (122 ,*) (( outputweight(i,j), j=1,IHD), i=1,IO)

READ (122 ,*) (outputbias(i), i=1,IO)

READ (122 ,*) (outputxmax(i), i=1,IO)

READ (122 ,*) (outputxmin(i), i=1,IO)

READ (122 ,*) (outputxrange(i), i=1,IO)

READ (122 ,*) outputymax

READ (122 ,*) outputymin

READ (122 ,*) outputyrange

close (122)

C

C the base of the natural logarithm

ee =2.71828182845904523536

C

OPEN (121,

1 FILE=’C:\Users\uos\SkyDrive\PhD\ABAQUS\DDSDDE.txt ’)

C

do 100 ei = 1,nblock

C

DO K=1,4

DSTRAN(K) = strainInc(ei ,K)

END DO

C

DO I=1,M

DO J=1,N

STR(I,J)=0.0

END DO

END DO

C

DO 50 I=1,M

DO 50 J=1,N

IF(I .EQ. J) THEN

XIDEN(I,J)=1.0D0

ELSE

XIDEN(I,J)=0.0D0

END IF

50 CONTINUE

C

DO K = 1,3

STR(K,K) = stressOld(ei ,K)

END DO
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STR(1,2) = stressOld(ei ,4)

STR(2,1) = stressOld(ei ,4)

C

CALL KDEVIA(STR ,XIDEN ,DSTR)

C

CALL KEFFP(DSTR ,PJ)

C

qq=PJ-SIGY0

IF (qq.LE.0.) THEN

vnl = 0.

ELSE

vnl = 1.

END IF

C

C

DO K = 1,4

dinput(K) = stressOld(ei ,K)

END DO

DO K = 1,4

dinput(K+4) = strainInc(ei ,K)

END DO

dinput(IN) = vnl

C

DO K = 1,4

WRITE (121 ,*) stressOld(ei,K)

END DO

DO K = 1,4

WRITE (121 ,*) strainInc(ei,K)

END DO

WRITE (121 ,*) vnl

C

DO K = 1,IN

C dinputgen(K) = (dinput(K)-dinputxmin(K))

C 1 /( dinputxmax(K)-dinputxmin(K))*dinputyrange+

dinputymin

dinputgain(K)= dinputyrange/dinputxrange(K)

IF (dinputxrange(K).EQ.0.) THEN

dinputgain(K)=1.

dinputxmin(K)=dinputymin

END IF
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dinputgen(K)=( dinput(K)-dinputxmin(K))*dinputgain(K)

1 +dinputymin

END DO

C

DO i = 1,IHD

dntemp = 0

DO j = 1,IN

dntemp = dntemp+ dinputweight(i,j)*dinputgen(j)

END DO

dntemp = dntemp + dinputbias(i)

hidden(i) = 1/(1+ee**(- dntemp))

END DO

C

DO i = 1,IO

dntemp = 0

DO j = 1,IHD

dntemp = dntemp + outputweight(i,j)*hidden(j)

END DO

dntemp = dntemp + outputbias(i)

outputgen(i)=dntemp

END DO

C

DO K = 1,IO

C output(K) = (outputgen(K)-outputymin)

C 1 /(outputymax -outputymin)*outputxrange(K)+outputxmin(K

)

outputgain(K)=outputxrange(K)/outputyrange

IF (outputxrange(K).EQ.0.) THEN

outputgain(K) = 1

outputxmin(K) = outputymin

END IF

output(K)=(( outputgen(K)-outputymin)

1 *outputgain(K)+outputxmin(K))

END DO

C

DO K = 1,4

stressNew(ei ,K) = stressOld(ei,K)+( output(K))

END DO

C

DO K = 1,4
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WRITE (121 ,*) stressNew(ei,K)

END DO

C

C

100 continue

C

return

end

**

***********************************************

** UTILITY SUBROUTINES *

***********************************************

**

**

***************************************

** EFFECTIVE STRESS *

** (CONTRACTED MATRIX CALCULATION) *

***************************************

*USER SUBROUTINE

SUBROUTINE KEFFP(EFF1 ,VAL1)

C

INCLUDE ’VABA_PARAM.INC ’

C

PARAMETER (M=3,N=3)

DIMENSION EFF1(M,N)

C

X=0.0

DO 10 I=1,M

DO 10 J=1,N

X=X+EFF1(I,J)*EFF1(I,J)

10 CONTINUE

IF(X .LE. 0.0) GO TO 20

VAL1=SQRT ((3.0/2.0)*X)

20 RETURN

END

**

**

*****************************************************

** DEVIATORIC STRESS CALCULATION *
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*****************************************************

*USER SUBROUTINE

SUBROUTINE KDEVIA(STRSS ,XIDENTY ,DEVITO)

C

INCLUDE ’VABA_PARAM.INC ’

C

PARAMETER (M=3,N=3)

DIMENSION STRSS(M,N),XIDENTY(M,N),DEVITO(M,N)

C

X=0.0

DO 10 I=1,M

DO 10 J=1,N

IF(I .EQ. J) THEN

X=X+STRSS(I,J)

ELSE

END IF

10 CONTINUE

C

DO 20 I=1,M

DO 20 J=1,N

IF(I .EQ. J) THEN

DEVITO(I,J)=STRSS(I,J) -((1./3.)*X*XIDENTY(I,J))

ELSE

DEVITO(I,J)=STRSS(I,J)

END IF

20 CONTINUE

RETURN

END

**

**
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The input file of small punch test simulation for ABAQUS used in Chapter 6:

*Heading

SmallPunchTest

*Preprint , echo=NO, model=NO, history=NO, contact=NO

*INCLUDE , INPUT=sptmesh.inp

*Amplitude , name=Amp -1, time=TOTAL TIME

0., 0., 1., 1.

**

** MATERIALS

**

*Material , name=Material -1

*Elastic

*INCLUDE , INPUT=spt_ela_set.inp

*Plastic

*INCLUDE , INPUT=spt_pla_set.inp

*Porous Metal Plasticity

1.5, 1.05, 2.25

*Porous Failure Criteria

0.005 , 0.0017

*Density

7.87E-09

**

** INTERACTION PROPERTIES

**

*Surface Interaction , name=IntProp -1

*Friction

0.25

*Surface Behavior , no separation , pressure -overclosure=HARD
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**

** BOUNDARY CONDITIONS

**

** Name: BC -1 Type: Displacement/Rotation

*Boundary

HolderN , 1, 1

HolderN , 2, 2

HolderN , 6, 6

DieN , 1, 1

DieN , 2, 2

DieN , 6, 6

** -----------------------------------------------------------

**

** STEP: Step -1

**

*Step , name=Step -1

*Dynamic , Explicit

, 1.

*Bulk Viscosity

0.06, 1.2

** Mass Scaling: Semi -Automatic

** Whole Model

*Variable Mass Scaling , dt=1e-06, type=below min , frequency =10

**

** BOUNDARY CONDITIONS

**

** Name: BC -2 Type: Displacement/Rotation

*Boundary , amplitude=Amp -1

PunchN , 1, 1

PunchN , 2, 2, -2.5

PunchN , 6, 6

**

** INTERACTIONS

**

** Interaction: Int -1

*Contact Pair , interaction=IntProp -1, mechanical constraint=

KINEMATIC , cpset=Int -1

HolderI.HolderSurf , Top

** Interaction: Int -2

*Contact Pair , interaction=IntProp -1, mechanical constraint=
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KINEMATIC , cpset=Int -2

DieI.DieSurf , Bottom

** Interaction: Int -3

*Contact Pair , interaction=IntProp -1, mechanical constraint=

KINEMATIC , cpset=Int -3

PunchI.PunchSurf , Top

**

** OUTPUT REQUESTS

**

*Restart , write , number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output -1

**

*Output , field , variable=PRESELECT

**

** HISTORY OUTPUT: H-Output -1

**

*Output , history , frequency =100

*NODE OUTPU , NSET=PunchI.MP

U2 , RF2

*End Step
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