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II. ABSTRACT 

 

Microalgae are regarded as a promising biomass resource for the production of biofuels and 

chemicals which does not compete with food production. Microalgae contain large amounts of 

lipids and have faster growth rates than terrestrial biomass. One of the current technological 

bottlenecks of biofuels conversion is the economic extraction and processing of microalgae 

components. Due to their aquatic nature microalgae contain large amounts of water when 

harvested. Hydrothermal liquefaction (HTL) involves processing the algae as a slurry in hot 

compressed water, avoiding drying of the wet feedstock. This is a major energy benefit 

compared to dry microalgae processing methods.  

A detailed characterisation of the microalgae feedstocks investigated for the current work is 

provided. The main differences between marine, fresh water and cyanobacteria strains are 

presented. The microalgae strains are investigated for biochemical composition, proximate and 

ultimate analysis, thermo-gravimetrical analysis, pyrolysis GC-MS, metal content, pigment 

analysis and by scanning electron microscopy. The results from the characterisation work are 

employed throughout the thesis for mass balance calculations and investigation of reaction 

chemistry.  

HTL for bio-crude production is investigated both on laboratory batch systems and a 

continuous pilot scale facility. Processing at mild conditions results in mainly the lipids of 

microalgae being extracted resulting in a high quality bio-crude. Higher temperatures are 

shown to result in higher yields of bio-crude as carbohydrates and proteins increasingly 

contribute to bio-crude formation. This allows processing of low lipid containing microalgae 

which are associated with higher growth rates. Maximum bio-crude yields of around 50 wt.% 

can be achieved but can contain significant amounts of nitrogen and oxygen. A total of 11 

microalgae strains is investigated leading to an average bio-crude yield of 34 %, a heating 

value of 36 MJ/kg, a nitrogen content of 4.7 wt.% and an oxygen content of 13.6 wt.%.  

The use of homogeneous and heterogeneous catalysts is investigated to increase bio-crude 

quality and yields. Model compounds of protein, lipid and carbohydrates are processed 

individually to shed light on the HTL behaviour of microalgae components and the reaction 

pathways involved in bio-crude formation. The effect of sodium carbonate and formic acid as 

homogeneous catalysts is investigated on various microalgae strains with changing 

biochemical composition and on model compounds separately. It is shown that biochemical 
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components of microalgae behave additively in respect to bio-crude formation. The trends of 

bio-crude formation follow lipids>protein>carbohydrates. It is further shown that 

carbohydrates are best processed in alkali conditions while protein and lipids are best 

processed without the use of catalysts. The same effect is demonstrated for algae high in 

carbohydrates or proteins and lipids respectively. Heterogeneous catalysts are shown not to 

increase the bio-crude significantly but result in additional decarboxylation of the bio-crude to 

reduce the oxygen level by a further 10%. 

The process water composition from HTL is investigated for common nutrients required for 

algae cultivation. It is shown that nutrients are present in higher concentrations than 

comparable standard algae growth media. The process water also contains large amounts of 

organic carbon which is considered a loss, unavailable for bio-crude formation. Growth trials 

in dilutions of the process water to grow fresh algae demonstrate that growth is sustainable. 

The organic carbon in the process water is shown to act as a substrate for mixotrophic growth 

resulting in increased growth rates and carbon efficiency.  

For analysis of the algae obtained from small scale growth trials a new analysis technique for 

microalgae composition analysis is introduced. This involves Py-GC-MS of model compounds 

and comparisons to algae pyrolysis products. Promising results are presented, showing the 

feasibility of detecting protein, carbohydrate and lipid levels of microalgae directly from 

growth cultures. Additionally the methodology is expanded to detect phytochemical 

concentrations such as astaxanthin and chlorophyll a.  

An alternative to direct hydrothermal liquefaction involving removal of valuable compounds 

from microalgae by hydrothermal microwave processing (HMP) is investigated.   HMP is 

shown to remove protein and large amounts of nutrients from the algae biomass which could 

be used as a source of nutrients for microalgae cultivation. The cells walls are shown to be 

disrupted, leading to increased recovery of lipids by solvent extraction while the lipids‟ degree 

of saturation is not affected. This allows effective extraction of high value poly-unsaturated 

fatty acids. The residue form HMP is processed using flash pyrolysis and HTL for bio-crude 

production. The results show that bio-crudes of increased quality are produced. The technique 

appears especially suitable for marine microalgae strains as the salt content acts as microwave 

absorbers, reducing energy consumption and increasing reaction rates.  

Overall, the experimental work shows that hydrothermal processing is a low energy intensive 

wet processing technique for microalgae to produce bio-fuels and chemicals.  
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1. CHAPTER I - Introduction 

1.1 Biofuel 

 

Biofuels are by no means a new technology, wood and charcoal has been burned by humans for 

thousands of years as a source of heat for food preparation and comfort. With the onset of the 

industrial age fossil fuels such as coal and petroleum became more popular due to their higher 

energy density, affordability and availability. In the 20
th
 century petroleum became the dominant 

energy carrier for the industrialised world, associated with cheap prices and a huge industry 

developing around petroleum products. Only towards the end of the century in 1973 when the 

OPEC chose to proclaim an oil embargo and in 1979 when the Iranian revolution occurred, did the 

West realise that the days of cheap oil are not endless. This was the period when the first real 

governmental research into alternative fuels started. Especially the US was concerned about their 

dependency on oil from the politically unstable regions of the Middle East. In 1978 President 

Jimmy Carter started the first research program into the use of algae as a source of bioenergy called 

the Aquatic Species Program [2]. This program was set for two decades and was concluded in 1996. 

The dependency of foreign oil is still a big driver into the development of alternative biologically 

sourced fuels. However, since around 1980 concern over global warming has become an 

increasingly important driver for advances in biofuels.  

Biofuels offer a possible route for the mitigation of CO2 emissions as the carbon emitted during 

combustion is taken from the atmosphere during the growth of the biomass. For the mitigation of 

climate change, biofuels will play a significant role as the transport sector has seen less 

development than the electricity generation industry concerning renewable solutions. Even though 

the development of electric cars has seen considerable development in recent years, powering heavy 

good vehicles, planes and ships by renewable electricity is not viable in the near future due to cost, 

weight and safety concerns of lithium-ion based batteries. Therefore, for the transport sector, the 

development of sustainable biofuels is necessary to reduce its CO2 emissions.  

Traditional biofuels from corn or rape seed as they are popular in the US and Europe respectively, 

are known as first generation biofuels. These first generation fuels are no longer regarded as 

environmentally friendly and CO2 mitigating. The Gallagher review published in 2008 was set up 

by the UK Government to assess the climate benefits, effects on food prices and possible 

deforestation due to first generation biofuels. It was concluded that biofuels do indeed contribute to 
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rising food prices and a slow down on first generation biofuel growth is required to avoid 

detrimental effects. Biofuel production on agricultural land was shown to displace existing food 

production causing land-use change with increased net greenhouse gas emissions [3]. To date the 

sources of biofuels on the market are mostly first or second generation derived fuels, mainly from 

food crops. Second generation, or advanced biofuels, are defined as biofuels made from 

lignocellulosic biomass. However these have also been show to potentially replace agricultural land 

for the dedicated production of energy crops, with aforementioned detrimental effects. Corn and 

sugar cane are commonly converted to bioethanol by fermentation in the US and Brazil respectively. 

In the European Union biodiesel production is more common by extracting the oils from rape seed 

and subsequent transesterification.  

In 2009 a total of 29.0 Gt of anthropogenic CO2 were emitted of which 23 wt.% arose from the 

transportation sector, this amount could be reduced significantly with the use of sustainably grown 

biofuels in road, marine and aviation transport [4].  The European Union has recognised this and 

issued the Directive 2003/30/EC which forced all member countries to add 2 vol.% biofuels to 

transport fuels from 2005, this amount was increased to 5.75 % by volume in 2010. A further 

increase to 10 vol.% by 2020 has been agreed by the directive 2009/28/EC but is subject to biofuels 

being produced sustainably without the abovementioned detrimental effects of first and second 

generation fuels.  

The UK Government supports the EU position on the basis of a sustainable production path and are 

hoping for the commercialisation of sustainable next generation biofuels [5]. The RTFO (2011) 

requires fossil fuel suppliers to produce evidence showing that a percentage of fuels for road 

transport supplied in the UK come from renewable sources and are sustainable, or that a substitute 

amount of money is paid [6]. Destruction of biodiversity especially in bio-diversely rich areas such 

as rain forests is of concern because local farmers will potentially destroy woodland area to grow 

monocultures for biofuel production such as palm oil. This leads to increased atmospheric pollution 

since forests are regarded as a carbon sink which are consequently lost. The issue of monocultures 

has also been raised in the US and Europe where farmers are increasingly growing corn and rape 

seed for bioenergy applications rather than employing the traditional farming methods of crop 

rotation. This practice of growing different crops in different seasons prevents over replenishment 

of nutrients from the soil. Growing merely energy crops consequently leads to increased use of 

fertilizers which is associated with an increase of greenhouse gas emissions.  
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The rising popularity of biofuels has led to large price increases for the staple foods worldwide. 

From 2001 to 2011 the worldwide biofuels production increased from 10 to 60 million tonnes of oil 

equivalent [7]; going hand in hand with increases in food crop prices. The use of terrestrial plants 

also puts considerable strains on the natural resource base which is being exploited for its nutrients 

and water. Currently 1% of the world‟s arable land is used for the production of biofuels, providing 

1% of the worlds transport fuel demand [8]. Clearly increasing the proportion of biofuels from 

terrestrial plants to anywhere near 100 % would have disastrous effects on the world food supply. 

The concept behind advanced generation biofuels is to use biomass which is usually discarded; such 

as stems, forestry waste, fast growing trees, switch grass and more recently algae. The potential of 

reducing greenhouse gas emissions with these biofuels is greatly improved. It is generally agreed 

that the development of next generation liquid biofuels are required that are not derived from 

biomass competing with food supplies. Second generation biofuels are produced from 

lignocellulosics, while microalgae are seen as being a future source of third generation biofuels and 

chemicals. Next generation biofuels can be produced by a variety of pathways from different 

sources and processes. The different processes are classed mainly into biochemical and 

thermochemical processes.  

The most established technologies are the biological processes; fermentation and anaerobic 

digestion. Fermentation for the production of biofuels is the most common and established process 

to produce liquid fuels. The fermentation process is well understood and has been used for 

thousands of years to produce alcoholic beverages. Simple sugars such as glucose are converted to 

ethanol and carbon dioxide by the biological activity of yeast. The process requires anaerobic 

conditions to avoid cellular respiration of pyruvate breaking down to water and CO2; pyruvate is an 

intermediate product of the fermentation of sucrose. Industrially the process converts sugars from 

sugar cane, sugar beet or corn to ethanol. Especially in Brazil the technology is well established, 

stemming from an almost 40 year running ethanol program making them one of the world‟s largest 

producers of bioethanol. Bioethanol can be blended with conventional gasoline up to 10 vol.% 

without modifications to the engine. Bioethanol is regarded as a first generation biofuel but there is 

considerable research into producing ethanol form more complex carbohydrates from non food 

crops by pre-treatment (hydrolysis) or biological breakdown to simpler carbohydrates which can be 

fermented. 

The other biological pathway commonly employed is known as anaerobic digestion (AD). During 

AD bacteria break down organic fragments to smaller molecules by hydrolysis. Proteins are 
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hydrolysed to amino acids, lipids to fatty acids and carbohydrates to sugars. Acidogenic bacteria 

then convert these molecules to carbonic acids, alcohols, ammonia, H2 and CO2. Different, 

acetogenic, bacteria are able to further break the organic acids down to acetic acid. In the final step 

of methanogenisis, microbes form CH4 by anaerobic respiration of H2 and CO2. The produced gas 

from AD hence contains CH4, CO2 and small amounts of trace gases. AD is used for digestion of 

organic waste, or purpose grown energy crops such as corn, to a biogas. It is also the process 

occurring in landfill sites to produce landfill gas. The produced biogas is commonly combusted to 

generate electricity and heat. The process results in a by-product of dead bacteria and indigestible 

material, known as digestate, which is high in nutrients and can be used as fertiliser.  

Biomass and microalgae can also be converted to biofuels by thermochemical processes. These 

include gasification, pyrolysis and hydrothermal processing. Gasification involves the partial 

controlled oxidation of organic material to a syngas (sometimes referred to as producer gas). Syngas 

contains CO, H2 and CO2. Apart from direct combustion, the other promising application of syngas 

is the conversion to a synthetic fuel, so called “gas to liquid fuel” (GTL), by the Fisher-Tropsch 

process. This converts H2 and CO to straight chain liquid hydrocarbons which are a suitable 

renewable substitute to petroleum derived diesel fuel.  

Pyrolysis refers to the thermal decomposition of feedstocks in the absence of air. Products from 

pyrolysis vary depending on processing temperature, heating rate and residence time. Generally 

lower temperatures lead to the formation of a solid biochar product. This is very similar to 

traditional charcoal manufacture and is still performed especially in developing countries. The 

process drives off the moisture and volatiles, improves the handling properties and increases the 

carbon content of the fuel. At temperatures up to 300°C the process is known as torrefaction which 

is being increasingly used to process biomass to a more suitable solid fuel for co-combustion with 

coal. At higher temperatures (>500°C) the product distribution favours the production of a liquid 

bio-oil. This is a highly oxygenated, acidic liquid resembling crude oil. It is not suitable for 

blending with diesel or gasoline but can be combusted for power generation or upgraded by 

hydrogenation/ hydro-cracking to green diesel.   

One of the drawbacks of the thermochemical routes mention above is that the biomass feedstock 

needs to be dry while biomasses, and especially algae, typically have a high moisture content. 

Therefore, wet thermochemical routes are more suited to process biomass with high moisture 

content such as algae. Only anaerobic digestion and hydrothermal processing allow processing 

feedstocks with significant water content. Dry biomass processing is associated with a large energy 
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input to drive off water.  Hydrothermal processing involves treating a water-biomass slurry in hot 

compressed water to produce biofuels. A detailed introduction and literature review on 

hydrothermal processing is covered in Section 1.5. 

 

1.2 Microalgae 

 

The development of third generation biofuels from microalgae has seen increasing research efforts 

over the last decade. The advantages of these biomass technologies are that they do not stand in 

direct competition to food production and potentially have a better energy balance. Microalgae are 

microscopic organisms that can grow in fresh, brackish or salt water. There are two functional 

groups of microalgae; phototrophic and heterotrophic. Phototrophic means that the algae use CO2 

and sunlight via photosynthesis while heterotrophic algae require an organic source of carbon for 

their growth. Both phototrophic and heterotrophic algae also require nutrients and water. The 

advantage of microalgae compared to terrestrial biomass is its much higher photosynthetic 

efficiency which results in higher growth rates and improved CO2 mitigation [8]. Switch grass, one 

of the fastest growing terrestrial plants, is estimated to convert no more than 1W/m
2
 sunlight at a 

yearly rate, that is equivalent to 0.5 % of the irradiation at medium latitude [9]. It must be taken into 

account that only the photosynthetic active radiation can be utilised during basic carbohydrate 

production by photosynthesis. This active radiation represents 42.3 % of the total radiation [8]. 

Other factors such as photosaturation, photorespiration and poor light absorption further decrease 

the photosynthetic efficiency of plants. Microalgae have been found to have much higher theoretical 

photosynthetic efficiencies, compared to terrestrial plants, ranging between 10-20 % [9]. In practice 

however efficiencies of around 5-10 % are more likely [8, 10]. Microalgae are primitive plants 

(thallophytes), lacking stems, roots and leaves; their structure is primarily for energy conversion 

without any development beyond cells, therefore higher growth rates and photosynthetic 

efficiencies are achieved [11].  

The photosynthetic efficiency is a very important factor to consider and has a large impact on the 

economic feasibility of microalgae systems. If the photosynthetic efficiency is doubled, the land 

area required for the same amount of biomass is halved. This is one of the reasons why microalgae 

have a larger potential than terrestrial biomass for providing significant amounts of our energy 

demand. Only 3.9% of the world surface is arable land, while 25.3% are non arable and the rest is 

aquatic [12]. An estimation by Stephens et al. states that with a photosynthetic efficiency of 3 or 10% 
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at tropical and subtropical regions, would required 0.4 or 0.1 % of the world‟s non-arable land 

respectively to fully supply the worlds fuel demand by microalgae. It is also stated that an 

efficiency of 4% is achieved routinely in conventional open pond systems [12]. Microalgae can 

contain up to 80% lipids by weight which strongly affects the suitability of a strain for biofuel 

production. The lipid content of microalgae can vary widely and has a major impact on the 

economics and energy balances of microalgae for bio-diesel systems. Wijfels et al. state in their 

review on microalgae for biofuels and chemicals that potential oil yields of 8,000 to 32,000 l ha
-1 

year
-1

  could be possible, with current technology achieving a maximum productivity of around 

8,000 l year
-1

 [13]. This is higher than the best performing terrestrial oil producing plants [14]; palm 

and rape seed oils can be produced at 6,000 and 1,500 l ha
-1 

year
-1

 respectively [13].  This is also 

due to the fact that microalgae can be harvested all year around and doubles its cell count every few 

days, while terrestrial plants are usually seasonal and often only allow one harvest per year. 

Therefore a more uniform biofuel production throughout the year is achievable which is closer to 

the actual market demand of liquid fuels. Another advantage of microalgae over terrestrial plants is 

that they use less fresh water for their growth.  

By converting CO2, H2O and sunlight to biomass, microalgae effectively capture carbon from the 

atmosphere. Upon combustion there is therefore no additional carbon added to the atmosphere, 

unlike fossil fuels which are regarded as a carbon sink which have stored carbon for millions of 

years. Alternatively CO2 from flue gases can be used for enhanced algal growth and is available at 

little or no cost from fossil fuel power plants. Natural CO2 levels in the atmosphere are quite low 

(~360 ppm v/v); therefore the growth by capturing CO2 from the atmosphere is limited by the mass 

transfer from the atmospheric CO2 to the growing medium. Fossil fuel powered power plants often 

have CO2 concentrations of 15% which can greatly improve the photosynthetic efficiency and 

therefore the growth rate of microalgae [15]. One problem associated with this approach is that 

many algal species are not tolerant to high levels of NOx and SOx, therefore careful strain selection 

is necessary. Microalgae are estimated to sequester around 1.8 kg of CO2 per kg of algae produced, 

by bio-fixation [16].  

All microalgae produce, lipids, proteins, carbohydrates and nucleic acids in varying compositions 

for different strains. The compositions also vary depending on culturing conditions. The lipid 

content is the primary component for biodiesel production and this fraction can make up anywhere 

between approximately 5 wt.% and 80 wt.% [17]. There are also valuable bi-products that can be 

harvested from microalgae which can significantly increase the economics of biofuel production. 

Some algal strains can produce polyunsaturated fatty acids (omega-3) in the form of EPA and DHA 
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which are popular and expensive food supplements and are essential for human development and 

physiology [14]. Usually omega-3 fats are extracted from fish but this is not suitable for vegetarians 

and is associated with unpleasant odour and taste. The cyanobacteria Spirulina has been a 

successful food supplement for years due to its high protein content and essential oils. Chlorella is 

produced for its medicinal value as it is claimed to protect against renal failure and growth 

promotion of intestinal lactobacillus. There are also a number of valuable recombinant proteins 

found in microalgae as well as valuable pigments such as β-carotene, astaxanthin and C-

phycocyanin [18-19].  Dunalliela salina with a production rate of 1200 t a year is exploited for its 

β-carotene content of 14 wt.% due to its current market value of ~ 2000 €/kg [19]. 

 

1.3 Microalgae Cultivation 

 

It is advantageous to use natural sunlight but this has the disadvantage of diurnal cycles and seasons 

resulting in a limiting factor on available light. A location with high solar irradiation therefore is 

beneficial for algal growth. Artificial light is commonly used for laboratory scale applications but is 

too expensive and would be detrimental for GHG saving reasons if employed at a larger scale. 

Higher growth rates can be achieved if CO2 flue gas circulation is employed from power plants or 

industrial installations. Ideally the algae cultivation facility should be in close proximity to such an 

installation to avoid expensive CO2 transportation. Inorganic nutrients have to be present in the 

aqueous growing media and include nitrogen and phosphorus. Grobbelaar (2007) presented a 

formula for nutrient requirements based on the molecular composition of typical algae; 

CO0.48H1.83N0.11P0.01 but this varies for different algae strains [20]. From this formula it can be seen 

that not much phosphorus is necessary but Chisti (2007) states that this element should be provided 

in excess as phosphate ions bond with metal ions and are therefore not available for algal growth 

[17]. One way of providing nutrients to microalgae being researched is the use of wastewater or 

nutrient rich agricultural run-off. Pittman et al. (2011) conclude in their review that algae cultivation 

based on current technologies is unlikely to provide a positive energy return or to be economically 

viable unless it is combined with waste water treatment, as this reduces the energy cost, GHG 

emissions and the nutrient and freshwater resource costs [21].  

Algae cultivation can be achieved either in open pond or photo-bioreactor systems. Open pond 

systems can be implemented into natural water systems such as lakes, lagoons and ponds but it is 

more common to use artificial systems such as raceway ponds. These structures are usually 
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arranged in a closed loop of various designs with a paddle wheel for circulation and mixing. This is 

important as turbulent flow maximises algal growth and prohibits microalgae from settling on the 

raceway floor. The floor is lined with a plastic liner and usually painted white to increase 

reflectance which increases the light received by the cells. The culture is fed continuously in front 

of the paddlewheel and the algae broth is harvested just behind the paddlewheel.  

Open raceway ponds are advantageous due to cheap construction, low energy input during 

operation, easy maintenance and the fact that they can be built on non arable land. But one of the 

biggest problems with raceway ponds is the contamination of other algae and protozoa. To achieve 

monoculture cultivation it is therefore necessary to have quite extreme growing environments. For 

example Chlorella can grow in extremely nutrient rich media, Dunaliella salina is adaptable to very 

high salinity and Spirulina can withstand high alkalinity [22].  

A more sophisticated culturing system is the use of photobioreactors. This incorporates the use of 

transparent tubes or plates which act as the culturing environment. The most common design is the 

tubular design but flat plate and column photobioreactors are also used, each with different 

advantages and limitations. The broth is circulated from a reservoir where the pump is located 

(typically air-lift or mechanical pumps); the air-lift pump has the advantage of being able to 

introduce CO2 and degas the accumulated O2. Degassing of O2 is important as too much oxygen in 

the culture will inhibit algal growth. The main advantage of closed systems is that culturing of a 

monoculture species without contamination is possible for a substantial period without cleaning or 

other maintenance. CO2 and light usage is also much higher than with open systems which 

drastically increases the biomass production per volume. This has the effect that harvesting also 

becomes much cheaper as the biomass concentration is up to 30 times higher than in open systems 

[17]. The major drawback is that the more sophisticated system has a much higher unit construction 

cost and therefore increases the cost of biomass. Demirbas (2011) states that photobioreactors 

require 10 times the capital cost compared to open raceway ponds, this leads to an estimated algae 

production cost of $10/kg and $30-70/kg for open pond and photobioreactor cultivation respectively 

[14]. A more recent evaluation of algae production costs and productivity by Draaisma et al. (2013) 

comes to a different conclusion [23]. The data presented in Table 1.1 is based on growing the strain 

Thalassiosira pseudonana in Southern Europe with the photobioreactor being of the stacked 

horizontal tubular design. The algae production cost for open pond systems is in the same range as 

the estimates by Demirbas (2011) however the photobioreactor algae production cost is shown to be 

lower than the open pond system with a price of 8 €/kg. The Table demonstrates that the algae 

productivity and algae concentrations are much higher in the photobioreactors. In this current 
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opinion in Biotechnology it is also stated that the price achieved with current technology of 5.5 €/kg 

could be reduced to 0.68 €/kg if the technology develops. It is apparent that there are large 

uncertainties in estimations in literature and this is an area where additional research efforts should 

focus on.  

Table 1.1: Algae cost, productivity and concentration comparison between open ponds and 

photobioreactors. Adapted from Draaisma et al. [23], DW=dry weight.  

 

Open Ponds Photobioreactor 

Algae production cost (€/kg DW) 12.7 8 

Algae productivity (t/ha/year) 14.9 56.6 

Algae concentration (g/l) 0.1 1.1 

 

 

1.4 Processing of Microalgae 

 

One of the challenges for producing microalgal derived biofuels is performing economic extraction 

of the lipids from the wet biomass before conversion to biodiesel. The lipids can be extracted by 

solvent extraction or by physical extraction following rupture of the cell wall. These lipids can then 

be further transesterified to biodiesel in the same manner as terrestrial seed oils [24-25]. One of the 

problems of this approach is that the wet aquatic biomass requires drying before it can be processed. 

This is major cost factor and it is unlikely that economic biodiesel production is possible if drying is 

necessary [26]. The three most common techniques to extract the algal oil are using an 

expeller/press, solvent extraction and supercritical CO2 extraction. Mechanical extraction is very 

simple and can achieve oil extraction of 70-75 wt.% of the total algal oil [14].The most common 

chemical solvents used include hexane or chloroform/MeOH mix which is the basis of the total 

lipid determination method, Bligh and Dyer established in 1959 [27]. The associated problem of 

solvents is that they are relatively expensive, flammable, harmful and dangerous to the environment. 

Supercritical CO2 extraction is more efficient than the former two methods as it can extract almost 

100 wt.% of the lipids [14]. Lee et al. investigated possible pre-treatment methods for microalgae 

before solvent extraction. They investigated autoclaving, bead-beating, microwaves, sonication and 

an osmotic shock. They found that the most simple, easy and effective pre-treatment method was 

the use of microwaves.  An increase of 20 wt.% lipid extraction by this pre-treatment could be 

shown [28]. Alternative processing by thermo-chemical methods include liquefaction, gasification 
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and pyrolysis. Gasification is a process of partial oxidation in high temperatures to produce a syngas. 

Pyrolysis involves the production of a bio-oil, syngas and charcoal in the absence of air at moderate 

to high temperatures, although pyrolysis is limited to feedstocks with a maximum of 20 wt.% 

moisture content. Because of the high water content of microalgae, wet conversion routes offer 

clear advantages and can result in significant reductions in energy consumption. Wet conversion 

routes include anaerobic digestion and hydrothermal processing routes.  Anaerobic digestion is an 

approach for delivering gaseous products, and hydrothermal liquefaction is a promising route for 

delivering liquid products.  

 

1.5 Hydrothermal processing 

 

1.5.1 Introduction  

 

One of the economic and energetic drawbacks in the processing of microalgae is the dewatering 

stage as microalgae typically only grow to a solids concentration of 1-5 g/l [8]. This makes 

concentration and drying challenging and energy intensive. Microalgae biofuel is most commonly 

produced by the extraction of lipids and subsequent transesterification to bio-diesel. Most common 

lipid extraction techniques require a dry biomass feedstock before transesterification as does 

conversion to thermal energy or syngas by combustion or gasification. This can account for as much 

as 25 % of the energy contained in the algae  [29]. Hydrothermal processing avoids this step as the 

algae is processed as a slurry in hot compressed water and does not require drying. Operating 

conditions vary depending on the desired product. At low temperatures <200°C, the process is 

referred to as hydrothermal carbonisation (HTC) and predominantly produces a char. At 

intermediate temperatures ~200-375°C the process is referred to as hydrothermal liquefaction (HTL) 

and predominantly produces an oil. At high temperatures >375°C hydrothermal gasification (HTG) 

reactions occur, predominantly producing a syngas. The aim of these hydrothermal processing 

routes is to generate a product with higher energy density than the feedstock by removal of oxygen. 

The char produced from HTC can be co-fired with coal or used as a biochar for soil amendment 

[30], the bio-crude from HTL can be upgraded to a variety of fuels and chemicals while the syngas 

from HTG can be used for combustion or converted to hydrocarbons by either biological or 

catalytic  processing e.g. Fisher Tropsch synthesis.  
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Hydrothermal processing essentially simulates the natural processes which have taken place in 

nature in the production of fossil fuel reserves. All fossil fuel reserves have been created by the 

transformation of organic matter under pressure and heat over long periods of time. Coal is mainly 

formed from terrestrial plants while oil and gas is mainly the product of decaying phytoplankton 

and zooplankton. The process of applying high pressures and temperatures to organic matter in 

modern hydrothermal processing is therefore a way of speeding up nature‟s natural pathways to 

form a renewable fossil fuel. Just as in nature, the state and quality of the resulting fossil reserve is 

dependent on the severity of the environmental conditions. The products of hydrothermal 

processing are consequently often referred to as green coal, bio-coal, bio-crude and syngas. 

Research has been carried out in all of these synthetic hydrothermal pathways and is discussed in 

the following sections.  

Apart from the above mentioned hydrothermal processes, there are some additional wet processing 

methods which have been used for algal biomass as it is realized that wet extraction techniques 

offer a distinct energy requirement advantage. Levine et al. for example proposed the in situ lipid 

hydrolysis of wet algal biomass followed by supercritical transesterification with ethanol [31].  

Alternatively Patil et al. have suggested the wet transesterification to fatty acid methyl esters in 

supercritical methanol [32]. There have also been limited studies on the co-liquefaction of algal 

biomass with coal or organic solvents to improve the yields and quality of bio-crude [33-34]. 

However this review will focus on the hydrothermal routes. 

Water as a reaction medium has several advantages over chemicals as it is ecologically safe, cheap 

and readily available. When water is heated and compressed, the hydrogen bonds are weakened 

resulting in a change in dielectric content, acidity and polarity, each of which can increase 

opportunities for water to take part in reactions. This leads to water acting as a catalyst, lowering 

activation energies and allowing reaction pathways which would not occur at ambient conditions. 

The critical point of water is at 374°C and 22.1 MPa, below this point the vapour pressure curve 

separates the liquid from the gaseous phase. Approaching the critical point, the density of the two 

phases become more and more alike and finally identical at the critical point [35]. Above this point, 

the density of supercritical water is interchangeable without any phase transitions over a wide range 

of conditions. Depending where in the phase diagram the process conditions are placed determines 

if HTC, HTL or HTG reaction conditions are met as can be seen in Figure 1.1.  
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Figure 1.1: Hydrothermal processing conditions in the water phase diagram; data from Perry's 

Chemical Engineers' Handbook [1] 

During the carbonisation stage, the carbon concentration of the biomass is increased and the oxygen 

and mineral matter content are reduced, the gaseous product is low and a biochar is produced by 

carbonisation reactions. During liquefaction, biomass feedstocks are decomposed to smaller 

molecules which are reactive and can re-polymerize into oily compounds [36]. The main reaction 

steps during liquefaction have been summarised by Garcia Alba et al. as follows [37];  

1. Hydrolysis of macromolecules (lipids, proteins and carbohydrates) into smaller fragments; 

2. Conversion of these fragments by, for example, dehydration into smaller compounds; 

3. Rearrangement via condensation, cyclisation, and polymerization producing new larger, 

hydrophobic macro-molecules. 

The products from hydrothermal liquefaction consist of a bio-crude fraction, a water fraction 

containing some polar organic compounds, a gaseous fraction and a solid residue fraction. At the 

more severe conditions in HTG, the desired product is a syngas and depending on reaction 
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conditions, consists of varying amounts of H2, CO, CO2, CH4 and light hydrocarbons. The initial 

reaction steps are the same as during liquefaction but the more severe conditions lead to the small 

fragments decomposing even further to low molecular weight gaseous compounds. At high 

temperatures >500°C H2 production is favoured while CH4 production is favoured at 350 to 500°C 

although all these conversion pathways can be influenced with the use of catalysts and pressure [38].  

At ambient conditions, the miscibility of water for hydrocarbons and gases is poor but it is a good 

solvent for salts due to its high dielectric constant of 78.5 [39]. Just below the critical point, the 

miscibility for hydrocarbons is improved as the dielectric constant is in the range of 10, which 

would be equivalent to that of dichloromethane, decreasing further in the supercritical region. The 

change in dielectric constant can be seen in Figure 1.2 over a range of temperatures at 30 MPa 

pressure. It can be seen that even at HTC conditions of around 250°C, the dielectric constant has 

more than halved, increasing the solubility of organics and opening new reaction pathways.  The 

reaction rates in hydrothermal media can be adjusted by means of temperature and pressure as this 

affects the dielectric constant which influences the activation energy of reactions. Above the 

supercritical point of water, the miscibility for hydrocarbons and gases is very high making it a 

good reaction medium for organics and gases. Below the supercritical point, miscibility of these 

compounds is not complete but increased compared to ambient conditions. When the process 

products cool back down to ambient conditions, the water and the organic compounds will separate 

as they are not soluble anymore; this makes distillation or other costly separation techniques 

unnecessary.  

  

Figure 1.2: Density [40], static dielectric constant [41] at 30 MPa and ionic product [42] of water at 

25 MPa  
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At high temperature and pressure below the supercritical point, the ionic product is up to three 

orders of magnitude higher than under ambient conditions and is plotted on a logarithmic scale in 

Figure 1.2.  The high ionic product supports acid or base catalysed reactions and can act as an 

acid/base catalyst precursor because of the relative high concentrations of H3O
+
 and OH

-
 ions from 

the self-dissociation of water [39]. The advantage of this is that the addition of acid or base catalysts 

can be avoided. The concentration of ions is at its maximum at 275°C which is therefore the 

optimum temperature for acid/base catalysed reactions. Above 350°C the ionic product decreases 

rapidly by 5 orders of magnitude or more above 500°C [43]. The density of water at 30 Mpa over 

the hydrothermal temperature is plotted in Figure 1.2 and it can be seen that the most dramatic 

change takes place in the region of the critical point (375°C). Between 300 and 450°C, the density 

at 30 MPa changes from a liquid like 750 kg/m
3
 to a gas-like 150 kg/m

3
; however there is no phase 

change taking place. This change in density directly correlates with properties such as solvation 

power, degree of hydrogen bonding, polarity, dielectric strength, diffusivity and viscosity [35].  

Some of the earliest work on hydrothermal processing was carried out at the Pittsburgh Energy 

Research Centre in the 1970s-1980s.  Their process of biomass liquefaction was based on 

technology used for lignite coal liquefaction. Some early research into HTL of biomass was 

performed at the Royal Institute of Technology, Stockholm, the University of Arizona and the 

University of Toronto. All the early research investigated terrestrial biomass only and algal biomass 

was first investigated in the „90s. Hydrothermal gasification of biomass is first reported in the USA, 

at the Massachusetts Institute of Technology. More information about the history of the process 

development can be found in D.C. Elliott‟s recent chapter of Robert C. Brown‟s book 

“Thermochemical Processing of Biomass” [44].  

Hydrothermal processing of lignocellulosic biomass has received much more attention than algal 

biomass and has been extensively reviewed by Peterson et al. and Toor et al. [35, 45]. Terrestrial 

biomass consists mainly of cellulose, hemi-cellulose and lignin while algae consist of varying 

amounts of protein, starch like carbohydrates and lipids. If the algae is from a marine origin it 

typically contains large amounts of ash as salts and other mineral matter, some strains can have ash 

contents as high as 60 wt.% on a dry basis. Macroalgae are typically higher in carbohydrate and 

much lower in lipid content compared to microalgae, and if from a marine environment can be very 

high in ash content [46]. This can affect hydrothermal reactions and presents a significant difference 

to terrestrial biomass which is typically low in ash content. The different biochemical components 

undergo different reaction pathways in hydrothermal media and have previously been reviewed [35, 

45].  
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Figure 1.3 describes an idealized closed loop HT concept with integrated nutrient recycling for 

algae cultivation. Figure 1.3 depicts a photo-bio reactor for microalgae cultivation where nutrients, 

water, light and CO2 are the only required inputs. A similar concept could be described for open 

pond cultivation or for macroalgae where the cultivation layout could include growth in marine 

environments. It is important to note that whilst the algal biomass is processed wet in hydrothermal 

processing, some dewatering is still required. Low cost dewatering is more challenging for 

microalgae than macroalgae but many processes are available such as flocculation.  Algae is grown, 

harvested and dewatered to produce a slurry with a higher solid content. Subsequently the slurry is 

processed in hot compressed water to produce the desired primary energy product. The product 

phases include a gaseous fraction, process water, solid residue and a bio-crude. The amounts of 

each fraction depend on both the temperature and pressure of operation and the amount of biomass 

in the slurry. The solids:water ratio of the feedstock can be altered to the specific requirements and 

capabilities of the processing facility. When the solids content of the slurry is higher, the amount of 

water per mass of algae to be heated is less; reducing the energy requirements but at the same time 

more energy is spent in dewatering. One advantage of hydrothermal processing of algal biomass is 

that nutrients such as nitrogen, which are concentrated in the process water, can potentially be 

recycled [47-48]. The amount of nutrients in the process water varies with hydrothermal conditions 

and feed composition. In HTC and HTL, the gaseous fraction contains predominantly CO2 and can 

potentially be recycled to the cultivation step. In HTG, the syngas could be converted to a liquid 

fuel by Fischer-Tropsch after separation of CO2 and clean up or burnt in a gas turbine directly. The 

bio-crude produced by HTL can be further upgraded to produce fuels and chemicals. The solid 

residue, which still contains some nitrogen and minerals depending upon processing conditions, 

may be used as a fertilizer, as a fuel or as a biochar. Most of the current research and development 

into hydrothermal processing of algal biomass fits somewhere into this idealized concept. The 

technology is still very much in the research stages, most of which are still based on a laboratory 

scale and there are still many uncertainties and challenges associated with each of these process 

options.  The following sections summarise the current state of research on the hydrothermal 

processing of micro and macro algae. Process conditions, feedstock, products, energy balance 

considerations and nutrient recycling possibilities are all discussed.  
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Figure 1.3: Schematics of an integrated HT process with nutrient and CO2 recycle 

 

1.5.2 Hydrothermal Carbonisation (HTC) 

 

Hydrothermal carbonisation is the mildest of the three routes, processing temperatures range from 

150-250°C but often the residence time can be significantly longer (>1 hr). The principle aim of 

HTC is to concentrate the carbon in a stable, easy to handle material; therefore upgrading poor fuels 

into higher energy density solid fuels. The char material is reported to have good nutrient properties 

for terrestrial plants and has been proposed as a source of biochar for soil amendment but could also 

potentially be co-fired with coal [49-50]. The applications of char from hydrothermal carbonisation 

for novel materials is also of interest and many studies have produced functionalized carbons with 

applications in water purification, fuel cell catalysis, energy storage, CO2 sequestration, bio-imaging, 

drug delivery and gas sensors. The different applications of HTC biochar have been summarised in 

a  recent review by Bo Hu et al. [51]. The first reported experiments on HTC were performed in 

1913 by Bergius who processed cellulose with the aim of producing a coal like material [52]. 

Interest in HTC of lignocellulosic materials has received increased interest in recent years [53-55] 

while there are only limited reports of HTC of algal biomass. Heilmann et al. have recently 

published their research in two separate papers on the subject [56-57]. Three types of microalgae; 

Chlamydomonas reinhardtii, Dunaliella and an undisclosed algae from Inspired Fuels, Inc (Austin, 

TX) were processed in a batch 450 ml stirred reactor. Operating conditions were 5-25 wt.% solids, 

190-210°C for 0.5-2 hours. It was found that the lipids of microalgae were adsorbed on the char 

product and could be separated by solvent extraction for further processing. Carbon recovery yields 



CHAPTER I - Introduction 

17 

 

in the char ranged from 20-60 wt.% depending on algae strain and operating conditions. It was 

shown that cyanobacteria produce higher carbon containing chars but lower yields while blue green 

algae with less strong cell walls enhanced char formation. The char produced was of similar energy 

content to a bituminous coal although the nitrogen content was found to be 5-7 wt.% which would 

be problematic in terms of NOX emissions. The authors highlighted the advantages of the process 

wherein no extensive concentration of the algae is necessary, the oil fraction is obtained by simple 

solvent extraction and the aqueous co-products can be used for nutrient recycling. Yu et al. 

processed Chlorella pyrenoidosa for bio-crude production but also investigated low processing 

temperatures of 100-250°C giving insight into carbonisation behaviour as the water insoluble 

fraction was analysed prior to bio-crude separation using toluene [58]. It was found that below 

180°C, the residue appeared as green algal cake and only above this temperature did the char appear 

as a black solid, indicating the onset of carbonisation. The carbon recoveries at these temperatures 

were very high reaching 70-80 wt.% while already around 30 wt.% of the nitrogen was partitioned 

to the water phase. This could be beneficial for recycling of nutrients for algae cultivation. When 

the solid residue was separated from the bio-crude using solvents it was shown that the carbon 

distribution to the bio-crude surpasses that of the char at around 210°C.  

A significant factor to consider is that under HTC conditions, the protein breakdown to bio-crude 

will not have occurred resulting in concentration of nitrogen in the char rather than the oil fraction. 

The drawback of HTC of microalgae is that the primary product, char is currently of low 

commercial value although new applications of this char may make this process more attractive. To 

date microalgae are still expensive to cultivate and potentially demand the extraction of high value 

chemicals and fatty acids before processing [8, 19]. Therefore the authors are of the opinion that 

carbonisation of the entire microalgae without prior extraction of valuable components is less 

feasible but processing of residues, lower lipid algae such as macroalgae or problematic algal 

blooms could be more feasible. Results regarding the potential of algal biochar in soil amendment 

or as a carbon sink are not available and should be the focus of future research. 

  

The hydrothermal carbonization of macroalgae has received less attention however the work 

reported by Anastasakis et al. operating at the higher end of the HTC temperature range of 250°C 

shows some insight into its behaviour [59]. A char yield of 25 wt.% is achieved at 250°C with a 

heating value of 15.9 MJ kg
-1

, indicating slight upgrading. Increasing the processing temperature, 

decreases the carbon content and increases the ash content, resulting in chars with lower heating 

value. Lower biomass and water feeds favour char formation and ash removal, a char with a heating 

value of 22.8 MJ kg
-1

 was produced at 350°C with a 52 wt.% carbon content and 26 wt.% ash 
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content indicating removal of mineral matter. Macroalgae contain many water soluble components 

such as laminarin and mannitol and the water phase is typically high in soluble organic carbon after 

hydrothermal processing.  

 

1.5.3 Hydrothermal Liquefaction (HTL) 

 

The vast majority of research into hydrothermal processing of algae has been conducted in the 

intermediate temperature range (HTL) where the primary product is bio-crude. A summary of the 

published results on HTL without the presence of a catalyst are presented in Table 1.2. Bio-crude is 

a viscous, black crude oil like material with a heating values of around 30-38 MJ/kg. The bio-crude 

or bio-oil is thought to be suitable to process in conventional crude oil refineries either mixed with 

crude or separately. This would reduce the tail end emissions of the whole product range of the 

refining process, as the CO2 emitted was previously taken from the atmosphere by photosynthesis of 

the algae. There have been some attempts at upgrading the bio-crude by hydro-

treating/hydrogenation followed by cracking and distillation and also some work on supercritical 

catalytic upgrading; however these areas have not been investigated as much as the initial bio-crude 

production stage [60-62]. Alternatively the bio-crude could be directly combusted in boilers as a 

heavy fuel although the NOX emissions due to the fuel bound nitrogen in the bio-crude would likely 

pose a problem. The liquefaction process was first extensively researched in the 1970-80s at the 

Pittsburgh Energy Research Centre and more recently Shell in the Netherlands tried to develop the 

commercialization of  the hydrothermal upgrading process (HTU) with the aim of producing liquid 

biofuels from terrestrial biomass [35].   

The earliest reported HTL of microalgae was carried out in the early „90s at the National Institute 

for Resources and Environment in Tsubaka, Japan. The group led by Prof. Minowa published four 

papers in this period which laid the foundations of microalgae HTL research [63-66]. In their first 

publication in 1993, Botryoccocus braunii was processed in a stirred reactor for 1 hr at 200-340°C 

[63]. This strain exhibits a very high oil content of 50 wt. % dry basis resulting in a yield of bio-

crude as high as 58 wt. % at 300°C without the use of a catalyst. The bio-crude yield was found to 

be higher than the lipid content leading to the conclusion that bio-crude was being formed also from 

the carbohydrate and protein fraction. At 300°C, the elemental composition was found to be most 

favourable. There was no oxygen and only 0.9 % nitrogen in the bio-crude leading to a Higher 

Heating Value (HHV) of 50 MJ/kg exceeding that of crude oil. This HHV value and the H/C ratio 
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of 2.1 is extremely high and is not typical of the studies performed since, which are usually between 

30-40 MJ/kg and H/C 1.3-1.6 respectively.  At higher temperatures, the nitrogen content increases 

suggesting the onset of protein breakdown. B. braunii exhibits an extremely high oil content and a 

low protein content, resulting in 2.8 wt.% nitrogen in the algae. Following their initial research 

results, the group published a paper focusing on the analysis of the bio-crude derived from B. 

braunii [64]. The maximum recovery of hydrocarbons (botryococcenes) from the algae was 

observed at 200°C while at higher temperatures, the hydrocarbons started to degrade to smaller 

molecular weight hydrocarbons. At the highest temperature (350°C), higher molecular weight 

oxygenated hydrocarbons were observed which were attributed to the formation of bio-crude from 

non lipid fractions of the algae.  In two further studies, the authors processed a marine microalgae 

strain, Dunaliella tertiolecta. This strain exhibits a high protein content on an ash free basis of 64 

wt.% but still contains a relatively high lipid content of 20.5 wt.%. The bio-crude yield was found 

to be much lower than that of B. braunii, with less favourable nitrogen and oxygen contents of 

around 7 wt.% and 11 wt.% respectively. This consequently led to a lower HHV. 

The effect of operating conditions on the HTL of microalgae has been the focus of several studies 

[37, 59, 67-70]. Jena et al. investigated the effect of operating conditions on the HTL of Spirulina 

platensis [67]. Experiments were carried out in a 1.8 l stirred batch reactor. Operating temperatures 

were varied from 200 to 380°C with holding times up to 120 min and solids concentrations of 10-50 

wt.%. It was found that the highest bio-crude yield could be achieved at 350°C, 60 min holding time 

and 20 wt.% solids. This led to a bio-crude yield of 39.9 wt.% and a HHV value of 35.3 MJ/kg. 

Increasing the temperature resulted in additional de-oxygenation of the bio-crude, however the 

nitrogen content increased. The holding time and the solid loading had less effect on the oxygen and 

nitrogen content. The bio-crude yield increased with holding time by around 10% from 0 to 60 min.  

The solid loading had almost no effect on any of the parameters. Reactions with higher solid 

loading have an improved energy balance as less water to be heated although this must be offset 

against the additional energy invested to achieve the high solids concentration. This will be 

discussed in more detail in Section 1.5.6. In a similar study, Yu et al. investigated the HTL of the 

low lipid microalgae Chlorella pyrenoidosa (0.1 wt.% lipids) as the biomass productivity of low 

lipid algae is often much higher than that of high lipid strains [69]. The effect of reaction 

temperature and holding time on the bio-crude yield was studied at a 20 wt.% solids concentration. 

It was found that the highest refined oil yield was achieved at 280°C and a reaction time of 120 min. 

The elemental composition of the oil is not discussed but the HHV at the above process conditions 

was 35.4 MJ/kg; however at 300°C and 30 min reaction time, the HHV increased to 38.5 MJ/kg 
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suggesting a lower oxygen content in the oil. Brown et al. (2010) investigated the effects of 

temperature on the bio-crude and gas formation of Nannochloropsis sp. at a constant residence time 

of 60 min. Temperatures of 200-500°C with 50°C steps were investigated [68]. The highest bio-

crude yield was observed at 350°C while higher temperatures favoured gasification reactions. At 

350°C, the bio-crude yield was found to be 43 wt.% with a heating value of 39 MJ/kg, the gas yield 

was 1.8 mmol/g and HHV of 4.2 MJ/kg leading to a maximum energy recovery of 78%. Similarly, 

Jena et al. (2011) also observed that de-oxygenation increases at higher temperatures but the levels 

of nitrogen in the bio-crude increases due to the onset of protein breakdown; there is therefore a 

trade-off between high O and high N in the bio-crude. This decision is most likely dependant on the 

desired end product and its use.  

Garcia Alba et al. (2011) published a detailed study of the hydrothermal treatment of microalgae 

(Desmodesmus sp.) in two separate publications. The first focuses on the HT processing conditions 

with varying temperature (175-450°C) and reaction times (0-60 min) [37] while the second 

investigates the molecular characterization of the obtained bio-crude in detail for different process 

conditions [71]. It was concluded that a maximum bio-crude yield is achieved at 375°C and 5 min 

reaction time, achieving a bio-crude yield of 49 wt.%. The bio-crude exhibited a HHV of 35 MJ/kg, 

corresponding to an energy recovery of 75%. Garcia Alba et al. are the first to visually inspect the 

microalgae cells pre and post HTL by scanning electron microscopy. This allowed the extent of cell 

rupture at respective conditions to be investigated. The largest step change in bio-crude yield was 

achieved from 225 to 250°C which was shown to coincide with a major visual breakage of cells 

after 5 min. The cells at 175°C appeared virtually intact with some clustering, at 200°C, additional 

clustering and some solid residue/precipitate was observed but the cells still remain largely intact. 

At 225°C a strong cell clustering effect could be observed with deformed cells, above 250°C no 

individual cells were recognisable. It was concluded that the thermal breakage of cells at 250°C 

allows additional bio-crude to be formed and extracted leading to a large decrease in solid residue. 

In this study, the elemental composition and product fractionation as a function of operating 

conditions was also investigated. The largest step change in N content in the bio-crude for shorter 

reaction times (5 min) occurred at 200-225°C while at the longer reaction residence times (60 min) 

it was at the lower temperature of 175-200°C. This indicates the conditions where the onset of 

protein breakdown begins. The nitrogen content continues to increase with increasing operating 

temperature, while the oxygen content decreases in agreement with previous work [67-68]. Garcia 

Alba et al. conclude that operating conditions are largely dependent on the desired product; if a lipid 

rich oil is preferred, operating temperatures should not exceed 250°C but if crude-like oil is desired, 
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temperatures as high as 375°C could be used. In an accompanying publication the bio-crude 

fraction was investigated in detail by a number of analytical techniques giving insight into reaction 

pathways involved at different operating conditions and their resulting molecular bio-crude 

compounds. In brief, it was shown that below 250°C, the bio-crude consist mainly of lipids and 

some short chain algaenan and hydrophobic protein fragments. At harsher conditions, the onset of 

protein and carbohydrate breakdown results in increased amounts of cyclic dipeptides, furans and 

asphaltene like material. Full discussion of the molecular characterization of the bio-crudes is 

beyond the scope of this review but the publication provides more information [71].   

Whilst the main focus has been directed towards microalgae, some notable investigations have been 

performed on macroalgae. Anastasakis and Ross (2011) investigated the influence of reaction 

conditions on the HTL of the brown macro-algae Laminaria saccharina [59]. Macro-algae 

generally exhibit a low lipid content, and higher carbohydrate content but they typically have a 

lower HHV due to the high ash content [46]. HTL was performed in a 75ml batch reactor; reaction 

variables included temperature (250-370°C), residence time (15-120 min) and biomass/water ratio. 

Optimum reaction conditions were found to be 350°C and 15 min with a 1:10 biomass water ratio 

(19.3 wt.% bio-crude yield). The bio-crude was described to be similar to heavy crude oil with a 

HHV of 36.5 MJ/kg but contains higher nitrogen and oxygen contents of 4.9 and 5.4 wt.% 

respectively. The oxygen content in the bio-crude was lowest at shorter residence times (15min) and 

increased with increasing residence time in agreement with the observations of  Brown et al. and 

Jena et al. [67, 72]. An elemental balance on C, N, Ca, Mg, Na ad K was made on the different 

product streams. It was shown that around 50 wt.% of elemental C results in the bio-crude with the 

rest distributed almost equally in the solids, water and gas phase. Elemental N was found to be 

predominantly present in the aqueous phase but still 40 wt.% in the bio-crude. The metals Na and K 

almost entirely resulted in the aqueous phase while Ca and Mg resulted in the residue. It was 

concluded that the dissolved sugars in the aqueous phase could be further utilized by fermentation 

and the large amounts of K and other minerals dissolved in the water could be a source of fertilizer.  

In a similar study, Zhou et al. investigated the macroalgae Enteromorpha prolifera [70]. The 

temperature was varied from 220-320°C and the reaction time adjusted between 5 and 60 min. The 

highest bio-crude yield without the use of catalyst was measured at 300°C and a reaction time of 30 

min. This is 50°C cooler and 15 min longer than the optimum conditions Anastasakis and Ross 

observed. The discrepancy is most likely due to the different feedstock. There is also a notable 

difference in the oxygen content of the bio-crudes between the two studies. Zhou et al. found the 
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bio-crude to contain 22.5 wt.% oxygen leading to a HHV of only 28 MJ/kg compared to 36.5 MJ/kg 

for Anastasakis and Ross.  

Recently Prof. Chen‟s research group at the University of Washington has developed a novel two-

step sequential HTL technology (SEQHTL) for the extraction of value-added polysaccharides 

followed by bio-crude production [73-74]. This is an interesting approach as the extraction of high-

value compounds from algal biomass is an aspect that could favourably distinguish it from 

terrestrial biomass. The first step involved mild hydrothermal processing (160°C) and removal of 

the polysaccharides rich water extract and precipitation with ethanol. The residue was subsequently 

processed at 300°C to produce a bio-crude.  It was found that polysaccharides could efficiently be 

extracted at mild hydrothermal conditions of 160°C and 20 min, yielding 32 wt.% polysaccharides 

from a total of 46 wt.% polysaccharides present in the Spirulina biomass. The subsequent yield of 

bio-crude was found to be 5 wt.% higher than with direct HTL and the bio-char yield was reduced 

by 50 wt.%. Additionally the second step HTL required lower temperatures (240°C) to achieve 

similar maximum yields observed from direct HTL at 300°C. Although there is an additional step 

involved, and the use of an organic solvent to recover the polysaccharides is required, this technique 

appears promising as the energy input was calculated to be 15 MJ less, per kg bio-crude produced, 

than for direct HTL. The only other study where an attempt was made to extract high value 

compounds was by Vardon et al. who extracted the lipid content of Scenedesmus prior to HTL and 

compared the results from defatted and raw algal biomass [75]. The lipids were recovered by 

Soxhlet extraction of the dry biomass with hexane and the residue subsequently hydrothermally 

processed. Especially polyunsaturated fatty acids have high value but alternatively the lipids could 

also be used for biodiesel production. The liquefaction yield from the defatted algae was found to 

be around 10% lower and also exhibited a higher nitrogen content; nevertheless the extraction of 

fatty acids prior to HTL or HTG is an attractive approach.  

Summarizing the published papers on HTL of algae show that a high bio-crude yield (~35 wt. %) is 

obtained which is a highly viscous oil with relatively high nitrogen content (~5 wt %) and HHV of 

around 35 MJ/kg (see Table 1.2). It appears that the optimum operating conditions for maximum 

bio-crude yield lie somewhere between 300-350°C and around 15 min. However the operating 

conditions are highly strain and system specific. If a bio-crude of lower nitrogen and higher lipid 

content is desired, lower operating conditions should be used or the protein fraction removed prior 

to HTL in a biorefinery concept. Alternatively value-added compounds can be extracted as 

demonstrated by Miao et al. and Vardon et al. and bio-crude produced subsequently [73-75]. All 

results to date are on batch systems and unfortunately no data is available on continuous reaction 
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systems. The majority of studies have used organic solvents to recover the bio-crude fraction which 

is perhaps not necessary in a continuous process. The use of solvents increases the bio-crude 

recovery and will affect the water phase composition. Therefore the batch experiments only give 

limited insight into a continuous process; despite this, the studies are useful as the optimum 

operating conditions and reaction pathways are reported.  

Table 1.2: Summary of HTL studies using only water, no catalyst 

Reference Algae Species 
Temp. 

(°C) 

Time 

(min) 

Biomass 

conc. 

(%wt) 

Max 

Bio-

crude 

Yield 

(%) 

Comments 

Biller & Ross 

[76-77] 

Chlorella, 

Spirulina, Nanno., 

Proph., CX68, 

Scene. 

300, 

350 
60 10 35 

Effect of biochemical 

composition on bio-crude is 

discussed. High 

lipid >protein>carbohydrate 

favourable.  

Brown et al. 

[72] 

Nannochloropsis 

sp. 

200-

500 
60 5.5 43 

Max oil yield at 350°C, 75% 

C in bio-crude and 90% total 

energy recovery. 

Jena et al. [48] Spirulina platensis 
100-

380 
0-120 10-50 40 

Highest yields at 350°C and 

60 min holding time 

Vardon et al. 

[75, 78] 

Spirulina, 

Scendesmus 
300 30 20 45 

Focus on composition of bio-

crude, compared to sewage 

sludge, swine manure and 

defatted algae. Algae found 

to be the favourable 

feedstock. 

Yu et al. [58, 

69] 

Chlorella 

pyrenoidosa 

200-

300 
0-120 20 39 

Max bio-crude yield at 

280°C for 120 min  

Anastasakis 

and Ross [59] 

Laminaria 

Saccharina 

250-

375 
15-120 2-20 19 

Max bio-crude yield at 

350°C and 15 min  

Zhou et al. 

[70] 

Enteromorpha 

prolifera 

220-

320 
5-60 13 20 

Max bio-crude yield at 

300°C 30 min 

Minowa et al. 

[63-66] 

Botryococcus 

braunii, Dunaliella 

tertiolecta 

250-

340 
5-60 20 57 

Yields of 57% for B. braunii 

and 37% for D. tertiolecta 

Yang et al. 

[79] 
Microcystis virdis 300-

340 
30-60 5 28 

30 min and 340°C suggested 

optimum operating 

conditions 

Li et al. [80] Sargassum patens 320-

380 
5-90 3-17 32 

Max yield at 340°C and 15 

min, HHV of 27 MJ/kg 

Yu et sl. [58, 

69] 

Chlorella 

pyrenoidosa 
200-

300 
0-120  20 39 

Max yield at 280°C and 120 

min 

Garcia Alba et 
Desmodesmus sp 

175- 5-60 7-8 49 375°C, 5 min max yield. 
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al. [37, 71] 450 Detailed analysis and 

discussion on cell wall 

ruptures, bio-refinery 

concept and oil 

characterization 

Zou et al. [81] D. tertiolecta 280-

380 
10-90  10 25 

Most severe conditions gave 

highest yield 

Miao et al. 

[73-74] 

Chlorella 

sorokiniana 
220-

300 
5-60 8-33 31 

Two step sequential HTL 

with extraction of 

polysaccharides was 

investigated and gave 

promising results. 

 

 

1.5.4 Catalytic HTL  

 

The idea of incorporating catalysts in HTL rests on the potential of increasing yields and reducing 

oxygen and nitrogen content and viscosity. The majority of research into catalytic HTL was 

performed using homogenous catalysts, i.e. catalysts soluble in water. The most widely investigated 

homogeneous catalyst is Na2CO3 with six different groups investigating its effect on HTL. Only 

three articles have been published using heterogeneous catalysts. A summary of the published 

research on catalytic HTL of algae is presented in Table 1.3. 

The group of T. Minowa again performed the earliest work using homogenous catalysis in HTL. 

They used concentrations of 5 wt.% sodium carbonate in their studies on B. braunii and D. 

tertiolecta [64-65]. It was observed that the bio-crude yield of B. braunii was increased with the use 

of catalyst by around 5 wt.% at 300°C but decreased by around 10 wt.% at 200 and 340°C. 

Additionally the oxygen content was decreased at 200°C with the use of sodium carbonate but 

increased at the higher temperatures of 300 and 340°C. The authors highlighted that the effect of the 

catalyst was not very strong although it was quite distinct when processing wood and sewage sludge. 

In a further study, these results were confirmed with the algae D. tertiolecta which also exhibited a 

5 wt.% increase in yield with addition of sodium carbonate. Yang et al. also investigated 5 wt.% 

Na2CO3 at 300°C, 340°C and 30 and 60 min holding times [79]. It was found that the effect of the 

catalyst was stronger at the lower temperature and especially at the shorter residence time. Zhou et 

al. observed similar results using sodium carbonate with slight increases in bio-crude yield and 

decreases in solid residue, a slight decrease in oxygen content of the bio-crude was also observed 

[70].  
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The results from Anastasakis and Ross on the HTL of Laminaria saccharina showed that the use of 

potassium hydroxide in concentrations of 0-100 wt.% loading consistently decreased the bio-crude 

yield and increased the amount of water soluble products [59]. A further study by Zou et al. 

obtained similar results to previous researchers with the use of different sodium carbonate loadings 

on the HTL of D. tertiolecta; the increase in bio-crude was < 5 wt.%, parameters such as 

temperature and holding time were shown to have much larger effects [81-82]. A recent study by 

Jena et al. investigated the use of Na2CO3, Ca3(PO4)2 and NiO on the HTL of Spirulina platensis 

[83]. This paper shows the largest increase in yield with the use of Na2CO3 of 10 wt.% which has 

previously not been reported before by other groups. The use of the calcium and nickel catalysts 

both increased the gas yields and decreased the bio-crude formation. The discrepancy of the high 

yields using sodium carbonate compared to other studies is not clear but could be due to the high 

carbohydrate and protein content of the algae strain investigated.  

It appears that the use of homogeneous catalysts do not have a particularly beneficial effect on bio-

crude yields and properties especially if the additional cost is taken into consideration. Recovery of 

the homogenous catalysts also poses a problem. Therefore two groups have performed research on 

heterogeneous catalysts. These could potentially have advantages over homogeneous catalysts as 

they are easily recoverable although stability and poisoning of catalysts under hydrothermal 

conditions pose a challenge [84]. On the other hand, the mass transfer of reactants with the catalyst 

is more difficult to achieve with heterogeneous than homogeneous catalysts. The most extensive 

report on the influence of heterogeneous catalysis on HTL was published by Duan and Savage 

(2010) who investigated six different catalysts supported on carbon, Al2O3 support and a zeolite 

[85]. Palladium, Platinum and Ruthenium on carbon as well as Nickel and Cobalt-Molybdenum on 

alumina and a zeolite were investigated in a helium and a hydrogen atmosphere. It was shown that 

the bio-crude yields from Nannochloropsis sp. at 350°C for 1 hour were increased by all catalysts. 

The maximum yield was achieved for the Pd/C; 57% compared to 37 wt.% with the use of water 

alone. The bio-crude yields of all the other catalysts were essentially the same ranging from 45-50 

wt.%. It was highlighted that the bio-crude catalysed by Pt, Pd, Ru and CoMo exhibited an apparent 

lower viscosity and lighter colour than the un-catalysed or zeolite-catalysed samples. The bio-crude 

from Ni catalysed HTL had a dark red colour. The effect on heating value and heteroatom removal 

was negligible, although the H/C ratio was increased with the use of the noble metal catalysts while 

the presence of Nickel, Pt and CoMo decreased the O/C ratio. It was concluded that catalytic de-

oxygenation or hydrodeoxygenation is being promoted.  Processing the microalgae in a reducing 

atmosphere (H2) did not result in significant hydrogenation of the bio-crude; from the results 
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presented by Duan and Savage this route does not seem particularly beneficial. Analysis showed 

that the different catalysts had different effects on gas yields and composition. H2 and CH4 yields 

were increased with the use of Ni and Ru while zeolite was the only catalyst to produce N2 which 

was attributed to the catalytic decomposition of NH3. The potential of heterogeneous catalysis in 

HTL of algae appears very promising especially when the carbon recoveries reported by Duan and 

Savage are considered; the elemental carbon recovery in the bio-crude using a heterogeneous 

catalyst exceeds 90 wt.% compared to 62 wt.% without catalysts. However there are still significant 

challenges that need to be addressed.  Research on the recovery, stability and reusability of 

heterogeneous catalysts has not been reported and is an area where further work is required [84]. 

Moreover none of the catalysts were able to significantly reduce the amount of N in the bio-crude. 

Table 1.3: Summary of published literature on Catalytic HTL 

Reference Algae Species Catalyst 

Cat. 

Conc. 

(wt.%) 

Atmos 

Bio-

crude 

Yield 

(wt.%) 

Comments 

Minowa et 

al. [63, 65]  

B. braunii, D. 

tertiolecta  
Na2CO3  0-5 N2 22-64 

Yield increased with cat loading 

from 0- 5% Na2CO3.  

Yang et 

al.[79] 
Microcystis v. Na2CO3 5 N2 25-34 

Best results at 340°C 30 min 5% 

with alkali catalyst 

Zhou et al. 

[70] 

Enteromorpha 

prolifera 
Na2CO3 5   25 

A moderate T=300°C with 5 

wt % Na2CO3 and reaction time 

of 30 min led to the highest bio-

oil yield of 25 wt %. 

Zou et al. 

[81] 
D. tertiolecta Na2CO3 0-10 Air 26 

A maximum bio-crude yield of 

26% is obtained at a reaction T= 

360°C, t= 50 min using 5% 

Na2CO3 

Ross et al. 

[47, 77] 

Chlorella, Spirulina, 

Nannochloropsis, 

Prophydridium 

Formic acid, 

Acetic acid, 

KOH, Na2CO3 

1M Air ~20 

Higher yields with organic acids 

but additional HV added. 

Organic acids give better quality 

oil. 

Biller et al. 

[76] 

Nannochloropsis, 

Chlorella 

Pt/Al, 

CoMo/Al, 

Ni/Al,  

20 Air 18-40 

Yields increased slightly with 

catalysts but HHV increased by 

10%. Different catalysts affect 

proteins, carbohydrates and lipids 

differently 

Anastasakis 

and Ross 

[59] 

Laminaria 

Saccharina 
KOH 0-100 Air   

Very small effect of KOH, 

slight increase in water soluble 

fraction. 

Duan and 

Savage [85] 

Nannochloropsis 

sp. 

Pd/C, Pt,C, 

Ru/C, Ni/SiO2-

Al2O3, CoMo/y-

Al2O3, Zeolite 

50 He/H2 
35-

58 

No hydrogenation by high 

pressure H2, highest yields with 

Pd>CoMo>Ni>Ru>zeolite>H2O 
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Jena et al. 

[83] 
Spirulina platensis 

Na2CO3, 

Ca3(PO4)2, NiO 
5% N2 

30-

52 

Na2CO3 increased the yield by 

10 %, Ni and Ca3(PO4)2  

increased gasification.  

 

 

1.5.5 Hydrothermal Gasification (HTG) 

 

Hydrothermal gasification occurs in the higher temperature region above the supercritical point 

where water is in the supercritical state. The primary product now becomes a syngas high in 

combustible gases such as H2, CH4, CO and light hydrocarbons (C2-C3); however there is also CO2 

produced. The energy requirements to obtain the water in its supercritical state are higher than the 

subcritical due to the higher operating temperatures required. Calzavara et al. evaluated the 

thermodynamic energy yield based on their experimental results for corn starch and on 

thermodynamic calculations and concluded that with integrated heat recovery an energy yield of 76% 

could be achieved [86]. This however assumes no heat losses.  

To date there are a total of seven studies on the HTG of algal biomass which are summarised in 

Table 1.4. HTG has a number of advantages over HTL, namely the produced fuel is nitrogen free 

allowing the use of high protein microalgae. The organic carbon found in the water phase is also 

much lower than for HTL, which could increase the carbon efficiency [87-88]. However the larger 

energy requirements to reach higher temperatures are a drawback. The foundation work on HTG of 

algae was carried out by  Minowa and Sawayama who took a visionary approach in 1999 when they 

first investigated the possibility of recycling the aqueous phase to supply the nutrients required for 

algae cultivation [89]. Chlorella vulgaris was gasified with a nickel catalyst at 350°C, the gas phase 

was analysed and the water phase was used to grow the algae strain in the recovered aqueous phase. 

The most favourable results were achieved with a maximum catalyst loading of 50 wt%; the carbon 

conversion to gas was found to be 70% with a methane yield of 50 vol.%. Lower catalysts loadings 

were shown to produce larger amounts of H2 and less methane.  

Stucki et al. from the Paul-Scheerer Institute in Switzerland proposed an elegant theoretical 

continuous process for hydrothermal gasification of microalgae. The concept is to preheat the algae 

slurry to supercritical conditions whereby the salts have a very low solubility in water so that they 

are precipitated and separated in a kind of reverse-flow gravity separator [90]. The organics and 

water then pass to the catalytic reactor where gasification and methanation occurs over different 

ruthenium catalysts. The concept of the salt separator is that the organic sulphur does not produce 
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hydrogen sulphide (which is a strong catalyst poison) but to precipitate to sulphide salts in its 

appropriate pH range. The approach is to recover all nutrients as ammonium, sulphide and 

phosphate before the organic fraction enters the catalytic reactor and can be used to feed algae 

cultivation. Results from the proposed novel continuous process are not presented but a series of 

batch experiments with varying loadings of Ru on activated coconut carbon and zirconia, varying 

feed concentrations and retention times was presented and discussed. Complete gasification was 

achieved with both Ru/C and Ru/ZrO2 at a catalyst to biomass ratio of 8. Many of the batch 

experiments came close to the chemical equilibrium calculations concerning the methane yield 

(43.5 vol.%), however this was only achieved with high catalyst loadings. The highest yields of C1-

C3 products was achieved with the Ru/ZrO2 catalyst of around 32 wt.%. It was shown that complete 

gasification of the algae was possible with 60-70% of the chemical energy in the algae recovered as 

methane. It was also highlighted that there are still challenges concerning catalyst poisoning and 

excess catalyst loadings were necessary to achieve complete gasification. In another study by the 

Swiss group the microalgae Phaeodactylum tricornutum was gasified over a Ru/C catalyst [88]. 

Again it was shown that algae-released sulphur, adversely affected the catalyst performance. The 

carbon gasification efficiencies were lower, only reaching a maximum of 74% with a low feed 

concentration. Higher feed concentrations resulted in lower carbon gasification efficiencies and this 

was attributed to the higher ratio of free sulphur to ruthenium sites on the catalysts. In the batch 

system, a number of catalyst sites had to effectively be sacrificed for the poisonous sulphur 

heteroatoms. The possibility for recycling nutrients for algae growth is also discussed in this 

concept. 

Chakinala et al. investigated the catalytic gasification of Chlorella vulgaris and the influence of 

temperature and residence time [38]. The catalysts investigated included Ru/TiO2, NiMo/Al2O3, 

PtPd/Al2O3, CoMo/Al2O3, Inconel powder and nickel wire. The reaction temperature was varied 

between 400 and 700°C while the retention time was changed from 1 to 15 min. The experiments 

were carried out in quartz capillaries of 0.5 ml volume which could be charged with catalysts, this 

method allows high throughput when screening experimental conditions.  The reaction temperature 

was investigated at 2 min residence time and was shown to have a large influence on the 

gasification efficiency. It was shown to increase from 14 to 82 % from 400 to 700°C. Additionally 

the gas composition is more favourable at higher temperatures; at 400°C CO2 formation is 

predominant while above 600°C H2, CO, CH4 and C2-C3 hydrocarbons were produced. At the 

highest temperature of 700°C the H2 yield was the highest and the amount of CO was reduced 

compared to 600°C. The reaction time was shown to have no effect on the gasification efficiency 
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after 5 min when gasification reached its maximum, however the gas composition changed after this. 

The amount of H2 and CH4 were shown to increase further while the amounts of CO and C2-C3 were 

reduced, this was attributed to the reforming of C2-C3 components to methane and hydrogen via the 

water-gas shift reaction. The experiments using catalysts showed that the gasification efficiency 

was highest using Inconel and Nickel, while the highest hydrogen yields were achieved using the 

Ruthenium catalyst. It was further demonstrated that complete gasification could be achieved using 

Ru catalysts at 700°C and 2 min reaction time as well as 600°C with excess amounts of catalyst. 

The incomplete conversion at the lower temperature was attributed to poor contact of the catalyst 

with the biomass and catalyst poisoning.  

Guan et al. investigated the hydrothermal gasification of Nannochoropsis sp. in supercritical water 

[91]. As well as investigating temperature, holding time and algae loading; this is the first study that 

examined the effect of water density on the gasification behaviour. The water density is a function 

of the water loading in the batch reactor and temperature at supercritical conditions. The temporal 

variations at 500°C largely agree with the results published by Chakinala et al. [38], gasification is 

complete after about 5-10 min however the gas composition is still affected by increases in H2 and 

CH4 and reductions in CO2 and CO. Interestingly, these results show half the CO content and 2-3 

times the H2 content compared to similar reaction conditions of Chikinala et al. This was attributed 

to the catalytic wall effects of the metal reactor wall in Guan et al.‟s study (compared to quartz 

reactors) catalysing the water-gas shift reaction. Previously, Resende and Savage had shown that 

metal surfaces begin affecting gasification behaviour at ratios higher than 15 mm²/mg [92]. The 

effect on the carbon yield was examined for varying temperature and residence times. The yields 

were shown to rapidly increase up to 10 min after which only a gradual increase occurs up to 75 

min. The temperature also showed favourable effects on the carbon yields; yields of 20, 45 and 60 % 

were reached at 450, 500 and 550°C respectively. It was suggested that these would increase even 

more at higher temperatures. Another parameter investigated was the algae loading as it was 

highlighted that it would be more economical to gasify biomass at high loadings. It was shown that 

the energy recovery and carbon recovery are largely unaffected by algae loading; however the H2 

yield was halved when the loading was increased from 1 to 5 wt.%. The water density was also 

investigated in this study. Previously it was shown that carbon recovery and energy recovery was 

largely unaffected during gasification of cellulose and lignin and a pronounced reduction in CO and 

increase in H2 mole fraction was observed as the water density increased [93]. Gasification of 

Nannochloropsis however showed that the gas composition is largely independent of the water 

density [91]. The carbon recovery and energy recovery on the other hand almost doubled when 



CHAPTER I - Introduction 

30 

 

increasing the water density form 0.02 to 0.13 g/cm³. This also means that the yield of each gas 

fraction doubled over this range of water densities. The discrepancy of terrestrial model compounds 

to algae was attributed to the catalysing effects of metal reactor walls and mineral matter of the 

algae on the water gas shift reaction hence leaving no opportunity for the higher water densities 

influencing un-catalysed water gas shift rates. Concluding, it was stated that the supercritical water 

gasification variation in carbon yields and gas composition appear to be largely system specific.  

The only study on hydrothermal gasification of macroalgae was published by Schumacher et al. in 

2011 [94]. Four species of seaweed were processed (Fucus serratus, Laminaria digitata, Alaria 

esculenta and Bifuracaria bifucata). Gasification experiments were carried out in an Inconel 

tumbling batch autoclave charged with 140 ml of 5 wt.% algae for one hour at 500°C. Process 

conditions were not the focus of this study, only the gas yields and compositions of the different 

species were investigated. A maximum gasification efficiency of 50% was achieved for the 

Bifucaria strain with all other strains exhibiting a gasification efficiency of around 31-37%. These 

gasification yields were higher than comparable results on terrestrial biomass and the char yields 

were lower [95]. This was partially attributed to the reduced cell wall strength of macroalgae and 

the increased amount of inorganic salts promoting gasification. The gas composition was shown to 

be almost the same for all strains apart for Bifucaria which exhibited a larger CH4 and H2 fraction. 

The amount of H2 produced from gasification was found to be considerably higher (2-3 fold) than 

experiments by the authors on lignocellulosic biomass which was suggested to be due to the 

different in composition of algae compared to terrestrial biomass [95].   

Summarising, it can be concluded that hydrothermal gasification of algae is mostly complete after 

around 10 min and gasification efficiencies can be increased by increasing temperature. Higher 

reaction temperatures also increase the amount of H2 produced over CH4 while at lower 

temperatures, the CO2 fraction is more prominent. The studies on catalytic HTG of algae show that 

the reaction temperatures can be reduced to achieve similar high gasification efficiencies observed 

at higher temperature non-catalytic reactions. In several studies, it was shown that more or less 

complete conversion can be achieved with the use of catalysts; however the catalysts were usually 

provided in excess due to catalyst poisoning. Finding catalysts that are not adversely affected by 

algae released sulphur is one of the most challenging issues associated with catalytic HTG of algal 

biomass. Continuous HTG systems of algae have been proposed in the literature but to date no 

experimental data has been published which would be required to evaluate the feasibility of HTG of 

algal biomass.  
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Table 1.4: Summary of research published on the HTG of algae 

Reference Algae 
Temp 

(°C) 

Res. 

Time 

(min) 

Biomass 

Conc. 

(%) 

Catalyst 

Carbon 

conv. 

(%) 

Comments 

Guan et al. 

[91] 
Nanno. sp 

450-

550 
0-80 1-15 

 
30-60 

Increasing temp, 

time and water 

density increased C 

yield and energy 

recovery 

Stucki et al. 

[90] 

Spirulina 

platensis 
400 60-360 2.5-20 

Ru/C, 

Ru/ZrO2 
20-100 

With 8/1 cat./algae 

90-100 % carbon 

conversion 

Chakinala 

et al. [38] 

Chlorella 

vulgaris 

400-

700 
1-15 7 

Ru/TiO2, 

NiMo/Al2O3, 

PtPd/Al2O3, 

CoMo/Al2O3, 

Ni wire 

15-100 

At 600°C 4 min +. 

Ru/TiO2 in excess-

> complete 

gasification 

Schumacher 

et al. [94] 

4 seaweed 

species 
500 60 5 

  

Higher gasification 

efficiency and H2 

yields than 

terrestrial biomass 

observed 

Haiduc et 

al. [88] 

Phaeodactylum 

tricornutum 
400 12-67 2.5-13 Ru/C 68-74 

Sulphur shown to 

adversely affect Ru 

cat., nickel 

leaching 

investigated 

Minowa et 

al. [89] 

Chlorella 

vulgaris 
350 0 12 Ni/SiO2/Al2O3 35-70 

N recycle to algae 

cultivation 

investigated 

 

1.5.6 Energy Balances 

 

The energy requirements to process the algal slurry during hydrothermal processing are a major 

factor when considering the feasibility of the different process routes. Only limited studies on entire 

energy balance for the production of biofuels from hydrothermal processing of algae are available 

in the literature. This is an area where additional research is required and is hindered by the lack of 

data for continuously operating reactor systems. The data presented in this section therefore only 

presents a comparison of the energy considerations derived from batch processes on a laboratory 

scale. Despite this some useful insight can be made. When comparing the different hydrothermal 

routes, the energy for nutrients, cultivation and harvesting of algae are the same. Differences are 

largely associated with the amount of heat required to reach reaction conditions and residence times. 
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The construction and specifications of materials required for reactors is another important factor.  

The specifications for a supercritical reactor to perform HTG potentially operating at up to 700°C 

and 400 bar is higher than a reactor for HTC operating at 200°C and 20 bar. It is expected that a 

continuous process is necessary to make hydrothermal processing energetically feasible. Heat 

recovery can be integrated in a continuous system for preheating of the feedstock. Since all the 

results of published research discussed herein are based on batch systems, there is uncertainty in 

estimating the energetics of the different process routes. Calzavara et al. estimated that the energy 

efficiency of hydrothermal gasification reaches 60% and can be increased to 90% if energy 

recovery of the water is included [86]. It is assumed that similar performance could be obtained for 

HTL and HTC. Xu et al. have reported the most relevant estimate of the energy balance of 

hydrothermal processing of microalgae [29]. In their approach, a dry and a wet processing route 

were compared. The dry route involves the removal of water by mechanical and thermal drying 

down to 80 wt% solids with subsequent lipid extraction using hexane to produce biodiesel and 

glycerol. The residue in their model is pyrolysed to pyrolysis oil, bio-gas and char. The wet route 

involves mechanical drying down to 30 wt.% solids and a wet lipid extraction using the Bligh and 

Dyer method in a stirred ball mill. The wet residues are then hydrothermally gasified to produce H2 

and other gases; the H2 is subsequently used to hydro-treat the lipid extract to green diesel. This wet 

extraction process differs from most research discussed in this review as the lipids are extracted 

with solvents in the aqueous phase while most HT techniques process the entire algae to produce 

bio-crude or syngas. Nevertheless the results by Xu et al. show that the difference in dewatering to 

15 or 80 wt.% solids requires approximately five times more energy while the energy requirements 

for flocculation, centrifuge and mechanical dryers are the same and  insignificant compared to the 

thermal drying required for the dry route. The wet lipid extraction however requires significantly 

more energy than the dry route which overall resulted in the conclusion that the dry route has more 

favourable energy balance while the wet route has more potential in producing high value biofuels. 

The method described in the process gives detailed insight into the energy required for drying and 

processing but is not entirely applicable to the HT routes described in the current literature review. 

The wet lipid extraction by Xu et al. was the largest single energy input for the wet extraction 

method and even exceeded the energy required to hydrothermally gasify the residue. The research 

papers discussed herein process the entire algae so that this energy input would not be applicable 

which would result in the wet route performing favourably over the dry route presented by Xu et al.. 

On the other hand, a high value green diesel is produced by hydro-treating the lipids in their 

approach, which is a possible scenario. As can be seen, the energy balance assessment of 

hydrothermally processing algae is not straight forward and requires additional work.  
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One method of comparing the different HT approaches is by a comparison of the Energy recovery. 

This is an expression of how much chemical energy of the algae is recovered in the form of gas, 

bio-crude or char. It is calculated by: 

                    
             

  

  
                   

             
  

  
                   

     Eqn. 1.1 

Table 1.4 presents some selected energy recoveries of different research papers using different 

algae and process conditions. The energy recoveries presented are the chemical energy in the 

primary product and excludes the energy in the char for HTL and HTG. For HTC it excludes the 

energy in the gas and bio-crude while for HTG it excludes the energy in the char and bio-crude 

fraction. These excluded products are typically low. The energy recoveries range from 58-~100%, 

these values are a function of the yields and heating values of the primary products as seen in Eqn. 

1.1. HTG energy recoveries range from 58-70 %, the highest value reached by Guan et al. was 

achieved at 550°C [91] the higher results by Stucki et al. were achieved with the use of ruthenium 

catalysts [90].  In general, the use of catalysts increase carbon conversion and gasification 

efficiency hence increasing the yields of syngas. For HTG, the gas composition is just as important 

as the gas yield as it affects the HHV. 

The only available report for the energy recovery for HTC of algae is by Heilmann et al. and 

indicates a slightly higher efficiency than HTG but only by 6% [56]. It could be argued that a 

syngas is more valuable than a char as an energy carrier and can be more efficiently used; therefore 

a complete life cycle balance would be more favourable for HTG. Heilmann et al. describe their 

HTC char as a “product of bituminous coal quality” and the bio-crude is often compared to 

petroleum crude [56]. Therefore comparisons of HT products are often made to coal and crude oil. 

Gas powered power stations usually have a considerably higher thermal efficiency compared to coal 

powered stations hence favouring HTG over HTC. Another aspect to consider is the emissions; the 

HTG syngas is nitrogen free and therefore exhibits no fuel bound NOx emissions upon combustion. 

The oils and chars from HTL and HTC respectively, typically have a nitrogen content of around 5 % 

which would increase pollutant formation and require expensive post combustion NOx clean up. 

CO2 emissions are typically also higher for oils and coal powered processes compared to natural gas.  

The highest energy recoveries reported for HTL are using heterogeneous catalysts. Duan and 

Savage report values exceeding 100 % [85], possibly due to incorporation  of hydrogen from the 

water increasing the energy content of the oil. The energy recoveries are very high in this study and 

are increased from 74 to around 100% with the use of catalysts.  Garcia Alba al. achieve energy 
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recoveries of around 70%, and found that the highest energy recovery was exhibited at the lower 

residence time. This has implications for a continuous system suggesting throughput could be 

higher [37]. Brown et al. achieved the highest energy recovery without the use of catalysts of 88 % 

[72]. For comparison, a study on macroalgae HTL resulted in a lower energy recovery of 59%. 

Taking into account the energy recovery, it would appear that HTL is favoured over HTC and HTG, 

however as discussed earlier, this is not the only factor to consider. The energy required to heat the 

reactants to the process temperature vary significantly for HTC, HTL and HTG. Table 1.5 presents 

data based on heating 1 kg of pure water (not an algae slurry) to the respective reaction 

temperatures. In all three processes, the latent heat of vaporisation is avoided by the pressures 

remaining above the water saturation line (see Figure 1.1). Beyond the critical point (374°C, 22 

MPa) the phases become alike and the latent heat of vaporization is zero. It can be seen that the 

energy required for HTG is around double that of HTL and triple that of HTC. HTG at 400°C with 

the aid of catalysts requires 2.1 MJ while non-catalytic gasification at 550°C requires ~35% more 

energy. For HTL, an increase of 50°C results in an additional energy input of 20%. These are 

significant margins when assessing hydrothermal processes. Another factor affecting the energy 

balance is the solid concentration of algae in the slurry. If more algae is heated per unit mass of 

water, more product is formed hence increasing the energy efficiency. Heilmann et al. estimated the 

heat capacity of algae to be around 50% compared to water [56] which also results in less energy 

being required to heat a higher solids concentration slurry. The pumping requirements for a 

continuous HT system are also a factor to consider. Pumping slurries to high pressures is an 

engineering challenge which has posed problems on previous work on terrestrial biomass [44]. 

Microalgae are generally smaller in size and do not require grinding which would be required for 

macroalgae.  

Sawayama et al. tried to perform an energy balance on the HTL of B. braunii and D. tertiolecta 

which included the energy required from liquefaction, fertilizers, cultivation and harvesting denoted 

as the energy consumption ratio (ECR) [66].  It was shown that a net energy production was 

possible with the use of B. braunii but not for D. tertiolecta. This was mainly due to D. tertiolecta 

requiring a much higher energy demand during cultivation largely for supplying nutrients. The use 

of wastewater as a source of fertilizers was also included in the calculation which reduced the 

energy conversion ratio from 0.45 to 0.40. Biller and Ross adapted the same ECR calculations with 

the same assumptions but left out the energy requirements for cultivation, fertilizers and harvesting 

and incorporated it with their results on four different algae species and model compounds [77]. It 

was shown that only Chlorella was able to produce net energy while Spirulina had an ECR of 1 and 
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Nannochloropsis and Porphyridium over 1. It was demonstrated however that higher lipid 

containing algae would perform more favourably and that protein content is favourable over 

carbohydrates.  

Table 1.5: Energy recovery and heating energy for different HT studies 

Reference HT process 
Temp. 

(T2) (°C) 

Energy 

recovery (%) 

∆E (T2-T1) 1 kg 

H2O (MJ) 

Heilmann  et al. [56] Carbonisation 203 76 0.8 

Guan et al. [91] Gasification 550 58 3.2 

Stucki et al. [90] Gasification 400 70 2.1 

Brown et al. [68] Liquefaction 350 88 1.6 

Anastasakis and Ross [59] Liquefaction 350 59 1.6 

Duan et al. [85] Liquefaction 350 ~100 1.6 

Garcia Alba et al.[37]  Liquefaction 300 71 1.3 

 

 

Recently two studies were published comparing the LCA for different renewable diesel production 

pathways from microalgae. The first study by Frank et al. (2012) compares hydrothermal 

liquefaction with subsequent upgrading of bio-crude to solvent extraction and transesterification 

[96].  It was concluded that HLT offers advantages compared to lipid extraction regarding the 

efficient use of algal biomass. 1.8 fold less algae was required to achieve the same amount of 

biodiesel. On the other hand the nitrogen in the bio-crude was identified as one of the major 

bottlenecks. If the nitrogen in bio-crude is removed via hydro-denitrogenation as ammonia the 

recyclability of N could become an issue. Therefore the authors conclude that the nitrogen should 

be fractionated to the process water for process optimisation.  

The second recent LCA study by De Boer et al. (2012) compares four different biodiesel production 

pathways: 

1. Pulsed electrical field-assisted extraction followed by transesterification of dry algae 

2. In situ acid catalysed esterification of dry algae 

3. In situ hydrolysis and esterification of wet algae 

4. Hydrothermal liquefaction of wet algae 

De Boer et al. conclude that energetically feasible methods for biodiesel production from 

microalgae exist but further research is required to achieve commercial scale application [97]. Each 
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scenario in this LCA includes anaerobic digestion of the residues for biogas production for heat and 

power. The first scenario was shown to consume 42 % of energy for mechanical dehydration, 32 % 

for transesterification and 26 % for cell lysing. This led to a final surplus of energy in the form of 

biodiesel and biogas of 7.8 MJ from 1 ton of algae (dry weight).  The second scenario involving dry 

biomass required 45% of total energy for thermal drying and 41 % for methanol recovery. This 

scenario was shown to have an overall energy deficit of 7.1 MJ for the same system boundaries. 

Similarly the third scenario was not able to produce net energy due to the high energy consumption 

of ethanol recovery (46 %), supercritical ethanolysis (28 %) and in situ hydrolysis (21 %). The net 

energy deficit was calculated as 7.9 MJ but 9 MJ was created in the form of biodiesel. The 

hydrothermal liquefaction scenario had an overall energy surplus of 9.2 MJ. The majority of energy 

was required for the hydrothermal processing (85 %). It is highlighted that HTL is energetically 

feasible but requires a high capital cost for the HT processing facility and only 4.7 MJ are available 

in the form of biodiesel.  

 

1.5.7 Nutrient Recycling 

 

The recycling of nutrients from the process water from hydrothermal processing has been 

investigated in several studies and proposed as an advantage of hydrothermal routes over other 

alternative routes such as biodiesel production. Macroalgae is usually cultured in marine 

environments where nutrient recycling would be more of a challenge. Significant amounts of the 

feed nitrogen, phosphorous and potassium have been shown to concentrate in the process water 

after hydrothermal processing. This is the case for HTC, HTL and HTG [56-58, 88]. Minowa and 

Sawayama were the first to recognize this potential and attempted to cultivate microalgae in the 

process water from the HTG of Chlorella vulgaris [89]. It was found that all of the nitrogen in the 

algae was converted to ammonia which was distributed in the water phase. Cultivation trials were 

performed in the process water after dilution and compared to standard media, it was found that 

algal growth in the undiluted process water was a fraction compared to the standard media; however 

blending standard growth media with HTL process water showed good growth rates. It was 

concluded that cultivation in standard media without nitrogen plus process water was possible and 

therefore a saving on nutrients could be achieved. The same group later performed similar 

experiments but going into more detail concerning ammonia, micro-elements and nickel 

concentrations [98]. It has previously been shown that nickel can inhibit algae growth due to 

accumulation on the cell surface by adsorption and thus acting as a selective barrier for nutrient 
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uptake by the cells [99]. Chlorella vulgaris growth was shown by Spencer et al. to be inhibited by 

nickel levels as low as 0.85 mg/l [100]. Sawayama et al. tried to determine the optimum culture 

conditions using the recovered aqueous phase supplemented with necessary nutrients. The effects of 

nickel and ammonium ions were also investigated. The nitrogen in the algae was converted to 

ammonium and nickel was leached from the nickel catalyst [98]. It was shown that Chlorella 

vulgaris was able to grow in ammonium concentrations of 0.22 to 1.11 g/l but became toxic above 

16.6 g/l. Therefore it was concluded that the recovered process water would have to be diluted at 

least 30 fold to avoid ammonium toxicity. The nickel concentrations found in the water phase from 

the nickel catalysts used were found to be very high (240 mg/l) although a 30 fold dilution would be 

sufficient to avoid nickel growth inhibition. Using a 75-300 fold dilution of the recovered water 

phase with supplementation of phosphorous and magnesium was shown to yield growth rates 

similar to the standard medium.  

Jena et al. (2011) performed growth trials using the process water from the HTL of Spirulina to 

grow a strain of Chlorella [48]. It was shown that growth was possible in dilutions of the process 

water. When using a dilution factor of 10, no growth occurred and this was attributed to the 

presence of growth inhibition, possibly by nickel, phenols or fatty acids. These have all previously 

been shown to adversely affect algae growth [88, 100-102] and are likely constituents of the water 

phase. The growth in the 100, 300 and 500 fold dilutions was higher. The highest growth was 

observed in the 500 times dilution, reaching a maximum of around 80% compared to a standard 

BG11 growth medium. A mass balance on an integrated HTL system with nutrient recycling was 

performed and the results suggest that from 1 t of dry biomass 0.4 t of bio-crude could be produced. 

The process water would contain 3.4 kg of P and 70 kg of N and significant amounts of miner 

nutrients. Part of this could be used to grow more algae and the rest concentrated to valuable 

fertilizer high in NPK, additionally the 0.18 t of CO2 produced could be used to enhance algae 

growth [48].  

The potential issues occurring from nickel either from Ni catalyst leaching, from reactor wall 

corrosion or from the algae itself (minor amounts) has been highlighted in a study by Haiduc et 

al.[88]. They realized that when using a continuous closed loop system integrating nutrient 

recycling, the process water would become progressively enriched in contaminants such as nickel. 

In their research paper they therefore evaluated the growth of four green microalgae strains and a 

cyanobacteria in standard BG11 media doped with 0, 1, 5, 10 and 25 mg/l nickel [88]. It was found 

that 10 mg/l had significant detrimental effects on the growth of all algae strains. Scenedesmus v. 

was able to grow in BG11 doped with 1 and 5 mg/l Ni but 10 mg/l reduced the growth by around 
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half while 25 mg/l inhibited growth entirely. It was concluded  that if nutrient recycling is 

incorporated into a hydrothermal system, nickel concentrations in the effluent need to be monitored 

closely and if required, the stream should be diluted if the concentration approaches 25 mg/l or 

removed . 

The potential of recycling of nutrients to cultivate algae is significant due the cost associated with 

supplying large amounts of nutrients. The fossil energy input for the production of growth nutrients 

is significant and would reduce the life cycle energy balance. Especially for phosphorous which is a 

finite non-renewable resource extracted from phosphate rock and requires high energy inputs. 

Current estimates predict peak phosphorous reserves may be depleted in 50-100 years [103].  The 

limited studies on recycling of nutrients for algae cultivation are promising but additional research 

needs to be performed to identify problems occurring with progressive build up of growth inhibitors. 

A wider range of algae strains and mixed strains should also be investigated as some species are 

expected to endure harsher cultivation conditions than others.  

.   
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2. CHAPTER II - Aims and Outline of the Thesis 

 

The overall aim of the thesis is to investigate the production of bio-crude from microalgae via 

hydrothermal liquefaction in a sustainable way. It is desirable for the bio-crude to be of a quality 

which will allow direct combustion as a heavy fuel or upgrading in conventional refineries. 

Therefore, a low nitrogen content is favourable as this will decrease NOX emissions upon 

combustion and require less hydrogen for upgrading via hydrogenation. Additionally a low boiling 

point range is favourable over high molecular weight fractions as these are of higher commercial 

value and are associated with better pour behaviour. In order to achieve this aim of producing bio-

crude from microalgae a number of objectives with associated goals are outlined below and were 

investigated in this thesis.  

The first chapter provides an introduction to the subject area covered within this thesis. The concept 

of biomass for bioenergy is explained and the general aspects of biomass and its associated 

advantages and disadvantages are discussed. The conversion routes available for processing and 

utilisation of biomass and current research and development are briefly presented. Microalgae as a 

source of third generation biofuels is introduced. There are a number of different options in 

cultivation, extraction and processing microalgae which are covered in Chapter 1. The introduction 

shows the relevance of the work covered in this thesis and the concept of hydrothermal processing 

of microalgae is introduced. A detailed study of the literature on hydrothermal liquefaction, 

carbonisation and gasification was performed for the purpose of this thesis. The published literature 

allows a deeper understanding of the work carried out, identifies areas of research that have been 

covered and the bottlenecks that require further investigation.  

Chapter 3 describes the methodology used. The main objective of this chapter is to describe the 

methods used allowing others to replicate the experiments. Further, it is important for readers to 

have an understanding of the sample workup and analysis for the same reason. Each instrument 

used is described with the manufacturers name and model code. The chemical and physical 

operation of the instruments is not covered in this chapter as this would be beyond the scope of this 

thesis. Additionally this information is publicly available and most readers interested in the current 

work are expected to have some initial knowledge of the technologies involved.  

The microalgae feedstocks used in this thesis are presented in Chapter 4. Due to the large number 

of different microalgae strains and properties investigated, not every parameter is presented for each 

strain. All the data is however attached in separate data sheets in APPENDIX A. The data in 
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Chapter 4 is presented in such a way that the main distinctions in different types of microalgae 

become apparent. The significance of this is then discussed. The objective of the characterisation is 

to lay the groundwork of the thesis which is referred back to throughout the thesis. The 

characterisation of the feedstock is fundamental to the understanding of all the experiments carried 

out in the subsequent chapters.  

Chapter 5 describes the hydrothermal processing of microalgae in water without catalyst. The 

objective of this chapter was to assess different microalgae strains and operating conditions. In 

order to achieve this objective the majority of microalgae strains were processed at standard 

conditions to allow a comparative study of their hydrothermal liquefaction behaviour. Following 

this, the influence of residence time and operating temperature on hydrothermal liquefaction is 

investigated. This parametric study determines the optimum operating conditions for maximum bio-

crude yield. The bio-crude was additionally analysed for its elemental composition and HHV to 

assess the bio-crude quality. The process waters resulting from the HTL of microalgae are also 

analysed in this chapter for common anions, cations, TN, TOC, TIC and pH. This is later referred to 

in Chapter 8 which investigates nutrient recycling from the process water for microalgae 

cultivation. 

Chapter 6 describes the HTL of microalgae in the presence of catalysts. The objective of this 

chapter was to increase yields and/or improve the quality of bio-crudes. The chapter is split in two 

sections; the first includes the use of homogeneous catalysts while the second includes the use of 

heterogeneous catalysts. The homogenous catalysts include alkali or organic acids. The 

heterogeneous catalysts include transition metals and precious metals adsorbed on silica and 

alumina. The effects on yields and bio-crude quality are assessed for both types of catalysts and 

discussed. The effect of homogeneous catalysts on the nitrogen and carbon distribution in the 

product fractions was investigated. Analysis of the process water was carried out to evaluate if the 

homogeneous catalysts affect the concentration of nutrients. The effect of heterogeneous catalysts 

on the lipid fraction degradation was examined in detail. The fate of triglycerides and free fatty 

acids and the potential of deoxygenating these to straight chain hydrocarbons was investigated.  The 

yields and composition of bio-crudes produced was investigated and conclusions could be drawn 

concerning the bio-crude quality by elemental analysis and GC-MS.  

Chapter 7 the mechanistic pathways of bio-crude production from microalgae are investigated in 

detail in order to understand bio-crude formation pathways in more detail. 4 microalgae strains and 

7 model compounds were hydrothermally processed in water alone and sodium carbonate and 
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formic acid. The 7 model compounds include several protein, carbohydrate, lipid and amino acid 

samples as these are the main constituents of microalgae. By processing these and analysing the 

bio-crude, conclusions could be drawn on the HTL of microalgae. The four selected microalgae 

differ in biochemical composition; this facilitated comparative examination with results from the 

model compounds and sheds light on the bio-crude formation and composition from microalgae. 

The bio-crudes were analysed for total yield and oil composition and by GC-MS so that typical 

compounds present in microalgae bio-crudes could be linked to their biochemical origin. The effect 

of the catalysts was studied on the model compounds and microalgae. Conclusions were drawn on 

the effects of alkali and acidic catalysts on the HTL behaviour of model compounds and microalgae.  

The objective of Chapter 8 was to investigate the use of process water as a source of nutrients for 

microalgae cultivation. For the purpose of these experiments, the process waters produced at 

different operating conditions and using different microalgae strains were analysed for its 

concentration of nutrients. Growth trials of 4 different microalgae were performed using the process 

water derived from HTL. Growth was assessed by various methods such as chlorophyll a 

absorbance and cell count and the results compared to growth in standard growth media. The 

influence of common growth inhibitors such as phenols and nickel are investigated and discussed.  

During the cultivation trial used to investigate the nutrient recycling a drawback in the analytical 

methodologies was identified.  The small scale growth trials used result in small amounts of 

harvested microalgae. This makes analysis by the previously employed techniques (described in 

Chapter 3) impossible. Therefore, in Chapter 9, a new analytical technique based on Pyrolysis 

GC-MS was developed to analyse the microalgae allowing analysis of small amounts of sample. 

The technique involves pyrolysing less than 1 mg of microalgae and separating the pyrolysis 

products by GC-MS. By fingerprinting common model compounds of microalgae, marker 

compounds could be identified for each biochemical component. This has allowed comparison of 

the chromatograms from microalgae grown under different conditions and sheds light on the 

composition of the different strains. The new analysis technique was also assessed as a means to 

determine concentrations of specific high value compounds found in microalgae.  

Chapter 10 includes research carried out in collaboration with the University of Sydney, Australia. 

Here a state of the art continuous hydrothermal pilot plant processing facility has been used. This 

allowed experiments to be performed on a large scale (20-40 l/h) for two microalgae strains over the 

course of the ten week collaborative visit through the WUN network. This was the first time 

continuous processing has been employed for microalgae on a hydrothermal liquefaction reactor. 
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The reactor performance was investigated in regard to feedstock and operating conditions. The 

results concerning the yields and bio-crude quality are compared to experiments of the same 

feedstock processed in batch reactors. The objective of this work was to assess the feasibility of 

continuous processing of microalgae in a HTL reactor in order to make bio-crude production 

possible on an industrial scale.  

In Chapter 11 the use of hydrothermal microwave processing as a pre-treatment method is 

investigated. The technique is expected to be especially suited for high ash containing marine 

microalgae samples as the metals in the ash act as microwave absorbers, lowering the activation 

energy and reducing the energy consumption. Microwave irradiation was assessed as a technique 

for extraction of protein, polysaccharides and other valuable phytochemicals. Additionally, the 

technique was evaluated as a pre-treatment for bio-fuel production by hydrothermal processing and 

flash pyrolysis. The fate of nitrogen during pre-treatment and during bio-fuel production was of 

particular interest.  

The conclusions of the experimental sections are presented in Chapter 12. The overall conclusions 

of each chapter are discussed separately even though an overall summary on the feasibility of 

hydrothermal processing for biofuels and chemicals is presented. The limitations of the research 

performed in this thesis are identified and further work is discussed.    
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3. CHAPTER III - Methodology  

 

3.1 Biomass characterisation 

 

3.1.1 Microalgae strains 

 

The microalgae samples investigated during the course of this research originate from various 

sources which are summarised in Table 3.1. The different strains were used for various 

experiments throughout this piece of work and their location within the thesis is indicated in 

Table 3.1. Additionally, each algae strain is presented using a separate data sheet containing the 

main physical and chemical characteristics in APPENDIX A.  

Four algae samples were obtained from commercial sources where they are traded as heath food 

supplements; namely Spirulina sp. and Chlorella sp. which were bought from Naturally Green Ltd. 

(Reading, UK) and the Spirulina sp. OZ and Chlorella vulgaris OZ samples which were obtained 

from Synergy Natural Ltd. (Prymont, Australia). For these samples the exact strains and growth 

media are unknown. Five strains of microalgae were supplied by partnering institutions and 

provided freeze-dried. Porphyridium cruentum was provided by the University of Almaria, the 

strain and growth media are unknown. Porphyridium is a marine red algae of the Porphyridiaceae 

family. Two strains of Dunaliella salina (19/18 and 19/30 strains) were provided by the 

University of Sheffield. These strains were grown in a modified f/2 media with adjustments made 

to the NaCl concentration. Navicula sp. was also provided by the University of Sheffield, the 

strain code and growth media are unknown. However, this is a known silica containing diatom 

which requires Si in its media to sustain growth. The cyanobacteria Chlorogloeopsis fritschii was 

grown in JM media by the Plymouth Marine Laboratory and provided dry after lyophilisation. 

Following strains were cultured in the University of Leeds laboratories; Scenedesmus dimorphus 

(276/48); Chlorella vulgaris (211/52); Spirulina platensis (85.79); Nannochloropsis occulata 

(849/1); Botryococcus braunii (807/1, Guadeloupe, race B); Dunaliella tertiolecta (19/27); 

Haematococcus pluvialis (34/1D); Tetraselmis chuii (8/6). More information on the culturing 

conditions is provided in Section 3.4. Three strains of microalgae were provided by the DENSO 

CORPORATION (Kariya, Japan). Two of the strain names are not known and are therefore 

referred to by their origin; Miyako and Zenmyo. The Pseudochoricystis ellipsoidea strain (P. 
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ellipsoidea) was also isolated by the DENSO CORPORATION and has the unique ability to 

synthesize and accumulate aliphatic hydrocarbons [104]. 

Table 3.1: Name, source, strain code and growth media of the microalgae strains investigated 

with Chapter reference 

Name Source Strain 
Growth 

Media 

Referred to 

in Chapter 

Scenedesmus 

dimorphus 
CCAP 276/48 3N-BBM+V 4, 5, 8 

Chlorella vulgaris CCAP 211/52 3N-BBM+V 4, 5, 8, 9 

Chlorella sp. Naturally Green Ltd unknown 3N-BBM+V 4, 5, 6, 7, 8 

Chlorella vulgaris 

OZ 
Synergy Natural Ltd unknown 3N-BBM+V 4, 5, 10 

Spirulina platensis SAG 85.79 
modified 

BG11 
8 

Spirulina sp. Naturally Green Ltd unknown unknown 4, 5, 6, 7, 8 

Spirulina sp. OZ Synergy Natural Ltd unknown unknown 4 ,5, 10 

Porphyridium 

cruentum 
Almeria University unknown unknown 4, 5, 7 

Nannochloropsis 

occulata 
CCAP 849/1 f/2 4, 5, 6, 7, 11 

Pseudochoricystis 

ellipsoidea 
Denso Corp. MBIC11204 unknown 4, 5, 11 

Miyako Denso Corp. unknown unknown 4, 5 

Zenmyo Denso Corp. unknown unknown 4, 5 

Botryococcus braunii CCAP 

807/1 

Guadeloupe 

(race B) 

3N-BBM+V 4, 9 

Dunaliella salina  
Sheffield 

University/CCAP 
19/18 

modified f/2 

and f/2 
4 

Dunaliella salina  
Sheffield 

19/30 
modified f/2 

4 
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University/CCAP and f/2 

Dunaliella tertiolecta CCAP 19/27 f/2 4 

Navicula sp. Sheffield University unknown f/2+Si  4, 9 

Haematococcus 

pluvialis 
CCAP 34/1D 3N-BBM+V 4, 9 

Tetraselmis chuii CCAP 8/6 f/2 4 

Chlorogloeopsis 

fritschii 

Plymouth Marine 

Laboratory 
1411/1 JM 4, 5, 8, 9 ,11 

 

 

3.1.2 Proximate and ultimate analysis 

 

To determine the amount of water contained in samples, proximate analysis was carried out. The 

water content affects mass balance calculations and therefore requires consideration to allow for a 

consistent base to be set amongst samples. Water content determination was performed in an oven 

at 105°C for 2 hours; approximately 3 g of biomass were weighed in a ceramic crucible and the 

moisture content expressed as a percentage by weighing the dried biomass. The ash content was 

determined by placing 3 g of dry sample in a ceramic crucible in a muffle furnace for 3 hours at 

550°C. To determine the amount of total organic material the ash and water contents were 

combined to express a dry ash free fraction.  Alternatively, if only very little biomass was 

available, the samples were analysed by TGA for ash and moisture content on a Stanton Redcroft 

TGA or TA Instruments IR5000Q TGA in air. The TGA oven temperature was increased to 

105°C and held for 15 min, subsequently ramped to 550°C and held for 60 min to determine the 

moisture and ash content respectively.   

 

3.1.3 Elemental Analysis 

 

Ultimate analysis was determined by the C, H, N, S content of the samples using a CE Instruments 

Flash EA 1112 series elemental analyser. The results from the proximate analysis were used to 

calculate the elemental composition on a dry ash free basis. The instrument was calibrated using a 

BBOT standard (2,5-Bis (5-tert- butyl-benzoxazol-2yl) thiophene) which contains 72.53 wt.% 
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carbon, 6.09 wt.% hydrogen, 6.51 wt.% nitrogen, 7.44 wt.% sulphur and 7.43 wt.% oxygen. The 

second standard used was oat meal (C=47.76 wt.%; H=5.72 wt.%; N=2.09 wt.%; S=0.16 wt.%). 

Approximately 2.5-3.5 mg of samples and standards were weighed out in duplicate in tin capsules. 

These were combusted in excess oxygen by the elemental analyser. The analyser automatically 

calculated the elemental composition of samples by analysing CO2, NOx and SO2 concentrations in 

the product gas. The elemental composition was used to calculate the HHV using the DuLong 

formula [105] according to: 

     
  

  
                    

 

 
             Eqn. 3.1 

Variables C, H, O and S are the mass fractions carbon, hydrogen, oxygen and sulphur in wt.% on a 

dry basis.   

 

3.1.4 Biochemical Analysis 

 

The biochemical composition of the microalgae strains was determined colorimetrically; for the 

protein analysis the J. Waterborge method was used [106] which involves the use of a folin 

reagent, subsequent absorbance measurements at 720 nm and comparison to a bovine standard 

absorbance at the same wavelength. For this procedure 0.05 g of sample were weighed and mixed 

with 5 ml 2M NaOH in a sample tube and placed in a breaker of boiling water for 10 min. 

Subsequently the tube was centrifuged for 5 min and 2.5 ml of the supernatant was pipette into a 

fresh tube with 7.5 ml 2M NaOH and mixed. 0.5 ml of this solution was mixed with 5 ml of a 

complexing reagent made up of a copper sulphate and sodium potassium tartrate solutions and left 

for 10 min. Finally 0.5 ml of Folin reagent was added to the sample and absorbance measured at 

750 nm after zeroing with a reagent blank.  The sample procedure was carried out with a bovine 

standard and the total protein content calculated by: 

                   
               

             
    Eqn. 3.2 

A1=Absorbance of sample 

A2= Absorbance of standard 

W= weight in g 

C = Concentration of standard in μg/ml 
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V=initial Volume 

D= dilution factor 

B= sample blank  

Carbohydrates were determined by a sulphuric acid hydrolysis method developed by Sol M. 

Gerchakov [107]. This involved weighing approximately 0.05 g of sample (and glucose as a 

standard) into a 10 ml sample tube. 3 ml of 72 wt.% sulphuric acid was added, mixed and placed 

into a oven at 40°C for 30 min. After hydrolysis samples were diluted to 100 ml and spun at 3000 

rpm for 5 min. 1ml of sample was added to two separate tubes, one with 1 ml 5 wt.% phenol 

solution and one with 1 ml distilled water (sample blank). To all tubes 5 ml of conc. Sulphuric 

acid was added, mixed and left for 1 hour. The spectrophotometer was set to 485 nm and zeroed 

with a reagent blank and absorbance was measured for sample blanks and samples. The following 

formula was used to calculate the carbohydrate concentration: 

                        
                      

                   
    Eqn. 3.3 

A1 = Absorbance of sample 

A2 = Absorbance of standard 

W = Weight in g 

C= Concentration of standard μg/ml 

V = Initial volume 

d = Dilution factor 

B = Sample blank 

Q1= aliquot of sample ml 

Q2= aliquot of standard ml 

 

 Lipid extraction was performed using the Bligh and Dyer method employing a 2:1 

methanol/chloroform extraction at room temperature [27]. This entailed 3 subsequent solvent 

extractions and filtrations of approximately 1 g of algae with aliquots of 15 ml solvent mixture. 
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Samples were weighed into sample tubes, solvent added and shaken continuously for 20 min using 

a mechanical shaker. The solvent was subsequently evaporated, the residue weighed and the lipid 

fraction expressed as a weight fraction. Additionally, the lipids were extracted by the same 

method using hexane. 

 

3.1.5 Scanning Electron Microscopy 

 

Microalgae samples were freeze dried in a Christ Alpha 1-2 LDPlus (Christ, Germany) for 8 hours 

then coated with a thin gold layer before analysis by scanning electron microscopy (SEM) on a 

Zeiss EVO MA 15 (Carl Zeiss Microscopy, Germany). SEM of the solid residue after 

hydrothermal processing was carried out by air drying the residue and then solvent washing with 

acetone to remove any residual bio-crude. Subsequently the solids were freeze dried and analysed 

by SEM.  

The particle size distribution of selected algae cells was measured using a Malvern Mastersizer S 

analyser series 2600 (Malvern Instruments, UK). Approximately 5 g of dry sample were placed in 

the analyser and blown with a fan through a laser beam, the resulting light scattering by particles 

was analysed by the instrument and a particle size distribution plotted.  

 

3.1.6 Pigment Analysis 

 

Algal pigments were analysed by a method based on the method by Wright et al. 1992 and slightly 

modified based on M.A. van Leeuwe et al.‟s work [108-109].  Pigments were extracted in 90 vol.%  

acetone; 0.5 g of biomass were mixed with the solvent solution and agitated with a mechanical 

shaker for 30 min. Subsequently the solution was centrifuged and the supernatant analysed by 

HPLC. The pigments were analysed on a Dionex Ultimate 3000 HPLC system with a C-18 

column. 100 μl of sample were injected and the pigments eluted with the mobile phase ramp 

program specified in Table 3.2. The solvents A, B and C correspond to 85% methanol/water (v/v) 

buffered with 0.5 M ammonium acetate, 90% acetonitrile/water (v/v) and ethyl acetate 

respectively. The flow rate was kept at 0.8 ml/min constantly. Absorbance was recorded at 450 

nm and a scan between 400 and 700 nm was also recorded to allow absorbance/wavelength plots 

of selected peaks. Peaks were identified by comparing published retention times and absorbance 
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spectra of known pigments. Additionally, standards of chlorophyll a, astaxanthin and beta-

carotene were run to allow semi-quantitative analysis of these pigments.  The cell wall of 

Chlorogloeopsis fritschii is very strong; therefore acetone extraction did not release all of the 

pigments. Consequently, extraction was performed in the same manner but with pure 

dimethylformaminde. Peak areas were measured and divided by the initial mass of algae to 

calculate peaks in units of “area/mg”. The area of beta carotene was used as a one-point 

calibration standard using the chromatograms peak area of the purchased beta carotene standard. 

This was the only pure standard available due to the high cost of pure pigments. Therefore the 

pigment analysis is of a qualitative nature to identify which pigments are present. The analysis 

should not be regarded as fully quantitative even though the results are presented in mg/kg. The 

results are used solely for the purpose of comparing between the same pigment within different 

samples. The main application of the data is in Chapter 9 where it is discussed in more detail.  

 

Table 3.2: HPLC gradient program with A: 85% methanol/water (v/v) buffered with 0.5 M 

ammonium acetate, B: 90% acetonitrile/water (v/v) and C: ethyl acetate 

Time (min) % A % B % C 

0 60 40 0 

2 0 100 0 

7 0 80 20 

17 0 50 50 

21 0 30 70 

28.5 0 30 70 

29.5 0 100 0 

30 60 40 0 

35 60 0 0 
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3.1.7 Metal Analysis 

 

Metal analysis was carried out by digesting 200 mg of sample in HNO3 in a closed vessel. This 

was performed in 50 ml conical flaks with reflux funnels. The samples were mixed with 10 ml of 

conc. HNO3 and placed in a hot plate heater filled with sand. The digestion was performed at 

220°C for 2 hours. After cooling of the samples they were diluted to 100 ml and sent to the 

Department of Geography at the University of Leeds for analysis. Metal concentrations were 

determined using an Optima 5300 DV inductively coupled plasma spectrometer (ICP) with optical 

emission spectrometry (Perkin Elmer, Cambridge, UK). The instrument was calibrated for the 

elements Al, B, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, Zn with concentrations of 0.1, 

0.25, 0.5, 1, 5, 10, 25 and 50 mg/l.   

 

3.1.8 Pyrolysis GC-MS 

 

Pyrolysis–GC-MS analysis was performed using a CDS 5000 series pyrolyser connected to a 

Shimadzu 2010 GC-MS. Samples of approximately 2 mg were weighed into a pre-weighed quartz 

tube with quartz wool at one end. Subsequently the other end of the tube was filled with quartz 

wool to keep the sample in place. The tube was reweighed before pyrolysis. Pyrolysis was 

performed at a temperature of 500°C with a ramp rate of 20°C per millisecond with a hold time of 

20 seconds. The volatiles were trapped on a trap before being desorbed at 300°C onto a heated 

transfer line (300°C). The purge flow to remove any oxygen prior to pyrolysis was set to 20 

ml/min. The heated transfer line was connected to the split/splitless injector of the GC inlet port 

which was set to 280°C. Split ratios were chosen depending on sample type and mass of sample, 

for very small amounts of sample (>0.5 mg) splitless injection was used, the highest split ratio 

used was 30:1. The products were separated on an Rtx 1701 60m capillary column, 0.25 id, 0.25 

μm film thickness, using a temperature program of 40°C, hold time 2 minutes, ramped to 280°C, 

hold time 30 minutes and a constant column head pressure of 2.07 bar. After pyrolysis the tube 

was reweighed to determine the amount of sample pyrolysed. This allowed calculation of peaks as 

an area per mg sample pyrolysed. The split ratio was adjusted for data analysis to allow 

comparison of different samples. The mass spec ion source was set to 230°C and the interface to 

280°C, scanning to place once per second in the range of 50 to 550 m/z. Peaks were identified 

using the NIST mass spectral database.  
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Alternatively, the same pyrolysis unit was connected to a jas-Agilent G2350A Atomic Emission 

Detector connected to an Agilent GC 6890N with the same column and GC program. AED 

detectors work with a plasma source exiting elements to higher energy states from which they emit 

light once they return to their original energy state. This emitted light is of a different wavelength 

for each element. This therefore allows identification of all elements apart from the carrier gas (He). 

The same Pyrolysis, transfer line, inlet and GC temperatures and flow rates were employed as for 

GC-MS analysis. The AED‟s purge vent was set to 30 ml/min He and the cavity vent to 60 ml/min. 

The spectrophotometer was purged for 2 days at 3.45 bar N2 and set to 1.38 bar during analysis. The 

AED was set up to detect nitrogen (N, wavelength 174 nm), sulphur (S wavelength 181 nm) and 

carbon (C wavelength 179 nm). The chromatograms were integrated to obtain a total chromatogram 

area. This was divided by the mg of sample pyrolysed and adjusted for the split ratio. The total 

chromatograms were compared to each other to calculate the changes in total nitrogen and sulphur 

in the pyrolysis volatiles.  

 

3.1.9 Lipid Analysis 

 

The microalgal triglycerides were analysed on a Dionex Ultimate 3000 HPLC system with a C-18 

column. The method used is known as “non-aqueous reverse phase high-pressure liquid 

chromatography” with acetonitrile (ACN) and iso-propanol as the mobile phase [110-111]. The 

samples were dissolved in DCM and the mobile phase gradient flow was 0.5 ml/min with 100% 

ACN for  2 min, ramped to 30% iso-propanol at t=6 min, ramped to 80% iso-propanol at t=60 min, 

isocratic flow for 10 min and finally 15 min of 100% ACN re-equilibration time. UV-Vis detection 

was used at 210-255 nm and full wavelength scanning to allow 3-D plot comparisons of selected 

peaks. The lipids were additionally transesterified to FAME using methanol and sulphuric acid. 

Approximately 2 ml methanol were added to 200 mg of extracted lipids with one drop of sulphuric 

acid and agitated for 1 hour at 55°C in a shaking water bath. 3 ml of pentane and water were added 

to the reaction mixture. After 1 hour the two distinct layers were separated using a glass syringe, the 

pentane was left to evaporate resulting in the final FAME extract. The FAME extract was analysed 

on an Agilent 5890 GC-MS using a RTX-1701 capillary column. The split (10:1) inlet was set to 

280°C with an initial column temperature of 60°C held for 2 min, ramped to 280°C at 6°C/min, 

held for 15 min with a constant column pressure of 2.07 bar. The instrument was calibrated using an 

external FAME standard purchased from Sigma-Aldrich (F.A.M.E. Mix, C8-C24).  
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Size exclusion chromatography of the lipids was carried out on a Perkin Elmer Series 200 HPLC 

instrument with a Varian PGel column of 30 cm length, 7.5 mm diameter, 3μm particle size and a 

THF mobile phase flow rate of 0.8 ml/min. Approximately 100 mg of lipids were dissolved in 1.5 

ml THF and detection was achieved with a refractive index detector. The chromatograms were 

divided by the sample mass injected for comparison. The instrument was calibrated using a 

polystyrene molecular weight standard.  

 

3.1.10 Thermo-gravimetrical analysis 

 

Thermo-gravimetrical analysis (TGA) was performed on a Stanton Redcroft DTA or a TA 

Instruments IR5000Q TGA from 40-900°C in 50 ml min
-1 

N2 at a heating rate of 10°C min
-1

. The 

corresponding 1
st
 derivative of the TGA curve was plotted at various points in the thesis to 

investigate the volatilisation rate in units of wt.%/°C and is referred to as the DTG curve or 

derivative mass loss. This can show the temperature of highest volatilisation rate.  

The TGA profile was set up to reach 105°C at a rate of 10°Cmin
-1

 and held for 10 min, this gives 

information about the water content of biomass by measuring the weight loss at 105°C. Routinely 

TGA analysis was carried out using in a constant flow of N2. This allows determination of moisture 

content, the volatile fraction and the non-volatile fraction which consists of the fixed carbon and ash 

fractions. By switching the gas flow from N2 to air at high temperature (900°C) the ash fraction can 

be determined in the same analysis although some ash volatilisation at these temperatures is likely. 

The fixed carbon content can be calculated by difference from the ash and volatile fraction. 

Equations 3.4 to 3.7 determine the different proximate fractions: 

wt.            
                     

           
          Eqn. 3.4 

               
                       

           
          Eqn. 3.5 

          
             

           
           Eqn. 3.6 

                                                             Eqn. 3.7 

For bio-crude samples the analysis using TGA to 900°C in N2 is referred to as simulated distillation. 
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3.2 Hydrothermal processing 

3.2.1 Parr batch processing 

 

Hydrothermal liquefaction was performed in a batch reactor (75 ml, Parr, USA), charged with 

biomass and pure distilled water (single distilled, electrical conductivity <0.05 μS/cm) or 

containing either 1 M Na2CO3 and KOH or 1M of an organic acid (CH3COOH and HCOOH). The 

reactor designs are of bomb type and made of either 316 stainless steel or Hastelloy steel. The 

reactors are unstirred. Standard liquefaction experiments were performed at two temperatures, 

300°C and 350°C for 1 hour, the heating rate of the reactor is approximately 9-13°C min
-1

. The 

residence time was taken from the point the reactor reaches temperature. The reactors were cooled 

at approximately 6°C min
-1 

by removing the heating mantle and exposing the reactor to ambient 

air. In each case approximately 3 g of microalgae was mixed with 27 ml of catalyst solution or 

distilled water. Microalgae was added to the reactor premixed as a slurry. The batch reactor layout 

is illustrated in Figure 3.1. 

 

Figure 3.1: Schematic of the Parr 75 mL reactor layout 

3.2.2 Swagelok reactor batch processing 
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The Swagelok reactors were constructed form 316 stainless steel 1.905 cm x 10 cm Swagelok 

pipes and are essentially closed bomb type reactor tubes. The first set-up of Swagelok reactors had 

one reactor end capped and the other connected to a 1.905-0.635 cm reducer. The 0.635 cm pipe 

was connected to a quick fitting so that the reactor could be purged and pressurised with nitrogen. 

There was also a pressure release valve connected to a 0.635 cm cross which was set to 200 bar as 

a safety precaution. The layout of the first reactor set up is shown in Figure 3.2. The second set-

up was designed with the same reactor size of 1.905 cm pipe and 10 cm length leading to a 

volume of 25 ml; however for this set-up no nitrogen purge was set up but a thermocouple was 

added to measure the temperature inside the reactor. Using this internal K-Type thermocouple the 

time to reach reaction temperature of the reactants was measured to be 2 min. The second setup 

including the sand bath is shown in Figure 3.3.  The reactors were submerged completely into a 

fluidised sand bath (FSB-3, OMEGA Engineering Ltd, Manchester, UK) at the desired 

temperature and residence time. Once the desired residence time was reached the reactor was 

quenched in a cold water bath. Reactors were charged with approximately 1 g of microalgae and 

10 ml of distilled water. The resulting products were separated and analysed as described in 

Section 3.3.1. 

 

Figure 3.2: Schematic of the Swagelok reactor used at the University of Sydney with nitrogen 

purge.  
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Figure 3.3: Swagelok reactor set-up at the University of Leeds with thermocouple and without 

nitrogen purge.  

 

3.2.3 Continuous processing 

 

A slurry concentration of 1 wt.% was made up by mixing the dried microalgae with 50 litres of 

distilled water. The slurry viscosity was measured using an Anton Parr SVM 3000 viscometer 

(Anton Parr GmbH, Austria). The algal feedstock solution was processed in the continuous flow 

pilot plant at the University of Sydney in duplicate for all process conditions and average values 

are reported. The reactor design and performance are discussed in Chapter 10. Following 

liquefaction, the product stream was collected in 500 ml Duran flasks. Since the biomass to water 

ratio was so low in this study the amount of bio-crude floating on the water was very small. 

Therefore, dichloromethane (DCM) was used in order to quantify the bio-crude yields 

gravimetrically. After addition of DCM, the mixture was separated and filtered to isolate the bio-

crude, solids and aqueous phase fraction.  
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The continuous flow hydrothermal biomass plant was designed and built in-house at the 

University of Sydney. The upper design temperature and pressure of the system are 350 ºC and 250 

bar which fall in the sub-critical region of water.  

 

The process flow diagram of the plant is presented in Figure 3.4. Biomass slurry is pumped in 

two stages from stirred atmospheric-pressure batch tanks (Pumps 1 and 2 in Figure 3.4). Pump 1 

is a low pressure screw pump (Range MD, Seepex, Germany) which provides the necessary 

suction pressure (2-6 bar) for the high pressure stage. Pump 2 is a GEA Niro Soavi model Ariete 

NS3006P triplex piston pump capable of delivering high viscosity fluids and slurries at pressures 

up to 600 bar and flowrates in the range 15 – 90 L/hr. The pumping rate is adjusted through the 

use of a variable speed drive; a mass flow meter (F in Figure 3.4) is used to measure the actual 

slurry feed rate.  

 

The pressurised slurry (up to 250 bar) is partially preheated in feed-effluent exchangers HX1 and 

HX2 which capture some of the heat of the product stream leaving the reactor. The heat 

exchangers HX1 and HX2 are coil-in-shell devices (FLF series sample cooler, Sentry Equipment 

Corp, USA) in which only the coils are rated for the maximum design pressure of the plant – for 

this reason, the hot products leaving the reactor are let down to ~10 bar downstream pressure 

control valve PCV (Type 1711 needle valve, Badger Meter Inc, Germany) before passing to the 

heat recovery section. In order to maintain the process water in the liquid state during this pressure 

let-down, the products are first cooled to ~170 C via contact with a clean circulating water stream 

in heat exchanger HX3, the temperature of this circulating stream in turn being maintained by 

contact with cooling tower water in HX4. Back-pressure regulating valve BPRV (KPB series, 

Swagelok Company, USA) is utilised to keep this line above the saturation pressure. After BPRV, 

the products are nominally at atmospheric pressure and are separated into gaseous and liquid 

streams for sampling and analysis. Gases and vapours are vented to atmosphere via activated 

carbon filters (ACF). 

 

In order to alter the residence times of the experiments, the pump speed was changed and the 

overall residence times through the reactor coils were calculated based on the flow rate, density, 

pipe diameter and length.  

 

The reactor is shown schematically in Figure 3.5. The reactor comprises of four stainless steel 

(grade 316) coils immersed into a heated fluidized bed. Depending on the reactor coils 
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configuration, the plant can provide residence times between <1 and 30 minutes; for this study, the 

coils (each 16 m in length, outer diameter 9.5 mm and wall thickness of 1.65 mm, total reaction 

volume ~2 L) are connected in series to enable reaction times between 2 and 8 minutes to be 

studied.  Approximately 200 kg of alumina is fluidized by compressed air within the vessel. 

Heating is provided by 4×6 kW electric heating elements inserted into the fluidized bed.  

 

The entire plant is controlled via a distributed supervisory control and data acquisition (SCADA) 

system supplied by Yokogawa Australia Pty Ltd. Process variables including temperature, 

pressure and flow rate are specified by the operators through Yokogawa‟s FAST/TOOLS SCADA 

software. As illustrated in Figure 3.5, the average bed temperature is used to control the power 

input from the heaters into the system.  
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Figure 3.4: Schematic of the continuous reactor at Sydney University. * HX=Heat Exchanger; CTW= 

Cooling Tower Water; ACF=Activated Carbon Filter; PCV=Pressure Control Valve; BPRV=Back Pressure Regulating 

Valve. 
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Pressure relief valves are utilised in the process as a safety measure in the case of a pressure build-

up due to blocking or poor control resulting in a pressure overshoot. The control system has also 

been programmed to ensure that set pressures always exceed the saturation pressure of water at the 

temperature at which the system is operating at each point in time.  
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Figure 3.5: Continuous reactor configuration. 

* C= Control unit; T1-3=Thermocouple; A=Average bed temperature. 

 

3.2.4 Microwave processing 

 

Algal slurries were processed individually in a 45 ml sealed quartz reaction vessel within a 1.2 kW 

Milestone StartSynth microwave oven. Samples were heated to 80, 100, 120 and 140°C within 3 

min, the temperature was then kept constant for 12 min before a fan was operated to cool the 

samples. Internal temperatures of the microalgal samples during processing were measured by an IR 

thermometer and logged on the control display. The energy used during microwave heating was 

determined through the integration of the power profiles using the computer‟s inbuilt ∫Energy 

consumption/time function. These values were then converted from Wh to MJ/kg to determine the 

energy required to process 1 kg of dry algae.  
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After the samples had been cooled, they were centrifuged for 15 minutes at 3500 rpm, equivalent to 

a g force of 2264.  This was performed to separate the solid biomass sediment from the liquid 

phases to enable lipid extraction and compositional analysis. The liquid phase was then diluted to 

250 ml with deionised water. After centrifugation and freeze drying of the microwaved samples 25 

ml of dichloromethane was added in a sealed sample container and shaken continuously for 45 min. 

Subsequently Whatman type 3 filters were used to separate the DCM soluble fraction from the 

defatted solids. Yields of lipids were determined gravimetrically after evaporation of the DCM at 

room temperature. 10 ml of DCM was also added to the supernatant of the centrifuging step to asses 

if there were any lipids dissolved in the aqueous phase. Water and dichloromethane were separated 

in a separation funnel and the mass of lipids dissolved in the water were assessed gravimetrically 

after evaporation of the dichloromethane fraction. The entire processing and sample workup flow 

diagram is presented schematically in Figure 3.6.  

 

Figure 3.6: Schematic of the HMP process and sample workup.  
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Approximately 1 g of freeze dried unprocessed and microwave processed algae biomass was mixed 

with 10 ml of deionised water and sealed in a ¾ in x 13.5 cm Swagelok sealed reactor, the 

remaining headspace contained ambient air. The sealed reactor was submerged to a preheated 

fluidised sand bath (FSB-3, OMEGA Engineering Ltd, Manchester, UK) at 300°C for a constant 

residence time of 15 min (see Figure 3.3). Using an internal K-Type thermocouple the time to reach 

reaction temperature of the reactants was measured to be 2 min. Subsequently the reactor was 

quenched in cold water, once cooled to room temperature the gases were vented. The reactor 

contents were decanted and the reactor washed using DCM and deionised water (30 ml each in 15 

ml aliquots). The resulting mixture was separated in a separating funnel and filtration to a bio-crude, 

solids and water phase. The solids and bio-crude were weighed and the water phase diluted to 100 

ml with deionised water. Yields of bio-crude and solids were determined and analysed as described 

in the next section. 

 

3.3 Sample Workup 

 

3.3.1 Bio-crude Analysis 

 

A schematic of procedures carried out post HTL reactions is presented in Figure 3.7. Following 

liquefaction, 50 ml of dichloromethane (DCM) and 50 ml of water was added to the reaction 

mixture and the two phases separated in a separation funnel. The DCM phase was separated and 

filtered following which the solvent was removed by evaporation to determine the mass of bio-

crude. The insoluble residue was weighed and then analysed for C, H, N, S content. A portion of 

the evaporated DCM solubles was analysed for C, H, N, S content and a portion by GC/MS and 

thermal gravimetric analysis (TGA). The bio-crude was analysed by GC/MS on an Agilent 5975B 

inert MSD. Separation was achieved on an Rtx 1701 60m capillary column, 0.32 id, 0.25 m film 

thickness, using a temperature program of 40°C, hold time 2 minutes, ramped to 250°C, hold time 

30 minutes, column head pressure of 30 psi. TGA was performed on a Stanton Redcroft DTA or a 

TA Instruments IR5000Q TGA from 40-900°C in 50 ml min
-1 

N2 at 10°C min
-1

.  
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Figure 3.7: Schematic of the HTL sample workup.  

The HHV of the bio-crude was calculated from their ultimate analysis using the DuLong formula 

[105]. The bio-crude yields were calculated according to Eqn. 3.8. 

100
Ash)/100-Mois-(100  Mass Sample

Yield 





MassOil
    Eqn. 3.8 

 

3.3.2 Water Analysis 

 

The aqueous phase following hydrothermal processing was diluted to 1 litre with distilled water. 

Using a Buchner funnel, and a Buchner flask the diluted water phase was filtered through 

Whatman Type 3 filter papers (10 cm diameter). The retained residue on the filter paper was air 

dried for 24 hours and weighed by difference of the previously pre-weighed filter paper.  10 ml 

aliquots of the aqueous phase were analysed by ion chromatography (Dionex, USA) to identify 

and quantify the main anions and cations present. Total organic and inorganic carbon (TOC, TIC) 

in the aqueous phase was determined using a TOC analyser (HACH- IL 550 TOC, Hach-Lange, 

Germany) using a differential method. Total Nitrogen concentrations were determined using 

HACH-LANGE colorimetry test cuvettes (LCK338, Hach-Lange, Germany). The trace metal 

concentration in the aqueous phase was measured using an Optima 5300 DV inductively coupled 

plasma spectrometer (ICP) with optical emission spectrometry (Perkin Elmer, Cambridge, UK) as 

described previously. 
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3.3.3 Solid residue Analysis 

 

The solid residues were analysed for moisture and ash content by thermo gravimetrical analysis on 

a STANTON Redcroft TGA/ TA Instruments IR5000Q TGA. 5-10 mg of sample was heated in 50 

ml/min of air to 650°C at 50°C/min. The residue was also analysed for C, H, N, S content by 

elemental analysis. A fraction of the solid residue was also digested and analysed by ICP-OES to 

determine the metal content by the same method described in Section 3.1.7. 

 

3.4 Microalgae Cultivation 

 

Chlorella vulgaris, Scenedesmus dimorphus and Spirulina platensis were grown and harvested in 

respective standard growth medium in the University of Leeds, UK laboratory. The cyanobacteria 

Chlorogloeopsis fritschii was cultured and harvested by the Plymouth Marine Laboratories, UK. 

Bulk samples of Chlorella vulgaris, Spirulina and Scenedesmus were cultivated in 10 litre 

bioreactors using axenic strains obtained from the Culture Collection of Algae and Protozoa 

(SAMS Research Services Ltd, Scottish Marine Institute, Oban, Scotland). The photobioreactors 

used to grow bulk samples is depicted in Figure 3.8 (c).Scenedesmus and Chlorella were grown in 

3N-BBM+V and Chlorogloeopsis  fritschii in BG 11 standard media. Spirulina was grown in a 

specially prepared media, the concentrations of nutrients of the different media are presented in 

Table 3.3.  
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Table 3.3: Mass of nutrients made up to 1 litre of distilled water for different algae growth media.  

3N-BBM+V BG11 Spirulina medium 

       NaNO3                              750 mg NaNO3                              1500 mg NaNO3                              2500 mg 

CaCl2 2H2O                    25 mg CaCl2 2H2O                    36 mg CaCl2 2H2O                    40 mg 

MgSO47H2O                  75 mg MgSO47H2O                  75 mg MgSO47H2O                  200 mg 

K2HPO43H2O                  75 mg Citric Acid 6 mg K2HPO43H2O                  500 mg 

KH2PO4                          175 mg NH4 Fe citrate 6 mg K2SO4 1000 mg 

NaCl                               25 mg Na2EDTA                       1 mg NaCl 1000 mg 

Na2EDTA                       4500 μg Na2CO3 20 mg Na2EDTA                       80 mg 

FeCl36H2O                      582 μg H3BO3 2860 μg FeSO47H2O 10 mg 

MnCl24H2O                     246 μg MnCl24H2O                     1810 μg NaHCO3 15000 mg 

ZnCl26H2O                      30 μg ZnSO4 222 μg 

   CoCl26H2O                      12 μg Na2MoO4 390 μg 

   Na2MoO42H2O                24 μg CuSO4 79 μg 

   Vitamin B1                       1200 μg Co(NO3)2 49.4 μg 

   Vitamin B12                     1 μg             

 

Growth trials of 300°C HTL process waters were carried out at the Plymouth Marine Laboratories 

and the trials of 350°C HTL process waters at the University of Leeds. In Leeds, 10 ml of 

approximately 150 mg/l concentrated media culture was used to inoculate the cultivation trials in 

500 ml conical flasks in a media consisting of diluted process water or fresh standard cultivation 

media (see Figure 3.8 (a)). The trials in Plymouth were inoculated at higher concentrations of 

around 85 mg biomass dry matter in 250 ml conical growth flasks (see Figure 3.8 (b)). The 

process water was diluted (50×, 100×, 200×, 400× and 600×) and the growth rate compared to 

standard media measured over a 11-12 day period.  Each growth trial was carried out in duplicate 

and the standard deviation is plotted using error bars for each respective growth data point. 

Ambient air was supplied to the reactors to provide agitation and CO2; the reactors were 

continuously illuminated. The cell count was estimated using a haemocytometer each day and the 

final biomass produced was separated and dried to obtain a final yield. Biomass accumulation was 

determined by chlorophyll a absorbance at 660 nm; for each sample, 1.5 ml culture was recovered 

from each growth flask, the cells were pelleted with a micro centrifuge and the supernatant 

decanted into a separate tube. 1.5 ml of acetone was added to the pelleted biomass, mixed and 

incubated overnight in a fridge. Subsequently the biomass was centrifuged again and the 

supernatant scanned in a UV/Vis spectrophotometer to provide a relative biomass concentration.  



CHAPTER III - Methodology 

64 

 

Relative chlorophyll a absorbance was measured by a spectrophotometer scan at 660 nm. The 

growth trials were carried out in duplicate and average measurements of growth are reported. The 

remaining spent media was analysed by ion exchange chromatography and photometry to assess 

the uptake of different nutrients. A schematic diagram of the HTL procedure and the growth trials 

is presented in Figure 3.9. 

 

Figure 3.8: Images of the cultivation trials and bulk algae cultivation.  

(b) 

(a) (c) 
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Figure 3.9: Schematic layout of the HTL reactions, sample workup and cultivation trials. DCM= 

dichloromethane, HT=hydrothermal  
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4. CHAPTER IV - Characterisation 

 

4.1. Introduction 

 

A thorough understanding of the original feedstock is vital in all areas of microalgae research.  If 

the algae strains are grown for a specific extractable compound, compositional analysis allows the 

determination of its concentration. A typical application of microalgae is the production of bio-

diesel for which the total lipid content of the algae is the most important factor. However, the 

composition of the lipids is just as important; neutral-, polar, phospho-, saturated- and unsaturated 

lipids are not equally suitable for the production of biodiesel. The characterisation of microalgae 

lipid fractions is beyond the scope of this Chapter but is addressed for two strains in Chapter 6. 

The other biochemical components analysed, apart from total lipids, are the protein and 

carbohydrate content. The protein content is significant as this is the main source of nitrogen in the 

biomass. A high level of nitrogen in algae can lead to complications during thermochemical 

conversion. Alternatively, if algae is grown as a food supplement, a high protein content is desirable. 

The carbohydrates contained in microalgae are a source of polysaccharides which are valuable in a 

range of applications. The composition of carbohydrates can vary between mono-, di- and 

polysaccharides. A high proportion of monosaccharides can improve the microalgae‟s suitability as 

a feedstock for fermentation to ethanol, however many microalgae strains contain carbohydrates 

such as amylose and starch.  

The algae strains were subjected to proximate analysis either by the conventional method in a 

muffle furnace (see Section 3.1.2) or, when only small amounts of biomass was available, by TGA. 

The moisture content is mainly used for mass balance calculations and to determine chemical 

composition on a dry ash free basis for characterisation. The ash content is the main source of 

inorganics in microalgae and can range from very low (<1 wt.%) to very high levels (>60 wt.%). 

This is significant when performing mass balances and dry ash free calculations. The mineral matter 

is high in metals which were analysed for the majority of the algae strains by ICP-OES. Some 

metals are essential for microalgae growth while some are toxic, the fate of these is therefore 

important during cultivation. Elements such as Cl are additionally of concern due to corrosion. In 

general, marine strains are high in NaCl and other inorganic salts making them less suitable for 

combustion due to the high potential for slagging and fouling as shown by Anastasakis et al. [112]. 
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One of the most important parameters investigated is the ultimate analysis, used to determine the 

carbon, hydrogen, nitrogen, sulphur and oxygen content of the feedstock. The elemental 

composition was used to calculate the HHV using the DuLong formula [105]. The HHV was 

calculated when not enough biomass (>3 g) was available for analysis using bomb calorimetry. The 

nitrogen content determined by ultimate analysis also provides the basis of the nitrogen to protein 

conversion factor as described by Laurens et al. [113]. High carbon and low oxygen contents are 

generally desirable as these increases the HHV which is beneficial in energy applications. Even 

small amounts of sulphur in the biomass are undesirable as these can lead to complications during 

catalytic thermochemical processing since sulphur is known to be a strong catalyst poison.  

The analysis of the microalgae feedstocks considered was carried out by multiple techniques to 

determine their structural composition. Determining feedstock compositions is often essential to 

ensure more accurate predictions in terms of the chemistry of different algal conversion processes. 

The characterisation of the feedstock is the basis of all mass balance calculations in subsequent 

chapters. The current chapter provides a selected overview of the parameters investigated and the 

main differences amongst microalgae strains.  

The analysis methods used in this section are described in Chapter 3. Complete data sheets for 

each microalgae strain are attached in APPENDIX A. Parameters analysed include: Proximate and 

ultimate analysis, biochemical analysis, thermo gravimetrical analysis, pyrolysis GC-MS analysis, 

metal analysis, pigment analysis and scanning electron microscopy (SEM) analysis. There are gaps 

in the analysis for some strains in the data sheets, mainly due to insufficient masses of microalgae 

being available for the entire set of analyses. This is indicated in the data sheets as appropriate.  

 

4.2. Proximate and ultimate analysis 

 

Five microalgae species were selected to demonstrate the difference in proximate and ultimate 

composition and are presented in Table 4.1. Haematococcus is a quite standard green phototrophic 

microalgae strain with an ash content of 5.7 wt.%, which is typical for this type of microalgae. The 

two selected marine strains Porphyridium and Nannochloropsis have a much higher ash content of 

24 and 26 wt.% respectively, due to the high levels of inorganic salts originating from the high 

salinity of the media.  This has a detrimental effect on the HHV value, shown in Table 4.1. The 

cyanobacteria Spirulina is grown in fresh water but has a slightly higher ash content than the 
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microalgae Haematococcus. The high lipid microalgae Pseudochoricystis has a very low ash 

content of 1 wt.% resulting in a high HHV of 29.4 MJ/kg. The measure ash values in Table 4.1 are 

specific to the samples analysed and could vary significantly depending on harvesting and drying 

techniques; drying off salt water results in higher salt concentrations than for example centrifuging. 

The ash fraction, which is high in salt, is not differentiated between intra- and extracellular salts 

therefore the values are unique to the current samples and not the algae strains itself.  In addition to 

the HHV, the nitrogen content is also significant as thermochemical processing of a feed high in 

nitrogen often results in increased levels of nitrogen in the resulting fuels. The cyanobacteria, 

Spirulina, contains the largest proportion of nitrogen. Cyanobacteria typically have high protein 

contents, which lead to high nitrogen levels. The high lipid strain Pseudochoricystis has the lowest 

nitrogen content of 2.1 wt.% indicating a low protein content while the other three strains have 

nitrogen contents of around 8 wt.%, which is a typical value for microalgae. The carbon contents 

vary between 50 and 60 wt.% with the high lipid strain exhibiting the highest amount. The oxygen 

contents of the strains investigated range from approximately 25 to 30 wt.%. Strains of algae 

containing high proportions of carbohydrates tend to have higher oxygen contents, which lower the 

HHV values. This can be a significant drawback in terms of biofuel processing, as a deoxygenation 

step might be required to produce the desired fuel compositions. 

Table 4.1. Proximate, ultimate analysis and HHV of selected microalgae strains. 

 Proximate (wt.%) Ultimate Analysis (wt.% daf) 

Name Ash Moisture C H N S O HHV 

(MJ/kg) 

Haematococcus pluvialis 5.7 8.1 53 7.5 7.8 <0.2 31.6 23.9 

Porphyridium cruentum 24.4 5.1 51 7.6 8 <0.2 33.1 14.7 

Nannochloropsis occulata 26.4 7.2 58 8 8.6 <0.2 25.7 17.9 

Pseudochoricystis ellipsoidea 1.0 1.2 61.3 9.1 2.1 <0.2 27 29.4 

Spirulina sp. OZ 7.6 5.7 54 7.7 12 0.6 25.9 24.9 

 

 

 



CHAPTER IV - Characterisation 

69 

 

4.3. Biochemical Analysis  

 

Microalgae are used for a number of applications and depending on the desired use they require 

different biochemical compositions. For biodiesel production and hydrothermal processing, high 

lipid contents are favoured. As a feedstock for nutrition, high levels of protein are favoured while 

this is detrimental for biofuel production. Carbohydrates are generally only required for the 

extraction of polysaccharides as phytochemicals or fermentation into ethanol. The biochemical 

composition of selected microalgae strains is presented in Table 4.2. The highest lipid content is 

observed for Pseudochoricystis as determined by the Bligh and Dyer method [27]. It has to be 

mentioned however that this strain also exhibits some aliphatic hydrocarbons which are included in 

the total lipids [104]. Primarily microalgae only produce triglycerides and free fatty acids. The 

selected strains exhibit lipid contents in the range of 5 to 67 wt.% leading to varying suitability as a 

feedstock for biofuel production. The lowest lipid content are observed for the two cyanobacteria; 

Spirulina and Chlorogloeopsis. The remaining three green algae: Chlorella, Nannochloropsis and 

Scenedesmus, have relatively high lipid content ranging from 18 to 35 wt.%. Spirulina has a 

particularly high protein content (65 wt.%) and has commercial applications as a nutritional 

supplement. The high lipid strain Pseudochoricystis has the lowest protein content, which is the 

reason for the low nitrogen content presented in Table 4.1. The other cyanobacteria 

Chlorogloeopsis has a protein content of 50 wt.% which is lower than typical cyanobacteria but this 

specific strain exhibits an unusually high carbohydrate content of 44 wt.%. The biochemical 

composition of microalgae is strongly influenced by growth conditions such as nitrogen limitation 

which leads to higher lipid accumulation. Stress due to nutrient availability or exposure to light can 

also affect biochemical composition [114]. The required composition can be influenced by growth 

conditions and is determined by the desired application. Aspects concerning this are covered in 

more detail in Chapter 8 and 9.  The current analysis in Table 4.2 only refers to the specific algae 

samples analysed for which the growth conditions are unknown and should therefore not be 

regarded as microalgae species specific.  
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Table 4.2. Protein, carbohydrate and lipid contents of selected microalgae strains.  

Microalgae Strain  

(wt.% daf) 

 

Protein  Carbohydrate  Lipid   

Pseudochoricystis ellipsoidea 25 7 67 

Chlorella sp.  55 9 36 

Spirulina sp. OZ  65 20 5 

Nannochloropsis occulata 57 8 35 

Scenedesmus dimorphus 43 16 18 

Chlorogloeopsis fritschii 50 44 7 

 

 

4.4. Thermo gravimetrical Analysis 

 

Thermo gravimetrical analysis (TGA) is a quick and simple analysis technique which is especially 

useful when only very small amounts of sample are available (< 10 mg). It gives information about 

the water content of biomass by measuring the weight loss at 105°C. The data presented in the 

current section is from analysis in a constant flow of N2. This allows determination of moisture 

content, the volatile fraction and the non-volatile fraction which consists of the fixed carbon and ash 

fractions. By switching the gas flow from N2 to air at high temperature (900°C) the ash fraction can 

be determined in the same analysis as described in Section 3.1.10. The 1
st
 derivative of the weight 

loss curve indicated in Figures 4.1-4.3 as Deriv. Mass, shows the main devolatolisation 

temperatures of microalgae components. This is discussed in more detail in Chapter 6 and in a 

journal article [76]. Figure 4.1 shows the TGA/DTG plot of Haematococcus in N2 between 50 and 

750°C. It is shown that the largest weight loss occurs at around 300°C with the DTG curve 

exhibiting a shoulder towards 400°C. The final mass remaining is around 20 wt.%. In Table 4.1 it is 

shown that the ash content is around 6 wt.%, suggesting the algae strain exhibits around 14 wt.% 

fixed carbon. The weight difference between the temperatures at 105°C and the final temperature is 

the volatile fraction; this is shown to be around 78 wt.%.  
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Figure 4.1: TGA / 1
st
 Derivative Mass loss plot of Haematococcus pluvialis in N2 at 10°C/min 

heating rate.  

Figure 4.2 shows the TGA/DTG plot of Nannochloropsis at the same conditions as Figure 4.1. It is 

observed that the main devolatolisation peak occurs at 250°C with an additional peak at 450°C. The 

first peak represents the majority of the organic fraction and is likely to be the carbohydrate and 

protein fraction while the secondary peak at around 450°C corresponds to the volatilising fraction of 

the triglycerides. This assumption is based on analysing model compounds of protein, starch and 

lipids which showed that triglycerides volatilise later than the other biochemical components. By 

integration of DTG peaks around 450°C or comparison of different TGA plots a comparison of the 

microalgae‟s lipid content can be estimated as demonstrated by Kebelmann et al. (2013) [115]. This 

is helpful when comparing different microalgae strains or different growth conditions of the same 

strain when only limited amounts of sample are available. This is not a fully quantitative method 

but allows quick and easy comparison; accurate lipid content analysis is carried out by the Bligh & 

Dyer method but requires around 3 g of biomass. The ash fraction of Nannochloropsis is very high; 

around 25 wt.% as shown in Table 4.1, therefore over % of the mass is still remaining at 750°C. 

The volatile content of Nannochloropsis is consequently only 64 wt.% compared to 76 wt.% for 

Haematococcus.  
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Figure 4.2: TGA / 1
st
 Derivative Mass loss plot of Nannochloropsis in N2 at 10°C/min heating rate.  

The final TGA/DTG selected is of the high lipid strain Pseudochoricystis. Figure 4.3 clearly shows 

two distinct peaks on the DTG curve. The second peak at 375°C exhibits the lipid fraction 

volatilising which is known from comparison with model lipid compounds (see Chapter 6). The 

ash content of Pseudochoricystis is only 1 wt.%, therefore this strain exhibits a fixed carbon content 

of 5.7 wt.% and a volatile content of 90 wt.%.   

  

Figure 4.3: TGA / 1
st
 Derivative Mass loss plot of Pseudochoricystis ellipsoidea in N2 at 10°C/min 

heating rate. 
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4.5. Pyrolysis GC-MS Analysis 

 

Pyrolysis GC-MS is a powerful technique for the characterisation of biomass such as microalgae. 

Only very small amounts of sample (<3 mg) are required for analysis, making it suitable for 

characterisation of microalgae from small growth trials.  Applications of the technique are covered 

in more detail in Chapter 9. Py-GC-MS was used to investigate the flash pyrolysis products formed 

at 500°C which were separated on a RTX 1701 GC column. Different strains of microalgae produce 

a “fingerprint” chromatogram unique to the specific sample. The individual peaks are indentified by 

comparison with mass spectral libraries. The origin of peaks is unique to specific biochemical 

components of microalgae. Pyrolysis products from different model compounds of microalgae 

components were identified. Lipids generally produce straight chain hydrocarbons and fatty acids, 

while protein produces nitrogen containing heterocycles and amides. More information on the 

pyrolysis of model compounds is presented in Chapter 9.  

The total ion chromatograms of Chlorogloeopsis, Navicula sp. and Pseudochoricystis are plotted in 

Figures 4.4, 4.5 and 4.6 respectively. Basic observations of the chromatograms show that. although 

they differ significantly, certain peaks can be found in all chromatograms. The 10 largest peaks by 

area are presented in Tables 4.3, 4.4 and 4.5 with the corresponding identified compound names 

and retention times. It is shown that Chlorogloeopsis produces a number of phenolic compounds 

and cyclopentadione which are common pyrolysis products of the carbohydrate fraction. Toluene is 

mainly produced from the pyrolysis of protein and is found in all three chromatograms indicating 

the presence of protein in all samples. The absolute area of e.g. toluene can be compared to other 

algae chromatograms‟ toluene area and a comparison drawn on protein content of the different 

microalgae strains. Chlorogloeopsis is shown to produce mainly carbohydrate and protein derived 

products which are due to its high protein, carbohydrate and low lipid content. The only lipid 

derived compound observed within the 10 largest peaks is 2-methyl-1-Hexene.   
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Figure 4.4: Total ion chromatogram of Py-GC-MS of Chlorogloeopsis fritschii at 500°C 

Table 4.3: Compounds identified form Py-GC-MS of Chlorogloeopsis fritschii at 500°C 

Peak 

number 

Retention 

time 

Area % Compound 

1 7.6 24.9 Toluene 

2 10.1 3.1 Ethylbenzene 

3 10.3 2.7 Pyrrole 

4 12.1 2.9 NI 

5 18.1 7.4 3-methyl-1,2-Cyclopentanedione  

6 18.8 20.8 Phenol 

7 20.9 27.1 4-methyl-Phenol,  

8 21.8 3.5 2-methyl-1-Hexene  

9 21.9 4.9 Benzyl nitrile 

10 24.7 2.5 Benzenepropanenitrile 

 

The chromatogram of the diatom Navicula sp. (Figure 4.5) looks distinctly different to that of 

Chlorogloeopsis. Only two protein derived, nitrogen-containing compounds are present, indicating 

a low concentration of protein in the microalgae. The largest peak, with 35 % of total chromatogram 

area, is an alcohol derived from the lipid fraction of the algae. There is also the straight chain 

hydrocarbon pentadecane observed. This indicates that the microalgae strain exhibits a high lipid 

level. The majority of the remaining compounds are derived from carbohydrates such as furfural, 

maltol, levoglucosenone and the furan and phenol compounds. This leads to the conclusion that the 

most abundant biochemical fractions present in the microalgae are carbohydrates and lipids.  
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Figure 4.5: Total ion chromatogram of Py-GC-MS of Navicula sp. at 500°C 

Table 4.4: Compounds identified form Py-GC-MS of Navicula sp. at 500°C 

Peak 

Number 

Retention 

time 

Area % Compound 

1 7.5 8.9 Toluene 

2 11.6 7.2 Furfural 

3 15.3 7.8 5-methyl-2-Furancarboxaldehyde  

4 16.5 2.6 4-Amino-2(1H)-pyridinone 

5 16.7 5.6 2,2-diethyl-3-methyl-Oxazolidine,  

6 19.7 10.7 Maltol 

7 20.1 3.8 4-methyl-Phenol  

8 20.9 14.2 Levoglucosenone 

9 24.1 3.9 Pentadecane 

10 28.1 35.4 2-(octadecyloxy)-Ethanol,  

 

The total ion chromatogram of Pseudochoricystis is shown in Figure 4.5. For this algae strain no 

nitrogen-containing compounds were identified in the 10 largest peaks due to its low protein content. 

The largest peaks are produced from the lipid fraction, such as the three straight chain hydrocarbons 

and the alcohol compound present. Cyclopentanedione and furanmethanol are produced from the 

carbohydrate fraction of the algae. This is known from the pyrolysis of starch as a model compound 

which also produced these compounds. The only protein-derived compound present is toluene 

although this is also produced from chlorophyll a.  

1

2
3

4
5 6

7

8
9

10

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

0 5 10 15 20 25 30 35 40 45 50

In
te

n
si

ty

Retention time (min)



CHAPTER IV - Characterisation 

76 

 

 

Figure 4.5: Total ion chromatogram of Py-GC-MS of Pseudochoricystis ellipsoidea at 500°C 

Table 4.5: Compounds identified form Py-GC-MS of Pseudochoricystis ellipsoidea at 500°C 

Peak 

Number 

Retention 

time 

Area % Compound 

1 7.4 7.1 Toluene 

2 12.8 11.6 2-Furanmethanol 

3 14.7 11.2 1,2-Cyclopentanedione 

4 14.8 5.0 ND 

5 15.1 5.7 3-Undecene, (E)- 

6 17.3 6.0 1,2-Cyclopentanedione, 3-methyl- 

7 18.7 4.6 5-Decen-1-ol, (Z)- 

8 24.1 13.4 Pentadecane 

9 27.9 28.0 3-Heptadecene, (Z)- 

10 28.1 7.5 Heptadecane 

 

4.6. Metal Analysis 

 

The concentration of metals present in selected microalgae strains is presented in Table 4.6. The 

metal concentration is a significant factor to consider in applications of bioenergy. The metals 

mainly originate from salts and are typically much higher when the algae originate from a marine 

environment. High concentrations of metals cause problems when the biomass is combusted as they 
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cause fouling of heat exchangers and slagging in the furnace due to ash melting [112]. Additionally 

chloride can cause corrosion in both combustion and hydrothermal processing. Nutrients required 

for algae growth include metals: K, Ca, Fe, Na and the non-metal P. The fate of these compounds 

throughout hydrothermal processing is important if nutrient recycling is to be incorporated. Ni on 

the other hand is toxic to microalgae growth. Microalgae have been suggested as a technique of 

recuperating and recycling nutrients from waste water. This could result in accumulation of heavy 

metals which requires consideration and monitoring. The analysis of common metals and P was 

carried out by ICP-OES and the results of five selected strains are presented in Table 4.6. The 

concentration of metals is influenced by the harvesting technology. If the initial solids concentration 

contains significant amounts of salt water, evaporation will lead to increased levels of metals in the 

dry biomass and extracellular salts are present. The current analysis was performed regardless of the 

harvesting technology employed as further processing was carried out on the samples as presented 

below. It is shown that the marine strains Nannochloropsis and Porphyridium have much higher 

concentrations of most metals and especially of Na and Cl due to their high ash and salt contents. 

Typical Cl values of a marine strain range from approximately 25-80,000 mg/kg while the fresh 

water strains only contain around 4000 mg/kg and Pseudochoricystis only 10 mg/kg. The levels of 

potassium are in the range of 15-20,000 mg/kg for all strains except Pseudochoricystis, this strain 

exhibits extremely low concentrations of all metals, and only the level of P is comparable to the 

other strains. Phosphorus concentrations are very similar for all strains at around 6-9,000 mg/kg. 

This is an element essential for microalgae growth but world resources are limited. There is 

considerable interest in recycling of this element as it is essential for all biomass growth.  

Table 4.6: Concentration of metals and P present in selected microalgae strains in mg/kg.  

 

(mg/kg db) 
Al Ca Cl Cu Fe K Mg Mn Na Ni P Zn 

Chlorella sp. 13 3141 3893 6 1179 14899 4028 44 1108 1 7954 135 

Porphyridium 

cruentum 
ND 39852 25348 16 1815 19009 5085 116 80400 3 8889 99 

Nannochloropsis 

occulata 
ND 700 76955 10 714 14989 3295 53 189271 ND 7806 18 

Pseudochoricystis 

ellipsoidea 
ND 209 10 11 48 2899 244 7 124 ND 6256 11 

Spirulina  OZ 402 7782 4433 8 879 13899 4256 56 4732 3 8817 27 
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4.7. Pigment Analysis  

 

Pigment analysis was performed by HPLC and selected results are presented in Figure 4.6. 

Pigments are commonly extracted from microalgae due to their high concentrations and high 

commercial value. β-carotene and astaxanthin have been produced commercially from Dunaliella 

salina and Haematococcus respectively.  Both these pigments are beneficial for human health and 

have a commercial value of up to 10,000 €/kg [18]. Violaxanthin is an orange coloured pigment 

which is used as a food colouring agent. Lutein is the carotenoid responsible for the yellow 

coloration in egg yolks and acts as an antioxidant. The analysis of pigments is helpful when 

microalgae is grown for the production of phytochemicals. Pigment analysis is also addressed in 

Chapter 9. Figure 4.6 shows that all strains have chlorophyll a present which is expected as the 

presented strains are all phototrophic. Chlorophyll a is the main pigment responsible for light 

absorption for photosynthesis. The levels of different chlorophyll compounds vary from strain to 

strain. Astaxanthin is only produced by Haematococcus and Dunaliella salina 19/18; the two strains 

used commercially for extraction of this compound. Dunaliella salina 19/18 is also grown 

commercially for the production of β-carotene. The level of this pigment is 8000 mg/kg while the 

other Dunaliella strain (19/30) does not produce any β-carotene. It appears that Botryococcus and 

Dunaliella 19/18 have the most diverse profile of different pigments while Dunaliella 19/30 only 

exhibits violaxanthin and chlorophyll a. It should be noted that the results presented in Figure 4.6 

are not fully quantitative and are to be regarded as a means of comparing pigment levels in different 

strains of microalgae. This is the purpose of the pigment analysis in the current work and especially 

for the topics covered in Chapter 9. Full quantification of each pigment is beyond the scope of this 

study.  
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Figure 4.6: Analysis of pigments by HPC in selected microalgae strains, units in mg/kg (daf).  

 

 

4.8. SEM Analysis 

 

Scanning electron microscopy (SEM) was employed to obtain visual images of the microalgae 

strains. This was mainly performed to assess the effects of processing techniques on the structure 

and damage to algae cells (see Chapter 10 and 11). However SEM also gives information on the 

size of individual cells which is valuable when filtration is used to harvest microalgae. Additionally, 

dried microalgae can be investigated to examine if individual cells agglomerate to larger structures 

or appear as separate cells. This can be significant during processing, grinding, combustion and 

when consumed as a food product. SEM images of lyophilised Chlorogloeopsis fritschii and 

Spirulina OZ samples are shown in Figure 4.7 (a-b) at a magnification of 1500. It is shown that 

Chlorogloeopsis cells are extremely small ranging from 1-4 μm in diameter. Individual cells are 

surrounded by extracellular material called hormogonia, leading to larger structures of cell clusters 

raging from 3-50 μm. Some cells do however appear individually while other structures only exhibit 

hormogonia and no cells. This extracellular material is not as strong as the cell walls and is 

therefore easily removed during processing. The cells of Spirulina on the other hand, appear as 
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tubes, spiralled into each other. This leads to individual structures of around 20-70 μm. The 

spiralling effect is the origin of the cyanobacteria‟s name; Spirulina. The characteristic elongated 

spiral structures often presented elsewhere are not as apparent in Figure 4.7b due to freeze drying 

of the algae under vacuum. SEM images are available for some of the microalgae strains 

investigated and are included in the data sheets of each microalgae in APPENDIX A. 

Figure 4.7: SEM image of (a) Chlorogloeopsis fritschii and (b) Spirulina OZ at 1500 magnification 

  

(a) (b) 
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5. CHAPTER V - Microalgae HTL 

 

5.1 Introduction 

 

In the current chapter, a variety of different algae are investigated to provide insight into how 

different properties can affect liquefaction behaviour. A total of 11 strains were processed at 

standard hydrothermal liquefaction conditions and the yields and compositions of resulting bio-

crudes compared. Samples used include strains cultivated in marine and freshwater, cyanobacteria, 

green algae, red algae and diatoms. This research currently represents the single largest database in 

the literature comparing different microalgae strains processed by HTL.  

Experiments were carried out in a Parr 75 ml batch reactor at a constant residence time of 1 hour 

and temperature of 350°C. Effects of residence time and temperature were separately investigated 

on one selected strain, Chlorella vulgaris OZ, in order to determine the optimum residence time and 

operating temperature for maximum bio-crude yield and quality. The effect of operating 

temperature on the concentration of nutrients, total organic carbon (TOC) and total nitrogen (TN) in 

the process water was also investigated. Factors such as reactor loading and biomass/water ratio 

were not investigated, however, these parameters have previously been shown to have minor effects 

on liquefaction performance [116].  

 

5.2 Methodology 

 

The 11 strains were all subjected to hydrothermal liquefaction at 350°C for one hour residence time. 

The residence time was taken from the time the reactor reached temperature (30 min, heating rate 9-

13 °C min
-1

). Detailed procedures of the hydrothermal liquefaction experiments are described in 

Chapter 3. Initial screening of different algae strains was carried out in the 75 ml high-pressure 

Parr reactor. The effect of temperature and residence time was studied on the custom built 

Swagelok reactor submerged in a fluidised sand bath. More details are found in Chapter 3. 

Analyses of the microalgae strains before processing can be found in APPENDIX A. 
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5.3 Results 

 

5.3.1 Microalgae HTL at standard conditions 

 

Table 5.1 shows the results from the hydrothermal liquefaction of microalgae at 350°C for 1 hour. 

The bio-crude yields are presented along with their elemental composition and calculated HHV. 

Yields of bio-crude range from 21 to 51 wt.% on a dry ash free basis for all strains of microalgae 

investigated. The average lies at 33.7 wt.%, which is higher than the average lipid content of the 

microalgae strains investigated. The lowest yield is obtained from the red algae Porphyridium, this 

microalgae is high in carbohydrates and ash as it is from a marine origin (see Table 4.1). On the 

other side of the spectrum, the high lipid strain Pseudochoricystis exhibits the highest bio-crude 

yield of 50.5 wt.%. The cyanobacteria Chlorogloeopsis also exhibits a particularly high bio-crude 

yield (44 wt.%). The reason for this is unclear as Chlorogloeopsis has a low lipid content of 7 wt.% 

and a high carbohydrate content of 44 wt.%. The majority of strains result in a bio-crude yield of 

around 30-35 wt.%. The two strains of Chlorella investigated, from different sources, showed a 

similar bio-crude yield of 32 and 36 wt.%. The two strains of the cyanobacteria, Spirulina, were 

also found to have a similar bio-crude yield of 26 and 29 wt.%. Not every result presented in Table 

5.1 was carried out in duplicate but a number of experiments were carried out in duplicate/triplicate 

and an average repeatability of 1.6 % was calculated for all Parr reactor hydrothermal liquefaction 

experiments. 

The bio-crude samples were analysed for elemental composition using a CHNS Analyser and 

oxygen content was determined differentially as presented in Table 5.1.  From elemental analysis 

results, the HHV value was calculated using the Dulong formula [105]. The average elemental 

composition of a bio-crude  produced at 350°C is 72 wt.% carbon, 9 wt.% hydrogen, 4.7 wt.% 

nitrogen, 0.1 wt.% sulphur and 13.6 wt.% oxygen. This leads to a HHV of 36 MJ/kg, representing a 

good quality bio-crude compared to bio-crude from pyrolysis. There are only small amounts of 

water present in bio-crudes from HTL (> 1 wt.%) [117] compared to around 20 wt.% for pyrolysis 

oils. HTL processing significantly upgrades the original biomass (see Table 4.1) resulting in a HHV 

close to that of crude oil [75]. The sulphur content of 0.1 wt.% is acceptable but also a factor to 

consider as it can cause catalyst poisoning. The average oxygen content of 14 wt.% is significantly 

lower than that of pyrolysis oils but still high when comparing to crude oils (>5 wt.%) [75]. The 

highest oxygen content found in the bio-crudes is produced from Chlorogloeopsis, it represents 

approximately double the average at 28 wt.%. This is most likely due to the formation of a large 
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proportion of bio-crude from the carbohydrate fraction. More details on bio-crude formation 

pathways from biochemical components in are given in Chapter 7. The lowest oxygen contents are 

found for Chlorella OZ, Miyako and Zenmyo, all below 10 wt.%, leading to elevated HHVs of >38 

MJ/kg. Although the oxygen content of Chlorella OZ is lower, the HHVs of the two samples from 

the DENSO Corp. (Miyako and Zenmyo) are higher due to the lower nitrogen content: 2.5 wt.% 

compared to 6.5 wt.%. The lower nitrogen content of the bio-crude is due to the lower 

nitrogen/protein content of the microalgae feedstock (see APPENDIX A). The nitrogen content of 

the bio-crudes varies from 1.2 to 6.5 wt.% for Pseudochoricystis and Chlorella vulgaris OZ, 

respectively and is directly related to the protein content of the original microalgae. One of the 

major drawbacks of HTL of microalgae is the high nitrogen content of the bio-crudes. This is 

problematic during combustion of the bio-crude due to fuel-bound NOX emissions. Further 

problems may be encountered if the fuel is to be upgraded by hydrogenation as large amounts of 

hydrogen are required to remove nitrogen as ammonia. An obvious solution to overcome these 

issues would be to grow high-lipid, low-protein feedstocks, however these are more difficult to 

grow and are associated with lower growth rates. Other possible routes to overcome the high 

nitrogen content in bio-crudes include pre-treatments and the use of catalysts. These options are 

investigated in Chapters 11 and 6 respectively.  

Table 5.1: Hydrothermal liquefaction yields, elemental analysis and HHV of bio-crude of selected 

microalgae species.  

 

Bio-crude yield C H N S O HHV 

Strain  (wt.% daf) (wt.% daf) (MJ/kg) 

Scenedesmus dimorphus 27.1 73.0 8.2 5.7 0.5 12.6 33.6 

Chlorella sp. 35.8 70.7 8.6 5.9 0 14.8 35.1 

Chlorella OZ 32.3 75.7 9.8 6.5 0 7.8 38.2 

Spirulina sp. 29.2 73.3 9.2 7 0 10.4 36.8 

Spirulina sp. OZ 25.9 74.6 9.0 5.4 0 10.9 36.9 

Porphyridium cruentum 21.2 72.8 8.5 5.4 0.3 13.3 35.7 

Nannochloropsis occulata 34.3 68.1 8.8 4.1 0 18.9 34.5 

Pseudochoricystis 50.5 74.3 10.8 1.2 0 13.7 36.6 

Miyako 37.4 77.4 10.1 2.5 0 9.9 39.2 

Zenmyo 32.9 77.5 10.6 2.5 0 9.4 39.9 

Chlorogloeopsis fritschii 44.2 59.5 6.9 5.5 0 28.1 29.1 

Average 33.7 72.4 9.1 4.7 0.1 13.6 36.0 
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5.3.2 Effect of HTL Temperature  

  

Chlorella OZ was used to study the effect of temperature on the HTL of microalgae. A constant 

residence time of 15 min was employed; measured from time of submersion of the Swagelok 

reactor into the sand bath until the reactor is quenched with cold water.  Figure 5.1 shows the yields 

of bio-crude produced at 200, 225, 250, 275, 300 and 350°C. The yields are very low at 

temperatures below 250°C. The yields were measured to be 3.5 and 5.3 % at 200 and 225°C, 

respectively. This leads to the conclusion that mainly the lipids are extracted from the algal biomass 

and that no significant bio-crude formation from other biochemical components occurs. A step 

change in bio-crude yield is observed at 250°C when the yield increases to 20.8 %. From 250°C to 

300°C the yield increases by no more than 6 wt.%. At 350°C however, the yield is increased to 41.5 

wt.%. Due to the design of the reactor, temperatures above 350°C could not be investigated, 

however, it is known that above 350°C, gasification reactions start to predominate, resulting in 

lower bio-crude yields [68]. It is apparent that increasing temperatures lead to higher bio-crude 

yields with step changes at 250°C and 350°C; this is most likely due to increased bio-crude 

formation from non-lipid components of the microalgae.  

 

Figure 5.1: Bio-crude yields form HTL of Chlorella vulgaris OZ at varying temperature for 15 min.  

The elemental analysis of the bio-crudes as a function of temperature at 15 min residence time is 

presented in Table 5.2. The results show that the nitrogen content generally increases at higher 

temperatures to a maximum of 7 wt.% at 350°C from a minimum of 3.9 wt.% at 225°C. The 
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nitrogen content observed at 300°C is uncharacteristic for liquefaction behaviour of microalgae at 

similar conditions; a general increase is observed when higher HTL temperatures are employed [67-

68]. The nitrogen increase with higher temperatures is attributed to the protein fraction increasingly 

breaking down to small molecules and repolymerising to bio-crude compounds. This specific strain 

is very high in chlorophyll a, which also contains nitrogen (see data sheet in APPENDIX A). The 

fate of chlorophyll a during HTL has not yet been reported in literature; therefore the fate of 

nitrogen from chlorophyll a during HTL is unknown.  This is one possible explanation for the 

uncharacteristic result at 300°C. Another factor supporting this hypothesis is the relatively high 

nitrogen content of the bio-crude processed at low temperatures. Similar results by Alba et al. show 

lower nitrogen contents at these conditions [37].  

The oxygen content of the bio-crudes initially decreases to 12% as temperatures are increased to 

275°C. As the temperatures are raised further, the oxygen contents increase significantly to 25 wt.%. 

This also appears to contradict the trends reported in published data on HTL of microalgae. Alba et 

al., Brown et al. and Jena et al. showed constantly decreasing oxygen contents in bio-crude from 

various strains of microalgae when increasing the HTL temperature [37, 67-68]. The reason for the 

contradicting results in this study are unclear, but as highlighted in Chapter 1, liquefaction 

behaviour of microalgae is very strain and system specific [116]. The current results are processed 

using high heating and cooling rates which could affect decarboxylation. More details on the effects 

of this on oxygen contents of bio-crude from HTL are covered in Chapter 10. 

Table 5.2:  Effect of operating temperature on elemental composition and HHV of bio-crudes from 

HTL.  

 
C H N S O HHV  

15 min residence 

time 

 

(wt.% daf) 

 

 (MJ/kg) 

200°C 68.2 8.8 4.6 0.5 17.9 32.5 

225°C 67.8 8.4 3.9 0.4 19.5 31.4 

250°C 68.5 8.7 5.2 0.6 17.0 32.6 

275°C 71.1 8.8 7.0 0.7 12.4 34.5 

300°C 62.8 7.8 5.7 0.6 23.1 28.3 

350°C 60.1 7.3 7.0 0.7 24.9 26.4 
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5.3.3 Effect of HTL Residence Time 

 

The effect of the residence time at constant temperature on the liquefaction yields is plotted in 

Figure 5.2 for 250 and 350°C. The results show maximum bio-crude yields at 60 minutes for both 

temperatures. Higher temperatures are associated with higher yields as shown in the previous 

section. The yields are initially relatively high at 15 min and then decrease before starting to 

increase again. This is most likely due to further breakdown of molecules to polar organics, which 

become soluble in the water phase. At 350°C, the yield of bio-crude at 15 min is 41.5 wt.%, 

increasing to 44.1 wt.% at 60 min. From an energy input perspective, this slight increase suggests it 

would be beneficial to process algae for only 15 min. These results are in agreement with results 

reported by Anastasakis and Ross who observed the highest bio-crude yields from Laminaria 

saccharina at a 15 min residence time [59].  

 

Figure 5.2: Effect of residence time on the HTL bio-crude yields at 250°C and 350°C. 

The effect of residence time on the composition of the bio-crudes and their HHV is presented in 

Table 5.3 for 250 and 350°C. At 250°C, the carbon contents of bio-crudes range from 70.3 to 74.3 

wt.% and were found to increase with residence time. The nitrogen content shows an increase at 30 

min and a slight decrease at 60 min. The sulphur content is shown to be fairly constant. Oxygen 

content consistently decreases with increasing residence time (10% from 15%) thus increasing the 

HHV of the bio-crudes.  
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At 350°C, similar trends are observed with increasing residence time; carbon content is increased 

from 60 to 72 wt.% while oxygen content is reduced from 25 to 14 wt.%. This results in the highest 

HHV of 34 MJ/kg being reached at 100 min. The sulphur content at 350°C is reduced from 0.7 to 

0.4% at the longest reaction time. The nitrogen content does not show a clear trend, initially it 

decreases from 7 to 5.4 wt.% at 45 min, then increases at 60 min before it reducing to 5.7 wt.% at 

100 min. The cause of these fluctuations is unclear but the observations are similar to the results 

from investigating the operating temperature.  

Table 5.3: Effect of residence time on elemental composition and HHV of bio-crudes from HTL. 

 

 

 

C H N S O HHV  

250°C (wt.% daf) (MJ/kg) 

15 min 70.3 8.9 5.2 0.7 15.0 33.8 

30 min 72.4 9.2 6.3 0.5 11.6 35.6 

60 min 74.3 9.3 5.8 0.7 9.9 36.7 

       
350°C 

      
15 min 60.1 7.3 7.0 0.7 24.9 26.4 

30 min 67.4 8.4 5.7 0.6 18.0 31.7 

45 min 69.4 8.5 5.4 0.6 16.1 32.8 

60 min 70.4 8.5 6.2 0.5 14.3 33.5 

100 min 71.7 8.5 5.7 0.4 13.7 34.0 

 

5.3.4 Analysis of the Process Water 

 

The process water produced from the HTL of Chlorella OZ at a constant residence time of 15 min 

was analysed for anions, cations, total organic and inorganic carbon (TOC and TIC), total nitrogen 

(TN) and pH at temperatures of 250, 300 and 350°C. The concentrations of phosphate, potassium, 

ammonium and total nitrogen are significant if the process water is used to recycle nutrients for 

further microalgae cultivation. This aspect is investigated in detail in Chapter 8. The amount of 

carbon in the process water is also significant as it represents a loss if it is in the organic form, 

making it unavailable for bio-crude formation. If it is removed as inorganic CO2 from the biomass 



CHAPTER V - Microalgae HTL 

88 

 

by decarboxylation this is beneficial as it reduces the oxygen content of bio-crudes. Table 5.4 

shows that phosphate and sulphate concentrations in the process water are highest at the lowest 

HTL temperature. Recovery of phosphates into the water phase is generally considered desirable 

unless the solid residue is to be used as bio-char fertiliser, for this application, phosphates should 

fractionate preferentially to the solid residue.  

 

The concentration of ammonium is increased three-fold at 350°C compared to 250°C, due to further 

decomposition of proteins at more severe conditions. The same trend is observed for TN values, 

which increase at higher temperatures. Levels of potassium increase significantly with increasing 

temperature from 225 to 1280 mg/l. The pH of the process water changes from slightly acidic at 

250°C to alkali at 350°C. This is most likely due to formation of organic acids from carbohydrates 

at 250°C and high levels of ammonium present at the higher temperatures. Acetate concentrations at 

250 and 300°C are 11,000 mg/l reducing to 8,200 mg/l at 350°C. The reductions are likely caused 

by additional carbon being fractionated to the bio-crude. The TOC levels, on the other hand, are 

highest at 250°C and about half the level at 300°C, the value at 350°C is in-between the other two 

(16,000 mg/l). Inorganic carbon is highest at 350°C and reduced at the lower temperatures due to 

reduced decarboxylation.  

Table 5.4: Effect of temperature on anion, cation, total organic carbon (TOC), total nitrogen (TN) 

concentration in mg/l and pH 

 Acetate Cl
-
 PO4

3-
 S04

2-
 NH4

+
 K TOC TIC TN pH 

250°C 
10971 45 3266 354 3556 225 21054 896 5324 6.1 

300°C 
11045 513 2535 225 7923 986 10465 1679 5600 8.7 

350°C 
8227 75 2793 260 11400 1280 16461 2557 5912 9.3 
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5.4 Conclusions  

 

Data obtained from the HTL of 11 microalgae strains at constant operating conditions currently 

represents the single largest data set available for different algal strains and their liquefaction 

performance. The average bio-crude yield was shown to be 33.7 wt.% with a nitrogen content of 4.7 

wt.% and an oxygen content of 13.6 wt.%, leading to a HHV of 36.0 MJ/kg. It is apparent that the 

main area requiring improvements in HTL of microalgae is the reduction of nitrogen from the 

resulting bio-crude. The HHV, oxygen content and yields are of acceptable quality for upgrading. 

Possible options for decreasing the nitrogen content include the use of catalysts or pre-treatment of 

the feedstock, investigated in Chapter 6 and Chapter 11 respectively.  

 

Analyses of aqueous process phases confirmed the presence of high levels of algal nutrients and 

provided an incentive to investigate the potential for nutrient recycling (Chapter 8). The process 

water was found to contain high concentrations of organic carbon, which is undesirable as this 

represents a carbon loss which is not available for bio-crude formation.  

 

It appears that the optimum operating temperature and residence time lies at around 15 min and 

300°C. However, as highlighted by several researchers and in the current study, operating 

conditions are highly dependent on the algae strains and processing systems used.  
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6. CHAPTER VI - Catalytic HTL 
 

6.1  Introduction 

 

Hydrothermal processing of lignocellulosic biomass has received extensive research over the last 

two decades for the production of liquid fuels and is extensively reviewed by Peterson et al [35]. 

Several studies have shown that alkali catalysts can improve liquefaction yields for terrestrial 

biomass. Catalytic hydrothermal liquefaction of microalgae was first reported by Dote et al. for the 

high lipid strain Botryococcus braunii.  Some of the most productive microalgae in terms of 

biomass production are lower in lipid and contain larger amounts of protein and carbohydrate. 

Growing these algae for biodiesel is unlikely to be economical and alternative processing routes 

would be advantageous. The conversion of low lipid content microalgae and cyanobacteria by 

hydrothermal processing is an alternative route to produce bio-fuels and chemicals from algae; 

involving the production and subsequent upgrading of the bio-crude. Due to their high nitrogen 

content these strains result in a bio-crude with high nitrogen content. The main aim of the current 

Chapter is removing the nitrogen from the bio-crude by catalysis and improving the quality and 

yields of bio-crude. 

This first part of this Chapter is focused towards the production and nature of the bio-crude 

produced from homogenous catalytic hydrothermal liquefaction of a microalgae (Chlorella vulgaris) 

and a cyanobacteria (Spirulina), containing relatively low lipid content and high protein. The 

influences of process variables such as temperature and catalyst type have been studied. The 

influences of potential in-situ hydrogen donors or hydrogenating agents such as formic acid are 

compared to the conventional alkali catalysts. The bio-crudes produced have been analysed by 

proximate and ultimate analysis and by GC/MS and thermal gravimetric analysis. The aqueous 

fraction has been analysed by ion exchange chromatography (IEC) and for total organic carbon 

(TOC). The influence of process variables on the yield and quality of the bio-crude is discussed 

including the carbon balance and the nitrogen partitioning between the product phases.  

The second part of the Chapter investigates the use of heterogeneous catalysts for HTL of 

microalgae. Previous results in Chapter 5 show that the bio-crudes from hydrothermal liquefaction 

of microalgae contain significant amounts of nitrogen and oxygen, and while this is lower than 

those in pyrolysis oils, it is undesirable in the final bio-crude [47, 77]. During hydrothermal 

processing, the lipids have been shown to decompose to fatty acids although the full 
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decarboxylation to hydrocarbons is relatively small [77]. The effect of heterogeneous catalysts on 

the lipid fraction of the algae is studied in detail in this part of the Chapter and its potential of 

deoxygenating the lipids to a green diesel type fuel. 

Watanabe et al. investigated the effect of supercritical water treatment on the fatty acid stearic acid 

for 30 minutes and found that the decomposition products were CO2 and C16 alkene [118]. The 

addition of alkali hydroxides increased decarboxylation but the main product was a C17 alkane. 

Other studies by Holliday et al. show that subcritical water treatment of triglycerides (soybean, 

linseed and coconut oils) resulted in free fatty acids at temperatures of 260-280°C [119-120]. The 

hydrolysis reaction of triglycerides was presented by Mills and McClain in 1949 and is described as 

a step wise hydrolysis of triglycerides to diglycerides and fatty acid, with the diglyceride reacting 

with water to form a monoglyceride and a fatty acid which in turn reacts to another fatty acid and 

glycerol [121]. Alenezi et al. state that the fatty acids can act as a catalyst in hydrolysis reactions 

and experimentally showed that sunflower oil is converted to fatty acids at 350°C with a yield of 93 % 

[122].  

The second part of the current Chapter investigates the possibility of further de-oxygenating the 

fatty acids from microalgae and plant oils to produce alkanes using heterogeneous catalysts under 

hydrothermal conditions. Duan and Savage conducted similar research on the microalgae 

Nannochloropsis and six different heterogeneous catalysts. They found that the bio-crude yields 

increased for each catalyst although there was a higher (50 wt.%) catalyst loading employed than in 

this research [85]. The fate of lipids and the effect of their composition on the liquefaction 

behaviour during catalytic hydrothermal processing has not been reported before.  In the current 

research different strains of microalgae containing different biochemical compositions have been 

investigated as well as the lipids derived from soybean oil.  A comparison of the lipid composition 

before and after hydrothermal processing is presented with and without the presence of 

heterogeneous catalysts. In this work, three catalysts have been investigated included an alumina 

supported Co/Mo catalyst, an alumina/silica supported Ni catalyst and an alumina supported Pt 

catalyst. Cobalt-Molybdenum catalysts are typical hydrotreatment catalysts and are used for 

hydrodesulphurisation of petroleum and could therefore be effective in removing heteroatoms S, N 

and O from bio-crude. The Pt catalyst was chosen due to its high activity in reducing oxygenates to 

hydrocarbons and the Ni catalyst has previously been shown to be a strong catalyst in hydrothermal 

gasification [85]. All catalysts were introduced in stainless steel baskets in concentrations of 50 wt.% 

based on algae loading. 
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6.2 Methodology 

 

The hydrothermal liquefaction experiments in this chapter were performed in a 75 ml Parr high 

pressure reactor as described in Chapter 3. The soya oil used is of the crude soya oil type not a 

processed food supplement; it was obtained from a commercial source. The Co/Mo, Pt/Al and Ni/Al 

catalysts were purchased from Sigma Aldrich; catalyst loading was 20 wt.% metal on support. All 

sample work up and analysis methods are described in Chapter 3. Analysis of the microalgae 

strains investigated can be found in APPENDIX A.  

 

6.3 Homogenous Catalysis 

 

6.3.1 Liquefaction yields 

 

The product distribution obtained from catalytic liquefaction of microalgae for one hour at 300°C 

and 350°C are shown in Figure 6.1 for Spirulina and Chlorella respectively.  Maximum conversion 

of biomass to bio-crude using an alkali catalyst (KOH) at 350°C were 9 wt.% and 13.6 wt.% for 

Spirulina and Chlorella respectively.  The yields of residue are relatively constant and range from 

4-5 wt.% for both Spirulina and Chlorella. The residue typically contains 20-30 wt.% carbon with 

the remainder being mainly inorganic mineral matter. The mass balance indicates that the material 

dissolved in the water phase and gaseous phase are the major products. The gaseous fraction 

accounts for approximately 18-20 wt.% using Na2CO3 and 6-10 wt.% using KOH with the gaseous 

phase containing largely CO2.  

The yields of bio-crude are higher using the organic acids compared to using alkali catalyst. 

Chlorella shows a higher oil yield than Spirulina correlating with its higher lipid content. Acetic 

acid experiments show higher yields than those using formic acid. Maximum yields of 19.5 wt.% 

and 15.7 wt.% are achieved using Spirulina and Chlorella respectively. In both cases however, the 

organic acid is consumed and so is acting as a reagent rather than a catalyst. This is significant as 

the organic acids increase the oil yield by this mechanism compared to the alkali catalysts. The 

gaseous fraction is higher for formic acid and accounts for approximately 30 wt.%. For acetic acid 

the gaseous fraction is lower and accounts for 16-22 wt.%  The yields of bio-crude obtained follow 

the trend CH3COOH>HCOOH>KOH>Na2CO3. The yields reported are low due largely to the mass 
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balance including the catalyst mass. The yields of bio-crude on an organic basis are listed in Tables 

6.1 and 6.2. When expressed on an organic basis, the Na2CO3 catalyst provides the highest yields of 

bio-crude of 27.3 wt.% and 20.0 wt.% for Chlorella and Spirulina respectively. In this case the 

yields of bio-crude follow the trend Na2CO3>CH3COOH> KOH >HCOOH. 

 

 

Figure 6.1: Yields of products from hydrothermal processing for (a) Spirulina at 300°C (b) 

Spirulina at 350°C(c) Chlorella at 300°C (d) Chlorella at 350°C. 

 

6.3.2 Bio-crude Analysis 

 

The ultimate analysis of the bio-crude produced at 300°C and 350°C using both organic acids and 

alkali catalysts are listed in Tables 6.1 and 6.2 respectively. Under alkali conditions, the bio-crude 
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has an average elemental composition of 74.4 wt.% C, 11.5 wt.% H, 4.7 wt.% N, 0.2 wt.% S and 

9.2 wt.% O. The HHV falls within the range 33.4-39.9 MJ/kg. This represents a lower oxygen 

content and higher HHV compared to the average microalgae bio-crude produced from non-

catalytic HTL, presented in Chapter 5. Using organic acids, the bio-crude has an average elemental 

composition of 70.8 wt.% C, 9.4 wt.% H, 5.3 wt.% N, 0.65 wt.% S and 13.85 wt.% O and the HHV 

falls within the range 33.3-35.1 MJ/kg, similar to the average composition of non-catalytic HTL 

presented in Table 5.1. The lower HHV is attributed to the higher oxygen content in the oil.  The 

use of organic acids however, results in a bio-crude with visually improved pour behaviour. The 

fraction of sulphur in the bio-crude was found to increase with the use of the organic acids by 

approximately three fold compared to the alkali catalysts.  It was also higher for Spirulina than for 

Chlorella and was typically 0.6 wt.% for Chlorella and 0.9 wt.% for Spirulina. The use of alkali 

catalysts and Chlorella resulted in only trace amounts of sulphur at all conditions. It appears that the 

alkali catalysts are able to reduce the nitrogen content in the oil compared to organic acids. The 

oxygen content for these catalysts is also lower. Comparing these results to the data in Table 5.1 

from HTL of the same strains without the use of catalysts, the use of organic acids results in higher 

nitrogen and oxygen contents compared to no catalysts. Alkali catalysts appear to reduce the 

nitrogen content in the bio-crude by around 1 wt.% and the oxygen content by 2-5 wt.%.  However 

a decrease of yields is also observed with the use of alkali catalysts.  

Table 6.1: Ultimate Analysis in wt.% and HHV of bio-crude at 300°C 

 

Conditions 

 

C 

 

H 

 

N 

 

S 

 

O* 

 

HHV 

(MJ/kg) 

 

Bio-crude 

yield    

(wt.% db) 

        

Spirulina        

1M Na2CO3  73.1 11.4 5.0 0.4 10.1 37.8 14.1 

1M KOH     71.7 10.2 6.0 0.4 11.7 35.7 12.8 

1M HCOOH 72.4 9.3 7.1 0.6 10.6 34.7 16.0 

1M CH3COOH 69.5 9. 7 7.1 0.6 13.1 34.1 22.0 

Chlorella        

1M Na2CO3 73.7 10.8 4.6 0 10.9 37.2 21.9 
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1M KOH  72.1 10.1 4.6 0 13.2 35.7 18.6 

1M HCOOH 72.1 9.5 6.4 0.5 11.5 35.0 30.7 

1M CH3COOH 70.8 9.4 5.3 0.4 14.1 34.2 35.2 

*by difference 

 

Table 6.2: Ultimate Analysis in wt.% and HHV of bio-crude at 350°C 

 

Conditions 

 

C 

 

H 

 

N 

 

S 

 

O* 

 

HHV 

(MJ/kg) 

 

Bio-crude 

yield 

(wt. %db) 

Spirulina        

1M Na2CO3 75.4 10.8 4.6 0.5 8.7 34.8 19.5 

1M KOH 74.6 11.4 5.1 0.5 8.5 33.4 14.8 

1M HCOOH 72.7 9.76 5.7 0.9 10.9 35.6 21.1 

1M CH3COOH 71.7 9.73 6.1 0.9 11.6 35.1 27.1 

Chlorella        

1M Na2CO3 73.6 10.7 4.9 0.0 10.7 37.1 26.0 

1M KOH 74.0 12.9 4.3 0.0 8.9 39.9 21.3 

1M HCOOH 70.8 9.4 5.3 0.6 13.9 35.1 26.6 

1M CH3COOH 69.6 9.1 5.0 0.5 15.8 33.2 31.3 

*by difference 

 

The bio-crude was analysed by GC/MS and the main compounds were identified. Typical 

chromatograms obtained for Chlorella and Spirulina are shown in Figure 6.2 and Figure 6.3 

respectively. Compound identification of the main peaks has been performed using a NIST mass 

spectral database and are labelled on the chromatograms. Table 6.3 lists the main compounds 

identified which include mono aromatics such as toluene, ethyl benzene and styrene, substituted 

phenols, nitrogen heterocycles such as pyrroles and indole derivatives and long chain alkanes. 

Indole and pyrrole derivatives are likely products from the protein fraction. Higher nitrogen content 

of the starting microalgae led to increased amounts of nitrogen heterocycles being observed in the 
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bio-crude. The higher protein containing Spirulina produces a higher proportion of pyrroles and 

indoles in the bio-crude. Figures 6.2 and 6.3 indicate that similar compounds are observed for 

KOH and Na2CO3 catalysed processes although there is a larger distribution of lower molecular 

weight material using Na2CO3. The chromatograms show a significant change in product 

distribution using organic acids in particular the presence of larger amounts of phenols, fatty acids 

such as hexadecanoic acid (palmitic acid, CH3(CH2)14COOH) and fatty acid amides such as 

hexadecanamide (palmitamide, CH3(CH2)14CONH2).  
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Figure 6.2. GC/MS of  bio-crude from Chlorella at 350°C for (a) 1M Na2CO3 (b) 1M KOH (c) 1M 

acetic acid and (d) 1M formic acid. 

 

 

9 

3 
5 

6 

14 

 

17 

 
22 

19 
21 

23 26 
25 

20 18 10 
11 

2 
3 

4 

6 

7 

8 

10 

9 
11 

12 
14 

20 

18 

19 

23 

24 

17 16 
15 

13 



CHAPTER VI - Catalytic HTL 

98 

 

 

 

Figure 6.3. GC/MS of bio-crude from Spirulina at 350°C for (a) 1M Na2CO3 (b) 1M KOH (c) 1M 

acetic acid and (d) 1M formic acid. 
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Table 6.3: Compounds identified in bio-crude from HTL of microalgae  

    

No. Compound No. Compound 

1 1, butyl pyrrolidine  14 Heptadecane 

2 1, pentyl piperidine 15 2, phenylethyl acetamide 

3 phenol 16 3,7,11 trimethyl 1-docadanol 

4 acetamide 17 hexadecane tetramethyl 

5 phenylethyl alcohol 18 1, 3 heptadecyn-1-ol 

6 4, methyl phenol 19 piperidine derivative 

7 piperidine-2,5-dione 20 n-hexadecanoic acid 

8 n- methyl butylacetamide 21 phytol 

9 4, ethyl phenol 22 indole derivative 

10 1, pentadecene 23 hexadecamide 

11 1, butyl 2-pyrrolidinone 24 unknown aliphatic amide 

12 hydroxyl ethyl succinimide 25 fatty acid derivative 

13 1, methyl indole 26 stearic acid derivative 

 

The boiling point distribution of the bio-crudes has been estimated using thermal gravimetric 

analysis (TGA) in nitrogen. TGA applied in simulated distillation is regarded as a miniature 

„„distillation” and, although some thermal degradation is likely, it provides an estimate of the 

boiling range of heavy oils. The TGA curves indicate that the use of organic acids significantly 

reduces the boiling point range of the bio-crude compared to using an alkali catalyst and this is 

particularly noticeable for Spirulina. This similarly agrees with the GC–MS data shown in Figures 

6.2 and 6.3 which indicates a larger distribution of lower molecular weight compounds using 

organic acids. Table 6.4 lists the boiling point distribution of the bio-crudes and indicates that they 

still contain a large amount of high boiling material. The results indicate that there is about 30–40 

wt.% of the bio-crude with a boiling point <250°C. The GC/MS analysis therefore only represents a 

fraction of the bio- crude as much of the material is of higher molecular weight. Larger naphtha, 

diesel and kerosene fractions are produced when using the organic acid additives. The lighter 
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fractions are favoured by formic acid > acetic acid > Na2CO3 > KOH. Particularly noticeable is the 

reduction of heavy tar (>370°C) for the organic acids compared to the alkali catalyst. 

 

Table 6.4: Boiling point distribution of bio-crudes at 350
o
C 

   

Distillate 

Range 

Boiling point of oil (wt.%) 

Chlorella 

Boiling point of oil (wt.%) 

Spirulina 

KOH Na2CO3 CH3COOH HCOOH KOH Na2C

O3 

CH3COOH HCOOH 

40-200°C 21.6 22.2 20.8 15.9 15.1 17.3 28.4 24.2 

200-250°C 18.4 9.8 16.1 18.1 19.4 18.3 19.5 20.4 

250-300°C 17.1 7.9 16.8 23.0 18.6 16.4 12.9 18.0 

300-370°C 12.3 9.2 12.4 16.9 15.4 14.5 12.7 10.3 

>370°C 18.0 41.8 28.2 18.0 19.5 18.9 14.6 11.4 

 

6.3.3 Aqueous phase analysis 

 

Ion exchange chromatography of the aqueous fractions identified the presence of anions  PO4
3-

, 

CH3COO
-
 and Cl

- 
and  the cations K

+
 , Na

+, 
Mg

2+
, 

 
NH4

+
, and Ca

2+
. When using alkali catalysts, the 

nitrogen is mainly in the form of NH4
+
. The experiments using KOH as catalyst result in a large 

amount of K
+ 

in the aqueous phase. Similarly the experiments using a Na2CO3 catalyst result in a 

large concentration of Na
+
. Acetate levels in the water phase are relatively similar regardless of 

catalyst type and range from 7,500- 11,000 mg/l. These values are in the same range as shown in 

Table 5.3 without the use of catalyst for Chlorella OZ.  

The phosphate levels in the aqueous phase range from 600-2500 mg/l, while algae derived sodium 

and potassium range from 700- 1100 mg/l. Liquefaction in organic acids results in similar levels of 

K
+
 and Na

+
 in the resulting process water. The levels of PO4

3-
 however are approximately 3 fold 

higher when using organic acids. Acetate and formate levels are reduced to about 7500-11000 mg/l 

indicating that the organic acids are being consumed under hydrothermal conditions.  
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The total organic carbon (TOC) in the aqueous phase is also shown in Table 6.5 together with the 

pH. TOC analysis indicates that a significant proportion of the organic products are water soluble. 

The choice of catalyst influences the amount of carbon dissolved in the water phase. For KOH, 

increasing the temperature reduces the TOC although this is not observed for Na2CO3. With organic 

acids, the total organic carbon decreases slightly with temperature for Spirulina while it is 

inconsistent for Chlorella.  The concentration of dissolved carbon in the aqueous phase ranges from 

15,000-40,000 mg/l. Especially the use of KOH at 300°C results in exceptionally high TOC levels, 

around 4 times higher than when no catalyst is used (see Table 5.3). The pH of the aqueous phase is 

typically between 9-10 with the exception of acetic acid in which the water phase remains slightly 

acidic at typically 6.5-6.8. Using formic acid results in pH values of 9.0 and 8.8 for Spirulina and 

Chlorella respectively. The levels of ammonium are lowest with the use of formic acid for both 

strains. For Spirulina, increasing the reaction temperature leads to a reduction in ammonium levels 

with alkali catalysts, but the amount increases when organic acids are used. The opposite of this 

effect is observed for Chlorella. The values are generally in the same range to samples processed 

without catalysts, expect when formic acid is used which results in lower ammonium levels.   

Table 6.5: TOC, pH, ammonium, phosphate and potassium content of the aqueous phase. 

                

Algae Catalyst Temperature TOC NH4
+
 PO4 

3-
 

K
+
 pH 

    (°C) (mg/l) (mg/l) (mg/l) (mg/l)   

      

  

Spirulina 

     

  

 

Na2CO3 300 11370 5963 926 1111 10.2 

 

Na2CO3 350 13852 5630 926 1111 9.4 

   KOH 300 37704 4037 741 19259 11.3 

 

KOH 350 29556 3926 630 19630 10.8 

 

HCOOH 300 28519 1519 1926 889 9.0 

 

HCOOH 350 20111 1889 1519 852 9.0 

 

CH3COOH  300 30630 4778 2259 667 6.8 

 

CH3COOH 350 26222 5519 3037 667 6.5 

 
       

Chlorella        

 

Na2CO3 300 26296 3259 2222 667 9.8 

 

Na2CO3 350 27000 4556 2593 630 9.9 

 

KOH 300 42444 4333 1481 18519 10.0 

 

KOH 350 25630 4741 1667 19259 9.7 

 

HCOOH 300 17037 1778 2556 741 8.8 
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HCOOH 350 20111 1704 2407 741 8.8 

 

CH3COOH 300 29074 4444 2593 741 6.6 

  CH3COOH 350 27000 3148 2407 704 6.8 

         

6.3.4 Nitrogen balance in product streams 

 

The ammonium concentrations in the aqueous phase vary with temperature and catalyst type and 

are listed in Table 6.5. When using alkali catalysts, the ammonium concentration varies from 3500-

6000 mg/l for Spirulina (representing 38-56 wt.% of the feed nitrogen) and 3300-4800 mg/l for 

Chlorella (representing 35-49 wt.% of the feed nitrogen). With Spirulina the higher the temperature, 

the lower the ammonium content of the aqueous phase but this is not the case for Chlorella. For 

liquefaction in formic acid, the ammonium concentration is significantly lower, in the range 1500-

2200 mg/l for Spirulina (representing 15-17 wt.% of the feed nitrogen) and 1300-1850 mg/l for 

Chlorella (representing 18-19% of the feed nitrogen). The remaining nitrogen is distributed 

between the bio-crude and the gaseous phase.  

The amount of nitrogen in the bio-crude is relatively constant for alkali catalysed experiments 

ranging from 4-6 wt.% and includes heterocyclic compounds such as pyrrolidinones and indoles, 

and fatty acid amides.  The bio-crudes produced using organic acids contain a higher nitrogen 

content (up to 7 wt.%). The removal of the nitrogen in the bio-crude is crucial if it is to be used as a 

fuel so as to minimise NOX formation during combustion. The remaining nitrogen in the gaseous 

phase consists of NO2, N2O, HCN and NH3. A nitrogen mass balance has been performed for the 

different liquefaction conditions based on the N content of the aqueous phase, solid residue and the 

bio-crude with the N in the gaseous phase being determined by difference.  

Figure 6.4 illustrates the elemental nitrogen partitioning between the product phases during 

liquefaction of Spirulina and Chlorella in alkali and organic acids. The significance of the 

concentration of ammonium in the aqueous phase is related to the potential for nutrient recycling. 

The results indicate that in the presence of alkali the higher the liquefaction temperature, the lower 

the nitrogen content in the aqueous phase. Using organic acids results in higher levels of nitrogen in 

the bio-crude and a slight increase in the nitrogen content of the residue. Processing in formic acid 

results in approximately 70 wt.% of the nitrogen partitioning into the gaseous phase lowering levels 

of nitrogen in the water phase. This could be a drawback if nutrient recycling is important. Na2CO3 

produces the bio-crude with the lowest nitrogen content. This trend is similarly observed for 
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Chlorella.   Measurement of the pH after processing indicates that the formic acid and acetic acid 

have decomposed to varying degrees thus increasing the pH from the initial feed. With the 

exception of acetic acid, which remains slightly acidic (pH 5.5-6.8), the aqueous phase is basic 

following extraction (pH 9-10). This would agree with the observed results suggesting that the 

ammonia content in the gaseous phase increases following the order 

CHOOH>KOH>Na2CO3>CH3COOH. 

 

Figure 6.4: Distribution of nitrogen in the product streams from (a)  Spirulina at 300°C,  (b) 

Spirulina at 350°C, (c) Chlorella at 300°C, (d) Chlorella at 350°C. 

 

6.3.5 Role of catalyst 

 

The formic acid appears to decompose during liquefaction. This is supported by the change in pH, 

the reduced presence in formate in the water phase and the formation of hydrogen, CO2 and CO. 

Experiments also show that when using formic acid, water appears to be consumed. The acetic acid 

also decomposes but to a lesser extent. The consumption of both the acetic acid and formic acid 

during liquefaction has been estimated to be over 90% by determining the amount of formate and 

acetate remaining in the aqueous phase by ion chromatography.   Formic acid is well known to 

decompose to CO2 and H2 although acetic acid is more stable under hydrothermal conditions [123].  
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The pressure measured once the reactor has cooled using alkali is relatively low (max 1-2 bar). 

Using organic acids, a higher pressure is produced (5 -6 bar acetic acid, 10-14 bar formic acid). In 

general the higher the temperature, the larger the gaseous fraction.  

Watanabe et al. reported a positive effect of oil formation from glucose using formic acid and a 

cobalt catalyst [124]. In this case the formic acid was added as a hydrogenating agent. In the current 

investigation, no increase in hydrogen content of the bio-crude is observed. In fact, overall there is 

an increase in oxygen content. The nitrogen content of the bio-crude is also consistently higher 

using organic acids than using alkali catalyst. This suggests that the hydrogen generated from 

formic acid is not incorporated into the oils to a significant degree, although the reducing 

atmosphere is likely to be influencing reactions pathways. There may be more hydration reactions 

occurring rather than decarboxylation leading to a reduction in hydrogen content of the oil.  The 

presence of organic acids improve the boiling range of the bio-crude but do not increase the HHV, 

in fact a slightly lower HHV is observed. In situ hydrogenation may be possible using formic acid 

with the addition of metal catalysts and will be the focus of continued work.  

Using a combination of the TOC of the aqueous phase and the CHNS content of the bio-crude and 

residues, an elemental carbon balance can be calculated and is shown in Figure 6.5 for Spirulina 

and Chlorella at 350°C. The solid residue is typically low in carbon (20-30 %) and contains the 

mineral component from the microalgae and therefore doesn‟t contribute significantly to the carbon 

balance. For Spirulina, there does not appear to be as much difference in C-distribution to the bio-

crude between the different catalysts. However for Chlorella, the use of the acid catalysts increases 

the carbon portioning to the bio-crude. Chlorella contains a higher lipid content than Spirulina 

which may undergo selective reaction with the organic acids, particularly for acetic acid. This 

suggests that the use of organic acids and higher lipid content microalgae will have a positive 

impact on bio-crude formation and is addressed in the next Chapter.  
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Figure 6.5: Carbon balance between product phases for (a) Spirulina at 300°C, (b) Spirulina at 

350°C, (c) Chlorella at 300°C, (d) Chlorella at 350°C. 
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6.4 Heterogeneous Catalysis 

 

6.4.1 Lipid Profiles 

 

Extraction of the lipids has been performed by two methods, firstly the Bligh and Dyer method, 

which is the standard method to determine the total lipid content of biomass such as microalgae, 

and secondly using a modified version of the Bligh and Dyer method. The first method uses a 2:1 

methanol/chloroform solvent mixture and the modified method uses hexane. The results for the total 

lipid content using the standard method are found to be in good agreement with results from 

literature, while the results for the hexane method were found to be lower. Thermogravimetrical 

analysis of the extracts showed that the hexane method preferentially extracted the lower molecular 

weight free fatty acid fraction and not the triglycerides (TAGs), resulting in the lower lipid yields. 

GC-MS analysis provided evidence for the formation of fatty acid methyl esters (FAME) from the 

Bligh and Dyer extraction although this has not been reported before. The esterification reactions at 

these moderate conditions are expected to only esterify the free fatty acids (FFA) and not the TAGs 

and does therefore not affect the distribution based on HPLC and GC-MS. The transesterification 

reactions from the Bligh and Dyer method were more noticeable with Nannochloropsis than 

Chlorella; this is most likely due to the larger amounts of alkali salts catalysing esterification. Due 

to this mechanism the hexane extract which did not affect the FFA is used for the analysis of the 

FFA summarised in Table 6.6. The GC-MS chromatograms for the lipid extracted by the modified 

Bligh and Dyer method from Chlorella and Nannochloropsis using the Stabilwax column are not 

included, but the data is presented in Table 6.6. This column allows separation of the free fatty 

acids (FFA) from the lipid extract but does not separate the tri-, di- and mono-glycerides due to 

their higher boiling point. The free fatty acids identified include hexadecanoic, pentadecanoic and 

oleic acid.  For both algae the most abundant free fatty acid is oleic acid followed by palmitic acid. 

Nannochloropsis has relatively high amounts of phytol which is a common acyclic diterpene 

alcohol which is produced from the hydrolysis of chlorophyll [68] but this is lower for Chlorella 

and not detected for soya oil. The triglycerides (TAGs) were separated from the same extract by 

non-aqueous reverse phase HPLC. Separation by this method occurs by the partition number (PN) 

of different triglycerides shown in Eqn. 6.1 and was first reported by Firestone (1994)  [111].  

 

                                             Eqn. 6.1 
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Therefore lower carbon chain length and large number of double bonds result in a lower PN. The 

chromatogram of the soya oil was compared to various chromatograms from the literature using the 

same method and the peaks could be identified and are in good agreement [125-127]. Figure 6.6 

shows the triglyceride profiles for the soy oil and microalgae lipids and indicates a significantly 

different profile. The profiles also vary between the two microalgae. It is evident that the 

microalgae lipids are generally of lower partition number which means they are of lower carbon 

number or have more double bonds. Microalgae are well known to be a good source of 

polyunsaturated fatty acids with multiple double bonds [128]. Typical fatty acids that make up these 

kinds of triglycerides are the ω-3 fatty acids such as eicosapentaenoic acid, docosahexaenoic acid 

and stearidonic acid which all have partition numbers of 10. The other ω-3 fatty acids that result in 

low partition numbers are eicosatetraenoic acid and docosapentaenoic acid with PNs of 12. Even 

though the peaks 5-8 were not identified, their partition numbers are known and suggest the 

presence of the above fatty acids. Unsaturated lipids when transesterified to FAME have an 

increased tendency towards oxidation which increases tenfold when the double bond equivalent 

increases by one [129].  This makes the fuels problematic for storage due to deterioration by 

oxidation. If the emerging microalgae industry focuses on biodiesel production, storage and 

deterioration problems could become an issue due to the large number of double bonds in the algal 

lipids. GC-MS data of the hydrothermal liquefaction of soya oil shows that the double bonds of 

fatty acids are largely hydrogenated resulting in a higher quality fuel. This is seen as a major 

advantage of hydrothermal processing and may be useful also in upgrading plant oils.  
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Figure 6.6: TAG HPLC chromatograms of (a) Soya oil, (b) Chlorella and (c) Nannochloropsis 

 

Table 6.6 shows a semi-quantitative analysis of the free fatty acids and triglycerides. The amount of 

fractions of free fatty acids and triglycerides of the total lipids was determined by a combination of 

HPLC and TGA. The free fatty acids can be identified in the HPLC method, but, due to the very 

low PN of free fatty acids, they elute early and are not well resolved. All samples have been 

analysed in duplicate and the average values are reported. The response of the UV detection is not 

expected to be linear for the different TAGs therefore this is semi-quantitative data but this allows 

an estimation of the fractions of TAGs. About 75 % of the TAG from soy oil could be identified 

with the largest TAGs present being PLL, LLL and LLLn which is in agreement with results from 

the literature [125-127].   The main FFA found in soybean oil is oleic acid followed by palmitic 
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acid. Around 60% of the Chlorella lipids and 50 % of the Nannochloropsis lipids were identified. 

The largest fractions for Chlorella were TAGs with the PN 34, 36 and 38, which indicate high 

number of double bonds such as found in polyunsaturated fatty acids or a diglyceride of palmitic 

acid. Nannochloropsis showed significant amounts of higher PN TAGs, such as OLLn, PLLn and 

OOL, making up % of the total TAGs together. There are also larger amounts of the low PN TAGs 

present in Nannochloropsis. Most reports of microalgae derived lipids have concentrated on the 

fatty acid analysis following conversion to FAME (e.g. [31]).  This study has analysed the fatty acid 

composition in the TAGs directly by HPLC and the free fatty acids by GC-MS.  The method 

presented here gives insight into the fatty acid structural composition of triglycerides and fatty acids 

from microalgae; previous work published has analysed the FAMEs produced from the free fatty 

acids and triglycerides to obtain a total fatty acid analysis but not distinguishing their origin. The 

results from the literature are in agreement with the results presented here on total fatty acid 

composition, but here there is additional information presented on the actual triglyceride structures 

[130-132]. Tonon et al. reported similar amounts of low PN ω-3 fatty acids derived from the TAG 

fraction which was separated prior to transesterification as are reported above for Nannochloropsis 

[131]. Two other papers analysing the total fatty acids but not stating if the fatty acids are derived 

from FFA or TAG are in broad agreement to the results found in this study for Chlorella vulgaris 

[130, 132].  
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Table 6.6: Retention times, PN, quantification and structures of FFA and TAG of the lipid samples 

 

Peak 

Number 

Retention 

time (min) 

Chlore

lla 

Nannochloro

psis 

Soya 

Oil 

Partitio

n Number 
Possible structure 

G
C

-M
S

 

1 29.2 2.0 8.2 - - Phytol 

2 33.7 15.7 14.5 11.1 16 P 

3 36.2 1.8 0.0 5.6 15 Pentadecanoic acid 

4 36.6 11.8 24.0 33.2 16 O 

 % Fatty Acids 

identified 
31.3 46.6 49.9 

  

H
P

L
C

 

5 21.2 3.4 4.6 2.7 30 EPA,ALA, DHA, C 

6 25.6 3.5 4.1 - 32 
EPA,ALA, DHA, 

SDA, ETA, DPA 

7 28.6 11.3 1.7 - 34 

EPA,ALA, DHA, 

SDA, ETA, DPA, 

ETE, Po 

8 31.5 11.9 4.9 2.8 36 NI 

9 35.1 8.5 2.6 5.9 38 LLnLn 

10 36.9 4.0 2.7 - 38/40 NI 

11 38.4 8.7 - 9.7 40 LLLn 

12 41.8 - - 10.5 42 LLL 

13 42.4 - 8.0 6.0 44 OLLn 

14 43.9 - 7.6 5.3 44 PLLn 

15 46.2 - - 9.4 44 OLL 

16 47.5 7.0 - 11.6 46 PLL 

17 5.1 - 9.7 4.6 46 OOL 

18 51.6 - - 6.7 48 POL 

 
% TAGs identified 58.3 46.0 75.2 

  EPA=Eicosapentaenoic acid (20:5); ALA=α-Linolenic acid (18:3); DHA=Docosahexaenoic acid (22:6); C=Capric acid (10:0); 

SDA=Stearidonic acid (18:4); ETA=Eicosatetraenoic acid (20:4); DPA= Docosapentaenoic acid  (22:5); ETE= Eicosatetraenoic acid 

(20:3); Po= Palmitoleic acid (16:1); NI= Not Identified; L=Linoleic acid (18:2); Ln=Linolenic acid (18:3); O=Oleic Acid (18:1); 

P=Palmitic acid (16:0) 

 

 

 

 



CHAPTER VI - Catalytic HTL 

111 

 

6.4.3 HTL Results 

 

The yields of bio-crude from the liquefaction of the microalgae and soya oil with and without the 

addition of heterogeneous catalysts are shown in Table 6.7. Three heterogeneous catalysts were 

investigated included an alumina supported Co/Mo catalyst, an alumina/silica supported Ni catalyst 

and an alumina supported Pt catalyst. Cobalt-Molybdenum catalysts are typical hydrotreatment 

catalysts and are used for hydrodesulphurisation of petroleum and could therefore be effective in 

removing heteroatoms S, N and O from bio-crude. The Pt catalyst was chosen due to its high 

activity in reducing oxygenates to hydrocarbons and the Ni catalyst has previously been shown to 

be a strong catalyst in hydrothermal gasification [85]. All catalysts were introduced in stainless steel 

baskets in concentrations of 20 wt.% based on algae loading. The yields for the microalgae 

feedstock are much lower than the model lipid, soya oil. This is expected and similar results have 

been shown before for sunflower oil [77]. The carbohydrate fraction of microalgae is only 

converted to bio-crude with an efficiency of around 5-10 wt.%, and the proteins around 20 wt.%, in 

water [77]. The use of Co/Mo catalyst results in an increase of the bio-crude yields of soya oil and 

Chlorella by 12 and 3 wt.% respectively, while the yields for Nannochloropsis decreased by around 

10 wt.%. Most of the material that does not produce bio-crude has been shown to be in the water 

phase; therefore the Co/Mo catalyst must reduce the amount of water soluble organics from 

Chlorella and soya oil as no increase in the gas fraction was observed. The lower result of 

Nannochloropsis may be due to the  large amounts of alkali metals present either promoting 

alternative pathways or poisoning the catalyst. The yields using the Co/Mo catalyst are lower than 

those reported by Duan and Savage for this catalyst and they did not observe a decrease in yield 

with Nannochloropsis [85]. Their experimental setup was somewhat different as they were using a 

stirred reactor and a higher catalyst loading of 50 wt.%. The use of the Ni/Al catalyst resulted in 

lower bio-crude yields for all conditions. This is attributed to the increased decarboxylation and gas 

formation observed; this increase in gas formation was not observed by Duan and Savage (2010) 

using a Ni catalyst or any of the other heterogeneous catalysts they investigated. The residual gas 

pressures in the reactor were consistently higher with the use of Ni/Al, and the maximum pressure 

was up to 20 bar higher using the Ni/Al catalyst compared to the uncatalysed setup. Previous 

research has shown that the gas formed contains N2 and CO2 [47], the amount of CO2 formed can 

shed light on the extent of decarboxylation although is not available for the current study. The Pt/Al 

catalyst resulted in a 12 wt.% increase in bio-crude for soya oil, reaching a maximum of 95.5 wt.%. 

Again the water soluble organic fraction is reduced with the use of this catalyst. This would suggest 

that the use of Pt/Al promotes the highest recovery of lipids of the catalysts studied. For Chlorella 
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the bio-crude yield was also increased slightly with the Pt/Al catalyst but again for Nannochloropsis 

this is not the case. This observation deserves further examination and will be the focus of future 

research.  

Table 6.7: Bio-crude yields from hydrothermal liquefaction 

Oil Yields (wt.% daf) Catalyst 

  H2O Co/Mo Ni/Al Pt/Al 

Nannochloropsis oc. 34.3 25.5 18.1 30.2 

Chlorella vulgaris 35.8 38.7 30.0 38.9 

Soya Oil 82.1 93.9 37.7 95.5 

 

 

6.4.4 Influence of hydrothermal treatment on lipids 

 

Figure 6.7 shows the GC-MS chromatograms of (a) soya oil processed without the use of a catalyst 

and (b) soya oil processed with the use of the Ni/Al catalyst. The Stabilwax column‟s maximum 

temperature is 260°C, therefore only a portion of the bio-crude can be analysed by this method. The 

use of the Ni/Al catalyst shows that alkanes were successfully produced by further deoxygenation 

of the fatty acids from the triglycerides. Duan and Savage also reported the production of alkanes in 

supercritical water by upgrading a microalgae bio-crude using a Pt/C catalyst [85]. The alkanes 

produced in this work range from pentadecane to nonadecane. A step-wise decomposition of the 

fatty acids is also shown compared to the chromatogram of the non-catalysed reaction. The fatty 

acids produced range from dodecanoic acid to hexadecanoic acid. Using just water (i.e. non 

catalysed) higher molecular weight fatty acids are present such as hexadecanoic acid and oleic acid. 

GC-MS analysis of this oil shows that the majority of the double carbon bonds present are 

hydrogenated during hydrothermal processing. The role of water as a hydrogen source has 

extensively been reviewed by Akiya et al. 2002. Hydrogen may be formed by hydrolysis or via the 

water gas shift reaction of CO generated from oxygenated molecules [133]. The large amounts of 

linoleic acid present in the unprocessed soya oil (see Table 6.6), which have two C=C bonds are 

hydrogenated resulting in increased saturation. The most abundant fatty acids observed after 

liquefaction have zero or one C=C bond (hexadecanoic and oleic acid). This is significant as this 

effects the fate of the FAME biodiesel produced from the fatty acids. Additional C=C bonds have 

negative effects on the oxidative behaviour of biodiesel [129].  
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Figure 6.7: GC-MS chromatograms of (a) soya oil processed in water only and (b) processed with 

Ni/Al2O3 catalyst.  

 

Figure 6.8 shows the size exclusion chromatography results for the bio-crudes and the unprocessed 

sample of soya oil. It can be seen that the unprocessed soya oil has a much higher molecular weight 

distribution than the liquefied samples, around 85 % of the total sample is found in the first high 

molecular weight peak (>1000 Dalton). The remainder eluted at around 8 minutes and around 10 

minutes. The first peak illustrates the triglycerides, while the second peak represents the fatty acid 

fraction which is relatively small as was shown by HPLC and TGA. Figure 6.8 shows the soya oil 

liquefied without a catalyst: the triglyceride peak is completely broken down but there is a small 

peak at around 7.5 minutes which is most likely from the di- and monoglycerides. The largest peak 

at 8 minutes represents the fatty acids which are the decomposition products of the triglycerides. 

The small amount of material between 9 and 10 minutes is unidentified, but it is known that their 

number average molar mass (Mn) is around 100; therefore it is most likely that this is glycerol 

which has a molecular mass (MW) of 92. Previous research has stated that the decomposition 

Fatty Acids 

Fatty Acids 

Alkanes 
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products of triglycerides are free fatty acids and glycerol [121]. Figure 6.8 also shows the results 

for the Ni/Al catalyst. Again the peak for fatty acids can be seen but just after, a peak for alkanes is 

found. It is shown that about half the fatty acids are successfully broken down to alkanes using the 

Ni/Al catalyst. GC-MS shows that there are some relatively long chain alkanes produced, which 

explains the relatively early elution of the alkane peak. Processing soya oil with the Co/Mo catalyst 

resulted in there being more di- and monoglycerides left after liquefaction. The majority of the 

product contains fatty acids with only 3 % low molecular weight alkanes. Around half of the bio-

crude is below 200 Dalton (da) at this condition. The Pt/Al catalyst does not show significant 

differences to the Co/Mo catalyst which explains the similar bio-crude yields in Table 6.7. The 

Pt/Al catalyst produces the largest amounts of fatty acids, at 57 % with the rest as glycerol. These 

results are in agreement with results from the literature which claim the major products of 

triglyceride break down are fatty acid compounds [119-120]. This research has shown that there are 

significant amounts of triglycerides broken down further into compounds of lower molecular mass 

than 200 dalton (Da).  This is presented in Table 6.8, where the average molecular masses of the 

different bio-crudes are presented alongside the mass fraction, above 200 Da. It can be seen that the 

average molecular mass is reduced drastically by hydrothermal processing from around 500 Da to 

around 200 Da. The use of Ni/Al resulted in the lowest average molecular number while the Pt/Al 

catalyst gave the highest average molecular number followed by the results achieved using no 

catalyst. The heavier molecular mass (>200 Da) material is reduced by around 20-30 % by 

hydrothermal treatment, most with the use of the Ni/Al catalyst and least with the Pt/Al catalyst.  

 

Table 6.8: number average molar mass (Mn) and weight fraction over 200 dalton of bio-crudes and 

Soya oil 

Condition Av. Mn wt.% > 200 Da 

Soya oil 511 88 

Soya + H2O 196 63 

Soya + Ni/Al 170 54 

Soya + Co/Mo 183 55 

Soya + Pt/Al 205 66 
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Figure 6.8: HPLC-SEC chromatograms of soya oil hydrothermally processed in Ni/Al2O3, Pt/Al2O3, 

Co/Mo/Al2O3, Water and unprocessed soya oil.  

Figure 6.9 (b) shows a simulated distillation of the extracted lipids from Chlorella, the bio-crude 

produced in the absence of any catalysts and the bio-crude produced in the presence of the Ni/Al 

catalyst. The triglycerides from microalgae are shown to have boiling points beyond 260°C, so they 

cannot be separated using the Stabilwax column which has a maximum temperature of 260°C. It 

can be seen that the unprocessed lipids have a higher boiling point range than the hydrothermally 

treated lipids. The peak of the bio-crude at 320°C represents the fatty acids. This peak is also 

present in the extracted lipids although it also contains tri-, di- and mono-glycerides. The larger 

molecular weight triglycerides devolatilise slowly and material is still devolatilising up to 900°C, 

while the majority of bio-crude has devolatilsed by 550°C. The distillation of the Ni/Al processed 

bio-crude shows a broader boiling point range at the lower temperatures indicating further 

breakdown of the free fatty acids. 

Figure 6.9(a) shows the simulated distillation of the unprocessed soya oil, the hydrothermally 

treated soya oil with and without the Ni/Al catalyst. It can be seen that the unprocessed sample has 

one very distinct peak at around 500°C where the TAGs devolatilise. There is little mass 

devolatilising earlier or later. The hydrothermally treated sample without catalyst also shows only 

one distinct peak, this time at around 280°C; this represents the fatty acids produced by 
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hydrothermal liquefaction. The use of the Ni/Al catalyst results in an additional peak of the lower 

molecular weight alkanes formed from the decarboxylation taking place, producing alkanes from 

fatty acids. These have boiling points of around 250°C but there is a distinct shoulder towards lower 

temperatures due to the various chain length alkanes produced, devolatilising at different 

temperatures. Integration of the peaks of the Ni/Al processed sample in Figure 6.9 (a) results in 

about 60 wt.% material boiling in the alkane range and 30 wt.% boiling in the fatty acid range. 

There is also a small amount of material (< 5 wt.%) of heavier molecular weight material present 

devolatilising after 380°C. 

 

 

Figure 6.9: DTG boiling point profile curves from TGA analysis of lipids and bio-crudes without 

catalyst and Ni/Al catalyst of (a) soya oil and (b) Chlorella.  
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6.4.5 Elemental analysis of bio-crude  

 

Table 6.9 shows the elemental analysis of the bio-crudes produced from microalgae and the model 

lipid. The results indicate that the use of catalysts consistently improved the HHV of the bio-crudes. 

This is due to the fact that more deoxygenation takes place when using a catalyst, compared to the 

use of water alone resulting in a simultaneous increase in C. For the microalgae, the Co/Mo and 

Pt/Al catalyst had the highest effect on deoxygenation; while deoxygenation is highest with the use 

of the Ni/Al catalyst for soya oil. This suggests that lipids are de-oxygenated favourably with the 

Ni/Al catalyst while proteins and/or carbohydrates are deoxygenated better with the use of Co/Mo 

and Pt/Al catalysts. This deserves further investigation and may lead to different choices of 

catalysts being suitable for microalgae with different biochemical compositions. With the Co/Mo 

catalyst the oxygen content of Chlorella was reduced by another 4 wt.% while for Nannochloropsis 

this was 9 wt.%. The Ni/Al catalyst also increased the deoxygenation reactions, but slightly less for 

the microalgae, while it performed exceptionally well for the liquefaction of soya oil: the remaining 

oxygen content was only 5.1 wt.%. The use of heterogeneous catalysts also reduced the amount of 

nitrogen in the bio-crudes but the reduction is not high, with a maximum reduction of a further 0.5 

wt.%. The use of catalysts also resulted in an increase of carbon content of the bio-crude with up to 

9 wt.% for Nannochloropsis with Ni/Al. The HHV were highest with the use of Pt/Al catalysts for 

microalgae and highest for the soya oil with the Ni/Al catalyst. It is evident that the use of all 

heterogeneous catalysts investigated result in additional deoxygenation of the microalgae bio-crude; 

however this only occurs for the Ni/Al catalyst for the model lipid. Therefore the Co/Mo and Pt 

catalysts are selectively deoxygenating the carbohydrate and protein fraction or one of them. This is 

also backed up by the fact that no alkanes are seen on the GC-MS chromatograms of the algal bio-

crudes with these catalysts. This observation will have to be addressed in future work as this study 

concentrates on the lipid fraction and the potential of in-situ alkane production. The higher yields of 

Chlorella and the model lipids with simultaneous increase in HHV and reduction of N and O, 

suggest that the production of a bio-refinery ready bio-crude high in hydrocarbons is possible by 

catalysed hydrothermal liquefaction of microalgae. Analysis of the catalyst after liquefaction by 

atomic absorption spectroscopy indicates however, that some leaching of the metals is apparent; this 

will be investigated further in future work.  
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Table 6.9: Elemental analysis in wt.% of the bio-crudes and HHV 

Condition 

 

C H N S O* 

HHV 

(MJ/kg) 

  Catalyst           

        Chlorella 

       

 

H2O 70.7 8.6 5.9 0.0 14.8 35.1 

 

Co/Mo 75.2 8.3 5.7 0.0 10.7 36.2 

   Ni/Al 75.4 6.7 5.4 0.0 12.6 34.5 

 

Pt/Al 74.8 9.7 5.6 0.6 9.3 37.9 

Nannochloropsis 

       

 

H2O 68.1 8.8 4.1 0.0 19.0 34.5 

 

Co/Mo 77.0 8.9 4.6 0.0 9.4 37.6 

 

Ni/Al 76.8 9.4 3.6 0.0 10.2 38.2 

 

Pt/Al 74.0 10.2 3.6 0.1 12.0 38.2 

Soya Oil 

       

 

H2O 76.0 10.8 0.7 0.0 12.5 35.7 

 

Co/Mo 77.6 10.4 0.6 0.0 11.5 39.7 

 

Ni/Al 82.5 12.0 0.3 0.0 5.1 42.0 

  Pt/Al 73.3 10.5 0.6 0.0 15.6 38.2 

*by difference 

 

 

6.5 Conclusions 

 

The first part of the Chapter showed that during homogeneous catalytic HTL, the yields of bio-

crude on an organic (daf) basis are higher in the presence of organic acids compared to alkali 

catalysts. The yields are higher as the temperature increases and are higher for Chlorella than for 

Spirulina. This leads to the conclusion that the higher the lipid content of the algae, the higher the 

yield of bio-crude obtained. The heating value of the bio-crude is higher using the alkali catalysts 

however there is a noticeable reduction in the boiling point range and improvement of flow 

properties when using organic acids. The molecular weight and boiling point of the bio-crudes are 

still relatively high. The nitrogen content of the bio-crude (4-6 wt.%) is significantly higher than a 

petroleum crude oil and further reduction would be required before the bio-crude could be used as a 

fuel. The use of organic acids does not reduce the nitrogen content in the bio-crudes. The majority 

of the fuel nitrogen is concentrated in the aqueous phase as ammonium, and this may represent 

suitable nitrogen recycle to sustain algal growth. The potential for utilising the aqueous phase to 

recycle nutrients, is hypothesised to be an advantage of HTL and is investigated in Chapter 8. The 

nitrogen distribution is influenced by the choice of catalyst and when using alkali, more nitrogen 

goes into the water phase. Formic acid decomposes to produce CO, CO2 and hydrogen under 
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hydrothermal conditions. Acetic acid produces methane and hydrocarbon fragments and suggests 

that the reactor exhibits catalytic wall effects. No evidence for hydrogenation of the bio-crude was 

observed using formic acid. In-situ hydrogenation and upgrading of bio-crudes may be possible 

using organic acids but it is likely that additional catalysts will be required.  

The current work on homogeneous catalysts has shed light on the chemical classes of compounds 

formed in the bio-crude and the overall elemental balance of carbon and nitrogen. The bio-crudes 

contain mono-aromatics such as toluene, ethyl-benzene and styrene; substituted phenols; nitrogen 

heterocycles such as pyrrolidinones and indoles; fatty acids and fatty acid amides. Typically about 

40% of the bio-crude has a boiling point <250°C the remainder being higher molecular weight 

material. An understanding of the chemical nature of this high molecular weight material is required 

to assist the development of routes for improving bio-crude quality and is the focus of further 

research.  

The results of the second part of the Chapter show that the majority of lipids decompose to fatty 

acids, and the majority of carbon double bonds are hydrogenated. The use of heterogeneous 

catalysts was shown to deoxygenate the bio-crude by a further 5-10 wt.%, which resulted in an 

oxygen removal of up to 67 wt.% for the microalgae feedstock and 64 wt.% for soya oil. The 

Co/Mo and Pt/Al catalyst were shown to reduce the amount of water soluble organic material and, 

by this mechanism, to increase the bio-crude yields from lipids. The molecular weight distribution 

illustrated that molecular weight is reduced significantly by hydrothermal processing and can be 

further decreased by the use of heterogeneous catalysts. The use of the Ni/Al catalyst successfully 

deoxygenated around 60 wt.% of the fatty acids from hydrothermal processing of soya oil to various 

chain length alkanes. The high metal content of Nannochloropsis appears to have inhibited the 

increased bio-crude formation reactions from the Co/Mo and Pt/Al catalysts, but this observation 

requires further investigation. 
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7. CHAPTER VII - Investigation of bio-crude formation pathways 
 

7.1 Introduction 

 

Hydrothermal liquefaction involves the reaction of biomass in water at high temperature and 

pressure with or without added catalyst as shown in Chapters 6 and 5 respectively. During 

liquefaction biomass feedstocks are broken down to small molecules which are reactive and can re-

polymerize into oily compounds [36].  The main reaction steps during liquefaction have been 

summarised by Garcia Alba et al. as follows [37];  

1. Hydrolysis of macromolecules (lipids, proteins and carbohydrates) into smaller fragments; 

2. Conversion of these fragments by, for example, dehydration into smaller compounds; 

3. Rearrangement via condensation, cyclisation, and polymerization producing new oil-like 

components.   

In most cases, the yields of bio-crude are 10-15 wt.% higher than the lipid content of the microalgae 

suggesting that oil is also derived from the carbohydrate and protein fractions. Most studies to date 

have used Na2CO3
 
as an alkali catalyst. The energy balance and CO2 mitigating effect of 

hydrothermal liquefaction of microalgae is improved as the lipid content increases [79]. Microalgae 

generally consist of carbohydrates, proteins and lipids. Decomposition reactions in hydrothermal 

media of model compounds have previously been reported and include glucose and amino acids; 

however the relevance of the behaviour to the hydrothermal processing of microalgae has not been 

discussed.  

An extensive investigation of the influence of the biochemical composition of different microalgae 

strains on its liquefaction behaviour has not been performed. The current Chapter investigates the 

influence of biochemical content of algae on liquefaction yields and product distribution. A range of 

biopolymers commonly found in microalgae have been investigated under hydrothermal conditions 

to understand the liquefaction reactions. Seven model compounds have been liquefied under 

hydrothermal conditions at 350°C without a catalyst or in the presence of formic acid or sodium 

carbonate. The model components include the amino acids, asparagine and glutamine, the animal 

protein, albumin, a plant protein derived from soya, starch and glucose as model carbohydrates and 

sunflower oil as a model lipid. The results have been correlated with those obtained from the 

liquefaction of three microalgae and one cyanobacteria processed under the same conditions. The 

fate of nitrogen from the protein fraction of algae is of particular interest as it is undesirable in the 
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bio-crude. The nature of the bio-crudes is also of interest and composition determined by GC/MS 

and elemental analysis is compared for model compounds and microalgae. Product distribution 

calculations are performed to investigate the distribution of nitrogen and carbon between the 

different product phases. The aim of this work is to understand the relationship between microalgae 

composition and hydrothermal liquefaction behaviour, bio-crude yields and composition of product 

streams.  

 

7.2 Methodology 

 

HTL experiments were carried out in the 75 ml Parr high pressure reactors as described in Chapter 

3. All sample work up and analysis methods are also covered in this Chapter.  

 

7.3 Results and Discussion  

 

7.3.1 Liquefaction Results 

 

Table 7.1 lists the proximate and ultimate analysis of the samples investigated. Some of this data is 

already presented in Chapter 4 and also found in the data sheets in APPENDIX A but is presented 

here as a comparison of the microalgae to the model compounds.  The proximate composition of the 

microalgae vary widely, in particular the ash content which is higher for the marine strains than the 

fresh water strains. The ultimate analysis (dry ash free) is relatively constant although an increase in 

carbon content correlates with the increasing lipid content as listed in Table 4.2. Nannochloropsis 

and Porphyridium show very high ash contents of around 25 wt.% (db)and this lowers the HHV. 

The two protein samples are the only model compounds which have significant ash content, the 

moisture content of the model compounds varies from 0 to 8.5 wt.%. The two amino acids have the 

highest nitrogen contents followed by the protein samples. The two carbohydrate model compounds 

are very high in oxygen and have heating values comparable to microalgae. The microalgae and 

cyanobacteria selected, exhibit a range of biochemical content ranging from high protein to high 

lipid. The biochemical composition of the algae strains is illustrated in Table 4.2 in Chapter 4. The 

protein content varies between 42-65 wt.% (daf). Spirulina has the highest nitrogen content 
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correlating with its high protein fraction. The carbohydrate content varies between 8 and 40 wt.% 

(daf). Porphyridium has the highest carbohydrate fraction correlating with the highest oxygen 

content. The lipid fraction varies from 5-32 wt.% (daf) and is highest for Nannochloropsis.  

 

Table 7.1: Proximate and ultimate analysis, HHV of the model compounds and microalgae 

  Proximate (wt.%)                                             Ultimate (wt.% daf)     

Compound Ash Moisture C H N S O* 
HHV 

(MJ/kg) 

                  

Albumin 5.3 8.5 44.6 6.4 12.6 0.2 36.4 23.3 

Soya Protein 3.6 5.2 46.9 6.5 13.6 0 33.1 24.2 

Asparagine 0 5.1 32.2 6.6 18.7 0 42.5 19.3 

Glutamine 0 4.2 40.5 6.7 19.1 0 33.7 22.3 

Glucose 0 0 34.4 5.9 0 0 59.8 19.2 

Starch 0.1 10.3 38.5 6 0 0 55.5 20.7 

Sunflower oil 0 0 63.2 9.5 0.1 0 27.3 33.6 

Chlorella 7 5.9 52.6 7.1 8.2  0.5 32.2  23.2 

Nannochloropsis 26.4 7.15 57.8 8 8.6  NA 25.7  17.9 

Porphyridium  24.4 5.1 51.3 7.6 8  NA 33.1  14.7 

Spirulina 7.6 7.8 55.7 6.8 11.2  0.8 26.4  21.2 

                  

 

The yields of bio-crude and other products from the hydrothermal liquefaction of the seven model 

compounds and microalgae are illustrated in Figure 7.1a-c. Processing without catalyst is 

illustrated in sub-figure (a), (b) shows the processing with Na2CO3 and (c) using formic acid. The 

protein (albumin and soya protein) show oil yields between 18 and 6 wt.%, with the yields for the 

soya protein being consistently higher for all three conditions. The mechanism of oil formation 

from proteins is a result of the C-N peptide bond between the carboxyl and amine groups of the 

amino acids hydrolysing which are the building blocks of proteins. The amino acids formed by this 
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process subsequently degrade by decarboxylation and deamination [35]. The long residence times 

in this study and relatively severe conditions will allow the small organic materials produced by 

decarboxylation and deamination of the protein to re-polymerize by Fischer-Tropsch type reactions 

to longer chain hydrocarbons and aromatic ring-type structures such as phenols and nitrogen 

heterocycles indole or pyrroles which are the source of bio-crude from liquefaction of protein.  

Bio-crude yields are generally highest using water without the addition of catalyst or reagents. 

Figure 7.1(c) clearly shows that the gas phase fraction is highest with the use of formic acid and 

makes up around 28 wt.% and is consistent with previous data on liquefaction of microalgae in 

formic acid discussed in Chapter 6. The bulk of the product is distributed in the aqueous phase for 

all conditions and ranges from 52 to 79 wt.%.  The amino acids glutamine and asparagine produce 

lower oil yields than the proteins, most likely due to the lower amount of carbon available for the 

formation of hydrocarbon type compounds as can be seen in Table 7.1. The yields for glutamine are 

considerably higher than those of asparagine which contradicts the results reported by Dote et al. 

who observed higher yields for asparagine (1.3 wt.% asparagine, 0.6 wt.% glutamine [134]). Yields 

of bio-crude were significantly higher for both than those previously reported and reached 4-5 wt.%. 

The different behaviour of the two amino acids in base and acidic conditions is most likely due to 

their different solubilities in these kinds of media. Aspargagine is not soluble in water but soluble in 

acid and base media at standard conditions. Glutamine on the other hand is soluble in water and 

base/acid media [135]. In hot compressed water the dielectric constant changes from 78.5 at 

standard condition to around 15 at the conditions of this study [39]. The different solubilties in 

water medium could therefore be the cause of the different liquefaction behaviour. The 

carbohydrates, starch and glucose, exhibit an increase in solid residue compared to protein, although 

when using Na2CO3 the residue reduces. The overall bio-crude yield is lower due to large amounts 

of the carbohydrates breaking down to polar water soluble organics and not to non-polar 

hydrocarbon type structures. Srokol et al. reported the breakdown of glucose under similar 

hydrothermal conditions resulting  in the formation of formic acid, acetic acid, lactic acid, acrylic 

acid, 2-furaldehyde and 1,2,4-benzenetriol. [136] Most of these are polar organics that would 

dissolve in the water phase and not contribute to the bio-crude yield. The aldehydes and aromatic 

structures are likely precursors of other larger hydrocarbons that make up the bio-crude fraction 

following re-polymerization. The alkali catalyst Na2CO3 has a beneficial influence on oil formation 

from carbohydrates which is not observed for the proteins as can be seen in Figure 7.1 (b). The 

residue fraction is larger using H2O and HCOOH (~20 %) (Figure 7(a), (c) respectively), but this is 

reduced to around 6 wt.% with Na2CO3. The gaseous fraction is also higher with Na2CO3 than for 
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water representing an increase in decarboxylation of the carbohydrates; no increase in gas formation 

is seen using HCOOH. This does not occur for proteins and suggests Na2CO3 is selectively 

promoting decarboxylation of carbohydrates, leading to a lower fraction of product in the water 

phase than for proteins and amino acids.   

Liquefaction of the triglyceride from sunflower oil shows much higher oil yields, ranging from 80 

wt.% > 73 wt.% > 53 wt.% for water, formic acid and sodium carbonate respectively. Whilst it is 

realised that the lipids from microalgae will differ to those of sunflower oil, it is a good 

approximation for understanding general hydrothermal chemistry. In water, yields are highest and 

reach 80 wt.% (Figure 7.1(a)), the remainder is distributed between the remaining phases with 10 

wt.% in the aqueous phase and 5 wt.% for the other two phases. Using formic acid results in the 

majority of the non-oil phase product being concentrated in the gas phase (Figure 7.1(c)). Na2CO3 

has a detrimental effect on oil formation and leads to an increase in solid residue as can be seen in 

Figure 7.1(b). This observation is attributed to the process of saponification reactions of the lipids 

in the presence of Na2CO3 which remained in the residue during filtration. From the liquefaction 

results of the model compounds it can be concluded that high lipid containing algae should not be 

processed using Na2CO3 as a catalyst, while it is favourable for algae with high carbohydrate 

fraction. High protein containing algae are likely to be most efficiently liquefied without the use of 

a catalyst; the same applies for high lipid containing algae.  
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Figure 7.1: Yields of products from hydrothermal processing under (a) water, (b) sodium carbonate, 

(c) formic acid 
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Figure 7.1 also shows the results from hydrothermal liquefaction of the three microalgae and the 

cyanobacteria Spirulina at the same conditions as the model compounds. The bio-crude yields are 

generally higher than for the model compounds (apart from sunflower oil); this means that the oil 

yields from the different algae are not only derived from the lipid fraction but also from the protein 

and carbohydrate fractions. The highest oil yields are for Chlorella and Nannochloropsis which are 

virtually identical at all conditions and are highest without the use of catalyst (Figure 7.1 (a)). 

Protein was converted to bio-crude most efficiently without a catalyst and this would confirm the 

observation that the higher protein containing algae Chlorella and Nannochloropsis have higher oil 

yields without the use of catalyst. This conclusion is confirmed by the liquefaction behaviour of 

Spirulina which has a protein content of 65 wt.%, the bio-crude yield is over 10 % higher without 

the use of a catalyst (29 wt.% compared to 17-18 wt.% with catalysts, Figure 7.1(a) and (b), (c) 

respectively).  

Porphyridium has the lowest bio-crude yields when processed with water and formic acid. With the 

use of sodium carbonate the yield is in a typical range at 27.1 wt.% . This indicated that the large 

carbohydrate fraction (40 wt.%) is converted to bio-crude more effectively when using sodium 

carbonate. This catalyst also consistently produces the largest solid residue fraction for all algae. 

This could be due to the observed soap formation when liquefying the model lipid sunflower oil. 

During the liquefaction of the microalgae, the lipid fraction is likely to behave the same way. The 

soapy fraction of the reaction products is retained during filtration and increases the solid residue 

fraction. The gas fraction is consistently highest with the use of formic acid as can be seen in 

Figure 7.1(c). This is due to formic acid breaking down to CO and H2 increasing the gas fraction as 

shown in Chapter 6 [137]. The largest proportion of the product is found in the water phase, just as 

observed for the model compounds. This aqueous fraction generally makes up around 50 wt.%, 

being less when using formic acid where the gas fraction makes up a larger portion. Previous 

researchers have stated that higher lipid containing algae produce higher bio-crude yields [66] 

which was also observed in Chapter 5. When trying to correlate the oil yields of the different 

biochemical model compounds to the biochemical composition, and assuming that the behaviour of 

each of the individual components is additive, a simple formula can by created by the measured oil 

yield results:  

                wt.   = (protein yield wt.%   protein content wt.%)   (carbohydrate yield wt.% 

  carbohydrate content wt.%)   (lipid yield wt.%   lipid content yield wt.%) 

Eqn. 7.1 
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This equation would indicate a linear additive behaviour of the model compound yields to the 

composition of the microalgae and its yield. Investigation of this was performed with a model 

mixture using the biochemical components and containing soya protein, starch and sunflower oil. 

The model microalgae containing 43 wt.% protein, 27.6 wt.% carbohydrate and 28.7 wt.% lipid 

fractions (daf) was processed in water and a bio-crude yield of 30.1 wt.% was observed. With the 

above equation the predicted yield for this model compound algae is 31.8 %. This suggests that the 

individual components are behaving additively with respect to oil formation. The 1.7 wt.% percent 

difference of the calculated and actual yield is most likely due to losses and lies within an 

acceptable error margin.  This relationship was investigated for the microalgae and appears to fit for 

the microalgae Chlorella and Nannochloropsis. However, it does not fit for the cyanobacteria, 

Spirulina or for Porphyridium, suggesting the behaviour is more complicated. The yields of 

Porphyridium could be affected by the very high ash content which could have catalytic effects and 

also changes the biomass/water ratio compared to the other samples.  

Nevertheless some important and valuable conclusions can be drawn from the liquefaction 

behaviour of the microalgae investigated in this study which can be related to the liquefaction 

behaviour of the model compounds. Firstly, it confirms that the higher the lipid content, the higher 

the bio-crude yield, agreeing with previous reports and results in Chapter 5. It is more suitable to 

convert high lipid containing algae in water or in a reducing atmosphere such as that produced using 

formic acid. High protein microalgae are best processed without the use of catalysts, as illustrated 

by the liquefaction results of model proteins and Spirulina. Higher carbohydrate microalgae are best 

processed using an alkali catalyst as illustrated by the higher yields for starch and Porphyridium. 

From the liquefaction results of the model compounds and the microalgae it was shown that the oil 

formation follows the trend lipids>proteins>carbohydrates. Lipids form oil yields of 80-55 wt.%, 

protein 18-11 wt.% and carbohydrates 15-6 wt.%. Each of the biochemical components produce 

bio-crude under hydrothermal conditions, which behave additively for microalgae. 

 

7.3.2 Elemental analysis of bio-crude 

 

Table 7.2 shows the elemental analysis of the bio-crude from hydrothermal processing of the model 

compounds and the microalgae. The HHV was calculated using the Dulong formula [105]. The 

protein bio-crudes have an average elemental composition 72 wt.% C, 9 wt.% H and 7 wt.% N. 

Compared to the original composition this is a considerable upgrade, oxygen and nitrogen fractions 
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are reduced and the HHV increased. The bio-crudes from the amino acids have a nitrogen content 

of around 8 wt.% which is slightly higher than those from protein but the amino acid samples had 

higher starting nitrogen contents of 19 wt.%. The effect of catalysts cannot be seen on the elemental 

composition of the bio-crudes. The bio-crudes from carbohydrates show only trace amounts of 

nitrogen as the original samples don‟t contain nitrogen either. The composition is quiet similar to 

the other bio-crudes apart from the higher oxygen content which is a result of the high oxygen 

content of carbohydrates; again no clear effect of the catalysts can be seen. The oxygen content is 

reduced from 55-60 wt.% to a range of differing bio-crudes with oxygen contents of 9-46 wt.%.   

The water processed sunflower oil shows no nitrogen but the highest levels of oxygen although the 

unprocessed oil has a lower oxygen content than the carbohydrates. Using Na2CO3 the oxygen 

levels of unprocessed sunflower oil and hydrothermally treated sunflower oil are identical, using 

water or formic acid results in the oil having lost 7 wt.% oxygen. Most likely the glycerol structure 

of the triglyceride is harder to remove than the OH groups of carbohydrates. It also appears that the 

OH group of glucose is easier to deoxygenate than the oxygen in starch.  

The HHVs of the algal bio-crudes fall in the range of 33-39 MJ/kg. With Nannochloropsis having 

the highest average HHV, which is in accordance with its higher lipid content. The nitrogen content 

is highest for the cyanobacteria Spirulina which has the highest protein fraction. It also has the 

highest carbon content, which is probably also a result of the high protein fraction, the model 

proteins also resulted in high carbon contents. Spirulina also has the lowest oxygen content, just 

like the proteins had the lowest oxygen content of the model compounds. Regarding the elemental 

composition of bio-crudes from hydrothermal processing it is more desirable for the bio-crude from 

hydrothermal liquefaction to have a high carbon and content and low oxygen and nitrogen content. 

Nitrogen in fuel directly forms NOX compounds which are undesirable for environmental and 

legislative reasons; therefore this cancels out the advantages of higher carbon and lower oxygen 

contents.  
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Table 7.2: Ultimate analysis, HHV and energy balances of the bio-crudes of model compounds and 

microalgae 

Condition 

 

C H N S O* 

HHV 

(MJ/

kg) 

Energy 

Recovery 

(%) 

ΔHc of 

feedstock 

(MJ/kg) 

ΔHc of 

bio-crude 

(MJ/kg) ECR 

  Catalyst                   

 

 

          Albumin 

           

 

H2O 71.4 9.4 7.7 0 11.5 36.3 29.0 0.0 -8.3 1.7 

 

Na2CO3 75.5 9.3 6.1 0 9.1 35.5 18.3 0.0 -10.7 2.6 

 

HCOOH 70.4 9.5 7.6 0 12.5 36.1 8.6 0.0 -12.6 4.6 

Soya 

Protein 

 

          

 

H2O 73 8.6 6.8 0.3 11.3 35.9 30.5 0.9 -8.3 1.4 

 

Na2CO3 74.2 9 5 0.3 11.5 36.8 22.4 0.9 -10.1 2.0 

 

HCOOH 69.9 9 6.7 0.1 14.3 32.3 19.1 0.9 -9.9 1.9 

Asparagine 

 

          

 

H2O 69.7 7.5 7.6 0 15.2 33.3 13.4 -4.0 -12.4 4.4 

 

Na2CO3 69.2 7.5 6.9 0 16.4 33 1.6 -4.0 -14.7 37.5 

   HCOOH 66.2 7.6 8.9 0 17.3 32.3 8.1 -4.0 -13.1 5.8 

Glutamine 

 

          

 

H2O 70.6 7.9 11.9 0 9.6 34.2 10.7 -1.0 -12.5 3.7 

 

Na2CO3 68.8 8.2 5.6 0 17.4 34 21.7 -1.0 -9.9 1.8 

 

HCOOH 68 8 8.9 0 15.2 35.9 18.5 -1.0 -8.9 1.5 

Glucose 

 
          

 

H2O 74.1 6.9 0.3 0 18.8 34.1 9.1 -4.1 -13.3 4.3 

 

Na2CO3 83 8.4 0 0 8.6 39 25.2 -4.1 -10.2 1.6 

 

HCOOH 77.6 7.4 0.1 0 14.9 35.9 16.3 -4.1 -11.1 1.9 

Starch 

 
          

 

H2O 71.7 7.9 0.3 0 20.1 34.5 13.7 -2.6 -12.2 4.0 

 

Na2CO3 68.1 5.5 0.1 0 46.4 23.4 23.6 -2.6 -10.1 2.3 

 

HCOOH 71.5 6.2 0.2 0 22.1 32.4 13.0 -2.6 -11.7 3.4 

Sunflower 

oil 

 

          

 

H2O 68.7 10.6 0.1 0 20.6 36.9 86.7 10.3 14.1 0.3 

 

Na2CO3 63.8 8.9 0.1 0 27.1 33.1 52.2 10.3 2.5 0.4 

 

HCOOH 68.4 11 0.2 0 20.5 37.3 71.2 10.3 12.2 0.3 

Chlorella 

 
          

 

H2O 70.7 8.6 5.9 0 14.8 35.1 54.2 -0.1 -2.4 0.8 

 

Na2CO3 73.6 10.7 4.9 0 10.7 37.1 44.2 -0.1 -4.8 1.0 
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   HCOOH 70.8 9.4 5.3 0.6 13.9 33.2 31.7 -0.1 -6.0 1.1 

Nannochlor

opsis 

 

          

 

H2O 68.1 8.8 4.1 0 18.9 34.5 66.1 -5.4 -3.2 1.2 

 

Na2CO3 69.6 9.2 3.8 0 17.3 35.5 50.0 -5.4 -6.1 1.6 

 

HCOOH 74.7 10.6 4.3 0 10.4 39 41.1 -5.4 -4.8 1.4 

Porphyridiu

m 

 

          

 

H2O 72.8 8.5 5.4 0.3 13.3 35.7 51.6 -8.6 -7.4 1.6 

 

Na2CO3 46.1 5.6 3.2 0.2 13.3 22.8 42.1 -8.6 -8.8 2.0 

 

HCOOH 72.5 9.1 5.7 0.4 13.3 36.3 35.2 -8.6 -7.6 1.7 

Spirulina 

 
          

 

H2O 73.3 9.2 7 0 10.4 36.8 50.7 -2.1 -4.3 1.0 

 

Na2CO3 75.4 10.8 4.6 0.5 8.7 34.8 21.0 -2.1 -4.9 1.1 

  HCOOH 72.7 9.8 5.7 1 10.9 35.1 19.3 -2.1 -5.1 1.1 

 

7.3.3 Energy Balance 

 

Table 7.2 also shows three different approaches to energy balances of the liquefaction process. The 

first one is the energy recovery in % this was calculated with the equation:  

                    
                                    

                          
      

Eqn. 7.2 

This equation uses the amount of bio-crude produced and takes its heating value into account. It 

does not compensate for any processing energy used in the liquefaction reaction. The values for the 

energy recovery of the model compounds range from very low values below ten for the amino acids, 

to over 80 % for the sunflower oil. For the proteins and the sunflower oil, water without any 

catalysts has the best energy recovery rates while for the carbohydrates sodium carbonate has 

beneficial effects on the energy recovery. This is due to the higher bio-crude yields at these 

conditions. The values for the algae range from 19-66 %, where the values when using formic acid 

are consistently lower. This is partially because formic acid has its own heating value (11.03 MJ/kg) 

and this was compensated for in the calculations. The highest energy recovery values were achieved 

using only water and no catalyst. These values are about 10 % higher; for Spirulina even around 

20 %. The best performing algae is Nannochloropsis with an energy recovery of 66.1 % using water. 
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This leads to the conclusion that higher lipid containing algae can achieve better energy recoveries. 

The low lipid, high protein cyanobacteria Spirulina results in the lowest recovery rate.  

The column “ΔHc of feedstock (MJ)” in Table 7.2 describes the heat of combustion available when 

burning or co-firing the feedstock without HTL, the method was adapted from Heilmann et al.,[138]. 

For this purpose it was assumed that the algae would be received as a slurry of 1kg of biomass to 9 

kg of water. The energy for the drying of the water and subsequent combustion of the algae was 

calculated and compared in the next column (ΔHc of bio-crude (MJ)) to the energy needed to 

liquefy the algae prior to combustion but avoiding the drying process. The energy for achieving a 

slurry of 1 kg biomass to 9 kg water was ignored as this would be equal for both processes and this 

is a comparative calculation. From steam tables the amount of energy needed to remove 9 kg of 

water from the 10 kg slurry was found to be: Hsteam@373 K- H293 K = 2.68 MJ/kg – 0.084 MJ/kg = 2.60 

MJ/kg. For 9 kg the energy required is 9 kg × 2.60 MJ/kg = 23.4 MJ. The heat of combustion of the 

dry algae minus this value is the net energy balance for the combustion. 

For the liquefaction the same slurry has to be heated to 350°C, under pressure without vaporization. 

From steam tables the enthalpy of saturated liquid water at 350°C is 1.67 MJ/kg, and again 0.084 

MJ/kg at 20°C. The heat capacity of the algae present was assumed to be about half that of water 

therefore: ΔH=1.59 MJ/kg × 9kg + 0.5 × 1.59MJ/kg × 1kg = 15.1 MJ. The energy available from 

the bio-crude produced is calculated as the yield per kg multiplied with the HHV of the bio-crude. 

Subtracting the available energy from combustion with the energy required for liquefaction, results 

in the overall net energy balance of the liquefaction process.   

The results for the model compounds are not as relevant for practical applications as this biomass is 

not usually present as a slurry. Nevertheless it is possible to see which biochemical compounds are 

most desirable for the energy balance of microalgae. It can be seen that both proteins and the 

sunflower oil have positive energy balances following removal of the water with subsequent 

combustion. But sunflower oil is the only component that also has a positive energy balance for 

combustion following liquefaction. The carbohydrates have negative energy balances for both 

conditions and are worse following liquefaction due to their low bio-crude yields, although 

considerable upgrading of the HHV is achieved. Therefore from these model compound results it is 

advantageous to have microalgae with high lipid, protein contents and low carbohydrate from an 

energy balance standpoint.  More interesting are the results for the microalgae. It can be seen that 

all the algae have a net energy loss when directly combusted as dry biomass. The values range from 

-0.1 MJ for Chlorella to -8.6 MJ for Porphyridium, the differences are a direct effect of the different 
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heating values of the feed algae. The energy balance for combusting the bio-crude from liquefaction 

also shows a net energy loss; for Chlorella and Spirulina the loss is even larger than for combustion 

without liquefaction. At these conditions the simplified energy balance would suggest that the 

liquefaction process has no advantages over conventional co-firing or direct combustion of algae. 

But it has to be considered that a valuable liquid fuel and potential valuable chemicals are also 

produced from liquefaction of algae. So from an economical standpoint the process could have a 

more favourable balance. Nannochloropsis and Porphyridium on the other hand show more 

favourable results for liquefaction. For both algae an improvement over conventional combustion is 

seen apart from when using sodium carbonate. The balance still shows a net loss but the loss is not 

as high as when burning the dry algae. The better performance is due to the low heating values of 

the two algae in dry unprocessed form. Both algae have high ash content which results in low 

heating values but would also be undesirable for direct combustion due to fouling and slagging. The 

energy balance is poor at these conditions for the microalgae however if liquefaction is performed 

at 300°C rather than 350°C the bio-crude yields only decrease by around 3 wt.% [139] but the 

energy required for liquefaction is reduced by 22 %. Therefore lower liquefaction temperatures 

could be more advantageous from an energy balance standpoint even though less bio-crude is 

produced. Heilmann et al. produced a char product for co-firing from microalgae by hydrothermal 

processing at 190-210°C and achieved a positive energy balance for this compared to a negative one 

if pre-drying and subsequent combustion was assumed. [138]  

Table 7.2 also shows an energy consumption ratio (ECR) adapted from Sawayama et al.‟s method 

which is calculated as: 

     
                            

                 
           

Eqn. 7.3 [66] 

Where mW is the initial moisture mass fraction of the biomass and mO is the mass fraction of organic 

matter in the dry algae. Cpw (4.18 kJ/kg.K) and Cps (1.25 kJ/kg.K) the average specific heats of 

water and dry algae, ∆T the temperature differential from ambient (298 K) to reaction temperature 

(623 K),  Y the bio-crude yield, r1 the efficiency of available combustion energy (0.5), r2 the 

efficiency of heat recovery (0.6) and HHV the heating value of the bio-crude in MJ/kg [66]. A value 

above 1 means that the energy balance is negative, below 1 means there is a net energy gain. It can 

be seen from the results in Table 7.2 that all of the model compounds apart from Sunflower oil 

have a negative energy consumption ratio when this calculation method is used. Sunflower oil has a 
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remarkably good energy consumption ratio, due to its high yields and HHV. For the algae 

liquefaction only Chlorella without catalyst has a positive energy consumption ratio. The energy 

balance of Spirulina is 1 or close to 1 indicating that the same amount of energy is used for 

liquefaction as is gained from the bio-crude. Prophydridium performs the least well with up to twice 

the amount of energy needed for liquefaction than is produced from the oil. The results are 

considerably lower than those reported by Sawayama et al. [66]. This is due to the heating values 

and yields in their research being much higher. Concluding it can be said that the high lipid 

containing algae Nannochloropsis has the best energy recovery, which is a calculation based on the 

heating values and yields. The comparison of direct combustion with pre-drying to combustion post 

liquefaction shows the most favourable results for the same algae at the same condition but 

Porphyridium also shows improvements for these calculations, while the other two species don‟t 

indicate any advantage of liquefaction from solely a heat balance standpoint. The energy 

consumption ratio calculations result in Chlorella without catalyst as the only net energy producing 

condition. The differing results are due to the ECR calculations taking into account the organic 

content of the algae for its calculations, resulting in the low ash content microalgae performing 

better than the high ash content microalgae Nannochloropsis and Porphyridium, which showed 

better results for the energy recovery and heat balance comparisons. None of the energy balance 

calculations take into account the dissolved organics in the water phase or the gas species, CO, CH4 

and H2 which all have calorific values which would improve the energy balance if they could be 

recovered.  

 

7.3.4 Nitrogen balance in product streams 

 

The nitrogen distribution of the model compounds in the product streams is illustrated in Figure 7.2. 

Sub-figure (a) presents the liquefaction results without catalyst, (b) presents the results from 

processing under sodium carbonate and (c) with formic acid. The aqueous fraction was determined 

by elemental nitrogen contained in ammonium in the water phase and the bio-crude portion by 

elemental analysis. The gas and residue fraction was combined and determined by difference. From 

previous research it is known that the nitrogen fraction in the residue is very low not exceeding 5 wt% 

as shown in Chapter 6. The balances for the carbohydrates and sunflower oil are not presented as 

there are only trace amounts of nitrogen present. The largest fraction of nitrogen was found in the 

gas phase especially for the amino acids. With the protein samples, 20-30 wt.% of nitrogen is in the 
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water phase when using water and sodium carbonate, formic acid results in only about 10 wt.% of 

nitrogen in the gas phase as seen in Figure 7.2 (a), (b) and (c) respectively. The amino acids only 

result in about 10-20 wt.% of nitrogen in the water phase. The nitrogen fraction in the oil for protein 

is between 4 and 10 wt.%, this is considerably higher than for the amino acids (0.3 – 3.7 wt.%). 

This confirms Dote et al.‟s results [140]. Therefore it is beneficial to break down proteins to amino 

acids during or prior to hydrothermal liquefaction to obtain a lower nitrogen containing oil.  

The nitrogen product distribution of the algal bio-crudes is also illustrated in Figure 7.2a-c. The 

nitrogen fraction resulting in the bio-crude is considerably larger than for the nitrogen containing 

model compounds. Figure 7.2 (a) shows that using no catalyst results in the nitrogen partition in the 

bio-crude being higher than when using catalysts. Chlorella has the highest nitrogen fractions in the 

oil fraction, with water 22 wt.% of the nitrogen ends up in the bio-crude. Sodium carbonate aids the 

nitrogen not resulting in the oil phase; processing Spirulina with Na2CO3 resulted in only 4.5 wt.% 

of the nitrogen in the bio-crude as seen in Figure 7.2 (b). Again the largest fraction is in the gas and 

solids, which is a disadvantage when the water is being recycled as a growing media for algae. 

Amino acids produce lower bio-crude yields than proteins and glutamine considerably more than 

asparagines (1-8 wt.% compared to 7-17 wt.%). The advantage of the breakdown of proteins to 

amino acids prior or during liquefaction is that much less nitrogen is fractionated in the bio-crude as 

is shown by the nitrogen balance of amino acid liquefaction compared to that of proteins. Pre-

treatment of high protein algae by hydrolysis is an option that deserves further investigation as this 

would reduce the amount of nitrogen in the bio-crude. On the other hand a negative effect on bio-

crude formation can be expected. 
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Figure 7.2: Distribution of nitrogen in the product streams from hydrothermal processing under (a) 

water, (b) sodium carbonate, (c) formic acid 
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7.3.5 Carbon balance in product streams  

 

The distribution of carbon in the product phases was calculated using the TOC values from the 

water phase, estimation from the TGA analysis of the solid residues, and the elemental analysis of 

the oil and the gas phase by difference. The distribution is illustrated in Figure 7.3a-c, again Figure 

7.3 (a) illustrates using only water, (b) sodium carbonate and (c) formic acid. The protein samples 

show most of the carbon in the water phase, around 20% in the oil phase, only small amounts (<5%) 

in the residue and the remaining carbon in the gas phase. Using formic acid results in there being 

less carbon in the bio-crude as a larger fraction is found in the gas phase. Using water results in the 

largest fraction being in the bio-crude and the least in the water phase. Surprisingly the two amino 

acids behave quiet differently concerning their carbon distribution. Glutamine shows the majority of 

carbon being in the gas phase while asparagine has around 80 wt.% in the water phase; this is most 

likely due to the different solubilities. Also the catalysts have different effects on the carbon 

distribution; asparagine results in the highest levels of carbon in the bio-crude without a catalyst 

(Figure 7.3(a)) and for glutamine this is observed with formic acid (Figure 7.3(c)). The 

carbohydrates show larger amounts of carbon in the solid residue which is a result of the increased 

solid formations from carbohydrates. Carbohydrates also produce relatively high gas yields (Figure 

7.1); therefore the carbon in the gas phase is significant. The amount of carbon in the oil is higher 

using catalysts, which is the opposite effect observed for proteins, where the carbon in the oil is 

highest using water (Figure 7.3(a)). The model lipid sunflower oil shows the majority of carbon in 

the oil, with the highest values for water followed by Na2CO3 and formic acid. Formic acid shows 

significant amounts of carbon in the gas phase while the other two conditions show the remaining 

carbon in the water phase.  The carbon distribution in the product phases for the microalgae shows 

similar trends. The largest fraction of carbon for all algae is in the oil phase when not using any 

catalyst and the least when using Na2CO3. Chlorella shows the highest values of carbon in the oil 

phase and Porphyridium the lowest. The solid fraction is generally low apart from Porphyridium 

which results in a large solid fraction but the carbon fraction of the solids is generally low (20-30 

wt.%). The effect of catalysts on carbon in gas or water phase is not apparent.  
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Figure 7.3: Distribution of carbon in the product streams from hydrothermal processing under (a) 

water, (b) sodium carbonate, (c) formic acid 
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7.3.6 GC/MS analysis of the bio-crude 

 

A fraction of the bio-crudes produced from hydrothermal liquefaction was analysed by GC/MS. The 

final temperature of the GC temperature program was 250°C, at this temperature only half of the oil 

sample is volatilised as the rest has a higher molecular weight. This was estimated by performing a 

simulated distillation of the oils using TGA in a nitrogen atmosphere. Using water and sodium 

carbonate results in half of the oil mass volatilising after 250°C. Processing under formic acid 

results in around 30 wt.% of the bio-crude volatilising after 250°C, between the different feedstocks 

these values hardly vary. Therefore formic acid has a positive effect on pour behaviour of the 

obtained oils and lowers the overall molecular weight as previously shown in Chapter 6. The 

chromatograms are not included but the main compounds identified are discussed and presented in 

Table 7.3.  

The soya protein and albumin show very similar chromatographic fingerprints, processing in water 

and formic acid are similar with a small difference being observed when processing in sodium 

carbonate as can be seen in Table 7.3. The most abundant compounds for all conditions observed 

are phenols and indoles. All three conditions show the nitrogen heterocycle indole with larger 

amounts being present using water and formic acid. These conditions also show the heterocyclic 

amine piperdine and pyrrolidinone which were not found when using sodium carbonate as a catalyst. 

For the carbohydrates the compounds identified in the bio-crude from glucose do not vary 

significantly to those found in the bio-crude from starch. Processing with Na2CO3 produced the 

cyclic ketones, cyclopentanone and cyclohexanone as well as phenols. The amino acid asparagine 

processed in Na2CO3 results in large amounts of phenols and some indole compounds, however 

when using water and formic acid, the indoles are reduced and pyrrolidones and cyclic ketones are 

observed. The sunflower oil processed in water and formic acid results in the decomposition of the 

triglycerides to produce fatty acids, namely hexadecanoic acid, tertadecanoic acid and oleic acid. 

Under Na2CO3 the resulting oil contained alkenes, enols and enones mainly the 6- and 7-chain  

lengths.  

The GC/MS analysis of bio-crude from Chlorella with Na2CO3 indicates the presence of phenols 

and piperdine derived compounds but also the alkanes hepta- and hexadecane. Water and HCOOH 

processing results in similar compounds but additionally aliphatic amides such as 

dimethyldecanamide, dodecamine and the fatty acid octanoic acid. Nannochloropsis, which has a 

high lipid content, resulted in the bio-crude containing large amounts of fatty acids and heterocycles 
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such as indole. Processing with Na2CO3 indicates the presence of the acyclic alcohol phytol, phenol 

derivatives and hexadecane. Porphyridium produces large amounts of indole using Na2CO3 but also 

phenolic compounds and phytol. No phytol could be identified using H2O and HCOOH but 

pyrrolidinone compounds are present. The high protein containing cyanobacteria Spirulina resulted 

in a higher proportion of protein derived pyrroles and indoles but also some hepta- and hexadecane. 

Under water and formic acid processing, there are aliphatic amides present. Porphyridium liquefied 

with Na2CO3 only resulted in phenolic and indole compounds and phytol, where the indole peaks 

were by far the largest. Without catalyst additional pyrrole derived compounds are observed. 

Processing in HCOOH again results in the formation of the aliphatic amide hexadacamide and the 

fatty acid tetradecanoic acid.  The use of sodium carbonate results in a larger fraction of high 

molecular weight material, this is observed from both GC/MS and simulated distillation 

experiments by TGA. The higher the protein contents of the algal feedstock, the higher the fraction 

of nitrogen heterocycles, pyrroles and indoles in the bio-crude. Using sodium carbonate increases 

the formation of phenolic compounds and also increases the breakdown of lipids to alkanes while 

water and formic acid resulted in the lipids breaking down to fatty acids. The use of HCOOH 

produces an increase in fatty acid amides. Table 7.3 shows some distinct clusters of compounds for 

the different model compounds, especially proteins and carbohydrates. The protein cluster is also 

present for the algae which all consist of a significant amount of proteins. The lipid cluster can also 

be seen for the high lipid algae Nannochloropsis.. Surprisingly the high carbohydrate containing 

algae Prophydridium shows no compounds associated with carbohydrates, this is due to the 

carbohydrate fraction only producing about 7% bio-crude. Therefore the compounds derived from 

lipids and proteins are predominant in the GC-MS chromatograms and Table 7.3. 
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Table 7.3: Most abundant GC-MS identified compounds in the bio-crudes from liquefaction at 

different conditions
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7.4 Conclusions 

 

From the liquefaction results of the model compounds and the microalgae it was shown that the bio-

crude formation follows the trend lipids>proteins>carbohydrates. Lipids form oil yields of 80-55 

wt.%, protein 18-11 wt.% and carbohydrates 15-6 wt.%. Both proteins and lipids were converted to 

bio-crude most efficiently without the use of catalysts while carbohydrates are best processed using 

Na2CO3. This is shown by the liquefaction of the model compounds and also fits with the results of 

the high protein and high lipid microalgae, Spirulina and Nannochloropsis respectively. Amino 

acids produce lower bio-crude yields than proteins and glutamine considerably more than 

asparagines (1-8 wt.% compared to 7-17 wt.%). The advantage of the breakdown of proteins to 

amino acids prior or during liquefaction is that much less nitrogen is found in the bio-crude as is 

shown by the nitrogen balance of amino acid liquefaction compared to that of proteins. Pre-

treatment of high protein algae by hydrolysis is an option that deserves further investigation as this 

would reduce the amount of nitrogen in the bio-crude. On the other hand a negative effect on oil 

formation can be expected.  

It was shown that carbohydrates are best hydrothermally liquefied using sodium carbonate as this 

increased the bio-crude yields significantly for the model compounds as well as the high 

carbohydrate containing microalgae Porphyridium. Na2CO3 selectively increases the 

decarboxylation of carbohydrates. Very high lipid containing algae are best processed using no 

catalyst as this gives the highest bio-crude yields and Na2CO3 should not be used as this results in 

soap formation which increases the solid residue.  

It was further shown that the different biochemical compositions of microalgae behave additively, 

which means higher oil yields than lipid contents can be achieved by hydrothermal liquefaction. 

This is a distinct advantage of hydrothermal liquefaction compared to conventional physical 

extraction methods. The high lipid containing algae Nannochloropsis showed the highest bio-crude 

yields correlating to its higher lipid content. The cyanobacteria Spirulina showed 10 % greater bio-

crude yields compared to processing with catalysts. This is because of the very high protein content 

(65 wt.%); it was proven that proteins exhibit higher bio-crude yields without catalysts. The high 

carbohydrate containing microalgae Porphyridium performed best using Na2CO3 which further 

proves the point of carbohydrates best being processed using Na2CO3.  

GC/MS results showed that formic acid and water liquefaction produce very similar bio-crude 

components. Proteins produce large amounts of nitrogen heterocycles, pyrroles and indoles, 
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carbohydrates produce cyclic ketones as well as phenols while lipids are converted to fatty acids. 

High protein containing algae therefore were shown to produce larger amounts of nitrogen 

compounds. Na2CO3 was shown to produce more large molecular weight compounds and phenolic 

compounds.   
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8. CHAPTER VIII - Nutrient Recycling from HTL process water 
 

8.1 Introduction 

 

As shown in previous Chapters 5-7 HTL is an ideal route for the conversion of high moisture 

content biomass such as microalgae, as a drying step of the feedstock is not necessary. Results have 

shown that a bio-crude with a high heating value can be produced from the HTL of microalgae, 

although the oxygen content and nitrogen content are typically still higher than crude oil [47, 68, 

77]. An additional benefit of the hydrothermal processing routes is the potential to recycle process 

water which is rich in nutrients such as nitrogen and phosphorous and elements such as Fe, Ca, Mg, 

K, as well as other mineral matter and polar organics (see Chapter 5-6) [47]. One of the challenges 

previously identified concerning HTL of microalgae is the large amount of organic carbon in the 

process water [77]. This represents a loss of carbon efficiency and reduces the bio-crude yields. It is 

expected that the organic carbon in the process water of HTL can act as a substrate for mixotrophic 

growth of microalgae. This can lead to increased biomass yields and higher carbon efficiency. 

Bhatnagar et al. showed that strains of Chlamydomonas, Chlorella and Scenedesmus were able to 

grow mixotrophically in various sources of process water high in TOC, which led to higher biomass 

yields [141]. The potential for nutrient recycling is thought to be essential for the economic 

development of large scale microalgae cultivation. Nutrient recycling potential has largely been 

focussed on conversion by anaerobic digestion [142] and only limited studies have evaluated 

hydrothermal processing routes. Tsukahara et al, (2001) demonstrated the potential for nutrient 

recycling on Chlorella vulgaris by low temperature gasification of microalgae [98] and more 

recently  Jena et al. (2010) have shown that it is possible to cultivate microalgae in the process 

water following HTL of the freshwater microalgae Chlorella minutissima  [48] although they used a 

different strain for cultivation than for the HTL experiments. Each of these options, whether 

anaerobic digestion or hydrothermal processing have their associated problems, but it is recognised 

that integration of microalgae cultivation with some sort of nutrient recycle is essential. This 

investigation reports the potential of recycling the process water from HTL of four different algae 

strains and two different HTL processing temperatures.   

It is envisioned that a final industrial process could be integrated into a closed loop concept with 

integrated nutrient recycling as presented in Chapter 1. In the current Chapter the aim was to 

demonstrate the feasibility of a potential closed loop HTL system with nutrient recycling. In the 
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current laboratory study the cultivation systems were simple, small scale 500 ml conical flasks and 

HTL was performed in batch 75 or 660 ml high pressure reactors. The purpose of the current 

research is to demonstrate the feasibility of using the process water for nutrient recycling on 

laboratory scale. However, in an industrial system a more sophisticated cultivation and processing 

system would be required. A continuous HTL reactor would also be desirable and the use of 

solvents to separate the phases would then be avoidable due to self separation of the bio-crude, this 

is addressed in Chapter 10.  

 

8.2 Methodology 

 

For the hydrothermal liquefaction experiments at 350°C approximately 3g (Chlorella and 

Scenedesmus) of microalgae were added to a 75ml Parr high pressure reactor with 27 ml of distilled 

water. The top temperature was held for 1 hour, after which compressed air was blown onto the 

reactor to cool it to room temperature at approximately 20 ºC/min. The experiments at 300°C for 

Chlorogloeopsis , Spirulina and Chlorella were processed at the same ratios (~24g biomass/220 ml 

H2O) and times but in a 660 ml Parr reactor. Both Parr reactors are constructed of 316 Stainless 

Steel with an elemental composition of 65 wt.% Fe, 12 wt.% Ni, 17 wt.% Cr, 2.5 wt.% Mo, 2.0 wt.% 

Mn and 1 wt.% Si. The experiments at 350ºC were carried out in duplicate and average values are 

reported however due to limited availability of microalgae biomass the experiments at 300ºC in the 

larger reactors were only carried out once.  

 

8.3 Results and Discussion  

 

8.3.1 HTL Results  

 

The microalgae strains investigated in the current Chapter are Chlorella vulgaris, Spirulina 

platensis, Scenedesmus dimorphus and Chlorogloeopsis fritschii. Analysis of these feedstocks can 

be found in Chapter 4 and the data sheets in APPENDIX A. The microalgae were chosen to 

provide a range of different biochemical contents to study the change in aqueous phase composition 

and subsequent nutrient recycling. It is known that the biochemical composition affects the HTL 
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behaviour (see Chapter 7) but the nutrient recycling potential has not been investigated. The two 

cyanobacteria Chlorogloeopsis and Spirulina have very low lipid contents, 10-20 wt.% lower than 

the microalgae strains. Spirulina has the highest protein content which corresponds to its highest 

nitrogen content. There is also a range of carbohydrates present which is especially high for 

Chlorogloeopsis (44 wt.%). The oxygen content of all strains was typically around 30 wt.%. The 

oxygen and the nitrogen components are the two elements primarily removed during HTL. 

Following HTL the bio-crude was weighed and analysed. The elemental composition and the 

calculated Higher Heating Value (HHV) of the bio-crudes are shown in Table 8.1. The reactions 

performed at 300°C were processed in a 660 ml Parr reactor while the reactions at 350°C were 

processed in a smaller 75 ml reactor. The bio-crude yields range from 27 wt.% for Scenedesmus at 

350°C to 47 wt.% for Chlorella at 300°C. The high bio-crude yields of Chlorella are due to its 

higher lipid content. At higher temperatures, more decomposition to polar organics is observed 

which result in a higher TOC content in the water phase and a reduction in polar organics in the bio-

crude.  As shown by the TOC results of Chlorella OZ processed at 300 and 350°C in Chapter 5. At 

higher temperatures, the oxygen content of the bio-crude is also lower. The oxygen content varies 

significantly for the bio-crude derived from the different algae strains, being highest for 

Chlorogloeopsis which corresponds to the lowest HHV. The nitrogen content of the two 

cyanobacteria Chlorogloeopsis and Spirulina are highest as a large fraction of the bio-crude 

originates from the protein fraction as shown in Chapter 7. The nitrogen content of the Chlorella 

bio-crude is higher at 350°C as more protein is broken down than at the lower temperatures.  
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Table 8.1: Influence of temperature and biomass species on bio-crude composition, higher heating 

value, and yield. 

  

 Elemental Composition of Bio-

crude (wt.% daf)      

 Strain 

Temp.  

(°C) C H N S O* 

HHV 

(MJ/kg) 

Bio-crude 

yield 

(wt.% daf) 

               

Chlorogloeopsis 300 66.5 7.2 6.8 0.4 19.0 32.0 38.6  

Spirulina  300 72.7 8.8 6.3 0.6 11.5 36.1 35.5 

Chlorella  300 75.9 9.0 5.3 0.4 9.3 37.5 46.6 

Chlorella  350 70.7 8.6 5.9 0.0 14.8 35.1 35.8±0.3 

Scenedesmus  350 73.0 8.2 5.7 0.5 12.6 33.6 27.1±0.8 

*by difference; daf = dry ash free; HHV= Higher Heating Value; elemental analysis in duplicate, 

yields in duplicate and single for 300°C experiments 

 

The product distribution following HTL is shown in Figure 8.1. The gas yields are relatively low 

and consist mainly of CO2. The data is presented on an as received basis which explains the lower 

bio-crude yields than the dry ash free yields presented in Table 8.1. The product yields of bio-crude 

range from 23 to 41 wt.% for Scenedesmus and Chlorella 300°C respectively. The solid residue is 

highest for Scenedesmus which exhibits the highest ash content. The solid residue consists mainly 

of the mineral matter but also small amounts of carbon and nitrogen [47]. The largest fraction is 

shown to be the process water ranging from 46 wt.% for Chlorella at 300°C to 68 wt.% for 

Spirulina. This clearly represents a major loss if this fraction was not recovered. The amount of 

carbon and nitrogen in the product phases is distributed similarly to results shown previously in 

Chapter 7. Up to 40 wt.% of carbon and 50 wt.% of nitrogen accumulate in the process water, 

resulting in low carbon recovery efficiencies; this was shown in the previous Chapter 7 where a 

mass balance on C and N in the product phases was carried out on the HTL of four microalgae 

strains at the same conditions [77]. Therefore the feasibility of recycling the process water for algae 

cultivation is investigated to recover the nitrogen and carbon lost to the water phase. In Chapter 5 
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the water phase has also been shown to be rich in PO4
3-

, NH4
+
 and K, compounds essential for algal 

growth.  

 

 

Figure 8.1: Product distribution from the hydrothermal liquefaction of the different microalgae 

strains at 300°C and 350°C 

 

8.3.2 Analysis of Process Water 

 

Due to the large fraction of product distributed in the process water, its composition was examined 

to determine the suitability of using this as a source of nutrients for microalgae cultivation. Table 

8.2 lists the main components identified in the water phase as determined by ion exchange 

chromatography, photometry and ICP-OES. In addition, the water phase is known to contain 

nitrogen heterocycles such as pyrroles, indoles and phenols from the decomposition of the protein 

component [47]. The process water was analysed for total phenol content by photometry as these 

compounds are toxic to certain algae and can inhibit growth. Scragg reported that the growth of 

Chlorella vulgaris was inhibited with concentrations of 400 mg/l, but even at concentrations of 100 

and 200 mg/l the growth rate was reduced [101].  
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Table 8.2 shows that for all species except nitrate, concentrations in the process water are much 

higher than those in the standard growth media 3N-BBM+V.  In particular, concentrations of K, 

NH4
+
, acetate and PO4

3-
 are very high, orders of magnitude higher than those found in the media. 

These three nutrients are important to algal growth and are one of the main economic constraints.  

Acetate is of particular interest because it could potentially act as a substrate for mixotrophic 

growth, increasing productivity and recycling carbon [141]. In order to reach levels of nutrients 

similar to the standard media, the process water must be substantially diluted as shown by Jena et al. 

[48]. It is important to note that the nitrogen source in the media is in the form of nitrate, whereas in 

the process water the nitrogen is mainly present as ammonium. Microalgae are able to use both 

sources of nitrogen, and it has been suggested that neither actually provide an advantage to growth 

[143]. The total amount of nitrogen ranges from 3000-8000 mg/l, Scenedesmus and 

Chlorogloeopsis have the lowest amounts due to the low nitrogen content in the algae, Spirulina on 

the other hand has the highest value corresponding to its high protein and nitrogen content. 

Concerning the nitrogen concentrations compared to the three fold nitrogen BBM media, the 

process water should be diluted between 25 and 65× its original volume to achieve the same 

nitrogen levels. For a standard BBM medium the dilutions would be 75-200 times its original 

volume.  

 

Nickel concentrations are of particular importance due to the inhibitory effects on microalgae, 

particularly for Chlorella vulgaris which was observed to be inhibited by nickel levels as low as 

0.85 μg/l [100]. Nickel is present in very small amounts in the algae but it is also added to the 

process water by leaching of the reactor walls during HTL. A study was carried out in a Hastelloy 

75 ml reactor with only distilled water led to a nickel concentration of 41 mg/l and 2.5 mg/l Fe at 

the same conditions [144]. It is expected that the leaching of nickel from 316 Stainless Steel as used 

in this study is less because of the lower nickel content of this steel alloy. This is preliminary 

confirmed by the nickel analysis in Table 8.2 ranging from 0 to 4 mg/l.  The difference in Ni 

concentrations in the two Chlorella process waters is due to the more severe processing conditions 

leading to additional Ni leaching to the process water. Scenedesmus process water has a higher Ni 

concentration due to the higher Ni content of the algae feedstock. Haiduc et al. realized the 

significance of the nickel leaching effect in their study on hydrothermal gasification of microalgae 

[88]. They state that when a continuous system with nutrient recycling is used nickel concentrations 

would accumulate over time leading to growth inhibition. In the growth trials Haiduc et al. carried 

out, the media was doped with nickel and all concentrations (1-25 mg/l) had adverse effects on 

algae growth. They came to the conclusion that reactor wall corrosion, metal leaching and nickel 
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concentrations in the process water need to be monitored closely. They suggest that levels of 25 

mg/l should not be exceeded by either additional dilution or removal of the metal toxicant.   

 

Table 8.2: Nutrient analysis of the process water compared to standard growth media 3N-BBM+V 

(mg/l)   
Chlorogloeopsis 

300°C 

Spirulina 

300°C   

Chlorella  

300°C 

Chlorella  

350°C 

S. dimorphus 

350°C 

3N-

BBM+V*   

pH   8.9 8.9 9 9.2  8.4  6.8 

TOC   9060 15123 11373 13764 11119 -  

Total N   5636 8136 6636 6888 3139 124 

NH4
+ 

 4748 6295 5673 5920 5280 -   

PO4 
3-

  280 2159 3109 1121 1470 153 

K   303 1506 1460 1419 1150 63 

Acetate   2146 7131 4106 5378 1290 -  

NO3 
- 
 508 194 329 237 192 547 

Ni   3.8 0 0.1 0.4 0.8 -  

Phenols  178 98 108 158  80 -  

*composition of 3N-BBM+V calculated based on prepared media composition; no replicate of analysis available for process waters 

 

The amount of phenols in the process water could also pose a problem due to their known inhibition 

affect on algae growth [101].  Phenols are typically present at concentrations of 100-200 mg/l, 

without dilution of the water phase this would most likely inhibit algal growth.  The pH of the 

process water is more alkaline for all conditions compared to the 3N-BBM media. This is due to the 

large amounts of ammonium present. The TOC analysis shows that there are significant levels of 

organic carbon in the process water. The mass balance in Figure 8.1 showed large amounts of the 

product distributed to the process water and Chapter 7 it was shown that this fraction contains large 

amounts of carbon [77]. The highest values of TOC (Spirulina, ~15000 mg/l TOC) in the process 

water correspond to the highest fraction of product in the entire mass balance in Figure 8.1. High 
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TOC levels are beneficial if the microalgae are capable of using this carbon for mixotrophic growth 

although ideally it would be beneficial if the bio-crude yields were higher. The organic content of 

the process water is largely dependent upon the biochemical content of the microalgae as was 

shown in Chapter 7 where model proteins, carbohydrates and lipids were processed under the same 

conditions [77]. In general, the higher the protein content, the higher the phenol and nitrogen 

heterocycles present in the oil [47]. Phenol and alkyl phenols are also present in the water as well as 

pyrolidinones, piperidines, pyrroles and indoles [145]. 

 

8.3.3 Cultivation Trials 

 

Due to the high concentration of the major nutrients in the process water compared to the media, it 

was necessary to dilute the process water with distilled water before cultivation. Jena et al. (2010) 

used similar dilutions for growth trials with the recovered aqueous phase from the HTL of Spirulina. 

They found that a tenfold dilution was too strong and no growth occurred [48].  The growth trials 

for this study were performed on dilutions of 50×, 100×, and 400× of the original process water. 

Trials were also performed in the standard media for comparison as well as a distilled water control. 

Growth was determined by chlorophyll a absorbance as described in Chapter 3. The 

cyanobacterium Chlorogloeopsis exhibits a very strong cell wall so that the acetone could not 

extract the chlorophyll a from the cells. Due to this there is no data available for the growth trials 

over time of Chlorogloeopsis but the final growth was determined.  Figure 8.2(a+b) shows the 

chlorophyll a absorbance of growth trials for Spirulina and Chlorella grown in the recovered 

aqueous phase from HTL at 300°C. The chlorophyll a absorbance of Spirulina for the distilled 

water, 50× and 100× dilutions showed that no algae growth occurred at these conditions (Figure 

8.2(a)).  The 400× dilution of the process water and the standard media have positive chlorophyll a 

absorbance indicating growth was occurring. The values follow the same trend of steadily 

increasing growth after day two and show similar growth although the standard media absorbance is 

slightly higher. It appears that Spirulina is not able to grow in the stronger 50× and 100× dilutions, 

due to inhibitory effects, which may be attributed to the presence of metals such as nickel and 

organics such as phenols. According to Belkin and Boussiba (1991) the ammonia uptake at the 

observed concentrations should not pose a problem for Spirulina, especially at the pH levels 

measured (8.9 pH) [146]. The growth of Chlorella is plotted in Figure 8.2(b). The growth in the 

process water dilutions showed growth in all three dilutions while no growth occurred in the 
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distilled water control. A fourfold increase in biomass concentration was observed in the first 7 days, 

and then a reduction in concentration is observed for all three trials. It appears that there are not 

sufficient nutrients available past day 7 for further growth. The 100× dilution exhibits a small final 

increase in absorbance resulting in the highest relative biomass concentration.  

 Figure 8.2: Growth of algae in process water dilutions of (a) Spirulina 300˚C (b) Chlorella 300˚C 

determined by chlorophyll a absorbance 

 

The growth trials of the HTL process water from Chlorella and Scenedesmus at 350°C was carried 

out in the same manner but the dilutions chosen were 50×, 200×, 400× and 600× the original 

volume. The cultivation trials are compared to the growth in respective standard media 3N-BBM+V. 

These trials were performed in a different laboratory where chlorophyll a absorbance could not be 

measured; therefore cell counting using a haemocytometer was used. The correlation between cell 

count and chlorophyll a absorbance is expected to fit well for mixo- and photo-trophic growing 

algae as was shown by Bird et al. (1984) [147]. The cell concentration of the growth trials are 

plotted in Figure 8.3(a+b) for Chlorella and Scenedesmus respectively. Both algae showed no 

growth in the strongest dilution of 50×. This is most likely due to the high concentration of 

inhibitors such as nickel, phenols and fatty acids. Chlorella grew best in the standard media with a 

final cell concentration of ~6.0×10
06

/ml. Growth in the 400× and 200× dilutions resulted in a similar 

final cell concentration of around half compared to the media. On day 7 the 200 cell count was very 

high, higher even than in the media. The 600× dilution showed some growth but the cell count was 

never above 1.5×10
06

/ml indicating insufficient nutrient availability for microalgae growth. It 

appears that the ideal concentration for cultivation of Chlorella in recovered process water lies 

between 200-400× dilution; there are sufficient nutrients available to support growth and the 

concentration of inhibitors is not too high. The results from the Scenedesmus growth trials are 

similar; highest cell count occurred for the media with 2.2×10
06

/ml. The cell counts for 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Day 0 Day 2 Day 7 Day 9 Day 11

R
el

. 
C

h
lo

ro
p

h
y
l 
α
 A

b
s.

(b)

Water

50x

100x

400x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Day 0 Day 2 Day 7 Day 9 Day 11

R
el

. 
C

h
lo

ro
p

h
y
l 
α
 A

b
s.

(a)

Water

50x

100x

400x

Media 



CHAPTER VIII - Nutrient Recycling from HTL process water 

152 

 

Scenedesmus are much lower due to their larger cell size compared to Chlorella. The highest cell 

concentration for Scenedesmus is only 20 % lower than in the media while the highest results for 

Chlorella is 40 % lower. Similarly to Chlorella the cell counts on day 7 are higher for the process 

water dilutions 400× and 600×. Best growth for both algae strains occurred at 400× dilution, but the 

cell counts of Scenedesmus were closer to the media than Chlorella. The second highest cell count 

in process water dilutions for Scenedesmus occurred in 600× while it was 200× for Chlorella. This 

suggests that Scenedesmus can cope with lower nutrient availability than Chlorella. At 200× 

dilution, Scenedesmus struggled to reproduce; an increase in cell count only occurred on the last 

sampling day indicating that the amount of inhibitors were too large to allow normal cell 

reproduction.  

 

 

Figure 8.3: Growth of algae in process water dilutions of (a) Chlorella 350˚C (b) Scenedesmus 

350˚C determined by cell count 

 

Cultures were harvested at 11 and 12 days of growth, respectively for the cultures grown with the 

process waters from HTL conditions at 300°C and 350°C, centrifuged, dried in a desiccator and 

weighed to obtain a final biomass yield. The yield is compared to the yield in the respective 

standard medium and is presented in Table 8.3. Again the 300°C samples were investigated for 50×, 

100× and 400× while the 350°C samples were grown in 50×, 200×, 400× and 600× dilutions of the 

original process water. The trials at 300°C led to a significantly higher final biomass concentration 

due to the higher amount of starting material used to inoculate the growth trials. The purpose of this 

section is however to compare the process water cultivation to the respective standard media growth. 

Chlorogloeopsis for which no growth data by absorbance is available showed growth in the 100× 

and 400× dilutions but no growth at the stronger 50× dilution. Again the amount of inhibitors such 
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as nickel, which is high in this case (Table 8.2), potentially inhibited the cells to reproduce. Table 

8.3 shows that at 100× dilution the total biomass production of Chlorogloeopsis is only a third 

compared to the standard medium. For the 400x dilution on the other hand, the yield is increased by 

a third compared to the media. This indicates that Chlorogloeopsis is able to use the organic carbon 

in the process water to grow mixotrophically. Mixotrophic growth can lead to higher biomass 

production compared to exclusively phototrophic growth [141]. It appears that the other 

cyanobacteria Spirulina is more sensitive to the growth inhibitors present, as there is no biomass 

production at the 100× dilution. The potential amount of growth inhibiting fatty acids could be quite 

high, as the TOC levels are very high for the Spirulina process water (Table 8.2). It is known that 

some fatty acids are dissolved in the process water; these are included in the TOC measurement and 

can act as inhibitors for microalgae growth [102]. Table 4 shows that at 400× dilution the final 

growth is similar to the standard media at around 700 mg/l. Both these observations are confirmed 

by the absorbance data in Figure 8.2 (a).  

The process water from Chlorella processed at 300°C exhibits growth in all three dilutions 

investigated, indicating that Chlorella is less sensitive to potential growth inhibition. The growth is 

highest at 100× dilution, being only 15 % less than the 3N-BBM+V media. At the lower and higher 

dilutions the growth is similar, just under half of the media growth. The absorbance data in Figure 

8.2 (b) shows the same trend. The growth trials of Chlorella and Scenedesmus using process waters 

from the 350°C HTL process were performed for 50×, 200×, 400× and 600× times dilution. Both 

microalgae strains were able to grow in all dilutions above 50×. It appears that the 50× dilutions are 

too concentrated for algal growth to occur. Chlorella was able to grow in the 50x dilution of 300°C 

process water but not in the 350°C process water. This is due to the considerably higher 

concentrations of TOC, phenols and Ni (Table 8.2). Additional nickel will leach into the process 

water from the reactor walls at more severe conditions. At 200× dilution, Chlorella was able to 

grow only about half the amount of cells compared to the media (Figure 8.3 (a)) but the final 

biomass yield was 15 mg/l higher. As shown with Chlorogloeopsis this indicates that mixotrophic 

growth is occurring leading to higher biomass yields. At the higher dilutions the biomass yield is 

only 60 wt.% and 40 wt.% compared to the standard media for 400× and 600× respectively. The 

cell count at 400× is actually higher than at 200× but the biomass yield lower, this is attributed to 

the fact that the TOC levels at 200× are higher leading to increased mixotrophic growth which in 

turn leads to increased biomass. The biomass yields of Scenedesmus, even though they are high in 

cell numbers are quite poor with a maximum of 48 mg/l at 400× dilution, compared to 117 mg/l for 

the standard media. This indicates that Scenedesmus is not able to use the organic carbon for 
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mixotrophic growth to the same extent as Chlorella and Chlorogloeopsis. Additionally the process 

water of Scenedesmus has very low acetate levels which can act as a substrate for mixotrophic 

growth. The authors acknowledge that the deviance in the data presented in Table 8.3 is high which 

is most likely due to the small volumes and resulting mass of algae leading to high estimation of 

errors. Nevertheless the data presented generally fits with the growth curves in Figure 8.2 & 8.3 

and shows that higher biomass yields can be achieved than in the standard media.  

 

Table 8.3: dry weights of harvested algae at the end of growth trials in dilutions of process water 

and standard media (mg/l) 

 

Process water dilutions for growth media  

  50× 100× 200× 400× 600× Media* 

Chlorogloeopsis 300˚C no growth 124 ± 10 NA 498 ± 99 NA 386 

Spirulina 300˚C no growth no growth NA 657 ± 92 NA 706 

Chlorella 300˚C 449± 18 877 ±280 NA 459 ± 78 NA 1020 

Chlorella 350˚C no growth NA 94 ± 19 47 ± 3 30 ± 3 79 

Scenedesmus 350˚C no growth NA 33 ± 2 48 ± 3 28 ± 1 117 

NA = not analysed; *no replicates carried out, process water trials carried out in duplicate 

 

8.3.4 Analysis of process water after cultivation  

 

Following cultivation in the process water from HTL, the culture was centrifuged and the 

supernatant was re-analysed for the same nutrient parameters as before. Because Spirulina requires 

high bicarbonate (~15g/l) for growth, all Spirulina cultures were supplemented with NaHCO3. Due 

to the large amounts of Na, ion-exchange chromatography could not quantify the minor nutrients 

present with certainty. Due to this, the data is not presented for the growth trials of Spirulina 300°C 

process water. Chlorogloeopsis 50×, Chlorella 350°C 50× and Scenedesmus 50× data is also not 

presented as no growth occurred as shown in Section 8.3.3.  
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Table 8.4 presents a summary of four nutrients at the point of inoculation and of the supernatant 

after harvest.  The data shows that all strains are able to use NH4
+ 

as a source of nitrogen rather than 

nitrate as it is present in the media. This has previously been reported and is essential if nutrient 

recycling from HTL is considered, as most of the N is in the form of NH4
+
 [148]. At the 200× 

dilution, practically all nutrients are consumed by Chlorogloeopsis resulting in the high growth 

observed in Table 8.3. Growth does not seem to be inhibited by a lack of PO4
3-

 at this condition. At 

100× the nutrient uptake appears to be significant for all four nutrients, especially acetate, which is 

readily consumed. From this it could have been expected that the final biomass yield would be 

slightly higher. Chlorella 300°C shows similar trends with NH4
+
 and acetate readily consumed at all 

dilutions, especially at 400× dilution it is apparent that there were insufficient nutrients available for 

further growth. This is confirmed by the dip in cell production in Figure 8.2(b) after day 7 when the 

nutrients are all consumed. The data leads to the conclusion that the limiting nutrients for Chlorella 

are nitrogen and K. There is still PO4
3-

 present after cultivation and acetate is not necessary, as 

Chlorella only consumes this in mixotrophic or heterotrophic growth. The uptake of nutrients for 

Chlorella 350°C is different to Chlorella 300°C, as there is no apparent limiting source of nutrients. 

NH4
+
, K and PO4

3-
 are all still present in ample concentrations after cultivation although around half 

of the nutrients in each dilution have been consumed. Only acetate is entirely consumed which leads 

to the higher biomass yields presented in Section 3.4. From the nutrient uptake it cannot be 

determined why there is a fall in biomass productivity of Chlorella at the 200× dilution after day 7 

(Figure 8.3(a)).  Scenedesmus process water at 350°C is relatively low in acetate which could be 

the reason why a lower biomass yield is observed compared to Chlorogloeopsis and Chlorella 

which both readily used acetate as a substrate for mixotrophic growth. At 200× and 400× 

Scenedesmus seems to run out of nitrogen but K and PO4
3-

 seem to be present in ample 

concentrations.  
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Table 8.4: Nutrient analysis of the culture medium before and after cultivation trials in different 

dilutions of process water. All units in mg/l, no replicates carried out 

 

Media Spent Media Spent Media Spent Media Spent 

Chlorogloeopsis 300˚C NH4
+
 (mg/l) K (mg/l) Acetate (mg/l) PO4

3-
(mg/l) 

100× 58.7 9.6 13.5 1.6 105.2 0.3 4.4 2.2 

400× 30. 4 0.4 4.3 0.2 21.5 0.8 0 0 

Chlorella 300˚C 

        50× 64.9 5.6 13 0.5 129.9 3.34 119.5 96.4 

100× 53.1 0.9 11.8 0.3 32.2 1.49 54.6 45.3 

400× 13.4 0 4.4 0.2 0 0 15.3 13 

Chlorella 350˚C 

        200× 28.4 18.4 7.3 3.3 20.5 0.9 8.3 2.5 

400× 23.8 11.7 3.4 1.8 10.3 0 4.1 5.7 

600× 15.9 8.2 2.3 1.1 5.7 0.8 7.5 4.1 

Scenedesmus 350˚C 

        200× 26.4 17 5.8 4.4 6.5 0 14 7.4 

400× 13.2 0 2.9 2.5 3.2 0 4.1 3.7 

600× 8.8 0 1.9 1.1 2.2 0.7 4.2 2.5 

 

 

8.5 Conclusions 

 

The water phase resulting from the HTL of microalgae was shown to be high in all required 

nutrients for algae growth, orders of magnitude higher than in standard growth media. Levels of 

nitrogen were shown to be 75-200 times higher compared to a standard BBM medium. TOC levels 

were in the range of 9000-15000 mg/l of which between 5 and 20 wt.%  present as acetate. The 

growth trials in the recycled process water show that heavy dilution of the water phase is necessary 
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to avoid the effects of growth inhibitors such as phenols, fatty acids and nickel. All algae strains 

were able to grow in the recycled water but different optimum dilutions were observed. All strains 

were able to use acetate as a substrate for mixotrophic growth and NH4
+
 as a source of nitrogen. 

Chlorogloeopsis at 400× and Chlorella 350°C at 200× dilutions achieved higher biomass yields 

than in their respective media probably by growing mixotrophically. The analysis of the spent water 

after cultivation showed that choosing the right dilution for each specific case is necessary to 

achieve optimum growing conditions. The analysis also revealed that the majority of acetate and 

ammonium were removed by algal growth. It was demonstrated that the optimum dilution is strain 

dependent but ranges between 200-400×. By recycling the organic carbon in the water phase both 

the carbon efficiency and the biomass yields can be improved. Recycling of nutrients from the HTL 

process water additionally decreases the financial strain on nutrient input for cultivation and the 

carbon footprint.  
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9. CHAPTER IX - Py-GC-MS for analysis of microalgae 

 

9.1 Introduction 

 

Microalgae have a vast range of applications in different industries. One of the most researched 

areas is currently the bio-fuels industry due to the ability of microalgae to produce lipids. Extracted 

lipids are most commonly converted to fatty acid methyl esters for bio-diesel production. 

Microalgal lipids also have applications within nutrition and health industries due to the high 

concentration of polyunsaturated fatty acids present. Polyunsaturated fatty acids are essential for 

human health and cannot be synthesized in the human body. In the nutritional industries, microalgae 

are also used as a source of high-value compounds such as proteins and pigments, particularly the 

carotenoids beta-carotene and astaxanthin. Microalgae are currently cultivated on a commercial 

scale for extraction of these compounds [22]. Dunaliella salina (19/30) and Haematococcus 

pluvialis are produced on a large scale for beta-carotene and astaxanthin production respectively 

[18].  

Extraction and analysis of these compounds is a time-consuming process requiring specialist 

equipment. Pigment analysis is most commonly performed using HPLC following extraction with 

an organic solvent such as acetone. Proteins are often analysed by the J. Waterborge method [106] 

which involves the use of a folin reagent, subsequent absorbance measurements at 720 nm and 

comparison to a protein standard absorbance at this wavelength. Alternately, an approximation 

method using the elemental composition of microalgae and nitrogen conversion factor could be 

performed [113].  

Total lipids are most commonly quantified by the Bligh-Dyer method, which involves extraction of 

lipids using a chloroform-methanol mixture and subsequent gravimetrical quantification. The 

extracted lipids can be analysed directly by HPLC or by GC-MS analysis after transesterification to 

FAMEs. Alternatively, a higher throughput technique for total lipids is the Red-Nile dye method 

which dyes lipids red, enabling spectrometric analysis. Total carbohydrates are commonly 

measured using a method developed by Sol M. Gerchakov, this involves hydrolysis using H2SO4 

with phenol being used as an colorimetric indicator for sugars [107]. Alternatively total 

carbohydrates can be determined  by hydrolysis of the carbohydrates to mono-saccharides with 

subsequent analysis by HPLC [113].  
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All methods mentioned involve time-consuming sample preparation, dry feedstock and are specific 

to the analyte to be determined. This can pose problems as microalgae accumulate certain 

biochemical components at different stages of their growth, resulting in vast amounts of sampling 

and analyses. For example, lipid synthesis occurs during the growth period when nutrients, 

(particularly nitrogen) become depleted. The varying proportions of different biochemical 

components during the growth cycle are also accompanied with a change in growth rate, which 

must be taken into account when a maximum biomass harvest is desired. Once growth has stabilised 

this can be exploited to re-inoculate fresh cultures or the biomass can be harvested at this point. 

Furthermore it is desirable to know the proportion of the different biochemical components at any 

given time during growth to maximise recovery of specific components.  The maximum amount of 

sought-after compounds usually does not correspond with the maximum cell density or growth rate.  

Growth and accumulation of microalgae has a vast range of influences such as nutrient 

availability/composition, pH, light intensity, light cycle duration, temperature, mixing, CO2, and O2 

concentrations. When producing high-value compounds it is essential to optimise these conditions 

to achieve the highest yields. This remains true within bio-fuel production, however, in some 

applications, such as water remediation or algae production for hydrothermal processing, the 

nutrient removal and total biomass yield respectively, are more important.  

When the biochemical composition of microalgae is of particular importance, a vast amount of 

analysis is required to identify different components at different growth conditions. This is usually a 

tremendously costly and time-consuming process. The aim of the current Chapter was to develop an 

analytical method for multiple biochemical components using a single, simple technique with 

minimal pre-treatment. Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC-MS) was 

explored as a technique to rapidly estimate growth rates and identify the change in microalgae 

composition over time, in different media and varying growth conditions. Analytical pyrolysis has 

previously been used to study the seasonal variation of seaweed as a bioenergy feedstock by Adams 

et al. [46]. Marker compounds were assigned to carbohydrate, lipid, protein and phenolic origins of 

the macroalgae to enable qualitative comparison of the composition of macroalgae over its yearly 

growth cycle.  A similar technique is explored in the current Chapter for microalgae.  
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9.2 Methodology 

9.2.1 Sample preparation 

 

Microalgae biomass samples were prepared for analysis using either a wet or dry method. For the 

dry method, quartz tubes of 25 mm length and 0.5 mm inner diameter were cleaned in the flame of 

a Bunsen burner. Quartz wool was packed inside one end of the tube and approximately 2-3 mg of 

sample placed inside the tube. Another piece of quartz wool was used to cap the top of the tube. The 

samples were pyrolysed as described in Chapter 3 and weighed before and after analysis.  

For the wet method the same quartz tubes were used. Tubes were half-filled with quartz wool and 

cleaned in a flame. A 10 ml syringe was used to collect microalgae cell culture directly from the 

growth flasks. An adapter, built in house, was used to filter the microalgae cells though the quartz 

wool. The quartz tube was subsequently freeze dried and weighed. From the difference in tube 

weight, before and after freeze-drying, a volumetric weight of microalgae per 10 ml could be 

calculated. This was used to determine the microalgae growth rates. Figure 9.1 shows an image of 

the prepared tube before and after trapping of microalgae culture directly from the cultivation vessel. 

The effluent from the pyro tube did not show any visible traces of microalgae cells. The lyophilised 

sample was finally analysed by the dry Py-GC-MS method. A schematic of the wet method is 

presented in Figure 9.2.  

 

Figure 9.1: Image of an empty pyro tube and a tube with trapped algae cells 
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Figure 9.2: Schematic methodology of the wet Py-GC-MS analysis technique. 

 

9.2.2 Microalgae and growth trial analysis  

 

For analysis of dry feedstock samples, microalgae were grown as specified in Table 3.1 in Chapter 

3 unless stated otherwise. For growth trial analysis, samples of Chlorella vulgaris, Botryoccocus 

braunii and Haematococcus pluvialis were grown in house with varying growth media. Chlorella 

vulgaris was grown in 500 ml conical flasks at 16 h light 8 h dark cycles. Growth in the media 3N-

BBM+V, was compared to growth in dilutions of hydrothermal processing process water. Dilutions 
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of process water from hydrothermal gasification (HTG) of the same algae were performed at 50, 

200 and 400 dilution. Trials were also carried out using 200, 300 and 400 times dilutions of the 

process water from hydrothermal liquefaction (as presented in Chapter 8). Samples were taken 12 

days after inoculation of the cultures. Botryoccocus braunii was grown in a 500 ml round bottom 

flask with the same lighting conditions as Chlorella vulgaris in a modified BBM+V media with half 

the nitrogen of the original recipe. 

Wet samples were taken every other day for 25 days for Botryoccocus braunii. Haematococcus 

pluvialis was grown in 3N-BBM+V media and compared to 3N-BBM+V media with 0.25 g/l 

acetate and a media containing 0.15 g/l NaNO3 instead of 0.75 g/l as in the 3N recipe. Navicula sp. 

was grown in an unknown growth media with varying silicate concentrations: 100%, 50% and 25% 

its original value. Samples were collected after 10, 13 and 15 days for the 100% Si sample and after 

10 days for the others. All Navicula sp. growth trials were conducted at the University of Sheffield, 

UK.  

Model compounds to simulate the different biochemical components included bovine serum 

albumin, starch, palmitic acid, beta-carotene and astaxanthin and were purchased from Sigma-

Aldrich. Chlorophyll a was extracted from commercially available fresh spinach. Approximately 

100 g of spinach was mixed vigorously for 30 min in 90% acetone and filtered, acetone and water 

was left to evaporate and the separate chlorophyll a (green) and chlorophyll b (yellow) layers on the 

side of the beaker were collected.  

 

9.3 Results 

 

9.3.1 Py-GC-MS of Model Compounds 

 

Model compounds were pyrolysed at 500°C and the chromatograms were investigated to identify 

unique pyrolysis marker compounds. Peaks specific to model compounds, which did not appear on 

chromatograms of other compounds, were selected. These peaks were subsequently identified in the 

chromatograms of microalgae. By comparing peak sizes of the unique marker compounds, the 

amount of each respective model compound present in the microalgae samples could be calculated.  
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The chromatogram of the pyrolysis products from bovine serum is plotted in Figure 9.3. The 

marker compound selected to represent the protein fraction from microalgae is indole. This was 

selected as it was not found in any other of the structural model compounds identified and had a 

relatively large peak area in the pyrolysis chromatogram. The total percentage area of the indole 

peak is 3.86 %, and as an absolute value was found to be 15.4×10
7
/ mg sample of protein. Toluene 

was also found to be a major product of bovine serum pyrolysis but this compound was also 

detected as a pyrolysis product of pigments.  

 

Figure 9.3: Total ion chromatogram of bovine serum at 500˚C  

Palmitic acid (C16:0) is the most abundant fatty acid in nature and was chosen as a model 

compound for microalgal lipids. Its pyrolysis chromatogram is plotted in Figure 9.4 with a faster 

GC oven ramp rate used for this specific chromatogram. Nevertheless the compound could be 

identified with a high degree of certainty from its mass spec and was found in the chromatograms of 

microalgae at the standard GC oven ramp rate. Using palmitic acid is an oversimplification as the 

fatty acid profiles of microalgae lipids are much more complex than a single fatty acid. The 

majority of lipids are typically present as triglycerides and some free fatty acids as discussed in 

Chapter 6. Sunflower oil and palm oil were additionally pyrolysed to compare pyrolysis products 

from triglycerides and fatty acids. The main products detected from both types of lipid were alkanes. 

Pyrolysis of a fatty acid with a particular chain length led to the formation of alkanes with varying 

chain lengths. Most alkanes detected in chromatograms were consistently one carbon link shorter 

than the original fatty acid. Alkanes with 2 or 3 fewer carbon links were also found in decreasing 

quantity as can be seen in Figure 9.4.  

The quantification of respective fatty acid chain lengths was, therefore, extremely difficult. An 

assumption was made to estimate the lipid content of the microalgae biomass. The quantification of 
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a certain alkane enabled the abundance of the next longer chain length fatty acid present in the 

microalgae to be approximated. The chain length chosen for this approximation was microalgae 

strain-specific and typically the most abundant alkane was chosen for the calculations. A drawback 

of this approach is that pigments can also produce alkanes at the pyrolysis conditions used, although 

they are produced in much lower concentrations than those derived from lipids. The approximation 

is therefore not fully quantitative but provides a reasonable estimation of the lipid content of algae.  

 

 

Figure 9.4: Total ion chromatogram of the model lipid compound palmitic acid.  

The standard used for determining chlorophyll a content in algae was prepared from spinach. The 

most abundant compound identified was di-methyl-Methylamine. Its peak area was quantified as 

38.1 % of the total chromatogram. Assuming a high-purity chlorophyll extract, this corresponds to 

an absolute area of di-methyl-Methylamine to chlorophyll a of 7.3×10
8
 / mg. The chromatogram of 

chlorophyll a is plotted in Figure 9.5. 
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Figure 9.5: Total ion chromatogram of the Chlorophyll a extract. 

For the analysis of carbohydrates, starch was used as a model compound. This is again a 

simplification for total microalgae carbohydrates as not all microalgae carbohydrates are starch. 

Carbohydrates in microalgae serve two main functions: as a structural component of the cell wall 

and as storage carbohydrates for energy. Carbohydrates are made up of varying components 

including simple sugars (mono-saccharides) and their polymers (di- and poly-saccharides). 

Different algal species tend to accumulate different types of carbohydrates. Cyanobacteria mainly 

synthesize glycogen (α-1,4 linked glucans), red algae synthesize floridean starch (hybrid of starch 

and glycogen) and green algae synthesize amylopectin-like polysaccharides (starch) [149].  This 

leads to a different profile of mono-saccharides when hydrolysed carbohydrates are analysed. The 

most abundant sugars found in algae are glucose, rhamnose,  xylose and mannose [149]. There are 

typically also small amounts of cellulose and alginates present, therefore, using starch as a model 

compound for total microalgal carbohydrates likely leads to an underestimation.  

 

The determination of a marker compound for starch proved to be difficult. The potential marker 

compounds identified were not always detected in the chromatograms of algae where carbohydrate 

pyrolysis products were expected. These expectations stemmed from the total carbohydrate analysis 

by the Sol M. Gerchakov method in Chapter 3. Levoglucosenone was chosen as a marker 

compound as it was found in the majority of microalgae samples and not in any other model 

compounds investigated. Furfural and 1,2 cyclopentanedione were also likely candidates but could 

not be identified in all strains investigated. Further work is required to investigate the different 

carbohydrates present in microalgae. This will be carried out by pyrolysing additional carbohydrate 

standards, monosaccharaides and polysaccharides. The pyrolysis products will then be compared to 
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microalgae with different carbohydrate profiles. It is hypothesised that hydrolysis of the microalgae 

carbohydrates and subsequent analysis by HPLC to determine the proportions of each 

monosaccharide will help to identify the carbohydrate-derived pyrolysis products. In the current 

work, levoglucosenone was chosen as the marker compound for carbohydrates as it had the best 

correlation with the actual carbohydrate content of the microalgae samples.  

 

Following analyses of the main biochemical components, additional standards were analysed to 

identify compounds of high commercial value. These included the pigments beta-carotene and 

astaxanthin, as they are extracted from microalgae on a commercial scale due to their health 

benefits. Concentrations of these pigments in microalgae are typically much lower than the 

structural biochemical components such as lipids, protein and carbohydrates.  

Beta-carotene was pyrolysed and the marker compound identified was tetrahydro-trimethyl-

Naphthalene.  The structure of the carotenoid, beta-carotene, is very similar to other carotenoids 

commonly found in microalgae such as lutein, zeaxanthin or astaxanthin. Unfortunately, a standard 

for lutein or other carotenoids was not available. Therefore the potential of overestimating this 

compound is present.  It was, however, possible to identify a different marker compound for the 

other carotenoid, astaxanthin. 5-Methyl-2-(1-methylethyl)-2-cyclohexen-1-one was identified as the 

marker compound for astaxanthin. Further work is required to determine the validity of these 

assumptions. Ideally, all pigments typically found in microalgae should be pyrolysed and the 

pyrolysis fragments investigated. For the current work the assumptions are justifiable as the algae 

strains analysed are typically high in these specific pigments and have negligible amounts of other 

carotenoids. This was confirmed by HPLC pigment analysis as shown in Chapter 4 and the data 

sheets in APPENDIX A. A summary of the marker compounds, their structure and origin is 

presented in Table 9.1.  
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Table 9.1: Pyrolysis marker compounds identified from pyrolysis of microalgae model compounds. 

 

 

9.3.2 Py-GC-MS of microalgae 

 

Figure 9.6 shows a typical chromatogram of microalgae. Specifically, the plot shows the 

chromatogram of Chlorella vulgaris grown in 3N-BBM media, pyrolysed at 500°C. The four main 

marker compounds, previously identified from model compounds, are indicated. Marker compound 

peaks appear considerably smaller for microalgae compared to the respective model compound 

chromatograms. The areas of marker compound peaks were calculated as an absolute area by 

dividing peak area by the mass of sample pyrolysed. These area/mg values are then compared to 

other samples allowing comparison of specific compound concentrations. The most accurate results 

are obtained when different samples of one strain are compared to each other rather than comparing 

different strains. This is due to the variance in carbohydrate, lipid and amino acid composition of 

different microalgae strains which can potentially affect the pyrolysis behaviour. The change in 
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pyrolysis chromatograms of different algae strains becomes apparent when observing the 

chromatograms plotted in Chapter 4 and for each algae strain in the data sheets in APPENDIX A.  

 

 

Figure 9.6: Chromatogram of Chlorella vulgaris with marker compounds indicated.  

 

A total of eight samples of Chlorella vulgaris were prepared in different growth media. Two 

standard 3-N-BBM+V media were prepared using nitrogen sources, NaNO3 and NH4Cl. Three 

samples were grown in the recovered process water from hydrothermal gasification, in dilutions of 

50, 200 and 400 times the original volume. The hydrothermal gasification experiments were carried 

out purely for the purpose of producing process waters to grow and analyse algae from different 

growing condition. Additionally, three dilutions of process water from hydrothermal liquefaction 

were set up in dilutions of 200, 300 and 400×. Each sample was investigated for chlorophyll a, total 

protein and lipid content. Figure 9.7 shows that the protein content is highest for samples with the 

lowest lipid contents. In this case, the lowest lipid contents are observed for the two standard media 

and the HTL 200× sample. This is due to the high concentration of nitrogen in these growth media. 

It is known that high nitrogen levels lead to low lipid and high protein accumulation in microalgae 

[150-151]. The lipid content of the algae was highest in the HTL 400× dilution process water, 

representing the media with the lowest nitrogen levels, which led to nitrogen starvation of the algae. 

The second highest lipid concentration was found in the HTG 200× sample, representing another 

low nitrogen containing media. The reason for the lower lipid level at the 400× HTG dilution is 

unclear; however the trend of nitrogen in the water and lipid levels observed fits well for the 

remaining samples. The actual lipid content was not measured but the results are in agreement with 

expectations based on literature. The chlorophyll a levels were found to be high in the NH4Cl and 
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HTL 200× sample. Chlorophyll a levels were not confirmed for these samples by HPLC but visual 

inspection of the freeze dried algae confirmed the observed trends. Further work is required to 

validate the data presented in Figure 9.7 by comparing the observations to results from traditional 

analysis methods. The data presented is only plotted at relative levels and a full quantitative analysis 

would be desirable. The lipid data requires validation by either the Bligh-Dyer extraction or Red-

Nile lipid staining method. The chlorophyll a concentrations can be confirmed via HPLC.  

 

Figure 9.7: Calculated protein, lipid and chlorophyll a content of Chlorella strains grown in 

different dilutions of process water from HTL/HTG.  

 

The protein contents plotted in Figure 9.7 are on a relative scale. Quantitative protein contents of 

microalgae were calculated using the area/mg peak observed for the pure protein sample. The 

results are plotted in Figure 9.8 and compared to the protein content calculated using the nitrogen 

conversion factor 6.25. This is a common method in biochemical analysis of microalgae [113]. The 

results show that the trend of calculated protein contents, based on the pyrolysis product indole 

agrees well with the standard method.  Apart from sample HTL 200×, there is a 5% deviation for all 

results. The discrepancy for this sample is unknown but could be due to measurement or sample 

handling errors. Further work is required to fully confirm the current method; a number of replicate 

analyses and comparison to protein analysis by the Waterborg method are expected to achieve this.   
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Figure 9.8: Protein content of the different Chlorella strains by analysis of Indole peak areas and 

by the nitrogen to protein conversion factor of 6.25.  

For the majority of analyses in this Chapter each sample was only pyrolysed once since a limited 

amount of sample was available. To investigate the variability of the pyrolysis procedure a bulk 

sample of Chlorella OZ was pyrolysed three times at identical conditions. Figure 9.9 shows a plot 

of three selected peaks repeated in triplicate. A representative peak for the carbohydrate, protein and 

lipid fraction was chosen to demonstrate the experimental variability of the different biochemical 

components. Phenol, 4-methyl represents the carbohydrate fraction and is shown to have a 

percentage deviation of 8.5 %. Errors are expected to be introduced mainly from sample handling 

and weighing. The protein representative peak, Indole, was detected with a deviation of 6.5 % and 

the lipid peak Tetramethyl-hexadecanol with 5.1 %. On average of the three compounds this results 

in a standard deviation of 6.7 %. It is expected that other analysis presented in the current Chapter 

fall approximately in this margin of error. Additional work is required to investigate if different 

algae samples result in higher or lower deviations. The value of 6.7 % is in a similar range of the 

protein analysis deviation presented in Figure 9.8. The amount of sample pyrolysed for each repeat 

was calculated and is presented in Figure 9.9. An average of 56.5 wt.% of the microalgae sample 

was pyrolysed which was achieved with a deviation of 3.1%. Since this value is lower that the 

deviation of the peak areas it could be that the samples were not entirely homogeneous. 
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Nevertheless the standard deviations presented are in an acceptable range for the objectives of the 

current work where the main aim is to see differences between samples rather than full quantitative 

values.  

 

Figure 9.9: Peak areas and percentage standard deviation of three peaks of triplicate repeats of 

Chlorella OZ pyrolysis products.  

A strain of Navicula was grown at the University of Sheffield in varying concentrations of silicate 

(100%, 50% and 25 % Si) for 10 days. Additionally, the 100% silicate samples were also harvested 

after 13 and 15 days. Navicula is a diatom which requires silicate for its growth. The results 

presented in Figure 9.10 show that decreasing silicate levels lead to a decrease in protein and starch 

content and an increase in chlorophyll a content. The lipid content does not appear to be influenced 

by Si concentrations of 50% but a decrease is observed at 25%. At 100% Si concentrations, longer 

cultivation periods led to a decrease of chlorophyll a content and an increase in starch content. The 

lipid content increased at 13 days but a further two days of growth led to lower lipid levels than 

present after 10 days. The protein content decreased from 10 to 13 days and increased back to the 

original value after 15 days. CHNS analysis and the nitrogen to protein conversion factor confirm 

these trends of protein levels from Py-GC-MS analysis (see Table 9.2). The lipid and starch 

contents cannot currently be confirmed as these analyses are still outstanding. The chlorophyll a 

data is confirmed by visual inspection of the different cells as presented in Figure 9.11. The results 

from Figure 9.7 and 9.10 demonstrate how the novel Py-GC-MS technique can be a powerful 

method to quickly determine the change in biochemical composition when different culture 
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conditions are used. Additional work is required to validate the different parameters and allow fully 

quantitative analysis.   

 

 

Figure 9.10: Py-GC-MS analysis of Navicula sp. strains for Chlorophyll a, protein, lipid and starch 

grown in different concentration of silicate.  

Table 9.2: Elemental Analysis of Navicula sp. strains. 

 % (wt. daf) 

Condition C H N O 

100% Si 10 days 31.3 5.0 4.6 59.1 

100% Si 13 days 31.6 5.2 3.0 60.2 

100% 15 days 32.3 5.2 3.1 59.5 

50% Si 10 days 21.5 3.8 3.1 71.6 

25% Si 10 days 30.6 5.1 2.5 61.8 
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Figure 9.11: Photograph of Navicula sp. grown in 100% silicate for 10 days, 13 days, 15 days, 50% 

silicate 10 days and 25 % silicate 10 days.  

The astaxanthin content of Haematococcus was determined in 3N-BBM media and compared to 

BBM with reduced N levels and BBM with added acetate. The results show that the astaxanthin 

levels increased when nitrogen content was reduced and acetate added as a substrate for 

mixotrophic growth. This effect has previously been reported in a study by Choi et al. [152]. The 

results based on Py-GC-MS show that the astaxanthin content increases by 10% when the culture is 

subjected to reduced nitrogen concentrations compared to the standard media. Introducing acetate 

led to an increase of 38 % astaxanthin content in Haematococcus. The results based on the peak 

area of 5-Methyl-2-(1-methylethyl)-2-cyclohexen-1-one by Py-GC-MS of the different strains were 

compared to the conventional astaxanthin determination method based on HPLC. Figure 9.12 

shows the same general trend, however, slight differences between the methods are observed. The 

increase under reduced nitrogen conditions, based on HPLC, is found to be 30% compared to 10 % 

by Py-GC-MS. The acetate-doped media led to a 55% increase in astaxanthin compared to a 38% 

increase observed using the novel analysis method. Although there are differences in the absolute 

values measured between the two methods, the general trend is the same. This is significant in this 

kind of analysis, when quick screening of different growth conditions is required with small sample 

amounts available. Furthermore, the novel method allows simultaneous analysis of protein, 

carbohydrates, protein, lipids and chlorophyll a content. The HPLC method requires at least 200 mg 

of dry sample, involves organic solvent extraction and subsequent analysis by HPLC. This results in 

a labour intensive process and necessitates larger cultivation trials to achieve the required sample 

mass.  

100% Si 10 days| 100% Si 13 days| 100% Si 15 days | 50% Si 10 days|  25% Si 10 days  

 

 

100% Si 10 days  
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Figure 9.12: Astaxanthin levels detected in Haematococcus pluvialis grown in different media by 

Py-GC-MS and HPLC.  

Botryococcus braunii was grown for 20 days in BBM+V with half the nitrogen content of the 

original recipe. Samples were taken every other day using the custom built sampling system 

described in Section 9.2.1. The samples were freeze-dried and the growth of the microalgae 

estimated on a mass/volumetric basis by weighing the mass trapped in the filtering system. 

Approximately 0.1 mg of sample was sufficient to obtain a high-resolution chromatogram when the 

GC system was set up for splitless injection. Chromatograms obtained every two days allowed an 

estimation of the biochemical composition of the microalgae over its growth cycle which is plotted 

in Figure 9.13 with the total biomass concentration. As anticipated, the growth is highest in the 

initial 5-6 days of sampling when exponential growth is typical. The growth starts levelling off at 

around 12 days and a slight increase observed towards the end of the growth cycle. The biochemical 

composition was monitored over the growth cycle and showed a decrease in lipid content during the 

high-growth phase. When growth slowed down, the lipid content increased, most likely due to 

nitrogen limitation in the growth media. During the strong growth period, the protein content 

initially increases but reduces as lipid content rises. Towards the end of the cycle, an increase of 

protein content was observed. The carbohydrate content shows a similar trend to the protein content 

with a slight lag of around 2 days. Near the end of the experiment, the carbohydrate content 

increased significantly, most likely due to accumulation of storage carbohydrates as a result of low 

nutrient availability.  
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The method proposed in this Chapter enables the determination of an optimum harvest time for 

recovery of desired microalgal components. If the aim is to recover the maximum amount of lipids 

and least protein, as is likely in biofuel applications, day 13 would be ideal as the lipid content is 

highest and the nitrogen content low. If a high protein feedstock is required, the microalgae should 

be harvested two days earlier when the protein content is at its maximum. The current example 

demonstrates the exceptional potential of the new method to determine full biochemical analysis of 

microalgae over its growth cycle, reducing capital cost, sample preparation, analysis time and 

allows for smaller growth trials.  

 

Figure 9.13: Analysis of B. braunii grown in ½ N BBM+V media over 20 days by Py-GC-MS. 

 

9.4 Conclusions 

 

By pyrolysing model compounds, unique marker compounds for biochemical components could be 

identified using GC-MS. The marker compounds were subsequently detected in chromatograms of 

microalgae and concentrations calculated based on absolute peak areas. Py-GC-MS of Chlorella 

vulgaris, grown in process water dilutions from HT processing, demonstrated the method‟s ability 

to determine protein, lipid and chlorophyll a levels. The calculated protein content was compared to 

the actual protein content and results were within 5 % discrepancy. Chlorophyll a levels were 
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determined semi-quantitatively but visual inspection confirmed results for both Chlorella and 

Navicula. The results for lipid and carbohydrate content of the microalgae strains are in agreement 

with expectations based on published literature. Further work is required to fully validate the 

method for lipids and carbohydrates. The method was shown to be suitable for high value 

compounds such as astaxanthin. It is likely that the method could be applied to a wide range of 

microalgal compounds but further work is required to identify suitable marker compounds. 

The proposed novel sampling method is a unique way to assess microalgal growth and composition 

for optimum harvest times for various applications. The technique can simultaneously determine the 

concentration of the three main biochemical complements, lipids, carbohydrates and proteins. 

Furthermore, levels of chlorophyll a, beta-carotene and astaxanthin could be detected in the same 

analysis.  Traditional analytical methods would require separate measurements of each analyte and 

involve pre-treatment and extraction steps, therefore, the proposed method could reduce analysis 

time and costs associated with investigations into microalgae growth.  
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10. CHAPTER X - HTL Reactor Systems 
 

10.1 Introduction 

 

Most of the research on HTL has been performed in batch reactors as demonstrated in Chapter 5, 

6, and 7. However, continuous operation is required in order to make the bio-crude production 

process more economically feasible and chemically controllable. Heat recovery from a continuous 

process enhances the overall energy efficiency. Some researchers have studied HTL on continuous 

or semi-continuous reaction systems for simple water soluble monosaccharide model compounds 

such as glucose [136, 153]. However, only a small number of reports of continuous HTL biomass 

reaction systems have been published, these reports deal with lignocellulosic feedstocks and do not 

include aquatic biomass. Hammerschmidt et al. [154] investigated the hydrothermal processing of 

food sludge feedstocks with solid concentrations of 6.5, 7.7 and 12 wt.%. A homogeneous 

potassium carbonate and heterogeneous zirconium oxide catalysts were used at processing 

temperatures of up to 350°C and residence times of 5-10 minutes in a 0.1l continuous reactor. 

Makishima et al. [155] investigated the hemicellulose fraction recovered from corn cob in a 

continuous HTL reactor at 200°C for 10 minutes, up to 15 wt.% solid concentration. Ocfemia et al. 

[156] processed swine manure in a continuous HTL reactor with a throughput of 48 kg manure 

slurry per day. At a processing temperature of 305°C and a residence time of 80 minutes, a bio-oil 

with a HHV of 31 MJ/kg could be produced. The reactor was successfully operated for 16 hours 

continuously.  

 

Batch HTL of microalgae is relatively well-studied and has received increased interest in recent 

years. Most studies use small 10-1000 ml batch reaction vessels with slow heating rates and long 

residence times (~1 hour) such as those presented in Chapters 5-7. The results show that a high 

quality bio-crude suitable for further refining can be produced with a similar nature to petroleum 

crude oil. Typically, bio-crude yields of around 30 wt.% (daf) are obtained with HHVs of 30-35 

MJ/kg. Typical slurry solid concentrations of the batch experiments carried out on microalgae vary 

from 5-50 wt.%. The higher the solids content the more efficient the energy recovery becomes as 

the ratio of water heated compared to biomass decreases. 

 

The aim of the current Chapter is to demonstrate, at pilot scale, the technical feasibility of 

continuous HTL processing of microalgae. Two strains of microalgae were studied in steady flow 

under a range of conditions and the process performance and products are discussed.   
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10.2 Methodology 

 

The strains of Chlorella OZ and Spirulina OZ were used in the current Chapter. The methodology 

concerning the continuous HTL plant is described in Chapter 3. The characterization of the 

microalgae strain can be found in APPENDIX A but significant parameters influencing the 

experiments are also presented in this Chapter. The sample work up and analysis procedures are 

covered in Chapter 3.  

 

10.3 Continuous reactor HTL 

 

The experimental work on the continuous flow hydrothermal reactor was carried out at the 

University of Sydney, Australia as a collaborative effort as part of the World University Network 

Program. A detailed description of the reactor design is provided in Chapter 3, Section 3.2.3. In 

brief, the reactor consisted of a coiled 2 l volume Swagelok piped reactor within a heated fluidised 

sand bath. The flow rates were adjusted from 15-30 l/hour leading to residence times within the 

reactor of 3 to 5 min at temperatures of 250 to 350°C. Residence times could not be increased 

beyond 5 min due to the design of the reactor. The initial work only investigated microalgae slurry 

concentrations of 1 %.wt. for Chlorella OZ and Spirulina OZ. On-going work will also include the 

investigation of higher solids loading, one initial results from processing at 10 wt.% slurry is 

included in Section 10.4. 

 

10.3.1 Microalgae Feedstock Analysis 

 

The feedstocks investigated were two commercially available microalgae, Chlorella and Spirulina. 

The analysis of the feedstock is presented in Table 10.1; the biochemical composition was provided 

by the supplier, all other data was analysed in the laboratory. Both strains had similar ash (<8 wt.%) 

and moisture (<6 wt.%) contents, those of Spirulina being marginally higher. The HHV of the algal 

biomass was in the range of 24-25 MJ/Kg; Chlorella contains slightly higher amounts of oxygen 

(27.5 wt.%) and lower levels of carbon and hydrogen leading to a lower HHV. The lipid contents of 

both strains are low (<10 wt.%) as the microalgae were grown as food supplements rich in protein 

rather than as feedstocks for biofuels (for which a higher lipid content is beneficial). As presented in 
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Table 10.1, the protein content of the microalgae was in the range of 42-68 wt.%, Spirulina 

contained a larger fraction of protein leading to the higher nitrogen content of 12.1 wt.%.  

 

Metal analysis by ICP shows the main constituents of the ash fraction to be K, Mg and Ca. The presence of 

potassium has been reported to be significant, as it can be used as a catalyst in hydrothermal media. For 

example, potassium carbonate can result in lower solid residue when processing wood in HTL, [157] while 

potassium hydroxide can increase water-gas shift reactions during hydrothermal gasification [158]. K, Fe and 

Mg are also minor nutrients required for microalgae growth, hence in order to recycle the process water post 

HTL for algae cultivation, it is desirable that these nutrients report to the water phase. Nickel on the other 

hand, also present in the algal biomass and possibly deriving via leaching from reactor walls during HTL 

[144], acts as a growth inhibitor and therefore needs to be considered.  

The chloride content was also measured. Chloride poses a risk to pressure vessels constructed from 

austenitic stainless steels under HTL conditions because of the possible occurrence of chloride 

stress corrosion cracking, even at ppm levels of the ion. It is monitored routinely at the pilot plant 

facility as part of the University of Sydney‟s materials evaluation protocol – it is expected that the 

choice of reactor material will be especially important when processing marine algal strains because 

of the high chloride loading that will arise. 

 

Table 10.1: Analysis of microalgae feedstock. 

 
Chlorella Spirulina (mg/kg db) Chlorella Spirulina 

Proximate analysis (wt.%) Al 25 402 

Ash 6.0 7.6 Ca 1922 7782 

Moisture 5.2 5.7 Cl 3946 4433 

Elemental composition (wt.% daf) Cu 6 8 

C 53.5 53.7 Fe 846 879 

H 7.4 7.7 K 11705 13899 

N 11.0 12.1 Mg 3288 4256 

S 0.5 0.6 Mn 57 56 

O* 27.5 25.9 Na 860 4732 

Biochemical content (wt.% daf) Ni 0.7 2.6 

Carbohydrates 15-25 11 Zn 21 27 

Protein 53-60 65-70 
   

Lipids 3-5 8 
   

HHV (MJ/kg) 24.3 24.9 
   

daf= dry ash free; db=dry basis *=by difference. 



CHAPTER X - HTL Reactor Systems 

180 

 

The microalgae were in addition analysed for their particle size distributions as these were expected 

to have an influence on the reactor performance. In particular the needle control valve and the back 

pressure regulator were expected to be influenced by particulate matter and potentially blocked if 

the particle size flowing through was too large. This can be avoided if the reaction conditions are 

severe enough to break down the algae cell structure to smaller fragments.  

 

Figure 10.1 shows the size distributions of the two strains. Chlorella has a narrower distribution 

and a smaller average particulate size. The average particle size D(v, 0.5) of Chlorella and Spirulina 

are 48.4 and 62.2 μm respectively. Since the larger Spirulina algae were associated with less 

difficulty in controlling the reactor press (discussed above in section 3.1), it is apparent that the 

initial particle size of the algae feed is less important than the behaviour of the cells and how easily 

they can be broken down to smaller fragments in the reactor. The viscosity of the 1 wt.% algae 

slurries was found to be ~0.9 mPa.s at 40 °C which is noticeably higher than that of water at the 

same temperature (0.65 mPa.s). 

 

 

Figure 10.1: Size distribution of dehydrated microalgae. 

 

 

10.3.2 Reactor Performance 

 

The performance of the continuous flow HTL reactor with respect to pressure, temperature and flow 

rate was examined. The results obtained from the experiments indicate that the maximum pressure 

deviation from the set value occurred at the lowest temperature and shortest residence time (highest 

flow rate) investigated. The pressure control significantly improved with higher processing 
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temperatures and longer residence times inside the reactor, this being the case with both algal 

strains. Figure 10.1 (a) shows the pressure-time history when processing Spirulina at different 

temperatures while Figure 10.1 (b) highlights the effect of longer residence time on the 

controllability of the system pressure.  

 

It is believed that the more severe process conditions result in a more pronounced conversion of the 

algal solids. This was observed for both strains where the solid yields from HTL consistently 

decreased with increasing temperature and residence time, as discussed in detail in Section 10.3.3. 

The solids observed in the product stream clearly have a tendency to at least partially block the 

orifice of the control valve, leading to poor pressure control (orifice clearance while valve is fully 

open: ~19 µm); it can be seen from Figure 10.2 (a) that the higher experimental temperatures 

correspond to smaller pressure fluctuations. Additionally, increasing the residence time from 3 to 5 

minutes at 300ºC for Spirulina further decreased the solids yield and resulted in an improvement in 

pressure control. In fact, as depicted in Figure 10.2(b) the pressure controllability was similar to 

that of clean water which is attributed to the more pronounced conversion of algae solids to bio-

crude and/or breakdown to water soluble material at the higher temperatures and residence times 

examined. Another observation supporting this conclusion is the fact that the control was better for 

Spirulina than for Chlorella which coincides with the lower amounts of solids observed when 

processing Spirulina. 

 

It should be noted that because the pressures in the system are always substantially greater than 

saturation, these pressure fluctuations are not accompanied by temperature fluctuations and are 

unlikely to have any significant impact on the course of the HTL reactions. 
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Figure 10.2: Pressure control for Spirulina at 150 bar (a) varying experimental temperatures for a 

residence time of 3 minutes (b) varying residence times of 3 and 5 minutes at 300°C. 
 

The reactor temperature and biomass slurry feeding rate were also recorded during each run. The 

average temperature of the fluidised bed heater was at all times within ±3ºC from the set point (250, 

275 and 300°C). The biomass slurry is expected to reach temperature within 10 ºC of the desired 

temperature inside the first set of the four helical reactor coils immersed in the bed heater. The 

overall residence time inside the reactor coils was determined by measuring the biomass slurry 
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feeding rate and correcting for the change in density of the solvent in going from room temperature 

to the nominal reaction conditions. The slurry feeding rate was maintained to within ±4% from each 

of the flow rates investigated in this study (15-30 l/hr).  

 

10.3.3 HTL Results 

 

The results obtained from processing Chlorella and Spirulina in the continuous reactor at different 

temperatures and residence times are presented in Figure 10.3. The highest bio-crude yields were 

obtained at the highest temperature of 300 °C and longest residence time investigated, overall, 

higher temperatures and longer residence times increased the yields. This is in agreement with batch 

HTL experiments on microalgae [67]. It has to be mentioned that the solids to water ratio was very 

low in this study. A ratio of 1 wt.% was employed initially to ensure no blocking within the reactor 

pipelines which could result in a dangerous pressure build-up. This ratio is considerably lower than 

in batch reactions investigated previously in this thesis where concentrations of 10 wt.%. were used. 

This aspect has to be considered when comparing results to batch experiments such as in Chapter 5 

on the same algae strain. The initial aim of the work in this Chapter was to assess the feasibility of 

processing algae slurries in the continuous reactor. On-going work will investigate higher solids 

loadings.  

The maximum bio-crude yields were 13.2 and 16.4 wt.% for Chlorella and Spirulina respectively. 

The yields increased by 4-7  wt.% as a result of a 50 °C increase in temperature (from 250 to 300 

°C) and a 2 minutes longer residence time (from 3 to 5 minutes). At the mildest processing range 

(250 °C and 3 minutes) the bio-crude produced from the two strains varied between 3-8% as only 

the lipids present in the algae are extracted, while under more severe processing conditions other 

components including proteins and carbohydrates are also liquefied and become part of the bio-

crude. The higher bio-crude yields obtained from Spirulina is most likely due to its higher initial 

lipid content. Results presented in Chapter 7 previously showed that higher lipid content 

microalgae give rise to greater bio-crude yields in a batch reactor system.  

 

Garcia Alba et al. [37] achieved much higher bio-crude yields in a batch reactor – for example, with 

a 5 minutes residence time at 300 °C, the bio-crude yield was found to be 40.5 wt.%, which is 

considerably higher than herein. Our low measured bio-crude yields were initially attributed to the 

different method of recovery from the product mixture as well as losses of product to the system. A 

low solvent ratio was used in the current study as it is expected that in an industrial process the use 

of solvents is not necessary as the bio-crude can be directly decanted. However, due to the low solid 
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concentrations used here, the bio-crude fraction was very small compared to the process water. In a 

500 ml product mixture sample only 5 g of dry algae were processed leading to small amounts of 

bio-crude produced per volume of water, therefore the use of a solvent was necessary in order to 

quantify the bio-crude yields gravimetrically. In reported batch experiments with a 10 wt.% 

biomass loading, water to solvent ratios of 0.1 to 1.4 were used to extract the bio-crude from the 

product mixture while in the current study which processed a 1 wt.% biomass concentration, this 

ratio was 10.  

 

In order to investigate the effects of the low solvent ratio on the bio-crude yields, the experiments 

were repeated using twice the solvent quantity to recover the bio-crude. The yields were found to be 

unchanged and consequently it was concluded that the loss of bio-crude to the system is the most 

likely reason for the lower yields observed. These losses are estimated in the carbon balance carried 

out in Section 10.3.6. Further work is required to quantify the gas produced from the continuous 

flow HTL reactor as well as to investigate the bio-crude recovery with no solvents while processing 

higher biomass solid concentrations.  

 

Increasing the biomass solids concentration has been shown to enhance bio-crude yields in batch 

experiments [59, 67]. Both these reports also state that the optimum residence time for bio-crude 

production is 15 minutes and that the yield is lower at shorter residence times. Figure 10.3 shows 

that the solids residue from continuous flow HTL decreases as the bio-crude yield increases with 

more severe processing conditions for both strains. This indicates that the residence times studied 

were not long enough to completely break down the particulate matter and convert it to bio-crude 

by repolymerisation. The solids fractions for Spirulina are lower than for Chlorella which is 

consistent with the reactor performance data presented above, namely that Spirulina is more readily 

broken down. 

 

Temperatures higher than 300 °C are expected to further increase the bio-crude yields as indicated 

by Jena et al. [67] who showed the highest yield from Spirulina to be obtained at 350 °C while 

Garcia et al. [37] achieved the highest yield at 375 °C from Desmodesmus sp. Therefore, the 

potential for higher bio-crude yields on the continuous flow plant exists. 

 



CHAPTER X - HTL Reactor Systems 

185 

 

 

Figure 10.3: Yields of products for the different hydrothermal liquefaction experiments. 

* daf=dry ash free. 

 

 

10.3.4 SEM Analysis 

 

Scanning electron microscopy (SEM) was utilised in order to investigate the visual appearance of 

the algae cells and the solids residue component after liquefaction in the continuous flow reactor. It 

is expected that the reactor performance and the bio-crude yields obtained are linked to the algae 

cell structure being increasingly disrupted with more severe processing conditions. Bio-crude yields 

were increased with higher temperatures and at the same time the solids residue component was 

decreased. Additionally, as depicted in Section 5.3.1, the reactor performance with respect to 

pressure fluctuations was significantly improved with higher processing temperatures.  

 

The SEM images of Chlorella pre- and post-liquefaction are presented in Figure 10.4 (a-d). A fresh 

Chlorella cell with a 3000x magnification prior to processing is shown in Figure 10.4 (a). Using 

the scale of the image the cell has a diameter of around 55 µm which fits well with the data 

obtained by particle size distribution. Figure 10.4 (b) shows the solid residue obtained at 250˚C: it 

can be seen that the selected residue particle is much larger (~500x250 µm) than an individual cell, 

indicating that cells have agglomerated to form a solid compact structure with filamentous strings. 

The cell walls seem to have broken at these conditions as there is no apparent resemblance to the 
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original cell. The pronounced agglomeration to a compact structure suggests that reactor 

performance will be influenced by the large particles present at these conditions. 

 

Increasing the temperature by 25 ˚C to 275 ˚C with the same residence time leads to the 

disappearance of the filaments observed at the lower temperature. The overall structure of 

agglomerated cells remains intact but appears less compact with a less uniform surface morphology. 

The diameter of the agglomerate is approximately 300 µm, similar to the particle size observed by 

SEM at 250 ˚C. In the final image, the solid residue obtained from processing Chlorella at 300 ˚C 

and a residence time of 3 minutes is presented. The cell structure appears to be completely 

destroyed; the larger structure seen in Figure 10.4 (d) is approximately 10-15 µm, fragments of 

smaller sizes (<10 µm) can be seen in the background. The conclusion is made that at 300 ˚C the 

breakdown of the original cells is largely complete, leading to an improved bio-crude yield and a 

reduced solids residue giving rise to lower pressure fluctuations.  

 

Garcia Alba et al. [37] performed similar analysis on the cells of Desmodesmus sp. after HTL for 5 

minutes in batch experiments. The cells of Desmodesmus sp. are shown to be considerably smaller 

ranging from approximately 3-8 µm compared to ~40-80 µm for Chlorella. The SEM images 

presented show the solid residue component post HTL in the temperature range of 175 to 275 ˚C. It 

appears that the cells of Desmodesmus sp. perform similarly to those of Chlorella as they appear to 

agglomerate to clusters after liquefaction. However, they exhibit filaments in their fresh form which 

appears to hold the cell clusters together at different processing conditions. In the current study, 

filaments are not present in the fresh algae and, hence, their origin is unknown. Garcia Alba et al. 

concluded from their SEM analysis that cell breakage occurred at 250 ˚C when processed for 5 

minutes. Cell breakage also appears to have occurred at the same temperature and comparable 

residence time in the current study with agglomeration observed at less severe conditions. 

 

It should be considered what type of algae is processed when using a continuous flow reactor of this 

scale, as their behaviour could drastically influence reactor performance. The point at which 

agglomeration is overcome should be passed to avoid the high residual solids yield and increased 

pressure fluctuations. For Chlorella this was achieved at 300 °C and 3 minutes residence time in the 

continuous flow HTL reactor, SEM images for the longer residence time were largely identical and 

are not presented. It has to be pointed out that Garcia Alba et al. showed that increased residence 

time led to increased packing density in the agglomerated cell structure. This was not observed in 

this study which is most likely due to the residence time increase being only 2 minutes compared to 
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that of 55 minutes in their study. It is also expected that batch reactor configurations may affect this 

phenomenon differently from those of continuous flow such as the one used here. In addition, it is 

worthwhile mentioning that commercial processing plants are not expected to encounter such an 

effect on the reactor performance as higher flowrates and larger valves will be employed that can 

more readily handle the solid particulates.  

 

 

Figure 10.4: SEM images of Chlorella (a) dry unprocessed (b) processed at 250˚C 3 min (c) 

processed at 275˚C 3 min (d) processed at 300˚C 3 min. 

 

 

10.3.5 Bio-crude Analysis 

 

The recovered bio-crude was analysed for its elemental composition and the data are presented in 

Table 10.2. The oxygen contents ranged from ~21 to 15 wt.%, the lower oxygen levels being 

obtained at the higher temperatures and longer residence times investigated. The initial oxygen 

content of the algal biomass feedstock was approximately 30 wt.% signifying a considerable 

reduction at the most severe conditions examined, 300 °C and 5 minutes. Overall, the more severe 

(a) (b) 

(c) (d) 
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processing conditions result in  a greater reduction in the oxygen content, in agreement with results 

published by Jena et al. [67] on a batch reactor system.  

 

The elemental analyses of the bio-crudes also show an increase in the nitrogen content with the 

higher temperatures used, indicating an increase in the production of bio-crude from the protein 

fraction of the algae. These trends are consistent for both strains of microalgae. At 250 °C and 3 

minutes residence time, the nitrogen content for bio-crude produced from Chlorella was 2.6 wt.%, 

while that at 300 °C and similar residence time was over 6 wt%. It is important to note here that 

while the lower processing temperature produced a bio-crude with lower nitrogen content, the 

yields were also considerably lower.  

It has been suggested that to produce a bio-crude with lower levels of nitrogen, the use of 

heterogeneous catalysts needs to be considered [76, 159]. Another route proposed is to extract the 

protein fraction of the algae prior to subjecting it to the high temperature HTL process in a 

biorefinery concept [37]. This route is explored in the subsequent Chapter 11. 

 

The HHVs of the bio-crudes ranged from 27 to 32 MJ/kg calculated using the DuLong formula as 

described in Section 3.13. This represents a significant increase from the HHV of the algal biomass 

feedstock (~24 MJ/kg). The observed increase in the HHVs from the biomass to the bio-crude is 

due to the reduction in oxygen and higher relative carbon contents. The aim should be to reduce the 

amount of oxygen to increase the HHV, while simultaneously decreasing the levels of nitrogen in 

order to reduce emissions or refinery processing costs. Petroleum crude oil contains <1 wt.% 

oxygen and nitrogen and has HHV > 40 MJ/kg which implies that bio-crude produced from 

microalgae through both batch and continuous flow HTL processes requires upgrading prior to 

further processing. 
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Table 10.2: Elemental analysis (wt.%) and Higher Heating Value (HHV) of bio-crudes from 

hydrothermal liquefaction of Chlorella and Spirulina at different processing conditions. 

Chlorella Temp. Res. Time 

(min) 

C H N S O* HHV 

(MJ/kg) 

 250°C 3.0 70.3 4.8 2.6 0.4 21.9 26.7 

 275°C 3.0 65.9 9 4.3 0.8 20 31.7 

 300°C 3.0 64.1 7.8 7.5 1.5 19.1 29.5 

 300°C 5.0 67.6 8.2 6.3 2.1 15.8 32.0 

Spirulina 
 

 
      

 250°C 3.0 65.8 8.5 3.5 0.5 21.7 30.6 

 275°C 3.0 62.3 7.3 6.7 1.1 22.5 27.6 

 300°C 3.0 64.3 8.4 7.5 1.3 18.5 30.6 

 300°C 5.0 68.3 8.3 6.9 1.1 15.4 32.3 

*=by difference. 

 

To determine the boiling point distribution of the bio-crudes a simulated distillation was carried out 

by TGA and is presented in Figure 10.5 for Chlorella (a) and Spirulina (b). The majority of the bio-

crude falls in the distillation range of Vacuum Gas Oil (VGO). Higher processing temperatures and 

longer residence times resulted in larger amounts of low boiling point material. The greatest yield of 

the low boiling point fraction, Heavy Naphtha, is obtained at 300 °C and 3 minutes residence time. 

Generally, the distribution is much more uniform than obtained by Vardon et al. [78] who found the 

majority of bio-crude to fall in the VGO region (~50 wt.%) for Spirulina processed in a batch 

reactor at 300 °C for 30 minutes. They also found the Heavy Naphtha fraction to be below 5 wt.% 

and the Kerosene and Gas Oil fraction between 10-15 wt.%.  

 

The bio-crudes obtained from Chlorella in the continuous flow HTL reactor are additionally 

compared to processing Chlorella at 350 °C for 60 minutes in a batch reactor from a previous study 

by Biller et al. [76] (see Chapter 7). Figure 10.5 (a) shows that the trends observed for the 

continuous flow system also apply for the higher temperature and longer residence time obtained in 

the batch process; the residue fraction is further decreased and the lighter fractions increased. The 

very heavy boiling point material is reduced with increased severity of the processing conditions. 

The sim-dis data illustrate that the more severe processing conditions are favourable as they lead to 

an increased yield of lower molecular weight bio-crude fraction. 
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Figure 10.5: Sim-dis by TGA for bio-crudes derived from (a) Chlorella and (b) Spirulina. 

 

 

10.3.6 Carbon Balance in the product phase  

 

The distribution of carbon in the different product phases was calculated using the elemental 

composition of the bio-crude and solids residue components along with the carbon content of the 

process water by TOC analysis. The gas phase was determined by difference, this means that the 

gas fraction presented here includes any losses to the system as well as those due to the sample 

workup. The results are presented in Figure 10.6 (a-b) for Chlorella and Spirulina respectively. It 

can be seen that the carbon recovery to the bio-crude is relatively poor with a maximum of 22 wt.% 
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for Spirulina at 300 °C and 5 minutes residence time. It has been shown by Yu et al. [58] that 

increasing the reaction time of HTL leads to an improved carbon recovery to the bio-crude 

component.  

 

A large carbon fraction is found in the Gas+Losses phase (20-30 wt.%), this is not surprising as 

most of the oxygen is removed via decarboxylation and therefore a loss of carbon is unavoidable. 

Due to the novelty of this work there is very limited experience with losses to the continuous flow 

HTL process. Since the Gas+Losses fraction appears to decrease with higher temperature and 

longer residence time, it appears that the losses to the system are greater at the lower temperatures 

investigated in this study. This may indicate carbonisation inside the system including the reactor, 

heat exchangers, pipes and fittings which would be included as a loss in the calculations. Yu et al. 

[58] report a carbon recovery to the gas phase of 10 wt.% at 300 °C and 5 wt.% at 250 °C in a batch 

reactor system with a residence time of 30 minutes. Using this data along with the carbon balance 

carried out in this study, it is estimated that the losses to the continuous flow system are up to 25 

wt.% for the low temperature region (250 °C) whereas those for higher temperatures (300 °C) were 

lower and are estimated to be around 10 wt.%. This establishes the potential increase in the carbon 

recovery to the bio-crude if the losses to the system are limited.  

 

Notwithstanding the uncertainties around the extent of losses, it is clear that the greatest fraction, up 

to 50 wt.%, of carbon reports to the aqueous phase. Most of the carbon in this phase is organic with 

only about 10 wt.% being inorganic – this was measured using a differential method of organic and 

inorganic carbon determination (results not presented). This large carbon fraction in the water will 

impact the economic feasibility of the HTL process; in Chapter 8 it was suggested using the 

organic carbon in the aqueous phase as a substrate for mixotrophic growth for microalgae 

cultivation. Results from the literature have previously shown that the water is also high in nitrogen 

and phosphorous which are supplementary nutrients required for algae growth [47, 114]. 

Additionally, the aqueous phase from the current study was analysed for metal content by ICP and 

showed that there were high levels of K, Na, Ca and other minor nutrients (results not presented). 

Finally, the carbon fractionation to the solid residue is very small at all conditions investigated and 

was found to decrease with more severe processing conditions (see Figure 10.3). 
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 Figure 10.6: Carbon balance from the continuous HTL of (a) Chlorella and (b) Spirulina. 

 

 

10.4 Comparison of reactor types 

 

In Chapter 5 results on HTL of microalgae processed on two different batch reactors are presented. 

The main differences in the different reactor types are the heating rate and the residence time. The 

residence time within reactors has been the focus of previous work and is addressed in Chapter 5. 

The effect of heating rate however on the HTL of microalgae has not been covered in the literature 

to date. Investigating this possible effect was not one of the aims of the current work. However due 

to the work carried out in different reactors, limited data is available to examine the effect of 

heating rate. Table 10.3 shows the results from processing Chlorella OZ for 1 hour at 350°C in the 

75 ml Parr reactor and in the custom built 25 ml Swagelok reactors as presented in Chapter 5. 

Results in Table 10.3 include the results from processing a 10 wt.% slurry in the continuous reactor 

for 3 min. The sample in the Parr reactor reached final temperature in around 30 min, at which it 

was held for 1 hour and subsequently required 1 hour to cool back down to ambient temperature. In 

the Swagelok reactor, the contents reached 350°C within 2 min and after 1 hour were quenched in 

cold water leading to the contents being cooled within 4 min. Figure 10.7 depicts the heat profiles 

applied to the microalgae for the different reactor types. In the continuous reactor heat is applied in 

a different profile. Details can be found in Chapter 3, but briefly; the slurry is heated from ambient 

to 170°C within a minute. At this temperature the sample is kept for 2 min before it flows into the 

reactor where it is heated from 170 to 350°C more or less instantly. At 350°C the sample is kept for 

3 min before it is cooled in subsequent heat exchanger to 170°C within 1 min. After resting at 

around 170°C for 2 min the sample is cooled quickly in the second heat exchanger to approximately 
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40°C. It is apparent that the heating and cooling profile is significantly different to the batch reactor 

examples.   

The results in Table 10.3 show that the yield in the Swagelok reactor is over 10 wt.% higher 

compared to the Parr reactor. However the oxygen content is doubled. It is expected that higher 

yields result in higher oxygen content as most oxygen is removed via decarboxylation during HTL 

which consequently, unavoidably leads to less carbon available for bio-crude formation and hence 

lower bio-crude yields. The reason for the different results is not entirely apparent but some 

hypotheses can be made. At the high temperature of 350°C the large molecules will have 

depolymerised to low molecular weight compounds which only form bio-crude once cooling occurs 

by repolymerisation. It is likely that quick cooling by water quenching leads to increased fast 

repolymerisation of the fragments, resulting in higher bio-crude yields. In the slow cooling example, 

there is the possibility that decarboxylation continues to occur on newly forming molecules 

throughout the cooling period. This consequently results in more oxygen and carbon being removed 

which leads to the overall lower yields but lower oxygen content.  Results in Table 10.3 show that 

the yield from continuous processing is 2.5 wt.% lower than in the Swagelok reactor and 

approximately 10 wt.% higher compared to the Parr reactor. The oxygen content was measured as 

12 wt.%, which falls in between the values of the other two results. These results support the 

hypothesis that heating and cooling have significant effects on HTL and deserve considerably more 

attention than it has received in the research community and published literature to date. 

Additionally the results suggest that very low residence times and high heating and cooling rates 

can lead to bio-crude yields similar to those observed for long residence times in batch reactors. 

This allows higher throughput of microalgae slurries and more favourable energy balances.  

 

Figure 10.7: Heat profiles of different reactor types on HTL of 10 wt.% Chlorella OZ. 
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Table 10.3: Comparison of bio-crude yields and composition from Chlorella OZ at 350°C. 

 
Bio-crude yield C H N S O HHV 

Reactor  (wt.% daf) (wt.%) (MJ/kg) 

Parr 32.3 75.7 9.8 6.5 0 7.8 38.2 

Swagelok 44.1 70.4 8.5 6.2 0.5 14.3 33.5 

Continuous 41.7 
70.7 8.8 7.7 0.8 12.0 33.8 

 

 

10.5 Conclusions 

 

 

This work demonstrated the successful operation of a continuous flow pilot-scale HTL reactor 

system – the results provide insight in to the behaviour of processing microalgae in sub-critical 

conditions. The bio-crude yields reached a maximum of 16.4 wt.% for Spirulina at 300°C, 5 minutes 

residence time and 150 bar. More severe processing conditions are required in order to further 

enhance the observed yields. It was also indicated from the carbon balance that there are 

considerable amounts of carbon in the product phases unaccounted for. The extent of products lost 

to the system due to sticking and carbonisation, which could potentially lead to lower bio-crude 

yields, requires further investigation in a continuous flow pilot scale HTL reactor.  

 

Overall, more severe processing conditions increased yields, reduced the oxygen content and led to 

an increased lower molecular weight bio-crude fraction being formed. It was also shown that the 

higher processing temperatures increased nitrogen levels as more of the protein present in the algae 

was liquefied and converted to bio-crude. Conversely, the solids residue component consistently 

decreased with increasing temperatures and residence times. These trends were consistent for both 

microalgae strains investigated.  

 

The performance of the continuous flow HTL reactor with respect to pressure, temperature and flow 

rate was also examined. Higher processing temperatures and longer residence times significantly 

improved the pressure controllability. It was concluded that greater solid yields and larger particles 
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caused difficulties for the control valve under less severe processing conditions. Flow rate and 

temperature control on the other hand were not affected with the varying operating conditions.  

 

Finally, comparing different reactor types at the same final operating temperature and slurry 

concentration, indicates the significant effects of heating rates on HTL. Results suggest that high 

heating rates can lead to increased bio-crude yields but less decarboxylation. This could have 

significant impacts on the continuous processing of microalgae in industrial processes.  
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11. CHAPTER XI - Hydrothermal Microwave processing 

 

11.1 Introduction 

 

Hydrothermal liquefaction of algae by inductive heating has been investigated in Chapter 5, 6, 7, 8 

and 10 and was shown as a suitable technique to produce a high quality bio-crude from a wet 

feedstock. Depending on the severity of the reaction conditions, the process is classified as 

carbonization, liquefaction or gasification with the latter requiring higher temperatures and 

pressures. Hydrothermal processing does not require a high lipid feedstock as the protein and 

carbohydrate fraction of algae can also be converted to either a biochar, bio-crude or syngas. 

Hydrothermal processing of algae has significant potential in the production of microalgae derived 

biofuels and has been extensively reviewed in Chapter 1.  

One issue which still requires further research in hydrothermal processing is the extraction of high 

value compounds prior to biofuel production. The extraction of value added compounds is essential 

to improve the economics of producing renewable fuels from microalgae and should be considered. 

Microalgae are a highly promising source of valuable phytochemicals such as pigments, 

recombinant proteins, mono- and polyunsaturated fats such as omega-3 fats and polysaccharides 

[18]. Few studies have looked into the extraction of lipids and polysaccharides before further 

processing into biofuels by hydrothermal processing. Miao et al. have recently investigated the 

sequential hydrothermal liquefaction of microalgae with extraction of valuable polysaccharides in 

the first step and subsequent bio-crude production of the residues [73-74]. Vardon et al. investigated 

the solvent extraction of lipids from Scenedesmus prior to hydrothermal liquefaction of the defatted 

microalgae [75]. Hydrothermal processing is a relatively sever procedure where close control of 

reaction conditions to achieve specific conversion to desired compounds can be quite difficult.   

Microwave processing has been suggested to provide a more controllable method of heating 

resulting from the rotation of dipolar molecules and vibrations of ions in solution in an 

electromagnetic field. This mode of heating can reduce residence times, increase reaction rates and 

provide more accurate control of reaction conditions [160]. Tsubaki et al. showed that the addition 

of halide salts during the hydrothermal hydrolysis of cellobiose resulted in an increase in hydrolysis 

of carbohydrates, resulting in a reduction of unwanted side reactions and energy consumption. It is 

therefore hypothesized that algae, which are naturally high in salts, could prove to be a promising 

feedstock for microwave processing. Microwave processing could either be used to facilitate 
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extractions of valuable compounds such as polysaccharides or protein, as recently shown by 

Budarin et al. [161] or applied as a means to produce a biofuel by microwave-mediated pyrolysis of 

algae [162]. 

The current Chapter aims to investigate the use of microwaves for the pre-treatment of microalgae 

feedstock and for the extraction of value added compounds before further processing to biofuels by 

hydrothermal liquefaction.  The influence of inorganic salts on hydrothermal microwave processing 

is investigated and the process is evaluated as a technique for extraction of valuable compounds as 

well as a pre-treatment for the production of biofuels via both hydrothermal liquefaction and flash 

pyrolysis. During direct hydrothermal liquefaction, proteins in microalgae are broken down to 

rearranged to produce complex nitrogen containing molecules which are found in the bio-crude as 

shown in Chapter 7. This produces a bio-crude with undesirably high nitrogen content which can 

lead to complications if the fuel is to be upgraded via hydro treatment/hydrogenation and increased 

NOx emissions during direct combustion. It has previously been shown that proteins can be 

hydrolysed to water soluble amino acids or extracted as proteins to the water phase during 

subcritical water treatment [163-164].  If the proteins can be fractionated into the water phase 

during hydrothermal microwave processing it is expected that a bio-crude of lower nitrogen content 

can be produced by HTL and flash pyrolysis. Additionally, as shown in Chapter 7, the processing 

of amino acids result in a bio-crude containing a lower nitrogen content than from protein, therefore 

if the proteins can be decomposed to produce amino acids, this may result in a lower N bio-crude. 

Du et al. performed work similar to this concept by subcritical water pre-treatment before flash 

pyrolysis to produce a  bio-oil with fewer nitrogen containing compounds [165]. 

 

11.2 Methodology  

 

Three microalgae strains were investigated; Nannochloropsis occulata, Chlorogloeopsis fritschii 

and Pseudochoricystis ellipsoidea. All three strains were freeze-dried before use. Samples were 

prepared by mixing ~1g of freeze-dried microalgae with 10 ml of deionised water to form a slurry.  

The low ash containing high-lipid fresh water strain (Pseudochoricystis ellipsoidea) was mixed with 

0.1M NaCl to investigate the effects of inorganic salt content on microwave processing. Samples of 

each strain were prepared in triplicate for each processing temperature used. Details on the 

microwave processing can be found in Chapter 3. The methods of lipid extraction, hydrothermal 

processing, flash pyrolysis and TGA are also described in Chapter 3.  
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11.3 Results and Discussion 

 

11.3.1 Microwave processing 

 

Three strains of algae were investigated for the purpose of the current research; Nannochloropsis 

occulata, the high-lipid strain Pseudochoricystis ellipsoidea and the cyanobacteria Chlorogloeopsis 

fritschii. Nannochloropsis is a marine strain which was grown in f/2 media and therefore has much 

higher ash content than the other two fresh water strains, this corresponds to its lower calorific 

value (CV) of 17.9 MJ/kg as seen in Table 11.1. The characterisation of the three algae strains can 

also be found in APPENDIX A but a summary of relevant parameters is presented here to aid 

discussion throughout the Chapter. Pseudochoricystis has the highest CV due to its low ash content 

and very high lipid content of 67 wt.%. Both Nannochloropsis and Chlorogloeopsis have a high 

nitrogen content of around 9 wt.% which corresponds to their high protein content of 57 and 50 wt.% 

respectively. The most abundant inorganics were also investigated as metals and salts have been 

shown to absorb microwave irradiation and influence reaction rates during microwave processing 

[160]. Nannochoropsis is shown to have the largest concentration of all inorganic compounds 

investigated; the concentration of Cl and Na are particularly high. The concentration of Na in 

Nannochloropsis is around 50 fold higher than for Chlorogloeopsis and 1500 fold higher for 

Pseudochoricystis. The high lipid strain is exceptionally low in inorganics apart from K which is a 

third of the level in Chlorogloeopsis and a fifth of the concentration present in the Nannochloropsis. 

Due to the low concentrations of salts in Pseudochoricystis it was decided to process this strain in a 

solution of 0.1 M NaCl to investigate the effect of inorganics on the hydrothermal processing of 

microalgae.  The three strains were also analysed for phosphorous content. Phosphorous is an 

essential nutrient within the cultivation of algae; however it is a finite non-renewable resource 

extracted from phosphate rock and extraction requires high energy inputs [103], therefore the fate of 

phosphorous during hydrothermal microwave processing and the possibility of nutrient recycling 

and/or nutrient extraction is investigated and addressed in this study.  
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Table 11.1:  Proximate, ultimate, biochemical and metal analysis of microalgae feedstock.  

  Chlorogloeopsis Nannochloropsis Pseudochoricystis 

H2O (wt.%) 10.1 9.2 1.2 

Ash (wt.%) 3.6 25.7 1.0 

C (wt.% daf) 52.2 57.8 61.3 

H (wt.% daf) 7.5 8 9.1 

N (wt.% daf) 9.8 8.6 2.1 

S (wt.% daf) 0.2 n/d n/d 

O* (wt.% daf) 30.3 25.7 27 

HHV (MJ/kg) 18.9 17.9 29.4 

Protein (wt.% daf) 50 57 25 

Carbohydrate (wt.% daf) 44 8 7 

Lipid (wt.% daf) 7 32 67 

Cl (mg/kg db) 578 76955 10 

Na (mg/kg db) 3905 189271 124 

Fe (mg/kg db) 692 714 48 

K (mg/kg db) 4844 14989 2899 

Mg (mg/kg db) 2693 3295 244 

P (mg/kg db) 7847 7806 6256 

*by difference, n/d=not detected, daf=dry, ash free, db= dry basis 

Each microalgae sample was processed under hydrothermal microwave conditions at temperatures 

of 80, 100, 120 and 140°C while P. ellipsoidea was also processed in 0.1M NaCl. The recovered 

solid fraction was analysed for elemental composition and ash content and the results are presented 

in Table 11.2. For C. fritschii around 80-84 wt.% of the total solid was recovered indicating that 20% 

of the mass resulted in the water phase as water soluble products. The gas produced during 

microwave processing was not quantified but is assumed to be low as comparable conditions during 

conventional heating by Garcia Alba et al. resulted in gas yields of <3 wt.%  at 175°C and residence 

times of 5 and 60 min [37]. The processing temperature had no significant effect on the mass of 

solids or the ash content recovered from C. fritschii. The ash content was reduced from 3.6 wt.% in 

the initial biomass to around 2 wt.% in the microwaved samples, indicating that water soluble salts 

are fractionated to the water phase. The elemental analysis revealed that around 25 wt.% carbon 

results in the water phase at 80 and 100°C and increased to 31 wt.% at the highest processing 

temperature of 140°C. Fractionation of the nitrogen content of the algae into the water phase would 
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be beneficial as this could potentially upgrade the biomass feedstock for further processing and 

could also be used as a source of nutrients for microalgae cultivation. The feasibility of recycling 

nitrogen for algae cultivation from hydrothermal processing was demonstrated in Chapter 8. 

Hydrothermal microwave processing of C. fritschii led to a maximum recovery of N to the solids of 

91.7 wt.% at the lowest temperature and a minimum of 71.8 wt.% at 140°C. This indicates that at 

higher temperatures the protein and/or chlorophyll derived nitrogen becomes more soluble in water 

either by breakdown to more soluble compounds such as hydrolysis of protein to amino acids or by 

braking cell structures and hence releasing nitrogen compounds to the water phase. 

The results for the marine algae Nannochloropsis differ significantly to those of microwave-

processed C. fritschii. A maximum of 50 wt.% of the total mass is recovered in the solid fraction at 

the lower temperatures of 80 and 100°C, compared to around 80 wt.% for C. fritschii. At 120 and 

140°C the recovery is even lower with 38 wt.% and 27.8 wt.% respectively. A proposed reason for 

this is that the high ash content of Nannochloropsis, which is comprised mainly of water soluble 

salts, is recovered to the water phase. The majority of the salts appear to be extracellular as a water 

control experiment led to 61 wt.% of the mass being recovered by washing out the salts. The salt 

removal results in significantly lower ash content in the residue than in the original biomass. The 

ash contents of the residues range from 4 to 6.5 wt.% compared to 25.7 wt.% in the original 

feedstock. This is beneficial for further processing, as a high ash content can lead to complications 

such as chloride stress corrosion and fouling and slagging issues in combustion [112]. However it is 

not only the ash that is removed, the carbon recovery is also much lower compared to C. fritschii, 

the maximum is 48 wt.% at the low processing temperatures and is reduced down to 22 wt.% at 

140°C. This represents a large loss of carbon into the water phase. The N content of the recovered 

solids after hydrothermal microwave processing follows the same trend; maximum recovery in the 

solid is around 44 wt.% and this decreases to 17 % at 140°C. This indicates that the majority of the 

nitrogen is fractionated into the water phase.  

For P. ellipsoidea, the mass recovery is remarkably similar to that of C. fritschii at all conditions. 

The maximum (83.2 wt.%) is seen at the lowest processing temperature and the minimum of 76.8 

wt.% at 140°C. The mass recovery when P. ellipsoidea is processed in 0.1 M NaCl is only affected 

slightly with marginally higher recoveries at 80 and 100°C. The carbon recovery ranges from 87.3-

82 wt.% when processed in deionised water and 89.4-80.1 wt.% when processed in 0.1M NaCl. 

This represents the highest carbon recovery of the three strains investigated. The ash content of P. 

ellipsoidea is not significantly affected up to 120°C, however at 140°C the ash content is below the 

detection limit of TGA analysis, indicating that processing at 140°C removes the ash content 
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completely. The nitrogen content of the solid algal residue is reduced up to 41 wt.% when processed 

in deionised water and 48 wt.% when processed in 0.1 M NaCl at a temperature of 140˚C.  For P. 

ellipsoidea microwave pre-treatment appears to be more beneficial compared to the other strains. 

Over 80 wt.% of the carbon is recovered and over half the nitrogen is removed, improving the 

quality of the biomass feedstock for biofuel production by HTL and simultaneously extracting 

polysaccharides and amino acids to the water phase. This has also been shown to be possible in the 

low temperature hydrothermal treatment of Chlorella sorokiniana by Chakraborty et al. [73].  

The hydrothermal microwave pre-treatment is shown to effectively remove a large fraction of the 

ash and nitrogen from Nannochloropsis but at the same time removing undesirably high amounts of 

carbon. The nitrogen removal from C. fritschii is lower but still significant, therefore the advantages 

and disadvantages of hydrothermal pre-treatment will need to be assessed based on overall mass 

and energy balances as well the benefits it has on product quality. The influence pre-treatment has 

on product quality is described in the following sections.  

Table 11.2: Ash content and % carbon and nitrogen recovered to the solid microalgae residue 

following HMP. 

C. fritschii 80°C 100°C 120°C 140°C 

 

Mass % recovered 83.8 84.0 80.3 82.3 

 

C wt.% recovered 75.6 75.6 73.1 68.9 

 

N wt.% recovered 91.7 82.8 81.0 71.8 

 

Ash wt.% 2.0 2.2 1.3 3.7 

Nannochloropsis         

 

Mass % recovered 49.0 50.3 38.0 27.8 

 

C wt.% recovered 45.8 47.7 36.9 22.3 

 

N wt.% recovered 44.3 43.1 35.8 17.2 

 

Ash wt.% 4.2 4 5.5 6.5 

P. ellipsoidea         

 

Mass % recovered 83.2 80.1 81.9 76.8 

 

C wt.% recovered 87.3 86.3 86.3 82 

 

N wt.% recovered 67.1 62.5 56.5 48.4 

 

Ash wt.% 0.8 1.1 1.3 0 

P. ellipsoidea + 0.1M NaCl         

 

Mass % recovered 85.0 83.0 78.7 77.1 

 

C wt.% recovered 89.4 88.5 83.9 80.1 

 

N wt.% recovered 79.1 76.1 58.1 40.8 

  Ash wt.% 0.4 1.5 0.5 0.5 
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Following hydrothermal microwave treatment the algal biomass was recovered, freeze dried and 

visually inspected by SEM. The unprocessed cells of Chlorogloeopsis are shown in Figure 11.1a at 

a magnification of 2320×. The cells are around 2-8 µm in diameter and are clearly identifiable in 

the unprocessed algae with individual cells linked together by extracellular material. This 

hormogonia is partly removed even at 80°C making the individual cells more prominent but no 

damage has occurred to the actual cell structures. Increasing the temperature leads to increased 

removal of hormogonia but up to 120°C does not seem to affect the cells (Figure 11.1b). Only at 

140°C are the actual cells broken which can clearly be seen in Figure 11.1c. These observations 

correspond to the mass balance where the loss of carbon and nitrogen where almost identical up to 

120°C but especially the nitrogen was removed at 140°C where cell wall breakage is observed by 

SEM leading to increasing amounts of nitrogen in the water phase.  

 

Figure 11.1: SEM images of untreated Chlorogloeopsis (a) Mag=2320, processed at 120°C (b) 

Mag=1500 and 140°C (c) Mag=1500. 

  

Nannochloropsis cells are seen to be very small cells of less than 1 μm (Figure 11.2a). Processing 

Nannochloropsis at 80°C does not seem to affect the cells but leads to more compact clustering of 

the cells to a solid structure and removal of extracellular material. This effect is also observed at 

100 and 120°C, only at the highest temperature are cells torn from the solid structures and appear to 

be isolated and in some cases even broken. The large mass loss when microwaving is mostly due to 

the extracellular material removed, it is also expected that the salt containing ash is removed almost 

entirely which cannot be seen when inspecting the cells visually. 

(a) (b) (c) (a) 
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Figure 11.2: SEM images of untreated Nannochloropsis (a) Mag=5430, processed at 120°C (b) 

Mag=4660 and 140°C (c) Mag=4660. 

The unprocessed Pseudochoricystis shows clear individual cells (~3-8 µm diameter), often 

agglomerated to larger structures but individual cells are recognisable. When the microwaving 

temperature is augmented individual cell structures become less prominent and larger, more 

compact agglomerations of cells appear, possibly of broken cell structures. The extracellular 

material linking cells together in Figure 11.3a appears to have either become compacted or 

removed leading to the more solid structures and the around 20% loss of mass observed in the mass 

balance of Table 11.2. At 140°C cells are almost entirely morphed to one large structure with 

individual cells barely recognisable, however if the cells walls are entirely broken is not clear from 

the image in Figure 11.3c. The loss of nitrogen to the water phase observed in the mass balance 

however indicates that this may occur at least partially.  

 

 

Figure 11.3: SEM images of Pseudochoricystis (a) Mag=4660, processed at 120°C (b) Mag=4660 

and 140°C (c) Mag=4660. 

  

The supernatant after centrifuging the microwaved samples was analysed for its pH and for anions 

and cations by ion exchange chromatography as presented in Table 11.3. The fate of these is 

significant for nutrient recycling for further microalgae growth in a closed loop process as proposed 

(a) 

(b) (c) 

(b) (c) 

(a) 
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in Chapter 1. The levels of Na and Cl are highest in the marine strain Nannochloropsis followed by 

the Pseudochoricystis strain processed in 0.1M NaCl while levels are lowest for Pseudochoricystis. 

Levels of ammonia could only be detected in the Chlorogloeopsis sample but levels are much lower 

compared to those observed during hydrothermal liquefaction of the same strain. HTL at 300°C for 

1 hour led to concentrations of ammonium of 4750 mg/l compared to around 150 mg/l observed 

from hydrothermal microwave treatment [114]. This is due to the much less severe conditions 

employed in the current study. It is not expected that the protein fraction containing the majority of 

nitrogen is broken down during HMP as significantly as during HTL. This is also the reason why 

there is no ammonia detected in the other strains. The pH of the process water generally decreases 

with increasing processing temperature for all strains. This is most likely due to the onset of acid 

formation by decomposition of simple carbohydrates such as glucose to compounds such as formic, 

acetic and levulinic acid. Work by Tsubaki et al. showed this effect of increasing organic acid 

formation from cellobiose under hydrothermal microwave processing resulting in lower pH values 

at higher processing temperatures and with the addition of halide salts [160]. This effect is also 

observed in the current work where the pH values of Pseudochoricystis processed in sodium 

chloride are lower compared to the samples processes in deionised water. Interestingly the amount 

of PO4
3- 

detected in the Chlorogloeopsis sample is higher at the lower temperatures and decreases to 

a third at the highest temperature, leading to the conclusion that if a process water high in PO4
3- 

is 

required, for nutrient recycling or extraction, that mild processing conditions are favourable. 

Comparing these results with results published previously on HTL at 300°C for an hour, the 

concentrations are twice as high in the mild microwave processing [114]. The trend of increasing 

PO4
3- 

concentrations in the process water is not observed for the marine strain Nannochloropsis 

where the concentrations increase by around 30 % at higher temperatures. The values of around 

1000 mg/l PO4
3-

 for Nannochloropsis allow the calculation of an elemental phosphorus (P) balance 

from the values measured in Table 11.1 and indicate that up to 50 wt.% of the elemental algal P is 

recovered to the water phase. This value is between 30-40 wt.% for Chlorogloeopsis but only 

around 15-20 wt.% for Pseudochoricystis. Nannochloropsis is the only strain to exhibit acetate in 

the water phase, this is the reason the carbon recovery in the solid residue after microwaving is so 

much lower compared to the other samples. The reason for acetate formation from Nannochloropsis 

and not from the other two strains is not clear but could be due to different type of carbohydrates 

present in the algae strain. The levels of acetate are comparable to those observed from HTL of 

different algae presented in Chapter 8 at more severe conditions of 300°C [114]. Acetate in the 

water phase can act as a substrate for heterotrophic microalgal growth as previously demonstrated 

[114, 141].  
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Table 11.3: Analysis of water phase after microwave treatment.  

Chlorogloeopsis (mg/l) 80°C 100°C 120°C 140°C 

 

Na
+
 323 345 357 242 

 

K
+
 174 179 188 140 

 

NH4
+
 150 147 136 111 

 

Acetate 47 38 34 57 

 

Cl
-
 - - - - 

 

PO4
3-

 850 915 942 303 

 

pH 7.97 7.64 7.73 7.42 

Nannochloropsis               (mg/l) 

    

 

Na
+
 7662 8077 8325 8400 

 

K
+
 716 772 787 799 

 

NH4
+
 - - - - 

 

Acetate 1550 2240 748 2845 

 

Cl
-
 4080 5248 5373 5628 

 

PO4
3-

 708 930 778 1133 

 

pH 7.56 7.42 7.66 7.19 

Pseudochoricystis (mg/l) 

    

 

Na
+
 110 84 103 104 

 

K
+
 258 238 251 232 

 

NH4
+
 - - - - 

 

Acetate - - - - 

 

Cl
-
 54 27 34 31 

 

PO4
3-

 207 118 147 159 

 

pH 6.62 6.44 6.09 5.62 

Pseudochoricystis NaCl    (mg/l) 

    

 

Na
+
 2122 2286 2183 2295 

 

K
+
 236 262 256 259 

 

NH4
+
 - - - - 

 

Acetate - - - - 

 

Cl
-
 3406 3679 3472 3629 

 

PO4
3-

 155 155 130 196 

 

pH 6.71 6.66 5.09 5.54 
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11.3.2 Lipid Extraction 

 

Microwave processing has previously been suggested as a technique to facilitate lipid extraction 

using solvents. Cell disruption by microwaves as seen in Figure 11.1-3 can lead to much higher 

recovery of lipids from microalgae than conventional solvent extraction alone.  A study by Lee et al. 

(2010) identified microwave cell disruption as the most simple and efficient disruption method for 

the recovery of lipids form Botryoccocus sp., Chlorella v., and Scenedesmus sp.. They investigated 

autoclaving, bead milling, microwave heating (100°C), sonification and osmotic shock [28]. In the 

current study simple solvent extraction using dichloromethane was carried out on unprocessed and 

microwaved samples. The yields of extraction are presented in Table 11.4. For all strains, 

microwaving had a large effect on the recovery of lipids. Chlorogloeopsis has a very low lipid 

content and yields of only 0.5 wt.% were observed when the unprocessed sample was subjected to 

solvent extraction. The recovery increased up to a maximum of 1.4 wt.% at the highest temperature 

of 140°C. Higher temperatures led to consistently increasing lipid extraction yields for 

Chlorogloeopsis. Untreated Nannochloropsis biomass yielded a 1.6 wt.% lipid recovery; this was 

increased to a maximum of 11.3 wt.% at 120°C. The microwave operating temperature did not 

show a strong effect on the lipid yields. The high lipid strain Pseudochoricystis had the highest 

yield of lipids when not subjected to microwave processing of 13.1 wt.%; this could be increased 

after microwaving to about 30-35 wt.%. Extraction yields increase both slightly with processing 

temperature for the NaCl processed and deionised water samples. The differences between the two 

are marginal indicating that the addition of sodium chloride does not have any beneficial effect on 

lipid extraction. The increase in lipid recovery is apparent for all three strains with 3-7 fold 

increases even at the lowest temperature investigated of 80°C. These results confirm the findings of 

Lee et al. who describe microwaving as a low energy intensive method of cell disruption for lipid 

recovery [28]. Size exclusion chromatography (SEC) was carried out on the samples to investigate 

if microwaving the samples had any effect on the composition or structures of the lipid fraction. 

Only minor shifts in profiles towards lower molecular weight compounds were observed indicating 

that hydrolysis of the lipids is not taking place (data not presented). This is beneficial if the lipids 

are extracted as polyunsaturated fatty acids, as these fatty acids are of high commercial value.  
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Table 11.4: Lipid extraction yields (wt.%) from solvent extraction using DCM 

  Chlorogloeopsis Nannochloropsis Pseudochoricystis 

Pseudochoricystis 

0.1M NaCl 

unprocessed 0.5 1.6 13.1 13.1 

80°C 0.7 10.6 30.6 31.5 

100°C 1 10.5 33.2 33.2 

120°C 1.2 11.3 31.4 34.4 

140°C 1.4 10 37.5 35.3 

 

Size exclusion chromatography (SEC) was carried out on the samples to investigate if microwave 

processing has any effect on the structures of the lipid fractions. A representative SEC 

chromatogram of the unprocessed and HMP lipids of P. ellipsoidea is plotted in Figure 11.4. It is 

shown that the majority of lipids are present as triglycerides which represent the largest peak at 6.9 

min. This peak was identified to be in the range of Mw 1200, the second peak at 7.8 min is of Mw 

420 and represents the free fatty acid fraction of the lipids. There are no changes in lipid profiles 

observed for the different HMP temperatures. This indicates that no significant hydrolysis of 

triglycerides to free fatty acids is taking place under HMP.  

 

Figure 11.4: HPLC-SEC chromatogram of P.ellipsoidea indicating the triglyceride and free fatty 

acid fractions 
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Additionally the lipids were analysed for fatty acid composition after transesterification. Figure 

11.5 plots the distribution of the fatty acids which were included in the calibration standard. It is 

known that this algae additionally contains significant amounts of C16:2 and C16:3 which were not 

included in the analysis [166]. The profiles show no change in carbon chain saturation at 80°C 

HMP. At 100°C around half the C18:3 fatty acids disappear with the remaining fatty acids being 

present in identical concentrations. At the highest temperature about half the C18:1 fatty acids are 

also removed and slight increased levels of C18:0 and C18:2 are observed. It is likely that double 

bonds are removed at the maximum temperature leading to an increase of saturated fatty acids. This 

leads to the conclusion that polyunsaturated fatty acids can be extracted undamaged with no loss of 

degree of saturation using HMP at 80°C despite the high sensitivity of omega-3 fatty acids to 

thermal processing. This is beneficial if the lipids are extracted as polyunsaturated fatty acids, as 

these fatty acids are of high commercial value. Additionally it was shown in Table 4 that the 

extraction efficiency is already greatly improved at the 80°C HMP temperature.  

 

Figure 11.5: Distribution of fatty acid methyl esters from unprocessed and HMP samples of P. 

ellipsoidea at 80°C, 100°C and 140°C.  

The power required to heat the reactants to the desired temperature and residence time were logged 

by the microwave reactor and automatically integrated to Wh values to determine the energy used. 

The Wh were converted to MJ/kg of dry algae to allow comparison to data published in literature 

and is plotted in Figure 11.6. It is apparent that more energy is used at the higher temperatures and 

the trend lines plotted show that the increase is linear. The increase in energy requirement from 

80°C to 140°C is around 230-330 % depending on the sample. The low ash and low halide salt 
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containing sample P. ellipsoidea exhibits the largest increase in energy consumption. This sample 

also has the largest energy requirement at 100, 120 and 140°C of all samples, indicated by the solid 

trend line in Figure 11.6. The second largest amount of energy is required to heat the C. fritschii 

sample followed by Nannochloropsis and the lowest being P. ellipsoidea processed in 0.1M NaCl. 

This trend follows the amount of microwave absorbing inorganics, such as halide salts, present in 

the sample. The energy requirement to heat P. ellipsoidea in pure water to 140°C is 66 % higher 

than for the sample processed in 0.1M NaCl. This shows that microwave processing of marine algae 

samples or macroalgae which are also high in ash content is beneficial for two reasons; firstly this 

technique removes large amounts of the inorganic ash fraction, upgrading the biomass feedstock for 

further processing. Secondly this approach of heating biomass in salt water takes advantage of the 

increase in heating by ionic conductance resulting in lower energy requirements to heat the 

reactants to the desired processing temperature. The values in Fig. 11.4 range from 70-270 MJ/kg 

algae while the original feedstock only contains a maximum of 29 MJ/kg. Clearly it appears to be 

energetically unfeasible to process microalgae using HMP regarding these values. However it has to 

be considered that this is a laboratory study with the main objective of investigating the effects of 

HMP rather than energy usage. Continuous processing in the reactor also deserves investigation as 

this can greatly decrease the applied power. Nevertheless the current study compares favourably to 

other pre-treatment methods such as sonication (132 MJ/kg algae), high-pressure homogenisation 

(529 MJ/kg), bead milling (504 MJ/kg) and other microwave processing studies (140-420 MJ/kg) 

[167].  

 

Figure 11.6: Energy requirement to heat samples to desired temperature at constant heating rate 

and residence time.  
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11.3.3 Hydrothermal processing of pre-treated algae 

 

Hydrothermal microwave processing was evaluated as a pre-treatment technique for the production 

of a bio-crude by hydrothermal liquefaction. Similar work was carried out previously by Miao et al. 

where conventional heating was used to hydrothermal pre-treat Chlorella before liquefaction for 

bio-crude production. Their investigation showed positive results as valuable polysaccharides were 

extracted in the first step, reducing the overall energy requirements and producing a lower amount 

of unwanted solid residue in the process [74]. In the current work the microwaved residues were 

subjected to HTL at 300°C for 15 min and compared to unprocessed samples. The results presented 

in Table 6 show that the yields of bio-crude did not increase significantly for Nannochloropsis and 

Chlorogloeopsis. It should be noted that the yields were calculated on a dry ash free basis, therefore 

the yields of Nannochloropsis on a as-received basis would be much higher for the pre-treated 

samples than for the untreated sample as this exhibits an ash content of 25 wt.% compared to ~5 wt.% 

for the microwaved samples (see Table 11.2). One of the aims of pre-treating the algae was to 

reduce the amount of nitrogen in the final product which does not occur to any significant extent for 

Chlorogloeopsis or Nannochloropsis. The sample of Chlorogloeopsis at 140°C did show a decrease 

of nitrogen content of almost 1 wt.% however the oxygen content increased leading to a lower HHV. 

Apart from the higher yields of bio-crude on an as-received basis for Nannochloropsis microwave 

pre-treatment for HTL for Nannochloropsis and Chlorogloeopsis does not appear particularly 

beneficial. However the results for Pseudochoricystis are more positive; the amount of nitrogen in 

the bio-crude decreases consistently with increasing pre-treatment temperature. This can be 

expected from the mass balance presented in Table 11.2, as more nitrogen is fractionated to the 

water phase. The nitrogen content is reduced from 1.7 wt.% to 0.6 wt.% at the 140°C. Additionally 

the yields of bio-crude increase from 33.4 wt.% to a maximum of 49.5 wt.%, this is most likely due 

to some initial hydrolysis reactions of the algae compounds which are more easily converted to bio-

crude during HTL. The HHV was increased by almost 10 MJ/kg as a result of the decreasing 

amounts of oxygen in the bio-crude. This was reduced from 20 wt.% to 10.5 wt.%. These results 

show that the bio-crude quality is increased significantly when the Pseudochoricystis samples are 

pre-treated by microwave irradiation with minimum energy requirements.  
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Table 11.5: Bio-crude yields, elemental composition and HHV from the hydrothermal liquefaction 

of pre-treated algae.  

 

 Bio-crude yield Ultimate analysis (wt. % daf) HHV 

Sample 

HMP 

Temp (wt. %daf) C H N S O (MJ/kg) 

Nannochloropsis  raw 25.7 72.3 10.6 4.5 0.0 12.6 40.8 

 

80°C 24.6 73.1 10.2 4.9 0.0 11.9 40.4 

 

100°C 29.4 67.6 10.2 4.7 0.0 17.5 39.1 

 

120°C 22.5 70.2 9.1 4.9 0.0 15.8 38.2 

 

140°C 26.5 73.2 10.8 5.1 0.0 10.9 41.3 

Chlorogloeopsis  raw 20.5 69.1 8.9 5.5 0.0 16.5 37.7 

 

80°C 18.8 68.8 9.1 6.9 0.0 15.2 37.7 

 

100°C 18.0 67.3 8.8 6.0 0.0 17.9 37.0 

 

120°C 19.7 65.5 9.1 6.4 0.0 19.0 37.0 

 

140°C 23.9 63.6 8.1 4.7 0.0 23.6 35.3 

Pseudochoricystis  raw 33.4 72.3 6.1 1.7 0.0 19.9 35.0 

 

80°C 43.0 74.0 11.6 0.8 0.0 13.6 42.9 

 

100°C 47.4 74.7 11.6 0.9 0.0 12.8 43.1 

 

120°C 49.5 77.1 11.0 0.8 0.0 11.1 42.9 

 

140°C 44.1 76.7 12.2 0.6 0.0 10.5 44.4 

 

 

11.3.4 Pyrolysis behaviour 

 

Figure 11.7 a-d show the derivatives of the thermo-gravimetrical data vs temperature for the three 

samples investigated plus Pseudochoricystis in 0.1M NaCl. The pyrolysis behaviour of 

Chlorogloeopsis (Figure 11.7(a)) is not affected significantly when pre-treated under hydrothermal 

microwave conditions. The main devolatolisation peak only shifts from 326°C to around 310°C, 

indicating slight upgrading of the biomass. Nannochloropsis behaves quite different under these 

slow pyrolysis conditions; the main devolatolisation peaks are shifted to higher temperatures. This 

is most likely do to removal of the inorganic ash which has previously been shown to catalyse 

pyrolysis reactions [168]. The removal of inorganics results in the main devolatolisation peaks 

occurring at 50°C higher temperatures for 80°C HMP samples compared to unprocessed samples. 
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The biomass is subsequently upgraded slightly with higher HMP temperatures, lowering the main 

devolatolisation peaks down to 280°C. The shoulders at the end of the plots of Chlorogloeopsis and 

Nannochloropsis at around 450°C represent the lipid fraction of the lipids which have a high boiling 

point. This has previously been shown to occur for microalgal lipids at this temperature range in 

Chapter 6. Pseudochoricystis processed in deionised water exhibits a definitive peak at around 

450°C which is due to the large amount of lipids present in this algae sample. The other peaks 

represent the remaining biochemical components of the microalgae such as protein and 

carbohydrates. Additionally this specific strain is known to produce aliphatic hydrocarbons which 

devolatilise at lower temperatures [104]. The peaks at around 200°C most likely represent these 

hydrocarbons devolatilising. The peaks representing the lipids at around 380°C are not affected 

significantly by HMP; however their height is increased indicating that the relative amount of lipids 

to other biochemical components is increased. This is desirable regarding biofuels applications as 

the lipids and hydrocarbons result in better bio-crude quality from pyrolysis and HTL. The peak of 

the unprocessed sample at 314°C is lowered to around 275°C flowing HMP which suggests 

upgrading of the biomass. The lipid peak of the sample pre-treated at 140°C is considerably smaller, 

suggesting that hydrolysis of the triglycerides occurs at this temperature. The samples processed in 

0.1 M NaCl appear very similar to the deionised water processed samples; therefore the advantages 

of processing in a salt solution appear to be beneficial for energy consumption reasons but the 

effects are negligible on the biomass pyrolysis behaviour.  
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Figure 11.7: DTG pyrolysis plots of pre-treated and raw algae in nitrogen at 50-750°C of (a) 

Chlorogloeopsis, (b) Nannochloropsis, (c) Pseudochoricystis and (d) Pseudochoricystis in 0.1M 

NaCl. 
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The HMP samples were additionally investigated by flash pyrolysis at 500°C for 20 sec and 

analysed by a combination of Py-GC-MS/AED. The pyrolysis volatile yields were calculated on a 

dry ash free basis and are presented in Table 11.6. It is shown that the yields of volatile bio-crude 

for Chlorogloeopsis are within approximately 10 % but reach the highest value of 81 wt.% at the 

highest HMP temperature. At the low HMP temperatures of 80 and 100°C the yields appear 10 % 

lower compared to the untreated sample. The yields for Nannochloropsis are all within a 5% range. 

However the yields take the ash and moisture content into account (dry ash free basis). On an as 

received basis the yields would be much higher as the unprocessed sample exhibits 20 wt.% more 

ash compared to the HMP samples (see Table 11.2). The Pseudochoricystis yields don‟t differ 

significantly between the unprocessed and pre-treated samples, a 5 wt.% increase is seen for all 

samples indicating slight upgrading of flash pyrolysis behaviour.  

Table 11.7: Flash Pyrolysis volatiles yields on a dry ash free basis.  

 
Chlorogloeopsis Nannochloropsis Pseudochoricystis 

Condition Yield (wt.% daf) 

raw 76.6 62.6 55.8 

80°C 
69.9 66.4 59.4 

100°C 
69.5 60.5 56.0 

120°C 
72.2 63.2 60.4 

140°C 
81.0 64.1 59.8 

 

 

The total amount of nitrogen and sulphur in the flash pyrolysis volatiles from the different samples 

was detected by GC-AED and is presented in Figure 11.8. These two elements can cause problems 

when pyrolysis oils are upgraded due to catalyst poisoning during hydro-treating and due to 

increased emissions of NOX and SOX upon combustion. Therefore the concentrations of these 

elements should be kept to a minimum. The amounts of each element were calculated by comparing 

the total areas of the element specific chromatograms from the GC-AED and compared to each 

other. The amount of nitrogen during flash pyrolysis of Chlorogloeopsis is highest of all algae 

strains but reduces significantly when the strain is subjected to HMP. Surprisingly the lowest 

amount of nitrogen and sulphur are found at the lowest pre-treatment temperature of 80°C. The 
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balance on nitrogen in Table 11.2 for the current data do not explain the cause for this observation. 

This finding deserves further investigation and is the focus of ongoing work. The N and S content 

of Nannochloropsis bio-crude volatiles show slightly different trends with an observed increase in S 

content and only a slight decrease in N content. The nitrogen content of the sample at 80°C HMP 

temperature is lowest for Chlorogloeopsis. The samples pre-treated at 100, 120 and 140°C have a 

similar but slightly lower N content to the untreated sample. Pseudochoricystis exhibits the lowest 

nitrogen content of the unprocessed algae samples which is expected due to the low protein content 

of this sample. For Pseudochoricystis the nitrogen and sulphur contents of the bio-crudes decrease 

consistently with increasing microwave processing temperature which agrees with the data of 

nitrogen recovery presented in Table 11.2. The results on heteroatom content, derived using Py-

GC-MS, suggest that hydrothermal microwave treatment results in bio-crudes from flash pyrolysis 

with lower nitrogen and sulphur contents.  

   

 

Figure 11.8: Relative amounts of Nitrogen and Sulphur present in the bio-crude from flash 

pyrolysis detected by Py-GC-AED. 
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11.4 Conclusions 

 

Hydrothermal microwave processing has been demonstrated to be a low energy intensive 

processing method for wet biomass such as microalgae. The process is especially suited for high ash, 

marine strains or macroalgae as the inorganic salts act as microwave absorbers allowing further 

saving on energy input and increased reaction rates. The microalgae doped with 0.1M NaCl and the 

naturally high ash containing algae Nannochloropsis were shown to use considerably less energy to 

reach reaction temperature compared to samples low in salt. HMP was shown to increase simple 

lipid recovery by solvent extraction 3-7 fold and showed beneficial effects on the hydrothermal 

liquefaction behaviour to produce a bio-crude of increased quality. Even at mild processing 

conditions large amounts of the nutrients such as P and N are recovered for recycling in the water 

phase and simultaneously upgrading the biomass feedstock. The ash fraction of Nannochloropsis 

was reduces from 26 to around 5 wt.%, improving its suitability as a feedstock for combustion. 

Moreover the yields of bio-crude from flash pyrolysis and HTL were increased. TGA analysis 

revealed that the pyrolysis performance of Pseudochoricystis and Chlorogloeopsis improved by 

lowering devolatolisation temperatures. The bio-crudes produced from flash pyrolysis were shown 

to contain less nitrogen and sulphur after hydrothermal microwave processing for all three strains.  

At the low processing temperatures investigated the extracted compounds such as polysaccharides 

and fatty acids are undamaged, effectively allowing the simultaneous extraction of bio-products, 

pre-treatment for bio-fuel production and nutrient recovery or recuperation.  
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12. CHAPTER XII – Conclusions, Implication and Future Work 
 

The introduction of the thesis identifies the current need to diversify our energy sources due to 

climate change and depletion of fossil fuels. Microalgae are identified as a suitable alternative 

feedstock for third generation biofuels, due to their fast growth rates and lipid accumulation. 

However cultivation is still costly, representing the area with the largest uncertainties. 

Hydrothermal processing is identified as one of the most appropriate conversion routes as it allows 

processing of wet slurries. HTL has received increasing attention in the published literature, 

however, while considerable amounts of research has been conducted in batch reactors this is the 

first to evaluate a continuous system. One of the draw backs identified is the high nitrogen content 

in the produced bio-crude. Utilisation of homogeneous and heterogeneous catalysts has been 

investigated with the aim of improving the bio-crude quality. The combination of experimental 

work performed and an assessment of the literature leads to the conclusion that the products from 

HTL are highly strain and system specific. The concept of a closed loop system of bio-crude 

production from microalgae under HTL conditions is introduced. This involves the recovery of 

nutrients from the process water to grow algae as well as looping the produced CO2 to the 

cultivation stage for enhanced algae growth. The residual solid residue is envisioned to be useful as 

a bio-char fertiliser while the primary product bio-crude can further be upgraded to drop in fuels.    

 

12.1  Experimental studies 

 

The characterisation of the microalgae feedstocks gives an overview of their compositions and 

feasibility as a feedstock for bio-crude production. The large variety of analysis parameters and 

algae strains presents a significant contribution to the characterisation of microalgae strains 

commonly used for bioenergy applications.  

The hydrothermal liquefaction of algae studies in Chapter 5 present data on 11 different 

microalgae strains at constant conditions. This data represents the single largest data set of different 

strains and their hydrothermal liquefaction performance available to date. The average bio-crude 

yield was shown to be 33.7 wt.% with a nitrogen content of 4.7 wt.% and an oxygen content of 13.6 

wt.%, resulting in a HHV of 36.0 MJ/kg. In terms of HHV and yields these results are a success 

concerning the overall aim of the thesis to produce a bio-crude from HTL of microalgae. However 

it is made apparent that the main challenge still outstanding in HTL of microalgae is reducing the 
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nitrogen content in the bio-crude. The HHV, oxygen content and yields fall into acceptable levels 

suitable for combustion or upgrading. The variety of strains investigated is significant for future 

applications and feasibility studies when assessing the viability of a HTL system.  

 

The effect of operating conditions on the HTL of microalgae has been the focus of numerous 

publications in the literature; therefore this was not a major part of the current work. Experimental 

data in this thesis and the literature review suggest that the optimum operating temperature and 

residence time in batch systems lies at around 15 min and 300°C. However, as highlighted by 

several researchers and herein, operating conditions are highly strain specific and processing system 

dependant.  

Due to some undesirable properties of the produced bio-crude, the use of different catalysts were 

investigated to reduce the viscosity, oxygen and nitrogen content in Chapter 6. The use of organic 

acid catalysts during HTL results in increased yields of bio-crude compared to alkali catalysts. The 

heating value of the bio-crudes are higher using the alkali catalysts however there is a noticeable 

reduction in the boiling point range and improvement of flow properties when using organic acids. 

The molecular weight and boiling point of the bio-crudes were still relatively high using 

homogeneous catalysts. The use of organic acids does not reduce the nitrogen content in the bio-

crudes. The majority of the fuel nitrogen is concentrated in the aqueous phase as ammonium, and 

this represents a suitable nitrogen recycle to sustain algal growth. No evidence for hydrogenation of 

the bio-crude was observed using organic acids. In-situ hydrogenation and upgrading of bio-crudes 

may be possible using organic acids but it is likely that additional catalysts are required. The results 

in Chapter 6 show that lower boiling point bio-crudes can be produced but are unsuccessful 

towards to overall aim of reducing the nitrogen content in the bio-crude in a significant way. 

Therefore the use of homogeneous catalysts is not deemed a suitable route towards the production 

for refinery ready or combustible bio-crude.  

The results of the second part of Chapter 6 show that the majority of the lipids decompose to fatty 

acids, and the majority of the carbon double bonds are hydrogenated during HTL. The use of 

heterogeneous catalysts was shown to deoxygenate the bio-crude by a further 5-10 wt..%, resulting 

in an oxygen removal of up to 67 % for the microalgae feedstock and 64 wt.% for soya oil. The 

Co/Mo and Pt/Al catalyst were shown to reduce the amount of water soluble organic material and 

by this mechanism increase the bio-crude yields. SEC analysis illustrates that the molecular weight 

is reduced significantly by hydrothermal processing and can be further decreased by the use of 

heterogeneous catalysts. The use of the Ni/Al catalyst successfully deoxygenates around 60 wt.% of 
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the fatty acids from hydrothermal processing of soya oil to smaller chain alkanes. These results 

suggest there is potential for both improving yields, reducing boiling point range and improving the 

HHV of bio-crudes using heterogeneous catalysts. However the additional cost of catalysts and the 

remaining high nitrogen in the bio-crude suggest are still outstanding issues towards the goal of a 

bio-refinery ready bio-crude.  

From the liquefaction results, presented in Chapter 7, of model compounds and microalgae it was 

demonstrated that the bio-crude formation follows the trend lipids>proteins>carbohydrates. Lipids 

produce bio-crude yields of 80-55 wt.%, protein 18-11 wt.% and carbohydrates 15-6 wt.%. Both 

proteins and lipids are converted to bio-crude most efficiently without the use of catalysts while 

carbohydrates are best processed using Na2CO3. This is shown by the liquefaction of the model 

compounds and also agrees with the results of the high protein and high lipid microalgae, Spirulina 

and Nannochloropsis respectively. The processing of carbohydrates using sodium carbonate results 

in significantly increased bio-crude yields for both the model compounds as well as the high 

carbohydrate containing microalgae Porphyridium. Na2CO3 selectively increases the 

decarboxylation of carbohydrates. Very high lipid containing algae are best processed using no 

catalyst as this gives the highest bio-crude yields. Using alkali such as Na2CO3 for high lipid algae 

results in saponification reactions.  

It was further shown that the different biochemical compositions of microalgae behave additively, 

which means higher oil yields than lipid contents can be achieved by HTL. This is a distinct 

advantage compared to conventional physical extraction methods for bio-diesel production. GC-MS 

results show that formic acid and water liquefaction produce very similar bio-crude components. 

Proteins produce large amounts of nitrogen heterocycles, pyrroles and indoles, carbohydrates 

produce cyclic ketones as well as phenols while lipids are converted to fatty acids. High protein 

containing algae therefore were shown to produce larger amounts of nitrogen compounds. These 

results are significant in understanding the hydrothermal chemistry of bio-crude production. The 

objective outlined for this Chapter was met and the results are helpful in achieving the aim of 

producing bio-crude from microalgae.  

Analysis of the HTL water phase in Chapter 5 and 8 indicates the presence of high levels of 

nutrients suitable for recycling for algal cultivation. Levels of nitrogen were shown to be 75-200 

times higher compared to a standard BBM growth medium. Growth trials in the recycled process 

water showed that heavy dilution is necessary to avoid the effects of growth inhibitors. The algae 

strains investigated, were able to grow in the recycled water but different optimum dilutions were 
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observed. All examined strains were able to use acetate as a substrate for mixotrophic growth and 

NH4
+
 as a source of nitrogen and no ammonium toxicity was observed. Chlorogloeopsis at 400× 

and Chlorella at 200× dilutions achieved higher biomass yields than in their respective media by 

growing mixotrophically. The analysis of the spent water after cultivation revealed that the majority 

of acetate and ammonium was removed by the algae. It was demonstrated that the optimum dilution 

is strain dependent but ranges between 200-400×. By recycling the organic carbon in the water 

phase both the carbon efficiency and the biomass yields can be improved. This is one of the first 

detailed studies proving the feasibility of a closed loop system incorporating nutrient recycling 

which is a significant step towards the aim of producing sustainable bio-crude from microalgae.  

The small scale cultivation trials in Chapter 8 identified the need for new methods of analysis 

capable of using small sample amounts. By pyrolysing model compounds using Py-GC-MS, marker 

compounds were identified for different biochemical components from microalgae allowing 

subsequent detection of these in real samples and the estimation of the biochemical composition of 

unknown algae. Py-GC-MS of Chlorella vulgaris, grown in process water dilutions from HT 

processing, demonstrated the method‟s ability to determine the level of protein, lipid and 

chlorophyll a. The results generated are in agreement with expectations based on published 

literature. The method was shown to be applicable for high value compounds such as astaxanthin. It 

is likely that the method can be applied to a wide range of compounds found in microalgae but 

further work is required to identify suitable marker compounds. 

The work carried out in Chapter 10 demonstrated the successful operation of a continuous flow 

pilot-scale HTL reactor system. Overall, more severe processing conditions increased yields, 

reduced the oxygen content and led to an increase in lower molecular weight bio-crude fraction 

being formed. It was also shown that the higher processing temperatures increase nitrogen levels as 

more of the protein present in the algae is liquefied and converted to bio-crude. These results from 

the continuous system are in agreement with results from batch processing in Chapter 5. These 

results represent the first investigation of HTL microalgae on a continuous system, proving the 

feasibility of this concept. This is a major step towards the industrial production of microalgae via 

HTL. Additionally the results demonstrate that heating and cooling rates have a much higher impact 

on bio-crude yields than previously identified in literature on batch systems. This has a significant 

impact on the commercialisation of HTL as it is shown that much lower residence times and high 

heating rates can lead to higher bio-crude yields.  
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Hydrothermal microwave processing (HMP) was investigated as a low energy intensive pre-

treatment method for microalgae. The process is shown to be especially suited for high ash, marine 

strains or macroalgae as the inorganic salts act as microwave absorbers allowing further saving on 

energy input and increased reaction rates. The microalgae doped with 0.1M NaCl and the naturally 

high ash containing algae Nannochloropsis were shown to use considerably less energy to reach 

reaction temperature compared to samples low in salt. HMP was shown to increase simple lipid 

recovery by solvent extraction and showed beneficial effects on the hydrothermal liquefaction 

behaviour to produce a bio-crude of increased quality. Even at mild processing conditions large 

amounts of the nutrients such as P and N are recovered for recycling in the water phase and 

simultaneously upgrading the biomass feedstock. Moreover the yields of bio-crude from flash 

pyrolysis and HTL of the pre-treated algae were increased. The bio-crudes produced from flash 

pyrolysis were shown to contain less nitrogen and sulphur after hydrothermal microwave processing.  

At the low processing temperatures investigated the extracted compounds such as polysaccharides 

and fatty acids are undamaged, effectively allowing the simultaneous extraction of bio-products, 

pre-treatment for bio-fuel production and nutrient recovery or recuperation.  

 

12.2 Implications for process development 

 

The experimental data presented within this thesis represents a significant contribution to the 

research area of hydrothermal liquefaction of microalgae. The wide range of strains investigated at 

standard conditions shows the average yields and composition of bio-crude produced from HTL. 

Knowing the HTL products for different algae strains is helpful in the design of future HTL systems 

and mass and energy balances. The composition of bio-crudes greatly influences its suitability as a 

fuel for direct use or upgrading to higher quality fuels. The amount of nitrogen and oxygen 

contained in the bio-crude is the primary consideration for these applications and affects the cost of 

upgrading and emissions from combustion. The data presented now allows other researchers to 

calculate more accurate LCA for the entire process. When such a calculation is required for an algae 

strain which was not investigated in the current study, the results from Chapter 7 on model 

compounds allow the extrapolation to a new algae strain based on the biochemical composition. 

Especially the mass and heat balances presented can aid the techno-economic analysis of future 

HTL systems.  
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The use of catalysts was investigated in Chapter 6 and showed some improvements on the bio-

crude quality and yields. The improvements however are not sufficient to increase the quality of the 

bio-crude to a standard which doesn‟t require further upgrading. Additionally the reusability, 

stability and cost of heterogeneous catalysts are areas of uncertainty that deserve more attention. 

The additional cost most likely doesn‟t justify the improvements especially if upgrading is possible 

for the non-catalysed HTL bio-crudes. The use of homogeneous catalysts equally exhibits 

additional cost and the recovery of catalyst causes a major challenge. Even though these catalysts 

are cheaper than heterogeneous catalysts their effects do not justify their use in a HTL system. The 

effect on the process water and its suitability for nutrient recycling is also an area of uncertainty that 

should be investigated before the employment of catalysts. However the de-oxygenation of lipids 

using a Ni/Al catalyst shown in Chapter 6 could be a promising route towards the production of 

green diesel from lipid rich microalgae or vegetable oils.  

For the envisioned closed loop process presented during this work Chapter 8 presents the most 

detailed study to date on recycling of nutrients from HTL process water. The feasibility of recycling 

nutrients is proven for four different algae strains processed at two temperatures. This proof of 

concept is a major step towards commercialisation which can distinguish HTL from other 

microalgae biofuel production pathways. The cost of nutrients is a major factor in any industrialised 

process which can be reduced significantly with the proposed nutrient recycling. The organic 

carbon in the process water has previously been regarded as a major issue of HTL due to the 

reduced carbon efficiency of the process and the high cost of water remediation. As presented in the 

experimental work of the thesis, the majority of the organic carbon was shown to be consumed by 

mixotrophic algal growth, therefore increasing the carbon efficiency and reducing water 

remediation costs. The main cost driving nutrients N and P were efficiently recycled by algae in the 

process water. However a full mass balance on nutrients is required to facilitate a comprehensive 

LCA of the closed loop HTL process.  

A further step towards the goal of a closed loop process for HTL biofuel production is presented in 

the experimental work on the continuous reactor at the University of Sydney. This represents the 

first study in literature where a continuous HTL reactor is operated successfully. This is a major 

step towards the commercialisation of the process. The data presented shows that even at low 

residence times, high bio-crude can be produced which increases the throughput of the system and 

improves the energy balance. It is expected that a continuous process is required to achieve a 

positive energy balance and cost effectiveness in a HTL system. Heat recovery and bio-crude 
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recovery are greatly improved on such a reactor system. The current work demonstrates that this is 

technically feasible on a pilot scale.  

Hydrothermal microwave processing is demonstrated as a novel technique for extraction of 

phytochemicals and pre-treatment for bio-fuel applications. The concept has enormous potential for 

the targeted extraction of valuable compounds from microalgae. The temperature can be controlled 

accurately allowing efficient extraction of desired compounds. Additionally the energy 

consumption is low and benefits from microwave absorbing salts within microalgae. The technique 

could prove useful in an industrial process where high valuable compounds are extracted prior to 

processing the residue to bio-crude. This is the first contribution to the literature on HMP of 

microalgae with results presented on lipid and nutrient extraction, energy consumption and further 

processing. The results are promising especially for high salt containing microalgae which could 

damage stainless steel reactor systems as investigated in the current work.  

Overall the results presented within the thesis lead to the conclusion that the field of algal biomass 

as a renewable source of energy is still relatively new and unexplored. The potential is large due to 

the extraordinary growth rates and oil contents that some microalgae strains can achieve. Large 

amounts of resources are currently being invested into research on the cultivation of microalgae; 

including PBR design, strain identification/selection, nutrient optimization and harvesting 

technologies. If strains are identified which are able to grow fast, are resistant to external 

influences/bacteria and can grow in brackish/salt water and at the same time remediate waste water, 

the potential of microalgae is enormous. Hydrothermal treatment will most likely find its place in an 

energy system where algae are used due to its safe and cheap reactant (H2O). Any algal biomass 

source is expected to be processed wet as the energy required for drying is very high and would 

make most processes uneconomical. Garcia Alba et al. describe microalgae and HT processing in a 

biorefinery concept where high valuable compounds are extracted wet pre-HT processing [37], 

similar to the work presented in the thesis on hydrothermal microwave processing. This then allows 

HT treatment of the low valuable residue to bio-crude. Any commercial application of HT 

processing of algae would require the use of a continuous process where heat recovery can be 

incorporated, increasing the energy efficiency and allowing high throughput. The feasibility of such 

a system as presented during the current work. The engineering challenges on the processing side 

are relatively straight forward although high salt content and corrosion could pose problems. 

Nevertheless the main challenge lies in designing a biorefinery concept where the supply of aquatic 

biomass is substantial and cheap. If waste water treatment and high value products can be 

incorporated, the development could be accelerated significantly. Any future advances in this field 
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also largely depend on future legislation, the price of fossil energy and energy security but if these 

factors are favourable, HT technology with algal biomass could become reality in the next decade.  

 

12.3 Future Work 

 

The characterisation of microalgae feedstock presented in Chapter 4 is comprehensive but ideally 

additional parameters should be investigated. The carbohydrate fraction deserves more attention; in 

particular the structural composition could prove to be significant. Only the total carbohydrate 

content was examined and no distinction of polysaccharide, di- and mono-saccharides is made. The 

overall sugar composition is also of interest, especially for the Py-GC-MS work carried out in 

Chapter 9. It would be desirable to know the fatty acid profiles of different microalgae strains in 

order to examine their fate during HTL. Additionally, fully quantitative analysis of the pigments 

should be performed. 

The thesis describes the hydrothermal liquefaction of different microalgae strains before 

investigating the effect of operating conditions. Operating conditions are only examined for one 

algae strain at constant solids loading and heating rates. This parametric study deserves further 

attention as it was shown that different microalgae strains results in different bio-crude yields and 

properties. Especially the effect of temperature and residence time should be investigated for a 

wider range of algae classes such as marine strains, cyanobacteria and diatoms. The work carried 

out on model compounds should include varying operating conditions. This would shed light on the 

most favourable process conditions of biochemical components and predictions of optimum 

processing conditions for different algae strains. The work on model compounds revealed very 

useful data but additional model compounds such as chlorophyll a, complex carbohydrates and fatty 

acids of different saturations should be investigated. This would allow a more thorough 

understanding of the hydrothermal chemistry of microalgae. 

The catalytic HTL using heterogeneous catalysts showed the potential for deoxygenation and 

improved bio-crude yields. However the work on this subject deserves more attention. The results 

indicated that catalysts influence biochemical components differently and this should be 

investigated by processing model compounds. Transition metal catalysts of Fe, Co, Cu and Ni 

should be investigated with model compounds and microalgae. There is also a potential of using 

zeolite catalysts during HTL which deserves investigation.   
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It could be shown that nutrient recycling using the aqueous phase from HTL is possible but some 

growth inhibition was observed. The inhibiting compounds need to be identified by doping growth 

media with e.g. phenols and nickel. Identifying the growth inhibitors is essential in order to be able 

to remove them from the water phase or alter the process to produce less of the inhibiting 

compounds. Additionally growth trials need to be scaled up in order to grow enough biomass to run 

a new HTL experiment. It would be interesting to see how the algae composition changes after a 

few repeats and the levels of inorganics and inhibitors in the water phase are affected. From these 

results a comprehensive balance on nutrients could be calculated which would be a step forward 

towards commercialisation. The growth trials should also be carried out on process water from the 

continuous reactor.  

The new analysis technique using Py-GC-MS is introduced in Chapter 9 and showed very 

promising results. Nevertheless there is room for improvement; the method requires full 

quantification and comparison to conventional analysis techniques. The wet analysis technique from 

live cultures requires more repeats and the growth rates need to be compared to standard growth 

estimation methods. The potential of the technique to investigate concentrations of high value 

compounds was demonstrated and is likely to be applicable to a wider range of compounds. By 

pyrolysing standards of high value compounds an attempt should be made to expand the technique 

to additional phytochemicals.  

The continuous HTL reactor results show the feasibility of processing microalgae at pilot scale. The 

main area of uncertainty is the unaccounted carbon lost to the system, this requires investigation. 

The solids loading was initially only examined at 1 wt.% which is not economical, therefore solids 

loadings of 10 wt.% and higher need to be assessed. Due to the low solids loading solvents were 

used to recover the bio-crude. Future work should include recovery of the bio-crude without the use 

of solvents.  

Hydrothermal microwave processing is shown to be a promising new technique for extraction of 

microalgae components and pre-treatment for biofuel production. To understand the chemical and 

physical reactions under microwave irradiation in water, model compounds should be processed at 

varying operating conditions. The development of a continuous system is also desirable as this 

could greatly reduce the energy demand. There is a high potential of using catalysts in microwave 

systems due to their high absorbance which could greatly influence reaction pathways.  
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14. Nomenclature 
 

AD Anaerobic Digestion 

ar as received 

amu  Atomic mass unit 

BBM Bold Basal Media 

CV Calorific Value 

daf dry ash free 

db dry basis 

FAME Fatty Acid Methyl Ester 

FFA Free Fatty Acid 

GC Gas Chromatography 

GHG Green House Gas 

HPLC High Pressure Liquid Chromatography 

HHV Higher Heating Value 

HT Hydrothermal 

HTC Hydrothermal Carbonisation 

HTG Hydrothermal Gasification 

HTL Hydrothermal Liquefaction 

HMP Hydrothermal Microwave Processing 

ICP-OES Inductively Coupled Plasma-Optical Emission Spectrometry 

IEC Ion Exchange Chromatography 

LCA Life Cycle Assessment 

MS Mass Spectrometry 

MJ Mega Joule 

M Molar 



 

236 

 

PN Partition Number 

ppb parts per billion 

ppm parts per million 

Py-GC-MS Pyrolysis GC-MS 

RTFO Renewable Transport Fuel Obligation 

SEM Scanning Electron Microscope 

SEC Size Exclusion Chromatography 

TGA Thermo Gravimetric Analysis 

3N-BBM+V Three fold Nitrogen-BBM+Vitamin 

TIC Total Inorganic Carbon 

TN Total Nitrogen 

TOC Total Organic Carbon 
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SEM at 1500 times magnification  

Ultimate Analysis  (daf %): 

Carbon 54.3 

Oxygen 28.8 

Hydrogen 7.3 

Nitrogen 9.5 

Sulfur ND 

Scientific name Strain Source Growth media 

Botryococcus braunii 807/1 Guadeloupe (race B) Plymouth Marine Laboratory, UK 3N-BBM+V 

 Proximate Analysis Gross As Received: 

Moisture  6.0 % 

Ash  5.4 % 

Volatile matter  74.1 % 

Fixed carbon  14.5 % 

Heat Value (MJ/kg) 24.8 

Biochemical (daf %) 

Protein 45 

Carbohydrate NA 

Lipid NA 

Pigment Analysis (a/r ppm) 

Chlorphillide a 1116 

Chlorophyll C1/C2 471 

Fucoxanthin - 

Violaxanthin 941 

Astaxhanthin - 

Lutein 4763 

Zeaxanthin - 

Antheraxanthin 525 

Chlorophyll b1 3994 

Chlorophyll b2 894 

Chlorophyll a 2321 

α-carotene - 

β-carotene 459 

Metal Analysis (a/r ppm) 

Al NA 

Ca NA 

Cl  NA 

Cu NA 

Fe NA 

K NA 

Mg NA 

Mn NA 

Na NA 

Ni NA 

P NA 

Zn NA 
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TGA/DTG in N2 

 

Py-GC-MS at 500°C 
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Size:  1.2530 mg
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Retention time (min) 

Py-GC-MS Analysis 

  

  

Retention 

time 

Area % Compound 

7.947 15.68 Toluene 

11.047 5.86 o-Xylene 

12.315 5.78 Styrene 

23.585 2.79 Phenol, 4-methyl- 

33.424 2.78 3-Octadecene, (E)- 

37.118 3.09 2-Hexadecene, 3,7,11,15-tetramethyl-,  

37.398 45.7 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 

37.858 2.62 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 

38.271 4.66 6,6-Dimethyl-cyclooct-4-enone 

38.392 11.04 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 
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SEM at 1500 times magnification not available  

Ultimate Analysis  (daf %): 

Carbon 52.6 

Oxygen 32.2 

Hydrogen 7.1 

Nitrogen 8.2 

Sulfur 0.5 

Scientific name Strain Source Growth media 

Chlorella sp. unknown Naturally Green Ltd, UK unknown 

 Proximate Analysis Gross As Received: 

Moisture  5.9 % 

Ash  7.0 % 

Volatile matter  78.5 % 

Fixed carbon  11.3 % 

Heat Value (MJ/kg) 23.2 

Biochemical (daf %) 

Protein 55 

Carbohydrate 9 

Lipid 36 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin - 

Astaxhanthin - 

Lutein 11771 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 14414 

Chlorophyll b2 2401 

Chlorophyll a 2870 

α-carotene - 

β-carotene - 

Metal Analysis (a/r ppm) 

Al 13 

Ca 3141 

Cl 3893 

Cu 6 

Fe 1179 

K 14899 

Mg 4028 

Mn 44 

Na 1108 

Ni 1 

P 7954 

Zn 135 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  4.6650 mg
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Retention time (min) 

Py-GC-MS Analysis 

  

  

Retention 

time 

Area % Compound 

7.597 33.39 Toluene 

10.376 5.88 Benzene, 1,3-dimethyl- 

11.479 3.31 Styrene 

12.063 3.17 ND 

12.811 4.05 1H-Pyrrole, 3-methyl- 

18.305 7.56 Thiophene, 2-methoxy-5-methyl- 

18.802 9.41 Phenol 

20.971 24.58 Phenol, 4-methyl- 

21.861 5.08 Benzyl nitrile 

24.053 3.57 Naphthalene, 1,2-dihydro-1,1,6-trimethyl- 
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SEM at 1500 times magnification 

Ultimate Analysis  (daf %): 

Carbon 53.5 

Oxygen 27.5 

Hydrogen 7.4 

Nitrogen 11.0 

Sulfur 0.5 

Scientific name Strain Source Growth media 

Chlorella vulgaris OZ unknown Synergy Natural, Australia unknown 

 Proximate Analysis Gross As Received: 

Moisture  5.2 % 

Ash  6.0 % 

Volatile matter  76.3 % 

Fixed carbon  12.1 % 

Heat Value (MJ/kg) 24.3 

Biochemical (daf %) 

Protein 53-60 

Carbohydrate 15.-25 

Lipid 3-5 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin - 

Astaxhanthin - 

Lutein 229 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 1396 

Chlorophyll b2 511 

Chlorophyll a 504 

α-carotene - 

β-carotene - 

Metal Analysis (a/r ppm) 

Al 25 

Ca 1922 

Cl 3946 

Cu 6 

Fe 846 

K 11705 

Mg 3288 

Mn 57 

Na 860 

Ni 0.7 

P 9319 

Zn 21 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  2.2090 mg
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Retention time(min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.43 29.04 Toluene 

11.116 2.78 Styrene 

12.398 5.57 1H-Pyrrole, 3-methyl- 

12.842 5.71 2-Furanmethanol 

18.069 6.79 Phenol 

20.121 25.1 Phenol, 4-methyl- 

20.892 3.14 Benzyl nitrile 

23.568 4.6 Benzenepropanenitrile 

25.52 12.62 Indole 

31.011 4.65 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 
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SEM at 1500 times magnification not available 

 

 

 

 

 

 

 

Ultimate Analysis  (daf %): 

Carbon NA 

Oxygen NA 

Hydrogen NA 

Nitrogen NA 

Sulfur NA 

Scientific name Strain Source Growth media 

Dunaliella salina 19/18 University of Sheffield, UK modified f/2, 2.0 M NaCl 

 Proximate Analysis Gross As Received: 

Moisture  1.5 % 

Ash  xx % 

Volatile matter  34 % 

Fixed carbon  xx 

Heat Value (MJ/kg) NA 

Biochemical (daf %) 

Protein NA 

Carbohydrate NA 

Lipid NA 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin 2818 

Astaxhanthin 8813 

Lutein - 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 6606 

Chlorophyll b2 - 

Chlorophyll a 3660 

α-carotene 656 

β-carotene 8088 

Metal Analysis (a/r ppm) 

Al NA 

Ca NA 

Cl NA 

Cu NA 

Fe NA 

K NA 

Mg NA 

Mn NA 

Na NA 

Ni NA 

P NA 

Zn NA 
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Thermal Analysis 
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Size:  2.2870 mg
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SEM at 1500 times magnification not available 

 

 

 

 

 

 

 

Ultimate Analysis  (daf %): 

Carbon NA 

Oxygen NA 

Hydrogen NA 

Nitrogen NA 

Sulfur NA 

Scientific name Strain Source Growth media 

Dunaliella salina 19/30 University of Sheffield, UK modified f/2 

 Proximate Analysis Gross As Received: 

Moisture  3.0 % 

Ash  35.1 % 

Volatile matter  44.8 % 

Fixed carbon  20.4 % 

Heat Value (MJ/kg) NA 

Biochemical (daf %) 

Protein NA 

Carbohydrate NA 

Lipid NA 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin 1647 

Astaxhanthin - 

Lutein - 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 - 

Chlorophyll b2 - 

Chlorophyll a 1177 

α-carotene - 

β-carotene - 

Metal Analysis (a/r ppm) 

Al NA 

Ca NA 

Cl NA 

Cu NA 

Fe NA 

K NA 

Mg NA 

Mn NA 

Na NA 

Ni NA 

P NA 

Zn NA 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  2.7650 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

3.414 14.23 Methylamine, N,N-dimethyl- 

3.856 5.58 ND 

7.629 36.1 Toluene 

10.436 4.36 

2-(1-Benzyl-2-indolyl)-4-[(4-

methoxybenzoyl)hydrazono]-4-

phenylbutyric acid 

11.883 3.24 ND 

12.102 4.59 ND 

14.257 9.9 D-Limonene 

22.366 10.68 2,3;5,6-Diacetone-4-O-methylmannitol 

24.324 5.72 

5,6-Dihydro-2-iso-propenyl-4,4,6-

trimethyl-(4H)-1,3-oxazine 

24.547 5.6 Cyclopropane, (1,2-dimethylpropyl)- 
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SEM at 1500 times magnification not available 

 

 

 

 

Ultimate Analysis  (daf %): 

Carbon NA 

Oxygen NA 

Hydrogen NA 

Nitrogen NA 

Sulfur NA 

Scientific name Strain Source Growth media 

Dunaliella tertiolecta 19/27 CCAP f/2 

 Proximate Analysis Gross As Received: 

Moisture  6.8 % 

Ash  9.4 % 

Volatile matter  77.4 % 

Fixed carbon  6.4 % 

Heat Value (MJ/kg) NA 

Biochemical (daf %) 

Protein NA 

Carbohydrate NA 

Lipid NA 

Metal Analysis (a/r ppm) 

Al NA 

Ca NA 

Cl NA 

Cu NA 

Fe NA 

K NA 

Mg NA 

Mn NA 

Na NA 

Ni NA 

P NA 

Zn NA 

Pigment Analysis (a/r ppm) 

Chlorphillide a 572 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin 2731 

Astaxhanthin - 

Lutein 12420 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 10231 

Chlorophyll b2 1690 

Chlorophyll a 4818 

α-carotene - 

β-carotene 2017 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  2.2710 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

3.843 4.48 3-Buten-1-ol, 2-methyl- 

7.495 24.37 Toluene 

11.677 1.69 Cyclotetrasiloxane, octamethyl- 

11.745 2.74 Perfluoropropanimidamide,  

19.956 45.27 1-Ethyl-2-pyrrolidinone 

20.885 4.41 

7-Chloro-1,3,4,10-tetrahydro-10-

hydroxy-acridinone 

22.987 11.55 1-Hexanol, 4-methyl-, (S)- 

23.108 2.02 N,N-Dicyclohexyl-benzamide 

23.211 1.52 N,N-Dicyclohexyl-acetamide 

24.162 1.94 Hexadecane 
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SEM at 1500 times magnification 

Ultimate Analysis  (daf %): 

Carbon 61.3 

Oxygen 27.0 

Hydrogen 9.1 

Nitrogen 2.1 

Sulfur ND 

Scientific name Strain Source Growth media 

Pseudochoricystis ellipsoidea MBIC11204 DENSO Corporation, Japan unknown 

 Proximate Analysis Gross As Received: 

Moisture  1.2 % 

Ash  1.0 % 

Volatile matter  90.7 % 

Fixed carbon  4.4 % 

Heat Value (MJ/kg) 27.0 

Biochemical (daf %) 

Protein 25 

Carbohydrate 7 

Lipid 67 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin - 

Astaxhanthin - 

Lutein 626 

Zeaxanthin - 

Antheraxanthin 48 

Chlorophyll b1 197 

Chlorophyll b2 - 

Chlorophyll a 44 

α-carotene - 

β-carotene - 

Metal Analysis (a/r ppm) 

Al 0 

Ca 209 

Cl 10 

Cu 11 

Fe 48 

K 2899 

Mg 244 

Mn 7 

Na 124 

Ni 0 

P 6256 

Zn 11 
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TGA/DTG plot in N2 
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Size:  3.1400 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.44 7.08 Toluene 

12.823 11.56 2-Furanmethanol 

14.678 11.23 1,2-Cyclopentanedione 

14.841 4.98 ND 

15.137 5.74 3-Undecene, (E)- 

17.271 5.99 

1,2-Cyclopentanedione, 3-

methyl- 

18.656 4.56 5-Decen-1-ol, (Z)- 

24.151 13.37 Pentadecane 

27.896 28.04 3-Heptadecene, (Z)- 

28.093 7.46 Heptadecane 
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SEM at 1500 times magnification not available 

Ultimate Analysis  (daf %): 

Carbon 52.7 

Oxygen 31.6 

Hydrogen 7.5 

Nitrogen 7.8 

Sulfur ND 

Scientific name Strain Source Growth media 

Haematococcus pluvialis 34/1D CCAP 3N-BBM+V 

 Proximate Analysis Gross As Received: 

Moisture  8.1 % 

Ash  5.7 % 

Volatile matter  77.5 % 

Fixed carbon  14 % 

Heat Value (MJ/kg) 23.9 

Biochemical (daf %) 

Protein 37 

Carbohydrate NA 

Lipid NA 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin 160 

Astaxhanthin 3745 

Lutein - 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 1873 

Chlorophyll b2 - 

Chlorophyll a 928 

α-carotene 0 

β-carotene 690 

Metal Analysis (a/r ppm) 

Al NA 

Ca NA 

Cl NA 

Cu NA 

Fe NA 

K NA 

Mg NA 

Mn NA 

Na NA 

Ni NA 

P NA 

Zn NA 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  2.0840 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.455 40.31 Toluene 

9.85 4.04 Ethylbenzene 

10.033 3.48 Pyrole 

10.09 10.12 o-Xylene 

12.394 4.8 1H-Pyrrole, 2-methyl- 

17.05 3.37 Pyrrole, 4-ethyl-2-methyl- 

17.242 6.88 1,2-Cyclopentanedione, 3-methyl- 

18.036 6.32 Phosphonic acid, (p-hydroxyphenyl)- 

20.07 15.89 Phenol, 4-methyl- 

27.9 4.79 8-Heptadecene 
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SEM at 1500 times magnification not available 

 

 

 

 

 

 

 

Ultimate Analysis  (daf %): 

Carbon 60.4 

Oxygen 26.7 

Hydrogen 9.5 

Nitrogen 3.0 

Sulfur 0.4 

Scientific name Strain Source Growth media 

unknown unknown DENSO Corporation, Japan unknown 

 Proximate Analysis Gross As Received: 

Moisture  2.6 % 

Ash  2.3 % 

Volatile matter  87.4 % 

Fixed carbon  6.6 % 

Heat Value (MJ/kg) 26.9 

Biochemical (daf %) 

Protein 14 

Carbohydrate NA 

Lipid 28 

Pigment Analysis (a/r ppm) 

Chlorphillide a NA 

Chlorophyll C1/C2 NA 

Fucoxanthin NA 

Violaxanthin NA 

Astaxhanthin NA 

Lutein NA 

Zeaxanthin NA 

Antheraxanthin NA 

Chlorophyll b1 NA 

Chlorophyll b2 NA 

Chlorophyll a NA 

α-carotene NA 

β-carotene NA 

Metal Analysis (a/r ppm) 

Al 263 

Ca 645 

Cl 250 

Cu 133 

Fe 464 

K 8991 

Mg 2448 

Mn 27 

Na 2696 

Ni 7.6 

P 6345 

Zn 87 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  3.2470 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.488 15.56 Toluene 

12.846 9.94 2-Furanmethanol 

15.14 4.48 3-Undecene, (E)- 

17.321 11.7 1,2-Cyclopentanedione, 3-methyl- 

22.006 2.57 Pentadecane 

24.165 15.65 Pentadecane 

27.905 23.6 3-Heptadecene, (Z)- 

27.975 3.37 6,9-Heptadecadiene 

28.09 7.39 Heptadecane 

31.013 5.74 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 
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SEM at 1500 times magnification 

Ultimate Analysis  (daf %): 

Carbon 57.8 

Oxygen 25.7 

Hydrogen 8.0 

Nitrogen 8.6 

Sulfur ND 

Scientific name Strain Source Growth media 

Nannochloropsis occulata unknown University of Almeria, Spain unknown 

 Proximate Analysis Gross As Received: 

Moisture  7.2 % 

Ash  26.4 % 

Volatile matter  61.5 % 

Fixed carbon  8.4 % 

Heat Value (MJ/kg) 17.9 

Biochemical (daf %) 

Protein 57 

Carbohydrate 8 

Lipid 35 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin 1072 

Astaxhanthin - 

Lutein 401 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 - 

Chlorophyll b2 - 

Chlorophyll a 535 

α-carotene 75 

β-carotene 204 

Metal Analysis (a/r ppm) 

Al 0 

Ca 700 

Cl 76955 

Cu 10 

Fe 714 

K 14989 

Mg 3295 

Mn 53 

Na 189271 

Ni 0 

P 7806 

Zn 18 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  4.3570 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.551 26.7 Toluene 

11.766 6.97 Pseudosolasodine diacetate 

13.556 4.23 Ethanone, 1-(2-furanyl)- 

18.124 17.16 Phenol 

19.749 2.63 Lyxitol, 1-O-decyl- 

20.15 9.29 Phenol, 4-methyl- 

20.923 6.4 Benzyl nitrile 

23.617 10.91 Benzenepropanenitrile 

24.161 2.4 Pentadecane 

25.544 13.31 Indole 
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SEM at 1500 times magnification not available 

Ultimate Analysis  (daf %): 

Carbon 35.7 

Oxygen 52.9 

Hydrogen 5.9 

Nitrogen 5.6 

Sulfur ND 

Scientific name Strain Source Growth media 

Navicula sp. unknown University of Sheffield, UK f/2 with 100% Silicate 

 Proximate Analysis Gross As Received: 

Moisture  6.7 % 

Ash  4.0 % 

Volatile matter  80.8 % 

Fixed carbon  9.3 % 

Heat Value (MJ/kg) 17.5 

Biochemical (daf %) 

Protein 27 

Carbohydrate NA 

Lipid NA 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin 294 

Violaxanthin - 

Astaxhanthin - 

Lutein - 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 - 

Chlorophyll b2 - 

Chlorophyll a 1908 

α-carotene 476 

β-carotene 3268 

Metal Analysis (a/r ppm) 

Al NA 

Ca NA 

Cl NA 

Cu NA 

Fe NA 

K NA 

Mg NA 

Mn NA 

Na NA 

Ni NA 

P NA 

Zn NA 



DATA SHEET: Navicula sp.        

   APPENDIX A 

258 

 

TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  3.8690 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.456 8.93 Alanine, 3-N-carboxy-, N-b 

11.613 7.18 Furfural 

15.34 7.77 2-Furancarboxaldehyde, 5-methyl- 

16.518 2.55 4-Amino-2(1H)-pyridinone 

16.683 5.55 Oxazolidine, 2,2-diethyl-3-methyl- 

19.698 10.69 Maltol 

20.117 3.88 Phenol, 4-methyl- 

20.914 14.15 Levoglucosenone 

24.143 3.94 Pentadecane 

28.107 35.36 Ethanol, 2-(octadecyloxy)- 
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SEM at 1500 times magnification  

Ultimate Analysis  (daf %): 

Carbon 54.4 

Oxygen 31.4 

Hydrogen 6.9 

Nitrogen 7.3 

Sulfur ND 

Scientific name Strain Source Growth media 

Chlorogloeopsis fritschii 1411/1 Plymouth Marine Laboratory, UK JM 

 Proximate Analysis Gross As Received: 

Moisture  6.8 % 

Ash  7.6 % 

Volatile matter  75.5 % 

Fixed carbon  6.6 % 

Heat Value (MJ/kg) 23.3 

Biochemical (daf %) 

Protein 50 

Carbohydrate 44 

Lipid 7 

Pigment Analysis (a/r ppm) 

Chlorphillide a NA 

Chlorophyll C1/C2 NA 

Fucoxanthin NA 

Violaxanthin NA 

Astaxhanthin NA 

Lutein NA 

Zeaxanthin NA 

Antheraxanthin NA 

Chlorophyll b1 NA 

Chlorophyll b2 NA 

Chlorophyll a NA 

α-carotene NA 

β-carotene NA 

Metal Analysis (a/r ppm) 

Al 0 

Ca 4350 

Cl 578 

Cu 19 

Fe 692 

K 4844 

Mg 2693 

Mn 91 

Na 3905 

Ni 0.4 

P 7847 

Zn 68 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  3.7170 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.604 24.93 Toluene 

10.125 3.14 Ethylbenzene 

10.315 2.66 Pyrrole 

12.075 2.9 Maytansine 

18.056 7.49 1,2-Cyclopentanedione, 3-methyl- 

18.794 20.83 Phenol 

20.974 27.12 Phenol, 4-methyl- 

21.804 3.52 1-Hexene, 2-methyl- 

21.865 4.89 Benzyl nitrile 

24.717 2.52 Benzenepropanenitrile 
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SEM at 1500 times magnification 

Ultimate Analysis  (daf %): 

Carbon 51.3 

Oxygen 33.1 

Hydrogen 7.6 

Nitrogen 8.0 

Sulfur ND 

Scientific name Strain Source Growth media 

Porphyridium cruentum unknown University of Almeria, Spain unknown 

 Proximate Analysis Gross As Received: 

Moisture  5.1 % 

Ash  24.4 % 

Volatile matter  65.5 % 

Fixed carbon  5.5 % 

Heat Value (MJ/kg) 14.7 

Biochemical (daf %) 

Protein 43 

Carbohydrate 40 

Lipid 17 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin 57 

Violaxanthin - 

Astaxhanthin - 

Lutein - 

Zeaxanthin 963 

Antheraxanthin - 

Chlorophyll b1 252 

Chlorophyll b2 66 

Chlorophyll a 196 

α-carotene - 

β-carotene - 

Metal Analysis (a/r ppm) 

Al 0 

Ca 39852 

Cl 25348 

Cu 16 

Fe 1815 

K 19009 

Mg 5085 

Mn 116 

Na 80400 

Ni 2.7 

P 8889 

Zn 99 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  3.9630 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.635 27.81 Toluene 

10.335 4.2 Pyrrole 

11.967 3.24 2-Cyclopenten-1-one 

12.094 5.46 Tetracontane, 3,5,24-trimethyl- 

18.078 7.01 1,2-Cyclopentanedione, 3-methyl- 

18.832 25.89 Phenol 

20.377 3.98 

2-Cyclopenten-1-one, 3-ethyl-2-

hydroxy- 

21.021 11.57 Phenol, 4-methyl- 

21.896 4.55 Benzyl nitrile 

24.75 6.29 Benzenepropanenitrile 
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SEM at 1500 times magnification 

Ultimate Analysis  (daf %): 

Carbon 53.4 

Oxygen 31.0 

Hydrogen 7.8 

Nitrogen 7.9 

Sulfur ND 

Scientific name Strain Source Growth media 

Scenedesmus dimorphus 276/48 CCAP 3N-BBM+V 

 Proximate Analysis Gross As Received: 

Moisture  1.6 % 

Ash  11.8 % 

Volatile matter  79.1 % 

Fixed carbon  4.1 % 

Heat Value (MJ/kg) 18.3 

Biochemical (daf %) 

Protein 43 

Carbohydrate 16 

Lipid 18 

Pigment Analysis (a/r ppm) 

Chlorphillide a 0 

Chlorophyll C1/C2 - 

Fucoxanthin 411 

Violaxanthin 0 

Astaxhanthin - 

Lutein 2257 

Zeaxanthin - 

Antheraxanthin 0 

Chlorophyll b1 7452 

Chlorophyll b2 601 

Chlorophyll a 2070 

α-carotene 0 

β-carotene 648 

Metal Analysis (a/r ppm) 

Al 200 

Ca 151241 

Cl 3893 

Cu 35 

Fe 505 

K 8358 

Mg 15215 

Mn 425 

Na 1492 

Ni 2.9 

P 

 Zn 197 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  1.2760 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.615 40.99 Toluene 

10.142 3.79 ND 

10.325 3.86 Pyrrole 

10.399 4.77 Benzene, 1,3-dimethyl- 

18.042 5.25 1,2-Cyclopentanedione, 3-methyl- 

18.82 9.41 Phosphonic acid, (p-hydroxyphenyl)- 

20.991 20.64 Phenol, 4-methyl- 

21.826 5.11 Cyclohexanecarbonitrile, 1-hydroxy- 

21.9 3.68 Benzyl nitrile 

24.08 2.5 

Naphthalene, 1,2-dihydro-1,1,6-

trimethyl- 
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SEM at 1500 times magnification not available  

Ultimate Analysis  (daf %): 

Carbon 55.7 

Oxygen 26.4 

Hydrogen 6.8 

Nitrogen 11.2 

Sulfur 0.8 

Scientific name Strain Source Growth media 

Spirulina sp. unknown Naturally Green Ltd, UK unknown 

 Proximate Analysis Gross As Received: 

Moisture  7.8 % 

Ash  7.6 % 

Volatile matter  73.7 % 

Fixed carbon  12.4 % 

Heat Value (MJ/kg) 21.2 

Biochemical (daf %) 

Protein 65 

Carbohydrate 20 

Lipid 5 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin 2208 

Astaxhanthin - 

Lutein - 

Zeaxanthin 3752 

Antheraxanthin 0 

Chlorophyll b1 - 

Chlorophyll b2 - 

Chlorophyll a 4125 

α-carotene 0 

β-carotene 5656 

Metal Analysis (a/r ppm) 

Al 11 

Ca 1015 

Cl 3239 

Cu 2 

Fe 563 

K 14994 

Mg 2890 

Mn 24 

Na 15113 

Ni 1 

P 7138 

Zn 35 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  2.4810 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.632 24.39 Toluene 

11.867 2.48 

Propanedinitrile, ethyl(1-

oxopropoxy)- 

12.094 3.73 Pentanenitrile, 4-methyl- 

18.821 25.84 

Phosphonic acid, (p-

hydroxyphenyl)- 

21 20.26 Phenol, 4-methyl- 

21.825 2.08 Aziridine, 1-(2-buten-2-yl)- 

21.89 6.15 Benzyl nitrile 

24.325 2.95 2-Pentene, 2-methyl- 

24.742 6.28 Benzenepropanenitrile 

25.328 5.84 Pentadecane 
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SEM at 1500 times magnification 

Ultimate Analysis  (daf %): 

Carbon 53.7 

Oxygen 25.9 

Hydrogen 7.7 

Nitrogen 12.1 

Sulfur 0.6 

Scientific name Strain Source Growth media 

Spirulina sp. OZ unknown Synergy Natural, Australia unknown 

 Proximate Analysis Gross As Received: 

Moisture  5.7 % 

Ash  7.6 % 

Volatile matter  71.9 % 

Fixed carbon  14.2 % 

Heat Value (MJ/kg) 21.2 

Biochemical (daf %) 

Protein 65-70 

Carbohydrate 11 

Lipid 8 

Pigment Analysis (a/r ppm) 

Chlorphillide a - 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin 2691 

Astaxhanthin - 

Lutein - 

Zeaxanthin 4139 

Antheraxanthin - 

Chlorophyll b1 - 

Chlorophyll b2 - 

Chlorophyll a 5042 

α-carotene - 

β-carotene 5920 

Metal Analysis (a/r ppm) 

Al 402 

Ca 7782 

Cl 4433 

Cu 8 

Fe 879 

K 13899 

Mg 4256 

Mn 56 

Na 4732 

Ni 2.6 

P 8817 

Zn 27 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  2.7600 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

7.49 17.78 Toluene 

10.076 4.41 

3-(2-

Propenyl)cyclopentene 

11.723 2.63 Pentanenitrile, 4-methyl- 

12.411 2.89 1H-Pyrrole, 3-methyl- 

18.119 17.51 Phenol 

20.164 15.65 Phenol, 4-methyl- 

20.916 4.07 Benzyl nitrile 

23.597 4.44 Benzenepropanenitrile 

25.538 7.53 Indole 

28.18 23.09 Heptadecane 
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SEM at 1500 times magnification not available 

 

 

 

 

 

 

 

Ultimate Analysis  (daf %): 

Carbon NA 

Oxygen NA 

Hydrogen NA 

Nitrogen NA 

Sulfur NA 

Scientific name Strain Source Growth media 

Tetraselmis chui 8/6 CCAP f/2 

 Proximate Analysis Gross As Received: 

Moisture  8.93 % 

Ash  29.51 % 

Volatile matter  61.75 % 

Fixed carbon  13.42 % 

Heat Value (MJ/kg) NA 

Biochemical (daf %) 

Protein NA 

Carbohydrate NA 

Lipid NA 

Pigment Analysis (a/r ppm) 

Chlorphillide a 203 

Chlorophyll C1/C2 - 

Fucoxanthin - 

Violaxanthin 462 

Astaxhanthin - 

Lutein 2015 

Zeaxanthin - 

Antheraxanthin - 

Chlorophyll b1 2129 

Chlorophyll b2 489 

Chlorophyll a 555 

α-carotene - 

β-carotene 496 

Metal Analysis (a/r ppm) 

Al NA 

Ca NA 

Cl NA 

Cu NA 

Fe NA 

K NA 

Mg NA 

Mn NA 

Na NA 

Ni NA 

P NA 

Zn NA 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  3.8700 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

3.439 18.64 Methylamine, N,N-dimethyl- 

7.477 20.21 Toluene 

10.118 7.12 Benzene, 1,3-dimethyl- 

11.159 4.84 Styrene 

18.117 4.37 Phenol 

19.491 4.92 ND 

23 9.01 1-Hexanol, 4-methyl-, (S)- 

23.702 7.26 Pentanamide, 2-(dimethylamino) 

25.561 4.53 Indole 

31.026 19.1 

3,7,11,15-Tetramethyl-2-hexadecen-

1-ol 
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SEM at 1500 times magnification not available 

 

 

 

 

 

 

 

Ultimate Analysis  (daf %): 

Carbon 56.7 

Oxygen 30.9 

Hydrogen 8.7 

Nitrogen 3.3 

Sulfur 0.3 

Scientific name Strain Source Growth media 

unknown unknown DENSO Corporation, Japan unknown 

 Proximate Analysis Gross As Received: 

Moisture  4.0 % 

Ash  8.8 % 

Volatile matter  81.8 % 

Fixed carbon  4.4 % 

Heat Value (MJ/kg) 19.7 

Biochemical (daf %) 

Protein 16 

Carbohydrate NA 

Lipid 18 

Pigment Analysis (a/r ppm) 

Chlorphillide a NA 

Chlorophyll C1/C2 NA 

Fucoxanthin NA 

Violaxanthin NA 

Astaxhanthin NA 

Lutein NA 

Zeaxanthin NA 

Antheraxanthin NA 

Chlorophyll b1 NA 

Chlorophyll b2 NA 

Chlorophyll a NA 

α-carotene NA 

β-carotene NA 

Metal Analysis (a/r ppm) 

Al 25880 

Ca 1816 

Cl 1144 

Cu 31 

Fe 1996 

K 10937 

Mg 1949 

Mn 45 

Na 6763 

Ni 6.3 

P 6559 

Zn 437 
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TGA/DTG plot in N2 

 

Py-GC-MS at 500°C 
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Size:  2.6560 mg
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Retention time (min) 

Py-GC-MS Analysis 

Retention 

time 

Area % Compound 

3.846 10.9 2-Propenal 

7.475 9.42 Toluene 

15.141 3.32 3-Undecene, (E)- 

17.275 3.79 

1,2-Cyclopentanedione, 3-

methyl- 

17.358 7.92 

2- Bromopropionic acid, heptyl 

ester 

20.833 5.08 Levoglucosenone 

22.997 10.49 1-Hexanol, 4-methyl-, (S)- 

24.149 15.6 Pentadecane 

27.893 28.38 3-Heptadecene, (Z)- 

27.958 5.1 6,9-Heptadecadiene 


