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Abstract 

This thesis describes the investigation of the two bio-inspired approaches, confinement 

and additives, to manipulate the crystallization of calcium carbonate and calcium 

phosphate.  The first experimental chapter deals with the investigation of calcium 

phosphate rods grown in confined environments in the absence and presence of 

polyaspartic acid.  Although similar results were obtained in the absence and presence 

of the additive, growing calcium phosphate in confinement allowed formation of 

polycrystalline rods with an orientation comparable to bone.  This demonstrated that 

confinement may play a more significant role in bone formation than previously 

anticipated.  The second chapter deals with the effect of positively charged additives on 

the crystallisation of CaCO3.  Although neglected before in literature, this chapter 

demonstrates that positively charged additives have a profound effect on the 

crystallisation of CaCO3 changing the morphology to films and fibers.  This 

morphology change was linked to a phase separation process, forming hydrated 

amorphous droplets of calcium carbonate by a carbonate-polymer interaction, which 

had the tendency to coalesce and form films.  Fiber formation was attributed to oriented 

attachment of anisotropic particles due to unequal distribution of charge.  In the third 

chapter, based on bone, the mineralisation of collagen by CaCO3 was investigated.  By 

formation of a highly hydrated liquid-like amorphous phase of CaCO3, it was possible 

to infiltrate the nanoscale gaps of collagen.  After crystallisation, nanocrystals of calcite 

and vaterite were formed, 5 nm thick, but randomly oriented, demonstrating collagen 

templates the shape but not the orientation of the crystals.  In a final chapter hollow rods 

of CaCO3 were formed by templating them inside membrane pores.  The influence of 

time, pore size, additives and surface chemistry was investigated.  Most hollow rods 

were formed at early timescales which filled up at later times.  By changing the surface 

chemistry, the amount of hollow rods increased significantly in the 200 nm pores. 



 

Table of Contents 

Acknowledgements ........................................................................................................... ii 

Abstract ............................................................................................................................ iv 

Table of Contents .............................................................................................................. v 

List of Figures ................................................................................................................. xii 

Chapter 1: General introduction ...................................................................................... xii 

List of Tables................................................................................................................. xxii 

 

Chapter 1: General Introduction 

1.1 Biomineralisation ........................................................................................................ 2 

1.2 Crystallisation ............................................................................................................. 5 

1.2.1 Polymorphism ...................................................................................................... 6 

1.2.2 Crystal system ...................................................................................................... 7 

1.2.3 Classical crystallisation ........................................................................................ 8 

          1.2.3.1 Nucleation ................................................................................................... 8 

          1.2.3.2 Crystal growth ........................................................................................... 11 

          1.2.3.3 Thermodynamically controlled crystallisation growth ............................. 14 

          1.2.3.4 Kinetically controlled crystallisation and Ostwald‟s step rule .................. 14 

1.2.4 Non-classical crystallisation pathways .............................................................. 16 

          1.2.4.1 Mesocrystal formation and oriented attachment. ...................................... 16 

          1.2.4.2 Prenucleation clusters ............................................................................... 19 

          1.2.4.3 Polymer-induced liquid precursor (PILP) ................................................. 22 

1.3 Control of crystal morphology .................................................................................. 25 

1.3.1 Effect of additives on crystallisation .................................................................. 25 

          1.3.1.1 Calcium carbonate..................................................................................... 25 

          1.3.1.2 Calcium phosphate .................................................................................... 27 

1.3.2 Effect of confinement on crystallisation ............................................................ 28 

 

 



vi 

Chapter 2: General Experimental Methods and Techniques 

2.1 General preparation methods: ................................................................................... 31 

2.1.1 Piranha solution.................................................................................................. 31 

2.1.2 Precipitation methods of CaCO3 ........................................................................ 31 

2.1.3 Precipitation within track-etched membranes .................................................... 33 

          2.1.3.1 Plasma cleaning of track-etched membranes ............................................ 33 

          2.1.3.2 Degassing step .......................................................................................... 34 

          2.1.3.3 Dissolution of the membranes .................................................................. 34 

2.2 Analytical Techniques............................................................................................... 35 

2.2.1 Atomic Absorption ............................................................................................. 35 

2.2.2 Dynamic light scattering (DLS) ......................................................................... 35 

2.2.3 Infrared (IR) spectroscopy and Raman microscopy .......................................... 36 

2.2.4 Optical microscopy ............................................................................................ 36 

2.2.5 Scanning electron microscopy (SEM) ............................................................... 37 

2.2.6 Synchrotron small and wide angle X-ray scattering techniques (SAXS/WAXS)

 ..................................................................................................................................... 39 

          2.2.6.1 Synchrotron radiation ................................................................................ 39 

          2.2.6.2 Small and wide angle X-ray scattering (SAXS and WAXS) .................... 40 

2.2.7 Transmission electron microscopy (TEM) ........................................................ 42 

          2.2.7.1 Interactions within the transmission electron microscope. ....................... 45 

          2.2.7.2 Electron diffraction (ED): ......................................................................... 45 

          2.2.7.3 Low Dose and Cryo-TEM ........................................................................ 47 

2.2.8 Thermogravimetric analysis (TGA) ................................................................... 48 

2.2.9 X-Ray diffraction (XRD) ................................................................................... 48 

 

 

 



vii 

Chapter 3: Mimicking Bone Formation by Confinement and Addition 

of Polyaspartic acid 

3.1 Introduction to calcium phosphate ............................................................................ 50 

3.1.1 General overview of calcium phosphates .......................................................... 51 

3.1.2 Structure of bone ................................................................................................ 57 

3.1.3 Structure of teeth. ............................................................................................... 61 

3.1.4 Infiltration of collagen with HAP in bone.......................................................... 62 

3.1.5 Effect of polyaspartic acid on the crystallisation of CaP: .................................. 65 

3.1.6: Previous studies of the effect of confinement on calcium phosphate 

crystallisation. ............................................................................................................. 65 

3.2 Aims of the project .................................................................................................... 66 

3.3 Alumina membranes. ................................................................................................ 67 

3.3.1 Synthesis of alumina membranes ....................................................................... 68 

3.4 Experimental ............................................................................................................. 70 

3.4.1 Preparation of porous alumina membranes ........................................................ 71 

3.4.2 Precipitation of calcium phosphate in membrane pores. ................................... 72 

3.4.3 Mineralisation of calcium phosphate. ................................................................ 72 

3.4.4 Control experiments. .......................................................................................... 74 

3.4.5 Analysis of the samples. ..................................................................................... 74 

3.5 Results ....................................................................................................................... 75 

3.5.1 Analysis of the porous alumina membranes: ..................................................... 75 

3.5.2 Analysis of track-etched membranes. ................................................................ 78 

3.5.3 Analysis of material obtained in bulk solution. ................................................. 78 

3.5.4 Analysis of material obtained inside the membrane pores ................................. 84 

          3.5.4.1 Double diffusion method .......................................................................... 84 

          3.5.4.2 Immersion method .................................................................................... 97 

3.6 Discussion ............................................................................................................... 102 

3.6.1 Discussion of results in absence of PAsp ......................................................... 103 

          3.6.1.1 Orientation by confinement .................................................................... 103 



viii 

          3.6.1.2 Stabilisation of ACP and formation of single crystal OCP rods ............. 107 

3.6.2 Discussion of the results in presence of PAsp ................................................. 108 

          3.6.2.1 Effect of PAsp on infiltration and discussion of PILP phase .................. 108 

          3.6.2.2 Effect of PAsp on the formation of different mineral types of CaP ....... 110 

3.7 Conclusion .............................................................................................................. 111 

 

Chapter 4: Concerning Positively Charged Additives and their Effect 

on Crystallization 

4.1 General overview of calcium carbonates. ............................................................... 114 

4.1.1 Calcite .............................................................................................................. 115 

4.1.2 Aragonite .......................................................................................................... 116 

4.1.3 Vaterite ............................................................................................................. 117 

4.1.4 Amorphous calcium carbonate (ACC). ............................................................ 117 

4.1.5 Influence of Mg on the crystallization of CaCO3. ........................................... 119 

4.1.6 Influence of soluble additives on the morphology of CaCO3. ......................... 120 

          4.1.6.1 Effect of positively charged additives ..................................................... 120 

4.2 Aims of the project. ................................................................................................. 121 

4.3 Experimental procedures......................................................................................... 122 

4.3.1 Crystallization Process. .................................................................................... 122 

4.3.2 Control experiments. ........................................................................................ 122 

4.3.3 Characterization of the calcium carbonate precipitates. .................................. 122 

4.3.4 Compositional analysis .................................................................................... 123 

4.3.5 Cryo-TEM ........................................................................................................ 123 

4.3.6 DLS measurements .......................................................................................... 123 

4.3.7 Investigation of effect of pH by slow addition experiment: ............................ 124 

4.3.8 Track-etched membrane experiment ................................................................ 124 

4.4 Results ..................................................................................................................... 124 

4.4.1 Effect of PAH on the morphology of calcium carbonate ................................. 124 



ix 

4.4.2 Effect of Ca
2+ 

concentration ............................................................................. 137 

4.4.3 General film formation mechanism ................................................................. 142 

          4.4.3.1 Indications of a phase separation mechanism: Optical microscopy and 

SEM. ............................................................................................................................. 142 

          4.4.3.2 TGA, Raman and IR analysis of the phase separation ............................ 145 

          4.4.3.3 Conclusive results by Cryo-TEM ........................................................... 148 

          4.4.3.4 Supportive experiments by DLS and Zeta potential measurements ....... 153 

          4.4.3.5 Liquid-like characteristics of PAH/calcium/carbonate phase. ................ 154 

4.4.4 Formation mechanism of fibers. ...................................................................... 156 

4.4.5 Influence of Mg
2+

 ions on CaCO3 precipitation in presence of PAH .............. 159 

4.5 Discussion ............................................................................................................... 163 

4.5.1 Previous formation of CaCO3 films ................................................................. 164 

4.5.2 Formation mechanism of CaCO3 films by PAH .............................................. 165 

4.5.3 Transition bars and the effect of magnesium ................................................... 167 

4.5.4 Fiber formation process ................................................................................... 168 

4.5.5 Relevance to biomineralisation ........................................................................ 171 

4.6 Conclusions ............................................................................................................. 173 

 

Chapter 5: Templating Calcium Carbonate into Nanoscale Plate-

shaped Crystals by the Use of Collagen 

5.1 Introduction ............................................................................................................. 175 

5.1.1 Introduction to collagen ................................................................................... 176 

          5.1.1.1 Collagen in bone ..................................................................................... 177 

          5.1.1.2 The effect of HAP formation on the collagen structure .......................... 178 

          5.1.1.3 Collagen as a template material .............................................................. 179 

          5.1.1.4 Precipitation of CaCO3 in collagen matrices .......................................... 181 

5.2 Aims of the project .................................................................................................. 182 

5.3 Experimental ........................................................................................................... 183 

5.3.1 Construction of the flow cell. ........................................................................... 183 



x 

5.3.2 Preparation and experiments with horse tendon type I collagen ..................... 185 

5.3.3 Preparation and experiments with collagen sponges ....................................... 186 

5.4 Results: .................................................................................................................... 187 

5.4.1 Preparative studies with electron microscopy on the infiltration of CaCO3 in 

horse tendon collagen fibrils ..................................................................................... 187 

5.4.2 Studies on the infiltration of collagen sponges with CaCO3 in the presence of 

PAH ........................................................................................................................... 193 

          5.4.2.1 Studies with SAXS and WAXS .............................................................. 193 

          5.4.2.2 Studies with TEM ................................................................................... 199 

5.4.3 Studies on the infiltration of collagen sponges with CaCO3 in the presence of 

PAsp .......................................................................................................................... 200 

          5.4.3.1 Studies with SAXS and WAXS .............................................................. 200 

          5.4.3.2 Studies with TEM ................................................................................... 201 

5.4.4 Studies on the infiltration of collagen sponges with CaCO3 in the absence of 

additives .................................................................................................................... 202 

5.5 Discussion ............................................................................................................... 204 

5.5.1 Comparison with previous observations .......................................................... 204 

5.5.2 Infiltration mechanism and effect on collagen ................................................. 205 

5.5.3 Comparison with calcium phosphate in collagen ............................................ 206 

5.6 Conclusion: ............................................................................................................. 208 

 

Chapter 6: Formation of Hollow Calcium Carbonate Rods 

6.1 Introduction ............................................................................................................. 210 

6.1.1 Formation of hollow structures ........................................................................ 210 

6.1.2 Track-etched membrane technique. ................................................................. 211 

6.1.3 Layer-by-Layer deposition (LBL) techniques ................................................. 212 

6.2 Aims of the project .................................................................................................. 213 

6.3 Experimental ........................................................................................................... 214 

6.3.1 LBL method. .................................................................................................... 214 



xi 

6.4 Results: .................................................................................................................... 215 

6.4.1 Precipitation of CaCO3 in native TE membranes ............................................ 215 

          6.4.1.1 Precipitation within nanoscale pores (50 nm, 200 nm and 800 nm) ....... 215 

          6.4.1.2 Precipitation within micron scale pores (3 µm and 10 µm). ................... 220 

6.4.2 Layer by layer techniques ................................................................................ 224 

          6.4.2.1 50 nm pores ............................................................................................. 224 

          6.4.2.2 200 nm pores ........................................................................................... 225 

6.5 Discussion ............................................................................................................... 227 

6.5.1 Nanoscale pores ............................................................................................... 227 

6.5.2 Micron scale pores ........................................................................................... 228 

6.5.3 Layer by layer techniques ................................................................................ 228 

6.6 Conclusion: ............................................................................................................. 229 

 

Chapter 7: Conclusions and Future Work 

Final conclusions and future work ................................................................................ 231 

 

References ................................................................................................................. 236 

 

Appendix: List of Abbreviations ...................................................................... 254 

 

  



xii 

List of Figures 

Chapter 1: General introduction 

Figure 1: (a) Scanning electron micrograph of the growing layers of nacre.  (b) 

Scanning electron micrograph of the cross-section of a fractured nacre surface 

demonstrating the layered structure of the nacre. ............................................................. 4 

Figure 2: The change in free energy ΔG with size of the sphere (r). .............................. 10 

Figure 3: (a) Schematic representation of the growth of a crystal with the face, kink and 

step sites.  The schematic in (b) shows the growth of a crystal where surface B grows 

much faster than surface A and is finally almost lost in the crystal morphology. .......... 12 

Figure 4: Schematic drawing of the roughening of a solid-fluid interface.. ................... 13 

Figure 5: Schematic presentation of Ostwald‟s “step rule” for calcium phosphate.. ...... 15 

Figure 6: Schematic representation of classical and non-classical crystallization. ......... 17 

Figure 7:  The three principle mechanisms for particle alignment into a mesocrystal.  . 19 

Figure 8: Schematic representation of the free-energy diagram versus the reaction 

coordinate.. ...................................................................................................................... 20 

Figure 9: Schematic representation of classical and non-classical crystallisation 

pathways including the formation of prenucleation clusters. ......................................... 21 

Figure 10: Representation of the polymer-induced liquid precursor (PILP) process. . .. 23 

 

 

Figure 1: Representation of the ammonia diffusion method........................................... 33 

Figure 2: Schematic representation of the synchrotron light scource at the European 

synchrotron research facility (ESRF).. ............................................................................ 39 

Figure 3: Example of a SAXS plot with Guinier and Porod regime indicated. .............. 41 

Figure 4: Working principle of a transmission electron microscope.. ............................ 42 

Figure 5:  Schematic representation of Bragg diffraction. .............................................. 46 

 

Figure 1: Solubility phase diagram of CaP as function of the pH. ................................. 53 

Figure 2: (a) Crystal structure of hydroxyapatite with (b) simplified presentation. ....... 54 

Figure 3: Model of amorphous calcium phosphate with the structure of the Posner 

cluster highlighted. .......................................................................................................... 56 

Figure 4: Schematic representation of the structure of collagen. .................................... 58 



xiii 

Figure 5: Schematic representation of the mineralisation of collagen by Landis et al, 

based on ex situ observations using high-voltage TEM. ................................................. 59 

Figure 6: The 7 hierarchical levels of organization of the bone family of materials.   ... 60 

Figure 7: Schematic Figure of a proposed mechanism of intrafibrillar mineralisation of 

collagen.. ......................................................................................................................... 64 

Figure 8: (a) Schematic representation of the reactions taking place at the aluminium 

surface during anodisation of aluminium.  (b) Overview of the electrochemical cell. ... 69 

Figure 9: Schematic representation of the anodic anodisation for the fabrication of 

porous alumina membranes............................................................................................. 70 

Figure 10: Experimental set-up of the electrochemical cell ........................................... 71 

Figure 11: Immersion method (a) and double diffusion setup (b) .................................. 73 

Figure 12: SEM images of top view (a) and cross-section view (b) of porous alumina 

membranes produced in a double anodisation process. .................................................. 75 

Figure 13: SEM images of porous alumina membranes produced in a double 

anodisation process whereafter the remaining aluminium is removed by immersing the 

membrane in 5 w% H3PO4 solution for half an hour.. .................................................... 76 

Figure 14: SEM images of a cross-section view of the porous alumina membranes 

produced in a double anodisation process whereafter the remaining aluminium is 

removed by a voltage pulse technique ............................................................................ 77 

Figure 15: SEM images of commercial available alumina membranes .......................... 77 

Figure 16: SEM image of Isopore GTTP membrane filters (Millipore) polycarbonate 

track-etched membranes with pores of 200 nm (a,b) and 50 nm (c,d)............................ 78 

Figure 17: TEM images, electron diffraction patterns and EDX data of CaP particles 

precipitated from a buffered solution of calcium phosphate in the absence of PAsp.. ... 79 

Figure 18: Raman spectrum of CaP produced in bulk solution. ..................................... 80 

Figure 19: X-ray diffraction pattern of precipitate obtained in the bulk solution after 3 h, 

corresponding with HAP. ................................................................................................ 81 

Figure 20: TEM images and corresponding electron diffraction patterns of CaP particles 

precipitated from buffered solutions of calcium phosphate.. .......................................... 81 

Figure 21: TEM image and corresponding electron diffraction pattern of CaP particles 

precipitated from a buffered solution of calcium phosphate containing 50 μg/ml PAsp 

after 3 weeks.. ................................................................................................................. 82 



xiv 

Figure 22:  TEM images with corresponding electron diffraction patterns and EDX 

spectra of CaP particles precipitated from a non-buffered solution of calcium phosphate 

without the addition of PAsp (a and b) and with addition of 50 μg/ml PAsp (c and d). . 83 

Figure 23: SEM images (a-f) and TEM images (g-i) of rods formed by the double 

diffusion method, in the absence of additives.. ............................................................... 86 

Figure 24: TEM images and corresponding diffraction pattern of crystals obtained by 

the double diffusion method with a buffer solution, in the absence of polymer, in TE 

membranes with pore sizes of 50 nm.. ............................................................................ 87 

Figure 25: Raman spectrum of particles produced in 200 nm membrane by using the 

double diffusion method, in the absence of additives. .................................................... 88 

Figure 26: Selected area electron diffraction (SAED) images with corresponding TEM 

images (inset) of HAP particles produced using the double diffusion method, in the 

absence of PAsp.   ........................................................................................................... 89 

Figure 27: Selected area electron diffraction (SAED) images with corresponding TEM 

images (inset) of HAP particles produced using the double diffusion method. ............. 90 

Figure 28:  Histogram for the crystal orientation for the different pore sizes used ........ 91 

Figure 29: TEM images of particles produced using the double diffusion method, in the 

absence of PAsp, in 50 nm (a, c) and 200 nm (b) pores.  ............................................... 92 

Figure 30:  TEM image of amorphous, rod-shaped particles isolated after 6 days 

obtained by the double diffusion method with the addition of 20 µg/ml, in membranes 

with pore sizes of 200 nm with corresponding diffraction pattern. ................................ 94 

Figure 31: TEM image of crystals isolated after 6 days obtained by the double diffusion 

method with the addition of 20 µg/ml (a) and 100 µg/ml PAsp (b), in membranes with 

pore sizes of 200 nm (a) and 50 nm (b) with corresponding diffraction pattern.. .......... 95 

Figure 32:  TEM images and SAED of crystals obtained by the double diffusion method 

after 1 day, with a DI water solution, and addition of 100 μl/ml PAsp, in membranes 

with pore sizes of 50 nm. ................................................................................................ 96 

Figure 33: SEM images of rods formed by the immersion method, in a buffer solution, 

in membranes with pore sizes of 50 nm, with 100 µg/ml PAsp (a) and without additives 

in 200 nm pores (b) after 6 days. .................................................................................... 97 

Figure 34: TEM images of crystals formed by the immersion method, with a buffer 

solution, without the addition of polymer, in membranes with pore sizes of 50 nm. ..... 98 

Figure 35: TEM images and electron diffraction patterns of crystals obtained by the 

immersion method after 6 days.. ..................................................................................... 99 



xv 

Figure 36: TEM image and electron diffraction pattern of a crystal isolated after 1 

month, obtained by the immersion method in a buffer solution, with 100 µg/ml PAsp, in 

membranes with pore sizes of 50 nm. ........................................................................... 100 

Figure 37: Overview of the results of the different reaction conditions for the buffered 

solutions. ....................................................................................................................... 102 

Figure 38: Schematic representation of the formation of HAP crystals inside the 

membrane pores. ........................................................................................................... 105 

 

Chapter 4: Concerning Positively Charged Additives and their Effect 

on Crystallization 

Figure 1: Schematic representation of the hexagonal unit cell of calcite ..................... 116 

Figure 2: (a) Unit cell of aragonite demonstrating orthorhombic unit cell with the 

additional CO3
2-

 groups outside the cell showing the Ca
2+

 ion coordination, and (b) 

subcell of vaterite. ......................................................................................................... 117 

Figure 3: Structure of PAH. .......................................................................................... 121 

Figure 4: Experimental set-up for the slow addition experiment of Ca
2+

 to a CO3
2-

 and 

PAH solution. ................................................................................................................ 124 

Figure 5: Optical microscope image under crossed polarisers (b) of calcite crystals 

precipitated on a glass slide after 1 day from a 10 mM CaCl2 solution. ....................... 125 

Figure 6: Raman spectrum of crystals precipitated on a glass slide after 1 day from a 10 

mM CaCl2 solution, corresponding to calcite. .............................................................. 125 

Figure 7: Optical microscope image (a) and FEGSEM image (b) of crystals formed in 

the presence of PAH at [CaCl2] = 10 mM and [PAH] = 0.01 mg/mL. ......................... 126 

Figure 8: Optical microscope image (a) and FEGSEM images (b, c, d) of CaCO3 

crystals precipitated in the presence of 0.08 mg/mL PAH after 3 days reaction time.   

Inset of (d) shows a small bobble at the end of a fiber. ................................................ 127 

Figure 9: Optical microscope images after 3 days reaction time of a vaterite film (a, b) 

and calcite film (c, d) under crossed polars (b and d), covering the top parts of the glass 

slide after addition of 0.08 mg/mL PAH to the solution. .............................................. 128 

Figure 10: Raman spectra of a single crystal calcite film (Figure 9c) and a 

polycrystalline vaterite film (Figure 9a) formed after 3 days on a glass slide in the 

presence of 0.08 mg/mL [PAH]. ................................................................................... 129 



xvi 

Figure 11: Optical microscope images taken under crossed polars of calcite fibers (a) 

and a crystalline calcite film (b) covering some parts of the glass slide after 1 day in the 

presence of 0.2 mg/mL PAH.  (c) And (d) show FEGSEM images of same sample. .. 130 

Figure 12: Raman spectra of fibers and film formed on a glass slide after 1 day after in 

the presence of 0.02 mg/mL PAH. ................................................................................ 130 

Figure 13: Optical microscopy images (a) under crossed polarisers (b-f) of crystalline 

films formed after 1 day by addition of 1 mg/mL PAH to the solution.. ...................... 131 

Figure 14: FEGSEM images of a polycrystalline (a, b) and single crystal (c, d, e, f) 

calcite film covering some parts of the glass slide formed after 1 day by addition of 1 

mg/mL PAH to the solution. ......................................................................................... 132 

Figure 15: Raman spectra of a polycrystalline calcite film and vaterite film formed on a 

glass slide after addition of 1 mg/mL [PAH]. ............................................................... 133 

Figure 16: Optical microscope of a single crystal calcite domain in a thin film deposited 

on the substrate adjacent to the air/water interface. ...................................................... 134 

Figure 17a, b, c: TEM images of CaCO3 films precipitated on a TEM grid in the 

presence of 1 mg/mL PAH after 1 day.. ....................................................................... 135 

Figure 18: TEM images of a fiber formed after 1 day in the presence of 1 mg/ml PAH

 ....................................................................................................................................... 137 

Figure 19: Optical microscope images of fibrous structures formed 6 days after mixing 

1.5 mM CaCl2 solutions with 0.5 mg/mL PAH.. .......................................................... 138 

Figure 20: FEGSEM and TEM images of calcium carbonate fibers precipitated from 1.5 

mM CaCl2 solutions containing 0.5 mg/mL PAH after 3 days.. ................................... 139 

Figure 21: Raman spectrum of produced fibers grown in the presence of 0.5 mg/mL 

PAH after 3 days, corresponding with calcite............................................................... 140 

Figure 22a: SEM images of fibers grown in the presence of 0.5 mg/mL PAH after 6 

days.  (b): Raman spectrum of the produced fibers corresponding with vaterite ......... 140 

Figure 23: CaCO3 particles precipitated in the presence of PAH at [CaCl2] = 1.5 mM 

and [PAH] = 4 g/L (a, b,), 0.5 g/L (c, d), 0.01 mg/mL (e, f), 0.005 mg/mL (g, h,), 0.001 

mg/mL (i) and 0.0005 mg/mL (j) after 6 days reaction time. ....................................... 142 

Figure 24: Optical microscope image of material formed in a solution of composition 

[CaCl2] = 10 mM and [PAH] = 1 mg/mL after exposure to ammonium carbonate vapour 

for 3h. ............................................................................................................................ 143 



xvii 

Figure 25: Optical microscope (a, b) and FEGSEM images (c, d) of amorphous (a, c, d) 

CaCO3 films precipitated in the presence of PAH at [CaCl2] = 10 mM and [PAH] = 1 

mg/mL after 6 h. ............................................................................................................ 144 

Figure 26: FEGSEM (a, b, d) and optical microscope image (c) of calcium carbonate 

crystals obtained on drop-wise addition of a 20 mM CaCl2 solution to a solution 

containing 20 mM Na2CO3 and 1 mg/mL PAH. ........................................................... 145 

Figure 27: Raman spectra of (A) a polycrystalline calcite film, (B) precipitate obtained 

from exposure of a solution of composition [CaCl2] = 10 mM and [PAH] = 1 mg/mL to 

ammonium carbonate vapour for 3 h and (C) PAH. ..................................................... 146 

Figure 28: Spectra of (A) precipitate from solution of [CaCl2] = 10 mM, [PAH] = 1 

mg/mL after 3 hour reaction (pH 8.8) (B) PAH control. .............................................. 147 

Figure 29: TGA data of material obtained after 3 h at Ca = [10 mM], [PAH] = 1 mg/mL.

 ....................................................................................................................................... 148 

Figure 30: Thermogravimetric analysis (TGA) data of (A) a precipitate obtained from a 

solution of composition [CO3
2-

] = 10 mM and [PAH] = 1 mg/mL and (B) pure PAH. 148 

Figure 31: Cryo-TEM images of particles precipitated on a TEM grid with [PAH] = 1 

mg/mL after 30 min (a, b), 3 h (c, d, e) 6 h (f), 20 h (g, h). .......................................... 151 

Figure 32:  (a) And (b) show low magnification Cryo-TEM images of a typical ice 

particle contaminant (black circle) before (a) and after (b) prolonged exposure to the 

electron beam. ............................................................................................................... 151 

Figure 33: Cryo-TEM image of a solution containing only PAH ................................. 152 

Figure 34 : Shows a Cryo-TEM image of PAH + Na2CO3, demonstrating that in this 

case the polymer has the ability to phase-separate in the presence of carbonate. ......... 153 

Figure 35: Mean hydrodynamic diameter by DLS measurements of samples taken from 

a reaction solution ([CaCl2] = 10 mM, [PAH] = 1 mg/mL) obtained after 30 minutes 

(green curve) and 3 hours (red curve). .......................................................................... 153 

Figure 36: Zeta potential measurement of droplets taken from a reaction solution 

([CaCl2] = 10 mM, [PAH] = 1 mg/mL) formed after 3 hours reaction time. ................ 154 

Figure 37: FEGSEM image (a) and TEM images (b, c, d) of CaCO3 rods formed inside 

track-etched membrane pores of 50 nm after addition of 1 mg/mL PAH in a 10 mM 

CaCl2 solution.. ............................................................................................................. 155 

Figure 38: SEM images of CaCO3 fibers precipitated in the presence of PAH at [CaCl2] 

= 1.5 mM and [PAH] = 0.5 mg/mL after reaction times of 6 days (a) and bleaching for 1 

day (b, c, d).................................................................................................................... 156 



xviii 

Figure 39: TEM images with corresponding diffraction patterns of CaCO3 films and 

fibers precipitated on a Ni TEM grid from 10 mM CaCl2 solutions containing 1 mg/mL 

PAH after (a) 8 h, (b) 12 h, (c) 14 h and (d) 24 h. ........................................................ 157 

Figure 40: TEM images with corresponding diffraction patterns of calcite fibers 

precipitated on a Ni TEM grid from 10 mM CaCl2 solutions containing 1 mg/mL PAH 

after 1 day...................................................................................................................... 158 

Figure 41: Optical microscope image (a) and Raman (b) of polycrystalline calcite 

particles precipitated from a solution containing 10 mM CaCl2, 10 mM MgCl2 after 1 

day. ................................................................................................................................ 159 

Figure 42: Optical microscope image under crossed polarisers (a, b) and Raman 

spectrum (c) of polycrystalline calcite thin films precipitated from a solution containing 

10 mM CaCl2, 10 mM MgCl2 and 20 µg/mL PAH after 3 days (a) and 14 days (b). .. 160 

Figure 43: FEGSEM images of films with EDX (b) formed from solutions of 

composition of 10 mM CaCl2; 10 mM MgCl2 and 20 µg/mL PAH after 2 weeks. ...... 161 

Figure 44: TGA data of precipitate obtained from exposure of a solution of composition 

10 mM CaCl2, 10 mM MgCl2 and 20 µg/mL PAH after 3 h (a) and (b) after 3 weeks.

 ....................................................................................................................................... 162 

Figure 45: Optical microscope images under crossed polarisers (a and d) and FEGSEM 

(b and c) images of calcium carbonate fibers precipitated after 3 days from 1.5 mM 

CaCl2 solutions containing 0.5 mg/mL PAH and 1.5 mM MgCl2 (a, b and c) or 3.5 mM 

CaCl2 containing 0.02 mg/mL PAH and 3 mM MgCl2 (d). .......................................... 162 

Figure 46: TEM image of a calcite fiber precipitated after 3 days from 1.5 mM CaCl2 

solutions containing 0.5 mg/mL PAH and 1.5 mM MgCl2 with corresponding 

polycrystalline diffraction pattern. ................................................................................ 163 

Figure 47: Formation mechanism of PAH/complex and crystalline films.. ................. 166 

Figure 48: Proposed fiber formation process.. .............................................................. 171 

 

Chapter 5: Templating Calcium Carbonate into Nanoscale Plate-

shaped Crystals by the Use of Collagen 

Figure 1: Schematic representation of the structure of collagen. .................................. 177 

Figure 2: Four Equatorial diffuse X-ray scattering peaks representing the lateral spacing 

of collagen molecules as a function of water content. .................................................. 179 

Figure 3: Metal framework of the flow cell. Bottom and top look the same. ............... 183 



xix 

Figure 4: Teflon pieces to close the metal frame flow cell.. ......................................... 184 

Figure 5: Assembled liquid flow cell. ........................................................................... 184 

Figure 6: Holder with dimensions (a) and flow cell screwed in (b).............................. 185 

Figure 7: Experimental set-up at the European Synchrotron Research Facility (ESRF), 

Grenoble, France, Dutch/Belgian beam line BM26. ..................................................... 187 

Figure 8: TEM image of collagen fibril of horse tendon collagen. . ............................. 188 

Figure 9: FEGSEM image of glass slide covered with horse tendon collagen. ............ 189 

Figure 10: FEGSEM images of collagen fibrils formed on a Kapton film, put in a 

CaCO3 solution (10 mM [Ca
2+

]) for 1 day in the presence of 1 mg/mL PAH. ............. 190 

Figure 11: TEM images of collagen fibrils on a Ni TEM grid put in a CaCO3 solution 

(10 mM [Ca
2+

]) with 1 mg/mL PAH after 6 h.. ............................................................ 191 

Figure 12: TEM images after 1 day of collagen fibrils on a Ni TEM grid put in a CaCO3 

solution (10 mM [Ca
2+

]) with 1 mg/mL PAH. .............................................................. 192 

Figure 13. Kapton with a small hole in the middle with a mica window glued on. ..... 193 

Figure 14: SAXS spectrum collected at the synchrotron of a collagen sponge in a 10 

mM CaCl2 solution in the presence of 1 mg/mL PAH. ................................................. 194 

Figure 15: SAXS spectra collected of collagen mineralization with CaCO3 (10 mM 

[Ca
2+

]) in the presence of 1 mg/mL PAH at different time points. ............................... 195 

Figure 16: Gaussian (a) and power-background fit (b) of the first peak in the SAXS 

spectrum in Figure 15, at time = 0 min and time = 95 min. .......................................... 196 

Figure 17: WAXS spectra of collagen mineralization with CaCO3 (10 mM [Ca
2+

]) in the 

presence of 1 mg/mL PAH at different time points.. .................................................... 197 

Figure 18: SAXS profile of Figure 15 after 440 minutes of mineralization of the 

collagen CaCO3 (10 mM [Ca
2+

]) in the presence of 1 mg/mL PAH. ........................... 198 

Figure 19: TEM images of collagen mineralized with CaCO3 (10 mM [Ca
2+

]) after 6 h 

in the presence of 1 mg/mL of PAH. ............................................................................ 199 

Figure 20: WAXS spectra collected at different time points of collagen mineralization 

with CaCO3 ([10 mM CaCl2]) in the presence of 50 µg/mL PAsp. .............................. 201 

Figure 21: TEM images of collagen mineralized with CaCO3 (10 mM [Ca
2+

]) in the 

presence of 50 g/mL of PAH, after 3 h (a) and 17 h (b). ............................................ 202 

Figure 22:  SAXS pattern collected of a collagen sponge in a 10 mM CaCl2 solution put 

an ammonia desiccator, collected at different reaction times. ...................................... 203 

Figure 23:  WAXS spectrum of a collagen sponge in a 10 mM CaCl2 solution put in an 

ammonia desiccator, collected at different reaction times.. .......................................... 203 



xx 

Figure 24:  FEGSEM images of sponges mineralized with CaCO3 after the SAXS and 

WAXS measurements in the absence of additives (a) and with PAH (b). .................... 204 

 

Chapter 6: Formation of Hollow Calcium Carbonate Rods 

Figure 1: Schematic representation of the LBL technique, showing polycations (red) 

and polyanions (black) adhering to a negatively charged substrate.............................. 212 

Figure 2: FEGSEM images of rods formed in 50 nm pores after 6 h from a 10 mM 

CaCl2 solution containing 50 µg/ml PAA. .................................................................... 216 

Figure 3: TEM images of rods formed in 50 nm pores after 1 day from a solution 

containing 50 µg/ml PAA. ............................................................................................ 216 

Figure 4: FEGSEM images of rods formed in 50 nm pores after 6 h from a solution 

containing 50 µg/ml PAA. ............................................................................................ 217 

Figure 5: FEGSEM images of rods formed in 200 nm pores after 6 h (a, b, c), 1d (d, e) 

and 3 days (f) from a solution by addition of 50 µg/ml PAA (a, b, d, e, f) and in the 

absence of additives (c). ................................................................................................ 218 

Figure 6: TEM images of rods formed in 200 nm pores after 1 day from a solution 

containing 50 µg/ml PAA. ............................................................................................ 219 

Figure 7: FEGSEM images of rods formed in 800 nm pores after 6 h (a, b) and 3 days 

(c, d) from a solution containing 20 µg/ml PAA (a, b, d) and no PAA (c) ................... 220 

Figure 8: FEGSEM images of rods formed in 3 m pores after 3 h from a solution 

containing 50 µg/ml PAA.. ........................................................................................... 221 

Figure 9: FEGSEM images of rods formed in 3 m pores after 3 h (a) and 1 day (b) 

from a solution containing 50 µg/ml PAA, demonstrating the thickness of the rods. . 221 

Figure 10: FEGSEM images of rods formed in 3 m pores after 1 day from a solution 

containing 50 µg/ml PAA. ............................................................................................ 222 

Figure 11: FEGSEM images of rods formed in 3 m pores after 1 day from a solution 

containing no PAA.. ...................................................................................................... 222 

Figure 12: FEGSEM images of rods formed in 10 m pores after 1 day from a solution 

containing 50 µg/ml PAA. ............................................................................................ 223 

Figure 13: Optical microscope images (a) under crossed polarizers (b) of a particle 

formed in 10 m pores after 1 day from a solution containing 50 µg/ml PAA.. .......... 223 

Figure 14: FEGSEM images of rods formed in 50 nm pores after 6 h from a solution 

containing 50 µg/ml PAA. ............................................................................................ 224 



xxi 

Figure 15: TEM images of rods formed in 50 nm pores after 3 h from a solution 

containing 50 µg/ml PAA. ............................................................................................ 224 

Figure 16: FEGSEM images of rods formed in 200 nm pores after 6 h (a, b) and 1 day 

(c, d) from a solution containing no PAA (a) and 50 µg/ml PAA (b, c, d). .................. 225 

Figure 17: TEM images and corresponding SAED of rods formed in 200 nm pores after 

1 day from a solution containing 50 µg/ml PAA (a, c, d) and no PAA (b).. ................ 226 

 

Chapter 7: Conclusions and Future Work 

Figure 1: Overview of the topics and results covered and obtained by this thesis. ...... 235 

  



xxii 

List of Tables 

Chapter 1 General introduction 

Table 1:  The seven crystal families with typical axial lengths and angles, lattice system 

and a mineral example. ..................................................................................................... 7 

 

Chapter 3: Mimicking Bone Formation by Confinement and Addition 

of Polyaspartic acid 

Table 1. Abbreviations, ratios and solubility products of calcium phosphates. .............. 52 

Table 2: Different electrolytes with their corresponding pore diameters, inter-pore 

distances and applied voltages. ....................................................................................... 68 

Table 3: Different solutions used for the synthesis of CaP rods. .................................... 74 

Table 4: Summary of results ......................................................................................... 101 

 

Chapter 6: Formation of Hollow Calcium Carbonate Rods 

Table 1: Summary of results ......................................................................................... 215 



 

Chapter 1: General Introduction 

 

 

 

 

  



Chapter 1: General Introduction 

2 

1.1 Biomineralisation 

This thesis is about the investigation and understanding of the formation of biominerals, 

and the application of this knowledge to the manufacture of new hybrid materials and 

the development of new fabrication techniques.  Biominerals are, as indicated by the 

name, minerals, or inorganic materials, formed in or by a biological environment (or 

system).  Some examples of biominerals are the exciting structures of the skeletons of 

invertebrates such as sea shells, nacre, sea urchins, coral and diatoms of algae but also 

the bones and teeth of vertebrates.  Although studied for quite some time, (hard to tell 

how long but diatoms have been studied in the 1700
1
) much enigma still exists about 

biominerals.  Until now over 60 different kinds biological minerals can be distinguished 

of which the main ones are: calcium carbonate (as good as most inorganic material for 

the invertebrates), calcium phosphate (almost all inorganic material in the vertebrates), 

SiO2 (as silicic acid in diatoms) and iron oxides (in snail teeth and magnetotactic 

bacteria)
2
. 

Biominerals have many functions and are used, for example, for protection of the 

organism or providing structure (shells and bone).  They can also act as tools for 

grinding and cutting (teeth) or for the facilitation of orientation, e.g. iron oxide crystals 

in magnetotactic bacteria are used by the organisms to align themselves with respect to 

the Earth‟s magnetic field.  One fascinating hallmark of biominerals is that they often 

show little structural resemblance to their synthetic counterpart.  For example, sea 

urchin spines are single crystals of calcite (CaCO3), yet when made synthetically in the 

lab, rhombohedra (beautiful and single crystal nevertheless) are typically formed.  The 

same accounts for calcium phosphate in bone, which comprises calcium phosphate 

crystals with a thickness of around 1.5-4.5 nm
3
, much thinner than the HAP crystals 

formed in the laboratory.  As well as these elaborate morphologies, biominerals can 

often be characterised by extraordinary strengths and hardnesses, mainly due to their 

hierarchical ordering and composite structure being constructed out of an inorganic and 

organic part.  Bone, for example, is a composite material consisting of about 30% 

organic matrix, collagen, and 70% inorganic material, calcium phosphate, contributing 

to the remarkable strength of the material which our human body needs.  The organic 

macromolecules are a vital part of the construction of the mineral, being involved in 

nucleation and growth control, but also in the definition of the material‟s mechanical 

properties
4
.  The most remarkable feature of biominerals, though, is that they are formed 
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with these superior properties and characteristics under atmospheric pressure and 

temperature, which is almost unachievable for man-made synthetic materials. 

To illustrate the features discussed above, the structure of nacre is shown below (Figure 

1).  Nacre (or mother of Pearl) can be found in the inner shell of molluscs and is an 

inorganic-organic composite material
4-6

.  It consists of 99% of hexagonal, plate like 

crystals of aragonite (mineral of calcium carbonate), together with ~ 1% of thin, less 

than 10 nm, organic material which acts as a “mortar” between the calcium carbonate 

“bricks”.  The platelets themselves are about 0.5 nm thick and 5–15 μm in diameter, and 

are therefore distinct from aragonite formed in the lab.  They are arranged in a parallel 

fashion and the organic layers are sandwiched in between.  Remarkably, each tablet 

forms at a specific location on the matrix surface but independently from each other and 

then rapidly grows in a direction perpendicular to the matrix surface.  The crystals first 

grow vertically, until they reach the next organic layer.  In the next step they grow only 

laterally until they meet adjacent tablets
6
.  Since the different layers of platelets on the 

organic matrix are not aligned, the organisation of the nacre looks like a “brick-mortar” 

structure (see Figure 1).  Although the organic content of nacre is less than 1%, this 

brick-mortar structure gives nacre its remarkable strength, 3000 times higher than 

aragonite prepared in the lab
7
, as crack propagation is inhibited by deflection at grain 

boundaries and cracks need to find a new way over and over again to propagate, causing 

the platelets to spring apart and the organic sheets to extend
8
.  Since the size of the nacre 

platelets is in the same order of magnitude as the wavelength of visible light, light gets 

reflected by the platelets.  At the same time, the platelets themselves are very thin, and 

light can pass through one layer before being reflected by the next.  This makes rays of 

light with different wavelengths interfere constructively and destructively with each 

other at different angles, giving rise to its beautiful colours. 
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Figure 1: (a) Scanning electron micrograph of the growing layers of nacre.  (b) 

Scanning electron micrograph of the cross-section of a fractured nacre surface 

demonstrating the layered structure of the nacre.  Both images are taken from nacre of 

the bivalve mollusc A. rigida.  Image adapted from ref. 6. 

 

Biomineralisation processes can be divided into 2 different classes, based on the degree 

of biological control
4
.  If the precipitation of the mineral happens as a result of 

interactions between the organism and its surroundings, while little or no control is 

exerted over the mineralisation process, it is termed “biologically induced 

mineralisation”.  If the organism, on the other, hand does exert control over the 

mineralisation process, relying on a number of key stages such as confining of a space 

forming an organic matrix, construction of the nucleation site and control of the ion 

input, the process is called “organic matrix mediated mineralisation” or “biologically 

controlled mineralisation.  The first crucial step in this control of mineralisation is the 

initial isolation of space which is usually achieved by the use of cellular membranes, 

vesicles or pre-deposited macromolecular matrix frameworks.  Organic macromolecules 

can then be applied to gain sophisticated control by further functionalization of the 

mineralisation environment
4
.  

 

Inspired by Nature and biominerals, a quest was started to unravel the mechanisms of 

biomineral formation, not only to understand but also to mimic, use, and even improve
9
 

the material characteristics.  Being able to mimic biomineral formation would allow us 

to produce extraordinary materials under atmospheric conditions, without the need for 

energy-consuming techniques based on high pressure or temperature.  This is 

particularly useful considering the strong requirement to produce advanced materials 

such as semiconductors, solar cells and optical and electronic thin films under 

environment friendly conditions with a high amount of control over the phase, size, 
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orientation and morphology of the component crystals
10

.  Furthermore, understanding 

how minerals such as bone and teeth are formed also helps us in the development of 

new medicines and biomedical devices.  Many of the biominerals formed by 

invertebrates are made from calcium carbonate and have been particularly well-studied 

because of their accessibility and high degree of crystallographic control
4, 11

.  Calcium 

phosphates which can be found in bones and teeth have also been extensively 

investigated because of their remarkable mechanical properties and structures and their 

importance to health related issues
12

. 

 

1.2 Crystallisation 

A crystal or crystalline material is defined as “a material in which the atoms are situated 

in a repeating or periodic array over large atomic distances.  That is, long range order 

exists, such that upon solidification, the atoms will position themselves in a repetitive 

three-dimensional pattern, in which each atom is bonded to its nearest-neighbour 

atoms”
13

.  In general, two different kinds of crystalline material can be distinguished, 

single crystal and polycrystalline material.  A single crystal can be defined as “a solid 

body with a large coherence length, which shows diffraction behaviour characteristic of 

a perfect three-dimensional alignment of its building units”
14

.  It has a rigid lattice of 

atoms or molecules at a characteristic location, with the unit cell being its smallest 

repeating unit.  In theory, a perfect single crystal has no grain boundaries and contains a 

perfectly coherent lattice in all directions.  Practically though, this ideal situation hardly 

ever exists since the crystal lattice is often tilted, twisted and/or shifted by varying 

degrees due to the presence of impurities and the mobility of crystallographic defects 

forming grain boundaries.  A polycrystalline particle, on the other hand, is an 

agglomeration of many small crystals or so-called grains, with grain boundaries forming 

the interface between two ideal crystals in a polycrystalline material.  In other words, 

the lattice planes in a polycrystalline material show no coherence from one grain to the 

next and as a consequence random crystallographic orientations can be observed
13

.   

In contrast to a crystalline material, amorphous materials are defined as substances 

lacking a long range order.  “Amorphous” is quite a vague term though, and depending 

on the analytical technique applied for characterisation, different definitions can be 

given.  TEM and XRD define amorphous materials as having a diffuse diffraction 

pattern or by the absence of characteristic peaks, indicating lack of structural periodicity 
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or long-range order.  In contrast, under the optical microscope, amorphous character is 

linked to the characteristic of having a lack of birefringence and staying dark while 

rotated under crossed polarisers demonstrating they are isotropic
15

.  Examples for 

amorphous material include some metals (dense packings of spheres), glass and silica 

(continuous random networks), polymers (random coils) and ice
16-19

.  Some inorganic 

materials such as iron oxide
20

, many carbonate minerals
21, 22

, calcium phosphate
23

 and 

recently calcium sulphate
24

 have been reported to form amorphous phases, which can 

play a major role in biomineralisation as precursors to crystalline phases
20, 22, 23, 25

.  As a 

result of this, there has been a paradigm shift in the past 10 years in the field of 

biomimetics and bioinspired research, related to the role of amorphous precursors in the 

fabrication of biomaterials
4, 12, 14, 26, 27

 and new kinds of materials.  Since these 

amorphous precursors can be moulded and formed into any shape, they provide the 

perfect tool for the synthesis of new materials and by subsequent crystallisation of the 

amorphous phase, crystals with extraordinary morphologies can be obtained
10, 28-31

.  It 

has to be pointed out though, that amorphous precursors are not a necessity for 

obtaining unusual crystalline morphologies by templating
32, 33

. 

 

1.2.1 Polymorphism 

An important characteristic of crystal formation is the occurrence of different 

polymorphs for one compound.  Calcium carbonate for example, has three different 

crystalline polymorphs, being calcite, aragonite, vaterite
4
.  Polymorphism is the result of 

the fact that the atoms or molecules constituting the crystals can be packed together in 

alternative ways or put together in different conformational arrangements.  This means 

that each polymorph has a different crystal structure and therefore unit cell
34

.  

Polymorphism is an important aspect of crystallisation since different crystal structures 

are related to different mechanical, thermal and physical properties which might be 

wanted or undesirable.  Depending on the temperature, pressure, solvent and even 

stirring speed, different polymorphs can precipitate out of the solution
35

.  In some cases, 

the type of packing that will be selected will be driven by intermolecular interactions, 

while in other cases, entropic effects will be dominating.  Transformation between two 

polymorphs is also possible and can occur in two different ways: either by 

reconstructive or by displacive transformation
36

.  Reconstructive transformations occur 

when the two structures are so different from each other that the transition from one into 
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the other is only possible by a disintegration of the first polymorph followed by a 

reconstruction of the new one.  This can occur readily in solution and the transformation 

of calcium carbonate aragonite into calcite is an example of this mechanism
36

.  

Displacive transformation occurs when the two structures are quite alike, and more 

subtle shifts occur in the molecular arrangements.  In this case the nearest neighbours‟ 

interactions are preserved and only second neighbours change, which is possible during 

a solid state transformation with low activation energies and high transformation rates
36

. 

 

1.2.2 Crystal system 

Briefly, crystals can be organised into 7 crystal systems according to their symmetry 

elements.  The seven systems are shown in the table below along with their typical 

relative axial lengths and angles, lattice system and an example of a mineral
37

. 

 

Table 1: The seven crystal systems with typical axial lengths and angles, lattice system 

and a mineral example. 

Crystal 

family 

Crystal 

system 

Axial lengths 

and angles 

Lattice system Example 

Triclinic a≠b≠c 

α≠β≠γ≠90° 

Triclinic Turquoise 

(CuAl6(PO4)4(OH)8) 

Monoclinic a≠b≠c 

α=γ=90≠β>90° 

Monoclinic Brushite (CaP) 

Orthorhombic a≠b≠c 

α=β=γ=90 

Orthorhombic Aragonite (CaCO3) 

Tetragonal a=b≠c 

α=β=γ=90 

Tetragonal Rutile (TiO2) 

Hexagonal Trigonal a=b=c 

α=β=γ≠90 

Rhombohedral Calcite (CaCO3) 

Hexagonal a=b≠c 

α=β=90, γ=120 

Hexagonal Hydroxyapatite (CaP) 

Cubic a=b=c 

α=β=γ=90 

Cubic Halite (NaCl) 
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1.2.3 Classical crystallisation 

1.2.3.1 Nucleation 

Crystallization can occur when a solution is supersaturated with molecules, or in the 

case of salts, with different ions.  Supersaturation, S, can generally be seen as the 

thermodynamic driving force for nucleation and can be defined as a measure of the 

degree by which the concentration of the ions in the solution exceeds their solubility.  

Several ways exist to induce supersaturation in solution such as increase or decrease of 

the temperature, change of pressure or evaporation.  The expression for supersaturation 

can be written as 

 

            Equation 1 

 

where C represents the concentration of the species and     the equilibrium solubility 

product.  Very often multiple species are involved in the expression of the 

supersaturation and C is in this case the product of the concentrations (or more 

precisely, the activities) of the individual components present in solution (C = [Ca] 

[Cb]…).  The equilibrium solubility product    , is unique for every material, and for 

the example CaCO3 can be written as  

 

    
          

   

       
 Equation 2 

 

where the expression demonstrates the supersaturation is directly related to the 

solubility of each species.  Therefore, another effective way of increasing the 

supersaturation is the addition of another component to the reaction solution, thereby 

reducing its solubility by pushing the solubility product to the left (Equation 3). 

 

                     
  

    
 Equation 3 

 

Also since each polymorph of a crystal has a different solubility product, control over 

polymorph can be achieved by control over concentration and the supersaturation (also 

see section 1.2.3.4). 
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Supersaturation can also be related to the chemical potential and free enthalpy of the 

system and can be written as 

 

            Equation 4 

 

With ∆µ the change in chemical potential or change in free energy per mass, kb the 

Boltzmann constant, T the temperature and S the supersaturation of the solution. 

 

Once the supersaturation is reached, the ions in solution will come together and form 

complexes due to local fluctuations of the supersaturation in the solution.  These 

clusters are very unstable though due their large surface and small volume.  The Gibbs 

free energy of ions coming together forming a cluster can be expressed as the sum of a 

surface and a volume term: 

 

       
 
       Equation 5 

 

With ∆Gi the chemical potential, ∆µi the chemical potential of the cluster (usually 

negative, related to the strength of the new bonds being formed), A(i) the surface area of 

the cluster and γ the surface free energy, (which is usually positive). 

 

This expression shows the free energy is a pay off between the beneficial formation of 

bonds in the bulk of the cluster, which is negative, and the cost of energy for the 

creation of a new surface, which is positive.  For a spherical cluster with radius r 

equation 5 can be written as. 

 

    
    

  
              Equation 6 

 

With r the radius of the sphere, Ω is the volume of a molecule inside the crystal, kb the 

driving force per molecule of crystal formation and γ the interfacial free energy between 

the forming nucleus and the solution.  The surface term is now proportional to      

while the volume term is proportional to     . 
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When the cluster grows, its surface will increase with r
2
, while its volume will increase 

with r
3
 (see Figure 2).  At the beginning, for small r, the surface contribution will be 

bigger than the volume factor which means that the free energy will be positive.  Yet 

since the volume increases with r
3
, the volume contribution will grow faster than the 

surface factor and at some point, when the nuclei reaches the size of what is called the 

critical nucleus at size R
*
, the volume factor will compensate for the surface factor and 

the nucleus will become more stable the larger r gets.  The free energy is at a maximum 

at this point which needs to be reached by the system for nucleation to occur and crystal 

growth to start.  After this point, on continued growth, the gain in lattice bulk energy 

will further overcompensate for the loss in surface energy and the crystal will continue 

to grow until no more ions are available (below supersaturation).  For highly 

supersaturated solutions, a high number density of nuclei will be produced.  For these 

kinds of solutions, agglomeration will be the most dominant growth mechanism in the 

solution, leading to polycrystalline particles
38

. 

 

 

Figure 2: The change in free energy ΔG with size of the sphere (r).  R
*
 represents the 

critical size for the nucleus. 

 

Finally it needs to be noticed that although a crystal will continue to grow for as long as 

the solution is above its supersaturation, a nucleation step always has to occur first 

before the crystal can start to form.  If for any reason nucleation cannot occur (for 

R
* 
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example due to the presence of additives), supersaturation can be a stable state without 

any change in solution. 

 

Depending on the presence or absence of a surface, two kinds of nucleation can occur: 

homogeneous and heterogeneous nucleation.  Homogeneous nucleation is the type of 

nucleation as described in previous paragraphs and takes place in the solution.  

Heterogeneous nucleation, in contrast, takes place on surfaces or dispersed components 

already present in the solution, such as dust particles or crystal seeds, which act as 

nuclei and provide the starting surface for crystallisation.  Since a surface is already 

available during heterogeneous nucleation, the surface energy term will be much 

decreased and with it also the general entire energy demand for nucleation since the 

interfacial energy between the cluster and interface is almost always lower than that 

between the cluster and bulk solution.  This makes heterogeneous nucleation less 

energy-demanding than homogeneous nucleation and is therefore the biggest driving 

force for crystallisation happening in normal systems.  Heterogeneous nucleation will 

always prevail at low supersaturation, but at high supersaturation, homogeneous 

nucleation can also occur since the nucleation sites for heterogeneous nucleation will be 

much more limited in comparison to those for homogenous nucleation. 

 

1.2.3.2 Crystal growth 

In the classical picture of crystallisation, growth occurs via a layer-by-layer adsorption 

of solute molecules and atoms to an existing crystal face.  During the crystallisation 

process “growth units” diffuse to the crystal surface where they can become attached to 

the surface.  These units form the so-called adsorption layer, with a typical thickness of 

about 1 nm
39

 and can then remain at their initial point of attachment, diffuse across the 

crystal surface and get integrated in the structure of the crystal, or return to solution
38

.  

Growth of a crystal surface happens when the flux of atoms, ions or molecules attaching 

to the surface is greater than that of the ones re-entering the solution.  The rate at which 

this happens depends on the ability of the specific surface to catch ions or growth units, 

which in turn depends upon the strength and the number of interactions that can be 

made
36

. 

 

On the molecular level, before being attached to a surface, an incoming ion can 

encounter three different environments (see Figure 3) as defined by the Hartman-
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Perdock system
40

: a kinked surface, which offers three bonds for attachment (Figure 3a 

denoted by K), a stepped surface which provides two bonds (denoted by S), and a flat or 

smooth surface which can make a maximum of one bond with the incoming atom 

(denoted by F).  To reach the binding site on the surface, the growth unit will have to 

overcome a number of energy barriers such as (partial) desolvation, diffusion across the 

surface to a step site, and further desolvation to enter a kink site.  It has to be stated 

though that crystal growth is rarely perfect, and a number of imperfections often exist in 

the form of vacancies or dislocations, with screw dislocations as the most prominent 

example
14

.  As shown in Figure 3b, faces that grow quickly vanish during crystal 

growth, while slow growing faces will stay, and dominate the final shape of the crystal. 

 

  

Figure 3: (a) Schematic representation of the growth of a crystal with the face, kink and 

step sites.  The schematic in (b) shows the growth of a crystal where surface B grows 

much faster than surface A and is finally almost lost in the crystal morphology. 

 

Molecules or ions that are located at the surface of a crystal will not be homogeneously 

surrounded by other ions or molecules and will therefore be coordinatively unsaturated 

and unstable and will easily dissolve again
36

.  It is known that the solubility of crystals 

increases with decreasing size which gives rise to what is called Ostwald ripening, 

producing bigger crystals at the cost of smaller ones.  This is caused by the fact that 

when the solution is in equilibrium with large crystals, it will be undersaturated with 

respect to the smaller ones.  This will give rise the dissolution of the small crystals 

producing ions for the bigger crystals which those will use to continue to grow.  In the 

end, only big crystals remain. 

 

It is easily understood that binding of an ion to a flat surface will be the most energy-

demanding, since in this kind of binding the ion has the least number of neighbours 

a b 
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(only one) in comparison with an atom attaching to a stepped surface (2 neighbours) or 

a kinked surface (3 neighbours).  The attachment of the growth unit will be 

preferentially at the kinked surface, so the kink moves along the step until it is 

completed and a new step is started.  Because of this, kinked or stepped surfaces are 

quickly eradicated, explaining why most crystals have flat faces, sharp corners and 

straight edges.  Since attachment and growth mainly occurs at kink and stepped 

surfaces, it is important for a flat surface to be able to roughen and provide new kink 

and step sites so that growth can continue to occur.  This depends on the energy 

required to remove one block from a complete face, and using it to start a new layer on 

a flat surface (Figure 4)
36

. 

 

 

Figure 4:  Schematic drawing of the roughening of a solid-fluid interface.  The ease by 

which this one block is moved and the surface is roughened controls the crystal growth 

mechanism.  Adapted from ref. 36. 

 

This energy can be expressed as the sum of three different interaction energies (solid-

solid (φss), liquid-liquid (φll) and solid-liquid (φsl) interaction energy) and can be written 

as followed (based on Temkin model)
41

: 

 

ΔE= 2φss + 2φll - 4φsl Equation 7 

 

If this energy is low and less than 3 kBT, the energy required to form a new step will be 

low enough, and it will be therefore possible to form new kink and step sites on the 

surface.  This guarantees that there will be plenty of growth sites for any incoming ions 

and growth will be continuous in this case.  When the energy is between 3 and 5 kBT, 

the inherent roughness of the interface decreases and incoming growth units will find it 

more difficult to find a growth site.  They will therefore return to the fluid phase or will 
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join other adsorbed growth units to form surface nuclei or islands which will provide 

steps and kinks for further growth and surface nucleation will become the predominant 

growth mechanism.  When the energy rises above 5 kBT, step formation is as good as 

non-existent and growth can only occur by built in lattice defects, such as screw 

dislocations.  In this case, the growth rate will vary widely for the individual crystals
36

. 

 

1.2.3.3 Thermodynamically controlled crystallisation growth 

From a thermodynamic point of view, the different crystal morphologies that are formed 

for a certain type of mineral are due to the different surface energies of the crystal faces 

and also depend on the environmental conditions in which they have grown (pH, 

temperature, absence or presence of additives).  Generally, the interfacial energy of a 

crystal face depends on the number of “dangling” surface bonds, minus the interaction 

energy of the crystal surface with the surrounding medium such as solvation or 

hydration in the case of a liquid medium
14

.  It is therefore understandable that very 

polarisable substances like ionic crystals will have a high surface tension, while organic 

crystals which are principally based on van der Waals interactions, will have a lower 

surface energy.  Faces that have high surface energies will grow quickly and vanish 

during crystal growth, while the opposite is true for faces with low surface energies.  

These will grow slowly and dominate the final shape of the crystal (see Figure 3).  By 

manipulating the surface energies of the surfaces, it is therefore possible to manipulate 

the shape of the crystals, an observation which is known as Wulff‟s rule
42

.  The use of 

additives is a common technique to achieve thermodynamic control over crystallisation, 

influencing the surface energies of the surfaces.  This will be further demonstrated in 

chapter 4.  It is important in this case that the concentration of the additives is low 

enough, since high additive concentrations will lead to a surface coverage of the 

growing nucleus with additives and therefore a quenching of its growth
14

. 

 

1.2.3.4 Kinetically controlled crystallisation and Ostwald’s step rule 

Thermodynamic control is usually achieved at low supersaturations, allowing the 

classical crystallization pathway to occur alongside an ion-by-ion growth model.  Under 

high supersaturation conditions though, crystallisation is under kinetic control and can 

result in the formation of unexpected polymorphs or phases and their associated 

different morphologies.  In general, kinetic polymorph control is mainly based on the 

modification of the different activation-energy barriers of nucleation, growth and of 
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phase transformation, and in this case the classical crystallisation pathway will occur 

according to the so-called Ostwald‟s step rule, where crystallisation is described as a 

sequential process involving structural and compositional modifications rather than a 

single-step pathway
14, 43

.  Figure 5 shows the manifestation of Ostwald‟s “step rule” for 

calcium phosphate with the energy barriers and transition states that might occur when 

crystalline hydroxyapatite (HAP) forms from a solution via the traditional ion-by-ion 

route or an amorphous intermediate (in this case amorphous calcium phosphate (ACP)).  

 

. 

Figure 5:  Schematic presentation of Ostwald‟s “step rule” for calcium phosphate.  

Route A is the traditional crystallisation pathway under thermodynamic control where 

HAP is formed by the ion-by-ion route from solution without any intermediate phases.  

Route B is a lower energy pathway under kinetic control, occurring via the amorphous 

precursor phase and other metastable phases. (Diagram not to scale).  Adapted from ref. 

2, 12. 

 

According to Ostwald‟s “step rule” the less organised and less dense phase is formed 

first, which is often an amorphous phase such as ACP.  In a next step, the amorphous 

phase dissolves or evolves into more stable, less soluble mineral form such as dicalcium 

phosphate dihydrate (DCPD) or octacalcium phosphate (OCP), to develop eventually to 

the most stable phase, hydroxyapatite (HAP).  The kinetic transformation is in the order 

of increasing thermodynamic stability but it has to be noted that all polymorphs or 

phases do not necessarily appear along such a pathway
14

.  The stabilities of the 
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intermediate phases and their rate of transformation depend basically on the solubility 

of the minerals or phases, but also on their free energies of activation and nucleation 

within different environments, something which is controllable by, for example the 

addition of additives.  Previously it has also been stated that for calcium phosphate the 

amorphous phase is preceded by a Posner‟s cluster
44-46

 which recently could be 

identified as calcium triphosphate ion-association complexes
47

. 

Working at high supersaturations might also lead to high nucleation rates and diffusion 

controlled crystallisation, with dendritic and spherulitic growth processes a as 

consequence
38, 48

. 

 

1.2.4 Non-classical crystallisation pathways 

1.2.4.1 Mesocrystal formation and oriented attachment. 

In addition to the formation of unstable kinetic crystal forms, kinetic control and high 

supersaturations also results in the formation of many crystalline nuclei.  In a non-

controlled way this leads to the formation of polycrystalline particles based on a non-

oriented aggregation of nanoparticles.  By the use of additives however, it is possible to 

stabilise the nanoparticles and control their aggregation process.  In this case, a different 

pathway of non-classical crystallization can come into play which involves the oriented 

attachment and fusion of particles followed by the formation of a product with single 

crystal characteristics.  Often this leads to the formation of a so-called mesocrystal or 

“mesoscopically structured crystal”, which can be defined as “a crystal comprising a 3D 

array of iso-oriented single crystal particles of size 1–1000 nm (mesoscale dimensions).  

The highly oriented subunits therefore distinguish a mesocrystal from a randomly 

oriented polycrystal, and the identifiable nano-sized building units distinguish it from a 

single crystal containing impurities” 
49

.  It is emphasised that the term mesocrystal 

specifically defines the structure of a material rather than its mechanism of formation.
49

 

 

Figure 6 shows a schematic representation of the difference between classical and non-

classical crystallisation.  As discussed before, in the classical crystallisation model 

(pathway a), crystallisation starts from primary building blocks such as ions and 

molecules, forming unstable clusters which form and dissolve again, until the critical 

nucleus is formed, which leads to a continued growth of the crystal by ion-by-ion into a 

macroscopic single crystal.  The non-classical crystallisation pathway (pathway b and c) 
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is particle-mediated and involves a mesoscopic transformation process
50-52

.  The two 

main pathways are summarised in Figure 6.
52

 

 

 

Figure 6: Schematic representation of classical and non-classical crystallization.  (a) 

Shows the classical crystallisation pathway to a single crystal.  (b) Shows an oriented 

attachment pathway of primary nanoparticles, forming an iso-oriented crystal.  (c) 

Shows the pathway for mesocrystals formation via a mesoscale self assembly of 

nanoparticles, temporarily stabilised by organics.  Image reproduced from ref. 52.  

 

Pathway b describes the oriented attachment process which involves the arrangement of 

primary particles into an iso-oriented crystal (b) as well as the formation of a single 

crystal after fusion of the nanoparticles (a).  Oriented attachment is a well-known 

phenomenon where primary nanoparticles spontaneously self-organise into a 

superstructure with a common crystallographic orientation
53, 54

.  This is followed by the 

joining of these particles at a planar interface forming one connected entity.  The 

driving force for this process is a reduction in the surface energy.  Two nanoparticles 

close enough to each other are mutually attracted by van der Waals forces, yet because 

of their thermal energy they are still able to rearrange themselves to find the low-energy 

configuration represented by a coherent particle-particle interface
52

.  Oriented 

attachment has been a well known phenomenon in crystallisation and the first 

experimental observations were made on nanocrystalline titania prepared under 

hydrothermal conditions
14, 55

.  The oriented attachment mechanism is kinetically of 

second order in the number of primary particles and is particularly relevant in the 

nanocrystalline regime since in this case, particles with high specific surface areas 
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preferably fuse together due to the gain of a substantial amount of energy by elimination 

of two high-energy surfaces
56

 and increase in entropy due to displacement of molecules 

attached on the fusing interfaces.   

In principle there are two main ways for achieving mutual orientation of the two 

nanoparticles.  One is the effective collision of particles which have a mutual 

orientation.  The second is a coalescence mechanism made possible by particle rotation 

in weakly coagulated samples where nanoparticles still have small degrees of rotational 

freedom
14, 53

.  By the help of liquid cell in situ TEM it was recently possible to describe 

this last mechanism during the formation of iron oxyhydroxide particles by oriented 

attachment
57

.  It was observed that the particles underwent continuous rotation and 

highly direction-specific interactions, until they found a perfect lattice match.  They 

then jumped into contact over distances of less than 1 nanometer, and merged together 

following atom-by-atom addition, forming one crystal
57

. 

 

Pathway c describes the formation of an iso-oriented crystal through oriented 

aggregation of stabilized units and the subsequent fusion of those units to form a single 

crystal.  Mesocrystals can be formed via such mesoscale assembly when nanoparticles 

are coated by organic components.  Different mesocrystals have been formed of CaCO3 

and other minerals by addition of additives such as polystyrene sulfonate (PSS)
58

, block 

copolymers
59-61

 and other kinds of additives
62, 63

. 

 

Currently, three different mechanisms have been proposed for the mutual 3D alignment 

of the nanocrystals into the crystallographic register (see Figure 7).  The first 

mechanism requires the presence of directional physical fields such as magnetic, 

electric, or dipole fields, or possible other polarization forces.  Primary particles with 

anisotropic properties are essential in this process.  A second mechanism is based on the 

formation of so-called mineral bridges providing the connection between the 

nanoparticles, generating a coherent single crystal
49, 64

.  The concept of mineral bridges 

has been used before to explain mutual c-axis orientation of the aragonite platelets in 

nacre, where experimental support was given for crystal growth through mineral bridges 

between successive aragonite tablets
65

.  Also during formation of a mesocrystalline 

structure of the sea urchin spine mineral bridges are believed to play a role
49

.  Finally a 

third mechanism involves precipitation in a constrained environment, where the 

mechanism is explained by simple geometric arguments and the nanocrystals align by 
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spatial constraints.  Upon growth of the anisotropic nanoparticles in a constrained 

environment, the particles will align due to space restrictions leading to the formation of 

a mesocrystal.  Depending on the surface energies and interaction potentials of the 

nanocrystals, it is assumed the pathway will be along pathway (a) (high energies and 

potentials), (b) (intermediate) or (c) (weak).   

 

 
Figure 7:  The three principle mechanisms for particle alignment into a mesocrystal.  (a) 

Shows the mechanism where particles align due to directional physical fields such as 

electric, magnetic or dipole fields.  Arrows indicate the mutual alignment.  (b) Shows 

the formation of mineral bridges between two nanoparticles and (c) shows nanoparticle 

alignment due to spatial constraints.  Adapted from ref. 14, 54. 

 

Since classical single crystals and mesocrystals both diffract like a single crystal, it is 

very difficult to distinguish them from each other.  Features such as the appearance of a 

rough surface, high surface areas, XRD broadening and TEM observation of subunits 

have been used as proof of mesocrystal formation
64, 66

 although this isn‟t always 

conclusive. 

 

1.2.4.2 Prenucleation clusters 

Recently, it has been shown that CaCO3 nucleation might occur through another non-

classical process, where stable, so-called prenucleation clusters (PNC) are formed
67, 68

.  

By titration of calcium chloride into a solution of carbonate buffer
68

, it was found that 

more calcium was bound before and after nucleation than expected.  This was ascribed 

to the formation of stable clusters before nucleation, so-called prenucleation clusters.  

The formation of these clusters was found to be present in saturated and under-saturated 

conditions before and after nucleation and they are believed to exist in a reversible 

equilibrium with their dissolved components, lying in a minimum of Gibbs free energy 
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(Figure 8).  These PNCs are different from the monomer and dimer clusters described 

by the classical nucleation theory, since in that case the clusters are formed by a random 

driving force and are therefore a rare species in solution and very unstable
67

.  The 

composition of the prenucleation clusters is still not very clear, but is believed to be 

amorphous and hydrated, with estimates for the size between 1.1 - 2 nm hydrodynamic 

diameter
67

 corresponding to roughly 70 calcium and carbonate ions.  Through cluster 

aggregation it is believed these clusters grow into crystalline CaCO3 with or without 

precipitation of ACC as a precursor
67, 69

.  Recent theoretical simulations proved that the 

calcium carbonate PNCs are actually highly dynamic and form a strongly hydrated 

polymeric species of alternating Ca
2+

 and CO3
2-

 ions or a so-called dynamically ordered 

liquid-like oxyanion polymer (DOLLOP)
70

.  It is believed that these structures are 

constantly changing their structure and remain in equilibrium with the solution, 

avoiding a phase boundary, which allows them to be stable structures in solution. 

 

 

Figure 8: Schematic representation of the free-energy diagram versus the reaction 

coordinate.  Image reproduced from ref. 68.  The bold line shows the classical view 

where metastable clusters form and nucleation occurs once the critical nucleation 

enthalpy ΔG
*
 is overcome.  The dashed line shows an alternative pathway where stable 

clusters are formed with an activation barrier which is negligible as compared with the 

thermal energy. 

 

It was further discovered that these clusters were more thermodynamically stable at 

lower pH than at higher pH values, which appeared to correspond to different cluster 

structures
68

.  It was found that more stable ACC (ACC I) was nucleated from the more 
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stable clusters at lower pH, with evidence of short-range structures analogue to calcite.  

The ACC found at higher pH values was less stable (ACC II) and exhibited short-range 

structures analogue to vaterite
68

.  Figure 9 shows a comparison between the classical 

pathway and non-classical view through formation of prenucleation clusters.   

 

 

Figure 9:  Schematic representation of classical and non-classical crystallisation 

pathways including the formation of prenucleation clusters.  Image reproduced from ref. 

67, 71. 

 

Nucleation models involving pre-nucleation clusters have been proposed for organic 

systems
72, 73

 and other inorganic systems
74

 such as calcium phosphate
46

.  More recent 

research though showed that the observed PNC clusters of calcium phosphate are in fact 

soluble ion association complexes [Ca(HPO4)3]4 that form aggregates in solution
47

.  

These aggregates do not actually represent a fixed structural unit as was postulated for 

the original model of PNCs, but its chemistry changes stepwise towards the composition 

of the final product hydroxyapaptite, the most stable mineral of calcium phosphate.  

These complexes are identified with an excess of free energy which lowers the energy 

barrier to nucleation.  Since this identifies the PNCs as merely ion-association 

complexes it is possible to agree their existence with the classical nucleation theories
47

. 

 

Recent findings based on molecular dynamic simulations reported the formation of an 

ion-rich fluid phase, that forms readily by a liquid-liquid phase separation within the 

range of concentrations for which pre-nucleation clusters of calcium carbonate are 

observed
75

.  The liquid initially occupies a relatively small volume and therefore forms 
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a population of clusters which increase their mean radius as time to the one-third power.  

This spinodal decomposition mechanism might also give an alternative explanation for 

the observed features of PNCs, while preserving the long-standing physical concepts of 

the classical nucleation theory. 

 

1.2.4.3 Polymer-induced liquid precursor (PILP) 

The polymer-induced liquid precursor (PILP) phase was first observed during the 

investigation of the effect of polyaspartic acid (PAsp) on the crystallization of CaCO3
76

.  

PAsp was chosen to mimic the function of highly acidic proteins found in biominerals.  

It was observed PAsp had the effect of inducing the formation of films, tablets and 

fibers of CaCO3 on a substrate, by the formation of a liquid-like amorphous precursor 

phase
76, 77

.  Later, it was discovered that a similar result could be obtained with the 

commercially cheaper negatively charged polymer polyacrylic acid (PAA)
12, 78

. 

Figure 10 shows a schematic illustration of the proposed PILP process.  Polyaspartic 

acid (PAsp) or polyacrylic acid (PAA) are added to the calcium solution with 

concentrations ranging from 1 to 100 µg/ml, depending on a variety of factors such as 

molecular weight, the use of other additives (such as Mg
2+

) and the organic matrix
12

.  

By gradually increasing the supersaturation through the build-up of carbonate in the 

solution during the ammonium carbonate vapour diffusion technique
79

 (see section 

2.1.4.), a critical concentration is reached, at which point the solution undergoes a so-

called liquid-liquid phase separation (Figure 10a).  It is believed that a highly hydrated 

amorphous precursor phase is formed, which behaves like a liquid, and is much more 

hydrated and mouldable then ACC formed in the absence of additives
12, 80

.  Due to their 

liquid-like behaviour, the amorphous particles are able to settle and adsorb to the 

substrate and coalesce into a film or coating (Figure 10b).  In this way, an amorphous 

film is formed which crystallises over time into a birefringent film of crystalline CaCO3, 

excluding the polymeric impurity (Figure 10c, d).  By the use of atomic force 

microscopy (AFM) the topology of the deposited films was investigated, showing that 

they consisted of nanoscale colloidal particles remaining from the original droplet 

precursor
81

. 
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Figure 10: Representation of the polymer-induced liquid precursor (PILP) process.  By 

addition of the polymer, isotropic droplets of 2-5 µm in size phase separate out of the 

solution when a critical concentration of Ca
2+

 and CO3
2-

 is reached (a).  The droplets 

have a liquid-like character and coalesce on the surface of the glass slide forming a 

continuous isotropic film (b).  The film starts to crystallise (c) and patches within the 

isotropic film become birefringent.  Due to diffusion-limited exclusion of polymeric 

impurities, the transformation process happens in an incremental fashion and transition 

bars may form.  By time a complete crystalline film is formed (d) with a thickness of 

about half a micron, and composed of single-crystalline patches of calcite, or spherulitic 

patches of vaterite, which can range to hundreds of microns in diameter.  Image 

reproduced from ref. 12, 77. 

 

Although they have similar appearances, the PILP process differs from the oriented 

attachment process since the end product is formed by non-oriented ACC aggregation 

instead of an oriented aggregation of nanoparticles.  In addition to the formation of 

films, the PILP process also induced the formation of calcite and vaterite fibers with 

diameters ranging from 100 to 800 nm
76, 82

.  The exact formation mechanism of these 

fibers hasn‟t been clarified, although it is believed an oriented attachment mechanism 

might actually play a role in this case
83

 (See chapter 4). 

 

An important property of the PILP process, particularly with regards to this thesis, is the 

preservation of the shape of the precursor phase as round particles, and its ability to 

create thin films and tablets, fibers
77

 or templated and moulded crystals
12, 81

.  Taking 

advantage of this process, it was later demonstrated that it was possible to template 

complex shapes
84

 and to fill the nanosized pores of track-etched membranes by capillary 



Chapter 1: General Introduction 

24 

action, allowing for the formation of single crystal rods of calcite
29

.  Based on 

indications such as coalescence of the droplets which grow from tens of nanometers to a 

couple of microns, and light scattering studies suggesting an aggregation of the 

precursor particles rather than an atom-by-atom growth, it was put forward a phase with 

liquid-like behaviour was formed
81

.  Further experiments done with track-etched 

membranes which become infiltrated with amorphous CaCO3 by capillary action 

supported this suggestion
29

.  Recent investigation with analytical centrifugation and 

nanoparticle tracking analysis further proved its emulsion and liquid-like properties
85

. 

Although the existence of a precursor liquid phase has mostly been demonstrated for 

CaCO3 in the presence of PAsp and PAA, other studies have shown many 

polyelectrolytes are able to generate thin films of calcium carbonate via a PILP phase 

such as DNA
86

, ovalbulmin
87

, a calcification-associated peptide
88

, short synthetic 

polypeptides
89

 and the positively charged polyelectrolyte poly(allylamine 

hydrochloride) (PAH)
28

 (see chapter 4).   

In addition, it has been shown to be possible to form a highly hydrated amorphous 

phase of CaCO3 with a similar appearance, by a liquid-liquid phase separation in the 

absence of additives at certain pH ranges
21, 85, 90

.  It was therefore believed that this is a 

characteristic feature of the homogeneous formation of calcium carbonate itself
91

.  

Rieger et al. studied the precipitation of calcium carbonate at high supersaturations and 

observed the formation of emulsion-like structures preceding the precursor phase by 

means of Cryo-TEM.  The authors speculated about a spinodal phase separation 

between a denser and less dense phase
92

. 

PILP phases have also been observed for other carbonate systems such as strontium 

carbonate and barium carbonate
83

 and for amino acids
93

, where for example 

microspheres of DL-glutamic acid with a hierarchical structure were formed through a 

PILP process by addition of the oppositely charged polyelectrolyte 

poly(ethyleneimine)
94

.  Later studies indicated however, that the existence region and 

the amount of PILP phase produced, were rather very small as compared with the 

thermodynamically stable crystalline phases
95

.  The existence of PILP phases of 

calcium phosphate
96

 and calcium oxalate
12

, have also been suggested, even though 

conclusive evidence is still missing.  

The early structure of PILP, and its connection to PNCs has been unravelled in a recent 

paper
85

, where it was shown a liquid crystalline phase (LCP) was stabilised by addition 

of PAsp.  This LCP was preceded by PNC formation and was observed to exist also in 
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absence of polymer at neutral pH ranges.  It was proposed that the LCP phase is formed 

by a bicarbonate-biased Ca
2+

 interaction distinct from the Ca
2+

 interaction with 

carbonates-bicarbonate in bulk solution.  The role of PAsp was attributed to stabilisation 

of the LCP, inhibiting nucleation of CaCO3. 

 

1.3 Control of crystal morphology 

As mentioned in the introduction, most biominerals are structurally composite 

materials, constructed out of inorganic crystals, surrounded by organic components.  

These organic components are key mediators during the mineralisation process and 

were shown to consist of soluble, hydrophilic polymers, such as proteins, glycoproteins 

and polysaccharides, together with a preformed and insoluble macromolecular matrix 

such as collagen or chitin
2, 4, 97

.  The organic components have multiple functions in 

controlling the mineralisation process, including the formation of a confined 

mineralisation environment, acting as a structural framework for mechanical support, or 

influencing actively nucleation by interaction
2, 4

, guiding the developing mineral phase.  

The organic macromolecules are often present up to a few weight percent
2, 4, 98, 99

, and it 

is thought that certain key protein sequences and biomacromolecules are responsible for 

controlling the crystal polymorph
100, 101

, morphology and texture
102

, by binding to 

certain crystal faces changing the interfacial surface energy
98, 103, 104

, or by providing a 

confined templated environment for crystallisation
2, 4, 10

. 

 

1.3.1 Effect of additives on crystallisation 

1.3.1.1 Calcium carbonate 

Although Nature has many ways to control the formation of biominerals, it is the 

research on the use of soluble macromolecules that has received the most attention in 

the past years since this process is much easier to mimic
4, 14, 30, 56, 98, 105

.  Additives can 

control the crystal habit in many ways, mostly by binding to specific faces, influencing 

the growth rate of the faces, changing the morphology of the crystal according to 

Wulff‟s rule (see 1.2.3.3).  Furthermore, inclusion of the additives into the mineral 

particles are also thought to enhance their solubility, influencing their size and 

aggregation mechanism
106

. 
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Inspired by Nature, a sustained effort has been made to extract and characterise 

biomacromolecules associated with biominerals
107-112

 and it was early on discovered 

that the biomacromolecules occluded mainly within calcium carbonate biominerals 

were highly acidic, being rich in aspartic and glutamic acid
113-117

.  This led to 

subsequent investigations over the past 40 years using molecular analogues in the form 

of negatively charged small soluble additives
118

 such as polymers
58, 119, 120

, dendrimers
11

 

and block copolymers
104, 121

, to obtain similar control over the mineralization process. 

 

In the specific case of calcium carbonate, this led to the observations of crystallites with 

morphologies including spheres, dumbbells, whiskers, rods and flowers, produced by 

addition of polymeric acids
4, 11, 78

 and variable block copolymers
4, 11, 14, 30, 103, 122-125

.  As 

mentioned before, another intriguing effect of the addition of polymeric acids, such as 

polyaspartic acid (PAsp) and polyacrylic acid (PAA), is the stabilisation of amorphous 

calcium carbonate (ACC) as a so-called PILP (polymer-induced liquid precursor) phase, 

enabling the formation of crystalline films and fibers
77, 126

.  Furthermore, biopolymers 

extracted from sea urchins
127

, molluscs
128

, corals
129

 and brachiopods
130

 have been used 

to manipulate the growth of biominerals in an in vitro system.  Under synthetic 

conditions, biopolymers such as soluble collagen, have been shown to support the 

formation of spherulitic aggregates of calcite, and the stabilisation of vaterite (7 days) 

and ACC (14 days)
131

.  Simple ions such as Mg
2+

, and molecules such as citric acid or 

malic acid, also have a profound effect on the morphology of calcium carbonate
129, 132

.  

Computer simulations suggested that Mg
2+

 ions preferentially absorb to certain faces
133

, 

forcing these facets to be expressed in the final morphology by altering their respective 

growth rates.  Mg
2+

 ions were further shown to induce the formation of polycrystalline 

crystals with dumbbell and spherical morphologies
129

.  The addition of citric and malic 

acid allowed the formation of CaCO3 crystals elongated along the c-axis capped with 

well-defined {104} faces through adsorption to the {011} facets.  Interactions of other 

simple additives, such as dicarboxylic acids, malinate, succinate and 

ethylenediaminetetraacetic acid (EDTA) has furthermore been rationalised in terms of 

interactions with specific symmetry related crystal planes, directing calcite growth
134-

136
.  In contrast to the specific adsorption mechanism described above for small 

molecular additives, block-copolymers allow the formation of exotic structures, via an 

aggregation based process, where the polymer initially stabilises small precursor crystal 

units, and then directs their aggregation in a highly oriented way, leading to well-
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defined morphologies
11, 59

.  Chapter 4 will discuss further the effect of positively 

charged additives. 

By the use of these soluble additives it was therefore possible to control the morphology 

in a one-pot method.  In comparison with the use of templates though, the outcome of 

the final morphology by the addition of additives is not always predictable from the 

choice of the components. 

 

1.3.1.2 Calcium phosphate 

For calcium phosphate, similar influences could be observed.  Small ions such as Mg
2+

 

and Zn
2+

 are known to inhibit the formation of hydroxyapatite (HAP) and other forms of 

calcium phosphate
137, 138

.  A similar inhibition effect on HAP formation was observed 

for citrates and phosphocitrates
139

.  Notably, the addition of fluorine atoms produces 

fluorapatite, exhibiting a characteristic dumbbell structure in certain pH ranges of 5-

7
140

.  Larger molecules such as proteins, carbohydrates, polyelectrolytes and other 

macromolecules showed a similar inhibition effect on the formation of HAP and other 

forms of calcium phosphate
137, 138, 141-143

.  Furthermore it was discovered these could 

also influence the morphology by absorption to specific faces inhibiting growth
137, 138, 

141, 143, 144
 changing the size and shape of the crystals.  Spherical structures with 

aggregates of fibers of octacalcium phosphate were prepared in the presence of poly-L-

aspartic acid
145, 146

 whereas precipitation in a double-jet experiment in the presence of 

polyaspartic acid gave rise to crystallisation of a “hollow snowball” structure composed 

of single crystal HAP platelets
147

.  The effects of polyaspartic acid will be further 

discussed in chapter 3.  Furthermore by addition of additives such as 

cetyltrimethylammonium bromide (CTAB), nanobelts of octacalcium phosphate were 

constructed
148

, while PSS gave rise to different HAP morphologies from ribbons to 

microspheres constructed from nanofibers to nanorods or nanoplates
149

.  Finally block 

copolymers allowed formation of morphologies such as flower-like nanostructured 

hydroxyapatite hollow spheres
150

 and porous dicalcium phosphate dihydrate crystals 

with channel-like features constructed from 100-nm-sized rod-like primary particles
151

.  

More examples can be found in
143

. 
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1.3.2 Effect of confinement on crystallisation 

A general feature of biomineralisation is that mineralisation often occurs within 

localized small volumes, allowing organisms to exert great control over the 

mineralization process
10, 152

.  By mineralising within these environments, organisms can 

actively select the mineral phase, morphology, orientation and localization of the 

biomineral product formed.  This is achieved through a tight control of the precursor 

ions and phases, and via a close interaction with soluble organic macromolecules and 

insoluble matrices located within
2, 4

.  As demonstrated in chapter 3, interesting 

examples are the formation of teeth and bone, where small calcium phosphate crystals 

are formed inside the nanoscale gaps of collagen
3, 153

.  Other examples can be found in 

magnetotactic bacteria which form magnetite crystals in specially evolved phospholipid 

vesicles
154

.  Furthermore vesicles in general, as present in coccoliths and diatoms of 

respectively CaCO3 and silica, can further act as mineral deposition containers, 

compartmentalizing mineralization
155

. 

To study the effect of compartment on crystallisation, much work has been done on 

freezing phenomena, where a depression of the melting point as well as the freezing 

point was observed with a reduction in the sizes of cylindrical nanopores
156

.  In higher 

levels of confinement with pore diameters of less than about 5-10 molecular diameters 

of the confined substance, the formation of any crystalline phases was often even 

prevented.  Furthermore, precipitation within confined volumes can also lead to 

stabilisation of metastable crystal polymorphs and amorphous phases due to critical size 

or kinetic stabilization effects.  This was demonstrated for organic
157-159

 but also for 

inorganic crystals
152, 160

.  In studies for example of CaCO3, a stabilisation of amorphous 

calcium carbonate (ACC) was demonstrated when precipitated in confined systems such 

as vesicles
155

, droplet arrays
161

 and an annular wedge
152

.  Recently it has also been 

shown the same accounts for calcium sulphate where amorphous calcium sulfate (ACS) 

and calcium sulfate hemihydrate (bassanite,) were stabilised and observed even at 

micron-scale separations
160

.  The stabilisation of the two different minerals was 

attributed to two different mechanisms, one due to kinetic effects and restricted contact 

with the solution (ACC), and the other due to hindered diffusion and aggregation 

(ACS), demonstrating that confinement effects can operate on many levels
160

.   

As demonstrated in chapter 5 and 6, confinement can also provide an effective route in 

controlling crystal size and shape by templating, where the product crystal adopts 
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complex morphologies imposed by the confining volume
29, 31, 32, 162, 163

.  Based on the 

example of Nature, many synthetic templates have been developed, including colloidal 

crystals
33, 164

, ice
165

, macroporous polymers
166

, bicontinuous microemulsion systems
167

 

and biological templates such as pollen grains
168

 and sea urchin skeletal elements
169

, 

producing porous 3D structures of calcium carbonate and other biominerals.  A very 

interesting example was done in our group, where by the use of sea-urchin skeletal 

replicas, calcite crystals with a macroporous, sponge-like structures and curved surfaces 

were formed
166, 170, 171

.  This was done in the absence of amorphous calcium carbonate 

(ACC) and was shown to be possible for a range of crystalline materials including 

PbCO3, SrSO4, NaCl and CuSO4.5H2O
32

.  As further discussed in Chapter 6, previous 

research showed it is possible to produce rod-shaped single crystals of calcite by 

stabilisation of an amorphous precursor phase and the use of track-etched membrane 

pores as templates
29, 31, 172

.   Another interesting technique is the use of gels which 

allows a slow, diffusion-controlled growth of large crystals
4, 173, 174

.  Calcite crystals 

have been grown in all kinds of gels such as silica and agarose gels, giving rise to some 

fascinating morphologies
4, 175

.  Work done by Estroff et al. demonstrated further that 

growth of crystals inside a gel can result in the occlusion of impurities into growing 

crystals producing composite materials and porous crystalline structures
176, 177

. 

Templates have many advantages such as easy fabrication procedures, various 

compositions of materials, and ability to obtain uniform sizes
178

.  Drawbacks are the 

difficulty to scale up the synthesis process, limitation of the dimensions of the product 

by the dimensions of the templates, removal of the template and the necessity of finding 

suitable templates, neither of which are straightforward
30, 178

.  The effect of confinement 

on calcium phosphate crystallisation is further discussed in chapter 3. 



 

Chapter 2: General Experimental Methods and 
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2.1 General preparation methods: 

2.1.1 Piranha solution 

Many of the crystallization experiments described in this thesis were executed on glass 

slides and additionally almost all microscopy carried out with FEGSEM was performed 

after putting the sample on a clean glass slide.  Therefore, the preparation of clean small 

glass slides was crucial for the experiments.  At first, glass slides were cut into pieces 

measuring 1.5 cm by 1.5 cm with a glass cutter and were then put in a glass beaker 

containing Piranha solution.  Piranha solution was prepared by mixing H2SO4 (67 vol-

%) and H2O2 (33 vol-%).  Due to the mixing being an exothermic reaction great care 

had to be taken when combining the two reactants.  Piranha solution is highly effective 

in cleaning the substrates due to its ability to act as an oxidising agent and thus to 

remove organics from glassware.  This is the result of two processes acting 

simultaneously in the solution.  Firstly, Piranha solution is extremely effective in 

removing O and H from organic residues in water due to its strong dehydrating 

characteristics.  Furthermore, the combination of H2SO4 and H2O2 increases the 

oxidizing capability of H2O2 by the formation of elemental oxygen.  This allows 

removal of elemental carbon left after the initial and faster dehydration step. 

 

 

 

Additionally, due to its strong oxidising abilities, Piranha solution will also increase the 

hydrophilicity of the glass slides by hydroxylation of the surface.  In addition to the 

oxidising characteristics, the solution also has a high acidity which will contribute to the 

cleaning ability by dissolving mineral deposits such as carbonates and oxides, making it 

a perfect cleaning agent for our experiments. 

For our experiments, glass slides were left in solution for 3 h whereafter the Piranha 

solution was disposed of and the glass slides were washed 10 times with deionised 

water.  The glass slides were dried with dry N2 air and stored in a closed beaker. 

 

2.1.2 Precipitation methods of CaCO3 

Generally three approaches can be used to precipitate CaCO3 in the lab.  In a first, quite 

general technique, Ca
2+

 and CO3
2-

 are mixed in concentrations exceeding the saturation 

H2SO4 + H2O2  

 

H3O
+
 + HSO4

-
 + O  
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limit, until crystals precipitate out of the solution.  In a second method, called the 

Kitano method
179, 180

, calcium carbonate is dissolved in water by saturating the solution 

with carbon dioxide, whereafter it is reprecipitated on release of the carbon dioxide 

from the solution.  A third method is the ammonia diffusion method (see Figure 1) 

where a calcium ion solution is exposed to ammonium carbonate vapour.  This 

technique has been used in most experiments concerning CaCO3 throughout this thesis.  

The procedure works as follows
181

:  A solution of CaCl2.H2O with or without additives 

is placed inside a desiccator containing a petri dish filled with (NH4)2CO3 powder 

(usually 5 gram) which was covered with parafilm pierced 4 times with a needle.  The 

presence of holes affects the rate of gas diffusion into the CaCl2.H2O solution and 

therefore the rate of increase of the CO3
2-

 concentration and CaCO3 nucleation and 

growth
182

.  

 

 

 

 

 

 

 

The first step of the reaction is given by the decomposition of ammonium carbonate 

powder into ammonia and carbon dioxide (step 1).  Both gasses diffuse into a petri dish 

or vial containing the calcium chloride solution.  The CO2 (from step 1) acts as the 

actual source of the CO3
2-

 ions (step 3) in the solution and reacts with the Ca
2+

 ions to 

form CaCO3 (step 6).  The ammonia works as a buffer system and keeps the pH at a 

value of 9.5, decreasing the solubility of CaCO3 and thus promoting its growth.  

Diffusion of CO2 alone would lead to a decrease in the pH, thereby increasing the 

CaCO3 solubility and supersaturation would never be reached.  The ammonia diffusion 

method can be considered as a close mimic to biomineralisation processes where 

CaCO3 crystallization is initiated by an increase in enzymatically released CO2
102, 181

.  

Glass slides were usually added to the solution as substrates for crystallization to occur 

on. 

(NH4)HCO3(s) 

NH3(aq) + H2O(l) 

2CO2(aq) + 2H2O(l)
 

CaCl2(aq)+ H2O(l) 

Ca
2+

(aq) + CO3
2-

(aq) 

NH3(g) + CO2(g) + H2O(l) 

NH4
+

(aq)  + OH
-
(aq) 

HCO3
-
(aq) + CO3

2-
(aq) + 3H

+ 

Ca
2+

(aq) + 2Cl
-
(aq) + H2O(l) 

CaCO3(s) 

(1) 

(2) 

(3) 

(5) 

(6) 
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Figure 1: Representation of the ammonia diffusion method. 

 

2.1.3 Precipitation within track-etched membranes 

Calcium carbonate and calcium phosphate crystals were precipitated in two types of 

membranes: track-etched (TE) membranes made of polycarbonate (see chapter 3, 4, and 

6), and porous alumina membranes (POM) (see chapter 3). 

 

2.1.3.1 Plasma cleaning of track-etched membranes 

Before the membranes were placed in solution they were plasma treated with a plasma 

cleaner (Harrick Plasma PDC-32G) in order to remove organic impurities and to 

increase the hydrophilicity of the membranes.  The procedure can be described as 

follows.  The membrane is put into the plasma cleaner which is then closed and put 

under vacuum.  Due to the low mass of membrane, it needs to be held down by a small 

weight to prevent it from getting sucked into the vacuum system.  Subsequently, the 

vacuum pump is switched on and the chamber is closed allowing the pressure to drop to 

~ 0.1 mbar.  In a next step the electric field is switched on, leading to the ionisation of 

the oxygen molecules in the air, thus creating a plasma which can contain a number of 

species such as ions, electrons, radicals and photons.  The energetic gaseous species are 

very reactive and bombard the surface to remove material or in the case of active gases 

(e.g. oxygen) get involved in chemical reactions.  The unwanted residues are in this way 

volatilized and removed by the vacuum system.  Moreover, the hydrophilicity of the 

surface is increased.  The plasma is usually applied for ~ 1 min whereafter the electric 

field and the vacuum pump are switched off.  Opening of the valves allows the pressure 

to drop to 1 bar and the membranes are taken out to usually be put in solution for the 

degassing step. 
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2.1.3.2 Degassing step 

When the membranes were immersed in the crystallisation solution, they were first 

degassed to ensure that the crystallisation solution is fully infiltrated into the membrane 

pores.  Therefore, after plasma cleaning, the membranes were placed in glass vials 

containing water or the crystallizing solution (CaCl2.2H2O with or without additive), 

which were placed in a plastic desiccator connected to a vacuum pump, and the pressure 

was reduced to 20-40 mbar.  The glass vials were also covered with Parafilm to avoid 

solution “popping” out of the vial and a hole was made to allow air to leave the 

solution.  They were held under this pressure until no more gas bubbles were seen 

forming on the membrane surface.  The pressure was brought back to atmospheric 

pressure and the membranes were left in solution overnight to allow infiltration of the 

pores with the crystallising solution. 

 

2.1.3.3 Dissolution of the membranes 

After variable amounts of time, the membranes were removed from solution and 

washed with ethanol.  The surfaces of the membranes were then wiped clean with the 

edge of a thin clean glass cover slip, to remove the possible crystals that were located on 

the surfaces of the membranes, and washed again with ethanol.  Next, the membranes 

were sonicated in a vial of ethanol for 10 minutes, rinsed in ethanol and air dried. 

To remove the TE membranes, they were dissolved in a centrifuge tube (1.5 cm) filled 

with dichloromethane (DCM) and sonicated for 2 minutes followed by centrifugation 

for 4 minutes at 13.2 rpm.  The DCM was decanted, taking care not to remove any 

sample from the eppendorf, and fresh DCM was added to the eppendorf again.  The 

sonification, centrifuging and DCM change was repeated for another four times to be 

sure all of the remaining membrane was removed.  Eventually, all of the DCM was 

removed from the centrifuged sample and the eppendorf was this time refilled with 

methanol whereafter the samples were sonicated again for 2 minutes and centrifuged for 

4 minutes.  Eventually the methanol was changed for ethanol and the process was 

repeated 3 more times.  In the end the ethanol was almost completely removed. 

To isolate the crystals from the PAM, the membranes were dissolved in a centrifuge 

tube (1.5 cm) containing 0.5 M NaOH and left for 1 day.  Then the samples where 

centrifuged for 4 minutes at 13.2 rpm and the NaOH solution was removed followed by 

washing of the membranes with ethanol.  Next they were sonicated for two minutes and 
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centrifuged at 13.2 rpm to separate the inorganic precipitate.  Finally the membranes 

were washed 3 more times with ethanol as described for the TE membranes. 

 

For preparation of samples for TEM, 50 μl of fresh ethanol was pipetted into the 

eppendorf containing the sample.  The sample was sonicated for a minute to suspend the 

sample in the ethanol, and a drop was placed on the TEM grid and allowed to dry.  For 

FEGSEM, 50 μl of fresh ethanol was pipetted into the eppendorf which was sonicated 

for 1 minute and then a drop of each sample was placed onto clean glass slides placed 

on an SEM stub. 

 

2.2 Analytical Techniques 

2.2.1 Atomic Absorption 

Atomic absorption (AA) allows the quantitative determination of chemical elements in a 

sample by measuring the absorption of light by free atoms in the gaseous state.  After 

dissolving the sample in a 10% HNO3 solution, the atoms are ionized by passing 

through a flame and their absorption of light at a specific wavelength provided by a 

dedicated lamp, enables the determination of their concentration according to Beer‟s 

law: 

 

       Equation 1 

 

With A the absorbance,   the molar absorptivity in L mol
-1

 cm
-1

, b the path length in cm 

and c the concentration in mol/L 

 

For the experiments, AA was performed using a Perkin Elmer Atomic Absorption 

spectrometer. 

 

2.2.2 Dynamic light scattering (DLS) 

Dynamic light scattering is a technique used to determine the size distribution of 

particles or polymers in a solution based on intensity fluctuations due to Brownian 

motion
183

.  When a light source such as a laser hits the particles, the light will be 

scattered in all possible directions and a time-dependent fluctuation in the measured 
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scattering intensity is observed due to Brownian motion and related to constructive and 

destructive interference.  By the analysis of these intensity fluctuations it is possible to 

obtain information about the velocity of the Brownian motion and therefore the particle 

sizes. 

 

DLS measurements for this thesis were conducted using a NanoZetasizer (Malvern 

instruments). 

 

2.2.3 Infrared (IR) spectroscopy and Raman microscopy  

Infrared and Raman spectroscopy are analytical techniques based on the absorption (IR) 

and inelastic scattering (Raman) of light with a certain frequency which is characteristic 

for the structure of the molecule.  IR is based on the fact that light from a certain source 

will be absorbed by a vibrating molecule at certain frequencies.  The characteristic 

frequencies are related to the structure of the molecule.  Raman is based on the inelastic 

scattering of light by a vibrating molecule.  The photons interact with the molecule to 

induce transitions between vibrational energy states, resulting in a shift in the energy of 

the photons.  This shift in energy gives information about the vibrational modes and the 

structure of the system.  Raman of crystalline structures is usually fairly simple since 

the atoms in the crystalline structure have to move or vibrate in phase to be observable.  

Most IR machines these days are called FTIR (Fourier Transform Infrared) which allow 

measurement of the whole wavelength range at once. 

 

IR and Raman were respectively performed using a Perkin Elmer Spectrum 100 ATR 

and a Renishaw inVia-Raman microscope using a 785 nm diode laser as excitation 

source.  The Raman was equipped with a 50x (NA ¼ 0.75) objective to focus the laser 

beam on specific parts of the sample, enabling the polymorph of the individual particles 

to be determined. 

2.2.4 Optical microscopy 

Optical microscopy was performed using a Nikon Eclipse LV 100 with objectives of 

10x, 20x, 50x and 100x.  The microscope is equipped with a polarisation filter to 

investigate the crystallinity of the formed products.  
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This latter is possible since almost all anistropic crystals are birefringent.  This optical 

property is particularly present in calcite, and is due to a different refractive index 

depending on the propagation and polarisation of the light entering the crystal.  

Hexagonal crystals such as calcite are anisotropic and have crystallographically distinct 

axes.  Therefore, the mechanism of interaction with incoming light depends on the angle 

of the incoming light with respect to the orientation of the crystal lattice. The light will 

therefore encounter different refractive indices depending on the angle of entry. 

 

The effect of birefringe is especially useful to investigate crystals when placed under 

crossed polarisers.  If the crystal is isotropic, such as amorphous materials, the incoming 

light will not be affected or polarised by the material and will be blocked by the second 

polar.  In this case the material appears black.  If the material is anisotropic and is able 

to polarise light, the light will be split into two orthogonal components.  This can be 

used to identify the crystal lattice orientation since whether light is transmitted or not 

depends now on the orientation of the crystal.  If the incident light is parallel to the 

refracted components, the crystal will be in extinction.  If the crystal is turned 45 

degrees the incident light will be perpendicular and will be transmitted making the 

crystal appear bright in a dark background.  If the crystal is turned another 45 degrees 

(so 90 degrees to the first position), the crystal will be in extinction again.  Every 

anisotropic crystal will have two orthogonal extinction positions when the polars are 

crossed.  When the light enters the crystal along its optical axis (the axis of rotational 

symmetry) however, it will interact with the crystal in a similar way as an isotropic 

crystal and extinction will be observed in all orientations.  In the case of calcite this is 

the (001) direction and it is the only axis which isn‟t birefringent.  

 

2.2.5 Scanning electron microscopy (SEM)  

SEM allows to image the surface of a sample with a resolution down to 1 nm.  The 

principle of SEM can be explained as follows: firstly, electrons are generated and 

accelerated using a field emission gun (FEG) or thermionic sources, and subsequently 

focused on the sample by the use of condenser lenses.  To avoid interaction of the 

electrons with the surrounding air, the imaging has to be carried out under vacuum.  

Subsequently, by the use of a lens system, the electron beam is focussed to a size of 0.4 

nm to 5 nm, and the surface of the sample is scanned section by section forming a 
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raster.  When the electrons hit the surface they lose their energy within a teardrop-

shaped interaction volume, which extends from less than 100 nm to around 5 µm in the 

surface, depending on the characteristics of the sample.  Different interactions between 

the electron beam and the investigated material can occur, of which the formation of 

inelastically scattered secondary electrons (<50 eV) is the most important.  The 

secondary electrons emitted by the sample are detected and amplified by the detector to 

be finally represented on a screen as a grey dot where the intensity corresponds to the 

measured intensity.  Depending on the topography of the sample more or less electrons 

will reach the detector and the spot will appear more or less bright giving a three-

dimensional appearance.  By synchronised scanning of the electron bundle across the 

sample with the image on the screen, an image is constructed and a linear magnification 

is realised according to the equation 

 

               
                 

                   
 Equation 2 

 

By changing the size of the raster on the sample the magnification can be altered and a 

value of up to 500 000 x can be reached.  In addition to secondary electrons, high 

energy backscattered electrons and X-rays can also be detected, yielding information 

about the specimen‟s chemical composition and orientation.  Finally, it has to be 

mentioned that samples for SEM analysis have to be stable under vacuum and 

conductive to avoid charging of the surface. 

 

Experimentally high resolution FEGSEM for this thesis was performed on a LEO 1530 

Gemini FEGSEM microscope operating at 3.00 kV, equipped with an inlens detector 

(Leeds) and XL ESEM FEG (FEI) operationg at 15 kV (Eindhoven).  Low resolution 

SEM images were obtained using a JEOL Neoscope benchtop SEM at a 5-30 kV 

operating potential.  Before the samples could be analysed with SEM, they were 

mounted on SEM stubs with adhesive carbon pads, followed by sputter-coating them 

with 10 nm Pt/Pd (80/20) using an Agar High Resolution Sputter Coater (Leeds) or with 

carbon using a Cressington 208 carbon coater (Eindhoven). 
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2.2.6 Synchrotron small and wide angle X-ray scattering techniques (SAXS/WAXS) 

2.2.6.1 Synchrotron radiation 

Synchrotron radiation is generally produced in a synchrotron facility where particles are 

accelerated to ultrarelativistic speeds.  Synchrotron radiation has many advantages over 

X-ray radiation provided by a common laboratory source of which the most important 

one is the high brilliance, which leads to a very low signal to noise ratio, allowing the 

collection of time-resolved data with acquisition times as low as 1 ms.  Additionally, 

since the X-ray beams produced at a synchrotron facility have a low divergence, it is 

possible to carry out SAXS measurements under diffracted angles as low as ~0.05°.  

Figure 2 represents the principle of the generation of synchrotron light. 

 

   

Figure 2: Schematic representation of the synchrotron light scource at the European 

synchrotron research facility (ESRF).  a: Electrons are emitted by an electron gun and 

accelerated in a linear accelerator (linac).  (b) They are transmitted to a circular 

accelerator (booster synchrotron) where they get accelerated. Finally, these high energy 

electrons are injected into a large storage ring (c) circulating in a vacuum environment 

for many hours (Adapted from ref. 184). 

 

After the electrons are generated in the electron gun at an energy of 90 keV, they are 

accelerated within a linear accelerator (linac) to 100 MeV.  Subsequently they are 

transmitted into the circular accelerator (booster synchrotron), were they are accelerated 

to a maximum speed close to the speed of light to obtain the desired energy of 6 GeV. 

These high energy electrons are then injected into a large storage ring (844 

circumference) where they circulate in a vacuum environment for many hours at a 

constant energy.  The path of the electrons is maintained by bending magnets and 

synchrotron light is produced when the electrons pass through these bending magnets.  

a b c 
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Additionally, in the straight sections, the electrons are oscillated by undulators and 

wigglers, which also produce synchrotron light.  The synchrotron light is used in many 

different applications such as EXAFS (extended X-ray absorption fine structure), XAS 

(X-ray absorption spectroscopy), and high energy diffraction and scattering. 

 

2.2.6.2 Small and wide angle X-ray scattering (SAXS and WAXS) 

Just like XRD, SAXS and WAXS are non-destructive elastic X-ray scattering 

techniques that allow the characterisation of solid phases.  WAXS stands for wide angle 

X-ray scattering and is based on the same theory and principles as XRD.  Yet, the angle 

resolution of the WAXS patterns is often much lower in comparison with conventional 

powder XRD and results are therefore in principle far less accurate and precise.  

Nevertheless, WAXS can still be very useful to obtain information on time resolved 

experiments and in theory, all the analysis on XRD patterns can also be performed on 

WAXS patterns such as determination of the unit cell parameters, size and strain, and 

quantification of the polymorph phases 
6, 185, 186

. 

 

SAXS stands for small angle X-ray scattering (in general angles of 0.1 - 5°) and in 

comparison with WAXS the distance from the sample to the detector is much longer.  

Small angle scattering is related to large scale features and gives information about 

particle size, particle volume and morphological features such as size and shape
187, 188

 

 

SAXS patterns are usually plotted as intensity profiles over the scattering vector, q(Å
-1

): 

 

   
  

 
      

  

 
 Equation 3 

 

Figure 3 gives an example of such a plot. 
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Figure 3: Example of a SAXS plot with Guinier and Porod regime indicated. 

 

Plotting the intensity over q brings about two areas of interest: the Guinier regime 

which mainly gives information about the radius of the scattering objects, and the Porod 

regime which provides additional information about the interface morphology in a two 

phase system.  In the Guinier regime, the relationship between the measured intensity 

and the q value can be described as
187-189

 

 

             
    

   

 
  Equation 4 

 

with I0 representing the extrapolated intensity of the signal at q = 0 and Rg being the 

radius of gyration.  Rg is the weighted average radius of all cross sections through a 

particle and can be obtained from plotting ln(I(q)) vs. q
2
 of the Guinier region and 

determining the slope of the graph.  Depending on the shape of the particles, 

morphological characteristics such as the object radius can be calculated from Rg
187

.  

This is particularly useful, especially if the heterogeneities are spherical and the sample 

is monodisperse. 

 

In addition, a very important parameter is obtained from the Porod regime which is 

called p or the Porod slope.  This gives information about the particle shape and 

morphology.  By analyzing the intensity of the SAXS data in a Log-Log plot, it was 

discovered that depending on the morphology, the graph had a certain slope, and it was 

found that for all systems the equation
190, 191

: 
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         Equation 5 

 

holds with p the Porod slope.  Once determined it is then possible to extract some more 

information from p about the fractal dimensions and surface morphologies of the 

scattering particles.  If p= 4 the interface is smooth, if 3<p<4 the particle has a fractal 

surface and if 1<p<3 the particle is a mass fractal
192

. 

 

2.2.7 Transmission electron microscopy (TEM) 

TEM is a second electron microscopy technique and allows materials to be analysed 

down to the sub-Å range
193

.  Samples a few nm thick (preferably not more than 100 nm) 

are put on a TEM grid which is loaded into the instrument with the help of a dedicated 

holder.  When the electron beam passes through the sample, it interacts with the sample 

and an image is formed on a viewing screen.  

 

A TEM usually comprises four main parts
194

, the gun, the lens system, the detectors and 

screens, and finally the sample holder (see Figure 4). 
 

  

 

Figure 4: Working principle of a transmission electron microscope.  The electrons 

emitted by the gun are focussed onto the sample by the condenser lenses.  The electrons 

hit the sample and along with inelastically and elastically scattered electrons, 

characteristic X-rays are created.  After transfer through the specimen a diffraction 



Chapter 2: General Experimental Methods and Techniques 

43 

pattern is created in the back focal plane by the objective lens and the magnified image 

of the illuminated area is produced on the image plane. 

 

The gun accelerates the electrons and sends them to two or more condenser lenses 

which focus the electrons from the source and transfer them to the specimen.  By 

adjusting the condenser lenses the user can control the beam diameter and intensity as it 

hits the specimen.  The specimen holder carries the sample and together with the 

objective lens it makes up the heart of the TEM.  At this point, below the objective lens, 

the objective and selected area electron diffraction (SAED) apertures can also be 

inserted.  After transfer through the sample and the objective lenses, the magnified 

images and diffraction patterns of the specimen are created, and a series of other 

projector lenses are responsible for the magnification of the image and for the selection 

of the image or diffraction plane.  Therefore the first projector lens is capable of 

switching between two modes: image mode and diffraction mode which respectively 

places the image plane and the back focal plane of the objective onto the viewing 

screen.  Finally the image is projected onto the viewing screen, often a fluorescent 

screen or computer display via a detector such as a charge-coupled device (CCD) 

camera, by a series of projector lenses. 

 

Since the resolution of a microscope depends on the wavelength of its source (for 

simplicity resolution ≈ λ/2)
194

, the use of electrons in an electron microscope instead of, 

for example light, allows us to image materials with a much higher spatial resolution 

than in a light microscope.  This is illustrated by Louis de Broglie‟s equation, which 

describes the relationship between the wavelength of electrons and their energy, E, as 

 

  
    

    
 Equation 6 

 

with E given in electron volts (eV) and λ in nm.  From this equation it can be worked 

out that for a microscope equipped with a 100 keV gun, the wavelength of the electrons 

will be about 0.004 nm or 4 pm, hence much smaller than the diameter of an atom.  

Obviously this is only a theoretical value and lenses within TEM are far from perfect, 

yet much development has been done and breakthroughs in spherical- and chromatic-

aberration corrections allow TEM image resolution below the 0.1 nm (1 Å) barrier
193

. 
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The formation of images in the TEM can happen in two different ways, bright field and 

dark field imaging; where respectively the electrons that are in the direct beam are used 

for bright field imaging and the electrons that are diffracted and not in the direct beam 

are used for dark field imaging.  Contrast in the images is obtained in 3 ways: amplitude 

contrast, phase contrast and diffraction contrast.  Amplitude contrast originates from 

variations in mass and thickness of the sample since the electrons have to interact with 

different amounts of material.  This contrast is related to the incoherent, elastically-

scattered electrons and is a strict function of the atomic number Z and thickness of the 

specimen (with elements exhibiting a higher atomic number leading to stronger 

scattering and thus darker regions in the image).  This kind of contrast is most important 

when looking at non-crystalline materials such as polymers.  Diffraction contrast is 

controlled by the crystal structure and orientation of the specimen.  In this case the 

contrast arises due the fact that electrons are Bragg diffracted so images will appear 

darker at positions where more Bragg diffraction happens.  Bragg diffraction occurs 

when the electron beam passes through a crystalline region, and if this crystal is 

oriented in the right way with respect to the beam then increased diffraction and thus 

contrast will result. 

Phase contrast results from the differences in the phase of the electron waves when they 

interact with and are scattered by the atomic columns in the specimen, and allows us to 

image the atomic structure of crystalline materials (and image for example defects).  To 

maximise the use of phase contrast it is important to prepare samples that are thin 

enough not to induce any changes in the amplitude of the transmitted beam. 

 

Since TEM yields a 2D representation of 3D objects, there is no real depth sensitivity 

and caution has to be exerted when analysing TEM data.  A way to get around this 

problem is provided by electron tomography where a sequence of images is taken at 

different tilt angles, which can be combined to create a 3D image
143

.  Another issue to 

be considered with TEM is beam damage, especially in the case of polymers and 

biomaterials such as the ones discussed in this thesis.  All organic species (and under 

high magnification even inorganic species) suffer from degradation due to the effects of 

the high-energy electrons, giving rise to ionisation, chemical reactions and 

rearrangements, and the introduction of circular voids.  Recent developments such as 

Cryo-TEM, low-noise charged-coupled device cameras and low-dose microscopy 
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techniques where the sample is only irradiated for a short period of time during the 

acquisition of the image, help in dealing with problems such as beam damage. 

 

2.2.7.1 Interactions within the transmission electron microscope. 

The accelerated electrons within the electron microscope are able to interact with the 

investigated matter in many ways.  Besides inelastically and elastically scattered 

electrons, characteristic X-rays are produced which can be used for Energy Dispersive 

X-ray spectroscopy (EDX).  The emitted X-rays are characteristic of each atom and by 

measurement of their energy using an energy-dispersive spectrometer it is possible to 

obtain information about the chemical composition of the sample.  The inelastically-

scattered electrons, on the other hand, can be used for Electron Energy-Loss 

Spectrometry (EELS).  In this case the amount of energy loss of the inelastically 

scattered electrons can be measured via an electron spectrometer and information about 

the composition of the sample can be obtained.  Also, when the electrons pass through 

crystalline matter they can be diffracted by the atoms of the material, giving information 

about the atomic arrangement of the material and crystalline structure. 

 

2.2.7.2 Electron diffraction (ED): 

Just as with X-rays, electron beams can interact with the atoms of a material and 

undergo diffraction, giving rise to a diffraction pattern according to Bragg‟s law 

 

          Equation 7 

 

with λ representing the wavelength of the electron beam, d the spacing between the 

lattice planes and 2θ being the angle of the diffracted wave.  Figure 5 shows a simple 

illustration of two parallel incident electron beams that are diffracted by the lattice 

planes of the crystal.  It can be seen that, for the two waves to remain in phase, the 

distance from point 1 to 2 to 3, which is equal to         , has to be equal to n times 

the wave length, with “n” being an integer number. 
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Figure 5:  Schematic representation of Bragg diffraction. Two parallel incident beams 

are diffracted and can only be in phase if nλ equals the path length difference (distance 

of 1 to 2 to 3 in red) which equals         . 

 

Although electrons get diffracted in a similar way as X-rays there are some important 

differences: 

1. Electrons have a much shorter wavelength than the X-rays commonly available 

in the lab (2 pm for 300 KeV microscope instead of an average of 0.1 nm for X-

rays).  

2. Since the electrons interact with both the nucleus and the electrons of the 

scattering atoms through Coulomb forces, they are scattered much more 

strongly.  This has the advantage that the diffracted electron beams have a much 

higher intensity and the exposure times are in the order of a few seconds or less 

which means that the ED patterns can be viewed directly on the viewing screen.  

3. Since electrons are charged particles they can be easily controlled with 

electromagnetic lenses.  

4. It is also possible to obtain ED patterns of small crystallites or of only a small 

area of a big crystal, depending on the SAED aperture size (usually a few 100 

nm). 

 

As mentioned before, by adjusting the electromagnetic lenses, the back focal plane or 

diffraction plane instead of the image plane can be focussed on the viewing screen.  In 

this way a diffraction pattern of the material can be obtained.  Depending on 

characteristics of the material the diffraction pattern can consist of an array of spots for 
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a perfect single crystal, rings of spots for a polycrystalline material or diffuse rings for 

an amorphous material.  Measuring the distance between the spots and rings can then 

give information about the crystal structure and orientation, and even polymorph of the 

investigated material.  This characteristic is one of the most important features of TEM 

since it can relate the crystallography of the diffraction pattern to the images we see and 

a very small area can be analysed.  Although generally very useful, analysis of electon 

diffraction (ED) patterns can be very complex due to a number of limiting factors such 

as specimen thickness and objective lens defocus. 

 

2.2.7.3 Low Dose and Cryo-TEM 

Cryo-TEM is a special type of TEM technique where the sample is embedded in a thin 

film of vitrified amorphous ice
195

.  The sample is kept in this state by cooling the 

sample holder with liquid nitrogen.  Advantages of this technique are that beam 

damage, which is usually associated with classical TEM, is much reduced, and objects 

of interest can be studied in the native environment or suspended medium, preserving 

their mutual temporal and spatial arrangements without having to deal with drying-out 

effects, which is usual the case with normal TEM.  Considering the fact that biominerals 

are usually surrounded by an organic matrix in an aqueous environment, this technique 

gained much interest over the past few years for the study of biominerals.  In this 

technique a 100 nm thin film of solution containing the particles of interest is formed on 

a TEM grid, which is subsequently plunge freezed in the appropriate coolant, often 

liquid ethane at -183° C, embedding the nanostructures in vitrified amorphous ice.  

Afterwards the sample is transferred from the preparation chamber to the Cryo-TEM 

sample holder and the microscope.  During transfer it is important that ice formation 

from atmospheric water is avoided.  Due to phase contrast, the need for staining is also 

overcome and the samples can be studied in their near-native hydrated state.  

Drawbacks of this technique are the complicated sample preparation method and 

difficulties in changing samples. 

 

TEM measurements for this thesis were performed using four different microscopes.  

The TEM measurements in Leeds were performed using a FEI Tecnai TF20 operating at 

200 kV and Philips CM200 operating at 200 kV.  TEM measurements in Eindhoven 

were performed by Dr. Fabio Nudelman using a FEI Tecnai 20 (Type Sphera) equipped 

with a LaB6 filament operating at 200 kV.  The Cryo-TEM measurements were done in 
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Eindhoven using a TU/e CryoTitan (FEI) Cryo-TEM equipped with a field emission 

gun of 300 kV and with a post-column Gatan energy filter to enhance the quality of the 

image.  The images were recorded using a 2k x 2k Gatan CCD camera. 

 

2.2.8 Thermogravimetric analysis (TGA) 

During thermogravimetric analysis the physical and chemical properties of the samples 

are measured as a function of the temperature and or time.  Usually the TGA is operated 

in such a way that the weight loss of the sample is recorded as a function of the 

temperature with time, by increasing the temperature with a constant heating rate.  

Based on this, information about the composition, degradation mechanisms and organic 

and inorganic content can be extracted.  Analysis in our lab was performed using a 

Modulated DSC-TGA Q200. 

 

2.2.9 X-Ray diffraction (XRD) 

X-ray diffraction (XRD) is a non-destructive elastic X-ray scattering technique used to 

analyse solid structures.  It is based on the principle of Bragg diffraction where X-rays 

are scattered by the atoms in a crystal (also see section 2.2.6.2).  Bragg diffraction is the 

outcome of the interference behaviour between X-ray waves being scattered from 

different crystal planes, giving rise to constructive and destructive interference.  The 

condition of constructive interference is given by Bragg's law: 

 

 λ       θ Equation 8 

 

with λ the wavelength of the electron beam, d the spacing between the lattice planes and 

θ the angle of the diffracted wave.  Depending on the crystal structure/characteristics 

and related d-spacings, constructive interference will occur at different angles giving 

rise to a characteristic XRD pattern as a fingerprint for the crystalline material. 

 

For this thesis, XRD was performed using a Bruker D8 Advanced diffractometer 

equipped with an X-ray source emitting Cu K1 radiation.  Samples were placed on a 

piece of corundum wafer, and XRD data were collected in an angular range between 5° 

and 60° in intervals of 0.02°, with a scan rate of 1° min
-1

. 
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This work investigates the effect of confinement on the nucleation and growth of 

calcium phosphate (CaP) crystals in the presence and absence of additives, with the aim 

of better understanding the biological processes which lead to the formation of bones 

and teeth.  It is known mineralisation of calcium phosphate in bone takes place in 

confinement environments
3
 and previous research has shown that polyaspartic acid 

(PAsp) can influence the mineralisation of CaP in a similar way to the acidic non-

collagenous proteins (NCPs) present in bone, leading to the effective infiltration of CaP 

into the gap regions in collagen
78, 196, 197

.  To investigate this further, calcium phosphate 

was precipitated in the presence and absence of polyaspartic acid (PAsp), within 

nanosized pores of track-etched membranes, to mimic the effect of confinement.  A 

high yield of particles was obtained and the majority of particles were polycrystalline 

hydroxyapatite rods with a typical length of 1 to 2 µm and aspect ratios of 5 or 20, 

according to the pore size used.  Some single crystal octacalcium phosphate rods were 

also formed, particularly in 50 nm pores.  Interestingly, the polycrystalline rods showed 

an orientation of the containing HAP crystals with their c-axis oriented along the length 

of the rod, similar to the structure of mineralised collagen in bone.  These results 

therefore demonstrated, this orientation might be the mere effect of confinement alone, 

and independent of the collagen structure as previously believed
196, 198, 199

.  The addition 

of PAsp didn‟t seem to have any major effect on the infiltration mechanism challenging 

the idea that a polymer-induced liquid-precursor (PILP) phase forms in the CaP/ PAsp 

system.  

 

3.1 Introduction to calcium phosphate  

Calcium phosphates (CaPs) are the most important biominerals in vertebrate systems 

and the main constituents of bones and teeth.  They have a great importance in many 

areas such as biology, industry, geology, medicine and last but not least dentistry.  

Accordingly they also have various interesting applications
137

 which is reflected in the 

many industries they are produced, in such forms as ceramics, medicines, dentifrices, 

nutrient supplements, bone implants, stabilizers for plastics and in agricultural 

fertilizers
137, 200

.  All CaP materials are white solids and most of them are sparingly 

soluble in water, sometimes even very insoluble, but all dissolve in acids
201

 (see Figure 

1).  They are the main inorganic constituents of biological hard tissues such as teeth and 

bone and are responsible for the stability, hardness and strength of these organs.  They 
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also can be found in other pathological minerals such as dental calculus, kidney stone 

formation and atherosclerosis
200

.  Although they are both composed of CaP, bones and 

teeth obviously have different uses, properties and biomineral features.  As a 

consequence, their tissues are created from different lineages: bones and dentin (the 

inner structure of the tooth) are respectively formed by osteoblast and dentinoblast cells, 

while dental enamel is formed by ameloblast cells, derived from epithelial tissue
12

.  In 

theory, calcium phosphate covers orthophosphates (PO4
3-

), pyrophosphates (P2O7
4-

) and 

poly- ((PO3)n
n-

) phosphates, but in general the term calcium phosphate is used to 

describe calcium orthophosphates since these are the main components of all calcified 

tissues and are the most abundant type of calcium phosphate
200

. 

 

3.1.1 General overview of calcium phosphates  

There are eleven known calcium phosphates, where the calcium to phosphate ratio 

ranges from 0.5 to 2.0: monocalcium phosphate monohydrate (MCPA), dicalcium 

phosphate dihydrate (DCPD) or brushite, dicalcium phosphate anhydrous (DCPA) or 

monetite, octacalcium phosphate (OCP), β-tricalcium phosphate (β-TCP) , two forms of 

α-tricalcium phosphate, amorphous calcium phosphate (ACP) hydroxyapatite (HAP), 

and finally tetracalcium phosphate (TTCP).  Substitution of the hydroxide ion with 

halide ions gives fluorapatite (FAP) or chlorapatite (ClAP).  In the presence of Mg-ions 

or carbonate respectively, whitlockite and carbonated apatite (CO3AP) can be formed
137

. 

 

Important parameters to distinguish between the calcium phosphate phases are the 

molar Ca/P ratio and the solubility of the crystals (see Table 1 and Figure 1).  The lower 

the Ca/P ratio, the more acidic and soluble the calcium phosphate phase will be
138

.  Out 

of Figure 1 it can be seen that at a pH of around 7, HAP is the least soluble and 

therefore the most stable phase, followed by β-TCP and OCP.  The pH dependency is 

due to the fact that orthophosphoric acid is both a weak and polybasic acid, resulting in 

the fact that the concentrations of HPO4
-
, H2PO4

-
, and PO4

-
 change dramatically with the 

pH of the solution
137

. 
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Table 1. Abbreviations, ratios and solubility products of calcium phosphates
137, 201

. 

Name and 

abbreviations 

Formula Crystallographic 

characteristics 

Ca/P -log Ksp at 

25 °C 

monocalcium 

phosphate 

monohydrate 

(MCPM) 

Ca(H2PO4)2.H2O Triclinic Pī 0.50 highly 

soluble 

dicalcium phosphate 

dihydrate (DCPD)  

CaHPO4.2H2O Monoclinic C2/c 1.00 6.59 

dicalcium phosphate 

anhydrous (DCPA) 

CaHPO4  Triclinic P1 1.00 6.90
 

octacalcium 

phosphate (OCP) 

Ca8H2(PO4)6. 5H2O Triclinic P1 1.33 96.6
 

α-tricalcium 

phosphate 

α- Ca3(PO4)2  Monoclinic P21/a 1.50 25.5
 

β-tricalcium 

phosphate (β-TCP) 

β- Ca3(PO4)2  Rhombohedral 

R3c 

1.50 28.9
 

Whitlockite Ca18(MgFe)2H2(PO4)14 Rhombohedral 

R3c 

1.29  

hydroxyapatite (HAP) Ca5(PO4)3OH Hexagonal P63/m 1.67 58.4
 

fluorapatite (FAP) Ca5(PO4)3F Hexagonal P63/m 1.67 60.5
 

chlorapatite (ClAP) Ca5(PO4)3Cl  Hexagonal P63/m 1.67  

carbonated apatite 

(CO3Ap) or dahllite 

Ca10(PO4)6CO3  Hexagonal P63/m   

tetracalcium 

phosphate (TTCP) 

Ca4(PO4)2O Monoclinic P21 2.00 38
 

amorphous calcium 

phosphate (ACP) 

 / 1.50 24.8
202, 203

  

 

 

http://en.wikipedia.org/wiki/Iron
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Figure 1: Solubility phase diagram of CaP as function of the pH.  Adapted from ref. 204 

 

Naturally occurring hydroxyapatite (HAP) is the main mineral component of vertebrate 

bones, mammalian teeth, fish scales and the mature teeth of some chiton species
12, 141

.  

It can be described by a unit cell consisting of a right, rhombic prism, with a length 

along each edge of the basal plane of the cell of a = 9.432 Å and c = 6.881 Å (space 

group P63/m) (see Figure 2)
205

. 

 

 

DCPA 
DCPD 

OCP 

α-TCP 

β-TCP 

 HAP 

TTCP 
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Figure 2 (a) Crystal structure of hydroxyapatite (reproduced from ref. 205) with (b) 

simplified presentation (reproduced from ref. 206). 

 

HAP is the least soluble calcium phosphate mineral and is preferentially formed under 

neutral or basic conditions
138

.  The atomic formula of HAP can be given by 

Ca5(PO4)3OH but is often written as Ca10(PO4)6OH2 since this formula gives the full 

hexagonal spatial symmetry of the structure. 

The term apatite in general refers to a mineral structure with the chemical formula 

A4B6(MO4)X2, where for calcium phosphate, A and B are mostly calcium, MO4 is a 

phosphate group and X is a hydroxide ion
141, 207, 208

.  Biological apatite, which is found 

in bones and teeth, however often contains significant carbonate substitutions, OH
-
 

deficiencies, and imperfections in the crystal lattice and is therefore often called 

carbonated apatite Ca10(PO4, CO3)6
138, 141

 or dahllite.  The apatite crystals are often 

needle or plate-like and are only a few hundreds of nm in size
200

. 

 

In addition to HAP, dicalcium phosphate dihydrate (DCPD) or brushite and octacalcium 

phosphate (OCP) are two other important mineral forms of calcium phosphate formed 

under ambient conditions.  They are often encountered under neutral or acidic 

conditions
209

.  Both minerals have been implicated as possible precursors to the 

formation of apatite, but no real evidence has been found for in vitro formation
138

. 

 

The unit cell of OCP is approximately equivalent to two unit cells of HAP and its 

atomic formula can be given by Ca8H2(PO4)6.5H2O
137

.  The crystals are typically small, 

platy, almost invariably twinned, and are triclinic with space group P   .  Due to their 

a b 
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similar structures, distinction between HAP and OCP can be difficult but can be 

achieved with 
31

P magic-angle spinning NMR, IR, Raman and X-ray diffraction (due to 

the characteristic (100) reflection of OCP)
141

.  

OCP was found as a precursor in mouse calvaria bone mineralisation
210

 and is believed 

to be a general precursor in bone formation
138, 208

.  However this was never truly proven 

and much controversy still exists around these results
211

.  There is little doubt, however, 

that OCP occurs as an initial phase in pathological deposits such as kidney stones and 

calculus
138, 208

 and some strong evidence has been presented for its occurrence as a 

precursor in teeth enamel
208, 212-215

.  Intriguingly, many biological and some 

synthetically produced apatites often contain a central OCP inclusion (also known as a 

“central dark line”) when studied by TEM.  This feature is often used as evidence for 

the hypothesis that OCP acts as a precursor phase to biological apatites
214, 216

.  Its 

occurrence was later explained by an inherent lattice mismatch between OCP and HAP 

during the transformation of OCP to HAP
214, 216, 217

. 

 

DCPD, on the other hand, has been found to occur in small quantities in urinary and 

dental stones
147, 218, 219

, and has been proposed as an intermediate in both bone 

mineralisation and enamel dissolution
138, 220

.  DCPD (CaHPO4.2H2O) consists of chains 

of CaPO4 arranged parallel to each other with the lattice water molecules interlayered 

between the calcium phosphate chains
208, 209

.  DCPD is rarely seen in vivo although it is 

suggested this might be due to difficulties in its detection, as a consequence of its weak 

X-ray diffraction pattern
138, 209

. 

 

ACP or amorphous calcium phosphate is the amorphous form of calcium phosphate 

lacking the long-range, periodic atomic scale order of the crystalline materials.  It is 

often found as a precursor for the fabrication of the other crystalline calcium 

phosphates
205, 221, 222

.  From early on, ACP was put forward as a precursor for HAP in 

bone formation
45

 and has been widely discussed since then
12, 208, 210, 211, 223

, but was 

recently proven to be the case for fin bones of zebrafish
224

.  Furthermore, it was also 

proven that ACP played a crucial role in the precipitation of HAP during enamel 

formation (for example in chiton teeth
23

 and murine tooth enamel
215

).  Amorphous 

calcium phosphate was first discovered in 1953 by Watson et al.
208, 225, 226

 but was only 

fully described by Aaron S. Posner in 1965
221

.  It is the first phase to appear on mixing 
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of solutions at concentrations sufficiently high to produce an immediate precipitation
208

 

and exists in the form of spherical grains of diameter 300 – 1000 Å.  X-ray radial 

distribution studies concluded that a definite local atomic order is present and 

microcrystallinities or clusters of about 9.5 Å can be found
227

.  It is believed that ACP 

forms by the aggregation these Ca9(PO4)6 clusters, the so-called Posner‟s clusters 

(Figure 3)
45, 46

 forming a hydrated calcium phosphate phase (Ca3(PO4)2 xH2O) with a 

Ca/P ratio of around 1.50
45, 138, 221

, although the chemical composition strongly depends 

on the solution pH value and the concentrations of the calcium and phosphate ions
138, 

200
. 

 

 

 

Figure 3: Model of amorphous calcium phosphate with the structure of the Posner 

cluster highlighted
228, 229

.  Image reproduced from ref. 228, 229. 

 

The existence of the Posner clusters was initially answered with much sceptism
230

, but 

recent reports demonstrated the presence of nanometre sized building blocks
46, 47

 similar 

to the Posner clusters, during the precipitation of amorphous calcium phosphate, 

corresponding with the non-classical precipitation method of prenucleation clusters
46, 67

.  

Later it was discovered these clusters were in fact calcium triphosphate ion-association 

complexes, which were able to aggregate into branched three-dimensional (3D) 

polymeric structures.  Through simultaneous binding of calcium, the polymeric solution 

structures form ≈ 1.2 nm post-nucleation clusters of amorphous calcium phosphate 

which aggregate and precipitate as spherical particles.  Finally these clusters transform 
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into HAP or OCP which both also contain the calcium triphosphate complex as their 

structural unit
47

.  During this transformation, the morphology changes from amorphous 

polymeric strands to amorphous nodules and aggregated spheres, followed by ribbons 

and plates of OCP which eventually transform into plate-like HAP. 

 

In general, ACP is a highly unstable phase and transforms into HAP directly or through 

precursor phases in the presence of water.  Its lifetime depends on the presence of 

additive molecules and ions, pH, ionic strength and temperature
138, 231

.  As rule of 

thumb, ACP converts directly to HAP above pH 9, while at lower pHs, OCP is initially 

formed
137, 208

. 

 

3.1.2 Structure of bone  

The structure of bone has been described in a number of reviews
3, 96, 232

 and can have 

quite variable shapes and constituents depending on its function
3
.  Early studies showed 

that the minerals in bone consists out of apatite
233

 associated with organic collagen 

fibrils
234

.  In general, the formation of bone happens in 2 main stages
96, 105, 141

, the 

primary and secondary osteogenesis.  During the first osteogenesis, the epiphyseal 

cartilage (stiff yet flexible connective tissue present at each end of the bone) serves as 

the locus for primary bone formation, and consists of a combination of solid substance 

made out of carbonated hydroxyapatite (dahllite) and an organic matrix containing 

loose, small fibrillar bundles of collagen (10-20 nm in diameter
96, 235

).  Collagen itself 

consists of an assembly of approximately 300 nm long and 1.5 nm thick triple-helical 

collagen molecules, called tropocollagen, and is deposited by the skeletal or osteoblasts 

cells, after which it assembles into fibrils.  Successive molecules are arranged by 

staggering of parallel molecules with a periodicity of D= 67 nm, generating a 

characteristic pattern of gap zones of 35-40 nm length and overlap zones of 32-27 nm 

length within the fibril (Figure 4)
3, 141

.  
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Figure 4: Schematic representation of the structure of collagen.  Adapted from ref. 197.  

300 nm long and 1.5 nm thick triple-helical collagen molecules are organised into fibrils 

by staggering of the molecules in a parallel way.  Each molecule is shifted 40 nm in the 

axial direction with respect to its neighbour, giving rise to the 67 nm periodic pattern or 

D-period (D), consisting of gap (G) zones (35-40 nm length) and overlap (O) zones (32-

27 nm length). 

 

The mineralisation is relatively fast and unorganised, and leads to the formation of a 

primary “woven” bone microstructure which consists of extrafibrillar calcium 

phosphate crystals together with a random organisation of collagen fibrils
78, 96

. 

This structure is remodelled during secondary bone formation forming a more highly 

organised lamellar structure
236

.  Therefore, collagen fibrils are secreted again by the 

osteoblasts cells, but are larger than those in primary bone with a mean diameter of 78 

nm
3, 96

. 

CaP crystals form within the collagen fibrils during secondary bone formation, and the 

organisation of these crystals is directed by the collagen fibrils
196

.  Collagen fibrils are 

therefore filled and coated by small mainly flat plates of HAP crystals which are mostly 

arranged parallel to each other but also parallel to the long axis of the collagen fibrils
153

 

such that the [001] axes of the HAP crystals are coincident with the long axis of the 

collagen fibrils.  This orientation is believed to be achieved by an epitaxial match 

between the HAP nanocrystals and the amino acid side groups on the collagen fibrils
196, 

198, 199
.  The HAP crystals have a thickness of around 1.5-4.5 nm and are understood to 

nucleate mainly within the less dense 40 nm long and 2 nm thick gap zone of the 

collagen
3, 197, 237, 238

.  In this way they occur at regular intervals along the fibril, with an 

approximate repeat distance of 67 nm, corresponding with the distance by which 

adjacent collagen molecules are staggered as explained before (Figure 5)
3
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Figure 5: Schematic representation of the mineralisation of collagen by Landis et al.
237

, 

based on ex situ observations using high-voltage TEM.  On the left side the structure of 

collagen is illustrated again.  The spaces between the assembled collagen units is 0.24 

nm
238

.  On the right the mineralization of the collagen fibrils is illustrated.  The collagen 

fibrils are filled and coated by small flat plates of HAP which are mostly arranged 

parallel to each other and parallel to the long axis of the fibrils.  Adapted from ref. 96, 

153. 

 

This leads to extremely small intrafibrillar crystals within the collagen, which would not 

be thermodynamically stable if they were not embedded within the organic matrix
96, 200

.  

As well as intrafibrillar crystals, interfibrillar crystals may also form, between the 

collagen fibrils and on the surface. In this way a biocomposite is constructed from 

carbonated hydroxyapatite (≈50-60 wt%) and an organic matrix which principally 

contains lamellar organised collagen (≈30-40 wt%)
200

.   

In addition to collagen, non-collagenous proteins (NCPs) can also be found close to the 

mineralisation front, some of which are highly charged from an abundance of 

carboxylate groups.  Although these proteins are low in concentration and comprise 

only 10-15% of the organic matrix, it is believed they still have an important role during 
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the infiltration and the mineralisation process of the collagen fibrils
12, 78, 141

.  Besides 

proteins, there is also a high occurrence of extracellular and intracellular vesicles 

originating from the osteoblasts cells
239

, ensuring that the calcium phosphate ions are 

brought to the mineralization front in the extracellular matrix
240-242

. 

A complete overview of the structure of bone is out of the scope of this thesis but a 

clear description is given by Weiner et al.
232

 where they identified seven levels of 

hierarchy (Figure 6).  In the first level, nanoscopic platelets of hydroxyapatite (HAP) 

(first level) are aligned (second level) and oriented within the self-assembled collagen 

fibrils (third level) as described before.  In the next steps the collagen fibrils are then 

layered in a parallel arrangement within lamellae (fourth level) that are concentrically 

arranged around blood vessels to form osteons (fifth level).  Finally, the osteons are 

either packed densely into compact bone, or form into a trabicular network of 

microporous bone (sixth level) (spongy or cancellous bone) from which the bone is 

made (seventh level). 

The research described in this work primary focuses on the second level. 

 

 

Figure 6: The 7 hierarchical levels of organization of the bone family of materials.  

Image reproduced from ref. 232. 
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3.1.3 Structure of teeth. 

Teeth are built up from dentin (inside), enamel (outside), pulp and cementum
141, 200

 and 

are the second major calcification present in mammals
105

.  Dental enamel is the hardest 

and most mineralized tissue in the human body and makes up the uppermost 1-2 mm of 

the tooth crown
215

.  On the mesoscale level, enamel consists of three main structural 

components: the rod, the interrod, and the aprismatic enamel
141, 243

.  The main 

components are the enamel rods which consist of a dense array of needle-shaped 

carbonated apatite crystals (dahllite), 50 nm across and tens of microns long, with their 

crystalline c-axes aligned along the rods
141, 200, 215, 243

.  These minerals form a 

complicated three-dimensional micro-fabric that provides the bulk of enamel.  The 

second structural component is the interrod which surrounds and packs between the 

rods.  They differ from the rods by the orientation of the HAP crystals which in this 

case are much less ordered.  The third structure is aprismatic enamel and refers to the 

structures containing HAP crystals that show no mesoscale or macroscale alignment. 

These have been considered as primitive areas of the tooth, serving as a toughening 

mechanism due to its flexibility
141

. 

In contrast to mature enamel which consists of more than 95 wt% of carbonated apatite, 

the forming early secretor enamel is composed of approximately 30 wt% mineral, 20 

wt% organic matrix and 50 wt% water
215, 244

.  This matrix, which is thought to regulate 

the shape and the organisation of mineral particles, contains a number of proteins, with 

amelogenin the major enamel protein
245

.  The assembly of amelogin has been shown to 

be crucial for the development of enamel, providing a template for mineral formation 

and is considered to be analogous to collagen in bone
141, 245

.  The amelogin is 

considered to self-assemble into spherical subunits which adsorb to and elongate the 

hydroxyapatite crystals
12, 141, 245

.  During maturation almost all of the proteins are 

proteolytically degraded and removed.  The crystals subsequently thicken and fill 85% 

of the enamel volume
12, 215, 245

.  Recent research has shown that the newly formed 

enamel mineral is amorphous calcium phosphate (ACP) which eventually transforms 

into apatite crystals
215

. 

Dentin lies below enamel, forming the bulk of the tooth.  The structure of dentin is a 

little bit more complex, and for this work it is only important to know that, as with 
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bone, collagen fibrils direct the mineral growth such that platelets of HAP grow in the 

[001] direction along the long-axis of the fibril
12, 141

. 

 

3.1.4 Infiltration of collagen with HAP in bone 

Although bone has been a massively studied material
3, 12, 96

, it is still unclear how the 

final HAP crystallites form within the collagen fibrils
96, 196

 during secondary bone 

formation
3, 55

, where much controversy still exists about the role of the collagen matrix 

and the non-collageneous proteins (NCPs).  It is generally believed calcium phosphate 

first nucleates within intracellular or matrix vesicles, which are formed and released 

from the outer membranes of osteoblasts and other related cells
141, 239, 246

, allowing a 

high enough supersaturation in a local environment to trigger nucleation and 

mineralisation.  These matrix vesicles have been isolated as the initial site of 

calcification in cartilage bone, dentin and turkey tendon
246

.  The HAP, or possibly other 

calcium phosphate forms, then breaks through the vesicle as it grows, and is in this way 

exposed to the extracellular fluid.  This would be an active process
200

 and according to 

this theory, the initial mineral formation would be under cellular control (phase 1), 

whereas mineral propagation would be mediated in some way, by collagen or other 

proteins in the extracellular matrix (phase 2)
200, 246

.  The reoccurring proof of ACP as a 

precursor for HAP in bone formation
45, 96, 208, 210, 223

 brought up the idea that ACP is 

formed first in the matrix vesicles and is then transported to the collagen matrix. 

Another possibility is the idea of a passive process which arises from the observation 

that blood serum is supersaturated with respect to calcium phosphate.  It is suggested 

mineralisation could therefore occur spontaneously at a suitable nucleus, in this case a 

collagen fibril
200

. 

Either way it is still not very clear how exactly the final HAP crystallites form within 

the nanoscopic spaces of the collagen fibrils in bone.  Research has shown that the 

acidic noncollagenous proteins are essential for effective intrafibrillar mineralisation
247, 

248
.  This may be because of their binding to the gap region, which could cause 

nucleation to occur within the fibrils
249

.  Another interesting model is the “size-

exclusion model” where it is suggested that the large noncollagenous proteins actually 

inhibit the mineralisation outside the fibrils.  Since their size is too big, the 

noncollagenous proteins cannot penetrate into the gap regions and consequently 

nucleation will only occur within the gap region
250

. 
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Finally, a promising hypothesis is one from Oslzta et al.
96

, who apply capillary forces 

and a fluidic mineral precursor to explain the infiltration within collagen fibrils (see 

Figure 7).  They used simple anionic polypeptides such as polyaspartic acid (PAsp) to 

mimic the polyanionic character of the NCPs, proposing that these act as a process-

directing agent.  The polymer enables the formation of a polymer-induced liquid-

precursor (PILP) phase which establishes the generation of an amorphous liquid-phase 

mineral precursor to HAP.  Because of the fluidic character of the amorphous precursor 

phase, it is drawn into the 40 nm nanoscopic gaps in the collagen fibrils by capillary 

action, (see Figure 7a) thereby facilitating the intrafibrillar mineralization of type-I 

collagen (see Figure 7b).  Subsequently, the precursor crystallizes according to 

Ostwald‟s “step rule” into the more thermodynamically stable phase upon loss of 

hydration waters, which enables the nanoscopic hydroxyapatite (HAP) crystals to be 

embedded within the collagen fibrils (see Figure 7c).  Electron diffraction patterns 

showed that the HAP crystallites were preferentially aligned with the [001] along the 

axis of the fiber, identical to natural bone.  Importantly, they stated that epitaxial-type 

interactions with NCPs were not needed to stimulate and orientate crystal nucleation.  

Instead, they proposed that the primary template for crystal organisation is collagen, 

emphasising that this is only possible with crystals formed from an infiltrated 

amorphous precursor.   

The same was discovered by Beniash et al
247

 with the important difference that they 

stated that “the initial mineralization occurs in PAsp/collagen fibril complex and not in 

the bulk solution as it is proposed by Oslzta et al.”
247

.  Secondly, Beniash et al. 

suggested that the organisation and morphology of the particles is fixed in the 

amorphous phase, while Oslzta et al claimed that the organisation and morphology of 

the mineral particles was regulated during the mineral phase transition and was 

determined primarily by the physical constrains of the collagen fibril, where the 

amorphous phase was homogeneously distributed in and around the fibrils
96, 247

. 
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Figure 7: Schematic Figure of a proposed mechanism of intrafibrillar mineralisation of 

collagen.  Adapted from ref. 96. 

 

In recent research it was shown fetuin was also able to mimic the effect of the NCP, 

allowing the infiltration of collagen with CaP
251, 252

.  In addition to the effect of fetuin, it 

was also demonstrated that an ACP precursor phase was formed in the presence of 

PAsp which infiltrated the collagen fibrils prior to crystallisation to HAP
196

, consistent 

with previous claims
45, 96, 223

.  Interestingly Nudelman et al. showed that the infiltration 

of the mineral into the fibril doesn‟t depend on the availability of space but occurs due 

to a specific interaction between the amorphous mineral phase and the collagen at this 

location
196

.  Since the ACP-PAsp complex forms a negatively charged complex, the 

most favourable entry sites in the collagen for the ACP-PAsp complex should be the 

ones with the highest positive charge and therefore the lowest electrostatic potential 

energy to interact with the complex, which was indeed observed
196

.  Further analysis 

showed that once crystallised, the nanocrystals were distributed evenly between the gap 

and overlap regions.  It was also shown that once the ACP enters the fibril, the collagen 

controls the nucleation directly, and the charged amino acids appeared to act as 

nucleation sites for apatite formation
196

.  A recent piece of work demonstrated though a 

clear role for the collagen matrix in directing the morphology and orientation of the 

HAP crystals without the presence of additives.  It was shown that collagen molecules 

CaP 
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also got infiltrated with HAP crystals by simply using reaction solutions containing very 

high concentrations of calcium and phosphate ions
253

 in the absence of any type of 

additive mimicking the working of NCPs.  The mechanism of this remained unclear 

though. 

 

3.1.5 Effect of polyaspartic acid on the crystallisation of CaP: 

Considering the content in this chapter, the effect of polyaspartic acid (PAsp) on the 

crystallisation of calcium phosphate will be discussed.  Previous research showed that 

PAsp had the ability to massively slow down the kinetics of the amorphous to 

crystalline transformation
147, 196, 251

.  By addition of the PAsp, it was observed that a 

stable colloidal species was formed, where the PAsp chains are cross-linked by the ACP 

clusters, keeping the calcium phosphate as stable amorphous intermediates
147

.  After 

crystallisation a “hollow snowball” structure was formed, composed of single crystal 

HAP platelets.  Additionally, it was also observed that the amorphous particles grow 

larger in the presence of PAsp
251

.  PAsp has also been suggested to stabilise the 

formation of OCP by site-specific adsorption onto the hydrated layer of the (100) and 

(010) faces of OCP
254, 255

 whereby the stabilisation takes place by preventing the OCP 

crystals of splitting along their c-axis and transforming into HAP
254

.  Interestingly, 

PAsp was able to sufficiently inhibit the OCP growth by 20% by covering only 1% of 

the (100) face
255

.  This showed indications for a dynamic adsorption/desorption 

equilibrium mechanism as was found for PAsp adsorption onto the (010) face of 

DCPD
256

.  PAsp has also been shown to influence the morphology of OCP
145, 146

, with 

formation of spheres and reducing its dimensions, and of DCPD
257

, where crystals were 

obtained containing a leaf-like appearance with fragmented stripes.  Research on the 

influence of PAsp on HAP formation showed that HAP was inhibited by PAsp
258

 and 

smaller crystal sizes were formed
247

.  The crystals had a more spindle or needle-like 

shape and often deposited as clusters of tiny crystals with a plate-like morphology
142, 144

.  

The crystals got smaller with increasing amounts of PAsp used
247

. 

 

3.1.6: Previous studies of the effect of confinement on calcium phosphate 

crystallisation. 

As illustrated above, one of the key features of the deposition of calcium phosphate in 

bones and teeth during biomineralisation, is that the calcium phosphate is generated 
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within confined volumes.  This is particularly true for bone and dentin, where 2 to 10 

nm thick CaP platelets form within the nanoscal gap regions of collagen
153, 237

. 

Previous research has shown before that with reduction in volume, surfaces become 

increasingly important and can dominate the crystallisation process
259

 which can have a 

significant effect on the nucleation and growth phases of the mineral
29, 152, 160

.  

Consequently, in the past few years, many interesting systems have been developed to 

investigate the effect of microenvironment on CaP precipitation.  Very interesting 

systems are reverse micelles and microemulsions which have been widely used to 

manipulate the precipitation of CaP particles, leading to the control over their size, 

shape and phase
260-262

.  For example, by using reverse micelles of calcium bis(2-

ethylhexyl) phosphate, it was possible to form calcium phosphate nanofilaments, 2 nm 

in width and 300 µm > long, which are characteristic of aggregation-based growth
263

.  

Double-hydrophilic block copolymer aggregates have been used as dispersed templates 

for the controlled precipitation of calcium phosphate, where outgrowth of nanofilaments 

resulted in an arrangement of unusual neuron-like morphologies
264

, while bicontinuous 

microemulsions have been used to template the formation of skeletal CaP 

frameworks
265

.  Using larger reaction volumes, CaP has been precipitated within giant 

block copolymer vesicles
266

 and anionic liposomes
267, 268

, where the latter work 

suggested that the liposome membrane may support nucleation.  Calcium phosphate has 

also been precipitated within uniaxially deformed gelatin films, allowing to investigate 

the effects of confinement on the crystallisation of calcium phosphate
14

.  This resulted 

in alignment of the c-axes of the CaP crystals with respect to the axis of deformation
269

 

while cross-linked gelatine nanoparticles supported the formation of HAP particles via a 

transformation of sequential ACP and octacalcium phosphate (OCP) phases
270

.  Finally 

growing CaP in agar gels allowed formation of OCP spherulites consisting out of an 

assembly of plate-like crystallites or whiskers
271

. 

 

3.2 Aims of the project 

All these systems provided examples of CaP products formed in small volumes and 

confined areas which vary from those which would be formed in bulk solution under 

similar reaction conditions.  Yet, due to their compositional complexity and often 

dynamic character, it is often difficult to clarify the effects of individual experimental 

variables, and in particular importance for this chapter, to isolate the effects of 
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confinement.  In order to gain further understanding of the influence of confined 

reaction volumes on CaP precipitation, the experiments were carried out here using a 

model system where crystallization was performed within the pores of track-etched 

(TE) and porous alumina membranes (PAM).  TE membranes are commercially-

available filtration membranes (Millipore, Nucleopore) and are made out of 

polycarbonate material or polyester with an approximate thickness of around 10 m.  

By bombarding this nonporous sheet with nuclear fission fragments, damage tracks are 

created in the material which are subsequently etched into cylindrical pores.  This way a 

porous material is fabricated, containing randomly distributed nanochannels of uniform 

diameter, ranging from 0.015 µm to 12 µm with pore densities of 10
9
 pores cm

-2 272
.  

Porous alumina membranes are also commercially available, with well-defined pore 

sizes and thickness of 60 m, but it is often desirable to tune the pore sizes and oxide 

thickness.  Therefore they can be fabricated in the lab by a simple anodisation process 

giving pore sizes of as low as 15 nm
273, 274

.  Both therefore provide controlled 

environments, enabling study of the effects of a constrained volume, as defined here by 

the diameter and shape of the pore, on the mechanism and product of CaP precipitation. 

 

3.3 Alumina membranes. 

Porous alumina membranes (PAM), or also called anodic aluminium oxide (AAO) 

membranes, are often used for templating, and are applied widely in many applications 

such as the production of metallic nanowires
275

, semiconductor nanowires
262

, metallic 

nanotubes
276

 and carbon nanotubes
272, 277, 278

.  The form of these membranes can be 

described as a honeycomb structure of fine channels, characterised by a close-packed 

array of columnar hexagonal cells, each of which contains a circular pore in the centre.  

As compared with track-etched (TE) membranes, porous alumina membranes contain 

pores with little or no tilt with respect to the surface normal, resulting in an isolated, 

non-connecting pore structure
279, 280

.  Pores with a uniform diameter can be achieved 

and porous alumina membranes also exhibit higher pore densities of 10
11

 pores cm
-2

 

instead of 10
9 

pores cm
-2 

for TE membranes, and pore sizes down to 15 nm.  Over the 

past four decades, intensive research has been done on the lab synthesis of porous 

alumina membranes using electrochemistry.  Membranes with pore diameters, oxide 

thickness and pore densities ranging respectively from 10 nm to 400 nm, 0.3 µm to 200 

µm and 10
9
-10

11 
pores cm

-2
 can be easily generated by changing the processing 
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conditions such as temperature, operating voltage and electrolyte
262, 281, 282

.  In addition 

to these main advantages, other useful properties include the high resistivity of 10
18

 Ω 

cm
-1

, the optical transparency, the wide energy band and the chemical stability
279, 281

. 

 

3.3.1 Synthesis of alumina membranes 

Alumina membranes are fabricated in acid solutions by anodisation of pure aluminium 

under a constant electric field.  Various electrolytes such as sulphuric acid, oxalic acid 

and phosphoric acid can be used, leading to different pore diameters and inter-pore 

distances as shown in Table 2.  In addition to the type of electrolyte, the applied voltage 

also has a great influence on the pore diameter and inter-pore distances.  In the work 

described in the following section, oxalic acid was used as an electrolyte and the applied 

voltage was 40V.  

 

Table 2: Different electrolytes with their corresponding pore diameters, inter-pore 

distances and applied voltages
262, 273, 274, 278, 279, 283, 284

. 

 

Electrolyte Pore diameter (nm) Inter-pore 

distance (nm) 

Voltage (V) 

Sulphuric acid (H2SO4) 15-35 60 20-27 

Oxalic acid (H2C2O4) 20-100 95 30-80 

Phosphoric acid (H3PO4) 180-400 500 100-195 

 

The chemical reaction involved in the production of the alumina membranes is given 

below (see Figure 8). 

 

Al → Al
3+

 + 3 e− (reaction 1 at metal/oxide interface) 

  

 
 H2O → 3H

+
 + 

  

 
 O2- 

 (reaction 2 at oxide/electrolyte interface) 

6H
+
 + 6e

-
 → 3H2 (reaction 3: cathode reaction) 

2Al + 3H2O → Al2O3 + 3 H2 (reaction 4: general reaction) 
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The aluminium is connected to the positive terminal of the power supply and electrons 

are withdrawn from the metal.  In this way Al
3+

 ions are formed at the metal/oxide 

interface (reaction 1) which migrate into the oxide layer.  The O
2-

 oxide-ions formed 

during the water splitting reaction at the oxide/electrolyte interface (reaction 2) migrate 

from the oxide/solution interface towards the metal/oxide interface to form Al2O3
273, 281

.  

At the cathode, hydrogen gas is formed which escapes from the solution (see Figure 

8b). 

Alumina membranes are usually produced according to a technique developed by 

Masuda and Fukada
285, 286

 where the first anodisation step is followed by wet chemical 

etching to remove the first porous oxide film (see Figure 9).  This etching step is 

necessary since the pores produced in the first anodisation step are not parallel to each 

other.  The porous film contains a barrier layer at the bottom, consisting of periodically 

arranged cavities and shoulders.  After removal of the porous film, the periodic concave 

patterns that remain act as a self-assembled template for a second anodisation process, 

resulting in an ordered nanopore array.  This second anodisation takes place under the 

same conditions used for the first anodisation.  The longer this second anodisation step, 

the thicker are the formed membranes. 

 

 

 

 
Figure 8: (a) Schematic representation of the reactions taking place at the aluminium 

surface during anodisation of aluminium.  (b) Overview of the electrochemical cell. 

Alumina 

Aluminium 

a 

Reaction 1 

Reaction 3 

Reaction 1 

and 2 

b 



Chapter 3: Mimicking Bone Formation by Confinement and Addition of PAsp 

70 

 

Figure 9: Schematic representation of the anodic anodisation for the fabrication of 

porous alumina membranes. 1: Formation of the porous alumina layer after first anodic 

oxidation process. 2: Etching of porous alumina layer. 3: Second anodic oxidation 

process, producing porous alumina membranes 

 

According to Masuda and Fukada, pore regularity is improved upon using longer 

anodisation times under appropriate conditions
286

.  During anodisation, the surface of 

the aluminium heats up, so a cooling system has to be used to keep the temperature 

constant.  Local heating also brings about inhomogeneous electric field distributions at 

the bottom of the pores, leading to electrical breakdown, local thickening of the barrier 

layer and pore branching of the oxide due to weak acidity
279, 281

.  Since temperature also 

strongly affects the self-ordered pore growth, the temperature for the following 

experiments is held at 5° C by the use of a cooling system. 

 

3.4 Experimental 

Calcium phosphate (CaP) was precipitated within the confines of the pores of track-

etched and anodised aluminium oxide membranes in the presence and absence of 

poly(aspartic acid) (PAsp), and the influence of the pore diameter and the reaction 

conditions on the resulting particles was investigated. 
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3.4.1 Preparation of porous alumina membranes 

High purity aluminium foil (99.99%, 0.5 mm and 0.01 mm thick) was used as a starting 

material.  Before anodisation, the aluminium foil was annealed at 500 °C overnight.  

Subsequently, the foil was degreased in acetone for 5 min, etched in 5 wt % NaOH for 2 

min and electro-polished in an 5:1 v/v solution of EtOH/HClO4 at 6°C for 1 min.  PAM 

were then prepared according to the two-step anodisation process.  In a first step the 

prepared aluminium foils were anodised in a 3 mM oxalic acid solution for 10 h, under 

a constant voltage of 40 V.  A carbon plate was used as the cathode.  Temperature was 

kept at 5 °C at all times by the use of a cooler system where water circulated around the 

oxalic acid solution (Figure 10).  The anodised aluminium was subsequently immersed 

in a mixture of 5 w% H3PO4 and 1.8 w% H2CrO4 at 60°C for 12 h, to remove the 

sacrificial alumina layer.  To avoid evaporation due to the high temperature, the 

chromic acid solution was placed in a hermetically-sealed bomb calorimeter.  The 

anodisation was then repeated again under the same conditions as the first step, 

resulting in porous alumina layers. 

 

Figure 10: Experimental set-up of the electrochemical cell. 

 

Eventually, the alumina layer was isolated from the support.  This was done with two 

different techniques.  In the first technique, the membranes were immersed in 5 wt% 

H3PO4 solution for half an hour, which allowed pore widening and removal of the 

remaining Al2O3 barrier layer.  A second technique which proved more efficient was the 

voltage pulse technique
287, 288

 whereby the sample was immersed in a solution of 

ethanol/perchloric acid (1:1), which was cooled to 5 °C and a voltage of 65 V was 
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applied for 2-3 s making the alumina layer separate from the support.  After removal of 

the barrier layer the porous alumina membranes were washed with water 5 times and 

kept in water for storage.  

 

3.4.2 Precipitation of calcium phosphate in membrane pores. 

Following the experiments by Olszta et al
96

, a Tris-Saline buffer was prepared by 

dissolving 8.77g of NaCl, 6.61g of Tris-HCl and 0.96g of Tris-base in 1L UltraPure 

H2O.  The pH of this solution was measured as 7.59 at 25°C.  This buffer stock solution 

was then used to prepare separate solutions of 9 mM CaCl2.2H2O and 4.2 mM 

K2HPO4.3H2O, where the pH of both solutions was adjusted to 7.4 at 37°C using 

NaOH.  In addition to the buffer stock solution, stock solutions of 9mM CaCl2.2H2O  

and 4.2mM K2HPO4.3H2O in UltraPure DI water were also prepared (pH respectively 

5.62 and 8.42).  Isopore GTTP polycarbonate track-etched membranes with 50 nm and 

200 nm pore sizes (Millipore) and PAM (commercially available anodic 25 from 

Whatman with pore sizes of 200-300 nm and home-made with pore size of 30 nm) were 

used for the study. The membranes were transferred into clean vials containing 

CaCl2.2H2O solution (in Tris-buffer solution or just DI UltraPure water).  Polyaspartic 

acid sodium salt solution (Poly-(alpha,beta)-DL-aspartic acid sodium salt Mw 2000 - 

11000 Da) was added to half of the vials with a concentration range of 10 g/ml to 100 

g/ml.  The solutions were then degassed under vacuum and left overnight to allow 

saturation of the surface and penetration of the calcium ions into the membrane pores. 

 

3.4.3 Mineralisation of calcium phosphate. 

To synthesise the CaP crystals inside the membrane pores two different techniques were 

used.  The immersion method and the double diffusion (U-tube) method (see Figure 11).  

In the immersion method (Figure 11a), a membrane which had been previously soaked 

in the buffered CaCl2.2H2O solution was placed in a vial containing 5 ml of 9 mM 

CaCl2.2H2O  solution.  To half of the experiments, polyaspartic acid (PAsp) was added 

to the solution to give final concentrations between 10 and 100 µg/ml of PAsp.  In the 

final step, 5 ml of 4.2 mM K2HPO4 was added to the solution to give final 

concentrations of 4.5 mM CaCl2.2H2O and 2.1 mM K2HPO4.3H2O.  To avoid crystals 

precipitated in the bulk solution from falling onto the surface of the membranes, the 
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membranes were placed vertically in the vials.  In the double diffusion method (Figure 

11b), a membrane was sealed between a pair of U-tube arms.  To make sure a watertight 

seal was formed, the joints were wrapped in several layers of Teflon tape and eventually 

both parts were pinched together.  Covering of the joints with Parafilm before mounting 

the membrane also proved to be beneficial to avoid leaking.  Solutions containing the 

desired amount of polymer (10 g/ml to 100 g/ml) were prepared, and 1.6 ml of the 9 

mM CaCl2 solution and 1.6 ml of the 4.2 mM K2HPO4 were added to the respective 

arms using plastic syringes fitted with long needles in order to prevent formation of air 

bubbles adjacent to the membrane.  Tapping of the central part of the U-tube also helped 

to remove the air bubbles and the arms were refilled so that there were roughly equal 

volumes of both solutions.   

To avoid evaporation of the solution, the open tops of the tubes were sealed with 

Parafilm. 

  

Figure 11: Immersion method (a) and double diffusion setup (b). 

 

The different set-ups containing the membranes were then incubated at 37°C in an oven 

for 3 h to 6 days yielding eight different solution conditions as shown in Table 3. 

 

 

 

 

 

 

a

  

  

 

b 
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Table 3: Different solutions used for the synthesis of CaP rods. 

Solution Presence of buffer additive Method 

1 Tris-buffer No additive Double diffusion 

2 Tris-buffer Polyaspartic acid Double diffusion 

3 No buffer No additive Double diffusion 

4 No buffer Polyaspartic acid Double diffusion 

5 Tris-buffer No additive Immersion 

6 Tris-buffer Polyaspartic acid Immersion 

7 No buffer No additive Immersion 

8 No buffer Polyaspartic acid Immersion 

 

At the end of the reaction, the membranes were removed from the reaction solution and 

the TE membranes were dissolved in DCM while the PAM were dissolved in NaOH 

(see 2.1.3.3). 

 

3.4.4 Control experiments. 

Control experiments were also carried out under identical reaction conditions, but in 

bulk solution.  Glass slides were placed at the base of the reaction vials, in order to 

sample the precipitated crystals, and these were removed from the solution after 1 h to 6 

days, before being washed with ethanol and dried with nitrogen.  Ni TEM grids were 

also placed in the solution to observe precipitates inside the solution by TEM, after 

which they were washed in ethanol and left to dry. 

 

3.4.5 Analysis of the samples. 

The isolated CaP crystals were characterized using SEM and TEM to determine their 

dimensions and morphologies.  Samples for SEM were prepared by placing a droplet of 

an ethanol suspension of CaP particles onto a glass slide, allowing it to dry.  

Alternatively the ethanol suspension was filtered through a track-etched membrane to 

get rid of unwanted particles.  After drying, the filter membrane was mounted on an 

SEM stub.  TEM was performed by placing an ethanol suspension of the CaP particles 

on a carbon-covered Cu TEM grid.  Identification of the kind of calcium phosphate 
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present was achieved using electron diffraction, carried out in the TEM using selected 

area electron diffraction techniques (SAED), micro-Raman spectroscopy and XRD. 

 

3.5 Results 

3.5.1 Analysis of the porous alumina membranes: 

During the first oxidation process the current decreased from 0.1 to 0.02 A and bubbles 

appeared at the cathode due to the production of H2.  After 10 h, a white layer had 

formed on the aluminium sheet.  Placing the aluminium sheet in chromic acid for 12 h 

removed the white layer making it dark grey.  After the second anodisation step at the 

same conditions as the first anodisation step, an alumina membrane is produced as 

shown in Figure 12.  

 

 
 

Figure 12: SEM images of top view (a) and cross-section view (b) of porous alumina 

membranes produced in a double anodisation process.  To show the complete thickness 

of the membrane an anodised aluminium foil of 0.01 mm thick is shown. 

 

Pore sizes and inter pore distances of the membranes ranged respectively from 20 nm to 

40 nm and 20 nm to 50 nm with an average of respectively 33 nm and 37 nm.  In this 

way, pore densities of 10
10

 pores cm
-2

 were obtained (see Figure 12a).  Figure 12b 

shows a cross-sectional view of a membrane.  The pores are straight through the whole 

thickness until they meet in the middle (see Figure 12b arrow) and are parallel aligned 

to each other with almost no intercrossing.  The diameter of the pores corresponded 

with the ones seen on Figure 12a (~30 nm). 

 

To remove the alumina membranes from the remaining aluminium two different 

techniques were employed.  In one technique, they were immersed in 5 w% H3PO4 

a a a b 
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solution for half an hour.  This allowed pore widening and removal of the remaining 

Al2O3 barrier layer.  SEM analysis showed that the pores went all the way through 

(Figure 13c and d) but the pore size differed on the two membrane surfaces (Figure 13a 

and b).  The pore size at the top side had increased to 80 nm (Figure 13a) while at the 

bottom side this was still 40 to 50 nm (Figure 13b).  

 

 

Another technique used is the voltage pulse technique, which allowed the porous 

alumina membrane just to “fall off” the support.  SEM analysis (Figure 14) showed that 

the pores were again all the way through the membrane, but the pore size had remained 

constant in this case (20 nm to 40 nm). 

 

  

  

Figure 13: SEM images of porous alumina membranes produced in a double 

anodisation process whereafter the remaining aluminium is removed by immersing the 

membrane in 5 w% H3PO4 solution for half an hour.  (a) Shows the top side while (b) 

shows the bottom side.  (c) And (d) show a side view and show the pores are now the 

whole way through. 

b 

a a a b 

c d 
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Commercially available alumina membranes (anodic 25 from Whatman) were also 

analysed.  Although the pore size stated on the package was 20 nm, analysis with SEM 

(Figure 15) showed this was actually only true for the top side while on the bottom side 

the pores were ≈ 200 nm. 

 

  

Figure 15: SEM images of commercial available alumina membranes (anodic 25 from 

Whatman).  The top side (a) has pores of ≈ 20 nm while for the bottom side (b) the 

pores were actually 200 nm. 

  

  

Figure 14: SEM images of a cross-section view of the porous alumina membranes 

produced in a double anodisation process whereafter the remaining aluminium is 

removed by a voltage pulse technique. (a) And (b) show top and bottom side, (c, d) 

show the side view. 

a a b 

a a b 

c d 
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3.5.2 Analysis of track-etched membranes. 

Prior to use, track-etched membranes were also imaged using FEG-SEM (Figure 16). 

 

  

  

Figure 16: SEM image of Isopore GTTP membrane filters (Millipore) polycarbonate 

track-etched membranes with pores of 200 nm (a,b) and 50 nm (c,d). 

 

Analysis of the track-etched membranes showed that the pores are not uniformly 

distributed, that they were of low density (10
8
 pores per cm

2
) and that the pore sizes 

ranged from 250 nm to 150 nm for the 200 nm pores and 40 nm to 100 nm for the 50 

nm pores.  These membranes are sold for filtration applications, and thus the pore 

diameter quoted is the pore size at the membrane surface, rather than the internal 

diameter.  Some pores also intercrossed and formed double pores (Figure 16a, b).  

Despite these disadvantages (non uniformly distributed pores, intercrossing of the pores, 

low pore density), they were still chosen because they are relatively cheap, they could 

easily be dissolved in DCM, and were not as brittle as the alumina membranes. 

 

3.5.3 Analysis of material obtained in bulk solution. 

As a first experiment to evaluate the effects of confinement on calcium phosphate (CaP) 

precipitation, control experiments were conducted where CaP was precipitated from 

a b 

c 

c 

a 

d 
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bulk solution, as well as in the presence and absence of PAsp.  In the absence of PAsp, 

the material isolated after 1 h consisted out of amorphous CaP particles with average 

sizes of 10 nm, as shown by TEM and EDX (Figure 17a).  After 2 h these amorphous 

particles had grown to 20 nm in size (Figure 17b) and additional crystalline octacalcium 

phosphate (OCP) platelets of 20 nm in size (Figure 17c) were also observed. 

 

    

Figure 17: TEM images, electron diffraction patterns and EDX data of CaP particles 

precipitated from a buffered solution of calcium phosphate in the absence of PAsp.  (a) 

After 1h the particles were amorphous and exhibit a Ca/P ratio of 1.15.  The Si peak 

comes from the grid while the Cl peak comes from the CaCl2.  After 2h, both 

amorphous particles (b) and OCP crystals (c) were observed, where the amorphous 

particles exhibit a Ca/P ratio of 1.01 and the crystalline OCP particles are identified by 

the characteristic (3  1) and (030) reflections of OCP.  

 

 

 

a 

c 

b 

3  1 

030 
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Complete transformation into hydroxyapatite (HAP) occurred after 3 h as was 

confirmed by Raman microscopy and XRD (Figure 18 and 19).   

Figure 18 shows the Raman spectrum of the obtained material with peaks at 961 cm
-1

, 

totally symmetric stretching mode (ν1) of the tetrahedral PO4 group (P−O bond), 590 

cm
-1

, bending mode (ν4) of the PO4  group (O−P−O bond), peaks at 443 cm
-1

 and 429 

cm
-1

, the doubly degenerate bending mode (ν2) of the PO4 group (O−P−O bond), and a 

very weak peak at 1043 cm
-1

, which is part of the triply degenerate asymmetric 

stretching mode (ν3) of the PO4 group (P−O bond) comparable with literature figures
289

.  

These peaks and in particular the last peak at 1043 cm
-1

 confirm that this material was 

HAP, as was expected
96

.  XRD was also used to confirm the calcium phosphate mineral 

(Figure 19) with the presence of the peak at 31.78° (121) and the absence of any peak at 

4.71° confirming the mineral was indeed HAP and not OCP
289

.  Examination of the 

HAP crystals under TEM showed that they were plate-shaped and approximately 150 

nm wide and 200 nm in length (Figure 20a). 

 

 

Figure 18: Raman spectrum of CaP produced in bulk solution.  Analysis of the spectrum 

showed the produced material was HAP. 
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Figure 19: X-ray diffraction pattern of precipitate obtained in the bulk solution after 3 h, 

corresponding with HAP. 

 

 

 

  

Figure 20: TEM images and corresponding electron diffraction patterns of CaP particles 

precipitated from buffered solutions of calcium phosphate.  (a) HAP crystals 

precipitated in the absence of PAsp without additives after 3 h.  (b) Amorphous CaP 

particles precipitated in the presence of 50 μg/ml PAsp after 6 days.  The corresponding 

EDX spectrum shows that the particles contain Ca and P in a Ca/P ratio of 1.52.  The 

Na and Cl peaks originate from CaCl2 and NaCl of the buffer solution. 

1     

       

002 
a b 
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Adding PAsp to the system at concentrations of 10 and 100 µg/ml had a marked effect 

on the precipitation process where it was observed that the polymer retarded the 

crystallization process, stabilizing an amorphous calcium phosphate (ACP) phase.  

Investigation with TEM of the CaP particles isolated from solutions containing 50 

μg/ml PAsp after 6 days showed that they were spherical in shape and  80 nm in 

diameter, and electron diffraction demonstrated that they were still fully amorphous 

(Figure 20b). 

When left longer in solution (of between 1 week with 10 μg/ml and 3 weeks with 50 

μg/ml), the amorphous CaP particles transformed into apatite as confirmed by TEM and 

SAED.  However, they were significantly smaller than the particles precipitated in the 

absence of additives with average diameters of 40 nm (Figure 21). 

 

 

The CaP crystals formed without a buffer solution gave similar results (Figure 22). 

Analysis of the particles with TEM showed that in the absence of additives, amorphous 

particles of around 10-150 nm diameter (Figure 22a) directly formed after mixing, 

which quickly transformed after 1 h into crystalline material (Figure 22b) with average 

dimensions of 100 nm length and 50 nm wide.  Diffraction showed the crystalline 

particles were HAP, and EDX confirmed the amorphous particles contained calcium 

phosphate. 

 

Figure 21: TEM image and corresponding electron diffraction pattern of CaP particles 

precipitated from a buffered solution of calcium phosphate containing 50 μg/ml PAsp 

after 3 weeks.  The particles are  40 nm in length, and are confirmed to be HAP by the 

characteristic spots of the (200), (212), and (222) planes. 

200 

212 222 
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   Figure 22:  TEM images with corresponding electron diffraction patterns and EDX 

spectra of CaP particles precipitated from a non-buffered solution of calcium phosphate 

without the addition of PAsp (a and b) and with addition of 50 μg/ml PAsp (c and d). 

Without PAsp amorphous particles were formed directly, which quickly transformed 

into crystalline HAP (b).  With PAsp the amorphous phase was stable longer than 1 h 

(c) and crystalline HAP was found after 12 h (d).  The EDX patterns in (a) and (c) 

shows the amorphous particles contain Ca and P with a Ca/P ratio of 0.96 and 1.46 

respectively.  The Si peak must be originating from the grid and the Cl and K peaks 

from CaCl2 and K2HPO4. 

 

Addition of PAsp extended the lifetime of the ACP and after 1 h only amorphous 

particles were formed with variable sizes of 10 nm to 70 nm in diameter (Figure 22c).  

After 12 h crystalline material (100 nm long and 40 nm wide) also started to form 
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(Figure 22d) which was identified as HAP.  After 3 days all particles were crystalline 

HAP. 

 

3.5.4 Analysis of material obtained inside the membrane pores 

3.5.4.1 Double diffusion method 

In a first attempt, crystals were grown using the double diffusion method since this 

technique was considered most likely to produce crystals inside the membrane pores.  

Given that they were easier to work with, TE membranes were principally used for the 

experiments. 

 

In the absence of additives, the double diffusion method allowed the production of a 

high yield of rods (90% of the pores filled) with uniform lengths of around 1 μm to 2 

μm, and thicknesses of 200 – 250 nm (as produced in the “200 nm” pores) and 50 – 100 

nm (as produced in the “50 nm” pores) (Figure 23).  These correspond to aspect ratios 

of 5 and 20 respectively as shown in Figure 23.  As discussed in paragraph 3.5.2, these 

membranes are sold for filtration applications, and thus the pore diameter quoted is the 

pore size at the membrane surface, rather than the internal diameter.  Since the 

membrane thickness is  10 µm, the CaP only seem to partially infiltrate into the pore.  

SEM images of the membranes before dissolution show that they were almost all 

completely filled (Figure 23a and b) and images of the isolated rods show that the 

majority of rods were solid (Figures 23a, b, c, f), although some hollow rods were also 

identified, particularly in the 200 nm pores (50% of the total rod population) (Figure 

23d and e arrowed).  TEM examination of the rods further revealed their internal 

structure, and demonstrated that most of them were composed of small, needle-like 

particles of around 100 nm in length for rods precipitated in the 200 nm pores (Figure 

23g) and 30 nm in length for rods precipitated in the 50 nm pores (Figure 23i). 
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Figure 23: SEM images (a-f) and TEM images (g-i) of rods formed by the double 

diffusion method, in the absence of additives.  (a), (b), (e) and (f-i) Were prepared in a 

buffered solution while (c) and (d) were in DI water.  With the exception of (b), which 

was formed in alumina membranes with pore sizes of 200 nm, all of the membranes 

were TE membranes with pore sizes of 200 nm (a,c,d,e,g,h) and 50 nm (f,i).  Uniform 

rods were formed and almost completely filled all of the membrane pores (a and b).  

Most of the rods where solid although hollow rods were found too, especially in the 200 

nm pores ((d) and arrowed in (e)).  (h) Shows a TEM image of a 200 nm rod showing 

the needles are crystalline and measurement of the distance between the lattice fringes 

confirmed the material was HAP (d = 8.1 Å, (100) plane). 

 

Measurement of the lattice spacings (Figure 23h) and analysis of the diffraction pattern 

(Figure 24) of the rods showed these were built up from HAP crystals.  D-spacings of 

3.41 Å (002), 2.77 Å (112) and 3.1 Å (102) were found and the measured angle between 

(002) and (102) (22°) corresponded to the HAP mineral.  

 

i 
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Figure 24: TEM images and corresponding diffraction pattern of crystals obtained by 

the double diffusion method with a buffer solution, in the absence of polymer, in TE 

membranes with pore sizes of 50 nm.  The diffraction pattern corresponded to HAP and 

showed that the rods were oriented according to the [001] direction (angular spread  

15°) along the long axis of the rod.  The additional amorphous material on the surface of 

the rod is residual polymer from dissolution of the track-etched membrane. 

 

Raman analysis of the rods confirmed they consisted out of hydroxyapatite (Figure 25) 

with characteristic peaks at 963 cm
-1

 coming from the totally symmetric stretching 

mode (ν1) of the tetrahedral PO4 group (P−O bond), at 434 cm
-1

 which is part of the 

double degenerate bending mode (ν2) of the PO4 group (O−P−O bond) and at 353 cm
-1

, 

which is a O−P−O bending mode (ν2) of the HPO4
-2

 group. 
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Figure 25: Raman spectrum of particles produced in 200 nm membrane by using the 

double diffusion method, in the absence of additives.  Analysis of the spectrum showed 

the produced material was HAP. 

 

Interestingly, although the surface chemistry of the membrane itself couldn‟t direct the 

orientation of the HAP crystal at nucleation, the selected area electron diffraction 

(SAED) patterns of the rods revealed that many of these polycrystalline HAP rods 

exhibited a marked degree of orientation which is shown by the presence of arcs in the 

SAED pattern (Figure 24 angular spread 32 degrees).  This corresponds to a preferential 

alignment of the [001] axis of HAP with the long axis of the rod (Figure 24 and Figure 

26a, b).  This alignment was observed for rods formed in both the 50 nm and 200 nm 

pores, but was more significant for the 50 nm pores where 95% of the HAP rods were 

oriented as compared with 75% in the 200 nm pores (Figure 26).  A diffraction pattern 

from a non-oriented rod of HAP is shown in Figure 26c. 
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Figure 26: Selected area electron diffraction (SAED) images with corresponding TEM 

images (inset) of HAP particles produced using the double diffusion method, in the 

absence of PAsp.  (a) And (b) show images from a rod precipitated in a 50 nm pore (a) 

and a 200 nm pore (b) where the long axis of the rod is coincident with the [001] 

direction (angular spread  20° (a) and  25° (b)).  The arrow in (b) indicates the lack of 

orientation of a sub-population of HAP crystallites oriented in different directions in the 

200 nm pores.  (c) Shows a non-oriented rod formed in a 200 nm pore.  All diffraction 

patterns were identified as HAP. 

 

Analysis of multiple samples with TEM and SAED showed that the angular spread of 

the arcs was  15-25° for both the 50 nm and 200 nm oriented rods, which is 

comparable to that found in bone
290

.  However, the oriented 200 nm rods often showed 

evidence of a sub-population of HAP crystallites oriented in different directions, as 

indicated by additional weak reflections in the SAED pattern at wider angle (behind the 
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(002) reflection, arrowed in Figure 26b).  This further shows that this orientation effect 

was dependent on the size of the pores and was further confirmed by growing rods in 

bigger and smaller pore sizes. 

In commercial alumina membranes pores of 300 nm, the diffraction pattern was 

completely polycrystalline and almost no preferred orientation was observed with arcs 

of more than 90° (Figure 27a).  The TEM image of the corresponding rod confirmed 

this result, were random oriented crystals were seen.  To allow investigation of the 

effect of smaller pore sizes, alumina membranes were prepared in the lab by anodisation 

of aluminium.  In smaller pores of 30 nm, small rods with lengths of only a couple of 

100 nm and diameters of 30-60 nm were formed (Figure 27b).  In this case the 

diffraction pattern showed the rods were much more oriented with arcs of  10°.  This 

supports our theory that the orientation effect was dependent on the size of the pores.  

 

 
 Figure 27: Selected area electron diffraction (SAED) images with corresponding TEM 

images (inset) of HAP particles produced using the double diffusion method.  (a) Shows 

images from a rod precipitated in a 300 nm pore of a commercial porous alumina 

membrane in the presence of 50 µg/ml PAsp and (b) from a rod grown in a home-made 

30 nm pore porous alumina membrane.  The diffraction pattern in (a) shows the 

orientation is completely random.  In (b) the long axis of the particle is coincident with 

the [001] direction (angular spread of slightly more than  10°) demonstrating a better 

orientation in smaller pore sizes. 
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Figure 28 shows a histogram for spread of the crystal orientation of the different pore 

sizes. 

 

 

 

 

  

Figure 28: Histogram for the crystal orientation for the different pore sizes used 

 

In addition to polycrystalline hydroxyapatite rods, some single crystal octacalcium 

phosphate (OCP) rods were also found (Figure 29a) (0.1% of the total rod population), 

where the low-contrast layer seen coating the rod in this Figure is likely to correspond 

to residual polymer resulting from dissolution of the membranes.  This coating was 

commonly observed. 
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Figure 29: TEM images of particles produced using the double diffusion method, in the 

absence of PAsp, in 50 nm (a, c) and 200 nm (b) pores.  (a) A single OCP crystal rod 

isolated after 6 days with its long axis corresponding to the [001] direction.  (b) 

Amorphous particles isolated after 3 h which have an average size of 65 nm, and EDX 

demonstrates a Ca/P ratio of 1.38.  (c) A hollow, amorphous CaP particle isolated after 

6 h with corresponding electron diffraction and EDX showing a Ca/P ratio of 1.36.  The 

Si and Cu peaks in the EDX patterns must be originating from the grid and the Cl peak 

from CaCl2. 
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These OCP rods were of low abundance and were comparable in size to the 

polycrystalline HAP rods but showed no preferential orientation with respect to the 

membrane pores. 

By isolating the rods at different reaction times the structural evolution of the intra-

membrane particles was also investigated.  After reaction times of 3 hours, only 

aggregates of spherical, amorphous particles approximately 65 nm in size were present 

(Figure 29b), while after 6 hours both crystalline rods and amorphous rods were 

identified in addition to amorphous particles (Figure 29c).  These amorphous rods often 

had a hollow morphology and the quantity of the amorphous rods and particles 

continued to decrease with time such that all material isolated after 1 day was 

crystalline. 

 

As highlighted before, PAsp has been shown to influence CaP precipitation and stabilise 

the amorphous phase
147, 247

.  Recently, addition of PAsp is also suggested to promote 

CaP infiltration into small pores, through formation of a “Polymer-Induced Liquid 

Precursor” (PILP) phase, although this assessment has been made based on infiltration 

into collagen fibers only
96

.  To investigate this further, the effect of PAsp on the 

precipitation of CaP in the membrane pores was investigated here.  In the presence of 10 

to 100 μg/ml PAsp, it was found amorphous particles had formed after 6 days (Figure 

30).  These particles were spherical and were similar in appearance and size to the 

particles produced in the control experiments (around 150 nm in diameter).  Sometimes, 

rod-shaped particles which comprised poorly-packed spherical particles were also 

observed (Figure 30). 
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Figure 30: TEM image of amorphous, rod-shaped particles isolated after 6 days 

obtained by the double diffusion method with the addition of 20 µg/ml, in membranes 

with pore sizes of 200 nm with corresponding diffraction pattern.  The rods have a Ca/P 

ratio of 1.44 and the voids observed within the component spherical particles are due to 

beam damage.  The Si peak originates from the grid 

 

Surprisingly though, although no crystalline material was formed in the bulk solution 

under the same concentrations of PAsp and reaction time, polycrystalline HAP rods 

were obtained in the membrane pores after 6 days (Figure 31a).  These rods were 

identical in size and morphology to those obtained in the absence of PAsp.  However 

the amount of rods formed was much lower than those formed in comparable reactions 

performed in the absence of PAsp (Only 30% of the pores were filled).  This was 

attributed to the inhibitory effect of PAsp on the precipitation and crystallisation of 

CaP
247

.   
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Most rods were again polycrystalline HAP (Figure 31a) with similar structure and 

orientation as observed in the absence of PAsp.  In addition, single crystal rods which 

were identified as OCP (Figure 31b), were also found again (1% of total rod 

population).  These were still mainly randomly oriented, but were present in a higher 

yield (about 10 times more) than in the absence of PAsp. 

 

Without the buffer solution similar results were obtained where addition of PAsp 

resulted in the formation of some single crystal rods, together with polycrystalline rods 

 

 

Figure 31: TEM image of crystals isolated after 6 days obtained by the double 

diffusion method with the addition of 20 µg/ml (a) and 100 µg/ml PAsp (b), in 

membranes with pore sizes of 200 nm (a) and 50 nm (b) with corresponding 

diffraction pattern.  (a) A polycrystalline HAP rod.  (b) A single crystal OCP rod, 

where the long axis of the rod corresponds to the [100] direction. 

a 

002 

300 

400 
b 00   



Chapter 3: Mimicking Bone Formation by Confinement and Addition of PAsp 

96 

(Figure 32).  Their size, shape and orientation were similar as prepared in the buffer 

solution. 

 

  

  Figure 32: TEM images and SAED of crystals obtained by the double diffusion method 

after 1 day, with a DI water solution, and addition of 100 μl/ml PAsp, in membranes 

with pore sizes of 50 nm.  Single OCP (c) and polycrystalline HAP (d) rods were 

obtained, aligned according to the [001] direction along the long axis of the rod.  Beam 

damage can be observed in Figure (c).  Some of the rods appear to be hollow as shown 

in (b). 
 

TEM images showed that some rods are hollow (see Figure 32b) and analysis of the 

diffraction pattern showed that the single crystal material was again OCP (Figure 32c).  
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The OCP crystal was in this case oriented with the [001] axis along the long axis of the 

rod, although this wasn‟t always the case. 

 

3.5.4.2 Immersion method 

Although the double diffusion method proved to be a very valuable method, the setup 

wasn‟t ideal to study the improvement of the infiltration of the pores in absence and 

presence of PAsp, since it seemed to lead to effective particle formation even in the 

absence of PAsp.  This was due to the configuration of the method, where precipitation 

occurs on combination of the calcium and phosphate ions within the membrane pores.  

Therefore, an “immersion method” was also explored where the membrane was simply 

immersed in the reaction solution.  In this way, it was hoped to get a better idea of the 

function of the PAsp additive.  

 

Figure 33 shows SEM images of rods produced in a buffer solution in membranes with 

pores of 50 nm (a) and 200 nm (b).  As can be seen in the SEM images, the rods 

resembled those produced with the double diffusion method.  However, the yield of the 

rods was considerably lower than with the double diffusion method by a factor of 10 

(10-20% of the pores filled).  Similar results were obtained with DI water. 

 

  

Figure 33: SEM images of rods formed by the immersion method, in a buffer solution, 

in membranes with pore sizes of 50 nm, with 100 µg/ml PAsp (a) and without additives 

in 200 nm pores (b) after 6 days.  Most rods were solid, although some with a hollow-

like appearance were found in the 200 nm pores (b). 

 

TEM analysis showed that with the buffer system without the addition of PAsp, the 

intra-membrane CaP particles were polycrystalline HAP, oriented with the long axis 

a a b 
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corresponding to the [001] direction (Figure 34), and thus were very similar to those 

produced under the same condition using the double diffusion method.  In this case, the 

particles were uniquely polycrystalline HAP, and no OCP rods were observed.  With the 

DI water solution and without the addition of additives, no rods were found. 

 

 

 Figure 34: TEM images of crystals formed by the immersion method, with a buffer 

solution, without the addition of polymer, in membranes with pore sizes of 50 nm. 

 

Addition of PAsp to the system had an identical effect on the crystallization as was 

obtained for the double diffusion method, resulting in a reduction in the yield of rods 

but in a marked increase in the proportion of these which were single crystal OCP rods 

(5% of the total rod population), as well as with the buffer and water solution (Figure 

35).  Most rods were oriented according to [001] direction although no preferred 

orientation was found.  Again, no considerable increase in the yield of rods was 

observed in the presence of PAsp (10% of the pores filled). 
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Figure 35: TEM images and electron diffraction patterns of crystals obtained by the 

immersion method after 6 days.  (a,b) Formed in a buffer solution, with 50 µg/ml (a) 

and 100 µg/ml PAsp (b), in membranes with pore sizes of 50 nm.  (a) A single crystal 

OCP rod which is oriented with its [001] direction coincident with its long axis, where 

the inset in (a) shows a high resolution TEM image of the same rod with the (031) 

lattice plane (d spacing of 2.77 Å) highlighted.  (b) Polycrystalline HAP rod oriented 

according to the [001] direction.  (c, d) Formed within DI water, with 50 µg/ml PAsp, in 

membranes with pore sizes of 50 nm (c) and 200 nm (d).  (c) Shows a single crystal 

OCP rod oriented according to the [001] direction.  (d) Single crystal OCP rod with his 

long axis oriented 20° to the [001] direction. 

 

Finally, the influence of longer incubation times on the structures and characteristics of 

the intra-membrane CaP particles was also investigated (Figure 36).  Instead of isolating 

the membrane after 1 or 6 days, a polycarbonate TE membrane was left in solution for 

one month, where CaP was precipitated using the immersion method.  The vial was 
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sealed to avoid significant solution evaporation.  After dissolution of the membrane, the 

obtained particles were analysed using TEM, which showed that all rods were now 

crystalline.  Just as with shorter reaction times, a mixture of polycrystalline and single 

crystal rods were observed, where the majority of the rods were polycrystalline HAP.  

Analysis of the single crystal rods showed that in contrast to the OCP rods present after 

a reaction time of 6 days, now these were single crystals of HAP (10% of the total rod 

population), oriented with their [001] direction coincident with the long axis of the rod 

(Figure 36). 

 

 

Figure 36: TEM image and electron diffraction pattern of a crystal isolated after 1 

month, obtained by the immersion method in a buffer solution, with 100 µg/ml PAsp, 

in membranes with pore sizes of 50 nm.  Analysis of the diffraction pattern showed 

the single crystal rods were HAP and that they were oriented with the [001] direction 

along the long axis of the rod. 
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Table 4 and Figure 37 summarises the above results.  It should also be noted that 

smaller pore sizes, 50 nm instead of 200 nm, tend to form more single crystal material. 

 

Table 4: Summary of results 

Solution Presence of 

buffer 

additive Method Results 

1 Tris-buffer No 

additive 

Double 

diffusion 

High yield (90% of pores filled), 

polycrystalline HAP rods. 

2 Tris-buffer Polyaspa

rtic acid 

Double 

diffusion 

Polycrystalline HAP (30% of 

pores filled) and single crystal 

OCP rods (1% of total rod 

population). 

3 No buffer No 

additive 

Double 

diffusion 

High yield (90% of pores filled), 

polycrystalline HAP rods. 

4 No buffer Polyaspa

rtic acid 

Double 

diffusion 

Polycrystalline HAP and single 

crystal OCP rods. 

5 Tris-buffer No 

additive 

Immersion Low yield (20% of pores filled), 

polycrystalline rods. 

6 Tris-buffer Polyaspa

rtic acid 

Immersion Low yield (10% of pores filled), 

polycrystalline HAP and single 

crystal OCP rods (5% of total 

rod population).  Single crystal 

HAP rods after long time. 

7 No buffer No 

additive 

Immersion No rods. 

8 No buffer Polyaspa

rtic acid 

Immersion Low yield (10% of pores filled), 

polycrystalline HAP and single 

crystal OCP rods rods (5% of 

total rod population). 

 



Chapter 3: Mimicking Bone Formation by Confinement and Addition of PAsp 

102 

 

Figure 37: Overview of the results of the different reaction conditions for the buffered 

solutions. 

 

3.6 Discussion 

These above stated results demonstrated calcium phosphate rods were successfully 

precipitated in alumina and track-etched membrane pores.  Using U-tubes gave the 

highest yield of rods, which could be expected since this system allowed precipitation to 

occur more easily within the pores, where the Ca
2+

 and PO4
3-

 ions ideally meet.  Most 

rods were about 1 to 2 µm long and it is thought this is due to the fact that at some point 

pore blocking occurred, disabling the supply of ions. 

 

The results with and without buffer were quite similar and didn‟t seem to have much 

influence on the formation mechanism of the rods.  In the presence of the buffer, the 

amorphous phase was stabilised for a longer time (In the absence of PAsp, 1 day instead 

of less than 1 h for respectively with and without the presence of the buffer).  This is 

expected since it has been shown previously that the lifetime of ACP can be increased 

by the inclusion of simple inorganic ions
208

.  Since it is hard to quantify how the pH 
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changed in the absence of the buffer system, and how this influenced the precipitation, 

the discussion will principally focus on the results obtained with the buffer system. 

 

3.6.1 Discussion of results in absence of PAsp 

Considering first CaP precipitation in the absence of PAsp, comparison of the 

precipitates formed in the bulk solution with those which were produced in the 

membrane pores, demonstrated that confinement on the length scales used here (30-300 

nm) had a number of significant effects on the precipitation of CaP, influencing the size, 

morphology, orientation, type of mineral and the rate of crystallization.  While only 

bundles of nanoplatelets of HAP were found in bulk solution, by growing the crystals in 

TE and PAM pores, morphologically distinct polycrystalline rods of HAP with aspect 

ratios of up to 20-40 times were generated.  Imaging the precipitates with SEM and 

TEM revealed an internal structure comprising HAP platelets, although the ability of the 

rods to remain completely intact during isolation from the membrane suggests 

significant intergrowth.  This was further supported by both the SEM and TEM images, 

which reveal that the rods are dense, and exhibit large, smooth areas on their surfaces.  

The rods were thought to be formed by filling of the pores with an amorphous phase 

first.  In this way, the whole pore was filled or only the pore surface was covered.  With 

time it was assumed, that crystallisation occurred at multiple nucleation sites, leading to 

polycrystalline rods, both hollow and filled.  Very often, additional amorphous material 

was seen covering the rod.  This covering was seen on many rods in almost all the 

conditions, and is likely to be caused by of the track-etched membrane not being 

sufficiently dissolved in DCM.  However, this is very unlikely considering the rigorous 

cleaning procedure.  Extrusion of the polymer during the transformation to a crystalline 

phase might also provide an explanation for this amorphous layer. 

 

3.6.1.1 Orientation by confinement 

What was very interesting though, is that although polycrystalline, the rods also showed 

a preferred crystallographic orientation, where the [001] axis of the HAP crystallites 

was preferentially aligned with respect to the long axes of the rods, and therefore the 

membrane pores.  This was especially true for smaller pore sizes, where growing the 

crystals in pore sizes of 300 nm yielded polycrystalline rods (angular spread of the 

(002) reflection is almost 90 degrees) with almost no orientation, while pores of 30 nm 
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supported the formation of polycrystalline rods with a strong preferential orientation 

along the rod (angular spread of slightly more than  10°).  The fact that the pore 

dictates the morphologies of the CaP precipitates is not surprising, and was consistent 

with templating studies which have been widely used to demonstrate that by the use of 

an appropriate reaction volume, it is possible to mould the morphology of inorganic 

solids
32, 162, 166

.  The fact that we were able to influence the orientation was more 

surprising however, considering that the only factor which could define this is the shape 

of the pores since the functional groups on the membrane surface will be randomly 

oriented and thus could not define the in-plane orientation of the HAP crystals.  

Intuitively, it would be expected that the orientation of the crystals would be set at 

nucleation forcing the crystals to align in a certain way.  However, since the curvature 

of a 200 nm pore can be considered negligible as compared with a 2-5 nm crystal 

nucleus, the crystal will effectively see this as an isotropic, flat surface.  Therefore, it 

was assumed that the preferred orientation observed is likely to be the product of 

competitive growth of the individual crystallites (see Figure 38).  As demonstrated in 

the previous results (Figure 20 and 22), HAP typically forms as elongated plates or 

needles, where the [001] axis is coincident with its direction of most rapid growth
243, 291

.  

Imagining the crystals growing within the membrane pores, it can be easily understood 

that if the HAP crystals impinge on the membrane walls, their growth will be retarded, 

while those whose [001] axis lies closer to the long axis of the pore will be able to grow 

unrestricted.  This effect, which often leads to the texturing of a polycrystalline 

material
292, 293

, will clearly be more significant the smaller the pore diameter, as was 

observed here. 
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Figure 38: Schematic representation of the formation of HAP crystals inside the 

membrane pores.  The ACP particles in the membrane pore (yellow spheres left Figure) 

dissolve and HAP (red) reprecipitates inside the membrane pores (Step 1).  At first 

crystals are oriented in random directions since nucleation happens randomly.  With 

time, the small crystals that can‟t grow due to membrane restrictions redissolve (step 2) 

while those whose [001] axis lies closer to the long axis of the pore will be able to grow 

unrestricted.  

 

The fact that we can achieve such a strong orientational control over an array of HAP 

crystallites, by using such a simple technique as precipitating them a confined reaction 

volume, is intriguing and may further provide some insight into the mechanism of 

control over the orientation of the HAP crystallites in bone and dentin.  As mentioned in 

section 3.1.2, the HAP crystals in bone are preferentially oriented such that there is 

reasonable alignment of the c-axes of the crystals with the long axis of the collagen 

fibrils
153, 198, 237, 290

 giving similar results as obtained here.  The typical angular spreads 

in the HAP orientation are ± 15
o
 both in bone

3, 96, 290, 294
 and for mineralised collagen 

fibrils generated through in vitro remineralisation of collagen fibrils
96, 196, 247

 as 

compared with ± 15 in our system.  It has to be stated though that the HAP crystallites 

in bone are also morphologically co-aligned, in such a way that the crystals exhibit 

plate-like morphologies (where the faces are (100) planes), a result which could not be 

directly observed for the HAP crystals precipitated in the pores of our membranes.  

Whether this orientation effect is also present for HAP crystals nucleated on the surface 

of the collagen
3
 and not inside the collagen gaps is not entirely clear

295
. 
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Considering bone and dentin, the origin of this orientation effect has been much 

discussed and is generally believed to be due to an epitaxial match between the HAP 

nanocrystals and the amino acid groups on the collagen
196, 198, 199

 which was widely 

accepted.  Previous investigation with FT-IR has revealed that the carboxyl groups on 

the surface of collagen molecules are able to bind Ca
2+

 ions, and therefore promote the 

nucleation of HAP
296

.  Furthermore, modelling studies of the collagen peptide showed 

that a collagen-like peptide could arrange the calcium ions in a similar structure to that 

found in the HAP lattice
297

.  The suggestion that the structural match between an 

organic matrix and the HAP lattice was responsible for an oriented precipitation of HAP 

was further supported by experiments where HAP was precipitated in the presence of 

nanofibers and bundles of nanofibers, including the use of structures based on 

supramolecular assembly
198, 298

, a filamentous phage
299, 300

 and spider dragline silks
301

.  

In all of these systems orientation was observed, where the [001] axis of HAP was 

typically co-aligned with the long axis of the fibers or fiber bundles
198, 298-300

.  The 

spider dragline silk was particularly effective in directing the HAP as it composes an 

assembly of protein crystallites, on which the HAP crystals grow epitaxially orientated 

with their [001] axes at an average angle of 73
o
 to the fiber axis

301
.  In another example 

an epitaxial structural relationship was also suggested to drive the oriented growth of 

HAP on peptide-amphiphile nanofibers
198

.  To gain more insight into the orientational 

control this latter system was further investigated by comparing HAP precipitation on 

aligned bundles of nanofibers which all exhibited a -sheet secondary structure, but 

varied in morphology from cylindrical to flattened tape
298

.  It was found that only the 

cylindrical structures exerted control over the HAP orientation, which suggested that a 

strict epitaxial match may actually not be required to achieve this alignment effect. 

 

With our experiments we were able to demonstrate that an organised organic matrix is 

not required to direct the orientation of HAP crystals along their [001] axes and that this 

alignment can actually be achieved by the effect of confinement alone.  It is therefore 

suggested that the alignment is actually caused by the geometry of the gaps in collagen.  

The collagen gaps have a certain size and shape, and it is believed that they significantly 

contribute in this way to the orientation of the HAP crystallites and to a lesser extent the 

protein sequence of the collagen.  It also needs to be pointed out that this result is the 

consequence of the characteristics of the HAP crystals themselves, which have a strong 

anisotropy in their crystal lattice self, and a [001] axis as the axis of fastest growth
243, 
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291
.  Given that the HAP crystals in bone form in collagen gaps of only a few 

nanometers thick, it is actually surprising that a better control over orientation of the 

crystals is not observed in the natural systems.  The fact that the HAP crystals in bone 

also all exhibit (100) faces which are co-aligned over the collagen fibrils
302

, is actually 

unsurprising, given that this is the most stable, and therefore also commonly displayed 

crystal face of HAP
291

.  It is therefore concluded that no real selection of this face has to 

be made during the formation of the bone, and the co-alignment of the crystals in the 

collagen is only just defined by the geometry of the gaps in the collagen fibrils in which 

the crystals form. 

 

3.6.1.2 Stabilisation of ACP and formation of single crystal OCP rods 

In addition to the effect on the orientation of the crystallites, a further very interesting 

effect of confinement was on the rate of crystallisation and on the type of mineral 

observed.  While only crystalline HAP was found in additive-free bulk solutions after 3 

hours, only amorphous CaP was isolated from the membrane pores after the same time.  

Interestingly, hollow rods were frequently observed after 6 hours, suggesting that 

amorphous material may first coat the walls of the membrane pore, before filling in the 

volume.  The effect of confinement in stabilising ACP is consistent with previous 

studies of calcium carbonate precipitation in confinement, which demonstrated that 

amorphous calcium carbonate (ACC) is stabilised in an annular wedge when the walls 

of the wedge are separated by distances of less than a micron thick
152

 and also within 

the pores of TE membranes
29

.  In this work the stabilisation of the amorphous phase 

was attributed to kinetic factors rather than a thermodynamic stabilisation of ACC with 

respect to the other polymorphs of CaCO3, and due to the fact that in confinement there 

is a limited contact of ACC particles with the solution resulting in its stabilisation.  A 

similar mechanism might have taken place in the membrane pores for calcium 

phosphate. 

 

The obtained results also demonstrated that it was possible to form large single crystal 

rods of OCP and HAP in the pores of the track-etched membranes.  These single 

crystals were entirely distinct from any crystal observed in bulk in control reactions. 

Similar results were found when calcium phosphate was crystallised within crosslinked 

gelatine nanoparticles with sizes of a few 100 nm
270

.  The results showed that a similar 

pathway occurred where HAP was formed through an amorphous phase which 
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eventually transformed into single crystal HAP via an OCP intermediate.  Many 

previous studies have also described the formation of single crystal OCP rods, although 

the vast majority were formed under hydrothermal conditions and in the presence of 

organic additives
303, 304

.  It has been shown large single crystal rods of HAP can be 

formed from similar conditions
305-309

, and in some cases form via similarly-sized OCP 

rods as an intermediary phase
303, 304, 310, 311

.  The transformation of OCP to HAP has 

been studied previously by titration and high resolution TEM, which implied the 

transformation occurred by two different mechanisms.  In one mechanism OCP 

dissolves whereafter HAP precipitates, while in a second, a direct solid-state 

transformation can occur, where hydrolysis of an OCP unit cell leads to a two unit cell 

thick layer of HAP
138, 312

.  In the latter case, the formed HAP crystallites would be 

pseudomorphs of the parent OCP crystals, where the [001] axis of the parent OCP 

crystal will correspond with the [001] axis of the HAP product
313, 314

.  This kind of 

transformation was also stated to be responsible for the so-called dark line inclusion due 

to the inherent lattice mismatch between OCP and HAP during the transformation of 

OCP to HAP
214, 216, 217

. 

 

3.6.2 Discussion of the results in presence of PAsp 

3.6.2.1 Effect of PAsp on infiltration and discussion of PILP phase 

By addition of PAsp it was hoped to get a better infiltration of CaP into the membrane 

pores and to increase the orientation and single crystallinity of the rods.  This was not 

observed.  Instead, addition of PAsp actually produced fewer rods, a result which can be 

attributed to the inhibitory effect of PAsp on CaP precipitation
258

.  Particle sizes 

remained unchanged at lengths of about 1 to 2 m with no change in the orientation 

effect observed, and although the single crystal OCP rods were a higher part of the 

overall rod population than in the absence of PAsp (about 10 times more), they were 

still at low number.  These results came as a surprise considering the results obtained on 

precipitating CaCO3 in the pores of track-etched membranes which showed that the 

presence of a PILP phase, as generated in the presence of PAsp or poly(acrylic acid) 

(PAA), significantly enhances the ability of the mineral to infiltrate into the membrane 

pores
29

.  Due to this effect particles precipitated in a much higher fraction of the 

membrane pores and a significant increase in efficiency of filling of small membrane 

pores was also observed.  These effects were attributed to the liquid-like properties of 
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the so-called PILP phase of CaCO3, where the mineral phase had the ability to be drawn 

into the pore via capillary action and fill the entire membrane pore
29

. 

 

Emanating from the observation that in the CaP system the PAsp was unable to enhance 

filling of the membrane pores as compared to the additive-free system, it was 

considered that CaP seemed to behave quite differently in the presence of PAsp than 

from the CaCO3/ PAsp system and might not form a liquid-like PILP phase at all.  

Previous research showed that the formation of a PILP phase can be attributed to a 

microphase separation
28, 85, 95

, driven in this case by the association of the PAsp 

polyelectrolyte and Ca
2+

 ions
12, 28

.  In the calcium carbonate system, it was believed that 

subsequent addition of carbonate ions resulted in the generation of Ca
2+

/ CO3
2-

/ PAsp 

species which with time would gradually convert to amorphous CaCO3, before 

ultimately crystallising
85

 forming crystals with extraordinary morphologies such as 

films and fibers
12, 76

.  It can easily be presumed that the ability of the system to behave 

in this way must rely upon a subtle balance between the strength of the Ca
2+

/ PAsp 

interaction on the one hand, and the driving force for precipitation of the mineral 

product on the other hand.  Therefore if the cation/ polyelectrolyte interaction is very 

strong, immediate precipitation of these complexes will occur.  When on the contrary a 

strong cation/ anion interaction is present, the formation of this Ca
2+

/ anion/ PAsp 

species which characterises the PILP phase will be limited, and CaCO3 will nucleate 

from solution without any strong effect of the polyelectrolyte. 

 

Since it was never properly proven before that CaP/PAsp is able to form extensive thin 

films or other unusual morphologies such as fibers, which in addition to effective 

infiltration, can be taken as a key signature of a PILP phase
12, 28

, we therefore must 

question whether a PILP phase actually really forms in the CaP system.  The principal 

evidence for CaP PILP comes from the effective infiltration of CaP into the nanometer 

sized gaps in collagen fibers.  This infiltration could only be achieved in the presence of 

PAsp, where it had been suggested that due to the formation of liquid-like droplets of 

CaP/PAsp, the CaP was able to be drawn into the collagen fibers by capillarity action
96

 

as discussed before in section 3.1.4.  Further research on collagen infiltration with 

cryogenic electron tomography and molecular modelling has shown that filling of the 

pores in the collagen fibers is simply driven by the molecular interactions between the 

net negative surface charge of the stabilised PAsp/ACP complex and the positively 
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charged regions in the collagen fibril
196

, which counteracted the requirement for 

infiltration simply based on capillary action.  From this idea we therefore suggest that 

the PAsp is effective in stabilising ACP particles, by the adsorbing of the polymer to the 

particle surfaces, as has been mentioned before in other papers
247

, but that these do not 

induce the formation of “liquid-like” character which leads to film formation or 

effective infiltration into nanosized pores, and which is typical for a PILP phase.  The 

fact that this PILP phase doesn‟t exist for CaP may be due to the lower solubility of 

CaP, and therefore thus higher driving force for the precipitation of CaP as compared 

with CaCO3 (with values for the solubility products of ACP and amorphous calcium 

carbonate (ACC) being 10
-25

 and 10
-6

 respectively)
202, 203, 315

. 

 

3.6.2.2 Effect of PAsp on the formation of different mineral types of CaP 

Despite this, the addition of PAsp to the solution had some effects on the intra-

membrane precipitation process and a number of differences in the mineral type of the 

crystal products were noted.  In addition to polycrystalline HAP rods identical to those 

formed in the additive-free system and which were most abundantly present, single 

crystal OCP and amorphous rods were also isolated in the membrane pores after 6 days 

reaction time, where the OCP rods were about 10 times more abundant than in the 

absence of PAsp.  This effect is entirely consistent with the ability of PAsp to retard the 

transformation of OCP to HAP by absorption on the (100) face of the OCP crystals
254

.  

Keeping the membranes in solution allowed all amorphous material to crystallise, and 

resulted in the conversion of the OCP rods to single crystal rods of HAP which 

maintained the morphology and orientation (where topotactic transformation of OCP to 

HAP leads to [100] OCP with respect to [100] HAP)
313, 314

 of the OCP single crystals. 

Considering the formation process of the rods it is thought that at the early stages of the 

reaction most material inside the pores is amorphous.  With time, these rods crystallised 

to single crystal OCP rods or polycrystalline HAP rods.  The low amount of single 

crystal OCP rods are believed to be formed by local dissolution/reprecipitation and 

partial solid state transformation from ACP rods to OCP as was discussed before for 

single crystal rods of calcite formed in TE membranes
29

.  The polycrystalline rods must 

have formed by a dissolution-reprecipitation mechanism. 

 

However, the greatest effect of PAsp was surprisingly seen together with confinement, 

where in comparison with the control experiments, no crystalline material was present 
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after 6 days suggesting that the crystallization of the CaP crystals proceeded more 

rapidly within the membrane pores than in bulk solution.  This peculiar result was 

surprising and intriguing and one possible explanation might originate from the ability 

to obtain different barriers to nucleation of crystalline materials within the amorphous 

phase.  Previous research on the influence of environmental factors such as pH, additive 

molecules and ions, ionic strength and temperature on ACP crystallization has shown 

that although these factors can induce significant differences in the time taken for initial 

nucleation of the crystalline phase to occur, crystallization of the amorphous phase 

subsequently proceeds at a similar rate for all samples
231

.  It has also been shown that 

poly(L-glutamate) and poly(L-aspartate) can act as strong inhibitors for HAP when 

present in solution, but promote HAP and OCP nucleation when adsorbed onto 

inorganic surfaces like germanium
258

.  It is therefore possible that in our case, PAsp 

might act to promote crystallization when it is located on a solid surface provided by the 

membrane pores, while acting as an inhibitor when present in bulk solution.  This 

mechanism also has been discussed for non-collagenous proteins adsorbed into 

collagen
197

. 

 

3.7 Conclusion 

The results showed that by the use of nanosized pores of track-etched membrane and 

porous alumina membranes, we were successful in fabricating rods in pores with pore 

sizes of 30 nm to 200 nm.  The rods were in general 1 to 2 m long giving aspect ratios 

of around 5 and 20 for pores of 200 nm and 50 nm respectively.  The use of a double 

diffusion method gave the highest yield of rods.  Growing the crystals inside the 

membrane pores had a large effect on the crystallisation rate and morphology of the 

formed crystals.  Polycrystalline HAP, together with some single crystal OCP rods were 

generated, particularly in the smaller pore sizes of 50 nm, with similar sizes and aspect 

ratio‟s of 5 to 20.  The polycrystalline rods were also oriented with their c-axes along 

the length of the rod, similar to the structure of mineralised collagen in bone and dentin.  

Although our experimental system employed was rather simple so it cannot be 

considered as a direct mimic of HAP precipitation in collagen, we do believe the above 

discussed results provide insight into the control mechanisms which may operate in 

vivo.  In contrast to previous assumptions where the orientation of the HAP crystallites 

in bone was attributed to a structural match between hydroxyapatite and the collagen 
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matrix, we believe our experiments demonstrated this orientation was the mere effect of 

confinement.  In this way we pointed out that the role of physical confinement 

originating from the collagen fibril structure should not be neglected when trying to 

understand the mechanism of formation of the mineralized collagen fibrils of bone and 

dentin.  

 

Furthermore this research investigated the effect of additives.  It was found that addition 

of PAsp had no effect on the infiltration of CaP into the pores, but did inhibit the 

formation of material and increased the ratio by 10 of single crystal rods to 

polycrystalline rods.  In addition it was also observed that crystallization proceeds more 

rapidly within the pores of the membrane than in the bulk solution in the presence of 

PAsp.  It is thought this observation is due to the ability of PAsp to promote nucleation 

when it is located on a substrate, while behaving as an inhibitor in solution.  The 

absence of a strong effect of PAsp raised questions about the existence of the CaP PILP 

phase, held responsible for the infiltration of the collagen fibrils by capillary action 

during bone formation.  This challenges the idea that a PILP phase forms in the CaP/ 

PAsp system, and it is therefore suggested it is actually a specific interaction between 

the collagen matrix and ACP/PAsp precursor particles
196

 or PAsp molecules
247

 which is 

responsible for an effective mineralisation. 
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This chapter deals with the effect of positively charged polymer additives on the 

crystallization of calcium carbonate.  Inspired by previous findings that the 

biomacromolecules occluded within calcium carbonate biominerals are highly acidic, 

most research on the effect of additives was based on the use of negatively charged 

additives.  In this chapter though, we demonstrate that the addition of the positively 

charged additive poly(allylamine hydrochloride) (PAH) can also have a dramatic effect 

on the crystallization of CaCO3, forming unusual structures such as films and fibers.  

Raman and optical microscopy analysis combined with TEM showed that these fibers 

were single crystals of calcite, micrometers long, while the films generally comprised 

mainly single crystal and polycrystalline calcite domains, in addition to small amounts 

of polycrystalline vaterite.  To understand the mechanism by which PAH induces these 

effects, a range of techniques was used, which demonstrated that hydrated 

Ca
2+

/PAH/CO3
2-

 droplets initially form in the solution, which subsequently coalesce and 

then crystallise, to give calcite patches and fibers, together with small quantities of 

vaterite.  It was therefore suggested that the initial formation of hydrated 

Ca
2+

/PAH/CO3
2-

 droplets is key to this process, rather than a specific interaction 

between the polymer and the growing crystal.  The formation mechanism of the fibers, 

in contrast, appears to rely on an oriented attachment mechanism of the charged 

anisotropic Ca
2+

/PAH/CO3
2-

 particles formed at low Ca
2+

/PAH ratio.  These findings 

therefore demonstrate that positively charged polyelectrolytes can have a dramatic 

effect on the crystallization of calcium carbonate crystals. 

 

4.1 General overview of calcium carbonates. 

CaCO3 makes up 4% of the earth's crust and is one of the most abundant biomineral 

being present in sea shells, sea urchins, coral and coccoliths.  It therefore plays a 

significant role in the chemistry of ocean water and in the understanding of the 

geological CO2 cycle
316

.  In addition to the fact that CaCO3 is present in large quantities 

in Nature, it is also very important industrially and has a huge relevance to daily life 

including scale formation, carbon sequestration and many applications in plastics, 

paints, paper and coatings industry
4, 25, 68, 317

. 

 

During its fabrication, control over the crystal habit of the CaCO3 crystals is very 

important since certain crystal habits are highly undesirable in industrial processes
39

 as 
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they can affect in many ways the appearance and characteristics of the powder, the flow 

characteristics, and the handling or packaging of the material.  Depending on the 

application where CaCO3 is needed, cubes, prisms, flakes, granules or needles may be 

the targeted morphology and it is therefore of general interest to find ways to control the 

morphology and shape of CaCO3 crystals.  In addition, calcium carbonate is often used 

as a model system to investigate the fundamentals of crystal growth since it is non-

toxic, abundant and essentially uncomplicated to grow under ambient conditions
14, 30

.  

In this way, the approaches which are developed with CaCO3, can then often also be 

applied directly to other materials in many different ways.   

 

Considering CaCO3, there are three anhydrous polymorphs (calcite, vaterite and 

aragonite), and two hydrated forms (calcium carbonate hexahydrate (CaCO3.6H2O) and 

calcium carbonate monohydrate (CaCO3.H2O)).  Calcite and aragonite have similar 

thermodynamic stabilities under standard conditions and are both common in biological 

and geological samples
318

.  Vaterite is thermodynamically unstable with respect to 

calcite and aragonite and is consequently extremely rare in Nature, being discovered as 

a minor component of only a few biominerals (for example in the inner ear of 

salmon
319

.  Calcium carbonate hexahydrate (CaCO3.6H2O) and calcium carbonate 

monohydrate (CaCO3.H2O)) are extremely rare in Nature and only a few examples can 

be found
320, 321

.  Recently, amorphous calcium carbonate (ACC), another form lacking 

long range order, has gained increasing interest, as it has been shown to act as a 

precursor for the formation of some crystalline phases during biomineralisation
4, 22, 25, 98

. 

 

4.1.1 Calcite 

Calcite is the most thermodynamically stable and abundant polymorph of calcium 

carbonate under ambient conditions, and is the main constituent of shells and most 

limestones in sedimentary rocks
4, 14

.  It has a rhombohedral lattice structure, and its unit 

cell can be considered in terms of the face-centred cubic unit cell of NaCl, where the Ca 

and CO3 groups replace the Na and Cl groups respectively.  Due to the larger size of the 

CO3 groups, the unit cell is somewhat distorted along a triad axis, resulting in a face-

centred rhombohedral cell.  For convenience, it is also possible to use a hexagonal unit 

cell with the same height as the rhombohedral cell, containing six CaCO3 units, as 

shown in Figure 1
4, 318

.  This model clearly shows the organisation of the calcite 



Chapter 4: Concerning Positively Charged Additives and their Effect on Crystallization 

116 

structure with the alternating position of the Ca
2+

 and CO3
2-

 ions
 
perpendicular to the c-

axis, where they are spaced at intervals of c/12.  The CO3 groups are oriented identically 

within a layer, in such a way that the orientation reverses between adjacent layers.  Each 

Ca
2+ 

ion is surrounded by six immediate CO3
2-

 neighbours, oriented in such a way that 

one oxygen from each CO3
2-

 neighbours calcium.  In this way each calcium occupies an 

octahedral environment of O atoms
4, 98, 322

. 

 

 

Figure 1: Schematic representation of the hexagonal unit cell of calcite  Image 

reproduced from ref. 318.  

 

4.1.2 Aragonite 

Aragonite is the second most abundant calcium carbonate biomineral with the 

difference in standard free energy between calcite and aragonite being 1.14  0.01 

kJ/mol
36

.  The crystal structure of aragonite (Figure 2a) can be described by an 

orthorhombic unit cell, where the ions are arranged in a pseudohexagonal arrangement
4
.  

In common with the calcite structure, the Ca
2+

 and CO3
2-

 are arranged in alternate layers 

perpendicular to the c-axis, with the plane of the CO3 groups lying perpendicular to the 

c-axis.  In aragonite, however, the CO3 layers are split into two layers parallel to the a-

axis.  Each Ca
2+ 

ion is again surrounded by six immediate CO3
2-

 neighbours, but this 

time the first three CO3
2-

 neighbours are bonded by two oxygen ions while the other 
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three are bonded by one oxygen each, leading to nine immediate oxygen neighbours.  

Although all the Ca-O bonds are longer in aragonite than in calcite, aragonite has a 

higher density due to its more effective packing. 

 

 
 Figure 2: (a) Unit cell of aragonite demonstrating orthorhombic unit cell with the 

additional CO3
2-

 groups outside the cell showing the Ca
2+

 ion coordination, and (b) 

subcell of vaterite.  Image reproduced from ref. 318. 

 

4.1.3 Vaterite  

Although rare in Nature, vaterite often occurs as a product of precipitation reactions, 

being kinetically favoured under certain conditions.  

The structure of vaterite (Figure 2b) can be described by a hexagonal unit cell in which 

the Ca and CO3 groups are again organised in alternating layers parallel to the c-axis.  

Yet in this case, the plane of the CO3 groups is parallel to the c-axis
323

.  Due to the 

loosely packed structure, vaterite is less dense then calcite and under ambient conditions 

would gradually transform into the more stable calcite or aragonite polymorphs. 

 

4.1.4 Amorphous calcium carbonate (ACC). 

Recent developments showed the presence and importance of an amorphous calcium 

carbonate (ACC) phase practicing a big role as precursor phase during 

biomineralisation
25, 324

.  According to Addadi et al.
25

, the first mention of ACC was 

made in the beginning of the twentieth century
325

, yet it was until 1997 that ACC was 

first shown to be a precursor of other CaCO3 polymorphs in biominerals during a study 

a b 
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of the development of sea urchin larval spicule
22

.  This was originally believed to be a 

single crystal of calcite, yet this research proved ACC was also present in the spicule 

which transformed into calcite with time. 

When synthesised, ACC is formed as aggregates of spherical particles around 100 nm in 

size
326

 and is shown to have composition of CaCO3. H2O
25

.  Under ambient conditions, 

ACC is the least stable form of CaCO3 and readily transforms into more stable forms 

such as calcite and vaterite with time.  Nature has the ability to stabilise ACC under 

atmospheric conditions, and under lab conditions it has been found to be possible to 

stabilise ACC by the addition of organic additives and ions such as magnesium
4, 25

.  

Recent findings also demonstrated that confinement can have a strong effect on the 

crystallization of ACC, due to its isolation from the surrounding solution
152

.   

Although ACC has no long range order, work done with X-ray absorption spectroscopy 

demonstrated short range atomic order can be found in ACC around the calcium ion in 

the first and second coordination shell, which reflects the final structure of the product 

polymorph
25, 327-330

.  Short range structures of proto calcite and proto vaterite were also 

reported by Gabauer et al. in their study of prenucleation structures
331

. 

How ACC transforms into more stable polymorphs is not entirely clear but two different 

transformation mechanisms have been proposed: a solid state transformation and a 

dissolution/reprecipitation mechanism.  According to Addadi et al.
25

 the mechanism of 

transformation involves a solid state rearrangement in which the locally-ordered ACC 

acts as the basic unit and subsequently reorganizes into the corresponding crystalline 

form.  This was based on their findings on the crystallization of the amorphous 

precursor phase of sea urchin larval spicules, which occurred uniformly throughout the 

biomineral by development of a network of crystalline domains in the absence of a 

defined crystallization front
22

.  According to their argument, this preservation of local 

structure could not have occurred under the alternative “dissolution and reprecipitation” 

route.  The “dissolution and reprecipitation” route
332-335

 on the other hand, describes a 

transformation occurring by dissolution and recrystallization of ACC into a more stable 

phase.  This was demonstrated by Aizenberg et al.
27, 336

 using self-assembled 

monolayers (SAMs) to stabilize ACC and enable a single nucleation point.  By the use 

of organically modified micropatterned templates, the formation of metastable ACC 

film was induced, whereafter a nanoregion of calcite nucleation sites were imprinted in 

certain specific areas.  Their research showed that the crystallization of the synthetic 

ACC on a surface proceeds from the nucleation site, and that the crystal phase grows 
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from this point with a well-defined crystallization front, expelling water from the 

structure during crystallization.  The crystallization process was suggested to occur by 

mass transport between the amorphous and crystalline phases, rather than by a solid-

state transformation.  This was demonstrated by the increase of the pore diameters in the 

forming crystal as compared with the original ACC film. 

 

4.1.5 Influence of Mg on the crystallization of CaCO3. 

Investigation of biogenic CaCO3 has shown that calcite biominerals often contain 

substantial amounts of magnesium
129, 337

.  Occupation of the Ca
2+ 

sites of the calcite 

lattice by Mg
2+

 ions gives rise to high-magnesium calcite which is generally defined as 

containing at least 4% MgCO3, although in biological systems examples of calcite 

crystals where about 40% of the sites have been replaced by Mg
2+

 ions have been 

found
338

.  Until now it hasn‟t been possible to obtain a similar result in synthetic 

systems due to the inevitable formation of aragonite instead of calcite at high Mg
2+

 

concentrations.  This is because Mg
2+

 ions have the ability to stabilise aragonite since 

they are less affected by the incorporation of the highly hydrated Mg
2+

 ions than 

calcite
4
.  The incorporation has no effect on the rate of crystal growth of aragonite, but 

has a retarding effect on that of calcite since the denser aragonite structure cannot 

incorporate partially dehydrated magnesium ions.  The incorporation of Mg
2+

 inside the 

calcite structure induces strain in the crystal lattice, increasing the internal free energy 

of the crystal and the crystal solubility
26

.  The thermodynamic limit for Mg 

incorporation into calcite crystals was determined to be 10 mol% since at this value 

calcite reaches a similar solubility to aragonite
129

.  The mechanism of how biological 

calcite achieves such a high level of Mg
2+

 incorporation remains unclear but 

measurement of the amount of Mg
2+

 incorporated appears to largely depend on the 

present environmental levels of Mg
2+

in the growth solution
339, 340

.  It is known that high 

levels of Mg
2+

 are able to contribute significantly in stabilising the amorphous phase 

and it is possible this is one of the reasons such high Mg
2+

 contents are found.  Mg
2+ 

ions are clearly an important component in the formation of ACC in vivo, since they 

appear to be present in all biogenic ACC samples characterized to date
4, 129, 132

.  

Previous research showed that a Mg
2+

 content of up to 21 mol% Mg
2+

 could be 

generated synthetically via an amorphous phase
129

 which can be increased to up to 34 
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mol% when macromolecules are additionally present
129, 337

.  These synthetically formed 

high-Mg calcites are invariably formed as polycrystalline material though. 

 

4.1.6 Influence of soluble additives on the morphology of CaCO3. 

Since applications of CaCO3 strongly depend on the morphologies of the crystals, the 

production of particles with well-defined morphologies and uniform size distributions is 

a necessity and has been investigated intensively before
11, 12, 30, 48, 98, 104, 341

.  As 

discussed in the introduction, inspired by Nature, soluble macromolecules are often 

used to manipulate the morphology
28, 30, 98, 103, 104

 and since this process is much easier 

to mimic then the use of confinement or templates, a much higher focus in research was 

therefore on this method
28, 30, 98, 103, 104

. 

 

4.1.6.1 Effect of positively charged additives 

Based on previous observations that the amino acids associated with CaCO3 were 

highly acidic, being rich in aspartic and glutamic acid
113-117

, negatively charged 

additives have principally been considered important in controlling the morphologies of 

biominerals.  Yet the potential importance of other amino acids present in the extracted 

biomacromolecules was largely overlooked.  For example, in addition to aspartic and 

glutamic acid, the basic amino acids lysine and arginine are also common in the 

sequences of these macromolecules
112

 and the terminal sequences of nacre 

macromolecules, can exhibit either a net negative or positive charge
112

.  Recent 

modelling results with biogenic macromolecules have also shown that arginine residues 

are the most important binders of the chicken eggshell protein ovocleidin-17 to 

calcite
342

.  Work done by Helmut et al. with the positively charged polyelectrolyte 

poly(allylamine hydrochloride) (PAH) and a N-trimethylammonium derivative of 

hydroxylethyl cellulose, showed an influence over the morphology of BaCO3
341

 and 

CaCO3
343

 forming spherical and dumbbell BaCO3 shapes and hexagonal vaterite 

mesocrystals respectively.  Other positively charged additives include 

dodecyltrimethylammonium bromide (DTAB), whose addition resulted in six-petal-

flower-shaped, coral-shaped, dendrite-shaped and multi-antenna-shaped CaCO3
344

 while 

adding poly(L-lysine) formed twin-sphere CaCO3 with an equatorial girdle
345

.  

Although not crystalline, work done on silicates also showed that a set of polycationic 

peptides called silaffins, isolated from the cell wall of a diatom, formed networks of 
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silica nanospheres within seconds when added to a solution of silicic acid
346

.  The cell 

wall also contained large quantity of long chained polyamines (LCPAs), which induced 

rapid precipitation of silica and controlled the silica sphere size in vitro
347

.  Similar 

results were found for synthetic polyamines, such as polyallylamine and LCPAs, and 

aggregation and aggregate size were found to be directly correlated with the presence 

and concentration of multivalent anions, such as phosphate, sulfonate, or citrate ions.  

These negatively charged ions act to cross-link LCPAs through the establishment of 

hydrogen bond and ionic interactions.  Silicic acid species may absorb onto the LCPA 

aggregates, forming a liquid precipitate which then polymerize into silica
348, 349

. 

 

4.2 Aims of the project. 

All the work stated above demonstrates that positively charged polyelectrolytes can 

have some an effect on the morphology of crystals, yet the research on the effect of the 

additives has never been done thoroughly and systematically.  In this chapter, the effect 

of the positively charged polyelectrolyte poly(allylamine hydrochloride) (PAH) on the 

precipitation of CaCO3 is investigated over different additive concentrations and pH 

ranges.  This molecule has previously been shown to influence the crystallization of 

BaCO3
341

, and features a similar structure to the negatively charged polyelectrolyte 

PAA (poly(acrylic acid)). 

PAH it is a cationic polyelectrolyte, manufactured by the polymerization of allylamine 

(Figure 3).  It consists of functional amino groups and has a pKa value of 8.5, and is 

therefore protonated at the applied starting pH of 6 (CaCl2.2H2O solution). 

 

 

Figure 3: Structure of PAH. 
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4.3 Experimental procedures 

Calcium carbonate was precipitated in the presence of poly(allylamine hydrochloride) 

(PAH) with and without purification under a range of solution concentrations.  The 

progress of the reaction was also investigated with time and pH. 

 

4.3.1 Crystallization Process. 

CaCO3 was precipitated in the presence of PAH (Mw 56.000 Da and 15.000 Da 

available from Aldrich) using the ammonium carbonate diffusion method (See 2.1.2).  

A CaCl2.2H2O solution of 20 mM was prepared and variable amounts of PAH were 

added to the solution.  PAH concentrations ranged from 5 g/mL to 2 mg/mL.  The 

initial pH of the solution ranged between 4.16 and 7 depending on the PAH 

concentration, and raised to about 9.5 after a couple of hours.  Variable amounts of a 

100 mM MgCl2·6H2O and 10 mg/mL PAH stock solution were added to a Petri dish 

containing CaCl2.2H2O solution to give the required Ca
2+

/Mg
2+

 ratio and PAH 

concentrations.  Glass slides were used as substrates, and put upright into the Petri dish 

to avoid sedimentation of crystals onto the glass slides.  The petridish was then placed 

in an ammonia desiccator whereafter crystallisation occurred.  The glass slides were 

removed from solution after variable times (1 hour to 6 days), washed with ethanol and 

allowed to dry at room temperature. 

 

4.3.2 Control experiments. 

Control experiments were performed using identical procedures to those described 

below but in the absence of PAH. 

 

4.3.3 Characterization of the calcium carbonate precipitates. 

The precipitated CaCO3 particles were investigated using both FEGSEM, TEM and 

optical microscopy, with analysis between crossed polars in the optical microscope 

providing information on the crystallinity of the film (single 

crystal/polycrystalline/amorphous structures).  Micro-Raman spectroscopy and electron 

diffraction were used to determine the CaCO3 polymorphs present in the samples.  To 

investigate the early stages of the reaction, a carbon-coated Cu TEM grid was dipped in 

a solution which was taken out at variable times.  Alternatively, to avoid oxidation of 
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the Cu-grids during the ammonia diffusion method, a carbon-coated Ni TEM grid was 

placed in a solution and removed from the solution at variable times.  Afterwards both 

grids were washed with ethanol and left to dry.  Investigation of the fibers with TEM 

was also accomplished by scraping the fibers off the supporting glass slide and 

transferring them to a carbon-coated Cu TEM grid. 

 

4.3.4 Compositional analysis 

After a certain reaction time the solution was filtered through Millipore track-etched 

membranes (0.45 µm) and washed 3 times with ethanol.  The precursor phase was then 

scraped off the membrane, and analysed with infrared, TGA, AA and Raman 

microscopy.  The obtained data was compared with those obtained from a control 

sample which had been prepared in the absence of Ca
2+

 ions by mixing a solution of 10 

mM Na2CO3 with 1 mg/mL PAH, and adjusting the pH level to 9.0 with HCl. 

 

4.3.5 Cryo-TEM 

The Cryo-TEM measurements were carried out in collaboration with Dr. Fabio 

Nudelmann of Nico Sommerdijk‟s group in Eindhoven University.  

A vitrification robot (FEI Vitrobot Mark III) which was equipped with a humidity- and 

temperature-controlled glove box was used to prepare the samples. Cryo-TEM grids, 

R2/2 Quantifoil Au Jena grids, were surface plasma treated using a Cressington 208 

carbon coater before the vitrification procedure.  3 µl of the solution was taken out of 

the petridish after variable times and put on an Au grid inside the vitrobot chamber (at 

100% humidity and 20 ° C), which was subsequently blotted for 2 sec with filter paper 

and immersed in liquid ethane cooled by liquid nitrogen.  The samples were kept in 

liquid nitrogen and then loaded into the Cryo-TEM holder. 

 

4.3.6 DLS measurements 

DLS measurements were conducted by taking out 2 mL of the solution after 30 min and 

3 hours placed in an ammonium carbonate desiccator and pipetting the sample into a 

cuvette.  DLS-measurements and zeta potential measurements were subsequently 

conducted on the samples. 
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4.3.7 Investigation of effect of pH by slow addition experiment: 

A slow addition or dripping method experiment was set up where the effect of the 

solution pH on the precipitation of CaCO3 was investigated in the presence of PAH 

(Figure 4).  This technique allowed us to recreate the slow build up and continuous 

repletion of carbonate ions characteristic of the gas diffusion technique (see Chapter 

2.1.2) but with a control of the pH.  Therefore, a 20 mM CaCl2.2H2O solution was 

slowly added over a period of time to a 20 mM Na2CO3 containing 1 mg/mL of PAH by 

drop wise addition of the CaCl2.2H2O solution, to give final concentrations of 10 mM 

Na2CO3, 0.5 mg/mL PAH, and 10 mM CaCl2.2H2O.  The initial pH of the solutions was 

varied from 4 to 12 to allow the precipitation to happen at different final pH values. 

 

 

Figure 4: Experimental set-up for the slow addition experiment of Ca
2+

 to a CO3
2-

 and 

PAH solution. 

 

4.3.8 Track-etched membrane experiment 

A track-etched (TE) membrane (membrane pore 50 nm) was put in a Petri dish filled 

with 10 mM CaCl2.2H2O and 1 mg/mL PAH placed in an ammonia desiccator.  At the 

end of the reaction, the TE membranes were removed from the reaction solution and 

dissolved in DCM 

 

4.4 Results 

4.4.1 Effect of PAH on the morphology of calcium carbonate 

For the control experiments, in the absence of PAH, calcite rhombohedra (Figure 5a) 

with an average size of 50 µm were distributed over the glass substrate as expected. 



Chapter 4: Concerning Positively Charged Additives and their Effect on Crystallization 

125 

Examination of the crystals under crossed polarisers shows that they were single 

crystals (Figure 5b). 

 

  

Figure 5: Optical microscope image under crossed polarisers (b) of calcite crystals 

precipitated on a glass slide after 1 day from a 10 mM CaCl2 solution. 

 

The polymorph was confirmed using Raman microscopy (Figure 6), which showed 

characteristic peaks at 1085 cm
-1

 (ʋ 1 internal CO3 symmetric stretch), 711 cm
-1

 (ʋ 4 

internal in-plane-bending), 280 cm
-1

 (rotational) and 154 cm
-1

 (translational) 

corresponding to literature values for calcite
350, 351

. 

 

 

Figure 6: Raman spectrum of crystals precipitated on a glass slide after 1 day from a 10 

mM CaCl2 solution, corresponding to calcite. 

 

a b 
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Subsequently, the effect of the addition of PAH was investigated at concentrations of 10 

mM CaCl2.2H2O.  Firstly it was found low that concentrations of 5 to 10 µg/mL PAH 

had little effect on the crystallization.  Rhombohedral calcite crystals were formed, 

where some of them were slightly deformed, showing rounded faces and geometric 

cavities in their centres (Figure 7).  This relatively minor modification in crystal 

morphology could be expected and was easily ascribed to interaction of the polymer 

with the edges and faces of the crystal
14, 38, 102

 influencing the growth rate of the faces 

and edges. 

 

 

 

 

Figure 7: Optical microscope image (a) and FEGSEM image (b) of crystals formed in 

the presence of PAH at [CaCl2] = 10 mM and [PAH] = 0.01 mg/mL. 

 

By further addition of PAH to concentrations of 50 to 80 µg/mL a much bigger effect 

was observed.  In addition to deformed crystals as observed before, the presence of 

PAH also led to the formation of some remarkable fibrous particles growing out of 

distorted rhombohedral calcite crystals (Figure 8).  Most of the fibers grew out of the 

crystals, perpendicular to the crystal surface, often changing direction abruptly.  The 

fibers were almost always attached to the glass slide and were only a couple of nm 

thick, but typically a few µm long.  Small bobbles were also sometimes observed at the 

ending of the fibers (Figure 8d). 

 

 

 

 

a b 
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An even more remarkable result was the formation of a crystalline film at this PAH 

concentration, which was highly birefringent under the crossed polars of the optical 

microscope (Figure 9). The occurrence of these films became more profound when 

polymer with lower molecular weight was used (15.000 Da instead of 56.000 Da).  

Some of the films looked polycrystalline (Figure 9a, b) under crossed polarisers, while 

others consisted out of single crystal patches, around 100 m in size (Figure 9c, d) 

  

 
 

Figure 8: Optical microscope image (a) and FEGSEM images (b, c, d) of CaCO3 

crystals precipitated in the presence of 0.08 mg/mL PAH after 3 days reaction time.   

Inset of (d) shows a small bobble at the end of a fiber. 
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Figure 9: Optical microscope images after 3 days reaction time of a vaterite film (a, b) 

and calcite film (c, d) under crossed polars (b and d), covering the top parts of the glass 

slide after addition of 0.08 mg/mL PAH to the solution.  

 

Raman analysis showed that the polycrystalline film was constructed from vaterite (with 

characteristic peaks at 1079 cm
-1

 and 1093 cm
-1

 from the internal CO3 symmetric 

stretching ʋ 1 and a lattice mode peak at 300 cm
-1

)
352

, while the single crystal ones were 

calcite (with characteristic peaks at 1085 cm
-1

, 713 cm
-1

, 280 cm
-1

 and 152 cm
-1

)
350, 351

 

(Figure 10).  These films were only present at the point of the water-air interface. 
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Figure 10: Raman spectra of a single crystal calcite film (Figure 9c) and a 

polycrystalline vaterite film (Figure 9a) formed after 3 days on a glass slide in the 

presence of 0.08 mg/mL [PAH]. 

 

The formation of fibers and films became more profound at higher concentrations such 

that at concentrations of 0.2 mg/mL fibers with aspect ratio‟s of over 20 (60 µm long) 

were produced growing out of a central core (Figure 11a) or film (Figure 11c, d).  These 

fibers were identified as calcite using Raman microscopy (Figure 12).  The formation of 

film became more extensive at random positions on the glass slide (Figure 11b), and 

were often identified as calcite by Raman (Figure 12). 

300 
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Figure 11: Optical microscope images taken under crossed polars of calcite fibers (a) 

and a crystalline calcite film (b) covering some parts of the glass slide after 1 day in the 

presence of 0.2 mg/mL PAH.  (c) And (d) show FEGSEM images of the same sample. 

 

 

Figure 12: Raman spectra of fibers and film formed on a glass slide after 1 day after in 

the presence of 0.02 mg/mL PAH. 

 

Increasing the concentration further to 0.5 mg/mL and 1 mg/mL led to the construction 

of polycrystalline calcite films which almost entirely covered the glass surface with 

fibers often associated with these films (Figure 13a and c arrowed and 14a and b).  In 

a b a 

c d 
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between the calcite film, small areas of vaterite film (about 10% of the total 

polycrystalline film) were also found (Figure 13c) as identified by Raman (Figure 15).  

In addition the polycrystalline calcite film more patches of single crystal calcite film 

were observed at the top of the glass slide, and in between the polycrystalline film 

(Figure 13d, e and f). 

  

  

  

Figure 13: Optical microscopy images (a) under crossed polarisers (b-f) of crystalline 

films formed after 1 day by addition of 1 mg/mL PAH to the solution.  (a) And (b) show 

images of a polycrystalline film with small fibers growing out (arrowed). (c): A calcite 

polycrystalline film with the white arrow denoting the vaterite patch.  (d, e, f) Calcite 

single crystal film covering some parts of the glass slide.  Transition bars are observed 

especially in (d) and (f).  

a b 
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FEGSEM imaging showed that the single crystal films had a thickness of about 0.5 µm 

(Figure 14f) and had quite a smooth surface as compared with the polycrystalline ones 

(Figure 14a, b in comparison with c, d, e). 

 

 

 

 

 
 

  

Figure 14: FEGSEM images of a polycrystalline (a, b) and single crystal (c, d, e, f) 

calcite film covering some parts of the glass slide formed after 1 day by addition of 1 

mg/mL PAH to the solution.  The polycrystalline film (a, b) is much rougher and fibers 

emerge from the film.  The single crystal films are much smoother (c, d, e).  The 

parallel striations on the single crystal patches (d) seem to be gaps in the surface. 
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Figure 15: Raman spectra of a polycrystalline calcite film and vaterite film formed on a 

glass slide after addition of 1 mg/mL [PAH]. 

 

In agreement with the results obtained with the negatively charged polyelectrolytes 

PAsp/PAA, the single crystal films often featured also so called “transition bars” 

(Figure 13d, e, f and 14d), which were attributed before to exclusion of the polymeric 

impurity into diffusion limited zones as crystallization proceeds across the amorphous 

phase
89

.   

In time the transition bars on our samples seem to diminish, and FEGSEM images 

(Figure 14d) showed the transition bars were ridge-like regions with gaps in the film, 

delineated by material with an undefined shape. 

 

Surprisingly, these single crystal patches could principally be observed at the air/ water 

interface, while the polycrystalline films were present where the glass slide was entirely 

dipped into the solution.  Their single crystal structure was further confirmed by their 

uniform contrast and optical extinction under polarised optical microscopy (Figure 16). 

By rotation of the sample by 45 degrees it was seen the film went from completely 

bright (the crystal is perpendicular to the light beam) to dark when the crystal was 

parallel to the incident light. 
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Figure 16: (a) Optical microscope of a single crystal calcite domain in a thin film 

deposited on the substrate adjacent to the air/water interface, viewed between crossed 

polarisers.  (b) The same area viewed after rotation of the sample, demonstrating 

uniform extinction.  Both were formed in a 10 mM CaCl2 solution with 1 mg/ml PAH 

after 1 day. 

 

The films and fibers formed were further investigated with TEM.  Since it proved to be 

a challenge to remove film patches of the glass slide, thin enough to be investigated 

with TEM, Ni-grids were used as a substrate on which to deposit CaCO3 films.  They 

were put floating on top of the solution, with the carbon-covered formvar film in contact 

with the solution.  Although the surface properties of the glass slides and the TEM grids 

are different, similar CaCO3 films were obtained in both cases.  
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Figure 17a, b, c: TEM images of CaCO3 films precipitated on a TEM grid in the 

presence of 1 mg/mL PAH after 1 day.  (a) Shows a TEM image of a grid with a fiber 

growing out.  Polycrystalline films (b) and single crystal (c) patches were found.  Both 

crystalline films were identified as calcite. 

 

Figure 17a shows a spherical patch with a fiber-like entity growing out of the patch.  

The shape of the fiber appears as if it is grown in a helical shape.  Figure 17b shows a 

polycrystalline film of calcite and the patches appear to be built from smaller particles 

of about 10-30 nm in size.  In addition to polycrystalline patches, patches with a single 

crystal diffraction pattern were also found (Figure 17c and inset).  The distance between 

the fringes is 3.4 Å, corresponding to the diffraction pattern and the (  13) plane of 

calcite.  The films appear to be constructed from an agglomeration of smaller particles.  
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As described before, as well as supporting the formation of crystalline CaCO3 films, the 

PAH also induced the growth of interesting fibers of CaCO3.  The fiber thickness and 

length varied from sample to sample with thicknesses from 10 nm to 10 µm and lengths 

a couple of nm to hundredths of µm.  Characterisation of the thin fibers was carried out 

with TEM and selected area electron diffraction (SAED) and high resolution TEM 

(HRTEM) showed that each fiber was a single crystal of calcite.  Figure 18a shows a 

TEM image of a fiber with corresponding SAED as inset.  The SAED corresponds to 

calcite with a [4 5   ] zone axis.  An HRTEM image of the same fiber (Figure 18b) and 

inset) shows continuous fringes along the fiber which can be ascribed to {104} planes 

of calcite.  The long axis of the fiber in Figure 18 was identified as corresponding to the 

[13 5 3] direction as indicated by the arrow, but analysis of a number of fibers showed 

no preferential direction.  Interestingly, the TEM images of the fibers also showed that 

they are often covered with a less dense surface coating (Figure 18b).  By observing the 

lattice fringes it was seen that these did not persist into this coating suggesting that the 

layer is amorphous.  This would be consistent with an extrusion of polymer during the 

crystallization stage, thereby creating an ACC phase too rich in polymer to crystallise.  

A similar amorphous layer has also been observed surrounding the aragonite platelets 

comprising the nacre of molluscs, an effect which was in this case attributed to their 

formation via a polymer-stabilised ACC phase
353

. 

Unfortunately, efforts to determine the elemental composition of the coating on the 

fibers using EDX were unsuccessful, due to its small thickness. 
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Figure 18: TEM images of a fiber formed after 1 day in the presence of 1 mg/ml PAH.  

(a) TEM image with corresponding SAED pattern in the inset corresponding with a 

single crystal pattern of calcite with a zone axis of [4 5   ].  An arrow indicates the [13 5 

3] direction along the long axis of the fiber.  (b) An HRTEM image of the fiber shown in 

(a) with an image of the continuous {104} lattice fringes in the inset. 

 

4.4.2 Effect of Ca
2+ 

concentration 

To investigate the effect of the Ca
2+

 concentration, a 1.5 mM CaCl2.2H2O solution was 

mixed with 0.5 mg/mL PAH and was placed in a saturated ammonium carbonate 

desiccator to precipitate calcium carbonate crystals.  The initial pH of the solution was 

4.60 which rose to 9.5 after 1 day. 

 

In contrast with the polyhedral prismatic rhombohedral calcite crystals, which are 

precipitated in the absence of additives, remarkable fibrous particles formed in the 

presence of PAH, growing from one centre point (see Figure 19 and 20).  In contrast to 

the higher Ca
2+

 concentrations, no film formation was observed expect in some very 

small patches.  These patches were always associated with fibers and had a very rough 

appearance (Figure 20e).  The fibers grew out of previously deposited spherical 

particles or thick films covering the surface.  Reaction times of more than 1 day were 

necessary such that material could be observed with the optical microscope.  Since 

almost no film formation was observed in this case, it appears that low Ca
2+

/PAH ratios 

favour fiber formation. 

3.0 Å  (104) 

a b 104 
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   Figure 19a: Optical microscope images of fibrous structures formed 6 days after mixing 

1.5 mM CaCl2 solutions with 0.5 mg/mL PAH.  (b) Analysis between crossed polars of 

the fibers shows that they are single crystals. 

 

These fibers were again single crystals (Figure 19b and 20f) and solid fibers with 

lengths of 50 µm to 120 μm and thicknesses of 60 nm to 200 giving average aspect 

ratio‟s of ≈ 400 (Figure 20e) were observed.  The diameter of the fibers varied from 5 

µm at the base to a few nanometres at the top (Figure 20a) and the fibers were 

constructed out of nanometre sized building blocks.  Some of the fibers showed the 

formation of branches (Figure 20d inset) and a double growth of fibers was also 

observed occasionally (Figure 20a, b and c), which evolved into a single fiber at the 

end.  The growth direction was quite random where as well as straight fibers (Figure 

20a), curly fibers (Figure 20c) and fibers abruptly changing direction (Figure 20d) were 

observed.  Usually, the abrupt change of direction occurred at angles of around 70-100 

degrees, although this differed a lot and no real trends were seen.  Raman and TEM with 

SAED confirmed about 90% of fibers were calcite (Figure 21 and 20f) while the 

remaining fibers were vaterite (Figure 22).  The orientation of the fiber in Figure 20f is 

in the [330] direction along the long axis of the fiber, but this wasn‟t always the case for 

other investigated fibers. 
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Figure 20: FEGSEM images of calcium carbonate fibers precipitated from 1.5 mM 

CaCl2 solutions containing 0.5 mg/mL PAH after 3 days.  (a) Shows CaCO3 fibers 

growing out of a central core with a lower magnification in the inset of the same crystal.  

(b) Is a higher magnification of (a).  (c) And (d) show higher magnification images of a 

single fiber, demonstrating the different growth behaviour.  (e) Shows fibers growing 

out of a patch on the surface.  A TEM image of a fiber with corresponding calcite SAED 

is shown in (f) oriented according to the [330] direction. 
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Although the vast majority of the fibers were calcite, a number of short vaterite fibers 

were also observed.  These fibers were almost the same morphology as the calcite fibers 

except that they had smaller aspect ratios, constant thicknesses, were more curly and 

tended to grow alone instead of in group (Figure 22). 

 

  

Figure 22a: SEM images of fibers grown in the presence of 0.5 mg/mL PAH after 6 

days.  (b) Raman spectrum of the produced fibers corresponding with vaterite 

 

Variation of the PAH concentration had a small effect on the fiber morphologies.  As 

can be seen in Figure 23a, at higher PAH concentrations of 4 mg/mL, the fibers were 

quite smooth and thin forming a bundle of fibers, and were covered with some globular 

material without a defined shape (Figure 23a, b).  Lowering the PAH concentration to 

conditions of 0.5 mg/mL (Figure 23b, c and Figure 20) led to rougher, shorter fibers 

where the constituent particles were very clearly visible.  Lowering the concentration 

 

Figure 21: Raman spectrum of produced fibers grown in the presence of 0.5 mg/mL 

PAH after 3 days, corresponding with calcite. 
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further to 0.01 mg/mL led to the construction of fewer, but thicker fibers which seemed 

to grow out of films deposited on the glass slide.  Very few fibers formed at 

concentrations of 0.005 mg/mL such that these were small and only were observed 

growing out of spherical aggregates (Figure 23g).  Holes were found inside the crystals 

and in some cases (Figure 23h), large spiral pits formed in the centres of the crystal 

faces, comparable with previous results
76

.  No fibers formed at lower concentrations, 

and only calcite and some vaterite crystals were observed (Figure 23i and j). 
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Figure 23: CaCO3 particles precipitated in the presence of PAH at [CaCl2] = 1.5 mM 

and [PAH] = 4 g/L (a, b,), 0.5 g/L (c, d), 0.01 mg/mL (e, f), 0.005 mg/mL (g, h,), 0.001 

mg/mL (i) and 0.0005 mg/mL (j) after 6 days reaction time. 

 

4.4.3 General film formation mechanism 

The results of the previous experiments were rather surprising, especially given that 

most positively charged organic additives exert little influence on calcium carbonate 

precipitation
344,345

.  To understand the formation mechanism of the films better, we 

investigated the early stages of precipitation process of calcium carbonate in the 

presence of PAH using a range of methods. 

 

4.4.3.1 Indications of a phase separation mechanism: Optical microscopy and 

SEM. 

PAH is known to undergo a microphase separation in the presence of carbonate ions 

(and also in the presence of other anions
354

) due to the formation and co-existence of R-

NHCO2
–
 and R-NH3

+
 groups in the pH range of 7.4 to 10

355
.  Since at the working pH of 

our experiments (9.5), the amine groups on the PAH molecule are expected to be 50% 

protonated
356

, a microphase separation should occur, which was also confirmed here 

visually, even in the presence of Ca
2+

 cations in the reaction solution.  This phase 
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separation started at the top of the solution and gradually penetrated into the solution.  

By the use of optical microscopy it was possible to distinguish the formation of droplets 

at early reaction times of 3 h, which were seen to condense together later on, providing 

some evidence for liquid-like behaviour (Figure 24). 

 

 

Figure 24: Optical microscope image of material formed in a solution of composition 

[CaCl2] = 10 mM and [PAH] = 1 mg/mL after exposure to ammonium carbonate vapour 

for 3h. 

 

To investigate this further, glass substrates were placed in solution for 6 h to investigate 

the formation of the various morphologies on the glass slides.  Analysis with optical 

microscopy showed large patches of amorphous films were formed (Figure 25a).  These 

crystallised after heating in an oven to 400°C (Figure 25b).  Looking at these glass 

slides with FEGSEM revealed that in addition to large big amorphous patches, 

assemblies of small spherical particles were also found on the surface (Figure 25c, d).  

These seemed to coalesce into films, indicating they might be highly hydrated and can 

exhibit some liquid-like behaviour. 
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Figure 25: Optical microscope (a, b) and FEGSEM images (c, d) of amorphous (a, c, d) 

CaCO3 films precipitated in the presence of PAH at [CaCl2] = 10 mM and [PAH] = 1 

mg/mL after 6 h.  Figure (b) shows an optical image of (a) under crossed polarisers after 

heating to 600° C, indicating that the amorphous film had crystallised.
 

 

It was further observed that the starting solutions of Ca
2+

 and PAH became turbid both 

on diffusion of ammonium carbonate vapour into a Ca
2+

/PAH solution, but also stayed 

turbid when Ca
2+

 ions were slowly added to a Na2CO3/PAH solution by the use of a 

pump system (Figure 4). 

This experiment was set up to avoid the buffering activity of the ammonia in the 

ammonia diffusion method with final pH of 9.5.  Therefore a 20 mM Na2CO3 solution 

containing 1 mg/mL PAH (pH 11), was slowly mixed with 20 mM CaCl2 (pH 6.3) by 

dropwise addition of the solution, to give final concentrations of 10 mM Na2CO3, 0.5 

mg/mL PAH and 10 mM CaCl2.  The initial pH of the solutions was varied from 4 to 12 

to investigate the effect of pH and therefore the charge of the NH2 group on the PAH 

molecule. 

When the final solution pH was 9.3 (Figure 26a, b), similar morphologies as with the 

ammonia diffusion method were obtained and thick films were deposited from a cloudy 
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solution.  In some cases small fibers growing out of spherical particles were also 

observed (Figure 26b). 

 

  

  

Figure 26: FEGSEM (a, b, d) and optical microscope image (c) of calcium carbonate 

crystals obtained on drop-wise addition of a 20 mM CaCl2 solution to a solution 

containing 20 mM Na2CO3 and 1 mg/mL PAH.  (a, b) The starting pH of the CaCl2 was 

 6.3 and Na2CO3  11.3 to give a final pH of 9.36 after 1 h reaction time.  Thick film 

patches and spherical particles were formed from which fibers grew.  In the case of (c) 

and (d) the starting pH of both solutions was  12.5 while the final pH was  12.2 after 

1 h 15 min reaction time.  Only distorted calcite crystals were observed under these 

conditions. 

 

When the same experiment was repeated, but this time with the initial and final pH 

values of the solution ≈ 12, only distorted calcite crystals were obtained (Figure 26c and 

d).  In this case, no phase separation occurred due to the deprotonated amine group 

 

4.4.3.2 TGA, Raman and IR analysis of the phase separation 

In order to rule out that the solutions comprising Ca
2+

/PAH/CO3
2-

 became visibly 

cloudy simply due to the precipitation of CaCO3, thermogravimetric analysis (TGA), 

Raman investigations and IR of the precipitates formed at early reaction times were 

a a a b 
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carried out.  These strongly supported the model of phase separation.  Figure 27 shows 

the Raman spectrum of a precipitate obtained from exposure of a solution of 

composition [CaCl2] = 10 mM and [PAH] = 1 mg/mL to ammonium carbonate vapour 

for 3 h, which was compared with that of the PAH molecule alone, and of a 

polycrystalline calcite film generated under the same reaction conditions after 1 day.  

The Raman spectrum of the precursor PAH/CaCO3 (Figure 27B) species showed broad 

peaks at 1084 cm
-1

 (1, internal CO3
2- 

symmetric stretch mode), 720 cm
-1

 (4, CO3
2-

 

symmetric bending mode) and 158 cm
-1

 (translational lattice mode) which can clearly 

be attributed to ACC
350

, while peaks at 830 cm
-1

 (Cl-NH2 stretch mode) and 1165 cm
-1

 

(C=C bending mode) corresponded to the PAH molecules
355, 357

 (Figure 27C). 

 

 

Figure 27: Raman spectra of (A) a polycrystalline calcite film, (B) precipitate obtained 

from exposure of a solution of composition [CaCl2] = 10 mM and [PAH] = 1 mg/mL to 

ammonium carbonate vapour for 3 h and (C) PAH. 

 

With IR (Figure 28) a similar result was obtained where the bands around 1500–1600 

cm
-1

 originate from the so-called amide II of the PAH molecule and are attributed 

mainly to the distortion oscillations of N-H and the stretching oscillations of C–N in the 

carbamate.  The band around 1300 cm
-1

 is called the amide III band and is attributed to 

the carbamate
358

.  An N-stretching band from the PAH molecule at 814 cm
-1 

can be seen 
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in both curves.  The precipitate from the reaction solution show two extra peaks at 1393 

cm
-1

 and 862 cm
-1 

originating from the CO3 asymmetric stretch and the CO3 out-of-

plane bend of amorphous calcium carbonate respectively
330

 (Figure 28A).  The PAH 

peaks are also shifted to higher wavenumbers from 1552 cm
-1

 to 1567 cm
-1

 and from 

1479 cm
-1

 to 1484 cm
-1

. 

 

 

Figure 28: Spectra of (A) precipitate from solution of [CaCl2] = 10 mM, [PAH] = 1 

mg/mL after 3 hour reaction (pH 8.8) (B) PAH control.  The precipitate show two extra 

peaks at 1393 and 862 originating from ACC.  

 

Further investigation of the composition of this phase was carried out using TGA which 

revealed that the early stage precipitates contained 20.68 wt% water, 37.80 wt% PAH 

and 41.52 wt% CaCO3 (Figure 29).  The 20.68 % loss in weight which is seen up to 200 

°C was attributed to the loss of water and further dehydration, while the subsequent 

37.80 % weight loss lasting till about 600 °C was attributed to the degradation of the 

PAH molecules.  The complexation of the polymer delays the thermal decomposition up 

to 600 °C (thermal decomposition of PAH occurs only before 450 °C).  Finally, above ≈ 

650 °C, the characteristic decomposition of calcium carbonate (18.36 % weight loss) to 

calcium oxide (23.16 wt%) can be seen. 
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Figure 29: TGA data of material obtained after 3 h at Ca = [10 mM], [PAH] = 1 mg/mL.   

 

Comparison with precipitates formed in the PAH/ carbonate system alone, shows that 

these comprise 37.10 wt% water and is therefore more hydrated than the precipitates 

from the PAH/CaCO3 system (Figure 30A).  The decomposition profile of pure PAH 

was also investigated (Figure 30B), which proved that the PAH polymer can be 

stabilised in the presence of carbonate/calcium ions, as can be seen by an increase in the 

decomposition temperature from  250 
o
C to  450 

o
C. 

 

Figure 30: Thermogravimetric analysis (TGA) data of (A) a precipitate obtained from a 

solution of composition [CO3
2-

] = 10 mM and [PAH] = 1 mg/mL and (B) pure PAH.  

 

4.4.3.3 Conclusive results by Cryo-TEM 

Cryo-TEM was used to investigate the formation mechanism of the PAH-CaCO3 phase 

at early stages without having to dry out the sample.  A 30 min sample (Figure 31a, b) 
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showed the presence of small particles, only a few nm in size (50 nm-100 nm), which 

were prone to radiation damage.  These developed voids in their structure and faded 

away upon exposure to an electron dose of 400-1200 electrons/ Å
2
, indicating that these 

particles were hydrated and contained high amounts of organic material.  Proof that this 

wasn‟t ice originating from the vitrification process is shown in Figure 32 where ice-

particles are shown which disappear and are not damaged by the electron beam.  After 3 

hours (Figure 31c and d), round structures with sizes ranging from 300 nm to 1 µm were 

observed, which were again sensitive to the electron beam.  Low-dose selected-area 

electron diffraction (LDSAED) showed that these calcium carbonate structures are 

amorphous (Figure 31c, inset), while high resolution Cryo-TEM suggested that they 

might comprise clusters 1 nm in size (Figure 31d, inset red circles).  The morphology of 

the material suggested that it shows liquid-like behaviour, particularly where several of 

these structures seemed to have merged together prior to freezing of the sample, like 

droplets coalescing (Figure 31e).  After 6 h, structures of over 10 µm in diameter were 

found which were still amorphous, as shown by LDSAED.  These structures were often 

composed of a denser core surrounded by a more diffuse material, covering the TEM 

grid like a film (Figure 31f).  Similar structures were found after 20 h, but at this stage 

most of the material was no longer amorphous, but had already transformed into calcite, 

as seen by LDSAED (Figure 31g, inset).  In addition, smaller particles of 500 nm in size 

were also present, where prolonged exposure to the electron beam induced the 

transformation of ACC into calcite (Figure 31h). 
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Figure 31: Cryo-TEM images of particles precipitated on a TEM grid with [PAH] = 1 

mg/mL after 30 min (a, b), 3 h (c, d, e) 6 h (f), 20 h (g, h).  Inset of (d) shows a high 

resolution image of the area.  (e) Shows an image after 3 h, where several droplet-like 

structures are fusing together (black arrows).  The inset shows a high magnification 

image of the area marked by the square.  The insets in (f) and (g) show the 

corresponding diffraction patterns both corresponding with calcite.  (h2, 3, 4) Shows 

diffraction patterns subsequently taken of the particle in (h1). 

 

  
Figure 32: (a) And (b) show low magnification Cryo-TEM images of a typical ice 

particle contaminant (black circle) before (a) and after (b) prolonged exposure to the 

electron beam.  The inset shows the corresponding high magnification images. 
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In order to confirm these results, control experiments were carried out in the absence of 

Ca
2+

 or CO3
2-

.  In control experiments containing solutions of PAH, or PAH with CaCl2, 

only diffuse structures with sizes of about 20 nm to 50 nm were present (Figure 33a and 

d).  These quickly faded away and disappeared upon exposure to the electron beam.  

 

  

  
Figure 33: (a) Cryo-TEM image of a solution containing only PAH.  Only 20-50 nm 

diffuse structures are present. (b, c) Show the high magnification images of the area 

marked by the black circle, indicating that the particles quickly fade away upon 

exposure to the electron beam.  (d) Shows Cryo-TEM image of PAH + CaCl2.  Only 

diffuse structures of 20 nm -50 nm could be found.  (e, f) Show again the high 

magnification images of the area inside the black circle  

 

In contrast, Cryo-TEM image of PAH and Na2CO3, showed that the polymer phase-

separates in the presence of carbonate, forming droplet-like structures 1 – 2 µm in size, 

covering the grid with a network-like structure (Figure 34).  These structures were also 

prone to radiation damage by the electron beam (Figure 34c). 

 

a d 

b c e f 
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Figure 34: (a) Shows a Cryo-TEM image of PAH + Na2CO3, demonstrating that in this 

case the polymer has the ability to phase-separate in the presence of carbonate.  (b, c) 

Show some high magnification images of the area marked by the black circle in (a).  

The black circle in (c) marks an area with electron beam-induced radiation damage 

 

4.4.3.4 Supportive experiments by DLS and Zeta potential measurements 

By DLS, particles were measured after 30 min with sizes of 20 to 150 nm 

corresponding with the Cryo-TEM observations.  After 3 h bigger particles with sizes of 

1-2 µm were formed (Figure 35). 

 

 

Figure 35: Mean hydrodynamic diameter by DLS measurements of samples taken from 

a reaction solution ([CaCl2] = 10 mM, [PAH] = 1 mg/mL) obtained after 30 minutes 

(green curve) and 3 hours (red curve).  Two peaks are seen after 30 minutes (one at 20 

nm and one at 150 nm), and one after 3 hours at 2500 nm.  
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Zeta potential measurements (Figure 36) gave a positive potential of 12 indicating that 

the droplets are electrostatically stabilized by an outer excess layer of adsorbed PAH in 

accordance with previous research
93

. 

 

 

Figure 36: Zeta potential measurement of droplets taken from a reaction solution 

([CaCl2] = 10 mM, [PAH] = 1 mg/mL) formed after 3 hours reaction time.  The results 

from two repeated experiments are shown 

 

These data demonstrated the construction of films by the formation of an initial 

amorphous PAH/calcium/carbonate phase which grows to micron sizes after a couple of 

hours.  This phase is highly hydrated and exhibits liquid-like character, allowing the 

particles to coalescence and form film-like structures.  With time this amorphous 

calcium carbonate phase crystallises to form crystalline domains. 

 

4.4.3.5 Liquid-like characteristics of PAH/calcium/carbonate phase. 

Given the similarities between the stabilisation of ACC by polyacrylic acids in the PILP 

(polymer-induced liquid-precursor) phase, and the results obtained with PAH, 

experiments were carried out to investigate if liquid-like properties such as pore 

infiltration could also be observed in the PAH system
29

 .  Similar experiments were 

therefore performed as with CaP (see chapter 3), where CaCO3 was precipitated in the 

pores of track-etched membranes by immersion of a membrane in the CaCO3/PAH 

reaction solution.  Isolation of the material obtained in the pores showed that these were 

filled with material, which crystallised to rod-shaped single crystals of calcite (Figure 

37).  The rods were 5 to 10 m long, almost all were single crystals, but no preferred 
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orientation of the rods was found.  This again demonstrated, liquid-like properties such 

as capillary action and pore infiltration could be characterised to the CaCO3/PAH 

system 

 
 

 

 

  

 

Figure 37: FEGSEM image (a) and TEM images (b, c, d) of CaCO3 rods formed inside 

track-etched membrane pores of 50 nm after addition of 1 mg/mL PAH in a 10 mM 

CaCl2 solution.  The diffraction pattern corresponds to calcite.  The inset in (c) shows a 

high resolution image of the lattice fridges corresponding to the {104} plane. 

 

Repeating this experiment with PAH for calcium phosphate gave similar results as 

discussed in Chapter 3 (no improvement of infiltration by addition of polymer), 

contributing to the theory that no PILP phase exists for calcium phosphate. 
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4.4.4 Formation mechanism of fibers.  

Experiments were performed to investigate the mechanism of fiber formation. 

Therefore, the fiber samples were exposed to bleach to attempt to selectively remove the 

polymer component (Figure 38b, c, d), hoping that this would provide more information 

about the fiber formation process.  The bleaching principally resulted in a smoothing of 

the fibers (compare Figure 38a and b) and the small building blocks of the fibers also 

became much more visible.  Some of the bleached fibers also showed a porous structure 

(Figure 38c and d) demonstrating a considerable loss of the polymer from inside the 

fibers (white circles in Figure 38d). 

 

  

 
 

Figure 38: SEM images of CaCO3 fibers precipitated in the presence of PAH at [CaCl2] 

= 1.5 mM and [PAH] = 0.5 mg/mL after reaction times of 6 days (a) and bleaching for 1 

day (b, c, d).  Bleaching resulted in a smoothing of the fiber surface (b) and appearance 

of a porous-like structure (c, d white circles). 

 

To investigate the formation of the fibers with time, Ni grids were placed in a CaCl2 

solution to allow the fiber formation to occur on the TEM grids.  The grids were taken 

out of the solution at different time points (3h, 6h, 8h, 12h, 24h).  After 8 h (Figure 39a) 

the whole grid was covered with an amorphous film which had started to crystallise at 

a b 

c d c c 
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some positions.  After 12 h, extrusions were observed from the crystalline film (Figure 

39b arrowed) and after 14 h these had evolved into small fibers (Figure 39c arrowed).  

After 24 h, the fibers had grown into hundreds of nanometers (Figure 39d).  These 

results therefore suggested that film formation proceeds fiber formation.  Fibers form 

from the crystallised films and then grow longer and longer out of the film by addition 

of crystalline particles.  

 

  

  
Figure 39: TEM images with corresponding diffraction patterns of CaCO3 films and 

fibers precipitated on a Ni TEM grid from 10 mM CaCl2 solutions containing 1 mg/mL 

PAH after (a) 8 h, (b) 12 h, (c) 14 h and (d) 24 h.  The corresponding diffraction 

patterns all correspond to calcite. 
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TEM imaging enabled investigation of how the orientation of the fibers changed, with 

different growth directions (Figure 40). Surprisingly, the crystallographic orientation 

stayed the same along the different growth directions of the fibers.  Figure 40a shows a 

TEM image of a fiber abruptly changing direction with diffraction patterns taken along 

the fiber. 

 

 

 

 

 

 

 
Figure 40: TEM images with corresponding diffraction patterns of calcite fibers 

precipitated on a Ni TEM grid from 10 mM CaCl2 solutions containing 1 mg/mL PAH 

after 1 day.  (a) Shows an image of a fiber, changing direction abruptly, (b) shows an 

image of a curly fiber.  Diffraction patterns were taken along the fibers demonstrating 

little change in crystallographic orientation along the fiber 
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Interestingly, it can be seen the diffraction patterns are all very similar, and have a 

strong reflection of the (006) plane at similar positions.  Notably though, there is a small 

shift for position 2 to 3 which is about 15 degrees clockwise.  The same kind of 

orientation is true for curly fibers (Figure 40b), where the position of the (104) 

reflection almost stays the same along the whole fiber.   

4.4.5 Influence of Mg
2+

 ions on CaCO3 precipitation in presence of PAH 

In common with PAsp/PAA PILP, the structure of the films could be further controlled 

through the addition of Mg
2+

 ions.  These are a common component of biogenic ACC
129

 

and they retard the crystallization of synthetic ACC such that thin films can be formed 

in the PAsp/PAA PILP system at lower polymer concentrations than in Mg-free 

solutions
337, 359

. 

 

Control experiments were performed in which the influence of Mg
2+

 on CaCO3 

precipitation in the absence of PAH was investigated (Figure 41).  As expected, 

polycrystalline calcite crystals with a spherical morphology were formed
129, 132

. 

 

  

Figure 41: Optical microscope image (a) and Raman (b) of polycrystalline calcite 

particles precipitated from a solution containing 10 mM CaCl2, 10 mM MgCl2 after 1 

day. 

 

Addition of Mg
2+

 at a 10 mM concentration to a 10 mM CaCl2 solution (such that [Ca] 

= [Mg]) containing 20 µg/mL PAH led to the formation of polycrystalline films (Figure 

42 and 43) of  300 nm thick (Figure 43c) which covered the entire glass surface.  This 

is significantly lower than the 0.5 – 1.0 mg/mL PAH required in the absence of Mg 

(Figure 13).  No areas with single crystal domains were observed, nor the formation of 
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fibers.  After 3 days only 30% of the film (as judged by area) was crystalline (Figure 

42a) while after 14 days in the solution the whole glass slide was covered with 

crystalline film (Figure 42b).  Raman analysis showed that the crystalline films were 

calcite (Figure 42c).  By increasing the Mg
2+

 concentration to 3 times and 5 times more 

the Ca
2+

 concentration, even lower amounts of 5 μg/mL of PAH were able to produce 

films.  In this case the amorphous phase was stabilised for longer times and more time 

in solution was necessary for crystallization.  

 

  

 

Figure 42: Optical microscope image under crossed polarisers (a, b) and Raman 

spectrum (c) of polycrystalline calcite thin films precipitated from a solution containing 

10 mM CaCl2, 10 mM MgCl2 and 20 µg/mL PAH after 3 days (a) and 14 days (b). 

 

Investigation with FEGSEM showed that the films were much smoother and thinner 

than those formed with PAH alone (Figure 43a and b and Figure 14).  They also varied 

in density, presumably due to different states of crystallization (Figure 43d).  The more 

porous film is assumed to be crystallised while the more dense is still amorphous.  EDX 

analysis showed that the film contained about 2 atomic weight % of Mg
2+

 (Figure 43b). 

a b 

c 
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Figure 43: FEGSEM images of films with EDX (b) formed from solutions of 

composition of 10 mM CaCl2; 10 mM MgCl2 and 20 µg/mL PAH after 2 weeks.  The 

thickness of the film is about 200 nm (c).  The porosity of the film varies from area to 

area as shown in (d). 

 

Investigation of the films with AA and TGA (Figure 44) (10 mM [CaCl2], 10 mM 

[MgCl2], 20 mg/mL PAH) showed that at early stages (3 h) 2 wt% Mg was present as 

measured with AA, together with 6.65 wt% of PAH as shown by TGA (Figure 44a).  

After a weight loss of water of 15.52 wt% till 200 °C, a weight loss of 6.65 wt% is seen 

between 200 °C and 600 °C which originates from the decomposition of the polymer.  

At later stages (3 weeks) where almost all of the film had crystallised, 2 wt% Mg was 

still present, as measured with AA, while only 3.32 wt% of PAH remained (Figure 

44b). 

 

b 

c d 
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Figure 44: TGA data of precipitate obtained from exposure of a solution of composition 

10 mM CaCl2, 10 mM MgCl2 and 20 µg/mL PAH after 3 h (a) and (b) after 3 weeks. 

 

Another interesting observation was that absolutely no fiber formation was observed.  

However, on lowering the Mg
2+

 and Ca
2+

 from concentrations of 7.5 mM to 1.5 mM, 

fibers formed again (Figure 45).   

 

  

  

Figure 45: Optical microscope images under crossed polarisers (a and d) and FEGSEM 

(b and c) images of calcium carbonate fibers precipitated after 3 days from 1.5 mM 

CaCl2 solutions containing 0.5 mg/mL PAH and 1.5 mM MgCl2 (a, b and c) or 3.5 mM 

CaCl2 containing 0.02 mg/mL PAH and 3 mM MgCl2 (d). 
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These fibers had a similar structure to those formed without Mg
2+

 (Figures 18, 19, 20), 

growing on and from films, micrometers long.  Analysis of these fibers with TEM 

showed they were again calcite but had more a tendency to be a mixture of 

polycrystalline and single crystal (Figure 46).  EDX showed that they contained Mg
2+

. 

 

4.5 Discussion 

Although it was previously assumed positively charged additives only had a minor 

effect on the morphology of calcium carbonate
345

, the results stated above clearly 

contradict this idea.  By the addition of the positively charged additive poly(allylamine 

hydrochloride) (PAH), we have demonstrated it is possible to obtain a strong effect on 

the crystallization of calcium carbonate, changing its morphology dramatically, forming 

fibers and crystalline films, proving this is not unique to negatively charged 

polyelectrolytes. 

Given the industrial interest and many applications
4, 67

 in producing CaCO3 with 

different morphologies, it is surprising to see how few studies of additive-directed 

calcium carbonate growth have been reported before with positively charged additives, 

as compared with their negatively charged counterparts.  A few examples exist where 

positively charged additives played a role, for example with lysine
319

, poly-L-lysine
345, 

360
 or with a positively-charged 16-residue peptide

361
, but these additives always tended 

 

Figure 46: TEM image of a calcite fiber precipitated after 3 days from 1.5 mM CaCl2 

solutions containing 0.5 mg/mL PAH and 1.5 mM MgCl2 with corresponding 

polycrystalline diffraction pattern.  The EDX pattern demonstrates the presence of Mg 

within the fibers. 
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to show relatively minor changes in the morphology.  One of the minor effects 

discovered, however, was that amine side-groups have a tendency to stabilize the 

vaterite polymorph with respect to calcite
343, 362

.  A much stronger effect has been found 

for aggregates of poly(propylene imine) dendrimers that were modified with 

octadecylamine and were active in stabilising ACC, a behaviour which was later 

attributed to their structural rigidity
363

.  We therefore question ourselves what was so 

special about PAH, enabling it to achieve such a massive effect on the morphology, and 

how can we relate this to formation of CaCO3 in biominerals. 

 

4.5.1 Previous formation of CaCO3 films 

Formation of CaCO3 films is not a rare phenomenon.  Continuous CaCO3 films have 

been deposited before under Languir monolayers in coorperation with polyacrylic acid 

(PAA) as a soluble inhibitor
364

.  Later on, monolayers of stearic and arachidic acid were 

also found to be successful in the formation of CaCO3 films
365, 366

.  Depending on the 

side of the substrate, different surface textures were distinguished where the side facing 

the monolayer was smooth and featureless, while the side facing the liquid was covered 

with particles, showing considerable intergrowth.  A similar colloidal structure was 

found on the CaCO3 films formed with PAH as described above, although in this case a 

difference was seen depending on how deep the glass slide was dipped in the reaction 

solution.  ACC films have also been formed by the addition of the synthetic acid 

polysaccharide, maleic chitosan
367

.  As a construction mechanism, a colloidal 

nanoparticle self-organisation mechanism was proposed, starting from particles of 10 

nm in size, self-organising into larger particles of 2 µm by aggregation, finally leading 

to the formation of continuous ACC films
367

.  Other films have been constructed in 

Kato‟s group by combination of soluble acidic polymers
368, 369

 or peptide structures
88

 

with biomimetic polysaccharide substrates such as chitosan.  Another interesting result 

by this group was the fabrication of high purity aragonite thin films, by the addition of 

Mg
2+

 ions in the presence of an acidic polymer and chitosan
370

.  Later on it was found 

this was also possible without Mg
2+

 by the use of crystalline polyvinyl alcohol (PVA) 

substrates, where even vaterite films could be deposited
371

. 

Formation of comparable crystalline films have also been accomplished on addition of 

negatively charged polyelectrolytes, such as polyaspartic acid (PAsp) and polyacrylic 

acid (PAA), by the so-called polymer-induced liquid precursor (PILP) process
77

 (See 
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1.2.4.3).  In this case the solution underwent a liquid-liquid phase separation process 

forming PILP droplets.  These droplets settled and adsorbed to the substrate after which 

they coalesced into a film or coating.  This initial amorphous film then crystallised into 

a birefringent film of CaCO3, retaining the shape of the precursor phase
12

. 

 

4.5.2 Formation mechanism of CaCO3 films by PAH 

Because of the similarities in the results obtained with PAH, with those observed for 

PAA and PAsp in the crystallization of calcium carbonate
76

, a similar mechanism is 

likely to occur.  It is thought that the effect of PAH can be attributed to the fact that it 

undergoes a microphase separation in the presence of carbonate ions, rather than there 

being a strong interaction of the amine groups with the growing CaCO3 crystal.  PAH 

solutions have been known before to undergo microscopic phase separation in the 

presence of sulphate and phosphate ions
354

.  Furthermore this was also demonstrated for 

a Na2CO3 solution, where PAH is broken down into colloidal particles of carbamate 

ions (R-NHCOO
-
) and amino ions (R-NH3

+
) in the pH range of 7.5 to 9

355, 358
.  These 

results were confirmed by our own experiments and we have further shown that the 

positively charged PAH molecules not only sequester the CO3
2-

 anions forming a 

complex, but this complex further also associates with the positively charged Ca
2+

 ions, 

forming a positively charged entity which phase separate out of the aqueous solution.  

This phase is highly hydrated and exhibits a liquid-like character, allowing the particles 

to coalesce.  Since our measurements show the zeta potential of the particles after 3 h is 

only about 12, it is not implausible that the particles aggregate together forming a bigger 

entity.  It is expected that these complexes, just as observed for the negatively charged 

PILP droplets
83

, attach preferentially onto pre-existing minerals and materials, in our 

case especially onto the negatively charged surface of the glass slides.  The droplets 

formed in solution settle and subsequently wet the substrate and spread into a film.  

With time, this amorphous calcium carbonate phase crystallises, generating crystalline 

domains.  Since the carbonate enters the calcium solution at the gas-liquid interface, this 

phase separation will occur firstly at the top of the glass slide, as was also observed 

experimentally.  At this point the droplets are still highly amorphous, forming a smooth 

amorphous film, which crystallises to a single crystal film at the top of the glass slide.  

Deeper in solution, the droplets might already have started to crystallise before, forming 

a much rougher, polycrystalline film (Figure 47).  
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Figure 47: Formation mechanism of PAH/complex and successively crystalline films.  

At the top of the glass slide single crystal films are formed while at the bottom mostly 

polycrystalline films. 

 

Further adding to the discussion, Wolf et al. have recently observed a formation of 

CaCO3 thin films in the presence of the acidic protein ovalbumin.  They suggested that 

a liquid amorphous calcium carbonate (LACC) phase must form in the presence of the 

negatively charged polymer
87

.  The LACC is thought to be stabilised due to electrostatic 

and depletion factors as the “liquid droplets” are negatively charged, and their formation 

mechanism was seen to markedly reduce the free Ca
2+

 concentration in solution 

(depletion stabilisation), thereby reducing the rate of the crystallization process.  It is 

thought that similar factors are likely to operate in the CaCO3/ PAH system as indicated 

by the zeta potential measurements which show that the droplets produced in solution 

after 3 h exhibit positive surface charges of 12 mV (Figure 36). 

 

In comparison with negatively charged polyelectrolytes, where amounts of about 20-50 

µg/mL were necessary
77

, 5 times more PAH was required to initiate film formation, 

which suggests a weaker polymer/ counter-ion interaction at the working pH of  9.5.  

This is probably due to the difference in the degree of protonation of the polymers as 

PAH is only 50% protonated at pH 9.5, while PAsp/PAA are completely deprotonated 
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and negatively charged at this pH value
356

.  Since the ammonium diffusion technique 

was used to increase the [CO3
2-

] concentration, it is hard to estimate how high the 

concentration was of the CO3
2-

 ions at each time point, which might also explain the 

differences in effect of the positively and negatively charged additives.  Another 

explanation of the formation process might be that instead of CO3
2-

 the PAH interacts 

with the Ca
2+

 ions, encapsulating them, and as with the negatively charged ones forming 

a complex as CO3
-
 enters the solution.  Yet this does not seem to be the case since the 

slow addition experiment proved that the positive charge of the NH2 molecule was 

necessary for the process. 

 

4.5.3 Transition bars and the effect of magnesium 

The appearance of transition bars on the single crystal calcite films, were explained 

before by diffusion-limited exclusion of the polymeric impurity during crystallization
89

.  

The results presented here agree with this suggestion and it seems at repeating 

distances, gaps are formed containing material with a less defined shape, which are 

presumably amorphous material.  This might be due to PAH being expelled from the 

crystallising material at certain distances giving rise to a transition bar pattern.  Further 

research with a fluorescently-labelled poly(allylamine) might give more conclusive 

results about this. 

 

An interesting feature of the results is the production of very smooth films by addition 

of Mg
2+

 ions.  Magnesium ions have been seen to have a similar effect in the PAA/ 

CaCO3 and PAsp/ CaCO3 systems, where thin films are formed at concentrations of 10-

50 µg/ml at a Ca:Mg ratio of 1 and as low as 5 µg/ml at ratios of Ca: Mg = 1:3.  These 

compare with typical polymer values of 20-100 µg/ml PAA/PAsp in the absence of 

Mg
337, 359

.  In both these polymer systems, it was stated the small Mg
2+

 ions may 

facilitate the formation of polymer/ cation/ carbonate complexes, which enables them to 

form at lower polymer concentrations
337, 359

.  In correspondence with those results, also 

the addition of Mg
2+

 to the PAH/ CaCO3 system enabled formation of very smooth 

films of polycrystalline calcite.  Instead of the usual values of 0.5 mg/mL PAH required 

to cover the entire substrate, crystalline films covering the entire glass slide were 

obtained with 20 µg/mL PAH at a Ca:Mg ratio of 1, and even 5 µg/ml PAH at a Ca:Mg 

ratio of 3.  As compared with the negatively charged additives system though were 
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Mg
2+

 incorporating in the lattice with the addition of PAsp could go up to 26 wt%
337

, 

TGA and AA investigation of the PAH system showed much lower amounts of Mg
2+

 

(only 2 wt%) were incorporated.  The difference between the positively charged and 

negatively charged system is assumed to be due to a charge effect of the positively 

charged PAH molecules, which will keep the positively charged Mg
2+

 ions out of the 

complex instead of inducing their incorporation.  

 

4.5.4 Fiber formation process 

Considering calcite fiber formation, calcite whiskers and rods are often found in 

geological samples where they are usually termed moonmilk
372

.  CaCO3 fibers have 

been synthesised in the lab before, where for example polycrystalline vaterite fibers 

formed on self-assembled monolayers in the presence of PAA
373

, and hollow vaterite 

tubes precipitated on silicon substrates by the use of water-electrolysis
374

.  Comparable 

fibers as the ones produced in our system have also been observed previously by 

precipitation of calcium carbonate in the presence of PAsp
82

 and PAA
375

.  Their 

formation was attributed to a growth mechanism analogous to the vapour-liquid-solid 

(VLS) and solution-liquid-solid (SLS) processes responsible for the catalytic formation 

of nanowires
82, 376

.  This CaCO3 fiber formation process was called the catalytic SPS 

(solution precursor solid) mechanism, where the growth of fibers is attributed to PILP 

droplets which provide a flux of reagents to the fiber.  This process resulted in a 

remnant bobble on the tip of the fibers which is considered proof of float growth
82

.  Yet, 

since this SPS mechanism was autocatalytic (no catalytic particles were added), the 

observation of these bobbles couldn‟t be considered as conclusive in this system
30

.  

Such a bobble was often observed in our research (see Figure 8d), yet this was not a 

necessity for fiber growth. 

 

Another mechanism proposed in the literature is the growth of fibers by aggregation. 

Here, additives, such as low molecular mass polyelectrolytes and block copolymers, 

directed growth of crystalline fibers via aggregation.  In this way, fibers were made out 

of small sub-units or nanocrystals, forming so-called mesocrystals
104, 377

.  BaSO4 fibers 

with random and curved morphologies were formed by Yu et al.
104

 and the formation 

process was attributed to an oriented aggregation process of the nanoparticles, 

depending on the supersaturation level.  CaCO3 fibers with a helical morphology have 
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been described before which grow on glass and mica via the formation of a copolymer-

stabilised amorphous calcium carbonate (ACC) phase
30

.  Due to redistribution of the 

polymer chains by absorption of the amorphous particles on the glass slide, the 

adsorbed particles experienced a charge anisotropy resulting in attraction and absorption 

of particles to the fiber end resulting into fiber growth
30

.  In this case the fibers were 

amorphous and partially transformed to vaterite after incubating in air for 3 weeks.  

Similar fibers grown on single crystals of calcite and aragonite proved to be single 

crystals of calcite, and in this case fiber formation was attributed to an oriented 

assembly process. 

Furthermore, unidirectionally oriented fibrous vaterite crystals have been formed on the 

functional polymer poly(N-isopropylacrylamide)
375

 by an aggregation process, while 

polymer micelles of poly(N-isopropyl acrylamide)-b-poly(L-glutamic acid) mediated 

the formation of aragonite fibers and vaterite particles by an SPS mechanism
378

.  SrCO3 

fibers with aspect ratios of around 600 have been formed on self-assembled monolayers 

(SAM) of thiols in the presence of PAA
379

 and the mechanism of formation was thought 

to be a template-induced crystallization process, due to coordination of the primary 

particles by the multidentate PAA ligands present in the solution and on the SAM 

surface, forming aggregates. 

Previous reports where SrCO3 and BaCO3 fibers were observed, have suggested that 

these structures were constructed via a combination of colloidal aggregation and an SPS 

mechanism
12, 83

.  SrCO3 and BaCO3 fibers were formed by addition of PAA and just as 

the calcite fibers shown above, the fibers featured a nanodomain texture.  The formation 

of these fibers was explained by the PILP mechanism where the PILP droplets arise out 

of solution and absorb onto the glass slide forming a PILP film, becoming a new surface 

to promote fiber growth.  It was suggested that the PILP nanodroplets (or nanoparticles, 

depending on the state of the precursor phase) that are still forming in solution, will 

deposit, and preferentially adsorb at points of high energy.  These might be mineral 

surfaces with high curvature, such as lumpy mineral coatings.  This process would lead 

to an autocatalytic effect for preferential adsorption of droplets at the tip of the 

protrusion.  With longer time this would turn into and extend the tip of the fiber in a 

one-dimensional fashion.  If the tip stays as a liquid-like droplet, it might follow the 

SPS mechanism and lead to the formation of more homogeneous fibers.  But if the tip 

solidifies very rapidly, it would most likely lead to a more granular texture
83

. 
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Considering our obtained results, it appears that fiber formation starts from deposited 

crystalline films.  These films first precipitate on the glass slide as amorphous films and  

then crystallise.  This lowers the Ca
2+

 concentration and since the polymer gets 

excluded during crystallization as seen with TGA, the Ca
2+

/PAH ratio decreases.  Other 

experiments with low Ca
2+

/PAH ratio confirm that fiber formation and alignment 

effects are much more significant at a low Ca
2+

/PAH ratios and it is assumed that at 

these conditions, the particles are less stabilized and contain some kind of charge 

anisotropy, resulting in fiber formation.  Since the [CO3
2-

] is assumed to remain 

constant during the crystallization process due to the continuous source of ammonium 

carbonate
182

, it is hard to isolate its role, but it is reasoned that charged anisotropic 

Ca
2+

/PAH/CO3
2-

 particles formed at low Ca
2+

/PAH ratio are responsible for the 

formation process.  Interestingly, the particles maintain their orientation even during 

growth.  Since amorphous fibers were not observed in any case, fibers must get 

constructed, piece by piece, by a continuous supply of polarised amorphous or 

crystalline particles attaching to preformed fibers in an oriented way, and crystallising 

directly. 

 

It is therefore suggested that a similar mechanism took place as for the formation of the 

above described SrCO3 and BaCO3 fibers: After film formation, a rough coating is 

formed (as shown in Figure 14a, b), and it is expected that the anisotropic 

Ca
2+

/PAH/CO3
2 

droplets falling from solution will preferentially absorb to these 

protrusions and irregularities on the substrate due to their higher surface energies 

(Figure 48).  The absorption at the specific charged sites on the substrate could give rise 

to charged anisotropy in the absorbed particle, due to redistribution of the polymer 

chains causing polarisation effects as has been shown before
30

.  Precursor particles 

moving close to the charged tip of the developing fiber will be further polarised, 

resulting in their attraction and adsorption to the fiber end.  Repetition of this process 

would lead to fiber growth, with depletion of starting materials at the tip leading to 

narrower sizes (see Figure 20).  The images obtained with FEGSEM and HRTEM, 

which show small units, 100 nm in size, and respectively continuous crystalline areas 

support this idea (Figure 18 and 20).  It is not entirely clear though if the droplets attach 

by oriented attachment as crystalline particles or as amorphous polarised droplets 

crystallising when they attach. 
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Figure 48: Proposed fiber formation process.  Anisotropic particles (yellow) approach 

the polycrystalline film (a) and absorb to irregularities on the substrate (b). Other 

precursor particles moving close to the charged tip of the developing fiber, will be 

attracted and adsorbed to the fiber end (c). 

 

4.5.5 Relevance to biomineralisation 

Although the results and discussion above demonstrated that a microphase separation 

can provide a route to producing CaCO3 with remarkable structures, a significant 

question remains: is this relevant to calcium carbonate biomineralisation, as has been 

suggested before
12

, and could an analogous effect be achieved with the proteins present 

within the CaCO3 biominerals? 

 

Soluble proteins, as found in biological systems, only represent one type of biological 

polyelectrolyte, and actually often display many differences in their structure and phase 

behaviour as compared with simple polyelectrolytes such as PAA and PAH
380

.  Since 

they are constructed from both hydrophilic and hydrophobic groups, soluble proteins 

usually prefer to form into well-defined 3D structures, which are characteristically 

significantly more robust against changes in solution conditions and in particular ionic 

strength, in comparison with simple polyelectrolytes.  Also, while simple 

polyelectrolytes are uni-charged and have their charge distributed uniformly along the 

molecule, proteins are more amphoteric in character, with many of the constituent 

amino acids being either strong acids or bases.  Consequently, positive and negative 

charges are present simultaneously in the protein structure, and are usually 

heterogeneously distributed over the protein surface as negative and positive 

domains
381

. 

Polycrystalline film 
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The macromolecules which are usually associated with CaCO3 biominerals represent a 

special class of proteins.  Generally, they are classified as “highly acidic”, containing 

from ≈ 20% up to even 40-50 mol% of glutamic and aspartic acid
107, 382-384

.  These 

residues are present in the structure as negatively charged domains which are 

heterogeneously distributed along the chain of the protein, and exist together with small 

domains of positively charged amino acids and also a range of other polar or 

hydrophobic groups.  It is therefore possible that, in common with simple 

polyelectrolytes, proteins which comprise 50% glutamic and aspartic acid would be able 

to strongly associate with Ca
2+

 ions, which could, if possible, conceivably lead to 

microphase separation if they were sufficiently flexible.  This concept has recently been 

further investigated by the fabrication of a series of random copoly(amino acid)s which 

were constructed from 20–80%, 50–50% and 80–20%, aspartic acid and serine residues 

where their effect on the precipitation of CaCO3 was determined.  It was found that a 

strong correlation existed between the composition and function of the polypeptide, 

where the polypeptides with the highest amount of aspartic acid had the biggest effect
99

. 

Knowing this, it is therefore possible that based on their chemistry alone, highly acidic 

biomacromolecules could be active in driving a phase separation, thereby changing 

crystal morphologies and textures.  The positively charged residues lysine and arginine, 

which are of low abundance in these proteins, are unlikely to support phase separation, 

and no evidence exists for the phase separation of poly-L-lysine in the presence of 

carbonate ions
385

. 

 

Although a PILP formation process seems plausible, many studies have been carried out 

in which CaCO3 has been precipitated in the presence of macromolecules extracted 

from CaCO3 biominerals
101, 127, 386

 and no evidence for a PILP phase in the reaction 

solution or the crystal products has been reported.  Also running counter to this 

suggestion, are some observations of crystallization in biological systems, where it 

appears that amorphous calcium carbonate (ACC) and also amorphous calcium 

phosphate (ACP) are actually present as well-defined granules prior to the transfer to 

the mineralisation site
22, 239, 327

.  Therefore, although some of the unusual features 

arising from crystallization of a CaCO3 “PILP” phase make it tempting to ascribe the 

formation of CaCO3 biominerals to this mechanism, the above discussion sheds some 

doubt on this. 
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4.6 Conclusions 

This work demonstrated that poly(allylamine hydrochloride) (PAH) has a dramatic 

effect on the crystallization of calcium carbonate, challenging the current understanding 

that positively charged additives have little influence on CaCO3 growth.  By the 

mechanism of a microphase separation in the presence of carbonate and calcium ions, 

droplets of complexes with liquid-like character are formed which subsequently wet the 

substrate and spread into a film.  In this way crystalline films are formed, which are 

comparable to those formed with the negatively charged additives PAA and PAsp.  

Once crystalline films are formed, it is thought fiber formation occurs on the 

polycrystalline rough films at low Ca
2+

/PAH ratio‟s, by an oriented attachment 

mechanism of anisotropic particles due to unequal distribution of charge.  Addition of 

Mg
2+

 to the PAH/ CaCO3 system enabled formation of very smooth films of 

polycrystalline calcite at much lower PAH concentrations.  In comparison with 

negatively charged additives such PAsp where high-Mg calcites were obtained, the 

amount of Mg incorporation in the presence of PAH wasn‟t much increased. 

These results provide a strong indication that positively charged additives, can be 

valuable for the production of CaCO3 structures with complex morphologies.  

Synthetically, it will certainly not be possible to translate this process to all positively 

charged additives, but it is believed that other positively charged polyelectrolytes may 

have the same effect on crystallization.  Future work will investigate this topic. 

The relevance of such a phase separation in the biomineralisation of CaCO3 is however 

unclear.  Although the acidic proteins characteristic of some CaCO3 biominerals could 

direct a similar phase separation, it is still not clear how this can fit with previous 

observations of calcification via amorphous precursor phases in vivo. 
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This chapter deals with the infiltration of collagen with CaCO3.  Based on bone 

formation, where HAP crystals are formed inside collagen as nanoscale platelets, it was 

investigated whether collagen is specifically and exclusively tailored to control HAP 

formation, or whether it is possible to use it as a template for the precipitation of 

different minerals.  To investigate this, SAXS and WAXS techniques, combined with 

TEM, were used, and it was proven that calcium carbonate was able to infiltrate into the 

collagen gaps in the presence of additives, which directed the mineralization according 

to a phase separation mechanism involving the formation of a liquid-like amorphous 

phase of CaCO3.  These liquid-like amorphous particles of CaCO3 got infiltrated into 

the collagen structure due to capillary action, followed by their crystallisation, reducing 

the molecular spacing of the collagen from the initial 1.5 nm to 1.1 nm.  Due to the 

moulding effect of the collagen, the amorphous particles transformed into nanoscale 

crystals of calcite and vaterite (10-20 nm long and a 2-6 nm thick), randomly oriented. 

 

5.1 Introduction 

Inorganic/organic hybrids have attracted much attention in recent years due to their 

potential as new functional materials
10, 14, 387, 388

.  A great source of inspiration are 

biominerals, which are almost all composite materials, made out of an inorganic solid 

phase surrounded by an organic insoluble matrix phase and/or soluble organic 

molecules, forming a ductile, tough, and lightweight material.  One interesting example 

is that of bone, which consists of about 30% organic matrix (collagen) and 70% 

inorganic material (calcium phosphate) giving rise to its remarkable strength, and the 

fracture toughness that the bodies of vertebrates need.  By embedding the 

hydroxyapatite (HAP) crystals inside an organic matrix of collagen fibrils, the high 

stiffness and toughness of HAP is much improved, being more than 1000 times higher 

than in the absence of this matrix
389-392

.  Although the high toughness of bone is due to 

the hierarchical organization of the mineralized collagen fibrils
232

, its remarkable 

fracture resistance arises from the nanometer size of the HAP crystals.  Previous 

research done by Gao et al.
393

 demonstrated that below a length scale of around 30 nm, 

the HAP crystals become insensitive to cracks and defects, which allows them to 

maintain their strength despite pre-existing flaws or cracks.  In other words, by being 
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only 3-5 nm thick, the HAP crystals in bone are optimized to serve in their role in the 

human body with a high fracture strength and good tolerance of flaws. 

This level of optimization of crystal morphology and size in relation to the required 

mechanical properties and hence the function of the material, suggests that biogenic 

crystals must be formed under a tight biological control
105

.  This control is mainly 

exerted by the corresponding organic matrix, serving as a scaffold for mineral formation 

and templating the crystals size and morphology.  Considering bone formation, this 

scaffold is made from collagen and due to its biocompatibility and interesting properties 

this organic compound is often used in hybrid biominerals synthesis and finds its 

application as stress-bearing scaffolds for bone repair
394

.  However, the question 

remains whether the fibrils are specifically tailored to control HAP formation, or if they 

can also template different minerals, producing analogous arrays of oriented crystals 

with morphologies and sizes similar to those of HAP. 

 

5.1.1 Introduction to collagen 

Collagen type I is the major constituent not only of bone (see chapter 3) but of many 

biological tissues, including tendon, ligaments, skin or cornea and is therefore the most 

abundant fibril forming protein in our body
395, 396

.  Type I collagen molecules are 

assembled from supercoiled assemblies of three polypeptide chains, each containing 

over 1000 amino acid residues.  The amino acid sequence of the protein is highly 

repetitive based on –Gly-X-Y- units (where Gly is glycine and X and Y are often 

proline and hydroxyproline) which allows the three polypeptide chains (two α1 and one 

α2 chains, similar but not the same) to fold into a triple-helical structure.  The side 

groups of the proline and hydroxyproline residues form bonds with the nitrogen on the 

polypeptide chain, thus hindering the rotation between adjacent residues in the chain 

and stiffening the molecule.  Prior to the final collagen molecule, procollagen is formed 

which is a full length collagen molecule containing two large pro-domains on both N 

and C terminal ends of each polypeptide chain, preventing any spontaneous self-

assembly within the cells
197

.  The procollagen molecules are assembled within the cell 

to form triple helices, where after excretion, the globular pro-domain ends are cleaved 

off by enzymes, and the 300 nm long and 1.5 nm thick triple helical molecules remain.  

The latter are called tropocollagen and as mentioned previously in chapter 3 ( see 3.1.2), 
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these molecules undergo a self-assembly process into a microfibril in which they are 

staggered with a periodicity of D= 67 nm
237

.  The molecular packing of the collagen 

molecules is such that the packing neighbours are arranged in such a way that they form 

a super-twisted (discontinuous) right-handed microfibril that interdigitates with 

neighbouring microfibrils
396

.  The length of the molecules (300 nm) is not an integer 

multiple of the staggering period D, and therefore gap regions appear due to the 

staggered arrangement of the collagen molecules within the fibrils.  The individual 

molecules are shorter than 5D periods (5 times 67 nm = 335 nm), leaving a gap of about 

40 nm to the next molecule and thus generating an overlap zone of 27 nm length within 

the fibril (see Figure 1)
3, 141

.   

 

 

Figure 1: Schematic representation of the structure of collagen adapted from ref. 197.  

Each collagen molecule, 300 nm long and 1.5 nm thick, is shifted with respect to its 

neighbour 40 nm in the axial direction, giving rise to the 67-nm periodic pattern or D-

period (D), consisting of gap (G) zones of 35-40 nm length and overlap (O) zones of 27-

32 nm length. 

 

5.1.1.1 Collagen in bone 

As discussed before, bone is a composite material, consisting of inorganic HAP crystals 

and collagen, the latter acting as a scaffold for a highly organized arrangement of 

uniaxially oriented mineral crystals
3, 180

.  Mineralisation of collagen with HAP has been 

studied in vitro previously using SAXS and WAXS techniques.  These experiments 

have demonstrated a co-orientation of the HAP crystals inside the collagen structure 

with their crystallographic c-axes parallel to the long axis of the collagen fibril.  It was 

further shown that the crystals took the shape of platelets 30-50 nm wide, 60-100 nm 
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long and a mere 2-6 nm thick
3, 397

, making the HAP crystals in bone the smallest 

biogenic crystals known.  They are understood to nucleate mainly within the less dense 

40-nm-long and 2 nm thick gap zone of the collagen
3, 197, 237

.  As discussed in chapter 3, 

the exact infiltration mechanism of the calcium phosphate particles into the nanoscopic 

spaces within the collagen fibrils
96, 196, 197, 253

 has not yet been completely unravelled. 

 

5.1.1.2 The effect of HAP formation on the collagen structure 

Neutron scattering experiments on collagen revealed the existence of an equatorial 

spacing, d, between the collagen molecules (Figure 2).  This parameter measured about 

1.6 nm in non-mineralized wet fibrils, whereas in dried conditions the spacing of the 

molecules was reduced to 1.1 nm
398

.  In a mineralized wet bone structure, an 

intermediate value of 1.25 nm was found.  By computer modelling studies and 

comparison with SAXS experiments, a process of closer packing of the collagenous 

molecules was identified and confirmed when water was replaced by mineral clusters 

within the fibril
399

.  This effect is illustrated in Figure 2. 

 

It can be seen that when dried, the packing density of the molecules increases and the 

typical lateral spacing between the molecules in the fibrils decreases from about 1.6 nm 

to 1.1 nm (Figure 2a to c).  If the water (a) is replaced by mineral, the growing mineral 

particles compress the molecule packets that are between them and in this way 

effectively reduce the molecular spacing to the value of dry fibrils (1.1 nm) (Figure 2d).  

The SAXS peak (Figure 2c) is in this case however, much lower and broader than in the 

case of dry fibril, since the size of the islands with a dense packing of the collagen 

molecules is much smaller.  Therefore, it can be seen that the mineralized fibril has an 

average density of collagen molecules similar to the case of the wet fibrils, but a 

molecular spacing similar to the dry fibril. 
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Figure 2: Four Equatorial diffuse X-ray scattering peaks representing the lateral spacing 

of collagen molecules as a function of water content.  The water content decreases from 

fully wet in (a) to fully dry in (c).  The black circles in the figures symbolize the 

collagen molecules in the cross-section of a fibril with on top the number of collagen 

molecules per unit surface of the fibril cross-section.  Mineralized collagen is 

represented in (d).  It is shown that the peak of the average lateral spacing between the 

molecules shifts from (a) to (c), at which point it is equal to the mineralized collagen.  It 

has to be noted that the number of molecules in (d) is about the same as in the fully wet 

case (a).  Image reproduced from ref. 3, 399. 

 

5.1.1.3 Collagen as a template material 

Type I collagen has been widely used in hybrid biominerals synthesis due to its 

biocompatibility and interesting properties.  Yet since highly porous, nonmineralized 

collagen matrices have an inherent lack of mechanical resistance, their applications as 

stress-bearing scaffolds for bone repair are limited though
394, 400

.  Therefore, to 

overcome this problem, attempts have been made to introduce different kinds of 

minerals inside the collagen structure.  In addition to infiltration with calcium 

phosphate
96

, collagen has also been infiltrated with silica in vivo
401

 as in vitro as well
394

, 

suggesting that collagen may act as an universal template.  Also by using CaCO3, it was 

claimed to be possible to infiltrate collagen, although this was never clearly proven
126

.  

In the case of silica, the introduction of the mineral phase was achieved by the use of 

polyamine-enriched collagen.  By stabilization of polysilicic acid, it acted as a fluidic 

precursor phase, which infiltrated the collagen by capillary action
394

.  The polyamine-
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enriched collagen acted then as a template and catalyst for polymerization of the 

precursor phase into silica
394

. 

In the case of calcium carbonate, a similar mechanism was proposed where the addition 

of polyacrylic acid (PAA) enabled the formation of an amorphous polymer-induced 

liquid-precursor (PILP) phase of CaCO3, infiltrating the collagen by capillary action
126

.  

An interesting periodic banding pattern of calcite disks was also observed, with a 

spacing of about 6 times that of the banding pattern observed for native type I collagen.  

By removing the organic part, indications were found that the mineral had been 

deposited throughout the fibers and not solely as disks.  Based on this it was 

hypothesised that the liquid-precursor phase was drawn into the collagen fibers by 

capillary action, which would preferably occur at the hole-zones of the collagen, leaving 

those regions of collagen more fully entrenched with the mineral.  Since this research 

was mainly carried out by SEM and bleaching methods, a conclusive proof of the 

infiltration could not be provided, and the proposed mechanism of capillary action 

infiltration was merely based on the observation of the PILP phase to seep into cracks 

and crevices due to capillary forces acting on the phase boundaries of the precursor 

phase
126

.  Furthermore the morphology of these CaCO3 crystals, as well as the 

crystallographic orientation of the crystals formed inside the collagen (if formed) was 

never described or discussed.  

 

Subsequent research based on the previous results, provided a better proof of infiltration 

of reconstituted type I collagen fibrils with CaCO3, using magnetic resonance 

microscopy
402

.  The fibrils were infiltrated using conditions similar to the experiments 

described above
126

 by the use of a CaCO3 PILP phase, and were investigated by means 

of SEM, XRD and magnetic resonance microscopy (MRM).  It was found that the water 

proton MRM properties and the hydration state of the collagen changed with the onset 

of mineralization.  These two events were thought to be a result of the infiltration of the 

mineral inside the collagen.  Firstly, the reduced hydration state was attributed to 

displacement of water by the amorphous material when infiltrating the collagen.  

Secondly, the reduction in the proton MRM properties, and more precisely the water 

proton T2 values, was linked with the immobilization of water molecules through ionic 

or dipolar interactions at the surface of crystalline mineral deposits.  Further, this 

reduction was explained by the enhanced field heterogeneities caused by the different 
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bulk magnetic susceptibility of the mineral from that of water.  Interestingly, an increase 

in collagen content could also be observed, which was ascribed to an indirect effect of 

collagen fusion during mineral formation.  XRD showed that crystallisation into the 

calcite polymorph occurred after 12 days, and the crystalline mineral content increased 

substantially from days 13 and 15.  The X-ray diffraction peak appearing at 10.607° in 

the diffractogram of collagen (lateral molecular spacing of 1.67 nm) was also observed 

and remained constant throughout the PILP experiment, which was in contrast with 

previously published X-ray diffraction studies
402, 403

.  An exact explanation for this 

could not be given.  As a mechanism for infiltration it was proposed that the amorphous 

CaCO3 PILP phase is taken up by the collagen, displacing the water within the matrix 

structure.  In a second phase, the amorphous CaCO3 droplets begin to coalescence 

within the intrafibrillar space of collagen.  Since this doesn‟t influence the MRM 

properties, they plateau in this region.  Finally the amorphous phase crystallises, thereby 

increasing the rigidity of the collagen molecules.  

 

5.1.1.4 Precipitation of CaCO3 in collagen matrices 

Precipitation of calcium carbonate in oriented and non-oriented collagenous matrices, 

has previously demonstrated that the microenvironment in which crystallisation occurs 

can define the polymorph and orientation of the crystals formed
4, 404

.  This was shown 

by precipitation of CaCO3 on crosslinked and uncrosslinked gelatin films containing 

adsorbed polypeptides such as poly-L-glutamate (poly-G) or polyaspartic acid (PAsp) 

and Ca
2+

 ions
405, 406

.  Gelatin itself is a complex structure consisting of denatured and 

degraded collagen molecules
404

.  Depending on the degree of deformation of the gelatin 

films, and the type and concentration of the polypeptide used, different kinds of 

polymorph selectivity and crystal orientation were obtained.  In unstretched gelatin 

films containing PAsp or poly-Glu, non-oriented crystals were almost exclusively 

formed.  As an exception, lower concentrations of PAsp (less than 0.5 µg per gram of 

gelatin), allowed the formation of oriented calcite crystals on the surface of the film 

with their c-axes being oriented perpendicular to the film surface
404

.  This ability of 

PAsp to influence the orientation of calcite nucleation was possibly due to its ability in 

adopting a β-sheet conformation on absorption to the collagen matrix while poly-Glu 

adopts a random orientation.  Increase in the concentration of the additive from 0.5 to 

10 mg per g of gelatin resulted first in the precipitation of non-oriented aragonite while 
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higher concentrations formed non-oriented vaterite
404, 405

.  This observation was in 

accordance with Ostwald‟s rule of stages where the least stable polymorph is formed 

under kinetically controlled conditions. 

By uniaxially deforming the films, a different behaviour could be observed.  In this case 

a significant increase in the degree of crystal orientation occurred accompanied by a 

polymorph switch.  In the presence of PAsp it was now possible to observe oriented 

crystals of all three anhydrous crystalline polymorphs of calcium carbonate, whereas in 

the presence of poly-Glu, oriented aragonite and vaterite crystals were obtained
404

.  

Interestingly, the oriented aragonite crystals produced within the films had their 

morphologies dictated by the initial shape of the sites in which they grew and were 

therefore rod-shaped with their long axis parallel to the direction of elongation and c-

axis perpendicular to the longitudinal axis of the rod
405

.  Besides enabling polymorphic 

control by increasing the concentration of polypeptide, polymorphic selection also 

depended on the degree of uniaxial deformation.  This was due to reduction of the 

average cavity size by stretching, increasing the local supersaturation and the 

concentration of the negatively charged polyelectrolytes, favouring formation of the 

least soluble polymorph being vaterite
407

. 

 

5.2 Aims of the project 

The aim of this project was to investigate the possibility of using collagen to template 

different materials.  The mineralization of collagen fibrils with calcium carbonate was 

chosen as a model system for this work and SAXS and WAXS, in combination with 

electron microscopy, were selected as analytical techniques.  An introduction to CaCO3 

is given in Chapter 4.  Since collagen is a highly organized matrix, controlling the 

organization and orientation of hydroxyapatite nanocrystals in bone, it provides an 

appropriate confined environment to template crystal growth and morphology.  By the 

use of SAXS and WAXS, we will be able to study the deformations on the collagen 

template caused by mineral formation.  These characteristics are relevant for the 

understanding of biogenic calcification processes, focussing on the role of confinement 

in ACC stabilisation.  
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5.3 Experimental 

The synchrotron experiments were performed at the European synchrotron radiation 

facility (ESRF), utilising the setup at the SAXS/WAXS Dutch/Belgian BeamLine 

(DUBBLE) BM26.  For the execution of the experiments, a liquid flow cell was used, 

equipped with Kapton or mica windows.  As a substrate, two different types of collagen 

were used: type I collagen extracted from horse tendon, and collagen sponges. 

5.3.1 Construction of the flow cell. 

To investigate the infiltration of the collagen fibrils in situ, a flow cell had to be 

developed to pump CaCO3 solution into a reaction environment containing collagen.  

The flow cell consisted of a metal frame (Figure 3) with an inlet and outlet. 

 

 

Figure 3: Metal framework of the flow cell. Bottom and top look the same. 

 

In this framework, two mica windows or two pieces of Kapton were put in the centre, 

forming the two windows.  Two teflon pieces were screwed in (Figure 4) with the help 

of a rubber O-ring to keep the windows in place and close the flow cell liquid thightly to 

avoid leaking.  The bottom and top pieces had different conical openings (Figure 4a) on 

the outer side of the cell to avoid interference between the scattered beam and the cell.  

The inner surface of both pieces were identical (Figure 4b).  Figure 5 illustrates the fully 

assembled flow cell. 
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Figure 4: Teflon pieces to close the metal frame flow cell.  (a) Shows the outside of the 

top and bottom part of the cell while (b) shows the inside of both pieces. 

 

 

Figure 5: Assembled liquid flow cell. 

 

In order to be able to put the flow cell in the path of the beam, a holder was fabricated 

(Figure 6a).  This holder had two screw holes at the bottom, which allowed it to be 

screwed to the robotic platform.  The flow cell itself was fixed with two screws to keep 

it stationary during the experiments (Figure 6b). 

 

 

a b 
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Figure 6: Holder with dimensions (a) and flow cell screwed in (b). 

 

5.3.2 Preparation and experiments with horse tendon type I collagen 

The horse tendon collagen was prepared as follows:  1 gram of horse tendon extract 

(Opocrin, Corlo, Modena, Italy) was mixed with 10 mL of aqueous acetic acid (50 mM, 

pH 2.5) and was left to stir overnight at room temperature.  Under these conditions, the 

collagen fibrils remained dispersed in solution.  Subsequently, the mixture was 

centrifuged at 5000 rpm for 10 min and the supernatant was collected and stored at 4  

C in the fridge.  In the next step, the collagen fibrils were formed on a Kapton film or 

mica window to be put into the flow cell.  Prior to the investigations at the synchrotron 

beamline, similar experiments were carried out in the laboratory where horse tendon 

collagen was formed on glass slides or C-coated formvar covered Ni TEM grids as 

substrates.  The fibrils formed in this way were infiltrated with CaCO3 and studied by 

TEM and SEM.  To form the collagen on the substrates, 10 µL of the supernatant 

solution was put on a piece of parafilm, and the top side of the substrate was placed on 

the collagen solution for 10 sec.  It was then removed and excess collagen was 

dispossed with a filter paper.  The substrates were then put on a droplet of DI water, 

which triggered the assembly of collagen fibers and their subsequent precipitation
80, 179

.  

After 10 min, the substrates were washed with ethanol and left to dry.  Optical 

microscopy was used to determine whether collagen fibrils had formed on the substrate. 

 

a b 
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To study the infiltration of the collagen fibrils with CaCO3 by TEM and SEM, the glass 

slides or Ni-TEM grids were put in a 10 mM solution of CaCl2.2H2O with 1 mg/mL 

poly(allylamine hydrochloride) (PAH) or 50 µg/mL of polyaspartic acid (PAsp) with 

the side of the collagen fibrils on top.  This solution was put in an ammonia desiccator 

and samples were collected after variable times, washed with ethanol and left to dry. 

 

At the synchrotron beamline, the collagen covered Kapton and mica sheets were 

inserted as windows for the flow cell.  Subsequently, a solution of 10 mM CaCl2.2H2O  

containing either 1 mg/mL of poly(allylamine hydrochloride) (PAH) or 50 µg/mL of 

polyaspartic acid (PAsp) was placed in an ammonia desiccator.  The reactant solution 

was pumped through the flow cell with an addition rate of 2.5 mL/min.  The flow cell 

containing the collagen was placed in front of the SAXS and WAXS detectors in the X-

ray beam.  While the Ca
2+

/PAH solution was pumped through the flow cell, the WAXS 

and SAXS signal was recorded from the sample at intervals of 5 min with an acquisition 

time of 3 min, for a total time of 8 h. 

 

5.3.3 Preparation and experiments with collagen sponges 

The collagen sponges were prepared as follows.  Fragments of collagen sponge were cut 

into cubes of 0.125 cm
3
 which were hydrated and degassed in a vacuum oven for 30 

min, as described in previous research
126

.  The collagen sponges were then incubated in 

a flow cell between two mica or Kapton windows.  Subsequently as described before, a 

solution of 10 mM CaCl2.2H2O containing the additives was placed in a desiccator 

containing ammonium carbonate and was pumped through the flow cell with an 

addition rate of 2.5 mL/min.  The WAXS and SAXS signal was acquired from the 

collagen sponge in intervals of 5 min for an acquisition time of 3 min, for a total time of 

8 h.  Control experiments were carried out in the absence of additives (PAH or PAsp).  

After the experiments, the sponges were removed from the flow cell, crushed in liquid 

nitrogen, resuspended in ethanol and dispersed on a C-coated formvar covered Cu TEM 

grid which was allowed to air dry.  Alternatively, collagen sponges were incubated in 

CaCl2.2H2O solution containing either 1 mg/mL of PAH or 50 µg/mL of PAsp inside a 

desiccator containing ammonium carbonate, and at designated times specimens were 

collected for analysis with TEM and SEM.  After 8 h of measurements, the sponges 
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were removed from the solution, briefly washed in water and air dried.  For TEM 

measurements, the sponges were crushed again in liquid nitrogen, resuspended in 

ethanol, and dispersed on a C-coated formvar covered Cu TEM grid which was allowed 

to air dry.  Figure 7 shows an overview of the experimental set-up. 

 

  

Figure 7: Experimental set-up at the European Synchrotron Research Facility (ESRF), 

Grenoble, France, Dutch/Belgian beam line BM26.   

 

5.4 Results: 

Unless otherwise stated, all experiments were conducted in collaboration with Dr. Fabio 

Nudelman from the University of Eindhoven.  Background subtraction of all the 

synchrotron data and data analysis of the SAXS spectra were done by Dr. Daniel 

Hermida Merino and Dr. Guiseppe Portale from the ESRF.  Figures 16 and 18 were 

prepared by Dr. Daniel Hermida Merino and Dr Giuseppe Portale.  TEM and SEM for 

Figure 19, 22, 25 were done by Dr. Fabio Nudelman at the University of Eindhoven. 

 

5.4.1 Preparative studies with electron microscopy on the infiltration of CaCO3 in horse 

tendon collagen fibrils 

Before the experiments at the synchrotron were preformed, the horse tendon collagen 

fibrils were investigated with TEM.  Figure 8 shows TEM images of the collagen.  The 

diameter of collagen molecules ranged from 70 nm to 660 nm and they were tens of 

a b 
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micrometers long.  The typical collagen structure with an overlap zone of 27 nm and a 

gap zone of about 40 nm can be seen in Figure 8b. 

 

 

 

 

Figure 8: TEM image of collagen fibril of horse tendon collagen.  The overlap and gap 

zone of the collagen can be distinguished (b). 

 

In the next step, the collagen infiltration in the presence and absence of PAH was 

investigated with SEM and TEM.  In the absence of PAH, FEGSEM showed that 

rhombohedral calcite crystals formed, growing on top or even including the collagen 

fibrils (Figure 9).  The calcite crystals were distributed along the collagen fibrils and 

had sizes ranging from 20 to 40 µm which is the characteristic morphology of calcite 

crystals in the absence of any additives. 

 

 

 

a b 
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Repeating the experiments in the presence of PAH, FEGSEM images showed that the 

collagen fibers were covered with a patchy film-like coating of CaCO3 after one day 

reaction (Figure 10).  Interestingly, the CaCO3 was organised in a banded pattern of 

disks around the collagen.  The disks were about 50-100 nm thick and spaced about 20-

30 nm apart, with the disks oriented perpendicular to the c-axis of the collagen fibrils. 

 

 

 

Figure 9: FEGSEM image of glass slide covered with horse tendon collagen.  The glass 

slide was put in a CaCO3 solution (10 mM [Ca
2+

]) for 1 day.  CaCO3 crystals were 

formed on top of the collagen fibrils. 
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Figure 10: FEGSEM images of collagen fibrils formed on a Kapton film, put in a CaCO3 

solution (10 mM [Ca
2+

]) for 1 day in the presence of 1 mg/mL PAH.  The collagen 

fibrils are covered with CaCO3 in a banded pattern.   

 

TEM was used to further investigate the collagen fibrils.  For this, collagen fibrils were 

formed on C-coated Ni-TEM grids, which were put in a CaCO3 solution for times 

between 6 h to one day (Figure 11 and 12).  After 6 h, it was seen that round amorphous 

particles with sizes of 100 nm to 450 nm had formed (Figure 11a), similar to the 

particles formed in a CaCO3/PAH bulk solution (See Chapter 4).  EDX also showed that 

they contained Ca
2+

, while no crystalline material was found.  Interestingly, these 

amorphous particles were mainly associated with the collagen fibrils, covering and 

sticking to the side of the collagen.  The particles also covered large areas of the 

collagen, which contrasts previously obtained results with calcium phosphate, where 

amorphous calcium phosphate droplets seemed to bind to certain preferential sites of the 

collagen
196

. 

Further investigation showed that the collagen had become very electron dense at 

different positions, which might be due to the presence of calcium carbonate.  

Interestingly, at some positions on the collagen fibril, small particles associated with the 

collagen fibrils could be distinguished (see Figure 11b, c, d).  These particles were still 

a b 

c d 
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amorphous, 5 to 10 nm thick and around 20 nm long, but whether these particles were 

covering the collagen or were inside was not clear from the images, especially because 

similar looking structures were also found next to the collagen (Figure 11b). 

 

  

  
Figure 11: TEM images of collagen fibrils on a Ni TEM grid put in a CaCO3 solution 

(10 mM [Ca
2+

]) with 1 mg/mL PAH after 6 h.  Small particles 10 nm thick and 20 nm 

long were found inside or on top of the collagen fibrils (white circles in b, c, d). 

 

After 12 h to one day, the collagen fibrils were completely covered with CaCO3 which 

had crystallised into calcite and vaterite (Figure 12b).  It was therefore difficult to obtain 

a clear image of the infiltration of CaCO3.  The covering of the collagen fibrils with disk 

shaped CaCO3 particles as shown before with SEM is demonstrated here again (Figure 

d c 

b a 
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12a).  Some parts of the collagen were not completely covered though (Figure 12c) and 

interestingly, after beam damage, small electron dense particles were visible inside the 

collagen, but only at the overlap zone of the collagen (Figure 12d).  The particles had a 

needle-like appearance, were 30 nm long and between 5 to 10 nm thicknesses.  

Unfortunately, this event only occurred once and no diffraction was obtained.  The 

arrow in Figure 12d indicates the place of beam damage 

 

 
  

  
Figure 12: TEM images after 1 day of collagen fibrils on a Ni TEM grid put in a CaCO3 

solution (10 mM [Ca
2+

]) with 1 mg/mL PAH.  (a, b) Most collagen fibrils are covered 

now CaCO3.  The diffraction pattern in (b) corresponds to vaterite.  Non-covered 

collagen fibrils before (c) and after (d) beam damage (arrowed) are also shown. 
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5.4.2 Studies on the infiltration of collagen sponges with CaCO3 in the presence of PAH 

5.4.2.1 Studies with SAXS and WAXS 

At the synchrotron beamline, SAXS and WAXS experiments were conducted.  First the 

collagen was studied in aqueous solution.  It was soon discovered that there were some 

problems with the set-up.  First of all, the SAXS signal of the horse tendon collagen 

fibrils assembled on the windows wasn‟t strong enough since the sample volume 

illuminated by the beam was not sufficient.  Therefore, it was decided to do all 

experiments with collagen sponges put in the flow cell.  In addition, measuring the 

collagen sponges with Kapton windows, showed a characteristic Kapton peak in the 

SAXS signal which would cover the signal of the collagen.  Therefore, it was decided to 

work with mica windows instead of Kapton.  This made the flow cell design rather 

complicated since the mica windows didn‟t fit in the flow cell.  As a solution, mica 

windows were glued to a piece of Kapton containing a small hole in the middle to allow 

the X-ray beam to pass through the Kapton (Figure 13).  The Kapton containing the 

mica window was then placed inside the liquid cell, and the cell was closed. 

 

  

Figure 13. Kapton with a small hole in the middle with a mica window glued on.  In this 

way it was possible to allow investigation of the collagen with the flow cell (right 

image). 

 

After the flow cell with adapted windows had been assembled, the cell was filled with 

10 mM CaCl2 solution containing 1 mg/mL PAH and a collagen sponge was inserted 

between the two windows.  SAXS and WAXS measurements were then performed.  

The SAXS signal of the unmineralized collagen showed the typical 3
rd

 and 5
th

 order 

peaks of the collagen, relating to the 67 nm periodic banding pattern of collagen (Figure 

b a 
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14).  Importantly, a broad peak centred at 1.5 nm is also visible (arrow 2 in Figure 14), 

which corresponded to the intermolecular distances present between the collagen 

microfibrils exhibiting a liquid-crystal-like order
398, 399

.  

 

 

Figure 14: SAXS spectrum collected at the synchrotron of a collagen sponge in a 10 

mM CaCl2 solution in the presence of 1 mg/mL PAH.  The two arrows 1 and 1„ denote 

the 3
rd

 and 5
th

 order peaks of collagen while arrow 2 denotes a peak corresponding with 

the intermolecular distances between the collagen microfibrils. 

 

The beaker containing the CaCl2 + PAH solution was then placed in an ammonia 

desiccator to allow formation of CaCO3, whereafter it was connected to the flow cell by 

a pump system.  The pump was activated and 1 min later SAXS and WAXS 

measurements were taken simultaneously every 5 min with an acquisition time of 3 

min.  Figure 15 shows the development of the SAXS signal over time. 
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As can be seen from Figure 15 and Figure 17, the SAXS and WAXS signals were 

relatively constant during the first 80 min of the reaction.  After 90 min though, the 

scattering intensity started to increase, which can be attributed to the formation and 

deposition of calcium carbonate inside or possibly on the surface of the collagen fibrils 

(Figure 15).  Due to this, the 3
rd

 and 5
th

 order peaks of the collagen started to disappear 

due to masking by the intense signal of the mineral particles.  Interestingly though, the 

peak at the Bragg spacing of q = 4.08 nm
-1

 in the SAXS spectrum, (intermolecular 

spacing of 1.5 nm between the collagen molecules) started to broaden further, which 

suggested an increase in the disorder in the lateral packing of the molecules.  

Remarkably, no crystalline peaks were observed in the WAXS spectrum (Figure 17), 

indicating only amorphous calcium carbonate (ACC) was forming in the reaction 

solution at this stage.  These results therefore suggested that ACC infiltrated the 

collagen, causing a loss in order in the lateral packing of the collagen molecules.  The 

    

Figure 15: SAXS spectra collected of collagen mineralization with CaCO3 (10 mM 

[Ca
2+

]) in the presence of 1 mg/mL PAH at different time points.  The two arrows 

denote the 3
rd

 and 5
th

 order peaks belonging to the axial organization of the collagen.  

The inset shows a plot of I(q)*q of the area marked by the black square.  Left line shows 

the broad peak at 1.5 nm, corresponding to the intermolecular distances between the 

molecules of collagen.  Right line marks the position of a peak at 1.1 nm demonstrating 

a more compact packing. 
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fact that this was taking place before crystallisation occurred made it even more 

interesting.  Crystallinity then started to develop after 95 min of reaction, as can be seen 

in the WAXS pattern by the progressive appearance of a Bragg reflection corresponding 

to the (104) lattice planes of calcite at 19.64° (Figure 17).  Simultaneously, the peak in 

the SAXS spectrum at q = 4.08 nm
-1

 started to decrease further, while at the same time a 

new shoulder was appearing at q = 5.68 nm
-1

.  This is ascribed to the reordering of the 

molecules, with the intermolecular distances decreasing from the initial 1.5 nm to 1.1 

nm (Figure 15 inset).  By fitting of the first peak with a Gaussian profile, it was 

demonstrated that the axial arrangement of the microfibrils didn‟t change.  During the 

further development of the experiments this reflection was mostly unchanged in shape, 

with only a small, non-significant change in q value (Figure 16).  These results are 

entirely consistent with previous experiments on in situ mineralization measurements 

with hydroxyapatite of turkey tendon
399

, showing that the in vivo mineralization of 

collagen with calcium carbonate induced the same changes on the collagen structures. 

 

  

Figure 16: Gaussian (a) and power-background fit (b) of the first peak in the SAXS 

spectrum in Figure 15, at time = 0 min and time = 95 min.  Figure prepared by Dr. 

Daniel Hermida Merino and Dr Giuseppe Portale from the ESRF 

 

After 200 minutes of reaction, the 3
rd

 and 5
th

 order peaks of collagen could no longer be 

distinguished anymore as the scattering intensity of the SAXS spectrum was completely 

dominated by the scattering of the incipient crystals.  The crystallinity continued to 

develop as shown in the WAXS pattern which also indicated that in addition to the 
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presence of calcite peaks, vaterite was detected, as shown by the characteristic vaterite 

peak of the (112) plane at 18.20° (Figure 17). 

 

  

Figure 17: WAXS spectra of collagen mineralization with CaCO3 (10 mM [Ca
2+

]) in the 

presence of 1 mg/mL PAH at different time points.  At the end of the reaction a mixture 

of calcite (noted by C)  and vaterite (noted by V) peaks were found. The asterisk * 

indicates the background peaks due to cosmic X-rays or scattering of the mica window.  

The inset shows an expansion of the (104) calcite peak, demonstrating the gradual 

appearance of the peak. 

 

After almost 7.5 h (440 min), the crystalline phase completely dominated the SAXS 

pattern, and the collagen was assumed to be completely covered with calcite and 

vaterite crystals.  It was also observed that the peak at q = 4.08 nm
-1

 had disappeared at 

this time, being replaced by one at q = 5.68 nm
-1 

(Figure 15).   

Further analysis of the SAXS pattern after 150 minutes of mineralisation showed that 

the mineral particles were plate-shaped, with a thickness of 5.4 nm and a polydispersity 

of ≤ 0.05, which is similar to the hydroxyapatite crystals found in bone (Figure 18).  
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Figure 18: SAXS profile of Figure 15 after 440 minutes of mineralization of the 

collagen CaCO3 (10 mM [Ca
2+

]) in the presence of 1 mg/mL PAH.  The q
-2

 slope at low 

q-values is indicative of flat mineralized particles, 5.4 nm in size with low 

polydispersity.  Figure prepared by Dr. Daniel Hermida Merino and Dr Giuseppe 

Portale. 

 

By analysis of the peak width in the WAXS spectrum it was possible to obtain 

information about the lateral dimensions of the CaCO3 crystals using the Scherrer 

equation: 

  
  

      
 Equation 4 

 

where τ is the mean size of the nanocrystals or ordered crystalline domains, K is a 

dimensionless shape factor with a typical value of 0.9, λ the X-ray wavelength, β the 

line broadening at half the maximum wavelength and θ the Bragg angle
408

. 

By analysis of the broadening of the (114) peak of vaterite in the WAXS pattern (see 

Figure 17) the size of the crystals was determined to be 21.3 nm.  This evaluation does 

not distinguish between particle length and width and caution has to be taken when 

interpreting the results since peak broadening can also originate from microstrain 

fluctuations and instrumental parameters.  
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5.4.2.2 Studies with TEM 

Given the results from the synchrotron, the formation of the calcium carbonate crystals 

was investigated again in more detail with TEM in order to obtain more information 

about the orientation of the plate-like CaCO3 crystals.  Studies were done at the 

University of Eindhoven by Dr. Fabio Nudelman.  Horse tendon collagen and collagen 

sponges were used in this case, and instead of using a flow cell, the sponges were 

directly incubated in a 10 mM CaCl2 solution containing 1 mg/mL PAH in an ammonia 

desiccator.  In this case, collagen fibrils were found that were not covered with CaCO3.  

Figure 19a shows a fibril mineralised with calcite where the crystals are orientated in 

the direction of the (104) plane, 28 degrees in correspondence with the collagen fibril 

axis.  The orientation of the collagen fibril with respect to this plane was fibril specific 

and often a large angular spread of around 30° was seen.  When vaterite was formed, 

the crystals in a single fibril were co-oriented, with a smaller angular spread, although 

the orientation was still fibril-specific (Figure 19b). 

 

  Figure 19: TEM images of collagen mineralized with CaCO3 (10 mM [Ca
2+

]) after 6 h 

in the presence of 1 mg/mL of PAH.  (a) A horse tendon collagen fibril mineralized 

with calcite.  In the inset a dark field image is seen showing the crystalline domains that 

contribute to the (104) reflection in the electron diffraction pattern.  (b)  A collagen 

fibril of a collagen sponge mineralized with vaterite.  The inset shows the corresponding 

diffraction pattern and dark field image, highlighting the plate-shaped crystalline 

domains contributing to the (002) reflection.  TEM done by Dr. Fabio Nudelman. 
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5.4.3 Studies on the infiltration of collagen sponges with CaCO3 in the presence of 

PAsp 

5.4.3.1 Studies with SAXS and WAXS 

When the experiments were repeated with PAsp as an additive, similar results were 

obtained, although with a slightly faster crystallisation rate.  In this case, almost no 

change in the SAXS spectrum was observed until 30 min, after which time the 

scattering intensity significantly increased (Figure 20).  WAXS showed no crystalline 

material was present in the reaction until about 30 min, whereafter crystallisation started 

as shown by the progressive development of a Bragg peak corresponding to the (104) 

plane of calcite (Figure 21). 

 

 

Figure 20: SAXS spectra collected at different time points of collagen mineralization 

with CaCO3 ([10 mM CaCl2]) in the presence of 50 µg/mL PAsp.  The two arrows 

denote again the 3
rd

 and 5
th

 order peaks belonging to the axial organization of the 

collagen.  The inset shows a plot of I(q)*q of the area marked by the black square.  The 

left arrow shows the broad peak at 1.5 nm.  The right arrow shows a peak at 1.1 nm 

demonstrating a more compact packing. 

 

After 60 min, the mineral phase was predominantly crystalline and the 3
rd

 and 5
th

 order 

peaks had disappeared completely in the SAXS pattern, as the scattering was dominated 
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completely by the formation of the mineral phase.  Further analysis of the pattern 

showed that it was only possible to observe broadening of the peak at 1.5 nm after 90 

minutes of reaction, indicating the increase in disorder in the lateral packing of the 

microfibrils (see Figure 20 inset).  In contrast to the experiments performed in the 

presence of PAH, this peak was still present in the pattern even after 290 minutes, but 

was now much broader.  After this time, a broad peak at 1.1 nm also started to develop 

in the SAXS pattern (Figure 20 inset), suggesting that the microfibrils had reorganised 

into a more compact packing.  At the end of the reaction, the WAXS pattern showed 

that the mineral phase consisted of a mixture of calcite and vaterite (Figure 21). 

 

 

Figure 21: WAXS spectra collected at different time points of collagen mineralization 

with CaCO3 ([10 mM CaCl2]) in the presence of 50 µg/mL PAsp.  When the reaction 

was finished, a mixture of calcite (noted by C) and vaterite (noted by V) peaks was 

found.  The respective planes are indicated in the graph.  The inset shows an expansion 

of the (104) peak of calcite. 

 

5.4.3.2 Studies with TEM 

TEM measurements were done again by Dr. Fabio Nudelman on collagen sponges and 

showed that after 3 hours of reaction, the collagen fibril were covered with droplet-like 
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structures, sticking to the collagen fibril (Figure 22a).  It is assumed that these structures 

likely consisted of liquid-like ACC-PAsp complexes, infiltrating into the collagen.  

Interestingly, vaterite crystals of around 10 nm in size were only observed to start 

forming inside the collagen after 17 hours reaction time, which is comparable to  the 

PAH system (Figure 22b).  The orientation of the crystals with respect to the collagen 

fibril was again fibril specific. 

 

   
Figure 22: TEM images of collagen mineralized with CaCO3 (10 mM [Ca

2+
]) in the 

presence of 50 g/mL of PAH, after 3 h (a) and 17 h (b).  The insets show the 

corresponding amorphous (a) and vaterite (b) diffraction pattern of the fibrils.  (b) 

Shows very small particles are visible within the collagen fibril (white circles).  TEM 

done by Dr. Fabio Nudelman. 

 

5.4.4 Studies on the infiltration of collagen sponges with CaCO3 in the absence of 

additives 

To determine whether PAH and PAsp are necessary for the infiltration of the collagen 

fibrils, collagen was mineralized with CaCO3, in the absence of additives (Figure 23, 

24).  In this case, no CaCO3 was found inside or on the surface of the individual fibers.  

Almost no change was observed in the SAXS spectrum until 150 min reaction time, 

when the scattering became completely dominated by the mineral particles, and the 

peaks corresponding to the collagen structure could no longer be observed (Figure 23).  

The results revealed that there was no change in the fibrillar structure of the collagen, 

112 

 

a b 
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and the axial and lateral packing of the molecules didn‟t change during the 

mineralisation event. 

 

 

Figure 23: SAXS pattern collected of a collagen sponge in a 10 mM CaCl2 solution put 

an ammonia desiccator, collected at different reaction times.  The arrows show the 3
rd

 

and 5
th

 order peaks belonging to the axial organization of the collagen. 

 

 
Figure 24: WAXS spectrum of a collagen sponge in a 10 mM CaCl2 solution put in an 

ammonia desiccator, collected at different reaction times. All the diffraction peaks were 

appointed to calcite.  The asterisk* sign indicates the background peaks. 
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WAXS measurements which were done in parallel with the SAXS measurements. 

showed that crystalline calcite particles started to develop after 30 min of reaction.  

Characteristic peaks of the (104), (113), (018) and (116) planes of calcite were 

distinguished (Figure 24). 

 

After the SAXS and WAXS experiments were done, the sponges mineralized with 

CaCO3 were taken out of the flow cell and analysed with SEM.  In the control sample, 

where the sponges were mineralized without additives, the collagen fibrils stayed 

almost completely clean and only a few rhombohedral calcite crystals were found, 

scattered on the surface of the fibrils (Figure 25a).  In the presence of additives, no 

calcite crystals were present on the collagen and the fibrils had the appearance of being 

mineralised (Figure 25b).  

 

  

Figure 25: FEGSEM images of sponges mineralized with CaCO3 after the SAXS and 

WAXS measurements in the absence of additives (a) and with PAH (b).  SEM done by 

Dr. Fabio Nudelman. 

 

5.5 Discussion 

5.5.1 Comparison with previous observations 

As discussed in the introduction, infiltration of collagen fibrils with calcium carbonate 

crystals has been investigated before in the presence of PAA with SEM
126

, where it was 

proposed that an amorphous polymer-induced liquid-precursor (PILP) phase of CaCO3 

infiltrated the collagen fibrils by capillary action.  Collagen fibrils covered with CaCO3 

were found and an interesting periodic banding pattern of calcite disks was observed, 

with a spacing of about 6 times that of the banding pattern observed for native type I 

a b 
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collagen.  However, the morphology of these CaCO3 crystals, and the crystallographic 

orientation of the crystals formed inside the collagen (if formed) was never described or 

discussed. 

The results described here, show that similar results are obtained using PAH and PAsp.  

In the light of previous results described in chapter 4, this can be expected as PAH and 

PAsp are able to stabilise a liquid-like amorphous phase of CaCO3
28, 77

.  Different from 

the results with PAA is the time frame of crystallisation.  Previous results suggested that 

crystallisation in the presence of PAA takes days, while in our experiments, 

crystallisation occurred after a couple of hours.  This was most probably due to the set-

up (use of a liquid cell and pumping system, different kinds of preparation of collagen), 

different polymer, and also the reduced amount of polymer used (50 µg/mL PAsp 

instead of 200 µg/mL PAA) which might have influenced the kinetics.  The disks 

formed on the collagen itself in the presence of PAH were also much closer together 

then discussed in the presence of PAA (20 nm instead of 250 - 500 nm apart), although 

this was most probably due different type of collagen substrate (in our study we used 

horse tendon type I collagen instead of reconstituted bovine collagen). 

 

5.5.2 Infiltration mechanism and effect on collagen 

To obtain some more information about the infiltration mechanism and its influence on 

the crystallisation of the CaCO3 crystals, the infiltration in the presence of PAsp and 

PAH was investigated with TEM and synchrotron X-ray scattering techniques.  In this 

way we were able to demonstrate collagen does indeed get infiltrated by CaCO3, 

influencing the structure of the organic template.  This could be seen in the broadening 

of the Bragg peak at spacing of q = 4.08 nm
-1

, corresponding to an intermolecular 

spacing of 1.5 nm.  The broadening of the Bragg peak at q = 4.08 nm
-1

 was related to an 

increase in the disorder in the lateral packing of the molecules, due to displacement of 

the water molecules
399

.  At the same time, an increase in intensity of the SAXS 

scattering was also observed, which was attributed to the formation calcium carbonate 

around the collagen fibrils.  Since at this time point no crystalline peaks were observed 

in the WAXS spectrum, only amorphous calcium carbonate could have formed.  

Infiltration of liquid-like amorphous calcium carbonate into the collagen was therefore 

responsible for the increase in disorder of the lateral packing of the collagen molecules.  
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The liquid-like properties of this amorphous calcium carbonate phase stabilised by 

PAsp or PAH has been discussed in previous papers
12, 28

 and its infiltration into 

nanoporous templates has been demonstrated before
29, 84

 (see also chapter 4).  The 

subsequent decrease of the peak at q = 4.08 nm
-1

 and appearance of a new peak at q = 

5.68 nm
-1

 was linked to the reordering of the molecules during crystallisation since at 

that time crystalline peaks for calcite and later vaterite also appeared in the WAXS 

spectrum.  The formation of the crystalline particles reduced the molecular spacing of 

the collagen from the initial 1.5 nm to 1.1 nm by compressing the molecule packets that 

are between them.  A similar phenomenon has been observed for collagen mineralised 

with HAP, as studied with SAXS
399

.  It has to be noted the axial arrangement of the 

microfibrils didn‟t change during the course of the experiments, as was demonstrated by 

fitting of the 1
st
 peak with a Gaussian. 

 

During the reference experiments in the absence of additives, crystallisation is much 

quicker than in the presence of PAH and PAsp, which has been observed before and can 

easily be explained due to the inhibiting effect of the polymers
28, 80

.  Whether collagen 

also has an influence on stabilisation of the amorphous phase is not entirely clear, but 

collagen is known to inhibit HAP nucleation
409

 and calcite growth
131

.  Mineralisation of 

CaCO3 in collagen hydrogels showed that 18% of the calcium carbonate could be 

stabilized as amorphous calcium carbonate
410

.  This stabilization could last till 6 weeks 

when the gel containing the CaCO3 was stored in deionised water.  The exact reason for 

this stabilization was not addressed, although the results suggested that the fiber 

diameter, fiber spacing, and the amphoteric nature of the collagen fibers were important.  

It is also not clear from our results whether confinement itself had an effect on the 

crystallisation, but is expected, taken into consideration previous results where ACC 

was stabilized by confinement
152

. 

 

5.5.3 Comparison with calcium phosphate in collagen 

TEM and SAXS data showed further that the infiltration of CaCO3 inside the collagen 

allowed moulding of the shape of the crystals, resulting in the formation of remarkable 

calcite and vaterite crystals of 5 nm thick.  These crystals are therefore only about 13 

unit cells thick, which is very intriguing, taken into account that at this size they should 
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not be able to crystallise
71, 152, 411, 412

.  The moulding of the ACC phase leading to 

crystals with remarkable morphologies has been demonstrated before
12, 29, 31, 162

 and it is 

thought that this stabilisation of thin crystals must be achieved by strong interactions 

between the collagen and the mineral.  Looking at the formation of hydroxyapatite 

(HAP) during bone formation, both the morphology and crystallographic orientation of 

the crystals are well controlled by the collagen
3, 180, 397

.  In the case of calcium 

carbonate, the morphology of the crystals was also well controlled while the 

crystallographic orientation was not.  It therefore seems that two different mechanisms 

are involved by which collagen controls the mineral formation.  In a first mechanism, 

the morphology is templated by providing a confined environment in which the crystals 

nucleate and grow.  This has been demonstrated to be possible before where next to 

CaCO3
171

, porous single crystals of SrSO4, PbSO4, PbCO3, NaCl and CuSO4.5H2O were 

formed by moulding the crystal shape by the use of a template
32

 even without the 

necessity of an amorphous phase.  It seems therefore, also for the case of collagen, the 

templating mechanism is not specific to HAP, and can be extended to other minerals as 

well. 

The control over crystal orientation and alignment, on the other hand, appears on the 

first hand to be specific to HAP.  One possible explanation is that the surface chemistry 

of the collagen interacts differently with calcium carbonate and calcium phosphate 

crystals.  Previously it was thought that the orientation of the HAP crystals in collagen 

is influenced by the 3-dimensional architecture of the nucleation sites, formed by the 

charged amino acids of collagen, effecting the coordination of the calcium and 

phosphate ions
196, 198, 199

.  For calcium carbonate this effect might be different. 

Yet, taking into account the results of chapter 3 where it was proven that an alignment 

effect of HAP can be achieved purely by a confinement effect, it might be that the 

surface chemistry of the collagen might not play such a large role in the orientation of 

the crystals at all.  HAP nucleates as plate-shaped crystal 200 nm in size and has a 

strong anisotropy in its crystal lattice self with the [001] axis as the axis of fastest 

growth
243, 291

.  It is therefore not much of a surprise, when HAP nucleates inside the 

collagen gaps, the crystals are oriented with their [001] axes coincident with the long 

axis of the collagen fibrils.  Calcite on the other hand, generally forms rhombohedra 20-

40 micrometers in size and doesn‟t have a strong axis of fastest growth
413

.  The effect of 

confinement on the orientation is therefore expected not to be as significant and the 
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crystals are randomly oriented.  Considering vaterite, stronger orientations than for 

calcite are expected, since at our working pH of 9.5, vaterite often forms disk-like 

structures
414-416

, with a (001) zone axis and the (110) face as fastest growing face
415

.  

From the above shown results, the vaterite crystals seem to be more oriented with 

respect to the fibril although this is very fibril specific (Figure 22).  More TEM research 

will be performed to investigate this further. 

 

The results discussed in chapter 3 also raised doubt about the calcium phosphate PILP 

theory.  As discussed before, filling of the collagen fibers with calcium phosphate, 

might be driven by a molecular interaction between the net negative surface charge of 

the stabilised PAsp/ACP complexes and the positively charged regions in the collagen 

fibril
196

.  In the CaCO3 system though, a PILP phase has been clearly demonstrated
28, 29, 

77
 and allows infiltration of the nanosized pores of collagen by capillary action.  

Whether these different infiltration mechanisms are connected to the differences in 

orientation of the crystals is not clear. 

 

5.6 Conclusion: 

This chapter investigated the infiltration of collagen with calcium carbonate.  It was 

shown that calcium carbonate precipitates within collagen fibrils when the reaction is 

carried out in the presence of PAsp and PAH.   The additives induce the formation of a 

liquid-like amorphous phase of CaCO3, which infiltrates the collagen due to capillary 

action, increasing the disorder in the lateral packing of the collagen molecules.  This is 

followed by crystallisation of the amorphous particles, which reduces the molecular 

spacing of the collagen from the initial 1.5 nm to 1.1 nm by compressing the molecule 

packets between them.  Due to the moulding effect of the collagen, remarkable 5 nm 

thick crystals of calcite and vaterite are formed, randomly oriented with respect to the 

collagen fibril.  The origin of this random orientation is not entirely clear.  This study 

therefore demonstrates that collagen has the ability to template different type of 

minerals than calcium phosphate, and is already being investigated for other materials 

such as iron oxide. 



 

Chapter 6: Formation of Hollow Calcium 

Carbonate Rods 
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This chapter deals with the formation of hollow CaCO3 rods, templated in the pores of 

track-etched membranes.  Previous research already demonstrated the production of 

solid, rod-shaped single crystals of calcite by the use of nanosized track-etched 

membrane pores as templates
29, 31, 172

.  With the formation process and crystallinity of 

these rods investigated, further research is carried out in this chapter to investigate 

different ways of controlling the morphology of the rods.  Therefore track-etched 

membranes with nanosized and micron sized pores were used, and the effect of the pore 

size and surface morphology of the membranes was investigated.  In addition to solid 

rods which had been observed before, hollow rods of CaCO3 were also detected.  These 

hollow rods formed in small pore sizes at early timescales and remained hollow in the 

case of bigger pore sizes.  By changing the surface chemistry of the track-etched 

membrane pores, the amount of hollow rods increased, especially in the case of the 200 

nm pores. 

 

6.1 Introduction 

6.1.1 Formation of hollow structures 

Over the past two decades, formation of hollow structures became a hot topic in the 

material science area, due to their many applications in drug delivery, catalysis, coatings 

and the formation of composite materials
417, 418

.  Commonly, nanostructures with 

hollow interiors, can be prepared by coating the surface of colloidal templates (such as 

gold or silver particles or silica beads) with thin layers of the desired material, followed 

by a selective removal of the colloidal template through calcination or chemical 

etching
419

.  In this way, hollow nanostructures such as nanoshells and tubes of gold, 

platinum and palladium were prepared, from silver nanostructures as templates
419

.  

Another successful technique is the use of porous membrane templates such as alumina 

and polycarbonate track-etched membranes
178, 420, 421

.  By the use of this technique, 

hollow rods of silica were deposited in polycarbonate track-etched membranes by 

interactions of silica particles with the polycarbonate surface
420

.  After formation of the 

hollow rods, the tubes were progressively filled from the initial shell to the core with 

silica nanoparticle aggregates.  Due to the absence of direct contact with the 

polycarbonate surface, these particles were loosely packed within the tube interior, in 

contrast to the dense coating deposited on the pore internal surface.  Furthermore, silica 
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nanotubes could also be obtained in gels
422

 and by a reversible micelle sol-gel 

method
423

.  Nanotubular structures of other types of oxide materials were additionally 

formed by coating of templates such as carbon nanotubes, polymer and metal nanorods 

and nanowires, polycarbonate membranes and anodic aluminium oxide membranes, 

followed by removal of the template materials by dissolution, chemical etching and/or 

pyrolysis
178

. 

Hollow organic microtubules of polymers were prepared within the pores of track-

etched membranes by preferential absorption of the polymer chains on the pore walls.  

The adsorption of the nascent polymer chains to the pore walls yielded a thin polymer 

“skin” which became thicker and thicker with time
421

.  Depending on the polymer, the 

tubes could then completely fill to form solid fibers
424

, or in some cases remained 

tubular even after long periods of time
425

.  This was later thought to be due to the 

surface layers growing completely across the membrane surface and blocking the pore 

ends so tubes remained empty
425

.  It was further reasoned that a strong electrostatic 

interaction between the pore wall and the depositing polymer material promoted the 

formation of hollow tubes rather than solid rods. 

 

6.1.2 Track-etched membrane technique. 

Previous research demonstrated the production of rod-shaped single crystals of calcite 

by the use of track-etched membrane pores as template material
29, 31, 172

.  This was 

achieved by the deposition of amorphous calcium carbonate (ACC) within membrane 

pores of 50 nm to 10 µm, by the use of a double diffusion method.  Polycrystalline rods 

with their shape dictated by the surrounding membrane pore were formed at bigger pore 

sizes of 10 µm, while the use of smaller sizes (200 nm) even allowed formation of 

single crystal rods of calcite, especially where ACC was stabilised at low 

temperatures
31

. 

In later research this system was further optimized by addition of polyacrylic acid 

(PAA)
29

.  This resulted in the formation of an amorphous precursor phase, which 

infiltrated into the pores and subsequently crystallised to give single crystals of calcite 

with rod-like morphologies and aspect ratios of up to 100.  These rods were randomly 

oriented, and the infiltration was thought to be achieved by capillary action of a polymer 

stabilised ACC phase (PILP phase, see section 1.2.2.3) with liquid-like properties.  

Once infiltrated, the amorphous phase crystallised and due to limiting contact of the 
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mineral with the bulk solution in the membrane pores
29

, single crystals were formed.  

Since the transformation of the amorphous phase to the crystalline phase was 

accompanied by a loss of water, a reduction in the volume of the mineral phase of 26% 

was expected
29

. 

 

6.1.3 Layer-by-Layer deposition (LBL) techniques 

In this chapter, the effect of the surface chemistry during the crystallisation of calcium 

carbonate in confinement has been investigated by functionalization of the pore walls of 

track-etched membranes using a layer-by-layer (LBL) technique.  The concept of LBL 

techniques was first utilised in 1992
426

 where it was demonstrated that layers of cations 

and anions could be built up by exposure of a substrate to alternating solutions of 

positively and negatively charged polyelectrolytes (eg PAA or PAH) (Figure 1).  The 

procedure proved to be very versatile and useful for incorporating of charged 

compounds and nano-objects
427-429

 and formation of hollow spheres
417

. 

 

 

Figure 1: Schematic representation of the LBL technique, showing polycations (red) 

and polyanions (black) adhering to a negatively charged substrate. 

 

Figure 1 shows a schematic diagram of the process, but it has to be noted that the 

representation of the distinct layers in an LBL multilayer assembly has to be considered 

as a simplified view of the formation mechanism
430

.  The LBL layers are usually very 

stable in solution, due to the large number of electrostatic bonds involved in their 
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formation.  In addition to electrostatic interactions, secondary interactions such as 

hydrophobic attraction and other intermolecular forces between the electrolytes, are 

considered as the driving force for the formation of LBL films.  Furthermore, the 

increase in entropy associated with the release of counterions and solvent molecules 

from the hydration shell during the formation of an LBL film also plays a role in its 

stabilisation.  It was found before that the diffusion of the polyelectrolyte chains 

themselves through the LBL assembly is extremely slow (undetected after 1 year), yet 

the equilibration by chain rearrangement of the outer layer takes place on the time scale 

of hours
431, 432

.  The LBL films can often be viewed as dense hydrogels with strong 

hydration and swelling properties. 

Previous studies investigated the deposition of CaCO3 on metal substrates 

functionalized by LBL films of chitosan and poly(acrylic acid) (PAA)
433

.  The LBL 

layers were assembled in such a way that the first and last layers were PAA, deposited 

from a 10 mM solution of CaCl2.  From the water containing Ca
2+ 

counterions which 

were trapped within the LBL structure, CaCO3 films were precipitated by the ammonia 

diffusion method, under conditions of high humidity.  By not immersing the substrate in 

bulk solution during growth, CaCO3 film was also forced to form within the gel-like 

structure of the LBL.  In this way a dense homogenous and continuous film of CaCO3 

nanocrystals assembled on the substrates. 

 

6.2 Aims of the project 

The aim of this research is the investigation of the formation of hollow calcium 

carbonate rods when infiltrated inside track-etched (TE) membranes.  Hollow structures 

of CaCO3 gained much interest during the last decade due to interesting applications, 

such as encapsulation and controlled release of inks, flavours and other chemical 

reagents
434, 435

.  Due to its biocompatibility and biodegradability, hollow structures of 

CaCO3 are also of great interest for drug delivery
434, 436

.  Hollow micron-sized tubes of 

CaCO3 have been prepared under various conditions
434, 435, 437

, however, they were often 

prepared under complex reaction conditions and were limited to small batch 

productions. 

In this chapter, we investigated the possibility of forming hollow rods by templating 

them in TE membranes.  By the use of a layer-by-layer (LBL) technique, the effect of 
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the surface chemistry of the pore walls of the TE membranes on the formed product was 

also investigated. 

 

6.3 Experimental 

Calcium carbonate crystals were precipitated inside track-etched (TE) membranes with 

pore sizes of 50 nm (Millipore polycarbonate membrane filters), 200 nm; 800 nm, and 3 

µM and 10 µm (Sterlitech polycarbonate membrane filters).  The TE membranes were 

10 to 15 µm thick.  A track-etched membrane was put in a Petri dish filled with 10 mM 

CaCl2.2H2O solutions containing variable amounts of polyacrylic acid (PAA) and 

placed in an ammonia desiccator.  The membranes were then removed from the reaction 

solution after different amounts of time.  As mentioned in chapter 3, analysis of the 

track-etched membranes with FEGSEM (see 3.5.2) showed that the sizes of the pores 

ranged ± 20% from the size on the pack.  This was especially the case for the smaller 

pore sizes so 200 nm pores were actually 150 nm to 250 nm and 50 nm pores were ≈ 40 

nm to even 100 nm. 

 

6.3.1 LBL method. 

To alter the surface chemistry of the membranes a layer-by-layer (LBL) method was 

used.  After cleaning of the membranes with the plasma cleaner, they were placed 

immediately in chitosan solution (0.1% w/w) and degassed under a reduced pressure (5-

10 mbar) for 40 minutes.  The chitosan solution was prepared by dissolving chitosan 

(molecular weight 161 g/mol) in 1% acetic acid and filtering though 0.45 µm syringe 

filter whereafter the pH was adjusted to 5.4 with NaOH.  After 40 min under reduced 

pressure, the pressure was brought back to ambient and the membranes were allowed to 

soak in the chitosan solution for another 20 min.  The membranes were then taken out 

of solution and the surface was wiped clean with a filter paper and washed by placing it 

in DI water for 5 min.  In the next step, the membranes were transferred to a 0.1% w/w 

Ca/PAA solution (10 mM CaCl2.2H2O, 8000 g/mol PAA) followed by degassing and 

wiping clean as described above.  Instead of using DI water, the membranes were 

washed in 10 mM CaCl2.2H2O for 5 minutes.  To obtain the desired number of layers, 

the chitosan and PAA deposition steps were repeated as necessary.  In this way, 

membranes with either a positively charged chitosan outer layer or negatively charged 
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PAA outer layer were formed.  Finally, the membranes were soaked in the relevant 

crystallization solutions overnight before initiating crystal growth by exposure to 

NH3/CO2 vapours.  It has to be pointed out though that although the chitosan was 

positively charged under the deposition conditions, it might become less positively 

charged under conditions of CaCO3 growth by the ammonia diffusion method. 

 

6.4 Results: 

A summary of the results is given in following table: 

 

Table 1: Overview of results  

Pore size In absence of PAA In the Presence of PAA Surface modified by LBL 

50 nm no rods Solid calcite rods (pores 

90% filled) 

No effect 

200 nm Few rods (pores 10% 

filled), some hollow 

appearance (5% of 

total rod population). 

Many calcite rods (Pores 

90% filled), some hollow 

at early times (50% of 

total rod population). 

Many hollow vaterite 

rods which remained 

hollow after long time 

(80% of total rod 

population). 

800 nm Few rods (pores 10% 

filled), some hollow 

More rods (90% filled), 

some hollow at early 

times (50-60%) 

No effect 

3 µm Some solid rods 

(pores 10% filled) 

Hollow rods (60%) and 

solid rods at later times 

No effect 

10 µm No rods Hollow rods (50%) and 

solid rods (60%) at later 

times 

No effect 

 

6.4.1 Precipitation of CaCO3 in native TE membranes 

6.4.1.1 Precipitation within nanoscale pores (50 nm, 200 nm and 800 nm) 

Formation of material in 50 nm pores produced solid rods (pores 90% filled) after 6 h 

with lengths of 500 nm to 5 µm giving rods with aspect ratios of 100 (Figure 2).  This is 
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much smaller than the thickness of the membrane but the rods might have been broken 

during the filtering process.  Without PAA, almost no rods were found. 

 

 
 

Figure 2: FEGSEM images of rods formed in 50 nm pores after 6 h from a 10 mM 

CaCl2 solution containing 50 µg/ml PAA.  No hollow rods were found.  Arrow denotes 

a clear solid rod. 

 

TEM analysis together with selected area electron diffraction (SAED) shows that these 

rods were single crystals of calcite (Figure 3). 

 

  
Figure 3: TEM images of rods formed in 50 nm pores after 1 day from a solution 

containing 50 µg/ml PAA. 

 

In addition to solid rods, small hollow rods (5% of total material present) were found at 

early timescales of 6 h (Figure 4).  These rods were usually only a couple of nm long 

012 

01   
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and were constructed from smaller particles 35 nm in size.  Strangely the diameter of 

these rods was ≈ 200 nm. 

 

 
 

Figure 4: FEGSEM images of rods formed in 50 nm pores after 6 h from a solution 

containing 50 µg/ml PAA.  Very small rods were formed with diameters of  200 nm 

and 500 nm long.  The arrow denotes the side view of a rod. 

 

In 200 nm pores, a significant amount of hollow rods (50% of the total rod population) 

were formed at early timescale in the presence of PAA (Figure 5a, b).  Some rods also 

existed out of a shell surrounding particles inside (Figure 5b).  The thickness of the shell 

varied from 50 nm (Figure 5b) at early timescales to 100 nm at later stages (Figure 5f).  

The nanoparticles were 10-15 nm in size and filled up the rods (Figure 5b). 

a b 
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Figure 5: FEGSEM images of rods formed in 200 nm pores after 6 h (a, b, c), 1d (d, e) 

and 3 days (f) from a solution by addition of 50 µg/ml PAA (a, b, d, e, f) and in the 

absence of additives (c). 

 

In the absence of PAA far fewer rods were formed (10% of the pores were filled) and 

almost none were hollow (5% of total rod population) (Figure 5c).  The rods themselves 

were also much more granular.  After 1 to 3 days almost no hollow rods were left in any 

condition and most rods were filled (90% of the rods) (Figure 5d, e).  Some of the rods 

had stayed hollow but contained a much thicker shell wall (Figure 5f).  The rods had an 

average length of 4 µm. 

 

Investigation with TEM didn‟t provide any proof that the rods were hollow and all had a 

solid appearance (Figure 6).  Selected area electron diffraction (SAED) allowed us to 

a b 

c d 

e f 
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identify the rods as calcite.  Both single as polycrystalline rods were found, where 

addition of additives produced more single crystals. 

 

  
Figure 6: TEM images of rods formed in 200 nm pores after 1 day from a solution 

containing 50 µg/ml PAA.  The diffraction patterns corresponded to calcite.   

 

In the case of 800 nm (Figure 7), a substantial amount of hollow rods were found in the 

presence of PAA (about 50-60% of total rod population).  The rods themselves were 4-5 

µm long.  After 1 day, almost all rods were solid except for a few which were still 

partially hollow (about 10%) (Figure 7d).  The shell of the hollow rods was much 

thicker at later stages then at early stages (From 100 nm to 270 nm) (Figure 7b and d). 
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 Figure 7: FEGSEM images of rods formed in 800 nm pores after 6 h (a, b) and 3 days 

(c, d) from a solution containing 20 µg/ml PAA (a, b, d) and no PAA (c). Mostly solid 

but some hollow rods were found (arrowed in d). 

 

6.4.1.2 Precipitation within micron scale pores (3 µm and 10 µm). 

When formed in the 3 µM pores, a lot of hollow rods were found at early timescales of 

3 h in the presence of PAA (60% of total rod population) (Figure 8).  These rods often 

consisted of small particles (50 nm) and were only about 500 nm long or thick (Figure 

9a).  The rods often had a rough surface on the outside.  The yield of the rods (70% of 

the pores filled) was much smaller then when formed in the 50 and 200 nm nanoscale 

pores. 

 

a 

c d 

b 
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Figure 8: FEGSEM images of rods formed in 3 m pores after 3 h from a solution 

containing 50 µg/ml PAA. 

 

  

Figure 9: FEGSEM images of rods formed in 3 m pores after 3 h (a) and 1 day (b) 

from a solution containing 50 µg/ml PAA, demonstrating the thickness of the rods.  

After 3 h hollow rods are formed only 500 nm thick (a), while after 6 days the rods got 

micron sized (b). 

 

After longer reaction times (1 to 3 days), a few hollow (10% of rod population) but 

mostly filled rods were found (Figure 10).  It appeared these rods were formed by filling 

of the hollow rods, since two different parts were found, one part acting as a shell 

covering the other part as inner solid rod.  This shell was rather smooth and had a 

thickness of about 100 to 350 nm.  The inside was quite rough and consisted of 30 nm 

to 50 nm particles (Figure 10d). Some partially filled rods were also found (Figure 10a) 

 

 

 

a b 

a b 
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Figure 10: FEGSEM images of rods formed in 3 m pores after 1 day from a solution 

containing 50 µg/ml PAA.  The rods appear to exist out of a core and surrounding shell. 

 

In comparison with the smaller pore sizes, it took longer time to fill the 3 µm and 10 µm 

pores.  The rods were a couple of µm long (some even to 9 µm but most rods were 

rather short) (Figure 9b).  Without PAA, a small amount of solid rods was found (pores 

10% filed).  These rods were rather short and incomplete (Figure 11) 

 

 

Figure 11: FEGSEM images of rods formed in 3 m pores after 1 day from a solution 

containing no PAA.  A small amount of solid, rod-like particles were formed. 

 

a b 
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In 10 µm pores (Figure 12), hollow (50% of total rod population) and filled “rods” were 

found in the presence of PAA but this time many rods remained hollow even after long 

times (40% of the rods). Without PAA no rods were found. 

 

  

Figure 12: FEGSEM images of rods formed in 10 m pores after 1 day from a solution 

containing 50 µg/ml PAA.  Much hollow “rods” were formed and remained hollow 

after long times 

 

Observation of the rods with optical microscopy under crossed polarisers, showed that 

they appeared polycrystalline (Figure 13). 

 

  

Figure 13: Optical microscope images (a) under crossed polarizers (b) of a particle 

formed in 10 m pores after 1 day from a solution containing 50 µg/ml PAA.  The 

particle appears hollow and polycrystalline under crossed polarisers (b). 
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Chapter 6: Formation of Hollow Calcium Carbonate Rods 

224 

6.4.2 Layer by layer techniques 

6.4.2.1 50 nm pores 

Changing the surface chemistry of the membranes had as good as no effect on the 

morphology of the crystals grown in the 50 nm pores.  All rods were solid again and no 

hollow rods were found, as shown by SEM (Figure 14) and TEM (Figure 15).  SAED 

showed the rods were single crystals of calcite (Figure 15). 

 

 

Figure 14: FEGSEM images of rods formed in 50 nm pores after 6 h from a solution 

containing 50 µg/ml PAA.  The membranes were treated with 4 LBL layers (negative 

charge). 

 

 
 

 
Figure 15: TEM images of rods formed in 50 nm pores after 3 h from a solution 

containing 50 µg/ml PAA.  The membranes were treated with 5 LBL layers (positive 

charge) 
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6.4.2.2 200 nm pores 

In the case of the 200 nm pores, the effect of the surface modification was much more 

pronounced.  At early stages (6 h) most rods were hollow (80%) and had sizes of about 

1 to 3 µm.  Many of the rods looked rather fragile (Figure 16a, b) and were much more 

porous in surface structure as compared with the rods formed without the LBL method.  

It is thought this was due to the gel-like structure of the LBL film which might 

influence the crystal surface, becoming incorporated into the structure.   

 

  

  

Figure 16: FEGSEM images of rods formed in 200 nm pores after 6 h (a, b) and 1 day 

(c, d) from a solution containing no PAA (a) and 50 µg/ml PAA (b, c, d).  The 

membranes were treated with 4 LBL layers. 

 

The presence of absence of PAA in the reaction solution didn‟t influence the results..  

The yield of the rods was higher though than when no LBL layers were used (95% of 

the pores were filled now).  After 1 day some of the rods were entirely filled, but most 

(50%) were still hollow (Figure 16c, d).  The wall thickness of the hollow rods was 20 

nm to 50 nm at early stages and did not change with further incubation.  Identical results 

were obtained if the surface was either positively or negatively charged. 
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TEM (Figure 17) was used to investigate the rods in more detail.  This revealed a large 

amount of rods were hollow (80% of the rods) even after 1 day, with the remainder 

solid (Figure 17c).  Selected area electron diffraction of the hollow rods identified them 

as vaterite (Figure 17a) while the solid rods were mostly calcite, or a mixture of vaterite 

and calcite (Figure 17c). 

 

 
 

   
 

Figure 17: TEM images and corresponding SAED of rods formed in 200 nm pores after 

1 day from a solution containing 50 µg/ml PAA (a, c, d) and no PAA (b).  The 

membranes were treated with 4 LBL layers.  Hollow vaterite and solid rods which were 

a mixture of vaterite and calcite were found.  The * in the diffraction pattern in (c) 

indicates the diffraction pattern spots coming from vaterite. 
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With bigger pore sizes to 3 µm, no improvements in the formation of hollow rods were 

observed.  

 

6.5 Discussion 

The above results demonstrated the formation of CaCO3 hollow rods in pores with sizes 

of 200 nm to 10 μm.  In the case of 50 nm, no rods were formed in the absence of PAA, 

while in its presence, pores were filled quickly and only solid rods were found.   With 

200 nm pores, a small amount of hollow rods were formed at early timescales, 

especially in the presence of PAA, which got filled and became solid after 1 day.  In the 

case of micron sized pores, many hollow rods were found at early timescales and half of 

the particles were still hollow after one to three days.  A gradual trend was seen where 

more hollow rods were found, the bigger the pore size got.  Filling up of the pore sizes 

was faster the smaller the pore size got, and therefore no hollow rods were found in the 

50 nm pores.   

 

6.5.1 Nanoscale pores 

For the smaller pore sizes (50 nm to 800 nm) addition of PAA resulted in a much more 

effective filling of the pores.  It is thought that by addition of PAA the rods are filled 

more effectively by the PILP phase due to capillary action.  Due to limited contact with 

water in the 50 nm and 200 nm pores, most of these rods are single crystal
29

.  It is 

reasoned that at first the surface of the membrane gets covered with CaCO3, followed 

by the inside.  At early stages it is therefore easier to find hollow rods.  At later 

timescales most rods become solid and it was observed that the shell thickens with time 

in the 200 nm and 800 nm pores by continuously coating.  It is thought that these pores 

get filled by successive layers of the PILP phase.  A similar mechanism was found for 

the formation of hollow organic polymer rods
421

.  It also appeared that the pores were 

sometimes filled with small particles, forming solid rods in an alternative way (Figure 

5b).  This is in correspondence with previous results for the formation of silica rods in 

TE membranes
420

, where hollow rods of silica were progressively filled from the initial 

shell to the core with silica nanoparticle aggregates.  Just as with the silica, a similar 

mechanism might take place, where the surface of the inner pores first gets covered 

again with a dense CaCO3 layer due to attachment to the membrane surface.  The tubes 
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are then progressively filled with nanoparticle aggregates depositing from solution.  

Since the particles are not in direct contact with the polycarbonate surface these will be 

loosely packed.  In the absence of PAA, it is thought rods were formed by templating in 

the small 200 nm and 800 nm pores
29, 172

 after nucleating on the membrane pore surface. 

 

6.5.2 Micron scale pores 

In the case of the larger pore sizes, addition of PAA was a necessity to achieve effective 

filling of pores and formation of the rods.  Yet, since at bigger pore sizes the capillarity 

effect becomes negligible, the influence of PAA must be different.  As mentioned in 

previous chapters (see 1.2.2.3 and 5.1.1.3) PAA can induce the formation of an 

amorphous polymer-induced liquid-precursor (PILP) phase of CaCO3, forming thin 

films of calcium carbonate on a substrate
126, 364

.  Taken into account the size of the pore, 

the pore wall can simply act as a substrate to deposit calcium carbonate films.  Since in 

the bigger pore sizes there is much more contact with the environment, nucleation can 

happen anywhere, and polycrystalline hollow rods are formed.  Once the initial layer is 

deposited, the tubes slowly get filled up by more and more particles depositing inside 

the pore.  This can explain why an initial hollow rod is formed as a shell covering other 

particles in the inside.  Since the membrane is placed flat on the bottom of the Petri 

dish, particles precipitating from the solution can easily fill up the pores.  The small 

number of rods which formed in the 3 μm pores without additives; must have nucleated 

on the pore surface and then grown inside the pore, and get templated by the pore size, 

forming rough rod-like particles. 

 

6.5.3 Layer by layer techniques 

By using a LBL technique the quantity of hollow rods produced was tremendously 

increased for 200 nm pores.  Here, the wall of the rods remained its thickness with time 

and it is suggested that CaCO3 interacts with the positively and negatively charged 

surfaces and coats the wall, in the presence of a PILP phase.  The coating of the 

membrane walls is therefore much more successful and many more hollow rods are 

formed.  It is thought that the rods may stay hollow since no more material is left to fill 

the pores.  Further research is necessary to investigate this.  Due to the LBL layers, 

nucleation may be promoted, generating polycrystalline rods
438, 439

.   
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In the case of 50 nm, 800 nm and 3 µm pores, coating the surface with the LBL 

technique did not enhance the formation of hollow rods.  It is suggested that for the 50 

nm rods, the LBL layers do not form well in the small pores.  The fact that only single 

crystals were formed instead of polycrystals as in the case of 200 nm also supports this 

idea.  For the bigger pore sizes it isn‟t exactly sure why the coating didn‟t have the 

desired effect.  It is possible that five or four LBL layers weren‟t structurally stable 

enough in the big pore sizes.  Since polymer mobility goes down in confinement
418

 the 

LBL film might have been more stable in the 200 nm pores but not in the micron sized 

pores. 

 

6.6 Conclusion: 

The above results show that TE membranes can be used as an effective method to 

template hollow rods.  It was observed that in addition to solid rods, hollow rods are 

formed at early timescales of less than 1 day.  With time, they become filled with 

CaCO3 particles or by successive layers of a CaCO3 PILP phase.  Larger pore sizes fill 

up more slowly and therefore more hollow rods are found.  Addition of PAA was 

necessary to achieve efficient pore filling.  Changing the surface chemistry of the 

membranes using LBL layers increased the yield of hollow rods, yet only in the case of 

200 nm pores. 
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Final conclusions and future work 

The content of this thesis dealt with the production of new materials by understanding 

and mimicking biomineralisation processes.  In contrast to their synthetic counterparts, 

biominerals often feature some extraordinary morphologies, together with extreme 

hardnesses and strengths.  Furthermore, biominerals are formed with these superior 

properties and characteristics under atmospheric pressure and temperature, something 

which is almost unachievable for most man-made synthetic materials
2, 4

.  Inspired by 

Nature and biominerals, we endeavoured to unravel the mechanisms of biomineral 

formation, not only to understand but also to mimic, use, and even improve the material 

characteristics.  Being able to mimic biomineral formation would allow us to produce 

extraordinary materials under atmospheric conditions, without the need for energy-

consuming techniques based on high pressure or temperature.  In this thesis, the effects 

of confinement and organic molecules, as used by Nature in the fabrication of 

biominerals, were investigated.  Since calcium phosphate and calcium carbonate are the 

most abundant biominerals, they were used as model systems. 

 

In the first experimental chapter, the production of calcium phosphate rods was 

demonstrated by nucleation of calcium phosphate crystals within nanosized pores of 

track-etched membranes made of polycarbonate and alumina.  Based on previous 

observations of a liquid-like amorphous calcium phosphate PILP phase in the presence 

of PAsp
96

, it was hoped to obtain a very effective infiltration inside the pores by 

addition of PAsp, to produce single crystals of calcium phosphate.  This was not the 

case, which casted doubt on the liquid-like properties and existence of this calcium 

phosphate PILP phase.  Interestingly, while amorphous calcium phosphate (ACP) was 

stabilised in confinement in the absence of PAsp, crystallization of ACP occurred faster 

in the membrane pores than in bulk solution in the presence of PAsp.  It was considered 

that this effect could be attributed to the ability of PAsp to promote nucleation when 

located on a substrate, while behaving as an inhibitor in solution.  

Growing the rods in confinement demonstrated that polycrystalline rods were produced 

with their c-axes oriented along the length of the rod, as is observed in mineralised 

collagen in bone and dentin
3
.  Although our experimental set-up was simple, the results 

showed that the orientation of calcium phosphate in bone and dentin can be due to 

confinement alone.  This contrasts with previous hypotheses, which have attributed the 
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orientation of the HAP crystallites in bone to a structural match between HAP and the 

collagen matrix
198, 199

.  In this way, we emphasised that the role of physical confinement 

originating from the collagen fibril structure, might play a more significant role in the 

understanding of bone and dentin formation. 

Future work will involve manipulation of the surface chemistry of the membranes in 

order to enhance infiltration into the membrane pores.  By the use of a LBL technique 

or a direct chemical modification of the polycarbonate surface, positively and negatively 

charged layers can be deposited on the surface of the membrane pores, changing the 

surface chemistry.  Further investigation of the generality of orientation mechanism will 

be investigated by inclusion of other materials with a one directional growth direction 

such as ZnO
440

 or aragonite needles
413

.  Also by infiltration of the pores with a gel 

structure (such as agarose gel) it will be attempted to obtain different composite 

materials with interesting characteristics.  Finally, by filling up the free spaces formed 

by the calcium phosphate rods with different materials such as silica or tungstate
441

, 

different composite materials can be prepared. 

 

In chapter 4 the effect of the positively charged additive poly(allylamine hydrochloride) 

(PAH) on the crystallisation of calcium carbonate was investigated.  Although a small 

effect was anticipated, the addition of the polymer gave rise to significant changes in 

morphology.  Polycrystalline and single crystal films of calcite were formed which 

covered the substrate, together with single crystal fibers of calcite with aspect ratios of 

up to 400.  Interestingly, similar morphologies had been observed by addition of the 

negatively charged additives PAsp or PAA to a CaCO3 crystallising solution
12, 77, 82

.  

The formation processes of the fibers and films were investigated and it was 

demonstrated that hydrated Ca
2+

/PAH/CO3
2−

 droplets initially formed in solution by 

phase separation.  These coalesced and then ultimately crystallised to give crystalline 

films.  By the help of Cryo-TEM this film formation process related with PILP was 

observed for the first time.  Once the crystalline film had formed, fiber formation 

occurred on the polycrystalline rough films.  These fibers formed at low Ca
2+

/PAH 

ratios and it was proposed that they formed by oriented attachment of anisotropic 

particles due to unequal distribution of charge.  Addition of Mg
2+

 to the PAH/CaCO3 

system enabled formation of very smooth films of polycrystalline calcite at much lower 

PAH concentrations.  The amount of Mg
2+

 incorporated into the crystals did not 
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increase by addition of PAH, something which was observed though in previous 

research, using additives such as PAsp
337

. 

The obtained results challenged the current understanding that positively charged 

additives have little influence on CaCO3 growth, although the relevance of such a phase 

separation mechanism in the biomineralisation of CaCO3 is unclear and was discussed 

to be rather implausible. 

Further research will involve other positively charged additives with different functional 

groups such as poly(vinylamine) and poly(2-aminoethyl methacrylate hydrochloride).  

The influence of PAH and other positively charged additives will also be investigated 

on other inorganic crystals such as calcium sulphate, calcium oxalate, cobalt carbonate 

and manganese carbonate.  Furthermore it will be investigated, knowing that positively 

charged additives can induce a big morphology change on CaCO3, what the effect is in 

combination with negatively charged additives?  Do both additives contribute, 

achieving better or similar results at lower additive concentrations, or will they be 

obstructive to each other?  A complete understanding of the fiber formation process is 

also not established yet.  By the help of in situ TEM it is hoped we will be able to 

achieve some more information about their assembly process. 

 

Based on the findings of chapter 3 and 4, the infiltration of CaCO3 into confined spaces 

of collagen and TE membranes was further investigated, by formation of a CaCO3 PILP 

phase. 

Chapter 5 describes the investigation of the mineralisation of collagen by CaCO3, to 

understand better the mechanism of bone formation.  By addition of PAH or PAsp, an 

amorphous phase of CaCO3 with liquid-like properties was formed, which infiltrated 

into the collagen gaps by capillary action.  The infiltration was monitored by SAXS and 

WAXS techniques, demonstrating an increase in disorder in the lateral packing of the 

collagen molecules.  This was followed by crystallization, where the molecular spacing 

of the collagen molecules decreased, by compressing the molecule packets in between.  

Analysis of the SAXS signal together with TEM showed 5 nm thick crystals of calcite 

and vaterite were formed, which were randomly oriented with respect to the collagen.  

Although the nanoscale CaCO3 crystals are similar in size to the calcium phosphate 

crystals formed in bone
397

, the orientation of the calcium phosphate crystals along the 

long axis of the collagen fibril was not reproduced.  The origin of this random 

orientation is not entirely clear but it is thought to be due to a different interaction of the 
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crystals with the charged amino acids of the collagen or the lack of a strong fastest 

growth direction for the calcite and vaterite crystals. 

Further research will involve deeper investigation of the orientation of the CaCO3 

crystals.  Formation of needle-like aragonite crystals inside the collagen gaps might lead 

to a similar orientation effect as seen for HAP.  Also the infiltration inside the collagen 

gaps of other more applicable materials such as iron oxide will be investigated, to create 

new composite materials. 

 

Finally, chapter 6 finally dealt with the formation of hollow rods of CaCO3 by 

infiltration into the pores of track-etched membranes
29

.  In addition to solid rods, hollow 

rods were formed and the effect of the pore size, presence of additives, time, and surface 

morphology of the membranes was investigated.  Hollow rods were formed at early 

timescales and often remained hollow in the case of larger pore sizes.  By subsequent 

formation of CaCO3 layers and filling up of the rods with particles, solid rods were 

formed at later timescales.  By changing the surface chemistry of the track-etched 

membrane pores, the amount of hollow rods increased significantly in the case of the 

200 nm pores.   

Further research will involve the pursuit to solely produce hollow rods or try to isolate 

them from the solid rods.  By altering the amount of LBL layers, we will also try to 

obtain exclusively hollow rods in the nano- and micron sized pores.  Once this is 

established, further research will involve infiltration of the rods with drugs
436

 or drug 

model chemical compounds such as rhodamin, or drug carrier proteins like albumin
442

. 

 

In general this thesis demonstrated that, inspired by biomineralisation, the use of simple 

techniques such as soluble additives and confinement, gives rise to some fascinating 

materials with interesting morphologies and characteristics.  Figure 1 gives an overview 

of the covered topics and obtained results of the thesis. 
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Figure 1: Overview of the topics and results covered and obtained by this thesis.
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Appendix: List of Abbreviations 

 

AAO:  

ACC: 

ACP:  

ACS:  

CaP:  

ClAP :  

CCD:  

CO3AP:  

CTAB:  

DCM:   

DCPA:  

DCPD:  

DI:  

DOLLOP:  

DLS:  

DSC:  

DUBBLE:   

EELS:  

ED:  

EDX:  

EDTA:  

ESRF:  

EXAFS:  

FAP:  

FEGSEM:  

FTIR:  

HAP:  

HRTEM:  

IR:  

IDP :  

LACC:  

anodic aluminium oxide 

amorphous calcium carbonate 

amorphous calcium phosphate 

amorphous calcium sulphate 

calcium phosphate 

chlorapatite 

charge-coupled device 

carbonated apatite 

cetyltrimethylammonium bromide 

dichloromethane 

dicalcium phosphate anhydrous 

dicalcium phosphate dihydrate 

deionised 

dynamically ordered liquid-like oxyanion polymer 

dynamic light scattering 

differential scanning calorimetry 

Dutch-Belgian beamLine 

electron energy-loss spectrometry 

electron diffraction 

energy dispersive X-ray spectroscopy 

ethylenediaminetetraacetic acid 

European synchrotron research facility 

extended X-ray absorption fine structure 

fluorapatite 

field emission gun scanning electron microscopy 

fourier transform infrared 

hydroxyapatite 

high resolution transmission electron microscopy 

infrared 

intrinsically disordered proteins 

liquid amorphous calcium carbonate 
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LBL:  

LCP:  

LCPA:  

LDSAED:  

MCPM:  

MRM:  

OCP:  

PAA:  

PAH:  

PAM:  

PAsp:  

PhD 

PILP:  

PNC:  

Poly-Glu:  

PSS:  

PVA:  

SAED:  

SAM:  

SAXS:  

STEM:  

SLS:  

SPS: 

TCP:  

TE  

TEM:  

TGA:  

TTCP:  

VLS:  

WAXS:  

XRD:  

XAS:  

layer-by-layer 

liquid crystalline phase 

long chained polyamines 

low-dose selected-area electron diffraction 

monocalcium phosphate monohydrate 

magnetic resonance microscopy 

octacalcium phosphate 

poly(acrylic acid) 

Poly(allylamine hydrochloride) 

porous alumina membranes 

polyaspartic acid 

Doctor of Philosophy 

polymer-induced liquid-precursor 

prenucleation clusters 

poly-L-glutamate 

poly(styrenesulfonate) 

polyvinyl alcohol 

selected area electron diffraction 

self assembled monolayers 

small-angle X-ray scattering 

scanning transmission electron microscopy 

solution-liquid-solid 

solution precursor solid 

tricalcium phosphate 

membranes: track-etched membranes 

transmission electron microscopy 

thermogravimetric analysis 

tetracalcium phosphate 

vapour-liquid-solid 

wide-angle X-ray scattering 

X-ray diffraction 

X-ray absorption spectroscopy 

 


