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Abstract

In this thesis, I present one- and three-dimensional numerical solutions to a two-phase 

fluid flow problem. The context of these investigations is the evolution of a viscous 

permeable matrix with a small fraction of melt that is representative of partial melt in 

the Earth's mantle. The matrix compacts under gravity as melt moves upward. In 

addition to the simple compaction solution, a range of solutions representing stably 

propagating waves are possible.

I first present a coherent mathematical development of the governing equations for the 

three-dimensional problem. I then describe a one-dimensional numerical algorithm 

(1D2PF) that solves the second-order inhomogeneous P.D.E. for the velocity of the 

viscous matrix, V, for arbitrary melt fraction distribution, φ (the volume fraction 

occupied by melt). Combined with a time-stepping algorithm which advances the melt 

fraction in time, fully time-dependent 1D solutions are obtained. With an initial constant 

base melt fraction φ0 with a superposed localised concentration of melt, I explore the 

evolution and formation of solitary compaction waves. 

Using (1D2PF) I investigate the width, amplitude and phase velocity of stable solitary 

waves, and examine how these parameters depend on the initial conditions, permeability 

coefficient (k0) and melt and matrix viscosities (ηf and ηm). I demonstrate the existence 

of a threshold initial width above which secondary solitary waves form, with larger 

widths producing longer wave trains and smaller widths producing a small-amplitude 

oscillatory disturbance to the background melt fraction. Experiments with k0, ηf and ηm 

reveal that the width of the stable solitary wave is simply proportional to the compaction 

length parameter  δ=√k0ηm/ ηf and its velocity varies as δ16 /9
/ηm . I also show that the 

width of the solitary waves varies as λS=4.6δ  and the amplitude follows the relation 

AS≃89/δ . For initial melt fractions whose distribution is wider than the threshold 

width, secondary waves are produced with progressively smaller amplitude, and hence 

slower propagation velocity. I demonstrate that smaller values of δ result in the same 

volume of melt being partitioned over increasing numbers of relatively thinner solitary 

waves. The amplitude of the initial perturbation to the background melt fraction 

however is shown to have no effect on the number of solitary waves produced. A train 

of such waves arriving at the surface could provide an explanation of intermittent 



Abstract     

volcanic activity above a region of partial melt. 

In a preliminary study of two-phase flow in three-dimensions I have also made 

significant progress toward the development of a three-dimensional two-phase flow 

simulation program. To do so, I have adapted the three-dimensional viscous fluid 

convection program (TDCON) by Houseman (1990). The new program TD2PF depends 

on a potential-function formulation similar to that of Spiegelman (1993a), in which the 

divergence of the matrix velocity field, D= ·∇ V, and the vector potential, A, are the 

primary variables. I have introduced new functionality to a significantly expanded three-

dimensional Poisson solver (program TDPOTS) but lack of time prevented a successful 

conclusion to the development of a general 3D solver for the divergence field D.
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1 Introduction

1.1 Overview

The aim of this project is to investigate possible reasons for the distribution of volcanic 

centres along the Afar rift. For this project the major focus of the investigation is how 

melt migrates through the mantle from melting site to surface as the cause behind the 

observed magmatism at the surface. In section 1.2, I discuss how the mantle 

composition and convection lead to the production of melt and some basics of the 

ensuing migration. In section 1.3, I explore two-phase fluid dynamics which can be used 

to describe the melt-mantle system and its evolution, covering the governing equations 

and what can be inferred from them. Section 1.5 discusses solitary waves in the context 

of a melt-mantle environment. With the basic principles summarised, I then look at the 

impact of the aforementioned processes in explaining volcanic phenomena seen in Afar 

(covered in section 1.6).

1.2 Mantle

1.2.1 Introduction

The Earth’s mantle is the largest component of the planetary volume and, above depths 

of ~400km, it is understood to be comprised of mostly peridotite that is at high 

temperatures and pressures. The temperature generally follows an adiabatic curve that 

increases with depth from around 1170ºC at a depth of around 50km (Anderson, 1980) 

at around 0.4ºCkm-1 if purely adiabatic and assuming a surface thermal boundary layer 

(the lithosphere). The pressure rises with depth from about 3GPa to 12GPa from 100 to 

400 km. Under these great pressures and temperatures mantle peridotite undergoes 

creep deformation that can be approximated using a viscous constitutive flow with a 

viscosity in the range of 1019 and 1024Pas. Creep deformation occurs because natural 

crystals such as olivine, which is the main constituent mineral of peridotite along with 

the pyroxenes, rarely have a perfect lattice structure and usually contain small defects in 

1
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the crystal lattice. These irregularities allow the matrix to deform through two well 

studied mechanisms. Dislocation creep describes the macroscopic deformation of a 

crystal by adjustment of microscopic flaws in the crystalline lattice, allowing the 

configuration of atomic bonds to shift with applied stress. Diffusion creep occurs when 

there is a gap in the crystal lattice, which relocates by successive occupation by local 

atoms, allowing strain via movement of these vacancies. Over long time scales these 

small deformations driven by the large stresses in the mantle allow the material to act 

like a highly viscous fluid, the most prominent expression of which is plate tectonics 

driven by the convection of the mantle.

Convection of the mantle is a vital process in allowing melting to occur when the 

majority of the mantle is under too low a temperature and too high a pressure to allow 

melting. The upward motion of mantle material allows for zones where perturbations in 

the pressure (spreading sites), temperature (hot spots) and composition (subduction 

zones) allow some of the mantle component minerals to melt. At low degrees of partial 

melt, the melt forms a network of fluid channels distributed along the boundaries of the 

remaining solid crystals which form a deformable solid matrix. This thesis focuses on 

the question of how the melt can migrate out of the matrix to form localised 

concentrations of magma.

1.2.2 Partial melting

When the mantle melts, it does not do so in a simple, uniform manner. Most of the 

upper mantle is peridotite, which consists primarily of olivine, clinopyroxene and 

orthopyroxene along with plagioclase, all of which obey different phase change curves. 

This contrast in the pressures and temperatures required for each mineral to undergo a 

phase change to a liquid state leads to the situation in which the separate minerals melt 

in a sequential manner as pressure decreases or temperature rises. The Pressure-

Temperature state of the mantle is perturbed towards the eutectic for the peridotite 

composition, clinopyroxene is the first main mineral to melt, advancing the residual 

rock composition towards harzburgite and lherzolite (Kelemen et al., 1997).

2
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In the case of a mid-ocean ridge system, melting occurs by adiabatic decompression, 

where the decrease in pressure induced by mantle up flow induces the generation of 

partial melt at depth. Geochemical analysis of mid ocean ridge basalt shows that the 

material is out of equilibrium with peridotite, as deeply sourced mantle peridotite shows 

depletion in rare earth elements (Kelemen et al., 1997). The disequilibrium indicates 

that the melting must occur in small, intermittent fractions before being drawn away, 

never reaching large concentrations at the melting site. The rate of melting in the 

context of decompression melting is a smooth function of depth, reaching a maximal 

rate at the point where the isotherm is perturbed the most. For decompression melting 

that produces n-type MORB this starts at about ~80km and produces up to 9km of 

melting, or at ~120 km for ~23km for e-type as shown by McKenzie and O'Nions 

(1991).

3

Figure 1: The general principles of partial melting in the mantle. 1a depicts the effects 
of either increasing the temperature or reducing the pressure of the mantle, termed 
decompression melting. 1b represents a change in mantle composition such as the 
addition of water, which lowers the latent heat capacity of the mantle, called 
compositional melting. The black line represents the mantle geotherm and the coloured 
areas are phases of mantle rock.
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Further geochemical analysis of MORB shows a discrepancy in the clinopyroxene 

content predicted by models of pure partial melting (Kelemen et al., 1995). The process 

proposed to explain this discrepancy is referred to as “near-fractional” melting, where 

melt is generated and is intermittently drawn out through a network of connected 

porosity in the rock. The melt fraction is indicated to be on average 3% from seismic 

data and it does not build up beyond ~7-13% from abyssal peridotite data matched to 

geochemical models by Kelemen et al., (1997).

First, the melt grows at triple-junctions between grain corners, then along grain 

boundaries where the edges of grains touch, as discussed by Vaughn and Kohlstedt 

(1982); these wetted boundaries then grow with increased melt fraction into an 

interconnected network that allows separate movement of melt and matrix.

The formation of an interconnected network relies primarily on the dihedral angle of the 

grains, the angle between the crystals and the fluid phase filling the pore as discussed by 

Toramaru and Fujii (1986). If the angle is greater than 60 degrees the fluid can not enter 

the channels along the grain boundaries and inter-connectivity is not achieved. Dihedral 

angle is governed by the component minerals that make up the matrix, olivine and 

pyroxene predominantly for a mantle peridotite. The dihedral angle that develops from 

an olivine-olivine-olivine boundary lowers the wetting angle compared to boundaries 

with other minerals, and so the more depleted (olivine rich) the mantle rock, the higher 

its permeability.

4

Figure 2: A schematic view of an interconnected network of melt. 2a represents a two-
dimensional slice through a three-dimensional grain network with wetted boundaries 
and pockets of melt. 2b is a perspective representation of a three-dimensional partial 
melt network. Created by Barcilon and Richter (1986).
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1.2.3 Melt migration

Once the melt fraction per unit volume reaches ~0.02% (Zhu and Hirth, 2003) the melt 

starts to percolate upward under the forces of buoyancy. The relativity large difference 

between the density of mantle rock at ~3300kgm-3 (average density of peridotite) and 

the melt at ~2800kgm-3 (density of molten basalt) provides a density difference of 

500kgm-3 that drives the separation of fluid from the matrix.

Most of current research into melt migration from a numerical and analytical 

perspective stems from the work of McKenzie (1984) in which the main governing 

equations were refined for a two-phase mantle-melt system and used to analyse a 

system of initially constant melt fraction at an initial time. He demonstrated that there 

exists a length scale for a two-phase fluid system known as the compaction length over 

5

Figure 3: Four different types of melt transport by Morgan and Holtzman (2005). The 
left hand diagrams depict mechanisms where the matrix is highly viscous, the fluid 
moving by viscous matrix deformation. The right hand graphs show mechanisms 
where the matrix is brittle, fracturing the dominant method for expansion and 
compaction. The y axis denotes the dominant driving force, where the bottom 
processes are driven by shear forces while the top mechanisms are driven by 
buoyancy forces. The mechanism shown in 3a is the one I explore in this thesis.
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which the fluid undergoing porous flow reaches maximum percolation velocity and 

above which no compaction of the matrix occurs given that the system is homogeneous 

in melt fraction and composition. Later using the equations from (McKenzie, 1984), 

Scott and Stevenson (1984) demonstrated the existence of solitary wave phenomena in a 

two-phase system, initialised by a melting band at the base of a one-dimensional 

numerical model that propagates upwards with associated expansion and compaction of 

the matrix above one compaction length and a possible method of concentrating melt 

transport. A number of studies in recent years have focused on just how an 

interconnected melt network in the mantle evolves upwards and focuses into magma 

chambers beneath the ridge system. Bercovici et al. (2001b) and Ricard et al. (2001) 

investigated the transition from two-phase fluid percolation to hydro-fracture and 

micro-cracking, exploring the role of surface tension as a possible fracturing 

mechanism. Others explored how the melt is concentrated in the mantle through a 

variety of systems: some propose shear segregation of melt, where melt is driven into 

concentrated bands by shear stress, as an important process (Holtzman et al., 2003; Katz 

et al., 2006; Rabinowicz and Toplis, 2009). While Kelemen et al. (1995, 1997) propose 

that the melt forms into vertical channels by a geochemical mechanism for dunite 

emplacement.

6
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7

Figure 4: Comparison of numerical and experimental results of shear driven 
segregation of a partially molten rock by Katz et al. (2006). The darker sloped regions 
in 4a are where melt has concentrated in the hot olivine-basalt-chromite aggregate 
when subjected to simple shear. The black dotted lines in 4b and 4c are tracer particle 
locations in the two-dimensional numerical model. 4c displays the total vorticity minus 
the constant vorticity due to simple shear. The data from 4a (experimental) and 4b 
(numerical) is compared in 4d to show that melt fraction concentrates into bands at low 
angles to the shear plane.
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Shear induced segregation during ductile deformation of the mantle is an experimentally 

(Holtzman et al., 2005; Katz et al., 2006) and numerically (Rabinowicz and Toplis, 

2009) modelled process that occurs when a two-phase material is subjected to shear 

stress. The process is driven by application of shear stress in the horizontal plane to a 

partially molten rock, inducing the concentration of melt into bands. The process that 

drives this was suggested by Stevenson (1989) and confirmed through experimental 

work such by Holtzman et al., (2003) and Holtzman and Kohlstedt, (2007). The 

instability develops as the resistance to shear stresses in a two-phase fluid is highly 

sensitive to concentration of melt fraction. Given that the melt fraction is not perfectly 

homogeneous the sensitivity to stress creates a positive feedback driven by pressure 

gradients that concentrate the melt into isolated channels and enhancing the pressure 

fields in the process. These channels form angles of ~30 degrees from the perpendicular 

to the shear plane as demonstrated by Katz et al. (2006). Although a possible 

mechanism of melt segregation in the mantle, Rabinowicz and Toplis (2009) show that 

the process is too slow to be significant in partial melt zones due to the dissipation of 

stress through the fluid, but may become important towards the boundary of the viscous 

zone where stress becomes greater as shown by Holtzman and Kohlstedt (2007). 

However Rabinowicz and Toplis (2009) mention that, at the melting site, compaction 

will induce shear stress driven segregation in horizontal formations that will impede the 

percolation of melt upward, providing an instability in the vertical flow through 

draining of the surrounding material, due to mass conservation. These regions of melt-

depletion provide a barrier to melt percolation, resulting in the formation of solitary 

compaction waves, discussed in section 1.5. 

8
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An alternative mechanism of melt separation favoured by geochemists is dunite 

channelisation created by reactive infiltration instability (RII). Dunite is a depleted form 

of mantle where olivine normal basaltic melt passes through a fertile mantle rock such 

as lherzolite and reactive dissolution removes pyroxene from the host rock and replaces 

it with olivine from the melt shifting its composition towards dunite.

The conversion to a higher concentration of olivine enhances the permeability, due to 

lowered dihedral angle as show in Figure 6. The dihedral angle is a consequence of the 

inter-facial energy of the minerals themselves. Lowered dihedral angle corresponds to 

increased permeability as higher dihedral angles reduce the connectivity of the fluid 

9

Figure 5: Time-separated solutions for a two-dimensional two-phase numerical model 
by Spiegelman et al. (2001) where reactive dissolution is included. High permeability 
(white) channels develop with surrounding low permeability (black) areas.

Figure 6: Pore geometry diagrams for a partially molten rock comprised of olivine (ol.) 
and orthopyroxene (opx.). The associated average dihedral angles for the pores are a) 
35°, b) 61°, c) 65° and d) 75°. Lower Dihedral angles equate to a higher permeability, 
as less fluid pressure is needed to wet the grain boundaries. Diagram e explains the 
dihedral angle in schematic form (θd=θ'+θ''). Adapted from (Zhu & Hirth, 2003).
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network. The lowering of the dihedral angle by reactive dissolution draws in more melt, 

creating a geochemical feedback that generates channels of high permeability as shown 

in Figure 5, a mechanism that has both numerical and geological evidence behind it. 

The geological evidence comes from the formations of dunite found in ophiolite and 

peridotite massifs as shown by Kohlstedt and Holtzman (2009), 5-15% of the massifs 

comprising of dunite dykes or veins as indicated by Kelemen et al. (1997). Numerical 

experiments such as those by Schiemenz et al. (2011) back up the channelisation 

mechanism and focusing imposed by the change increase in porosity and grain size 

from the reactive dissolution.

1.3 Two-phase fluid dynamics

1.3.1 Introduction

Given that the mantle can be modelled as a highly viscous fluid, this means the system 

can be represented as a two-phase fluid-fluid medium. Much research has been done 

into the dynamics of multi-phase systems, mostly due to applications in oil and gas 

exploitation. However such applications are generally represented as a solid-fluid-gas 

problem, which is beyond the scope of this research.

The most influential paper on two-phase fluid flow and the one that laid down the 

groundwork for research into the mantle-melt system was that of McKenzie (1984), 

who discussed subjects such as the compaction length, mass conservation and 

conservation of momentum, and developed a simplified formulation of the equations 

that describe how a two-phase system evolves and demonstrated the initial conditions 

and length scale of two-phase fluid systems.

Bercovici et al. (2001a,b) and Ricard et al. (2001) investigate surface tension and how it 

relates to transition from a viscous two-phase percolation of fluid to a brittle fluid flow. 

They show that the surface tension is really only important over the distance of meters 

but can cause melt to become locked into sill like structures in a one-dimensional 

model. They also mention that the surface tension can act as an intermediary to weaken 

the brittle material and allow fracturing.

Katz (2008) introduces the enthalpy method for the solving two-phase fluid equation, 
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although outside the scope of this thesis it includes equations and techniques for 

extending the continuum method of McKenzie (1984) with thermodynamic methods. 

This is done by replacing the PDE that describes the melt fraction with “a closure 

condition between local bulk enthalpy and bulk composition” as Katz (2008) describes 

it. This formulation is advantageous when working with chemical and phase change 

orientated research on partial melting and melt transport. Katz (2010) uses this method 

to explore asymmetric mantle convection due to partial melt presence and show that the 

presence of melt increases the likelihood of asymmetric features developing under mid-

ocean ridge systems in two-dimensional numerical models.

Hewitt and Fowler (2008) look more into the boundary layers of the problem, creating a 

system of equations with a transition region from two-phase to a single phase numerical 

mantle simulation. They examine the thermal conditions of melting and freezing, 

modelling the system with a thermodynamic component and using pressure difference 

between matrix and melt as a primary variable (where most authors use velocity of the 

matrix). They propose that the effective pressure drops to zero at the upper boundary of 

the viscous mantle, generating oscillations in the pressure difference that could result in 

brittle fracture to allow for continued ascent of melt into the lithosphere.

Simpson et al. (2010a) derive a new set of equations using 'two scale homogenisation 

theory' based on a model of idealised spherical pores connected by small tubes to create 

a macroscopic model independent of McKenzie (1984). They show in the companion 

paper (Simpson et al., 2010b) that the viscosity is not substantially sensitive to the 

geometry of the melt network and show that this interpretation of a two-phase medium 

allows a better estimation of the bulk viscosity using a purely mechanical model of the 

medium they prescribe down to the grain scale.

11
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1.3.2 Mass conservation

Conservation of mass relates any change in the fluid/matrix mass (left hand side) at any 

point to either motion of the material (advection) or to conversion between the phases 

(melting rate). As derived by McKenzie (1984):

Conservation equation for the matrix: 

∂ρm (1−ϕ)

∂ t
=−∇⋅[ρmV (1−ϕ)]−Γ (1.1)

Conservation equation for the melt:

∂ρf ϕ

∂ t
=−∇⋅[ρf uϕ]+Γ (1.2)

where ρm and ρf are the matrix and fluid densities, u and V are the fluid and matrix 

velocities, φ is the melt fraction (fluid volume / total volume), Γ is the volumetric 

melting rate and t is time.

It is a common assumption in formulation of a two-phase fluid dynamical model applied 

to the interaction of mantle and melt that the densities of both the fluid and matrix are 

constant and not depth dependent, discussed in further detail in section 2.4.3. Using this 

assumption equations 1.1 and 1.2 can be combined:

ρm

∂(1−ϕ)
∂ t

=−ρm∇⋅[V (1−ϕ)]−Γ ρf

∂ϕ

∂ t
=−ρf ∇⋅[uϕ]+Γ (1.3)

−∇⋅[V (1−ϕ)]−∇⋅[uϕ]= Γ
ρm

−Γ
ρf

(1.4)

Equation 1.4 is termed the combined conservation of mass equation, and it relates any 

mismatch in the divergence of the constituent fluids to the rate of melting. To further 

simplify the problem I make the assumption that no melting takes place (Γ=0) limiting 

the scope to situations where melting has taken place to create the initial condition, but 

does not continue within the numerical simulation. 

12
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1.3.3 Conservation of momentum

Conservation of momentum describes the force balances involved in a two-phase 

system, where the first component in equation 1.5 represents the forces arising from 

differences between the fluid and matrix pressures, the second component governs those 

arising from shear stresses in the solid matrix and the final component is the main 

driving force for the system, buoyancy forces induced by differences between melt and 

matrix densities. This density difference effectively drives the migration of fluid and 

compaction of the matrix. As shown by Hewitt and Fowler (2008):

0 =−∇ (ϕ Pf+(1−ϕ)Pm)+∇⋅((1−ϕ)τm)+(ϕρf+(1−ϕ)ρm) g k̂  (1.5)

where Pm and Pf are the pressures with matrix and fluid respectively, g is gravitational 

acceleration and τm=ηm(∇ [V ]+(∇ [V ])
T
−(2/3)∇⋅[V ] I ) where ηm is the matrix 

viscosity. 

To simplify equation 1.5, I assume that the fluid supports insignificant deviatoric stress. 

This sets τf =0 and is an assumption used by many authors such as Hewitt and Fowler 

(2008), Šrámek et al. (2007) and Bercovici et al. (2001a).

Equation 1.5 also assumes that surface tension is zero, removing a term that equates to:

∇(σα)=∇ (σα0ϕ
a
(1−ϕ)b)  (1.6)

where α is the inter-facial density, α0 is an inter-facial density constant and a and b are 

terms that define the fluid network geometry and are between zero and one. The 

importance of the fluid-matrix surface tension forces has been explored thoroughly by 

Bercovici et al. (2001a,b) and Ricard et al. (2001) using one- and two-dimensional 

numerical modelling techniques. Ricard et al. (2001) relate the importance of the 

surface tension forces to the buoyancy forces with the relation:

σα0
RΔ ρg

≃
17
R

 (1.7)

where R is the length scale of the system. The right hand side of equation 1.7 

demonstrates that for length scales greater than 17m the dominant force is the buoyancy 

force. Given that the depth of the mantle in which partial melt exists is over the scale of 

kilometres, Ricard et al. (2001) indicate that surface tension could be one mechanism 
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for formation permeability discontinuities that trigger solitary wave formation in the 

mantle. 

Šrámek et al. (2007) also discuss the implications of surface tension on the Clapeyron 

slope. Experimental studies such as that by Parsons et al. (2008) show that for small 

length scale problems, relating to small planetary bodies on the ~15km radius, surface 

tension is a factor in melt segregation but for larger bodies such as the earth, surface 

tension is a small force in comparison with buoyancy or shear. With these factors in 

mind I choose to assume zero surface tension to simplify the problem.

1.3.4 Darcy's law

Darcy's law is used to define the rate of transport of fluid through a permeable medium. 

This version deals with a medium in which the fluid velocity is defined relative to a 

matrix which deforms also but has a much greater viscosity than that of the fluid:

ϕ(u−V )=−
k ϕ

ηf
∇(Pf−ρf g z⃗ )  (1.8)

where ηf is the fluid viscosity and kφ is the specific permeability (see 1.3.5).

1.3.5 Specific permeability

Permeability is assumed to be a simple function of melt fraction φ according to Hewitt 

and Fowler (2008):

k~
a2


n

b
=ko

n  (1.9)

where n is an empirically derived power law exponent that may depend on the type of 

interconnected fluid network, a is the typical grain diameter of the matrix, and b is a 

tortuosity factor which represents how indirect is the path between two pockets of melt 

on the grain scale. 

The power n relates to how the fluid channels connect together, constrained by the 

dihedral angle of the grain intersections. Zhu and Hirth (2003) showed that a value of 

n≈2 arises for a model environment of tessellated grains, with a homogeneous network 

of connections along the grain boundaries. Unfortunately lab experiments using olivine 

based aggregates by Zhu et al. (2011) or quartz and calcite aggregate by Wark and 
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Watson (1998) do not completely agree with numerical and analytical experiments 

determining a value of n≈3. Zhu and Hirth (2003) attribute the differences in empirical 

values of n to micro-scale heterogeneity, which are not really applicable to earth 

materials when examined over the macroscopic-scale. 

Although the value of n is still undergoing research, the general form of the equation 1.9 

is widely used with the choice of n varying between 2-3 for different authors. For this 

investigation I use the parameter n=2 in all future occurrences of n, following Hewitt 

and Fowler, (2008) and Šrámek et al. (2007) who also use this value of n.

1.3.6 Viscosity power law

The viscosity of the matrix has been empirically shown to be dependant on the melt 

fraction (Kohlstedt and Zimmerman, 1996) and can be expressed as the power law 

(Nakayama and Mason, 1992):

ηm=
η0

ϕ
m (1.10)

Many authors, such as Barcilon and Richter (1986); Takashi and Satsuma (1988) and 

Scott and Stevenson (1986) use the assumption that m=0 to significantly simplify the 

problem which is within the range of predicted values for m, 0<m<1 as shown by Scott 

and Stevenson (1986). For these reasons I also assume that m=0 for simplification and 

so that ηm is a constant.

1.3.7 Compaction rate

McKenzie (1984) and Spiegelman (1993a) use the following formula to describe how 

pressure differences between matrix and fluid result in compaction of the matrix:

(Pm−P f )= − ζm∇⋅((1−ϕ)V )  (1.11)

However, more recently Hewitt and Fowler (2008) described equation 1.11 as more a 

definition of bulk viscosity than a way to relate pressure to matrix divergence. 
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To do so, they constructed a model fluid network made up of tubules of radius a and 

state that the walls of these cylinders will expand via melting of the matrix and contract 

by viscous creep at the rate of πa2(Pm -Pf )/ηs which can be expressed as:

2 a
da
dt

=

m

–
a2

m
Pm−P f   (1.12)

If the width of each tube is associated with permeability πa2=φ and by applying the 

product rule 1.12 becomes:

2π a da
dϕ

dϕ
dt

= Γ
ρm

– π a2

ηm
(Pm−P f )

 
(1.13)

da
dϕ

=
d

dϕ √ϕπ =
1
2

1
√ϕπ =

1
2

1

√π2 a2
=

1
(2π a)  (1.14)

dϕ
dt

− Γ
ρm

=−
ϕ
ηm

(Pm−Pf )

 
(1.15)

Substituting equation 1.1 into equation 1.15, using the constant density assumption:

(Pm−P f )= −
ηm
ϕ ∇⋅((1−ϕ)V )  (1.16)

Equation 1.16 provides a necessary relationship between the matrix-fluid pressure 

difference and the compaction rate of the matrix. Other authors such as Šrámek et al. 

(2007) also produce similar formulations from different starting assumptions, further 

reinforcing this relation.

1.3.8 Potential form

To make manipulation of the equations involving matrix velocity simpler, I use the 

potential function formulation to describe the velocity field of the solid, creeping 

matrix:

V = ∇×[A]+∇ [B]  (1.17)

where A is the vector potential and B is the scalar potential. A common simplification 

for this equation when considering incompressible fluid flow is:

V = ∇×[A]  (1.18)

As the vector potential A is associated with incompressible movements in the field while 
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the scalar potential deals with the compressible components. This separation allows for 

simplification of this equation by removing the B component whenever the fluid is 

incompressible. In the case of a two-phase system however, the matrix is effectively 

compressible in response to changes in the melt fraction, so the scalar potential remains 

an important part of the system. The separation of compressible and incompressible 

parts of the flow field is valuable since only the former component contributes to melt 

extraction.

1.4 Initially constant melt fraction problem

1.4.1 Introduction

The simplest problem to solve in a two-phase fluid problem is an initially constant melt 

fraction over all depth. This is the initial problem explored by McKenzie (1984) and 

Richter and McKenzie (1984), examining the initial velocities of melt and matrix 

generated in a two-phase fluid field at initialisation. McKenzie (1984) demonstrates that 

compaction of the matrix initially only takes place over the “compaction length”, a 

specific depth range starting at the base of the column of melt where there are no forces 

to resist the compaction. This lessens vertically until a point is reached where the weight 

of the matrix is supported by the upward flow of melt. 

Evolution of an initial constant melt fraction is explored by Richter and McKenzie 

(1984) and Spiegelman (1993b), an example shown in Figure 7. This demonstrates that 

the initial compaction takes place over the compaction length at the base of the medium, 

but as the region evolves the compaction spreads vertically as melt flows out of the top 

of the region. 
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This simple percolation problem of an initially constant melt fraction does not require 

investigation outside of use as a test. It's use as a test allows comparison of analytical 

solutions to those of numerical solutions. If a barrier to flow of melt exists, such as 

reduced permeability, solitary waves will be generated as demonstrated by Spiegelman 

(1993b) and shown in Figure 8.

18

Figure 7: Solutions to one-dimensional numerical and analytical models for an initially 
constant melt fraction by Speigelman (1993b). The black lines are analytical and 
numerical solutions at different time-steps, with the initial condition a constant 
(φ/φ0=1.0), red lines highlight the first four numerical solutions for incremental time-
steps while the black line at 1.0 is the initial condition. 
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1.5 Solitary waves

1.5.1 Introduction

Solitary waves were first discovered by John Scott Russell in the Union Canal in 

Scotland who termed these pulses solitons, expressed as local elevation in the water 

level that travelled along the canal for many kilometres with no observed changes in 

amplitude or wavelength. In Russell's case he was observing a solitary wave in water, 

but these waves emerge in many different areas of physics, showing up in fibre-optics, 

magnetic fields and many other systems governed by weakly non-linear dispersive 

partial differential equations.

For the two-phase melt-mantle problem, solitary waves arise when a barrier to flow of 

melt exists, such as a perturbation to the background melt fraction from the constant 

problem (section 1.4). Barcilon and Richter (1984) show that this barrier generates a 

pressure field that in turn forms the solitary wave, with positive pressure expanding the 

matrix and negative contracting it again, controlled by the buoyancy, friction, pressure 

gradient and conservation of mass.

Many authors have explored magma-melt solitary waves in one dimension e.g. 

(Marchant and Smyth, 2005; Barcilon and Richter, 1986 Richter and McKenzie, 1984; 

Spiegelman, 1993a-c; Scott and Stevenson, 1984; Nakayama and Mason, 1992, 1995, 

1999), two dimensions (Richardson, 1998; Barcilon and Lovera, 1989; Connolly and 

Podladchikov, 2007) and even three dimensions (Wiggins and Spiegelman, 1995). 

However, there has been little headway in experimental proof that magmatic solitary 

waves or 'magmons' appear in the mantle, although they are predicted to arise with 

relative ease from conditions expected to occur in zones of partial melting and upward 

percolation of melt.
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The term magmon comes from Scott and Stevenson (1984), as the waves were 

originally believed to be solitons. However, Barcilon and Richter (1986) showed that 

solutions, both analytical and numerical, did not fit the requirements of this label. 

Firstly, magma solitary waves do not obey an infinite number of conservation laws. 

Secondly, they do not emerge from wave-wave interaction with no change to themselves 

or the surrounding medium; they instead flow into one another, the material from the 

20

Figure 8: Numerical solutions to an initial sigmoid function of melt fraction. Two 
solutions are shown at incremental time steps vertically, the zero-compaction length 
solution generates the sharp shock-wave while the standard numerical solution 
generates a train of solitary waves, both solutions overlapping. From Spiegelman 
(1993b).
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lower, larger wave inflating the one above, giving the illusion of changing places. They 

also show that solitary wave velocity is proportional to the amplitude and that in a 

solitary wave collision the amplitudes of the waves swap positions rather than pass 

through each other. Wiggins and Spiegelman (1995) examine a highly simplified three-

dimensional numerical solution to a two-phase problem and show that solitary waves of 

one- and two-dimensional form are unstable in a three-dimensional problem and 

devolve into spherical solitary waves. Other authors such as Barcilon and Richter 

(1986); Bercovici et al. (2001a,b); Ricard et al. (2001); Spiegelman (1993a); Simpson et 

al. (2010a,b); Ŝrámek et al. (2007) have produced amended formulations and explored 

the phenomena that occur in a two-phase system in more depth.

1.5.2 Governing equations

Solitary waves arise from the direct relationship between the melt fraction and the 

permeability as indicated by Barcilon and Richter (1986), which is shown in equation 

1.9. In an initially constant melt fraction system, such as Figure 7 where solitary waves 

are not generated as a constant pressure gradient counteracts the buoyancy forces 

driving the percolation of melt. If, however, a perturbation is introduced in the form of 

an increased melt fraction, the pressure acting on the solid matrix is increased beyond 

the balance and induces increased downward flow of matrix. To balance this, there is an 

increase in the upward flow of melt, translating the melt fraction perturbation upwards 

and continuing the cycle. The forces driving solitary waves in compacting media are the 

buoyancy force incurred by the difference between the matrix and fluid densities while 

the restoring force is a result of the viscous compaction of the matrix required to 

conserve mass.

Spiegelman (1993a) shows that the wave phase velocity is related to the vertical 

gradient of the permeability function, expressed as ω∝∂ kϕ /∂ϕ arising from the 

velocity and divergence of fluid flux. He shows that solitary waves are defined by the 

“porosity shock” from which they are generated, such that larger obstructions to melt 

flow generate larger solitary waves. He also demonstrates that solitary waves can 

develop into sharp discontinuities known as shock waves, if the compaction length is 

assumed to be zero and provides two-dimensional numerical solutions, showing that 
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stable solitary waves are of cylindrical form in a two-dimensional problem.

Nakayama and Mason (1995) investigated the importance of the two main controlling 

constants of the permeability and viscosity dependences on the melt fraction of the 

system (n and m in equations 1.9 and 1.10 respectively). They showed that for solitary 

waves to form in a two-dimensional system, n > 1; that the width of the solitary wave is 

inversely proportional to the square root of the wave amplitude; and that the phase 

velocity of the solitary wave is a linear function of the wave amplitude.

1.6 Afar

1.6.1 Introduction

Afar is a region of North East Ethiopia that is the site of an active triple-junction for the 

Aden Ridge, East African Rift and the Red Sea Rift. Mantle up-welling under the triple 

junction drives the divergence of the plates and thins the lithosphere, producing partial 

melt from decompression melting and large offset faults to accommodate stress at the 

surface. The majority of divergent ridge systems are submerged, making Afar a prime 

location to study active rifting and the mechanism of continental breakup above water.

Geochemical data by Wolfenden et al. (2004) indicate that the rift has formed over the 

last ~31 million years (Myr), while extension of the rifts started between about 11-

17Myr. The majority of the surface geology however is significantly more recent due to 

its magmatic origin and extends over an area around ~300km wide (Wright et al., 2006) 

around the northern rift axis. Research by Nooner et al., 2009 supports the theory of a 

thinned crust and lithosphere overlying an up-welling mantle, resulting in 

decompression melting and partial melt at depths of ~53-88km (Roony et al., 2005) 

along the rift axis.

In September 14th 2005 a large-scale dyke event took place along the Dabbahu rift 

segment in Afar. This activity was associated with a magnitude (Mb) ~4.7 earthquake 

and over the following 10 days the rift opened with a sequence of fissure eruptions and 

an eight metre offset. Geodetic study of this dyke event by Hamling et al. (2009) has 

indicated that since initiation, there has been 13 basaltic dyke emplacements totalling to 

a width of greater than 8m. To study this activity the NERC funded Afar Rift 
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Consortium was formed, employing an interdisciplinary group from several university’s 

to work towards fully analysing the Dabbahu rift segment, of which this project is part. 

The role of this project was to investigate a possible deep process control on the 

segmentation of volcanic activity along the Dabbahu rift.

1.6.2 Rift segmentation

Rift segmentation describes the distribution of volcanic activity along the axis of a rift, 

where activity is concentrated into discrete segments with gaps of minimal activity 

separating them. 

Rift segmentation is a phenomenon observed in Afar as well as at mid-ocean ridges such 

as the Mid-Atlantic Ridge (Sempéré et al., 1993) and rift systems like Iceland 

(Thordarson and Larsen, 2007). The segmentation in Afar specifically is expressed as 

patches of volcanic activity, forming chains around 50-80km long shown by Hayward 

and Ebinger, (1996) to be spread out along the rift axis in discrete segments that are 

often offset along strike. 

Many explanations for the existence of segmentation in both faulting and magmatic 

activity have been suggested. One possibility is that the segmentation is a natural length 

scale of the plate system itself as suggested by Mohr and Wood (1976) and Ebinger 

(1989). McConnell (1972) suggested that the structure of the plate itself could be the 

cause of offset rift segments, with variation in mechanical strength producing the 

separation of magmatic sites. Whitehead et al., (1984) propose that the up-welling 

mantle velocity fields are the mechanism for segmentation, with up-welling of the 

mantle under each volcanically active segment and a gap of either down-welling or 

stagnant mantle between. 
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Investigating the segmentation of the Afar rift in particular, Hayward and Ebinger 

(1996) hypothesised that the rifting length scales (of ~1km) are in part dependent on the 

mechanical properties of the rifting plate while the longer length scale features such as 

segmentation of volcanic activity are a function of periodicity in mantle up-welling.

24

Figure 9: Magmatic segments of the Afar triple junction between the southern Red Sea, 
Main Ethiopian Rift, and westernmost Gulf of Aden Rift systems by Beutel et al. (2010). 
The magmatic activity is depicted by the red patches along the rift, highlighting the 
segmentation of volcanism.
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1.7 Thesis outline

In this thesis, I endeavour to relate the segmentation of magmatic activity (Figure 9) 

along rifting sites, such as Afar, to solitary waves that enforce a length scale on the 

percolation of melt from the zone of partial melting in the viscous mantle. I will also 

examine the implications and links between solitary wave train time-scales and the 

eruptive cycles of volcanic complexes.

I plan to explore this concept in two major parts. First, I will explore the governing 

equations in search of a set of solvable equations that can be utilised in a numerical 

model to explore modes of compaction and melt migration in this two-phase system.

In chapter 3, I describe the construction of a one-dimensional two-phase fluid model for 

evaluation and investigation of the basic principles of a two-phase system and the 

behaviour and phenomena associated with solitary waves using dimensional constants 

that are relevant to the extraction of melt from the upper mantle.

Following this one-dimensional model, in chapter 4 I move on to discussing 

implementation of a three-dimensional model in order to investigate how the spatial 

distribution of melt, analogous to a rift axis, evolves with time.

This thesis concludes with a discussion of insights gleaned from the aforementioned 

numerical experiments regarding the mechanism that influences the spatial periodicity 

in mantle up-welling in the rifting environment. I will also discuss possible future 

applications for the numerical models developed here and what other avenues of 

research have been opened up by this investigation.
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2 Mathematical Model

2.1 Introduction

In this chapter, I look at how the governing equations set out in section 1.3 can be 

reworked into a set of solvable equations to be used in construction of a functional 

numerical model of two-phase fluid flow. Starting with the governing equations in 

section 2.2, I describe the simplifying assumptions whose validity will be further 

discussed in section 2.4. Essentially the evolving system is described by the two key 

variables of melt fraction φ and matrix velocity V and the spatial variation of the 

variables. The matrix deforms because of buoyancy forces due to the density difference 

between matrix and solid. Based on the Helmholtz decomposition, the velocity field can 

be expressed using two potential functions:

 V=∇×[A]+∇[B ] (2.1)

The vector potential A describes the part of the velocity field which is incompressible. 

The scalar potential B describes the curl-free part of the flow field. In constructing a 

general formulation, I apply non-dimensionalisation in section 2.5 to produce a set of 

three governing equations on which a numerical algorithm can be based.

The mathematical model of a two-phase system evolves from an a priori distribution of 

the melt fraction and the physical properties of the matrix and fluid; density and 

viscosity. The evolution of the system is constrained by the principles of conservation of 

mass and momentum.

For a given spatial distribution of the melt fraction, an equation that defines the 

variation of matrix velocity is derived from the conservation of momentum constraint. 

Conservation of mass then provides an equation which governs the rate of change of 

melt fraction everywhere. 
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The model derived in this section is similar to that presented by Spiegelman (1993a), 

with the equations for A and the time-step identical before non-dimensionalisation. The 

D ( ∇⋅V ) equation however has significant differences. The contrast between the D 

equations arises from my choice of assumptions. First, I do not use a separate bulk 

viscosity term like Spiegelman (1993a), using the approach by Hewitt and Fowler 

(2008) of one viscosity constant. I also use the small-melt fraction equation to a far 

lesser extent. This results in the formulation of the D equation shown in section 2.3.2.

2.2 Restatement of governing equations

For ease of reference with respect to the forthcoming derivations, I first restate the 

conservation laws and other formulae previously defined in section 1.3. The equations 

shown here are simplified using the approximations described in section 2.4 to improve 

the solvability of the two-phase system. It should be remembered, however, that in so 

doing I render the resulting mathematical and numerical models possibly inapplicable to 

more general systems, including for example systems in which viscosity or density vary 

with depth. 

Conservation of Matrix Mass 

From (1.1) assuming no melting or freezing and constant matrix density.

∂ϕ

∂ t
− ∇⋅[(1−ϕ)V ]= 0 (2.2)

Combined mass conservation

From (1.4) assuming constant matrix and fluid density.

∇⋅[V ]+∇⋅[ϕ(u−V )]= 0  (2.3)

Conservation of Momentum

From (1.5) assuming that inertial terms are negligible and the fluid supports no 

deviatoric stress.

−∇ [(1−ϕ)Pm+ϕP f ]+∇⋅[(1−ϕ) τm ]+((1−ϕ)ρm+ϕρf )g k̂ = 0  (2.4)
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Darcy's Law

From (1.8) assuming a specific dependence of permeability on melt fraction as defined 

by (1.9). 

ϕ(u−V ) =−
k oϕ

n

ηf
∇[Pf−ρ f g z ]  (2.5)

Permeability Function

Restating (1.9).

kϕ∼
a2
ϕ

n

b
=k0ϕ

n  (2.6)

Compaction Equation

From (1.11) based on a conceptual model for the contraction or expansion of the 

connected fluid volume.

Δ P =−
ηm
ϕ ∇⋅[(1−ϕ)V ]  

where:  P=Pm−Pf

(2.7)

Deviatoric Stress Tensor

Assuming bulk viscosity equals shear viscosity and is constant.

 τm=ηm(∇ [V ]+(∇ [V ])
T
−

2
3
∇⋅[V ]I ) (2.8)

Divergence of the matrix velocity field

Follows from application of the divergence operator to equation 2.1.

D=∇⋅[V ]=∇
2
[B]  (2.9)

Vector Calculus Identities

∇⋅[∇⋅[a ]I] = ∇[∇⋅[a]]  (2.10)

∇⋅[∇ [a]+(∇[a ])T ]= ∇ 2[a]+∇ [∇⋅[a ]]  (2.11)

∇
2
[a ]= ∇ [∇⋅[a ]]− ∇×[∇×[ a]]  (2.12)

∇
2 [a b ]=a∇2 b+b∇ 2a+2∇ a⋅∇ b  (2.13)

∇×[∇ [a]]=0  (2.14)

 ∇⋅[∇×[A]]=0  (2.15)
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∇⋅[ab]=∇[b]⋅a+b∇⋅[a ]  (2.16)

For derivations of 2.10 and 2.11 see appendix (7.2).

2.3 Derivation of 3D equations

2.3.1 Derivation of an equation for A 

To obtain an equation for the matrix velocity, or equivalently its vector potential A and 

scalar potential B, I begin with the conservation of momentum 2.4 and substitute in 

deviatoric stress term τm (2.8) in terms of viscosity and velocity gradients:

−∇ [(1−ϕ)Pm+ϕP f ]+∇⋅[(1−ϕ)(ηm(∇ [V ]+(∇ [V ])
T
−

2
3
∇⋅[V ] I ))]

+((1−ϕ)ρm+ϕρf )g k̂ = 0

 (2.17)

I now use the small-φ approximation, as used by authors including Hewitt and Fowler 

(2008), Spiegelman (1993a), Richardson et al. (1996), Ribe (1985) and Barcilon and 

Richter (1986). I will discuss this assumption further in section 2.4.1). I simply assume 

that the melt fraction is very small and as such 1 – φ ≈ 1 in computing the divergence of 

stress in equation 2.17 along with the assumption that matrix viscosity is constant in 

time and space to obtain the following simplified equation:

−∇ [(1−ϕ)Pm+ϕP f ]+ηm∇⋅[∇[V ]+(∇ [V ])
T
−

2
3
∇⋅[V ] I ]

+((1−ϕ)ρm+ϕρf )g k̂ = 0

 (2.18)

The small melt fraction assumption considerably simplifies the following equations.

Using the identity 2.10 to simplify 2.18:

−∇ [(1−ϕ)Pm+ϕP f ]+ηm∇⋅[∇[V ]+(∇ [V ])
T
]−ηm

2
3
∇ [∇⋅[V ] ]

+((1−ϕ)ρm+ϕρf) g k̂ = 0

 (2.19)

Then, substituting the identity 2.11 into equation 2.19:

 −∇ [(1−ϕ)Pm+ϕP f ]+ηm(∇
2
[V ]+∇ [∇⋅[V ] ]−

2
3
∇[∇⋅[V ]])

+((1−ϕ)ρm+ϕρf )g k̂ = 0
(2.20)
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Substitution of identity 2.12 into equation 2.20 produces:

−∇ [(1−ϕ)Pm+ϕP f ] − ηm∇×[∇×[V ]]+ηm
4
3
∇ [∇⋅[V ]]

+((1−ϕ)ρm+ϕρf )g k̂ = 0

 (2.21)

Taking the curl of equation 2.21 all gradient terms become zero following the identity 

2.15:

ηm∇×[∇×[∇×[V ]]]=∇×[((1−ϕ)ρm+ϕρf )g k̂]  (2.22)

Which eliminates pressure, leaving an equation for matrix velocity V in terms of 

buoyancy forces produced by the difference between fluid and matrix density. 

Substituting equation 2.1 into equation 2.22, and using identity 2.12 an equation for the 

vector potential is obtained:

∇
4
[A]=

g
ηm

∇×[((1−ϕ)ρm+ϕρf ) k̂ ]
 (2.23)

Since both densities are assumed constant, (2.23) can be rearranged into:

∇
4
[A]=−

Δρ g
ηm

∇×[ϕ k̂ ]  (2.24)

where  =m−f .

Equation 2.24 is a fourth-order partial differential equation known as the biharmonic 

equation. Given a known distribution of melt fraction φ, equation 2.24 with appropriate 

boundary conditions determines the vector potential, one of the two essential 

components of the matrix velocity field. This equation is identical to that derived by 

Spiegelman (1993a) and was the inspiration behind the adoption of TDCON. The 

derivation is fully explained here as several steps had to be re-derived to account for 

minor differences between the governing equations used here and those used by 

Spiegelman (1993a).
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2.3.2 Derivation of an equation for D

To determine the other part of the velocity field a comparable equation for the scalar 

potential B is required. Returning to equation 2.17: 

−∇ [(1−ϕ)Δ P]+∇⋅[(1−ϕ)ηm(∇ [V ]+(∇ [V⃗ ])
T
−

2
3
∇⋅[V ] I )]

+(1−ϕ)Δρg k̂−∇[Pf ]+ρf g k̂ = 0

 (2.25)

where ∆P=Pm-Pf and ∆ρ=ρm–ρf. This step was interpreted from work by Šrámek et al. 

(2007). The last two terms in equation 2.25 may be replaced using Darcy's law 

(equation 2.5) to produce:

−∇ [(1−ϕ)Δ P]+∇⋅[(1−ϕ)ηm(∇ [V ]+(∇ [V ])
T
−

2
3
∇⋅[V ] I )]

+(1−ϕ)Δρg k̂+
ηf

koϕ
n ϕ(u−V )= 0

 (2.26)

Removing the remaining term in pressure by substituting the compaction equation 

(equation 2.7), much like Spiegelman (1993a), produces:

∇ [(1−ϕ)
ηm
ϕ ∇⋅[(1−ϕ)V ]]

+ηm∇⋅[(1−ϕ)(∇ [V ]+(∇ [V ])
T
−

2
3
∇⋅[V ] I )]

+(1−ϕ)Δρg k̂+
ηf

k oϕ
n ϕ(u−V )= 0

 (2.27)

As previously applied to obtain equation 2.18, again I use the small melt fraction 

approximation to simplify equation 2.27 by setting 1 – φ ≈ 1 in both of the terms that 

are acted on by divergence operators:

ηm∇ [
1−ϕ
ϕ ∇⋅[V ] ]+ηm ∇⋅[∇ [V ]+(∇ [V ])

T
−

2
3
∇⋅[V ] I ]

+(1−ϕ)Δρ g k̂+
ηf

koϕ
n ϕ(u−V ) = 0

 (2.28)

I do not remove the first (1- φ) term in equation 2.28 as it only results in a slight change 

in a single constant in the derivation to follow, and as such its removal does not provide 

significant advantage. 
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Expanding the first term in equation 2.28 produces:

ηm∇ [
1
ϕ ∇⋅[V ]]−ηm∇ [∇⋅(V )]

+ηm∇⋅[∇ [V ]+(∇[V ])
T
]−

2
3
ηm ∇⋅[∇⋅[V ] I ]

+(1−ϕ)Δρg k̂+
ηf

k oϕ
n ϕ(u−V )= 0

 (2.29)

and then by substituting identity 2.11, equation 2.29 can be rewritten as:

ηm∇ [
1
ϕ ∇⋅(V )]+ηm∇

2
[V ]−

2
3
ηm∇ [∇⋅[V ]]

+(1−ϕ)Δρg k̂+
ηf

k oϕ
n ϕ(u−V )= 0

 (2.30)

Regrouping terms 1 and 3 from equation 2.30 and multiplying by a factor φn /ηm in 

preparation for the divergence operator:

ϕn∇ 2[V ]+ϕn∇[(1
ϕ−

2
3)∇⋅[V ]]

+ϕ
n
(1−ϕ)Δρ

g
ηm

k̂+
ηf

ko ηm

ϕ(u−V ) = 0

 (2.31)

Taking the divergence of equation 2.31 then gives:

∇⋅[ϕn ∇2[V ]]+∇⋅[ϕn∇ [(1
ϕ−

2
3)∇⋅[V ]]]

+∇⋅[ϕ
n
(1−ϕ)Δρ

g
ηm

k̂ ]+
ηf

koηm

∇⋅[ϕ(u−V )] = 0

 (2.32)

Now, the last term of this equation can be replaced using the combined conservation of 

mass equation 2.3 in order to remove the fluid velocity from the equation:

∇⋅[ϕ
n
∇

2
[V ] ]+∇⋅[ϕn

∇ [( 1
ϕ−

2
3)∇⋅[V ]]]

+
Δρg
ηm

∂
∂ z

[ϕ
n
(1−ϕ)]−

ηf

koηm

∇⋅[V ]= 0

 (2.33)
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Following rearranging and use of the chain rule, equation 2.33 becomes: 

ϕn ∇2[(1
ϕ +

1
3)∇⋅[V ]]

+∇[ϕ
n
]⋅[∇ 2

[V ]+∇[( 1
ϕ−

2
3)∇⋅[V ]]]

+
Δρg
ηm

∂
∂ z

[ϕn(1−ϕ)]−
ηf

k oηm

∇⋅[V ] = 0

 

(2.34)

Now that most of the V terms appear within a divergence operator it is helpful to 

substitute in the scalar variable D = ∇·V, which is the Laplacian of the scalar potential B 

from equation 2.9. Therefore equation 2.34 can be written as:

ϕ
n
∇

2[( 1
ϕ +

1
3)D]+∇[ϕ

n
]⋅[∇2

[V ]+∇ [( 1
ϕ−

2
3)D]]

+
Δρg
ηm

∂
∂ z

[ϕ
n
(1−ϕ)]−

ηf

k oηm

D = 0

 

(2.35)

To remove the remaining term in V we, first using identity 2.12:

ϕ
n
∇

2[( 1
ϕ +

1
3)D]

+∇[ϕ
n
]⋅[∇ [∇⋅[V ] ]− ∇×[∇×[V ]]+∇[( 1

ϕ−
2
3)D]]

+
Δρg
ηm

∂
∂ z

[ϕ
n
(1−ϕ)]−

ηf

ko ηm

D = 0

 

(2.36)

using equation 2.1, noting that the field component based on B is removed by the curl 

operator and that based on A is removed by the divergence operator, so:

ϕn ∇2[(1
ϕ +

1
3)D]

+∇[ϕ
n
]⋅[∇ [D ]− ∇×[∇×[∇×[A]]]+∇ [( 1

ϕ−
2
3)D]]

+Δρg
ηm

∂
∂ z

[ϕn(1−ϕ)]−
ηf

koηm

D = 0

 

(2.37)

This equation is now, in principle, solvable for D assuming the melt fraction, φ, and 

vector potential, A, are known. However an efficient, feasible algorithm requires further 

rearrangement. 
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The next few steps are towards the goal of separating the terms out into their respective 

dependence on the various gradients of D. The identity 2.13 can be used to expand the 

first term in order to separate D from the melt fraction, φ:

ϕn( 1
ϕ+

1
3)∇ 2 D+ϕn D∇ 2( 1

ϕ )+2ϕn ∇( 1
ϕ )⋅∇ D

+∇[ϕ
n
]⋅[− ∇×[∇×[∇×[A]]]+∇[( 1

ϕ +
1
3)D]]

+
Δρg
ηm

∂
∂ z

[ϕ
n
(1−ϕ)]−

ηf

k oηm

D = 0

 

(2.38)

Next, the product rule is used to expand the second line in equation 2.38:

ϕn( 1
ϕ+

1
3)∇2 D+ϕn D∇ 2( 1

ϕ )+2ϕn∇ (1
ϕ )⋅∇ D

+∇[ϕ
n
]⋅[− ∇×[∇×[∇×[A]]]+D ∇ [ 1

ϕ ]+( 1
ϕ+

1
3)∇ [D ]]

+
Δρg
ηm

∂
∂ z

[ϕ
n
(1−ϕ)]−

ηf

ko ηm

D = 0

 

(2.39)

Finally, dividing the entirety of equation 2.39 by φn obtains:

( 1
ϕ +

1
3 )∇2 D+D ∇2( 1

ϕ )+2∇( 1
ϕ )⋅∇ D

+∇[ ln(ϕn
)]⋅[− ∇×[∇×[∇×[A]]]+D ∇ [ 1

ϕ ]+( 1
ϕ+

1
3)∇ [D ]]

+
Δρg

ηmϕ
n
∂
∂ z

[ϕ
n
(1−ϕ)]−

ηf

koηmϕ
n D = 0

 

(2.40)

Collecting terms in D, ∇D and ∇2 D produces:

 ( 1
ϕ+

1
3)∇ 2 D

+(( 1
ϕ+

1
3)∇ [ ln (ϕn

)]+2∇ (ϕ−1))⋅∇ [ D ]

+(∇ 2(ϕ−1)−
ηf

koηmϕ
n+∇[ ln(ϕn

)]⋅∇ [ϕ−1 ])D

= ∇[ ln(ϕn
)]⋅∇×[∇×[∇×[A]]]−

Δρg

ηmϕ
n
∂
∂ z

[ϕ
n
(1−ϕ)]

(2.41)
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Finally, by dividing through by the coefficient of ∇2 D: 

 ∇
2 D

+(∇[ ln (ϕn
)]+

6 ϕ
3+ϕ

∇ (ϕ−1))⋅∇ [D ]

+
3ϕ

3+ϕ (∇2(ϕ−1)−
ηf

koηmϕ
n
+∇ [ ln(ϕn

)]⋅∇ [ϕ−1 ])D

=
3ϕ
3+ϕ [∇ [ ln(ϕn

)]⋅∇×[∇×[∇×[A]] ]−
Δρg

ηmϕ
n
∂
∂ z

[ϕ
n
(1−ϕ)]]

(2.42)

Equation 2.42 is similar to that derived by Spiegelman (1993a) but with several key 

differences. My derivation does not contain a bulk viscosity constant and shows several 

extra functions of the melt fraction. Spiegelman (1993a) does not go into as much detail 

on the derivation of the equations used and shown as I do, so the reasons for the 

differences are difficult to pin down, the most likely sources of difference being that 

Spiegelman does not separate kφ into k0φn and uses the small melt fraction 

approximation to a greater degree.

This reordering means that the above equation 2.42 can now be expressed in the form of 

a second-order three-dimensional inhomogeneous partial differential equation: 

∇
2 D+r⋅∇ D−q2 D=p  (2.43)

where:

q2=
3ϕ

(3+ϕ ) [
η f

ηm k0ϕ
n−∇

2
ϕ
−1
−∇ (lnϕn)⋅∇ (

1
ϕ )] (2.44)

p=−
3ϕ

(3+ϕ) [
Δρ g

ηmϕ
n
∂
∂ z

[ϕn
(1−ϕ)]−∇ (lnϕn)⋅[∇×[∇×[∇×[Am] ]]]] (2.45)

r=[∇ (lnϕn)+ 6ϕ
3+ϕ

∇ϕ
−1] (2.46)

In chapters 3 and 4 I discuss different numerical algorithms, that can be applied to solve 

equation 2.43 for D. Given a value for D, equation 2.9 can be inverted to obtain B and 

thus find the velocity of the matrix using equation 2.1 using A and B. 
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2.3.3 Application of conservation of mass to the derivation of time 

dependence.

In the previous section, I used conservation of momentum to derive equations that 

describe the spatial variation of the matrix velocity field based on a known melt fraction 

distribution of φ. I now apply conservation of mass to obtain an equation that describes 

how the melt fraction evolves with time based on a known velocity field V.

Starting with the conservation of matrix mass (equation 2.2) and expanding the 

divergence operator to get:

∂ϕ

∂ t
= (1−ϕ)∇⋅[V ]−V⋅∇[ϕ]  (2.47)

The terms in V can be replaced using the divergence D (equation 2.9) and the vector and 

scalar potentials A and B (equation 2.1):

∂ϕ

∂ t
= (1−ϕ)D−[∇×A+∇ B]⋅∇[ϕ]  (2.48)

With equations 2.9, 2.24, 2.43 and 2.48, I now have a complete system that is in 

principle solvable using numerical methods, given appropriate boundary and initial 

conditions. Equation 2.48 is used as a time step function by most authors, such as 

Spiegelman (1993a), Bercovici et al. (2001a) and Ŝrámek et al. (2007), although in this 

case I am ignoring the melting term.

In chapter 3 I describe the one-dimensional implementation of algorithms based on 

these equations and in chapter 4 I discuss the three-dimensional implementation.

2.4 Discussion of simplifying assumptions

In the formulation of equations 2.24 and 2.43, I have made several assumptions that 

should be explained and analysed in more detail.

In general, these assumptions allow a feasible numerical algorithm to be implemented 

while retaining the essential physical processes which I wish to study.
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2.4.1 Small melt fraction approximation

The small melt fraction approximation has been used by authors such as Hewitt and 

Fowler (2008) in derivation of equation 2.15 and in other equations by Spiegelman 

(1993a) and Barcilon and Richter (1986). In my formulation I applied this 

approximation once in derivation of equation 2.17 and twice in deriving equation 2.27, 

reproduced here:

∇ [(1−ϕ)
ηm
ϕ ∇⋅[(1−ϕ)V ]]

+ηm∇⋅[(1−ϕ)(∇ [V⃗ ]+(∇ [V⃗ ])
T
−

2
3
∇⋅[V ] I )]

+(1−ϕ)Δρg k̂+
ηf

k oϕ
n ϕ(u−V )= 0

 (2.27)

If φ << 1 it is expected that:

(1−ϕ)V≈V  (2.49)

however:

∇⋅((1−ϕ)V )=∇[V ]−ϕ∇ [V ]−V⋅∇ [ϕ]  (2.50)

Clearly, if φ << 1, the second term must be small relative to the first term. For the third 

term to also be small, requires another constraint on the melt fraction distribution:

∣∇[ϕ]∣≪
∣∇⋅V∣

∣V⃗∣
≈∣∇ ln∣V∣∣  (2.51)

thus, the approximation:

∇⋅[(1−ϕ)V ]≈∇ [V ]  (2.52)

Equation 2.52 is only valid if gradients of the melt fraction are sufficiently small. The 

melt fraction must be not only small, but smoothly varying. As such, sharp 

discontinuities in φ may invalidate this formulation. Accepting this constraint 1 – φ ≈ 1 

is used in both of the terms that are subject to a divergence operator. The (1 – φ) term 

however should be retained in the buoyancy term at least:

∇ [(1−ϕ)
ηm
ϕ ∇⋅[V ]]

+ηm∇⋅[(∇ [V ]+(∇ [V⃗ ])
T
−

2
3
∇⋅[V ] I )]

+(1−ϕ)Δρg k̂+
ηf

k oϕ
n ϕ(u−V )= 0

 (2.28)
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The 1 – φ ≈ 1 approximation limits the distribution of melt fraction that can be 

accurately modelled and results in the solutions being correct only if the background 

melt fraction and the melt fraction gradient remains small. However, within this 

restriction many interesting problems can still be studied. 

Barcilon and Richter (1986) explored the validity of this approximation, showing that 

for peaks in the melt fraction below ~30% there is around an error of only ~1% in the 

one-dimensional numerical solution relative to the corresponding analytical solution. 

Spiegelman (1993b) also investigated the problem and showed that the amplitude and 

phase velocity of solitary waves are resolved to within 0.1% and 0.2% of their analytical 

counterparts respectively. Therefore, I conclude that using this approximation is 

sufficiently accurate for the test cases that I describe.

2.4.2 Constant viscosity

To simplify the governing equations, I assumed in the derivation that viscosities of both 

matrix and fluid are constant with respect to both depth and time. This assumption is 

also frequently used in the literature in the derivation of the equation for V (or 

equivalently A and B). In the preceding derivations (sections 2.3.1 to 2.3.3), viscosity is 

assumed spatially constant in the derivation of 2.18 from 2.17, and again in the 

derivation of 2.27 from 2.26.

I thus ignore measurements which show that viscosities of both matrix and melt are 

dependent on depth, temperature and composition.

The effects of viscosity variation on melt extraction from a deformable permeable 

medium are explored by Richardson (1998), who showed that solitary waves can 

become very narrow and peaked if the viscosity is a strong function of melt fraction, 

and that dykes can form under high external stresses. Kohlstedt and Zimmerman, (1996) 

also show that viscosity is reduced by up to a factor of 20 as melt fraction varies from 0 

to 10%. This viscosity may be highly variable in partially molten rock, but before 

including that complication in an analysis there is much value in studying the behaviour 

of a simplified constant viscosity system.
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2.4.3 Constant density

Densities of melt and matrix are assumed constant for similar reasons. This 

approximation was used in the formulation of both the conservation of matrix mass 

(equation 2.2) and the combined mass conservation (equation 2.3) and also when the 

curl and divergence operations were applied when deriving the A and D equations (2.24 

and 2.43).

Although density may vary significantly with depth in the upper mantle as defined by 

the PREM model (Dziewonski and Anderson, 1981) the depth range of interest in this 

study is between about 30 to 90 km (between the brittle-ductile transition and the onset 

of partial melting) within which density changes from 3380kgm-3 to 3373kgm-3 for the 

matrix and 2746kgm-3 to 2824kgm-3 for the melt based on PREM and experimental data 

by Ohtani and Maeda, (2001).

Variation of density due to compressibility is not significant in this problem if both 

matrix and melt have the same compressibility. The principle driving force is provided 

by the density difference between melt and matrix, which is estimated at between 

634kgm-3 and 549kgm-3. Thus variations in Δρ are thought to be in the range of 10 to 

20% of the constant value used with this assumption. The impact of such variation is 

small relative to possible changes in viscosity and is neglected here in order to avoid 

unnecessary complexity that would not change the physical process in a significant way.

2.4.4 Deviatoric shear is zero for fluid phase

The assumption that the fluid phase does not support any deviatoric shear stress is based 

on the assumption of a large contrast in viscosity between fluid and matrix and the idea 

that stress in the fluid phase is isotropic.

I use this approximation in the momentum conservation equation (equation 2.4). The 

melt does not support significant deviatoric stress because of its low viscosity. For 

molten basalt at a temperature of 1300°C to 1120°C, the viscosity is about 10Pas from 

experiments by Shaw (1969), which is many orders of magnitude less than typical 

mantle viscosity of around 1018Pas (Šrámek et al., 2007). 

The assumption that deviatoric stress is zero for the fluid phase is commonly used in the 

literature, e.g. (Šrámek et al., 2007; Hewitt and Fowler, 2008; and Spieglman, 1993a).
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2.4.5 No phase change

The final simplifying assumption made is that no melting or freezing occurs in the 

medium; terms that represent melting or freezing are set to zero in the mass 

conservation equations 2.2 and 2.3. I assume that a fixed volume of partial melt exists at 

the beginning of an experiment in the form of the melt fraction distribution that is used 

as the initial condition. Since I am also assuming that no freezing takes place, this 

removes the possibility of melt focusing caused by the constriction of melt channels 

discussed by Hewitt and Fowler (2008).

The effects of phase change could be readily included in the aforementioned 

formulation but I focus here on the transport of melt concentrations that move quickly 

enough to avoid significant melting or freezing.

2.5 Non-dimensionalisation

Non-dimensionalisation simplifies and enhances the utility of mathematical solutions. 

In doing so the mathematical problem is generalised as to highlight the length, time and 

stress scales inherent to the physical problem.

In equations 2.24 and 2.42, two groups of constants stand out:

ηf

ηm k0

with units [m ]−2
and Δρg

ηm
with units [s]−1

[m ]
−1  (2.53)

The first group suggests a scaling length for non-dimensionalising distance:

δ=√ k 0ηm
η f

(2.54)

This length scale arises is an important factor in two-phase fluid systems. Solution of a 

compacting layer with uniform melt fraction by McKenzie (1984) determines this as the 

length scale above which the upward percolation of melt supports the weight of the 

matrix. However the “compaction length” as stated by McKenzie (1984) is a function of 

melt fraction, using the term kφ instead of k0. Therefore, I shall refer to equation 2.54 as 

the “melt fraction independent compaction length”, to avoid confusion. 

40



Chapter 2: Mathematical Model   

My solution assumes a finite layer so a second constant is also needed: 

z '=
z
h

 where h=δho (2.55)

where h is the layer thickness and h0 is a non-dimensional value that defines the layer 

thickness in terms of the melt fraction independent compaction length. z' is the non-

dimensional depth. The second group in 2.53 can now be used in conjunction with h to 

define a velocity scale V0:

V '=
V
V 0

 where V 0=
Δ ρg
ηm

h2
(2.56)

where V' is the non-dimensional velocity.

These two constants, h and V0, can then be used together to non-dimensionalise time, 

divergence and vector potentials in a consistent way:

 t '=
V 0

h
t (2.57)

D '=
h

V 0

D  (2.58)

 A '= 1
hV 0

A (2.59)

2.5.1 Non-dimensionalisation of the A equation

Taking equation 2.24 and applying the non-dimensionalisation equations 2.55 and 2.59 

produces: 

∇
4
[A ' ]h

V 0

h4 =−
Δρ g
ηm

∇×[ϕ k̂ ]
1
h

 (2.60)

The constants cancel out completely to fully non-dimensionalise equation 2.60:

∇
4
[A ' ]=− ∇×[ϕ k̂ ]  (2.61)
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2.5.2 Non-dimensionalisation of the D equation

For the D equation (equation 2.42), the non-dimensional constants 2.55, 2.58 and 2.59 

are used. The equation for q2 (equation 2.44) becomes:

q ' 2=
3φ

(3+φ ) [ h0
2

ϕ
n
−∇

2
ϕ
−1
−∇ (lnϕn)⋅∇ (ϕ

−1
)] (2.62)

Equation 2.46 for r is:

 r '=[∇ ( ln φn)+ 6φ
3+φ

∇ φ
−1] (2.63)

p (equation 2.45) becomes:

p'=
3φ

3+φ [∇ ( ln φn)⋅∇×[∇×[∇×[A ' ]]]−
1

φ
n
∂
∂ z

[φn
(1−φ)]]  (2.64)

The equation for D therefore remains the same, except for prime notation:

∇
2 D '+r '⋅∇ D '−q '2 D'=p ' (2.65)

2.5.3 Non-dimensionalisation of the time step equation

The final equation that needs to be non-dimensionalised is equation 2.48, using 

equations 2.55 and 2.58 to 2.60:

∂ϕ

∂ t '
=(1−ϕ)D '−[∇×A '+∇B ' ]⋅∇ [ϕ]  (2.66)

These non-dimensional formula (equations 2.43, 2.61 to 2.64, and 2.66) provide the 

basis for all numerical modelling discussed in this thesis.
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2.6 Discretisation

Discretisation is the representation of a continuous function by a discrete set of values 

that span the relevant domain. It is a vital step in the creation of any potentially 

numerically solvable set of equations to enable numerical solution.

To discretise a continuous function, a separation between points needs to be defined. 

For a one-dimensional system this requires just one separation such as ∆z while a three-

dimensional system requires three, ∆x, ∆y and ∆z. This allows the splitting of any three-

dimensional function into a series of discretised values that define an approximation of 

the analogue function.

The smaller the choice of ∆x, ∆y and ∆z, the more accurate the function is in capturing 

short wavelength components, but the more costly in computer time it is to numerically 

model, as small spacing conversely requires more data points for any finite field. The 

reduction in accuracy with increasing discretisation length is represented in Figure 11.
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Figure 10: Distribution of the finite difference mesh in three-dimensional space (i,j,k) 
and time (n). 
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Derivatives are approximated with finite difference techniques when using vector 

calculus in a discrete regime. The main finite difference formula for a first and second 

order partial differential are:

Centred Difference

∂ f
∂ z

=
f (i , j , k+1 )− f (i , j ,k−1)

2Δ z
(2.67)

∂
2 f

∂ z2
=

f (i , j , k+1)−2f (i , j ,k )+ f (i , j ,k−1)

Δ z2
(2.68)

Boundary Difference

∂ f
∂ z

=
f (i , j , k+1 )− f (i , j ,k )

Δ z
(2.69)

∂ f
∂ z

=
f (i , j , k)− f (i , j , k−1)

Δ z
(2.70)
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Figure 11: An example of truncation errors due to discretisation of a simple function. 
The dashed black line has 1000 points and is a very good representation of the 
analogue function used, y=sin(z)+sin(2πz)+sin(4πz)+sin(8πz). The red line uses 12 
points, the orange line uses 24, and the blue line 48. Increasing the number of points 
gives a discrete solution that more accurately represents the analogue data. The higher 
harmonics are of much shorter length scale and are simply lost in discretisation with a 
larger Δz, termed aliasing.



Chapter 2: Mathematical Model   

The boundary representations of the first order derivatives in 2.69 and 2.70 are first 

order (and therefore should be avoided if possible). There is however a second problem 

with the boundary difference methods as they do not calculate the gradient at the f(i,j,k) 

point, but the gradient at k+1/2, assigning this gradient to point k. This error ban be 

reduced by increasing the accuracy of the boundary difference equation through 

inclusion of extra points using a Taylor series expansion.

As expressed in appendix A (7.1), an O(∆z2) accurate boundary difference can be 

derived, resulting in:

Boundary Difference

∂ f
∂ z

=−
(3 f (i , j , k)−4 f (i , j , k+1)+ f (i , j ,k +2))

2Δ z
+O(Δ z2) (2.71)

∂ f
∂ z

=
(3 f (i , j , k)−4 f (i , j ,k−1)+ f (i , j ,k−2))

2Δ z
+O(Δ z2

) (2.72)

These finite difference equations allow the calculation of the boundary gradients used in 
the numerical models discussed in this thesis when boundary conditions are not 
sufficient. 
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3 One-Dimensional Numerical Model

3.1 Introduction

The first step in my investigation into the physics of a two-phase fluid medium 

examines the behaviour of a one-dimensional model, based on the equations derived in 

chapter 2. The intention of this step is to gain a better understanding of how the 

equations work together, the physical processes they describe and of problems that may 

arise in the numerical methods when I later move on to the three-dimensional problem.

One-dimensional models are common in the literature as they provide a reasonable 

insight into how the physical system behaves while requiring far less processor time 

than two- or three-dimensional model. Three-dimensional numerical solutions by 

Wiggins and Spiegelman (1995) showed that a one-dimensional solitary wave in a 

three-dimensional model is unstable and will break up into a series of spherical three-

dimensional solitary waves. Comparable waves in a one-dimensional model however 

exhibit many of the same characteristics as the three-dimensional waves, so they are a 

valid target for a preliminary investigation.

With this numerical model I first examine the compaction problem in an initially 

homogeneous two-phase medium, comparing my numerical solutions against an 

analytical solution obtained by McKenzie (1984). I then study solitary waves in the 

compacting medium and compare their properties to those predicted by other authors. I 

examine the generation and interaction of these solitary waves from a range of initial 

conditions in an attempt to provide an improved description and new insights into melt 

extraction.
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3.2 Mathematical Framework

3.2.1 Conversion of equations to one-dimension

Although I have derived a set of mathematical equations that can be solved numerically, 

they can be simplified for a one-dimensional setting. Allowing only variations in the z-

direction, equation 2.30 is simplified to its one-dimensional form:

(3+ ϕ

3ϕ )∂
2 V
∂ z2 +

∂V
∂ z

∂
∂ z

[ϕ−1 ]

+ (1−ϕ)Δ ρ
g
ηm

+
η f

k oηmϕ
n ϕ(u−V )= 0

 (3.1)

The one-dimensional form of the combined mass conservation equation (equation 2.3) 

is:

∂
∂ z

[V ]+ ∂
∂ z

[ϕ(u−V )] = 0  (3.2)

Integrating equation 3.2 and setting the integration constant to zero since V=0 when 

φ=0:

−V = ϕ(u−V )  (3.3)

followed by substituting equation 3.3 into equation 3.1 to obtain:

(3+ϕ
3ϕ )∂

2 V
∂ z2 +

∂
∂ z

[ϕ−1 ] ∂V
∂ z

−
ηf

k oηmϕ
n V =−(1−ϕ)Δρ

g
ηm

 (3.4)

I can integrate equation 3.4 numerically for a known distribution of the melt fraction φ, 

subject to appropriate boundary conditions on V. In section 3.2.4 below I describe a 

numerical implementation based on using a tridiagonal solver. As the solution evolves, 

the melt fraction distribution is constrained by equation 2.2, whose one-dimensional 

form is:

∂ϕ

∂ t
= (1−ϕ)

∂V
∂ z

−V
∂ϕ

∂ z
 (3.5)

The one-dimensional form of the problem requires that the Helmholtz decomposition 

(equation 2.1) of the velocity field has zero curl (A=0). 
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The one-dimensional form of 2.1 is therefore:

V=
∂B
∂ z

 (3.6)

It remains useful however to refer to the divergence of the matrix velocity field:

D=
∂

2 B
∂ z2

 (3.7)

I now consider relevant boundary conditions and describe a practical method of solving 

equations 3.4 and 3.5 for the functions V(z,t) and φ(z,t).

3.2.2 Boundary conditions

Boundary conditions are a necessary component of any integration problem; they 

determine the function values on the boundaries of the modelled region. In term 3.4 

they represent on essential input, as in convection models, where heat influx through a 

basal boundary and out through the upper boundary drives an internal circulation, the 

choice of boundary conditions can inhibit or enable compaction. Equation 3.4 requires 

two boundary conditions on V because the leading term is a second-order derivative 

with respect to z. I assume a Dirichlet boundary condition on the basal edge of the 

modelled region, which can be expressed as: 

V z=0=0  (3.8)

The Dirichlet boundary condition in this case represents an impermeable boundary 

through which no material passes. On the upper (z=h) boundary I use a Neumann 

boundary condition:

∂V
∂ z

|z=h=0  (3.9)

The Neumann boundary condition is sometimes referred to as a stress-free boundary 

condition, as it indicates there is no vertical velocity gradient on the boundary, implying 

that a static stress acts on the boundary. Fluid and matrix however can flow in and out of 

this boundary, allowing for compaction of the medium beneath. In physical terms a low 

density melt can exit the volume on this type of boundary to form a magma chamber.

These boundary and initial conditions are in common use throughout the literature on 

this subject (e.g. McKenzie, 1984). 
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3.2.3 Initial conditions

Different configurations of the melt fraction field drive the system to evolve along 

different paths, and several of these paths are of interest in my study. Spiegelman 

(1993b) discusses the initiation of solitary waves in a one-dimensional system, showing 

that one way to initiate solitary waves is by a restriction in vertical melt flow.

I first consider the problem of a uniform initial melt fraction of magnitude φ0, which has 

to be relatively small for the solution to be accurate, due to the small melt fraction 

assumption discussed in section 2.4.1. Although 0.1% seems like a low value it is 

sufficient for full interconnectivity of the melt network. As demonstrated by Zhu and 

Hirth (2003) 0.02% is enough to ensure melt connectivity. A melt fraction distribution 

of this configuration does not develop solitary waves as there is no initial gradient in 

melt fraction. It does however allow me to do a comparison of my numerical solutions 

and an analytical solution by McKenzie (1984). This comparison confirms the accuracy 

of my computational methods and provides insight into the evolution of the system 

without solitary waves.

Among possible initial conditions used by other authors to produce propagating solitary 

waves, the sharp gradient function (Spiegelman, 1993a,b) evolves into a long regular 

chain of solitary waves, as does a band of melting at the base of the layer (Scott and 

Stevenson, 1984). Barcilon and Richter (1986) used a Gaussian distribution on top of a 

uniform background melt fraction (φ0) to produce stably propagating solitary waves 

while Richter and McKenzie (1984) used a sech (hyperbolic secant) function to produce 

a solitary wave train. With this in mind, I have investigated wave trains generated from 

an initial melt fraction condition defined by the following equation:

ϕ( z ,t=0)=A e
(b− z)2

(2σ)2 +ϕ0
 (3.10)

where A is the amplitude of the Gaussian peak, σ is the width parameter of the Gaussian, 

b is the centre location of the peak and φ0 is the background melt fraction.

I have chosen this initial distribution as I am investigating singular or small trains of 

solitary waves in the one-dimensional model, whereas discontinuous initial melt 

fraction distributions produce close packed trains of solitary waves. 
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In implementing this equation into my program, 1D2PF, I included the option of adding 

a second Gaussian perturbation to the background melt fraction, to study the interaction 

of solitary waves.

3.2.4 Tridiagonal algorithm

To solve equation 3.4, I use a tridiagonal matrix solver. In this section, I describe the 

mathematical and programming aspects of this problem, specifically for the one-

dimensional formulation. The second-order ordinary differential equations may be 

written in the form:

a f ' '
( z)+b f '

( z)+c f (z )=Ω( z)  (3.11)

where:

a=
3+ϕ
3ϕ

b= ∂
∂ z

ϕ
−1

c=−
η f

k 0ηmϕ
n

Ω=−(1−ϕ)
Δρg
ηm

(3.12)

To discretise equation 3.11, I define a series of points with a set separation of Δz and use 

the centred finite difference approximation (equations 2.67) to give a series of linear 

equations for the discretised value of f. This produces:

ak

f k−1−2 f k+ f k +1

Δ z2
+bk

f k+1− f k−1

2 Δ z
+ck f k=Ωk  (3.13)

where k is the grid-point number of the finite difference mesh (k=0,h). Equation 3.13 

can be rearranged to obtain:

(
ak

Δ z2
−

bk

2Δ z
) f k−1+(ck−

2ak

Δ z2
) f k+(

ak

Δ z2
+

bk

2Δ z
) f k +1=Ωk  (3.14)
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In this form, equation 3.14 can be expressed as a matrix equation for the set of h 

unknowns {f0, f1,....fh}:

[
β0 γ0 0 0 ⋯ 0
α1 β1 γ1 0 ⋯ 0
0 α2 β2 γ2 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ αh−2 βh−2 γh−2 0
0 ⋯ 0 αh−1 βh−1 γh−1

0 ⋯ 0 0 αh βh

][
f 0
f 1
f 2
⋮

f h−2

f h−1

f h

]=[
Ω0

Ω1

Ω2

⋮
Ωh−2

Ωh−1

Ωh

]  (3.15)

where the α, β and γ terms, in general, are:

αk=(
ak

Δ z2
−

bk

2Δ z
) , βk=(ck−

2a k

Δ z 2
) , γk=(

ak

Δ z2
+

bk

2Δ z
)  (3.16)

The first and last equations in 3.15 are not valid however, as they involve values of the 

function outside of the computational domain. I therefore replace them using the 

boundary conditions described in the previous section. For the Dirichlet condition on 

the lower boundary (k=h):

f h=0  (3.17)

I preserve the structure of the matrix equation 3.15 by defining:

αh=0, βh=1, Ωh=0, (3.18)

For the Neumann conditions on the upper boundary (k=0) the application of the 

boundary condition requires, from the first order finite difference equation in 2.67:

f 1= f −1 (3.19)

Again, I preserve the structure of the matrix equation by replacing:

γ0 with γ0+α0=2 γ0 (3.20)
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Thus, the discretised version of equation 3.4 with the appropriate boundary conditions is 

written:

[
β0 2 γ0 0 0 ⋯ 0
α1 β1 γ1 0 ⋯ 0
0 α2 β2 γ2 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ αh−2 βh−2 γh−2 0
0 ⋯ 0 αh−1 βh−1 γh−1

0 ⋯ 0 0 0 1
][

f 0
f 1
f 2
⋮

f h−2

f h−1

f h

]=[
Ω0

Ω1
 

Ω2
 

⋮
Ωn−2

Ωn−1
 

0  

]  (3.21)

Equation 3.21 is solved by forwards and then backwards substitution using the 

tridiagonal matrix algorithm (TDMA). By subtracting a scaled version of line 1 from 

line 2, f0 is removed from line 2; the procedure is repeated using lines 2 and 3 to 

eliminate the coefficient of f1 on line 3; and so on until the coefficient of fn-1 has been 

eliminated on line h and thus obtain the value of fh. In the backward substitution stage 

the algorithm then works back up the lines of the matrix equation, sequentially solving 

for fh-1, fh-2 …. f0. I used the FORTRAN95 subroutine TDMA of Press et al. (1986, p43) 

to solve the tridiagonal matrix equation 3.21. 

3.2.5 Solitary wave analysis

In order to better analyse the solitary waves that develop in the numerical solution I 

implemented an automated detection and measurement algorithm. The way I searched 

for a peaks was to analyse the gradient of the melt fraction φ. If there is a peak, the 

gradient of melt fraction will appear as zero in an analytical solution. However, due to 

discretisation of the function the gradient at the peak of a symmetrical wave may not be 

exactly zero as the peak point may not be included in the discretisation. I therefore 

search for a change in gradients of φ from positive to negative using the centred 

difference gradient of φ at every point in the domain k:0→h, using 2Δz, 4Δz, 6Δz and 

8Δz sample separation as depicted by Figure 12. The use of multiple gradients over 

increasing widths (2 to 8Δz) prevents picking of slight variations in the background melt 

fraction as solitary waves.
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To characterize the properties of a solitary wave, I make use of a Gaussian function 

which fits φ in the vicinity of the peak melt fraction: 

ϕ(z )=A e
−
(b− z)2

2σ2 +ϕ0
 (3.22)

The amplitude (A) and centre location (b) of equation 3.22 are obtained directly from 

the detection algorithm, subject to accuracy limited by the discretisation. The width 

constant (σ) is obtained by finding the distance between the two points either side of the 

peak that correspond to half of the maximum amplitude. This is termed the full width at 

half maximum, λ or FWHM, and for a Gaussian curve this provides an approximate 

value for σ:

σ= λ
2√2 ln 2  (3.23)

The value of σ thus obtained can be used as an input value for an optimisation 

procedure which iteratively finds the best match for σ by minimising the root mean 
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Figure 12: Diagram of the peak finding algorithm picking method. The red circles are 
the points used for calculation of the gradient of the blue line. The gradient calculated 
relates to the point centred between the red points, the same centre point for each set. 
As the centre point passes over a large peak, the gradient of each red line with turn 
from positive to negative; at that point the central coordinate defines the point that 
immediately follows the top of the peak. The blue line is a Gaussian distribution 
generated by equation 3.10 using σ=7, A=0.05, b=33 φ0=0.001.
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squared difference between the Gaussian estimation of the solitary wave and the 

numerical solution over the depth range given by b - λ/2 < z < b + λ/2.

To estimate the phase speed of the solitary wave, I calculate the position of the solitary 

wave at regular intervals during a calculation and thus obtain the gradient of the depth 

time curve. The most stable estimate of the phase speed is obtained when the solitary 

wave is within a few widths of the top of the solution domain.

3.2.6 Program flowchart

To construct this numerical model I decided to use the programming language 

FORTRAN95 over other options such as C/C++ and Matlab. I chose FORTRAN 

because the next stage of research was to move onto modification of an existing 

program called TDCON (Houseman, 1990) which is a three-dimensional parallel mantle 

convection model, written in FORTRAN77.
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To summarise how the program works, I have produced the following flowchart that 

shows the sequence of computation:
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Figure 13: Flowchart showing the sequence of processes that the one-dimensional two-
phase fluid flow program runs through.
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3.2.7 Batch processing system

The program is invoked using a batch processing system. An input text file specifies the 

parameters to use and how many runs the program should do. Complete solutions are 

output at specific time steps and for requested variables at every time step. With these 

tools, a great deal can be learnt about the evolution of the system and the impact of each 

variable on the propagation of the solitary waves. 

3.2.8 Compaction of an initially constant melt fraction

For the first series of tests I examine how an initially constant distribution of melt 

fraction evolves over time. For this and all subsequent tests, where not otherwise 

stated,the following set of constants are used:

ηm Matrix viscosity 1.2x1016 Pas (Kohlstedt and Zimmerman, 1996)

ηf Fluid viscosity 10 Pas (Shaw, 1969)

k0 Permeability constant 6.6x10-8 m2 (Spiegelman, 1993a)

ρm Matrix density 3380 kgm-3 (Dziewonski and Anderson,1981)

ρf Fluid density 2785 kgm-3 (Ohtani and Madea, 2001)

g Gravitational Acceleration 9.81 ms-2 -

φ0 Background melt fraction 0.001 - -

n Permeability power 2 - (Nakayama and Mason, 1995)

A Perturbation amplitude 0.01 - -

σ Perturbation width parameter 100 mm (equation 3.10)

Table 1: Table of standard constants and parameters used in the one-dimensional two-

phase  numerical  experiments  described  in  the  following  sections.  In  some  tests  I  

changed  specific  parameters,  such  as  the  width  of  the  initial  perturbation  or  the  

viscosity of the matrix.

To test the correct operation of the program, I compare the numerical solution to 

analytical solutions given first by McKenzie (1984). Using the constants defined by 

McKenzie (1984) a time-dependent compaction solution can generated using the 

numerical methods outlined in chapter 2. 
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However, it should be noted that McKenzie (1984) used a different version of the 

permeability function (equation 2.6):

k ϕ=k 0
ϕ
3

(1−ϕ)2
(3.24)

where k0 is also different to the constants I use. To compare my solutions directly to 

those by McKenzie (1984) I use the same initial condition (constant melt fraction, 

discussed in Section 1.4) and a value of k0 that allows the matching of equation 2.6 and 

3.24. Furthermore, McKenzie (1984) uses both the bulk viscosity ζ and shear viscosity 

ηm, deriving an intrinsic length scale for the system called the 'compaction length' as 

discussed in sections 1.4.1 and 2.5:

δc=((ζ+4/3ηm)k ϕ

η f )
1
2  (3.25)

where as I use a single matrix viscosity constant, ηm = ζ. McKenzie (1984) designates 

the compaction length as the term q in an equation of the form:

∂
3V
∂ z3

−q2
∂V
∂ z

=0 (3.26)

I can reproduce the compaction length for this system of calculations by differentiating 

equation 3.4 with respect to z and treating the melt fraction as a constant:

∂
3 V
∂ z3 −

3ϕ
3+ϕ

ηf

koηmϕ
n

∂V
∂ z

= 0  (3.27)

which defines the compaction length for the formulation as:

q=δc=(3+ϕ3ϕ
ηm k 0ϕ

n

η f )
1
2

 (3.28)

This equation has many of the same elements as the length-scale for non-

dimensionalisation (Equation 2.54), but Equation 3.28 is not preferable for use as a non-

dimensionalisation constant as it is a function of melt fraction, which is not always 

constant. 
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With the values used by McKenzie (1984) (Table 2) and allowing for the difference in 

specific permeability function, 3.28 becomes:

δc=124m  (3.29)

ηm Dynamic shear viscosity 1015 Pas

ηf Fluid viscosity 1 Pas

ζζ Bulk viscosity 1015 m2

ρm Matrix density 3300 kgm-3 

ρf Fluid density 2800 kgm-3 

g Gravitational Acceleration 9.81 ms-2

φ Melt fraction 0.1 -

n Permeability power 2 -

k0 Permeability constant 10-9 m2

δc Compaction length 53 m

kφ Specific permeability 1.2x10-12 m2

w0 Relative velocity with no compaction 5.3x10-8 ms-1

Table 2: Specific parameters used by McKenzie (1984) to formulate the analytical 
solutions in Figures 15-17 and myself for Figures 14-16.

To compare solutions from my one-dimensional numerical model directly to that of 

McKenzie (1984) requires application of his non-dimensionalisation system:

z '=
z
δc

V '=
V
w0

t '=t
w0

δc
(3.30)

Using these parameters I generated two solutions with layer thickness of 0.5 and 4 

compaction lengths, Figure 14 and (Figure 16) respectively. The units and signs of the 

solutions have been converted to match the non-dimensionalisation and z-direction used 

by McKenzie (1984) to allow comparison of the two solutions.
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Figure 15: The initial compaction solution for a constant melt fraction of φ0 = 0.1 over 
a layer thickness of 0.5 compaction lengths (δc) by McKenzie (1984). The scales are 
directly comparable with Figure 14.

Figure 14: A one-dimensional numerical solution for an initially constant melt fraction 
(φ0=0.1), and a layer thickness of 0.5δc (equation 3.25). a) shows the velocity of the 
matrix (mantle) with depth, b) the velocity of the pore fluid (melt) with depth, c) the melt  
fraction with depth and d), the rate of expansion (φ-1dφ/dt) with depth. All scales are 
non-dimensionalised to match those used by McKenzie(1984).
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Figure 16: A one-dimensional numerical solution for an initially constant melt fraction 
(φ0=0.1), and a layer thickness of 4δc (equation 3.25). All other parameters are in-line 
with Figure 14. a) shows the velocity of the matrix (mantle) with depth, b) the velocity 
of the pore fluid (melt) with depth, c) the melt fraction vs. depth and d) the rate of 
expansion (φ-1dφ/dt) vs. depth. All scales are non-dimensionalised to match those used 
by McKenzie(1984).

Figure 17: The initial compaction solution for a constant melt fraction of φ0 = 0.1 over 
a layer thickness of 4 compaction lengths (δc) by McKenzie (1984). The scales are 
directly comparable with Figure 16.
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The solution in Figure 14 is consistent with that of Figure 15. The ratio of the matrix to 

fluid velocities is around ~11% in both solutions. The expansion rate plot in both figures 

is a simple straight line for any layer thickness less than the compaction length 

(McKenzie, 1984). For a layer thickness greater than the compaction length, McKenzie 

(1984) showed that the expansion rate decreases asymptotically to zero towards the top 

of the region as shown in Figure 17, which is comparable with my one-dimensional 

model in Figure 16. The velocity ratios are similarly comparable for Figure 16 and 17. 

3.2.9 Comparison with analytical solutions

I now confirm the accuracy of the numerical model by comparison to solutions obtained 

analytically. Assuming that melt fraction is a constant, equation 3.4 reduces to:

d 2 V
d z2 −q2V= p  (3.31)

where:

q2=( 3ϕ3+ϕ )
η f

koηmϕ
n

p=− ( 3ϕ3+ϕ)(1−ϕ)
Δρg
ηm

 (3.32)

using the boundary conditions discussed in section 3.2.2:

V = 0 at z = 0 (3.33)

and:

dV
dz

=0  at z = h. (3.34)

where h is the layer thickness. To create an analytical solution a generic equation that 

satisfies 3.31 is needed. The solution is:

V=E sinh (qz )+ F cosh (qz )−
p

q2
 (3.35)

Where E and F are constants. It can be show that equation 3.35 is a valid solution to 

equation 3.31 by back substitution of 3.35 into 3.31. 
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To evaluate the constants E and F, the boundary condition (equation 3.33) can be used to 

obtain:

 0=E sinh (0)+F cosh(0)−
p

q2
(3.36)

thus:

F=
p

q2
 (3.37)

For the condition 3.34, first differentiate 3.35:

∂V
∂ z

=E qcosh (qz )+F q sinh (qz )  (3.38)

Now apply boundary condition 3.34 to obtain:

E=−F
sinh (qh)
cosh (qh)

 (3.39)

and using equation 3.37 to find E:

E=
−p
q2
sinh(qh)
cosh(qh)  (3.40)

Thus, by substituting equations 3.40 and 3.37 into equation 3.35:

V=−
p
q2
sinh(qh)
cosh(qh)

sinh (qz )+
p
q2
cosh(qz )−

p
q2

 (3.41)

Equation 3.40 then can be rewritten after some manipulation as:

V=−
p

q2 [
cosh (q(h− z))−cosh(qh)

cosh (qh) ]  (3.42)

which is the time-zero analytical solution for the matrix velocity of the one-dimensional 

constant melt fraction problem. This analytical derivation follows the same rules as that 

used by McKenzie (1984), producing the same result except for p which comes from 

my differing definitions of constants, permeability function and some governing 

equations. 
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Furthermore, using equations 3.3 and 3.5, the analytical solutions for the fluid velocity 

and the expansion rate are:

u=
(1−ϕ)
ϕ

p
q2 [ cosh (q(h−z ))−cosh(qh)

cosh (qh) ]  (3.43)

1
ϕ
∂ϕ

∂ t
=−

(1−ϕ)
ϕ

p
q [
sinh (q (h−z ))
cosh (qh) ]  (3.44)

Equations 3.42 to 3.44 can now be compared with the numerical solutions shown in 

Figure 16 in order to assess the error of the numerical solution.

Figure 18 compares the numerical and analytical solutions for compaction of a constant 

melt fraction in a layer of thickness 4δc. The numerical and analytical solutions are 

visually identical. I also computed the maximum absolute difference as a percentage of 

the maximum absolute value (mdiff) between the numerical and analytical solutions. I 

obtained mdiff values between the two solutions of 0.0057% (65 points), 0.0047% (129 

points) and 0.018% (257 points) for the matrix velocity and 0.047% (65 points), 0.015% 
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Figure 18: Comparison of analytical and numerical solutions for initially constant melt 
fraction. The analytical (black lines) and numerical solution (coloured dots) have a 
maximum absolute difference as a percentage of the maximum absolute value of 
0.0057% for the matrix viscosity. a) shows the velocity of the matrix (mantle), b) the 
velocity of the pore fluid (melt), c) the melt fraction and d) the rate of expansion (dφ/dt).  
The analytical solutions are generated by equations 3.42 to 3.44. These tests use the 
parameters from Table 1 with the exceptions of φ0=0.1 and A=0.
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(129 points) and 0.013% (257 points) for the divergence of the matrix velocity (D). 

Although the errors are negligible, this error analysis does not behave as expected for a 

reducing discretisation error, implying that rounding error is the principle source of 

numerical error.
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3.3 Evolution of solitary waves from an initial melt concentration

In this section, I investigate the evolution of solitary waves that develop from an initial 

perturbation (equation 3.10) to the constant background melt fraction. I observe that the 

initial perturbation is typically not stable, even though it is of similar form to the final 

perturbation the parameters A, b and σ evolve over time to satisfy the governing 

equation. In comparing the initial perturbation to the resulting solitary waves I use the 

subscript I to refer to the initial parameters at time zero and subscript S for the solitary 

wave parameters at later times. In each case the constants A, b and σ describe the 

location and shape of the primary solitary wave.

Figure 19 demonstrates how an initial melt fraction with a Gaussian perturbation 

evolves over time. In Figure 19a, the waveform parameters adjust as the initial 

perturbation evolves into a solitary wave. In this case the amplitude changes from AI = 

0.1 to AS =0.08929, while the width of the solitary wave increases from σI = 800m to σS 

= 920m or, in terms of full width at half maximum, 1884m to 2168m. Thus the medium 

itself has a preferred set of parameters for solitary waves depending on the background 
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Figure 19: The evolution of a solitary wave from an initial distribution of melt fraction 
(3.22), using parameters listed in Table 1 over a total time of 533 years. a) melt 
fraction, with the red line denoting the final stable solitary wave, b) matrix velocity and 
c) expansion rate. The thick black lines are the initial conditions at time step zero and 
the grey lines show the solutions at intervals of ~80 years.
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melt fraction and physical parameters such as permeability and viscosity. I investigate 

which parameters determine different aspects of the final solution in subsections 3.3.1 

and 3.3.2, whereas in this subsection I describe in more detail the character of a typical 

solitary wave in this system. The expansion rate in Figure 19c illustrates the wave-like 

propagation of the solitary wave as the melt fraction increases ahead of the wave and 

then decreases behind it. The leading part of the wave is in dilatation while the trailing 

part is compacting. The matrix expands to concentrate melt at the top of the wave before 

contracting again at the base, leaving little if any disturbance to the background melt 

fraction in its wake. The description of this dilatation/compaction field reinforces the 

fact that a solitary wave is not a discrete pulse of melt rising through the mantle, but 

more a disturbance to the matrix pore space that transports melt as it moves.

In Figure 20, I show the differences in the field values, V, φ and D between a 

compaction solution for a layer with h = 80km and φ0 = 0.001, and the same solution 

with a solitary wave (like that of Figure 19: A = 0.01, b = 8km and σ = 800m) added. 
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Figure 20: Differences between an experiment with initially uniform melt fraction of φ0 
= 0.001 and one in which the Gaussian perturbation in Figure 19 is added to the 
uniform background. Solid lines show differences in value at time t = 6338yr for a) melt  
fraction, b) downward matrix velocity and c) expansion rate. Black lines and dashed 
lines show detail of the solution that includes the initially Gaussian melt-function 
distribution at times t = 0 and t = 3169yr. The horizontal scale has been reduced to 
show small scale amplitudes clearly, to a) 0.3%, b) 0.08% and c) 0.2% of the maximum 
initial values. 
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This graph demonstrates that as the solitary wave rises there is loss of the background 

melt fraction of around 0.065% of the solitary wave peak amplitude or 5.8% of the 

initial background melt fraction φ0 with a small corresponding increase in solitary wave 

amplitude. This small decrease in the background melt fraction could explain the slight 

amplitude increase of the solitary wave over time on the order of 0.1% as described by 

Barcilon and Richter (1986). The disturbance at the base of Figure 20 is similar to the 

result of interaction between two solitary waves shown by Barcilon and Richter (1986). 

The disturbance to the melt fraction is not due to numerical instability, as the shape and 

magnitude of the disturbance is not affected by changes in the mesh size. The magnitude 

and number of these diminishing sinusoidal features is related to the initial perturbation, 

the disturbance diminishing completely as the first secondary wave begins to form.

After elapsed times of about 533 yr, the wave in Figure 19 exhibits a phase velocity of 

10.4 m/yr while the fluid travels at a peak speed of 9.76 m/yr and there is little change 

in the amplitude and width parameters, which remain fairly stable as it continues to rise 

(Figure 21). 
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I examine the solitary wave at later times by calculating an RMS best fit of the 

computed melt fraction curve to equation 3.22, deriving values for its amplitude, full 

width at half maximum and position. As Figure 21 shows, the solitary wave requires 

time to evolve from the initial perturbation into a stable form, but it does so over a 

relatively short depth range (Figure 21), meaning that the wave is fully formed and 

stable well before interaction with the upper boundary takes place.
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Figure 21: The evolution of the primary solitary wave shown in Figure 19 following the 
initial perturbation. a) the solitary wave phase velocity, b) the amplitude, and c) the full  
width at half maximum of the solitary wave. This particular solitary wave stabilizes at 
around 500 years after initialisation.
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As mentioned earlier the initial Gaussian perturbation does not always result in a single 

solitary wave but can evolve into a group of waves, referred to as a wave train. Figure 

22 shows an example of a wave train that developed from an initial unstable Gaussian 

perturbation. These waves are each smaller in amplitude and travelling with lesser phase 

velocity than the one preceding, I further discuss solitary wave trains in detail in section 

3.4.

For the primary solitary wave in Figure 22 after steady propagation is attained, the wave 

moves at 8.078 m/yr while the fluid travels at a peak speed of 7.124 m/yr and the matrix 

moves in the opposite direction with a peak velocity of 0.2039 m/yr. 

I have demonstrated that the one-dimensional model can reproduce propagating waves 

of melt fraction which transport magma through a permeable deforming matrix, 

exhibiting properties similar to those described by other authors, including stable wave 

form (Barcilon and Lovera, 1989; Scott and Stevenson, 1984; Nakayama and Mason, 

1992).
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Figure 22: The formation of a wave train from an initial distribution of melt fraction 
(3.22). The black line shows the initial melt fraction, matrix velocity and expansion rate  
profiles. This solution uses the parameters from Table 1 a the exception σI=4 km. The 
red line is the melt fraction after elapsed time 7129 yr, the blue line is the 
corresponding matrix velocity field and the purple line is the expansion rate. Several 
solitary waves evolve from the one perturbation to the melt fraction, each decreasing in 
amplitude and propagation velocity, in rank order.
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3.3.1 Effects of altering the parameters of the initial perturbation

In this section, I vary the parameters that define the initial distribution of the melt 

fraction in order to show the impact on formation of stable propagating waves. The two 

constants that define the initial amplitude, AI, and initial width constant, σI, together 

describe the one-dimensional volume of the initial perturbation:

Vol I=2√π A Iσ I=√π/ (2 ln 2) A I λ I  (3.45)

where λI is the full width at half maximum of the perturbation. I now describe the effect 

of independently varying the initial amplitude AI and initial width λI, and thus the 

volume VolI, of the resulting primary solitary wave. To do so I ran batches of 

experiments where only AI was changed or only λI was changed while all other constants 

expressed in Table 1 remained the same.

When a train of solitary waves is produced from this type of initial condition (equation 

3.22), the individual solitary waves are generally dispersed by a propagation velocity 

which increases with the amplitude of the solitary wave (Figure 23c). I refer to the lead 

solitary wave in such a train as the primary, and below I focus on its properties.
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Figure 23: Parameters of stable solitary waves in experiments where the amplitude of 
the initial perturbation (AI) was altered (defined by equation (3.10)). Graph 23a is the 
solitary wave amplitude (AS), 23b is the full width at half maximum (λS) and 23c is the 
phase velocity (ωS). All other parameters are defined in Table 1. The black lines are 
linear functions of gradient m. These are dimensional log10-log10 plots to clearly show 
variation over orders of magnitude.
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 The wave trains illustrated in Figure 22 show a characteristic pattern of decreasing 

volume in successive wave packets. Figure 23c shows a relatively weak dependence of 

propagation velocity on solitary wave amplitude (an increase of a factor of about 4 as 

solitary wave volume is increased by two orders of magnitude) but this increase clearly 

explains the dispersion of the solitary wave trains discussed in section 3.4. The 

relationship between solitary wave amplitude and phase speed is discussed by Barcilon 

and Richter (1986) who compare phase velocity to solitary wave amplitude. The 

increase in propagation velocity associated with larger initial perturbation widths 

(Figure 24c) is probably due largely to the increase in solitary wave amplitude shown in 

Figure 24a. Intriguingly, a well-defined minimum solitary wave width of 1780m is 

found for a solitary wave volume of 15m for only the specific parameters used in Figure

24. This minimum (λcrit) is further investigated in section 3.3.2 and is shown to depend 

on the melt fraction independent compaction length (δ, Equation 2.54). The width of the 

stable solitary waves varies only by about 30% in all of these experiments, but this 

property is also a function of δ. The small range of observed widths indicates that there 
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Figure 24: Parameters of stable solitary waves in experiments where the width of the 
initial perturbation (λI) was altered (defined by equation (3.10)). Graph 24a is the 
solitary wave amplitude (AS), 24b is the full width at half maximum (λS) and 24c is the 
phase velocity (ωS). All other parameters are defined in Table 1. The black lines are 
linear functions of gradient m. These are dimensional log10-log10 plots to clearly show 
variation over orders of magnitude.
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is a specific preferable configuration for the solitary wave dependant on the physical 

properties of the medium, such as viscosity and permeability. 

For the right initial width (λI) the volume of the stable propagating wave is the same as 

the volume of the initial perturbation (Figure 25, red curve). As the width of the initial 

perturbation is systematically increased the ratio of Vols to VolI changes. For small 

widths, VolS = VolI, but above some threshold of λI the primary solitary wave volume 

(VolS) is less than the initial volume (VolI) (Figure 25, blue curve). This apparent loss of 

volume is caused by some of the initial melt being partitioned into the secondary waves. 

When the width constant λI is greater than the critical width (Figure 24), secondary 

solitary waves develop in the solution. The formation of these secondary waves explains 

the discrepancy between VolI and VolS seen in Figure 25. However, the critical value of 

1780m from Figure 24 applies specifically to the case of δ=8900m (derived from Table 

1) which is discussed further in the next section.
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Figure 25: Volume of the stable primary solitary waves (VolS) that evolve from initial 
perturbations of differing initial volumes (VolI) as defined by equation (3.22). The red 
line relates to experiments were the initial amplitude (AI) of the perturbation was 
altered over the range of 0.001 to 0.18 with a constant width, λI = 1.884 km. The blue 
line plots experiments where the width of the initial perturbation was altered between 
0.3768 km and 9.419 km with AI = 0.01 constant. All other parameters are constants as 
defined in Table 1. The black line is a linear function of gradient m=1 (Vs=VI displaced 
vertically).
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3.3.2 Effects  of  altering  the  viscosities  of  matrix  and  melt  and 

permeability constant.

Although other authors have considered a relatively complex dependence of matrix 

viscosity on melt fraction e.g., (Nakayama and Mason, 1999; Scott and Stevenson, 

1984, 1986) I here examine solutions in which the matrix viscosity (ηm) is constant. 

While mantle viscosity in these regions may be on the order of 2.6x1017 to 5.2x1018Pas 

(e.g. Nooner et al., 2009; Kohlstedt and Zimmerman, 1996), the onset of partial melting 

can reduce matrix viscosity by orders of magnitude as indicated by Kohlstedt et al., 

(1996). I therefore vary the value of ηm in the range 1014 to 1017Pas in the series of 

calculations shown in Figure 26. Fluid viscosity, likewise, is variable within magmatic 

systems. This variation depends on temperature, pressure and composition of melt 

(Shaw, 1969) but for the purposes of this study, I assume viscosity is constant, and 

consider values in the range 1 to 1000Pas (Figure 27). Figure 28 explores the impact of 

variation in the permeability constant, between 1.0x10-9 to 1.0x10-7m2.
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Figure 26: Parameters of stable solitary waves in experiments where the matrix 
viscosity (ηm) was altered. Graph 26a is the solitary wave amplitude (AS), 26b is the full 
width at half maximum (λS) and 26c is the phase velocity (ωS). All other parameters are 
defined in Table 1. The black lines are linear functions of gradient m, listed in Table 3. 
These are dimensional log10-log10 plots to clearly show variation over orders of 
magnitude.



Chapter 3: One-Dimensional Numerical Model     

75

Figure 27: Parameters of stable solitary waves in experiments where the fluid viscosity 
(ηf) was altered. Graph 27a is the solitary wave amplitude (AS), 27b is the full width at 
half maximum (λS) and 27c is the phase velocity (ωS). All other parameters are defined 
in Table 1. The black lines are linear functions of gradient m, listed in Table 3. These 
are dimensional log10-log10 plots to clearly show variation over orders of magnitude.
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Slope (m) for: ηm experiments ηf experiments k0 experiments

Log As -0.4 0.4 -0.4

Log λs 0.5 -0.5 0.5

Log ωs -0.11 -0.88 0.88

Table 3: Slopes of the black lines shown in Figures 26-28. The first row relates to 26a-
28a, the second row to Figures 26b-28b and the last row to Figures 26c-28c.

Best-fit properties of the stable solitary wave measured from the numerical experiments 

shown in Figure 26-28 and listed in Table 3 show a simple empirical relation for the 

width of the primary solitary wave. The relationships shown in these values indicate that 

δ (equation 3.28) is a key variable determining the evolution of the system. To explore 

the influence of the melt fraction independent compaction length, I combine the data 

shown in Figures 26, 27 and 28, calculating δ for each experiment to produce a common 

scale between all three experiments. 
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Figure 28: Parameters of stable solitary waves in experiments where the permeability 
constant (k0) was altered. Graph 28a is the solitary wave amplitude (AS), 28b is the full 
width at half maximum (λS) and 28c is the phase velocity (ωS). All other parameters are 
defined in Table 1. The black lines are linear functions of gradient m, listed in Table 3. 
These are dimensional log10-log10 plots to clearly show variation over orders of 
magnitude.
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I use the melt fraction independent compaction length (δ, Equation 2.54) for this 

comparison, as the melt fraction is not a constant in these experiments.Figure 29 

demonstrates the dependence of the stable primary solitary wave on the melt fraction 

independent compaction length (δ), allowing the definition of the following empirical 

statements. Figure 29b shows that the solitary wave width is simply proportional to δ: 

λS≃4.6δ  (3.46)

while the amplitude (Figure 29a) is approximately inversely proportional to δ for the 

greater melt fraction independent compaction lengths:

AS≃89/δ (3.47)

which implies an almost inverse relationship between As and λs, when either matrix or 

fluid viscosity is altered; in either case a key parameter is the ratio of fluid to matrix 

viscosity. The deviation from equation 3.47 in Figure 29a can be attributed to the 
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Figure 29: Parameters of stable solitary waves in experiments where the matrix 
viscosity (ηm, blue circles), fluid viscosity (ηf, green crosses) or the permeability 
constant (k0, orange triangles) was altered, keeping the other parameters fixed. Graph 
29a is the solitary wave amplitude (AS), 29b is the full width at half maximum (λS) and 
29c is the phase velocity (ωS). All other parameters are defined in Table 1. In these 
graphs I used log10-log10 plots to clearly show variation over orders of magnitude. 
The x-axis is in units of compaction lengths (δ) as defined by equation (2.54). The black  
dashed lines have constant slope m.
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increasing role of secondary solitary waves. 

The phase velocity of the solitary wave (from Figure 29) can be expressed as:

ωs≈C1δ
16 /9

(ηm )
−1 (3.48)

The solitary wave propagation velocity is almost inversely proportional to the fluid 

viscosity (m = -0.88) and almost proportional to the permeability constant (m = 0.88), 

but only weakly negatively correlated with the matrix viscosity (Figures 26-28c). 

Through its dependence on the melt fraction independent compaction length (δ, 

Equation 2.54) the dependence of propagation velocity on fluid viscosity and 

permeability constant may be explicitly stated; the C1 term is a constant empirically 

determined from Figure 29c. Barcilon and Richter (1986) state that the solitary wave 

velocity is a function of the solitary wave amplitude and background melt fraction, 

however Figures 26-29 show that the melt fraction independent compaction length and 

matrix viscosity are also determinants of the propagation rate. The solitary wave in 

general propagates faster than the fluid flows in the pores; the matrix moves in the 

opposite direction at the much slower speeds so as to conserve mass, as described in 

Section 3.2.8.
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In Figure 30, I examine widths value of stable solitary waves for different values of the 

permeability. In each set of experiments the width of the initial perturbation is altered in 

the same way as Figure 24b, where Figure 30e is identical to Figure 24b. In each set of 

experiments (Figure 30a-d, f-i) the permeability constant was altered as specified, 

showing that the minimum width of the primary solitary wave is proportional to the 

permeability. The initial width that produces the primary wave with the smallest width 

(λcrit) is also proportional to the permeability as shown in Figure 30g.
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Figure 30: Widths of the primary solitary wave generated from initial perturbations 
with initial widths (λI) between 376.8 to 11300m. Between each set of experiments the 
permeability constant k0 was changed where k0=9.9x10-7 for (a), 6.6x10-7 for (b), 
3.3x10-7 for (c), 9.9x10-8 for (d), 6.6x10-8 for (e), 3.3x10-8 for (f), 9.9x10-9 for (g), 6.6x10-

9 for (h) and 3.3x10-9 for (i). g shows the critical solitary wave width (λcrit, value of λI 
that results in the minimum λs) for each k0. The black line has constant slope m.
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3.4 Multiple solitary waves

Figure 22 illustrates clearly that a large disturbance in the melt fraction can lead to a 

long train of solitary waves, consistent with solutions demonstrated by Spiegelman 

(1993b) and Scott and Stevenson (1984). Those authors used a sharp delta function to 

create the permeability discontinuity that initiated solitary wave formation, whereas I 

use an initial distribution that conforms to the stable solitary wave packets studied by 

Barcilon and Richter (1986). I have demonstrated that some such initial melt 

concentrations propagate with very similar parameters to the initial perturbation, 

whereas in other cases, they evolve into longer wave trains of spatially dispersed melt 

concentrations. 

For each experiment, the number of waves in a solitary wave train, once the primary 

wave reached the surface, were manually counted. These results are shown in Figure 31 

for a maximum of seven solitary waves in a train. Only seven waves are counted as the 

amplitudes of waves beyond this limit are too small to discern. Figure 31a demonstrates 

that the number of solitary waves generated is inversely proportional to the melt fraction 

independent compaction length (Equation 2.54) while Figure 31b demonstrates that 

variation in amplitude of the initial perturbation does not affect creation of secondary 

solitary waves, whereas variation in the initial width results in longer solitary wave 

trains with increasing initial pulse widths. 
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Figure 31: (a) Solitary wave train length for variation in the fluid viscosities (green 
bars), matrix viscosity (blue bars) and permeability (orange bars). The x scale is in 
terms of log melt fraction independent compaction length (log(δ), Equation 2.54). (b) 
Solitary wave train length for changes in the amplitude (blue bars) and the width (red 
bars) of the initial perturbation. A maximum of 7 waves were counted in each 
experiment.
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To further analyse these secondary solitary waves I extended the least squares fitting 

algorithm to include secondary solitary waves and determine the Gaussian parameters 

of each component solitary wave after it had stabilised. In Figure 32 I show how the 

wave volumes vary for a series of experiments in which the width of the initial Gaussian 

perturbation is changed, and examine the constituents of the resulting wave trains. 

As the width of the original melt region is increased, each wave packet increases in 

volume. For small initial widths there are no secondary waves until a critical width is 

reached as shown in Figure 32a at, 2.35km for the second solitary wave, 3.30km for the 

third and 3.77 km for the fourth. The proportion of the original melt that goes into the 

secondary waves increases with initial width, as more and larger secondary waves form 

behind the primary. Whether primary or later, the behaviour of each magmatic pulse is 

determined primarily by its amplitude, while the volume and number of successive 

pulses is determined by how much larger the initial distribution width is compared to 

the medium's "ideal" solitary wave width. For the parameters used in Figure 32, this 
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Figure 32: (a) Stable waveform volumes (Vols) vs the initial perturbation width for 
solitary wave trains that evolve from an initial Gaussian distribution. The width of the 
initial perturbation (defined by equation 3.10) is varied between 160m and 4.8 km, all 
other parameters defined in Table 1. Colour indicates the successive waves: first (red), 
second (orange), third (blue) and fourth (green) solitary waves. (b) The volume of each 
solitary wave (Vols) as a percentage of the previous rank wave, where orange is used for  
second wave volume as percentage of the first, blue for third relative to second and 
green for fourth relative to third.
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ideal solitary wave width is λs = 1.78 km. 

To investigate the effects of the width and δ on the number of solitary waves generated I 

repeated the experiment shown in Figure 32 with a different value for the permeability 

constant. For each experiment all other constants remained the same. As the 

permeability was decreased (corresponding with a decrease in δ) the number of solitary 

waves increases as predicted by Figure 31. The primary solitary wave volume decreases 

with additional secondary solitary waves, the original volume being partitioned over 

greater numbers of waves with increases in δ and initial width (only the first four waves 

are shown in Figure 31, more do exist in some cases). 

As the solitary wave train is extended, the volume and shape of the leading solitary 

waves become increasingly similar. This convergence is demonstrated in its final state 

by Spiegelman (1993b) who produces a train of solitary waves from an initial melt 

fraction distribution in the form of a sigmoid function:

ϕ(z )=ϕ0+
A

1+eσ z−d z
(3.49)

where σ is the width of the sigmoid step, A+φ0 is maximum value of the function and φ0 

is the minimum value, dz is the location of the transition from high to low melt fraction. 

With this initial distribution, a series of solitary waves form each of the same volume 

and shape at regular intervals as the melt region is depleted by the series of waves.

To further examine the formation of secondary solitary waves I investigate how varying 

the permeability as well as the width of the initial perturbation impacts the number and 

size of the waves in the wave train. These calculations examined the width range of λI = 

376.8 to 11300m for permeabilities in the range of k0=9.9x10-7 to 3.3x10-9m2 for the first 

four waves in each wave train. The small scale melt fraction disturbance show in Figure 

20, whose amplitude is proportional to the permeability constant, is ignored here. Figure

33 shows the variation of primary solitary wave width arising from perturbations of 

variable width for different background permeability. The width of the stable wave 

decreases systematically as the permeability decreases.
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Figure 33: Solitary wave volumes for wave trains developed from initial Gaussian 
perturbations (defined by equation 3.10). The width parameter of the initial 
perturbation (λI) was varied between 376.8 to 11300m each experiment. The 
permeability constant (k0) was changed between each of experiments where k0=9.9x10-7 
for (a), 6.6x10-7 for (b), 3.3x10-7 for (c), 9.9x10-8 for (d), 6.6x10-8 for (e), 3.3x10-8 for (f), 
9.9x10-9 for (g), 6.6x10-9 for (h) and 3.3x10-9 for (I). All other parameters are as defined 
in Table 1. Red represents the primary solitary wave, orange the second, blue the third 
and green the fourth. Fifth and greater solitary waves are not shown.
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3.5 Solitary waves in the context of Earth processes

The existence of solitary wave trains (Figure 22) implies a possible deep control on the 

periodicity of surface volcanism. Formation of a solitary wave train from a zone of 

active partial melt generation has been demonstrated by Scott and Stevenson (1984).  

The trains of solitary waves I have studied consist of a series of waves at intervals 

governed by the relative phase velocity of each solitary wave, expressed as:

Δ t= b
ωn+1

−
b
ωn

(3.50)

where Δt is the time between arrivals of wave n and n+1, b is the depth of solitary wave 

formation and ω is the solitary wave phase velocity of pulse n in the train.

In this mechanism the majority of melt would arrive at the base of a volcanic system in 

pulses rather than by percolation of melt at a constant rate. 

Based on my calculations of solitary wave velocities, amplitudes and widths (Figures 23 

and 24) and equation 3.50 I can calculate the range of time periods between episodes of 

increased volcanic activity. The width of the initial perturbation has already been 

demonstrated to be one of two controlling factors on the generation of solitary wave 

trains. In the Earth this width is analogous to the width of the melting zone, which for n-

type MORB (Mid-ocean ridge basalt depleted in light rare earth elements) is 

geochemically estimated by McKenzie and O'Nions (1991) to be ~9km at a depth of 

~80km. Using b=80km and λI=9km with the parameters from Table 1, a train of solitary 

waves is created (Figure 32). Applying equation 3.50 gives the interval of 3160 years 

between the 1st and 2nd, and 3200 years between the 2nd and 3rd arrivals. The 

difference between sequential arrivals remains small compared to the value of Δt for 

both larger and smaller λI, as shown in Table 4. Solitary wave velocity however is 

sensitive to the parameters governing the region, as Figure 29 demonstrates, such that 

increasing the matrix viscosity from 1.2x1016Pas to 1.2x1017Pas for example changes the 

arrival time for the above example to 24600 years between the 1st and 2nd pulse, and 

9450 years between the 2nd and 3rd pulse. For the ranges of matrix viscosity, fluid 

viscosity and permeability I have studied in section 3.3.2, Δt is on the order 103 to 105 

years.
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Initial width Δt between wave 1 and 2 Δt between wave 2 and 3

7km 4130 yr 4030 yr

8km 3560 yr 3680 yr

9km 3160 yr 3200 yr

10km 2670 yr 2780 yr

11km 2470 yr 2440 yr

Table 4 Time between surface arrival of successive waves (Δt) for the first three waves 

in a wave train. Arrival times were calculated from the phase velocity using equation 

3.50 and b=80km for solitary waves that developed from an initial perturbation with 

the stated initial width (column 1) and all other constants as listed in table 1. 

To investigate the application of these time scales to the Earth I consulted the 

Smithsonian Volcanic Catalogue which provides historical eruption dates for many 

volcanoes from many different sources. I concentrated my investigation on Icelandic 

volcanoes instead of those of Afar, as Iceland has far more data on eruptive history from 

written records, geochronology and ice-cores. I produced plots of volcanic eruptions 

going back ~10000 years for the more well documented volcanoes in Iceland (Siebert 

and Simkin, 2002), but the number of eruptions show no discernible periodicity on the 

time-scales in question (~3000 years). The absence of a clear signal however may 

depend to some extent on the patchy nature of eruptive history data; recorded history, is 

far too short to accurately document the relevant proposed time scales of volcanic 

activity mediated by solitary wave arrivals. 

The eruptive volume of an active volcanic complex provides another constraint. The 

volcano Krafla in Iceland alone produced 4.9x108m3 of erupted material during 

historical time (Siebert and Simkin, 2002). In three-dimensions solitary waves are likely 

to be spherical as demonstrated by Wiggins and Spiegelman, 1995. To simplify the 

comparison I assume that the one-dimensional volumes in Figure 25 are representative 

of a cross section through a spherical three-dimensional solitary wave in order to 

calculate a three-dimensional volume. Using equation 3.45 and the equation for a 

sphere, the volume of melt contained in a three-dimensional solitary wave can be 

calculated. The largest solitary wave I have studied in Chapter 3 has a melt volume of 
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5.7x107m3 (Figure 23). To investigate larger volume solitary waves I ran five 

calculations with initial perturbation widths of 9km and peak melt fraction (AI) of 7-

11% to investigate the volumes generated. These experiments generated a train of 

solitary waves with primary solitary wave volumes between 3.8x108m3 and 2.1x109m3 

for initial peak amplitudes between 7% and 11% respectively. These volumes fall within 

the bounds required to feed the recorded erupted volume of Krafla, supporting the 

argument that the solitary waves do not correspond to individual eruptions, but to 

periodic increases in volcanic activity on time scales of thousands of years.

3.6 Chapter summary

In this section, I summarise the experiments, solutions and discussion of one-

dimensional numerical investigations into the two-phase fluid problem outlined in 

Chapter 2. To investigate the formation of solitary waves, a numerical program (1D2PF) 

was created to solve the one-dimensional two-phase fluid problem. 1D2PF uses a 

tridiagonal matrix solver along with a wave fitting algorithm to both simulate solitary 

wave evolution and examine the properties of the waves. These solutions were 

generated for a reference case defined by the constants specified in Table 1, then one 

constant at a time was varied across a pre-defined range and the parameters of solitary 

wave width, amplitude and velocity were calculated.

Firstly I varied the initial distribution of melt fraction, specifically the width and 

amplitude of the initial Gaussian perturbation (AI and σI in equation 3.10). I showed that 

the amplitude (AS) and phase velocity (ωS) of the solitary wave is a linear monotonic 

function of AI, which supports the results of Barcilon and Richter (1986) who show that 

solitary wave velocity is a function of AS. Building on this I moved on to examine the 

role of the initial perturbation width (λI, a function of σI, see equation 3.23) in the 

evolution of the solitary waves. The width of the initial perturbation is a controlling 

factor for the number of solitary waves that form from the initial perturbation, with 

larger initial widths producing a longer wave train consisting of more pulses. The initial 

amplitude does not influence the number waves in a train (Figure 31), only their 

amplitudes. Variation of λI also shows a minimum width of stable solitary waves (Figure

23b) that also depends on the permeability (Figure 30). This minimum width soliton is 

produced for the same parameters that mark the transition from a single solitary wave to 
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a wave train.

I next investigated the dependence of the solitary wave width and amplitude on the 

permeability constant (k0), fluid viscosity (ηf) and matrix viscosity (ηm), which together 

define the “melt fraction independent compaction length” of the medium (δ, Equation 

2.54). By varying these three parameters independently I have shown that δ is the 

primary variable that determines the solitary wave width and amplitude according to:

AS≃89/δ (3.47)

for the wave amplitude (using the slope of Figure 29a) and:

λS≃4.6δ  (3.46)

for the wave width (using the slope of Figure 29b). 

The amplitude of the primary solitary wave is approximately inversely proportional to 

δ, which implies an almost inverse relationship between As and λs, when either 

permeability, matrix or fluid viscosity is altered.

The phase velocity however is a more complex property, demonstrating the relation:

ωs≈C1δ
16 /9

(ηm )
−1 (3.48)

which I determined from Figure 29c (Note that δ also depends on ηm). The C1 term is a 

constant that depends on other parameters (including initial amplitude).

Finally I investigated the formation of solitary wave trains. Figure 31 shows clearly that 

the number of solitary waves is directly related to the initial perturbation width as well 

as the melt fraction independent compaction length. I have demonstrated that as δ is 

decreased or λI is increased the number of solitary waves in the resulting wave train 

increases. Further experiments in which the permeability constant, and thus the melt-

independent compaction length, is changed indicates that as the number of solitary 

waves in a train rises, the volumes of the solitary waves become closer to each other. 

This behaviour is consistent with experiments by Spiegelman (1993b) who used a 

sigmoid step function to produce a train of regular solitary waves of identical width and 

amplitude.
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The interval between arrival of each solitary wave train at the surface can be expressed 

as:

Δ t= b
ωn+1

−
b
ωn

(3.50)

where Δt is time lag between successive arrival of wave n and n+1, b is the origin of the 

solitary waves and ω is the solitary wave phase velocity for the respective pulse.

Using computed solitary wave velocities, amplitudes and widths (Figures 23 and 24) 

with equation 3.50 and b=80km and λI=9km, the depth and width of the melting region 

for n-type MORB given by McKenzie and O'Nions (1991), Δt can be calculated for 

Earth like parameters. With the parameters from Table 1, equation 3.50 gives the 

interval of 3160 years between the 1st and 2nd, and 3200 years between the 2nd and 3rd 

arrivals. The difference between sequential arrivals remains small compared to the value 

of Δt for both larger and smaller λI, as shown in Table 4.

I consulted the Smithsonian Volcanic Catalogue to investigate if periodic increases in 

volcanic activity on these time scales have been observed. For the more well 

documented Icelandic volcanoes, plots of volcanic eruptions going back ~10000 years 

(Siebert and Simkin, 2002) showed no discernible increase in eruptivity on the time-

scales in question (~3000 years). However the completeness of the record is 

questionable for eruptions that occurred more than ~1000 years ago due to lack of 

historical records.

I finally examined the melt volume contained in solitary waves by assuming that the 

one-dimensional volumes are cross sections of three-dimensional spherical waves like 

those shown by Wiggins and Spiegelman (1995). Experiments with initial perturbation 

widths of 9km and peak melt fraction (AI) of 7-11% produced wave trains with a three-

dimensional melt volumes between 3.8x108 m3 and 2.1x109m3 for the primary solitary 

waves. The volcano Krafla in Iceland alone produced 4.9x108m3 of erupted material 

during historical time (Siebert and Simkin 2002), demonstrating that solitary waves can 

provide the volume of melt needed for an extended volcanic history.
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4 Three-dimensional Numerical Model

4.1 TDCON and TD2PF

4.1.1 Introduction

TDCON is a thermal convection program written by Greg Houseman in 1984 for 

specific application to the problem of thermal convection in the Earth's mantle. The 

program was initially written for a vector processor but was later modified to run as a 

parallel program on a multi-processor cluster. It has been subsequently used on many 

different systems. The code depends on a three-dimensional Poisson solver called 

TDPOIS (Houseman, 1987), which is described in detail in section 4.3.

From a defined initial distribution of temperature TDCON calculates the velocity field 

using the vector potential formulation, and advances the temperature field with discrete 

time steps. Numerical solutions obtained using TDCON have been used to study the 

topography of a dense layer at the base of the mantle (Youngs and Houseman, 2009; 

Youngs, 2007), mixing of the Earth's mantle (Schmalzl et al., 1996) and the thermal 

structure of mantle plumes (Houseman, 1990). Converting TDCON to model two-phase 

flows, representing the compaction of viscous permeable matrix, however, represents a 

major development of the program, and as such has presented unique challenges.

The adapted version of TDCON (three-dimensional convection) is designated TD2PF 

(three-dimensional two-phase flow) in order to facilitate comparison of the methods 

used in the two programs. Two major differences arise between TDCON (mantle 

convection) and TD2PF (movement of melt within a deformable permeable matrix).

Firstly, the velocity field that describes the deformable matrix in TD2PF is 

compressible. Therefore, TD2PF requires that the scalar potential field B (equation 2.1) 

is computed at every time-step, whereas B=0 everywhere for TDCON, and need not be 

computed. 
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Secondly, in TD2PF a time-stepping algorithm is used to study the evolution of the melt 

fraction φ in time and space; in TDCON the time-stepping algorithm is used to study the 

evolution of the temperature field T. A fundamental difference between the two 

problems is that diffusion of the temperature field is caused by thermal conduction 

(TDCON), but no corresponding process acts on the melt fraction field φ in TD2PF. In 

principle, φ evolves purely in response to advection by the flow field represented using 

Helmholtz potentials, V = ∇×A + ∇B.

As TD2PF is derived by modification of the structures and processes used in TDCON it 

is worthwhile to briefly summarize the TDCON algorithm.

4.1.2 The of TDCON algorithm

TDCON (Houseman, 1990) uses a set of mathematical equations analogous to, but 

simpler than, those required for the melt migration problem (sections 2.5.1 to 2.5.3). 

Conservation of mass for a single-phase incompressible flow (part of equation 2.2), is:

∇⋅V=0  (4.1)

The zero divergence condition requires that B=0 and V=∇×A (equation 2.1).

The single-phase conservation of momentum for a constant viscosity fluid (the 

Boussinesq approximation) is: 

η∇2V−∇ P+ρ(1−αT ) g k=0  (4.2)

where T is the temperature, α is the thermal expansivity of the fluid, and ρ is its density. 

Equation 4.2 is comparable to equation 2.4, with the first term representing viscous 

stress, the second term internal pressure gradients, and the last term the buoyancy forces 

arising from thermal expansion. The driving forces in equation 4.2 contrast with those 

of equation 2.4 in which the difference in density between fluid and matrix phases, 

combined with the spatial variability of the melt fraction, drives the flow.

Finally, TDCON uses the principle of conservation of energy, to determine the evolution 

of the temperature field:

DT
Dt

=κ∇
2T +

H v

ρ c p
 (4.3)

where Hv is rate per unit volume of internal heating, cp is specific heat capacity and κ is 

the thermal diffusivity.
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Taking the curl of equation 4.2 and using an appropriate non-dimensionalisation (d, the 

layer thickness for the length scale, and d2/κ for the time scale), obtaining:

∇
4 A=Ra∇×[T k̂ ] (4.4)

where:

Ra=
ρ g αΔT d 3

ηκ (4.5)

The pressure field can also be calculated using:

∇
2 P=Ra ∂

∂ z
[T ] (4.6)

and the dimensionless energy equation (equation 4.3) becomes:

∂T
∂ t

=∇
2T−V⋅∇ T +H (4.7)

where:

H=
H v d 2

ρC pκΔT
(4.8)

At a given time level, the velocity field (represented by the components of A) is 

obtained from the temperature field by inverting equation 4.4. The temperature field is 

then updated using the discretised version of equation 4.7.

The structural similarity between the thermal convection problem and the melt 

migration problem thus led to the strategy to adapt the TDCON program in order to 

develop TD2PF.
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4.1.3 Program map

The basic organisation of the TDCON program is summarised in the program map 

shown in Figure 34.

Each operation in Figure 34 depends on multiple subroutines and processes, especially 

in the parallel version of TDCON. In the following sections I will describe the most 

important of these processes in more detail.
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Figure 34: Flow chart of the three-dimensional thermal convection program, 
TDCON. Time and temperature fields are incremented in steps until the solution 
reaches a prescribed end time tmax or number of steps nmax.
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4.1.1 The finite difference mesh and parallelisation

The solution method for the biharmonic equation 4.4 depends on the efficient use of the 

Fast Fourier Transform in the two horizontal directions. To optimise that procedure, the 

mesh dimensions in x, y and z directions are restricted to values:

NX1=2IQX
+ 1 , NY1=2IQY

+ 1 & NZ1=2 IQZ
+ 1  (4.9)

where IQX, IQY and IQZ are integers defined in the program at compilation. The 

dimensionless layer thickness is 1, so the interval between mesh points in the vertical 

direction is:

Δ z=
1

(NZ1−1)
(4.10)

By default, the same mesh interval is used in the horizontal directions unless a separate 

scale factor of DXP, or DYP is defined to differ from 1.

The strategy for parallelising TDCON is to cut the rectangular prism using two sets of 

parallel planes, as shown in Figure 35. Each of the blocks thus produced is operated on 

by an independent processor. The nature of the different operations that are carried out 

in each time-step requires however that this parallelisation must be done in three 

different ways, parallel to the x direction, y direction or z direction. At different times in 

the calculation the data are re-organized across processors to enable parallel operations 

to occur in the x, y or z direction respectively.

This parallelisation, originally implemented by S. Borthwick, is complex but the sharing 

of the workload allows for a much faster solution than would be possible with any serial 

code and allows larger and denser arrays of points to be used.
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4.1.2 Initial temperature fields at time n=0 and n=-1

An initial temperature field must be defined at time zero. The specification of this field 

depends on the physical problem, but in general it is based on a small number of 

parameters read from an input file and has a simple functional dependence on x, y or z if 

necessary perturbed by a signal comprised of multiple harmonics with regular or 

random phase and amplitude, which can be used to initiate convection systems with a 

random flow element.

Because the time-stepping algorithm is centred on the current time level tn, it uses Tn-1 

and Tn to compute the updated temperature field Tn+1. Therefore, the temperature field 

initialisation requires that T-1 and T0 are defined. During the course of the calculation 

temperatures are successively updated at odd and then even time levels.

4.1.3 Calculate the vector potential at time n

For homogeneous boundary conditions, Equation 4.4 reduces to a partial differential 

equation with only x and y components:

∇
4 Ax î+∇

4 Ay ĵ=Ra[ ∂T
∂ y

î−
∂T
∂ x

ĵ]  (4.11)
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Figure 35: How the three-dimensional rectangular array is split up for parallelisation 
in the programs TDCON and TD2PF. The data is split over multiple equivalent blocks, 
each assigned to a separate processor (a), (b) shows the relation between the unit 
computational element (c) of dimensions ∆x×∆y×∆z.
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The discretised (4.4) may be written using the temperature field at time level n:

∇
4 A x=Ra

T i , j+1,k−T i , j−1,k

2Δ y
 (4.12)

∇
4 A y=−Ra

T i+1, j , k−T i−1, j ,k

2Δ x
 (4.13)

Equations 4.12 and 4.13 are successively solved using the boundary conditions for A 

stated in section 4.2.3. The biharmonic operator is inverted using the subroutine 

TDPOIS (Houseman, 1990) to find the values of Ax and Ay. TDPOIS is an integral part 

of TDCON and is discussed in section 4.3.

4.1.4 Stability criteria for time-step size

TDCON uses the maximum value of V (using equation 2.1) to ascertain how quickly the 

system is evolving. It uses this value to determine the time-step size needed to prevent 

discretisation errors from producing numerical instability.

The main constraint on the time-step comes from the velocity field, requiring that the 

time-step is never large enough to advect further than Δx, Δy or Δz in one time-step. 

This produces the following relation as stated by Youngs (2007, p92):

Δ t n
+Δ t n+1

≤
11
4 [max( ∣u∣Δ x

+
∣v∣
Δ y

+
∣w∣
Δ z )]

−1

 (4.14)

where u, v and w are the x, y and z components of the velocity field. Typically equation 

4.14 provides the effective upper limit on the time-step size in TDCON. TDCON uses a 

second condition based on a diffusion stability criteria (from Roache, 1972, p.53), 

however there are no diffusion terms in the TD2PF algorithm so this term is not relevant 

to TD2PF.

There is also need for a time step smoothing operation to prevent oscillation in the size 

of the time-step (Youngs, 2007, p93), simply:

Δ tn+ 1
=
Δ t n

+ Δ t n+ 1

2
if Δ t n+ 1

≥Δ t n  (4.15)
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4.1.5 Time-stepping the temperature field

The temperature field is advanced from time level n to n+1 using the discretised form of 

equation 4.7. For second-order accuracy, TDCON uses the time-centred approximation 

to the time derivative:

∂T
∂ t

=
T i , j , k

n+1
−T i , j , k

n−1

2Δ t
(4.16)

∇2T is represented using the average of centred time and forward time difference 

operators (4.14, 4.15) is as follows:

∇
2T=

1
2
[(∇ 2T )n−1+(∇ 2T )n ]  (4.17)

where n is the current time-step. The spatial operator ∇2T uses the centred finite 

difference approximation at n-1:

(∇
2T )n−1=

T i+ 1
n−1
−2T n−1

+ T i+ 1
n−1

Δ x2
+

T j+ 1
n−1
−2T n−1

+ T j+ 1
n−1

Δ y2
+

T k+ 1
n−1
−2T n−1

+ T k+ 1
n−1

Δ z 2
 (4.18)

The space-centred advection terms of equation 4.7 are evaluated at time level n:

(−V .∇ [T ])n=
(V x T )i+1, j , k

n
−(V x T )i−1, j , k

n

2Δ x
+(V y T )i , j+1, k

n
−(V y T )i , j−1, k

n

2 Δ y
+
(V z T )i , j , k+1

n
−(V z T )i , j , k−1

n

2 Δ z

 (4.19)

The final term in equation 4.7 is simply a constant. Using equations (4.17) and (4.19) 

the temperature at time n+1 can be calculated using:

T n+1=T n−1+(Δ t n+Δ t n+1)[ 12 ((∇2T )n−1+(∇2T )n)−(V⋅∇ [T ])n+H n]  (4.20)

Replacing the stored values of Tn-1 with those of Tn+1. At the next time-step Tn is replaced 

by the T field computed at time level n+2. The method requires temperature fields to be 

stored in the computer's memory for the previous two time steps, and therefore is quite 

memory-intensive.

Spatial boundary conditions are also required for the temperature field. On the side 

boundaries, the normal gradient is generally set to zero, as if the boundary were a 

reflecting surface. On the upper and lower boundaries, either a constant temperature or a 

constant normal gradient of temperature (constant heat flux) is set. For the purpose of 

97



Chapter 4: Three-dimensional Numerical Model    

representing the advection (4.19) and diffusion terms, these conditions provide values 

for the temperature field just outside the bounding surface.

4.2 Three-dimensional numerical models

4.2.1 Introduction

Three-dimensional numerical modelling has become more common in recent years with 

increases in computer power now allowing solution of relatively complex three-

dimensional problems within a reasonable length of computing time.

An important development in recent years which has enabled these computationally 

intensive three-dimensional numerical models to be developed is the expansion of 

cluster computing using parallel processing. In this case, the computational process is 

split across multiple processors, all working simultaneously to solve parts of the same 

problem.

To date, relatively few three-dimensional models of the magma matrix two-phase 

system have been developed. However, Wiggins and Spiegelman (1995) demonstrated 

that a three-dimensional solution is possible and that solitary waves exist in such a 

numerical solution. The same authors also demonstrated that the solitary waves 

discussed in chapter 3 are unstable in a three-dimensional model, destabilising and 

forming into spherical solitary waves. However, the system of equations they used in 

that paper are heavily simplified and they provide little detail on their method. There is 

therefore much scope for obtaining new insight into the dynamic process of melt 

extraction by the development of a three-dimensional algorithm for solution of this 

problem.

4.2.2 Mathematics for three-dimensional model

The three-dimensional model involves significantly more complexity than the one-

dimensional model. For a start, I use the potential function formulation 2.1 to represent 

the matrix velocity field V. One advantage of the potential function formulation is that it 

provides a natural separation of the velocity field into compressible (∇B) and 

incompressible ( x∇ A) components. The divergence D = ∇2B (equation 2.9) is obtained 
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by solution of equation 2.65 and then simply inverted to obtain B. The vector potential 

components A are obtained from the inversion of equation 2.61. The velocity field is 

thus defined at a given time step by equation 2.1, and determined completely by the 

current distribution of melt fraction φ. The whole solution is advanced in time using a 

discretised version of equation 2.66 to construct a time-stepping algorithm which 

updates φ based on the current A and B fields.

4.2.3 Boundary conditions

The construction of boundary conditions to solve the potential function equations (2.65, 

2.9, 2.61) in three dimensions is based on the same principles as those used for the one-

dimensional program in section 3.2.2. Boundary conditions on V however must be 

replaced with equivalent conditions on D, B and A and additional conditions are needed 

in the x and y directions.

Consider first the boundary conditions that apply in the z (vertical) direction as stated in 

section 3.2.2. I assume that the divergence of the matrix is zero at the top of the layer 

(equation 3.9):

Dz=hz
=0  (4.21)

Here z is positive upwards, with z=0 being the base of the modelled region and hz being 

the top (changed from h, as this is now a system of three dimensions). To obtain the 

boundary condition for D on z=0 equation 2.30 can be used, noting that V=u=0 on the 

lower boundary: 

∇2[V ]+∇[( 1
ϕ−

2
3)∇⋅[V ]]+(1−ϕ)Δρ g

ηm
k̂ = 0  (4.22)

Substituting for the potential functions, and using identity 2.12 and the chain rule:

− ∇×[∇×[∇×[A]] ]+D∇ [ 1
ϕ ]+( 1

ϕ+
1
3)∇ D+(1−ϕ)Δρ

g
ηm

k̂ = 0  (4.23)

Thus, in dimensionless units (section 2.5):

∇ D = ( 3ϕ
3+ϕ )(∇×[∇×[∇×[ A⃗]]]−∇ [ϕ−1 ]D−(1−ϕ) k̂ )  (4.24)
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On the z=0 boundary only the z-component of 4.24 is needed:

∂z D=( 3ϕ
3+ ϕ)( ∂

∂ y
[∇

2 Ax]−
∂
∂ x

[∇
2 A y]−D ∂

∂ z
[ϕ

−1
]−(1−ϕ)) (4.25)

This boundary condition is applied iteratively alongside equation 2.65 due to the term 

that includes D on the right hand side of equation 4.25.

The three-dimensional numerical program also requires conditions on both the x and y 

boundaries. I assume here that each of the side boundaries: x=0,hx, y=0,hy use a 

reflecting boundary: there is no flow normal to the boundary and no gradient of the flow 

parallel to the boundary. Thus:

∂D
∂ x

=0 on x=0, hx
 (4.26)

∂D
∂ y

=0 on y=0,h y
 (4.27)

Similarly:

∂B
∂ x

=0 on x=0, hx
 (4.28)

∂B
∂ y

=0 on y=0,hy
 (4.29)

And for A (Houseman, 1990):

∂A x

∂ x
=0 on x=0,hx

 (4.30)

A x=0 on y=0,hy
 (4.31)

A x=0 on z=0,hz
 (4.32)

A y=0 on x=0,hx
 (4.33)

∂A y

∂ y
=0 on y=0,h y (4.34)

A y=0 on z=0,hz (4.35)

To solve equation 2.9, upper and lower boundary conditions for B are needed. 
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The condition of zero vertical velocity on the lower boundary gives:

∂B
∂ z

=0 on z=0  (4.36)

On the upper boundary zero horizontal velocity is assumed, and thus B = constant on 

z=hz. The value of the constant is arbitrary and without loss of generality, it can be set 

as:

B=0 on z=hz  (4.37)

completing the set of boundary conditions on all six boundaries for D, B and A.

4.3 TDPOIS and TDPOTS

4.3.1 Introduction

TDPOIS (Three-Dimensional POIsson Solver) is an optimised subroutine used to solve 

the three-dimensional Poisson or biharmonic equations on a rectangular mesh. 

Houseman (1987) described the basic version of the routine; Houseman (1990) 

described a modified version, useful also for rigid boundary conditions. The purpose of 

this subroutine is to solve equations of the form:

∇m[ g ( x , y , z )]= f ( x , y , z )  (4.38)

Where m is either 2 for a Poisson equation or 4 for a biharmonic equation. To solve 

equation 4.38, TDPOIS requires as input the array f of equation 4.38, and a small set of 

integer values that define the boundary conditions to be applied on x and y surfaces. 

The Poisson solver uses Fourier transforms in both x and y directions to convert 

equation 4.38 into a set of one-dimensional ordinary differential equations in the z 

direction. These are solved numerically using a cyclic reduction algorithm. For TD2PF, 

significant extension of TDPOIS is required. For ease of reference and distinction 

between the two, the resulting program has been given a different name: TDPOTS 

(Three-Dimensional POisson and Tridiagonal Solver).

4.3.2 Fourier analysis

The description here applies to the method used to solve the biharmonic equation (m=4) 

but it can be adapted for the Poisson problem with ease. 
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If equation 4.38 is split into two parts, the x component can be examined:

∇
2
ωx=− f x

∇
2 g x=−ωx

(4.39)

Reflection conditions on the side boundaries result in a mixture of Neumann and 

Dirichlet conditions:

∂ g x

∂ x
=
∂ωx

∂ x
=0 on x=hx

ωx=g x=0 on y=0,h y

ωx=g x=0 on z=0,hz

(4.40)

With these boundary conditions, the discretised two-dimensional Fourier representations 

of ω and f are:

ω( x , y , z )=∑
i=0

NX

∑
j=1

NY

Ωij( z)cos( i π x
h x
)sin( j π y

h y
)  (4.41)

f (x , y , z )=∑
i=0

NX

∑
j=1

NY

F ij ( z)cos( iπ x
hx
)sin( jπ y

h y
)  (4.42)

where:

Δ x=
hx

NX
Δ y=

h y

NY
Δ z=

hz

NZ
(4.43)

The boundary conditions determine the use of cosine or sine in each direction; sine 

relates to a Dirichlet condition (zero value on the boundary) while cosine is for a 

Neumann condition (zero gradient on the boundary). If equation 4.41 and 4.42 are 

substituted into 4.39, each harmonic can be considered separately:

d 2Ωij (z )

d z2
−k 2Ωij( z)=−F ij (z )  (4.44)

where k 2=( iπ
hx
)
2

+( jπ
h y
)
2

Equation 4.44 can now be converted into finite difference form using the centred 

difference method for a second-order accurate approximation:

Ωi , j ,k−1−[2+k 2Δ z 2 ]Ωi , j ,k+Ωi , j , k+1=−Δ z2 F i , j , k  (4.45)
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The resulting NX×NY one-dimensional equations can now be solved using a cyclic 

reduction algorithm, an alternative method to the tridiagonal algorithm discussed in 

section 3.2.4, and is more efficient and stable than the matrix equation defined by 

equation 4.45.

4.3.3 Cyclic reduction (Dirichlet)

Cyclic reduction applies to a tridiagonal matrix in which the values on the diagonals are 

constant along each diagonal (allowing for exceptions at top and bottom). The matrix 

for equation 4.45 is:

[
1 0 0 0 ⋯ 0
1 −α 1 0 ⋯ 0
0 1 −α 1 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 1 −α 1 0
0 ⋯ 0 1 −α 1
0 ⋯ 0 0 0 1

][
Ω0

Ω1

Ω2

⋮
ΩNZ−2

ΩNZ−1

ΩNZ

]=[
0
F 1

F 2

⋮
F NZ−2

F NZ−1

0
]  (4.46)

where α=2k 2Δ z 2 , and dropping the subscripts (i,j) used in the previous section for 

brevity. In this example, Dirichlet conditions have been applied to replace the first and 

last equations.

The cyclic reduction technique (Christiansen and Hockney, 1971) is a three-step 

process: reduction, three point solution and back-substitute. The reduction phase seeks 

to condense the NZ+1 equations in (4.46) down to three equations. At each step in the 

reduction every second equation is eliminated as follows; for example: 

Ωk−2−αΩk−1+Ωk=−Δ z2 F k−1

Ωk−1−αΩk+Ωk +1=−Δ z 2F k

Ωk−αΩk +1+Ωk+2=−Δ z2 F k +1

 

(4.47a)

(4.47b)

(4.47c)

Multiplying 4.47b by α and adding equations 4.47a and 4.47c produces:

Ωk−2−(α
2
−2)Ωk+Ωk+2=

−Δ z2[F k−1+αF k+F k+1 ]
 (4.48)

Applying the reduction procedure to every second line of (4.46) reduces the set of 

equations in number to NZ/2+1. 
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The procedure is repeated at each of rn reduction cycles, re-evaluating α (equation 4.62) 

until only three equations remain:

[
1 0 0
1 −α

r=rn 1
0 0 1][

Ω0

ΩNZ /2

ΩNZ
]=[

0
F NZ /2

r=rn

0 ]  (4.49)

The solution of (4.49) is trivial:

Ω0=0

ΩNZ /2=−
F NZ /2

r=rn

α
r=r n

ΩNZ=0

(4.50)

Back-substituting the (now known) value of ΩNZ/2 into the previous reduction cycles 

obtains the unknowns on the intermediate points k=NZ/4 and 3NZ/4. Working back up 

the chain of reduction cycles, all other values of Ωm are progressively found for this 

particular i,j coordinate in the wavenumber domain. This algorithm is applied to all 

values of i and j before the inverse Fourier transform is applied to return the solved 

value for ω(x,y,z). To find g(x,y,z) the cyclic reduction is simply applied a second time 

before the inverse Fourier transform is used.

4.3.4 Modifications to TDPOIS algorithm

As mentioned earlier, the capabilities of TDPOIS do not match the requirements for 

solution of equation 2.65, needed to obtain D, the divergence of the flow field. The 

simplest way to solve equation 2.65 for D would be to arrange it in the manner:

∇
2 D=p−r⋅∇ D+q2 D (4.51)

where primes have now been dropped for clarity. The boundary conditions for D (4.21, 

4.25, 4.26 and 4.27) call for the z=0 boundary to be a non-zero Neumann condition and 

z=1 a zero value Dirichlet condition. This set of boundary conditions is not compatible 

with the TDPOIS algorithm as written by (Houseman, 1987), since the subroutine that 

handles cyclic reduction in TDPOIS (named VCRED) can only use zero Dirichlet 

conditions on z=0,1. 
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VCRED is a vectorised and modified version of a subroutine named CRED originally 

written by Christiansen and Hockney (1971). They explained what adaptations of the 

methods described in section 4.3.3 are needed to implement a Neumann boundary 

condition on z=0,1, and I implemented a version of their algorithm in VCRED.

However, as discussed in section 4.4.3, this arrangement of equation 2.65 is unstable in 

the range of q2 values I require when solved with TDPOIS using VCRED. To solve this 

issue, a second arrangement of equation 2.65 was proposed:

∇
2 D−q2 D=p−r⋅∇ D (4.52)

Solution to an equation of this form is not possible with VCRED therefore such a new 

subroutine named VCTRI and new input structures were introduced into TDPOIS to 

allow it to solve using a tridiagonal matrix solver algorithm much like 1D2PF. 

With these adaptations, TDPOIS was renamed to TDPOTS. In the next few sections I 

discuss in detail the implementation of these new algorithms and changes that 

reconfigured TDPOIS into TDPOTS in order to solve equations 4.51 and 4.52 with the 

necessary boundary conditions.

4.3.5 Cyclic reduction (Neumann)

The matrix equation 4.46 is modified by changing the first and last equations only, 

assuming (for zero gradient on the boundary) that the point just outside the boundary 

takes the same value as the point just inside the boundary:

[
−α

r=0 2 0 0 ⋯ 0
1 −α

r=0 1 0 ⋯ 0
0 1 −αr=0 1 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ 1 −α
r=0 1 0

0 ⋯ 0 1 −α
r=0 1

0 ⋯ 0 0 2 −α
r=0
][

Ω0
 

Ω1
 

Ω2
 

⋮

ΩNZ−2
 

ΩNZ−1
 

ΩNZ
 
]=[

F 0
r=0

F r=0

F r=0

⋮

F NZ−2
r=0

F NZ−1
r=0

F NZ
r=0
]  (4.53)

The algorithm is similar to that used for the Dirichlet condition, except that the 

reduction also involves the equations for k=0 and NZ. 
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The boundary equations are reduced using the adjacent equation as follows:

−αΩ0+2Ω1=Δ z 2F 0

Ω0−αΩ1+Ω2=Δ z2 F1

 
(4.54a)

(4.54b)

Equation 4.54a is multiplied by α and 4.54b by 2 then adding together to produce the 

reduced form:

 −(α
2
−2)Ω0+2Ω2=2Δ z 2F 1+αΔ z 2F 0 (4.55)

which can be refined into:

 −α
r=1

Ω0+2Ω2=F 0
r=1 (4.56)

After rn reduction cycles equation 4.53 results in three equations analogous to equation 

4.49:

[−α
r=r n 2 0
1 −α

r=rn 1
0 2 −α

r=rn][
Ω0

 

ΩNZ /2
 

ΩNZ
 ]=[

F0
r=r n

F NZ /2
r=rn

F NZ
r=r n]  (4.57)

If middle of equation (4.57) is multiplied by αr=rn and added to the other two equations, 

the central term is found:

ΩNZ /2=
F NZ /2

r=r n +(F NZ
r=r n+F0

r=rn)/α
r=r n

4/α
r=r n−α

r=rn
 (4.58)

and then by substituting (4.58) back into the boundary equations from (4.57) the values 

for boundaries are:

Ω0=
2ΩNZ /2−F0

r=rn

α
r=rn

 (4.59)

and:

ΩNZ=
2ΩNZ /2−F NZ

r=r n

α
r=r n

 (4.60)

The back-substitution required to recursively obtain the rest of the unknown values 

follows the same method as described in section 4.3.3.

If both boundary conditions are of Neumann type one integration constant remains 

undetermined. For wavenumber zero (i=j=0) equation 4.45 becomes:

Ωk−1−2Ωk+Ωk +1=−Δ z2 F k−1  (4.61)
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At each step in the cyclic reduction, the coefficient of every diagonal term is just:

α
r=n
=α

r=n−1
α

r=n−1
−2=2  (4.62)

For all r. The denominator of 4.58 is therefore zero and the value of ΩNZ/2 is undefined. 

To rectify this, the Dirichlet condition is used on k=0 and a Neumann condition on 

k=NZ for this wavenumber only (equivalent to setting the average value of the function 

on the boundary to zero) so that equation 4.58 becomes:

ΩNZ /2=
F NZ

r=r n/α
r=rn+F NZ /2

r=rn

2 /α
r=rn−α

r=r n
=−F NZ /2

r=rn −0.5 F NZ
r=r n  (4.63)

With the Neumann condition implemented in VCRED, further modifications to handle a 

combination of both Dirichlet and Neumann conditions over all wavenumbers is a 

trivial matter.

4.3.6 Non-zero boundary conditions

As previously discussed, the equation for D requires a non-zero boundary condition 

which depends on the solution and must be determined iteratively. For the Dirichlet 

condition with a non-zero boundary value, equation 4.46 is modified so that f(x,y,z) at 

z=0 or NZ contains the required boundary values in the first and last elements of the 

right hand side. This has to be done in such a manner as to provide the boundary values 

in the Fourier domain as F(i,j,k) at k=0 or NZ.

Equation 4.50 is then amended:

Ω0=F 0
r=r n

ΩNZ /2=
F0

r=r n− F NZ /2
r=rn +F NZ

r=r n

α
r=r n

ΩNZ=F NZ
r=r n

 (4.64)

Although the non-zero Dirichlet condition is not required in this formulation, the 

inclusion of this boundary condition is simple and may be useful for others at a later 

date.
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For non-zero Neumann condition, the central difference form in the spatial domain is:

f x , y ,1− f x , y ,−1

2Δ z
=C0 : x , y for z=0 boundary

f x , y , NZ+ 1− f x , y , NZ−1

2Δ z
=C NZ : x , y for z=1 boundary

(4.65a)

(4.65b)

Using equations (4.65a-b) to replace the references to external points in the first and last 

equations (z=0,NZ), which become in the centred difference form:

2 f x , y ,1−2 f x , y ,0=Δ z 2ωx , y , NZ+2Δ zC 0 : x , y for z=0 boundary

2 f x , y , NZ−1−2 f x , y , NZ=Δ z2ωx , y , NZ−2Δ z CNZ : x , y for z=1 boundary

(4.66a)

(4.66b)

The boundary condition is simply implemented by addition of the terms containing 

C(x,y,0) or C(x,y,NZ) to the first or last entries in the f(x,y,z) vector before performing 

the Fourier transform. Because the right hand side of the input vector F is pre-

multiplied by Δz2 after the Fourier transform, the right hand side of equation 4.66 needs 

to be divided by Δz2:

2Δ zC0 : x , y→
2C0 :x , y

Δ z
for z=0 boundary

2Δ zC NZ : x , y→
2C NZ : x , y

Δ z
for z=1 boundary

(4.67a)

(4.67b)

With this formulation for non-zero boundary conditions, the case of a Dirichlet 

boundary on one surface and a Neumann boundary on the opposite surface can equally 

be dealt with by appropriate combination of the numerical manipulations already 

described in the preceding sections. Thus, (4.46) can be expressed for the z boundary 

conditions on D in 4.80 as:

[
−α 2 0 0 ⋯ 0
1 −α 1 0 ⋯ 0
0 1 −α 1 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 1 −α 1 0
0 ⋯ 0 1 −α 1
0 ⋯ 0 0 0 1

][
Ω0

Ω1

Ω2

⋮
ΩNZ−2

ΩNZ−1

ΩNZ

]=[
F 0+2C0Δ z

F1

F2

⋮
F NZ−2

F NZ−1

0
]  (4.68)

With this new functionality, the modified VCRED and TDPOTS can be used to solve all 

combinations of the boundary conditions expressed in section 4.2.3.
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4.3.7 Implementation of a tridiagonal algorithm in TDPOTS

I also introduced a new subroutine designated VCTRI to TDPOTS that applies the 

tridiagonal matrix solving algorithm (section 3.2.4) in such a way that the boundary 

conditions in section 4.2.3 can be handled. This provides an alternate algorithm that 

allows TDPOTS to solve equations of the form:

∇
2
ω−q2ω=− f (4.69)

given that q2 is a function of z only. 

Cyclic reduction can not solve (4.69) for ω so the tridiagonal matrix solver written by 

Press et al., (1986, p43) was included into TDPOTS to fill this role. The modifications 

required in TDPOTS for this additional subroutine and allowing it to handle non-zero 

boundary conditions were trivial.

4.3.8 Testing of TDPOTS (VCRED)

To test the validity of TDPOTS, I use a program called TESTDP that starts with an ad 

hoc harmonic function consistent with the boundary condition, applies the Poisson or 

biharmonic operators analytically, and uses the function thus obtained as input to 

TDPOTS. The original function then can be compared to the numerical solution 

obtained from TDPOTS in order to determine its accuracy. I modified TESTDP so as to 

allow testing of the new boundary conditions implemented in TDPOTS. 

To test the inversion of the Poisson operator, TESTDP uses a function of the form:

∇2 f (x , y , z )=∑
k=1

m

sin(k π x+ψx π)sin (k π y+ψy π)sin(k π z+ψzπ)  (4.70)

For 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and harmonics k such that 0 ≤ k ≤ m. For Dirichlet 

conditions ψn=0 as to make f=0 on the n boundaries while for Neumann conditions the 

value ψn=0.5 is used to set ∂n f=0 on the n boundaries. 

109



Chapter 4: Three-dimensional Numerical Model    

The analytical solution to equation 4.70 is:

f (x , y , z )=−∑
k=1

m sin (k π x+ψx π)sin (k π y+ψy π)sin(k π z+ψz π)

3(k π)2
 (4.71)

A simple zero boundary value is obtained if ψ=0 and a zero normal gradient is obtained 

if ψ=0.5, satisfying the boundary conditions required.

Swapping cosine for sine changes the boundary value from a non-zero value to a zero 

value (or vice versa). For example, the single harmonic sine wave in Figure 36 can be 

considered a zero Dirichlet condition as fa(x)=sin(πx)=0 at x=0,1 or a non-zero 

Neumann condition as ∂x fa(x)=∂x sin(πx)=πcos(πx)=π,-π at x=0,1. To test a non-zero 

boundary condition, values must be provided from the analytic solution (4.71).
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Figure 36: Plot of four harmonics and their boundary conditions. The functions are a 
single harmonic sine (red) and cosine (blue) as well as a three harmonic sine (pink) and  
cosine (light blue). To the right the tangents at z=1 are projected from the graph and 
given analytically derived values, showing that a sum of sine waves has both zero 
Dirichlet and non-zero Neumann boundary conditions while a sum of cosine waves has 
both non-zero Dirichlet and zero Neumann boundary conditions.
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Figure 37: One-dimensional sections of three-dimensional analytical and numerical 
tests of the cyclic reduction algorithm in TDPOTS. Numerical solutions to a defined 
problem, equation 4.70 (dots) and the corresponding analytical solutions (line, 
equation 4.71) are overlaid in 37a-l. 37a-f are single harmonic tests (m=1) and 37g-l 
use multiple harmonics (m=10). Boundary conditions for 37a and 37g are 0 Dirichlet; 
37b and 37h are 0 Neumann; 37c and 37i are non-zero Neumann; 37d and 37j are non-
zero Dirichlet; 37e and 37k are 0 Dirichlet at z=1 and non-zero Neumann at z=0 while 
37f and 37l are non-zero Neumann at z=1 and 0 Dirichlet at z=0.  For all tests ψx = ψy 
= 0 and the section is taken at x = y = 0.5.
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The following resulting tests of TDPOTS produce the data in Table 5:

Boundary condition mdiff (m=1) mdiff (m=10) IQ=5 mdiff (m=10) IQ=6 ψz

f(x,y,z)=0, z=0,1 0.0267% 0.2412% 0.0605% 0

f(x,y,z)=0, z=0,1 0.0267% 0.2183% 0.0559% 0.5

f(x,y,z)=C(x,y), z=0,1 0.0967% 0.9477% 0.2589% 0.5

∂z f(x,y,z)=C(x,y), z=0,1 0.0250% 0.1928% 0.0514% 0

∂z f(x,y,z)=C(x,y), z=0 

f(x,y,z)=0, z=1
0.0944% 0.9468% 0.2587% 0

f(x,y,z)=0, z=0 

∂z f(x,y,z)=C(x,y), z=1
0.0190% 0.2412% 0.0605% 0

Table 5: Values of maximum absolute difference between analytical and numerical 

solution as a percentage of the largest absolute value of the analytical solution (Figure 

37). The first column is for tests with a single harmonic (m=1) and a three-dimensional 

mesh of (25+1)3 points (IQ=IQX=IQY=IQZ=5). In the second column the harmonic 

content is increased to (m=10). In the third column IQ is increased to 6 so that the 

numerical grid is spanned by 65 points in each direction. For all tests ψx = ψy = 0 and 

the section is taken at x = y = 0.5.

For each test, I use the function described by equation 4.70 with the value of ψz shown 

in Table 5 and ψx = ψy = 0 with the one-dimensional section taken at x = y = 0.5. For the 

first series of tests, Table 5, column 2 shows mdiff, the maximum absolute difference 

between analytical and numerical solution as a percentage of the maximum absolute 

value of the analytical solution. For a single harmonic (a single sine or cosine wave of 

wavelength 2), mdiff < 0.1% for all these tests.

In the second experiment, I increase the complexity of the problem by including more 

harmonics (specifically m=10, includes superposed sine or cosine waves of wavelength 

2 to 0.2 in each direction). The shorter wavelength components contribute relatively 

larger error, so the accuracy of the solution is significantly reduced (column 3 of Table 

5). In effect, the short wavelength components of the test function are represented using 

a coarser discretisation.
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The solution to this resolution problem is to increase the number of mesh points used in 

numerical solution. When the numerical mesh is based on 653 (274,625) points (column 

4, Table 5) instead of 333 (35,937) as used in the previous tests, there is an approximate 

4-fold decrease in the value of mdiff (compare columns 4 and 3 of Table 5). This decrease 

is fully consistent with the second-order accuracy of the discretisation used in the 

numerical solution, and confirms the relative accuracy of the method.

4.3.9 Testing of TDPOTS (VCTRI)

To check the validity and accuracy of the solutions produced by the VCTRI subroutine 

for equation (4.69), TESTDP is modified to include the q2ω term:

q2(z )=
Am

m
∑
k=1

m

[cos2(k π z+ψzπ)]  (4.72)

where Am is an arbitrary constant used to ensure q2ω is comparable in magnitude to ∇2ω. 

Using (4.72), equation (4.70) can be modified to define a test problem that is similar in 

form to equation (4.70):

∇
2 f (x , y , z )−q2( z) f (x , y , z )=

∑
k=1

m

[(1− q2(z )

3(k π)2)sin(k π x+ψx π)sin (k π y+ψ yπ)sin(k π z+ψzπ)]  (4.73)

where f(x,y,z) is the same as that described by (4.71) as the equations describing the 

analytical solution and boundary conditions (4.72) do not need alteration.

The tridiagonal matrix solver algorithm was tested for several types of boundary 

condition: Dirichlet problem on z=0 and z=1, Dirichlet on z=0 and non-zero Neumann 

on z=1, and non-zero Neumann on z=0 and Dirichlet on z=1. In fact, only the latter 

conditions are needed in TD2PF, as stated in section 4.2.3.
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Boundary condition mdiff (m=1) mdiff (m=10) ψ

f(x,y,z)=0, z=0,1 0.0079% 0.0551% 0

f'(x,y,z)=C(x,y), z=0 

f(x,y,z)=0, z=1
0.0124% 0.2143% 0

f(x,y,z)=0, z=0 

f'(x,y,z)=C(x,y), z=1
0.0074% 0.0551% 0

Table 6: The values of maximum absolute difference between analytical and numerical 

solution as a percentage of the largest absolute value of the analytical solution. For the 

first column of values in this test, a single harmonic (m=1) is used for a cube of (26+1)3 

data points, as IQ=IQX=IQY=IQZ=6 in these tests. In the second column, the 

harmonic count is increased to (m=10) to explore a more complex problem.

The main test of note in Table 6 is the second one for Neumann at z=0 and Dirichlet at 

z=1. The value for the maximal error between numerical and analytical solution about 

four times greater than that of the other boundary condition solutions. However, this 

error is significantly affected by the number of points, decreasing to 0.005% for m=10 

when IQ is increased from IQ=6 to IQ=7. This decrease in accuracy is consistent with 

discretisation errors.
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Figure 38:  One-dimensional sections of three-dimensional analytical and numerical 
tests of the tridiagonal algorithm in TDPOTS. 38a-f show overlain numerical solutions 
to a defined problem, equation 4.73 (dots) and the corresponding analytical solutions 
(line, equation 4.71). 38a-c are single harmonic tests (m=1), 38d-f multiple harmonics 
(m=10). Boundary conditions for 38a and 38d are 0 Dirichlet; 38b and 38e are 0 
Dirichlet at z=1 and non-zero Neumann at z=0 while 38c and 38f are non-zero 
Neumann at z=1 and 0 Dirichlet at z=0.
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4.4 TD2PF

4.4.1 Outline of modifications needed for TD2PF algorithm

I now summarise how the thermal convection program TDCON is adapted to become 

the melt migration program TD2PF.

Analogous to TDCON, the divergence-free part of the flow field is computed by solving 

the discretised form of equation (2.61):

∇
4 A x=−

∂ϕ

∂ y
and ∇

4 Ay=
∂ϕ

∂ x
 (4.74)

with the boundary conditions stated in section 4.2.3 which are identical to those used in 

TDCON and the non-dimensionalisation described in section 2.5.1. The buoyancy 

source terms for computation of the vector potential A in TD2PF require a simple 

change to 4.12 and 4.13:

∇
4 A x=−

ϕi , j+1, k−ϕi , j−1,k

2Δ y  (4.75)

∇
4 A y=

ϕi+1, j ,k−ϕi−1, j , k

2Δ x  (4.76)

The boundary conditions on Ax and Ay are as stated in section 4.2.3. Compared to (4.12 

and 4.13) does not appear in (4.75) and (4.76) because of the non-dimensionalisation 

described in section 2.5.1 and the temperature (T) has been replaced with melt fraction 

(φ).

The major new development in TD2PF is the addition of the solution procedure for the 

curl-free part of the flow field:

∇
2 D−q2 D=p−r⋅∇ D (4.77)

where:

∇
2 B=D (4.78)
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and with the boundary conditions as discussed in section 4.2.3:

∂D
∂ x

=
∂B
∂ x

=0 on x=0,hx

∂D
∂ y

=
∂B
∂ y

=0 on y=0,hy

D=B=0 on z=1

∂z D=( 3 ϕ
3+ϕ )( ∂

∂ y
[∇

2 A x]−
∂
∂ x

[∇
2 A y ]−D ∂

∂ z
[ϕ

−1
]−(1−ϕ)) on z=0

∂B
∂ z

=0 on z=0

(4.79)

The horizontal boundary conditions are readily implemented in TDPOIS by simply 

choosing cosine dependence in both the x and y directions for the Fourier expansion of 

4.41 and 4.42. In the z direction, the upper boundary condition in TDPOIS is Dirichlet 

and readily implemented, while the non-zero Neumann condition on the lower (z=0) 

boundary requires amendment to the algorithm used in TDPOIS. 

4.4.2 Initialisation of TD2PF

The time-stepping algorithms in TD2PF require an initial distribution of the melt 

fraction to be defined. Since I am studying the evolution of a spatially extensive melt 

distribution, the following three-dimensional Gaussian distribution superposed on a 

constant background melt fraction is used to create an initial condition with gradients in 

x, y and z directions:

ϕ( x , y , z )=ϕ0+Aexp[−( x0−x )2

2σ x
2

−
( y0− y)2

2σ y
2

−
( z0−z )2

2σ z
2 ]  (4.80)

with adjustable parameters φ0, A, x0, y0, z0, σx, σy and σz, a broad class of initial 

conditions can be defined, including the one-dimensional model described in Chapter 3 

if σx and σy are set to very large values. The option of adding a small amplitude 

perturbation function with fixed- or randomly-varying phase and amplitude is also 

retained from TDCON for the purpose of investigating unstable modes.
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4.4.3 Solution algorithm for D

The first algorithm considered for the solution of the divergence equation was an 

iterative method which may be expressed as:

∇
2 D I+1

=p−r⋅∇ DI
+q2 D I  (4.81)

where superscript I is an iteration count. In this form the Poisson solver TDPOTS can be 

used in principle to iteratively solve equation (4.81). On each iteration the right hand 

side is re-evaluated using the current estimate for D, then TDPOTS is applied again 

(using a modified version of the algorithm VCRED) to get the improved estimate for the 

next iteration. Iterations are repeated until the solution D converges as assessed by 

evaluating the difference in D between iterations:

max∣DI +1
−D I

∣

max∣DI
∣

< 0.001  (4.82)

This method, though simple in concept, was not successful as an algorithm for D, 

because this method is inherently unstable. Numerical tests of the algorithm for finding 

D confirm this instability, shown in Figure 39.

Initial tests based on the compaction of a uniform layer (φ(x,y,z)=φ0) were used to test 

the above method (the analytical solution for this problem was described in section 
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Figure 39: Convergence of the iterative method of solving equation 4.81 for the 
constant melt fraction case with a variable q2. 39a shows the number of iterations 
needed for the difference between solutions to satisfy equation 4.82 for different values 
of q2. 39b shows the value of the iterative solution to D (equation 4.81) for each 
experiment. The method is only stable and convergent for q2 ≤ 2.5.
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3.2.9). For q2 > 2.5 (Figure 39) the solution for D produced by the iterative algorithm 

oscillated from positive to negative and rapidly increased in magnitude with each 

iteration. This behaviour is indicative of an unstable numerical method, so the algorithm 

was refined to attempt to remove the problem, re-writing equation 4.81 in the form:

(∇
2
−q2

)DI +1
=p−r⋅∇ D I  (4.83)

By moving the q2D term from the right hand side to the left, a large part of the feedback 

loop that causes the numerical instability in the iterative method is stabilised. 

Unfortunately, the revised equation 4.81 is incompatible with the x and y direction 

Fourier transform used in TDPOTS if q2 has a functional dependence on x and y, which 

it may if the melt fraction has gradients in those directions.

To resolve this problem, q2 is separated into a z-dependent component, and an x- and y-

dependent component:

q2(x , y , z )= q̄2(z)+q̂2(x , y )  (4.84)

where:

q̄(z )
2
=

1
ab
∬[q(x , y ,z )

2
] .dxdy≃∑

i=0

NX

∑
j=0

NY

[wi w jq(i , j ,k )
2

]  (4.85)

Here, w is the weight factor for boundary points needed to get an accurate estimate of 

the area integral defined on 0 ≤ x ≤ a, 0 ≤ y ≤ b:

wi = ½ when i=0 or NX

wj = ½ when j=0 or NY

Equation 4.81 can now be written:

(∇
2
− q̄2)D I+1

=p−r⋅∇ D I
+ q̂2 D I (4.86)

and a Fourier-based inversion can still be applied to the operator on the left hand side as 

q2 is independent of x and y.

To facilitate comparison with the method described in section 4.3, consider the 

analogous problem:

(∇
2
− q̄2)ω=− f (4.87)

Applying the horizontal Fourier transform produces:

( ∂
2

∂ z2
−k2)Ω−q̄2Ω=−F (4.88)
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and the discretised approximation is:

Ωi , j ,k−1−(2+(k 2+q̄2)Δ z2)Ωi , j , k+Ωi , j ,k +1=−F i , j , kΔ z 2 (4.89)

The z-dependence of q2  prevents the straightforward use of a cyclic reduction algorithm 

to solve (4.89). Therefore a simple tridiagonal solver by Press et al., (1986, p43) is used 

to solve (4.89) before re-applying the horizontal Fourier transforms. As previously, 

inversion of the operator on the left hand side of (4.86) is repeated iteratively, with the 

right hand side updated at every iteration. 

4.4.4 Validity tests of the iterative solution algorithm for D

I first retested the new algorithm implemented in VCTRI for solution of D with the 

constant melt fraction compaction problem in one dimension using the algorithm based 

on (4.86) to solve:

( ∂
2

∂ z2
−q2)D I +1

=p−r ∂
∂ z

D I
(4.90)

To validate VCTRI, the one-dimensional compaction problem was used, the solution to 

which is defined by equation (3.42):

D=
p
q [
sinh (q(h−z ))
cosh (qh) ] (4.91)

where, from (3.32) non-dimensionalised:

q2=( 3ϕ03+ϕ0)
h0
2

ϕ0
2

p=−( 3ϕ03+ϕ0)(1−ϕ0)
(4.92)
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This analytic solution applies only at time zero to the case of initially constant melt 

fraction (φ=φ0). 

For these tests, the compaction length (δ = h/4) was used with δ defined by (2.54) and 

the melt fraction was in the range of φ0 =0.001 to φ0 =0.101 (Figure 40). The maximum 

absolute difference (mdiff) between (4.91) and the numerical solution to (4.86) using 

VCTRI, expressed as a percentage of maximum value (Dmax), is between 10% and 

0.11% for φ0=0.001 and 0.101 respectively using 129 points. The 10% error for 

φ0=0.001 stems from the fact that the smaller melt fraction initial condition has a 

comparatively smaller compacting region and, as such, is more susceptible to 

discretisation errors. Increasing the discretisation to 257 points reduces mdiff from 10% 

to 2.9% and 0.11% to 0.027% for φ0=0.001 and φ0=0.101 respectively.

I now describe tests which include a more complex z-dependence of melt fraction (still 

independent of x and y) which could be validated against an independent one-

dimensional calculation using the one-dimensional program (1D2PF) discussed in 

chapter 3. 
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Figure 40: Comparison of numerical solutions (crosses) using an algorithm based on 
equation (4.86), VCTRI, to analytical solutions defined by equation (4.91). The dark 
blue line is the solution for φ0 =0.001, the light blue line φ0 =0.101, with φ0 =0.021, 
0.041, 0.061 in progressively lighter shades of blue. All solutions use the length scale δ 
= h/4 as defined by (2.54). 
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To do so the one-dimensional form of (4.80) for the initial melt fraction field was used 

in order to be consistent with initial condition in 1D2PF (3.10):

ϕ(x , y , z )=ϕ0+Aexp[−( z0−z )2

2σ z
2 ]  (4.93)

Iterative solutions of (4.90) were completed when condition (4.82) was reached; 

typically 3 iterations were required for convergence of the examples shown in Figure 

41.

For this test problem (4.93) the localised melt concentration introduces terms that 

depend on the gradient of the melt fraction. Figure 41 shows solutions obtained using 

129 points, δ=h/4, A=0.1, φ0=0.001 with σz values shown in Table 7 producing 

progressively wider Gaussian distributions of melt fraction for both VCTRI and 1D2PF. 
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Figure 41: Comparison of numerical solutions from VCTRI and 1D2PF (chapter 3). 
Left, melt fraction distributions (equation 4.80) used to calculate D for σz=3.125x10-2 to 
1.25x10-1 as listed in Table 7. Right, the corresponding D fields for t=0. The coloured 
lines are data from VCTRI while the black crosses are data from 1D2PF.
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σz (non-dimensional) mdiff for 64 points mdiff for 128 points

3.125x10-2 8.2% 2.3%

6.25x10-2 1.5% 0.39%

9.375x10-2 0.43% 0.10%

1.25x10-1 0.15% 0.043%

Table 7 Maximum absolute difference as a percentage of maximum value (mdiff) between 
VCRED algorithm and 1D2PF (chapter 3) solutions.  Melt distributions were generated 
using the σz values from the first column with equation (4.93).

I also made a further series of tests to investigate the stability of the iterative method 

defined by equation (4.86) when the wavenumbers k>0. In these tests, k follows the 

function:

k=N 2π2 for 0⩽N⩽150 (4.94)

I solved (4.88) iteratively using the same p and r for all values of k for each σz in Table 

7. There is no independent verification of the answer to this problem, but the object of 

the test was to find if the method would converge for all k in a computation that is 

comparable to the full three-dimensional computation required to solve (4.77). To 

examine its effect on stability of the algorithm, k is included in the numerical solution of 

(4.90) while the one-dimensional forms of the source term p and feedback term r are 

retained:

( ∂
2

∂ z2
−(k 2+q2))D I +1= p−r ∂

∂ z
DI

(4.95)

The introduction of the wavenumber parameter k increasingly weights the effect of the 

D operator on the left hand side of equation 4.95 over the ∇2 D with increasing N and, 

as such, constitutes a possible source of instability.
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These tests of k showed that the solutions are typically solved in 4 to 3 iterations for low 

wavenumbers, but larger gradients of melt fraction may require extra iterations to 

converge as shown in Figure 42a.

One further test of algorithm stability was made by introducing a term representing an 

x- and y-dependant function comparable to the last term on the right hand side of 

equation (4.95):

( ∂
2

∂ z2
−(k 2+q2))D I +1= p−r ∂

∂ z
DI +D0 D I

(4.96)

As expected, the number of iterations needed to solve equation (4.96) rises with 

increasing amplitude of the constant factor D0 (Figure 42b), but the compaction is 

stabilised by increasing wavenumber variable N. Figure 42b shows that the algorithm 

converges readily for larger wavenumbers, but failure of convergence can occur at the 
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Figure 42: Number of iterations needed to reach convergence for equation (4.95). a) 
Tests on increasing gradients of melt fraction (42a, right), using wavenumbers defined 
by N in equation (4.94) and melt-zone widths defined by σz values listed in table Table 7 
(column 1), from small σz (dark red) to large σz (light red). b) Numbers of iterations 
needed for convergence of equation (4.96) for D0=10 (dark blue) to D0=500 (light blue)  
and σz=6.25x10-2. The convergence criteria used was (4.82).
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longest wavelengths for large values of D0. With this in mind, I proceeded to implement 

this algorithm in TDPOTS.

4.5 Other modifications required for TD2PF

4.5.1 Algorithm for calculating B

The potential function B is obtained directly from D using TDPOTS to invert:

∇
2 B=D  (4.97)

The required boundary conditions are:

∂B
∂ z

|z=0=0  (4.98)

Based on zero flow across the base of the layer, while the upper boundary condition is:

B=0 on z=hz  (4.37)

This set of differing boundary conditions uses the modifications to VCRED mentioned 

earlier in section 4.3.5.

4.5.2 Modifications to time-step calculation

Although the advection equation (4.86) is similar to the thermal evolution equation 

(4.7), so that the general framework used in TDCON can be reapplied here, significant 

differences arise: Firstly, the terms representing diffusion are simply removed. 

Secondly, the advection terms now include spatial gradients of B in addition to those 

terms which include gradients of A.

The advection term may be written:

V⋅∇ϕ = (∂ B
∂ x

−
∂ A y

∂ z )∂ϕ∂ x
+(∂B

∂ y
+
∂ Ax

∂ z )∂ϕ∂ y
+(∂ B

∂ z
+
∂ A y

∂ x
−
∂Ax

∂ y )∂ϕ∂ z
(4.99)
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which, when approximated using space-centred finite differences, yields the following 

discretised approximation to (4.86):

∂ϕ

∂ t
= (1−ϕ)Di , j , k

+ ( Ay: i , j ,k +1−Ay :i , j , k−1

2Δ z
−

B i+ 1, j ,k−Bi−1, j , k

2Δ x )(ϕi+ 1, j , k−ϕi−1, j ,k

2Δ x )
−( Ax: i , j ,k +1−Ax : i , j ,k−1

2Δ z
+

Bi , j+1, k−B i , j−1,k

2Δ y )(ϕi , j+ 1, k−ϕi , j−1, k

2Δ y )
−( A y : i+ 1, j ,k + 1−Ay :i−1, j , k

2 Δ x
−

Ax : i , j+ 1, k−Ax :i , j−1,k

2Δ y )(ϕi , j , k+ 1−ϕi , j , k−1

2Δ z )
−(B i , j , k+ 1−B i , j , k−1

2Δ z )(ϕi , j , k+ 1−ϕi , j , k−1

2Δ z )

 (4.100)

In the absence of the diffusion term, the simple forward time-step representation of the 

time derivative can be used:

ϕi , j ,k
n+ 1

=ϕi , j , k
n

+( ∂ϕ∂ t )
n

Δ t n
 (4.101)

Where Δtn is a non-dimensional time-step calculated using the current condition as 

implemented in TDCON, basically ensuring a time-step that is small enough that no 

point in the solution domain can be advected further than one mesh interval during that 

time-step. Using equation 4.101 there is no need to store the n-1 melt fraction; the melt 

fraction array can be simply updated in place. 

4.6 Time-stepping tests for TD2PF 

4.6.1 Solving the one-dimensional compaction problem

The first comprehensive test of the three-dimensional program TD2PF was to reproduce 

the solution of the one-dimensional compaction problem from an initially constant melt 

fraction. These solutions were validated by comparison with results from the one-

dimensional program described in section 3.2.9. For my initial tests, I used a melt 

fraction of φ(x,y,z)=φ0=0.01 and δ = h/2 as defined by (2.54).
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For NZ1=65 points, the maximum mdiff is 0.12% which then decreases to mdiff=0.032% 

for NZ1=129. In this test case, the iterative procedure needed to calculate D only comes 

into effect as the melt fraction distribution evolves away from the initial homogeneous 

state for which r=0 and q2=constant in (4.83).

The evolution of the melt fraction φ(z) and the divergence function D(z) for t>0 are shown 

in Figure 44. For this test, I used the same initial melt distribution (φ0=0.01) length scale 

δ = h/2 as defined by (2.54).
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Figure 43: Comparison of analytical solution to the numerical solution from TD2PF to 
a one-dimensional constant melt fraction problem. (a) Comparison at t=0 of the 
analytical solution to the one-dimensional compaction problem (red line) with the 
numerical solution from TD2PF (black crosses). (b) The difference between analytical 
and numerical solution as a percentage of the maximum value of the analytical (mdiff) of 
D. The initial melt fraction problem is φ0=0.1, δ = h/2 as defined by (2.54) and NZ1=65 
points.
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For t=18 (180 time-steps), an RMS error of 1.1% for the melt fraction and 2.0% for D 

develops between the solutions obtained from the one-dimensional program (1D2PF) 

and that from the three-dimensional program (TD2PF).

4.6.2 Solving the one-dimensional Gaussian perturbation problem

The next stage of testing was to replicate a train of one-dimensional solitary waves in 

both 1D2PF and TD2PF. The initial condition used was a Gaussian perturbation upon a 

background constant melt fraction as defined by equation (4.80), using the parameters 

defined in Table 8.

Parameter x0 y0 z0 σx σy σz A φ0

Value 0.5 0.5 0.1430 0.05058 1000 1000 0.1 0.001

Table 8: Initial parameter values used in generating the solutions shown in Figure 45. 
These parameters relate to equation (4.80) which describes a three-dimensional 
Gaussian perturbation atop a background melt fraction. The values of σy and σx are 
large to render the distribution nearly one-dimensional in the z-direction. 
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Figure 44: Comparison of solutions for an initially constant melt fraction problem from 
TD2PF and 1D2PF. The lines are solutions obtained from 1D2PF, the crosses from 
TD2PF showing the melt fraction field φ(z) (left) and divergence field D(z) (right). Non-
dimensional time-steps were ∆t=0.1 up to a time t=18 and the mesh used NZ1=65 
points.
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For this experiment, I used a mesh defined by NX1=NY1=129 and NZ1=257 to allow 

better vertical resolution of the solitary wave. The compaction length was again half of 

the non-dimensional layer thickness (h0=2, Equation 2.55) and the time step size (∆t) 

was 0.1

Comparing solutions to the solitary wave propagation problem of Figure 45 obtained 

using TD2PF and 1D2PF (with NZ1=257), the maximum value of mdiff at time t=200 

(2000 time steps), are mdiff=0.84% for φ and mdiff=0.83% for D. 

The comparison between these two independently-developed programs, 1D2PF based 

on the solution of the equation for V (3.4), and TD2PF based on solution of the 

equations for A (4.75, 4.76) and D (4.83), validates and provides confidence in the 

formulation and implementation of both methods.
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Figure 45: Comparison of solutions from TD2PF and 1D2PF for an initial distribution 
of melt fraction that produces a solitary wave. The initial melt fraction (black line in 
45a) is a function of z using equation 4.80 for the parameters in Table 8. The solution is  
at non-dimensional time t=200, depicting (a) melt fraction (φ) and (b) compaction rate 
(D). Contour plots are two-dimensional slices through the three-dimensional solution 
for melt fraction (red) and D (blue). Line plots show 1D sections for solutions 
generated by TD2PF (lines) and 1D2PF (crosses).
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4.6.3 Instability analysis

TD2PF in its current incarnation cannot solve D for a three-dimensional distribution of 

melt fraction using the iterative system described in section (4.4.3). The instability in 

the solution of D develops from gradients of melt fraction in the x and y direction which 

when multiplied by q̂2 in equation 4.86, promotes instability of the iterative algorithm.

In an email on 18 September 2012, G. Houseman set out the nature of this instability by 

first examining a simplified form of equation 4.81:

∇
2 D I+1

=p−r⋅∇ DI
+q2 D I (4.102)

which is repeated until:

max∣D I+1
−D I∣ ≤ ε (4.103)

Suppose the exact solution is De and that after the Ith iteration, DI differs from De by:

D I
=De+∑ εmn exp i(k x x+k y y+k z z ) (4.104)

This expression is just the normal Fourier expansion of an arbitrary noise signal.  The 

summation is over a complete set of the coefficients for which the wavenumbers are 

consistent with the boundary conditions.  If equation (4.104) is substituted into (4.102):

∇
2 D I+1

= p−r⋅∇ De+q2 De

−∑ i (r⋅k )εmn exp i (k x x+k y y+k z z )+∑ q2
εmnexp i(k x x+k y y+k z z )

(4.105)

Then, because De satisfies the governing equation exactly:

∇
2(D I+1

−De)=∑ (q2
−i r⋅k )εmn exp i(k x x+k y y+k z z ) (4.106)

Inverting the operator in (4.106) produces:

D I+1
−De=∑( i r⋅k−q2

k⋅k )εmn exp i(k x x+k y y+k z z) (4.107)

where k2 = kx
2+ky

2+kz
2.

From (4.107) we see that the error signal is increased in amplitude by the factor 

(ir·k-q2)/(k·k) at every iteration. The smallest, k2 value sees the biggest increase in the 

error component at each iteration. 
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If the longest wavelength possible in a domain of width 1 is 2 (the zero horizontal 

wavenumber does not contribute because of the separation of components in equation 

4.84), then the smallest horizontal wavenumber is:

kmin
2
=π

2 (4.108)

And this longest wavenumber component has increased in amplitude after N iterations 

by the factor:

f =(i r⋅k−q2

π
2 )

N

(4.109)

The solution thus increases in amplitude without limit if the factor in parentheses has an 

absolute value greater than 1. The impact of this factor thus depends on the form of the 

vector function r.  In the simple case that r = 0, the criterion for stability is that 

−π< q< π .  For values of q of greater magnitude, the analysis predicts systematic 

growth of a noise signal of the longest horizontal wavelength permitted by the boundary 

conditions.

4.7 Chapter Summary

In this section, I provide a summary of chapter 4, discussing the construction and 

problems encountered while designing the three-dimensional numerical model. For 

efficiency, I chose to adapt a program written by Houseman (1987) named TDCON that 

utilises a Poisson solver named TDPOIS which was originally designed to produce 

solutions for a thermally convecting fluid. The mathematical model used by TDCON is 

similar in form to the two-phase fluid model (chapter 2), and as such conversion of 

TDCON to solve the two-phase problem was a more efficient solution than starting 

from scratch.

Another option would have been to implement the three-dimensional two-phase fluid 

model derived by Wiggins and Spiegelman (1995). Their method however uses 

significantly more simplifying assumptions than my formulation, ignoring matrix shear 

along with wider use of the small melt fraction approximation (Section 2.4.1). TDCON 

was converted to TD2PF by replacing the temperature field with melt fraction in the 

appropriate algorithms (section 4.4.1) and addition of a new algorithm to solve for 

divergence D (section 4.4.3) using a heavily modified version of TDPOIS (renamed 

130



Chapter 4: Three-dimensional Numerical Model    

TDPOTS, discussed section 4.3) along with a rewriting of the time step algorithm 

(section 4.5.2) for advection of melt fraction.

I thoroughly tested TD2PF and showed that it is second-order accurate in comparison to 

analytical solutions (section 4.6.1) and can produce accurate numerical solutions for 

one-dimensional problems that directly correspond to those produced by 1D2PF. 

Attempts to solve three-dimensional problems, where gradients of melt fraction exist in 

both x and y directions, produce a numerical instability in the iterative algorithm for 

solving D.

Two different approaches to solving for D have been discussed and analysed in this 

chapter. The first algorithm attempts to iteratively solve the equation:

∇
2 D I+1

= p−r⋅∇ D I
+q2 DI (4.110)

The algorithm worked by first producing an initial solution using D0 = 0 for the right 

hand side which can then be solved by TDPOTS (modified version of TDPOIS) with 

defined boundary conditions to give D1. Repeating this step with the new estimation of 

D until ΔDI is below a threshold value (equation 4.82) a good approximation of D 

should be attained. However this approach proved to be unstable, with the solution 

inflating out of control with each iteration when q is sufficiently large, for all initial 

conditions tried.

I discovered that the q2 term was the source of the instability (Figure 39) and to counter 

this TD2PF and TDPOTS were adapted again to handle a reformulation of equation 

4.110:

(∇
2
−q̄2)D I+1

= p−r⋅∇ D I
+q̂2 D I (4.111)

Equation 4.111 separated the q2 term into two components, the z-dependent component, 

q2, and the x- and y-dependent components, q̂2 . This separation significantly reduced 

the potential for instability, as the driving force for the system is in the z direction. I 

investigated the potential for instability in the new formulation (Equation 4.111, section 

4.4.4) and showed that the solution was stable in most circumstances, but would 

become unstable if the q̂2 became too large (Figure 42), with instability most likely at 

low horizontal wavenumbers. 

I was able obtain one-dimensional solutions using the three-dimensional program 
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TD2PF which evolved correctly and without instability with second-order accuracy 

confirmed by the independently developed one-dimensional program 1D2PF predicted 

(Figure 44). However when relatively small x and y gradients of melt fraction emerged, 

D would again become unstable and explode in value.

In conclusion, I have outlined unsuccessful attempts in this search for a solution to the 

three-dimensional two-phase flow problem and have developed and detailed the source 

of the instability clearly. I have also significantly expanded TDPOIS in the form of 

TDPOTS, so that it can now handle a variety of mixed and non-zero boundary 

conditions and solve a new type of equation:

(∇
2
−q(z)2) f (x , y , z)=g (x , y , z) (4.112)

The instability of the particular algorithms for D explored here does not preclude the 

existence of another algorithm that is stable, or that further simplifying approximations 

may allow for a solvable system within the same broad framework that I have 

developed.
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5 Discussion, conclusion and future work

During the course of this project, I have developed both one-dimensional and three-

dimensional formulations of the two-phase flow problem in which magma moves 

through a deformable viscous matrix. Experiments with the one-dimensional 

compaction problem confirm that the base of the medium compacts via expulsion of the 

pore fluid, on a compaction length scale first identified by McKenzie (1984). Building 

on the results of Barcilon and Richter (1986), I confirmed with one-dimensional 

numerical solutions the stable propagation of the melt fraction pulses with a Gaussian 

depth profile. Initial perturbations evolve into either a single solitary wave (Figure 19) 

followed by a minor disturbance in the background melt fraction (Figure 20); or, above 

a critical perturbation width, a train of solitary waves, whose number increases with the 

initial perturbation width (λI), is formed. The secondary solitary waves have a 

systematically decreasing amplitude and width depending on certain parameters of the 

medium, which include permeability, matrix viscosity, and melt viscosity. The 

propagation velocity of the solitary waves depends primarily on the peak melt fraction 

amplitude (Figures 23 and 24), but also on the melt fraction independent compaction 

length scale δ (Equation 2.54) determined by matrix and fluid viscosity and 

permeability coefficient (Figure 29), confirming results by Barcilon and Richter (1986). 

A series of waves with varying amplitude is therefore naturally dispersed, resulting in 

melt concentration pulses arriving at the surface at intervals related to the difference in 

phase velocity between successive waves. The description of how these trains of 

solitary waves develop and propagate from the initial Gaussian melt fraction 

distribution has provided new insights into a potential mechanism for intermittent 

surface volcanism, first proposed by Scott and Stevenson (1984). I have also laid the 

groundwork for development of a parallelised computation algorithm for the three-

dimensional two-phase flow problem, building on code previously developed for 

simulation of the three-dimensional thermal convection problem. 
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I have described some of the pitfalls and instabilities that arise with the potential 

function formulation, but successful completion of a working three-dimensional two-

phase flow simulation was not possible in the time available.

5.1.1 One-dimensional solitary wave formation

Solitary waves in magmatic systems have previously been explored by numerous 

investigators using both numerical and analytical models as discussed in chapter 1. 

Their existence in the earth’s mantle is still debatable as direct evidence of magmatic 

solitary waves is not yet accessible. However, the equations that govern the melt-rock 

system with low melt fraction show that solitary waves initiate from any spacial 

variability in the melt content. Spiegelman (1993a, 1993b, 1993c) has investigated this 

phenomenon in considerable detail in one and two dimensions.

Once initiated, solitary waves take relatively little time to stabilise into an 

approximately Gaussian shaped wave of stable form and velocity. Assuming the 

Gaussian form, I measured the width, amplitude and velocity of the solitary waves 

generated by numerical solution of the governing equations, so as to analyse their 

evolution. Greater amplitude causes an increased phase speed, as shown previously by 

Barcilon and Richter (1986). The width of the solitary waves follows the relationship:

λS≃4.6δ (5.1)

and the amplitude varies approximately as:

AS≃89/δ (5.2)

where δ is the melt fraction independent compaction length, δc without φ dependence 

(Equation 2.54) defined as:

δ=√ k 0ηm
η f

(5.3)

The phase velocity of the solitary wave is shown to be a more complicated function of 

the melt fraction independent compaction length and the matrix viscosity, obeying the 

equation:

ωs≈C2 (δ )
16 /9

(ηm )
−1 (5.4)
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Experiments with varying initial amplitudes and width revealed an intriguing 

relationship between the initial width of the perturbation and the volume of the stably 

propagating pulse (Figure 25). Below a critical value of the initial width, the input pulse 

propagates as a stable solitary wave, but above this threshold, fluid from the initial melt 

fraction that is not accommodated in the primary wave ends up in one or more 

secondary solitary waves. Partitioning of melt into secondary solitary waves only occurs 

for initial perturbation widths above this threshold (Figure 32).

In conclusion, my numerical solutions have provided further evidence of the 

permanence of form associated with solitary waves that have an approximately 

Gaussian profile in the distribution of melt fraction, and confirmed the dependence of 

phase velocity on amplitude demonstrated by Barcilon and Richter (1986). I showed 

also that there is a preferred solitary wave width that is directly proportional to the 

compaction length scale defined by McKenzie (1984) (basically the square root of the 

ratio of matrix viscosity to fluid viscosity, multiplied by the permeability coefficient).

5.1.2 One-dimensional solitary wave trains

For a sufficiently thick Gaussian melt fraction profile or small melt fraction independent 

compaction length, a series of size-ordered solitary waves will result, which disperse 

because the larger pulses have a greater phase velocity. A broad zone of diffuse partial 

melt is therefore likely to produce a sequence of magmatic pulses arriving at the surface 

at discrete times, each pulse smaller than the last. This however would require that melt 

built up in a small region before being expelled, which is contradicted by geochemical 

evidence from Kelemen et al. (1997) that the melt fraction builds up to ~7-13% at 

maximum before extraction. Furthermore, numerical solutions by Scott and Stevenson 

(1984) indicate that a band of melting produces a train of similarly spaced and shaped 

waves.

Where secondary waves were not produced, a small-amplitude disturbance (~0.3% of 

the amplitude of the primary wave, for the example of Figure 20) was observed in some 

calculations. This disturbance is found close to the site of initial perturbation of the melt 

fraction when there are no secondary solitary waves. As the solution becomes closer to 

one that developing a secondary solitary wave, the magnitude of the disturbance reduces 
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to nothing. I suggest that this disturbance is a result of the input perturbation not exactly 

matching the stable solitary wave in amplitude and width required for stable 

propagation in a medium with the defined physical properties.

The further investigation of solitary wave train formation from a lens-like structure, 

with horizontal offsets related to transform faults, may provide insights into the melt 

transport under a ridge system. Here I have only touched on the small-scale disturbance 

to the melt fraction that forms from incomparability between the initial condition and 

solitary wave that evolves from it. As such, one component of future studies would be to 

take a more in-depth look at the reasons for this incompatibility and examine the small-

scale disruptions closer, examining the phenomena for different initial distributions of 

melt fraction and δ.

5.1.3 Development of a three-dimensional two-phase flow algorithm

As part of this project, considerable effort was invested in development of a new non-

dimensional algorithm for solution of the two-phase flow problem. This algorithm is 

based on a potential function representation of the matrix velocity field, which has the 

advantage of separating naturally those parts of the flow that describe compaction or 

expansion of the matrix (using a scalar function B) and those that describe advection 

without change of melt fraction (using a vector function A). The scalar potential 

function B was found to be simply related to the divergence of the flow field D and a 

governing equation for D was derived. Efforts to find an efficient algorithm for the 

solution of this equation have not yet been successful. A simple iterative approach to 

solution of the equation for D:

∇
2 D= r⃗⋅∇ D+q2 D+ p (5.5)

is found to be numerically unstable. A solution to this problem was not possible in the 

available time, however major progress was made in the development of the program 

TD2PF, which was proven to accurately solve the one-dimensional compaction test 

case. At this time the remaining major requirement for a working non-dimensional 

program is to design and implement an efficient and stable algorithm for the solution of 

the above equation.

The clearest avenue for future work on this topic revolves around continuing the 

136



Chapter 5: Discussion, Conclusion and Future Work   

development of the three-dimensional two-phase flow simulation program TD2PF. 

Although various studies by other authors have investigated aspects of the one- and 

two-dimensional problems, little has been done using three-dimensional numerical 

solutions to this two-phase system representing partially molten mantle. Adaptation of 

the mathematical model by Wiggins and Spiegelman (1995) into TD2PF would be one 

such possible way of solving the instability in the D solving algorithm.

5.1.4 Application of model results to Earth processes and observations

The existence of solitary wave trains (Figure 22) would imply a possible deep control 

on the periodicity of surface volcanism. The trains of solitary waves I have studied 

consist of a series of waves at intervals governed by the relative phase velocity of each 

solitary wave, expressed as:

Δ t= b
ωn+1

−
b
ωn

(3.50)

where Δt is the time between arrivals of wave n and n+1, b is the depth of solitary wave 

formation and ω is the solitary wave phase velocity of pulse n in the train.

This mechanism indicates that the majority of melt would arrive at the base of a 

volcanic system in pulses rather than by percolation of melt at a constant rate. 

Based on my calculations of solitary wave velocities, amplitudes and widths (Figures 23 

and 24) and equation 3.50, I calculate the time period between eruptions at 3160 years 

between the 1st and 2nd, and 3200 years between the 2nd and 3rd arrivals for an initial 

perturbation width of ~9km at a depth of ~80km with the parameters from Table 1. The 

difference between sequential arrivals remains small compared to the value of Δt for 

both larger and smaller λI, as shown in Table 4. Solitary wave velocity however is 

sensitive to the parameters governing the region and for the ranges of matrix viscosity, 

fluid viscosity and permeability I have studied in section 3.3.2, Δt is on the order 103 to 

105 years.

Plots of volcanic eruptions going back ~10000 years for the more well-documented 

volcanoes in Iceland (Siebert and Simkin, 2002) showed no discernible increase in 

eruptivity on the time-scales in question (~103 years). The absence of a clear signal 

however may depend to some extent on the patchy nature of eruptive history data; 
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recorded history, is far too short to accurately document the relevant time scales of 

volcanic activity mediated by solitary wave arrivals. 

Comparison of solitary wave melt volume to erupted volume shows that solitary waves 

can provide the volume of melt seen over multiple eruptions. Krafla in Iceland for 

example produced 4.9x108m3 of erupted material over historical records (Siebert and 

Simkin, 2002). Assuming that the one-dimensional volumes in Figure 3.45 are 

representative of a cross section through a spherical three-dimensional solitary wave, 

the largest solitary wave I have studied in Chapter 3 has a melt volume of 5.7x107m3 

(Figure 23). Experiments with initial perturbation widths of 9km and peak melt fraction 

(AI) of 7 to 11% produce primary solitary wave volumes between 3.8x108m3 and 

2.1x109m3 respectively. These volumes fall within the bounds required to feed the 

recorded erupted volume of Krafla for the past ~1000 years, supporting the argument 

that the solitary waves do not correspond to individual eruptions, but to periodic 

increases in volcanic activity on the time scales of thousands of years.

In conclusion, I have demonstrated that the solitary wave trains forming in a region of 

Earth-like parameters produce successive arrivals every ~103 years and would expect a 

periodical increase and decrease in volcanic activity to match these periodic increases in 

melt flux from the mantle. I have also demonstrated that these solitary waves can 

contain enough melt volume to supply multiple volcanic eruptions, comparing the 

volume to the eruptive history of Krafla compiled by Siebert and Simkin, (2002).

Future geochemical dating and measurement of past eruptions over the time scales in 

question may uncover the proposed periodicity in volcanic activity.
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7 Appendices

7.1 Appendix A: Derivation of O(Δz3) difference equations.

In section 2.6 I discuss the discretisation of the mathematical system to allow for 

numerical solution of the equations that describe a two-phase medium. To convert the 

analytical system of equations into numerical algorithms tools are required such as the 

finite difference method for approximation of a differential equation. In general, finite 

difference approximations are based on space-centred approximations, (e.g. 2.67, 2.68). 

On boundaries, however, it is sometimes necessary to use a one-sided approximation. I 

describe here the derivation of a one-sided approximation to the first derivative that is 

2nd order accurate.

The first stage is to generate a series of Taylor expansions of function f for h to 2h:

f (x+h)=f ( x)+h f '(x )+h2 f ' ' (x)
2 !

+O(h2
) (7.1)

f (x+2h )=f ( x)+2h f '( x)+4h2 f ' ' (x)
2 !

+O(h2
) (7.2)

Backward Taylor expansions for -h to -2h:

f (x−h)=f (x)−h f ' (x)+h2 f ' ' (x)
2!

+O(h2
) (7.3)

f (x−2h)=f (x)−2h f ' (x )+4h2 f ' ' (x)
2!

+O(h2
) (7.4)

To find the first order forward difference approximation, equation 7.1 is multiplied by 4 
and subtracted by equation (7.2). This removes the second order term to produce:

−4 f ( x+h)+ f (x +2h)=−3 f (x)−2h f ' (x)+O(h2
) (7.5)

Which can be rearranged to leave the second order accurate approximation for the first 

order forward difference:

f ' (x)=−
(3 f ( x)−4 f (x+h)+ f (x+2h))

2 h
+O(h2

) (7.6)

The backwards difference equivalent of (7.6) is:

f ' (x)=
(3 f (x)−4 f (x−h)+ f ( x−2h))

2h
+O(h2

) (7.7)
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using the same method.

7.2 Appendix B: Derivation of vector calculus identities.

I use many vector calculus identities in the derivation of the system of equations in 

chapter 2. In this section I go through two of these identities and prove them to be valid. 

The first identity is equation 2.10, restated here:

∇⋅[∇⋅[a ]I] = ∇[∇⋅[a]] (2.10)

The divergence of the vector a is:

∇⋅[a]=∂x ax+∂ y ay+∂z az (7.8)

Multiplying (7.8) by the identity matrix:

∇⋅[a] I=[
∂ x ax+∂ y a y+∂ z az 0 0

0 ∂x ax+∂ y ay+∂ z az 0
0 0 ∂x ax+∂ y ay+∂ zaz

] (7.9)

And then taking the divergence:

∇⋅[∇⋅[a] I ]=
(∂xx ax+∂xy ay+∂xz az) x̂+(∂xy ax+∂ yy a y+∂ yz az) ŷ+(∂xz ax+∂ yz ay+∂zz az) ẑ (7.10)

Then taking the gradient of (7.8):

∇ [∇⋅[a ]]=
(∂xx ax+∂xy ay+∂xz az) x̂+(∂xy ax+∂ yy a y+∂ yz az) ŷ+(∂xz ax+∂ yz ay+∂zz az) ẑ (7.11)

So identity 2.10 is valid.
The second identity in question is:

∇⋅[∇ [a]+(∇[a ])T ]= ∇ 2[a]+∇ [∇⋅[a ]] (2.11)

The gradient of a is:

∇[a ]=[
∂x ax ∂x a y ∂x az

∂ y ax ∂ y ay ∂ y az

∂ z ax ∂z a y ∂z az
] (7.12)

And the Transpose of this is:

∇[a ]T=[
∂ x ax ∂ y ax ∂z ax

∂x ay ∂y a y ∂z ay

∂x az ∂ y az ∂ z az
] (7.13)

So the left hand side of 2.11 is:
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∇⋅[∇[a ]+(∇ [a])T ] = (2∂ xx ax+∂xx a y+∂ xy ax+∂xx az+∂xz ax ) x̂
+(∂yy ax+∂xy ay+2∂ yy ay+∂ yy az+∂zy a y) ŷ+(∂zz ax+∂ xz az+∂zz ay+∂ yz az+2∂zz az) ẑ

(7.14)

Turning attention to the right hand side buy first calculating the vector Laplacian:

∇
2
[a ]=∂xx ax x̂+∂ yy ay ŷ+∂zz az ẑ (7.15)

And then the right hand side using equation 7.11:

∇
2
[a]+∇ [∇⋅[a ]]=(2∂xx ax+∂ xy ay+∂xz az) x̂

+(∂xy ax+2∂ yy ay+∂ yz az) ŷ+(∂xz ax+∂ yz a y+2∂ zzaz) ẑ
(7.16)

Thus the identity is correct as (7.14) equals (7.16).
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